
F
u

n
ct

io
n

al
C

o
m

p
u

ta
ti

o
n

as
C

o
n

cu
rr

en
t

C
o

m
p

u
ta

ti
o

n

Jo
ac

h
im

N
ie

h
re

n

R
R

-9
5-

14
R

es
ea

rc
h

R
ep

or



Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-14

Functional Computation as Concurrent
Computation

Joachim Niehren

15 November 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341



Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director



Functional Computation as Concurrent Computation

Joachim Niehren

DFKI-RR-95-14



A shortend version of this report appeared in the Proceedings of the ACM Con-
ference on Principles of Programming Languages, the ACM Press, 21-24 January
1995, St Petersburg Beach, Florida

This work has been supported by the Bundesminister für Forschung und Technolo-
gie (contract ITW 9105), the Basic Esprit Project ACCLAIM (contract EP 7195),
and the Esprit Working Group CCL (contract EP 6028).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X



Functional Computation as Concurrent Computation

Joachim Niehren

Programming Systems Lab
German Research Center for Arti�cial Intelligence �DFKI�

Stuhlsatzenhausweg �� ���	� Saarbr
ucken� Germany
niehren�dfki�uni�sb�de

�� November ����

Abstract

We investigate functional computation as a special form of concurrent computa�

tion� As formal basis� we use a uniformly con�uent core of the ��calculus� which is

also contained in models of higher�order concurrent constraint programming� We em�

bed the call�by�need and the call�by�value ��calculus into the ��calculus� We prove

that call�by�need complexity is dominated by call�by�value complexity� In contrast to

the recently proposed call�by�need ��calculus� our concurrent call�by�need model in�

corporates mutual recursion and can be extended to cyclic data structures by means

of constraints�

�



Contents

� Introduction �

� The Square Function� An Example �

� The Applicative Core of the ��Calculus �

� Uniform Con	uence �


� Uniform Con	uence for �� ��

� Single Assignment and Triggering ��

� Uniform Con	uence for � ��

� Functional Computation in � ��


 Embedding the Call�by�Need ��Calculus ��

�
 Linear Types for Consistency �


�� Encoding � in �� �


�� Simulations and Uniformity ��

�� Notation ��

�� A Complexity Simulation for Call�by�Value ��

�� Shortening Call�by�Name to Call�by�Need ��

�� Relating Call�by�Value to Call�by�Need �


�� Adequacy of the Embedding of � into �� ��

�� Simulating the Call�by�Need ��Calculus ��

�
 Conclusion ��

�



� Introduction

We investigate concurrency as unifying computational paradigm in the spirit of Milner
�Mil��� and Smolka �Smo��� Smo��b�	 Whereas the motivations for both approaches are
quite distinct� the resulting formalisms are closely related
 The ��calculus �MPW��� models
communication and synchronisation via channels� whereas the ��calculus �NS��� Smo���
NM���� uses logic variables or more generally constraints as inspired by �Mah�
� SRP���	

Our motivation in concurrent calculi lies in the design of programming languages	 Con�
currency enables us to integrate multiple programming paradigms such as functional
�Mil��� Smo��� Nie��� Iba��� PT��b�� object�oriented �Vas��� PT��a� HSW��� Wal����
and constraint programming �JH��� SSW���	 All these paradigms are supported by the
programming language Oz �Smo��a� Smo��b�	

In this paper� we model the time complexity of eager and lazy functional computation in
a concurrent calculus	 The importance of complexity is three�fold


�	 Every implementation�oriented model has to re�ect complexity	 In the case of lazy
functional programming� the consideration of complexity leads to a call�by�need mod�
el in contrast to a call�by�name model	

�	 A programmer has to reason about the complexity of his programs	 In particular for
functional programs� denotational semantics are too coarse �San���	

�	 Based on the notion of uniform con�uence� complexity arguments provide for powerful
proof techniques	

Our main technical result is that call�by�need complexity is dominated by call�by�value
and call�by�name complexity� i	e	 for all closed ��expressions M 


Cneed�M� � minfCvalue�M�� Cname�M�g

These two estimations can be interpreted as follows
 Call�by�need reduction shares the
evaluation of functional arguments and evaluates only needed arguments	

As a formal basis� we use a uniformly con�uent applicative core of a concurrent calculus
that we call ���calculus	 This is a proper subset of the polyadic asynchronous ��calculus
�Mil��� HT��� Bou��� and of the ��calculus �NM��� Smo���� the latter being a foundation
of higher�order concurrent constraint programming	 The choice of �� has the following
advantages


�	 Delay and triggering mechanisms as needed for programming laziness are expressible
within ��	

�Originally� Smolka�s ��calculus �Smo��� and the ��calculus �NS��� have been technically distinct	 In
�NM�
�� they have been combined in a re�ned version of the ��calculus	 We note that Smolka�s ��calculus
and Boudol�s ��calculus �Bou��� are completely unrelated	

�



�	 Mutually recursive de�nitions are expressible in a call�by�value and a call�by�need
manner	

�	 Cyclic data structures and the corresponding equality relations are expressible in an
extension of �� with constraints� the ��calculus	

The ���calculus is de�ned via expressions� structural congruence� and reduction	 Expres�
sions are formed by abstraction� application� composition� and declaration


E� F 

� x
y�E jj xy jj EjF jj ��x�E

In the terminology of the ��calculus� abstractions are replicated input�agents and applica�
tions are output�agents	 Once�only input�agents as in the ��calculus are not provided� nor
constraints or cells as in the ��calculus	

We identify expressions up to the structural congruence of the ��calculus	 Reduction in ��
is de�ned by the following application axiom


�x
y�E� j xz � �x
y�E� j E�z�y�

We do not allow for reduction below abstraction	 In terms of the ��calculus� this means
that we consider standard reduction only	

We embed the call�by�value and the call�by�name ��calculus into ��� the latter with call�
by�need complexity	 This is done in two steps
 We �rst extend �� by adding mechanisms
for single assignment� delay� and triggering	 We obtain a new calculus that we call ��
calculus	 Surprisingly � can be embedded into �� itself	 The idea is to express single
assignment by forwarders	 In the second step� we encode the above mentioned ��calculi
into �	 Formulating these embeddings into � rather than into �� is motivated by our belief
that the abstraction level of � is relevant for programming� theory� and implementation	

The notion of single assignment we use in � is known from a directed usage of logic variables
�Pin�
�� as for instance in the data��ow language Id �ANP��� BNA���	 Alternatively� we
could express single assignment via equational constraints� but these are not available in
the ��calculus	 In fact� the directed single assignment mechanism in this paper is motivated
by a data��ow discussion for polymorphic typing a concurrent constraint language �M�ul���	

The approach of this paper is based on the idea of uniform con�uence �Nie��� NS���	
This is a simple criterion that ensures complexity is independent of the execution order	
Unfortunately� we can not even expect con�uence for ��	 This is due to expressions such
as x
y�E j x
y�F that we consider inconsistent	 Inconsistencies may arise dynamically	
We can however exclude them statically by a linear type system	 In fact� the restriction
of �� to well�typed expressions is uniformly con�uent and su�ciently rich for embedding
��calculi	 We note that a well�typed �rst�order restriction of �� has been proved con�uent
in �SRP���	

We base all our adequacy proofs for embeddings on a novel technique that combines uni�
form con�uence and shortening simulations �Nie��� NS���	 Shortening simulations are more

�



powerful than bisimulations� once uniform con�uence is available	 Nevertheless� the de��
nitions of concrete shortening simulations in this paper are strongly inspired by Milner�s
bisimulations in �Mil���	

We are able to compare the complexities of call�by�need and call�by�value in �� since up to
our embeddings� every call�by�need step is also a call�by�value step	 In particular� we do not
require in � that a call�by�value function evaluates its arguments before application	 This
additional freedom compared to the call�by�value ��calculus does not a�ect complexity	
This is a consequence of the uniform con�uence of the well�typed restriction of �	 We note
that the call�by�let ��calculus introduced in �MOTW��� provides the same kind of freedom	

Related Work� Many call�by�need models have been proposed over the last years but
none of them has been fully satisfactory	

Our call�by�need model is closely related to the call�by�need ��calculus of Ariola et al	
�AFMOW���	 We show how to embed the call�by�need ��calculus into � such that com�
plexity is preserved �but not vice versa�	 The main di�erence between both approaches is
the level on which lazy control is de�ned	 In the case of the call�by�need ��calculus� laziness
is de�ned on meta level� by evaluation contexts	 In the case of the ��calculus� laziness is
expressible within the language itself	 In other words� the call�by�need ��calculus is more
abstract� or� the ��calculus is more general	 The disadvantage of the abstraction level of
the call�by�need ��calculus is that mutual recursion and cyclic data structures are di�cult
to de�ne	 On the other hand side� � is abstract enough for hiding most implementation
details	 We illustrated this fact by simple complexity reasoning based on shortening simu�
lations and uniform con�uence	 This technique is again more general than the specialised
��calculus technique in �AFMOW���	

The setting of the call�by�need ��calculus is quite similar to Yoshida�s �f �calculus �Yos���	
She proves that a call�by�need reduction strategy is optimal for weak reduction� but she
does not compare call�by�need to call�by�name	

Embeddings of the call�by�value and the call�by�name ��calculus into the ��calculus have
been proposed and proved correct by Milner �Mil���	 An embedding of the call�by�need ��
calculus into the ��calculus is proved correct in �BO���	 The advantage of the embeddings
presented here is that they do need not make use of once�only input channels� which are
incompatible with uniform con�uence	

Embeddings of the call�by�value and the call�by�name ��calculus into the ��calculus are
presented in �Smo���� the latter with call�by�need complexity	 These embeddings motivated
those presented here	 The di�erence lies in the usage of constraints for single assignment
and triggering	 In �Smo��� no proofs are given� but the call�by�value embedding is proved
correct in �Nie���	 There� most of the proof techniques presented in this paper have been
introduced	

An abstract big�step semantics for call�by�need has been presented by Launchbury �Lau���	
It is complexity sensitive� since computation steps are re�ected in proof trees	 Launchbury�s

�



S �����

S �

���

��

��y��syz j y�����

��y��syz j y��� ��y��z�y�y j y�����

��y��z�y�y j y���

�
�

z��� �

Figure �
 Square Function
 Call�by�Value

correctness result however does not cover complexity	 This is a consequence of using a proof
technique based on denotational semantics	

Many other attempts for call�by�need have been presented	 To our knowledge� all of them
are quite implementation oriented such that they su�er from low�level details	 We note
the approaches based on explicit substitutions �PS��� ACCL��� and on graph reduction
�Jef���	

Structure of the Report� As a �rst example we discuss the square function in a concur�
rent setting	 We de�ne �� in Section �	 We then introduce the notion of uniform con�uence
and discuss its relationship to complexity and con�uence	 In Section �� we prove uniform
con�uence for a subset of ��	 In Section �� we de�ne the ��calculus	 Following� we discuss
uniform con�uence for �	 In Sections � and �� we embed the call�by�value� the call�by�name�
and the call�by�need ��calculus into �	 We introduce a linear type system in Section ��
and prove that our embeddings fall into the uniformly con�uent subset of �	 In Section
��� we show how to encode single assignment and triggering in ��	 We introduce the sim�
ulation proof technique in Section �� and apply it for proving the adequacy our calculus
embeddings in Sections �� � ��	

� The Square Function� An Example

We informally introduce the ��calculus by representing the square function in call�by�value
and call�by�need manner	 This motivates our embeddings of ��calculi into � and indicates
the adequacy results we can expect	

We assume a in�nite set of variables ranged over by x� y� z� s� and t	 Sequences of variables
are written as x� y� � � � and integers are denoted with n� m� and k	

�



In a concurrent setting� we consider functions as relations with an explicit output argument�
for example


S � �x�x�x versus s
xz�z�x�x

The expression on the right�hand side is a call�by�value de�nition of the square function
in the ��calculus	 The formal parameter z is the explicit output argument	 The expression
z�x�x is syntactic sugar for an application of a prede�ned ternary relation �	 We assume
the following application axiom for all integers n� m� k and variables x


x�n�m � x�k if k � n �m

For forwarding values in equations x�n� we copy them into those positions where they are
needed	 This kind of administration is de�nable in many di�erent manners� for instance


��y��y�n j E� � E�n�y�

Figure � �commented by footnotemark �� illustrates the call�by value evaluation of the
square of ��� in the ��calculus and the ��calculus	 If we ignore forwarding steps� then all
possible computations in Figure � have length �	 In other words� our call�by�value embed�
ding of the square function preserves time complexity measured in terms of application
steps	 Ignoring forwarding is correct in the sense that the number of forwarding steps in
computations of functional expressions is linearly bounded by the number of application
steps	 We do no prove this claim formally	

It is interesting that call�by�value evaluation in � is more �exible than in the ��calculus� as
shown by an additional call�by�value computation in our example	 This is in the rightmost
computation in Figure �� where the square function is applied before its argument has been
evaluated	

For de�ning a call�by�need square function in a concurrent setting� we need a delay and a
triggering mechanism	 For this purpose� we introduce two new expressions t�E and tr�t�	
We say that E is delayed in t�E until t is triggered	 This behaviour can be provided by
following triggering axiom


t�E j tr�t� � E j tr�t�

Note that multiple triggering is possible	 A call�by�need version of the square function can
be de�ned as follows


s�
xtz��z�x�x j tr�t��

This function can be applied with a delayed argument x waiting on t to be triggered	
Figure � �commented by the footnotemarks � and �� presents call�by�name and call�by�
need computations of the square of ���	 Both call�by�name computations have length ��
since the functional argument ��� is evaluated twice	 If we ignore triggering and forwarding
steps� then our call�by�need computation has length �	 This illustrates that call�by�need

�Here� �� stands a forwarding step followed by an application step
 ��y��z�y�y j y��� � z���� �
z���	






S �����

�����������

������� �������

���

��

��y���t��s�ytz j t�y�����

�
�

��y��z�y�y j y����� �

��y��z�y�y j y���

�
�

z��� �

Figure �
 Square Function
 Call�by�Name versus Call�by�Need

complexity is dominated by call�by�name and by call�by�value complexity	 In this example�
the �rst estimation is proper �raised by sharing�� whereas the second is not �since the
argument of the square function is needed�	

We note that our call�by�need computation in Figure � has a direct relative in the call�by�
value case� the rightmost computation in Figure �	 This statement holds in general and
enables us to compare call�by�need and call�by�value complexity in the ��calculus	

� The Applicative Core of the ��Calculus

We de�ne �� as the applicative core of the polyadic asynchronous ��calculus �Mil��� HT���
Bou��� and the ��calculus �NM��� Smo���	 Interestingly� �� as formulated here is part of
the Oz computation model �Smo��� and the Pict computation model �PT��b�� which have
been developed independently	

We de�ne the calculus �� via expressions� structural congruence� and reduction	 The de��
nition is given in Figures � and �	 Expressions are abstractions� applications� compositions�
or declarations	 An abstraction x
y�E is named by x� has formal arguments y and body E	
An application xy of x has actual arguments y	 In the standard ��notation� abstractions
are replicated input�agents and applications asynchronous output�agents	

Bound variables are introduced as formal arguments of abstractions and by declaration	
The set of free variables of an expression E is denoted by V�E�	 We write E �� F if E

�Here� �� consists of an application and a triggering step
 ��t��s�ytz j t�y����� �
��t��z�y�y j tr�t� j t�y����� � z�y�y j y���� j ��t��tr�t��	 The garbage expression ��t��tr�t�� in is
omitted in Figure �


�



Variables x� y� z� s� t 

�

Expressions E� F 

� x
y�E jj xy jj E j F jj ��x�E

Reduction x
y�E j xz �A x
y�E j E�z�y�

Figure �
 The ���Calculus	

Structural Congruence

E j F � F j E E� j �E� j E�� � �E� j E�� j E�

��x���y�E � ��y���x�E ��x�E j F � ��x��E j F � if x �� V�F �

E � F if E �� F

Contextual Rules

E � E�

E j F � E� j F
E � E�

��x�E � ��x�E�
E� � E� E� � F� F� � F�

E� � F�

Figure �
 Structural Congruence and Contextual Rules

and F are equal up to consistent renaming of bound variables	 As usual for ��calculi� we
assume all expressions to be 	�standardised and omit freeness conditions throughout the
paper	

The structural congruence � of �� coincides with that of the ��calculus	 It is the least
congruence on expressions satisfying the axioms in Figure �	 With respect to the structural
congruence� bound variables can be renamed consistently� composition is associative and
commutative� and declaration is equipped with the usual scoping rules	

The reduction�� synonymously denoted by�A� is de�ned by a single axiom for application	
The application axiom uses the simultaneous substitution operator �z�y�� which replaces
the components of y elementwise by z	 In case of application of �z�y�� we implicitly assume
that the sequence y is linear and of the same length as z	 Note that reduction is invariant
under structural congruence and closed under weak contexts	 This means that reduction
is applicable below declaration and composition� but not inside of abstraction	 In terms of
��calculi� this means that we consider standard reductions only	

Example ��� �Continuation Passing Style� The identity function I � �x�x can be
de�ned in �� in continuation passing style� i
xy�yx� An application let i�I in ii referred
to by z is de�nable as follows�

��i��i
xy�yx j ��y���iiy� j y�
c�zc��

�



In composition with i
xy�yx we obtain the following computation�

��y��� iiy� j y�
c�zc� �A ��y��� y�i j y�
c�zc�

�A zi j ��y���y�
c�zc�

Example ��� �Explicit Recursion� The computation of the following recursive expres�
sion does not terminate�

xy j x
y�xy �A xy j x
y�xy �A � � �

Compared to the asynchronous ��calculus �Mil��� Bou��� HT���� �� does not provide for
non�replicated input�agents	 These are not needed for functional computation and are
incompatible with uniform con�uence if not restricted linearly �KPT���	 In absence of
once�only inputs� it is not clear if the unary restriction of �� is Turing complete	

� Uniform Con�uence

We formalise the notions of a calculus� complexity� and uniform con�uence as in �Nie���
NS��� and discuss their relationships	 These simple concepts will prove extremely useful
in the sequel	

The notion of a calculus that we will de�ne extends Klop�s abstract rewrite systems �Klo�
�
by the concept of a congruence
 A calculus is a triple �E � �� ��� where E is a set� � an
equivalence relation� and� a binary relation on E 	 Elements of E are called expressions� �
congruence� and � reduction of the calculus	 We require that reduction is invariant under
congruence� i	e	� �� � � � �� � �� where � stands for relational composition�	 Typical
calculi are
 ��� �� �� ��calculi� abstract rewrite systems� Turing machines� etc	

A derivation in a calculus is a �nite or in�nite sequence of expressions such that Ei � Ei��

holds for all subsequent elements	 A derivation of an expression E is a derivation� whose
�rst element is congruent to E	 A computation of E is a maximal derivation of E� i	e	 an
in�nite derivation or a �nite one� whose last element is irreducible	 The least transitive
relation containing � and � is denoted with ��	

The length of a �nite derivation �Ei�ni�� is n and the length of in�nite derivation is 		
We call an expression E uniform with respect to complexity �and termination�� if all its
computations have the same length	 We de�ne the complexity C�E� of a uniform expression
E by the length of its computations	 We call a calculus uniform if all its expressions are
uniform	

We call a calculus uniformly con�uent� if its reduction and congruence satisfy the following
condition �visualised in Figure ��


�
 � �� � ���� 
� � ��

�If �� and �� are two binary relations on some set E and E� E�� � E� then E �� � �� E
�� if and only

if there exists E� � E such that E �� E
� and E� �� E

��	

��



E E

E� E� or E� � E�

F

Figure �
 Uniform Con�uence

Typically� ��calculi equipped with standard reductions are uniformly con�uent� subject to
weak reduction	

Proposition ��� A uniformly con�uent calculus is con�uent and uniform with respect to
complexity�

Proof� By a standard inductive argument �Nie��� as for the notion of strong con�uence
�Hue��� �which is weaker than uniform con�uence�	 �

	 Uniform Con�uence for ��

In this Section� we distinguish a uniformly con�uent subcalculus of �� that is su�cient for
functional computation	 We call a ���expression inconsistent� if it is of the form


x
y�E j x
z�F

where x
y�E �� x
z�F �	 A typical example for non�con�uence in the case of inconsistencies
is to reduce the expression xz in composition with x
y�sy j x
y�ty 


sz A
 xz �A tz

These results are irreducible but not congruent under the assumption s �� t	

We call E admissible� if there exists no expression F containing an inconsistency and
satisfying E �� F 	 The advantage of this condition is that it is very simple	 Unfortunately�
it is undecidable if a given expression E is admissible� since admissibility may depend on
the termination of a Turing complete system	 This failure is harmless� since we can prove
admissibility for all functional expression of � with the help of the linear type system in
Section ��	

�The �exibility provided by the side condition x
y�E �� x
z�F is needed for encoding multiple triggering
in ��	 Consider for instance ��tr�t� j tr�t��� � t
y�y j t
y�y as introduced in Section ��	

��



Expressions

E� F 

� x
y�E jj xy jj E j F jj ��x�E jj x�y jj tr�t� jj t�E

Reduction

x
y�E j xz �A x
y�E j E�z�y�

x�y j y
z�E �F x
z�E j y
z�E tr�t� j t�E �T tr�t� j E

Figure �
 The ��Calculus

Theorem ��� The restriction of �� to admissible expressions is uniformly con�uent�

Together with Proposition �	� this implies that all admissible expressions E of �� are uni�
form with respect to complexity such that C�E� is well�de�ned	

Proof of Theorem ����
Let E be an admissible ���expression	 Every application step on E can be performed on
an arbitrary prenex normal form of E �compare �Nie��� for details�	 Since declarations
are not involved during application� we can assume that E is a prenex normal form with
an empty declaration pre�x	 On such E� reduction amounts to rewriting on multisets of
abstractions and applications	

Let F� and F� be expressions such that F� A
 E �A F�	 There exists an application
x�z� reduced during the application step E �A F� and an application x�z� reduced during
E �A F�	 If these applications are distinct� then we can join F� and F� by reducing
the respective other one	 If both applications coincide then x� � x�	 Hence� the applied
abstractions have to be congruent by admissibility such that F� � F�	 �


 Single Assignment and Triggering

We extend �� with directed single assignment and triggering	 The resulting calculus is
called �	 We do not exclude multiple assignment syntactically	 This is a matter of the
linear type system in Section ��	

For our extension� we need three new types of expressions and two additional reduction
axioms	 A directed equation	 x�y is used for single assignment directed from the right to
the left	 A synchroniser x�E delays the computation of E until t is triggered	 A trigger
expression tr�t� triggers a delayed computation waiting on t	

�The original version of the ��calculus �Nie��� uses symmetric equations instead of directed ones	 This
choice does not matter for well�typed expressions	

��



The structural congruence of � coincides with that of ��	 Its reduction � is a union of
three relations� application �A� forwarding �F � and triggering �T 


� � �A � �F � �T

Each of these relations is de�ned by the corresponding axiom in Figure � and the contextual
rules in Figure �	

Example ��� �Single Assignment Style� The identity function I � �x�x can be ex�
pressed in � by i
xy�y�x� Compared to Example 	�� we use single assignment instead of
continuation passing� An application let i�I in �ii�i referred to by z is represented in � as
follows�

��i��i
xy�y�x j ��y���iiy� j y�iz��

In composition with i
xy�y�x we obtain the following computation�

��y��� iiy� j y�iz� �A ��y��� y��i j y�iz�

�F ��y���y�
xy�y�x j y�iz �

�A z�i j ��y���y�
xy�y�x�
�F z
xy�y�x j ��y���� � ��

Example ��� �Call�by�Need Selector Function� The call�by�need selector function
F � �xy�x can be represented in � by the abstraction f 
xtxyty z��z�x j tr�tx��� The sym�
bols tx and ty stand for ordinary variables� Their usage is for triggering the computations
of x and y respectively� A call�by�need application f �ii��ii� has the form�

��x���tx���y���ty��fxtxyty z j tx �iix j ty �iiy�

In composition with the abstractions named i and f 
 we obtain the following computation�

��x���tx���y���ty�� fxtxyty z j tx �iix j ty �iiy�

�A ��x���tx��z�x j tr�tx� j tx �iix � j ��y���ty��ty �iiy�

�T ��x���tx�� z�x j tr�tx� j iix � j ��y���ty��� � ��
�� z
xy�y�x j ��y���ty���x���tx��� � ��

The resulting expression is irreducible� We note that only the needed �rst argument has
been evaluated� The synchroniser ty �iiy for the second argument suspends forever�

� Uniform Con�uence for �

For proving a uniform con�uence result for �� we have to consider how uniform con�uence
behaves with respect to a union of calculi	 We �rst present a variation of the Hindley�Rosen
Lemma �Bar��� for uniform con�uence and then apply it to the ��calculus	 But the general

��



results of this Section are also applicable to other unions of calculi such as the call�by�need
��calculus �AFMOW��� and the ��calculus �NM���	

The union of two calculi �E � �� ��� and �E � �� ��� is de�ned by �E � �� �� � ���	 We
say that the relations �� and �� commute� if

��
 � ��� � ��� � �
� �

Lemma ��� �Reformulation of the Hindley�Rosen Lemma� The union of two uni�
formly con�uent calculi with commuting reductions is uniformly con�uent�

Proof� The proof is straightforward	 �

Note that Lemma 
	� implies the classical Hindley�Rosen Lemma� since a relation is con�
�uent� if and only if its re�exive transitive closure is uniformly con�uent	 The next lemma
allows us to ignore administrative steps such as forwarding and triggering in the case of �


Lemma ��� �Administrative Steps� Let �E � �� ��� be a uniformly con�uent calculus
and �E � �� ��� a con�uent and terminating calculus such that �� and �� commute� If
E � E
 then every computation of E in the union �E � �� �� � ��� contains the same
number of �� steps�

Proof� The idea is to apply Proposition �	� to �E � �� ��
� � �� � �

�
��	 This calculus is

uniform but not uniformly con�uent	 This de�ciency can be remedied by replacing � with
��
 � ���

�	 The details can be found in �Nie���	 �

Next� we apply the above results to the ��calculus	 We �rst note that the notion of
admissibility carries over from �� to � without change	

Proposition ��� The relations �F and �T terminate� The relation �T is uniformly
con�uent and �F is uniformly con�uent when restricted to admissible expressions� The
relations �A
 �F 
 and �T commute pairwise�

Proof� Termination is trivial� since �F decreases the number of directed equations and
�T the number of synchronisers	 All other properties can be established by the normal
form technique used in the proof of Theorem �	�	 �

Theorem ��� The restriction of the ��calculus to admissible expressions is uniformly con�
�uent�

Proof� Follows from Theorem �	�� Proposition 
	�� and Lemma 
	�	 �

��



Expressions

M�N 

� x jj V jj MN V 

� �x�M

Reduction

��x�M�V �value M �V�x� ��x�M�N �name M �N�x�

Contextual Rules

M �value M
�

MN �value M
�N

N �value N
�

MN �value MN �
M �name M

�

MN �name M
�N

Figure 

 The Call�by�Value and the Call�by�Name ��Calculus

Theorem ��� If E is admissible
 then all computations of E contain the same number of
application steps�

Proof� Follows from Theorem �	�� Proposition 
	�� and Lemma 
	�	 �

De�nition ��� We de�ne the A�complexity CA�E� of an admissible ��expression E as the
number of �A steps in computations of E�

Theorem 
	� ensures that A�complexity is well de�ned	 We consider forwarding and trig�
gering steps as administrative steps and ignore them in favour of simpler complexity state�
ments and adequacy proofs	 However� we could prove for all functional expressions �but
not in general� that the number of administrative steps is linearly bound by the number
of �A steps	 This would require showing stronger invariants in adequacy proofs	

� Functional Computation in �

We embed the call�by�value and the call�by�name ��calculus into the ��calculus� the latter
with call�by�need complexity	

The call�by�value and the call�by�name ��calculus are revisited in Figure 
	 Note that we
consider standard reduction only	 A congruence allowing for consistent renaming of bound
variables is left implicit as usual	

Proposition ��� The call�by�value and the call�by�name ��calculus are uniformly con�u�
ent�

��



z�vMN
def
� ��x��x�vM j ��y��xyz j y�vN��

z�v�x�M
def
� z
xy�y�vM

z�vx
def
� z�x

Figure �
 Call�by�Value in the ��Calculus

z�nMN
def
� ��x��x�nM j ��y���ty��xytyz j ty �y�nN��

z�n�x�M
def
� z
xtxy�y�nM �x
tx�x�

z�nx
tx
def
� z�x j tr�tx�

Figure �
 Embedding the Call�by�Name ��Calculus with Call�by�Need Complexity

Proof� The statement for call�by�name is trivial� since call�by�name reduction is determin�
istic	 The proof for call�by�value can be done by a simple induction on the structure of
��expressions	 �

Proposition �	� allows us to de�ne the call�by�value complexity Cvalue�M� and the call�by�
name complexity Cname�M� of a ��expression M by the length of its computations in the
respective ��calculus	

Given an arbitrary variable z� Figure � presents an embedding M �� z�vM of the call�by�
value ��calculus into �	 The de�nition of z�vM is given up to structural congruence	 All
variables introduced during this de�nition are supposed to be fresh	

Theorem ��� For all closed ��expressions M and variables z the call�by�value complexity
of M and the A�complexity of z�vM coincide� Cvalue�M� � CA�z�vM� �

Proof� A proof simpli�es it�s predecessor in �Nie��� is presented Section ��	 It is based on a
complexity simulation introduced in Section �� and makes heavy use of uniform con�uence
for covering the additional freedom provided by call�by�value reduction in �	 We de�ne our
complexity simulation in the style of �Mil��� using explicit substitutions	 �

An embedding z �� z�nM of the call�by�name ��calculus into � is given in Figure �	
It is symmetric to our call�by�value embedding and provides for call�by�need complexity	
Our de�nition of a ��expression x�nM makes sense for closed M only and goes through
intermediate ��expressions containing pairs y
ty 	 For instance


z�n�x�x � z
xtxy�y�nx
tx � z
xtxy��y�x j tr�tx��

��



As we will show in the next Section� our embedding of the call�by�name ��calculus provides
in fact for call�by�need complexity	 In this sense� the next theorem states that call�by�need
complexity is dominated by call�by�value and by call�by�name complexity	

Theorem ��� Let M be a closed ��expression and z a variable� Call�by�name reduction
of M terminates if and only if ��reduction of z�nM terminates� Furthermore�

CA�z�nM� � minfCvalue�M�� Cname�M�g �

Proof� Preservation of termination and the estimation CA�z�nM� � Cname�M� are proved
in Section ��	 These are the most di�cult results to prove in this paper	 The proof is
based on a shortening simulation introduced in Section ��	 It factorises into Theorem ��	�
and Corollary ��	�	

The proof of the estimation CA�z�nM� � Cvalue�M� is given in Section ��	 Applying
Theorem �	� it is su�cient to compare the A�complexities of z�nM and z�vM 	 This can
be done with a lengthening simulation introduced in Section �� and is stated in Corollary
��	�	

We note that our simulation technique makes use of uniform con�uence such that we need
the admissibility of embedded expressions as proved in Section ��	 �

Extension ��� It is straightforward to express mutual recursion in �
 both in a call�by�
value and in a call�by�need manner�

z�v letrec x�M inN
def
� ��x��x�vM j z�vN�

z�nletrec x�M inN
def
� ��x���t��t�x�nM
 j z�nN
�

where 
 � �x
t�x�� We do not claim a correctness result for mutual recursion in this paper�


 Embedding the Call�by�Need ��Calculus

We show that the A�complexity of z�nM equals the complexity of M in the call�by�need
��calculus	

The de�nition of the call�by�need ��calculus �AFMOW��� is revisited in Figure ��	 Again�
we only consider standard reduction	 The reduction �need of the call�by�need ��calculus
is a union of four relations


�need � �I � �V � �Ans � �C

The latter three relations are of administrative character� whereas �I steps correspond to
��reduction steps	

�




Expressions

L 

� x jj V jj L�L� jj let x�L� in L� V 

� �x�L

Answers

A 

� V jj let x�L in A

Evaluation Contexts

E 

� � � jj EL jj let x�L in E jj let x�E� in E��x�
L� L�

E�L�� E�L��

Reduction

��x�L��L� �I let x�L� in L�

let x�V in E�x� �V let x�V in E�V �

let y��let x�L in A� in E�y� �Ans let x�L in �let y�A in E�y��

�let x�L� in A�L� �C let x�L� in AL�

Figure ��
 The Call�by�Need ��Calculus

Proposition 
�� The call�by�need ��calculus is deterministic and hence uniformly con�u�
ent�

Proof� Evaluation context determine a unique term position where reduction may happen	
�

By Proposition �	�� it makes sense to de�ne the call�by�need complexity Cneed�L� of an
expression the call�by�need ��calculus by the number of�I steps in the computation of L	

We extend the mapping M �� z�nM to an embedding L �� z�nL of the call�by�need
��calculus into �� de�ning


z�nlet x�L� in L� � ��x���t��t�x�nL� j z�nL��x
t�x��

The following Theorem states the adequacy of the extended embedding� and that our
embedding of the call�by�name ��calculus into � yields in fact call�by�need complexity


Theorem 
�� If L is a closed ��expression and z a variable
 then Cneed�L� � CA�z�nL��

Proof� The proof is presented in Section ��� Corollary ��	�	 If is based on a complexity
simulation again	 �

��



�� I � E
�� Infxg � ��x�E

�� I� � E� �� I� � E�
�� I� � I� � E� j E�

I� � I� � �

�� t
 tr� I � E
�� t
 tr� I � t�E

�� y
 
� I � E
�� x
 ��
���� fxg � x
y�E

I � O�y
 
��

�� x
 ������ y
 ������ fxg � x�y �� t
 tr� � � tr�t�

�� x
 ��
���� y
 
� I � xy � O�y
 
�� � I

Figure ��
 Linear Type Checking

�� Linear Types for Consistency

We de�ne a linear type system for � that statically excludes inconsistencies	 It tests for
single assignment and determines the data �ow of a ��expression via input and output
modes	

We assume an in�nite set of type variables denoted by 	 and use the following recursive
types 
 internally annotated with modes �



 

� ����� jj �	�� jj 	 jj tr � � 

� 
� � � 

� in jj out

Our type systems distinguishes two classes of variables� trigger and single assignment vari�
ables	 We use tr as type for trigger variables	 A single assignment variable has a procedural
type ������ where � is a sequence of argument types	 For instance� the variable z in z�vM
is typed by �	���	in 	out��	 This recursive type expresses that a call�by�value function is
a binary relation� which inputs a call�by�value function in �rst position and outputs a
call�by�value function in second position	

A type environment � is a sequence of type assumptions x
 
 with scoping to the right	
A variable x has type 
 in �� written ��x� � 
� if there exists �� and �� such that
� � ��� x
 ���� and x does not occur in ��	 The domain of an environment � is the set
of all variables typed by �	 We identify environments �� and �� if they have the same
domain and ���x� � ���x� for all x in this domain	

If y � �yi�ni��� 
 � �
i�ni��� and � � ��i�ni��� then we write 
� for the sequence of annotated
types �
i

�i�ni�� and y
 
 for the sequence of type assumptions y�
 
�� � � � � yn
 
n	 The output
variables O�y
 
�� in a sequence of type assumptions are de�ned as follows


O�y
 
�� � fyi j � � i � n� �i � out� and 
i �� trg

A judgement for E is a triple �� I � E� where � is an environment and I is a set of
variables	 An expression E is well�typed� if there exists a judgement for E derivable with
the rules in Figure ��	 If �� I � E is derivable� then I contains those single assignment
variables� to which an abstraction may be assigned during a computation of E	 Such
variables correspond to input channels in the ��calculus	

��



Lemma �
�� �Subject Reduction Property� If E is well�typed and E �� F 
 then F

is well�typed�

Proof� By induction on derivations of judgements	 �

Lemma �
�� An inconsistent expression is not well�typed�

Proof� An expression x
y�E j x
z�F is not well�typed �even if E � F �	 A potential type
judgement would have to be of the following form


� � �
�� fxg � x
y�E

� � �
�� fxg � x
z�F

�� fxg � x
y�E j x
z�F

This is impossible by the side condition fxg � fxg � � of the typing rule for composition	
�

Corollary �
�� A well�typed expression is admissible�

Proof� Immediate from Lemmata ��	� and ��	� �

Proposition �
�� All expressions z�vM and z�nL are well�typed and hence admissible�

Proof� For all closed expressions M and L the following judgements are derivable with the
rules in Figure ��� where � is arbitrary


z
 �	���	in 	out��� fzg � z�vM z
 �	���	in tr� 	out��� fzg � z�nL

This can check by induction on the structure of M resp L	 A slightly stronger invariant
is needed for non�closed subexpressions� where all variables are substituted by pairs via
�x
t�x�	 �

�� Encoding � in ��

Directed single assignment and triggering can be expressed in ��	 For technical simplicity�
we formalise this statement for n�ary ��expressions� i	e	 those containing n�ary abstractions
and applications only	 This is su�cient to carry over our ��calculus embeddings from �

to ��� since z�vM and z�nL are binary and ternary respectively	 An embedding of n�ary
��expressions into �� is given in Figure ��	

We have to be quite careful when formulating a correctness result for the embedding
E �� ��E��	 The reason is that the translation of cyclic reference chains does not preserve

termination	 For instance� the expression E
def
� xy j x�x is terminating whereas ��E�� �

xy j x
y�xy is not	

We call E locally cyclic� if there exists a sequence �xi�ni�� such that E contains a subex�
pression of the form x��x� j � � � j xn���xn	 We call E cyclic if there exists F � which is
locally cyclic and satis�es E �� F � and acyclic otherwise	

��



��t�E��
def
� ��y��ty j y
���E��� ��tr�t���

def
� t
y�y

��x�y��
def
� x
z�yz � length�z� � n

��E j F ��
def
� ��E�� j ��F �� ����x�E��

def
� ��x���E��

��x
y�E��
def
� x
y���E�� ��xy ��

def
� xy

Figure ��
 Embedding n�ary ��expressions in ��

Theorem ���� If E is a well�typed
 acyclic
 and n�ary ��expression
 then ��E�� is admissible
and terminates if and only if E terminates�

Proof� This is proved in Section �
� Corollary �
	��	 The simulation technique of Section
�� is applicable again	 �

Proposition ���� For all z
 closed M and L
 the expressions z�vM and z�nL are
acyclic�

Proof� We can show acyclicity by extending linear type checking in Figure ��	 In the
extended system� we derive judgements of the form �� O� � � E� where � is some acyclic
ordering on the set of variables	 Typical examples for type checking rules of the extended
system are


�� x
 ������ y
 ������ fxg� � � x�y x � y

�� y
 
� O� �� � E
�� x
 ��
���� fxg� � � x
y�E

�� � � hO�y
 
��i
O � O�y
 
��

The ordering � hO�y
 
��i consists of all pairs �y� z� such that y � O�y
 
�� and
z �� O�y
 
��g� or y � z but not y � O�y
 
��	 It is not di�cult to verify that locally
cyclic expressions are not well�typed in the extended system	 Since the subject reduction
property holds as before� cyclic expressions are not well�typed	 On the other hand side the
expressions z�vM and z�nL are well�typed and hence acyclic	 �

We note that the embedding E �� ��E�� does not preserve complexity in an obvious way	
The main problem is about forwarding� which is illustrated by the following examples�
where we assume that u�� u�� x� y denote distinct variables


E�
def
� xu j x�y C�E�� � � C���E���� � �

E�
def
� x�y j y
z�zz C�E�� � � C���E���� � �

E�
def
� xu� j xu� j x�y j y
z�zz C�E�� � � C���E���� � �

��



�� Simulations and Uniformity

Milner �Mil��� uses bisimulations for proving the adequacy of ��calculus embeddings into
the ��calculus	 We show that simulations are su�cient for uniform calculi	

Let �E � �E � �E� and �G� �G � �G� be two uniform calculi with expressions ranged over by
E and G respectively	 We omit the indices E and G whenever they are clear from the
context	 We call a function � 
 E � G an embedding of E into G� if � is invariant under
congruence	

De�nition ���� Let S be a relation on E � G and � be an embedding from E into G� We
call S a shortening simulation for � if it satis�es the following conditions for all E
 E�

and G�

�Sim�� �E� ��E�� � S�

�Sim
� If E is irreducible and �E� G� � S
 then G is irreducible�

�Sim	� If E �E� and �E� G� � S
 then exists E�� and G� with C�E �� � C�E���
 �E��� G�� �
S
 and G�G��

E � E� � E��

S S

G � G�

Theorem ���� Let � 
 E � G be an embedding between uniform calculi� If there exists
a shortening simulation for �
 then � preserves termination and shortens complexity
 i�e�
C���E�� � C�E� for all E�

Proof� We assume a shortening simulation S for � and �E� G� � S	 At �rst� we claim
C�G� � C�E� if C�E��		 This can be proved by induction on C�E�	 If C�E� � � then E

is irreducible such that G is irreducible by �Sim�� 	 Hence C�G� � �	 If C�E� � n � � then
there exists E� such that E �E�	 By uniformity C�E�� � n� � follows	 Condition �Sim��
implies the existence of E�� and G� such that G � G�� C�E�� � C�E���� and �E��� G�� � S	
By induction hypothesis we obtain C�G�� � C�E���	 The uniformity of both calculi implies


C�G� � C�G�� � � � C�E��� � � � C�E�� � � � C�E�

The theorem follows from both claims and condition �Sim�� 	 �

De�nition ���� Let S be a relation on E � G and � be an embedding from E into G� We
call S a lengthening simulation for � if it satis�es �Sim�� and the following condition for
all E
 E�
 and G�

��



�Sim�� If E �E� and �E� G� � S
 then exists G�� G�� � G such that �E �� G��� � S
 G�G�

and C�G�� � C�G����
E � E�

S S

G � G� � G��

We call S a complexity simulation for � if S is a shortening and a lengthening simulation
for ��

Proposition ���� Let � be an embedding between uniform calculi� If there exists a length�
ening simulation for �
 then � lengthens complexity
 i�e� C�E� � C���E�� for all E�

Proof� Let S be a lengthening simulation for � and �E� G� � S	 By induction on n we can
show that if there exists a derivation of E of length n� then there exists a derivation of G
of length � n	 �

Corollary ���� Let � be an embedding between uniform calculi� If there exists a complex�
ity simulation for �
 then � preserves complexity �and termination��

Proof� Immediate from Theorem ��	� and Proposition ��	�	 �

�� Notation

We need several notations for de�ning simulations and proving them correct	 We introduce
notations for explicit substitutions� sequences� and specialised reduction relations	

We use the following notation for explicit substitutions ��Mil��� ACCL����	 If y � �yi�
n
i��

and L � �Li�ni��� then let y�L in L� represents a ��term


let y�L in L�
def
� L��Ln�yn� � � � �L��y��

We will freely make use of some further sequent notation	 If furthermore x � �xi�ni���
t � �ti�ni��� z � �zi�ni��� and E � �Ei�ni��� then we write


z�L
def
� z��L� � � � zn�Ln xytz

def
� x�y�t�z� j � � � j xnyn tnzn

t�E
def
� t� �E� j � � � j t� �En ��y�E

def
� ��y��� � ���yn�E

E
def
� E� j � � � j En z�vM

def
� z��vM� j � � � j zn�vMn

z�nL
def
� z��nL� j � � � j zn�nLn V�x�

def
� fx� � � � xng

��



If � � ��j�nj�� is a sequence of variables or expressions then we write ��i for the sequence

��j�
i��
j�� and ��i for the sequence ��j�nj�i��	 The concatenation of two sequences � and �

is denoted by ��	

Let �E � �� �� be a calculus� E�E� � E � and n a natural number	 We write E �n E � or
E ��n E�� if E reduces in exactly �resp less than� n steps to E�	 Formally� we de�ne the
relations �n and ��n as follows


�� � � � �n�� � �n � � � ��n � �f�ij � � i � ng

We note that ��� �f�ij � � i �	g	

For re�ecting A�complexity� we de�ne the relation ��� ��F � �T �
�	 Let �� be the variant

of � with the reduction ��� �A � �� instead of �	

Proposition ���� The restriction of �� to admissible expressions is uniform� For all ad�
missible expressions E the complexity of E in �� and the A�complexity of E �which is de�ned
relative to �� coincide� C���E� � CA�E� �

Proof� This is an immediate consequence of Theorem 
	�	 �

In expression of the ��calculus� top�level declarations do not matter for complexity and
termination considerations	 We write E � F if there exists x and y such that ��x�E �
��y�F 	 The next two Lemmata justify ignoring top�level declarations in the sequel	

Lemma ���� If F � E �A E � then there exists F � such that F �A F � � E�� If F �
E �F E� then there exists F � such that F �F F � � E �� If F � E �T E � then there exists
F � such that F �T F � � E��

E �A E�

� �

F �A F �

E �F E�

� �

F �F F �

E �T E�

� �

F �T F �

Lemma ���� The relation � is closed under weak context and invariant under structural
congruence
 i�e� it satis�es the contextual rules in Figure � �with � replaced by ���

�� A Complexity Simulation for Call�by�Value

We proof the adequacy of the embedding M �� z�vM from the call�by�value ��calculus
into � as stated in Theorem �	�	

Our goal is to establish the equation CA�z�vM� � Cvalue�M� for all closed ��expressions
M 	 By Proposition ��	� it is su�cient to show C���z�vM� � Cvalue�M� 	 We will apply

��



Corollary ��	� once we have constructed a complexity simulation for the above embedding
considered into �� instead of �	 The necessary application conditions for Theorem ��	� are
veri�ed by Propositions ��	�� ��	�� and Proposition �	�	

Example ���� Before formally de�ning a complexity simulation
 we illustrate it by a sim�
ple example� Let C � �x�xx be a ��abstraction copying its argument and I � �x�x the
identity�

C�CI � �value let y��C z��I in C�z�z��
� let y��C z��I in C�II �

In the �rst step
 we have reduced the redex CI � Both involved abstractions have been moved
into an environment� Note that only abstractions are moved into the environment� In the
second step
 we have forwarded abstractions into the next actual application� These two
steps re�ect the general scheme�

z�vC�CI � �A � � y��vC j z��vI j z�vC�z�z��
��

F y��vC j z��vI j z�vC�II �

Reduction in the ��calculus behaves very similar� The environment is represented by con�
texts built up with composition and declaration� Forwarding amounts to explicit �F steps�

De�nition ���� �v�Representation� A v�representation for �M� E� is a triple
�n� y� M�
 where y � �yi�

n
i�� and M � �Mi�

n
i��� We require the following properties for all

i � f� � � �ng�

�Sv�� V�Mi� � fy� � � �yi��g and y is linear�

�Sv
� M � let y�M in yn�

�Sv	� E � y��vM� j � � � j yn�vMn�

�Sv�� If i � n then Mi is an abstraction�

Lemma ���� �Closedness� If n
 M 
 y
 and M satisfy �Sv�� and �Sv��
 then M is closed�

Proof� By induction on n	 If n � � then M � let y��M� in y� such that V�M� � V�M�� �
�	 If n � �� then we can apply the induction hypothesis to the following representation of
M 


M � let y�n���M�n�� yn�Mn�Mn���yn��� in yn

�

De�nition ���� �Relation Sv� The relation Sv is the set of all pairs �M� E� for which
a v�representation exists�

��



Proposition ���� �Sv is a Complexity Simulation� The relation Sv is a relation be�
tween closed ��expressions and admissible ��expressions� It satis�es the following properties
for all M 
 z
 and E�

�� If M is closed then �M� z�vM� � S�


� If M is irreducible with respect to �value and �M� E� � S
 then E is irreducible with
respect to �A � �F � �T �

	� If �M� E� � S and M �value M
�
 then there exists E� such that E ���

F � �A E� and
�M �� E�� � S
 �

M �value M �

S S

E ���
F �A E�

Proof�

�	 The triple �n� �z�� �M�� is a v�representation of �M� z�vM�	 Property �Sv�� follows
from the closedness of M and �Sv����Sv�� are trivial	

�	 Let M be closed and irreducible with respect to �value	 Hence M is an abstraction
such that z�vM is an abstraction and therefore irreducible with respect to�A � �F

� �T 	

�	 Let �n� y� M� be a v�representation of �M� E� and M �value M �	 Applying the
following Lemma ��	
� there exists sequences x and V of length m� and an expres�
sion E� such that �n�m� y�nxyn� M

�nVM �
n� is a v�representation for �M �� E�� and

E ���
F � �A E�	

�

Corollary ���� The relation Sv is a complexity simulation for the mapping M �� z�vM
considered as embedding from the call�by�value ��calculus restricted to closed expressions
into ���

Proof� Immediate from Proposition ��	�	 �

�This invariant is strong enough for proving that the number of �F steps in computations of expressions
z�vM is bounded by � times the number of �A steps	 If we would embed a ��calculus with n�ary instead
of unary function� then we would obtain a factor of n� � instead of �	

��



Lemma ���� Let �n� y� M� be a v�representation of �M� E� andM �value M
�� Then there

exists fresh variables x
 abstractions V 
 and a ��expression M �
n such that E ���

F � �A E�

V�V � � V�y�n�
 V�M �

m� � V�y�nx�
 and�

M � � let y�n�M�n x�V yn�M
�
n in yn

E� � y�n�vM
�n j x�vV j yn�vM

�
n

Proof� Since �n� y� M� is an v�representation� we know M � let y�M in yn and E �
y�vM 	 SinceM can not be an abstraction� property �Sv�� implies thatMn is an application
N�N� for some N� and N�	 Hence M � P�P� and


P� � let y�n�M�n in N� � P� � let y�n�M�n in N�

�	 Case
 M �value M
� is an instance of the ��axiom� i	e	 P� � �x� �P� and


M � ��x� �P��P� �value
�P��P��x� � M �

Since P� and P� are abstractions� N� and N� have to be either variables or abstrac�
tions	 This leads to four very similar subcases	 We only consider the case where N�

and N� are both variables	 In this case there exists yl� and yl� such that N� � yl�
and N� � yl� 	 Furthermore


P� � let y�n�M�n in Ml� � P� � let y�n�M�n in Ml�

If Ml� � �x� �Ml� then �P� � let y�n�M�n in �Ml� 	 Let x� and x� be fresh	

M � � �let y�n�M�n in �Ml���P��x�

� let y�n�M�n in �Ml� �P��x�

� let y�n�M�n in �Ml� �yl��x�

� let y�n�M�n x��Ml� x��Ml� yn� �Ml� �x��x� in yn

Reduction of E may proceed with two forwarding steps followed by an application
step	

E � y�n�vM
�n j yn�vyl� yl�

� y�n�vM
�n j x��yl� j x��yl� j x�x�yn

��
F y�n�vM

�n j x��Ml� j x��Ml� j x�x�yn
�A y�n�vM

�n j x��Ml� j x��Ml� j yn�v
�Ml� �x��x�

This proves the inductive assertion with M �
n � �Ml� �x��x� and V equals the sequence

�Ml�� Ml��	

�	 Case
 The last rule in the derivation ofM �value M
� allows for reduction in functional

position

P� �value P

�
�

M � P�P� �value P
�
�P� � M �

�




Let z� and z� be fresh variables and de�ne


E�
def
� y�n�vM

�n j z��vN�

By induction hypothesis there exists fresh variables x� abstractions V � N �
�� and E�

�

such that E� �
��
F � �A E�

� and


P �
� � let y�n�M�n x�V yn�N

�
� in yn

E �
� � y�n�vM

�n j x�vV j yn�vN
�
�

Additionally� we obtain some conditions on variables occurences� which imply


M � � P �
�P� � �let y�n�M�n x�V in N �

�� �let y�n�M�n in N��
� let y�n�M�n x�V yn�N

�
�N� in yn

Furthermore


E � y�n�vM
�n j yn�vN�N�

� y�n�vM
�n j z��vN� j z��vN� j z�z�yn

���
F � �A y�n�vM

�n j x�vV j z��vN
�
� j z��vN� j z�z�yn

� y�n�vM
�n j x�vV j yn�vN

�
�N�

This proves the inductive assertion with M �
n � N �

�N� 	

�	 Case
 The last rule in the derivation ofM �value M
� allows for reduction in argument

position

P� �value P

�
�

M � P�P� �value P�P
�
� � M �

This case is symmetric to the previous one	

�

�	 Shortening Call�by�Name to Call�by�Need

As stated in Theorem �	�� we prove that the embedding M �� z�nM from the call�by�
name ��calculus into � preserves termination such that CA�z�nM� � Cname�M� for all
closed ��expressions M 	

By Proposition ��	� the above complexity estimation is implied by the following one


C���z�nM� � Cname�M�

for all closed M 	 For proof� we will apply Theorem ��	� to a shortening simulation for
the above embedding considered into �� instead of �	 This is su�cient to establish our
termination statement as well� since termination in �� and � are equivalent �since �F and
�T terminate�	 As in the case of our call�by�value embedding� the necessary application
conditions for Theorem ��	� are veri�ed by Propositions ��	�� ��	�� and Proposition �	�	

��



���� Example

Before formally de�ning a shortening simulation� we illustrate it by a simple example	 We
�rst consider a call�by�name reduction step of �II� I with I � �x�x


�II� I � let y��I z��I y��y�z� z��I y��y�z� in y�
�name let y��I z��I y��z� z��I y��y�z� in y�
� let y��I z��I y��I z��I y��y�z� in y�

First� the ��term �II�I is �attened	 Second� an application is executed	 Third� the value I
is forwarding to the variable y�	 The corresponding ��reduction sequence is quite similar


y��n�II� I � y��nI j t� �z��nI j y�z�t�y� j t� �z��nI j y�z�t�y�
�A y��nI j t� �z��nI j y��nz�
t� j t� �z��nI j y�z�t�y�
�T y��nI j z��nI j y��z� j tr�t�� j t� �z��nI j y�z�t�y�
�F y��nI j z��nI j y��nI j tr�t�� j t� �z��nI j y�z�t�y�

The third step � triggering a needed argument � is not visible in the above ��calculus
derivation	 Apart from this aspect� both computations are very similar	

���� Properties

An appropriate shortening simulation has to cover more aspects than illustrated in the
previous example	 In this subsection� we formulate su�ciently strong properties for an
appropriate candidate	

An interesting example comes with sharing� when comparing call�by�name and call�by�
need reduction for the expression ��x��x�y�x���II �	 In this case� we can formulate the
relationship via strong call�by�name reduction	 We write M �name M

� if M reduces to M �

by application of the ��axiom at any position in M 	

Proposition ���� �Shortening Call�by�Name to Call�by�Need� There exists a re�
lation S between closed ��expressions and admissible ��expressions satisfying the following
properties for all M 
 z
 and E�

�� If M is closed then �M� z�nM� � S�


� If M is irreducible with respect to �name and �M� E� � S
 then E is irreducible with
respect to �A
 �F 
 and �T �

	� If �M� E� � S and M �name M
�
 then there exists M �� and E� such that M � ��

name

��



M ��
 E ��� �A � ��E �
 and �M ��� E�� � S��

M �name M � ��
name M ��

S S

E �� �A �� E �

Proof� The relation S is de�ned in Section ��	� and proved correct in Section ��	�	 �

Corollary ���� There exists a shortening simulation for the mapping M �� z�nM con�
sidered as embedding from the call�by�name ��calculus restricted to closed expressions into
���

Proof� This is a consequence of Proposition ��	�	 For proving property �Sho�� we addi�
tionally need Lemma ��	�	 �

Lemma ���� �Reformulation of Plotkin�s �Plo��� Standardisation Theorem� If
M ��

name M
�
 then Cname�M� � Cname�M ���

Proof� It is su�enct to consider M �name M �	 For proof� we de�ne M
�
�name M � i�

M �name M but not M �name M �	 Trivially� �name �
�
�name � �name	 In the case

M �name M
� the lemma follows from uniform con�uence of the call�by�name ��calculus	

If M
�
�name M

�� then it is implied by
�
��

name being a shortening simulation for the identity
embedding from the call�by�name ��calculus into itself	

�Sim�� The relation M
�
��

name M holds trivially	

�Sim�� An expression M is irreducible with respect to�name i� it is an abstraction or an

application of the form ��xQ�� � � �Qn�	 The relation
�
��

name preserves these forms
of terms	

�Sim�� For all M � M �� and N � there exists M �� and N � such that following diagram holds


M �name M � ��
name M ��

��
n
a
m
e

��
�n

a
m
e

N �name N �

	Ignoring �F and �T steps is correct in the sense that the number of�F and �T steps in computations
of y��nM is bounded by � times the number of �A steps	 This can be proved with a simulation for an
amortised cost analysis by formulating a stronger invariant than in Proposition �
	�	 As in the call�by�value
case� an application invokes at most � forwarding steps	 Additionally� every application step may raise the
need for � triggering step	

��



For proving property �Sim�� � we need in fact a sligthly stronger property� where

M
�
�name N is replaced by M

�
��

name N 	 This is implied by the above diagram and

the inclusion
�
�name � �name � �name �

�
��

name	
The above diagram can be shown by structural induction on M 	 For illustration�

we consider the case M � ��x� �M��M� where the
�
�name step is applied inside of

M�	 Hence� M� �name M
�
� � N � ��x� �M��M

�
� � and M � � �M��M��x�	

There are � possible subcases to consider
 Either �M� � ��xQ�� � � �Qn� for some

Q�� � � � � Qn or not� and either M� �name M
�
� or M�

�
�name M

�
� 	 If we choose both

times the �rst possibity� then we obtain


��x� �M��M� �name
�M��M��x� �name ��M�

�Q�� � � �Qn��M��x�
��

n
a
m
e

��
�n

a
m
e

��x� �M��M
�
� �name

�M��M
�
� �x�

Otherwise� we obtain the required diagram in the form


��x� �M��M� �name
�M��M��x�

��
n
a
m
e

��
�n

a
m
e

��x� �M��M
�
� �name

�M��M
�
��x�

�

���� De�nition

We base our de�nition of a shortening simulation on the notion of needed variables	

De�nition ���� �Needed Variables� Let n be an integer
 y � �yi�
n
i��
 M � �Mi�

n
i��

and � � j � n� The variable yj is needed in let y�M inN 
 if the judgement
N �yj � let y�M in N� is derivable by the following rules�

N �x� x�
N �x� N��

N �x� N�N��
N �x� N�

N �x� let y�M in N�

N �yj � let y�M in Mi� N �yi� N�

N �yj � let y�M in N�
j � i � n

Example ���� The variables y� and y� are needed in let y��I y��y�y� y��y�y� in y� 

whereas y� is not needed� The neededness of y� is shown by the following derivation�

N �y�� y��
N �y�� y�y��

N �y�� let y��I y��y�y� y��y�y� in y�y�� N �y�� y��
N �y�� let y��I y��y�y� y��y�y� in y��

��



De�nition ���� �n�Representation� A n�representation for �M� E� is a �ve�tuple
�n� y� M� t� D�
 where M � �Mi�

n
i��
 y � �yi�

n
i��
 t � �ti�

n
i��
 and D � fy�� � � �yng called

the delay set� We require the following properties for all i � f� � � �ng�

�Sn�� V�Mi� � fy� � � �yi��g and the composed sequence yt is linear�

�Sn
� M � let y�M in yn�

�Sn	� There exists �Ei�ni��
 �
 and 
 such that E � E� j � � � j En j � 
 where � is a possibly
empty composition of trigger expressions in ftr�tj� j yj �� Dg
 
 � �y
t�y�
 and�

Ei �

�����
����

ti �yi�nMi
 if yi � D
yj yk tkyi if yi �� D and Mi � yj yk for some j� k
yi�yj if yi �� D and Mi � yj for some j
yi�nMi
 if yi �� D and Mi is an abstraction

�Sn�� If yi �� D and Mi is an application then Mi is an application of variables�

�Sn�� If yi is needed in let y�M in yn
 then yi �� D�

�Sn�� If yi is not needed in let y�M in yn
 then yi � D or Mi is an abstraction�

De�nition ���� �Relation Sn� We de�ne the relation Sn as the set of all pairs �M� E�
for which a n�representation exists�

Proposition ���� �Sn is a Shortening Simulation� The relation Sn satis�es the con�
ditions of Proposition �����

Proof� This is the content of the Lemmata ��	��� ��	��� and ��	�
	 �

���� Correctness Proof

We prove Proposition ��	�� which states the correctness of our shortening simulation Sn	
We have to validate three properties reconsidered in Propositions ��	��� ��	��� and ��	�
	

������ Property �Sim��

Lemma ���
 For every M there exists m � �
 �Pi�mi�� and Q such that M �
�� � ��QPm� � � ��P� and Q is not an application�

Proof� By structural induction on M 	 If M is an abstraction or a variable� then we choose
m � � and Q � M 	 If M � M�M� then there exists m � � and �Pi�mi�� such that


M� � �� � ��QPm� � � ��P�

If we set P� � M�� then we obtain M � M�M� � �� � ��QPm� � � ��P� � �

��



Lemma ����
 �Flattening� IfM � �� � � �QPm� � � ��P� for some m � � and u � �ui�
m��
i�� 


v � �vi�
m
i��
 s � �si�

m
i�� are variables not contained in V�M�
 then the following represen�

tations are valid�

M � let u��Q v�P u���u�m��v in um��

um���nM � u��nQ j s�v�nP j u�m��vsu��

Proof� By induction on m	 In the case m � � there is nothing to show	 If m � � then
M � M�M� where M� � �� � � �QP�� � � ��Pm��� and M� � Pm	 Applying the induction
hypothesis to um�nM� we obtain


M� � let u��Q v�m�P�m u��u�v� � � � um�um��vm�� in um
um�nM� � u��nQ j s�m �v�m�nP

�m j u�v�s�u� j � � � j um��vm��sm��um

Since M � M�Pm � this implies


M � let u��Q v�m�P�m u��u�v� � � � um�um��vm�� in umPm
� let u��Q v�P u��u�v� � � � um���umvm in um��

� let u��Q v�P u���u�m��v in um��

The expression um���nM satis�es


um���nM � um�nM� j sm �vm�nPm j umvmsmum��

Replacing um�nM� in um���nM by its above representation yields


um���nM � u��nQ j s�m �v�m�nP
�m j u�v�s�u� j � � � j um��vm��sm��um

j sm �vm�nPm j umvmsmum��

� u��nQ j s�v�nP j u�m��vsu��

�

Proposition ����� The relation Sn satis�es �Sim�� �

Proof� Let M be a closed ��expression and z a variable	 We have to construct a n�
representation for �M� z�nM�	 Lemma ��	� yields the existence of m and �Pi�

m
i�� such

that M � �� � � �QPm� � � ��P�	 Let �ui�
m
i��� �vi�

m
i��� �si�

m
i�� be sequence of fresh variables

and de�ne um�� � z	 Applying the �attening Lemma ��	�� yields


M � let u��Q v�P u���u�m��v in um��

z�nM � u��nQ j s�v�nP j u�m��vsu��

These properties essentially verify �Sn�� and �Sn�� where E � z�nM 	 In order to for�
malise this statement� we have to de�ne a n�representation �n� y� M� t� D� for �M� E�
appropriately	

y � u� s u�� � n � �m� �
M � Q P �u�m��v� � D � V�v�
t � v

��



In these de�nitions� each occurences of the symbol stands for a fresh variable	 We have
to verify the conditions of De�nition ��	�	 Property �Sn�� follows from the closedness of
M 	 �Sn�� and �Sn�� have already been discussed	 �Sn�� holds trivially	 For �Sn�� we note
that the needed variables in let y�M in yn are those in V�u�	 For �Sn�� we note that the
not needed variables are those in V�v�	 �

������ Property �Sim��

Lemma ����� �Forwarding� If �M� E� � Sn then there exists E� with E ��
F E� and

there exists a n�representation �n� y� M� t� D� of �M� E�� complete under forwarding
 i�e�
satisfying the property�

�Sn�� If j� k � f� � � �ng
 yj �� D
 and Mj � yk
 then Mk is not an abstraction�

Proof� Let �n� y� M� t� D� be a n�representation of �M� E�	 We have to construct a n�
represent ion of �M� E� satisfying �Sn
� 	 Suppose there exists a pair of indices j� k �
f� � � �ng such that yj �� D� Mj � yk � and Mk is an abstraction	 We show how to eliminate
this index pair by forwarding�F 	 Our elimination procedure terminates� since it decreases
the number of such index pairs	 By assumption and �Sn�� we obtain


M � let � � � yk�Mk � � � yj�yk � � � in yn
� let � � � yk�Mk � � � yj�Mk � � � in yn

Property �Sn�� implies that yj is needed in let y�M in yn �since yj �� D and Mj is not
an abstraction�	 By de�nition of neededness� yk is also needed in let y�M in yn such that
�Sn�� implies yk �� D	 Hence


E � � � � j yk�nMk j � � � j yj�yk j � � �
�F � � � j yk�nMk j � � � j yj�nMk j � � �

�

De�nition ����� Let �n� M� y� and M satisfy �Sn�� and �Sn��� A reference chain from
yn to y���
 is a sequence �y��i
�

p
i��
 if p � � is an integer
 the ��i��s are indices such that

� � ���� � � � � � ��p� � n
 and M��i
 � y��i��
 for all � � i � p� In this case
 we write�

M � let � � � y���
�M���
 � � � y���
�y���
 � � � yn�y��p��
 in yn

Lemma ����� �Reference Chains� Let �n� y� M� and M satisfy �Sn�� and �Sn���
Then there exists � � j � n and a reference chain from yn to yj such that Mj is not
a variable�

Proof� By induction on n	 If n � �� then M� may not be a variable since M is closed
�Lemma ��	��	 If n � � and Mn is not a variable then there is nothing to prove	 Otherwise�
we use M � let y�n�M�n in Mn and apply the induction hypothesis	 �

��



Proposition ����� The relation Sn satis�es �Sim�� �

Proof� Let �M� E� � Sn and M be irreducible with respect to �name	 We have to show
that E is irreducible with respect to �� � �A � ��	 Instead� we prove that E is irreducible
with respect to �A� �F � and �T 	

Without less of generality� we can assume that Sn is complete under forwarding �Lemma
��	���	 Since M is closed �Lemma ��	�� it has to be an abstraction �Lemma ��	��	 Lemma
��	�� implies of the existence of � � j � n such that there exists a reference chain from yn
to yj and Mj is not an variable	 Since M is an abstraction Mj has to be an abstraction	
Completeness under forwarding �Sn
� implies j � n such that


M � let � � � yn�Mj in yn

Hence� yn is a unique needed variable in let � � � yn�Mj in yn such that �Sn�� implies for
all i � f� � � �n��g that yi � D or Mi is an abstraction	

Let E�� � � �� En� and � be de�ned as in �Sn��	 This implies E � E� j � � � j En j �	 Since none
of the Ei�s may be an application� E is irreducible with respect to �A	 It is irreducible
with respect to �F because none of the Ei�s may an directed equation� and irreducible
with respect to �T because none of the delayed Ei�s is triggered in �	 �

������ Proof of the Invariant

Lemma ����� �Shared Redexes� Let �n� y� M� t� D� be a n�representation of �M� E�
satisfying �Sn
� and y � �yi�

n
i��
 M � �Mi�

n
i��
 t � �ti�

n
i��� For all M

� with M �name M
�


there exists j
 k
 l and x
 �Mk such that Mj � ykyl
 yj is needed in let y�M in yn
 Mk �
�x� �Mk
 and�

M � ��
name let y�j�M�j yj� �Mk �yl�x� y

�j�M�j in yn

Proof� By induction on derivations of M �name M
�	 We have to consider two cases


�	 In the �rst case� the M �name M
� is an instance of the ��axiom
 There exists P��

P�� x such that

M � ��x� �P��P� �name

�P��P��x� � M �

Applying Lemma ��	��� there exists a � � j � n and a reference chain from yn to
yj such that Mj is not a variable	 Since M is an application� Mj is an application	
�Sn�� implies Mj � ykyl for some k� l and �Sn�� yields k� l � j	 Hence


�x� �P� � let y�j�M�j in yk � P� � let y�j�M�j in yl

Applying Lemma ��	�� there exists � � k� � k and a reference chain from yk to yk� in
let y�k�M�k in yk there such that Mk� is not a variable� i	e	 Mk� is an abstraction	

��



The variables yk and yk� are needed in let y�M in yn �by induction on the length
of reference chains� such that k � k� follows from completeness with respect to
forwarding �Sn
� 	 Hence� Mk is an abstraction such that there exists M �

k with
Mk � �x�M �

k	 Furthermore


�P� � let y�j�M�j in �Mk

The following equality justi�es the Lemma with � instead of ��
name	

M � � �P��P��x�

� let y�j�M�j in �Mk�P��x�

� let y�j�M�j in �Mk�yl�x�

� let y�j�M�j yj� �Mk �yl�x� y
�j�M�j in yj

� let y�j�M�j yj� �Mk �yl�x� y�j�M�j in yn

The last step uses the reference chain from yn to yj backwards	

�	 In the second case� the ��axiom is applied in functional position	 There exists P�� P
�
��

P� such that the last step in the derivation of M �name M
� has the following form


P� �name P
�
�

M � P�P� �name P
�
�P� � M �

Yet another argumentation with reference chains implies the existence of j�� k�� l�

such that

M � let y�j

�

�M�j� yj��yk� yl� y�j
�

�M�j� in yj�

P� � let y�M in jk�

P� � let y�M in yl�

By induction hypothesis applied to P� �name P
�
� there exists j� k� l� and x� �Mk such

that
 Mj � ykyl � yj is needed in let y�M in yk� � Mk � �x� �Mk� and


P �
� ��

name let y�j�M�j yj� �Mk �yl�x� y
j�M�j in yk�

P� reduces to a similar expression than P �
� does


P� � let y�j�M�j yj�ykyl y�j�M�j in yl�

��
name let y�j�M�j yj� �Mk�yl�x� y�j�M�j in yl�

Sticking both reductions together concludes the Lemma


M � � P�P�
��

name let y�j�M�j yj� �Mk �yl�x� y
�j�M�j in yk� yl�

� let y�j�M�j yj� �Mk �yl�x� y
�j�M�j in yk

� let y�j�M�j yj� �Mk �yl�x� y
�j�M�j in yn

The second step uses Mk � ykyl and the last step a reference chain from yn to yk
backwards that we left implicit at the beginning of this case	 �

��



Proposition ����� �The Invariant� Let �M� E� � Sn and M �name M
�� Then there

exists M �� and E � such that M � ��
name M

��
 E ��� �A � ��E�
 and �M ��� E �� � Sn�

Proof� Let �n� y� M� t� D� be a n�representation of �M� E�	 We assume without loss of
generality that E is complete under forwarding �Lemma ��	���	 Let y � �yi�

n
i��� M �

�Mi�ni��� t � �ti�ni��� and D � V�y�	 Let �Ei�ni�� and � be de�ned as in �Sn�� and 
 �
�y
t�y�	 Since M �name M

�� we can apply Lemma ��	�� such that there exists j� k� l and
x� �Mk� M

�� with the following properties


��� Mj � ykyl 	

��� yj is needed in let y�M in yn	

��� Mk � �x� �Mk	

��� M � ��
name M

��

��� M �� � let y�j�M�j yj� �Mk �yl�x� y
�j�M�j in yn

Applying Lemma ��	� there exists m � �� P � �Pi�
m
i��� and Q such that


��� �Mk � �� � ��QPm� � � ��P�

�
� Q is not an application	

For all i � f� � � �mg let ui� vi� si be fresh variables	 We de�ne um�� � yj � u � �ui�
m��
i�� �

v � �vi�mi��� and s � �si�mi��	 Flattening
�Mk �Lemma ��	��� yields


��� �Mk � let u��Q v�P u���u�m��v in yj

��� yj�n
�Mk � u��nQ j s�v�nP j u�m��vsu��

Since yj is needed in let y�M in yn ���� yk is needed in let y�M in yn as well	 �Sn��
implies yj � yk �� D such that


���� E � E� j � � � j En j �

���� Ej � ykyl tlyj

���� Ek � yk�n�x� �Mk
 ���

For fresh variables t and z this implies


���� Ek � yk 
xtz�z�n
�Mk
�x
t�x�

�




If � � �yl�x�� then applying yk in the context of Ek yields


Ej �A �yj�n
�Mk
�x
t�x���yl�x��tl�t� ����

� yj�n
�Mk�


� u��nQ�
 j s�v�nP�
 j u
�m��vsu�� ���

Combining this result with ���� we obtain


���� E �A E �

���� E� def
� E�j j u��nQ�
 j s�v�nP�
 j u

�mvsu�� j E�j j �

Next� we construct a �ve�tuple R � �n�� y�� M �� t�� D��� which satis�es all properties of the
Lemma except one	

y� � y�j u� v u�� y�j � n� � n� �m
M � � M�j Q� P� �u�mv� M�j � D� � D � V�v�
t� � t�j tj s t�j �

Property ��� implies M � ��
name M

��	 We even obtain E ��
F � �A E� from ���� and the

fact that we completed E under forwarding at the beginning	 It remains to show that R
is a n�representation for �M ��� E��	 R satis�es all required properties except �Sn��
 �Sn��
is simple� �Sn�� follows from ����� �Sn�� is covered by ����	 �Sn�� follows from ��� �the
variables in V�y�� nD� are those in V�u��	 Property �Sn�� holds� since V�v� � D� and all
other non�needed variables have also been non�needed in the original n�representation	

The tuple R does not necessary satisfy �Sn��� because Q might be a variable� say yp	 In
this case� u��nyp
 � u��yp j tr�tp�	 This means that the expression Ep is delayed� even if
yp is needed	 We have to use �T for triggering the computation in Ep waiting on tp	 Since
Mp may again be a variable� more triggering steps may be needed	

The failure of R being a n�representation for �M ��� E�� is harmless� since R is a least an
uncompletely triggered n�representation for �M ��� E�� in the sense of De�nition ��	��	 This
is su�cient to accomplish the actual proof by applying Lemma ��	��	 �

De�nition ����� A �ve�tuple �n� y� M� t� D� is called uncompletely triggered n�
representation of �M� E�
 if it satis�es �Sn����Sn��
 �Sn��
 and �S

�

n�� 
 where�

�S
�

n�� If yi is needed in let y�M in yn
 then either yi �� D or there exists a reference
chain �y��j
�

p
j�� such that y���
 � yi
 fy��i
 j � � i � pg � D and tr�t��p
� is

contained in E�

Lemma ����
 �Triggering� If there exists an uncompletely triggered n�representation of
�M� E�
 then there exists E� such that E ��

T E� and �M� E�� � Sn�

��



Proof� Let R � �n� y� M� t� D� be a uncompletely triggered n�representation on �M� E�	
We call a variable yi critical for R and �M� E�� if yi is needed in let y�M in yn� and
yi � D	

If there exists no critical variable for R and �M� E�� then R is a n�representation for
�M� E�	 Hence it is su�cient to de�ne a procedure that given a uncompletely triggered
n�representation R for �M� E� computes some E� and R� such that


�	 R� is an uncompletely triggered n�representation for �M� E�� and E �T E�	

�	 The number of critical variables forR� and �M� E�� is strictly smaller than the number
of critical variables for R and �M� E�	

Let R � �n� y� M� t� D� be a uncompletely triggered n�representation on �M� E�	 If there
exists a critical variable for R and �M� E� then by condition �S

�

n�� there also exists a
critical variable yi � D such that tr�ti� is contained in E	 Let E�� � � �� En� and � be
de�ned as in �Sn��	 Since tr�ti� is contained in E� there exists �� such that � � tr�ti� j �

�	
We can reduce E and de�ne E� as follows


E � E� j � � � j ti �yi�nMi j � � � j tr�ti� j ��

�T E� j � � � j yi�nMi j � � � j tr�ti� j �
�

def
� E�

If we set D� � D n fyig then �n� y� M� t� D�� is a uncompletely triggered n�representation
of �M� E�� in which the variable yi no more critical	 �

�
 Relating Call�by�Value to Call�by�Need

In this Section� we prove the estimation CA�z�nM� � CA�z�vM� for all closed ��
expressions M as stated in Theorem �	�	 For proof� we will de�ne a lengthening simulation
for the embedding z�nM �� z�vM and apply Proposition ��	�	

The correspondence between an expression z�nM and an expression z�vM is very sim�
ple	 We de�ne a projection function p between ternary and binary ��expressions� which
eliminates all triggering information in expressions such as z�nM 


p�x
ytz�E�
def
� x
yz�E p�xytz�

def
� xyz p�E j F �

def
� p�E� j p�F �

p���x�E�
def
� ��x�p�E� p�tr�t��

def
� � p�t�E�

def
� p�E�

In this de�nition� we use a new expression � that we require to be nilpotent in the sense
� j E � E for all E	 Being a little bit less restrictive we could also de�ne � in � itself� for

example by �
def
� ��x��xx�	

Let �� be the smallest congruence on ��expressions �with �� containing the structural
congruence and satisfying the axiom


��x�E �� E if x �� V�E�

��



Lemma ���� For all closed M and variables z the relation p�z�nM� �� z�vM holds�

Proof� By induction on the structure of M 	 �

Lemma ���� Let R be one of the letters in fA� F� Tg� If E �R E� and E �� F then there
exists F � such that F �R F � and E� �� F

��

E �A E�

�
�

�
�

F �A F �

E �F E�

�
�

�
�

F �F F �

E �T E�

�
�

�
�

F �T F �

Proof� By induction on derivations of E �A E�� E �F E�� and E �T E � respectively	 �

Lemma ���� Let E ternary
 E� a ��expression
 and R one of the letters in fA� Fg� If
E �R E� then p�E��R p�E��� If E �T E� then p�E��T p�E���

E �A E�

p p

p�E� �A p�E��

E �F E �

p p

p�E� �F p�E��

E �T E�

p p

p�E� � p�E��

Proof� By induction on derivation of E �A E�� E �F E�� and E �T E� respectively	 �

Let Snv be a the binary relation on ��expressions that contains all pairs �E� F � such that
F �� p�E� and E ternary and admissible	

Proposition ���� The relation Snv is a lengthening simulation for the mapping z�nM ��
z�vM considered as embedding from the restriction of �� to admissible
 closed
 and ternary
expressions into itself�

Proof� Lemma ��	� implies �Sim�� and the Lemmata ��	� and ��	� ensure �Sim�� 	 �

Corollary ���� The estimation CA�z�nM� � CA�z�vM� is valid for all closed M and
variable z�

Proof� Immediate from Propositions ��	� and ��	�	 �

��



�� Adequacy of the Embedding of � into ��

We prove that the embedding E �� ��E�� restricted to well�typed expressions preserves
termination as stated in Theorem ��	�	 Of course� we again apply the simulation technique	

It is however not possible to use a simulation immediately	 One reason is that reference
chains are shortened in di�erent order when expressing �F via �A	 Forwarding �F

shortens reference chains from the right to the left	 For instance


xu j x�y j y
z�E �F xu j x
z�E j y
z�E
�A E�u�z� j x
z�E j y
z�E

After encoding� chains are traversed from the left to the right


��xu j x�y j y
z�E�� � xu j x
z�yz j y
z���E��
�A yu j x
z�yz j y
z���E��
�A ��E���u�z� j x
z�yz j y
z���E��

Note that �F provides for path compression� which is not preserved by encoding	 We
formally handle the e�ect of path compression to complexity by an appropriate shortening
simulation �compare Lemma �
	��	

Instead of simulating single forwarding steps� we will simulate sequences of forwarding
steps followed by application	 For all n � � we de�ne the relation �FnA by the following
axiom and the contextual rules in Figure �


x�z j x��x� j � � � j xn���xn j xn
y�E �FnA E�z�y� j x�
y�E j � � � j xn
y�E

where we assume the sequence �xi�ni�� to be linear	

Lemma ���� If E �FnA E�
 then E �n
F � �A E��

Proof� By induction on derivations of E �FnA E�	 The axiom case is by induction on n	
�

Lemma ���� If E is reducible with respect to �n
F � �A
 then there exists m � n such

that E is reducible with respect to �FmA�

Proof� By induction on n	 �

We de�ne � to be the smallest binary relation on ��expressions� which is re�exive and
transitive� satis�es the contextual rules of Figure �� and the axiom


�x�
y�x�y� j x�
y�E � �x�
y�E� j x�
y�E

��



Lemma ���� If E �FnA E� then ��E���n��
A � � ��E����

E �FnA E�

�� �� �� ��

��E�� �n��
A � ��E���

Proof� By induction on derivations of E �FnA E�	 We only consider the axiom case


F�
def
� x�z j x��x� j � � � j xn���xn j xn
y�E

�FnA E�z�y� j x�
y�E j � � � j xn
y�E
def
� F�

After translation� we obtain


��F��� � x�z j x�
y�x�y j � � � j xn��
y�xny j xn
y���E��
�n��

A ��E���z�y� j x�
y�x�y j � � � j xn��
y�xny j xn
y���E��
� ��E���z�y� j x�
y�E j � � � j xn��
y�E j xn
y���E��
� ��F���

�

Lemma ���� The relation � is a shortening simulation for the identity function on ��

restricted to admissible expressions�

Proof�

�Sim�� The relation � is required to be re�exive	

�Sim�� We show that � preserves termination with respect to �A� �F � �T � which im�
plies that it also preserves termination in ��	 It is su�cient to prove the previous
statement for expressions E without top�level declarations	 For �A� we note that
the set of variables naming abstractions in E is invariant under �	 The same holds
for the set of applications in E	 For �F � note that the set of directed equations in
E is preserved under �	 Triggering is completely una�ected by �	

�Sim�� We can establish the following diagrams	 For all E� E�� and F there exists E��

and F such that


E �A E� ��
A E��

� �

F �A F �

E �F E�

� �

F �F F �

E �T E�

� �

F �T F �

The proofs are rather simple for expressions without top�level declarations and this
is su�cient	 �

��



Lemma ���� The relation � restricted to admissible expressions preserves termination
and shortens complexity� If E and E� are admissible and E � E�
 then C�E� � C�E���

Proof� This is an immediate consequence of Lemma �
	� and Theorem ��	�	 �

We next consider the encoding of triggering	 We consider the following example


��t�E j tr�t��� � ��y��ty j y
���E��� j t
y�y
�A ��y��y j y
���E��� j t
y�y
�A ��E�� j t
y�y j ��y��y
�E�
� ��E j tr�t��� j ��y��y
�E�

This illustrates that every triggering step is encoded by two application steps	 The corre�
spondence is quite direct up to garbage expressions such as ��y��y
�E�	 To keep track of
these� we de�ne the relation �� as the least congruence on ��expressions� which is invariant
under congruence and satis�es the following axiom


E j ��x��x
y�E� �� E

Lemma ���� If E �T E� then ��E����
A � �� ��E

����

E �T E�

�� �� �� ��

��E�� ��
A �� ��E���

Lemma ���� The relation �� is a complexity simulation for the identity function on ��

Proof� Omitted� but not di�cult	 �

Lemma ���� The relation �� restricted to admissible expressions preserves complexity
and termination�

Proof� This is an immediate consequence of Lemma �
	
 and Corollary ��	�	 �

In the last part of this Section� we combine the above results in order to prove the adequacy
of the embedding E �� ��E�� restricted to well�typed expressions	

Lemma ���
 If E is well�typed then ��E�� is admissible�

��



Proof� We can introduce new typing rules that type ��E�� symmetrically to E	 With respect
to this new system ��E�� is well�typed	 This implies the admissibility of ��E�� in the same
manner than for the original type system	 We note that ��tr�t� j tr�t��� is not inconsistent
by de�nition	 In other words� multiple triggering does not lead to an inconsistency	 �

Lemma ����
 If E is well�typed
 acyclic
 and irreducible with respect to �T and ��
F

� �A
 then ��E�� terminates with respect to �A�

Proof� Since E is irreducible with respect to �T � applications of a variable t of type tr�

can not be executed in ��E��	 Otherwise� there would exist any application of t in ��E�� which
in not derived form ��tr�t���	 This would contradict well�typedness of E	

An applications ��xy �� can be executed in ��E��� if a translated equation ��x�y�� is available
in ��E��	 This can happen �nitely many times� since E is acyclic	 Applying an abstraction
not derived from a directed equation is never possible� since E is irreducible with respect
to ��

F � �A	 �

Proposition ����� If E is well�typed and acyclic
 then E terminates if and only if ��E��
terminates�

Proof� First� we consider the case that E terminates in � and proof that ��E�� terminates
in ��	 This proof is by induction on CA�E� �		

If CA�E� � �� then E is irreducible with respect to �� � �A � ��	 Applying Lemmata
�
	� and �
	�� we can assume that E is irreducible with respect to �T 	 This implies that
E is irreducible with respect to ��

F � �A	 Well�typedness of E and Lemma �
	�� yields
termination of ��E�� in ��	

Let CA�E� � �	 Applying the Lemmata �
	� and �
	�� we can assume that E is irreducible
with respect to �T 	 This implies that E is reducible with respect to ��

F � �A	 Applying
Lemma �
	�� there exists n � � and E� such that E �FnA E�	 Lemma �
	� implies
CA�E� � CA�E�� � � such that CA�E�� � CA�E�	 Applying the induction hypothesis to E�

yields termination of ��E��	 From Lemma �
	�� we obtain ��E����
A � � ��E���	 Termination of

��E��� implies termination of ��E�� by Lemma �
	�	

It remains show that if E does not terminate then ��E�� does not terminate	 This can be
done with a similar inductive argument� which proves that CA�E� � n implies C���E��� � n

for all n � �	 �

Corollary ����� If E is well�typed
 then ��E�� is admissible and terminates if and only if
E terminates�

Proof� Immediate from Lemmata �
	�� and �
	�	 �

��



�� Simulating the Call�by�Need ��Calculus

In this Section� we sketch the proof that our embedding of the call�by�need ��calculus into
� preserves complexity as stated in Theorem �	�	

Syntactically� the call�by�need ��calculus and the ��calculus di�er in �attening ��terms	
We de�ne a �attening functions f mapping an expression L of the call�by�need ��calculus
to an expression of the form let y�M in N with explicit substitutions


f�x� � let z�x in z f��x�L� � let z��x�L in z

f�L�� � let y�M in yn f�L�� � let y��M � in y�n
f�L�L�� � let y�M y��M � z�yny

�
n in z

f�L�� � let y�M in yn f�L�� � let y��M � in y�n
f�let x�L� in L�� � let y�M y��M � in y�n

De�nition ���� We de�ne the relation S�n as the set of all pairs �L� E� such that there
exists a pair �M� F � and a n�representation �n� y� M� t� D� for �M� F � such that f�L� �
M 
 E �� F 
 and f�L� � let y�M in yn�

Proposition ���� The relation S�n is a complexity simulation for the embedding L ��
z�nL from the call�by�need ��calculus restricted to closed expressions into ���

Proof� The conditions of a complexity simulation will be checked by the following Lemmata	
Property �Sim�� is implied by Lemma ��	�� �Sim�� by Lemma ��	�� and �Sim�� and
�Sim�� by Lemmata ��	�� ��	
� and ��	�	 �

Corollary ���� For all closed L the equality Cneed�L� � CA�z�nL� is valid�

Proof� Immediate consequence of Proposition ��	� and Corollary ��	�	 �

Lemma ���� If L is closed
 then �L� z�nL� � S�n�

Proof� By induction on the structure of L	 �

Lemma ���� If L is irreducible in the call�by�need ��calculus and �L� E� � S�n
 then E is
irreducible in ���

Proof� If L is irreducible in � and �M� F � justi�es �L� E� � S�n	 Since M � f�L�� M
is an abstraction and hence irreducible with respect to �name	 Since Sn is a shortening
simulation �Proposition ��	�� F is irreducible in ��	 Since �� is a complexity simulation
�Lemma �
	
�� E is also irreducible in ��	 �

��



Lemma ���� If L�I L
� and �L� E� � S�n
 then there exists E� such that E �A � �� � �

�
T

E� and �L�� E�� � S�n�
L �I L�

S�n S�n

E �A �� ��
T E�

Proof� By induction on derivations of L�I L
�	 �

Lemma ���� If L�V L� and �L� E� � S�n
 then there exists E� such that E �F � ��
T E�

and �L� E�� � S�n�
L �V L�

S�n S�n

E �F ��
T E�

Proof� By induction on derivations of L�V L� �

Lemma ���� If L�Ans L
� or L�C L�
 then f�L� � f�L���

L �Ans L�

f f

f�L� � f�L��

L �C L�

f f

f�L� � f�L��

Proof� By induction on derivations of L�V L� and L�C L� respectively	 �

�
 Conclusion

We have presented a simple execution model for eager and lazy functional computation	 We
have applied concurrency for integration of programming paradigms	 We have presented
the concurrent ��calculus� which features useful abstractions for programming� implemen�
tation� and theory	 We have worked out a powerful proof technique based on uniform
con�uence and simulations	 We have formally related the complexities of call�by�value�
call�by�need� and call�by�name	

Acknowledgements� I am deeply in debt to Gert Smolka� who initiated this work and
contributed ideas during many discussions	 It�s my pleasure to thank Martin M�uller for
daily comments on concepts and related work� and for extremely helpful discussions on
notations and details	 I would like to thank Kai Ibach� Martin M�uller� Peter Van Roy�
Christian Schulte� and Gert Smolka� for their comments on the �nal version and the com�
plete Oz team for continuous support and interest	

��



References

�ACCL��� Mart !n Abadi� Luca Cardelli� P	�L	 Curien� and Jean�Jaques L evy	 Explicit
substitutions	 Journal of Functional Programming� ����
�
������ ����	

�AFMOW��� Zena M	 Ariola� Matthias Felleisen� John Maraist� Martin Odersky� and
Philip Wadler	 A call�by�need lambda calculus	 In Proceedings of the ACM
Symposium on Principles of Programming Languages� pages �������	 The
ACM Press� ����	

�ANP��� Arvind� R	S	 Nikhil� and K	K	 Pingali	 I�structures
 Data�structures for par�
allel computing	 ACM Transactions on Programming Languages and Systems�
�����
�������� ����	

�Bar��� Henk P	 Barendregt	 The Lambda Calculus� Its Syntax and Semantics� volume
��� of Studies in Logic and the Foundations of Mathematics	 Elsevier"North
Holland� Amsterdam � New York � Oxford� ����	

�BNA��� Paul S	 Barth� Rishiyur S	 Nikhil� and Arvind	 M�structures
 Extending a
parallel� non�strict� functional language with state	 In John Hughes� editor�
Functional Programming Languages and Computer Architecture � �th ACM
Conference� number ��� in Lecture Notes in Computer Science� pages ����
���	 Springer�Verlag� August ����	

�BO��� Simon Brock and Gerald Ostheimer	 Process semantics of graph reduction	
In Sixth International Conference on Concurrency Theory� pages ��������
August ����	

�Bou��� G erard Boudol	 Towards a ��calculus for concurrent and communicating sys�
tems	 In Theory and Practice in Software Development� number ��� in Lecture
Notes in Computer Science� pages �������	 Springer�Verlag� October ����	

�Bou��� G erard Boudol	 Asynchrony and the ��calculus �note�	 Rapport de Recherche
�
��� INRIA� Sophia Antipolis� France� May ����	

�HSW��� Martin Henz� Gert Smolka� and J�org W�urtz	 Object�oriented concurrent con�
straint programming in Oz	 In V	 Saraswat and P	 Van Hentenryck� editors�
Principles and Practice of Constraint Programming� chapter �� pages �
���	
The MIT Press� Cambridge� Massachusetts� ����	 A previous version is pub�
lished as ���	

�HT��� Kohei Honda and Mario Tokoro	 An object calculus for asynchronous commu�
nication	 In Pierre America� editor� Proceeding of the European Conference on
Object�Oriented Programming� number ��� in LNCS� pages ������
� Geneva�
Switzerland� July ����	

�




�Hue��� G erard Huet	 Con�uent reductions
 Abstract properties and applications to
term rewriting systems	 Journal of the ACM� �
���

�
����� October ����	

�Iba��� Kai Ibach	 OzFun� Eine funktionale Spache f�ur gemischte Eager� und Lazy�
Programmierung	 Diploma Thesis� Universit�at des Saarlandes� Fachbereich
Informatik� Stuhlsatzenhausweg� ����� Saarbr�ucken� Germany	� October ����	

�Jef��� Alan Je�rey	 A fully abstract semantics for concurrent graph reduction	 In
Proceedings of the Logic in Computer Science Conference� pages ������ ����	

�JH��� Sverker Janson and Seif Haridi	 Programming paradigms of the Andorra Ker�
nel Language	 In Vijay Saraswat and Kazunori Ueda� editors� Proceedings of
the ���� International Symposium on Logic Programming� pages ��
����� San
Diego� California� October ����	

�Klo�
� Jan Willem Klop	 Term rewriting systems
 A tutorial	 EATACS� ��
��������
���
	 Bull	 European Ass	 Theoretical Computer Sience	

�KPT��� Naoki Kobayashi� Benjamin Pierce� and David N	 Turner	 Linearity and the pi�
calculus	 In Proceedings of the ACM Symposium on Principles of Programming
Languages	 The ACM Press� January ����	

�Lau��� John Launchbury	 A natural semantics for lazy evaluation	 In Proceedings of
the ACM Symposium on Principles of Programming Languages� pages ����
���	 The ACM Press� ����	

�Mah�
� Michael J	 Maher	 Logic semantics for a class of committed�choice programs	
In Jean�Louis Lassez� editor� Logic Programming
 Proceedings of the Fourth
International Conference� pages �����
�	 The MIT Press� ���
	

�Mil��� Robin Milner	 The polyadic ��calculus
 A tutorial	 ECS�LFCS Report Se�
ries ������� Laboratory for Foundations of Computer Science� University of
Edinburgh� Edinburgh EH� �JZ� October ����	

�Mil��� Robin Milner	 Functions as processes	 Journal of Mathematical Structures in
Computer Science� ����
�������� ����	

�MOTW��� John Maraist� Martin Odersky� David Turner� and Philip Wadler	 Call�by�
name� call�by�value� call�by�need� and the linear lambda calculus	 In ���th
International Conference on the Mathematical Foundations of Programming
Semantics� New Orleans� Lousiana� April ����	

�MPW��� Robin Milner� Joachim Parrow� and David Walker	 A calculus of mobile pro�
cesses	 Journal of Information and Computation� ���
��

� ����	

�M�ul��� Martin M�uller	 Polymorphic types for concurrent constraints	 submitted� Ger�
man Research Center for Arti�cial Intelligence �DFKI�� Stuhlsatzenhausweg
�� D������ Saarbr�ucken� Germany� fmmuellerg#dfki	uni�sb	de� ����	

��



�Nie��� Joachim Niehren	 Funktionale Berechnung in einem uniform nebenl�au�gen
Kalk�ul mit logischen Variablen	 Doctoral Dissertation	 Universit�at des Saar�
landes� Technische Fakult�at� ����� Saarbr�ucken� Germany� December ����	

�Nie��� Joachim Niehren	 Functional computation as concurrent computation	 In
Proceedings of the ACM Symposium on Principles of Programming Languages	
The ACM Press� January ����	

�NM��� Joachim Niehren and Martin M�uller	 Constraints for Free in Concurrent Com�
putation	 In Asian Computing Science Conference� Lecture Notes in Comput�
er Science� pages �
������ Springer�Verlag	 Pathumthani� Thailand� December
����	

�NS��� Joachim Niehren and Gert Smolka	 A con�uent relational calculus for higher�
order programming with constraints	 In Jean�Pierre Jouannaud� editor� �st

International Conference on Constraints in Computational Logics� volume ���
of Lecture Notes in Computer Science� pages ������� M�unchen� Germany�
September ����	

�Pin�
� Keshav K	 Pingali	 Lazy Evaluation and the Logic Variable	 Technical report�
Cornell University� October ���
	 Proceedings of the Institute on Declarative
Programming	 Austin� Texas	 August ������ ���
	

�Plo
�� Gordon D	 Plotkin	 Call�by�name� call�by�value and the ��calculus	 Journal
of Theoretical Computer Science� �
�������� ��
�	

�PS��� S	 Purushothaman and Jill Seaman	 An adequate operational semantics of
sharing in lazy evaluation	 In European Symposium on Programming �ESOP��
volume ��� of Lecture Notes in Computer Science	 Springer�Verlag� ����	

�PT��a� Benjamin C	 Pierce and David N	 Turner	 Concurrent objects in a process
calculus	 In Takayasu Ito and Akinori Yonezawa� editors� Theory and Practice
of Parallel Programming �TPPP�
 Sendai
 Japan �Nov� ������ number ��

in Lecture Notes in Computer Science� pages ��
����	 Springer�Verlag� April
����	

�PT��b� Benjamin C	 Pierce and David N	 Turner	 Pict
 A programming language
based on the pi�calculus	 Technical report in preparation� available electroni�
cally� ����	

�San��� D	 Sands	 A Na�!ve Time Analysis and its Theory of Cost Equivalence	 The
Journal of Logic and Computation� page �� pages� �����	 Accepted� to appear
�Preliminary version available as TOPPS report D��
�� ����� Copenhagen�	

�Smo��� Gert Smolka	 A foundation for concurrent constraint programming	 In Con�
straints in Computational Logics� volume ��� of Lecture Notes in Computer
Science� pages ���
�	 Springer�Verlag� September ����	

��



�Smo��a� Gert Smolka	 An Oz primer	 DFKI Oz documentation series� German Research
Center for Arti�cial Intelligence �DFKI�� Stuhlsatzenhausweg �� D������ Saar�
br�ucken� Germany� ����	

�Smo��b� Gert Smolka	 The Oz programming model	 In Jan van Leeuwen� editor�
Current Trends in Computer Science� Lecture Notes in Computer Science�
vol	 ����	 Springer�Verlag� ����	 To appear	

�SRP��� Vijay A	 Saraswat� Martin Rinard� and Prakash Panangaden	 Semantic foun�
dations of concurrent constraint programming	 In Proceedings of the ACM
Symposium on Principles of Programming Languages� pages �������	 The
ACM Press� ����	

�SSW��� Christian Schulte� Gert Smolka� and J�org W�urtz	 Encapsulated search and
constraint programming in Oz	 In A	H	 Borning� editor� Second Workshop
on Principles and Practice of Constraint Programming� volume �
� of Lecture
Notes in Computer Science� pages �������	 Springer�Verlag� ��� May ����	

�Vas��� Vasco T	 Vasconcelos	 Typed concurrent objects	 In �th Proceedings of the
European Conference on Object Oriented Programming� volume ��� of Lecture
Notes in Computer Science� pages ������
	 Springer�Verlag� July ����	

�Wal��� David Walker	 Objects in the ��calculus	 Journal on Information and Com�
putation� ���
�����
�� ����	

�Yos��� Nobuko Yoshida	 Optimal reduction in weak ��calculus with shared envi�
ronments	 In ACM Conference on Functional Programming Languages and
Computer Architecture� ����	

��


