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Abstract� TDL is a typed feature�based representation language and
inference system� speci�cally designed to support highly lexicalized con�
straint�based grammar theories� Type de�nitions in TDL consist of type
and feature constraints over the full Boolean connectives together with
coreferences� thus making TDL Turing�complete� TDL provides open�
and closed�world reasoning over types� Working with partially as well
as with fully expanded types is possible� E�cient reasoning in TDL is
accomplished through specialized modules�
In this paper� we will highlight the type�inheritance hierarchy module of
TDL and show how we represent conjunctively and disjunctively de�ned
types� Negated types and incompatible types are handled by special�
ized bottom symbols� Rede�ning a type only leads to the rede�nition
of the dependent types� and not to the rede�nition of the whole gram�
mar�lexicon� Unde�ned types are nothing special�
Reasoning over the type hierarchy is partially realized by a bit vector
encoding of types� similar to the one used in A�	t�Kaci
s LOGIN� How�
ever� the underlying semantics does not harmonize with the open�world
assumption of TDL� Thus� we have to generalize the GLB�LUB opera�
tion to account for this fact�
The system� as presented in the paper� has been fully implemented in
Common Lisp and is an integrated part of a large NL system� It has
been installed and successfully employed at other sites and runs on var�
ious platforms�
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� Introduction

Over the last few years� constraint�based grammar formalisms have become the
predominant paradigm in natural language processing and computational lin�
guistics� Their success stems from the fact that they can be seen as a monotonic�
high�level representation language for linguistic knowledge which can be given a
precise mathematical semantics� The main idea of representing as much linguistic
knowledge as possible through a unique data type called feature structure� allows
the integration of di�erent description levels� spanning phonology� syntax� and se�
mantics� Here� the feature structure itself serves as the interface between the dif�
ferent linguistic strata �actually� coreferences are a means to achieve this�� While
the �rst approaches relied on annotated phrase structure rules �e�g�� PATR�II��
recent formalisms try to specify grammatical knowledge as well as lexicon entries
entirely through feature structures� In order to achieve this goal� one must en�
rich the expressive power of the �rst uni�cation�based formalisms with di�erent
forms of disjunctive descriptions� Later� additional operations came into play�
e�g�� negation� Other proposals consider the integration of functional�relational
dependencies into the formalism which make them in general Turing�complete
�e�g�� ALE� cf� ����� However the most important extension to formalisms con�
sists of the incorporation of types � for instance in contemporary systems like
TFS �
��� CUF ���� ALE� or TDL ����� Types are ordered hierarchically� as it is
known from object�oriented programming languages� This often leads to multi�
ple inheritance in the description of linguistic entities� If a formalism is intended
to be used as a stand�alone system� it must also implement recursive types if it
does not provide phrase�structure recursion�� In addition� certain relations �like
append� or additional extensions of the formalism �like functional uncertainty�
can be nicely modelled through recursive types�

� Motivation

Modern typed uni�cation�based grammar formalisms di�er from early untyped
systems� like PATR�II� in that they emphasize the notion of a feature type� Types
can be arranged hierarchically� whereby a subtype monotonically inherits all the
information from its supertypes and uni�cation plays the role of the primary
information�combining operation� In TDL� an abstract type de�nition

s �� ht� �i

can be seen as an abbreviation for a complex expression� consisting of a complex
type constraint t �concerning the sub��supertype relationship� and a complex
feature constraint � �stating the necessary features and their values�� see �	� ���
for the formal foundations�
� For instance� ALE employs a bottom�up chart parser� whereas TFS relies entirely
on type deduction� Note that recursive types can be substituted by de�nite clauses�
as is the case for CUF� such that parsing�generation roughly corresponds to SLD
resolution�






It is worth noting that TDL does not enforce a grammar writer to specify the
type subsumption relation a priori through a set of fs�� � � � � sng � s statements�
as is the case for LOGIN �
�� ALE� or LIFE ���� Instead� TDL automatically
derives and extends a type hierarchy from the complex type expression t by
means of normalized de�nitions �see below�� In general� the type hierarchy only
forms a partial order� i�e�� we do not require additional ordering properties� e�g��
BCPO�lower semilattice�

Types are a necessary requirement for a grammar development environment
because they serve as abbreviations for lexicon entries� immediate dominance
rule schemata� and universal as well as language�speci�c principles� as is familiar
from Head�Driven Phrase Structure Grammar �HPSG� ����� Types in TDL not
only serve as a shorthand� like templates� but also have other advantages over
templates�

� Structuring Linguistic Knowledge

Hierarchically�ordered types allow for a modular way to adequately represent
linguistic knowledge� Moreover� generalizations can be made at the appro�
priate levels of representation�

� Efficient Processing

Certain type constraints can be compiled into more e�cient representa�
tions� for instance� �
� reduce GLB �greatest lower bound�� LUB �least up�
per bound�� and � �type subsumption� computation to low�level bit ma�
nipulations� Moreover� types can be used to eliminate expensive uni�cation
operations� for example� by explicit declaration of type incompatibility� In
addition� working with type names only or with partially expanded types
minimizes the costs of copying structures during processing ��
��

� Redundancy

In practice� it is often not possible to hold large lexicons completely in mem�
ory� However� only the idiosyncratic information of a lexicon entry needs to
be represented in RAM� due to the fact that the lexical types of a lexicon
entry contain most of the information� and only the information of these
types must be fully expanded�

� Type Discipline

Type de�nitions allow a grammarian to declare which attributes are appro�
priate for a given type and which types are appropriate for a given attribute�
therefore disallowing inconsistent feature structures�

� Recursive Types

Recursive types give a grammar writer the opportunity to formulate certain
functions�relations or extensions to the formalism �e�g�� functional uncer�
tainty� as recursive type speci�cations� Parsing as Deduction ���� is often
achieved by replacing the context�free backbone through recursive types�

� Compiling Types

Types are a good starting point for further methods of compilation� We have
already mentioned bit vector encoding� Types can also serve as the basis for
separating �true� and �spurious� constraints ���� for partial evaluation� or
for compiling an HPSG grammar into a weaker formalism �e�g�� �����

�



� TDL�An Overview

TDL is a uni�cation�based grammar development environment and run time sys�
tem supporting in particular HPSG�style grammars� Work on TDL has started
within the Disco project of the DFKI ��	�� The Disco grammar currently con�
sists of more than 
��� type speci�cations written in TDL and is the largest
HPSG grammar for German ��
�� The core machine of Disco consists of TDL
and the feature constraint solver UDiNe ���� UDiNe itself is a powerful untyped
uni�cation engine which allows the use of distributed disjunctions� general nega�
tion� and functional dependencies�

The modules communicate through an interface� and this communication
mirrors exactly the way an abstract typed uni�cation algorithm works� two
typed feature structures can only be uni�ed if the attached types are known
to be compatible� This is accomplished by the uni�er by handing over two typed
feature structures to TDL which gives back a simpli�ed form �plus additional
information� see Fig� ���
The motivation for separating types and features and processing them in spe�
cialized modules �which again might consist of specialized components as is the
case in TDL� is twofold� �i� this strategy reduces the complexity of the whole
system� thus making the architecture clear� and �ii� leads to faster processing
because every module is designed to handle only a specialized reasoning task�
Furthermore� extensions to TDL can be integrated easily�

TDL supports type de�nitions consisting of type constraints and feature con�
straints over the standard operators �� �� and �� The operators are generalized
to connect feature descriptions� coreference tags �logical variables� and types�
TDL distinguishes between

� avm types �open�world semantics� see below�
� sort types �closed�world semantics� see below�
� built�in types �through Common Lisp�
� atoms �symbols� strings� numbers� etc��

When asked for the greatest lower bound of two avm types a and b which
share no common subtype� TDL returns a � b �open�world reasoning�� and not
�� as is the case� e�g�� in ALE or LOGIN�LIFE�� The reasons for assuming this
are manifold�

�� partiality of our linguistic knowledge about a speci�c domain�in case� we
know nothing about the GLB� we simply return the conjunction of the types
which is de�nitely correct �this strategy obviously preserves the denotation��


� the approach is in harmony with terminological �KL�ONE�like� languages
which share a similar semantics�


� this view makes the stepwise re�nement of grammars during the development
process easier �which has been shown useful in several projects��

� Thus� typed feature structures in TDL might be typed with complex expressions like
a � b or a � �b � �c�� and not with type symbols only�

�
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TDL
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� � �

h � � � i
�

Type hierarchy

ha � bi

Query

fc� a � b��g

�

a

b

c

a

b �� � ��

�� � ��

hfc� a � b��g� fyes� no� failgi

Result

Fig� �� Interface between TDL and UDiNe� Depending on the type hierarchy and
the type of � and � � TDL either returns c �c is de�nitely the GLB of a and b�
or a� b �open�world reasoning for GLB� or � �closed�world reasoning for GLB�
if a single type which is equal to the GLB of a and b does not exist� In addition�
TDL determines whether UDiNe must carry out feature term uni�cation �yes�
or not �no�� i�e�� the return type contains all the information one needs to work
on properly �fail signals a global uni�cation failure��

�� we must not write super�uous type de�nitions to guarantee successful type
uni�cations during processing�

The opposite case holds for the GLB of sort types� sort types di�er from
avm types in that they are not further structured �they are featureless�� as is
the case for atoms �which cannot be arranged hierarchically and consume less
space��

TDL allows for the declaration of partitions � a feature heavily used in HPSG�
One can even declare sets of avm types as incompatible� meaning that their
conjunction yields �� so that speci�c types can be �closed�� if desired�

The kernel of TDL �and of most other systems� can be given a precise set�
theoretical semantics� e�g�� along the lines of ����� It is easy to translate TDL
statements into denotation�preserving expressions of Smolka�s feature logic or
even into a set of de�nite equivalences ����� i�e�� a de�nite program� thus viewing
TDL as just syntactic sugar for �rst�order predicate logic�� The latter point is

� Cf� 
�� for a precise description of the semantics of TDL� including a �xpoint char�
acterization of recursive types� In contrast to most settings� we propose the greatest
�xpoint �of a certain downward continuous function� as the solution of a grammar

�



of special importance� since by viewing the type hierarchy as a pure �transport
medium� for constraints� we can translate nonmonotonically de�ned types into
a perfectly de�nite program �����

� Type Hierarchy

The type hierarchy is either called directly by the control machine of TDL during
the de�nition of a type �type classi�cation� or indirectly via the symbolic simpli�
�er� both at de�nition and at run time �typed uni�cation and type expansion���

��� Basic Encoding Method

The hierarchy itself is represented as a double linked graph� such that types
are associated with forward and backward pointers to their immediate subtypes
and supertypes� Because we allow for conjunctively as well as disjunctively de�
�ned types� types possess pointers to their disjunction alternatives but also to
disjunctive types in which they are involved� Types are equipped with further in�
formation� e�g�� slots containing the dependent types �important for rede�nition�
or the specialized bottom symbols in case of incompatible avm types�

Since we are interested to perform GLB� LUB� and � computations e�ciently
�important during typed uni�cation and type expansion�� not only is the type
hierarchy explicitly represented� but also compiled into a special format �actually�
every type is associated with a speci�c code�� The compilation is based on Hassan
A� t�Kaci�s bit vector encoding technique for partial orders �
�� and has been
further extended to serve our special requirements�

Here� every type t is assigned a code ��t� �represented through a bit vector�
such that ��t� encodes the re�exive and transitive closure of the immediate type
subsumption relation with respect to t� Decoding a code c is either realized
by a �hash� table look�up �i� �t � ����c� � t� or by computing the �maximal
restriction� of the set of types whose codes are less than c��

Depending on the encoding method� the hierarchy occupies between O�n logn�
�compact encoding� and O�n�� �transitive closure encoding� bits� Here� a GLB
�LUB� operation directly corresponds to bitwise And �Or� instruction� In this

because it makes the least restrictions on admissible interpretations 
���� Note that
we are interested in the satis�ability �and not in the validity� of a set of grammatical
descriptions �i�e�� a type system�� Perhaps more important� the greatest �xpoint will
not rule out cyclic feature structures and certain coreference constraints� as might
be the case for the least �xpoint interpretation of a type system�

� Type expansion 
��� or type unfolding means to make the idiosyncratic and inherited
constraints of a type explicit and to �partially� check for its consistency�

� A�	t�Kaci has argued that decoding� i�e�� calling ��� is not necessary at run time�
However� this is not true for our setting �partially expanded structures� complex
type expressions� di�erent semantics� see below�� Decoding in our system is similar
to encoding� in that we employ a hash table of the inverse images of �� ����b� thus
means to access the type symbol that is associated with code b�

�



framework� GLB� LUB and � computations have the pleasant property that
they can be carried out in O�n�� where n is the number of types �actually O����
since n does not change at run time���

A� t�Kaci�s method has been extended to account for the open�world nature of
avm types� in that potential GLB�LUB candidates �calculated from their codes�
are veri�ed by partially �inspecting� the type hierarchy� Why so! Consider� for
example� the following type hierarchy which has been obtained via the de�nitions
s �� h�� �i and t �� h�� �i�

�
�
	 ��

� n

��
�

 s t

�
	 ��

Simplifying s � t on the basis of the codes would lead us to �� ��s� � ��t� �
�� � ����� where � means bitwise And� Dual to this� we obtain ��s� t� � ����
which is often too crude� In general� these results would only hold in TDL if s
and t are declared as incompatible or exhaustively partition �� resp� Rather for
this hierarchy� we argue that the GLB of s and t is s�t� whereas the LUB should
be s � t �if s and t are avm types��

Take another example to see why A� t�Kaci�s original treatment is not the
right choice for our setting� Consider the following two type de�nitions�

x �� hy � z��i
x� �� hy� � z�� p

�
� �i

During processing� we can de�nitely substitute y � z by x� but rewriting y� � z�

to x� is not correct� because x� di�ers from y� � z��x� is more speci�c as a
consequence of the feature constraint �p

�
� ��� If we would rewrite y� � z� to x��

type expansion would yield a more speci�c structure than necessary� Recall that
types abbreviate the constraints de�ned on them�
In order to obtain the �intended� result� we mark types during the de�nition
phase whether their denotation is equivalent to the intersection of the denotation
of their direct supertypes or not �same for disjunctively de�ned types�� In our
example above� we say that x is the GLB of y and z �is�glb�x� 
 true��
whereas x� is not considered to be the GLB of y� and z� �is�glb�x�� 
 false��
Note that such information represents only local knowledge about the direct
subtypes�supertypes�

Another point in A� t�Kaci�s treatment does not harmonize with our setting�
It could be the case that the computation of the GLB of S � fs�� � � � � sng leads
to a code b that does not have a correspondence in the type hierarchy �same for
LUB�� In this case� the set of all maximal elements ft�� � � � � tmg whose codes are
less than b is returned�

� One can choose in TDL between the two encoding techniques and between bit vectors
and bignums �arbitrary long integers� for the representation of the codes� In general�
operations on bignums in most Common Lisp implementations are at least an order
of magnitude faster than the corresponding operations on bit vectors�

�



GLB�S�
�
�	

nO
i��

��si�

k

ft�� � � � � tmg
���


� b

But obviously

m�
j��

��tj ��
I

�

n�
i��

��si��
I

is not the case for every interpretation I of our type system� Because ft�� � � � � tmg
is interpreted disjunctively and the GLB is interpreted as logical conjunction in
the presence of a type hierarchy� we rather have that ft�� � � � � tmg only approxi�
mates GLB�S�� since for every j 
 f�� � � � �mg

��tj ��
I �

n�
i��

��si��
I

Hence� the implementation of the greatest lower bound distinguishes between
the

� internal greatest lower bound GLB�

only the type hierarchy� i�e�� the type subsumption relation � is taken into
account by employing the codes �used in case of sort types�

GLB��s� t� �� ������s�� ��t��

� external greatest lower bound GLBv

take feature constraints into account via the is�glb slot �see example above�

GLBv�s� t� ��
local b�
b
 ��s�� ��t��
if ����b� �
�	 if b doesn
t have a corresponding type 	�
then return s � t
else if verify�glb�p�f����b�g� fs� tg�

then return ����b�
else return s � t�

verify�glb�p�supers � query� ��
�	 verify candidate supers by �moving up� the hierarchy to query 


guarantee that visited types are locally marked as the GLB 	�
local S�

	



S 

S

s�supers direct�supertypes�s� n query �
if S � �
then return true

else if �s 
 S � is�glb�s�
then verify�glb�p�S� query �
else return false�

A similar distinction is made for the LUB�

With GLB� and GLBv in mind� we can de�ne a generalized GLB operation
informally by the following table� This GLB operation is actually used during
typed uni�cation �fc� feature constraint��

GLB avm� sort� atom� fc�

avm� �� � � 
�
sort� � 
� �� �
atom� � �� �� �
fc� 
� � � ��

where

��

����
���

avm� �� GLBv�avm� � avm� � � avm�

avm� �� avm� � avm�

� �� GLB��avm� � avm� � � � �via explicit incompatibility declaration�
avm� � avm� � otherwise �open�world reasoning for GLB�


�

��
�
avm� �� �� type expansion is switched o�
avm� �� �� expand�tfs�havm� �� � fc� �� i� �� � �type expansion switched on�
�� otherwise


�

��
�
sort� �� GLB��sort� � sort� � � sort�
sort� �� sort� � sort�
�� otherwise �closed world reasoning for GLB�

��

�
atom� �� �� type�of �atom� �� � � sort� �� � where sort� �� is a built�in type
�� otherwise

��

�
atom� �� atom� � atom�

�� otherwise

��

�
��� fc� � fc� �� �
�� otherwise

Actually� the GLB de�nition is a little bit more complicated in that we allow for
arbitrary many arguments�

The encoding algorithm has also been extended to handle the rede�nition of
types and the use of unde�ned types properly� an essential part of an incremental
grammar�lexicon development system� Rede�ning a type not only means to make

��



changes local to this type� Rather� one has to rede�ne all dependents of this
type�all subtypes� in case of a conjunctively de�ned type and all disjunction
elements for a disjunctive type speci�cation� plus� in both cases� all types which
mention these types in their de�nition�

The dependent types of a type t can be characterized graph�theoretically via
the connected component �CC� of t with respect to the �dependency� relation�
informally de�ned above� This relation is updated every time a new type de��
nition is fed into TDL� It is important to rede�ne the dependents in the �right�
order to obtain a new consistent type hierarchy� In general� enriching the type
hierarchy with dependency links no longer leads to a cycle�free graph� So it is
not obvious how to establish a topological order on the set of types� However�
one can topologically sort the CCs of the hierarchy without dependency links
�which leads to a total order with respect to a certain CC� and then implode the
CCs of the hierarchy into nodes �which ultimately leads to a DAG which itself
can be totally ordered too��

��� Decomposing Type De�nitions

Conjunctively de�ned types �e�g�� x �� hy � z� �i� and disjunctively de�ned ones
�e�g�� x� �� hy�� z�� ��i� are entered di�erently into the type hierarchy� x inherits
feature constraints from its supertypes y and z� whereas x� de�nes itself through
its disjunction alternatives y� and z��� This distinction is represented through the
use of di�erent kinds of edges in the type graph �bold edges denote disjunction
elements� see Fig� 
 and ���

One might ask how conjunctively and disjunctively de�ned types a�ect the bit
vector encoding method� The answer is simply that this distinction does not have
any e�ects on the encoding algorithms�recall that disjunctive and conjunctive
inheritance links both denote the immediate subsumption relation �x � y and
x� � y� in the above example�� and exactly the transitive closure of � is encoded
in the bit vectors�

TDL decomposes complex type de�nitions consisting of �� �� and � by in�
troducing intermediate types � so that the resulting expression is either a pure
conjunction or a disjunction of type symbols �plus type de�nitions of the form
s �� h�t��i��
It is not hard to realize that arbitrary type systems can be �normalized� in such
a way� simplifying the integration of a new type w�r�t� an existing type hierarchy�
Now let s �� ht� �i be a normalized type de�nition� Thus

� if t � t� � � � � � tn then let s inherit from t��� � � � � t
�
m�

where GLB�t�� � � � � tn� � t�
�
� � � � � t�m� thus s � t�

�
� � � � � s � t�m�

� if t � t� � � � � � tn then let t��� � � � � t
�
m be the disjunction alternatives of s�

where LUB�t�� � � � � tn� � t�
�
� � � � � t�m� thus t�

�
� s� � � � � t�m � s�

� So one can see conjunctive types as top�down specializations of supertypes and dis�
junctive ones as bottom�up generalizations of disjunction elements�

��



� if t � �t� then make s incompatible with t��
and so we have �

�
� s � t� �incompatibility declaration��

Fig� 
 gives an example of such a normalized type hierarchy� Notice here that
the previously introduced intermediate type ju�vj is involved in the de�nition of
the new intermediate ju� v�wj �we enclose intermediate type names in vertical
bars��

�

u v w

ju � vj

ju � v � wjx

y

Fig� �� The intermediate types ju�vj and ju�v�wj are introduced during the de�nition

the type x �� hu � v� a
�
� �i� followed by y �� hw � v � u� a

�
� �i�

The same technique is applied when using the xor macro �� �see Fig� 
 and
��� �� will be decomposed into �� � and �� plus additional intermediates� For
each negated type �t� TDL introduces a new intermediate type symbol j�tj�
having the de�nition h�t��i and declares it incompatible with t �see Section
��
�� In addition� if t is not already present� TDL will add t as a new type to the
hierarchy� directly under � �see types j�bj and j�cj in Fig� 
 and ���

Let us consider the example a �� hb��c��i� The decomposition performed by
TDL can be stated informally by the following rewrite steps �assuming that CNF
mode is switched on� see Fig� 
��

a �� hb��c��i

a �� h�b � �c� � ��b � c���i
a �� h�b � �b� � �b � c� � ��b � �c� � ��c � c���i

a �� h�b � c� � ��b � �c���i

a �� hjb � cj � j�b � �cj��i

�




�fb��bg �fc��cg

jb�cj j�b��cj

a

j�cjb c j�bj

�

Fig� �� Decomposing a �� hb��c��i into conjunctive normal form� such that a inherits

from the intermediates jb � cj and j�b � �cj�

where jb � cj �� hb � c��i� j�b � �cj �� hj�bj � j�cj��i� j�bj �� h�b��i� j�cj ��
h�c��i� �fb��bg �� hb � j�bj��i� and �fc��cg �� hc � j�cj��i�

Instead� if disjunctive normal form is enforced by the user� the decomposition
of a �� hb��c��i leads of course to a di�erent type hierarchy �Fig� ���

a �� hb��c��i

a �� h�b � �c� � ��b � c���i

a �� hjb � �cj � j�b � cj��i

��� Incompatible Types and Bottom Propagation

Incompatible types lead to the introduction of specialized bottom symbols �see
Fig� 
� � and �� which are� however� identi�ed in the underlying logic �this identi�
�cation is somewhat related to the notion of a coalesced sum� known from domain
theory�� I�e�� these symbols are always interpreted as representing inconsistent
information� thus they denote the empty set�

Bottom symbols are propagated �downwards� by a mechanism called bottom

propagation which takes place at de�nition time �see Fig� ��� This is important�
since we want to apply the GLB operation to incompatibly declared types in
order to take advantage of the bit vector encoding� Detecting a bottom symbol
with the help of the codes of the types is enough here� thus we only need to
employ GLB��	

�




b j�bj aj�cjc

jb � �cjj�b � cj

�

�fb��bg �fc��cg

Fig� �� Decomposing a �� hb��c��i into disjunctive normal form� such that a is de�ned

through its disjunction alternatives jb � �cj and j�b � cj�

Note that it is important to take not only conjunctively de�ned subtypes
during bottom propagation into account but also disjunction elements� as the
following example shows� Assume that the user declares the avm types a and b
as incompatible �via �

�
� a � b�� Thus we have

�
�

�
� a � b

b �� hb� � b���i

	
bottom propagation
����������������	 a � b� � � and a � b� � �

It is worth noting that because we employ an explicitly represented type
hierarchy during GLB� LUB and � computations� a single bottom symbol that
is a subtype of every other minimal type� would lead to false inferences�
Consider the following example� Assume that we declare a and b� as well as c and
d as incompatible� If only a single bottom symbol � is used� we would deduce
that a�c is � which is not necessarily the case� However� introducing two bottom
symbols �fa�bg and �fc�dg is the right way to guarantee proper results�

One might expect that incompatibility statements together with feature term
uni�cation no longer lead to a monotonic� set�theoretical semantics� But this is

� In case that the GLB operation allows arbitrary many arguments� this strategy must
be modi�ed� Assume that we declare a set of types T as incompatible� The specialized
bottom symbol �T then encode that

V
t�T

� �� Obviously� if T � � T then
V

t�T �
��

�� in general� Now� given a set of types S and assuming that GLB��S� � �T � we
must guarantee that 	t 
 T� �s 
 S � s � t� This test can be carried out very quickly�
since � is always implemented through bit vectors�

��



b

ed

�

cab ca

�

d �� hb� p
�
� �i

e �� hb� p
�
� 
i

bottom propagation

�fa�b�cg �fa�b�cg

� � a � b � c�

Fig� �� Bottom propagation triggered through the subtypes d and e of b� so that a�d�c
as well as a � e � c will simplify to � during processing�

not the case� To preserve monotonicity� one must assume a ��level interpretation

of typed feature structures� where feature constraints and type constraints can
denote di�erent sets of objects and the global interpretation is determined by
the intersection of the two sets�
Take for instance the type de�nitions A �� h�� a

�
� �i and B �� h�� b

�
� �i� plus

the user declaration �
�
� A �B� meaning that A and B are incompatible� Then

A�B will simplify to � although the corresponding feature structures of A and
B successfully unify to �a

�
� �� � �b

�
� ���

� Additional Modules

In this section� we hasten to present additional reasoning engines of TDL that
are related to the type hierarchy module�

First of all� the type hierarchy reasoner is part of a larger symbolic simpli�er
that further implements the standard �syntactic� simpli�cation schemata� e�g��
De Morgan�s laws� idempotence� double negation� etc�

Second� this simpli�er is extensively used during type expansion to reduce
the costs of typed uni�cation and copying�

Third� simpli�ed expressions are memoized ���� in order to reuse them later�
Here the unsimpli�ed expression serves as the key in a hash table� so that the
corresponding value is exactly the simpli�ed formula� To reduce the number of
keys� we impose a generalized total order on type expressions� such that there is
exactly one representative for a whole class of equivalent formulae�
The time for accessing such a formula is extremely short� e�g�� ���� ms for an
arbitrary access over a hash table of about ���� entries �Sun SPARC SS���
Allegro CL ��
�� This is much faster than the corresponding operations on bit
vectors �	Space is cheaper than time
�� Hassan A� t�Kaci��

��
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