
Deduction�based Re�nement Planning�

Werner Stephan Susanne Biundo

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� D���	
� Saarbr�ucken� Germany

e�mail� fstephan�biundog
dfki�uni�sb�de

Abstract

We introduce a method of deduction�based re�nement planning where pre�

fabricated general solutions are adapted to special problems� Re�nement pro�

ceeds by stepwise transforming non�constructive problem speci�cations into

executable plans� For each re�nement step there is a correctness proof guar�

anteeing the soundness of re�nement and with that the generation of provably

correct plans� By solving the hard deduction problems once and for all on the

abstract level� planning on the concrete level becomes more e�cient� With

that� our approach aims at making deductive planning feasible in realistic

contexts�

Our approach is based on a temporal logic framework that allows for the

representation of speci�cations and plans on the same linguistic level� Basic

actions and plans are speci�ed using a programming language the constructs

of which are formulae of the logic� Abstract solutions are represented as�

possibly recursive�procedures� It is this common level of representation and

the �uid transition between speci�cations and plans our re�nement process

basically relies upon�

�DFKI Research Report RR������� ����� Also in	 Proceedings of the �rd International Confer�
ence on Arti
cial Intelligence Planning Systems �AIPS���
�

Contents

� Introduction �

� The Logic �

� Planning Scenarios and Planning Problems �

� Abstract Solutions �

� Re�nement Planning 	

� Related Work and Conclusion ��

�

� Introduction

In this paper� we present a technique for deduction�based re�nement planning� The
idea is to re�ne an initial non�constructive speci�cation step by step until an exe�
cutable plan is reached� Since each re�nement step is sound under the proviso of
certain proof obligations� we end up with provably correct plans�
The method is developed within a temporal logic framework similar to �MP��� SB�	
�
Speci�cations and plans are represented on the same linguistic level and they both
specify sequences of states� called computations� As a consequence� we are not lim�
ited to the input�output behavior of plans when formulating speci�cations� Instead�
we may also state properties of certain intermediate states and in particular so�called
safety conditions which have to hold in all intermediate states�
The re�nement process takes a non�constructive initial speci�cation and generates
an executable one� i�e� a plan� the set of computations of which is included in the
set of computations described by the initial speci�cation�

A

B

C

R1 R2

R3R4

D1

D2

D3

D4

D

Figure �� The �
Room Planning Scenario

Our aim is to make deductive planning feasible in realistic contexts� Therefore� we
follow the paradigm of hierarchical planning� The hard deduction problems� like
proving the total correctness of recursive plans� are solved once and for all on an
upper level by providing a collection of prefabricated abstract and general plans�
Plan generation on this level is an interactive process with non�trivial inferences
that in our oppinion� which is shared by other authors as well �cf� �GSS��� MW��
��
cannot be carried out in a fully automatic way� These abstract algorithmic solutions
are in an e�cient way re�ned to speci�c concrete ones�

	

Consider� for example� the concrete planning scenario of Figure � and suppose we
are given the problem of moving blocks A� B� and C from R� to R�� Starting from
scratch� it is very likely that the planning process gets lost in a mass of subproblems
such as to �nd the right door for B� It would be of considerable help for the planner
to know that the solution should be organized in three phases� where in each phase
one block is moved from R� to R�� In our approach this additional knowledge is
given as an abstract plan with certain open steps that are �lled in by concrete plans
during later re�nement� Not only is this a way to formalize additional knowledge�
it also reduces the necessary proofs to the local intermediate steps� The search
for appropriate steps on the lower level is done by matching concrete actions to
elementary state transitions given by the abstract solution� Abstraction here means
that we do not consider the world in all its details but restrict ourselves to certain
features of a planning scenario that are su�cient to outline a solution� Since general
solutions often require the manipulation of an inde�nite number of objects� plans at
this level will in many cases have to be recursive� In our approach� recursive plans
and the corresponding correctness proofs are part of the domain modeling on the
abstract level� A further important point is that we provide a uniform algorithmic
solution only on the abstract level while the �nal plan is sensitive to additional ad
hoc constraints for which there is no uniform treatment�

We �rst introduce our basic representation formalism and then show�by means of
a detailed example�how re�nement planning works in this context�

� The Logic

We use an interval�based modal temporal logic to formally reason about plans� The
syntax of a planning scenario is given by a so�called language L � �Z� Fr� Rr�
Ff � Rf � X� A� � where Z is a �nite set of sort symbols� Ff and Fr are disjoint
Z �Z� indexed families of disjoint sets of function symbols� Rf and Rr are disjoint
Z� indexed families of disjoint sets of relation symbols� X is a Z indexed family of
disjoint denumerable sets of global variables� such that Xz �Fz�� � fg for all z � Z�
and A is a Z� indexed family of disjoint denumerable sets of abstraction symbols
�procedure names� such that A�z � �Rf��z � Rr��z� � fg for all �z � Z�� Abstraction
symbols will be used to describe basic actions� The rigid and �exible symbols are
given by �Fr�Rr� and �Ff �Rf �� respectively� The �exible symbols will be interpreted
in a state dependent way� In the following� a simpli�ed version will be considered
where there are no �exible function symbols�
Rigid terms t over L containing symbols from Fr and X are built as usual� The set
of formulae and abstractions over L is given by the following rules�

� ��� t� � t� j r��t� j �� j �� � �� j 	x � j �� j �� U �� j

�� C �� j ���t� j delete
r��t� j add
r��t�

� ��� a j ��x�� j �a��x��� �

�

� and U denote the modal weak next and until operators� respectively� C denotes the
chop operator� which serves to express the sequential composition of formulae� The
relation symbols used in the context of delete and add have to be �exible� Using
the until operator U we de�ne the usual modalities� �always� and � �sometimes� by
�� �
 ��true U ��� and �� �
 ����� The semantics of the recursively de�ned
abstraction �a��x��� will be such that the equation �a��x��� � ��x���a��a��x���
 is
satis�ed� provided ��a
 is syntactically continuous in a� Moreover� under these
circumstances �a��x��� is the maximal solution of the corresponding equation�
A modelM for a language L is given by a Z�indexed familyD of nonempty domains
and a global interpretation I that assigns �total� functions and relations over D to
the rigid symbols� A valuation �of variables� w�r�t� M is a sort preserving mapping
	 � jXj � jDj � We use 	�x�d� for the valuation 	� which satis�es 	 �x 	 � �	
and 	� agree on all arguments except possibly x� and 	��x� � d� The set of states �
w�r�t�M is the set of all interpretations of the �exible relation symbols as relations
over D� Rigid terms are evaluated by using M and 	 as usual�
As is the case with choppy logics in general� the semantics is based on intervals
of states �RP��
� We use �� to denote the set of all �nite and in�nite sequences
�
 ��
��
�� � � � � of states from � and �� for �� � f� �g� By �i we denote
the set of sequences of length i� The concatenation of intervals is denoted by �
��
Fusion� denoted by ���� is the partial operation on intervals de�ned by�

�
 � �
� �

�
�
 if �
 is in�nite
�
�� � � �
n� � � � � if �
 ��
�� � � � �
n �� �
� ��
n� � � � � �

Both� concatenation and fusion are extended to sets of intervals in the usual way�
For M and a valuation 	 the semantics of formulae is given by ���

M�� � ��� For
atomic formulae
 containing only rigid symbols ��

M�� is either �� or fg� The
interpretation of the propositional connectives is also straightforward� The more
interesting cases are as follows�

��r��t�

M�� �
�
ff
g
 �� j
�r�����t

M���g� for �exible r

��	x��

M�� �
�
f���

M���x�d� j d � Dzg � for x � Xz

����

M�� � �� � ���
 ���

M���

���� U ��

M�� �
�
fAi j i � �g � where

Ai � �i
 ����

M�� � f
�
f�j
 ����

M�� j � � j � ig

���� C ��

M�� � ����

M�� � ����

M��

�����t�

M�� � ���

M������t

M���

��add
r��t�

M�� � f�
��
� � j
� �r
� �
��r� �
��r� � ����t

M���g

��delete
r��t�

M�� � f�
��
� � j
� �r
� �
��r� �
��r�� ����t

M���g

�

For abstractions we have

����x��

M��� �d� � ���

M����x� �d�

��a

M��� �d� � ��

���a��x���

M��� �d� �
�
f���i

� �d� j i � �g �where

�� � a and �i�� � ��x���a��i

Note that quanti�cation is over global variables and that �rst�order formulae are
evaluated in the �rst state of an interval�
The logic presented above can be used to describe computations of certain formu�
lae �plans� that can be viewed as programming language constructs� Elementary
operations are add
r and delete
r for each �exible relation symbol r� while basic
actions are described as procedural abstractions� In order to ease readability we use
the following abbreviations�

if
 then �� else �� � �
 �
� ��� � ��
� ���

choose �x �
��x� begin � end �
 ��x��
��x� � ���x�� � �	�x��
��x� � skip�

�� � �� �
 �� C ��

skip �
 � false

a��x�� � �
 �a��x��� �

For recursively de�ned abstractions we have the equivalence �a��x�����t�
 ���x��t

�a��a��x���
�

� Planning Scenarios and Planning Problems

Planning scenarios are set up by �rst giving a set of sort symbols and a signature
of �exible and rigid relation symbols� In our example �cf� Figure ��� these are� Z �
fblock� door� roomg� Rf � fclosed� holds� in� robg andRr � fbroad� connects� smallg�
respectively� In a second step basic actions are de�ned by procedures� like

pickup�b� � if � r �in�b� r� � rob�r�� � � � x holds�x�
then add
holds�b� else skip �

walk�r�� r�� � if rob�r�� � � d �connects�d� r�� r�� � �closed�d��
then if � x holds�x� then choose x � holds�x�

begin if small�x�� broad�d�
then delete
in�x� r��� delete
rob�r���

add
rob�r��� add
in�x� r��
else skip � end

else delete
rob�r��� add
rob�r�� �

else skip � �

�

From these procedures certain sets of formulae are generated� They comprise action
descriptions� e�ect descriptions� and invariance clauses and they serve to perform
the various speci�c tasks which occur during re�nement planning� Action descrip�
tions specify the cases in which an action �really acts�� i�e� its body di�ers from
skip� For �walk� we obtain two formulae W� and W�� where��

W� � �rob�r�� � connects�d� r�� r�� � �closed�d� � holds�x�� �
�small�x�� broad�d��� � �walk�r�� r��

delete
in�x� r��� delete
rob�r��� add
rob�r��� add
in�x� r��� �

Action descriptions are used to instantiate abstract solution patterns with concrete
solutions� E�ect descriptions indicate the immediate e�ects an action has� They
closely correspond to the action descriptions� For �pickup�� for example� we obtain
only one such axiom�

Peff � �� r �in�b� r� � rob�r�� � � � x holds�x� � pickup�b��
� � �� false � holds�b�� �

Invariance clauses specify the facts that are not a�ected by the action� They com�
prise invariance assertions inv
r��x� �
��x�� which stand for formulae

	 �x ��
��x� � r��x�� � � r��x�� � 	 �x ��
��x� � �r��x�� � � �r��x�� �

where
 is �rst�order� As for �pickup� we have

Pinv � pickup�b� � � �inv
in�b�� r� � true � inv
closed�d� � true �
inv
rob�r� � true� �

stating that �pickup� doesn�t change any of the relations in� closed� and rob�
The above formulae can be generated in a uniform way by a purely syntactic in�
spection of the user�de�ned procedures� and they can be easily proved using� for
example� the equivalences for control structures given in Section ��
A possible format for initial speci�cations �� is

FIN � EF � SAFE � INV �

These four conjuncts describe properties a computation has to meet in order to be
accepted as a possible solution� We have

FIN �
 � � false �
EF �

pre � � �� false �
post� �
SAFE �

pre � � �
safe� � � � � �
safen� � and
INV �
 � �inv
r���x�� �
���x�� � � � � � inv
rm��xm� �
m��xm�� �

�We write walk�r�� r�
 instead of the complete recursive de
nition walk�r��r�
� ��r�� r�
�

�

The formula FIN states that the computations are �nite� The e�ect of a compu�
tation� given by EF� is described by pre� and postconditions which are �rst�order
formulae� In addition to the desired e�ect the initial speci�cation may contain safety
conditions which have to hold in all intermediate states� Again� these conditions are
�rst�order� Finally� INV serves to specify the facts that have to remain unchanged�
Before starting re�nement planning with a concrete problem speci�cation� we have
to state the domain facts� which are relevant for the current scenario� Domain facts
describe those facts which are not a�ected by actions� i�e� remain static in a current
scenario� but which may vary from one concrete scenario to another� These facts
are described using the rigid part of the signature� For our example �cf� Figure ���
we obtain�

DF � connects�D�� R�� R�� � connects�D�� R�� R�� � connects�D�� R�� R	� �
connects�D�� R	� R�� � connects�D	� R	� R�� � connects�D	� R�� R	� �
connects�D�� R�� R�� � connects�D�� R�� R�� � small�A� � small�D� �
�small�B� � �small�C� � broad�D�� � broad�D�� � broad�D	� �
�broad�D�� �

� Abstract Solutions

Below we are going to describe a strategy where abstract recursive patterns are
re�ned to plans made up of basic actions from a lower� more concrete� level� In our
example� the abstract level consists of a scenario where we only have blocks and
rooms which are related by in� The problem of moving an arbitrary set of blocks
from one room to another is then solved by the following recursive plan�

move �s� r�� r��� if 	 b �b � s � in�b� r��� � s �� � then
choose b � b � s begin

delete
in�b� r�� � add
in�b� r�� � move�s� fbg� r�� r�� end else skip �

It moves one block after the other from r� to r�� Here we have used the abstract data
type of sets� The signature of this data type contains the rigid symbols �� �� f� � �g�
and ���� The idea now is to re�ne this plan on a lower level where in addition there
are doors of di�erent size and a robot� but where the �move� operation is no longer
available� In a sense this abstract operation has to be implemented by sequences
of operations from the lower level� In order to enable such a re�nement we have
to allow for certain additional steps on the abstract level� thereby extending the
set of possible computations� To this end� we adopt a method known as stuttering
�Lam��� MM��
� It allows for the insertion of additional steps which however do
not a�ect the facts we are interested in on the abstract level so that we are still able
to prove useful facts about the abstract solution� Stuttering versions of abstract

�

operations still exhibit essentially the same behavior while they leave room for later
re�nements�
Stuttering is introduced by replacing the basic add� and delete�operations in the
body of abstract plans� �move� in our case� by appropriate stuttering versions� So�
delete
in�b� r��� for example� is replaced by

STUTmove � delete
in�b� r�� � STUTmove � where STUTmove is the formula

�� false � � inv
in�b�� r� � �b �� b� � r � r� � r � r�� ��

This allows for inserting certain steps between the essential add� and delete�operations�
However� STUTmove forces these steps to be safe in the sense that they must not
a�ect the in relation for blocks di�erent from the one just manipulated� as well as
in w�r�t� the current rooms r� and r�� The speci�cation of abstract plans together
with their STUT formulae is subject to the process of domain modeling� like it was
sketched in Section 	 for actions and planning scenarios� Replacing the add� and
delete�operations in our example by their stuttering versions using STUTmove in
both cases� we obtain the abstract plan move��s� r�� r��� We are able to prove the
assertions

move��s� r�� r�� � FIN �

move��s� r�� r�� � inv
in�b� r� � b �� s �

move��s� r�� r�� � 	 b �b � s� in�b� r��� �
� �� false � 	 b �b � s � in�b� r���� �

describing termination of the stuttering version of �move�� its invariance properties�
and its e�ects� respectively� Given an initial speci�cation� re�nement planning will
start from abstract plans of this form and proceed by stepwise �lling up the STUT
gaps with concrete plans�

� Re�nement Planning

In our environment� re�nement planning consists in transforming an initial speci�ca�
tion�via intermediate steps�to a concrete plan� For each step there is a correctness
proof guaranteeing the soundness of re�nement and with that provably correct plans�
In the re�nement process we try to construct a plan � the set of computations � of
which is a subset of ��� This is done by transforming �� gradually by a sequence of
intermediate speci�cations

�� � �� � � � � � �n � �

�Note that b� r�� and r� always correspond to the current arguments of the �move� call�

�

to a plan formula �� In each step� we restrict the set of computations� that is we
have �i�� � �i � for all � � i � n�
Now we are going to describe a particular re�nement strategy that adapts a general
and abstract solution to a special problem� It proceeds in three phases�

� Phase �� Find a solution on the abstract level�

� Phase �� Unwind recursive plans�

� Phase �� Fill in missing steps�

We will begin with an initial problem speci�cation which has the form of �� given
in Section 	 and where

pre � closed�D�� � closed�D�� � closed�D	� � �closed�D�� �

in�A�R�� � in�B�R�� � in�C�R�� � rob�R�� �

� � x holds�x�

post � in�A�R�� � in�B�R�� � in�C�R�� �

INV � inv
in�b� r� � �b �� A � b �� B � b �� C� �

safe � � � d�d� �d� �� d� � �closed�d�� � �closed�d��� �

The initial situation as given by
pre is depicted in Figure �� The robot has to carry
blocks A� B� and C to room R�� In that process he is not allowed to change the
position of any other block� As an additional safety condition we have that at most
one door might be open in each situation�
At the top level� planning is done based on the assertions of the given abstract
operations� In our example� Phase � comes up with the abstract plan �move��
introduced in Section � and we simply have to instantiate this general recursive
solution� After the application of substitutions s� fA�B�Cg� r� � R�� and r� �
R� certain proof obligations arise� They guarantee that the concrete speci�cation
is met with respect to the abstract level� i�e� this particular instance of the abstract
solution solves our planning problem modulo the concrete actions we will insert
for the abstract ones� The proof obligations state� The preconditions
pre of the
planning problem imply the preconditions of �move��� i�e� �move�� is applicable in
the current initial state�

pre � 	 b �b � fA�B�Cg � in�b�R��� �

The postconditions of �move�� meet the current goals
post�

	 b �b � fA�B�Cg � in�b�R��� �
post �

and the proposed solution doesn�t violate the invariance conditions required� i�e� the
invariance clauses of �move�� satisfy INV�

inv
in�b� r� � b �� fA�B�Cg � inv
in�b� r� � �b �� A � b �� B � b �� C� �

��

In our example each of the formulae can be proved and we are ready to carry out
the �rst re�nement step

�� � �
pre � �
pre � �
safe � move��fA�B�Cg�R��R��� �

Please note that the safety conditions can not be guaranteed at this level and there�
fore still appear in the re�ned speci�cation�
In the second phase we will perform a symbolic execution of the call move��� � ���
According to the �move�� assertions �cf� Section �� we know that each way of
unwinding the recursive procedure will stop with the desired result� That is all
the unwinding can be done in a single step� However� since we have to make a
choice about the order of movements� it is a better idea to unwind in a stepwise
way� In cases where the order is relevant for the planning process on the lower level�
backtracking to some intermediate situation will be possible this way� Following this
strategy we get

��
pre � �
pre � �
safe �
STUTmove � delete�in�A�R�� � STUTmove �

add�in�A�R�� � STUTmove � move��fB�Cg�R��R����

as the next intermediate speci�cation� Now we are in a situation where Phase 	�
namely the actual planning process at the lower level� may start� Note that in
most cases there will be no uniform way of �lling out the missing steps� In our
example A can be moved through door D� while this is impossible for C� A possible
strategy is to look for an action that deletes in�A�R��� Applying the substitution
x� A� r� � R�� r� � R�� d� D� to W� we can identify �walk� as an appropriate
action by matching the elementary operations given by W� against the intermediate
speci�cation above�

delete
in�A�R��� delete
rob�R��� add
rob�R��� �z � � add
in�A�R��

delete
in�A�R�� � STUTmove � add
in�A�R��

Since delete�rob�R�� � add�rob�R�� doesn�t a�ect the in relation� i�e� implies
STUTmove� we are allowed to replace the second occurrence of STUTmove by
delete�rob�R�� � add�rob�R�� and then apply W� for further re�nement� thus
obtaining

��
pre � �
pre � �
safe � �STUTmove �

�rob�R�� � connects�D�� R�� R�� � �closed�D�� � holds�A� �
�small�A� � broad�D��� � walk�R��R��� � move��fB�Cg�R��R�����

as a new speci�cation� Since it will turn out later in the re�nement process that
the third occurrence of STUTmove in the formula above can be replaced by skip we
already omit it here in order to ease readability�

��

The planning proces continues by analyzing the preconditions of �walk�� First of
all their rigid part is considered� It turns out that connects�D�� R�� R�� �
�small�A� � broad�D��� can be proved from the domain facts and with that there
is no need to backtrack at this point� In a second step� the �exible part of the pre�
conditions is matched against
pre� As
pre satis�es �closed�D�� as well as rob�R��
but no match is found for holds�A� it is suggested to search for an action that has
holds�A� as an e�ect and leaves the relations closed� rob� and in untouched� Inspect�
ing the e�ect descriptions leads to �pickup� and we carry out the next re�nement
step� Using the substitutions b � A and r � R� the preconditions of �pickup�
coincide with
pre and we obtain as a new speci�cation�

��
pre � �
pre � �
safe � �pickup�A� �
�rob�R�� � connects�D�� R�� R�� � �closed�D�� � holds�A� �
�small�A� � broad�D��� � walk�R��R��� � move��fB�Cg�R��R�����

This step is justi�ed as we are able to prove ��in�A�R�� � rob�R�� �
� � x holds�x� � pickup�A�� � STUTmove� using Pinv�

In order to generate the �rst part of the re�ned plan we have to verify that pickup�A�
meets the safety conditions of the problem speci�cation and �nally we �compute�
the facts that hold after the application of �pickup�� These facts comprise the e�ects
of �pickup� and those parts of
pre which are invariant against �pickup�� We prove
the formulae �
pre � pickup�A�� � �
safe and �
pre � pickup�A�� � FIN �
� �� false �
�� � the latter one stating that pickup�A� terminates and
� holds
afterwards� where
� is �in�A�R�� � in�B�R�� � in�C�R�� � rob�R�� � holds�A� �
closed�D�� � closed�D�� � closed�D	� � �closed�D���� After another re�nement
step we therefore obtain

��
pre � �pickup�A� �
�
� � �
safe � �walk�R��R�� � move��fB�Cg�R��R������ �

Proceeding with �walk� in the same way leads to the speci�cation

��
pre � �pickup�A� � walk�R��R�� �
�
� � �
safe � move��fB�Cg�R��R����� �

where
� is �in�A�R�� � in�B�R�� � in�C�R�� � rob�R�� � holds�A� �
closed�D�� � closed�D�� � closed�D	� � �closed�D���� From this speci�cation
re�nement planning proceeds by unwinding move� again�

��

� Related Work and Conclusion

Hierarchical problem solving and the re�nement of abstract solutions are important
methods for reducing costs in planning� They provide a signi�cant restriction of the
search space and help to generate plans in a goal�directed way �Ten��
� Therefore�
many approaches to the creation of abstraction levels and to hierarchical planning
have been developed� e�g� �Sac��� Sac��� Tat��� Wil��� BY��� Kno��� KU��� LG��
�
They comprise two di�erent principles� One is concerned with abstracting the state
space� A hierarchy of abstraction levels is obtained by stepwise ignoring certain
details of the planning domain �Sac��
� In recent approaches these abstractions
are automatically generated �BY��� Kno��� LG��
� The second abstraction method
combines several basic actions to more comprehensive abstract ones �Sac��� Tat���
Wil��
� thereby obtaining some kind of macro operation� Hierarchical planning then
proceeds by expanding these macros�
In our approach� the de�nition of abstract solutions is subject to the process of
domain modeling� The reason is that in our environment abstract plans are often
recursive� We have introduced a method for stepwise re�ning such recursive solu�
tions� This allows in particular for the generation of completely di�erent concrete
solutions in each expansion of the recursive call� depending on the speci�c properties
of the current objects involved�

As for the representation formalism our planning approach relies upon� there is
some relation to the ADL framework of Pednault �Ped��
� Like ADL� our temporal
planning logic uses elementary add� and delete�operations to describe basic actions
and with that also follows the STRIPS idea of using add and delete lists for re�
lations �FN��
� ADL provides a �xed form of action description schemata which
immediately correspond to situation calculus axioms�
In our environment� the add� and delete�operations are basic elements of a program�
ming language that is used to specify actions and plans� This programming language
provides conditionals� nondeterminism� and also recursion� It is completely embed�
ded into a logic as all programming language constructs are temporal logic formulae�
This means in particular� that planning problems �speci�cations� as well as more
or less abstract plans and actions can be �exibly treated on the same linguistic
level� Among others� it is this feature which distinguishes our representation from
formalisms like ADL� Dynamic Logic �Har��� Ros��
� Situation Calculus �MH��
�
or Fluent Theory �MW��
 and which motivated the introduction of yet another
planning logic�

We have introduced an approach to hierarchical planning where abstract recursive
plans are stepwise re�ned to concrete solutions� Each re�nement step includes a for�
mal correctness proof thus guaranteeing soundness of the entire procedure and with
that correctness of the �nal solution� The planning logic we use provides a �exible
means to reason about speci�cations and plans and �nally o�ers the perspective of
treating also nonterminating and concurrent systems�

�	

References

�BY��
 F� Bacchus and Q� Yang� Downward Re�nement and the E�ciency of
Hierarchical Problem Solving� Arti�cial Intelligence� ����	
���� �����

�FN��
 R�E� Fikes and N�J� Nilsson� STRIPS� A New Approach to the Application
of Theorem Proving to Problem Solving� Arti�cial Intelligence� ��	!������

���� �����

�GSS��
 G� Ghassem�Sani and S� Steel� Recursive Plans� In J� Hertzberg� editor�
Proceedings of the European Workshop on Planning �EWSP	
��� pages �	

�	� LNAI ���� Springer� �����

�Har��
 D� Harel� First Order Dynamic Logic� LNCS ��� Springer� New York� �����

�Kno��
 C� A� Knoblock� Automatically Generating Abstractions for Planning�
Arti�cial Intelligence� �����	
	��� �����

�KU��
 M� Kramer and C� Unger� A Generalizing Operator Abstraction� In
C� B"ackstr"om and E� Sandewall� editors� Current Trends in AI Planning�
pages ���
���� IOS Press� Amsterdam� �����

�Lam��
 L� Lamport� The Temporal Logic of Actions� ACM Transactions on Pro	
gramming Languages and Systems� ���	�����
��	� �����

�LG��
 A� L� Lansky and L�C� Getoor� Scope and Abstraction� Two Criteria for Lo�
calized Planning� In Proceedings of the ��th International Joint Conference
on Arti�cial Intelligence �IJCAI	

�� pages ����
����� Morgan Kaufmann�
San Mateo� �����

�MH��
 J� McCarthy and P� Hayes� Some Philosophical Problems from the Stand�
point of Arti�cial Intelligence� In Machine Intelligence �� pages ��	
����
�����

�MM��
 A� Mokkedem and D� M#ery� A Stuttering Closed Temporal Logic for Mod�
ular Reasoning about Concurrent Programs� In Proc� ICTL	
�� pages 	��

	��� �����

�MP��
 Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent
Systems� Springer� �����

�MW��
 Z� Manna and R� Waldinger� How to Clear a Block� Plan Formation in
Situational Logic� Journal of Automated Reasoning� 	�	�	
	��� �����

�Ped��
 E� Pednault� ADL� Exploring the Middle Ground Between STRIPS and
the Situation Calculus� In Proceedings of the �st International Conference
on Principles of Knowledge Representation and Reasoning �KR	�
�� pages
	��
		�� �����

��

�Ros��
 S� J� Rosenschein� Plan Synthesis� A Logic Perspective� In Proc� IJCAI	���
�����

�RP��
 R� Rosner and A� Pnueli� A Choppy Logic� In Symposium on Logic in
Computer Science� pages 	��
	�	� IEEE Computer Society Press� �����

�Sac��
 E� D� Sacerdoti� Planning in a Hierarchy of Astraction Spaces� Arti�cial
Intelligence� �����
�	�� �����

�Sac��
 E� D� Sacerdoti� A Structure for Plans and Behavior� North�Holland� �����

�SB�	
 W� Stephan and S� Biundo� A New Logical Framework for Deductive
Planning� In Proceedings of the ��th International Joint Conference on
Arti�cial Intelligence �IJCAI	
��� pages 	�
	�� ���	�

�Tat��
 A� Tate� Generating Project Networks� In Proceedings of the
th Interna	
tional Joint Conference on Arti�cial Intelligence �IJCAI	���� pages ���

��	� Morgan Kaufmann� San Mateo� �����

�Ten��
 J� D� Tenenberg� Abstraction in Planning� In J� Allen� H� A� Kautz� R� N�
Pelavin� and J� D� Tenenberg� editors� Reasoning About Plans� pages ��	

���� Morgan Kaufmann� Los Altos� �����

�Wil��
 D� E� Wilkins� Practical Planning� Morgan Kaufmann� �����

��

