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Abstract

Typed feature logics have been employed as description languages in modern type�oriented
grammar theories like HPSG and have laid the theoretical foundations for many imple�
mented systems� However� recursivity pose severe problems and have been addressed
through specialized powerdomain constructions which depend on the particular view of
the logician�
In this paper� we argue that de�nite equivalences as introduced by Smolka can serve as the
formal basis for arbitrarily formalized typed feature structures and typed feature�based
grammars�lexicons� as employed in� e�g�� TFS or TDL� The idea here is that type de��
nitions in such systems can be transformed into an equivalent de�nite program� whereas
the meaning of the de�nite program then is identi�ed with the denotation of the type
system� Now� models of a de�nite program P can be characterized by the set of ground
atoms which are logical consequences of the de�nite program� These models are ordered
by subset inclusion and� for reasons that will become clear� we propose the greatest model
as the intended interpretation of P� or equivalent� as the denotation of the associated type
system�
Our transformational approach has also a great impact on nonmonotonically de�ned types�
since under this interpretation� we can view the type hierarchy as a pure transport medi�
um� allowing us to get rid of the transitivity of type information �inheritance�� and yielding
a perfectly monotonic de�nite program�
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� Introduction

Typed feature logics �e	g	� Carpenter 
���� have been employed as description languages in
modern type�oriented grammar theories like HPSG �Pollard and Sag 
�
�� Pollard and Sag

���� and have laid the theoretical foundations for many implemented systems	 However�
recursivity poses severe problems and has been addressed through specialized powerdomain
constructions which depend on the particular view of the logician �e	g	� Pollard and Moshier

����	
In this paper� we argue that de�nite equivalences as introduced by Smolka 
��
 and formally
de�ned in Smolka 
��� can serve as the formal basis for arbitrarily formalized typed feature
structures and typed feature�based grammars�lexicons �for short type systems�� as employed
in� e	g	� TFS �Zajac 
���� or TDL �Krieger and Sch�afer 
����	
The idea here is that type de�nitions in such systems can be transformed into an equivalent
de�nite program� whereas the meaning of the de�nite program then is identi�ed with the
denotation of the type system	 Now� models of a de�nite program P can be characterized
by the set of ground atoms which are logical consequences of the de�nite program �Lloyd

�
��	 These models are thus ordered by subset inclusion and� for reasons that will become
clear� we propose the greatest model as the intended interpretation of P � or equivalent� as the
denotation k�k of the associated type system �	 This general idea is depicted in Fig	 
	

�
trans

��� P
� �

k�k � intended model of P
� gfp�TP �

Figure 
� General idea of the transformation schema� The meaning of the type system � is

given by the greatest model of the corresponding de�nite program P which is characterized

by the greatest �xpoint of the associated function TP of P �

Our �transformational� approach has a great impact on nonmonotonically de�ned types�
since under this interpretation� we can view the type hierarchy as a pure transport medium�
allowing us to get rid of the transitivity of type information �inheritance�� and yielding a
perfectly monotonic de�nite program	

� Types� Typed Feature Structures� and Type De�nitions

In order to describe our approach� we need only a small inventory to abstract from a concrete
implementation	 First of all� we assume pairwise disjoint sets of features �or attributes� F
�f� g� h�� atoms �or constants� A �a� b� c�� �logical� variables V �x� y� z�� and types �or sorts�
T �s� t� u�	� A sequence of features is called a path �e	g	� fgh�	 Let � denote the empty path	
The set of paths is abbreviated by F�	 T contains two special symbols� viz	� �� denoting the
set of all objects �the universe� and �� denoting inconsistent information �the empty set�	
The set of complex types T � then is de�ned by employing the Boolean connectives� s � T � i�

�We assume here that T � F � and A are �nite for a given grammar�lexicon� Without loss of generality�
however� V can be assumed to be in�nite�

�



s � T 	A or s �
V
i ti or s �

W
i ti or s � 
s�	 In the following� we refer to a type hierarchy �or

inheritance hierarchy� by the pair hT ��i� such that � � T 
 T is a decidable partial order �
i	e	� � is re�exive� antisymmetric� and transitive	 We call the quintuple � � hF �V �A�T ��i
a signature	 A typed feature structure � is an extension of A��t�Kaci�s ����terms �A��t�Kaci

�
���

� ��� hx� s� �i �
�

such that x � V� s � T �� and � � C�	 C� is inductively de�ned as follows� � � C� i�
� � �f

�
� �� or � �

V
i �i or � �

W
i �i or � � 
�� or � � � �abbreviating the empty

conjunction� or � � � �empty disjunction�	 We call f
�
� � a feature constraint �or attribute�

value pair�	 We abbreviate the set of typed feature structures by �	 Finally� we de�ne a type
system � as a �nite set of type de�nitions� � � ft �� � j t � T � � � �g	 I	e	� a type de�nition
t �� � simultaneously speci�es �via �� the constraints de�ned on t as well as the types of
the inheritance hierarchy to which t refers to	 Clearly� type systems encode grammars and
lexicons	

Let us now focus on the intended denotation of feature constraints� types� typed feature
structures� etc	 to get an intuitive feeling for the meaning of such descriptions	 Clearly� a clean
de�nition of this will also be given indirectly in Section � and � through the transformation
approach into de�nite equivalences �recall Fig	 
�	 First of all� we notice that �� �� as well as
�� �� and 
 are overloaded w	r	t	 T � and C�� but are interpreted in both cases purely classical�
viz	� denoting in every interpretation the whole universe� the empty set� set intersection� set
union� and set complement	 Given a typed feature structure � � hx� s� �i� an interpretation
I� and a variable assignment 	� we de�ne the denotation of � under I and 	 as follows�

���  I� �� f	�x�g � ��s  I � ���  I� ���

This due to the fact that � implicitly expresses a conjunction of x� s� and �	 Now� by
abstracting from the variable assignment 	� we obtain

���  I ��
�
�

���  I� ���

Let us quickly �nish this informal de�nition by giving feature constraints f
�
� � a denotation�

��f
�
� �  I� �� fo j fI�o� � ���  I�g ���

I	e	� f
�
� � denotes exactly those objects o on which f is de�ned� such that the value of f is

in the denotation of �	 The interested reader is referred to Krieger 
���a for the full formal
setting	

It is worth noting here that the transformation schema to come is independent of the under�
lying type logic� e	g	� whether the existence of a greatest lower bound �GLB� is obligatory as
for instance in TFS� or optional as in TDL �Krieger 
���b�	

�Typed feature structures in our sense are a true extension of the ����terms in LOGIN�LIFE since disjunc�
tive typed feature structures �� ��terms	 are always typed here and the type of a typed feature structure can
even be an arbitrary complex type expression s � T � �and must not be a mere type symbol s � T 	�

�



� De�nite Equivalences

De�nite equivalences date back to Clark�s completion schema �Clark 
��
� and to the work
of H�ohfeld and Smolka on de�nite relations over constraint languages �H�ohfeld and Smolka

�

� which has its root in the constraint logic programming paradigm �Ja�ar and Lassez

�
��	 De�nite equivalences extend work in logic programming in many ways� �i� we focus
on true equivalences �contrary to� e	g	� the Horn clause logic in Prolog�� �ii� we can mix ��
�� and � �no need to go to DNF�� and most important� �iii� we are no longer dedicated to a
particular constraint system �e	g	� the Herbrand structure!interpretation of Prolog�	
In our case� the constraint system is the equational theory of typed feature structures� i	e	�
constraints are essentially equations s

�
� t and disequations s �

�
� t� where s and t are terms	

Note that in our special case� s and t are either variables or constant symbols because our
signature does not contain real function symbols	 It is worth noting that we restrict negation
�in this paper� to the constraint level to guarantee the existence of a least and a greatest
model of a de�nite program	 Notice too that we do not treat negated constants since x

�
� 
c

can be expressed equivalently as x �
�
� c	

Having �xed the constraint inventory� we de�ne a de�nite equivalence as

r�
x� � � ���

where r � R is a relation symbol� 
x a sequence of variables� and � a de�nite formula	�

We then de�ne the set of de�nite formulae �� � inductively by the following rewrite rules�

�� � ��� s
�
� t j s �

�
� t j r�
x� j � � � j � � � j �
x � � ���

A de�nite program P is a �nite set of de�nite equivalences fri�
xi� � �i j i � Ng� such that


	 variables in 
x are pairwise disjoint�

�	 � contains at most the free variables 
x� and

�	 for every r � R� P contains exactly one equivalence r�
x� � �	

Clearly� the set of predicate symbols R of P is �nite� since P is �nite	

� Transformation Schema

Our transformation schema makes no assumption about restrictions on the type hierarchy�
i	e	� we are not enforced that it must be� for instance� a lower semi�lattice as in ALE �Car�
penter and Penn 
���� or any arbitrary partial order� as assumed in TDL	 However� it must
preserve incompatibilities between types� so that we can abstract to a certain extent from the
underlying type logics �see below�	

We are now ready to transform an arbitrary type system into a de�nite program	 The idea
is simple and intuitive� every type t � T is interpreted as a unary predicate t�x� and every
feature f � F as a binary relation f�x� y�	
Now let � be an arbitrary type system that employ negation on the constraint level via negated
atoms and negated coreferences only	 The overall transformation schema is as follows�

�Of course� the free variables �x will be interpreted universally�

�




	 Substitute every 
 � �s �� hx� t� �i� � � with the de�nite equivalence p� given by

p� �� �s�x� � �x�� � � � ��xn � �trans�t� x� � trans��� x���

where x�� � � � � xn are the free variables within � minus x� plus those that are introduced
by trans in case of paths �see below�	

�	 Then replace � by the de�nite program P � where

P ��
�
���

p�

�	 Let fSi j Si � T � 
 � i � ng be the set of sets of incompatible types	 To preserve
incompatibility� extend P by the following equivalence�

P �� P 	

�
��x� �

n�
i��

Si�x�

�

Si�x� means s��x� � � � � � sm�x�� i	e	� GLB�s�� � � � � sm� � �� where Si � fs�� � � � � smg	

De�ning trans for complex types is straightforward �variables y are handled here��

� trans�t� x� �� t�x� i� t � T

� trans�y� x� �� �x
�
� y� i� y � V

� trans�
y� x� �� �x �
�
� y� i� y � V

� trans�a� x� �� �x
�
� a� i� a � A

� trans�
a� x� �� �x �
�
� a� i� a � A

� trans�t� � � � � � tn� x� �� trans�t�� x� � � � � � trans�tn� x�

� trans�t� � � � � � tn� x� �� trans�t�� x� � � � � � trans�tn� x�

Constructing trans for feature constraints is also nothing special�

� trans��
�
� hy� s� �i� x� �� trans�y� x� � trans�s� x� � trans��� x�

� trans�f
�
� hy� s� �i� x� �� f�x� y� � trans�s� y� � trans��� y� i� f � F

� trans�f
�
� hx� s� �i� x�� ��

�
n���
i��

�fi�xi��� xi� ���xi��

�
� trans�fn

�
� hx� s� �i� xn����

i� f � F�� where f � f� � � � fn� f�� � � � � fn � F � and x�� � � � � xn�� are new variables

� trans��� � � � � � �n� x� �� trans���� x� � � � � � trans��n� x�

� trans��� � � � � � �n� x� �� trans���� x� � � � � � trans��n� x�

�



likes�z� � �z�� � � � ��z����x��y �
main�z� � �rdsng�z� � strict�trans�z� �
PHON�z� z�� � ��z�� �
SYN�z� z�� � ��z�� �
LOC�z�� z�� � ��z�� �
SUBCAT�z�� z�� � cons�z�� �
FIRST�z�� z�� � ��z�� �
REST�z�� z	� � cons�z	� �
FIRST�z	� z
� � ��z
� �
REST�z	� z�� � ��z�� �
SEM�z� z�� � ��z�� �
CONT�z�� z��� � ��z��� �
RELN�z��� z��� � ��z��� �
LIKER�z��� z��� � ��z��� �
LIKED�z��� z��� � ��z��� �
�z�

�
� �likes�� �

�z�
�
� y� � �z


�
� x� � �z�

�
� nil� �

�z��
�
� like� � �z��

�
� x� � �z��

�
� y�

Figure �� The outcome of applying trans to likes�

Obviously� systems which employ arbitrary relations �relational dependencies� in their de�
scription language �e	g	� TFS� can be given a formal semantics this way too �as long as they
are de�nite�� since we already stick to �rst�order logic in the transformation schema	

Let us give an example to see the outcome of this transformation schema	 Consider the
following simpli�ed type de�nition of the transitive verb likes �Pollard and Sag 
�
�� p	 ��
�	

likes �

	








�

main � �rdsng � strict�trans
PHON �likes�

SYN�LOC�SUBCAT
D

y � x
E

SEM�CONT

	

�

RELN like
LIKER x
LIKED y

�

�

�








�

���

Applying trans to ��� yields the de�nite equivalence depicted in Fig	 �	

Clearly� merely de�ning de�nite equivalences on the basis of the predicate!type symbols t � T
is only one part of the whole transformation story"notice that the set of relation symbols R
of a de�nite program is given by R � T � F 	 I	e	� we have to give also de�nite equivalences
for every feature f � F 	 In the previous example� for instance� the value of the FIRST feature
at the end of path SYN�LOC�SUBCAT is �in general� unrestricted �i	e	� � ��	 Furthermore�
FIRST is �in general� only appropriate for feature structures of type cons	 Thus we have the
following de�nite equivalence for FIRST�

�



FIRST�x� y� � cons�x� � ��y�
� �

intro type value type
�
�

In case that a feature f is speci�ed in di�erent� subsumption�incomparable types� i	e	� there
is no unique� most general type which introduces f � we have to list these alternatives disjunc�
tively�

f�x� y� �
n�
i��

�introi�x� � valuei�y�� and n � 
 ���

Here� f is exactly what CUF �D�orre and Dorna 
���� calls a polyfeature	 Of course� such
polyfeatures violate the feature introduction condition in Carpenter�s book �Carpenter 
����
p	 
��	 Now� in order to complete our schema trans � we have to extend the de�nite program
P by adding de�nite equivalences for every feature f � F �

�	 For every f � F � let Tf denote the set of most general� subsumption�incomparable types
which introduce feature f 	 Then extend P by the following de�nite equivalences�

P �� P 	
�
f�F

��
�f�x� y� �

�
t�Tf

t�x� � trans�t#f� y�

��
�

t#f yields the value �type� of feature f in the type de�nition!appropriateness speci��
cation for t	�

In case that r � T is unde�ned �has no de�nition in the de�nite program P �� we extend P
by the following de�nition�

r�x� � r�x� �
��

Recall that this is due to the fact that for every r � T � F � there must be exactly one
equivalence �r�
x� � �� � P 	

If we only know that a type s is the direct subtype of � but nothing more� i	e	� s �� hx����i�
trans will clearly yield the following equivalence�

s�x� � ��x� �

�

This might be OK on �rst sight� but remember that the equivalence sign here denotes equality	
Thus for a given interpretation I� we would have that sI � �I �which must not be the case�	
Now assume that our type system contains a similar de�nition� s� �� hx����i	 Clearly�
applying trans to the de�nition of s� yields s��x� � ��x�	 Because s and s� have the same
right�hand side� it is legal to infer that sI � s�I � for every interpretation I �which is obviously
strange�	

�Notice that 
 here can be seen as an extension of Carpenter�s appropriate function Approp� in that it is
total and now maps to the set of complex type expressions T �� i�e�� 
 � T � F ��� T �� Note further that
because we allow for complex type expressions� we must therefore apply trans to the value of t
f �






In order to overcome this problem� we must encode the information that s and s� are subtypes
of �	 There are several ways to achieve this	 We will propose the hereditary subset encoding
H�T � � ft j t � T g of hT ��i �see Gr�atzer 
��
� p	 �
 and Euler 
�
�� pp	 ���	 The idea here
is that a type t � T can be represented through the set t of types which are smaller or equal
than t�

t �� fs � T j s � tg �
��

Obviously hH�T ���i forms a complete distributive lattice� where the greatest lower bound
operation corresponds to set intersection and the least upper bound to set union	 By interpret�
ing the hereditary sets disjunctively� we can now replace the �rst step of the transformation
schema in that p� is extended by an additional clause which encodes the subtypes s of a given
type s through a special new feature!binary predicate type�

p� �� �s�x� � �x�� � � � ��xn��y � trans�t� x� � trans��� x� � type�x� y� � y
�
�
�
u�s

u�� �
��

Coming back to our example� trans now correctly distinguishes between s and s��

s�x� � �y � ��x� � type�x� y� � y
�
�
W
t�s t

s��x� � �y � ��x� � type�x� y� � y
�
�
W
t�s� t

�
��

� Greatest Model Semantics

In general� one has an intuition what the meaning of a de�nite program is	 Such a meaning is
given by an interpretation of the symbols of a �rst�order language �atoms� functions� relations�
over a speci�c domain	 Formally an interpretation �or a �rst�order structure� I is given by
a pair hDI � �Ii� where DI is some domain of discourse over which the variables range and
�I an interpretation function	 Furthermore� let 	 � V ��� DI be a variable assignment �or
valuation� and let V I abbreviate the set of all valuations into I	 Clearly� in our case we have

� if a � A then aI � DI

� if t � T then tI � DI

� if f � F then fI � DI 
DI

Normally� one is interested in interpretations I for which every formula p of a de�nite program
P expresses a true statement in I	 These interpretations are called models of P 	 If I is a
model of P � we write

I j� P ��� �p � P � I j� p ��� �	 � V I ��p � P � I� 	 j� p �
��

i	e	� every p must be valid in I� or equivalently� all valuations into I are solutions of p in I	

We have already noted that under the usual Herbrand interpretation� models of P can be
characterized through sets of ground atoms over the �complete� Herbrand base which are
logical consequences of P �see Lloyd 
�
��	 However� since we subscribe to the framework
of de�nite equivalences� we are no longer dedicated to ground atoms� but instead would like

�



to propose rational feature trees �or regular feature trees� as the natural interpretation of
typed feature structures	� Recently� rational feature trees have been formally investigated in
the constraint system FT �A��t�Kaci et al	 
����� due to Colmerauer�s work in Prolog II
�Colmerauer 
�
��	
Now let � � ���� denote the set of all �possible in�nite� rational feature trees w	r	t	 signature
�	 A rational feature tree is a feature tree which �i� has only �nitely many subtrees and �ii�
is only �nitely branching	 A feature tree is a tree whose edges are labelled with features and
whose nodes are decorated with types		 Furthermore� feature trees are �functional� in that
a node is not allowed to have several edges which bear the same feature symbol	 Formally�
a feature tree � � � can be seen as a partial function � � F� ��� T 	 A� where dom���
is a tree domain	
 A tree domain F is a nonempty set F � F� that is pre�x�closed� i	e	� if
fg � F then f � F 	 Let F� denote the tree domain of �	 A subtree f� of a feature tree �
at path f � F� is the feature tree �f which can be obtained by following f in �	 Given a
path f � F�� we de�ne the length of a path j � j � F� ��� N as follows� j�j �� �� jf j �� 
 i�

f � F � and jfgj �� jf j $ jgj	

Following A��t�Kaci et al	 
���� we then de�ne the feature tree interpretation I as follows�

� DI � ���� �i	e	� the universe of I is the set of all feature trees w	r	t	 ��

� � � sI i� ���� � s �i	e	� the root of � is labelled with a subtype of s�

� ����f � � fI i� f � F� and f� � �f �i	e	� �f is a subtree of � at f�

� if �f����� � A then � �g � F � fg � F� �i	e	� no feature is de�ned on an atom�

Let us now obtain a deeper insight into the models of a de�nite program P 	 Constructing
a �speci�c� model M of P and proving certain properties about M is often achieved by
a �xpoint construction over a certain monotonic �or even continuous� function TP � the so�
called associated function of P �Lloyd 
�
��	 TP itself operates on the powerset of our domain�
mapping interpretations into interpretations� i	e	�

TP � ���� ��� ���� �
��

The idea here is that in the �limit�� TP will exactly enumerate those objects which are logical
consequences of P 	 Thus we are interested in interpretations M� where

TP �M� � M �
��

�Feature trees are even present in imperative programming languages like Pascal� since they model records�
Records� when compared with Prolog�like �constructor	 terms� have several advantages� �i	 we are no longer
restricted to a �xed arity
 �ii	 the tags of a record allow us to interchange argument positions
 �iii	 the type
hierarchy gives us the �exibility to successfully unify two records that are not labelled with the same symbol� It
is worth noting that rational trees have even been proposed for one of the earliest feature structure formalisms�
viz�� PATR�II
 see Pereira and Shieber ����� p� ����

�Clearly� because feature trees are trees� they have a unique root and in addition� are connected�
�To make things easier� we restrict the range of � to T � A instead of assuming the superset T �� This

can be done without loss of generality for a �nite type system by adding further de�nitions� extending the
type lattice� and substituting complex type expressions through the corresponding denotation�preserving type
symbols �see Krieger ����b	�


�



since in this case� M has been �saturated�� and so we can stop our iteration process via TP
�see below�	 We call M a �xpoint of TP and for a suitable TP � M will then be exactly a
model of P 	 Now� how will TP look like% For a given interpretation I and valuation 	� TP �I�
will be exactly those feature trees 	�x� which


	 satisfy the right�hand side of some de�nite equivalence p � P w	r	t	 I� and

�	 are labelled with the left�hand side symbol of p at the root	

Actually� the second condition is too strong� since a type system has to be interpreted w	r	t	
the underlying inheritance hierarchy	 Thus we require that 	�x� must be decorated with a
subtype of the corresponding type symbol	 This idea leads us to the following de�nition for
TP �

TP �I� �
�
s�T

�
��V I

f	�x� � ���� j s�x� � � � P and I� 	 j� � and �	�x����� � sg �

�

Now� if TP �I� � J and s�x� � � � P � we have

sJ �
�

��V I

f	�x� j I� 	 j� � and �	�x����� � sg �
��

The satisfaction relation j� used above is de�ned inductively over the structure of de�nite
formulae ���� relatively to I and 	 � V ��� I�

� I� 	 j� x
�
� a i� �	�x����� � a� for x � V and a � A

� I� 	 j� x
�
� y i� 	�x� � 	�y�� for x� y � V

� I� 	 j� x �
�
� a i� �	�x����� �� a� for x � V and a � A

� I� 	 j� x �
�
� y i� 	�x� �� 	�y�� for x� y � V

� I� 	 j� r�x� i� f	�x� j r�x� � � � P and I� 	 j� � and �	�x����� � rg ��  

� I� 	 j� � � � i� I� 	 j� � and I� 	 j� �

� I� 	 j� � � � i� I� 	 j� � or I� 	 j� �

� I� 	 j� �x � � i� f	�x�a� j a � A and I� 	 j� �g ��  

It is worth noting that the power set of all feature tree interpretations ������� of P �w	r	t	
signature �� forms a complete lattice� partially ordered under set inclusion	 Thus� for all
I�J � ����� we can de�ne an ordering � between interpretations�

I � J �� �r � R � rI � sJ ����

The top element of this lattice is � and the bottom element is  	 Furthermore� ���� is even
a distributive lattice� where meet u and join t correspond to set intersection � and set union
	� resp	 �see Davey and Priestley 
���� p	 
�
�	







Now� by applying Tarski�s famous �xpoint theorem� we immediately know that TP will have
a least �xpoint lfp�TP � and a greatest �xpoint gfp�TP �� assuming that TP �i� operates on a
complete lattice and �ii� is monotonic� i	e	�

�I�J � ���� � I � J �� TP �I� � TP �J � ��
�

As we have noted earlier� ���� forms a complete lattice	 Obviously� TP is also monotonic�
given I � J and �s�x� � �� � P � assume that there exists 	�x� � J � such that �	�x����� � s
and J � 	 j� �	 Clearly� because I � J � it is possible that there exists no 	�x� � I� such that
I� 	 j� �	 Given the de�nition of TP � we thus have TP �I� � TP �J �� i	e	� TP is monotonic	

Usually� there is more than just one model of P � since normally TP has more than one
�xpoint	 Two models obviously stand out� the least and the greatest one	 Contrary to most
other related treatments �see Section ��� we have decided to choose a greatest model semantics
for typed feature structures	 This kind of semantics has in fact been implemented in the typed
feature formalism TDL	 Our choice was mainly based on the following two observations�


	 A type system �grammar!lexicon� restricts the set of admissible utterances by specifying
constraints to be ful�lled	 Exactly the greatest �xpoint models utterances which are
licensed only by the linguistic constraints	 Other �xpoints� especially the least one� make
further non�linguistically motivated assumptions about described objects� for instance�
the least �xpoint rules out cyclic structures or assigns an empty denotation to types
which are not founded on atoms �see below�	 We think that as long as such extra�
linguistic constraints can not be formulated in the grammar!lexicon� they should not
come into play indirectly via the choice of a special �xpoint	�

�	 Speaking from an operational point of view� we notice that type expansion �Krieger
and Sch�afer 
���� or sort unfolding �A��t�Kaci et al	 
���� are operations testing for
the satis�ability of typed feature structures	 This is done by making constraints de�
�ned on types explicit �and thus very similar to Bob Carpenter�s total well�typedness�
Carpenter 
����	 Operationally� this is achieved by adding more and more information
to the input structure �via uni�cation�� substituting types through their �improved�
de�nitions	 Assuming a fair type unfolding strategy� we then repeat this process for all
types in parallel� until a failure is detected �possibly in�nitely long�	 But in fact� such a
strategy corresponds to the construction of the greatest �xpoint� namely� to start with
� at the beginning of the �xpoint iteration� as opposed to � in case of the least �xpoint
�see below�	 Notice that this process narrows down the set of possible solutions� since
uni�cation adds more and more constraints during the iteration �this is characteristic
for the approximation of the greatest �xpoint�	 This idea is very intuitive and we guess
that many systems who have proposed a least �xpoint semantics have nevertheless im�
plemented a greatest one �see Section ��	 Exactly the greatest �xpoint semantics is
valid under the complete expansion strategy in TDL �Krieger and Sch�afer 
����	

�Clearly� explicitly excluding cycles in feature logics is usually not possible �universal quanti�cation over
paths�	� There is one notable exception� viz�� Treinen � Backofen�s universal feature theory F � an un�
decidable logic which merely possesses a ��place descriptive primitive 	�	�	� the so�called �generalized fea�
ture constraint� �see Treinen ���� and Backofen ����
 Johnson ���� has already considered the existential
fragment of F 	� In F �actually� the relational extension of F 	� cyclic structures can be easily excluded�
non�cyc�x	 �� �x � �
p� � �y � x�p�y 
 x

�
� y	� non�cyc then should hold for all objects x and can be added as

an axiom� 
x � non�cyc�x	� Of course� we can formulate such meta�constraints in a less specialized logic� e�g��
second�order PL�


�



Before we move on to a formal characterization of the least and the greatest model� we want
to present a few examples of type systems� where the least and the greatest interpretation of
the corresponding de�nite program totally di�er w	r	t	 the rational tree domain �we will not
consider the type feature introduced in the previous section�	

Example �� Let r be an unde�ned type so that the corresponding de�nite program P is
given by P � f�r�x� � r�x�g �see Section ��	 The least model of P is given by  � whereas
the greatest one is �	

Example �� Let s and t be two mutually recursive types which are not �grounded� on atoms�
e	g	� � � fs �� hx��� f

�
� ti� t �� hx��� g

�
� sig	 The least model of the corresponding de�nite

program is again given by the empty set� however� the greatest model contains the following
two �in�nite� rational feature trees� ������������������

�����������������

�s �t
� f � g
�t �s
� g � f
�s �t
� f � � g
�t �s
� g � f
			

			
			

			

������������������
�����������������

Example �� Consider the coreference cycle in the following non�recursive type de�nition�
s �� hx��� f

�
� xi	 The corresponding de�nite program is obviously given by P � fs�x� �

�y � ��x� � f�x� y� � x
�
� yg	 Again� the least model is empty� contrary to the greatest one����������

��������

�s
� f
�s
� f
�s
			

���������
��������

In order to formally understand the di�erences between the least and the greatest �xpoint
of TP � we need some additional mathematical apparatus	 First of all� we notice that because
models M of a de�nite program P are elements of ���� and because ���� forms a complete
distributive lattice� the intersection!meet and the union!join of models are again models for
P 	 Especially� we have

u fM j TP �M� � Mg � �fM j TP �M� � Mg � lfp�TP � ����

t fM j TP �M� � Mg � 	fM j TP �M� � Mg � gfp�TP � ����

Thus usually� lfp�TP � ! gfp�TP � because �fM j TP �M� � Mg ! 	fM j TP �M� � Mg	

We then need the notion of the ordinal powers of TP �see� e	g	� Lloyd 
�
�� pp	 �
�	 Ordinals
�or just ordinal numbers� are a set�theoretic characterization of what we use to count with	


�



The �rst ordinal � is de�ned to be the empty set  	 We now de�ne an ordinal 	 inductively as
�	�
�	f	�
g	 One can verify that 
 is equal to f�g because 
 � �	f�g �  	f g � f g	 The
next ordinals are � � f � f gg � f�� 
g� � � f � f g� f � f ggg � f�� 
� �g� etc	 These ordinals
are the �nite ordinals� the non�negative integers	 The �rst in�nite ordinal is 
 � f�� 
� �� � � �g	
We can specify a total order � on ordinals� where 	 � � if 	 � �	
If 	 is an ordinal� the successor ordinal of 	 is the ordinal 	$
� the least ordinal greater than
		 An ordinal 	 is called a limit ordinal if it is not the successor of any ordinal	 The smallest
limit ordinal is � by de�nition� the next more important limit ordinal is 
 �see above�	 The
successor ordinal of 
 is 
$ 
 � 
	f
g� followed by 
$ �� 
$ � etc	 The next limit ordinal
is 
� which is given by the set fn j n � 
g 	 f
 $ n j n � 
g	 After 
� comes 
� $ 
� 
� $ ��
and so on	 We now have the prerequisites to de�ne the ordinal power of a monotonic function
on a complete lattice	 Let S be a complete lattice and TP � S ��� S be monotonic	 We de�ne
the upward �ordinal	 power of TP as follows�

� TP "� � �

� TP "	 � TP �TP "�	� 
��� if 	 is a successor ordinal

� TP "	 � tfTP "� j � � 	g� if 	 is a limit ordinal

The downward �ordinal	 power of TP is de�ned in the usual dual way�

� TP �� � �

� TP �	 � TP �TP ��	� 
��� if 	 is a successor ordinal

� TP �	 � ufTP �� j � � 	g� if 	 is a limit ordinal

Clearly� � ��� here means ���� � � resp	�	

With the help of TP "	 and TP �	� we can even estimate the least and the greatest �xpoint
�see Lloyd 
�
���

TP "	 � lfp�TP � � gfp�TP � � TP �	� ����

for any ordinal 		

We �nally need two additional notions to characterize the least and the greatest �xpoint in
terms of ordinal powers� viz	� directedness and continuity	 Let S be a complete lattice and
S� � S	 We say that S� is directed i� every �nite subset of S� has an upper bound in S�	 Now
let TP � S ��� S be a mapping	 We say that TP is continuous i�

TP �tS�� � tTP �S�� �� tfTP �s� j s � S�g� ����

for every directed subset S� of S	

If TP is continuous� Kleene�s �xpoint theorem now tells us that

lfp�TP � � TP "
 ����
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i	e	� the least �xpoint of a continuous mapping can be obtained in at least 
�many iteration
steps	 However� a dual result must not hold for the greatest �xpoint in which we are primarily
interested� as described above	�

Now� could at least we guarantee that gfp�TP � � TP �
 is the case for our special setting%
In fact� this is the case because one can straightforwardly show that h����� di is a compact
metric space under a suitable metric d	

Before we will prove this proposition� let us �rst recall the de�nition of a metric space �cf	� e	g	�
Johnsonbaugh and Pfa�enberger 
�

� p	 

��	 Metric spaces can be seen as a generalization
of already familiar spaces� like� for example� the real numbers R together with the Euclidean
metric d�x� y� � jx � yj �i	e	� a metric is a kind of distance measure between elements of a
metric space�	 Formally� a metric d of a set S is a mapping d � S 
 S ��� R
�� which satis�es
the following requirements�

� d�s� t� � � i� s � t� for all s� t � S

� d�s� t� � d�t� s�� for all s� t � S

� d�s� u� � d�s� t� $ d�t� u�� for all s� t� u � S

hS� di is called a metric space	 If furthermore

� d�s� u� � maxfd�s� t�� d�t� u�g� for all s� t� u � S

is the case� d is an ultrametric and hS� di is called an ultrametric space	

Following Lloyd 
�
�� pp	 
��� we then de�ne the notion of truncation at depth n of a feature
tree � � �� depicted by yn���	 In order to indicate that a subtree of a feature tree has
been cut o� in a truncation� we introduce a new symbol of arity � �i	e	� an atom�	 Given a
signature � and adding to the set of atoms A� we obtain an extended signature ��	 Thus yn
is a mapping from ���� into �����	 For a given feature tree � and a given n � 
� yn yields
the truncated feature tree of � at depth n	 Remember that a feature tree � is a partial
function � � F� ��� T 	 A� hence yn returns a function� i	e	�

yn � �F� ��� T 	 A� ��� �F� ��� T � 	A 	 f g� ����

The domain of yn w	r	t	 to a feature tree � now is given by

dom�yn���� � ff � F� j jf j � ng ��
�

With these comments in mind� the de�nition for yn is easy �f � F���

yn ����f� ��

�
��f� i� jf j � n

i� jf j � n
����

Given the truncation function yn� we are now ready to de�ne a metric d on typed feature
trees	 First of all� we notice that for feature trees �� �� ��� yn���� �� yn����� for some
n � �	 Thus for �� �� ��� the set fn j yn���� �� yn����g is not empty	 In order to obtain
the least depth at which �� and �� di�er� we de�ne

	See Lloyd ����� p� ��� for an example of a program P � where gfp�TP 	 � TP � �� � �	�
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y ������� �� minfn j yn���� �� yn����g ����

Then it is easy to show that h�� di is an ultrametric space under

d������� ��

�
� i� �� � ��

��y������� otherwise
��
�

Finally� we need some additional de�nitions �perhaps familiar from high school mathematics�
cf	 Johnsonbaugh and Pfa�enberger 
�

 for an appropriate introduction�	 We say that
a sequence hsnin�� in a metric space hS� di converges to �or has limit� s � S and write
limn�� sn � s if for every � � � there exists an integer N such that if n # N then d�sn� s� � �	
Now let T � S and t � S	 t is called a limit point of T if there is a sequence hsnin�� such
that for every n � 
� we have sn � T and limn�� sn � t	 If furthermore every limit point of
T belongs to T � we say that T is closed �in S�	 Otherwise T is called open	 Given a bounded
sequence hsnin��� we de�ne the notion of the limit superior as follows �see Johnsonbaugh and
Pfa�enberger 
�

� pp	 ���� lim supn�� sn � limn�� tn� where tn � tk��sn
k	
Given a metric space hS� di� we call S compact i� every sequence in S has a convergent
subsequence	 We call a subset T of S bounded if there exists a number A such that d�x� y� � A
for all x� y � T 	 The important fact now is that hS� di is compact i� S is closed and bounded
�this is the so�called �Bolzano�Weierstrass characterization� for a compact metric space� see
Johnsonbaugh and Pfa�enberger 
�

� p	 
�
�	 Obviously� h����� di is a compact metric
space under topology d as de�ned above� since � is �i� closed and �ii� bounded	 � is closed
because if limn�� �n � � and each �n � �� � must also be in � since each �n is �nitely
branching �maximal breadth is jFj� and furthermore� there exists only a �nite number of
distinct subtrees w	r	t	 signature �	 Recall that F � T � and A are �nite sets for a given
de�nite program	�� In addition� � is bounded because � � d������� � 
 for all ����� � �
�notice that � � y������� � 
�	 Intuitively� ���� is compact because it even contains
in�nite feature trees"if � would only contain �nite ones� it could be the case that limits of
sequences of �nite terms are missing from �	

We now have to show that TP as de�ned above is a continuous function	 We need the following
proposition	

Proposition � �independence��

Let R be a directed subset of ����	 Then f��� � � � ��ng � tR i� f��� � � � ��ng � I� for
some I � R �n � 
�	

Proof�

���� I � R and f��� � � � ��ng � I�

thus I � 	R � tR�

i	e	� f��� � � � ��ng � tR	

�
It is worth noting that ���	 is a countable�in�nite set� because �i	 T and A are �nite� and so is T � A�
and �ii	 rational trees have only �nitely many subtrees and are �nitely branching �since they are functional	�
To see why this is so� let �n denotes the set of all feature trees of depth n w�r�t� signature �� Clearly� �n is
a �countable	 �nite set� thus

S�

n�

�n must also be countable �but obviously in�nite
 see also Johnsonbaugh

and Pfa enberger ����� pp� �!	� But exactly this set is ��
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���� f��� � � � ��ng � tR � 	R and R directed�

i	e	� �S � R��r � R��s � S � s � r �S �nite��

now choose s � f��� � � � ��ng and r � I�

hence f��� � � � ��ng � I� for some I � R	

Proposition � �continuity of TP ��
TP � ���� ��� ���� as de�ned by �

� is a continuous function� i	e	� TP �tR� � tTP �R�� for
every directed subset R of ����	

Proof�

� � TP �tR� i�

� �
S
s�T

S
��V �Rf	�x� j s�x� � � � P� 	R�	 j� �� �	�x����� � sg i�

� �
S
s�T

S
��V If	�x� j s�x� � � � P� I� 	 j� �� �	�x����� � sg� for some I � R i�

� � TP �I�� for some I � R i�

� � 	fTP �r� j r � Rg i�

� � tTP �R��

Notice that Proposition 
 is used two times inside the proof of Proposition �	 Note further
that this proof actually consists of several subcases� depending on the structure of the de�nite
formula �	

In order to �nish this section� we need some additional propositions	

Proposition � �closedness of TP ��
Let P be a de�nite program and I be a closed subset of �	 Then TP �I� is a closed subset of
�	

Proof�

Due to the fact that h�� di is a compact metric space and TP is continuous� we know that
if I is closed then I is also compact �since it is bounded under d�� hence TP �I� is compact
�Johnsonbaugh and Pfa�enberger 
�

� pp	 
��� and thus closed	

Corollary � �closedness of downward power of TP ��
Because TP is closed� we immediately know that TP �n �n � 
� and even TP �
 is closed	

We now give a characterization of the limit superior for closed sets	

Proposition � �limit superior��

If hInin�� is a decreasing sequence of closed subsets of �� then lim supn�� In � �n��In	

Proof�

Since every In is bounded� we have by de�nition that lim supn�� In is equal to limn�� tk��In
k
which reduces to limn�� 	k��In
k in the metric space �	 Since hInin�� is decreasing� this is
equal to limn�� In� and again� because In is decreasing� we �nally have �n��In	

Using the limit superior� we can establish a weak continuity result for TP 	
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Proposition 	 �downward continuity of TP ��
Let P be a de�nite program and hInin�� be a sequence of sets in �	 Then lim supn�� TP �In� �
TP �lim supn�� In�	

Proof�

Adaption of the proof in Lloyd 
�
�� p	 

�	

Corollary 
 �intersection property for TP ��
Let P be a de�nite program and hInin�� be a decreasing sequence of closed sets in �	 Then
TP ��n��In� � �n��TP �In�	

Proof�

By Proposition �� TP ��n��In� is equal to TP �lim supn�� In�� since the In are closed and
decreasing	 By Proposition� this set is a superset of lim supn�� TP �In� which is equal to
�n��TP �In�� since the TP �In� are closed and decreasing	 For the other direction� notice that
TP is monotonic ��
�� thus TP ��n��In� � �n��TP �In�	

With the help of the above given two corollaries� we can �nally show that the greatest �xpoint
of the associated continuous function TP of a de�nite program P can be reached in at most

�many steps	

Proposition � �greatest fixpoint of TP ��
Let P be a de�nite program	 Then gfp�TP � � TP �
	

Proof�

If TP �
 is a �xpoint� it su&ces to show that TP �TP �
� � TP �
	 By de�nition of the
downward ordinal power� TP �TP �
� is equal to TP ��n��TP �n�� using the two corollaries�
this reduces to �n��TP �TP �n� which is exactly TP �
	

	 Nonmonotonically De�ned Types

Without extending the formalism� we �nally show that the translation into de�nite equiva�
lences might even serve as the basis for a reformulation of nonmonotonically de�ned types	
Such extensions �overwriting� defaults� etc	� have been claimed by theorists and practitioners
to be extremely useful during the development of huge grammars and lexicons� in order to
formulate subregularities and exceptions adequately	�� On �rst sight� our thesis might stand
in contrast to the fact that de�nite equivalences are conceived as a monotonic framework	
However� by slightly modifying the compilation schema� we will see in a moment that the out�
come of the transformation of a nonmonotonically de�ned type system is in fact a monotonic
de�nite program	

The idea here is that the type hierarchy can be seen as a pure transport medium� allowing
us to formulate constraints on types in a compact and redundant�free way	 With the help of
the type hierarchy� generalizations can be made at the appropriate levels of representation
and inheritance plays the role of gathering information from supertypes	 Under this view�

��We have neither the space to discus the pros and the cons of nonmonotonic extensions to monotonic
uni�cation�based NL formalism� nor can we address issues of their formalization
 see� e�g�� Bouma �����
Carpenter ����� Copestake ����� Daelemans et al� ����� Evans and Gazdar ���!� Flickinger ����� Russell et
al� ����� or Young and Rounds ���� for more arguments on this theme�







s �� hx� t� �i
$

locally expand s according to type hierarchy

$
s �� hx� t� � � �i

$
transform into de�nite equivalences

$

s�x� � �
y��z � � trans�t�x� � trans�� � �� x� � type�x� z� � z
�
�
W
u�s u�

$
get rid of transitivity statements

$
s�x� � �
y��z � �trans�� � �� x� � type�x� z� � z

�
�
W
u�s u�

Figure �� Transformation schema from nonmonotonically de�ned types into de�nite equiv�

alences� � denotes the additional constraints of the supertypes of s that have already been

inherited �modulo inheritance con�icts� before calling trans � After this� one can get rid of t
which might destroy the monotonicity of the resulting de�nite program �see rectangular box��

This is due to the fact that the constraints de�ned on t might con�ict with information from
� � ��

a type name is nothing more than a shorthand for abbreviating idiosyncratic and inherited
constraints	 Given an arbitrary type system� the crucial point here is that the construction
of the �locally expanded type system�� i	e	� the type system where every type has inherited
the complete information of all its supertypes modulo inheritance con�ict strategies makes
the inheritance hierarchy super�uous	
Exactly the transitivity property ���� of the type subsumption relation and its interpreta�
tion as denoting the subset relationship ���� leads to con�icts� since at run time con�icting
constraints might come into play through supertypes�

�s� t� u � T � if s � t and t � u then s � u ����

�s� t � T � if s � t then sI � tI � for every interpretation I ����

Hence� having inherited these constraints� we can get rid of the supertypes �since they contain
no further information� and get a perfectly monotonic de�nite program	 This idea leads us
to the translation schema of Fig	 �	

As we have said before� we will not give any hints how to resolve a speci�c inheritance con�ict	
The primary goal here is instead on the construction of a monotonic de�nite program after
such con�icts have been resolved	 Consider� for instance� the following example to see the
outcome of the modi�ed transformation schema	 The type de�nitions are given in the concrete
syntax of TDL �Krieger and Sch�afer 
����	


�



boolean �� �� � ���

u �� 	A�boolean ��
 B w��

v �� u 
 	A ����

w �� v 
 	C u��

����

We hasten to add that TDL has implemented a restricted kind of overwriting� called �single
link overwriting� �SLO� that allows a grammarian to overwrite features in a type de�nition i�
the type under de�nition inherits from a single supertype �see Krieger 
���a�	 Furthermore�
overwriting can be restricted to certain alternatives� as is the case for variables in imperative
programming languages� such as Pascal	�� In the above example� the type v has been de�ned
nonmonotonically �indicated through ��� by inheriting from u	 v overwrites feature A with
the atom � which is legal� since A has been restricted in u to take only boolean values	 Now�
by inheriting the constraints of the supertypes� we get the following typed feature structures
for u� v� and w�

	

� u

A $
B w

�

�

	

� v
A �
B w

�

�

	



�

w
A �
B w
C u

�



� ����

Applying the modi�ed transformation schema of Fig	 �� we obtain the following de�nite
program P �

P � fu�x� � �y���y���z � ��x� �

A�x� y�� � �y�
�
� $� � B�x� y�� � w�y�� �

type�x� z� � z
�
� �u � v � w��

v�x� � �y���y���z � u�x� �

A�x� y�� � �y�
�
� �� � B�x� y�� � w�y�� �

type�x� z� � z
�
� �v � w��

w�x� � �y���y���y���z � v�x� �

A�x� y�� � �y�
�
� �� � B�x� y�� � w�y�� �

C�x� y�� � u�y�� � type�x� z� � z
�
� wg

����

Recall that the types in the rectangular boxes must be thrown away to guarantee that� e	g	�

v will have a non�empty model	 Otherwise� the reduction of u�x� through its right�hand

side would lead to a description for v which can not be satis�ed by any interpretation �viz	�
y�

�
� $ and y�

�
� ��	


 Other Approaches

Contrary to most other related treatments which come up with a least �xpoint semantics� e	g	�
LOGIN!KBL �A��t�Kaci 
�
��� TFS �Emele and Zajac 
��
�� CUF �D�orre and Dorna 
����� ALE

��It is worth noting here that this kind of overwriting can be implemented very e"ciently� since the single�
supertype property leads to a tree�like structure of the type hierarchy if �subsumption�preserving partitions�
are imploded into nodes� This view on the type hierarchy allows for e"cient indexing� Speaking from an
algebraic point of view� we note further that SLO can be characterized in terms of ideals and �lters
 see
Krieger ����a�

��



�Carpenter and Penn 
����� or Prolog �Lloyd 
�
��� we have decided to choose a greatest
model semantics for typed feature structures	�� Our choice was based on a theoretical and a
practical observation�


	 The GFP provides us with the maximal denotation of a given description �it models
exactly the �linguistic� constraints�	 It captures certain �incomplete� situations �un�
de�ned types� recursive types not grounded on atoms� which are ruled out under a
LFP interpretation	 Within the rational tree domain� the GFP even handles cyclic
descriptions properly	

�	 Type expansion �or sort unfolding� is a way of checking satis�ability of typed feature
structures �Krieger and Sch�afer 
���� A��t�Kaci et al	 
����	 This is achieved by adding
more and more information to the input structure� substituting types through their
improved de�nition� and repeating this process until a failure occurs	 But in fact� this
strategy approximates the construction of the greatest �xpoint� namely� to start with
�� as opposed to � in case of the least �xpoint �see de�nition of upward!downward
ordinal power of TP �	 This idea is very intuitive and has been realized in TDL �Krieger
and Sch�afer 
����	 We guess that many systems who have proposed the least �xpoint�
e	g	� TFS� have nevertheless implemented the greatest one	

To the best of our knowledge� only two other more linguistically�oriented approaches have
also established a greatest �xpoint interpretation in our sense� viz	� Pollard and Moshier 
���
and Rounds 
�

	 Both Pollard'Moshier and Rounds are interested in formalizing set values	
Although Pollard'Moshier have started with �� their information ordering is dual to ours�
thus � denotes the whole universe �� no information� and � corresponds to overspeci�cation	
Pollard'Moshier�s function T operates on a Heyting lattice �or pseudo�Boolean lattice�� the
dual to a Brouwerian lattice which is used in the least �xpoint interpretation of KBL �A��t�Kaci

�
��	 Contrary to Pollard'Moshier and Rounds� A��t�Kaci does not make a strict distinction
between syntax and semantics in the KBL language	 Pollard'Moshier and Rounds instead
use an extension of Kasper�Rounds KR logic� where KR formulae denote directed acyclic
graphs	
However both approaches rely on very speci�c powerdomain constructions and the ordering
relation among elements is somewhat complicated �Pollard'Moshier� Smyth order� Rounds�
Hoare order�	 In contrast to this� our interpretation domain is given by the powerset of the
set of rational feature trees which is much easier and more natural	 Elements are thus ordered
by subset inclusion and meet!join simply corresponds to intersection!union of sets	
We �nally mention that Baader 
��� and Nebel 
��
 argue that terminological cycles in
KL�ONE�like languages should be treated by a greatest �xpoint semantics	 We understand
their work as a hint that our choice is correct� since terminological cycles are the analogue to
recursive type de�nitions in typed feature formalisms	

Let us have a few words on the operational realization of our approach	 Because the outcome
of our compilation schema are de�nite descriptions over a certain constraint language� it is
clear that instances of CLP languages are the right candidates for executing de�nite programs	

��Interestingly to note� Lloyd ���� argues in Chapter � on �Perpetual Processes� that a greatest �xpoint
semantics is a more appropriate setting for the foundations of logic programming than the standard least
�xpoint interpretation�

�




To see whether the transformation approach makes sense form the viewpoint of e&ciency� it is
planned to employ Oz �Henz et al	 
���� Smolka et al	 
���� as a testbed	 Oz realizes de�nite
equivalences through the proc construct and employs sophisticated delaying mechanisms�
di�erent search strategies� and �nite domains	 We think that these ingredients are a good
starting point for e&cient processing and for guaranteeing termination	 Let us give an example
to see how easy it is to encode a de�nite equivalence as a proc�edure�	 We choose the de�nition
of u in the de�nite program ���� and get

proc fU xg
local y
� y�� z in
fTop xg
fA x y
g
y
 � $
fB x y�g
fW y�g
fType x zg
or z � u �  

z � v �  
z � w

ro

end

end

����

Whether such code is e&ciently executable needs further investigation	

� Summary and Conclusions

In this paper� we have argued that de�nite equivalences are the right basis for formalizing
arbitrary type systems� thus putting typed feature structures on the solid ground of �rst�order
predicate logic	 This means that we have strictly distinguished between syntax �de�nite equiv�
alences� and semantics �typed feature trees� of our �rst�order language	 We have presented a
fully automated method which transforms type systems into de�nite programs� whereas the
meaning of the de�nite program gives the intended denotation of the type system	 Opera�
tionally� such programs can then be executed by implementations of CLP languages	

As known from logic programming� the meaning of a de�nite program P here is given in terms
of a certain �xpoint over a continuous function TP � operating on the powerset of our domain
�rational feature trees�	 This has several advantages when compared with other approaches�
�i� we must not rely on speci�c powerdomain constructions as has been proposed in the
literature and �ii� subsumption!entailment is de�ned in terms of set membership and not
through specialized ordering relations	

Contrary to most approaches� we have decided to choose a greatest model semantics as the
intended interpretation of P � or equivalently� as the denotation of the type system	 Our
choice was based on both theoretical and practical reasons� as described in this paper	 We
have further shown that the greatest �xpoint of TP can even be reached in at most 
�many
steps which might have an impact on the operational semantics and the non�satis�ability
question of typed feature structures!de�nite descriptions	

��



Our transformation approach is also important when formalizing nonmonotonically de�ned
types� since under our interpretation� we can view the type hierarchy as a pure transport medi�
um which can be thrown away after an additional compilation phase� so that we ultimately
obtain a perfectly monotonic de�nite program	

Several questions remain open and certain lines of research might be worthwhile to follow	
We will only mention three of them	

In Section �� we have restricted negation within de�nite formulae to the constraint level� i	e	�
to negated equations of the form s �

�
� t� where s� t � V 	A	 The essential reason for ensuring

such a strong condition is simple"if we would allow unrestricted �classical� negation� the
function TP obviously is no longer monotonic� and thus we are not allowed to apply our well�
known �xpoint theorems �we lost what Rounds and Kasper 
�
� call the �upward�closure�
property of j��	 However� non�recursive relations within the scope of a negation symbol
together with �nite domains do not pose severe problems� since in this case we can push
down negation to the constraint level and afterwards substituting possibly existing universal
quanti�ers through a �nite collection of alternatives	
Clearly� properly handling general negation in this theoretical framework is unclear	�� Work
in logic programming� especially by Fitting and Kunen� indicates that by modifying the
de�nition of TP �and thus the satisfaction relation j��� it possible to retain monotonicity	
However� such approaches come up with a three�valued �e	g	� Fitting 
�
�� Kunen 
�
��� four�
valued �Fitting 
��
� Fitting 
���� or even higher multi�valued logics	 Using an interpretation
ordering based on the degree of knowledge �instead of degree of truth�� a di�erent TP �called
(P � can be obtained which will be monotonic w	r	t	 this ordering� whether negations are
present or not	 Recently� Fitting 
��� has applied Banach�s contraction theorem to logic
programming� replacing the Knaster�Tarski �xpoint theorem	 The nice thing here is that the
process of �nding a monotonic function f � S ��� S is replaced by making f a contractive
mapping over a metric space hS� di	 I	e	� if there is a number � � k � 
 such that for
all s� t � �� d�f�s�� f�t�� � k � d�s� t�� then f will have a unique �xpoint and the sequence
hfn�s�in�� converges to this �xpoint� for any s � S	

At the end of Section �� we have shown that the greatest �xpoint of TP can be reached in at
most 
�many steps	 This result is important for two practical reasons �and not only a nice
theoretical discovery�	
First of all� although the satis�ability question is undecidable� we believe that Proposition 

is a precondition for having a proper operational semantics under this special interpretation
of de�nite programs� or equivalently� of type systems	 Speaking from the viewpoint of type
systems� at most 
�many steps guarantee that for a given typed feature structure� the type
expansion process is a �true� approximation of the �nal structure �and not remains constant��
since at in�nity �� 
� we are able to say whether a typed feature structure!de�nite description
is satis�able or not	 This result makes sure that we come arbitrarily close to the �nal result
as processing time increases	
Second� we conjecture in the presence of Proposition 
 that non�satis�ability of typed feature

��Despite this fact� general negation over recursive type de�nitions has been implemented in TDL� due to
the following observation� when checking for the satis�ability of a given typed feature structure containing
negation� the sequence of approximations originating from the type expansion process converges� although it
is not monotonic#however� for a �nite type system� we can obtain a �nite number of subsequences of this
sequence� such that each subsequence is monotonic� The same is true for the �famous� real�valued sequence�
���	k 	 �

k

�
k��

�

��



structures �de�nite descriptions� is semi�decidable	 The intuitive argument is as follows	
Given an arbitrary recursive typed feature structure and assuming a fair type unfolding
strategy� the only event under which the �xpoint approximation terminates in �nite time
follows from a local failure under an initial path which then leads to a global failure	 In
every other case� the unfolding process proceeds by substituting types through their improved
de�nitions� and hence this iteration might go on in�nitely long	 Thus the only thing we
can expect is that testing for non�satis�ability is semi�decidable� i	e	� if our structure is not
satis�able� we get a positive answer in �nite time	 Notice that this supposition has formally
been shown only for conjunctive descriptions �A��t�Kaci et al	 
����	 By adding disjunctions�
a formal proof is still missing	

The transformation schema presented in this paper is a way to assign a meaning to a type
system!typed feature structure without setting up a �designer� logic	 However� this approach
does not tell us anything about the e&ciency �or even the termination� of the corresponding
de�nite program when executed in a CLP programming language	 As is often the case� spe�
cialized inference engines have a better run�time performance than general�purpose reasoners�
thus grammars might be processed more e&cient in implementations of specialized typed fea�
ture logics than in general logic programming languages	 This question is under evaluation
in the near future	
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