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Abstract

We show� that the axiomatization of rational trees in the language of features given

elsewhere is complete� In contrast to other completeness proofs that have been given in

this �eld� we employ the method of Ehrenfeucht�Fra��ss�e Games� which yields a much

simpler proof� The result extends previous results on complete axiomatizations of

rational trees in the language of constructor equations or in a weaker feature language�
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� Introduction

Rational trees are a canonical model for cyclic data structures or recursive type equations�
The well�established language for trees in logic and computer science is the language Her�
brand of constructor symbols� which provides for equations x � f�x�� � � � � xn� as atomic
formulae�

Here� we take a more elementary view� We use the language of so�called features � which
are well�known for a long time in computational linguistics and knowledge representation
�see 	��
 for a survey�� There are di�erent possible choices of a feature language� A
�rst language FT has been established in 	

 and 	�
� The language of FT consists of
unary label predicates� which express that the root node of a tree has a certain label�
and binary feature predicates� which serve as the partial selector functions for trees� For
instance� we can translate a Herbrand formula x � f�x�� � � � � xn� into feature logic as
f�x� � ��x� x�� � � � � � n�x� xn� or� in a more convenient syntax as fx � x�x� � � � �� xnxn�
In case of a �nite signature �� the predicates of feature logic can be de�ned in terms of
Herbrand by taking an appropriate disjunction� In this case� ��x� y� could be expressed as

�
f��

��y x � f�y� �y�

In case of in�nitely many symbols� this is no longer possible� since for instance xfy is
equivalent to an in�nite disjunction in Herbrand�

There is a major gap between FT and Herbrand� since the translation into FT given
above does not preserve validity of formulae� The problem is that a formula x � f��x� has
a unique solution in x when the �x are given� but that the solution to x of the translated
formula fx � x�x� � � � � � xnxn is not unique� since x might have an arbitrary number of
additional features� This was the reason to extend FT to CFT 	�

 by adding unary arity
predicates xff�� � � � � fng� which express that x has exactly the features f�� � � � � fn� Adding
this constraint to the above translation again ensures uniqueness of the solution� Note that
although Herbrand can be translated into CFT � the converse does not hold since we are
using an in�nite set of features� Thus� CFT is a substantial extension of Herbrand�

In 	�

� an axiomatization of CFT was given and proven complete for �� formulae� In this
paper� we prove the completeness of CFT which has been conjectured in 	�

� From a com�
plete axiomatization we gain a sound and complete deduction system for valid formulae
in the language of CFT � Furthermore� it fully describes the �rst order properties of the
standard model� and it allows for the formulation of alternative but elementarily equiva�
lent models �such as the model of in�nite trees�� Note that the existence of a complete
axiomatization of rational trees in the language of CFT is not straightforward� since for
instance the theory in a language allowing for �rst�class features is undecidable 	��
�

The completeness proof uses Fra��ss�e�s theorem and its game�theoretic formulation due to
Ehrenfeucht� This method requires an argument concerning chains of relations between
elements in a model� Feature logic is well suited for such an argument� since chains of
relations are naturally expressed as path constraints�






Feature constraints xfy immediately generalize to path constraints such as x�f� � � �fn�y�
which can be de�ned by using intermediate variables� In the �eld of term rewriting sys�
tems �see 	�
 for a survey�� the notion of an occurrence in a term is well established� In
the context of feature logic� there is no need for introducing such a meta�notation� since
we can use the path constraints which are an immediate o�spring of the base language�
In the context of �nite constructor trees� Hodges 	��
 observes that the use of selector
functions simpli�es the completeness proof of an axiomatization� His completeness proof
is by quanti�er elimination�

Complete axiomatizations of the algebra of rational trees� using the language of Herbrand�
have been given independently in 	�
 for the case of a �nite signature� and in 	��
 for both
the case of a �nite and an in�nite signature� A complete axiomatization of rational trees in
the language of FT has been given in 	

� and a complete axiomatization of rational trees
in the language of CFT in 	�
� In both cases� a quanti�er elimination method has been
used with a similar overall structure than 	��
�

Both methods for proving the completeness of CFT have their merits� The quanti�er elim�
ination used in 	�
 serves for a concrete decision algorithm� whereas the proof presented
here is much simpler� Thus� we think our paper describes a method for proving complete�
ness which can be more easily adapted to other variants of feature logic than the method
of quanti�er elimination�

The next section brie�y reviews the theory CFT from 	�

� and Section 
 reviews the
method of Fra��ss�e 	�
 and Ehrenfeucht 	�
� The core of the paper is Section �� where we
prove the completeness of CFT with the method of Section 
�

� The Theory CFT

We assume in�nite sets Lab of label symbols and Fea of feature symbols � From this� we
de�ne the following �rst order language�

� a unary label predicate for every A � Lab� written as Ax�

� a binary feature predicate for every f � Fea� written as xfy�

� a unary arity predicate for every �nite set F � Fea� written as xF �

� the equality predicate� written as x
�
� y�

We consider two models of this signature� The universe of the model I consists of all feature
trees� A feature tree is a partial function t � Fea� � Lab whose domain is pre�x�closed � i�e��
if pq � dom�t�� then p � dom�t�� The subtree p��t of a feature tree t at a path p � dom�t�
is the feature tree de�ned by �in relational notation�

p��t �� f�q� A� j �pq� A� � tg�

�
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Figure �� Examples of �in Fact Rational� Feature Trees�

A feature tree t is called a subtree of a feature tree r if t is a subtree of r at some path
p � dom�t��

The universe of the model R consists of all rational feature trees� A feature tree t is called
rational if ��� t has only �nitely many subtrees and ��� t is �nitely branching �i�e�� for every
p � dom�t�� the set fpf � dom�t� j f � Feag is �nite��

The relational symbols are interpreted in I as follows�

� I� � j� Ax i� ��x� has root label A�

� I� � j� xfy i� f � dom���x�� and ��y� � f����x� �i�e�� ��y� is the subtree of ��x�
at f�� and

� I� � j� xff�� � � � � fng if ��x� has exactly the features f�� � � � � fn departing from its
root�

The interpretation of the relational symbols in R is the restriction of the interpretation in
I to the set of rational feature trees�

The theory CFT consists of �ve axiom schemes� The �rst set of axioms expresses that
labels are disjoint� that features are functional and that an arity constraint �xes the set of
features departing from a node�

�S� �x �Ax � Bx� 	� A 
� B
�F� �x� y� z �xfy � xfz � y

�
� z�

�A�� �x� y �xF � xfy � 	� f 
� F
�A�� �x �xF � �y xfy� x di�erent from y� f � F

�



A simple determinant d is a conjunction of formulae

Ax � xff�� � � � � fng � xf�y� � � � �� xfnyn

where the variables x� y�� � � � � yn are not required to be distinct� In this case we de�ne
det�d� �� fxg� A determinant � is a conjunction of simple determinants d� � � � �� dn such
that the det�di� � det�dj� � � for i 
� j� We de�ne det��� �� det�d�� 
 � � �
 det�dn� to be
the set of variables determined by �� Using the quanti�er ���x � with the meaning �there
exists exactly one tuple �x such that �� we can formulate the last axiom scheme�

�D� ��V� � det���� ��det��� � � is a determinant

An instance of axiom scheme �D� is

�z ��x� y � Ax � xff� gg � xfy � xgz�
By � yff� g� hg � yfz � ygy � yhx�

Theorem � Both I and R are models of CFT�

A subformula of a determinant is called a solved form� A variable x is called constrained in
a solved form �� if � contains a constraint of the form Ax� xF of xfy� The set of variables
constrained by � is denoted as con���� Hence� for a determinant �� con��� � det����

Theorem � For every solved form � we have

��V� � con���� �con��� �

Note that the existence is no longer unique in case of a solved form�

� Ehrenfeucht�Fra��ss�e Games

Fra��ss�e 	�
 gives a de�nition of elementary equivalence in terms of mappings between struc�
tures� Any two isomorphic structures are elementarily equivalent� but there are of course
elementarily equivalent structures which are not isomorphic� Hence� to characterize ele�
mentary equivalence algebraically we have to weaken the notion of isomorphism� Let A
and B be two structures of a language � which consists of �possibly in�nitely many� re�
lation symbols only�� and let � be a subsignature of �� A �nite sequence �ai� bi���i�n in
�A �B�� is a partial � �isomorphism� if for every A�assignment � with ��xi� � ai� every
B�assignment � with ��xi� � bi and every atomic � �formula w with var��� � fx�� � � � � xng
we have A� � j� w � B� � j� w�

Instead of Fra��ss�e�s original theorem we here use the game�theoretic reformulation due to
Ehrenfeucht 	�
� The game is performed by two players� the Spoiler and the Duplicator� In

�We take this assumption just for simplicity� the de�nition extends to arbitrary languages�

�



the beginning� the Spoiler chooses a �nite subsignature� � � � and the number n of rounds
to go� The aim of the Duplicator is to build a partial � �isomorphism of length n� In round
i� the Spoiler chooses one of the two models together with an element ai� resp� bi� Then�
the Duplicator chooses an element bi� resp� ai in the opposite model� Both players always
know the present state of the game� The Duplicator wins� if in the end the sequence is a
partial � �isomorphism� otherwise the Spoiler wins�

Theorem � �
Ehrenfeucht� ��	��� A and B are elementarilly equivalent i� the Dupli�
cator has a winning strategy�

As an example� take the structure I from Section � and the structure F � which is the
restriction of I to those feature trees which have a �nite domain� Note that F is not a
model of CFT since axiom scheme �D� is violated� In this setting� the Spoiler can play in
such a way that the Duplicator has no chance� The Spoiler chooses the �nite subsignature
consisting of the features f� g only �no label or arity predicates� and �xes the number of
rounds to �� In the �rst round� she chooses from I a� to be the in�nite tree with domain
�fg�� 
 �fg��f which maps every node to A �note that it does not matter that A is not in
the �nite subsignature�� No matter what the choice of the Duplicator from F for b� is� the
Spoiler will choose a� to be the in�nite tree with domain �gf��
�gf��g� also mapping every
node to A� Now we have for ��x�� � a�� ��x�� � a� that I� � j� x�fx� and I� � j� x�gx��
but there is no B�assignemt � with ��x�� � b�� such that F� � j� x�fx� and F j� x�gx��
Hence� the Duplicator is bound to loose�

With the structures I and R� on the other hand� the Duplicator has a winning strategy�
The description and proof of this strategy is subject of the next section�

	 The Completeness Proof

Theorem � The theory CFT is complete�

We show� using Theorem 
� that any two models A and B of CFT are elementarily equiv�
alent� What does a winning strategy for the Duplicator look like Suppose� the Spoiler
has �xed n and the �nite subsignature� We may assume that the arity predicates of the
subsignature are exactly the sets of features in the subsignature� that is the �nite subsigna�
ture is given as ��� 	� � �Lab�Fea�� At every stage of the game� the sequence constructed
so far must of course be a partial ��� 	��isomorphism� but this is not su!cient� since the
Duplicator has to take into account all possible future moves of the Spoiler� A clever move
of the Spoiler is to choose an element of a model which is in relation to many elements
which are already in the game� Hence� the Duplicator has to watch for chains of relations
between the chosen elements� but may exploit the knowledge of n and ��� 	� to restrict the
set of relevant chains�

�Having the Spoiler choose the �nite subsignature simpli�es the formulation in the case of an in�nite

signature� This idea is due to Gert Smolka�

�



In the context of CFT� chains of relations are expressed as path constraints 	�
� For every
p � Fea�� we de�ne the formula xpy by x
y �� x

�
� y� and x�pf�y �� �z �xpz � zfy��

Furthermore�

Axp �� �z �xpz �Az�

xpF �� �z �xpz � zF �

xp � yq �� �z �xpz � yqz�

The latter formula is called a co�reference constraint� A trivial co�reference constraint
xp � xp is abbreviated as xp�� it expresses that x has a path p� We can now de�ne� for
any l � �� and n � � the set of path constraints within the subsignature ��� 	�� where the
paths are restricted to length at most l and where only the variables x�� � � � � xn are used�

P���
l�n �� fAxip� xipF� xip � xjq j A � �� F � 	� � � i� j � n� p� q � 	�lg�

Here� 	�l is the set of all strings from 	� with length at most l� When �� 	 and n are
known from the context� we will simply write Pl instead of P���

l�n � A sequence �ai� bi���i�n �

�A�B�� is ��� 	��true up to l� if for all w � P
���
l�n we have if ��xi� � ai and ��xi� � bi for

all � � i � n� then
A� � j� w � B� � j� w �

Every ��� 	��true sequence up to � is a partial ��� 	��isomorphism� since CFT j� x
�
� y �

x
 � y
� CFT j� xfy � xf � y
� CFT j� Ax � Ax
 and CFT j� xF � x
F � Hence�
the aim of the Duplicator can be described as constructing a ��� 	��true sequence up to
�� From the above discussion� it is clear that the Duplicator must always ensure that the
sequence constructed so far is ��� 	��true up to some su!ciently large bound� The question
is of course� if there are still m rounds to go after the actual move of the Duplicator� how
an appropriate bound ��m� can be determined� A �rst guess could be ��m� � �m� since
the Spoiler can with one move choose an element �in the middle" of a chain of relations
between elements which are already in the sequence� This strategy of the Spoiler would
cause the Duplicator� if the number of moves is increased by �� to duplicate the bound for
the �rst move� which results in the recursion equation ��m # �� � � � ��m�� In fact� it
can be shown 	$
� that this bound is su!cient for simple theories like the theory of one
successor function� In our case� this is not su!cient as can be seen with the following
example�

Suppose� the sequence constructed so far is �a�� b��� � � � � �an� bn�� The Spoiler chooses an
a � A in such a way that for the variable assignment � with ��xi� � ai� ��xn��� � a we
have

A� � j� x�r� � xn��p�
A� � j� xn��p�q� � xn��p�
A� � j� xn��p�q� � xn��p�

���
A� � j� xn��pkqk � x�r�

��������
�������

���

�



where all these constraints are in P���

��m��n��� Hence� the Duplicator has to �nd an element

b � B� such that for the variable assignment � with ��xi� � bi and ��xn��� � b the same
formulae hold in B� �� The problem is� that the conjunction of these constraints implies�
in every model of CFT�

x�r�q� � � �qk � x�r� ���

Hence� in order to satisfy ��� in B� �� ��� has to be satis�ed in B� �� But the length of
r�q� � � �qk may be much greater than ����m�� The only thing we can say is� that we don�t
have to care about �cycles" in ���� that is we may assume that every piqi occurs only once�
Since there are less than cardinality�	���m��� many di�erent 	�paths of length at most
��m�� the length of r�q� � � � qk is certainly smaller than ��m�# cardinality�	���m���� This
is why we take exactly this recursion equation in order to de�ne ��

���� �� �

��m# �� �� ��m� # cardinality�	���m���

We assume without loss of generality� that cardinality�	� � �� Now we have to prove that
the Duplicator can always make a move if she follows this strategy� This is expressed by
the following lemma� Note that by symmetry� it is su!cient to show that the Duplicator
can make a move according to the strategy if the Spoiler chooses an element from A�

Lemma � Let �a�� b��� � � � � �an� bn� be ��� 	��true up to ��m# �� and a � A� Then there
exists an element b � B such that �a�� b��� � � � � �an� bn�� �a� b� is ��� 	��true up to ��m��

The remainder of this section is devoted to the proof of Lemma �� To simplify notation� we
write Pl for P

���
l�n��� � for some variable assignment in A with ��xi� � ai for � � i � n and

��xn��� � a� and �� for some variable assignment in B with ���xi� � bi� Furthermore� we
take the variable x instead of xn��� The reader should always keep in mind the variable
assignment � which links variables to the corresponding a�s in the sequence� ��x� �
a� ��x�� � a�� � � � � ��xn� � an�

The simplest case is� if A� � j� x
 � xiq for some q � 	��m�� In particular� A� � j� xiq�� and
by assumption B� �� j� xiq�� Hence� there is a b � B such that for � �� ��	x �� b
 we have
B� � j� x
 � xiq� and it is trivial to check that this de�nes a sequence as required� In the
following� we assume that we don�t have this degenerated case�

Our aim is to apply axiom scheme �D�� since this is the only way to prove the existence of
an element b � B which satis�es some given set of formulae� We construct a determinant�
the solution of which in B gives us a candidate for b� Since all the argument is about path
constraints� we introduce some more notations to talk about paths�

Given a solved form S� a variable x � var�S� and a path p � Fea�� we de�ne jxpjS
inductively as

jx
jS �� x

jxpf jS ��

���
��

unde�ned if jxpjS is unde�ned� or if jxpjS � y

and S contains no constraint of the form yfz
z if jxpjS � y and yfz � S

$



We say that a variable y � var�S� is reachable from some x � var�S� if there is a path p

such that jxpjS � y�

A rooted solved form Sx is a solved form S with a designated variable x � var�S�� A
path p is called acyclic in a rooted solved form Sx� if for all pre�xes q�� q� of p we have
jxq�jS 
� jxq�jS � We can now de�ne� for any rooted solved form Sx� the set of paths to a
variable y � var�S� as

	y
Sx �� fp � Fea� j jxpjS � y and p is acyclic in Sxg

Note that 	y
Sx is always �nite� and that the length of the paths in 	y
Sx is bounded by the
number of di�erent variables occurring in S�

Theorem 	 If p � 	y
Sx� then CFT j� S � xp � y
�

To start the proof of Lemma �� we introduce some notation for the set of assumptions we
have about the sequence constructed so far�

A� �� fw � P���

��m����n j A� � j� wg

A� �� fw � P���

��m����n j A� � j� �wg

Since �a�� b��� � � � � �an� bn� is true up to ��m# ��� we know that B� �� j� w for all w � A��
and that B� �� j� �w for all w � A��

In order to �nd an element b � B as required� we have of course only to care for the
constraints which involve x� We distinguish between those path constraints which involve
x only �the internal constraints�� and those which link x with some other variable xi �the
external constraints�� We have of course only to consider the constraints which involve the
variable x�

I� �� fw�x� � P��m� j A� � j� wg

I� �� fw�x� � P��m� j A� � j� �wg

E� �� fw�x� xi� � P��m� j A� � j� wg

E� �� fw�x� xi� � P��m� j A� � j� �wg

Hence� we have to �nd some b � B such that for � �� ��	x �� b
 we have B� � j� w for all
w�x� � I�� B� � j� �w for all w�x� � I�� B� � j� w for all w�x� xi� � E� and B� � j� �w
for all w�x� xi� � E�� We start with I� and E�� and than extend our argument to I� and
E��

From I�� we can easily obtain a rooted solved form Sx such that CFT j� S � I�� Hence�
concerning I� alone� we could choose b to be any solution for x to S in B� Remember
that every path constraint is constructed with conjunction and existential quanti�cation
from atomic constraints� We �rst transform I�� which is a conjunction of path constraints�
into one existentially quanti�ed conjunction I of atomic constraints� This can be achieved

��



easily by renaming the bound variables and moving existential quanti�ers outside of a
conjunction if this does not lead to a capturing of variables� When renaming variables� we
always take variables di�erent from x�� � � � � xn� Since in I� only x is a free variable� the
same holds for I �

In order to obtain a solved form� we �rst eliminate multiple occurrences of one feature at
the same variable by applying the functionality of features�

��y� z �yfy� � yfz � w�

��y �yfy� � w	y��z
�

where w	y��z
 is obtained by replacing every occurrence of z in w by y�� By axiom scheme
�F�� this is an equivalence transformation w�r�t� CFT� By induction� we always obtain
formulae which have x as the only free variable� Hence� if the formula contains some yfy�

and yfz where y� and z are di�erent� at least one of them �say� z� must be existentially
quanti�ed� Application of this rule is obviously terminating� since the number of variables
is decreasing� and we arrive at a normal form ��y S�x� �y�� where for every z and f there
is at most one variable z� such that zfz� � S� Since A� � j� I�� and since CFT j� I� �
��y S�x� �y�� S contains for every variable x at most one sort constraint Ax and at most one
arity constraint xF � where in addition xfy � S implies f � F � �Otherwise� S could not be
satis�able in any model of CFT�� Hence� S is a solved form�

Theorem 
 For the solved form S as de�ned above� we have

CFT j� ��y S�x� �y�� I�

Furthermore� var�S�� fx�� � � � � xng � ��

In order to guarantee that E� is also satis�ed� we have to introduce some co�reference
constraints� We need the notion of a port� We say that xipp� � v
 is a link for v in S �E�

if there is a path q such that xq � xip � E� and qp� � 	v
Sx � The set of all links for a
variable v in S �E� is abbreviated by linksS�E��v�� We say that v is a port in S and E�

if linksS�E��v� is not empty�

Intuitively� a port is a variable v of the solved form S which is forced to be identical with
some subtree of some variable xi� This forcing is expressed by the link xipp

� � v
� Note�
that there may be more than one link for a port� and that the length of the path pp� may
be greater than ��m�� In a sense to be made more precise below� some initial part of the
link is implied by E�� and the remainder is implied by S�

Theorem � Let S be the solved form as de�ned above� Then

CFT j� S �E� � linksS�E��v� for every port v�

Proof� Let v
 � xip � linksS�E��v�� By de�nition of links� there are p�� q � 	���m� such
that for some xi we have xp� � xiq � E�� Furthermore� there is a p�� such that p�p�� � 	v
Sx �
and p � qp���

��



By Proposition �� we have CFT j� S � xp�p�� � v
� and by assumption we have CFT j�
E� � xp� � xiq� From this� the claim follows immediately� �

Theorem � Let S be the solved form as de�ned above� and let z � var�S�� Then for every
acyclic path p in Sz� we have jpj 
 cardinality�	���m����

Furthermore� for every port v and every link v
 �xip � linksS�E��v� we get jpj 
 ��m#���

Proof� Since we construct S from path constraints of maximal length ��m�� the number
of di�erent variables in S is at most

��m�X
j�	

cardinality�	�j 
 cardinality�	���m���

since cardinality�	� � �� Hence� jpj 
 cardinality�	���m����

If v
 � xip is a link in S�E�� then by the above calculation

jpj 
 ��m� # cardinality�	���m��� � ��m# ��

�

We now de�ne S� to be the subset of S where all constraints on ports are removed� Note
that if v is a port in S and if there is a constraints vfv� � S� then v� is also a port in S�
Ports will be only constrained by C� which contains all links and will be de�ned below�

S� �� fc � S j con�c� contains no port of Sg

We write S� as S��x� �y� �z�� where x is the root of S� �y � con�S�� fxg and �z � con�S� � ��
In particular� all ports are contained in �z�

Now we de�ne C to be the conjunction of all links of all ports of S� i�e�

C �� fv
 � xip j v is port and v
 � xip � linksS�E��v�g

Theorem �� Let � be some formula and w � P��m��� with CFT j� S �E� � �� � w��
Let X � var�S � E� � ��nfx� x�� � � �xng� Then A� � j� �X �S �E� � �� implies w � A��
and A� � j� �X �S �E� � ��� implies w � A��

Proof� Let �� w and X be given as above� For the �rst claim assume that A� � j�
�X �S�E����� Then CFT j� S �E� � �� � w� implies CFT j� S�E��� � w� Since
var�w��X � �� we get

j� �x�� � � � � xn�X�S �E� � � � w�� �x�� � � � � xn��X �S � E� � ��� w�

Now we know that A� � j� �X �S � E� � ��� Hence� A� � j� w and w � A�� The second
claim is analogous� �

��



Theorem �� Let X � var�C�� fx�� � � � � xng� Then� CFT j� A� � �X C�

Proof� If v
�xip� v
�xjq � C� then by construction xip�xjq � A�� since by Proposition $
jpj� jqj
 ��m# ��� �

Theorem �� CFT j� A� � E� � S � A� � C � S��

Proof� The implication from left to right follows from Proposition � and the fact that
S� � S�

For the implication from right to left� �rst note that var�S� �C� � var�S �E��� We have
to show for all constraints � � A� 
 S 
E� that

CFT j� A� � S� � C � ��

For the constraints in A� this claim is trivial� Similarly� this holds for the constraints of S
which are contained in S� �note that S� � S�� Now let vfv� be some constraint in SnS��
Then v must be a port in S�E�� This implies that v� is also a port in S�E�� Hence� v
�xip
and v�
 � xjq in C for some xi� xj � p� q� Furthermore� CFT j� S �E� � v
 �xip� v�
 �xjq
by Proposition �� Now

CFT j� v
 � xip � v�
 � xjq � �vfv� � xipf � xjq�

from which we get CFT j� S � E� � �vfv� � xipf � xjq�� By Proposition $ we know
that jpj 
 ��m# �� and jqj 
 ��m# ��� Hence� xipf � xjq � P��m���� which implies by
Proposition �� that xipf � xjq � A�� Since v
 � xip and v�
 � xjq are in C� this implies

CFT j� A� � S� � C � vfv��

A similar argumentation can be given for the constraints vF� Av � �SnS���

The remaining cases are the constraints in E�� Let xp � xiq � E�� Since we have already
shown that CFT j� A� �S��C � S� we know that CFT j� A� �S� �C � v
 � xp� where
v � jxpjS � Since v is a port in S�E�� we know that there is some link v
 � xjq

� � C with
jq�j 
 ��m# ��� Now

CFT j� v
 � xp � v
 � xjq
� � �xp � xiq � xiq � xjq

��

Again we get CFT j� S�E� � v
�xp�v
�xjq�� from which we get by another application
of Proposition �� that xiq � xjq

� � A�� This shows CFT j� A� � S� � C � xp � xiq� �

So far� we can prove that there is a b such that with � � ��	x �� b
 we have B� � j�
E� � I�� The construction is as follows� By assumption� we know that B� �� j� A��
By Proposition ��� B� �� j� ��z �A� � C�� Recall� that �z consists of the unconstrained
variables of S� and especially contains all ports� Since S� is a solved form� we know that

�




CFT j� ��z �x� �y S��x� �y� �z�� hence there is a � such that B� � j� A� � C � S�� Now�
Proposition �� and � yield the claim�

For the rest of this section we have to handle the �negative" constraints� that is E� and
I�� First� we consider only the subset where only ports of S�E� are involved�

E�
port �� fxp � xiq � E� j jxpjS is port in S�E�g

I�port �� fxp � xq� Axp� xpF � I� j jxpjS and jxqjS are ports in S�E�g

The above argument can be easily extended to E�
port and I�port� since we have

Theorem �� We have for all w � I�port 
 E�
port�

CFT j� A� � A� � S �E� � �w

Proof� We only prove the claim for xp � xiq � E�
port� the other cases are analogous� Let

v � jxpjS � Note that CFT j� S � xp � v
� Since v is a port� we know by Proposition �
that there is a link v
 � xjq� such that jq�j 
 ��m# �� and

CFT j� S �E� � v
 � xjq
��

Hence�

CFT j� S � E� � xp � xjq
�

CFT j� S � E� � �xp � xiq � xiq � xjq
���

Since xp � xiq � E�� Proposition �� shows that xiq � xjq
� is in A�� Hence�

CFT j� A� � A� � S �E� � ��xp � xiq��

�

Theorem �� Let � be a determinant with x � det���� X � var���nfxg and �� � �	x��x

for some x� 
� X� If A j� CFT and

A� � j� x 
� x� � �X � � �X ��

then there is an acyclic path r such that jxrj� is undetermined in � �and hence jx�rj�� is
undetermined in ��	� such that A� � j� �xr � x�r�

Proof� Follows immediately from axiom scheme �D�� �

Theorem �� Let Rx be a rooted solved form and l � �� such that the length of the the
longest acyclic path in Rx is smaller than l� Then there is set � � Pl�� of path constraints�
such that CFT j� Rx � ��

��



Proof� Easy� �

In order to �nish the proof� we have to ensure that the constraints in E�nE�
port and I

�nI�port
are falsi�ed by B� �� In order to guarantee this� we will not use S� directly for �nding b�
but �rst extend S� to some solved form Sext which will enforce that these constraints are
not satis�ed� The construction of Sext works as follows�

Let V be the set of ports in S�E�� F be the set of arities

F � fF jB� �� j� xipF for some xi and p with jpj � ��m# ��g

and S be the set of sorts with

S � fA jB� �� j� Axip for some xi and p with jpj � ��m# ���g

Note that for every i � � � � �n and every path p there is at most one A withB� �� j� Axip by
axiom scheme �S�� and there is at most one F with B� �� j� xipF by axiom schemes �A��
and �A��� Hence� both S and F are �nite� Let

Y � fy � var�S��nV j S� contains no arity constraint yF g

For every y � Y � let Fy be the set of all features with xfz � S� for some z� Then we choose
for every y � Y a new feature gy 
� 	� such that Fy 
 fgyg 
� F � Such a feature must exist
since our set of features Fea is in�nite and F is �nite� We then de�ne

S�� �� S� �
	
y�Y

yGy � ygyzy �

where for every y � Y � Gy � Fy 
 fgyg and zy is a new variable� We insist that all Gy � gy
and zy are di�erent� Now let

Y � � fy � var�S���nV j S�� contains no sort constraint Ayg

We de�ne
Sext �� S�� �

	
y�Y �

Ayy

where for every y � Y �� Ay 
� �� 
 S� is a new sort symbol� By construction� Sext is a
solved form� Furthermore� all variables in V �i�e�� the ports in S�E�� are unconstrained in
Sext� As above� we know that there is a b � B such that for � � ��	x �� b
 we have

B� � j� C � A� �A� � Sext

which implies that

B� � j� I� �E�

B� � j� �w for all w � E�
port 
 I�port

We claim that B� � j� �w for every w � E�nE�
port and I�nI�port We have to distinguish

several cases according to the structure of w�

��



�� w � xp�� Since xp� � I�� we know that jxpjS� is not de�ned� Then there is a pre�x qf
of p such that jxqjS� is de�ned and jxqf jS� is not de�ned� By the construction of Sext�
we have added a constraint yGy with f 
� Gy in Sext� Hence� CFT j� Sext � �xp��

�� w � xpF � Then F � 	� If xp� � I�� then we know by the last case that CFT j�
Sext � �xp�� which implies CFT j� Sext � �xpF �

Otherwise let y � jxpjS� � By the de�nition of I�nI�port� we know that y is not a port
in S�E�� If S� contains an arity constraint yG� then G must be di�erent from F

since xpF � I�� which immediately implies CFT j� Sext � �xpF � If S� does not
contain an arity constraint yG� then we have added a constraint yGy into Sext with
Gy 
� 	� But this immediately implies CFT j� Sext � �xpF since F � 	�


� w � Axp� This case is proven analogously�

�� w � xp � xiq� If jxpjS� is not de�ned� then CFT j� Sext � �xp�� from which we get
CFT j� Sext � �xp�xiq� Otherwise let y � jxpjS� � R be the subset of all constraints
in S� on variables which are reachable from y in S�� and X � var�R� n fxg� We
distinguish three cases�

�a� A� � j� ��y ��X R � y
 � xiq�� Since R is a solved form with root y� we know
by Proposition �� that R is equivalent to a �nite set � � P��m������m� of path
constraints� Since there is exactly one a� � A such that A� �	y �� a�
 j� y
 � xiq�
there must be some w � � of the form Ayp�� yp�F or yp��yp�� such that A� �	y ��
a�
 j� �w� This implies that

A� � j� �w���

where w�� � Axiqp
�� w�� � xiqp

�F or w�� � xiqp
� � xiqp

��� Then w�� � A� since
jqp�j � ��m#�� and jqp��j � ��m#��� As B� � j� �w��� this shows immediately
B� � j� �xp � xiq�

�b� There exists a path r with z � jxprjS� is de�ned and z 
� V and S� either does
not contain a sort constraint Az or does not contain an arity constraint zF �
Then we have added either a constraint Azz with Az 
� S or a constraint zGz

with Gz 
� F in Sext� This implies that

CFT j� Sext � C � xp � xiq � Azxiqr

respectively CFT j� Sext � C � xp � xiq � xiqrGy

Since jqrj � ��m# �� by Proposition $� we know that B� � j� xp � xiq implies
Az � S� resp� Gz � F � which contradicts our assumption�

�c� The remaining case is that

A� � j� �y ��X R � y
 � xiq� ���

��



and all variables of R which are undetermined are ports in S�E�� Since all ports
are unconstrained in S�� R is a determinant� Let a��� a� be the unique elements
of A such that for �� � �	x� �� a�� y �� a��
 we have

A� �� j� xp � y
 � xiq � x
�


We de�ne R� � R	x��y
 and obtain

A� �� j� y 
� x� � �X R � �X R�

By Proposition ��� there is a path r with A� �� j� �yr �x�r� Since r is acyclic in
R �where we take y as the root of R�� we may assume jrj 
 ��m# �� � ��m��
Since v � jyrjR is unconstrained in S�� it is a port of S�� E

� with jxprjS� � v�

By the de�nition of port� there is a link v
 � xjq
� � C� Since CFT j� S �

E� � v
 � xjq
�� we get A� � j� v
 � xjq

�� Hence� A� � j� �xjq
� � xiqr� which

implies B� � j� �xjq� � xiqr since all paths are shorter than ��m # ��� By
Proposition �� and since S� � Sext� we know that B� � j� �xpr � xiqr� which
implies B� � j� �xp � xiq�

�� w � xp � xq� This case is analogous to the last one�


 Conclusion

We have proven the completeness of the feature theory CFT� which uni�es the completeness
results for FT 	

 and for rational constructor trees 	�� ��
� We feel that the use of features
and path constraints signi�cantly simpli�es the logic of trees� The same proof idea could
be applied to FT �where we can always� by lack of arity predicates� add predicates which
enforce the inequality of all involved variables�� or to the case of a �nite signature� where
we have a domain�closure axiom which guarantees� that the set S� in the proof of Lemma �
is already a determinant�

We would like to thank Lawrence Moss� who initiated this research by suggesting the use
of Ehrenfeucht�Fra��ss�e Games for proving completeness of the theory FT � We acknowledge
discussions with Hubert Comon� Hans Leiss� Andreas Podelski� and Gert Smolka� Last not
least� we would like to thank the anonymous referees� especially the one who sent us a �
page referee report�
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