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Abstract

Terminological knowledge representation formalisms can be used to represent
objective, time-independent facts about an application domain. Notions like
belief, intentions, time—which are essential for the representation of multi-agent
environments—can only be expressed in a very limited way. For such notions,
modal logics with possible worlds semantics provides a formally well-founded and
well-investigated basis.

This paper presents a framework for integrating modal operators into ter-
minological knowledge representation languages. These operators can be used
both inside of concept expressions and in front of terminological and assertional
axioms. The main restrictions are that all modal operators are interpreted in the
basic logic K, and that we consider increasing domains instead of constant do-
mains. We introduce syntax and semantics of the extended language, and show
that satisfiability of finite sets of formulas is decidable.
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1 Introduction

Terminological knowledge representation languages in the style of KL-ONE [7] have been
developed as a structured formalism to describe the relevant concepts of a problem
domain and the interactions between these concepts. Starting with concept names
(unary predicates) and roles (binary predicates), one constructs more complex concepts
with the help of operators provided by a given concept language. For example, if
we have the concept names Rich, Woman and Man, and the atomic roles loves, we
can describe the concept “men that love only rich women” by the expression Man
V loves.(—~Woman U Rich). Concept definitions (terminological axioms) can then be
used to introduce names for complex concepts. For example, “fortune hunter” could
be an appropriate name for the concept from above:

Fortune-hunter = Man MV loves.(—- Woman U Rich).

In addition, so-called assertional axioms can be used to associate objects (or individ-
uals) with concepts and to describe role relationships between objects. For example,
one can say that Peter is a fortune hunter, who loves Mary, using the assertions

Peter: Fortune-hunter and Peter loves Mary.

Various terminological systems have been designed and implemented that are based on
the ideas underlying KL-ONE, for example, BACK [21], CLASSIC [6], KANDOR [20], KL-
TWO [27] K-Rep [18], KRYPTON [5] KRIS [3], LOOM [17], MESON [9], NIKL [12], SB-ONE
[14].

Representing knowledge of an application domain with such a system amounts to
introducing the terminology of this domain via concept definitions, and then describing
(an abstraction of ) the relevant part of the “world” by listing the facts that hold in this
part of the world. In a traditional terminological system, such a description is rigid in
the sense that it does not allow for the representation of notions like time, or beliefs
of different agents. Thus, in a pure terminological formalism we can express the fact
that “Mary loves John,” but we are unable to formulate facts like “John believes that
Mary loves him” or “until yesterday, Mary loved John”. In systems modeling aspects
of intelligent agents, however, intentions, beliefs, and time-dependent facts play an
important role.

Modal logics with possible worlds semantics is a formally well-founded and well-
investigated framework for the representation of such notions. The present paper is
concerned with integrating modal operators (for time, belief, etc.) into a terminolog-
ical formalism. For example, if we extend the terminological language by two modal
operators [belief-John] and (future), to be read as “John believes that” and “at some
time in the future it will hold that,” respectively, we can use a formula like

[belief-John] (1) A (future) ¢)



to represent the fact that John believes that Mary does not love him yet (expressed
by the assertion ¢ : Mary loves Peter), but he thinks that this will change eventually
(expressed by the assertion ¢ : Mary loves John). This small example shows that
there could be a high degree of cross-fertilization between terminological knowledge
representation and modal logics. For this to come true one must find an appropriate
semantics for the combined language. In addition, if such a language should be used
in a system, one must design algorithms for the important inference problems (such as
consistency of knowledge bases) for the language.

Several approaches have been proposed to combine terminological formalisms with
notions like time or beliefs. A very simple possibility to represent beliefs of agents is
realized in the partition hierarchy SB-PART [13], which is an extension of the SB-ONE
system. In this approach, each agent may have its own set of terminological axioms
(TBox), and these TBoxes can be ordered hierarchically. However, this extension lacks
a formal semantics and it does not allow for representing properties of belief, such
as introspection, or interactions between beliefs of different agents. A more formal
approach is used in M-KRYPTON [22], where a sub-language of the KRYPTON represen-
tation language is extended by modal operators B;, which can be used to represent
the beliefs of agent ¢. Properties of beliefs are taken into consideration by using the
well-known modal logic KD45. Due to the undecidable base language, however, [22]
just introduces a formal semantics, without giving any inference algorithms for the ex-
tended language. In [23], it has been shown that terminological systems already have
a strong connection to modal logic. In fact, the concept language ALC is nothing but
a syntactic variant of the propositional multi-modal logic K. Building upon this
observation, [24] augments ALC by tense operators.

The two approaches that come next to the one we shall introduce below are de-
scribed in [15, 16] and in [19]. Both extend ALC by modal operators, but with different
emphasis. In [15, 16], modal operators are allowed in front of terminological and as-
sertional axioms only, and not inside of concept expressions. In [19], multi-modal
operators can be used at all levels of the concept expressions and, additionally, they
can be used to modify roles and other modal operators. However, assertional axioms
have not been considered at all, and terminological axioms (concept definitions) are
only provided with a semantics, but they are not treated by the inference algorithm

described in [19].

2 Classification

When extending a terminological KR language by modalities for belief, time, etc. one
has various degrees of freedom. Before describing the specific choices made in this
article, we shall informally explain the different alternatives. This will also clarify the



differences between the formalism presented below and the extensions of terminological

languages described in [19] and [15, 16].

For simplicity, assume that we are interested in time and belief operators only.
Thus, in addition to the objects (like John and Mary) we have time points and belief
worlds. This means that the domain of an interpretation is the Cartesian product
D = Dopject X Dyime X Dperier of the set of objects, the set of time points, and the
set of belief worlds. Concepts are no longer just sets of objects; their interpretation
also depends on the actual belief world and time point. Thus, they can be seen as
subsets of 5, and not just as subsets of Dopject. Roles (like loves or owns) operate on
objects, whereas modalities for time (like future or tomorrow) operate on time points,
and modalities for belief (like belief-John) operate on belief worlds. As for concepts,
however, the interpretation of roles and modalities depends on all dimensions. Thus,
loves is interpreted as a function from D into 9Pobject which relates any individual in
Dopject (say John) with a set of individuals (the individuals John loves), but this set
depends on the actual time point and belief world. Modalities like future are treated
analogously. Modal operators can now be used both inside of concept expressions and
in front of concept definitions and assertions. For example, we can describe the set
of individuals that love a woman that—according to John’s beliet—is pretty by the
concept expression

d loves.(Woman N [belief-John] Pretty),

and we can express that—according to John’s belief—a happy husband is one married
to a woman whom he (John) believes to be pretty by

[belief-John| (Happy-husband = 3 married-to.( Woman 11 [belief-John] Pretty)) .

The assertion [belief-John|(future) (Peter married-to Mary) says that John believes
that, at some point in the future, Peter will be married to Mary.

With the usual interpretation of the Boolean operators, of value and exists restric-
tions on roles, and of box and diamond operators for the modalities, this yields a
multi-dimensional version of the multi-modal logic K,,. As described until now, this
logic is a sub-language of the one introduced in [19]. The restriction lies in the fact that,
unlike in [19], we do not consider roles and modalities that have a complex structure
(such as [wantslown, where the modality wants is used to modify the role own).

There are several reasons why this approach is not yet satisfactory. First, the object
and the other dimensions are treated analogously. This means, for example, that the
interpretation of the modality future depends not only on the actual time point, but
also on the current object and the belief world. Whereas the dependence from the
belief world may seem to be quite reasonable, it is rather counterintuitive that the
future time points reached from time ¢, are different, depending on whether we are
interested in the individual Sue or Mary. For example, assume that for all time points,
Sue belongs to the interpretation of Pretty iff Mary belongs to the interpretation of
Pretty. Nevertheless, it could be the case that Mary belongs to (future) Pretty, whereas



Sue does not. In fact, in the future time point at which Mary is pretty, Sue is pretty as
well. However, this time point may only be a future time point with regard to Mary,
but not with regard to Sue. Thus, it seems to be more appropriate to treat the object
dimension in a special way: whereas the interpretation of roles should depend on the
actual time point etc., the interpretation of modalities should not depend on the object
under consideration.

The need for a special treatment of the object dimension can also be motivated
by considering the semantics of concept definitions (and assertions). In [19], concept
definitions are required to hold for all objects, time points, and belief worlds. This
is a straightforward generalization of the treatment of definitions in terminological
languages, where a definition ¢' = D must hold for all objects, i.e., in a model of
C' = D all objects o must satisfy that o belongs to the interpretation of C' iff it belongs
to the interpretation of D. For the other dimensions, however, this differs from the
usual definition of models in modal logics, where a formula is only required to hold in
one world. (Only the characteristic axioms of the particular modal system are required

to hold in all worlds.)

Another problem is that not only the roles, but also all the other modalities are just
interpreted in the basic logic K, i.e., they are not required to satisfy specific axioms for
belief or time.

In the present paper, we shall not take into account this last aspect, but we shall
treat the object dimension in a special way, thus eliminating the problems mentioned
above. In [15, 16] both aspects are considered. However, modal operators are not
allowed to occur inside of concept expressions, which considerably simplifies the algo-
rithmic treatment of the formalism. The difference to [19] is, on the one hand, the
special treatment of the object dimension. In addition, [19] does not consider asser-
tions, and even though concept definitions are introduced, they are not handled by
the satisfiability algorithm. On the other hand, [19] allows for very complex roles and
modalities, which are not considered here.

3 Syntax and Semantics of ALC

First, we present the syntax of our multi-dimensional modal extension of the concept
language ALC. As for ALC, we assume a set of concept names, a set of role names, and
a set of object names to be given. Beside the object dimension (which will be treated
differently from the other dimensions), we assume that there are v > 1 additional di-
mensions (such as time points, epistemic alternatives, or intensional states). In each
dimension, there can be several modalities, which can be used in box and diamond
operators. For example, in the dimension time points we could have future and tomor-
row, and in the dimension belief worlds we could have belief-John and belief-Mary. If



0 is a modality of dimension ¢ we write dim(o) = ¢. In this case, [0] and (o) are modal
operators of dimension 1.

Definition 3.1 Concept descriptions (or, for short, concepts) of ALCa are induc-
tively defined as follows:

1. Fach concept name is a concept, and T and L are concepts.
2. If C and D are concepts, R is a role name, and o is a modality then

(a) CTD (concept conjunction), C'UD (concept disjunction), and =C' (concept
negation) are concepts,

(b) ¥ R.C (value restriction) and 3 R.C (exists restriction) are concepts,
(¢) [0o] C (box operator) and (o) C' (diamond operator) are concepts.

Terminological axioms of ALCa are of the form m (C = D) where C' and D are
concepts of ALCpq and m is a (possibly empty) sequence of modal operators. Assertional
axioms of ALC are of the form m (xRy) orm (x : C') where x and y are object names,
R is a role name, C is a concept, and m is a (possibly empty) sequence of modal
operators. An ALCp-formula is either a terminological or an assertional axiom.

Traditional terminological systems impose severe restrictions on the admissible sets
of terminological axioms: (1) The concepts on the left-hand sides of axioms must be
concept names, (2) concept names occur at most once as left-hand side of an axiom
(unique definitions), and (3) there are no cyclic definitions. The effect of these re-
strictions is that terminological axioms are just macro definitions (introducing names
for large descriptions), which can simply be expanded before starting the reasoning
process. Unrestricted terminological axioms are a lot harder to handle algorithmically
[25, 2, 8], but they are very useful for expressing constraints on concepts that are
required to hold in the application domain. In the presence of modal operators, the
requirement of having unique definitions is not appropriate anyway. For example, Peter
may have a definition of Happy-husband that is quite different from John’s definition.
Thus, it is desirable to have different definitions m; (A = C') and mz (A = D) of the
same concept name A for different modal sequences m; and my. Even though my and
mo are different, there can be interactions between these definitions. For example, m;
could be of the form (o) and my of the form [o] . Thus, it is not a priori clear how the
requirement of “unique definitions” can be adapted to case of terminological axioms
with modal prefix. To avoid these problems, we consider the more general case where
arbitrary axioms are allowed.

Let us now turn to the semantics of ALCq. The modal operators will be interpreted
by a Kripke-style possible worlds semantics [11]. Thus, for each dimension ¢ we need a
set of possible worlds D;. Modalities of dimension 7 correspond to accessibility relations



on D;, which may, however, depend on the other dimensions as well. Concepts and
roles are interpreted in an object domain, but this interpretation also depends on the
modal dimensions. The next definition formalizes these ideas.

Definition 3.2 A Kripke structure K = (W, ', K1) consists of a set W of possible
worlds, a set of accessibility relations I', and a K -interpretation K; over W:

o W s the Cartesian product of non-empty domains Dy, ..., D,, one for each di-
mension. It will be called the set of possible worlds.

o ' contains for each modality o of dimension @ an accessibility relation ~,, which
is a function v, : W — 2Pi. Instead of d. € ~,(dy,...,d;,...,d,) we will often
write ((dy, ..., diy...,d,), (d1,....d},....d)) € 7,.

R )

o The K -interpretation Ky consists of a domain AM1 and an interpretation function
K1 The domain is the union of non-empty domains AR1(w) for all worlds
w € W. The interpretation function associates

— with each object name x an element ™1 € AR1
— with each concept name A and world w € W a set (A, w)51 C AR1(w),

— with the top concept and the bottom concept the sets (T,w)51 = ARI(w)
and (L, w)81 =0 (for each world w),

— with each role name R and world w € W a binary relation (R,w)"1 C

ART (1) x AR1(w0).

Note that the interpretation of object names does not depend on the particular
world (i.e., we are using so-called “rigid designators”), whereas the interpretation of
concept and role names depends on the world. For a given world w, the interpretation of
A (resp. R) in w is a subset of (vesp. binary relation on) the domain A%7(w) associated
with w.

The interpretation of concept names and roles is expanded to the concept forming
operators as follows: If (' and D are concepts, R is a role, and w is a world, then

(C 1 D,w)kr = (Cw)B1 N (D, w)ir,
(Cu D,w)ff = (C;?,w)KI U (D, wl),KI’
(o = M (Coot,
(VR.C,w)I‘f = {6 € AF1(w
(AR.C,w)Er = {§ € Alr(w

) (

)| o YT for each &' with (8,6") € (R, w)E1},
)| o YT for some ¢ with (6,8") € (R, w)51},
)| 6 € (C w5 for each world w’ with (w,w’) € 7,1,
) 1o )

w
€ (C,w")51 for some world w’ with (w,w’) € v,}.

Note that, for each concept C' and world w, we have (C,w)%1 C AX1(w). Two ALCm
concepts €' and D are called equivalent iff for all Kripke structures K = (W, I', K)
and all worlds w € W we have (C,w)"1 = (D, w)"1.

€(Cw
€ (C,w
([o] C,w)Br = {6 € AFi(w
((0) Cow)B1 = {6 € AB1(w



Now, we can define under which condition an ALCx-formula F' is satisfied in a
Kripke structure K = W,I,K;) and a world w € W, written as K,w | F, by
induction on the length of the modal prefix:

KwlkEC=D iff (C,w)’ =(D,w)kr,

KowEa:C iff 281 e (C,w)ir,

K,wE 2Ry iff (287 yB1) € (R, w)iT,

K,wlE=[o)G iff K,w' = G for each world w' with (w,w’) € 4.,
K,iw k= ()G iff K ,w' = G for some world w' with (w,w’) € v,.

Here GG is an ALCa-formula, €', D are concepts, x, y are object names, R is a role
name, and o is a modality. A set {F}, ..., F,} of ALCp-formulas is satisfiable iff there
exists a Kripke structure K' = (W, ', Kj) and a world wy € W such that K, w, | F;
for e =1,...,n. In this case we write K = Fy, ..., F,.

Even though we have introduced a domain A%7(w) for each world w, we have not
yet said anything about the relationship between the domains of different worlds. In
the simplest approach, the domains AR7(w;) and A% (w,) of each pair wy, w;, of worlds
are independent of each other. This approach is known as varying domain assumption.
In most cases, however, it is more reasonable to assume certain relationships between
the domains of different worlds.

The most commonly used approach is the so-called increasing domain assumption,
where AR1(w) C AR1(w') if the world w’ is accessible from the world w. Accessible
means that there are n > 1 worlds wy,...,w, such that w = wy, v’ = w,, and for all
i,1 <@ < n, there exist a modality o such that (w;, w;4+1) € v,. The advantage of this
approach is that domain elements that have been introduced in w can also be referred
to in all worlds that are accessible from w, i.e., domain elements do not “vanish” when
we move from one world to another. As an example, consider worlds as time points, and
the accessibility relation between worlds as the flow of time. With increasing domain
assumption, if there is a domain element Aristotle at some time point #;, we can speak
about Aristotle at any time point later than #; (i.e., which is accessible from ;).

As a special case, the constant domain assumption is sometimes used, where the
domains AR7(w;) and A7(w,) are identical whenever world w; is accessible from wy.
Finally, the decreasing domain assumption can be used to express that new domain
elements cannot arise when moving from one world to another one.

As an example that demonstrates the consequences of changing the requirements
on the relationship between domains of worlds, consider the ALC p-formulas a: ((0) C')
and (o) (:C'), where & is an object name, o is a modality, and C' is a concept. For a
Kripke structure K = (W, ', K;) and a world w € W we have

(1) K,w = x:{o) C iff 251 € AK1(w) and there exists a world w’ such that (w,w') €
Y, and 21 € (C,w')B1,



(11) K,w |= (o)(z:C) iff there exists a world w’ such that (w,w’) € ~,, 251 € AKr(w'),
and 281 € (C, w71

Thus, the main difference is that in the first case 7 is required to be in AX7(w),
whereas this is not necessary in the second case. The reason is that, in the first case,
x must belong to the interpretation of a concept in world w. In the second case, z is
just required to be in the interpretation of a concept in the successor world.

If we assume just increasing domains, it is possible that =7 € AB1(w'), but 257 ¢
AR1(w). Hence it may be the case that K,w = (o) (x:C), but K,w & z:({o) O).
If we assume constant domains, however, it holds that AX7(w) = AX7(w'), and thus

K,wEa:({(o) C)iff K,w = (o) (x:C).

With the exception of Section 6, where we discuss the algorithmic problems that are
caused by the constant domain assumption, we will restrict our attention to increasing
domains in the following. Furthermore, we assume that all terminological axioms are
of the form m (C = T), where C is a concept and m is a (possibly empty) sequence of
modal operators. It is easy to verify that this can be done without loss of generality.

Lemma 3.3 Let K = (W,I',K;) be a Kripke structure, w be a world in W, m be
a (possibly empty) sequence of modal operators, and C, D be concepts. Then K,w |=

m (C'=D) iff K,wm((CAD)U(=CN=D)=T).

Proof: First, assume that m is empty. Then K,w = C = D iff (C,w)k1 = (D, w)k7.
This is equivalent to saying that, for each element § € AX7(w), it holds that either (z)
§ € (C,w)lr and § € (D,w)27 or (42) § € (C,w)57 and § & (D, w)"7. This is the case
iff K,wpE (CND)U(—~CMN=D). Building upon this, the argument is straightforward
for non-empty modal prefix m. a

4 Testing Satisfiability of ALC -formulas

We present an algorithm for testing satisfiability of a finite set {F}, ..., F,} of ALC -
formulas.! To keep notation simple we assume concepts to be in negation normal form,
i.e., negation signs occur immediately in front of concept names only. Concepts can be
transformed into an equivalent negation normal form by the rules

=[o] C — (o) ~C -—C - C -(CND)—-CU-D
(o) C' — [o] =C -T — L -(CuD)—-Cn=D
-1 =T -(VR.C) — IR.-C

~(AR.C) = YR~C

Tt is easy to see that all the other interesting inference problems (like the subsumption or the
instance problem) can be reduced to this problem.

10



where o i1s a modality, C' is a concept, and R is a role. Qur calculus for testing
satisfiability of ALCq-formulas is based on the notions of labeled ALC pq-formulas and
of world constraint systems.

Definition 4.1 A labeled ALCp-formula consists of an ALCaq-formula F' together
with a label 1, written as F'|| 1. The label | is a syntactic representation of a world in
which F' is required to hold. A world constraint is either a labeled ALC pq-formula or a
term [ X, I', where [, 1" are labels and X, is a syntactic representation of the accessibility
relation of modality o. A world constraint system is a finite, non-empty set of world
constraints.

A Kripke structure K' = (W, I', K1) satisfies a world constraint system W iff there is
a mapping « that maps labels in W to worlds in W such that (¢) K, a(l) = F for each
world constraint F'|| [ in W, and (¢7) (a(l), a(l')) € 4, for each world constraint [ M, [’
in W. A world constraint system W is satisfiable iff there exists a Kripke structure
satisfying W.

In order to test satisfiability of a set {Fy,..., F,} of ALCp-formulas we translate
this set into the world constraint system Wy = {ao : T || lo, Fi || lo, ..., Fu || lo}, where
zo is a new object name not occurring in {Fy,..., F,}, and [y is an arbitrary label
(which is intended to represent the real world). We say the world constraint system
Wy is induced by {Fy, ..., F,}. It is easy to verify that {Fy,..., F,} is satisfiable iff
Wy is satisfiable. The world constraint @¢ : T || lp can obviously be satisfied by any
Kripke structure. The proof of completeness given in the next section will show that
this constraint is necessary to guarantee that the domains A®7(w) of the canonical
Kripke structure constructed in this proof are non-empty.

The ALCpq-satisfiability algorithm takes as input a world constraint system Wy
that is induced by a finite set of ALCx-formulas. It successively adds new world
constraints to Wy by applying several propagation rules, which will be defined later.
A world constraint system that is induced by a finite set of ALC rs-formulas, or that is
obtained by a finite sequence of applications of propagation rule to an induced system,
will be called derived system.

In the following, we use the letters x, y, z to denote object names, [ to denote labels,
A, B to denote concept names, (', D to denote concepts, and R to denote role names.
If necessary, these letters will have an appropriate subscript.

Before introducing the rules in a formal way, let us first describe the underlying
ideas on an intuitive level. The rules that handle the usual ALC concept forming
operators are well-known and rather straightforward (see, e.g., [4]). As an example
for the treatment of the Boolean operators, assume that there is a world constraint
z:C T D] lin a world constraint system W. The —n rule adds the world constraints
z:C||land 2: D ||l to W (unless they are already present in W).

11



Example 4.2 To illustrate the rules that handle modalities and world constraints of
the form C' = T || [, suppose that the ALCy-formula (o) (B = T) is given, where o is
a modality of some dimension. In order to test satisfiability of this ALCs-formula, we
start with the induced world constraint system

Wo ={zo: T |[lo, (o) (B="T) | lo}.

By definition, W, is satisfiable iff there is a Kripke structure K = (W, ', K), a mapping
a, and a world wy = «a(l,) € W such that l’é(I € AB1(wy) and K,wy = (o) (B = T).
Since K,wo = (o) (B =T) iff K,w, E B = T for some world w; with (wg,w) € ,,
the —¢ rule adds the world constraints lp X, Iy and B = T || [; to Wy, where [; is a
new label. This yields the new world constraint system

W1 :W()U{lo [><Io ll,B: T ||ll}

Because of the semantics of ALCy-formulas we know that K,w, | B = T iff ¢ €
(B,w )81 for all ¢ € AR1(w;). By the increasing domain assumption, it e A1 (wy)
implies 257 € AXT(w;). Summing up, we must guarantee that 257 € (B, w;)"7 and

therefore must add the world constraint xo: B || [; to W.

More generally, we say that an object name x is relevant for label [ (in a world
constraint system W) iff there is a label I occurring in W such that

1. W contains a world constraint of the form « : C' ||, xRy || ', or y Rz || I'.

2. lis accessible from I’ i.e., [ is I’ or there are world constraints I’ M, Iy,...,1,_1 X,
[ in W for some modalities o4, ..., 0,.

Now, if x is relevant for [ and there is a world constraint C' = T || [ in W for some
concept €, then the —_ rule adds x:C'||] to W (unless this world constraint is already
contained in W).

In our example, this rule applies to W3, and it yields the world constraint system
W2 == W1 U {l’olB || ll}

To W3 no more propagation rules are applicable, and—as we shall show below—we
can use this system to construct a Kripke structure that satisfies the ALCq-formula
(o) (B=T) from W5. A world constraint system to which no more propagation rules
are applicable will be called complete.

Termination of the propagation rule applications can only be guaranteed if appli-
cability of the usual rule for handling exists restrictions is restricted in an appropriate
way. This is due to the presence of axioms of the form C' = T.
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Example 4.3 To illustrate this problem, consider the world constraint system W =
{x:A||,IR.C = T||1}. Since z is relevant for [, the —_ rule adds « : IR.C || [.
Now, the usual propagation rule —3 that treats exists restrictions would add xRy ||
and y:C || [ to W, where y is a new object. However, y is again relevant for [, and
thus we must add y: 3 R.C || [. The —3 rule would thus be applicable to y: 3 R.C || [,
generating new world constraints yRz || [ and z:C' || [, etc.

In order to avoid such infinite chains of rule application, we introduce the notion
of blocked objects.? Intuitively, an object z is blocked w.r.t. label [ if we need not
introduce a new object in order to be sure that the exists restrictions on x can be
satisfied.

Example 4.4 Consider the world constraint system
W =A{«:3R.C||,x:D||l,zRy || l,y:FR.C|| [}.

In this case, it is sufficient to apply the —3 rule just to x. In fact, since all constraints
for y are also constraints for x, any contradiction that could be obtained by applying
this propagation rule to y can already be obtained by applying it to z.

The idea is thus to say that y is blocked by a with respect to a label [ if {C | z:
Cllle W} C{D |y:D||l € W}. In the above example, y would thus be blocked by z,
and the —3 rule would only be applied to z. In general, this notion of blocking is too
strong, though. In fact, consider the system W’ that is obtained from W by deleting
the constraint «: D || . In this system, x would be blocked by y and vice versa. Such
cyclic blocking is clearly not appropriate since contradictions that are possibly hidden
in ' would never be detected.

In order to avoid cyclic blocking, we assume that the (countably infinite) set of all
object names is given by an enumeration vy, y2, 3, ... We write x < y if z comes before
y in this enumeration. This ordering is used as follows. Whenever a new object y is
introduced by applying the —3 rule to a world constraint system W, y is chosen such
that all objects in W are smaller than y w.r.t. this ordering. In addition, only smaller
objects can block a given object.

Definition 4.5 An object x is blocked by an object y w.r.t. label [ in a world constraint
system W iff {C | a:C ||l e W} CH{D |y:D ||l e W} and y < x.

Now, the —3 rule is applicable to a world constraint z:3 R.C'||lin a world constraint
system W only if x is not blocked by some object y w.r.t. [ in W.

2This idea was already used in [8, 1], with slightly differing definitions of blocked objects.
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W o {104, 10 [ YU W

if @|[lisin W, where ¢ is (o) I (resp. x: (o) C), ¢ is F' (resp. x:(C),
there is no label [” in W such that the world constraints [ X, [ and
O || 1" are in W, and [’ is a new label.

W —o {¢ [[I}UW
if @||land (™, " are in W, where ¢ is [o] F' (resp. x:[o] C), ¢’ is F
(resp. x:C), and ¢ || I is not in W.
W —nd{a:Ci|| Lz:Co||[IJUW
if :C1NCy||1isin W and W does not contain both world constraints
z:Cy || land x:Cy || 1.
W = {a:D||I}UW

if :C1UCy||1isin W, neither x:Cy ||l nor x:Cy ||l isin W, and D
1s either € or .

W =3 {ehy || Ly:C|[I}UW

if @:3R.C||lisin W, z is not blocked in W, and y is a new object
such that y > z for all objects z occurring in W.

W =y {y:C||lJUW

if #:VR.C||land zRy||! are in W and W does not contain the world
constraint y:C' || [.

W —_Az:C||l}UW
if  is relevant for [, C' = T ||l isin W, and x:C ||l is not in W.

Figure 1: Propagation rules of the ALCs-satisfiability algorithm.

A formal description of the propagation rules is given in Figure 1. Given a set
{F1,..., F,} of ALCps-formulas the ALCrq-satisfiability algorithm proceeds as follows.
Starting with the world constraint system Wy that is induced by {f},..., F,}, propa-
gation rules are applied as long as possible.

The transformation rules are sound in the sense that, if W is a satisfiable world
constraint system, each applicable propagation rule can be applied in such a way that
the obtained derived system is satisfiable (see Section 5 for a proof). For the “don’t-
know” non-deterministic —, rule there are two alternative successor systems, and
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soundness means that one of them is satisfiable if the original system is satisfiable.?
For the other rules (which are deterministic), soundness just means that application of
the rule transforms a satisfiable system into a new satisfiable system.

Furthermore, given an arbitrary induced world constraint system Wy, only a finite
number of propagation rules can successively be applied, starting with Wy (see also
Section 5 for a proof). This means that, after a finite number of propagation rule
applications to W, we obtain a complete world constraint system (i.e., a system to
which no more rules apply), say W'. If W’ is satisfiable we can conclude that W
is satisfiable (since Wy is a subset of W’). Otherwise, if W’ is unsatisfiable, we can
possibly derive another complete world constraint system from Wy by another choice for
the non-deterministic —, rule. If all the (finitely many) choices lead to an unsatisfiable
complete system then soundness of the rules implies that the original system W, was
unsatisfiable.

Thus, it remains to be shown how satisfiability of a complete world constraint
system can be decided.

Definition 4.6 A world constraint system W contains an obvious contradiction (or
clash for short) if it contains either a pair of labeled ALC pq-formulas of the form x: Al|l
and x:—A||l or a labeled ALCpq-formula x: L||1 (for some object x, concept name A,
modality o, and label ).

Obviously, a world constraint system containing a clash is unsatisfiable. On the
other hand, if a system is clash-free and complete then it is satisfiable (this property,
which shows completeness of the propagation rules, will be proved in the next sec-
tion). Summing up, we obtain the following theorem, which will be proved as soon as
soundness, completeness, and termination of the propagation rules are established.

Theorem 4.7 Satisfiability of a finite set of ALC pq-formulas is decidable if we assume
increasing domains.

5 Proofs of Soundness, Completeness, and Termi-
nation

In this section we prove Theorem 4.7 by giving proofs for soundness, termination, and
completeness of the propagation rules in the Subsections 5.1, 5.2, and 5.3.

3Note that this is the only source of “don’t-know” non-determinism. The choice of an applicable
rule is “don’t-care” non-deterministic, i.e., we need not try different orders of rule application.
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5.1 Soundness

The following lemma states that the propagation rules are sound.

Lemma 5.1 Let W be a satisfiable derived system. Then each applicable propagation
rule can be applied to W in such a way that the obtained derived system W' is satisfiable.

Proof: For all rules other than the —, rule we must show that application of the rule
transforms a satisfiable system W into a satisfiable system W’. For the —_, we must
show that one of the two systems W/, W” that can be derived by applying this rule is
satisfiable, provided that the original system W was satisfiable.

Let K = (W, T', K1) be a Kripke structure that satisfies W, and let & be a mapping
that maps labels in W to worlds in W such that (¢) K,a(l) = F for each world
constraint F' || [ in W and (i2) (a(l), a(l")) € v, for each world constraint [ M, " in W.
Since W was assumed to be satisfiable such a Kripke structure and a mapping « exist.

Case 1: W —o W = WU {l X, I',) F||'}. Here the —¢ rule was applied to
a constraint (o) F' || [ for some modality o and ALCx-formula F. The label I' is a
new label that does not occur in W. Since the pair K, a satisfies W we know that
K,a(l) E (o) F, and hence there is a world w’ in W such that («a(l),w’) € 4, and
K,w" |= F. Thus, we can define o' such that o/(I') = w’ and o/'(I") = «a(l") for all
labels (" different from I’. Obviously, K, o’ satisfies W',

Case 2: W —o W = WU{l X, I',x:C || I'}. Here the —¢ rule was applied to
a constraint x: (o) C'|| | (for a modality o and an ALCa concept C). Again, label
I' is a new label that does not occur in W. Now K,a(l) = x: (o) C implies that
251 € ({0) C,a(1))571, and thus 27 € (C,w')57 for some world w’ with (a(l),w’) € 7,.
As in Case 1, we define o/(I') = w’ and /(") = a(l") for all other labels. Obviously,
K, o satisfies W',

Case 3: W —g W/ = W U{F ||l'}. Here the —g rule was applied to [o] F' ||
and [ X, [’ for some modality o and ALCp-formula F. Since K, « satisfies W we
can conclude that (a(l),a(l')) € 7o and that K,w" | F for each world w’ such that
(a(l),w") € 7o. This implies K, a(l') | F, and thus K, « satisfies W’. The case where
the —g rule is applied to a constraint x:[o] C || [ can be treated similarly.

Case 4: W — W' W —q W' W —y W', or W —3 W’. The proof of soundness is
almost identical to the one for the corresponding propagation rules for ALC (see [26]).

Case 5: W —_ W' = W U {x:C || l}. Here the —_ rule was applied to C = T ||/
and an object name z that is relevant for [ in W. Thus, there is a label [’ such
that (¢) W contains a world constraint of the form = : C' || I, Ry || I', or yRax || ',
and (i7) [ is accessible from /. Because of (i) we know that 27 € AR1(a(l')), and

because of (i) and the increasing domain assumption we have AR (a(l')) C AE1(a(l)).
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Furthermore, by assumption, we know that K,a(l) E C = T, and hence we can
conclude z%7 € (€, a(1))51. To sum up, K,a(l) E z:C, and thus K, a satisfies W’. O

5.2 Termination

The next lemma shows that, given a finite derived system W, only a finite number of
propagation rules can successively be applied to W. In order to simplify the notation
we will use Conw (x,1) to denote the set {C4,...,C,} of concepts such that x : C; || [
occurs in W. By definition, an object = is blocked by an object y w.r.t. label [ in W
iff Conw (x,1) C Conw(y,!) and y < z.

The depth of labels in a derived system W is recursively defined as follows. The
depth of label [y (which represents the real world) is 0, written as depthy, (lp) = 0. If
[ is a label with depthy, (1) = n and there is a world constraint [ M, I’ in W for some
modality o, then depthy, (I') = n + 1. Note that, due to the definition of the —¢ rule,
for each label I’ # [y occurring a derived system W there is exactly one label [ and one
modality o such that [ X, I’ is in W. In addition, application of propagation rules does
not change the depth of an already existing label.

The mazimal nesting depth of modal operators in a labeled ALCpq-formula F'|| [ is
denoted by mnd(F || ). The maximal nesting depth of a label [ in a derived system
W, written as mndw (1), is defined as max{mnd(F' || 1) | F'|| [ € W}.

Lemma 5.2 Let Wy be a system that is induced by a finite set of ALCrq-formulas
{Fi,..., F,}. Then any sequence of propagation rule applications starting with Wy is
finite.

Proof: Assume to the contrary there is an infinite sequence of rule applications Wy —
Wi — Wy — -+ .. The following facts are an easy consequence of the way the propaga-
tion rules and Con are defined:

1. Let « be an object name in W; and let [ be a label. Then Conw,(x,l) C
Conw,,, (x,1).

2. If «:C ||l is in W; then C is a concept that is a subexpression of a concept
occurring in Fiy, ..., F,. Consequently, there can be only finitely many different
sets Conw,(x,1) (in the whole sequence).

3. If F||1isin W; for an ALCp-formula F' with non-empty modal prefix then there
is an ¢ and a sequence of modal operators m such that F; = m F'. Consequently,
the number of possible formulas F' is finite.
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The second and the third fact imply that an infinite sequence of rule applications is
possible only if infinitely many objects or infinitely many labels are generated. In this
case there are three possibilities:

1. For some label [ an infinite chain of world constraints of the form [ X, 14,1y X,
[y, ... 1s generated,

2. there is a label [ such that infinitely many ALCx-formulas labeled by [ are
generated, or

3. for some label [ an infinite number of world constraints of the form [ X, [4,1X,,
[y, ... 1s generated.

First, we show that the first case is impossible. This is an obvious consequence of
the following claim. Let mndy be the maximal nesting depth of modal operators in
Fy,..., F,. Then for all 2 and all labels [ occurring in W; we have

(x) depthy. (1) + mndw, (1) < mndy.

The claim can be shown by induction on :. For ¢ = 0 the only label occurring in W, is
lo, and this label has depth 0. In addition, mndw,(lo) = mnd.

For the induction step, note that it is easy to see that application of rules other
than the —¢ or —g rule cannot change the maximal nesting depth or depth of a label.

First, we consider the case where the world constraint [ X, [’ has been introduced
in the step from W, to W;;; by an application of the — rule to a formula ¢ labeled
by . Thus, we have depthy,  (I') = depthy,  (I) +1 = depthy, (I) + 1. The labeled
ALCp-formula ¢ is either of the form (o) F'|| [ or of the form x: (o) C || [, where F
is an ALCpq-formula, @ is an object, and C is a concept. If the —¢ rule has been
applied to (o) F'|| [, then it has added exactly one ALCrs-formula with label I, namely
F'||I'. Analogously, if the —¢ rule has been applied to x: (o) C' ||, this propagation
rule application has added a: C || I" as the only ALCx-formula with label I'. Thus,
in both cases mndy,,, (') is strictly smaller than the maximal nesting depth of modal
operators in ¢. This and the fact that depthy,, (I') = depthy, (I) + 1 imply that (*)
holds for W;;1 and I’. Since nothing has changed for the other labels, we are done in
this case.

Second, assume that an additional ALCx-formula 1 with label " has been added
in the step from W; to W;;1 by an application of the —g rule to a formula with label
[. Again, ©» has a maximal nesting depth of modal operators that is smaller than

mndy,(l) = mndw,,,(l), and depthy,  (I') = depthy, (1) + 1. This implies that ()

7

holds for W,y and ['.

This concludes the proof that there cannot be an infinite sequence [ M, 14,1 M,
l,..., 1.e., Case 1 is not possible. By induction on the depth of labels we show that
Cases 2 and 3 cannot occur.
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Base (Case: Consider the initial label /. It is easy to see that Case 2 can occur only
if the —3 rule is applied infinitely often to a constraint with label /5. To a fixed object
x and label [ the —3 rule cannot be applied infinitely many times. This shows that
there must be infinitely many objects x1, x5, x3,... to which the —3 rule is applied at
label ly. Since, for an object x, there are only finitely many smaller objects, we may
without loss of generality assume that 7 < 29 < 23 < ...

For all ¢, let W, —3 W41 be the transformation step at which the —g-rule is ap-
plied to ;. Now consider the sets Cony, (x4,1p). Since there are only finitely many dif-
ferent such sets, there must be indices & < h such that Conwjk (xg, lo) = Conwjh (h,lo).
However, we know that Conwjk (xg, 1) C Conwjh (xg,lo), and that xj < xj. Thus, x,
should be blocked in W;, . which is a contradiction to our assumption that the —3 rule

is applied to zj, in W;, . This completes the proof that Case 2 cannot hold for label /.

An easy consequence of this is that there are only finitely many applications of
propagation rules to formulas with label ly. In particular, the —¢ rule is applied only
a finite number of times to formulas with label l, which completes the proof that
Case 3 cannot hold for label ;.

Induction step: The only difference to the base case is that a label [ may “inherit”
objects from other labels ', if [ is accessible from I’. Thus, in addition to showing that
the —3 rule is applied only infinitely often for label [, one must prove that there are
only finitely many such inherited objects. However, if [ is accessible from [’ then [’ is of
depth smaller than [, and thus we know by induction that there are only finitely many
objects for . The remainder of the proof is identical to the one for the base case. O

5.3 Completeness

Let Wo = {xo: T||lo, F1l|lo,- -, Fulllo} be the world constraint system that is induced
by the finite set {F}, ..., F,} of ALCp-formulas. Assume that W is a complete and
clash-free world constraint system that is derived from Wy by applying propagation
rules. We must show that W is satisfiable. Since Wy is a subset of W, this implies
that Wy is satisfiable, and thus also {F},..., F,}

In order to show satisfiability of W, we introduce the notion of the canonical Kripke
structure K = (W, I', K1) of W, and of the corresponding canonical mapping o from
labels to worlds of this structure.

e For all dimensions ¢ the domain D); consists of all labels occurring in W, i.e.,
the set W of worlds is given by the v-fold Cartesian product D x --- x D where
D :={l|1is alabel in W}.

e The mapping « from labels to worlds is defined by induction on the depth of
labels:
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— The initial label [y is the only label of depth 0. For this label, we define
a(ly) := (lo, ..., lp). Obviously, the tuple a(ly) contains exactly one label of
maximal depth (in this case depth 0), and this maximal label is [y itself.

— Now assume that [’ is a label of depth k& + 1. There is exactly one label I’ of
depth k& and a modality o such that { X, " is in W. Let ¢ be the dimension
of 0. By induction, we can assume that «(l) is already defined, and that
the (unique) label of maximal depth occurring in this tuple is [. The tuple
a(l") is obtained from «(l) by replacing the ¢-th component by I’. Since all
the components of a(l) are of depth less or equal k, the unique component
of maximal depth in a(l') is I'.

Obviously, the mapping « was defined such that there is a 1-1-correspondence
between labels and worlds. Note, however, that not all world tuple are in the
image of «. In principle, only those tuples that are in the image are of interest.

In order to define the accessibility relation ~, for a given modality o of dimension
¢ we distinguish two cases:

— If w € W is not in the image of a then we set ~,(w) := 0.

— Now, assume that w = a(!) for a label [ occurring in W. We define ~,(w) :=
{|ix,I"e W}.

An easy consequence of this definition and the definition of « is that we have
(w,w") € ~, iff there exist labels [,I" in W such that w = «a({), w’ = a(!'), and
[X, e W.

The set AR7 consists of all object names occurring in W. For defining the domains
of the different worlds, we distinguish two cases:

— If w = a(l) for a label ! then we define AR7(w) := {x | x is relevant for [}.
Since every label in W is accessible from [y, we know that A%7(w) contains
at least the object name xg.

— If w is not in the image of o then we set AR7(w) := {z0}.
It is easy to see that the increasing domain assumption is satisfied this way.

For each object name = in W we define 27 := z.

For each concept name A and world w = a(l) we define (A,w)t7 := {z | z:

A||l€ W} If wis not in the image of o then (A, w)E7 := .

For each role R and world w we define (R, w)®7 := (), if w is not in the image of
a. Now, assume that w = a(l). We define (R,w)" inductively along the total
well-founded ordering < on the object names. If = is the least object w.r.t < we
define (7,y) € (R,w)X7 iff zRy || 1 € W. Now let = be an object in W that is

different from 2.
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— If z is not blocked w.r.t. [ in W, then (x,y) € (R,w)27 iff xRy ||l € W.

— Otherwise, if = is blocked w.r.t. [ in W, let z be the least object (w.r.t.
<) such that z is blocked by z w.rt. I. Then z < x and we can thus
assume that the set {y | (z,y) € (R,w)"7} is already defined. We define
(z,y) € (R,w)E1iff (4) (2,y) € (R,w)X7 or (41) xRy ||l € W.

We will show in the following that, given a complete and clash-free derived system W,
the canonical Kripke structure of W is a model of W.

Lemma 5.3 Let W be a complete and clash-free derived system. Then W is satisfiable.

Proof: Let K = (W, T, K1) be the canonical Kripke structure of W, and let o be the
corresponding canonical mapping of labels to worlds. We must show that

L. (a(D),a(l')) € 4, for each world constraint [ X, " in W, and

2. K,a(l) = F for each labeled ALC p-formula F' || in W.

Because of the definitions of a and of the accessibility relations, the first property is
obviously satisfied.

Thus, let us show the second property. If F'is of the form = Ry there is also nothing
to show. In order to treat the other cases, we will first show

(%) K,a(l) Fa:C ifx:Cl|lisin W

by induction on the structure of the concept C.

Case | (Base case): If x: A||lisin W (where A is a concept name), then K, o(l) =
x: A follows immediately from the construction of K. If x:=A||lis in W, then we know
that A is a concept name because we assumed ALC p-formulas to be in negation normal
form. Since W is clash-free, x: A || [ is not in W in this case. Thus, K, a(l) = x: A by

construction, and therefore K, a(l) E x:—A.

Case 2: Assume that 2:Cy 1 Cy || [ is in W, where (7 and C; are concepts. Since
W is complete we know that both labeled ALC-formulas «:Cy || [ and x:Cy || [ are
in W. By induction hypothesis it follows that K, «(l) | «:C; and K, a(l) | x: Cq,
which yield K, a(l) | x:Cy 11 Cy. The argument for x:Cy U Cy is analogous.

Case 3: x:3R.C'|| lis in W for some concept C. If, for some object y, the world
constraints Ry ||l and y:C || [ are both in W we can conclude K, a(l) E x:3R.C by
definition of R™’ and the induction hypothesis. Now suppose there is no such object
y. Then x:3R.C'|| [ is blocked in W w.r.t. [ since W is complete. Let z be the least
(w.r.t. <) object in W that blocks x. First, note that z is not blocked: otherwise, if
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z were blocked by, say 2/, w.r.t. [ then 2z’ would also block  w.r.t. [ and 2z’ < z. This
contradicts the assumption that z is the least object that blocks .

Since z is blocked by z w.r.t. [, and z is not blocked w.r.t. [, we know that there
are world constraints zRZ ||l and Z2:C || [ in W. By induction hypothesis, this implies
K,a(l) = z:C. In addition, we have (z,2) € (R, a(l))"" because of the definition of
RET in the canonical Kripke structure K. From these facts K, a(l) = z:3 R.C can be
concluded.

Case 4: x:¥Y R.C'||lis in W. In order to show that K,a(l) E x:V R.C we must
show that y € (C,a())% for each object y such that (z,y) € (R,a(l))*7. There are
two possibilities for (z,y) to be in (R, a(l))%7, namely (z) there is a world constraint
xRy ||l in W and (¢7) x is blocked by some object z w.r.t. [ in W—where we assume
z to be the least element (w.r.t. <) that blocks z in [—and (z,y) € (R,)*7. In case
(7), the —y rule has been applied to = : ¥V R.C || ] and xRy || [ such that y:C || [ is
in W. In case (ii), we know that Conw(x,l) C Conw(z,[), and hence z:V R.C'|| [ is
in W. Furthermore, since z is not blocked w.r.t. [, we know that zRy || [ is in W if
(z,y) € (R,a(l))%r. This means, however, that y:C || [ is in W because otherwise
the —v rule would be applicable. Now, in both cases y € (C, a(l))%7 follows from the
induction hypothesis.

Case 5: x:{0)C ||l is in W for some modality o. Since W is complete there is a label
I such that the world constraints { ™M, I’ and x:C || I are both in W. Consequently,
we have (a(l),a(l')) € 7., and the induction hypothesis yields K, a(l') = «:C. This
implies K, a(l) | x: (o) C. The proof for x:[o] C || [ is similar.

This completes the proof of (*) by induction on the structure of the concept C' in
labeled concept instances of the form x:C || . Thus, we know that K satisfies each
labeled concept instance in W. It remains to be shown that K satisfies each labeled
world constraint of the form (o) F'|| [, [o] F'|| [, or C = T ||l in W, where F' is an
ALC p-formula, o is a modality, C' is a concept, and [ is a label.

First, assume that C' = T || [ occurs in W. We must show that z € (C, a(1))%7 for
each x € AR1(a(l)). Since AR7(a(l)) consists of exactly those objects that are relevant
for {, and W is complete, the —_ rule has been applied and a:C || [ occurs in W. We
have already shown that in this case K, a(l) | x:C holds.

Second, let (o) F'|| [ be in W. In this case, for some label I’ the world constraints
[ X, I"and F || I' are in W since W is complete. If F' does not contain a leading
modality, we have already shown that K, «a(l') | F. Otherwise, K,a(l) | (o) F' can
easily been shown by induction on the number of modalities in (o) F'. The argument
for [o] I || w is accordingly. O

This completes the proof of Theorem 4.7, i.e., we have shown that satisfiability of

a finite set of ALC-formulas is decidable (w.r.t. the increasing domain assumption).
A short look at the algorithm reveals that the number v of different dimensions, and
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the fact that different modalities may operate on different dimensions was never ex-
plicitly used in this algorithm. Thus, if we are only interested in satisfiability, there
is no difference between the v-dimensional formalism (where modalities have different
dimensions and the set of worlds is a v-fold Cartesian product) and the corresponding
I-dimensional language (where we assume just one dimension in which all modalities
operate).

Corollary 5.4 Assume that {Fy,...,F,} is a set of formulas for a v-dimensional
ALCp-language. Then {Fy, ..., F,} is satisfiable (in the v-dimensional case) iff it is
satisfiable in the corresponding 1-dimensional language.

6 The Constant Domain Assumption

Up to now we have investigated increasing domains only. In this section we will con-
sider the consequences of assuming that the domains of all worlds are identical. Since
this constant domain assumption is a special case of assuming increasing domains, an
appropriate extension of the presented ALC xq-satisfiability algorithm might seem to be
rather easy. The goal of this section is to point out why developing such an extended
algorithm requires more than a straightforward modification of the existing approach.
In fact, until now we did not succeed in finding an appropriate modification.

In a first attempt one could try to use the presented ALCrs-satisfiability algorithm
for the case of constant domains as well. However, not surprisingly, this does not
always yield the correct answers. For example, consider the ALC-formulas

([o]mA) =T and (o) (x: A)

where o0 is a modality,  an object, and A a concept name. It is easy to see that an appli-
cation of the ALC p-satisfiability algorithm to the induced system {xq : T||lo, ([0]A) =
T o, (o) (x: A)||lo} yields a complete and clash-free derived system. The reason is that
the object name x is not relevant for /y. This shows that the above ALCa-formulas
are satisfiable if we assume increasing domains.

On the other hand, they are not satisfiable if we assume constant domains. Suppose,
to the contrary, that K = (W, ', K) is a Kripke structure such that K, w |= ([o]~A4) =
T and K,w |= (o) (x: A) for some world w in W. Because of K,w |= (o) (x: A) there
exists a world w’ with (w,w') € 4, and K,w' = x: A, i.e. 287 € (A,w')%1. On the other
hand, we have z%7 € (=A,w )57 since %7 € AR7(w) (constant domain assumption)

and K,w | ([o] ~A)=T.

In the ALCpq-satisfiability algorithm we took the increasing domain assumption
into consideration by an appropriate definition of the notion of “relevant objects,”
which was then used in the —_ rule: given a labeled ALCp-formula C = T || [ in a
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derived system W, the —_ rule adds the labeled ALC p(-formula x: C'||l to W whenever
x is relevant for [. Recall that an object z is said to be relevant for label [ if there is a
label I" occurring in W such that

1. W contains a world constraint of the form « : C' ||, xRy || ', or y Rz || I'.

2. 1 is accessible from ['.

Now, if we want to deal with constant domains, a promising approach seems to be
a modification of the —_ rule according to the following idea. Suppose W to be a
derived system and [,I' to be labels in W. Furthermore, let K = (W,I', Kj) be a
Kripke structure that satisfies W. Because of the constant domain assumption we
know that 257 € AR1(w) for each world w in W, whenever there is a world constraint
of the form x: D || 1, Ry || [, or yRx ||l in W. In this case we say that x is a top-level
object in W (to distinguish it from objects occurring only inside of modal operators).
If = is a top-level object in W, and if the world constraint C' = T || occurs in W, then
the —— rule must add 2:C || " to W—independently from the fact whether or not x
is relevant for I (where “relevant” is defined as in the increasing domain approach).
This consideration leads us to a modified rule —_: to handle world constraints of the
form C' = T || [, which is given by

W o {a:C | I} UW

if = is a top-level object in W, C = T ||l isin W, and x:C || [ is not
in W.

This apparently “slight” modification of the —_ rule, however, may cause infinite
chains of propagation rule applications. As an example, consider the world constraint
system W that consists of the two labeled ALCq-formulas xq: T ||y and ((0) 3R.C) =
T || lp, where o is an arbitrary modality. An application of the —_/ rule yields the
derived system

Wl =Wu {$0:<0> dR.C || 10}7

and, by one application of the —¢ and of the —3 rule each, we obtain
W2 = W1 U {ZO [><Io ll,$0§EIR.C || ll,$0R$1 || ll,xl:C || ll}

where x1 1s a new object and /; is a new label. Because of the newly introduced object
x1 and the world constraint ((0) 3 R.C') = T||ly in Wy, the —_, rule is again applicable,

and yields
W3 = W2 U {$1§<0> ElRC || lo}

However, to a1 : (o) 3R.C || Iy the same propagation rules are applicable as to g :
(o) 3R.C || Iy before. This means, another new label and a new object are introduced,
and so on. Note that none of the newly generated objects is ever blocked since they all
have different world labels. In order to avoid such infinite chains of propagation rule
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applications, the definition of blocked objects must be modified such that assertions
with other labels are taken into account as well.

To sum up, we have seen that the problem of how to avoid infinite chains of propa-
gation rule applications is more complicated if we are dealing with constant domains.
In particular, the above example shows that, for testing whether or not an object is
blocked w.r.t. some label /, it is not sufficient to consider only ALC r-formulas that are
labeled with [. A straightforward generalization of the notion of blocked objects, which
takes different labels into account, could be defined as follows. An object x is constant
domain blocked (for short cd-blocked) by an object y w.r.t. label [ in a world constraint
system W iff for some label I’ in W it holds that Conw (z,!) C Conw(y,!") and y < x.
This approach is sufficient to handle the above example correctly. However, if we want
to decide whether or not the —3 rule must be applied to a labeled ALC y-formula sev-
eral problems arise, which will be illustrated by the following three examples. The first
example shows that in general one must take into account ALC s -formulas with more
than two different labels when testing whether or not an object should be blocked.

Example 6.1 Consider the system W that consists of the world constraints

z:3R.IARA|| y:3RIRA|L ZARA||
z:=A || o yRz || 4 Z'RZ || Iy
z:dR.A|l L 2 A b

Let us have a closer look at the labeled ALCq-formula :3R.3R.A || lp. There is no
R-successor of = in [y, and z is cd-blocked in W, w.r.t. 5. Since z is blocked by y, and
y has an R-successor z, the idea is that x can “re-use” z as its R-successor. At first
sight, this seems to be feasible. However, z itself is blocked by z’. Again, there is an
R-successor Z of 2/, and we should like to “re-use” it as R-successor of z that is in A.
For label [y, this does not lead to problems. However, our intention was to use z also
with label ly. Here the re-using of Z as an R-successors of z that is in A leads to a
contradiction since we already have a constraint Z: = A || lo.

The second example illustrates that information about role-successors in a world
constraint system may be essential when testing whether or not an object should be

blocked.

Example 6.2 Suppose a derived system W5 to be given which, among others, contains
the world constraints

:3RVQ.A| L y:3RVQ.Alll,
zQ2" || Iy yRz || 1y
Zi=A L z:V Q.All L.

In this world constraint system the object x is cd-blocked by y w.r.t. [;. Nevertheless,
we cannot “re-use” z as R-successor of = in [;. In fact, this would mean that we
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implicitly add the labeled ALC pq-formulas xRz || [ and z:V Q.A|| ;. These additional
world constraints, however, would cause a contradiction to the labeled ALCrs-formulas
2Qz" || 1 and z':=A|| ;. However, if one applies the —3 rule to 2: 3RV Q.A|| [1, one
obtains a new object, for which no contradictions arise. This shows that x should not
be blocked in this situation.

The final example shows that the test whether or not the —3 rule must be applied
in a world constraint system W depends on the information W (implicitly) contains
about the accessibility relations of Kripke structures satisfying W.

Example 6.3 Suppose W35 to contain, among others, the world constraints

z:3R.(0) Al y:3R. (o) Allls
xq:o] L] 1y yRz || I3
z: (o) Al L.

Obviously W3 is not satisfiable. However, if we do not apply the —3 rule to « :
dR.(0) A || l1, the ALCpq-satisfiability algorithm does not add the world constraints
eRx' || I, ' (o) Al l1, Iy M, I3, 2" A || I3, and a1 : L || I3 to W5 (where 2’ is a new
object and 3 is a new label). Since, especially, x1: L || I3 is not derived, the ALC -
satisfiability algorithm (with cd-blocking instead of blocking) does not add a clash to
Wi, i.e., does not detect the unsatisfiability of Ws.

Unfortunately, we did not yet succeed in finding an appropriate definition of cd-
blocked objects in world constraints. We thus leave this definition as an open problem
for the moment. Note that an alternative to restricting the applicability of the —3 rule
by the definition of cd-blocked objects would be to restrict the applicability of the —
rule in an appropriate way. However, not surprisingly, with both approaches similar
problems must be solved, and it is not yet clear how this can be achieved.

7 Conclusion

The framework for integrating modal operators into terminological knowledge repre-
sentation languages presented in this paper should be seen as the starting point for
developing more elaborate hybrid languages of this type. Extensions in at least two
directions will be necessary.

First, for the adequate representation of notions like belief and time, the basic modal
logic K is not sufficient. Instead, one must consider modalities that satisty appropriate
modal axioms. A well-known example is the use of KD45 for modeling the beliefs of
agents. For the case where modal operators occur only in front of terminological and
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assertional axioms, an integration of KD45 modal operators has already been considered

in [16].

Second, the multi-dimensionality of our language has not really been made us of.
In fact, we have seen that with respect to satisfiability there is no difference between
the v-dimensional and the corresponding 1-dimensional case (Corollary 5.4). We have
introduced a multi-dimensional framework since it is more flexible. In an extended
language, different dimensions could satisfy different modal axioms (e.g., KD45 in the
belief dimension, and at least S4 in the time dimension).* In addition, one might want
to specify certain interactions between different dimensions such as independence of
one dimension from certain other dimensions.

The reason for considering a simplified framework without any of these extensions
in the present paper is that in this context it is possible to design a rather intuitive
calculus for satisfiability. Also, the proof of soundness, termination and completeness
of this calculus is still relatively short and comprehensible. For this reason, we claim
that this calculus can serve as a basis for satisfiability algorithms for more complex
languages.

Another topic of future research will be investigating the constant domain assump-
tion and its algorithmic ramifications.
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