Deduction-based Refinement Planning*

Werner Stephan Susanne Biundo

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
e-mail: {stephan,biundo}@dfki.uni-sh.de

Abstract

We introduce a method of deduction-based refinement planning where pre-
fabricated general solutions are adapted to special problems. Refinement pro-
ceeds by stepwise transforming non-constructive problem specifications into
executable plans. For each refinement step there is a correctness proof guar-
anteeing the soundness of refinement and with that the generation of provably
correct plans. By solving the hard deduction problems once and for all on the
abstract level, planning on the concrete level becomes more efficient. With
that, our approach aims at making deductive planning feasible in realistic
contexts.

Our approach is based on a temporal logic framework that allows for the
representation of specifications and plans on the same linguistic level. Basic
actions and plans are specified using a programming language the constructs
of which are formulae of the logic. Abstract solutions are represented as—
possibly recursive—procedures. It is this common level of representation and
the fluid transition between specifications and plans our refinement process
basically relies upon.

*DFKI Research Report RR-95-13, 1995. Also in: Proceedings of the 3rd International Confer-
ence on Artificial Intelligence Planning Systems (ATPS-96).

Contents

1 Introduction 3
2 The Logic 4
3 Planning Scenarios and Planning Problems 6
4 Abstract Solutions 8
5 Refinement Planning 9
6 Related Work and Conclusion 13

1 Introduction

In this paper, we present a technique for deduction-based refinement planning. The
idea is to refine an initial non-constructive specification step by step until an exe-
cutable plan is reached. Since each refinement step is sound under the proviso of
certain proof obligations, we end up with provably correct plans.

The method is developed within a temporal logic framework similar to [MP91, SB93].
Specifications and plans are represented on the same linguistic level and they both
specify sequences of states, called computations. As a consequence, we are not lim-
ited to the input-output behavior of plans when formulating specifications. Instead,
we may also state properties of certain intermediate states and in particular so-called
safety conditions which have to hold in all intermediate states.

The refinement process takes a non-constructive initial specification and generates
an executable one, i.e. a plan, the set of computations of which is included in the
set of computations described by the initial specification.

R1 R2

"

R4 D4 R3

D3

Figure 1: The 4-Room Planning Scenario

Our aim is to make deductive planning feasible in realistic contexts. Therefore, we
follow the paradigm of hierarchical planning. The hard deduction problems, like
proving the total correctness of recursive plans, are solved once and for all on an
upper level by providing a collection of prefabricated abstract and general plans.
Plan generation on this level is an interactive process with non-trivial inferences
that in our oppinion, which is shared by other authors as well (cf. [GSS91, MW8T]),
cannot be carried out in a fully automatic way. These abstract algorithmic solutions
are in an efficient way refined to specific concrete ones.

Consider, for example, the concrete planning scenario of Figure 1 and suppose we
are given the problem of moving blocks A, B, and C from R1 to R4. Starting from
scratch, it is very likely that the planning process gets lost in a mass of subproblems
such as to find the right door for B. It would be of considerable help for the planner
to know that the solution should be organized in three phases, where in each phase
one block is moved from R1 to R4. In our approach this additional knowledge is
given as an abstract plan with certain open steps that are filled in by concrete plans
during later refinement. Not only is this a way to formalize additional knowledge,
it also reduces the necessary proofs to the local intermediate steps. The search
for appropriate steps on the lower level is done by matching concrete actions to
elementary state transitions given by the abstract solution. Abstraction here means
that we do not consider the world in all its details but restrict ourselves to certain
features of a planning scenario that are sufficient to outline a solution. Since general
solutions often require the manipulation of an indefinite number of objects, plans at
this level will in many cases have to be recursive. In our approach, recursive plans
and the corresponding correctness proofs are part of the domain modeling on the
abstract level. A further important point is that we provide a uniform algorithmic
solution only on the abstract level while the final plan is sensitive to additional ad
hoc constraints for which there is no uniform treatment.

We first introduce our basic representation formalism and then show—by means of
a detailed example—how refinement planning works in this context.

2 The Logic

We use an interval-based modal temporal logic to formally reason about plans. The
syntax of a planning scenario is given by a so-called language L = (Z, F,, R,,
F;, Ry, X, A) , where Z is a finite set of sort symbols, F; and F, are disjoint
Z x Z* indexed families of disjoint sets of function symbols, Ry and R, are disjoint
Z* indexed families of disjoint sets of relation symbols, X is a 7 indexed family of
disjoint denumerable sets of global variables, such that X, N F,. = {} for all z € 7,
and A is a Z* indexed family of disjoint denumerable sets of abstraction symbols
(procedure names) such that A- N (R;>U R, z) = {} for all z € Z*. Abstraction
symbols will be used to describe basic actions. The rigid and flexible symbols are
given by (F,,R,) and (F, Ry), respectively. The flexible symbols will be interpreted
in a state dependent way. In the following, a simplified version will be considered
where there are no flexible function symbols.

Rigid terms t over £ containing symbols from F, and X are built as usual. The set
of formulae and abstractions over L is given by the following rules:

p u= =t | rt) | me | @iV | Vop | 0p | o1 U ¢ |
01 C 2 | y(1) | delete-r(t) | add-r(i)
vy ou= a | At | va(z).e .

O and U denote the modal weak next and until operators, respectively. C denotes the
chop operator, which serves to express the sequential composition of formulae. The
relation symbols used in the context of delete and add have to be flexible. Using
the until operator ¢ we define the usual modalities O (always) and & (sometimes) by
Op > (true U —p) and O :¢» 0=, The semantics of the recursively defined
abstraction va(z).¢ will be such that the equation va(z).o = Az.pla/va(z).¢] is
satisfied, provided p[a] is syntactically continuous in a. Moreover, under these
circumstances va(z).¢ is the maximal solution of the corresponding equation.

A model M for a language L is given by a Z-indexed family D of nonempty domains
and a global interpretation Z that assigns (total) functions and relations over D to
the rigid symbols. A wvaluation (of variables) w.r.t. M is a sort preserving mapping
g :X| — |D|. We use 3(x/d) for the valuation 3’ which satisfies 5 =, ' (3
and (3’ agree on all arguments except possibly x) and () = d. The set of states ¥
w.r.t. M is the set of all interpretations of the flexible relation symbols as relations
over D. Rigid terms are evaluated by using M and 3 as usual.

As is the case with choppy logics in general, the semantics is based on intervals
of states [RP86]. We use ¥ to denote the set of all finite and infinite sequences
o =< 09,01, ... > of states from ¥ and ¥ for ¥ — {< >}. By X' we denote

the set of sequences of length . The concatenation of intervals is denoted by “.”.

Fusion, denoted by “0”, is the partial operation on intervals defined by:

ood =

o) if o is infinite
{ <0Gy i Oy oo > 0 d=<o0¢, ... yo, > 7 =<o0,, ... > .
Both, concatenation and fusion are extended to sets of intervals in the usual way.
For M and a valuation 3 the semantics of formulae is given by [¢]um,z C X%, For
atomic formulae ¢ containing only rigid symbols [¢]a 5 is either X% or {}. The
interpretation of the propositional connectives is also straightforward. The more
interesting cases are as follows.

[r(Olws = Ut} = [o(r)([E Lug)}, for fexible r
Ve.olams = (Wlelmpesa | d€ Do} for x € X,
[oelsms = STU(E" - [@lap)
ler U ©2]mps = U{Az | ¢ >0}, where
A =30 Jool s V{HE - Tealms [0 <5 < i}
[¢1 C 2lmps = [eilmpo[e2lms
[vOIme = [VIams(lt Dans)
[add-r(H)Jms = {< 00,00 > | 01 = 00, o1(r)
[delete-r(t)jmp = {< 00,00 > |01 =, 00, o1(r)

o(r) U ([t Tamp)}
o(r) = ([Dam)}

g
g

For abstractions we have

[Az.e]mps(d) = [elmpsea
[alampld) = X7

[va(e)elansld) = (W@ | > 0} ,where
Yo = a and v;41 = Az.p[a/v]

Note that quantification is over global variables and that first-order formulae are
evaluated in the first state of an interval.

The logic presented above can be used to describe computations of certain formu-
lae (plans) that can be viewed as programming language constructs. Elementary
operations are add-r and delete-r for each flexible relation symbol r, while basic
actions are described as procedural abstractions. In order to ease readability we use
the following abbreviations:

if o then m else my fi > (¢ — ™) A (7 — m2)
choose 7 : ¢(7) begin 7 end :¢ 3Jz.(¢(z) A 7(z)) V (Vz.—p(z) A skip)
Ty Ty 4 m C oy
skip :+ 0o false
a(z) =71 o va(x)m.

For recursively defined abstractions we have the equivalence va(z).7w(t) < w[z/l]

[a/va(z).m].

3 Planning Scenarios and Planning Problems

Planning scenarios are set up by first giving a set of sort symbols and a signature
of flexible and rigid relation symbols. In our example (cf. Figure 1), these are: 7 =

{block, door,room}, Ry = {closed, holds,in,rob} and R, = {broad, connects, small},

respectively. In a second step basic actions are defined by procedures, like

pickup(b) < if I r (in(b,r) Arob(r)) A = 3 & holds(x)
then add-holds(b) else skip fi

walk(ry,re) < if rob(ry) A 3 d (connects(d,ry,r2) A ~closed(d))
then if 3 & holds(x) then choose x : holds(x)
begin if small(x) V broad(d)
then delete-in(x,ry); delete-rob(ry);
add-rob(ry); add-in(x,rs)
else skip fi end
else delete-rob(ry); add-rob(ry) fi
else skip fi.

From these procedures certain sets of formulae are generated. They comprise action
descriptions, effect descriptions, and invariance clauses and they serve to perform
the various specific tasks which occur during refinement planning. Action descrip-
tions specify the cases in which an action “really acts”, i.e. its body differs from
skip. For “walk” we obtain two formulae W; and W, where:!

Wy @ (rob(r1) A connects(d,ri,r2) N —closed(d) N holds(x)) A
(small(x)V broad(d))) — (walk(ry,r) <«
delete-in(x,r1); delete-rob(rq); add-rob(rq); add-in(x,rs9)) .

Action descriptions are used to instantiate abstract solution patterns with concrete
solutions. Effect descriptions indicate the immediate effects an action has. They
closely correspond to the action descriptions. For “pickup”, for example, we obtain
only one such axiom:

Pegr:o (37 (en(byr) A rob(r)) A — F a holds(x) A pickup(b))
— O (o false — holds(b)) .

Invariance clauses specify the facts that are not affected by the action. They com-
prise invariance assertions inv-r(z) : ¢(x), which stand for formulae

vz ((e(x) Ar(@) = or(x) A Va((e) A —r(@) = o-r()),
where ¢ is first-order. As for “pickup” we have

Piny @ pickup(b) — O (inv-in(d,r) : true A inv-closed(d) : true A
inv-rob(r) : true) ,

stating that “pickup” doesn’t change any of the relations in, closed, and rob.

The above formulae can be generated in a uniform way by a purely syntactic in-
spection of the user-defined procedures, and they can be easily proved using, for
example, the equivalences for control structures given in Section 2.

A possible format for initial specifications ¢q 1s

FIN A EF A SAFE A INV.

These four conjuncts describe properties a computation has to meet in order to be
accepted as a possible solution. We have

FIN ¢+ <& 0 false,
EF > prre — O (O false — qbpost))
SAFE H prre _> D (qbsafel /\ ot /\ Qbsafen) b a‘nd

INV i O (inv-ri(zy) : (1) A o0 A Inv-r,(Z,,) 1 &0 (Z)) -

'We write walk(r1,r2) instead of the complete recursive definition walk(ry,rs)< m(r1,72).

The formula FIN states that the computations are finite. The effect of a compu-
tation, given by EF. is described by pre- and postconditions which are first-order
formulae. In addition to the desired effect the initial specification may contain safety
conditions which have to hold in all intermediate states. Again, these conditions are
first-order. Finally, INV serves to specify the facts that have to remain unchanged.
Before starting refinement planning with a concrete problem specification, we have
to state the domain facts, which are relevant for the current scenario. Domain facts
describe those facts which are not affected by actions, i.e. remain static in a current
scenario, but which may vary from one concrete scenario to another. These facts
are described using the rigid part of the signature. For our example (cf. Figure 1),
we obtain:

DF : connects(D1, R1, R2
connects(D2, R3, R2
connects(D4, R4, R1

—small(B) , —small

—broad(D4) .

, connects(D1, R2, R1) , connects(D2, R2, R3) ,
, connects(D3, R3, R4) , connects(D3, R4, R3) ,
, connects(D4, R1, R4) , small(A), Small(),
C), broad(D1) , broad(D2) , broad(D3) ,

TN e e N’

4 Abstract Solutions

Below we are going to describe a strategy where abstract recursive patterns are
refined to plans made up of basic actions from a lower, more concrete, level. In our
example, the abstract level consists of a scenario where we only have blocks and
rooms which are related by in. The problem of moving an arbitrary set of blocks
from one room to another is then solved by the following recursive plan:

move (s,ry,12) < ifVb(bes — in(b,r1)) A s then
choose b : b€ s begin
delete-in(b,ry) ; add-in(b,ry) ; move(s — {b},r1,72) end else skip fi

It moves one block after the other from r| to 4. Here we have used the abstract data
type of sets. The signature of this data type contains the rigid symbols €, 0, {...},
and (—). The idea now is to refine this plan on a lower level where in addition there
are doors of different size and a robot, but where the “move” operation is no longer
available. In a sense this abstract operation has to be implemented by sequences
of operations from the lower level. In order to enable such a refinement we have
to allow for certain additional steps on the abstract level, thereby extending the
set of possible computations. To this end, we adopt a method known as stuttering
[Lam94, MM94]. It allows for the insertion of additional steps which however do
not affect the facts we are interested in on the abstract level so that we are still able
to prove useful facts about the abstract solution. Stuttering versions of abstract

operations still exhibit essentially the same behavior while they leave room for later
refinements.

Stuttering is introduced by replacing the basic add- and delete-operations in the
body of abstract plans, “move” in our case, by appropriate stuttering versions. So,
delete-in(b, ry), for example, is replaced by

STUT jiove 5 delete-in(b,r1) 3 STUT, 0. , where STUT, 0 is the formula
Co false A Oinv-in(V,r): (b#£bY V r=r V r=ry) .2

This allows for inserting certain steps between the essential add- and delete-operations.
However, STUT,,,.. forces these steps to be safe in the sense that they must not
affect the in relation for blocks different from the one just manipulated, as well as
in w.r.t. the current rooms r; and ry. The specification of abstract plans together
with their STUT formulae is subject to the process of domain modeling, like it was
sketched in Section 3 for actions and planning scenarios. Replacing the add- and
delete-operations in our example by their stuttering versions using STUT,,,,. in
both cases, we obtain the abstract plan move*(s,ry,r2). We are able to prove the
assertions

move*(s,ry,1r9) — FIN |
move*(s,r1,r9) — inv-in(b,r) : b s,

move*(s,r1,1m9) — Vb (b€ s—in(br)) —
O (o false — Vb(bes — in(br))),

describing termination of the stuttering version of “move”, its invariance properties,
and its effects, respectively. Given an initial specification, refinement planning will
start from abstract plans of this form and proceed by stepwise filling up the STUT
gaps with concrete plans.

5 Refinement Planning

In our environment, refinement planning consists in transforming an initial specifica-
tion—via intermediate steps—to a concrete plan. For each step there is a correctness
proof guaranteeing the soundness of refinement and with that provably correct plans.
In the refinement process we try to construct a plan = the set of computations 7 of
which is a subset of ¢y. This is done by transforming ¢ gradually by a sequence of
intermediate specifications

Wo = Y1 = ... o= Py =T

ZNote that b, ry, and 7, always correspond to the current arguments of the “move” call.

to a plan formula w. In each step, we restrict the set of computations, that is we
have p;41 — ¢; , forall 0 <1 < n.

Now we are going to describe a particular refinement strategy that adapts a general
and abstract solution to a special problem. It proceeds in three phases:

o Phase 1@ Find a solution on the abstract level.
o Phase 2: Unwind recursive plans.
o Phase 3: Fill in missing steps.

We will begin with an initial problem specification which has the form of g given
in Section 3 and where

Gpre = closed(D1) A closed(D2) A closed(D3) A —closed(D4) A
in(A,R1) A in(B,R1) A in(C,R1) A rob(R1) A
= 3 holds(x)

Gpost = in(AR4) A in(B,R4) A in(C,R4),
INV = inv-in(b,r) : (b#A ANb#B AN b#C),
Gsare = — Jdidy (dy # dy N —closed(dy) N —closed(ds)) .

The initial situation as given by ¢,,. is depicted in Figure 1. The robot has to carry
blocks A, B, and C to room R4. In that process he is not allowed to change the
position of any other block. As an additional safety condition we have that at most
one door might be open in each situation.

At the top level, planning is done based on the assertions of the given abstract
operations. In our example, Phase 1 comes up with the abstract plan “move*”
introduced in Section 4 and we simply have to instantiate this general recursive
solution. After the application of substitutions s < {A,B,C}, r; < R1, and ry +
R4 certain proof obligations arise. They guarantee that the concrete specification
is met with respect to the abstract level, i.e. this particular instance of the abstract
solution solves our planning problem modulo the concrete actions we will insert
for the abstract ones. The proof obligations state: The preconditions ¢,.. of the

*99 *99

planning problem imply the preconditions of “move™”. i.e. “move®” is applicable in

the current initial state:

be — Vb (be {AB,C} — in(b,R1)).

*99

The postconditions of “move™ meet the current goals ¢,

Vb (be{AB,C} = in(b,R4) = st

and the proposed solution doesn’t violate the invariance conditions required, i.e. the
invariance clauses of “move*” satisfy INV:

inv-in(b,r) : b ¢ {A,B,C} — inv-in(b,r): (b#£A AN b#B A b#£C),

10

In our example each of the formulae can be proved and we are ready to carry out
the first refinement step

wo = TGpre V (pre N Odgare A move*({A,B,C} RI,R2)) .

Please note that the safety conditions can not be guaranteed at this level and there-
fore still appear in the refined specification.

In the second phase we will perform a symbolic execution of the call move*(...).
According to the “move™” assertions (cf. Section 4) we know that each way of
unwinding the recursive procedure will stop with the desired result. That is all
the unwinding can be done in a single step. However, since we have to make a
choice about the order of movements, it is a better idea to unwind in a stepwise
way. In cases where the order is relevant for the planning process on the lower level,
backtracking to some intermediate situation will be possible this way. Following this

strategy we get

(_'prre vV (qbpre A qusafe A
STUT iove 5 delete-in(AR1); STUT, 00 ;
add-in(A,R4) ; STUT,,... 5 move*({B,C},R1,R2)))

as the next intermediate specification. Now we are in a situation where Phase 3,
namely the actual planning process at the lower level, may start. Note that in
most cases there will be no uniform way of filling out the missing steps. In our
example A can be moved through door D4 while this is impossible for C. A possible
strategy is to look for an action that deletes in(A,R1). Applying the substitution
x4 A, r; < Rl, ry < R4, d < D4 to Wy we can identify “walk” as an appropriate
action by matching the elementary operations given by W; against the intermediate
specification above:

delete-in(A,R1); delete-rob(R1); add-rob(R4); add-in(A,R4)

delete-in(A,R1) ; STUT,,,,.. ; add-in(A,R4)

Since delete-rob(R1) ; add-rob(R4) doesn’t affect the in relation, i.e. implies
STUT,,0ve, we are allowed to replace the second occurrence of STUT,,,,. by
delete-rob(R1) ; add-rob(R4) and then apply Wy for further refinement, thus
obtaining

(ﬁqbpre \/ (qbpf’e /\ qusafe /\ (STUTmove;
(rob(R1) A connects(D4, R1, R4) A —closed(D4) N holds(A) A
(small(A) V broad(D4)) A walk(R1,R4)) ; move®({B,C},R1,R2))))

as a new specification. Since it will turn out later in the refinement process that
the third occurrence of STUT,,,,. in the formula above can be replaced by skip we
already omit it here in order to ease readability.

11

The planning proces continues by analyzing the preconditions of “walk”. First of
all their rigid part is considered. It turns out that connects(D4, R1, R4) A
(small(A) V broad(D4)) can be proved from the domain facts and with that there
is no need to backtrack at this point. In a second step, the flexible part of the pre-
conditions is matched against ¢,... As ¢, satisfies =closed(D4) as well as rob(R1)
but no match is found for holds(A) it is suggested to search for an action that has
holds(A) as an effect and leaves the relations closed, rob, and in untouched. Inspect-
ing the effect descriptions leads to “pickup” and we carry out the next refinement
step. Using the substitutions b < A and r < Rl the preconditions of “pickup”
coincide with ¢,,.. and we obtain as a new specification:

(mbpre V (Ppre N Opsase N (pickup(A) ;
(rob(R1) A connects(D4, R1, R4) A —closed(D4) N holds(A) A
(small(A) V broad(D4)) A walk(R1,R4)) ; move®({B,C},R1,R2))))

This step is justified as we are able to prove ((in(A,R1) A rob(R1) A
= 3z holds(x) A pickup(A)) — STUT,00) using Piy..

In order to generate the first part of the refined plan we have to verify that pickup(A)
meets the safety conditions of the problem specification and finally we “compute”
the facts that hold after the application of “pickup”. These facts comprise the effects
of “pickup” and those parts of ¢,,. which are invariant against “pickup”. We prove
the formulae (¢, A pickup(A)) — O¢supe and (dpre A pickup(A)) — FIN A
O (o false — ¢y) , the latter one stating that pickup(A) terminates and ¢; holds
afterwards, where ¢, is (in(A,R1) A in(B,R1) A in(C,R1) A rob(R1) A holds(A) A
closed(D1) A closed(D2) A closed(D3) A —closed(D4)). After another refinement

step we therefore obtain

(=dpre V. (pickup(A) ;
(01 A O¢gape A (walk(R1,R4) ;5 move*({B,C},R1,R2))))) .

Proceeding with “walk” in the same way leads to the specification

(mpre V (pickup(A); walk(R1,R4) ;
(p2 A Ogsure A move™({B,C},R1,R2)))) ,

where ¢ is (in(A,R4) A in(B,R1) A in(C,R1) A rob(R4) A holds(A) A
closed(D1) A closed(D2) A closed(D3) A —closed(D4)). From this specification

refinement planning proceeds by unwinding move* again.

12

6 Related Work and Conclusion

Hierarchical problem solving and the refinement of abstract solutions are important
methods for reducing costs in planning. They provide a significant restriction of the
search space and help to generate plans in a goal-directed way [Ten91]. Therefore,
many approaches to the creation of abstraction levels and to hierarchical planning
have been developed, e.g. [Sac74, Sac77, Tat77, Wil88, BY94, Kno94, KU94, LG95].
They comprise two different principles. One is concerned with abstracting the state
space. A hierarchy of abstraction levels is obtained by stepwise ignoring certain
details of the planning domain [Sac74]. In recent approaches these abstractions
are automatically generated [BY94, Kno94, LG95]. The second abstraction method
combines several basic actions to more comprehensive abstract ones [Sac77, Tat77,
Wil88], thereby obtaining some kind of macro operation. Hierarchical planning then
proceeds by expanding these macros.

In our approach, the definition of abstract solutions is subject to the process of
domain modeling. The reason is that in our environment abstract plans are often
recursive. We have introduced a method for stepwise refining such recursive solu-
tions. This allows in particular for the generation of completely different concrete
solutions in each expansion of the recursive call, depending on the specific properties
of the current objects involved.

As for the representation formalism our planning approach relies upon, there is
some relation to the ADL framework of Pednault [Ped89]. Like ADL, our temporal
planning logic uses elementary add- and delete-operations to describe basic actions
and with that also follows the STRIPS idea of using add and delete lists for re-
lations [FNT71]. ADL provides a fixed form of action description schemata which
immediately correspond to situation calculus axioms.

In our environment, the add- and delete-operations are basic elements of a program-
ming language that is used to specify actions and plans. This programming language
provides conditionals, nondeterminism, and also recursion. It is completely embed-
ded into a logic as all programming language constructs are temporal logic formulae.
This means in particular, that planning problems (specifications) as well as more
or less abstract plans and actions can be flexibly treated on the same linguistic
level. Among others, it is this feature which distinguishes our representation from
formalisms like ADL, Dynamic Logic [Har79, Ros81], Situation Calculus [MH69],
or Fluent Theory [MWS8T7] and which motivated the introduction of yet another
planning logic.

We have introduced an approach to hierarchical planning where abstract recursive
plans are stepwise refined to concrete solutions. Each refinement step includes a for-
mal correctness proof thus guaranteeing soundness of the entire procedure and with
that correctness of the final solution. The planning logic we use provides a flexible
means to reason about specifications and plans and finally offers the perspective of
treating also nonterminating and concurrent systems.

13

References

[BY94]

[FNT71]

[GSS91]

[Har79]
[Kno94]

[KU94]

[Lam94]

[LGO5]

[MH69]

[MMO94]

[MP91]

[MWS7]

[Ped89)

F. Bacchus and Q. Yang. Downward Refinement and the Efficiency of
Hierarchical Problem Solving. Artificial Intelligence, 71:43-100, 1994.

R.E. Fikes and N.J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, 2(3/4):189—-
208, 1971.

G. Ghassem-Sani and S. Steel. Recursive Plans. In J. Hertzberg, editor,
Proceedings of the European Workshop on Planning (EWSP-91), pages 53—
63. LNAT 522, Springer, 1991.

D. Harel. First Order Dynamic Logic. LNCS 68, Springer, New York, 1979.

C. A. Knoblock. Automatically Generating Abstractions for Planning.
Artificial Intelligence, 68:243-302, 1994.

M. Kramer and C. Unger. A Generalizing Operator Abstraction. In
C. Backstrom and E. Sandewall, editors, Current Trends in Al Planning,
pages 185-198. IOS Press, Amsterdam, 1994.

L. Lamport. The Temporal Logic of Actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872-923, 1994.

A. L. Lansky and L.C. Getoor. Scope and Abstraction: Two Criteria for Lo-
calized Planning. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), pages 1612-1618. Morgan Kaufmann,
San Mateo, 1995.

J. McCarthy and P. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine Intelligence 4, pages 463-502.
1969.

A. Mokkedem and D. Méry. A Stuttering Closed Temporal Logic for Mod-
ular Reasoning about Concurrent Programs. In Proc. ICTL-94, pages 382—
397, 1994.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer, 1991.

Z. Manna and R. Waldinger. How to Clear a Block: Plan Formation in
Situational Logic. Journal of Automated Reasoning, 3:343-377, 1987.

E. Pednault. ADL: Exploring the Middle Ground Between STRIPS and
the Situation Calculus. In Proceedings of the 1st International Conference

on Principles of Knowledge Representation and Reasoning (KR-89), pages
324-332, 1989.

14

[Ros81]

[RPS6]

[SacT4]

[SacT7]
[SBI3]

[Tat77]

[Ten91]

[Wil88]

S. J. Rosenschein. Plan Synthesis: A Logic Perspective. In Proc. IJCAI-81,
1981.

R. Rosner and A. Pnueli. A Choppy Logic. In Symposium on Logic in
Computer Science, pages 306-313. IEEE Computer Society Press, 1986.

E. D. Sacerdoti. Planning in a Hierarchy of Astraction Spaces. Artificial
Intelligence, 5:115-135, 1974.

E. D. Sacerdoti. A Structure for Plans and Behavior. North-Holland, 1977.

W. Stephan and S. Biundo. A New Logical Framework for Deductive
Planning. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), pages 32-38, 1993.

A. Tate. Generating Project Networks. In Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-77), pages 888
893. Morgan Kaufmann, San Mateo, 1977.

J. D. Tenenberg. Abstraction in Planning. In J. Allen, H. A. Kautz, R. N.
Pelavin, and J. D. Tenenberg, editors, Reasoning About Plans, pages 213—
284. Morgan Kaufmann, Los Altos, 1991.

D. E. Wilkins. Practical Planning. Morgan Kaufmann, 1988.

15

