
In
cr

em
en

ta
lG

en
er

at
io

n
fo

r
R

ea
l–

T
im

e
A

p
p

lic
at

io
n

s

A
n

n
e

K
ilg

er
an

d
W

o
lf

g
an

g
F

in
kl

er

R
R

-9
5-

11
R

es
ea

rc
h

R
ep

or
t

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-11

Incremental Generation for Real–Time Applications

Anne Kilger and Wolfgang Finkler

July 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche In-
telligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was found-
ed in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft,
GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Research
projects conducted at the DFKI are funded by the German Ministry of Education, Science, Research and
Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical knowledge
and common sense which - by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about the
current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of
the building-up phase.

Dr. Dr. D. Ruland

Director

Incremental Generation for Real–Time Applications

Anne Kilger and Wolfgang Finkler

DFKI-RR-95-11

This work has been supported by a grant from The Federal Ministry of Education,
Science, Research and Technology (FKZ ITWM-01 IV 101 K/1).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy in whole
or part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole
or partial copies include the following: a notice that such copying is by permission of the Deutsche Forschungszen-
trum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors
and individual contributors to the work; all applicable portions of this copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für
Künstliche Intelligenz.

ISSN 0946-008X

Incremental Generation for Real�Time

Applications

Anne Kilger and Wolfgang Finkler
German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� D���	
� Saarbr�ucken� Germany

E�mail
 fkilgerj�nklerg�dfki�uni�sb�de

Abstract

The acceptance of natural language generation systems strongly depends on
their capability to facilitate the exchange of information with human users� Current
generation systems consider the in�uence of situational factors on the content and
the form of the resulting utterances� However� the need to time their processing
�exibly is usually neglected although temporal factors play a central part when
directly addressing a human communication partner� A short response time of a
system is crucial for its e�ective use� Furthermore� some applications � e�g�� the
simultaneous description of ongoing events � even necessitate the interleaving of
input consumption and output production� i�e� the use of an incremental processing
mode�

We claim that incremental processing is a central design principle for developing
�exible and e�cient generators for speech output� We discuss the advantages of
parallel processing for incremental generation and several aspects of control of the
generator� An extension of Tree Adjoining Grammar is introduced as an adequate
representation formalism for incremental syntactic generation�

We present the system VM�GEN � an incremental and parallel syntactic gen	
erator based on Tree Adjoining Grammars� It o�ers �exible input and output inter	
faces that are adaptable to the requirements of the surrounding system by coping
with varying sizes of input and output increments� The system
s ability to produce
�uent speech is a step towards approximating human language performance�

� Introduction

The acceptance of software systems in natural language processing� e�g�� human�computer
interfaces� strongly depends on their capability to facilitate the exchange of information
with human users� This article focuses on aspects of intelligent interfaces that provide

�

means that facilitate the automatic generation of spoken language� There are many
scenarios where speech I�O is worthwhile and e�ective� Research in human�computer
interaction �hereafter� HCI	 has explored a subset of these scenarios and evolved the term
of a user in
hands busy or eyes busy environments�� In addition� a professional typist
would produce spoken language as input into a system much more faster than possible by
entering written language on a keyboard� For tasks where the phone provides the most
suitable form of communication channel speech output is still necessary �cf� �Booth
��	�

The design of systems for the automatic generation of spoken language requires the
observation of models of performance that are adequate for the human user at both
representation and algorithmic level �see �Marr
��	� Besides the consideration of desirable
properties of the output of such a system� for example grammatical well�formedness�
adequacy with respect to the contents� and coherence� there is a need to pay attention to
the timeliness of the generation process�

��� Real�Time Constraints for Natural Language Generation

As research results in the �eld of HCI indicate� speech systems are subject to strong
real�time constraints �cf� �Rubinstein � Hersh
��	�

� The most important requirement is that the delay of the output shouldn�t be too
long� Speech output of a system demands the human addressee to preserve steady
attention in order to avoid missing some part of the transitory output� Noticeable
delays get unacceptable as soon as they start to degrade human performance� Even
a cooperative human interlocutor would be unwilling to continue a dialogue with a
computer system if it took too long to produce a dialogue contribution�

� Conversational analysis discloses another time constraint of a dialogue that should
be simulated in human�computer interaction� The delays of the output shouldn�t
di�er too much� Typically� participants in a dialogue are expected to start the
articulation of their contributions after a certain time span irrespective whether
there are di�erent degrees of di�culty in producing speci�c utterances� Otherwise�
the course of the dialogue becomes incoherent and it is unclear whether a possibility
for turn�taking should be utilized�

Therefore� reasoning about When�to�Say� i�e�� the timing of output production�
should be implemented in interactive applications considering high time pressure� In such
applications the demand for real�time processing may be even more important than the
need for a precise and stylish output� This demand a�ects all subtasks of the natural
language generation process in two ways� Time pressure may force the system to restrict
the search space during its choice processes� e�g�� leading to a less sophisticated lexical
choice� On the other hand� a generation component has to produce constructions that
can be easily and quickly analyzed by the human addressee in a time�critical situation�

�

The demands for real�time processing can be ful�lled in several ways� A traditional
sequential system is said to be well�suited for a time�critical application if it has the
ability to

� produce complete utterances fast enough and

� drive �with respect to time	 a speech synthesis component so that it articulates the
utterance in a natural way�

However� there are some time�critical applications that do not allow for this type
of processing� They are often characterized by the fact that the input elements to be
verbalized arrive in a stream of speci�cations� The generator is expected to produce
fragments of an utterance even before the input is complete� Examples of such applications
are systems which simultaneously interpret natural language or report about ongoing
events� Furthermore� for highly interactive applications it might be important to utilize
the addressee�s reaction to the past output in the continued production of the current
utterance� Such applications� that incorporate components for the generation of speech�
should use an incremental processing mode�

��� Incremental Natural Language Generation

In the course of time� the term �incremental� has been used for the description of a speci�c
processing strategy in di�erent �elds of computer science� �Lock ��� p� ���f� de�nes an
incremental compiler as being
characterized by its ability to compile each statement
independently� so that any local change in a statement calls only for recompilation of
the statement� not the complete program� � � � statement insertions� deletions or mod�
i�cations are handled by adding� removing or replacing some elements in the program
structure with appropriate changes in structure pointers�� This de�nition speci�es the
ability to independently process the input increments as a central feature of incremental
computation�

Incrementality has later on been discussed in relation to the task of natural language
analysis� �Wir�en ��� p� �f� states that incremental analysis
is carried out bit by bit
as the text is read or heard� rather than in one go when the text has come to an end� A
new analysis �or a new information state	 is thus computed after each new word or phrase
by re�using as much as possible of the previous analysis�� He distinguishes two kinds of
incrementality�

�
Analysis of piecemeal� left�to�right extensions of a text� We call this left�to�right
incrementality� or LR incrementality for short��

�
Analysis of arbitrary piecemeal changes �insertions� deletions and replacements	 of
a text� We call this full incrementality��

�

While the discussion of types of modi�cations of the input corresponds to the de�nition
of incremental compilation� the description of incremental computation has been adapted
to the needs of natural language processing� Input increments are expected to be related
to each other so that global recomputations may be necessary�

In the �eld of natural language generation� �Kempen � Hoenkamp
�� p� ���� have
introduced the term incremental generation from a psycholinguistic point of view�

Human speakers � � � can start speaking having in mind only a fragmentary idea of what
they want to say� and while saying this they re�ne the contents underlying subsequent
parts of the utterance�� This de�nition emphasizes the point that incrementality means
a simultaneous working of the concerned modules on di�erent parts of the utterance�
As for natural language analysis� the problem of dependencies among choices also arises
during generation and has been characterized by �De Smedt ��a� p� ����
This mode of
generation� which is called incremental generation� seems to serve a system whose major
purpose is to articulate relatively �uent speech� even if it is imperfect or incomplete� Once
a partial sentence has been constructed� the generator will try to complete the sentence in
a maximally grammatical way�� First approaches to de�ne incremental generation from
a computational point of view resulted in rather vague descriptions such as
A cognitive
model of generation should be incremental� or in other words�
on�line�� That is� most of
the processing relating to the output of a word should be done near the time when that
word is output�� ��Ward
��	� Obviously� there is need for a more formal de�nition of the
term �incremental generation��

We begin by giving an application�independent de�nition of incremental processing
which we use for the speci�cation of an incremental natural language generator� Our
de�nition of incremental processing describes the relationships between the consumption�
internal processing� and output of increments by a module�

�� Each given increment triggers its immediate processing in the module so that from
a global point of view�

� processing starts before the input is complete�

� �rst output increments � the so�called output pre�x � are produced before
processing is complete and if possible�

� even before the input is complete�

�� The output increments must result from the processing of the past input�

The �rst requirement implies that the consumption of input increments and the pro�
duction of output increments take place in an interleaved manner� The second constraint
interdicts a system�s designer from calling a natural language generator incremental� which
starts with producing an
ups� unrelated to any input increment� then waits until pro�
cessing is �nished and outputs the real utterance� A system is called an incremental
system if it can work in an incremental processing mode�

�

We formally de�ne the di�erent parts of the description given above by generalizing
the de�nition of �Amtrup ���� Let I�t	� O�t	� and Z�t	 be functions of time describing the
state of the input� the state of the output� and the internal state of a system� respectively�
The system starts up in an initialization state which we describe by the predicate �init��
init�I�t		 holds if no input is given yet� init�O�t		 holds if no output is produced yet� and
init�Z�t		 holds if there has been no processing yet� We de�ne the starting time tstart as
the maximum of all t such that init holds�

tstart � maxft j init�I�t		 � init�Z�t		 � init�O�t		g

The system stops with a completion state which we characterize by the predicate �compl��
compl�I�t		 holds if the input has been completely provided� compl�O�t		 holds if the out�
put has been completely produced� and compl�Z�t		 holds if processing has been �nished�
We de�ne the ending time tend as the minimum of all t such that compl holds�

tend � minft j compl�I�t		 � compl�Z�t		 � compl�O�t		g

An incremental system is de�ned as combining incremental input consumption and incre�
mental output production�

� Processing starts before input is complete� i�e�� � t� � init�Z�t		 � � compl�I�t		

� Output starts before processing is complete� i�e�� � t� � init�O�t		 � � compl�Z�t		

� Output possibly starts before input is complete� i�e�� � t� � init�O�t		 �
� compl�I�t		

Each state of the system is characterized by a function FZ the result of which depends
upon the time� the input given and the initial state of the system��

Z�t	 � FZ�t� I�t	� Z�tstart		 for t � tstart

Each new state of the output is constructed by applying a function FO to the current
input and the current state of the system�

O�t	 � FO�t� I�t	� Z�t		

�We here adapt the de�nition of �Schade et al� ��� p� �	
 who describe the dynamics of a system in
the context of a discussion about the process�related aspects of coherence�

�

The functions FZ and FO may be simple� if for example the tasks allow for pipelined
processing� or very complicated due to dependencies among choices� Concerning temporal
relations� the results of applying FO to later given input increments may outstrip those
of applying FO to previously given elements� Furthermore� the results may depend upon
temporal aspects of the input such as the order of input increments or pauses between
them� since these aspects in�uence both I�t	 and Z�t	� FO is also a function of time
because reasoning about When�to�Say in�uences the output behavior�

The terms input increment and output increment are generally de�ned as the
di�erences between states of input and output for two points in time� Let I be a function
computing the di�erence between two states of input� e�g�� I�t�� t�	 is the di�erence
between states of input at times t� and t�� whereby t� � t�� Let O be a function
computing the di�erence between two states of output� e�g�� O�t�� t�	 at times t� and t��
t� � t��

There are two ways of de�ning incremental interfaces� Qualitative incrementality
is realized by having one component repeatedly hand over complete input information
to another� increasing the quality of the produced output each time� In that case� the
receiving component either has to start from scratch each time or incorporate a function
 I which helps to make the di�erences explicit and use them to trigger speci�c process�
ing� Quantitative incrementality is realized by having the sending component locally
compute several O and hand them over to the subsequent component in a stream� This
kind of incremental processing is referred to by most of the literature cited above� so we
will use it as starting�point for our discussion�

Complex interdependencies among decisions play an important role in incremental
syntactic generators that are de�ned by their ability to realize incremental processing as
introduced above� Enriching previous research on incremental natural language generation
�see beginning of Section �	� we explicitly study two interrelated aspects of this processing
mode for syntactic generation� the consumption of incremental input� i�e� FZ� and the
production of incremental output� i�e� FO�

����� Incremental Input Consumption

In contrast to a non�incremental system� an incremental generator starts computing on
fragments of the input which are handed over to the generator in a piecemeal way� This
can be utilized in order to achieve parallelism� The back�end system providing the input
may run along with the generator� which leads to a reduction of runtime of the whole
system thereby approaching real�time behavior�

Another advantage of an incremental processing strategy lies in the dependencies
among choices made by distinct modules� In a non�incremental system a component
stops working after a complete result has been computed and handed over to the next

�

component� This doesn�t allow for the consideration of the results of a subsequent com�
ponent during the computation of the current component� An incremental system allows
for the consideration of such results� e�g�� via processing feedback information� thereby
increasing its �exibility� During natural language generation� there may be dependencies
among the choices made by the word choice module and the microplanner� Decisions
about syntactic structures� e�g� passivization� depend on features of the chosen words�
The other way round� words have to �t into the resulting syntactic structure to avoid
fusion errors�

In an interactive environment� incremental processing can be exploited to e�ciently
handle user interrupts� The user may signal that it is not necessary to complete the
current sentence while the generator is still in the process of producing an utterance�
This signal could lead to an immediate stop of processing within the generator which
saves computing time as compared to a non�incremental system� that must have �nished
its output before starting to utter it�

By adapting the terms used by �Wir�en ��� for incremental analysis� incremental sys�
tems can be characterized according to the kind of input speci�cations they accept� If new
speci�cations may only be added in a piecemeal way we end up with so�called left�to�
right incrementality� In this case� I�t�	 is always a part of I�t�	 for t� � t�� The status
of each input increment is thereby stable� In fully incremental systems it is possible
to use input increments to modify or even delete previously speci�ed input increments�
Here� there may be t� and t�� whereby t� � t� and I�t�	 is not enclosed in I�t�	� Such a
system has to obviously provide for some kind of internal revision handling�

The design of the input interface for a syntactic generator depends on the features of
the components that deliver the input� e�g�� the microplanner� Since there are numerous
approaches for the de�nition of the components of a natural language generator and for the
design of the interfaces� no general characterization of I�t	 can be given� The speci�cation
of I�t	 for our system VM�GEN is described in Section ������

����� Incremental Output Production

The output interface of an incremental component has to allow for handing over of par�
tial results to the succeeding components� This feature is a prerequisite for building up
cascades of incremental components that can work almost simultaneously� If incremental
output is not realized the system is called partially incremental �cf� �De Smedt ��a�	�
For a natural language generator� the �succeeding component� is the human user forcing
the system�s designers to consider features of human communication�

For applications in the �eld of spoken language production� O�t	 can be further ide�
alized as describing a sequence of words� O�t	 � �w� � � �wn	 for t � tstart� It is important
to distinguish between a set and a list of output increments� since a list encodes part
of its meaning by the order of its elements� This obviously applies to natural language�

!

Furthermore� for spoken output� a word wi that has been uttered cannot be withdrawn
from the list because it has been perceived by the human addressee� This means that an
incremental system for spoken language generation has to realize quantitative incremen�
tality in its output interface� i�e�� for all t� � t� O�t�	 is a pre�x of O�t�	� Each output
increment O is a list of at least one word�

The main advantage of incremental output production lies in the possibility to shorten
pauses before and inbetween output increments� This ability is vital for the production
of spoken output� In Section ��� we discussed the importance of guaranteeing for both
short as well as regular delays when dealing with the task of When�to�Say� Incremental
output production is an important means of helping a system to �exible ful�llment of these
strong real�time constraints� Since the utterance can be started before the output has
been completely computed� the system can try to adequately spread its output increments
over the response time interval�

When time pressure forces the system to start the output even before the input is
complete� the risk of overt repairs is increased� The output pre�x results from decisions
that have been made on the basis of the input given so far� They may con�ict with in�
put increments given later on �see �Kempen � Hoenkamp
!�� �Ward ���� �De Smedt ����
�Finkler � Schauder ���	� Therefore� an incremental generator must be able to realize
three forms of incremental output production�

� The least complicated type of incremental output production is called right�conca�
tenation� It occurs when the verbalization of every incoming part is articulated
following the uttered pre�x without any internal or external restructuring� This
means� �t� the list O�t	 grows monotonically at its end and always encodes a syn�
tactically correct pre�x of a sentence�� For example� if the output pre�x
the� has
already been uttered� and the input increments leading to the modi�er
�rst� and
the noun
meeting� are given and processed in time� they may be uttered in the
sequence
�rst meeting��

� If input increments are given too late to be correctly integrated into the sentence�
overt repair may take place leading to utterances like
The meeting � � � I mean
the �rst meeting�� In that case� there is a point in time t such that O�ti	 is no
longer a valid pre�x of a sentence for all ti � t�

� Sometimes it is possible to hide the repair� e�g�� if changes of syntactic constructions
don�t lead to changes in the already uttered pre�x� Hidden repairs can sometimes
be recognized by pauses or a bad style� as in
The � � � � � ��rst meeting�� When
starting the utterance the system might have planned to immediately utter the
noun when new input necessitated to further specify it by means of the modi�er

�rst�� The delayed integration of the modi�er may lead to an unnatural pause
after the determiner�

�This can be seen as a �valid pre�x property
 for natural language generation�

In a way� the problem of repair during incremental output production decreases the �exi�
bility of the system� since starting an utterance reduces the set of possibilities to integrate
new input increments into the sentence itself� It also decreases e�ciency because of the
extra costs of producing repairs or the processing of alternative solutions� In order to both
ful�ll the time constraints and avoid overt repair� incremental output production should
be used to utter succeeding parts of the sentence as soon as necessary �see Section ���	�
rather than uttering them as soon as possible�

����� Incremental Generation of Spoken Language

To sum up� there are pros and cons for using incremental processing in natural language
generation� Incremental processing in general lacks the ability to utilize a global view of
the given input and therefore often leads to a non�elaborated style� Further disadvantages
are ascribable to the strong interrelationships between the input increments of a natural
language system� related elements cannot be processed independently � as would be the
case in an optimal incremental approach� They therefore cause delays during output con�
struction� Forcing incremental output may lead to overt repair and requires its adequate
handling� Obviously� incremental processing is not expected to be usable in an optimal
way�

Nevertheless� incremental processing leads to gains in e�ciency if the input increments
arrive in a suitable order� The most important advantage of incremental processing is the
increased �exibility of the generator� which allows for simulation of characteristics of spon�
taneous speech" incremental output contributes to the �uency of utterances� Modi�cation�
addition� and deletion of input increments can be processed and enlarge the bandwidth
for the system usage�

We conclude that for speech production it is more suitable to produce output that
ful�lls the time constraints while su�ering from a few imperfections� than to produce
perfectly formulated sentences that can be uttered only after an unacceptable delay�

��� The Incremental Syntactic Generator VM�GEN

In this work� we will introduce the incremental syntactic generator VM�GEN�� As part
of the VERBMOBIL project �Wahlster ��� it was to ful�ll the requirements of real�time
communication in the framework of translation of face�to�face dialogues� VM�GEN dif�
fers from most known generators in its ability to combine incremental input consumption
and incremental output production including simple kinds of overt repair� It uses Tree
Adjoining Grammar �TAG	 for syntactic representation�

�VM�GEN was developed on the basis of TAG�GEN� an incremental syntactic generator that was
used in WIP �cf� �Wahlster et al� ��
�� a system for multimodal presentation of information�

�

The rest of this paper is organized as follows� In Section �� we discuss design principles
for systems realizing incremental input consumption and incremental output production�
In Section �� we describe some features of VM�GEN illustrating how these design princi�
ples can be realized�

� Design Principles for incremental syntactic

generation

In this section we provide the motivation for several prominent design principles of in�
cremental syntactic generation� We explicitly distinguish between requirements on the
realization component of a generator that arise from dealing with incremental input� i�e��
designing FZ� and requirements that originate from the need to produce incremental out�
put� i�e�� designing FO�

The main emphasis in developing our syntactic generator was laid on accomplishing the
di�cult task of interleaving the processes of input consumption and output production�
Our approach di�ers from two research traditions in natural language generation� At one
hand� an increasing number of generation systems working in an incremental fashion has
been developed during the last decade� The systems KAMP by �Appelt
��� MUMBLE
by �Meteer et al�
!�� IPG by �Kempen � Hoenkamp
!�� SOCCER by �Herzog et al�
���
POPEL�HOW by �Finkler � Neumann
�� and �Reithinger ���� IPF by �De Smedt ��a��
the generation component in #DM DIALOG by �Kitano ���� FIG by �Ward ���� and
SYNPHONICS�Formulator by �Abb et al� ��� exploit a processing mode that is at least
partially incremental� These systems represent impressive innovations and realize steps on
the way towards high performance natural language interfaces� However� they altogether
do not cope with the problem of incremental output in its full extent� On the other hand�
our approach di�ers from the big number of systems emerging from research in the �eld of
Arti�cial Intelligence and Computational Linguistics that provide solutions to manifold
phenomena of linguistic competence but do not pay attention to time�critical aspects of
language use�

Basically� our incremental generator pursues the following fundamental subtasks of
syntactic generation�

� The increments of the input to the generator � roughly consisting of lemmas and
semantic relations � have to be translated into a hierarchical phrase structure obey�
ing dominance relations and re�ecting syntactic properties of the selected lexical
elements�

� The parts of the structure must be linearized in a grammatically correct way and
the linearized list of terminals must be handed over to the succeeding component
where the utterance is provided for the user�

��

During processing at the hierarchical and the positional level several situational in�uences
on syntactic choices have to be considered�

The input interface to our generator currently uses a speci�cation of lemmas that were
selected by another component� Therefore� the generator does not have much freedom
during the creation of the hierarchical structure as well as during linearization for the tar�
get language English since word order is rather restricted as compared to other languages
like German� However� the attempt to automatically produce �uently spoken language
output brings a wide range of process�related complications with it�

We are currently working on two components which provide input to the syntactic
generator � a component for lexical choice and a so�called microplanning component that
determines the use of anaphora� propositional format of utterances� and nominalization
decisions besides others� We provide an interactive architecture that enables the consid�
eration of the e�ects of decisions �made inside the components	 on the inner working of
the syntactic generator and vice versa�

��� Consumption of Incremental Input

����� Distributed Parallel Model for Flexible Processing of Increments

As mentioned in Section ������ the processing of several incremental modules overlaps in
time� Therefore� there is an innate relation between incrementality and parallelism� A
combination of several incremental modules forms a cascade of components working in
parallel� as soon as they start to exchange data� This kind of parallelism is called coarse�
grained parallelism� While one component is engaged in consuming and processing its
input� the preceeding component may provide further data� The preceeding component
may even be in�uenced by partial results of the subsequent component which leads to an
incremental architecture with feedback �see� e�g�� the system POPEL ��Reithinger ���	 or
the interactive architecture proposed for VERBMOBIL ��G$orz ���		�

In addition to coarse�grained parallelism� we follow the approach proposed by
�Finkler � Neumann
�� and suggest

�ne�grained parallelism 	Design Principle �

for incremental syntactic generation� Each component of a cascade may itself be conceived
as a parallel model�� Some of the properties that are prerequisites for the use of an

�Besides engineering�oriented considerations� there are psycholinguistic studies that provide some
evidence for the �� � �assumption that the human language processing apparatus is capable of carrying
out di�erent tasks in parallel� ��De Smedt ��a
��

�Again� from a psycholinguistic point of view� there is evidence for �computational simultaneity
 during
syntactic processing� �Garrett ��
 assumes that several types of speech errors� e�g�� some exchange� fusion�
and omission errors� emanate from the simultaneous processing of several units of grammatical encoding�

��

incremental processing mode do at the same time favor distributed parallel processing�
thereby setting up a close relationship between the two modes�

For a component using explicit representation structures� incremental processing ne�
cessitates a suitable segmentation of those structures� In terms of our formal de�nition
of incremental computation� the function FZ % which makes use of the representation
structures % must be carefully designed� Partial structures should correspond to input
increments in such a way that they can be chosen on the basis of those input increments
and be composed without retracting too much of previously built structures� The vari�
ous interdependencies among the decisions made at the syntactic level make their exact
identi�cation vital in order to allow for

independent processing of all independent tasks� 	Design Principle �

The existence of units that may be computed independently from each other suggests
their distribution among separate parallel processes�� In a cascade of distributed parallel
components� several partial results are computed simultaneously within a component and
are forwarded to the next component to be handled by another set of parallel processes�
The runtime of the overall system can thereby be reduced� In this way� an incremental
component bene�ts from the use of a distributed parallel model as an operational base
�see �Finkler
��� �De Smedt ��a�	� We therefore suggest that components for grammatical
encoding should be designed using object�oriented concurrent programming techniques
�cf� �Yonezawa � Tokoro
!�	�

However� exploiting parallelism is only useful if the gain from distributing the compu�
tation among several processes surpasses the costs of synchronization and communication�
It is di�cult to estimate the extent to which the task of natural language generation can
ful�ll this demand� Building a single structure for an utterance does not allow for a com�
pletely independent processing of partial structures� Additionally� the order of output
increments embodies semantic� syntactic� and pragmatic information and forces the gen�
erator to collect and line up several of the parallely computed parts of the sentence before
uttering them� On the other hand� �Kempen � Hoenkamp
�� require from incremental
generators the ability to simultaneously construct parallel branches of syntactic trees in
cases where there are no
cross�branch computational dependencies forcing a systematic
order upon the construction of branches� �cf� �Kempen � Hoenkamp
�� p� ����	� Real�
izing a distributed parallel system makes it possible to explicitly state the independency
of subtasks whereas serial approaches realize a predetermined order of decisions�

From a technical point of view� four main points have to be considered when realizing
a distributed parallel approach �cf� �Bond � Gasser

�	�

� The given problem has to be partitioned adequately into partial problems� As
mentioned above� this means dividing the task of grammatical encoding among a set
of objects� which deal with partial syntactic structures� The objects integrate their

��Ward ��
 uses the term �part�wise parallelism
 for this kind of processing�

��

local structures into a global representation of the current utterance� The de�nition
of an adequate segmentation of syntactic structures is strongly coupled with the
selection and design of the underlying representation formalism �see Section �����
for some of the requirements on the syntactic representation formalism	�

� The bandwidth of possible communications and interaction between the processes
has to be determined� It depends on the interdependencies among the speci�c tasks
of the objects� For a syntactic generator� the objects have to cooperate at the hierar�
chical and at the positional level in order to access parts of the syntactic environment
that are relevant for their local processing� In so doing� they may utilize synchronous
as well as asynchronous communication depending on the circumstances prevailing
�see Sections ������ ������ and �����	�

� Interdependencies between objects necessitate a coordination of the associated pro�
cesses� During syntactic processing� it may happen that an object has to stop its
work to wait for relevant information �e�g�� agreement information	 from a coop�
erating object�� This kind of coordination requires synchronization of the objects�
A global view �see Section ���	 or a central component can be used for controlling
complex cases of cooperation� e�g�� during production of self�repairs of the system
��Finkler ���	�

� The combination of locally computed results into a globally consistent solution con�
stitutes the central task of distributed parallel processing� In the domain of syntactic
generation global consistency is reached when the resulting utterance is comprehen�
sible� This is a weaker requirement than grammatical correctness� Especially the
incremental production of spontaneous speech often leads to utterances that are not
grammatically correct but obey certain well�formedness conditions �cf� �Levelt
��"
see Sections ����� and �����	�

����� Lexical and Syntactic Guidance

An important aspect of incremental generator control deals with bidirectional dependen�
cies between decisions during lexical and syntactic choice� Lexical items in the input to
the syntactic generator may a�ect the generation of certain syntactic structures due to
their grammatical properties� e�g�� subcategorization constraints� This in�uence of lexical
elements on syntactic representations is evident in many modern linguistic theories �for
example� HPSG �Pollard � Sag ��� or GB �Chomsky
��	� It is unreasonable to design a
generator which creates syntactic structures in a purely top�down fashion without paying
attention to the concrete content words at hand� and which tries to incorporate lexical
elements into the structure later on� Instead� �Levelt
�� postulates that the formulation
process should be lexically driven�

��Eikmeyer et al� ��
 describe a production model where �lack of input
 for one of four main processes
of the natural language generator is used to trigger the production of some kind of covert repairs such as
hesitation markers or repetitions�

��

On the other hand� the constructions chosen for the words must �t together to form
correct sentences thereby paying attention to syntactic properties� e�g�� co�occurrence
restrictions of lexical heads� Furthermore� situational factors of the generation process
may in�uence syntactic decisions� e�g�� the choice of passive voice which in turn may
exclude lexical items from the result of word�choice� In an integrated system� syntactic
properties can be used during word choice� A modular approach should provide a �ow of
information from the syntactic level to the word�choice component�

The handling of such bidirectional dependencies� gets more complicated in case of
incremental generation� since temporal aspects and the order of decisions have to be
considered� The demand for the immediate processing of incrementally given lexical
elements forces the generator to build partial syntactic structures without knowing about
the whole contents to be incorporated into the current utterance� The partial structures
embody subcategorization frames that �for example	 restrict the category of new lemmas
to be integrated into the ongoing utterance� Generally� the word�choice process for the
new lemmas can be characterized as syntactically guided� Summing up the discussion
above�

lexical and syntactic guidance 	Design Principle �

should be realized within the generator�

����� Requirements on the Syntactic Representation Formalism

A natural language generation system working in an incremental mode imposes several
constraints on the shape of its underlying representation formalism and the operations
related to elementary structures�

In general� input increments may arrive in steps and in an arbitrary order� Therefore�
neither pure top�down nor bottom�up processing are suitable for the e�cient expansion
of syntactic structures� As discussed by �De Smedt � Kempen
!�� syntactic structures
may grow in upward or downward direction� or be modi�ed by insertion of additional
elements� Upward expansions for the syntactic structure may be suitable� e�g�� when
a head is speci�ed as input after some of its arguments� Filling the subcategorization
frame of a lexical head with a structure of an argument is an example of downward
expansion� Insertion can be illustrated by means of a subsequent speci�cation of a modal
or a demand for negation of a predicate� depending on the realization of such phenomena
in the grammar formalism and theory� The combination operations of the representation
formalism must support the kinds of expansion mentioned above� In Section ��� we
present an extension of Tree Adjoining Grammar that allows for

�exible expansion operations� 	Design Principle �

�There are similar interdependencies between microplanning and syntactic realization� �Hovy ��

suggests the interleaving of �prescriptive planning
 and �restrictive planning
 to enable a system to guide
grammatical encoding by both the conceptual input and by language�speci�c properties�

��

As mentioned at the beginning of Section �� syntactic generation comprises the con�
struction of hierarchical and positional structures� If there is a separate description of the
syntactic rules that de�ne hierarchical and positional constraints� di�erent serializations
of nodes of a hierarchical structure can be encoded without necessitating a duplication of
the structures� As a consequence� hierarchical structures can be chosen during syntactic
generation without considering decisions about their linearization� These decisions might
be made dynamically while the input is processed incrementally� re�ecting� e�g�� the input
order of the concerned increments� as realized in the approach of �De Smedt ��a�� We
suggest the

separation of the representation of hierarchical and positional con�
straints 	Design Principle

primarily for reduction of redundancy during processing�

��� Production of Incremental Output

����� Coping with Temporarily Incomplete Input Information

In the course of incremental input consumption� the input information that is used for
generation is temporarily incomplete� As long as the input is expected to be completed
later on� decisions can principally be postponed until the missing information is available�
For the production of incremental output� arbitrary delays are not acceptable because of
the time constraints on the output interface� Therefore� decisions must be made regard�
less of the incomplete state of the input information thus opening up a search space of
alternative continuations that can be explored by using breadth��rst or best��rst search�

During breadth��rst search� the generation process has to deal with a number of com�
peting alternatives �cf� �Ward ���� �Finkler � Neumann
��	� Such a model allows for
the simultaneous creation of paraphrases� that can be utilized in case the processing of
the favored alternative runs into a failure� The disadvantage of this kind of parallelism
is the high processing e�ort caused by the branching factors that function as multipliers�
Furthermore� the production of incremental output changes the state of the global system
so that some of the paraphrases built previously cannot be used to correctly continue the
utterance� In other words� �classical� backtracking to intermediate states of the system is
no longer possible if some output increments have already been articulated� The uttered
pre�x cannot be withdrawn because the hearer may already have perceived it and even�
tually even have reacted to it� In addition� humans frequently refer to the reparandum
while producing a self�repair �cf� �Kempen ���	� Such results also cannot be obtained by
simple insertion of paraphrases�

In a best��rst approach only one working hypothesis can be considered as the basis
of further processing� In case of failure previous decisions have to be withdrawn and
another solution has to be computed taking the output pre�x so far into account� The

��

degree of e�ciency strongly depends on the quality of the choice mechanism used to select
the most favorable alternative� A best��rst processing strategy performs early decisions
between competing alternatives thereby improving the chance of shortening the delay
between the articulation of single parts of the current utterance� Furthermore� it makes
the need to continue the expansion of the alternative structures that haven�t been selected
for articulation obsolete�

Although both approaches can be used for incremental processing� we recommend the
best��rst approach for the reasons mentioned above� We therefore introduce

best��rst search 	Design Principle �

for our incremental natural language generator�

����� E�ects of Incremental Output Production on Syntactic Processing

Resuming Design Principle �� the representation formalism used in an incremental syntac�
tic generator should allow for the separation of hierarchical and positional rules� There are
several alternative approaches that ful�ll this requirement and agree with the overall goal
of incremental output production in a more or less bene�cial way� Most important are
their di�erences with respect to the size of syntactic structures that can be hierarchically
composed and linearized on the basis of the input information at hand" this in�uencing
the size of output increments and the length of inter�sentential delays� If linearization
constraints refer to relatively large hierarchical structures % as is the case for context�free
rules like �VP� Subj V Obj IndirObj� % information about all concerned elements must
be given before the structure can be chosen and its output can start� Alternatively� those
structures can be chosen on the basis of incomplete information� thereby running the risk
of overt repairs�

In our work we have concentrated on studying e�ects of incremental output production
on syntactic processing� i�e�� the design of FO� and we are therefore interested in examining
approaches that allow for the production of rather small output increments with short
delays� To this end� the best candidates seem to be syntactic representation formalisms
that allow the handling of minimal structures on the hierarchical and the positional level
so that input increments can be almost directly mapped onto output increments� This is a
step towards the �independent processing of independent tasks� in syntactic generation �see
Design Principle �	� There are principally at least two ways of ful�lling this requirement�	

� LD�LP�style approaches % e�g�� �VP � fSubj� V� Obj� IndirObjg & ��Subj�V�
V�Obj� V�IndirObj	 � � � 	� % allow for choosing hierarchical and positional rules
depending on the di�erence in amount of input information� This decoupling makes
it possible to isolate parts of hierarchical structures that can be linearized and

	For a detailed discussion see �Kilger �	
�

��

uttered �e�g�� subject and verb	 while postponing the handling of the rest �object
and indirect object	�

� Some representation formalisms �e�g� MC�TAGs� see �Weir

�	 allow the de�nition
of sets of small hierarchical structures that have to be combined in the course of
natural language processing� The combination operations determine the �nal hi�
erarchical structure which additionally de�nes the word order % e�g�� the set of
rules fVP � Subj VP� VP � Obj VP� VP � V VP� � � � g plus constraints for the
derivation�

Both approaches allow for a

separate processing of hierarchical and positional rules� 	Design
Principle �

For incremental syntactic generators� the interdependencies among choices are further
increased if incremental output is to be realized� Incremental output production intro�
duces the uttered pre�x of the current sentence as an additional constraint for further
syntactic processing ��Finkler � Schauder ���	� If new input increments are consumed�
they may be translated into expansions of hierarchical and positional structures that
have e�ects on the pre�x� However� during the production of spoken output� the pre�x
has already been �handed over� to the human addressee and is therefore not available
for local change any more� Therefore� an incremental module should have the following
capabilities�

� to be able to preserve the output pre�x by avoiding the necessity of changes �by
exploiting alternatives or by realizing hidden repair	� If this is not possible then it
should have the ability

� to inform the succeeding component about necessary modi�cations using an appro�
priate method �by realizing overt repair	�

Obviously� overt repair impedes communication with the human addressee� Firstly�
there is a higher e�ort involved in understanding repaired utterances because each repair
must be unravelled by the addressee� Secondly� a high frequency of overt repairs diminish�
es the reliability of the uttered pre�x� Therefore� the uttered pre�x should be preserved�
This requirement in�uences the design of incremental generators� In addition to the bidi�
rectional dependencies between word choice component and syntactic generator� as stated
in Section ������ the production of incremental output causes additional interdependencies
that are due to the timeliness of decisions� Decisions that are made during generation
might be correct in structure but inappropriate with respect to the progress in time� that
is manifested by the output pre�x� For example� the uttered pre�x
We will meet in
the conference room� plus the linearization constraint �ADJ � N� should in�uence the

�!

hierarchical level� and might lead to the realization of a relative clause instead of an ad�
jective phrase for the input increment
small� �
We will meet in the conference room
� � �which is small�	� There are several ways of realizing these bidirectional dependencies�
In a modular approach� they can be modelled by realizing feedback between components�
Alternatively� an integrated approach facilitates the realization of interdependencies by
sharing task�speci�c knowledge�

The second demand concerns all components of a cascade with incremental interfaces�
The �interface languages� must provide means of describing modi�cations in the output
of the sending component� allowing the receiving component to react on those changes
appropriately� It is more or less easy to realize language constructions that describe
modi�cations in �arti�cial� interfaces� The central problem of incremental output of nat�
ural language generators is that there is no arti�cial but a natural interface to a human
hearer or reader� and that is the natural language� It prede�nes possible methods to
convey overt repairs to the receiver� In a large corpus�based analysis of repair scenar�
ios �see �Finkler ���	 we study overt repairs in human language use in order to develop
methods that allow generators to imitate this behavior� Realizing

adequate repair strategies 	Design Principle �

is important for incremental output production�

����� When�to�Say

The decision about When�to�Say� i�e�� the timing of output production O�t	� is crucial for
the overall behavior of a generation system� One extreme position is to utter immediately
� running the risk of having a pre�x of the utterance that necessitates expensive processing
for repair later on� The other extreme is delaying the output until the utterance has been
completed� In this case� the system is only partially incremental and the long initial delay
invalidates the quest for �uency in the output� In order to allow for adequate output
behavior� the system has to preserve the incremental processing mode and reduce the
number of repairs as well� This goal can be approached by applying some heuristics that
describe the tactical use of delays in the output�

Research in HCI �see Section ���	 con�rms that output delays are acceptable and even
natural as long as their length is limited and doesn�t vary too much� For the production of
spoken output� it seems useful to de�ne a threshold for output production that can be set
according to situational parameters such as time pressure and model of the hearer� The
permitted delay may be used for building a reliable part of the utterance� Furthermore� the
output increments� i�e� the O� should be oriented at constraints resulting from empirical
studies in order to avoid pauses at unnatural positions in the utterance� For example�
it might be practical to gather partial structures until a complete phrase is created and
then handed over to the articulation component as a whole� In order to ful�ll both aims
described above we demand the

�

decoupling of surface generation and output production� 	Design
Principle �

If the time threshold is exceeded while the system is still waiting for input information
in order to produce the next output increment�

default handling 	Design Principle ��

should be used to allow for adequate output behavior� It has to be combined with suitable
repair strategies for the cases where input increments given later on contradict with the
chosen defaults� Since this situation is comparable to fully incremental processing� that
includes the modi�cation of increments� it should be possible to use the same repair
strategies for both cases�

����� Monitoring and Self�Repairs of the System

During incremental generation the utilization of delays cannot completely exclude cases
where the constraints resulting from previous decisions lead to contradictions during the
verbalization of successive input increments��
 In order to cope with these problems� they
�rst of all have to be detected by the system� This task is called monitoring� The e�ec�
tiveness of controlling the correction of such failures supervising depends on the amount
of available information� For both tasks� monitoring and supervising� there should be
direct access to the internal state of the generator� This allows for the localization of the
source of the failure� as well as the reuse of partial structures during repair� We therefore
introduce

production�oriented monitoring and control� 	Design Principle ��

In contrast to this approach� the so�called �perceptual theory of monitoring� ��Levelt
��	
describes monitoring as merely analyzing the inner or overt speech without direct access
to the processes during grammatical encoding�

Several strategies for repair� e�g�� overt or hidden repair� can be utilized in systems
to manage the continuation of a sentence� In each case of a retracing repair� decisions
must be withdrawn to perform a repair� i�e�� structures have to be replaced� This can
a�ect other structures that are related to them� There is a need for fast identi�cation of
the a�ected structures and the access to them� Storing the course of development of the
current syntactic structure in a reason maintenance system supports such revisions �see
�Finkler ���	� Another way to identify a�ected structures and to �nd syntactic alternatives
consists of parsing the current output� This necessitates the use of an incremental parser
that allows for the analysis of the pre�x of an utterance �see� e�g�� �Poller ���	�

The whole process of repair must be globally synchronized with the ongoing computa�
tion of the generator in order to guarantee consistency� To give an example� a modifying

�
These phenomena naturally occur in spontaneous speech when humans �talk themselves into a corner�

��

adjective may be entered after the modi�ed noun has just been uttered� The system can
try to realize a hidden repair by triggering the selection of a relative clause� However�
this solution can only be achieved if further output is delayed until the relative clause has
been inserted and uttered�

� VM�GEN

��� Architecture of the Syntactic Generator of VERBMOBIL

The system VM�GEN is designed for the incremental generation of natural language
utterances� As will be explained later in this section� the generator ful�lls most of the
design principles discussed in Section �� Its architecture is illustrated in Figure �� Since
we realize lexical guidance� the input �goal of the utterance	 consists of content words
and the semantic relations between them� These entities and relations can be forwarded
to the generator regardless of their order and length of pauses contained thus providing
a �exible interface to the component which calls VM�GEN� One object in a distributed
parallel system is created for each input increment� Each of these objects runs through
four processing phases that are illustrated as generator components in the �gure� In the
Input Interface� an adequate syntactic rule�� is chosen according to the respective input
information� Objects in the Phrase Formulator try to combine their locally managed
syntactic structures by exchanging relevant data� In the Linearization Component� they
serialize their structures and compute the in�ected forms of the lemmas� According to
Design Principle � % �decoupling surface generation and output production� % incremen�
tal output is realized in the Output Interface by synchronizing the output activities of the
single objects� Since each object rather changes its state than maps some represented
structure into the next processing level� it still belongs to the pool of active objects which
can co�operate with objects at other levels� This characteristics of the system makes it
a partially integrated approach� The Monitor watches over the communications of the
objects and is also used for purposes of controlling the system�s progress�

The following sections deals with the representation formalism for syntactic structures
and the components of VM�GEN in detail and illustrates the internal processing using a
basic example�

��With the term �syntactic rule
 we refer to an elementary tree of the Tree Adjoining Grammar we use
�see Section �����

��

goal of the utterance

�
�

�
� parameter settings

�
�

�
�

��
��

INPUT

INTERFACE

consumption of

incremental input

PHRASE

FORMULATOR

combination of

dominance structures

LINEARIZATION

COMPONENT

serialization of

terminals

OUTPUT

INTERFACE

production of

incremental output

�

�
�

���
�

�I

�
�

�
���

�
�

��
MONITOR

�
�

��

�� ��
� �

Tree
Adjoining

Grammar

�
�
�
�
�
��

b
b
b
b
b
b
b
b
bb

bb

output string

�
�

�
�

Figure �� Architecture of VM�GEN

��� Ful�lling the Requirements on the Representation

Formalism

As pointed out in �McDonald � Pustejovsky
��� �Joshi
!a�� �Shieber � Schabes ���� and
�McCoy et al� ���� Tree Adjoining Grammars �hereafter� TAGs� cf� �Joshi et al� !��
Joshi
�b�	 are a suitable means of implementing a representation formalism in natural
language generation systems� This is mainly due to their ability to provide an extended
domain of locality to state syntactic dependencies within elementary structures� Each
TAG de�nes a set of elementary trees that is split into initial trees and auxiliary
trees� Initial trees describe phrase structures� their internal nodes being associated with
nonterminal labels� all their leaves with terminal labels� Auxiliary trees represent recursive
constructions by de�ning a speci�c kind of leaf � the foot node � that is labeled with
the same nonterminal as the root node of the tree� Elementary trees of a TAG can be
combined using the operation adjunction� which replaces an internal node X of one tree
with an auxiliary tree whose root and foot nodes are labeled with the same nonterminal
X �see Figure �	� The operation adjunction together with the depth of the concerned

��

trees which forms the context for the combination makes TAG a mildly context�sensitive
formalism� These characteristics make it an adequate candidate for the description of
natural language�� �cf� �Joshi
�a�� �Weir

�	�

�
�
�
�
�
�

�
�
�
�
�
�T

T
T
T
T
T

T
T
T
T
T
T

S S

X X

�� ���� ��
	
		

	
		

A
AA

A
AA

��
	
	
		

	
	
		

A
A
AA

A
A
AAv�

v�
X

X

v�
v�

X ��
Adjunction

��

Figure �� Elementary Trees and Adjunction in TAGs

The relevance of TAG to natural language processing results from the fact that its
extended domain of locality allows for the speci�cation of various related units within
one elementary structure� For example� a predicate and all its arguments can be de�ned
within a single elementary tree� TAGs can localize syntactic constraints such as agreement
information or subcategorization constraints� thereby realizing adequately sized syntactic
units�

Nodes of TAG trees have been associated with feature structures that lead to TAGs
with uni�cation �UTAGs� see �Kilger ���	��� Complex relations between syntactic struc�
tures can be encoded into compact units� which reduce redundancy in the grammar and
increase the generative power of the formalism� For UTAGs� trees are interpreted as
pre�combined context�free rules that easily allow for the adaption of PATR�II�style uni�
�cation �cf� �Shieber et al�
��	� Each node is associated with a speci�cation list that
describes its features and those of its sons� During adjunction with uni�cation� the fea�
ture structure of the adjunction node is transferred to the auxiliary tree� The feature
structures of the root node and the foot node of the auxiliary tree are connected with the
feature structures of the supertree and the subtree of the adjunction node� For a detailed
de�nition and a discussion of di�erent approaches to implementation see �Kilger ����

Several extensions of the TAG formalism have been developed some of which are
relevant to the task of incremental generation�

The combination operations of the representation formalism must support the kinds
of expansion required for Design Principle � % upward expansion� downward expansion�

��Indeed� discussion is going on about the kind of extension of TAGs that is needed for the represen�
tation of various syntactic phenomena�

��Another approach to the association of TAGs with feature structures � FTAG � has been de�ned by
�Vijay�Shanker � Joshi ��
�

��

and insertion� In addition to adjunction we use the substitution operation as de�ned for
TAGs with Substitution �cf� �Schabes et al�

�	� TAGs with Substitution de�ne a
third kind of leaf �called substitution node	 that is associated with a nonterminal label
and marked with a downward arrow in order to distinguish it from foot nodes� During a
derivation� it has to be replaced by an initial tree the root of which is labeled with the same
nonterminal��� For UTAGS� Substitution with uni�cation is de�ned as unifying the feature
structures of the substitution node and those of the root node of the substitution tree� The
two combination operations adjunction and substitution support �exible combinations of
partial syntactic structures by realizing all three kinds of expansions �see also �Finkler ����
�Schauder ���	�

Using a lexicalized grammar directly supports Design Principle � % �lexical and syn�
tactic guidance�� Each tree of Lexicalized TAGs�� �cf� �Schabes et al�

�	 speci�es a
head element and its syntactic features� Substitution nodes are used to de�ne details of
the realization of its complements within separate trees� The head of a tree serves as
anchor in the lexicon� making it possible to select the tree when its anchor is speci�ed in
the input to the syntactic generator�

The separation of hierarchical and positional structures as required by Design Prin�
ciple � is re�ected by another extension of the TAG formalism that has been especially
designed for the demands of our incremental generation system� TAGs with Context�
Dependent Disjunctive Linearization Rules �CDL�TAGs� cf� �Kilger ���	 de�ne hier�
archical relations within elementary domination structures and restrict possible orderings
of their nodes by linearization rules��� The rules are headed by keys that refer to the syn�
tactic context in which they may be used� The left part of Figure � illustrates a VP�node
the subtree of which represents an English verbal phrase�

VP

V SUBJ� ACCOBJ�

PPPPP

�� �yn�question � � � �
�declarative � � � �
� � � � NP

SPECIFIER� N MODIFIER�

PPPPP

�� �any � � � �
�short � � � �
� � � �

Figure �� Examples for English Linearization Rules

Its linearization rules include statements about word order in declarative sentences�
yes�no�questions� and others� The context of an object is inherited by means of uni�ca�
tion� Other keys �like �any� or �short� at the NP�node in Figure �	 distinguish word order
rules that di�er with respect to their suitability for speci�c combinations of generation
parameters�

��This operation is the same as the derivation operation for Context�Free Grammars� Therefore it
does not extend the generative power of the TAG formalism�

��Lexicalized TAGs have also been used in the �elds of natural language parsing and machine translation
�see �Abeill�e � Schabes ��
� �Abeill�e et al� ��
��

��This approach is based on the de�nition of LD�LP�TAGs by �Joshi ��b
�

��

Each word order rule of a group is encoded as a regular expression that may contain
numbers and symbols� The numbers refer to the sons of the node �i for the i�th son	�
the symbols to optional elements that can be incorporated into the phrase� The following
expression might be associated with the VP�node of Figure ��

�� � � �

�declarative ��advp�
j�
 � � � � �advp�� � � �� � � ��
� � ��

� � � �

The linearization rule shows two alternatives of �lling the �rst position of a verbal
phrase in the declarative linearization context� either the subject �referred to by ���	 or
exactly one adverbial phrase �referred to by �advp�	� The symbols that denote adjuncts
must distinguish the elements and be detailed enough to express all aspects that in�uence
word positions� They have to be associated with the auxiliary trees that insert the modi�
fying structure and may be inherited by the VP�node� e�g�� through the feature structures
that result from adjunction�

Because of the power of the linearization rules� the depth of TAG trees % that has
been traditionally used to determine word order by guiding combination operations %
is only used for a restricted set of applications� The linearization rules refer to modi�er
auxiliary trees �cf� �Schabes � Shieber ���	� a sequence of which can be adjoined into one
and the same internal node� They only allow the introduction of compact sequences of
nodes between two sons of the adjunction node by ignoring the depth of auxiliary trees�
i�e�� the path from root node to foot node��� To realize cross�serial dependencies� for
example� we use predicative auxiliary trees in combination with the depth of initial trees�

In addition to the formal properties of the representation formalism� the design of the
grammar rules strongly in�uences the behavior of the system� For VM�GEN we have
designed the grammar in a way that is strongly in�uenced by criteria of performance�
sometimes leaving aside criteria of linguistic theory� As a prerequisite for Design Princi�
ple � % �independent processing of all independent tasks� % elementary trees should be
adequately sized to cope with fragmental information of incrementally given input� For
example� the syntactic structure of a noun phrase can be built and extended by some
modi�ers without knowing its syntactic function within the phrase� at least as long as the
need for in�ection can be postponed� Thus� the elementary trees that are chosen on the
basis of a lexical element should not specify the syntactic function� Instead� their root
nodes should be associated with phrasal names �e�g�� �NP�	�

Regarding the downward expansion of structures� substitution nodes of TAG trees
should not be labeled with phrasal names since a verb often permits several alternatives

��Our usage of adjunction of modi�er auxiliary trees is similar to the operation of �furcation
 as provided
by Segment Grammar� cf� �De Smedt ��b
�

��

for realizing its complements� The verb
to allow�� for example� accepts both a nominal
phrase �
he allows �the party��	 and a subordinate clause �
he allows �that they have a
party��	 as one of its complements� During incremental generation it might often be the
case that a tree is to be chosen for a lexical item before its complements are realized� We
have decided to associate substitution nodes with labels that re�ect the syntactic function
of the represented complement� e�g�� �SUBJ� or �ACCOBJ��

The gap between substitution nodes labeled with syntactic roles and root nodes labeled
with phrasal names is �lled by a set of �intermediate structures��� representing the relation
between head and argument� The small initial trees represent relations between head
and complement� e�g�� SUBJ�NP�� Relations between head and adjunct are handled by
auxiliary trees� Root node and foot node are used to refer to the phrase of the modi�ed
head� a substitution node is used to introduce the modifying phrase� These trees do not
de�ne a lexical head but can be interpreted as anchored in a lexicon of semantic relations�
The combination of elementary structures within our syntactic generator is described in
Section ������ examples for intermediate structures are illustrated in Figure �� Page ���

Finally� redundancy in the grammar is reduced by encoding part of the syntactic
knowledge within underspeci�ed grammar trees and storing some word�speci�c informa�
tion in a lexicon which is dynamically compiled into an instance of the currently chosen
tree�

��� Consumption of Incremental Input

We use one basic example for the discussion of the generator components which illustrates
the central features of our system� Figure � visualizes the input information for the target
sentence
We�ll meet in the small conference room at eleven o�clock�� Depending on
the timing of input increments� the result might be a sentence with a less adequate word
order %
We�ll meet at eleven o�clock in the small conference room�� or even an utterance
containing a self�repair�

����� The Interface

We de�ned the language of the input interface of VM�GEN in a way that ensures a high
�exibility of specifying input information thus making the system suitable for a wide range
of applications� The following properties of the input language ful�ll several of the design
principles as stated in Section ��� and contribute to the �exibility of the system�

� It is possible to specify input increments independent of each other and with a vary�
ing amount of information enclosed� This means that I�t	 is de�ned as a sequence

��Intermediate structures are similar to the �intercalating segments
 used by �De Smedt ��a� p� ��
�

��

of information packages A�� A�� � � �� An yet to be composed��	 I can easily be
identi�ed as the distinctive Ai that make the time dependent modi�cation of the
input explicit� This gives the calling component the freedom to hand over known
data �from underspeci�ed elements to groups of input increments	 at any time�

� There is no need for a prede�ned order of the input increments when encoding the
input� Our interface o�ers the �exibility of handing over input increments in any
possible order and with arbitrarily long pauses between them� VM�GEN does not
interpret the order of input increments as encoding information about� e�g�� topic
and focus��
 Since the system is to be usable in situations where the input can
be dynamically extended or changed� our interface allows for the modi�cations of
previously given input increments� i�e�� change of features or deletions of elements�
thereby realizing full incrementality in the sense of �Wir�en ����

clause

	

�
�declarative

�

�

�
meet

� future��
� indicative
� active

agent

�

�
�

�ppron�

� �st
� pl

PPPPP
location	

�
�in

location	

�
�conference

room

property	

�
�small

temp	spec	

�
�at

temp	spec	

�
��hour�spec�

� �� a�m�

�

�We
ll meet �in the small conference room� �at eleven o
clock���

�We
ll meet �at eleven o
clock� �in the small conference room���

Figure �� Example for VM�GEN

Let�s take a closer look at the aspects of the input interface of VM�GEN mentioned
above� Packages of information for content words and semantic relations are realized

�	The notation is used according to our de�nitions at Page 	�
�
Contrarily� �De Smedt ��a
 uses the input to re�ect the degree of conceptual accessibility of parts of

the message�

��

as suitable increments of the input to VM�GEN� They correspond to the nodes and
edges of the input network as shown in Figure � and are used as starting points for the
syntactic generation processes� Their speci�cation starts either with the keys �entity�
or �relation� �cf� Figure �	� The packages are labeled with unique reference names that
carry no meaning but can be mnemonic as in our example� It is possible to hand over
underspeci�ed input and to complete it later on� using the same reference name each time�
The speci�cations of entities and relations may be combined to larger input increments by
grouping them together in a list� Those input increments provide a larger context for the
generator that can be used to avoid revisions� Increments may be subsequently changed
by de�ning di�ering features in a package with the key �changed�entity�� Finally� the
interface is able to cope with any order of input increments by storing given increments
and managing the addition of missing information using the unique reference names�

A subset of the input increments for our basic example is given in Figure �� For reasons
of clarity� the input increments in the example are sorted according to the dominance
relations between the respective lemmas� They can be given in another order� as well�
For each speci�cation of an utterance� a technical category ��UTT�PAR��� in the �gure	
has to be speci�ed as the uppermost element of the hierarchy� providing some global
settings for the utterance� It is related to the phrase that constitutes the utterance�
e�g�� a verbal phrase for a sentence� or a nominal phrase for a caption to be verbalized�
At �rst sight� the input to the syntactic generator seems to encode a structure which
already encodes too many surface�related decisions� However VM�GEN is designed to
interact with the microplanning component in cases of input inconsistencies identi�ed at
the syntactic level of processing�

�� parameter setting for the utterance
�entity UTT�PAR�� ��intention declarative���

�� verb as linguistic head of the utterance
�entity VP�� ��cat v� �head �meet�� �tense future��� �voice active�

�mood indicative���

�relation UTT�PROP�� ��func clause� �regent UTT�PAR��� �dep VP�����

�� noun phrase as agent
�entity NP�� ��cat ppron� �num pl� �pers ����

�relation REL�VP�� ��func agent� �regent VP��� �dep NP�����
� � �

Figure �� Fragment of the Input Speci�cation for VM�GEN

Each input increment that is handed over to VM�GEN triggers o� the creation of
one or more objects in a distributed parallel system �realization of Design Principle �
% ��ne�grained parallelism�	� For each input increment of the type �entity� there is an
object responsible for the verbalization of the included content word� An example for the
creation of additional objects is the speci�cation �de�nite� for a noun phrase that leads
to the creation of a determiner object� A �relation��increment in the input triggers the
creation of an object which is responsible for �nding a syntactic relation for realizing a
semantic role� These objects serve as mediators between the �entity��originated objects�

�!

All objects are organized in a hierarchy that is also determined by dependency relations
speci�ed in the input�

In the Interface� the �rst task of an object is to choose an adequate syntactic struc�
ture considering the speci�ed information� Referring to the lexical guidance aspect of
Design Principle � % �lexical and syntactic guidance� % objects which manage the ver�
balization of content words select an initial tree from the lexicalized TAG� using given
syntactic features and the current parameter settings to choose between alternatives� The
selection is performed by traversing a systemic network distinguishing various values of
di�erent attributes such as �voice� or �focus�� The outcome of the initial tree selection
yields the locally best valued elementary tree for the input increment� thereby ful�lling
Design Principle � % �best��rst search��

Semantic relations speci�ed in the input language are handled by separate objects�
They are translated into small structures realizing the syntactic relation between heads
and arguments �see Section ���	� In order to do so� the objects inspect a larger set of
possible intermediate structures on the basis of the given semantic relation and �lter out
inadequate trees by communication with the two objects that manage the related lemmas�
As result of �ltering� one most favored structure remains as in the case of objects realizing
content words�

After the initialization phase� the objects change their state by entering the Phrase
Formulator�

����� The Phrase Formulator

Objects in the Phrase Formulator�� have to solve the global task of constructing the
hierarchical representation of the current utterance while preserving the local management
of their structures� The latter requirement is the presupposition for the e�ective use
of �ne�grained parallelism� The structures that are locally managed by single objects
shouldn�t be collapsed into larger shared structures by combination operations since this
kind of processing would depart from parallel computation�

Each object maintains a local context containing information about relevant partners
for communication in order to facilitate cooperation� As mentioned in the previous section�
this information is extracted from the input speci�cation of relations� Objects managing
the transfer from semantic to syntactic relations communicate with both related objects�
thereby extending the local contexts of those objects�

Depending on the type of tree that is operated on by an object in the distributed par�
allel model� there are di�erent methods of combining syntactic structures� Our approach
favors a prescribed direction of activity during combination operations which prompts the

��The design of the Phrase Formulator has been in�uenced by the experience that we gained from the in�
cremental and parallel handling of structure combination in POPEL�HOW �see �Neumann � Finkler ��
��

�

dominated object to take the initiative� This helps in avoiding technical synchronization
problems originating frommutual initializations of the combination operations� An object
with an initial tree triggers a substitution operation� an object with an auxiliary tree tries
to adjoin its structure into the structures of the dominating object� The feature structures
that are associated with the nodes of the trees to be combined must not be destructively
uni�ed during substitution or adjunction in order to preserve local structures�

We de�ned the distributed adjunction of an auxiliary tree with root node XR and
foot node XF of object O� at an internal node X of object O� as follows�

� O� sends copies of the feature structures associated with the root node XR and the
foot node XF to object O��

� O� tests the compatibility of the feature structures at XR� XF and X� O� then splits
X into a quasi�node�� with XT being the top�part and XB the bottom part and
stores a reference to the partner object O� at the so�called interface nodes XT and
XB� Finally� O� sends back copies of the feature structures associated with the
quasi�node to the partner object O��

� O� stores a reference to the object O� at its interface nodes XR and XF �

The second combination operation� distributed substitution� is de�ned in a similar
way� It doesn�t necessitate the splitting of a node and merely makes use of two interface
nodes� i�e�� the root node of the substitution tree at object O� and the substitution
node at object O���� Figure � outlines some of the communications that enable the
exchange of copies of feature structures during distributed substitution and adjunction�
Four rectangular boxes represent the cooperating objects� Each box depicts the selected
tree of the respective object� The nodes of the trees are not yet linearized� i�e� their
order is not related to the order of output increments� Double arrows between objects
�NP��� and �REL�NP��� connect the interface nodes during the adjoining operation that
is necessary to incorporate the modi�er
small� into the NP for
conference room�� The
double arrow between �REL�PP��� and �NP��� indicates the communications during the
substitution operation to integrate the whole structure into a prepositional phrase�

An important aspect of the combination operations is that the e�ects of distributed
substitution and adjunction are not limited to the two objects which are directly involved�
Since each substitution or adjunction can modify the feature structures of the concerned
trees� it has to be checked whether the combination operation leads to changes in the
feature structures of the interface nodes� Those changes have to be propagated to the
respective objects� Thus� a distributed combination of structures in�uences all objects
that are connected with the basic pair by path equations within their feature structures�

��The notion of quasi�nodes and quasi�trees has been introduced by �Vijay�Shanker ��
� It simpli�es
the de�nition of the combination of TAGs with a feature structure based mechanism�

��See �Kilger ��
 for details about both combination operations�

��

� � �

OBJ

NP�

REL�PP��

NP

NP

�

�

�

�

SPEC� N

�conference

room�

�
�
��aa

aa

NP��

SPEC

DETP�

REL�NP��

� � �

NP

NP ADJP�
�
�
�H
H
H

REL�NP��

� � �

Figure �� Communications during Distributed Substitution and Adjunction

The e�ciency of this kind of realization depends highly on the design of the grammar
since the �ow of information stops as soon as the rule being examined speci�es no further
agreement of feature structures�

Currently� the presupposition for an object to change its state again and enter the
Linearization Component is its structural combination with its dominating object� After
this attachment the object is provided with contextual information that is needed for
linearization and in�ection�

����� Linearization Component

For an incremental syntactic generator the design of the linearization component is a
central task� Language�speci�c word order rules restrict the possibilities of lining up
the parts of an utterance under construction� They often forbid the simple addition of
results of computation for input increments at the right of the current utterance �right
concatenation	� which is an important reason for self�corrections and other phenomena
of spontaneous speech� This observation made us interleave the linearization task of
computing an adequate order of groups of words with the controlling task of deciding
when to hand over successive parts to the articulator� This interleaving is illustrated in

��

the architecture �see Figure �	 by forward and backward arrows between the Linearization
Component and the Output Interface�

Contrary to the approach of �Neumann � Finkler ���� we do not create a new process
and local structures to handle the output of the hierarchical level at the linearization
level� Instead� the objects at the hierarchical level merely change their state and use the
linearization rules associated with the hierarchical structures to solve their new tasks�
The main motivations for this integrated approach are�

� Using a separate representation� i�e�� local structures� during linearization is partially
redundant� since a lot of information from the hierarchical structures is also used as
the basis for linearization�

� While a structure is linearized� it may be expanded simultaneously at the hier�
archical level because of incrementally given fragments in the input to the gen�
erator� The state of linearization and output might be used to �nd out whether
the new elements can be integrated into the utterance without risking overt re�
pair �see �Finkler � Schauder ���	� If this is not possible� the system could trigger
the choice of another syntactic tree or even request the microplanner to withdraw
decisions �see �Wahlster et al� ��� for an example	�

As mentioned at the end of the previous section� an object starts working at the
linearization level after having integrated its syntactic structure into the one managed
by its dominating object� The attachment to a more global structure supplies the object
with contextual information that is advantageously used for selecting the appropriate
linearization rules��� Especially� the linearization of verbal phrases depends on the type
of the sentence� e�g�� imperative or declarative� This information is inherited from the
dominating object�

The linearization process is carried out by the objects of VM�GEN in a distributed
way� When an object starts to linearize its local structure it �rst chooses the group
of linearization rules that is suitable with respect to the inherited linearization context
and the current parameter settings �bene�ting from Context�Dependent Linearization
Rules� �Kilger ���	� It then traverses its local structure� starting with the root node and
interpreting the word order rules that are associated with internal nodes to guide the
traversal� Figure ! illustrates the distributed linearization of the objects managing the
verb
to meet�� the personal pronoun realizing� e�g�� the Speaker and the Hearer during
a face�to�face dialogue� and the prepositional phrase
at eleven o�clock��

If there are several candidates for the next position� the decision may be in�uenced
by additional input information or by the dynamic behavior of the objects competing

��Another reason for the attachment is that there are cases where the elements of a phrase are not
locally ordered into a continuous block but mixed with elements of the dominating phrase� e�g�� for
scrambling phenomena �see �Becker et al� ��
�� Our system cannot handle these cases yet�

��

VP

SUBJ� V COMP�

�meet�

��
�HHH

VP��

�declarative � � �

�� � �PP��j� � � � � �PP�� � � � �
� � � �

� � �

NP�

SUBJ
REL�VP��

VP

VP PP�
����

REL�VP��

PPRON

NP

�we�

NP��
PP

PREP OBJ�

�at�

����

PP��

Figure !� Local Traversal of Dominance Structures in the Linearization Component

for continuing the utterance� A speci�c �topic��attribute can be associated with an input
increment and � if possible � leads to the topicalization of the element referred to� Further�
more� the interpretation of the regular expressions of the linerization rules is in�uenced
by the fact whether the element referred to has already entered the Linearization Level�
Figure ! shows a linearization rule associated with the VP�node that allows either an
optional prepositional phrase ��PP	�j
	 or the complement of the verb
to meet� ����	 to
�ll the third position in the verbal phrase� If the complement has not yet been speci�ed�
there is the chance for a PP� e�g�� the temporal speci�cation
at eleven o�clock�� to �ll the
slot� In this way� the utterance can be continued rapidly with a slightly worse style� That
illustrates the use of our grammar for spoken language allowing �exible formulation�

Each terminal node that is reached during the linearization traversal is in�ected� When
an interface node is reached� the traversal is interrupted and traversal in the connected
object is triggered� The synchronization of utterances by the single objects and its inter�
leaving with linearization is explained in Section ������

��� Incremental Output Production

Producing incremental output imposes demands on all components of a generation system�
The output pre�x has to be handled as an additional constraint during computation
allowing the system to realize right�concatenation� hidden� or overt repair in an adequate

��

way�

����� Phrase Formulator

Operations within the Phrase Formulator may lead to con�icts with the output pre�x if the
concerned objects have already been engaged in the Output Interface� Substitution is less
problematic since the substitution nodes guarantee for the consideration of the respective
elements during linearization� Adjunction may in�uence the process of linearization in
two ways� First of all� it leads to the integration of a new element into the syntactic
structure that has to be adequately inserted into the sequence of terminals� Furthermore�
it may change the feature structures of several connected TAG�trees which may be used
for tests during linearization� Currently� adjunction in an object in the Linearization
Component triggers a test and � if necessary � a recomputation of the local word order�

When an object receives a call for adjunction� it might already have entered the Output
Interface and handed over some parts of its local phrase to the articulator� We realized a
simple strategy for revision that copes with these cases by repeating the whole pre�x of
the current utterance� Figure
 shows a snapshot of our example illustrating a possible
sequence of processing steps when building the noun phrase
the small conference room��
In this example� the modifying adjective is given too late to be included into the noun
phrase without a repair� The left part of the �gure shows a distributed adjunction� The
object managing the �property��relation during Phrase Formulator processing contacts its
dominating object� In this case� it has already entered the Output Interface� The system
therefore triggers a repair �which is discussed below	�

����� Linearization Component

Incremental output production requires decision making on the basis of incomplete infor�
mation at the positional level� The system has to be able to skip references to optional
elements within the linearization rules even if there is no guarantee that further input
would correspond with that decision� For the worst case� repair facilities must be pro�
vided to �backtrack� to an earlier state �see Section �����	� In Figure
 the NP�node of
object NP�� is associated with a linearization rule of the kind

�� �ADJP	� � � � � 	

In order to continue the utterance rapidly� NP�� has skipped the �ADJP	��entry and
has uttered the noun in the Output Interface� assuming that no modifying adjective will
be given later on�

As a second consequence of incremental output production� the output pre�x has to be
considered when choosing between linearization alternatives� Alternatives that contradict
with the pre�x have to be ruled out�

��

�
time

OUTPUT
INTERFACE

LINEARIZATION
COMPONENT

PHRASE
FORMULATOR

NP

NP Adjp�
��HH

REL�NP��

��

��

NP

Spec� N

�conference�

�room�

��HH

NP��
NP

Spec� N

�conference�

�room�

��HH

NP��
NP

Spec� N

�conference�

�room�

��HH

NP��

Detp�

Spec
REL�NP��

Detp�

Spec
REL�NP��

Detp�

Spec
REL�NP��

Det

Detp

�the�

DETP��

Det

Detp

�the�

DETP��

Det

Detp

�the�

DETP��

��
�the

��
conference room

NP

NP Adjp�
��HH

REL�NP��

��
� � �uh � � �

NP

NP Adjp�
��HH

REL�NP��

��
the

��
small conf� r�

C
C
C
C
C
C
C
C
CCW

C
C
C
C
C
C
C
C
CCW

Figure
� Triggering Repair in the Output Interface

����� Output Interface

For VM�GEN� we studied incremental output production particularly with respect to
intra�sentential e�ects� Design Principle ! % separate processing of hierarchical and
positional rules % makes it possible to minimize the size of output increments since the
single terminals of the hierarchical structures can be linearized even if the hierarchical
structures are not yet complete�

The �best case� of incremental output production� i�e�� right�concatenation� is realized
in the distributed parallel system by synchronizing the output activities of the objects
by means of two types of messages� Each object locally decides� whether to provide an
element of the utterance for articulation� It sends a message to its dominating object�
declaring its readiness for output and expecting to get the allowance to feed the articu�
lator� At all times� there is exactly one object of the distributed parallel system that is
responsible for guiding the output activities� Initially� the highest object in the hierarchy
has the license for output� In the course of time� this license is handed over from one ob�
ject to the other� The object that has the license for output� locally traverses its structure
�see Section �����	� When an interface node is reached� the object hands over the license
for output to the respective partner object� The local traversal is interrupted until the

��

partner object has �nished its contribution to the utterance and has returned the license�

Figure � shows some objects in our example which are engaged in linearization and
output production� The adjective here has been given in time to be introduced into the
noun phrase� The arrows inside of the objects� boxes illustrate the local traversal of
syntactic structures� Arrows pointing from interface nodes to distinct objects depict the
transfer of the license for output� The resulting fragment of the utterance consists of the
sequence� determiner� adjective� and noun
the small conference room��

� � �

OBJ

NP�

REL�PP��

NP

NP

�

�

�

�

SPEC� N

�conference

room�

�
�
��aa

aa

NP��

SPEC

DETP�

REL�NP��

� � �

NP

NP ADJP�
�
�
�H
H
H

REL�NP��

� � �

Figure �� Extract from the Example� Distributed Linearization and Output Production

In the distributed parallel system VM�GEN� the global results of generation % the
syntactic structure and the complete utterance % are not stored in a compact way but
remain distributed among the single objects� Each object keeps its local history by storing
the chosen syntactic structure� the results of exchanging features in the Phrase Formulator�
the local path of linearization and the locally computed parts of the utterance� This
information can be used for realizing repair as described below�

��

����� Repair

Currently� VM�GEN only partially ful�lls Design Principle
 % �adequate repair strate�
gies�� It realizes one simple form of overt repair by repeating parts of the articulated
sentence� New input increments trigger the creation of new objects which try to combine
their local syntactic structures with the already existing syntactic structure� These com�
bination operations in the Phrase Formulator may change the basis for decisions in the
Linearization Component� either by modifying the inherited feature structures that are
used for linearization tests or by introducing optional elements that were skipped previ�
ously� Therefore� each object in the Linearization Component or the Output Interface
that receives a call for a combination operation afterwards checks its linearization state
for consistency� Whenever a contradiction is found� another kind of message is used to
synchronize repair� The object sends the message �output stop� to its dominating object�
and in upward direction through the object hierarchy until an object is found that cur�
rently holds the �license for output� or just handed it over to an object on another path
in the hierarchy� In the second case� the object waits until the license is returned� It then
sends a repair marker �e�g�� �uh� or �sorry�	 to the articulator� reinitializes its local state
of linearization and makes all its descendants do the same� Then linearization is started
again� leading to the repetition of all concerned terminals including the newly inserted
ones�

In the middle of Figure
 the Output Interface has produced the repair marker
uh�
while the con�icting object already has entered the Linearization Level� Object NP��
reinitializes the utterance of the noun phrase� using local information about the output
produced by REL�NP�� to repeat the determiner
the�� and handing over the license for
output to REL�NP�� to include the adjective at the correct position�

����
 When�to�Say

In order to realize a threshold for output production� as discussed in Section ������ VM�
GEN includes a counter that keeps track of the duration of inter� and intra�sentential
pauses� Whenever this counter exceeds a prede�ned time�limit for delay intervals� time�
pressure is interpreted as being rather high� VM�GEN currently reacts by triggering a
default�handler thereby realizing Design Principle ���

The default handler uses a set of default descriptions that can be matched with the
situation at hand to �nd suitable heuristics for reaction as its knowledge base� The default
body consists of the speci�cation of additional input increments for VM�GEN� thereby
allowing the system to handle default�caused and input�licensed values homogeneously�
Take for example an input state where information about the relation between a verb
and a noun is missing� Under certain conditions� it is likely to assume an �agent��relation
that is speci�ed as default�licensed input� Contradictions with input increments speci�ed
later on can be handled by VM�GEN since we designed the input interface to cope with

��

modi�cations and deletions of input increments �see Section �����	� For more details on
default handling in VM�GEN� see �Harbusch et al� ����

��� E	ects of Incremental Processing on the Output

The order and the timing of input increments for VM�GEN are important determi�
nants for the output of the generator� We have developed the graphical interface VIIO
�Visualization of Incremental Input and Output	 that illustrates the relations of input
increments and output increments with respect to progress in time �see� e�g�� Figure ��	�
The x�axis shows progress in time� Points in graph at the �INPUT� levelmark the creation
time of objects for input increments� Points at the �OUTPUT� level indicate the points of
time when the respective parts of the utterance are articulated� The points representing
the insertion and the articulation of an element are connected by an arrow� Crossed ar�
rows illustrate the interleaving of computations in the generator� Objects which manage
a syntactic structure without any terminal node are merely represented as dots at the
�INPUT� level� The objects are numbered in the order of their creation� the numbers are
associated with the arrowheads to simplify orientation� In the upper right corner of the
screen� a legend shows the association of numbers to objects�

We present three examples of input variations for the sentence discussed above that
illustrate facets of I�O�behavior of VM�GEN� If the input increments are given as VP���
NP��� PP��� NP��� ADJP��� PP��� HOUR��� they will normally be uttered as subject�
verb� object�loc� object�temp�
�We�ll� �meet� �in the small conference room� �at eleven
o�clock�� �see Figure ��	�

When PP�� and PP�� are exchanged in the input and if the next position in the
verbal phrase is to be �lled before PP�� is available at the Positional Level� then PP�� is
uttered irrespective of the slightly worse style�
�We�ll� �meet� �at eleven o�clock� �in the
small conference room�� �see Figure ��	�

If there is a long pause between the input of NP�� and its modi�er ADJP��� it may
happen that the noun is uttered before object NP�� knows about the existence of the
modi�er� Now the adjective is introduced into the noun phrase by recomputing the
linearization and output production of NP���
�We�ll� �meet� �in the conference room�
� � � �we�ll� �meet� �in the small conference room� �at eleven o�clock�� �see Figure ��	�

� Conclusion and Future Work

The automatic generation of spoken language imposes strong real�time constraints on
the system� The incremental processing paradigm is a promising approach to enable a
generator to react to changes in the input as fast as possible and to time the output in

�!

1 3 5 7 9 11 13 15 17

4 : we’ll
2 : meet

6 : in
12 : the
8 : small
10 : conference room

14 : at
16 : 11
16 : o’clock

0 0.5 1.0
1.299

t[sec]

OUTPUT

INPUT Object list:
1 : UTT-PAR-1
2 : VP-1
3 : UTT-PROP-1
4 : NP-1
5 : REL-VP-1
6 : PP-1
7 : REL-VP-2
8 : ADJP-1
9 : REL-NP-2
10 : NP-2
11 : REL-NP-3
12 : DET-NP-2
13 : REL-PP-1
14 : PP-2
15 : REL-VP-3
16 : HOUR-1
17 : REL-PP-2

Figure ��� Screen Snapshot of VIIO� PP�� before PP��

a way that is adequate for the human hearer� An incremental generator must cope with
contradictions between the assumptions it makes to continue its output and the input it
receives later on� It must be able to realize strategies for hidden and overt self�corrections
that are acceptable for human dialogue partners�

VM�GEN is a syntactic generator that exploits the notion of incremental processing
to allow for �exible real�time reactions on an evolving input� Input increments can be
handed over in any order and with arbitrarily long pauses between them� They trigger
their immediate processing� leading to the construction of new parts of the syntactic
structure and to the fast production of a well�formed pre�x of the utterance�

VM�GEN uses a distributed parallel model of active objects that co�operate in order
to realize the given input increments in one utterance� Parallelism not only increases e��
ciency but also supports the processing of independent tasks during syntactic generation�

The formalism Tree Adjoining Grammar is well suited for the representation of syn�
tactic structures because of the extended domain of locality of its rules� Its combination
operations adjunction and substitution allow for the �exible expansion of the syntactic
tree which is the presupposition for the incremental introduction of new elements�

�

1 3 5 7 9 11 13 15 17

4 : we’ll
2 : meet

6 : at
8 : 11
8 : o’clock

10 : in
16 : the
12 : small
14 : conference room

0 0.5 1.0
1.273

t[sec]

OUTPUT

INPUT Object list:
1 : UTT-PAR-1
2 : VP-1
3 : UTT-PROP-1
4 : NP-1
5 : REL-VP-1
6 : PP-2
7 : REL-VP-3
8 : HOUR-1
9 : REL-PP-1
10 : PP-1
11 : REL-VP-2
12 : ADJP-1
13 : REL-NP-2
14 : NP-2
15 : REL-NP-3
16 : DET-NP-2
17 : X-1

Figure ��� Screen Snapshot of VIIO� PP�� before PP��

The experience we gained from the design and implementation of VM�GEN shows
that the bene�ts of incremental processing surpass its costs� It provides a good start�
ing point for developing a system with an output interface that approximates human
language performance� The applicability of the core generator has been substantiated by
using it in various domains� namely a system for generating multimodal documents �WIP�
�Wahlster et al� ���	� a spoken�language dialogue system for train schedule inquiries �EF�
FENDI� �Poller � Heisterkamp ���	� a dialogue system managing negotiations in the used
car sales domain �PRACMA� �Jameson et al� ���	� the natural language description of si�
multaneously interpreted real world image sequences �VITRA� �Herzog � Wazinski ���	� a
natural language interface to an autonomous mobile robot �KANTRA� �L$angle et al� ���	�
and a system for explaining machine�found proofs �PROVERB� �Huang ���	� Neverthe�
less� we have identi�ed several shortcomings of the system� that are worth being examined
in future research�

Since the input for VM�GEN is expected to contain syntactic speci�cations� the syn�
tactic generator has to be combined with a sophisticated incremental component for mi�
croplanning and word choice� A suitable system that can cope with these tasks is VM�IMP
�Incremental MicroPlanning	 developed as part of the VERBMOBIL project� We can
therefore construct a bidirectional interface to VM�GEN and realize incrementality and

��

1 3 5 7 9 11 13 15 17

4 : we’ll
2 : meet

6 : in
10 : the
8 : conference room

4 : we’ll
2 : meet
6 : in
10 : the
12 : small
8 : conference room

14 : at
16 : 11
16 : o’clock

0 0.5 1.0
1.349

t[sec]

OUTPUT

INPUT Object list:
1 : UTT-PAR-1
2 : VP-1
3 : UTT-PROP-1
4 : NP-1
5 : REL-VP-1
6 : PP-1
7 : REL-VP-2
8 : NP-2
9 : REL-NP-2
10 : DET-NP-2
11 : REL-PP-1
12 : ADJP-1
13 : REL-NP-3
14 : PP-2
15 : REL-VP-3
16 : HOUR-1
17 : REL-PP-2

Figure ��� Screen Snapshot of VIIO� Overt Repair for delayed ADJP��

interactivity�

The task of When�to�Say has long been neglected in natural language generation
research� due to the fact that it has always been interpreted as a functional part of
a speech synthesis component� Nevertheless� the borderline between natural language
generation and synthesis is gradually becoming vague when realizing the concept�to�
speech approach� A lot of work remains to be done in order to de�ne an interleaved
processing mode for generation and synthesis that allows for an adequate timing of output
production�

Referring to the control of the incremental generation process � as suggested in De�
sign Principle ��� �production�oriented monitoring and control� � we currently develop a
suitable system PERFECTION �PERForming Self�CorrECTIONs	 that bases on VM�
GEN� It features a central component for monitoring and supervising activities distributed
over the generation component and allows for the realization of more sophisticated repair
scenarios� We apply and evaluate the usage of di�erent types of reason maintenance sys�
tems for the identi�cation of a�ected structures when decisions have to be withdrawn to
perform self�corrections�

��

One of the objectives of the VERBMOBIL generation group is to utilize a grammar for
English that is encoded using the HPSG framework� A compiler from HPSG to TAG is
currently realized by �Kasper et al� ���� They expect both formalisms to bene�t from the
compilation� HPSG� which has an elaborated principle�based theory could be processed
more e�ciently and TAG providing the means to localize dependencies in elementary
trees could represent structures encoded in a linguistic theory�

��

References

�Abb et al� ��� B� Abb� C� G�unther� M� Herweg� K� Lebeth� C� Maienborn� and
A� Schopp� Incremental Syntactic and Phonologic Encoding � An Outline of the
SYNPHONICS�Formulator� In� Fourth European Workshop on Natural Language
Generation� Pisa� Italy� �����

�Abeill�e � Schabes
�� A�Abeill�e and Y� Schabes� Parsing Idioms in Lexicalized TAGs�
In� Fourth Conference of the European Chapter of the ACL� Manchester� UK�
��
��

�Abeill�e et al� ��� A� Abeill�e� Y� Schabes� and A� K� Joshi� Using Lexicalized TAGs
for Machine Translation� In� ��th International Conference on Computational
Linguistics� pp� ��� ��	� Helsinki� Finland� �����

�Amtrup ��� J� Amtrup� Perspectives for Incremental MT with Charts� In� Machine
Translation and Translation Theory� Natural Language Processing� Mouton de
Gruyter� ����� to appear�

�Appelt
�� D� Appelt� Planning English Sentences� Cambridge� Cambridge University
Press� ��
��

�Becker et al� ��� T� Becker� A� K� Joshi� and O� Rambow� Long�Distance Scrambling
and Tree Adjoining Grammars� In� Fifth Conference of the European Chapter of
the ACL� pp� ������ Berlin� Germany� April �����

�Bond � Gasser

� A� H� Bond and L� Gasser �eds�	� Readings in Distributed Arti�cial
Intelligence� San Mateo� California� Morgan Kaufmann Publishers� Inc�� ��

�

�Booth
�� P� Booth� An Introduction to Human�Computer Interaction� Hillsdale� USA�
Lawrence Erlbaum Associates� ��
��

�Chomsky
�� N� Chomsky� Lectures on Government and Binding� Dordrecht� Foris�
��
��

�De Smedt � Kempen
!� K� De Smedt and G� Kempen� Incremental Sentence Pro	
duction
 Self�Correction and Coordination� In� G� Kempen �ed�	� Natural Lan�
guage Generation� New Results in Arti�cial Intelligence� Psychology and Linguis�
tics� NATO ASI Series E ���� pp� �����!�� Dordrecht� Martinus Nijho�� ��
!�

�De Smedt ��a� K� De Smedt� Incremental Sentence Generation� a Computer Model
of Grammatical Encoding� PhD thesis� Nijmegen Institute for Cognition Research
and Information Technology� Nijmegen� ����� NICI TR No ������

�De Smedt ��b� K� De Smedt� IPF� An Incremental Parallel Formulator� In� R� Dale�
C� Mellish� and M� Zock �eds�	� Current Research in Natural Language Generation�
Academic Press� �����

��

�De Smedt ��� K� De Smedt� Revisions during generation using non�destructive uni	
�cation� In� Abstracts of the Third European Workshop on Natural Language
Generation� ����� March� pp� ���!�� Judenstein�Innsbruck� �����

�Eikmeyer et al� ��� H�J� Eikmeyer� W� Kindt� U� Laubenstein� S� Lisken� Th�
Polzin� H� Rieser� and U� Schade� Koh�arenzkonstitution im gesprochenen
Deutsch� In� G� Rickheit �ed�	� Koh$arenzprozesse� pp� ������� Westdeutscher
Verlag� �����

�Finkler � Neumann
�� W� Finkler and G� Neumann� POPEL	HOW � A Distributed
Parallel Model for Incremental Natural Language Production with Feedback� In�
��th International Joint Conference on Arti�cial Intelligence� pp� ���
������ De�
troit� MI� August ��
��

�Finkler � Schauder ��� W� Finkler and A� Schauder� E�ects of Incremental Output on
Incremental Natural Language Generation� In� B� Neumann �ed�	� ��th European
Conference on Arti�cial Intelligence� pp� ������!� Vienna� Austria� August �����

�Finkler
�� W� Finkler� POPEL�HOW� Eine Komponente zur parallelen
 inkre	
mentellen Generierung nat�urlichsprachlicher S�atze aus konzeptuellen Einheiten

Teil
� Master�s thesis� Department of Computer Science� University of the Saar�
land� Saarbr$ucken� ��
��

�Finkler ��� W� Finkler� Incremental Natural Language Generation with TAGs in the
WIP�Project� In� W� Wahlster and K� Harbusch �eds�	� First International Work�
shop on Tree Adjoining Grammars� pp� ���!�� Dagstuhl� Germany� ����� IBFI�

�Finkler ��� W� Finkler� Automatische Selbstkorrektur bei der inkrementellen Gener	
ierung gesprochener Sprache� Ein empirisch�simulativer Ansatz unter Verwendung
von Truth Maintenance Systemen� Dissertation� in preparation� �����

�Garrett
�� M�F� Garrett� Levels of Processing in Sentence Production� In� B� But�
terworth �ed�	� Language Production� Volume �� Speech and Talk� pp� �!!�����
London� Academic Press� ��
��

�G$orz ��� G� G�orz� Kognitiv orientierte Architekturen f�ur die Sprachverarbeitung� Tech�
nical Report ASL�TR������� Universit$at Erlangen�N$urnberg� Institut f$ur mathe�
matische Maschinen und Datenverarbeitung �IMMD	� Erlangen� Germany� Febru�
ary �����

�Harbusch et al� ��� K� Harbusch� G� Kikui� and A� Kilger� Default Handling in In	
cremental Generation� In� ��th International Conference on Computational Lin�
guistics� pp� �������� Kyoto� Japan� August �����

�Herzog � Wazinski ��� G� Herzog and P� Wazinski� VIsual TRAnslator� Linking
Perceptions and Natural Language Descriptions� Arti�cal Intelligence Review�

��	��!� � �
!� �����

��

�Herzog et al�
�� G� Herzog� C��K� Sung� E� Andr�e� W� Enkelmann� H��H� Nagel�
T� Rist� W� Wahlster� and G� Zimmermann� Incremental Natural Language
Description of Dynamic Imagery� In� W� Brauer and C� Freksa �eds�	� Wissens�
basierte Systeme� pp� �������� Berlin� ��
��

�Hovy

� E�H�Hovy� Generating Natural Language Under Pragmatic Constraints� Hills�
dale� NJ� Lawrence Erlbaum Associates� ��

�

�Huang ��� X�Huang� Planning Argumentative Texts� In� ��th International Conference
on Computational Linguistics� pp� �������� Kyoto� Japan� �����

�Jameson et al� ��� A� Jameson� B� Kipper� A� Ndiaye� R� Sch�afer� J� Simons� T�
Weis� and D� Zimmermann� Cooperating to Be Noncooperative� The Dialog
System PRACMA� In� B� Nebel and L� Dreschler�Fischer �eds�	� �
th Annual
German Conference on Arti�cial Intelligence� pp� ��� � ��!� Berlin� ����� Springer�

�Joshi et al� !�� A�K� Joshi� L� Levy� and M� Takahashi� Tree Adjunct Grammars�
Journal of the Computer and Systems Science� ����	��������� ��!��

�Joshi
�a� A�K� Joshi� How much Context	Sensitivity is Required to Provide Reasonable
Structural Descriptions� Tree Adjoining Grammars� In� D� Dowty� L� Karttunen�
and A� Zwicky �eds�	� Natural Language Processing� Psycholinguistic� Computa�
tional and Theoretical Perspectives� pp� �������� Cambridge� Cambridge Univer�
sity Press� ��
��

�Joshi
�b� A�K� Joshi� An Introduction to TAGs� Technical Report MS�CIS�
�����
LINC�LAB���� Department of Computer and Information Science� Moore School�
University of Pennsylvania� ��
��

�Joshi
!a� A�K� Joshi� The Relevance of Tree Adjoining Grammar to Generation� In�
G� Kempen �ed�	� Natural Language Generation� New Results in Arti�cial In�
telligence� Psychology and Linguistics� NATO ASI Series E ���� pp� ��������
Dordrecht� Martinus Nijho�� ��
!�

�Joshi
!b� A�K� Joshi� Word	order Variation in Natural Language Generation� In�
AAAI
!� �th National Conference on AI� Seattle� USA� ��
!�

�Kasper et al� ��� R� Kasper� B� Kiefer� K� Netter� and K� Vijay�Shanker� Compi	
lation of HPSG to TAG� In� ��th Annual Meeting of the Association for Compu�
tational Linguistics� �����

�Kempen � Hoenkamp
�� G�Kempen and E�Hoenkamp� Incremental Sentence Gen	
eration� Implications for the Structure of a Syntactic Processor� In� J� Horecky
�ed�	� �th International Conference on Computational Linguistics� North�Holland
Publishing Company� ��
��

�Kempen � Hoenkamp
!� G� Kempen and E� Hoenkamp� An Incremental Procedural
Grammar for Sentence Formulation� Cognitive Science� ����	�������
� ��
!�

��

�Kempen ��� G� Kempen� Conjunction Reduction and Gapping in Clause�Level Coordi	
nation� An Inheritance�Based Approach� Computational Intelligence� !���!�����
�����

�Kilger ��� A� Kilger� Realization of Tree Adjoining Grammars with Uni�cation� DFKI
Technical Memo TM�����
� German Research Center for Arti�cial Intelligence
�DFKI GmbH	� �����

�Kilger ��� A� Kilger� Using UTAGs for Incremental and Parallel Generation� Compu�
tational Intelligence� ����	��������� �����

�Kilger ��� A� Kilger� Incremental Linearization with CDL�TAGs in VM�GEN�
Verbmobil�Memo !�� German Research Center for Arti�cial Intelligence �DFKI
GmbH	� Saarbr$ucken� Germany� �����

�Kitano ��� H�Kitano� Incremental Sentence Production with a Parallel Marker�Passing
Algorithm� In� ��th International Conference on Computational Linguistics� pp�
��!����� Helsinki� Finland� �����

�L$angle et al� ��� T� L�angle� T�C� L�uth� G� Herzog� E� Stopp� and G� Kamstrup�
KANTRA � A Natural Language Interface for Intelligent Robots� In� �th Interna�
tional Conference on Intelligent Autonomous Systems� Karlsruhe� Germany� �����

�Levelt
�� W�J�M� Levelt� Monitoring and Self�Repair in Speech� Cognition� ����������
��
��

�Levelt
�� W�J�M� Levelt� Speaking� From Intention to Articulation� Cambridge� MA�
MIT Press� ��
��

�Lock ��� K� Lock� Structuring Programs for Multiprogram Time�Sharing On�Line Ap	
plications� In� AFIPS Conference Proceedings� Fall Joint Computer Conference�
volume �!� London� ����� Macmillan and Co Ltd�

�Marr
�� D� Marr� Vision� New York� W�H� Freeman� ��
��

�McCoy et al� ��� K� F�McCoy� K�Vijay�Shanker� and G�Yang� Using Tree Adjoining
Grammars in the Systemic Framework� In� �th International Workshop on Natural
Language Generation� Dawson� PA� �����

�McDonald � Pustejovsky
�� D�D�McDonald and J� Pustejovsky� TAGs as a Gram	
matical Formalism for Generation� In� ��rd Annual Meeting of the Association
for Computational Linguistics� pp� ������� Chicago� IL� ��
��

�Meteer et al�
!� M�W� Meteer� D�D� McDonald� S�D� Anderson� D� Forster� L�S�
Gay� A�K�Huettner� and P� Sibun� MUMBLE���� Design and Implementation�
COINS Technical Report
!�
!� University of Massachusetts� ��
!�

��

�Neumann � Finkler ��� G� Neumann and W� Finkler� A Head�Driven Approach to
Incremental and Parallel Generation of Syntactic Structures� In� ��th Interna�
tional Conference on Computational Linguistics� pp� �

����� Helsinki� Finland�
�����

�Pollard � Sag ��� C� Pollard and I�A� Sag� Head�Driven Phrase Structure Grammar�
Chicago � London� The University of Chicago Press� �����

�Poller � Heisterkamp ��� P� Poller and P� Heisterkamp� Hybrid Knowledge Sources
for Generation in a Speech Dialogue System� Applied Arti�cial Intelligence� �����
in preparation�

�Poller ��� P� Poller� Earley�Parsing von LD�TLP	TAGs� Master�s thesis� Department
of Computer Science� University of the Saarland� Saarbr$ucken� �����

�Reithinger ��� N� Reithinger� Eine parallele Architektur zur inkrementellen Gener	
ierung multimodaler Dialogbeitr�age� PhD thesis� Department of Computer Science�
University of the Saarland� Saarbr$ucken� �����

�Rubinstein � Hersh
�� R� Rubinstein and H� Hersh� The Human Factor� Designing
Computer Systems for People� Burlington� Mass�� Digital Press� ��
��

�Schabes � Shieber ��� Y� Schabes and S�M� Shieber� An Alternative Conception of
Tree�Adjoining Derivation� In� ��th Annual Meeting of the Association for Com�
putational Linguistics� pp� ��!��!�� Newark� DW� �����

�Schabes et al�

� Y� Schabes� A� Abeill�e� and A�K� Joshi� Parsing Strategies with
�Lexicalized� Grammars� Application to Tree Adjoining Grammars� In� ��th Inter�
national Conference on Computational Linguistics� pp� �!
��
�� Budapest� Hun�
gary� ��

�

�Schade et al� ��� U� Schade� H� Langer� H� Rutz� and L� Sichelschmidt� Koh�arenz
als Proze�� In� G� Rickheit �ed�	� Koh$arenzprozesse� Modellierung von Sprachver�
arbeitung in Texten und Diskursen� Opladen� Westdeutscher Verlag� �����

�Schauder ��� A� Schauder� Incremental Syntactic Generation of Natural Language with
Tree Adjoining Grammars� DFKI Document D������� German Research Center
for Arti�cial Intelligence �DFKI GmbH	� Saarbr$ucken� FRG� �����

�Shieber � Schabes ��� S�M� Shieber and Y� Schabes� Generation and Synchronous
Tree Adjoining Grammars� In� �
th Annual Meeting of the Association for Com�
putational Linguistics� pp� ������
� Pittsburgh� PA� �����

�Shieber et al�
�� S�M� Shieber� H� Uszkoreit� F�C�N� Pereira� J�J� Robinson� and
M� Tyson� The Formalism and Implementation of PATR�II� In� B� Grosz and
M� Stickel �eds�	� Research on Interactive Acquisition and Use of Knowledge� Menlo
Park� California� Arti�cial Intelligence Center� SRI International� ��
��

��

�Vijay�Shanker � Joshi

� K� Vijay�Shanker and A�K� Joshi� Feature Structure Based
Tree Adjoining Grammars� In� ��th International Conference on Computational
Linguistics� pp� !���!��� Budapest� Hungary� ��

�

�Vijay�Shanker ��� K� Vijay�Shanker� Using Descriptions of Trees in a Tree Adjoining
Grammar� Computational Linguistics� �
��	��
����!� �����

�Wahlster et al� ��� W� Wahlster� E� Andr�e� S� Bandyopadhyay� W� Graf� and T�
Rist� WIP� The Coordinated Generation of Multimodal Presentations from a
Common Representation� In� A� Ortony� J� Slack� and O� Stock �eds�	� Communi�
cation from an Arti�cial Intelligence Perspective� Theoretical and Applied Issues�
pp� �������� Heidelberg� Springer� �����

�Wahlster et al� ��� W� Wahlster� E� Andr�e� W� Finkler� H��J� Pro�tlich� and T�
Rist� Plan	based Integration of Natural Language and Graphics Generation� Ar�
ti�cial Intelligence� ����
!���!� �����

�Wahlster ��� W� Wahlster� Verbmobil� Translation of Face�to�Face Dialogs� Re�
search Report RR������� German Research Center for Arti�cial Intelligence �DFKI
GmbH	� Saarbr$ucken� FRG� �����

�Ward
�� N� Ward� Capturing Intuitions About Human Language Production� In�
��th Conference of the Cognitive Science Society� pp� �������� Ann Arbor� ��
��
Lawrence Erlbaum�

�Ward ��� N� Ward� A Flexible
 Parallel Model of Natural Language Generation� PhD
thesis� Computer Science Division �EECS	� University of California� Berkeley� Cal�
ifornia� �����

�Weir

� D�Weir� Characterizing Mildly Context	Sensitive Grammar Formalisms� PhD
thesis� Department of Computer and Information Science� University of Pennsyl�
vania� ��

�

�Wir�en ��� M� Wir�en� Studies in Incremental Natural�Language Analysis� PhD the�
sis� Department of Computer and Information Science� Link$oping University�
Link$oping� Sweden� �����

�Yonezawa � Tokoro
!� A� Yonezawa and M� Tokoro� Object�Oriented Concurrent
Programming� An Introduction� In� A� Yonezawa and M� Tokoro �eds�	� Object�
Oriented Concurrent Programming� pp� ��!� Cambridge� Massachusetts� The MIT
Press� ��
!�

�!

