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Abstract

Oz is a concurrent language providing for functional� object�oriented� and

constraint programming� This paper de�nes Kernel Oz� a semantically com�

plete sublanguage of Oz� It was an important design requirement that Oz be

de�nable by reduction to a lean kernel language�

The de�nition of Kernel Oz introduces three essential abstractions� the Oz

universe� the Oz calculus� and the actor model� The Oz universe is a �rst�

order structure de�ning the values and constraints Oz computes with� The

Oz calculus models computation in Oz as rewriting of a class of expressions

modulo a structural congruence� The actor model is the informal computation

model underlying Oz� It introduces notions like computation spaces� actors�

blackboards� and threads�
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� Introduction

Oz is a concurrent language providing for functional� object
oriented� and constraint
programming� It is de�ned by reduction to a lean sublanguage� called Kernel Oz�
which is de�ned in this paper� The fact that we can elegantly de�ne the semantic
essence of Kernel Oz in less than ten pages indicates that such a multi
paradigm
language is feasible� Further evidence is provided by the existence of a complete
and e�cient implementation�

The research behind Oz is driven by practical and theoretical considerations�

On the practical side� we see the need for a concurrent high
level language� Clearly�
such a language should subsume higher
order functional programming� and organize
state and concurrent functionality by means of objects� For tasks that involve search�
the problem solving capabilities known from constraint logic programming would
be advantageous�

On the theoretical side� we would like to advance towards a uni�ed computation
model subsuming and explaining seemingly incompatible programming paradigms�
Concurrency and constrained
based problem solving are particularly challenging�
Important considerations in the development of a uni�ed programming model are
its simplicity and generality as a mathematical construction� its usefulness as a
basis for designing practical programming languages� and the existence of simple
and e�cient implementation models�

Programming languages can be classi�ed by the computation model they are based
on� Imperative programming� functional programming� logic programming� and
concurrent logic programming are established classes based on di�erent computa

tion models� Oz does not �t in any of these classes� Rather� it is based on a new
computation model incorporating ideas from functional programming� logic pro

gramming� and concurrent computation �the �
calculus� in particular�� Here are
some principles realized in Kernel Oz�

� Expressions are composed concurrently� with references made by lexically
scoped logic variables�

� All values are de�ned as the elements of a �rst
order structure� called the Oz
universe�

� Values are described by constraints� which are logic formulas over the Oz
universe� and are combined automatically by means of constraint simpli�cation
and propagation�

� Reference to fresh names is possible� where names are special values of the Oz
universe�

� Procedural abstraction is provided with full generality� where abstractions are
referred to by names�
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� State is provided through cells� which are primitive concurrent agents holding
a reference�

� Speculative constraint computation is delegated to local computation spaces�

� Search is provided by a combinator spawning a local computation space and
returning nondeterministic alternatives as procedural abstractions�

A guiding principle in the design of Oz was the requirement that Oz be de�nable by
reduction to a kernel language as lean as possible� This led us to look for minimal
primitives for expressing computational concepts such as functions� objects� and
search� The search for a coherent collection of such primitives has been an exciting
journey through a jungle of complexity to a glade of simplicity�

Structure of the De�nition

The formal de�nition of a real programming language is a complex task� To be useful
it must be simple� To be simple� it must introduce di�erent abstractions� identifying
di�erent concerns that can be treated independently� For powerful abstractions to
exist� the language design must be based on these abstractions� Thus designing a
programming language subsumes creating the abstractions explaining the language�

The de�nition of Kernel Oz introduces three essential abstractions� the Oz universe�
the Oz calculus� and the actor model�

Oz Universe Actor Model Kernel Oz

Oz Calculus

The Oz universe de�nes values and constraints� It is a structure of �rst
order pred

icate logic whose elements are the values and whose formulas are the constraints Oz
computes with� The values of Oz are closed under tuple and record construction
and include numbers� atoms and names� The fact that Oz provides for full higher

order programming but has �rst
order values only is a radical departure from the
established models of functional computation�

The actor model� is the informal computation model underlying Oz� It introduces
notions like computation spaces� actors� blackboards� and threads� Computations
can be described by a class of elaborable expressions�

The Oz Calculus formalizes the actor model� with the exception of the reduction
strategy and input and output� It models concurrent computation as rewriting of

�The actor model for Oz is quite di�erent from Hewitt�s actor model of computation ���� How�
ever	 both models have in common that they are inherently concurrent 
Hewitt speaks of ultra
concurrency��
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a class of expressions modulo a structural congruence� This set
up� which is also
employed in more recent presentations of the �
calculus ��� ��� proves particularly
useful for Oz since constraint propagation and simpli�cation can be accommodated
elegantly by means of the structural congruence�

Kernel Oz itself consists of a class of expressions whose semantics is de�ned by a
translation into the elaborable expressions of the actor model� Kernel Oz restricts
the expressivity of constraints so that an e�cient implementation becomes possible�

How to read the De�nition

This report gives a complete and concise de�nition of Kernel Oz� Supplementary
literature is needed to understand the language design and programming in Oz� The
reader is expected to have an intuitive understanding of Oz� as conveyed by ��	��
More thorough introductions to programming in Oz are ��� 
�� The document �	�
de�nes Oz by reduction to Kernel Oz�

On �rst reading� we recommend to ignore the constraint programming aspects of
Oz �disjunctions� solvers� �nite domains�� The study of the Oz calculus should
be prepared by reading ����� which introduces a simpli�ed calculus not covering
constraints and search� Other aspects of the calculus� in particular deep guards and
the relationship to logic programming� are discussed in ����� The search combinator
is introduced in ���� ����
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� The Oz Universe

The Oz universe is a mathematical model of the data structures Oz computes with�
It is de�ned as a structure of �rst
order predicate logic with equality� All variables in
Oz range over the elements of the Oz universe� The elements of the Oz universe are
called values� and the �rst
order formulas over its signature are called constraints�

��� Values

Values are classi�ed as shown in Figure �� A value is either a primitive or a com

pound value� A primitive value is either a literal or a number� A literal is either
an atom or a name� A number is either an integer or a �oat� A compound value

is either a proper tuple or a proper record�

atom name integer �oat

literal number

primitive

�
�
�

J
J
J

�
�
�

J
J
J

�
�
�
�

Z
Z

Z
Z

proper record proper tuple

compound

�
�
�
�

Q
Q

Q
Q

Figure �� Classi�cation of values�

It remains to de�ne the basic classes of atoms� names� integers� �oats� proper records�
and proper tuples� which are pairwise disjoint� Every value is in one and only one
basic class�

Atoms are �nite sequences of positive integers between � and ���� For convenience�
atoms are usually written as strings� exploiting a mapping speci�ed in �	� �e�g��
�fred�� �Atom�� ��� or ����������� For alphanumeric atoms starting with a lower
case letter we usually omit the quotes� for instance� we may write fred for �fred��
Atoms are totally ordered by the lexical order induced by the canonical order on
integers�

Names are primitive values without any structure� There are in�nitely many
names� There is no order on names�

The integers are the integers you know from school� They are ordered as usual�

The 	oats are the �nitely many �oating point numbers de�ned by the implemen

tation� They are totally ordered�

A tuple is either a literal or a proper tuple� A proper tuple is an ordered tree

l

�
�

�
�

v� vn

� n
� � �



��� Values 


where l is a literal� v�� � � � � vn are values� and n � �� Tuples are written as l�v� � � � vn��
where l�� stands for l� Two tuples are equal if and only if they have the same linear
notation�

Given a tuple t � l�v� � � �vn�� we call the literal l the label� the values v�� � � � � vn
the components� the integer n the width� and the integers �� � � � � n the features
of t� Moreover� we call vi the component or subtree of t at i�

A record is either a literal or a proper record� A proper record is an unordered
tree

l

�
�

�
�

v� vn

l� ln
� � �

where l is a literal� l�� � � � � ln are pairwise distinct literals� v�� � � � � vn are values� and
n � ��

Records are written as l�l�� v� � � � ln� vn�� where l�� stands for l� Two proper records
are equal if and only if they have the same linear notation up to permutation of
named �elds li� vi�

Given a record t � l�l�� v� � � � ln� vn�� we call the literal l the label� the values
v�� � � � � vn the �elds� the integer n the width� and the literals l�� � � � � ln the features
of t� Moreover� we call vi the �eld or subtree of t at li�

By de�nition� every literal is both a nullary tuple and a zero
width record� In other
words� the intersection of the set of all tuples with the set of all records is exactly
the set of all literals�

The Oz universe is closed under tuple and record construction� It also contains
all in�nite trees that can be obtained from primitive values by tuple and record
construction� Consequently� the equation

x � l�l�� x l�� v�

has exactly one solution for x given l� l�� l�� v� The straightforward mathematical
details of the underlying construction can be found in �����

An important operation on records is adjunction� The adjunction of two records
s and t is the record s � t de�ned as follows� the label of s � t is the label of t� the
features of s � t are the features of s together with the features of t� and v is the
subtree of s � t at l if and only if either v is the subtree of t at l� or if l is not a
feature of t and v is the subtree of s at l� Thus record adjunction amounts to record
concatenation� where for common features the right argument takes priority� For
instance�

l�a� � b� � c� �� � k�b� � d� 	� � k�a� � b� � c� � d� 	��

Lists are special tuples de�ned inductively as follows� the atom nil is a list �called
the empty list�� and if v is a value and w is a list� then the tuple ����v w� is a list



� � The Oz Universe

�where v is called the head and w is called the tail�� For instance�

�

�

� nil

���

���

���

�� ��

�� ��

�� ��

is the list containing the integers �� �� � in ascending order�

��� Constraints

The signature of the Oz universe consists of all primitive values and of �nitely
many predicates called constraint predicates� Every primitive value is a constant
denoting itself� Note that the signature of the Oz universe contains no proper
function symbol� The �rst
order formulas over the signature of the Oz universe are
called constraints� The variables occurring in constraints are taken from a �xed
in�nite set�

The constraint predicates of the Oz universe are de�ned as follows�

� isAtom�x�� isName�x�� isLiteral�x�� isInt�x�� isFloat�x�� isNumber�x��
isRecord�x�� and isTuple�x� are de�ned as one would expect from their names�

� intPlus�x� y� z� and intTimes�x� y� z� are the predicates corresponding to inte

ger addition and multiplication� For instance� the formulas intMult��� �� ����
�intMult����� �� ���� and �intMult����� �� ����� are all true in the Oz universe�

� floatPlus�x� y� z�� floatMinus�x� y� z�� floatTimes�x� y� z�� floatDiv�x� y� z��
floatPow�x� y� z�� floatAbs�x� y�� floatCeil�x� y�� floatFloor�x� y��
floatExp�x� y�� floatLog�x� y�� floatSqrt�x� y�� floatSin�x� y��
floatASin�x� y�� floatCos�x� y�� floatACos�x� y�� floatTan�x� y�� and
floatATan�x� y� are the predicates corresponding to the respective functions
on the �oats �de�ned by the implementation��

� floatToInt�x� y� and intToFloat�x� y� are the predicates corresponding to the
respective conversion functions �de�ned by the implementation��

� atomString�x� y� holds if and only if y is the list of integers corresponding to
the atom x� Note that atomString�x� y� is functional from left to right and
from right to left�

� intLE�x� y�� floatLE�x� y�� and atomLE�x� y� are the predicates corresponding
to the respective total orders on integers� �oats� and atoms�

� label�x� y� holds if and only if x is a tuple or record whose label is y�



��� Constraints �

� width�x� y� holds if and only if x is a tuple or record whose width is y�

� subtree�x� y� z� holds if and only if x is a tuple or record� y is a feature of x�
and z is the subtree of x at y�

� extendTuple�x� y� z� holds if and only if x and z are tuples and z is obtained
from x by adding y as additional rightmost component�

� adjoin�x� y� z� is the predicate corresponding to record adjunction�

� adjoinAt�x� y� z� u� holds if and only if y is a literal and x and u are records
such that x � l�y� z� � u� where l is the label of x�

� arity�x� y� holds if and only if x is a record and y is the list of the atomic
features of x �i�e�� all features of x that are atoms� in ascending order�

� finiteDomainBound	x
 holds if and only if x is the upper bound for �nite
domains de�ned by the implementation� The upper bound must be an integer
larger or equal than ����

An important property of the Oz universe is the fact that validity of sentences is
preserved under permutation of names� that is� given two �rst
order sentences S� T
over the signature of the Oz universe such that T is obtained from S by a bijective
renaming of names� S is valid in the Oz universe if and only if T is valid in the Oz
universe� To obtain this property� no order on names is de�ned� and consequently
the arity of a record does not contain those features that are names�

We write � for the trivial constraint true� and � for the trivial constraint false� We
say that

� a constraint � entails a constraint � if the implication � � � is valid in the
Oz universe

� a constraint � is equivalent to a constraint � if the equivalence � � � is
valid in the Oz universe

� a constraint � is satis�able if it does not entail ��

For convenience� we write

x
�
� l�l�� y�� � � � � ln� yn�

for the constraint

label�x� l� 	 width�x� n� 	 subtree�x� l�� y�� 	 � � � 	 subtree�x� ln� yn��

and

x
�
� l�y�� � � � � yn�
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for the constraint

label�x� l� 	 width�x� n� 	 subtree�x� �� y�� 	 � � � 	 subtree�x� n� yn��

Moreover� we write

x
�
�y�j � � � jykjnil

for the constraint constraining x to the list y�� � � � � yk�

Since the Oz universe has integers with addition and multiplication� satis�ability
of constraints is undecidable� even for conjunctions of atomic integer constraints
�Hilbert�s Tenth Problem�� Furthermore� satis�ability of constraints involving no
other predicate but the subtree predicate is undecidable �����

Kernel Oz restricts the use of constraints such that satis�ability and entailment of
the occurring constraints is e�ciently decidable�

More about the logic and algorithmic properties of record and tuple constraints can
be found in ���� �� �� ���
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� The Actor Model

The actor model is the informal computation model underlying Oz� It can be seen
as a computational metaphor for the Oz calculus� the formal computation model
underlying Oz� The two models formulate complementary views of computation in
Oz supporting di�erent intuitions� The actor model takes an operational perspective
introducing notions like computation spaces� actors� and blackboards�

An important aspect of an inherently concurrent computation model like the one
underlying Oz is the reduction strategy determining the partial order according to
which possible reduction steps are to be performed� The reduction strategy has
semantical signi�cance as it comes to fairness� and practical signi�cance as it comes
to e�cient implementation� Finding the right reduction strategy has been one of
the more di�cult issues in designing Oz�

By its nature� an informal model must rely on the intuition of the reader and
cannot compete with the rigor of a formal model� Thus the Oz calculus is taken as
the de�ning model� except for the reduction strategy and input and output� which
are only formulated in the actor model� The formally inclined reader may prefer to
study the Oz calculus �rst�

��� Computation Spaces� Blackboards� and Actors

Computation in Oz takes place in a computation space called the top level� A
computation space consists of a �nite number of actors connected to a black


board� Computation proceeds by reduction of actors� When an actor reduces� it
may create new actors and write information on the blackboard� As long as an
actor does not reduce� it does not have an outside e�ect� Actors are short
lived�
once they reduce they disappear�

A blackboard is a store containing a constraint and a partial function binding

names to abstractions and variables� Names� variables� and constraints are de�ned
by the Oz universe� and abstractions will be de�ned later� The blackboard stores its
constraint only up to logical equivalence in the Oz universe� A blackboard is called
empty if it binds no name and if its constraint is ��

A blackboard entails a constraint � if the constraint of the blackboard entails ��
A blackboard binds a variable x to a variable or constant s 
� x if the constraint
x
�
�s is entailed by the constraint of the blackboard�

As computation proceeds� the information stored by the constraint of a blackboard
increases monotonically� More precisely� if a blackboard evolves from a state B to
a state B�� then�

� If B entails a constraint �� then B� entails ��

� If B binds a name a to an abstraction y�E� then B� binds a to y�E�
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blackboard
� � �

actor actor

blackboard

� � �

actor actor

blackboard

� � �

actor actor

Figure �� A tree of computation spaces�

� If B binds a name a to an once
only abstraction y��E� then B� binds a to
either y��E or y���

� If B binds a name a to a variable� then B� binds a to a �possibly di�erent�
variable�

Abstractions will be de�ned shortly�

Some actors spawn local computation spaces� thus creating a tree of computation
spaces taking the top level as root �see Figure ��� As computation proceeds� new
local computation spaces are created and existing local spaces are discarded or
merged with their parent space�

We say that a computation space S� is subordinated to a computation space S
if S� � S or if S � is subordinated to a local computation space of an actor of S�
We say that a blackboard B is subordinated to a computation space S if B is
the blackboard of a space subordinated to S� We say that a blackboard B� is
subordinated to a blackboard B if B� is subordinated to the computation space
of B� We say that X is superordinated to Y if Y is subordinated to X �

Every computation space is equipped with a possibly empty set of local variables
and local names� As computation proceeds� computation spaces may acquire
fresh local variables and names� A variable or name can be local to at most one
computation space� If a variable or name is local to a space� the space is called
its home space� Every occurring name must have a home space� Moreover� every
variable having occurrences that are not statically bound �de�ned below� must have
a home space� Variables and names with a home space can only occur in spaces
subordinated to their home space�

The hierarchy of computation spaces rooted in the top level satis�es the following
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invariants�

� The constraints of subordinated blackboards entail the constraints of super

ordinated blackboards �slogan� local spaces know the constraints of global
spaces��

� Names can only be bound by the blackboard of their home space� and there
is at most one binding for a name�

An important operation on a blackboard is the imposition of a constraint� A
constraint � is imposed on a blackboard storing a constraint � by making the
blackboard store the constraint �	�� where imposing � includes imposing � on all
subordinated blackboards �thus the invariants are maintained��

We say that a computation space fails if a constraint is imposed such that the
constraint of the blackboard becomes unsatis�able� If a computation space fails�
all its subordinated spaces fail� When a computation space fails� the actors of the
space are discarded and computation in the space is aborted� While failure of a
local space is a regular event� failure of the top level is considered a run
time error�

While some actors can reduce immediately once they have been created� others have
to wait until the blackboard contains su�cient information� Once an actor becomes
reducible� it remains reducible� except if its computation space fails or is discarded�
An actor has an outside e�ect only once it reduces�

We assume that actors are reduced one after the other� an important assumption
known as interleaving semantics� While we anticipate that an implementation
reduces actors in parallel� we insist that the e�ect of such a parallel computation
must always be achievable by a sequence of single actor reductions� Interleaving
semantics separates concurrency from parallelism such that parallelism has no se

mantic signi�cance and is only visible at the implementation level�

An Oz computation takes places concurrently with other computations� with some
of which it may have to communicate and synchronize� To model this essential
aspect of concurrent computation within the actor model� we assume that every
top level computation space is equipped with an input and an output stream�
An actor computation may read from the input stream and write on the output
stream� Agents in the outside world may write on the input stream and read from
the output stream� We assume that the tokens communicated on the input and
output streams are atoms�

There are four kinds of actors� Elaborators� conditionals� disjunctions� and solvers�
Conditionals� disjunctions and solvers are called proper actors� While proper
actors spawn local computation spaces� elaborators do not�

��� Elaboration of Expressions

Elaborators are actors that elaborate a class of elaborable expressions de
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E ��� � constraint

j x� y�E abstractor

j x� y��E once
only abstractor

j x�y cell creation

j E� E� composition

j local x in E end declaration

j newName�x� name creation

j apply�xy� application

j if C� �� � � � �� Cn else E fi conditional

j or C� �� � � � �� Cn ro disjunction

j OR C� �� � � � �� Cn RO nondistributing disjunction

j solve�x�E� y�y�y�� solver

j det�x� determination

j getDomain�x� y�

j input�x� j output�x�

j setThreadPriority�x�

j getThreadPriority�x�

C ��� x in E� then E� clause

x� y� z ��� hvariablei

x� y ��� hpossibly empty sequence of variablesi

Figure �� Elaborable expressions�

�ned in Figure �� Every constraint as de�ned by the Oz universe is an elaborable
expression� provided it contains no names� There is the further side
condition that
the formal arguments y of an abstractor expression x� y�E or x� y��E be pairwise
distinct�

An abstraction takes the form y�E or y��E� where the variables in y are called
the formal arguments and the elaborable expression E is called the body of
the abstraction� The formal arguments are required to be pairwise distinct� An
abstraction y��E is called a once
only abstraction and can only be applied once�

Given an abstractor x� y�E or x� y��E� we call x the designator and y�E or y��E
the abstraction of the abstractor�

Given an application apply�xy�� we call x the designator and y the actual argu

ments of the application�

Given a solver solve�x�E� y�y�y��� we call x the root variable� E the guard� and
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y�� y�� y� the control variables of the solver�

Given a clause x in E� then E�� we call the variables in x the local variables� the
expression E� the guard� and the expression E� the body of the clause�

The elaborable expressions come with the following variable binders�

� universal and existential quanti�cation in constraints

� an abstractor x� y�E or x� y��E binds its formal arguments y with scope E

� a declaration local x in E end binds its declared variables x with scope E

� a solver solve�x�E� y�y�y�� binds its root variable x with scope E

� a clause x in E� then E� binds its local variables x with scope E� and E��

Free and bound variables are de�ned accordingly� An elaborable expression is
closed if it has no free variable�

Computation spaces also act as variable binders� They bind their local variables�
Every variable occurrence must be bound either statically by a binder in an elab

orable expression or a constraint� or dynamically by a computation space� In
particular� all free variables of the elaborable expression of an elaborator must be
bound dynamically�

Note that we heavily overload the term �binding�� First� a blackboard can bind a
name to a variable or an abstraction� Second� a blackboard can bind a variable x to
a variable or constant s� which means that it entails the constraint x

�
� s� Third� a

variable occurrence in an elaborable expression can be bound by a variable binder
as de�ned above� Fourth� a variable occurrence can be bound by a computation
space�

By elaboration of an expression E we mean the reduction of an elaborator for E�
Elaboration of

� a constraint � imposes � on the blackboard of the computation space where
the elaboration takes place� Recall that imposing a constraint on a black

board means to impose it on all subordinated blackboards� Elaboration of a
constraint in a space may result in the failure of some subordinated spaces�

� an abstractor x� y�E or x� y��E chooses a fresh name a� binds a to the abstrac

tion y�E or y��E� and imposes the constraint x

�
�a� Everything is done in the

computation space where the elaboration takes place� which also acts as the
home space of the fresh name a�

� a cell creation x�y chooses a fresh name a� binds a to y� and imposes the
constraint x

�
� a� The home space of a is the computation space where the

elaboration takes place�

� a composition E� E� creates two separate elaborators for E� and E��
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� a declaration local x in E end chooses a fresh variable y and creates an elabo

rator for the expression E�y�x�� The notation E�y�x� stands for the expression
that is obtained from E by replacing all free occurrences of x with y� The
home space of y is the space where the elaboration takes place� A multi

ple variable declaration local x x in E end is treated as a nested declaration
local x in local x in E end end�

� newName�x� chooses a fresh name a and imposes the constraint x
�
�a� The home

space of a is the space where the elaboration takes place�

� apply�xy� must wait until there is a name a such that the blackboard entails
x
�
�a� Then we distinguish three cases�

�� If a is bound to an abstraction z�E by a superordinated blackboard and
the number of the actual arguments y agrees with the number of the
formal arguments z� an elaborator for E�y�z� is created �a copy of the
body of the abstraction� where the actual arguments replace the formal
arguments��

�� If a is bound to an once
only abstraction z��E by a superordinated black

board and the number of the actual arguments y agrees with the number
of the formal arguments z� an elaborator for E�y�z� is created� Moreover�
a is rebound to the abstraction y���

�� If a is bound to a variable z by the blackboard of the space where the
elaboration takes place and the actual arguments are y � y� y�� then a is
rebound to y� and the constraint z

�
�y� is imposed�

In all other cases the elaborator for the application cannot reduce�

� a conditional if C� �� � � � �� Cn else E fi creates a conditional actor spawn

ing a local computation space for every clause C�� � � � � Cn �see Figure 	�� A
local space for a clause x in E� then E� is created with a blackboard con

taining the constraint of the parent board� and a single elaborator for the
expression local x in E� end� Moreover� the conditional actor carries the else
expression E and associates with every local computation space the body E�

of the corresponding clause� Since the scope of the local variables x includes
both the guard E� and the body E� of the clause� the local variables x must
be replaced consistently in the guard and in the body when local x in E� end

is elaborated in the local space�

� a disjunction or C� �� � � � �� Cn ro or OR C� �� � � � �� Cn RO creates a disjunc

tive actor spawning a local space for every clause C�� � � � � Cn� The local spaces
are created in the same way as for conditionals� A disjunctive actor created by
or � � � ro is called distributing� and a disjunctive actor created by OR � � � RO
is called nondistributing�
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if�E�

�E�� �E��

solve�y�� y�� y��

�z�

Figure 	� A conditional actor with two local spaces and a solver�

� solve�x�E� y�y�y�� creates a solver actor spawning a single local computation
space �see Figure 	�� The local computation space is created with a blackboard
containing the constraint of the parent blackboard� and a single elaborator for
E�z�x�� where z is a fresh variable taking the local computation space as home�
The solver actor carries the root variables z and the control variables y�� y�� y��

� det�x� must wait until the blackboard entails x
�
�c for some constant c of the

signature of the Oz universe� When this is satis�ed� the elaborator for det�x�
reduces without further action�

� getDomain�x� y� must wait until there are nonnegative integers n�� � � � � nk such
that the blackboard entails the disjunctive constraint x

�
�n� � � � �� x

�
�nk �

When this is satis�ed� the elaborator for getDomain�x� y� reduces by impos

ing the constraint

y
�
�n�j � � � jnkjnil

where n�� � � � � nk is the shortest list in ascending order such that the blackboard
entails x

�
�n� � � � �� x

�
�nk�

� input�x� waits until there is an atom s on the input stream� consumes it� and
imposes the constraint x

�
�s�

� output�x� waits until the blackboard entails x
�
� s for some atom s and then

puts s on the output stream�

� setThreadPriority�x� and getThreadPriority�x� will be de�ned in Subsec

tion ��	�

We have now seen all reduction rules for elaborators�

��� Reduction of Proper Actors

We will now specify the reduction rules for proper actors� Recall that a proper actor
is either a conditional� a disjunction� or a solver�
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We say that a local computation space is entailed if it contains no actors anymore�
and if the parent blackboard entails �x �� where x are the local variables and � is
the constraint of the blackboard of the local space�

Reduction of Conditionals

A conditional actor can reduce if one of its local computation spaces is entailed� or
if all its local computation spaces have failed�

If one of its local computation spaces is entailed� the conditional can reduce as fol

lows� discard the other local spaces� merge the local blackboard with the global
blackboard �there cannot be any con�icts�� and create an elaborator for the associ

ated clause body�

If several local computation spaces of a conditional are entailed� the conditional can
choose with which one it reduces�

If all local computation spaces of a conditional have failed� it can reduce to an
elaborator for the else expression�

Reduction of Disjunctions

A disjunctive actor can reduce if all but possibly one of its local computation spaces
have failed� or if a local space whose associated clause body is the constraint � is
entailed�

If all local computation spaces of a disjunction have failed� the disjunction can
reduce to an elaborator for the constraint ��

If all but one local computation space of a disjunction have failed� the disjunction
can reduce with the unfailed space� This is done by merging the unfailed local space
with the global space �there cannot be any con�icts�� and by creating an elaborator
for the associated clause body�

If a local space with associated clause body � is entailed� the disjunctive actor can
reduce without further action�

Reduction of Solvers

A local computation space is called blocked if it is unfailed and no actor in the space
or a subordinated space can reduce� A local computation space is called stable if it
is blocked and remains blocked for every satis�able strengthening of the constraint
of the parent blackboard�

A solver actor can reduce if its local computation space is either failed or stable�

If the local computation space of a solver is failed� the solver can reduce to an
elaborator for the application apply�y��� where y� is the �rst control variable of the
solver�
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If the local computation space of a solver is stable and does not contain a distributing
disjunctive actor� the solver can reduce to an elaborator for the expression

local x in

x� z�F
apply� y� xS �

end

where z is the root variable of the solver� F is an elaborable expression representing
the stable local computation space� y� is the second control variable of the solver�
and S �the so
called status� is either the atom entailed or stable� depending on
whether the local space is entailed or not� That F represents the local computation
space means that elaboration of solve�z�F� y�y�y�� will recreate the local space up
to renaming of local variables and names by reduction of elaborators only� The
transformation of a computation space into an elaborable expression is called re


	ection�

If the local computation space of a solver is stable and contains a distributing
disjunctive actor or C� �� � � � �� Cn ro� the solver can reduce to an elaborator for

local x� x� in

x�� z�� local y in F or C� ro end

x�� z�� local y in F or C� �� � � � �� Cn ro end

apply�y� x� x� S�
end

where local y in F or C� �� � � � �� Cn ro end is an elaborable expression represent

ing the stable local computation space� z is the root variable of the solver� y� is the
third control variable of the solver� and S �the so
called status� is either the atom
last or more� depending on whether n � � or not� The alternatives are returned as
once
only abstractions to allow for an e�cient implementation�

For distributing disjunctive expressions and actors the order of clauses and local
computation spaces is signi�cant and preserved by elaboration and re�ection�

��� Reduction Strategy

So far we have not made any assumptions about the order in which actors are
reduced� Such assumptions are needed� however� so that one can write fair and
e�cient programs� Without such assumptions a single in�nite computation could
starve all other computations�

Oz�s reduction strategy organizes actors into threads� where every thread is guar

anteed to make progress if it can reduce and has su�cient priority� Threads are
equipped with priorities to provide for asynchronous real time programming�

A thread is a nonempty sequence of actors� Every actor belongs to exactly one
thread� When a computation space fails or is discarded� its actors are discarded�
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which includes their removal from the threads they reside on� The actors on a thread
may belong to di�erent computation spaces�

Every thread has a priority that can be changed� The priority is an integer� where
a larger integer means a higher priority�

Threads are scheduled by means of a priority queue� which is served by one or
several workers� A free worker picks the �rst thread from the queue and starts
reducing it� If the thread cannot reduce anymore� or the worker has spent more
than a given time limit reducing it� the worker puts the thread back into the queue�
at the position determined by the current priority of the thread�

Although there may be several workers� only one actor can reduce at a time� Thus
reductions performed by di�erent workers are interleaved into a sequence of single
reductions �so
called interleaving semantics��

A thread can reduce by reducing one of its actors� or by moving its �rst actor to a
new thread� If possible� a thread reduces a proper actor� If it contains no reducible
proper actor� the thread must reduce with its �rst actor� Every thread that contains
more than one actor is reducible�

To reduce an actor on a thread means to reduce the actor and replace it with the
possibly empty sequence of actors it has reduced to� Proper actors reduce to a single
elaborator or no actor at all� Elaborators may reduce to more than one actor� For
them the order of the replacing actors is de�ned as follows�

� For the elaborator of a composition E� E�� the elaborator for E� goes before
the elaborator for E��

� For the elaborator of a conditional �disjunction�� the elaborators for the clauses
e�� � � � � en go before the conditional �disjunctive� actor a�

e� � � � en a

where the order of the elaborators e�� � � � � en is given by the order of the clauses
in the conditional �disjunctive� expression

� For the elaborator of a solver� the elaborator of the local computation space
goes before the solver actor�

Reduction of threads is de�ned as follows�

�� if a thread contains a reducible proper actor� reduce it

�� if a thread contains no reducible proper actor and the �rst actor is reducible�
reduce the �rst actor

�� if a thread contains no reducible proper actor� the �rst actor is not reducible�
and the thread contains further actors� move the �rst actor to a newly created
thread� the newly created thread inherits the priority of the creating thread�
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We say that the third rule suspends the �rst actor of a thread� Note that suspension
of an actor creates a new thread� and that this is the only way to create a new thread�

The strategy gives priority to the reduction of proper actors� where the position in
the thread does not matter� Since proper actors reduce to elaborators� a thread will
quickly run out of reducible proper actors� Elaborators are reduced with a strategy
reminiscent of sequential execution�

Elaboration of an expression

� setThreadPriority�x� must wait until there is an integer n such that the
blackboard entails x

�
� n� When this is satis�ed� the elaborator of

setThreadPriority�x� can reduce by changing the priority of its thread to n�
If the priority is not stricly increased� the worker must return the thread to
the priority queue�

� getThreadPriority�x� imposes the constraint x
�
� n� where n is the current

priority of the thread elaborating the expression�

Concerning solvers� there is a further assumption about order� When a solver re

duces by distributing a disjunctive actor� the distributing disjunctive actor that was
created last is distributed�

��	 Computations

A computation space is called irreducible if no actor in the space or a subordinated
space can reduce� Note that a space is irreducible if and only if it is either blocked
or failed�

A �nite computation issuing from a closed elaborable expression E is a sequence
S�� � � � � Sn of states of a top level computation space such that�

� The initial state S� consists of the empty blackboard and an elaborator for E�

� Every state Si�� is obtained from its predecessor Si by reduction of a single
actor� possibly in a subordinated space�

� The �nal state Sn is irreducible�

� The state sequence respects the reduction strategy�

Since failure prevents further reduction� none of the states S�� � � � � Sn�� can be failed�

A in�nite computation issuing from a closed elaborable expression E is an in�nite
sequence S�� S�� S�� � � � of states of a top level computation space such that�

� The initial state S� consists of the empty blackboard and an elaborator for E�

� Every state Si�� is obtained from its predecessor Si by reduction of a single
actor� possibly in a subordinated space�
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� The state sequence respects the reduction strategy�

Since failure prevents further reduction� none of the states in an in�nite computation
can be failed�

Example ��� There are both �nite and in�nite computations issuing from the
closed elaborable expression

local X Y in

X� � apply�X�
if X

�
�Y then � �� X

�
�Y then apply�X� else � fi

X
�
�Y

end

However� due to the reduction order imposed by threads� there are no in�nite com

putations issuing from

local X Y in

X� � apply�X�
X
�
�Y

if X
�
�Y then � �� X

�
�Y then apply�X� else � fi

end

�

��
 Success� Failure� and Termination of Actors

The direct descendants of an actor A are the actors A creates when it reduces�
The descendants of an actor are obtained by taking the re�exive and transitive
closure of the direct descendant relation� The actors in the local spaces of a prop

er actor A are not considered descendants of A� and neither are their reductions
considered reductions of A�

We say that an actor has

� succeeded if all its descendants have reduced without failing the computation
space

� failed if one of its descendants has failed the computation space

� terminated if all its descendants have reduced�

Note that an actor has terminated if and only if it has succeeded or failed�
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� Kernel Oz

This section de�nes Kernel Oz� a semantically complete sublanguage of Oz� Every
Oz program can be translated into an expression of Kernel Oz� In fact� the meaning
of Oz programs is de�ned by a reduction to Kernel Oz�

Kernel Oz consists of a class of expressions whose semantics is de�ned by a trans

lation into the elaborable expressions of the actor model�

Kernel Oz restricts the elaborable constraints such that the actor model can be
implemented e�ciently� This is necessary since properties such as satis�ability and
entailment of constraints are undecidable in general� Kernel Oz provides most of the
available constraints only indirectly through prede�ned procedures� All prede�ned
procedures are de�ned by an elaborable expression called prelude�

Although Oz is semantically de�ned by reduction to Kernel Oz� it cannot be imple

mented e�ciently this way� In particular� implementations are supposed to realize
objects and �nite domains more e�ciently than it is suggested by their translation
to Kernel Oz�

��� Syntax

The abstract syntax of Kernel Oz is de�ned in Figure �� It introduces a class of
expressions called kernel expressions� The kernel expressions are less expressive
than the elaborable expressions� Except for constraints� the missing expressivity is
regained by means of prede�ned procedures�

E ��� false j true j x
s constraints

j proc fx y g E end procedure de�nition

j fx y g procedure application

j E� E� composition

j local x in E end declaration

j if C� �� � � � �� Cn else E fi conditional

j or C� �� � � � �� Cn ro disjunction

j OR C� �� � � � �� Cn RO nondistributing disjunction

C ��� x in E� then E� clause

x� y ��� hvariablei

x� y ��� hpossibly empty sequence of variablesi

s ��� x j hatomi j hnumberi

Figure �� Kernel expressions�
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A concrete syntax for kernel expressions is inherited from the concrete syntax of Oz
�de�ned in �	���

Every kernel expression can be rewritten into an elaborable expression by applying
the following rules�

� A procedure de�nition proc fx y� � � � yn g E end rewrites into

local A R in

A� y� � � � yn�E
R
�
�rec�abstraction� A� arity�n�

x
�
�ChunkLabel�Proc � R�

end

� A procedure application fx y� � � � yn g rewrites into

if R in subtree�x�Proc � R�
then

local A in

subtree�R� arity� n�
subtree�R� abstraction� A�
apply� A y� � � � yn �

end

else false fi

� The constraint expressions false� true� x
s rewrite into the constraints �� ��
and x

�
�s� respectively�

The symbol Proc is a variable that must not occur in kernel expressions� Whenever
possible� we use Oz�s lexical syntax �	�� for instance� abstraction� arity and rec are
atoms� and A� R� and ChunkLabel are variables� Moreover� subtree�R� arity� n� is a
constraint� and R

�
�rec�abstraction� A� arity�n� and x

�
�ChunkLabel�Proc � R� abbre


viate constraints �see Section ���

The variable binders of the kernel expressions are clear from the translation to the
elaborable expressions� It is understood that the declarations of A and R introduced
by the above translation rules do not capture variables�

By providing abstractors and applications only indirectly through procedure def

initions and applications� Kernel Oz establishes a recognizable class of �rst
order
values acting as procedures �see the de�nition of the kernel procedure IsProcedure��

A kernel expression E is admissible if its free variables are among the kernel

variables� which are the following�
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ChunkLabel NewName NewCell Exchange Det SolveCombinator

IsInt IsFloat IsNumber IsAtom IsName IsLiteral IsProcedure

IsCell IsChunk IsTuple IsRecord IsNoNumber

Label Width Subtree ExtendTuple Adjoin AdjoinAt Arity

AtomToString StringToAtom ProcedureArity

�
�� ��� ��� ��� ��� Pow Abs

FloatToInt IntToFloat Ceil Floor

Exp Log Sqrt Sin Cos Tan Asin Acos Atan

FiniteDomainBound FiniteDomain FiniteDomainNE GetFiniteDomain

�Input� �Output� �SetThreadPriority� �GetThreadPriority�

��� Semantics

The semantics of an admissible kernel expression E is de�ned as the semantics of
the closed elaborable expression

local Proc hKernel Variablesi in

newName�ChunkLabel�

newName�Proc�

hPreludei
hE rewritten into an elaborable expressioni

end

where the elaborable expression hPreludei is de�ned in the next section�

computation issuing from an admissible kernel expression E is a computation issu

ing from the closed elaborable expression obtained from E by the above translation�

��� Prelude

Below we de�ne several elaborable expressions that composed together yield the
expression hPreludei needed for the semantic translation above� The procedures
de�ned in the prelude are called kernel procedures� We use Oz�s lexical syntax
for variables and atoms �with the exception of the variable Proc � which has no
concrete syntax�� and Kernel Oz�s syntax for procedure de�nitions and applications
�to be expanded as de�ned in Section 	���� Moreover� we write E� then E� for a
clause x in E� then E� whose variable pre�x x is empty�

Names� Determination� Procedures� and Cells

proc �NewName X�

newName�X�

end
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proc �Det X�

if isInt	X
 then det�X� else true fi

end

proc �IsProcedure P�

if R in subtree	P�Proc�R
 then true else false fi

end

proc �ProcedureArity P N�

if R in subtree	P�Proc�R
 then subtree	R�arity�N
 else false fi

end

local Cell in

�NewName Cell�

proc �NewCell X C�

local Z in

Z� X
C
�
�ChunkLabel	Cell�Z


end

end

proc �IsCell X�

if Z in subtree	X�Cell�Z
 then true else false fi

end

proc �Exchange C X Y�

if Z in subtree	C�Cell�Z
 then apply�Z X Y� else false fi

end

end

Procedures and cells are modelled as special records called chunks� where a �eld
holds the name bound to an abstraction or variable� Procedures and cells cannot be
faked since their features Proc and Cell� respectively� cannot be accessed by admis

sible kernel expressions� This means that every value that quali�es as a procedure
or cell must have been introduced by a procedure de�nition or an application of the
kernel procedure NewCell� or must have been derived from such a value by possibly
repeated adjunction�

Classi�cation Predicates

The classi�cation predicates classify the values of Kernel Oz according to the hi

erarchy shown in Figure �� The classes value� number� noNumber� and literal are
obtained by union of their subclasses� All leaf classes are disjoint� The classi�cation
predicates for procedures and cells were already de�ned in Section 	���
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value

noNumber

tuple record

number literal chunk

integer �oat atom name cell procedure

Figure �� Classi�cation of values in Kernel Oz�

proc �IsInt X�

if isInt	X
 then det�X� else false fi

end

proc �IsFloat X�

if isFloat	X
 then true else false fi

end

proc �IsNumber X�

if �IsInt X� then true else �IsFloat X� fi

end

proc �IsAtom X�

if isAtom	X
 then true else false fi

end

proc �IsName X�

if isName	X
 then true else false fi

end

proc �IsLiteral X�

if �IsAtom X� then true else �IsName X� fi

end
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proc �IsTuple X�

if isTuple	X
 then true else false fi

end

proc �IsRecord X�

if isRecord	X
 then true else false fi

end

proc �IsChunk X�

if �IsRecord X� then label	X�ChunkLabel
 else false fi

end

proc �IsNoNumber X�

if �IsTuple X� then true else �IsRecord X� fi

end

Order

proc ��
�� X Y�

if �IsInt X� �IsInt Y� then intLE	X�Y


�� �IsFloat X� �IsFloat Y� then floatLE	X�Y


�� �IsAtom X� �IsAtom Y� then atomLE	X�Y


else false fi

end

Tuples� Records� and Atoms

proc �Label X L�

if �IsNoNumber X� then label	X�L
 else false fi

end

proc �Width X N�

if �IsNoNumber X� then width	X�N
 else false fi

end

proc �Subtree X F Y�

if �IsRecord X� �IsLiteral F� then subtree	X�F�Y


�� �IsTuple X� �IsInt F� then subtree	X�F�Y


else false fi

end

proc �ExtendTuple X Y Z�

if �IsTuple X� then extendTuple	X�Y�Z
 else false fi

end
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proc �Adjoin X Y Z�

if �IsRecord X� �IsRecord Y�

then if �IsChunk X� then false else adjoin	X�Y�Z
 fi

else false fi

end

proc �AdjoinAt X F Y Z�

if �IsRecord X� �IsLiteral F�

then if �IsChunk X� then false else adjoinAt	X�F�Y�Z
 fi

else false fi

end

proc �Arity X L�

if �IsRecord X� then arity	X�L
 else false fi

end

proc �AtomToString A L�

if �IsAtom A� then atomString	A�L
 else false fi

end

local ListDet in

proc �StringToAtom L A�

if �ListDet L� then atomString	A�L
 else false fi

end

proc �ListDet Xs�

if X Xr in Xs
�
����	X�Xr
 �Det X�

then �ListDet Xr� else Xs
nil fi

end

end

Arithmetic

proc ���� X Y Z�

if �IsInt X� �IsInt Y� then intPlus	X�Y�Z


�� �IsFloat X� �IsFloat Y� then floatPlus	X�Y�Z


else false fi

end

proc ���� X Y Z�

if �IsInt X� �IsInt Y� then intPlus	Y�Z�X


�� �IsFloat X� �IsFloat Y� then floatMinus	X�Y�Z


else false fi

end
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proc ���� X Y Z�

if �IsInt X� �IsInt Y� then intTimes	X�Y�Z


�� �IsFloat X� �IsFloat Y� then floatTimes	X�Y�Z


else false fi

end

proc ���� X Y Z�

if �IsFloat X� �IsFloat Y� then floatDiv	X�Y�Z
 else false fi

end

proc �Pow X Y Z�

if �IsInt X� Y
� then Z
�

�� �IsInt X� Y�� then

local A B in ���� Y � A� �Pow X A B� ���� X B Z� end

�� �IsFloat X� �IsFloat Y� then floatPow	X�Y�Z


else false fi

end

proc �Abs X Y�

if �IsInt X� then if X�� then ���� � X Y� else X
Y fi

�� �IsFloat X� then floatAbs	X�Y


else false fi

end

proc �FloatToInt X Y�

if �IsFloat X� then floatToInt	X�Y
 else false fi

end

proc �IntToFloat X Y�

if �IsInt X� then intToFloat	X�Y
 else false fi

end

proc �Ceil X Y�

if �IsFloat X� then floatCeil	X�Y
 else false fi

end

The remaining kernel procedures for �oating point arithmetic

Floor Exp Log Sqrt Sin Cos Tan Asin Acos Atan

are de�ned analogously to Ceil�

Finite Domains

finiteDomainBound	FiniteDomainBound
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proc �FiniteDomain X�

isInt	X
 	 intLE	��X
 	 intLE	X�FiniteDomainBound


end

proc �FiniteDomainNE X N�

if �FiniteDomain X� �IsInt N� then ��X
�
�N� else false fi

end

proc �GetFiniteDomain X L�

if �FiniteDomain X� then getDomain�X�L� else false fi

end

Solve Combinator

proc ��SolveCombinator� Query Answer�

local Failed Solved Distributed in

Failed� �
Answer

�
�failed

Solved� X S�
local P Q in

proc �P Y� apply�X Y� end

adjoinAt	P�status�S�Q


Answer
�
�solved	Q


end

Distributed� X Y S�

local P Q L R in

proc �P Z� apply�X Z� end

proc �Q Z� apply�Y Z� end

adjoinAt	P�status�last�L


adjoinAt	Q�status�S�R


Answer
�
�distributed	L�R


end

solve�X� �Query X�� Failed Solved Distributed�

end

end

Thread Priorities

The kernel procedures �SetThreadPriority� and �GetThreadPriority� must only be
used in system programs�
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proc ��SetThreadPriority� N�

if �IsInt N� then setThreadPriority�N� else false fi

end

proc ��GetThreadPriority� N�

getThreadPriority�N�

end

Input and Output

The kernel procedures �Input� and �Output� serve as a semantic model for the
higher
level input
output functions provided by Oz implementations� They are
not meant for real use� When applied in a local computation space� �Input� and
�Output� fail�

local IsTopLevel TopLevelCell in

proc ��Input� X�

�IsTopLevel� input�X�

end

proc ��Output� X�

if �IsAtom X� then �IsTopLevel� output�X� else false fi

end

�NewCell top TopLevelCell�

proc �IsTopLevel�

local X in

�ExchangeCell TopLevelCell X X�

if X
top then true �� true then false else false fi

end

end

end

��� Normal Computation Spaces

Kernel Oz restricts the elaborable constraints such that failure� entailment� and
stability of local computation spaces become e�ciently decidable� This is done by
providing the necessary constraints in weakened form through prede�ned proce

dures� where the weakened forms can be de�ned by elaborable expressions�

In the following we de�ne a property called normality that is satis�ed by all compu

tation spaces occurring in computations issuing from admissible kernel expressions�
For normal computation spaces� satis�ability� entailment� and stability can be de

cided e�ciently�

A determinant for a variable x is a constraint that has one of the following forms�
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�� x
�
�s� where s is an atom� a name� an integer� or a �oat

�� x
�
� l�l�� y�� � � � � ln� yn�� where l and l�� � � � � ln are literals and y�� � � � � yn are

variables

�� x
�
� l�y�� � � � � yn�� where l is a literal and y�� � � � � yn are variables�

We say that a constraint � determines a variable x if � entails a determinant
for x�

In the following it will become clear that the kernel procedure Det is de�ned such that
an elaborator for �Det X� succeeds if and only if X is determined by the constraint
of the blackboard�

A normal constraint for a variable x is either a determinant for x or a disjunction
x
�
�n� � � � �� x

�
�nk � where n�� � � � � nk are k � � integers between � and the upper

bound for �nite domains�

A solved constraint is a constraint of the form

x�
�
�y� 	 � � � 	 xk

�
�yk 	 �k�� 	 � � � 	 �n

where there exist variables xk��� � � � � xn such that

� x�� � � � � xn are pairwise distinct

� �k��� � � � � �n are normal constraints for xk��� � � � � xn

� the variables x�� � � � � xk are di�erent from the variables y�� � � � � yk and do not
occur in the normal constraints �k��� � � � � �n�

Proposition ��� Every solved constraint is satis�able in the Oz universe�

Theorem ��� The conjunction of two solved constraints is either unsatis�able or
logically equivalent 	in the Oz universe
 to a solved constraint� Moreover� entail�
ment between two possibly existentially quanti�ed solved constraints can be decided
in quasi�linear time�

Proof� Follows from the results in ����� �

A computation space S is normal if all its subordinated spaces are normal� and if
it satis�es one of the following conditions�

�� S is failed�

�� The constraint of S�s blackboard is solved�
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�� S contains no actors and the constraint of its blackboard is a conjunction of
a solved constraint and an atomic formula obtained with one of the follow

ing constraint predicates� subtree� isInt� IsFloat� IsAtom� IsName� IsTuple�
IsRecord�

Claim ��� Every computation space occurring in a computation issuing from an
admissible kernel expression is normal �up to logical equivalence of constraints in
the Oz universe��

��	 Logical Semantics

A pair of a constraint � and n pairwise distinct variables x�� � � � � xn is called a logical
semantics of a procedure p taking n arguments if the following two conditions are
satis�ed�

� If an elaborator for an application fp x� � � � xng fails� where no actors but
the descendents of the elaborator are reduced� then the initial constraint of
the blackboard entails ���

� If an elaborator for an application fp x� � � � xng succeeds� where no actors
but the descendents of the elaborator are reduced� then the equivalence

�� 	 � � �y ��

is valid in the Oz universe� where �� is the initial constraint of the blackboard�
�� is the �nal constraint of the blackboard� and y are the new local variables
created during the reduction�

With the exception of

NewName NewCell Exchange SolveCombinator GetFiniteDomain

�Input� �Output� �SetThreadPriority� �GetThreadPriority�

all prede�ned kernel procedures have a logical semantics� A logical semantics for�
say �
��� is

intLE�x� y� � floatLE�x� y� � atomLE�x� y��

��
 Interactive Programming

So far we have assumed that computation starts from a single admissible kernel
expression� It is straightforward to generalize to an incremental regime elaborating
expressions arriving on a stream� To be useful� the arriving expressions must be
allowed to share variables�



��
 Interactive Programming ��

A kernel program is a kernel expression with a hole � de�ned as follows�

E ��� � j E E j local x in E end

Kernel programs are compositional in that we can obtain from two programs E� and
E� a composed program E��E�� by replacing the hole of E� with E�� The idea is now
to replace the initial expression E by a stream

E��E��� � �En�true� � � ���

of nested programs� where elaboration of the hole � must wait until the next program
arrives� To work as expected� a substitution must be maintained for the hole �
mapping the statically bound variables to their dynamic replacements� �Recall that
elaboration of local x in E end creates an elaborator for E�y�x�� where y is a fresh
variable replacing x within its static scope��

A convenient syntax for entering a program is

declare x in E

which stands for

local x in E � end
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� The Oz Calculus

Oz has been designed hand in hand with a formal model consisting of the Oz universe
and the Oz calculus� It is fair to say that Oz could not have been conceived without
a formal model� This becomes evident� for instance� with the notion of constraint
entailment� or the semantics of solvers� As Oz evolved� its formal model evolved�
Ideas for new combinators evolved by trying di�erent formulations in the calculus�
which provided the ground for arguing their simplicity and generality� The solve
combinator was the one that came last and took longest to evolve�

It takes intuition and e�ort to understand a new formal system� even if it is mathe

matically seen simple� This is the reason for presenting the calculus last� although
it certainly comes �rst in our understanding of Oz� The actor model can be seen as
a computational metaphor for the calculus providing motivation and intuition�

The Oz calculus models concurrent computation as rewriting of a class of expres

sions modulo a structural congruence� This set
up� which is also employed in more
recent presentations of the �
calculus ��� ��� proves particularly useful for Oz since
constraint propagation and simpli�cation can be accommodated elegantly by means
of the structural congruence�

The Oz calculus is not committed to a particular constraint system� instead� it is
parameterized with respect to a general and straightforward notion of constraint
system� This divide and conquer approach simpli�es things considerably since we
can now deal with the complexities of the Oz universe separately and independently�

In the interest of a smooth presentation� the calculus is somewhat simpli�ed� It
will be extended with the missing expressivity when the connection with the actor
model is made� The extended calculus formalizes all aspects of the actor model�
with the exception of the reduction strategy and input and output� Not specifying
the order in which actors are reduced greatly simpli�es the formal machinery�

The expressions of the Oz calculus model the computation spaces of the actor model�
Thus their purpose is di�erent from the purpose of elaborable expressions� which can
only occur within elaborators� While the elaborable expressions model only static
aspects of the actor model� the expressions of the calculus model both the dynamic
and static aspects of the actor model� Elaborators are not modelled explicitly but
are expressible with the other primitives of the calculus�

The study of the Oz calculus should be prepared by reading ����� which introduces
a simpli�ed calculus not covering constraints and search�

	�� Constraint Systems

We base our notion of constraint system on �rst
order predicate logic with equality�
A constraint system consists of

�� a signature � �a set of constant� function and predicate symbols�
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�� a satis�able theory � �a set of sentences over � having a model�

�� an in�nite set of constants in � called names satisfying two conditions�

�a� � j� ��a
�
�b� for every two distinct names a� b

�b� � j� � � � for every two sentences �� � over � such that � can be
obtained from � by permutation of names�

The Oz universe de�nes a constraint system as follows� take its signature and its
names as they are� and let the constraint theory � be the set of all sentences valid
in the Oz universe� It is not di�cult to verify that the two conditions for names
are satis�ed� Note that the second condition on names prevents us from having an
order on names� this explains why the predicate arity�x� y� ignores those features
of x that are names�

Given a constraint system� we will call every formula over its signature a constraint�
We use � for the constraint that is always false� and � for the constraint that is
always true� We say that a constraint � entails a constraint � if � j� �� �� and
that a constraint � is equivalent to a constraint � if � j� � � �� We say that a
constraint is satis�able if it does not entail ��

	�� Syntax

Figure � de�nes the syntax of the Oz calculus� The de�nition assumes that a con

straint system is given� which �xes in�nite sets of variables� names and constraints�
Variables and names are jointly referred to as references�

We use u to denote a possibly empty sequence of references� A sequence u is called
linear if its elements are pairwise distinct� If u � u� � � � un� we often write �uE for
�u� � � ��unE�

Although our notation suggests the contrary� we do distinguish between a composi

tion �� 	 �� and a conjunction �� 	 ��� and also between a declaration �x� and an
existential quanti�cation �x�� If we want to make the distinction explicit� we will
use the symbols  	 for conjunction and  � for existential quanti�cation�

Both variables and names can be declared� Declaration of names provides for refer

ence to fresh names�

An expression a� x�E models a binding of the name a to the abstraction x�E� For
convenience� we call the entire expression a� x�E an abstraction� We call a the
designator� x the formal arguments� and E the body of the abstraction� We
sometimes write a�A� where A � x�E�

Given a cell a�u� we call a the designator and u the reference of the cell� A cell
models a binding of a name to a reference�

Given an application uv� we call u the designator and v the actual arguments

of the application�
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Symbols

x� y� z � variable

a� b� c � name

u� v� w ��� x j a reference

Expressions

�� � � constraint

E ��� � constraint

j E� 	E� composition

j �uE declaration

j a� x�E abstraction �x linear�

j a�u cell

j uv application

j if D else E conditional

j or �D� disjunction

j solve�x�E� uvw� solver

D ��� C j � j D� �D� collection

C ��� E� then E� j �uC clause

Figure �� Syntax of the Oz calculus�

Given a solver solve�x�E� uvw�� we call x the root variable� E the guard� and
u� v� w the control references of the solver�

Given a clause �u �E� then E��� we call u the local references� E� the guard�
and E� the body of the clause�

The syntactic category D represents multisets of clauses� where � stands for the
empty multiset and � for multiset union�

The Oz calculus has the following binders for references�

� A declaration �uE binds the declared reference u with scope E�

� An abstraction a� x�E binds its formal arguments x with scope E�

� A clausal declaration �uC binds the local reference u with scope C�

� A solver solve�x�E� uvw� binds its root variable x with scope E�

� Universal and existential quanti�cation in constraints�
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The free and bound references of expressions are de�ned accordingly� An
expression is closed if it has no free variable�

The notation E�u�x� stands for the expression that is obtained from E by replacing
every free occurrence of x with u� The notation E�u�x� is de�ned accordingly� where
the elements of the sequence x are replaced simultaneously� and x is assumed to be
linear�

A context is an expression having a hole � at a reducible position� Contexts are
de�ned as follows�

E ��� � j E 	E j E 	 E j �u E j if D else E j or �D� j solve�x� E � uvw�

D ��� C j D �D j D � D

C ��� E then E j �u C�

We write E �E� for the expression obtained by replacing the hole in the context E
with the expression E �capturing of free variables in E is OK�� An expression E is
called free for a context E if no free reference of E is captured at the position of
the hole in E �

	�� Structural Congruence

A congruence is an equivalence relation on the expressions of the Oz calculus
�i�e�� the syntactic categories �� E� D� and C� that is compatible with all syntactic
combinators �e�g�� if E� 
 E �

� and E� 
 E�

�� then E�	E� 
 E�

�	E
�

��� The structural
congruence E� 
 E� of the Oz calculus is de�ned as the least congruence satisfying
the congruence laws in Figure ��

Proposition ��� Given two constraints �� and ��� the composition ��	�� is con�
gruent to the conjunction ��  	���

Proof� We have �� 	 �� 
 �� 	 ���  	��� 
 ���  	���	 �� 
 ���  	��� 	 � 
 ��  	��
by relative simpli�cation� commutativity of composition� relative simpli�cation� and
neutrality of �� �

For declaration and existential quanti�cation an analogous proposition does not
hold�

An expression E is called failed if E 
 � 	 E� A clause �u �E� then E�� is called
failed if E� is failed� A collection D is called failed if D is �� or D is a failed
clause� or D � D� �D�� where both D� and D� are failed�

An expression E is called nilpotent if it has the form

�x�a�b�c�� 	 a�A 	 b�u�

where � j� �x�� �The notation a�A stands for a composition a��A� 	 � � �	 an�An

of abstractions� and b�u stands for a composition of cells��
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Renaming

� E� 
 E� if E� and E� are equal up to renaming of bound references

Composition and Collection

� 	 is associative� commutative and satis�es E 	 � 
 E

� � is associative� commutative and satis�es D � � 
 D

Declaration

� �u�vE 
 �v�uE

� �uE� 	E� 
 �u �E� 	 E�� if u does not occur free in E�

Relative Simpli�cation

� �� 	 E ���� 
 �� 	 E ����� if �� is free for E and � j� �� 	 �� � �� 	 ���

Equality

� x
�
�u 	E 
 x

�
�u 	E�u�x� if u is free for x in E

Figure �� Structural congruence in the Oz calculus�

	�� Induced Constraints

The Relative Simpli�cation Law makes it possible to propagate constraints in an
expression downward� provided no free variables of the constraint are captured�
Given a context� whose bound references are renamed apart� there is a strongest
constraint �unique up to equivalence� that can be propagated to the hole� Below
we de�ne this induced constraint for a class of contexts that is exhaustive modulo
structural congruence�

An expression is called basic if it is no constraint� composition or declaration�

The following de�nes a partial function from constraints and contexts to constraints�

Ind� ��� � �

Ind� �� 	 E� � Ind��� �E�

Ind� �E 	 E� � Ind� �E� if E basic

Ind� ��uE� � Ind� �E� if u is not free in �

Ind� �if D else E� � Ind� �D�

Ind� �or �D�� � Ind� �D�

Ind� �solve�x� E � uvw�� � Ind� �E� if x is not free in �
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Ind� �C �D� � Ind� �C�

Ind� �E then E� � Ind� �E�

Ind� ��uC� � Ind� �C� if u is not free in ��

If Ind� �E� is de�ned� we call Ind� �E� the constraint induced by E under �� If
Ind� �E� is de�ned� we call Ind� �E� the constraint induced by E �

Proposition ��� If E induces � under �� then E ���	 � 
 E ��� 	 ��

The next proposition says that our de�nition of induced constraints is exhaustive
on contexts modulo structural congruence� Structural congruence on contexts is the
least congruence on contexts satisfying all congruence laws in Figure � rewritten for
contexts� Note that E 
 E � does not imply E �E� 
 E ��E� �because of the Renaming
Law��

Proposition ��� For every context E and every constraint � there exists a context
E � such that E 
 E � and the induced constraint of E � under � is de�ned�

We say that a context E is admissible if E ��� 

 E ����

Proposition ��� A context E is admissible if and only if there exists a context E �

and a satis�able constraint � such that E 
 E � and E � induces ��

	�	 Reduction

The reduction relation E � E� of the Oz calculus is de�ned by the inference system
in Figure 
 and the following de�nitions�

� An expression E is called reducible if there exists an expression E� such
that E � E��

� An expression E is called stable if� for every abstraction and for every satis

�able constraint �� the expression � 	E is neither reducible nor failed� �The
de�nition is by induction on the number of nested solvers in E��

� An expression E is called distributable if there exist u� E� and D such that
E 
 �u �E� 	 or �D���

A �nite computation issuing from a closed expression E� is a sequence E�� � � � � En

of closed expressions such that the �nal expression En is irreducible and Ei �
Ei�� for all i� Since failure prevents further reduction� none of the expressions
E�� � � � � En�� can be failed�

An in�nite computation issuing from a closed expression E� is an in�nite sequence
E�� E�� E�� � � � of closed expressions such that Ei � Ei�� for all i� Since failure
prevents further reduction� none of the expressions Ei can be failed�
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Structure

�
E 
 E �E�� E�

�
� E�

� E �E�

�� 
 E�

E � E�
if E is admissible and induces �

�
E � E�

E
�
� E�

Application

� E �au� 	 a� x�E
�
� E �E �u�x �� 	 a� x�E

if E 	 � is admissible� x and u have equal length�

u is free for x in E� and a� x�E is free for E

Exchange

� avw 	 a�u � v
�
�u 	 a�w

Conditional

� if �u �E� then E�� �D else E� � �u �E� 	E�� if �uE� nilpotent

� if D else E � E if D failed

Disjunction

� or ��u �E� then E�� �D� � �u �E� 	E�� if D failed

� or ��u �E then �� �D� � � if �uE nilpotent

Solver

� solve�x�E� uvw� � u if E failed

� solve�x�E� uvw� � �a�b�vab	 a� x�E� 	 b� x�E��

if �xE is stable� E � �u �E� 	 or �C �D���

E� � �u �E� 	 or �C��� and E� � �u �E� 	 or �D��

� solve�x�E� uvw� � �a�wa 	 a� x�E� if �xE stable and not distributable

Annulment

� E � � if E nilpotent and E 

 �

Figure 
� Reduction in the Oz calculus�



��
 Examples ��

As one would expect of a concurrent computation model with indeterministic choice�
there are closed expressions that permit both �nite and in�nite computations� For
instance�

�a �a� �a 	 if � then a � � then � else ���

The following proposition says that conditionals can reduce with clauses whose
guards are entailed�

Proposition ��� Suppose �� is satis�able and entails �x��� Then

�� 	 if �x��� then E�� else E� � �� 	 �x��� 	 E���

Proof� It will be convenient to use the congruence relation �on constraints�

� j�j� � � �� � j� �� ��

Because of the Renaming Law we can assume without loss of generality that no
variable in x occurs in ��� It su�ces to show that there exists a constraint �� such
that �� 	 �� j�j� �� 	 �� and �x�� j�j� � since

�� 	 if �x��� then E�� else E� 
 �� 	 if �x��� then E�� else E�

� �� 	 �x��� 	 E��


 �� 	 �x��� 	 E���

by the Relative Simpli�cation Law� the �rst reduction rule for conditionals� and once
more the Relative Simpli�cation Law� Let �� �� �� � �� �here � is implication�
not reduction�� Then ��	�� j�j� ��	�� is obviously satis�ed� Moreover� �x�� j�j�
�x��� � ��� j�j� �� � �x�� j�j� �� �

	�
 Examples

The following examples give a �rst impression of how the Oz calculus models con

current computation�

Example ��� Consider the expression

�x�y��a�x
�
�a� 	 �a�y

�
�a� 	 if x

�
�y then E� else E��

and suppose that x and y are distinct variables that do not occur free in E� and
E�� We will show that this expression reduces in four steps to E��

First we move the left declaration of the name a to the outside of the expression
using the congruence laws for declarations and compositions�


 �a�x�y�x
�
�a 	 �a�y

�
�a� 	 if x

�
�y then E� else E��
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This is of course only possible if a does not occur free in E� or E�� Should this be
the case� renaming a within its scope as justi�ed by the Renaming Law is necessary�
Next we apply the Equality Law to x

�
�a�


 �a�x�y�x
�
�a 	 �a�y

�
�a� 	 if a

�
�y then E� else E��

Now we move the declaration of x inside using the laws for composition and decla

ration �we exploit that x does not occur free in E� and E� and that x is di�erent
from y��


 �a�y��x�x
�
�a� 	 �a�y

�
�a� 	 if a

�
�y then E� else E��

Since �x�x
�
�a� is nilpotent� we can delete �x�x

�
�a� using the Annulment Rule and

the laws for compositions �in particular E 	 � 
 E��

� �a�y��a�y
�
�a� 	 if a

�
�y then E� else E��

Next we rename the inner name a to the di�erent name b using the Renaming Law�


 �a�y��b�y
�
�b� 	 if a

�
�y then E� else E��

This brings us in a position where we can eliminate �b�y
�
� b� in the same way we

did it before for �a�x
�
�a��

� �a�b�if a
�
�b then E� else E��

Now� since a
�
� b is failed� we obtain

� �a�bE�

using the second rule for conditionals� It remains to get rid of the declarations of
the names a and b� This can be done using the Annulment Rule together with the
laws for compositions and declarations�


 �a�b�� 	 E�� 
 ��a�b�� 	 E� � � 	 E� 
 E��

�

Example ��
 Nilpotence and relative simpli�cation model entailment of clauses in
the presence of local abstractions and cells� For instance� consider the reduction

y
�
�b 	 if �x ��a�x

�
�a 	 y

�
�b 	 a� y�y

�
�x� then E�� else E�

� y
�
�b 	 �x ��a�x

�
�a 	 a� y�y

�
�x� 	 E��

which is justi�ed by relative simpli�cation� the �rst rule for conditionals� and the
fact that �x�a�x

�
�a 	 a� y�y

�
�x� is nilpotent� �
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	�� Relationship with the Actor Model

The expressions of the Oz calculus model the computation spaces of the actor model�
provided we take the Oz universe as the constraint system underlying the calculus�
Conditionals� disjunctions� and solvers model the respective proper actors� However�
we need to extend the calculus so that it

� can express nondistributing disjunctions

� can express once
only abstractions

� captures solvers fully �need to provide status and to return alternatives as
once
only abstractions�

� can express elaborators�

Nondistributing disjunctions are incorporated easily� they have the same reduction
rules as distributing disjunctions� but they are not distributed by solvers�

Once
only abstractions are incorporated by extending the expressions of the calculus
with the form a� x��E and the reduction relation with the rule

� E �au� 	 a� x��E
�
� E �E �u �x �� 	 a� x���

if E 	 � is admissible� x and u have equal length�
u is free for x in E� and a� x�E is free for E �

Moreover� it is necessary to strengthen the notion of nilpotence to all expressions of
the form

�x�a�b�c�d�� 	 a�A 	 b�u 	 c�B�

where � j� �x� and c�B stands for a conjunction of once
only abstractions�

Now it is easy to modify the second and third reduction rule for solvers such that
the solvers of the actor model are faithfully modelled�

To model elaborators� we �rst extend the expressions of the calculus with det�u�
and getDomain�u� v�� The semantics of det�u� is captured by the reduction rule

� det�u�
�
� �

if there exists a constant c such that � entails u
�
�c�

The semantics of getDomain�u� v� is captured by

� getDomain�x� u�
�
� u

�
�n�j � � � jnkjnil

if n�� � � � � nk is the shortest list of nonnegative integers in ascending order such
that � entails x

�
�n� � � � �� x

�
�nk�
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How do we model an elaborator for a constraint �! It cannot be modeled by the
constraint � itself since this would impose � immediately �consider the inconsistent
constraint ��� However� the conditional if � then � else � behaves exactly like
an elaborator for �� Only when it is reduced� the constraint � is imposed�

In the following we write hEi for if � then E else ��

An elaborable expression is called translatable if it does not con

tain subexpressions of the form input�x�� output�x�� setThreadPriority�x�� or
getThreadPriority�x��

The function ��E�� translates a translatable elaborable expression E into an expression
of the extended Oz calculus� The translation is such that ��E�� models an elaborator
for E�

����� � h�i

��x� y�E�� � h�a�x
�
�a 	 a� y���E���i

��x� y��E�� � h�a�x
�
�a 	 a� y����E���i

��x�y�� � h�a�x
�
�a 	 a�y�i

��E� E��� � h��E��� 	 ��E���i

��local x in E end�� � h�x ��E��i

��newName�x��� � h�a�x
�
�a�i

��apply�xy��� � xy

��if C� �� � � � �� Cn else E fi�� � hif ��C��� � � � �� ��Cn�� else ��E��i

��or C� �� � � � �� Cn ro�� � hor ���C���� � � �� ��Cn���i

��OR C� �� � � � �� Cn RO�� � hOR ���C��� � � � �� ��Cn���i

��solve�x�E� y�y�y���� � hsolve�x� ��E��� y�y�y��i

��det�x��� � det�x�

��getDomain�x� y��� � getDomain�x� y�

��x in E� then E��� � �x ���E��� then ��E���� if E� 
� �

��x in E then ��� � �x ���E�� then ��

The special treatment of the constraint� in clause bodies is needed so that reduction
of disjunctions by clause entailment is modelled correctly�

We can now state the relationship between the actor model and the Oz calculus�
For every closed and translatable elaborable expression E we have the following�

� If there is a �nite computation issuing from E in the actor model� then there
is a �nite computation issuing from ��E�� in the extended Oz calculus�



��� Relationship with the Actor Model �


� If there is an in�nite computation issuing from E in the actor model� then
there is an in�nite computation issuing from ��E�� in the extended Oz calculus�

The converse of each of the two statements is wrong in general� This is because the
reduction strategy employed by the actor model excludes some of the computations
of the calculus�
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