
C
la

ss
ifi

ca
ti

o
n

an
d

R
ep

re
se

n
ta

ti
o

n
o

f
Ty

p
es

in
T

D
L

H
an

s-
U

lr
ic

h
K

ri
eg

er

R
R

-9
5-

17
R

es
ea

rc
h

R
ep

or



Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-17

Classification and Representation
of Types in TDL

Hans-Ulrich Krieger

December 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341



Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saar-
brücken is a non-profit organization which was founded in 1988. The shareholder
companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD,
IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry of Education, Science, Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal
is to construct systems with technical knowledge and common sense which -
by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops
for shareholders and other interested groups in order to inform about the current
state of research.
From its beginning, the DFKI has provided an attractive working environment for
AI researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director



Classification and Representation
of Types in TDL

Hans-Ulrich Krieger

DFKI-RR-95-17



To appear in: Lecture Notes in Artificial Intelligence, Springer,
1995.
A version of this paper has also been published in: Proceedings of
the International KRUSE Symposium—Knowledge Retrieval, Use,
and Storage for Efficiency, August 11–13, 1995, University of Cal-
ifornia at Santa Cruz.

This work has been supported by a grant from The Federal Ministry
of Education, Science, Research and Technology (FKZ ITWM-
Verbmobil 01 IV 101 K/1).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit educa-
tional and research purposes provided that all such whole or partial copies include the fol-
lowing: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowl-
edgement of the authors and individual contributors to the work; all applicable portions
of this copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche
Intelligenz.
ISSN 0946-008X



Classi�cation and Representation

of Types in TDL

Hans�Ulrich Krieger
krieger�dfki�uni�sb�de

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� ��	
� Saarbr�ucken� Germany
phone� �
�� ��	� ��
��
�� fax� �
�� ��	� ��
����	

Abstract� TDL is a typed feature�based representation language and
inference system� speci�cally designed to support highly lexicalized con�
straint�based grammar theories� Type de�nitions in TDL consist of type
and feature constraints over the full Boolean connectives together with
coreferences� thus making TDL Turing�complete� TDL provides open�
and closed�world reasoning over types� Working with partially as well
as with fully expanded types is possible� E�cient reasoning in TDL is
accomplished through specialized modules�
In this paper� we will highlight the type�inheritance hierarchy module of
TDL and show how we represent conjunctively and disjunctively de�ned
types� Negated types and incompatible types are handled by special�
ized bottom symbols� Rede�ning a type only leads to the rede�nition
of the dependent types� and not to the rede�nition of the whole gram�
mar�lexicon� Unde�ned types are nothing special�
Reasoning over the type hierarchy is partially realized by a bit vector
encoding of types� similar to the one used in A�	t�Kaci
s LOGIN� How�
ever� the underlying semantics does not harmonize with the open�world
assumption of TDL� Thus� we have to generalize the GLB�LUB opera�
tion to account for this fact�
The system� as presented in the paper� has been fully implemented in
Common Lisp and is an integrated part of a large NL system� It has
been installed and successfully employed at other sites and runs on var�
ious platforms�

Acknowledgements� This paper has bene�ted from numerous people at vari�
ous workshops where parts of it have been presented� in particular� the EAGLES
workshop on Implemented Formalisms �Saarbr�ucken�� the workshop on Imple�

mentations of Attribute�Value Logics for Grammar Formalisms at the Euro�
pean Summer School in Language� Logic� and Information �Lisbon�� the work�
shop on Neuere Entwicklungen der deklarativen KI�Programmierung at KI�	

�Berlin�� the International Conference on Computational Linguistics� COLING�

�� �Kyoto�� and the International KRUSE Symposium �Univ� of California�
Santa Cruz��

�



Table of Contents

� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Motivation � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� TDL�An Overview � � � � � � � � � � � � � � � � � � � � � � � �

� Type Hierarchy � � � � � � � � � � � � � � � � � � � � � � � � � �
��	 Basic Encoding Method � � � � � � � � � � � � � � � � � � � �
��
 Decomposing Type De�nitions � � � � � � � � � � � � � � � 		
��� Incompatible Types and Bottom Propagation � � � � � � � 	�

� Additional Modules � � � � � � � � � � � � � � � � � � � � � � 	�






� Introduction

Over the last few years� constraint�based grammar formalisms have become the
predominant paradigm in natural language processing and computational lin�
guistics� Their success stems from the fact that they can be seen as a monotonic�
high�level representation language for linguistic knowledge which can be given a
precise mathematical semantics� The main idea of representing as much linguistic
knowledge as possible through a unique data type called feature structure� allows
the integration of di�erent description levels� spanning phonology� syntax� and se�
mantics� Here� the feature structure itself serves as the interface between the dif�
ferent linguistic strata �actually� coreferences are a means to achieve this�� While
the �rst approaches relied on annotated phrase structure rules �e�g�� PATR�II��
recent formalisms try to specify grammatical knowledge as well as lexicon entries
entirely through feature structures� In order to achieve this goal� one must en�
rich the expressive power of the �rst uni�cation�based formalisms with di�erent
forms of disjunctive descriptions� Later� additional operations came into play�
e�g�� negation� Other proposals consider the integration of functional�relational
dependencies into the formalism which make them in general Turing�complete
�e�g�� ALE� cf� ����� However the most important extension to formalisms con�
sists of the incorporation of types � for instance in contemporary systems like
TFS �
��� CUF ���� ALE� or TDL ����� Types are ordered hierarchically� as it is
known from object�oriented programming languages� This often leads to multi�
ple inheritance in the description of linguistic entities� If a formalism is intended
to be used as a stand�alone system� it must also implement recursive types if it
does not provide phrase�structure recursion�� In addition� certain relations �like
append� or additional extensions of the formalism �like functional uncertainty�
can be nicely modelled through recursive types�

� Motivation

Modern typed uni�cation�based grammar formalisms di�er from early untyped
systems� like PATR�II� in that they emphasize the notion of a feature type� Types
can be arranged hierarchically� whereby a subtype monotonically inherits all the
information from its supertypes and uni�cation plays the role of the primary
information�combining operation� In TDL� an abstract type de�nition

s �� ht� �i

can be seen as an abbreviation for a complex expression� consisting of a complex
type constraint t �concerning the sub��supertype relationship� and a complex
feature constraint � �stating the necessary features and their values�� see �	� ���
for the formal foundations�
� For instance� ALE employs a bottom�up chart parser� whereas TFS relies entirely
on type deduction� Note that recursive types can be substituted by de�nite clauses�
as is the case for CUF� such that parsing�generation roughly corresponds to SLD
resolution�






It is worth noting that TDL does not enforce a grammar writer to specify the
type subsumption relation a priori through a set of fs�� � � � � sng � s statements�
as is the case for LOGIN �
�� ALE� or LIFE ���� Instead� TDL automatically
derives and extends a type hierarchy from the complex type expression t by
means of normalized de�nitions �see below�� In general� the type hierarchy only
forms a partial order� i�e�� we do not require additional ordering properties� e�g��
BCPO�lower semilattice�

Types are a necessary requirement for a grammar development environment
because they serve as abbreviations for lexicon entries� immediate dominance
rule schemata� and universal as well as language�speci�c principles� as is familiar
from Head�Driven Phrase Structure Grammar �HPSG� ����� Types in TDL not
only serve as a shorthand� like templates� but also have other advantages over
templates�

� Structuring Linguistic Knowledge

Hierarchically�ordered types allow for a modular way to adequately represent
linguistic knowledge� Moreover� generalizations can be made at the appro�
priate levels of representation�

� Efficient Processing

Certain type constraints can be compiled into more e�cient representa�
tions� for instance� �
� reduce GLB �greatest lower bound�� LUB �least up�
per bound�� and � �type subsumption� computation to low�level bit ma�
nipulations� Moreover� types can be used to eliminate expensive uni�cation
operations� for example� by explicit declaration of type incompatibility� In
addition� working with type names only or with partially expanded types
minimizes the costs of copying structures during processing ��
��

� Redundancy

In practice� it is often not possible to hold large lexicons completely in mem�
ory� However� only the idiosyncratic information of a lexicon entry needs to
be represented in RAM� due to the fact that the lexical types of a lexicon
entry contain most of the information� and only the information of these
types must be fully expanded�

� Type Discipline

Type de�nitions allow a grammarian to declare which attributes are appro�
priate for a given type and which types are appropriate for a given attribute�
therefore disallowing inconsistent feature structures�

� Recursive Types

Recursive types give a grammar writer the opportunity to formulate certain
functions�relations or extensions to the formalism �e�g�� functional uncer�
tainty� as recursive type speci�cations� Parsing as Deduction ���� is often
achieved by replacing the context�free backbone through recursive types�

� Compiling Types

Types are a good starting point for further methods of compilation� We have
already mentioned bit vector encoding� Types can also serve as the basis for
separating �true� and �spurious� constraints ���� for partial evaluation� or
for compiling an HPSG grammar into a weaker formalism �e�g�� �����

�



� TDL�An Overview

TDL is a uni�cation�based grammar development environment and run time sys�
tem supporting in particular HPSG�style grammars� Work on TDL has started
within the Disco project of the DFKI ��	�� The Disco grammar currently con�
sists of more than 
��� type speci�cations written in TDL and is the largest
HPSG grammar for German ��
�� The core machine of Disco consists of TDL
and the feature constraint solver UDiNe ���� UDiNe itself is a powerful untyped
uni�cation engine which allows the use of distributed disjunctions� general nega�
tion� and functional dependencies�

The modules communicate through an interface� and this communication
mirrors exactly the way an abstract typed uni�cation algorithm works� two
typed feature structures can only be uni�ed if the attached types are known
to be compatible� This is accomplished by the uni�er by handing over two typed
feature structures to TDL which gives back a simpli�ed form �plus additional
information� see Fig� ���
The motivation for separating types and features and processing them in spe�
cialized modules �which again might consist of specialized components as is the
case in TDL� is twofold� �i� this strategy reduces the complexity of the whole
system� thus making the architecture clear� and �ii� leads to faster processing
because every module is designed to handle only a specialized reasoning task�
Furthermore� extensions to TDL can be integrated easily�

TDL supports type de�nitions consisting of type constraints and feature con�
straints over the standard operators �� �� and �� The operators are generalized
to connect feature descriptions� coreference tags �logical variables� and types�
TDL distinguishes between

� avm types �open�world semantics� see below�
� sort types �closed�world semantics� see below�
� built�in types �through Common Lisp�
� atoms �symbols� strings� numbers� etc��

When asked for the greatest lower bound of two avm types a and b which
share no common subtype� TDL returns a � b �open�world reasoning�� and not
�� as is the case� e�g�� in ALE or LOGIN�LIFE�� The reasons for assuming this
are manifold�

�� partiality of our linguistic knowledge about a speci�c domain�in case� we
know nothing about the GLB� we simply return the conjunction of the types
which is de�nitely correct �this strategy obviously preserves the denotation��


� the approach is in harmony with terminological �KL�ONE�like� languages
which share a similar semantics�


� this view makes the stepwise re�nement of grammars during the development
process easier �which has been shown useful in several projects��

� Thus� typed feature structures in TDL might be typed with complex expressions like
a � b or a � �b � �c�� and not with type symbols only�

�



UDiNe

TDL

�

�

� � �

h � � � i
�

Type hierarchy

ha � bi

Query

fc� a � b��g

�

a

b

c

a

b �� � ��

�� � ��

hfc� a � b��g� fyes� no� failgi

Result

Fig� �� Interface between TDL and UDiNe� Depending on the type hierarchy and
the type of � and � � TDL either returns c �c is de�nitely the GLB of a and b�
or a� b �open�world reasoning for GLB� or � �closed�world reasoning for GLB�
if a single type which is equal to the GLB of a and b does not exist� In addition�
TDL determines whether UDiNe must carry out feature term uni�cation �yes�
or not �no�� i�e�� the return type contains all the information one needs to work
on properly �fail signals a global uni�cation failure��

�� we must not write super�uous type de�nitions to guarantee successful type
uni�cations during processing�

The opposite case holds for the GLB of sort types� sort types di�er from
avm types in that they are not further structured �they are featureless�� as is
the case for atoms �which cannot be arranged hierarchically and consume less
space��

TDL allows for the declaration of partitions � a feature heavily used in HPSG�
One can even declare sets of avm types as incompatible� meaning that their
conjunction yields �� so that speci�c types can be �closed�� if desired�

The kernel of TDL �and of most other systems� can be given a precise set�
theoretical semantics� e�g�� along the lines of ����� It is easy to translate TDL
statements into denotation�preserving expressions of Smolka�s feature logic or
even into a set of de�nite equivalences ����� i�e�� a de�nite program� thus viewing
TDL as just syntactic sugar for �rst�order predicate logic�� The latter point is

� Cf� 
�� for a precise description of the semantics of TDL� including a �xpoint char�
acterization of recursive types� In contrast to most settings� we propose the greatest
�xpoint �of a certain downward continuous function� as the solution of a grammar

�



of special importance� since by viewing the type hierarchy as a pure �transport
medium� for constraints� we can translate nonmonotonically de�ned types into
a perfectly de�nite program �����

� Type Hierarchy

The type hierarchy is either called directly by the control machine of TDL during
the de�nition of a type �type classi�cation� or indirectly via the symbolic simpli�
�er� both at de�nition and at run time �typed uni�cation and type expansion���

��� Basic Encoding Method

The hierarchy itself is represented as a double linked graph� such that types
are associated with forward and backward pointers to their immediate subtypes
and supertypes� Because we allow for conjunctively as well as disjunctively de�
�ned types� types possess pointers to their disjunction alternatives but also to
disjunctive types in which they are involved� Types are equipped with further in�
formation� e�g�� slots containing the dependent types �important for rede�nition�
or the specialized bottom symbols in case of incompatible avm types�

Since we are interested to perform GLB� LUB� and � computations e�ciently
�important during typed uni�cation and type expansion�� not only is the type
hierarchy explicitly represented� but also compiled into a special format �actually�
every type is associated with a speci�c code�� The compilation is based on Hassan
A� t�Kaci�s bit vector encoding technique for partial orders �
�� and has been
further extended to serve our special requirements�

Here� every type t is assigned a code ��t� �represented through a bit vector�
such that ��t� encodes the re�exive and transitive closure of the immediate type
subsumption relation with respect to t� Decoding a code c is either realized
by a �hash� table look�up �i� �t � ����c� � t� or by computing the �maximal
restriction� of the set of types whose codes are less than c��

Depending on the encoding method� the hierarchy occupies between O�n logn�
�compact encoding� and O�n�� �transitive closure encoding� bits� Here� a GLB
�LUB� operation directly corresponds to bitwise And �Or� instruction� In this

because it makes the least restrictions on admissible interpretations 
���� Note that
we are interested in the satis�ability �and not in the validity� of a set of grammatical
descriptions �i�e�� a type system�� Perhaps more important� the greatest �xpoint will
not rule out cyclic feature structures and certain coreference constraints� as might
be the case for the least �xpoint interpretation of a type system�

� Type expansion 
��� or type unfolding means to make the idiosyncratic and inherited
constraints of a type explicit and to �partially� check for its consistency�

� A�	t�Kaci has argued that decoding� i�e�� calling ��� is not necessary at run time�
However� this is not true for our setting �partially expanded structures� complex
type expressions� di�erent semantics� see below�� Decoding in our system is similar
to encoding� in that we employ a hash table of the inverse images of �� ����b� thus
means to access the type symbol that is associated with code b�

�



framework� GLB� LUB and � computations have the pleasant property that
they can be carried out in O�n�� where n is the number of types �actually O����
since n does not change at run time���

A� t�Kaci�s method has been extended to account for the open�world nature of
avm types� in that potential GLB�LUB candidates �calculated from their codes�
are veri�ed by partially �inspecting� the type hierarchy� Why so! Consider� for
example� the following type hierarchy which has been obtained via the de�nitions
s �� h�� �i and t �� h�� �i�

�
�
	 ��

� n

��
�

 s t

�
	 ��

Simplifying s � t on the basis of the codes would lead us to �� ��s� � ��t� �
�� � ����� where � means bitwise And� Dual to this� we obtain ��s� t� � ����
which is often too crude� In general� these results would only hold in TDL if s
and t are declared as incompatible or exhaustively partition �� resp� Rather for
this hierarchy� we argue that the GLB of s and t is s�t� whereas the LUB should
be s � t �if s and t are avm types��

Take another example to see why A� t�Kaci�s original treatment is not the
right choice for our setting� Consider the following two type de�nitions�

x �� hy � z��i
x� �� hy� � z�� p

�
� �i

During processing� we can de�nitely substitute y � z by x� but rewriting y� � z�

to x� is not correct� because x� di�ers from y� � z��x� is more speci�c as a
consequence of the feature constraint �p

�
� ��� If we would rewrite y� � z� to x��

type expansion would yield a more speci�c structure than necessary� Recall that
types abbreviate the constraints de�ned on them�
In order to obtain the �intended� result� we mark types during the de�nition
phase whether their denotation is equivalent to the intersection of the denotation
of their direct supertypes or not �same for disjunctively de�ned types�� In our
example above� we say that x is the GLB of y and z �is�glb�x� 
 true��
whereas x� is not considered to be the GLB of y� and z� �is�glb�x�� 
 false��
Note that such information represents only local knowledge about the direct
subtypes�supertypes�

Another point in A� t�Kaci�s treatment does not harmonize with our setting�
It could be the case that the computation of the GLB of S � fs�� � � � � sng leads
to a code b that does not have a correspondence in the type hierarchy �same for
LUB�� In this case� the set of all maximal elements ft�� � � � � tmg whose codes are
less than b is returned�

� One can choose in TDL between the two encoding techniques and between bit vectors
and bignums �arbitrary long integers� for the representation of the codes� In general�
operations on bignums in most Common Lisp implementations are at least an order
of magnitude faster than the corresponding operations on bit vectors�

�



GLB�S�
�
�	

nO
i��

��si�

k

ft�� � � � � tmg
���


� b

But obviously

m�
j��

��tj ��
I

�

n�
i��

��si��
I

is not the case for every interpretation I of our type system� Because ft�� � � � � tmg
is interpreted disjunctively and the GLB is interpreted as logical conjunction in
the presence of a type hierarchy� we rather have that ft�� � � � � tmg only approxi�
mates GLB�S�� since for every j 
 f�� � � � �mg

��tj ��
I �

n�
i��

��si��
I

Hence� the implementation of the greatest lower bound distinguishes between
the

� internal greatest lower bound GLB�

only the type hierarchy� i�e�� the type subsumption relation � is taken into
account by employing the codes �used in case of sort types�

GLB��s� t� �� ������s�� ��t��

� external greatest lower bound GLBv

take feature constraints into account via the is�glb slot �see example above�

GLBv�s� t� ��
local b�
b
 ��s�� ��t��
if ����b� �
�	 if b doesn
t have a corresponding type 	�
then return s � t
else if verify�glb�p�f����b�g� fs� tg�

then return ����b�
else return s � t�

verify�glb�p�supers � query� ��
�	 verify candidate supers by �moving up� the hierarchy to query 


guarantee that visited types are locally marked as the GLB 	�
local S�

	



S 

S

s�supers direct�supertypes�s� n query �
if S � �
then return true

else if �s 
 S � is�glb�s�
then verify�glb�p�S� query �
else return false�

A similar distinction is made for the LUB�

With GLB� and GLBv in mind� we can de�ne a generalized GLB operation
informally by the following table� This GLB operation is actually used during
typed uni�cation �fc� feature constraint��

GLB avm� sort� atom� fc�

avm� �� � � 
�
sort� � 
� �� �
atom� � �� �� �
fc� 
� � � ��

where

��

����
���

avm� �� GLBv�avm� � avm� � � avm�

avm� �� avm� � avm�

� �� GLB��avm� � avm� � � � �via explicit incompatibility declaration�
avm� � avm� � otherwise �open�world reasoning for GLB�


�

��
�
avm� �� �� type expansion is switched o�
avm� �� �� expand�tfs�havm� �� � fc� �� i� �� � �type expansion switched on�
�� otherwise


�

��
�
sort� �� GLB��sort� � sort� � � sort�
sort� �� sort� � sort�
�� otherwise �closed world reasoning for GLB�

��

�
atom� �� �� type�of �atom� �� � � sort� �� � where sort� �� is a built�in type
�� otherwise

��

�
atom� �� atom� � atom�

�� otherwise

��

�
��� fc� � fc� �� �
�� otherwise

Actually� the GLB de�nition is a little bit more complicated in that we allow for
arbitrary many arguments�

The encoding algorithm has also been extended to handle the rede�nition of
types and the use of unde�ned types properly� an essential part of an incremental
grammar�lexicon development system� Rede�ning a type not only means to make

��



changes local to this type� Rather� one has to rede�ne all dependents of this
type�all subtypes� in case of a conjunctively de�ned type and all disjunction
elements for a disjunctive type speci�cation� plus� in both cases� all types which
mention these types in their de�nition�

The dependent types of a type t can be characterized graph�theoretically via
the connected component �CC� of t with respect to the �dependency� relation�
informally de�ned above� This relation is updated every time a new type de��
nition is fed into TDL� It is important to rede�ne the dependents in the �right�
order to obtain a new consistent type hierarchy� In general� enriching the type
hierarchy with dependency links no longer leads to a cycle�free graph� So it is
not obvious how to establish a topological order on the set of types� However�
one can topologically sort the CCs of the hierarchy without dependency links
�which leads to a total order with respect to a certain CC� and then implode the
CCs of the hierarchy into nodes �which ultimately leads to a DAG which itself
can be totally ordered too��

��� Decomposing Type De�nitions

Conjunctively de�ned types �e�g�� x �� hy � z� �i� and disjunctively de�ned ones
�e�g�� x� �� hy�� z�� ��i� are entered di�erently into the type hierarchy� x inherits
feature constraints from its supertypes y and z� whereas x� de�nes itself through
its disjunction alternatives y� and z��� This distinction is represented through the
use of di�erent kinds of edges in the type graph �bold edges denote disjunction
elements� see Fig� 
 and ���

One might ask how conjunctively and disjunctively de�ned types a�ect the bit
vector encoding method� The answer is simply that this distinction does not have
any e�ects on the encoding algorithms�recall that disjunctive and conjunctive
inheritance links both denote the immediate subsumption relation �x � y and
x� � y� in the above example�� and exactly the transitive closure of � is encoded
in the bit vectors�

TDL decomposes complex type de�nitions consisting of �� �� and � by in�
troducing intermediate types � so that the resulting expression is either a pure
conjunction or a disjunction of type symbols �plus type de�nitions of the form
s �� h�t��i��
It is not hard to realize that arbitrary type systems can be �normalized� in such
a way� simplifying the integration of a new type w�r�t� an existing type hierarchy�
Now let s �� ht� �i be a normalized type de�nition� Thus

� if t � t� � � � � � tn then let s inherit from t��� � � � � t
�
m�

where GLB�t�� � � � � tn� � t�
�
� � � � � t�m� thus s � t�

�
� � � � � s � t�m�

� if t � t� � � � � � tn then let t��� � � � � t
�
m be the disjunction alternatives of s�

where LUB�t�� � � � � tn� � t�
�
� � � � � t�m� thus t�

�
� s� � � � � t�m � s�

� So one can see conjunctive types as top�down specializations of supertypes and dis�
junctive ones as bottom�up generalizations of disjunction elements�

��



� if t � �t� then make s incompatible with t��
and so we have �

�
� s � t� �incompatibility declaration��

Fig� 
 gives an example of such a normalized type hierarchy� Notice here that
the previously introduced intermediate type ju�vj is involved in the de�nition of
the new intermediate ju� v�wj �we enclose intermediate type names in vertical
bars��

�

u v w

ju � vj

ju � v � wjx

y

Fig� �� The intermediate types ju�vj and ju�v�wj are introduced during the de�nition

the type x �� hu � v� a
�
� �i� followed by y �� hw � v � u� a

�
� �i�

The same technique is applied when using the xor macro �� �see Fig� 
 and
��� �� will be decomposed into �� � and �� plus additional intermediates� For
each negated type �t� TDL introduces a new intermediate type symbol j�tj�
having the de�nition h�t��i and declares it incompatible with t �see Section
��
�� In addition� if t is not already present� TDL will add t as a new type to the
hierarchy� directly under � �see types j�bj and j�cj in Fig� 
 and ���

Let us consider the example a �� hb��c��i� The decomposition performed by
TDL can be stated informally by the following rewrite steps �assuming that CNF
mode is switched on� see Fig� 
��

a �� hb��c��i

a �� h�b � �c� � ��b � c���i
a �� h�b � �b� � �b � c� � ��b � �c� � ��c � c���i

a �� h�b � c� � ��b � �c���i

a �� hjb � cj � j�b � �cj��i

�




�fb��bg �fc��cg

jb�cj j�b��cj

a

j�cjb c j�bj

�

Fig� �� Decomposing a �� hb��c��i into conjunctive normal form� such that a inherits

from the intermediates jb � cj and j�b � �cj�

where jb � cj �� hb � c��i� j�b � �cj �� hj�bj � j�cj��i� j�bj �� h�b��i� j�cj ��
h�c��i� �fb��bg �� hb � j�bj��i� and �fc��cg �� hc � j�cj��i�

Instead� if disjunctive normal form is enforced by the user� the decomposition
of a �� hb��c��i leads of course to a di�erent type hierarchy �Fig� ���

a �� hb��c��i

a �� h�b � �c� � ��b � c���i

a �� hjb � �cj � j�b � cj��i

��� Incompatible Types and Bottom Propagation

Incompatible types lead to the introduction of specialized bottom symbols �see
Fig� 
� � and �� which are� however� identi�ed in the underlying logic �this identi�
�cation is somewhat related to the notion of a coalesced sum� known from domain
theory�� I�e�� these symbols are always interpreted as representing inconsistent
information� thus they denote the empty set�

Bottom symbols are propagated �downwards� by a mechanism called bottom

propagation which takes place at de�nition time �see Fig� ��� This is important�
since we want to apply the GLB operation to incompatibly declared types in
order to take advantage of the bit vector encoding� Detecting a bottom symbol
with the help of the codes of the types is enough here� thus we only need to
employ GLB��	

�




b j�bj aj�cjc

jb � �cjj�b � cj

�

�fb��bg �fc��cg

Fig� �� Decomposing a �� hb��c��i into disjunctive normal form� such that a is de�ned

through its disjunction alternatives jb � �cj and j�b � cj�

Note that it is important to take not only conjunctively de�ned subtypes
during bottom propagation into account but also disjunction elements� as the
following example shows� Assume that the user declares the avm types a and b
as incompatible �via �

�
� a � b�� Thus we have

�
�

�
� a � b

b �� hb� � b���i

	
bottom propagation
����������������	 a � b� � � and a � b� � �

It is worth noting that because we employ an explicitly represented type
hierarchy during GLB� LUB and � computations� a single bottom symbol that
is a subtype of every other minimal type� would lead to false inferences�
Consider the following example� Assume that we declare a and b� as well as c and
d as incompatible� If only a single bottom symbol � is used� we would deduce
that a�c is � which is not necessarily the case� However� introducing two bottom
symbols �fa�bg and �fc�dg is the right way to guarantee proper results�

One might expect that incompatibility statements together with feature term
uni�cation no longer lead to a monotonic� set�theoretical semantics� But this is

� In case that the GLB operation allows arbitrary many arguments� this strategy must
be modi�ed� Assume that we declare a set of types T as incompatible� The specialized
bottom symbol �T then encode that

V
t�T

� �� Obviously� if T � � T then
V

t�T �
��

�� in general� Now� given a set of types S and assuming that GLB��S� � �T � we
must guarantee that 	t 
 T� �s 
 S � s � t� This test can be carried out very quickly�
since � is always implemented through bit vectors�

��



b

ed

�

cab ca

�

d �� hb� p
�
� �i

e �� hb� p
�
� 
i

bottom propagation

�fa�b�cg �fa�b�cg

� � a � b � c�

Fig� �� Bottom propagation triggered through the subtypes d and e of b� so that a�d�c
as well as a � e � c will simplify to � during processing�

not the case� To preserve monotonicity� one must assume a ��level interpretation

of typed feature structures� where feature constraints and type constraints can
denote di�erent sets of objects and the global interpretation is determined by
the intersection of the two sets�
Take for instance the type de�nitions A �� h�� a

�
� �i and B �� h�� b

�
� �i� plus

the user declaration �
�
� A �B� meaning that A and B are incompatible� Then

A�B will simplify to � although the corresponding feature structures of A and
B successfully unify to �a

�
� �� � �b

�
� ���

� Additional Modules

In this section� we hasten to present additional reasoning engines of TDL that
are related to the type hierarchy module�

First of all� the type hierarchy reasoner is part of a larger symbolic simpli�er
that further implements the standard �syntactic� simpli�cation schemata� e�g��
De Morgan�s laws� idempotence� double negation� etc�

Second� this simpli�er is extensively used during type expansion to reduce
the costs of typed uni�cation and copying�

Third� simpli�ed expressions are memoized ���� in order to reuse them later�
Here the unsimpli�ed expression serves as the key in a hash table� so that the
corresponding value is exactly the simpli�ed formula� To reduce the number of
keys� we impose a generalized total order on type expressions� such that there is
exactly one representative for a whole class of equivalent formulae�
The time for accessing such a formula is extremely short� e�g�� ���� ms for an
arbitrary access over a hash table of about ���� entries �Sun SPARC SS���
Allegro CL ��
�� This is much faster than the corresponding operations on bit
vectors �	Space is cheaper than time
�� Hassan A� t�Kaci��

��



References

�� Hassan A�	t�Kaci� An introduction to LIFE�programming with logic� inheritance�
functions� and equations� In Proceedings of the International Symposium on Logic

Programming� pages ������ �����
�� Hassan A�	t�Kaci� Robert Boyer� Patrick Lincoln� and Roger Nasr� E�cient imple�

mentation of lattice operations� ACM Transactions on Programming Languages

and Systems� �������������� January �����
�� Hassan A�	t�Kaci and Roger Nasr� LOGIN� A logic programming language with

built�in inheritance� Journal of Logic Programming� ���������� �����
�� Rolf Backofen and Christoph Weyers� UDiNe�a feature constraint solver with

distributed disjunction and classical negation� Unpublished documentation note�
�����

�� Bob Carpenter and Gerald Penn� ALE�the attribute logic engine user
s guide�
version ���� Technical report� Laboratory for Computational Linguistics� Philoso�
phy Department� Carnegie Mellon University� Pittsburgh� PA� August �����

�� Abdel Kader Diagne� Walter Kasper� and Hans�Ulrich Krieger� Distributed pars�
ing with HPSG grammars� In Proceedings of the �th International Workshop on

Parsing Technologies� IWPT���� pages ������ �����
�� Jochen D�orre and Michael Dorna� CUF�a formalism for linguistic knowledge

representation� In Jochen D�orre� editor� Computational Aspects of Constraint�

Based Linguistic Description I� DYANA� �����
�� Robert T� Kasper� Bernd Kiefer� Klaus Netter� and K� Vijay�Shanker� Compilation

of HPSG yo TAG� In Proceedings of the ��rd Annual Meeting of the Association

for Computational Linguistics� ACL���� �����
�� Hans�Ulrich Krieger� TDL	A Type Description Language for Constraint�Based

Grammars
 Foundations� Implementation� and Applications
 PhD thesis� Univer�
sit�at des Saarlandes� Department of Computer Science� �����

��� Hans�Ulrich Krieger� Typed Feature Structures� De�nite Equivalences� Greatest
Model Semantics� and Nonmonotonicity� In Proceedings of the �th Meeting on

Mathematics of Language� MOL�� �����
��� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�a type description language for

constraint�based grammars� In Proceedings of the ��th International Conference

on Computational Linguistics� COLING���� pages �������� �����
��� Hans�Ulrich Krieger and Ulrich Sch�afer� E�cient parameterizable type expan�

sion for typed feature formalisms� In Proceedings of the ��th International Joint

Conference on Arti�cial Intelligence� IJCAI���� Montreal� Canada� �����
��� Klaus Netter� Architecture and coverage of the DISCO grammar� In S� Busemann

and Karin Harbusch� editors� Proceedings of the DFKI Workshop on Natural Lan�

guage Systems� Modularity and Re�Usability� DFKI� D����
�� �����
��� Peter Norvig� Paradigms of Arti�cial Intelligence Programming� Morgan Kauf�

mann� San Mateo� CA� �����
��� Fernando C�N� Pereira and David H�D� Warren� Parsing as deduction� In Proceed�

ings of the ��st Annual Meeting of the Association for Computational Linguistics�

ACL���� pages �������� �����
��� Carl Pollard and Ivan A� Sag� Information�Based Syntax and Semantics
 Vol
 I�

Fundamentals� CSLI Lecture Notes� Number ��� Center for the Study of Language
and Information� Stanford� �����

��� Gert Smolka� A feature logic with subsorts� LILOG Report ��� WT LILOG�IBM
Germany� Stuttgart� May �����

��



��� Gert Smolka� Residuation and guarded rules for constraint�logic programming�
Research Report RR������� German Research Center for Arti�cial Intelligence
�DFKI�� Saarbr�ucken� �����

��� Hans Uszkoreit� Rolf Backofen� Stephan Busemann� Abdel Kader Diagne� Eliz�
abeth A� Hinkelman� Walter Kasper� Bernd Kiefer� Hans�Ulrich Krieger� Klaus
Netter� G�unter Neumann� Stephan Oepen� and Stephen P� Spackman� DISCO�
an HPSG�based NLP system and its application for appointment scheduling� In
Proceedings of COLING���� pages �������� �����

��� R emi Zajac� Inheritance and constraint�based grammar formalisms� Computa�

tional Linguistics� �������������� �����

This article was processed using the LaTEX macro package with LLNCS style

��


