
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Research
Report

RR-94-15

Using Graphical Style and Visibility Constraints
for a Meaningful Layout in

Visual Programming Interfaces

Winfried H. Graf, Stefan Neurohr

May 1994

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
67608 KaiscrslaulCm, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Sluhlsatzenhausweg 3
66123 Saarbriicken, FRG
Tel.: (+49 68i) 302-5252
Fax: (+49681).302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation .

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Using Graphical Style and Visibility
Constraints for a Meaningful Layout in Visual Programming Interfaces

Winfried H. Graf, Stefan Neurohr

DFK.I-RR-94-1S

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9400).

© Deutsches Forschungszentrum fUr KOnstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such Whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fUr KOnstliche Intelligenz.

ISSN 0946-008X

Using Graphical Style and Visibility Constraints
for a Meaningful Layout in

Visual Programming Interfaces

Winfried H. Graf and Stefan Neurohr

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany

Elnail: {graf,neurohr }@dfl(i.uni-sb.de

Abstract

In the expand ing field of visu al applications , layout design and graphical editing
tasks are cru cial points. In th is paper, we address the incorporation of AI aspects
in the visual software design process and the automatic layout and beautification'
of informational graphics such as visual programs and chart diagrams. Since layout
in dynamic settings frequently requires a direct manipulation responsiveness, an
incremental redesign of the generated visual material is necessary. Following our
previous work on constrain t-based multimodal design, we show how powerful con­
st raint processing techniques, such as constraint hierarchies and dynamic constraint
satisfaction, can be applied to visual programming envi ronments in order to main­
tain graphical style and consistency for a meaningful layout . We describe InLay,
a system for co nstraint-based presenting and ed iting visual programs. Finally, we
will have a short look at some extensions with regard to advanced interaction and
visualization techniques .

Keywords: multimedia layout, const raint-based visualization, visual programming,
incremental beautifi cation, dynamic constraint satisfaction

Contents

1 Introduction 3

2 An Example 4

3 Design Issues and Overview 5

4 Constraint-Based Visualization 8
4.1 Representation of Visual Objects 8
4.2 The Constraint Language 9
4.3 Constraint Satisfaction 11
4.4 From Local to Global Visual Consistency 11

5 Advanced Visualization Techniques 14

6 Related Work 15

7 Implementation 17

8 Conclusion 17

2

1 Introduction

Tlwre is an expanding field of appli cations whi ch have to communi cate illfol'matioll vi­
sua l!)', such as the des ign of grap!lical software, informational charts , and multimedia
in tf'l'facC's [Cata l'ci et al. 92, l'vlayoury 93, Andre et al. 93a]. While the infra!;t ra.ct m e for
accessing, processing and di splaying vast amounts of information is dcvelopillg rapid­
ly, we still need adequate technology t hat enables an efficient and profitable avail ab i!i ty
of thi s information. But exist ing presentation and design tools are grovving Jl10re and
more cumbersome to use, as the complexity of the application grows, SUell as ill visll­
al programming. That means, users need sophisticated mechanisms which commulli cate
specific information when they need it and in the right format to perform certain ta!;b. III
t hi s respect, advanced visual interfaces should be able to generate interactive multimedia
presentations in order to account for flexibility, effect iveness, reactivi ty, and cO l1!;i::; tency
[Andre et al. 93b]. Particularl y, meaningful layout and visu al editing facilities can be se('n
as integral parts of the next generation's design and presentation environmell t!;.

One essential shortcoming of current visual programming environmeuts is t heir lack
of providing adequate tools for ll1ailltaining graphical style, legibi li ty, and cOllsi stf' ll CY
of dynamic presentat ion s. Traditional graph layout algorithms do not ll ave klJowl<-!dge
about how the inform ation is really used, since they have no exp li cit repl'esentatioll of t he
display objects and their causal relationships. Frequently, program visuali zation i!; jl1st a
mapping from program code to visual items.

As visual presentations are intended to convey specific information to their users, vi­
sual interfaces are limited in their power and usefulness when they are fixed to syntactic
features only. Up to now program visualization was restri cted to a st1"'llciuT"o/ vis'IJ.(Jh.:o ­

tin!). based on t he program's dat.a ::;tr Ll ct ures or underlying compu ta.t ional models, e.g.,

USillg Nassi-Shneiderman di agra.ms. Concept ual informat ion for visual iziug dOlll<tilJ COll­

cept.s mostly cannot a.utomatically be inferred from the correspolld i ng progrcl1l1 dat<t.
Instead , we propose a concc]Jt'IUd vis"lI.al-ization by reflecting interface seJl1 (l.nt.ics <I.bout
the logi cal and rhetori cal structure of the presentation content that has been stated by
semantic and pragmatic relat ions. By formalizing the intent of a presentation (\.s a pre­
sentation goal and allowing the specification of design parameters, we can tailor a. pre­
sentation with one and the same communicative intent to different people and situations
(cf. [Seligmann & Feiner 91, \I\fClhl ster et al. 93]) .

The primary contributions of this article are twofold: we address both, t Ile visu<tl
de!;ign process (visual programl1l iIlg) and the layol.l t of generated 111111 t i l1led i a i Ilforma­
t.ioll (p rogram visualizatioll). Obviously, the presentation goals in hottl domaills ove rl ap.
By t !l e example of InLay (In t.eractive Layout Laboratory) , we de!;cribe enhclllCelll(.'uts t. o
const ra in t-based visualization to extend the capabilities of graphical ill terfclces. We 11<1"('
developed const raint techni cJll es that support the generation of dynam ic visual pre!;ell­
tations that automatically maintain a set of visibility constraints as the user edits the
des ign or modifies the viewing parameters .

Following our previolls work on constraint-based graphical layout [Graf 92, Graf 93],
we show how advanced constraint processing techniques , such as prioritizing constr a.iut.s,
in cremental and dynami c constraill t satisfact ion , can be widely applied to interact ive
vi!;ual env ironments in order to maillta.in graphi cal sty le and visibility const ra ill ts for <to
meaIlingful presentation.

In t lii !; paper, we clo not present a new layout algorithm but a declaral;ive repre-

3

sentation formalism for graphi cal d sign knowledge, including knowkclge ajJout la.yout ,
typography, dynamics, and interaction , to enhance the presentation a.nd interpretat ion of
visual informat ion. Conceptua.lly, our goal is to go beyond traditional presentat ioll tech­
niques with providing a general fram ework for automated layout and graphical editing
tasks in visual programming environments, such as exploring, monitoring, and preseut ill g
information. Ultimately, we suggest some novel presentation techniques to produ ce tile
most effective view of the information using animatecllayout , abstracting, foc lI ss ing, etc .
to quickly process large amounts of visual information in order to exploit !t11l11CIIiS ' ViSll;d
capabili ties .

2 An Example

To illustrate the functionali ty of the system, let's have a short look at a small example
taken from a visual programming environment, as it may be llsed in CASE tools.

@J InlMY

n .. tuClov obJect:.) Olllit\~ No"'e fl c ~et

Cataflow [.'"'I:aaple s) DUtnpt10n Kode ftat tflleh
UWd .we Tup-Lltvd P ll.rueter~

(lISPLAV

~
6

l ~
~gn

Oill:.ill 0
A: Me,.., of CO,.,...aeUOIII.

TRACE VIRTUAL DISPLA V
~J .. = =

~ ~ ~

1= "-'
0 -

Figure 1: Visllal Programming Environment

The following snapshots of a system run wi ll demonstrate how InLay supports the
design process of visual programs by incrementally beautifying the di splay after visual
editing operations, such as adding, dragging, and re-sizing display elements. Fig. 1 gives
an impression of a typical, inconsistent and incoherent display as it frequently occurs ill
programming interfaces without editing and layout support. The so-ca.lled 'lI1:.,.iu(f1 dis/I/".')
in the lower right corner of the di splay shows a facility to zoom in to a decper leVEl of
the hierarchical information structlll'e. Because of the lack of space, \V(-' \ViII Il ot t.re,i1, (,]1('

handling of design parameters in tllis example.

4

Fig. 2 shows another display area that has already been beautified by InLay exploiting
stylistic features and applying visibility constraints to an incrementally designed visual
program.

Dm::::ill

D" t. .. Clgw Ub)I''-'h >
D_tatlllw ExuplA. >
U~p~r awo

R: Menu of (OIl"4IIe UOflS.

TRACE
J .

QIIWW lIode
D.acriptlOft Kod.
Tvp-Lvv.l

Figure 2: Display after User Interaction

6

1
D

One essent ial problem in visual programming is concerned with the handling of global
conflicts between not directly related visual items, after inserting a new program construct
into the dataflow graph (cf. section 4.4). InLay can detect such globa.l conflicts a.nd
backtrack to select an alternative, consistent design that is shown in Fig. 3.

3 Design Issues and Overview

As with many other interesting AI design problems, geometric search aud optimiza.tion
problems are immanent to mauy applications of intelligent graphical and multimedia
interfaces . An important class of such problems in visual presenta.tioll generation involves
computing positions, dimensions, and topological orientations of multimedia entities that
satisfy a set of visibility constraints. Visual program environments using typical depictions
such as dataflow diagrams and charts, graphs, and trees, are essentially characterized by its
structural, temporal, conceptual, and presentation properties. Here, most design systems
suffer from problems such as interactivity and responsiveness, local/global consistency and
coherence, expressiveness and effectiveness, processing semantic and context infonnaJio ll
as well as handling weak, dynamic, and temporal relations.

One of our main goals concerns the exploitation of common-sense knowledge about
program visualization for presentation beautification and the adaptation of layouts on the

5

D",la(lov ubJech)
Dat.at'low r;~lu)
UJ.lp.:r a..k.ro

IlIl,,),

Onl..iM lIIade
DfillIcuptlM'l xodfll
TUp-L~vt'l

DISPLAV

Knit
ftefruh

IrnD~rn'~'~==~D
R: Menu or to~detious.

TRACE
~a/' c.. Alri s..V(

- Q:u.,- Sc81~ Dox ' cDVX>
~J' t;.;o,.=AJ('-~ITJ«tQ~_TQ_l'UJ(6 (I'OJO

·c-....nd

Figure 3: Consistent Display after Adding an Object

1

fly in order to give on-line support for visual editing tasks, such as the cooperative design
of software diagrams. Our central guiding design rationales to overcome these problems
are communicative intent, interactivity, adaptivity, and incrementality.

Intent and Layout A visual presentation is designed to fullfill a specific communica.tive
intent such as the visualization of an object's state, location, properties (e.g., underlying
program code), dynamics, or its relations to other objects. Visual clarity of a presenta­
tion can be achieved by using a visual organization of information that empha::;izes the
underlying logical and rhetorical structure of the information to be presented as well as
context information. Therefore, the intent of a presentation that can be specified as a
communicative goal should partied be communicated through its layout..

While most of the previous work on mutlimedia presentation des ign only addresses
quantitative or syntactical aspects, we also focus on the intent of the presentation in
order to generate syntactically as well as semantically correct presentations. In InLay,
we deal with page layout as a rhetorical force, influencing the intentional and attentional
state of the user. Therefore, the user is requested to state only interface semantics, not
syntax. We view the layout itself as an important carrier of meaning.

It is a central claim of this paper, that only a"deeper treatment of visual constraints ill
information presentation addresses the ergonomic aspects of layout and so can reduce the
semantic gap between user and computer. In this respect, semantic-pragmatic information
between visual elements communicating presentation and exchange acts as well as program
constructs, e.g., if-then-else, case, while operations, can represented by means of so-

6

called rhetorical relations, such as 'sequence', 'graphics-text' , 'contrast ', 'elaboration ',
'comply-with-request', that are reflected by graphical constraints specifying topological
arrangement facilities for visualization. The user can graphically state information about
semantical relationships between visual elements which should be reflected by the layout .
These relations can also be specified by a content planner [Andre & Ri!:!t 93] or directly
derived from the application code.

Adaptivity and Interactivity In a number of situations, it is an important feature to
be able to produce customized layouts of visual items with minimal ef['ort. Especially, in
dynamic display environments, displays must be flexible enough to accommodate varying
numbers and sizes of visual objects. The quest for user interaction is based on the fact
that is impossible to anticipate all needs and requirements of each potential user in an
infinite number of presentat ion sit uations. Therefore, systems using dynami c graphi cal
presentat.ions, sllch as in visual programming, have to adjust their des ign in response to
user in teract ion in order to achieve an expressive and effecti ve output with high coherence.

Siu ce frequent ly software visual izat. ion systems a re limited in the breath auel extell!:!i­
bility of their displays as they cl o not. a llow user-defin ed displays we have developed a Sf't.
of techniq11es for the generation of highly adaptive interfaces that suppor t user-cont roll ed
design of graphical preselltations and customize a presentation to the communicat ive situ­
ation an d a specific user. We approximate the fact that communi cation is always situated
by making all decision processes sensitive to design parameters such as user's layout pref­
erences, presentation type, presentation intent , output medium, and resource limitations .
Des ign parameters can affect how information is di splayed, e .g. , the text in a node can
be scaled with tile size of the node or remain fixed.

Visual Editing Graph ical edi t ing 0[' large and compli cated visual presentatiolls arc
laborious to produ ce by ha lld. Here, it is unacceptable to spelld more t ime on tlj(~ visu­
a li zat ion of the appli cat ioll information to be presented than the appli catio ll <1.lgoritllltl
its~lf. For example, ill a program visualization context, the user doesn't wallt to waste
time with layout specifi cat ions. On the other hand, fully automated la.yout design fre­
qUC'lltly leads to suboptimal results. So, there comes an increasing need to involve the
lI s~r in tlte graphical des ign process. It has been proven as an effective procedlll'e, in the
first phase of the des ign process, to allow the specification of rough layoll ts by the user,
which can be incrf' menta lly bcautifipd hy the system following certa in design constraiuts
in 1(1.1,(,1' s t. ages .

III 01'0('1' to make the cC\it. illg a ile!);1YOUt process of gra.p hi cal prcsellt.a.tioIlS lllore ef­
ficicnt, we a llow the use r to crpate ,III interface through pre-editing of Ia.yout skeLcll es,
which can autom aticall y be beautified by the system . Moreover, we facilitate tltc user
to t.ail or the int('rf'ace to hi s need!:! by]iOst- editing automatically laid out preseutatioll!:!,
llsing C'ditable graphical hi stories or changing default layout schemata interactively. The
USN will be allowed to edit display objects using operations such as pann ing, dragging,
re-sizing, zooming into , and modifying viewing parameters. Then the system supports
smoot. ll , illcremf' nt. al changf's bf'tween sll ccessive di spl ays .

Incrementality As a sigllificallt challge in the applicatioll requircs a cOlll plete rcdesigll
of t.he iutprface, w<" e ll co llr(lgp a ll ill Cl'(,Il1C Il ta.lupdate of t he in terf8ce to improve its qllalit.y

7

and efficiency. Therefore, in dynamic graphical environments there is a need for illCl'emell­
tality, that means the immediate realization of parts of a stepwise provided input, e.g.,
the beautification of lines in a flowchart and positions of display objects . As we will not
rely on pre-defined links between pre-stored multimedia information items, presentation
design will be done at runtime in order to decrease the response time a,ncl react more
promptly to the application . As the user browses or edits a dynamic gra.p llica.J presenta­
tion, the system updates visibility changes smootldy to avoid visual cliscoutilltliLies . All
views of the dataflow chart are redesigned simultaneously in realtime to maillt'l.i1l a. set
of visibility constraints automatically as the viewing specification changes, ensuriug Lllcl.t
specific objects remain visible.

4 Constraint-Based Visualization

As has been shown in previous work by [Borning & Duisberg 86] among otlH'l's, IllCl.IlY
complex visual interface operations and transformations can efficielltly l> e facilitated us­
ing constraint processing techniques. For example, the beautification or large grcl.phic,al
networks can be automatically arranged and lines in flow charts made cOllsistellt within
a certain tolerance interval. The declarative semantics of constraint la,llgua,ges ,dlov\(s one
to specify graphical objects while avoid ing extraneous concerns about Ul e realizat. ioll of
the visualization algorithms . Moreover, automatically applying constraints to multimedia
displays allows a better control of the design space and facilitates a redesign of a gelle'rat<~d
presentation on the fly.

To address these features, we propose a clean separation betweell Lh e applicat.ion and
the visualization domain, which implies the description and editillg of the' algoritlllll, the
presentat ion, and relationships between the two domain s, respcct ively. This d('('ollplillg
of the visualization from the application code results in easy lllodifi c.a1.ioll cl.lld (·i('gC\.llt
specification capabili ties and facil i tates speciaJ visualization erreds (sce sc tio1l [,). It I t.be
following sections, we will give more details on the fundam entals of InLay:; lliide ri y illg
constraint system.

4. 1 R epresentation of Visual Objects

In InLay, all visual objects are described by its bounding rectangles. Tllc size of all ohject.
depends on the application data and their format, e.g ., a text object cOiltaillillg pl'Ogralll
coele is formatted automatically by a. constraint-b(l,sed typograp llY COlllPOIWIlL [Cred' U2].
Each visual object is generated as a subclass of class BOX, wl liclJ IllCl.llages Llle sLr llcL1ll'c of'
the constraint network, and inherits variables a.nd m ethods from it. FmLllcrlllOl"(', clCl ss0.s
can inherit from multiple superclasses, e.g., Dis])lay Node delivers illf'orl1latioll (I,i>c)1IL Ule
underlying constraint graph, wh ich enables InLay to handlc P1'O(:Cr!Ul·('S.

8

Figure 4: Class Structure for Visual Programs

Visual objects are defined by its state and behavior that is specified as a set of COIl­

straints. New instances of visual objects can be created by instantiating the specific
prototype class. For example, a box is represented by variables for: x-value, y-value,
width, height, and distances to connected objects. We use a dataflow implementation of
constraints as in [Maloney et a1. 89] . This concept allows one to ea.sily enrich tIle sy::;tem
with other visual language constructs and adapt it to further domains (e.g., mllltimedia
desktops). A part of the class structure for visual programming elements is shown in Fig.
4.

4.2 The Constraint Language

In the context of visual programming environments, we use constraints extensively to
maintain visibility and local/global consistency between application data and its graph­
ical depictions as well as among multiple views of data, e.g., after dragging, zooming,
or iconifying display objects, state animation events, and specify application- and user­
specific requirements. Furthermore, graphical constraints map the communicative intent
to graphical style describing how visual objects should be arranged. Here, a thorough
elaboration of a constraint-oriented approach enables both the designer and the user of
a system to naturally express the meaning of the intended information such that the
computer can maintain even the semantics of the implementation .

Relations between multimedia objects can be classified as semantic-pragmatic, geome­
trical/topological, and temporal. Semantic-pragmatic constraints can be compi led into
graphical constraints that represent aesthetical knowledge about perceptual cri teria con­
cerning the organization of visual elements, such as the sequential ordering (horizontal
vs. vertical layout), alignment, grouping, symmetry, or similarity. Geometrical aIld topu­
logical constraints refer to absolute and relative constraints. Temporal relations are lIsed

in the case of animated presentations to represent temporal, spatial informatioll (e.g.,
stating a constraint while the mouse button is held down).

Primitive constraints represent elementary local relations, e.g., 'beside', 'connect', or
'under', expressing basic geometric relations. These constraints are specified by sets of
mathematical equations (e.g., two objects that are constrained to touch at specific points)
or by sets of inequalities (e.g., one object is constrained to li e inside another). The primi­
tive constraints can be aggregated to more complex compound constTaints, specifying the

9

visualization of semantic-pragmatic relations such as 'contrast' or 'sequence' . Further­
more, the underlying constraint language is able to encode aesthetical knowledge ill order
to express certain semantic/pragmatic, geometrical/topologica.l, and temporal relation~.

Constraint Hierarchies for Dynamic Layout Tasks Beside the semantic classifi­
cation of local constraints outlined above, one often wants to prioritize the constraints in
those which must be required and others which are preferably held and could be relaxed in
the worst case. If the various constraints are given a priority, the most important and re­
strictive constraints can be satisfied first. Such a set of constraints has beell introduced as
a constraint hierarchy by Borning and colleagues. 1 Using constraint hierarchies has been
proved as a convenient means in user interface design [Maloney et a1. 89, Myers et a1. 90]
and the LayLab layout system [Graf 93] for declaring relative desires. We distinguish
between obligatory , pr·eferred, and default constraints. The latter state default values,
which remain fixed unless the corresponding constraint is removed by a stronger one.

Dynamic Constraints and Pointer Variables In graphical synthesi s tasks like di s­
play layout, constraints frequently have only local effects, i.e., the set of variables that
is relevant to a solution, dynamically changes as presentations are incrementa.lly gell t' r­
ated by a presentation system or by user actions during problem solving. So, we havp
to distinguish between static constraints that are related to a fixed set of variables alld
dynamic constraints that are generated on the fly. In this case, the problem with incre­
mental constraint solvers is that they can reason upon a changing set of variables and
constraints, but cannot themselves handle the activity of a variable. A typical form of
dynamic constraints in graphical environments concerns those in which the number of
layout elements belonging to one relation is not known a priori, such as a sequence of
connected display objects or subtrees of a dataflow graph.

A typical form of dynamic constraints in interactive graphical ellvironments concerns
those in which the number of layout elements belonging to one relation is Hot known C\.

priori, such as the objects in a subtree of the dataflow graph. Therefore, the constraiut
language must be able to handle indirect references [Vander Zanclen et a1. 91]. Indirection
allows the specification of layouts, independently of the number of layout obj ects USillg
pointer variables that facilitate the programmer to specify constraints like procedures in
imperative languages.

In InLay dynamic distance constraints do not work on single varia.bles, but on a dy­
namic list structure of variables which represent parts of the required subtree. Here,
variables can reference to dynamic sets of required global topological information. Con­
sequently, dynamic constraints are able to encode global relations instead of the local
relations of default constraints. For example, in dataflow graphs the constraint rlynamic­
distance-vertical maintains relations between all objects to the right and the distance to
the object below. The system manages these objects in a list, which is dynamically up­
dated after each user or system actions by computing the trace to the root of the dataflow
tree and adding or deleting the concerned variables in the lists of relevant nodes . This
concept reduces the size and number of constraints, that must be dynamically created
and deleted, which is a time consuming task.

1 Previous papers [Freeman-Benson et al. 90, Borning et al. 92] have provided all ana.lysis of the t,lw­
oretical background of constraint hierarchies.

10

While static constraints are easily encoded in Lisp S-expressions, dynamic constraints
are represented by Lambda expressions which enable constraints having a procedura.l style
to model dynamic application behavior. If pointer variables point to nil, the constraints
maintain default values.

4.3 Constraint Satisfaction

We have implemented an incremental constraint hierarchy solver which is capable of
processing the introduced dynamic and prioritized constraints. This solver is based 011

DeltaBlue [Freeman-Benson et a1. 90], an efficient local propagation algorithm that gener­
ates plans which can be reused repeatedly to solve the same constraint without calling tlle
constraint solver again. As DeltaBlue is structure-based, a lazy evaluai'ion technique call
efficiently be applied to handle indirect references with respect to specific cOIlstraints sllch
as connection constraints. This means, a constraint with indirect reference is eva.lll(\.t<~d

when all its input variables of the dynamic list are evaluated. Therefore, Lhe solver ca[1
handle large and complex constraint networks very efficiently.

4.4 From Local to Global Visual Consistency

In InLay we try to enforce loca.l consistency conditions in order to simplify Llle subsequent.
computation of a globally coherent model of visual objects,

Consistency and Graphical Style As we described before, the system is able to tra11S­
late interface semantics into constraint representations exploiting visibility cOllst raillts t.o
maintain a consistent presenta,t ion a.nd graphical constra.ints to meet ccrtaiu acst lt etical
criteria. We regard a dataflow chart as consistent, if there are no overlappillgs ami lilw
crossings as well as all formatting requirements are fulfilled. First, we will cOllsider lo­
cal consistency issues only. For instance, the consistent sequentiona.l arrcwgemclIt of Lwo
visual program commands A and B is determined using the following const. ra int lI eLwork :

horizontal-centered constraint :
(obligatory) r-----�---------------~

I I
I I

I I I I I I
~~~~~~~~~I ~_r.I~~~~~~~ 

;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:; :;:::::::::::::::::::;:::::;:;:;:;:;:;:;:. 
::::::::::::::::::A:::::::::::::::::: ::::::::::::::::::::JJ.::::::::::::::::: 
: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~ : ~: ~: ~: ~: ~: ~: ~: ~: ~: : ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: 

beside constraint 
(obligatory ) 

distance-horizontal constraint 
( default) 

Figure 5: Horizontally Centered Placing 

11 



Fig. 5 illustrates four difrerent kinds of constraints: 

• The topological constraint horizontal-centered, which states a centered placing in 
the horizontal direction: 

B.y = A.y - O.5*A.h + O.5*B.h 2 

• The topological constraint beside, which guarantees the non-overlapping of two ob­
jects: 

B.x = A.x + A.w + A.dist-hor 

• The metrical constraillt (l-istance-horizont(Jl, which specifies the di stance between 
the two objects: 

A.dist-hor = rnin{o.5*A.w, O.5*B.w} 

• In addition, the system adds an edge between the two boxes, which is constrained 
by a so-called connection constraint. Starting and ending point of the edge are fixed 
to the center of the opposi te sides (not shown in the graphics). 

In general, these constraints guarantee the local consistency of two visual objects as 
well as their semantical connectioll that is reflected by their relative orientation. Mon over, 
the graphical style can be mailltailled globally using default distauce and conuectioll 
const.raillts. 

Reaching Global Consistency with Conflict Avoiding Constraints Since visibil­
ity constraints as described above only guarantee locally consistent presentations, visual 
programs frequently suffer from global conflicts between not directly related objects, e.g., 
overlappiIlg conflicts and line crossings after dragging one object as shown ill Fig. G. For a 
global conflict handliIlg global knowledge about the topology of the whole dataflow chart 
is necessary. In general, there are two possible strategies to deal with global conflicts: a 
post~riori conflict sol'll.tion alld a priori conflict vrcvention. III InLay, we ]l(I.ve tri(-:,d a ruk­
based cOllfli ct solut.ioll algoritlllll first, but we have not achieved all acceptable l"UUti11lt 
efllciC' lIcy. 

III visual program tools, we bellefit from the specific structure of the flowcharts that call 
be treated as binary trees with a special root, namely the program's starting symbol. With 
respect to storage efficiency, this tree is not stored separately, as parts of it can directly be 
derived from the topological relations between the dataflow objects from the underlying 
constraint network. In the following , we will refer to this structure as the r/ri.ta.flo'ILI tref'. 
In order to avoid conflicts ill dataflow graphs, the system needs information alJout t.ypical 
con Oict cases and their prevention . Fig. 7 illustrates some frequ ently OCCurillg COllUict 
pattcrlls when ed iting visual programs. 

"To improve readabilit.y we express co ll st.raints in a simplified infix notation 

12 



III I ilL .. " 

Dal., Clo_ uL ) t'I.'h ) Oul.itl. Node K/; ' It 
Oat..atio_ !7:U.p l u ) D •• enpt1Gr1 ~d. Refruh 
U",p.' U.ro Tup - Lllfv.,l Paructcn 

DISPLAY 

~ 

D-~ 

~~ 
Om::m 0 

TRACE VI RT UAL DISPLAV 

~"'. ""'_""<i.8<v< 

~ ~ 
= 

~. c.o._SG8J~_lIoX ' ( lJOJr) 

~ ~td: 

t= 1 
0 

Figure 6: Global Inconsistencies in Visual Programs 

Conflict Patterns Resulting Conflicts 

I. 

2. 

Figure 7: Conflict Patterns in a Dataflow Graph 

A main conflict results from t Ile arrangement of objects as in paLtcril l. Tllis kind or 
conflict can be solved by relaxing Olle of the di stances A-C or A-B. III t he C,IS(J distllnce 
A-C is relaxed, the vertical distance must be equal to Ule maximum y exte ll sioll of all 
objects which are leaves in the subtree to the right plus some offset . This call be exp ressed 
by the following dynamic-distance-liertiwi const.raint: 

13 



A.dist-vert = max{ A.tright .first.x + A.tright .first.h, . .. , 
A.tright.last .x + A.tright.last.h} 

+ offset 

Pattel'll 2 shows the result after the insertion of the dynamic-distance-vertical constraint. 
Here, another kind of confl ict might occur when extending object D, that can be solved 
simi lar to pattern 1 by relaxing t he horizontal distance A-B with the following dynlL1nic­
distance-horizontal constraint: 

A.dist-hor= 0.5 * max{A .tright-under .first . w, .. . , A·tright-under.last . w} 
+ offset 

This form of avoiding global conflicts can be secn as a design heuristic. In this respect, we 
speak of a Tow-laY07d he'l/,1'istic in case 1 and a column-la.yout heUTis[·i.c ill case 2, which 
can be specified by the user via clesign parameters. Obviously, conflict patterns can be 
transformed into conflict-free pattern. For example, pattern 2 in Fig. 7 becomes conflict 
pattern 3 in Fig. 8 by adcli ng object E. In orcler to avoicl such conflicts, constraints also 
have to regard the potential extens ions of all objects in subtrees below the referred one, 
which arc connected to the root (here object C) via beside constraints. 

3. 

Figure 8: Change of Dataflow Tree Pattel'lls 

We take this in to account by using prioritized constraints as described above. Here, 
topological ancl connect ing constra ints, such as beside and under in tile examples above, 
are clcfined as required. The met.rical dist.ance constraints are divided in default and 
preff'lTcd ones. The default distance constraints are added to the constraint network to 
express the default spac ing. The preferrecl distance constraints for conflict prevention 
have a strength that increases witll the content of information. 

5 Advanced Visualization Techniques 

Visual program layout and program visualization make a number of u:;eful contrib utions 
for a ll kinds of graphical ed iting tasks. Furthermore, innovative visualization and interac­
tion techniques for dynamic displays can generate new insights, e .g., algorithm animatioll 
facilities [Brown SS] and 3D inform at. ion retrieval [Mackinlay 92], and can be seen as a 
new qualit.y of communicat. ion media. The performance of our const.ra.illt solver allowed 
some rcait. ime extensions wit.b regard to an intelli gent use of the following techniques : 

14 



• Allimat.ed la.yold, of ~J) grtl.pll ics 

• A bstractillg presellt.atioll parts 

• Pocussing of active display objects 

• Editillg grapllical histories 

• Generation of meta pre!::>clItation pa.rts 

• Visualization of illformation st.ructurcs 

Por example, the uscr is facilitated to zoom iuto deeper level of a. hierarchical illfor­
mation structure (e.g., textual progra.m code), to move currellt ly processed objects illt.O 
the focus, or to view cOlltext illformation on virtual displays. 

6 Related Work 

As graphics illfrast.ructure become!::> more and more sophisticated, rapidly cxpa.lltlillg "IC­

tivities have entered the area betweell visual iJlterfaces and AI systems (c.g., [Ma.ybmy ~):1 , 

Sullivall & Tyler 91, Cat.arci ct al. 92]), illcluding work 011 grapllic;.t.! layout., gnLpllics g(~II­
eratioll, visual programmiug, multimedia user illterfaces, as well as cOllstraillt-bc\.scd n ' ,\.­

soning. Since the pllysical format alld layout of a presentation oftc ll COlIVCyS tile sL ru ctll1'<-:!, 
intelltion, and significance of the underlying information and therefore pla.y!::> c\.lt ill1por­
tant role in presentation coherency, automatic layout facil iti es are included increa.singly 
in presentation systems and multimedia interfaces. Recent approaches in automated Illlll­
timedia/multimodal layout investigate the use of rule-based [Feiner 88], cOllstraillt-basecl 
[Graf 92J and case-based reasoning [MacNeil 90J methods for representillg gr;-\.pllica.! c1f'sigll 
knowledge. 

While much research has cOllcentrated 011 the automated visualizaLiol1 of illforlllatiollcLI 
graphics [Mackin lay 85], the knowledge-based layout ancl beautificaLioll of graphica.!ly 
presented relational information and visual programs have nearly beell explored . Marks 
[Marks 90J investigated the encoding of arc-node diagrams in his ANDD !::>ystem Llmt 
grouped nodes sharing common graphical value~ (e.g., shape, color, size) to re-illforce 
perception of graphical properties. It was guided by so-called "pragmat.ic directives". 
that specify which interconnection patterns should be made visible by tIle layout. One 
weakness of the system is the realization of generated perceptual org(\.nizatioll with tllf' 
expensive layout algorithm. Beside a rule-ba.sed realization, a genetic [KOSel k et a!. 91 J ami 
a constraint-driven algorithm [Dengler et a!. 93J have been implemelll.ed. Allalogously. 
Roth and Mattis [Roth & Mattis 91J sorted chart objects aud tree nodes to sllpport searcll. 

More recently a new class of systems, which try to overcome gencral layout problems 
using genetic algorithms, e.g., GALAPAGOS [Masu i 92]' has become popular. TlJ('se 
approaches do not solve constraints directly, but modify candidate solutions with random 
values and approximate an optimal solution by iteration. Since they allow the generation 
of suboptimal solutions, they are rather robust. Usually genetic aJgoritllms suffer from 
the problem that they are too slow, not reliable and some kinds of cOllstraillts are hard t.o 
specify. Moreover, genetic algorithms can not support conceptual visllalizatioll, as tlte.\' 

15 



have 110 design k11owlrdg(' (1,1>01 11. 1.11<' PI'('S('lltat.ioll, ami 1.Il<'y do 11 0t. (I,II()\v IIl()difi('(t.t.i()IIS ,1.1 , 

rU11time as well as spccificat.ioll or lIS<'I'S' prcfcn'llcC's. 
III previolls work several dcdicat.('d a lgorit llllls for dra,willg grap hs Ilc\'vc h(,(~11 proposed, 

a C01l1prdlC'l1sive SUIW'y gives tlw allllot.atC'd hihliograpllY by [Di Bat.1.ist.a. <'1. <1.1. ~H]. Most 
traditional algorit.hms exploit heuristics 1.0 overCOmC t.he cOlllplrxity, 1>111, 1I10St. or t.Il<~11l 

arc IlOt. flexible enough and do 1I0t. allow t.o add lIser preferellces. Illstcad, for Lhe diagralll 
server ALF [Di Batt.ista ct al. 90] a, II(,W approach ill buildillg a tailor<lhlc "lid cxtciisilll(' 
aut.omatic layout facilit.y for UI<' productioll of ]li ce drawings li as be(,11 suggeskd. This 
tool selects from a spect.rulll of spccial-plIrpose a.lgorithm s the hcst. Sllit , il.hk~ OIW Cor (I. 

specific avplication and t.IICIl a ll ows the asscmblillg of Il ew a lgol'it.hms from (~xist.illg olles. 
From t.his broad field we shou ld furUlcr remark a new wa.y by [Boltrillg(~1' ,'<x. Palliiscit !)O] 
to achif'\,c stabil it.y in the layout or cycli c graphs and tbe syst.em CO'fl.'lIC 'I,!}C [Sist.c\.rc DO] Cor 
3D gC'omd.ric lllocleling. Allot. hel' a.pproa.ch in interactive graph layOllt, proposes (l, llov(~ l 

met,llOdology for viewiug large graphs [Henry & Hudson 91]. Its basic COIICf'pt is 1.0 allow 
t.he user to interactively navigate through large graphs and learn abollt. 1.11<'111 ill ('()IIcis(' 

sections of a.ppropriate size. 
11,,10reovcr, visual programming aud graphical editing tasks have b<'clI (I,ddrcsscd by 

programming- and constraint-by-example techniques to enhance t.he illt.eracl;iv(~ speci­
fication and editing of graphical presentations [Myers 91, Kurlancler !H]. 1\11 automa.1.ic 
bea,utifier for line drawings alld illustratiolls that makes use of aut:olllat,ic cOlls1.raili1, g(~ II<:~r­

at.ion as part of a:2D graphics edit.or is described ill [Pavlidis & Wyk 85]. III t.Ilis approach, 
verticf's are re-drawn precisely followillg certain constraints, such as Ilcarly Cldjac('II1. or co­
incident lines, that are infencd from all initial sketch whicb are imposed 0]1 Llle beautified 
version. But most of the drawing programs are limited to syntactical cOllstrailits. 

Our work on advanced visuali zat.ion and intf'raction techn iques has Illa,ilily 1H'IIf'fit.('d 
from t.he influential work by Mackinlay et a l. at Xerox PARC 011 tllc PC'/'SlJcC/iv(' Wall 
[l\Iackinlay et al. 91] and the Information VislIfl iize1' [Mackinlay 92]. A similar approa.cll 
for viewing and interacting with large layouts on limited displays in order to sllow local clf'­
tails and global context in one view is detailed in [SarkaI' et al. ~3]. Hf're, ortbogollal <wei 
polygonal algorithms have been used for st retching a so-called rubberslleet, but t.hey suf['(-'r 
from discontinuies at the boundaries and scaling/dimensioning problems respectively. 

Up to now only rudimentary work has been done in the areas "animated layout" 
and "layout of presentations including animation". Research ill tllis fidels was 1l1aillly 
concerned with topics like animation ofpTOgramsand visual]JTO!)1'ammi1l.!)(e.g., [BrowlI ~~, 
Chang 90, Duisberg 90]). Here, numerous visualization systems for producing diagrallls 
automatically from program code as well as generating static graphical displays of data 

structures have been delevoped and allow for editing the underlying program. But must 
of them propose less effect ive canonical displays which are less eft'ect ive alld difficult to 
create for linked and nested structures. Examples of a program visualization systems build 
GELD [Duby et al. 89] and its 3D extension PL UM [Reiss 93], general-purpose packages 
to visuali ze information about programs. Here, the layout of linked hierarchical object:;, is 
described via constraints. GELD includes predefined data views and a llows the graphic.al 
specification of topological constraints by the user. Essential shortcomings of GELD a.re 
that its displays are not aesthetically pleasing and the graphics can not be ta.ilored to the 
user's needs. Another interesting approach carried out in the context of Pictorial ](1.17 '11,8 

for visualizing object-oriented programming systems, addresses a declarative formalism 
for the definition of graphical layout [Haarslev & Moller 92]. Apparently, no work ha.s 

16 



been done on applying principles of graphic design to visualizing data structures. 

7 Implementation 

A first prototype of the system InLay, a tool for incremantal, constraint-based editing of 
visual presenations, has been implemented using Allegro Common Lisp/CLOS for object­
oriented interface programming and the Common Lisp Interface Manager (CLIM), Release 
2.0, an X window compatible Lisp-based window programming interface that provides a 
layered set of portable services for constructing user interfaces. The incremental const raint 
solver which is based on the DeltaBhle [Freeman-Benson et al. 90] algorithm is O( cN) in 
the number of affected constraints. The system is considered to be experimeutal work in 
progress. So, for this first protoype version, we have deliberately limited our applicatioll 
domains to visual programs and multimedia displays. We have further concentrated ouly 
on a small set of design heuristics with wide applicability. 

8 Conclusion 

We have described the constraint-based interactive display manager InLay that a.utolllati­
cally handles all aspects of display layout and editing in visua.l prescntatioll cnvirolllll euts 
as one extension of the multimedia, layout mangager LayLau [era.!" !);~l. Tlw clp procl.c\1 

detailed in this paper has already been approved for the automatic layou L COli trol of tIle 

multimodal/multimedia presentation system WIP [Andre et al. 93a, Wahlster et al. !J3] 
and its interactive extensions. A further application will be concerned wiLh support of 
the semi-automated 3D graphics editor A WI [Rist et a1. 94]. 

Beside visual programming environments there arise numerous potclItial application 
domains that suffer from visual design and consistency problems, such as the broad field 
of intelligent multimedia interfaces, CASE tools, with particular utilities for program 
animation, debugging, process monitoring, on-line help (instruct ion , tutoring), am\ doc­
umentation, as well as different kinds of network dia.gram desigllers, eSC\lV, ,\.lId virtllaJ 
realities. 

References 

[Andre & Rist 93] E. Andre and T. Rist. The Design of Illustrated Documents as {/. 
Planning Task. In: Maybury [Maybury 93]. 

[Andre et al. 93a] E. Andre , W. Finkler, W. Graf, T. Rist , A. Schauder, (lml 
W. Wahlster. WIP: The A'lI.torrwtic Synthesis of A;fuitiTlwr/a[ Pn:s(:ulali()1Js. Ill: 

Maybury [Maybury 93], pp, 75- 93. 

[Andre et a1. 93b] E. Andre, W. Graf, J. Heinsohn, B. Nebel, II.-.1. Profitiich, 
T. Rist, and W. Wahlster. PPP - Personalized Plan-Baser! Prescntc1'. 01"­
KI Document D-93-05, Deutsches Forschungszentrum fur I(ullstliclie Illtclligcnz 
(DFKI), Saarbri.icken, Germany, 1993. 

17 



[Bohringer & Paulisch 90] K.-F. Bohringer and F. Newberry Paulisch. Us'in!J Con­
straints to Achieve Stability in Automatic Graph Layout Algor·ithms. In: Proceed­
ings of the CHI'89 (Human Factors in Computing Systems), pp. 43-51, Seattle, 
WA,1990. 

[Borning & Duisberg 86] A. Borning and R. Duisberg. Constraint-based Tools fo 'r 
Building User Interfaces. ACM Transactions on Graphics, 5(4):345-374, Octo­
ber 1986. 

[Borning et al. 92] A. Borning, B. Freeman-Benson, and M. Wilson. Consi'l'G.i1l.t Ili­
erarchies. LISP and Symbolic Computation: An International Journal, 5(3):223-
270, 1992. 

[Brown 88] M. H. Brown. Alfj01'ithm Animation. ACM Distinguished Dissel'tatiolls. 
Cambridge, MA: MIT Press, 1988. 

[Catarci et al. 92] T. Catarci, M. F. Costabile, and S. Levialdi (eds.). Advanced Visual 
Inl erfaces , Proceedings of the Int ernational Workshop A VI '92. Viorld Scientific 
Series in Computer Science - Vol. 36. Singapore: World Scientific Press, 1992. 

[Chang 90] S.-K. Chang. Visual Languages and Visual Pro!Jrammi'IT/,!J. New York, NY: 
Plenum Press, 1990. 

[Dengler et al. 93] E. Dengler, M. Friedell, and J. Marks. Constmint-D'I'iven Diagmm 
Layo'ut. In: Proceedings of the 1993 IEEE Symposium on Visual Languages, pp. 
330-335, Bergen, Norway, 1993. 

[Di Battista et al. 90] G. Di Battista, A. Gianmarco, G. Santucci, R.. Tamassia, aucl 
1. G. Tollis. The Architect'llre of Diagram Server. In: Proceedings of the 1990 
IEEE Workshop on Visual Languages, pp. 60-65, Skokie, IL, 1990. 

[Di Battista et al. 93] G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Algo­
rithms for Drawing Graphs: an Annotated Bibliography, 1993. 

[Duby et al. 89] C. Duby, S. Meyer, and S. P. Reiss. Usin!J GELO to m:s'I/,{/,lize So./hu(J,1'(' 

Systems. In: Proceedings of the UIST'89 (ACM SIGGRAPH Symp. 011 User 
Interface Software and Technology), pp. 149-157, Williamsburg, VA, 1989. 

[Duisberg 90] R. Duisberg. Visual Programming of Program Visualizations - A Gestu'ral 
Int e1jace for A71.imalin!J Algorithms. In: T. Ichikawa, E. Junged, and R. KOl'l1](l.gf' 
(eds.), Visual Languages and Applications, pp. 161-173. New York, NY: Plenum 
Press, 1990. 

[Feiner 88] S. Feiner. A G1'id-Basrd Approach La Automating Display Layout. In: Pro­
ceedings of the Graphics Ill terface '88, pp. 192-197. Los Altos, CA : Morgan Kauf­
mann, June 1988. 

[Freeman-Benson et al. 90] B. Freeman-Benson, J. Maloney , and A. Borning. An 
J1I.cT·emen.tal Constmini Solver. Communications of the ACM, 33(1):54- 63, l!)!>O. 

18 



[Graf 92J 'vV. H. Graf. Constmint-Based Gmphical Layout of Multimodal Presentations. 
In: Catarci et al. [Catarci et al. 92]' pp. 365-385. Also DFKI Research R.eport 
RR-92-15. 

[Graf 93J W. H. Graf. LayLab: A Constm.int-Bflsed La.yout J\I!r/,1!.(LfjeT /01' M·llltimf:d'ill. 
Presentations. In: Salvendy and Smith [Salvendy & Smith 93], pp. 446- 451. Also 
DFKI Research Report RR-93-41. 

[Haarslev & Moller 92J V. Haarslev and R. Moller. Vis1wlization and Graphical Layout 
in Object-Oriented Systems. Journal of Visual Languages and Computing, (3):1-
23, 1992. 

[Henry & Hudson 91J T. R. Henry and S. E. Hudson. Interactive GTaph Layo'ut. Ill: 

Proceedings of the UIST'91 (ACM SIGGRAPH Symp. on User Interface SoftwClre 
and Technology), pp. 55-64, Hilton Head, SC, 1991. 

[Kosak et al. 91 J C. Kosak , J. Marks, and S. Shieber. A Parallel fje71,el'ic alfjorithm fot' 
network-diagram layout. In: Proceedings of the Fourth International Conference 
on Genetic Algorithms, pp. 458-465. Los Altos, CA: Morgan Kaufmann, 1991. 

[Kurlander 93J D. Kurlander. Reducing Repetition in Graphical Editing. In: Salvencly 
and Smith [Salvendy & Smith 93], pp. 409-414. 

[Mackinlay et al. 91J J. D. Mackinlay , G. G. Robertson , and S. K. Card. The PeT­
spective Wall: Detail and Conte:r;t Smoothly Integrated. In: Proceedings of the 
CHI'91 (Human Factors in Computing Systems), pp. 173-179, New Orleans, LA. 
1991. 

[Mackinlay 85J J.D. Mackinlay. Automatic Design of Gmphical Presenta.tions. PIID 
thesis, Dept . of Computer Science, Stanford University, Stanford, CA, 1985. 

[Mackinlay 92J J. Mackinlay. The Inform.at ion Visualizer: A 3D User Interface fo '" 
Information Retrieval. In: Catarci et al. [Catarci et al. 92J. 

[MacNeil90J R. MacNeil. Adaptive Perspectives: Case-based ReasOlI.i1l.fj with TYRO , 
the Graphics Designer's AppTentice. In: Proceedings of the HHlO IEEE WOl'ksllop 

on Visual Languages, pp. 138-142, Skokie, IL, 1990. 

[Maloneyet al. 89J J . Maloney, A. Borning, and B. Freeman-Benson. Canst-mint 
Technology for User-Interface Construction in ThingLabJ!. In: Proceedings of 
OOPSLA '89 (ACM Conference on Object-Oriented Programming Systems, Lan­
guages, and Applications), pp. 381-388, October 1989. 

[Marks 90J J. Marks . A Syntax and Semantics for Network Diagrams. In: Proceedings 
of the 1990 IEEE Workshop on Visual Languages , pp. 104-110, Skokie, IL, 1990. 

[Masui 92J T. Masui. Graphic Object Layo7l,t with Int eractive Genetic Alg01·ithms. In: 

Proceedings of the 1992 IEEE Workshop on Visual Languages, Seattle, WA, 1992. 

[Maybury 93J M. Maybury (ed.). Intelligent Multimedia Interfaces. Menlo Park, CA: 
AAAI Press, 1993. 

19 



[Myers et a1. 90] B. Myers, D. Guise, R. B. Dannenberg, B. T. Vander Zanden, 
D. Kosbie, P. Marchal, and E. Pervin. Comprehensive Sllj1lJ07·t fOT' OrlJ.]Ihi­
cal, Highly-Interactive User Interface: The Garnet User Interface Developm ent 
Environment. IEEE Computer, 23(11):71-85, November 1990. 

[Myers 91] B.A. Myers. Using AI Techniques to Create User Interfaces uy gmmple. In : 
Sullivan and Tyler [Sullivan & Tyler 91], pp. 385-402. 

[Pavlidis & Wyk 85] T. Pavlidis and C. Van Wyk. An Automatic Beautifier for Draw­
ings and Illustrations. Computer Graphics, 19(3):225-234, 1985. 

[Reiss 93] S. P. Reiss. A Framework for Abstract 3D Visualization. In: Proceedings of 
the 1993 IEEE Symposium on Visual Languages, pp. 108- 115, Bergen, Norway, 
1993. 

[Rist et a1. 94] T. Rist, T. Kruger, G. Schneider, and D. Zimmermann . A WI: A 
Workbench for Semi-A utomated Illustration Design. To appear in AVI'94, 1994. 

[Roth & Mattis 91J S. F. Roth and J. Mattis. Automating the Presentation of Infornw.­
tion. In: Proceedings of the IEEE Conference on AI Applications, Miami Beach, 
FL, 1991. 

[Salvendy & Smith 93J G. Salvendy and M. J. Smith (eds.). Human-CoTnll'll.ter· Int erac­
tion: Software and Hardware Interfaces. Amsterdam: Elsevier, HJ93. Proceedings 
of HCI International'93 (5th International Conference on Human-Comp uter Inter­
action jointly with 9th Symposium on Human Interface (Japan)). 

[Sarkar et a1. 93J M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss . Str-etching 
the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens. In: 
Proceedings of the UIST'93 (ACM SIGGRAPH Symp. on User Interface Software 
and Technology), pp. 81- 92, Atlanta, GA, 1993. 

[Seligmann & Feiner 91 J D. Seligmann and S. Feiner. Automated Gener'alion of Intent­
Based 3D Illustrations. Computer Graphics, 25(3), July 1991. 

[Sistare 90J S. Sistare. A Gmphical Editor for Constraint-Based Geomei1'ic Modeling. 
PhD thesis, Department of Computer Science, Harvard University, 1990. 

[Sullivan & Tyler 91 J J. Sullivan and S. Tyler (eds.). Intelligent User In.t e1jaces. Fron­
tier Series. New York, NY: ACM Press, 1991. 

[Vander Zanden et a1. 91J B. T. Vander Zanden, B. A. Myers , D. Guise , and 
P. Szekely. The Importance of Pointer- Variables in Constraint ldorlels. In: Pro­
ceedings of the UIST'91 (ACM SIGGRAPH Symp. on User Interface Software and 
Technology), pp. 155- 164, Hilton Head, SC, 1991. 

[Wahlster et a1. 93J W. Wahlster, E. Andre, W. Finkler, H.-J. Profitlich , and 
T. Rist. Plan-based Integration of Natural Language and Gr·(J.]Jhics Generation.. 
Artificial Intelligence, Special Issue on Natural Language Processing, 63, 1993. 

20 



Deutsches 
Forschungszentrum 
fOr KOnstliche 
Intelllgenz GmbH 

DFKI Publikationen 

Die folgenden DFKI Veroffentlichungen sowie die 
aktuelle Lisle von allen bisher erschienenen 
Publikationen konnen von der oben angegebenen 
Adresse oder per anonymem ftp von ftp.dfki.uni­
kl.de (131.246.241.100) unter pub/Publications 
bezogen werden. 
Die Berichte werden, wenn nicht anders gekenn­
zeichnet, kostenlos abgegeben. 

DFKI Research Reports 

RR·93·09 
Philipp Hanschke, Jorg Wurtz: 
Satisfiability of the Smallest Binary Program 
8 pages 

RR-93-10 
Martin Buchheit. Francesco M. Donini. Andrea 
Schaerf: Decidable Reasoning in Terminological 
Knowledge Representation Systems 
35 pages 

RR·93·11 
Bernhard Nebel. Hans-JUrgen Burckert: 
Reasoning about Temporal Relations: 
A Maximal Tractable Subclass of Allen's Interval 
Algebra 
28 pages 

RR-93-12 
Pierre Sablayrolles: A Two-Level Semantics for 
French Expressions of Motion 
51 pages 

RR·93·13 
Franz Baader. Karl Schlechta: 
A Semantics for Open Normal Defaults via a 
Modified Preferential Approach 
25 pages 

RR-93·14 
Joachim Niehren . Andreas Podelski. RalfTreinen: 
Equational and Membership Constraints for Infinite 
Trees 
33 pages 

RR-93-1S 
Frank Berger, Thomas Fehrle. Kristof KLOckner. 
Volker SchOlles, Markus A . Thies. Wolfgang 
Wahlster: PLUS - Plan-based User Support 
Final Project Report 
33 pages 

DFKI 
-Bi bliothek­
PF 2080 
67608 Kaiserslautem 
FRG 

DFKI Publications 

The following DFKI publications or the list of 
all published papers so far are obtainable from 
the above address or via anonymous ftp 
from ftp.dfki.uni-kl.de (131.246.241.100) under 
pub/Publications. 
The reports are distributed free of charge except if 
otherwise indicated. 

RR-93-16 
Gert Smolka. Marlin Henz , Jorg Wurtz: Object­
Oriented Concurrent Constraint Programming in Oz 
17 pages 

RR-93-17 
Rolf Baclwfen: 
Regular Path Expressions in Feature Logic 
37 pages 

RR-93-18 
Klaus Schild: Terminological Cycles and the 
Propositional }I-Calculus 
32 pages 

RR-93-20 
Franz Baader, Bernhard Hol/under: 
Embedding Defaults into Terminological 
Knowledge Representation Formalisms 
34 pages 

RR-93-22 
Manfred Meyer. Jorg Muller: 
Weak Looking-Ahead and its Application in 
Computer-Aided Process Planning 
17 pages 

RR-93-23 
Andreas Dengel. OUmar Lutzy: 
Comparative Study of Connectionist Simulators 
20 pages 

RR-93-24 
Rainer Hoch. Andreas Dengel: 
Document Highlighting -
Message Classification in Printed Business Letters 
17 pages 

RR·93-25 
Klaus Fischer. Norbert Kuhn: A DAi Approach to 
Modeling the Transportation Domain 
93 pages 



RR·93·26 
Jorg P. Muller. Markus Pischel: The Agent 
Architecture InteRRaP: Concept and Application 
99 pages 

RR·93·27 
Hans-Ulrich Krieger: 
Derivation Without Lexical Rules 
33 pages 

RR·93·28 
Hans-Ulrich Krieger. John Nerbonne. 
Hannes Pirker: Feature-Based Allomorphy 
8 pages 

RR·93·29 
Armin Laux: Representing Belief in Multi-Agent 
Worlds viaTerminological Logics 
35 pages 

RR·93·30 
Stephen P. Spackman. Elizabeth A. Hinkelman: 
Corporate Agents 
14 pages 

RR·93·31 
Elizabeth A. Hinkelman. Stephen P. Spackman: 
Abductive Speech Act Recognition, Corporate 
Agents and the COSMA System 
34 pages 

RR·93·32 
David R. Traum. Elizabeth A . Hinkelman: 
Conversation Acts in Task-Oriented Spoken 
Dialogue 
28 pages 

RR·93·33 
Bernhard Nebel. Jana Koehler: 
Plan Reuse versus Plan Generation: A Theoretical 
and Empirical Analysis 
33 pages 

RR·93·34 
Wolfgang Wahlster: 
Verbmobil Translation of Face-To-Face Dialogs 
10 pages 

RR·93·35 
Harold Boley. Franc.;ois Bry. Ulrich Geske (Eeis.) : 
Neuere Entwicklungen der deklarativen KI­
Programmierung - Proceedings 
150 Seiten 
Note: This document is available only for a 
nominal charge of 25 OM (or 15 US-$). 

RR·93·36 
Michael M. Richter. Bernd Bachmann, Ansgar 
Bernardi. Christoph Klauck. Ralf Legleitner. 
Gabriele Schmidt : Von IDA bis IMCOD: 
Expertensysteme im CIM-Umfeld 
13 Seiten 

RR·93·38 
Stephan Baumann: Document Recognition of 
Printed Scores and Transformation into MIDI 
24 pages 

RR·93·40 
Francesco M. Donini. Maurizio Lenzerini. Daniele 
Nardi. Werner Nutt. Andrea Schaerf.· 
Queries, Rules and Defmitions as Epistemic 
Statements in Concept Languages 
23 pages 

RR·93·41 
Winfried H. Gra/: LA YLAB: A Constraint-Based 
Layout Manager for Multimedia Presentations 
9 pages 

RR·93·42 
Hubert Comon. RalfTreinen: 
The First-Order Theory of Lexicographic Path 
Orderings is Undecidable 
9 pages 

RR·93·43 
M. Bauer. G. Paul: Logic-based Plan Recognition 
for Intelligent Help Systems 
15 pages 

RR·93·44 
Martin Buchheit. Manfred A. Jeusjeld. Werner NUll. 
Marlin Staudt: SubsumpLion between Queries Lo 
Object-Oriented Databases 
36 pages 

RR·93·45 
Rainer Hoch: On Virtual Partitioning of Large 
Dictionaries for Contextual Post-Processing to 
Improve Character Recognition 
21 pages 

RR·93·46 
Philipp Hanschke: A Declarative Integration of 
Terminological, Constraint-based, Data-driven, and 
Goal-directed Reasoning 
81 pages 

RR·93·48 
Franz Baader. Martin Buchheit. Bernhard Hol/under: 
Cardinality Restrictions on Concepts 
20 pages 

RR·94·01 
Elisabeth Andre. Thomas Rist: 
Multimedia Presentations: 
The Support of Passive and Active Viewing 
15 pages 

RR·94·02 
Elisabeth Andre. Thomas Rist: 
Von Textgeneratoren zu Intellimedia­
Prasentationssystemen 
22 Seiten 



RR-94-03 
Gert Smolka: 
A Calculus for Higher-Order Concurrent Constraint 
Programming with Deep Guards 
34 pages 

RR-94-0S 
Franz Schmalhofer. 
J.Stuart Aitken. Lyle E. Bourne jr.: 
Beyond the Knowledge Level: Descriptions of 
Rational Behavior for Sharing and Reuse 
81 pages 

RR-94-06 
Dietmar Dengler: 
An Adaptive Deductive Planning System 
17 pages 

RR-94-07 
Harold Boley: Finite Domains and Exclusions as 
First-Class Citizens 
25 pages 

RR-94-08 
Otto Kuhn. Bjorn Hofling: Conserving Corporate 
Knowledge for Crankshaft Design 
17 pages 

RR-94-10 
Knut Hinkelmann. Helge Hintze: 
Computing Cost Estimates for Proof Strategies 
22 pages 

RR-94-11 
Knut Hinkelmann: A Consequence Finding 
Approach for Feature Recognition in CAPP 
18 pages 

RR-94-12 
Hubert Comon. RaifTreinen: 
Ordering Constraints on Trees 
34 pages 

RR-94-13 
Jana Koehler: Planning from Second Principles 
-A Logic-based Approach 
49 pages 

RR-94-14 
Harold Boley. Ulrich Buhrmann. Christof Kremer: 
Towards a Sharable Knowledge Base on Recyclable 
Plastics 
14 pages 

RR-94.-1S 
Winfried H. Gra/. Stefan Neurohr: Using Graphical 
Style and Visibility Constraints for a Meaningful 
Layout in Visual Programming Interfaces 
20 pages 

RR-94-16 
Gert Smolka: A Foundation for Higher-order 
Concurrent Constraint Programming 
26 pages 

DFKI Technical Memos 

TM-92-04 
Jwgen Muller. Jorg Muller. Markus Pischel. 
Raif Scheidhauer: 
On the Representation of Temporal Knowledge 
61 pages 

TM-92-0S 
Franz Schmalhofer. Christoph Globig. Jorg Thoben: 
The refitting of plans by a human expert 
10 pages 

TM-92-06 
Otto Kuhn. Franz Schmalhofer: Hierarchical 
skeletal plan refinement: Task- and inference 
structures 
14 pages 

TM-92-08 
Anne Kilger: Realization of Tree Adjoining 
Grammars with Unification 
27 pages 

TM-93-01 
OItO Kuhn. Andreas Birk: Reconstructive Integrated 
Explanation of Lathe Production Plans 
20 pages 

TM-93-02 
Pierre Sablayrolles, Achim Schupeta: 
Conlfict Resolving Negotiation for COoperative 
Schedule Management 
21 pages 

TM-93-03 
Harold Boley, Ulrich Buhrmann. Christof Kremer: 
Konzeption einer deklarativen Wissensbasis tiber 
recyclingrelevante Materialien 
11 pages 

TM-93-04 
Hans-Gunther Hein: 
Propagation Techniques in W AM-based 
Architectures - The FIDO-II1 Approach 
105 pages 

TM-93-0S 
Michael Sintek: Indexing PROLOG Procedures into 
DAGs by Heuristic Classification 
64 pages 

TM-94-0 1 
Rainer Bleisinger, Klaus-Peter Gores: 
Text Skimming as a Part in Paper Document 
Understanding 
14 pages 

TM-94-02 
Rainer Bleisinger, Berthold Kroll : 
Representation of Non-Convex Time Intervals and 
Propagation of Non-Convex Relations 
11 pages 



OFKI Oocuments 

0-93-07 
Klaus-Peter Gores. Rainer Bleisinger: 
Ein erwartungsgesteuerter Koordinator zur partieUen 
TextanaIyse 
53 Seiten 

0-93-08 
Thomas Kieninger. Rainer Hoch: 
Ein Generator mit Anfragesystem fUr strukturierte 
Worterbilcher zur Untersliltzung von Texterkennung 
und TextanaIyse 
125 Seiten 

0-93-09 
Hans-Ulrich Krieger. Ulrich Schiifer: 
TDL ExtraLight User's Guide 
35 pages 

0-93-10 
Elizabeth Hinkelman. Markus Vonerden. Christoph 
lung: Natural Language SofLware Registry 
(Second Edition) 
174 pages 

0-93-11 
Knut Hinkelmann. Armin Laux (Eds.): 
DFKI Workshop on Knowledge Representation 
Techniques - Proceedings 
88 pages 

0-93-12 
Harold Boley. Klaus Elsbernd. 
Michael Her/ert. Michael Sintek. Werner Stein: 
RELFUN Guide: Programming with Relations and 
Functions Made Easy 
86 pages 

0-93-14 
Manfred Meyer (Ed.): Constraint Processing­
Proceedings of the International Workshop at 
CSAM'93, July 20-21,1993 
264 pages 
Note: This document is available only for a 
nominal charge of25 DM (or 15 US-$). 

0-93-15 
Robert Laux: 
Untcrsuchung maschineller Lernverfahren und 
heuristischer Methoden im Hinblick auf deren 
Kombination zur Untersti.itzung eines Chart-Parsers 
86 Seiten 

0-93-16 
Bernd Bachmann. Ansgar Bernardi. Christoph 
Klauck. Gabriele Schmidt: Design & KI 
74 Seiten 

0-93-20 
Bernhard Herbig: 
Eine homogene Implementierungsebene fUr einen 
hy briden W issensreprasentationsf ormal ism us 
97 Sciten 

0-93-21 
Dennis Drollinger: 
Intelligentes Backtracking in Inferenzsystemen am 
Beispiel Terminologischer Logiken 
53 Seiten 

0-93-22 
Andreas Abecker: 
Implementierung graphischer Benutzungsober­
fUichen mit Tcl/Tk und Common Lisp 
44 Seiten 

0-93-24 
Brigitte Krenn. Martin Yolk: 
DiTo-Datenbank: Datendokumentation zu 
Funktionsverbgefilgen und Relativsatzen 
66 Seiten 

0-93-25 
Hans-liirgen Burckert. Werner NUll (Eds.): 
Modeling Epistemic Propositions 
118 pages 
Note: This document is available only for a 
nominal charge of 25 DM (or 15 US-$). 

0-93-26 
Frank Peters: Untersliltzung des Experten bei der 
Formalisierung von Textwissen 
INFOCOM: 
Eine interakti ve Formalisierungskomponente 
58 Seiten 

0-93-27 
Rolf Backofen. Hans-Ulrich Krieger. 
Stephen P. Spackman. Hans Uszkoreit (Eds.) : 
Report of theEAGLES Workshop on 
Implemented Formalisms at DFKI, Saarbrticken 
110 pages 

0-94-01 
losua Boon (Ed.): 
DFKI-Publications: The First Four Years 
1990 - 1993 
75 pages 

0-94-02 
Markus Steffens: Wissenserhebung und Analyse 
zum EntwicklungsprozeB eines Druckbehlilters aus 
Faserverbundstoff 
90 pages 

0-94-06 
Ulrich Buhrmann: 
Erstellung einer deklarativen Wissensbasis tiber 
recyclingrelevante Materialien 
117 pages 

0-94-08 
Harald F eibel: IGLOO 1.0 - Eine grafikuntersti.itzte 
Beweisentwicklungsumgebung 
58 Seiten 









Using Graphical Style and Visibility RR-94-15 
Constraints for a Meaningful Layout in Visual Programming Interfaces Research Report 

Wlnfrled H. Graf, Stefan Neurohr 


