| ? ' l?:?stzt‘i:zZszentrum ResearCh
R 3 fir Kiinstliche Report

Intelligenz GmbH RR-94-15

Using Graphical Style and Visibility Constraints
for a Meaningful Layout in
Visual Programming Interfaces

Winfried H. Graf, Stefan Neurohr

May 1994

Deutsches Forschungszentrum fir Kinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
67608 Kaiscrslautern, FRG 66123 Saarbriicken, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681).302-5341

Deutsches Forschungszentrum
far
Klnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kinstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrticken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

ooo0o0o0o

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Using Graphical Style and Visibility
Constraints for a Meaningful Layout in Visual Programming Interfaces

Winfried H. Graf, Stefan Neurohr

DFKI-RR-94-15

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9400).

© Deutsches Forschungszentrum fiir Kiinstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fir Kiinstliche Intelligenz.

ISSN 0946-008X

Using Graphical Style and Visibility Constraints
for a Meaningful Layout in
Visual Programming Interfaces

Winfried H. Graf and Stefan Neurohr

German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
Email: {graf neurohr}@dfki.uni-sb.de

Abstract

In the expanding field of visual applications, layout design and graphical editing
tasks are crucial points. In this paper, we address the incorporation of Al aspects
in the visual software design process and the automatic layout and beautification
of informational graphics such as visual programs and chart diagrams. Since layout
in dynamic settings frequently requires a direct manipulation responsiveness, an
incremental redesign of the generated visual material is necessary. Following our
previous work on constraint-based multimodal design, we show how powerful con-
straint processing techniques, such as constraint hierarchies and dynamic constraint
satisfaction, can be applied to visual programming environments in order to main-
tain graphical style and consistency for a meaningful layout. We describe InLay,
a system for constraint-based presenting and editing visual programs. Finally, we
will have a short look at some extensions with regard to advanced interaction and
visualization techniques.

Keywords: multimedia layout, constraint-based visualization, visual programming,
incremental beautification, dynamic constraint satisfaction

Contents

1 Introduction

2 An Example

3 Design Issues and Overview

4 Constraint-Based Visualization
4.1 Representation of Visual Objects
42 The Constraint Longuage " : : « = + s s s s s s s 5 ¢ % s 4 5% 5 55 2 5@
4.3 Constraint Satisfaction . . + . . ¢« o v s v o5 0 v v 0 v u s v o0 v w56 o
4.4 From Local to Global Visual Consistency

5 Advanced Visualization Techniques
6 Related Work
7 Implementation

8 Conclusion

14

15

1¥

17

1 Introduction

There is an expanding field of applications which have to communicate information vi-
sually, such as the design of graphical software, informational charts, and multimedia
interfaces [Catarci et al. 92, Maybury 93, André et al. 93a]. While the infrastracture for
accessing, processing and displaying vast amounts of information is developing rapid-
ly, we still need adequate technology that enables an efficient and profitable availability
of this information. But existing presentation and design tools are growing more and
more cumbersome to use, as the complexity of the application grows, such as in visu-
al programming. That means, users need sophisticated mechanisms which communicate
specific information when they need it and in the right format to perform certain tasks. In
this respect, advanced visual interfaces should be able to generate interactive multimedia
presentations in order to account for flexibility, effectiveness, reactivity, and consistency
[André et al. 93b]. Particularly, meaningful layout and visual editing facilities can be seen
as integral parts of the next generation’s design and presentation environments.

One essential shortcoming of current visual programming environments is their lack
of providing adequate tools for maintaining graphical style, legibility, and consistency
of dynamic presentations. Traditional graph layout algorithms do not have knowledge
about how the information is really used, since they have no explicit representation of the
display objects and their causal relationships. Frequently, program visualization is just a
mapping from program code to visual items.

As visual presentations are intended to convey specific information to their users, vi-
sual interfaces are limited in their power and usefulness when they are fixed to syntactic
features only. Up to now program visualization was restricted to a structural visualiza-
tion based on the program’s data structures or underlying computational models, e.g.,
using Nassi-Shneiderman diagrams. Conceptual information for visualizing domain con-
cepts mostly cannot automatically be inferred from the corresponding program data.
Instead, we propose a conceptual visualization by reflecting interface semantics about
the logical and rhetorical structure of the presentation content that has been stated by
semantic and pragmatic relations. By formalizing the intent of a presentation as a pre-
sentation goal and allowing the specification of design parameters, we can tailor a pre-
sentation with one and the same communicative intent to different people and situations
(cf. [Seligmann & Feiner 91, Wallster et al. 93]).

The primary contributions of this article are twofold: we address both, the visual
design process (visual programming) and the layout of generated multimedia informa-
tion (program visualization). Obviously, the presentation goals in both domains overlap.
By the example of InLay (Interactive Layout Laboratory), we describe enhancements to
constraint-based visualization to extend the capabilities of graphical interfaces. We have
developed constraint techniques that support the generation of dynamic visual presen-
tations that automatically maintain a set of visibility constraints as the user edits the
design or modifies the viewing parameters.

Following our previous work on constraint-based graphical layout [Graf 92, Graf 93],
we show how advanced constraint processing techniques, such as prioritizing constraints,
incremental and dynamic constraint satisfaction, can be widely applied to interactive
visual environments in order to maintain graphical style and visibility constraints for a
meaningful presentation.

In this paper, we do not present a new layout algorithm but a declarative repre-

sentation formalism for graphical design knowledge, including knowledge about layout,
typography, dynamics, and interaction, to enhance the presentation and interpretation of
visual information. Conceptually, our goal is to go beyond traditional presentation tech-
niques with providing a general framework for automated layout and graphical editing
tasks in visual programming environments, such as exploring, monitoring, and presenting
information. Ultimately, we suggest some novel presentation techniques to produce the
most effective view of the information using animated layout, abstracting, focussing, etc.
to quickly process large amounts of visual information in order to exploit lnunans’ visual
capabilities.

2 An Example

To illustrate the functionality of the system, let’s have a short look at a small example
taken from a visual programming environment, as it may be used in CASE tools.

?E] Inluy
Datoflow ubjects » Online Mode Revet
Datatlow Examplas > Descciption Mode Refrash
Upper Bakro Top-Level Parameters
QISPLAY
5
[—)
(G {
R: Menu of completions.
TRACE VIRTUAL DISPLAY
[Command” N ‘-f"
n_l:
[GL D) U

Figure 1: Visual Programming Environment

The following snapshots of a system run will demonstrate how InLay supports the
design process of visual programs by incrementally beautifying the display after visual
editing operations, such as adding, dragging, and re-sizing display elements. Fig. 1 gives
an impression of a typical, inconsistent and incoherent display as it frequently occurs in
programming interfaces without editing and layout support. The so-called virtual display
in the lower right corner of the display shows a facility to zoom into a deeper level of
the hierarchical information structure. Because of the lack of space, we will not treat the
handling of design parameters in this example.

Fig. 2 shows another display area that has already been beautified by InLay exploiting
stylistic features and applying visibility constraints to an incrementally designed visual
program.

@ InLuy -W
Dataflov Ubjects > Onlire Mode Rewet
Datatlow Examples > Dascription Mode Refresh
Upper Makso Tup-Level Parameters
DISPLAY
=
ﬁ
I =
(GL_Tv} {
R: Menu of completions.
TRACE VIRTUAL DISPLAY
K osamarnd - =2 =
- -
] v
(WD, 1

Figure 2: Display after User Interaction

One essential problem in visual programming is concerned with the handling of global
conflicts between not directly related visual items, after inserting a new program construct
into the dataflow graph (cf. section 4.4). InLay can detect such global conflicts and
backtrack to select an alternative, consistent design that is shown in Fig. 3.

3 Design Issues and Overview

As with many other interesting Al design problems, geometric search and optimization
problems are immanent to many applications of intelligent graphical and multimedia
interfaces. An important class of such problems in visual presentation generation involves
computing positions, dimensions, and topological orientations of multimedia entities that
satisfy a set of visibility constraints. Visual program environments using typical depictions
such as dataflow diagrams and charts, graphs, and trees, are essentially characterized by its
structural, temporal, conceptual, and presentation properties. Here, most design systems
suffer from problems such as interactivity and responsiveness, local/global consistency and
coherence, expressiveness and effectiveness, processing semantic and context information
as well as handling weak, dynamic, and temporal relations.

One of our main goals concerns the exploitation of common-sense knowledge about
program visualization for presentation beautification and the adaptation of layouts on the

5

=) InLay

Dataflow Ubjects > Online Mode Reset
Datatlow Examples > Dascription Mode Refresh
Upper Nakro Tup-Level Parameters

DISPLAY

KImEl

e

I[KIM0, {

R: Menu of completions.

TRACE VIRTUAL DISPLAY

[

(Cowumarnd Com_Add Box

kcommand - Com_Scals_Box #¢BOX>

Koumand - Com_Add_Caraector_To_Fux #CBOX
Sommand

Koo

5[
3|

—_—

=]

G

Figure 3: Consistent Display after Adding an Object

fly in order to give on-line support for visual editing tasks, such as the cooperative design
of software diagrams. Our central guiding design rationales to overcome these problems
are communicative intent, interactivity, adaptivity, and incrementality.

Intent and Layout A visual presentation is designed to fullfill a specific communicative
intent such as the visualization of an object’s state, location, properties (e.g., underlying
program code), dynamics, or its relations to other objects. Visual clarity of a presenta-
tion can be achieved by using a visual organization of information that emphasizes the
underlying logical and rhetorical structure of the information to be presented as well as
context information. Therefore, the intent of a presentation that can be specified as a
communicative goal should partial be communicated through its layout.

While most of the previous work on mutlimedia presentation design only addresses
quantitative or syntactical aspects, we also focus on the intent of the presentation in
order to generate syntactically as well as semantically correct presentations. In InLay,
we deal with page layout as a rhetorical force, influencing the intentional and attentional
state of the user. Therefore, the user is requested to state only interface semantics, not
syntax. We view the layout itself as an important carrier of meaning.

It is a central claim of this paper, that only a deeper treatment of visual constraints in
information presentation addresses the ergonomic aspects of layout and so can reduce the
semantic gap between user and computer. In this respect, semantic-pragmatic information
between visual elements communicating presentation and exchange acts as well as program
constructs, e.g., if-then-else, case, while operations, can represented by means of so-

called rhetorical relations, such as ‘sequence’, ‘graphics-text’, ‘contrast’, ‘elaboration’,
‘comply-with-request’, that are reflected by graphical constraints specifying topological
arrangement facilities for visualization. The user can graphically state information about
semantical relationships between visual elements which should be reflected by the layout.
These relations can also be specified by a content planner [André & Rist 93] or directly
derived from the application code.

Adaptivity and Interactivity In a number of situations, it is an important feature to
be able to produce customized layouts of visual items with minimal effort. Especially, in
dynamic display environments, displays must be flexible enough to accommodate varying
numbers and sizes of visual objects. The quest for user interaction is based on the fact
that is impossible to anticipate all needs and requirements of each potential user in an
infinite number of presentation situations. Therefore, systems using dynamic graphical
presentations, such as in visual programming, have to adjust their design in response to
user interaction in order to achieve an expressive and effective output with high coherence.

Since frequently software visualization systems are limited in the breath and extensi-
bility of their displays as they do not allow user-defined displays we have developed a set
of techniques for the generation of highly adaptive interfaces that support user-controlled
design of graphical presentations and customize a presentation to the communicative situ-
ation and a specific user. We approximate the fact that communication is always situated
by making all decision processes sensitive to design parameters such as user’s layout pref-
erences, presentation type, presentation intent, output medium, and resource limitations.
Design parameters can affect how information is displayed, e.g., the text in a node can
be scaled with the size of the node or remain fixed.

Visual Editing Graphical editing of large and complicated visual presentations are
laborious to produce by hand. Here, it is unacceptable to spend more time on the visu-
alization of the application information to be presented than the application algorithm
itself. For example, in a program visualization context, the user doesn’t want to waste
time with layout specifications. On the other hand, fully automated layout design fre-
quently leads to suboptimal results. So, there comes an increasing need to involve the
user in the graphical design process. It has been proven as an effective procedure, in the
first phase of the design process, to allow the specification of rough layouts by the user,
which can be incrementally beautified by the system following certain design constraints
in later stages.

In order to make the editing and layout process of graphical presentations more ef-
ficient, we allow the user to create an interface through pre-editing of layout sketches,
which can automatically be beautified by the system. Moreover, we facilitate the user
to tailor the interface to his needs by post-editing automatically laid out presentations,
using editable graphical histories or changing default layout schemata interactively. The
user will be allowed to edit display objects using operations such as panning, dragging,
re-sizing, zooming into, and modifying viewing parameters. Then the system supports
smooth, incremental changes between successive displays.

Incrementality As a significant change in the application requires a complete redesign
of the interface, we encourage an incremental update of the interface to improve its quality

and efficiency. Therefore, in dynamic graphical environments there is a need for incremen-
tality, that means the immediate realization of parts of a stepwise provided input, e.g.,
the beautification of lines in a flowchart and positions of display objects. As we will not
rely on pre-defined links between pre-stored multimedia information items, presentation
design will be done at runtime in order to decrease the response time and react more
promptly to the application. As the user browses or edits a dynamic graphical presenta-
tion, the system updates visibility changes smoothly to avoid visual discontinuities. All
views of the dataflow chart are redesigned simultaneously in realtime to maintain a set
of visibility constraints automatically as the viewing specification changes, ensuring that
specific objects remain visible.

4 Constraint-Based Visualization

As has been shown in previous work by [Borning & Duisberg 86] among others, many
complex visual interface operations and transformations can efficiently be facilitated us-
ing constraint processing techniques. For example, the beautification of large graphical
networks can be automatically arranged and lines in flow charts made consistent within
a certain tolerance interval. The declarative semantics of constraint languages allows one
to specify graphical objects while avoiding extraneous concerns about the realization of
the visualization algorithms. Moreover, automatically applying constraints to multimedia
displays allows a better control of the design space and facilitates a redesign of a generated
presentation on the fly.

To address these features, we propose a clean separation between the application and
the visualization domain, which implies the description and editing of the algorithm, the
presentation, and relationships between the two domains, respectively. This decoupling
of the visualization from the application code results in easy modification and elegant
specification capabilities and facilitates special visualization effects (see section 5). Iu the
following sections, we will give more details on the fundamentals of InLays underlying
constraint system.

4.1 Representation of Visual Objects

In InLay, all visual objects are described by its bounding rectangles. The size of an ohject
depends on the application data and their format, e.g., a text object containing program
code is formatted automatically by a constraint-based typography component [Gral 92].
Each visual object is generated as a subclass of class BOX, which manages the structure of
the constraint network, and inherits variables and methods from it. Furthermore, classes
can inherit from multiple superclasses, e.g., Display Node delivers information about the
underlying constraint graph, which enables InLay to handle Procedures.

BOX

(End Symbol)
isplay Nod

(Start Symbol)Loop End) =+

(Command)(ConditionalLoop Clause)Procedure)

Figure 4: Class Structure for Visual Programs

Visual objects are defined by its state and behavior that is specified as a set of con-
straints. New instances of visual objects can be created by instantiating the specific
prototype class. For example, a box is represented by variables for: x-value, y-value,
width, height, and distances to connected objects. We use a dataflow implementation of
constraints as in [Maloney et al. 89]. This concept allows one to easily enrich the system
with other visual language constructs and adapt it to further domains (e.g., multimedia
desktops). A part of the class structure for visual programming elements is shown in Fig.
4.

4.2 The Constraint Language

In the context of visual programming environments, we use constraints extensively to
maintain visibility and local/global consistency between application data and its graph-
ical depictions as well as among multiple views of data, e.g., after dragging, zooming,
or iconifying display objects, state animation events, and specify application- and user-
specific requirements. Furthermore, graphical constraints map the communicative intent
to graphical style describing how visual objects should be arranged. Here, a thorough
elaboration of a constraint-oriented approach enables both the designer and the user of
a system to naturally express the meaning of the intended information such that the
computer can maintain even the semantics of the implementation.

Relations between multimedia objects can be classified as semantic-pragmatic, geome-
trical/topological, and temporal. Semantic-pragmatic constraints can be compiled into
graphical constraints that represent aesthetical knowledge about perceptual criteria con-
cerning the organization of visual elements, such as the sequential ordering (horizontal
vs. vertical layout), alignment, grouping, symmetry, or similarity. Geometrical and topo-
logical constraints refer to absolute and relative constraints. Temporal relations are used
in the case of animated presentations to represent temporal, spatial information (e.g.,
stating a constraint while the mouse button is held down).

Primitive constraints represent elementary local relations, e.g., ‘beside’, ‘connect’, or
‘under’, expressing basic geometric relations. These constraints are specified by sets of
mathematical equations (e.g., two objects that are constrained to touch at specific points)
or by sets of inequalities (e.g., one object is constrained to lie inside another). The primi-
tive constraints can be aggregated to more complex compound constraints, specifying the

visualization of semantic-pragmatic relations such as ‘contrast’ or ‘sequence’. Further-
more, the underlying constraint language is able to encode aesthetical knowledge in order
to express certain semantic/pragmatic, geometrical /topological, and temporal relations.

Constraint Hierarchies for Dynamic Layout Tasks Beside the semantic classifi-
cation of local constraints outlined above, one often wants to prioritize the constraints in
those which must be required and others which are preferably held and could be relaxed in
the worst case. If the various constraints are given a priority, the most important and re-
strictive constraints can be satisfied first. Such a set of constraints has been introduced as
a constraint hierarchy by Borning and colleagues.! Using constraint hierarchies has been
proved as a convenient means in user interface design [Maloney et al. 89, Myers et al. 90]
and the LayLab layout system [Graf 93] for declaring relative desires. We distinguish
between obligatory, preferred, and default constraints. The latter state default values,
which remain fixed unless the corresponding constraint is removed by a stronger one.

Dynamic Constraints and Pointer Variables In graphical synthesis tasks like dis-
play layout, constraints frequently have only local effects, i.e., the set of variables that
is relevant to a solution, dynamically changes as presentations are incrementally gener-
ated by a presentation system or by user actions during problem solving. So, we have
to distinguish between static constraints that are related to a fixed set of variables and
dynamic constraints that are generated on the fly. In this case, the problem with incre-
mental constraint solvers is that they can reason upon a changing set of variables and
constraints, but cannot themselves handle the activity of a variable. A typical form of
dynamic constraints in graphical environments concerns those in which the number of
layout elements belonging to one relation is not known a priori, such as a sequence of
connected display objects or subtrees of a dataflow graph.

A typical form of dynamic constraints in interactive graphical environments concerns
those in which the number of layout elements belonging to one relation is not known a
priori, such as the objects in a subtree of the dataflow graph. Therefore, the constraint
language must be able to handle indirect references [Vander Zanden et al. 91]. Indirection
allows the specification of layouts, independently of the number of layout objects using
pointer variables that facilitate the programmer to specify constraints like procedures in
imperative languages.

In InLay dynamic distance constraints do not work on single variables, but on a dy-
namic list structure of variables which represent parts of the required subtree. Here,
variables can reference to dynamic sets of required global topological information. Con-
sequently, dynamic constraints are able to encode global relations instead of the local
relations of default constraints. For example, in dataflow graphs the constraint dynamic-
distance-vertical maintains relations between all objects to the right and the distance to
the object below. The system manages these objects in a list, which is dynamically up-
dated after each user or system actions by computing the trace to the root of the dataflow
tree and adding or deleting the concerned variables in the lists of relevant nodes. This
concept reduces the size and number of constraints, that must be dynamically created
and deleted, which is a time consuming task.

'Previous papers [Freeman-Benson et al. 90, Borning et al. 92] have provided an analysis of the the-
oretical background of constraint hierarchies.

10

While static constraints are easily encoded in Lisp S-expressions, dynamic constraints
are represented by Lambda expressions which enable constraints having a procedural style
to model dynamic application behavior. If pointer variables point to nil, the constraints
maintain default values.

4.3 Constraint Satisfaction

We have implemented an incremental constraint hierarchy solver which is capable of
processing the introduced dynamic and prioritized constraints. This solver is based on
DeltaBlue [Freeman-Benson et al. 90], an efficient local propagation algorithm that gener-
ates plans which can be reused repeatedly to solve the same constraint without calling the
constraint solver again. As DeltaBlue is structure-based, a lazy evaluation technique can
efficiently be applied to handle indirect references with respect to specific constraints such
as connection constraints. This means, a constraint with indirect reference is evaluated
when all its input variables of the dynamic list are evaluated. Therefore, the solver can
handle large and complex constraint networks very efficiently.

4.4 From Local to Global Visual Consistency

In InLay we try to enforce local consistency conditions in order to simplify the subsequent
computation of a globally coherent model of visual objects.

Consistency and Graphical Style As we described before, the system is able to trans-
late interface semantics into constraint representations exploiting visibility constraints to
maintain a consistent presentation and graphical constraints to meet certain aesthetical
criteria. We regard a dataflow chart as consistent, if there are no overlappings and line
crossings as well as all formatting requirements are fulfilled. First, we will consider lo-
cal consistency issues only. For instance, the consistent sequentional arrangement of two
visual program commands A and B is determined using the following constraint network:

horizontal-centered constraint :
(obligatory) U !

beside constraint
(obligatory)

distance-horizontal constraint

(default)

Figure 5: Horizontally Centered Placing

11

Fig. 5 illustrates four different kinds of constraints:

e The topological constraint horizontal-centered, which states a centered placing in
the horizontal direction:

B.y = A.y - 0.5%A.h + 0.5%B.h?

e The topological constraint beside, which guarantees the non-overlapping of two ob-
jects:

B.x = A.x + A.w + A.dist-hor

e The metrical constraint distance-horizontal, which specifies the distance between
the two objects:

A.dist-hor = min{o.5%A.w, 0.5%B.w}

e In addition, the system adds an edge between the two boxes, which is constrained
by a so-called connection constraint. Starting and ending point of the edge are fixed
to the center of the opposite sides (not shown in the graphics).

In general, these constraints guarantee the local consistency of two visual objects as
well as their semantical connection that is reflected by their relative orientation. Moreover,
the graphical style can be maintained globally using default distance and connection
constraints.

Reaching Global Consistency with Conflict Avoiding Constraints Since visibil-
ity constraints as described above only guarantee locally consistent presentations, visual
programs frequently suffer from global conflicts between not directly related objects, e.g.,
overlapping conflicts and line crossings after dragging one object as shown in Fig. 6. For a
global conflict handling global knowledge about the topology of the whole dataflow chart
is necessary. In general, there are two possible strategies to deal with global conflicts: a
posteriori conflict solution and a priori conflict prevention. In InLay, we have tried a rule-
based conflict solution algorithm first, but we have not achieved an acceptable runtime
efficiency.

In visual program tools, we benefit from the specific structure of the flowcharts that can
be treated as binary trees with a special root, namely the program’s starting symbol. With
respect to storage efficiency, this tree is not stored separately, as parts of it can directly be
derived from the topological relations between the dataflow objects from the underlying
constraint network. In the following, we will refer to this structure as the dataflow tree.
In order to avoid conflicts in dataflow graphs, the system needs information about typical
conflict cases and their prevention. Fig. 7 illustrates some frequently occuring conflict
patterns when editing visual programs.

>To improve readability we express constraints in a simplified infix notation

"

= InLuy
Dataflow Ubjects > Onlire Mode Reset
Datatlow Examplas > Dascription Mods Refresh
Upper Makao Tup-Level Parameters
DISPLAY
=
v
- ,/—'—if— |
1 l
I =]
(G} {
TRACE VIRTUALDISPLAY
[Coumand - Com_Add Bax = ?
Kommand - Com_Scals_Box #:B0X
Kommand :
=
S} {

Figure 6: Global Inconsistencies in Visual Programs

Contflict Patterns

-

Resulting Conflicts

A B l A B
S e] R
(D]]

Figure 7: Conflict Patterns in a Dataflow Graph

A main conflict results from the arrangement of objects as in pattern 1. This kind of
conflict can be solved by relaxing one of the distances A-C or A-B. In the case distance
A-C is relaxed, the vertical distance must be equal to the maximum y extension of all
objects which are leaves in the subtree to the right plus some offset. This can be expressed

by the following dynamic-distance-vertical constraint:

13

A.dist-vert = max{ A.fright.first.x + A.fright.first.h,...,
A.tright.last.x + A.fright.last.h}
+ offset

Pattern 2 shows the result after the insertion of the dynamic-distance-vertical constraint.
Here, another kind of conflict might occur when extending object D, that can be solved
similar to pattern 1 by relaxing the horizontal distance A-B with the following dynamic-
distance-horizontal constraint:

A.dist-hor = 0.5 * max{A.fright-under.first.w,..., A.fright-under.last.w}
+ offset

This form of avoiding global conflicts can be seen as a design heuristic. In this respect, we
speak of a row-layout heuristic in case 1 and a column-layout heuristic in case 2, which
can be specified by the user via design parameters. Obviously, conflict patterns can be
transformed into conflict-free pattern. For example, pattern 2 in Fig. 7 becomes conflict
pattern 3 in Fig. 8 by adding object E. In order to avoid such conflicts, constraints also
have to regard the potential extensions of all objects in subtrees below the referred one,
which are connected to the root (here object C) via beside constraints.

3 A B A B
D > s O
C E e E

Figure 8: Change of Dataflow Tree Patterns

We take this into account by using prioritized constraints as described above. Here,
topological and connecting constraints, such as beside and under in the examples above,
are defined as required. The metrical distance constraints are divided in default and
preferred ones. The default distance constraints are added to the constraint network to
express the default spacing. The preferred distance constraints for conflict prevention
have a strength that increases with the content of information.

5 Advanced Visualization Techniques

Visual program layout and program visualization make a number of useful contributions
for all kinds of graphical editing tasks. Furthermore, innovative visualization and interac-
tion techniques for dynamic displays can generate new insights, e.g., algorithm animation
facilities [Brown 88] and 3D information retrieval [Mackinlay 92], and can be seen as a
new quality of communication media. The performance of our constraint solver allowed
some realtime extensions with regard to an intelligent use of the following techniques:

14

o Animated layout of 2D graphics
e Abstracting presentation parts

e [ocussing of active display objects

Iiditing graphical histories

Generation of meta presentation parts

Visualization of information structures

For example, the user is facilitated to zoom into deeper level of a hicrarchical infor-
mation structure (e.g., textual program code), to move currently processed objects into
the focus, or to view context information on virtual displays.

6 Related Work

As graphics infrastructure becomes more and more sophisticated, rapidly expanding ac-
tivities have entered the area between visual interfaces and Al systems (e.g., [Maybury 93,
Sullivan & Tyler 91, Catarci et al. 92]), including work on graphical layout, graphics gen-
eration, visual programming, multimedia user interfaces, as well as constraint-based rea-
soning. Since the physical format and layout of a presentation often conveys the structure,
intention, and significance of the underlying information and therefore plays an nmpor-
tant role in presentation coherency, antomatic layout facilities are included increasingly
in presentation systems and multimedia interfaces. Recent approaches in automated mul-
timedia/multimodal layout investigate the use of rule-based [Feiner 88], constraint-based
[Graf 92] and case-based reasoning [MacNeil 90] methods for representing graphical design
knowledge.

While much research has concentrated on the automated visualization of informational
graphics [Mackinlay 85], the knowledge-based layout and beautification of graphically
presented relational information and visual programs have nearly been explored. Marks
[Marks 90] investigated the encoding of arc-node diagrams in his ANDD system that
grouped nodes sharing common graphical values (e.g., shape, color, size) to re-inforce
perception of graphical properties. It was guided by so-called“pragmatic directives”,
that specify which interconnection patterns should be made visible by the layout. One
weakness of the system is the realization of generated perceptual organization with the
expensive layout algorithm. Beside a rule-based realization, a genetic [Kosak et al. 91] and
a constraint-driven algorithm [Dengler et al. 93] have been implemented. Analogously,
Roth and Mattis [Roth & Mattis 91] sorted chart objects and tree nodes to support search.

More recently a new class of systems, which try to overcome general layout problems
using genetic algorithms, e.g., GALAPAGOS [Masui 92], has become popular. These
approaches do not solve constraints directly, but modify candidate solutions with random
values and approximate an optimal solution by iteration. Since they allow the generation
of suboptimal solutions, they are rather robust. Usually genetic algorithms suffer from
the problem that they are too slow, not reliable and some kinds of constraints are hard to
specify. Moreover, genetic algorithms can not support conceptual visualization, as they

15

have no design knowledge about the presentation, and they do not allow modifications at
runtime as well as specification of users’ preferences.

In previous work several dedicated algorithms for drawing graphs have been proposed,
a comprehensive survey gives the annotated bibliography by [Di Battista et al. 93]. Most
traditional algorithms exploit heuristics to overcome the complexity, but most of them
are not flexible enough and do not allow to add user preferences. Instead, for the diagram
server ALF [Di Battista et al. 90] a new approach in building a tailorable and extensible
automatic layout facility for the production of nice drawings has been suggested. This
tool selects from a spectrum of special-purpose algorithms the best suitable one for a
specific application and then allows the assembling of new algorithms from existing ones.
From this broad field we should further remark a new way by [Bohringer & Paulisch 90]
to achieve stability in the layout of cyclic graphs and the system Converge [Sistare 90] for
3D geometric modeling. Aunother approach in interactive graph layout proposes a novel
methodology for viewing large graphs [Henry & Hudson 91]. Its basic concept is to allow
the user to interactively navigate through large graphs and learn about them in concise
sections of appropriate size.

Moreover, visual programming and graphical editing tasks have been addressed by
programming- and constraint-by-example techniques to enhance the interactive speci-
fication and editing of graphical presentations [Myers 91, Kurlander 93]. An automatic
beautifier for line drawings and illustrations that makes use of automatic constraint gener-
ation as part of a 2D graphics editor is described in [Pavlidis & Wyk 85]. In this approach,
vertices are re-drawn precisely following certain constraints, such as nearly adjacent or co-
incident lines, that are inferred from an initial sketch which are imposed on the beautified
version. But most of the drawing programs are limited to syntactical constraints.

Our work on advanced visualization and interaction techniques has mainly benefited
from the influential work by Mackinlay et al. at Xerox PARC on the Perspective Wall
[Mackinlay et al. 91] and the Information Visualizer [Mackinlay 92]. A similar approach
for viewing and interacting with large layouts on limited displays in order to show local de-
tails and global context in one view is detailed in [Sarkar et al. 93]. Here, orthogonal and
polygonal algorithms have been used for stretching a so-called rubbersheet, but they suffer
from discontinuies at the boundaries and scaling/dimensioning problems respectively.

Up to now only rudimentary work has been done in the areas “animated layout”
and “layout of presentations including animation”. Research in this ficlds was mainly
concerned with topics like animation of programsand visual programming (e.g., [Brown 88,
Chang 90, Duisberg 90]). Here, numerous visualization systems for producing diagrams
automatically from program code as well as generating static graphical displays of data
structures have been delevoped and allow for editing the underlying program. But most
of them propose less effective canonical displays which are less effective and difficult to
create for linked and nested structures. Examples of a program visualization systems build
GELO [Duby et al. 89] and its 3D extension PLUM [Reiss 93], general-purpose packages
to visualize information about programs. Here, the layout of linked hierarchical objects, is
described via constraints. GELQO includes predefined data views and allows the graphical
specification of topological constraints by the user. Essential shortcomings of GELO are
that its displays are not aesthetically pleasing and the graphics can not be tailored to the
user’s needs. Another interesting approach carried out in the context of Pictorial Janus
for visualizing object-oriented programming systems, addresses a declarative formalism
for the definition of graphical layout [Haarslev & Moller 92]. Apparently, no work has

16

been done on applying principles of graphic design to visualizing data structures.

7 Implementation

A first prototype of the system InLay, a tool for incremantal, constraint-based editing of
visual presenations, has been implemented using Allegro Common Lisp/CLOS for object-
oriented interface programming and the Common Lisp Interface Manager (CLIM), Release
2.0, an X window compatible Lisp-based window programming interface that provides a
layered set of portable services for constructing user interfaces. The incremental constraint
solver which is based on the DeltaBlue [Freeman-Benson et al. 90] algorithmn is O(cN) in
the number of affected constraints. The system is considered to be experimental work in
progress. So, for this first protoype version, we have deliberately limited our application
domains to visual programs and multimedia displays. We have further concentrated only
on a small set of design heuristics with wide applicability.

8 Conclusion

We have described the constraint-based interactive display manager InLay that automati-
cally handles all aspects of display layout and editing in visual presentation environments
as one extension of the multimedia layout mangager LayLab [Gral 93]. The approach
detailed in this paper has already been approved for the automatic layout control of the
multimodal /multimedia presentation system WIP [André et al. 93a, Walilster et al. 93]
and its interactive extensions. A further application will be concerned with support of
the semi-automated 3D graphics editor AWI [Rist et al. 94].

Beside visual programming environments there arise numerous potential application
domains that suffer from visual design and consistency problems, such as the broad ficld
of intelligent multimedia interfaces, CASE tools, with particular utilities for program
animation, debugging, process monitoring, on-line help (instruction, tutoring), and doc-
umentation, as well as different kinds of network diagram designers, CSCW, and virtual
realities.

References

[André & Rist 93] E. André and T. Rist. The Design of Illlustrated Documents as a
Planning Task. In: Maybury [Maybury 93].

[André et al. 93a] E. André, W. Finkler, W. Graf, T. Rist, A. Schauder, and
W. Wahlster. WIP: The Automatic Synthesis of Multimodal Presentations. In:
Maybury [Maybury 93], pp. 75-93.

[André et al. 93b] E. André, W. Graf, J. Heinsohn, B. Nebel, II.-]J. Profitlich,
T. Rist, and W. Wahlster. PPP - Personalized Plan-Based Presenter. DI-
KI Document D-93-05, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
(DFKI), Saarbriicken, Germany, 1993.

17

[Bohringer & Paulisch 90] K.-F. Bohringer and F. Newberry Paulisch. Using Con-
straints to Achieve Stability in Automatic Graph Layout Algorithms. In: Proceed-
ings of the CHI’89 (Human Factors in Computing Systems), pp. 43-51, Seattle,
WA, 1990.

[Borning & Duisberg 86] A. Borning and R. Duisberg. Constraint-based Tools for
Building User Interfaces. ACM Transactions on Graphics, 5(4):345-374, Octo-
ber 1986.

[Borning et al. 92] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint Ii-
erarchies. LISP and Symbolic Computation: An International Journal, 5(3):223-
270, 1992.

[Brown 88] M. H. Brown. Algorithm Animation. ACM Distinguished Dissertations.
Cambridge, MA: MIT Press, 1988.

[Catarci et al. 92] T. Catarci, M. F. Costabile, and S. Levialdi (eds.). Advanced Visual
Interfaces, Proceedings of the International Workshop AVI ’92. World Scientific
Series in Computer Science - Vol. 36. Singapore: World Scientific Press, 1992.

[Chang 90] S.-K. Chang. Visual Languages and Visual Programmimg. New York, NY:
Plenum Press, 1990.

[Dengler et al. 93] E. Dengler, M. Friedell, and J. Marks. Constraint-Driven Diagram
Layout. In: Proceedings of the 1993 IEEE Symposium on Visual Languages, pp.
330-335, Bergen, Norway, 1993.

[Di Battista et al. 90] G. Di Battista, A. Gianmarco, G. Santucci, R. Tamassia, and
[. G. Tollis. The Architecture of Diagram Server. In: Proceedings of the 1990
IEEE Workshop on Visual Languages, pp. 60-65, Skokie, IL, 1990.

[Di Battista et al. 93] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algo-
rithms for Drawing Graphs: an Annotated Bibliography, 1993.

[Duby et al. 89] C. Duby, S. Meyer, and S. P. Reiss. Using GELO to visualize Software
Systems. In: Proceedings of the UIST’89 (ACM SIGGRAPH Symp. on User
Interface Software and Technology), pp. 149-157, Williamsburg, VA, 1989.

[Duisberg 90] R. Duisberg. Visual Programming of Program Visualizations - A Gestural
Interface for Animating Algorithms. In: T. Ichikawa, E. Jungert, and R. Korfhage
(eds.), Visual Languages and Applications, pp. 161-173. New York, NY: Plenum
Press, 1990.

[Feiner 88] S. Feiner. A Grid-Based Approach to Automating Display Layout. In: Pro-
ceedings of the Graphics Interface '88, pp. 192-197. Los Altos, CA: Morgan Kauf-
mann, June 1988.

[Freeman-Benson et al. 90] B. Freeman-Benson, J. Maloney, and A. Borning. An
Incremental Constraint Solver. Communications of the ACM, 33(1):54-63, 1990.

18

[Graf 92] W. H. Graf. Constraint-Based Graphical Layout of Multimodal Presentations.
In: Catarci et al. [Catarci et al. 92], pp. 365-385. Also DFKI Research Report
RR-92-15.

[(Graf 93] W. H. Graf. LayLab: A Constraint-Based Layout Manager for Multimedia
Presentations. In: Salvendy and Smith [Salvendy & Smith 93], pp. 446-451. Also
DFKI Research Report RR-93-41.

[Haarslev & Moller 92] V. Haarslev and R. Moller. Visualization and Graphical Layout
in Object-Oriented Systems. Journal of Visual Languages and Computing, (3):1-
23, 1992.

[Henry & Hudson 91] T. R. Henry and S. E. Hudson. Interactive Graph Layout. Iu:
Proceedings of the UIST’91 (ACM SIGGRAPH Symp. on User Interface Software
and Technology), pp. 55-64, Hilton Head, SC, 1991.

[Kosak et al. 91] C. Kosak, J. Marks, and S. Shieber. A Parallel genetic algorithmn for
network-diagram layout. In: Proceedings of the Fourth International Conference
on Genetic Algorithms, pp. 458-465. Los Altos, CA: Morgan Kaufmann, 1991.

[Kurlander 93] D. Kurlander. Reducing Repetition in Graphical Editing. In: Salvendy
and Smith [Salvendy & Smith 93], pp. 409-414.

[Mackinlay et al. 91] J. D. Mackinlay, G. G. Robertson, and S. K. Card. The Per-
spective Wall: Detail and Context Smoothly Integrated. In: Proceedings of the
CHI'91 (Human Factors in Computing Systems), pp. 173-179, New Orleans, LA.
1991.

[Mackinlay 85] J.D. Mackinlay. Automatic Design of Graphical Presentations. PhD
thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 1985.

[Mackinlay 92] J. Mackinlay. The Information Visualizer: A 3D User Interface for
Information Retrieval. In: Catarci et al. [Catarci et al. 92].

[MacNeil 90] R. MacNeil. Adaptive Perspectives: Case-based Reasoning with TYRO,
the Graphics Designer’s Apprentice. In: Proceedings of the 1990 IEELE Workshop
on Visual Languages, pp. 138-142, Skokie, IL, 1990.

[Maloney et al. 89] J. Maloney, A. Borning, and B. Freeman-Benson. Constraint
Technology for User-Interface Construction in ThingLabll. In: Proceedings of
OOPSLA 89 (ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications), pp. 381-388, October 1989.

[Marks 90] J. Marks. A Syntaz and Semantics for Network Diagrams. In: Proceedings
of the 1990 IEEE Workshop on Visual Languages, pp. 104-110, Skokie, IL, 1990.

[Masui 92] T. Masui. Graphic Object Layout with Interactive Genetic Algorithms. In:
Proceedings of the 1992 IEEE Workshop on Visual Languages, Seattle, WA, 1992.

[Maybury 93] M. Maybury (ed.). Intelligent Multimedia Interfaces. Menlo Park, CA:
AAAI Press, 1993.

19

[Myers et al. 90] B. Myers, D. Guise, R. B. Dannenberg, B. T. Vander Zanden,
D. Kosbie, P. Marchal, and E. Pervin. Comprehensive Support for Graphi-
cal, Highly-Interactive User Interface: The Garnet User Interfuce Development
Environment. IEEE Computer, 23(11):71-85, November 1990.

[Myers 91] B.A. Myers. Using Al Techniques to Create User Interfaces by Ezample. In:
Sullivan and Tyler [Sullivan & Tyler 91|, pp. 385-402.

[Pavlidis & Wyk 85] T. Pavlidis and C. Van Wyk. An Automatic Beautifier for Draw-
ings and Illustrations. Computer Graphics, 19(3):225-234, 1985.

[Reiss 93] S. P. Reiss. A Framework for Abstract 3D Visualization. In: Proceedings of
the 1993 IEEE Symposium on Visual Languages, pp. 108-115, Bergen, Norway,
1993.

[Rist et al. 94] T. Rist, T. Kriiger, G. Schneider, and D. Zimmermann. AWI: A
Workbench for Semi-Automated Illustration Design. To appear in AVI'94, 1994.

[Roth & Mattis 91] S. F. Roth and J. Mattis. Automating the Presentation of Informa-
tion. In: Proceedings of the IEEE Conference on AI Applications, Miami Beach,
FL, 1991.

[Salvendy & Smith 93] G. Salvendy and M. J. Smith (eds.). Human-Computer Interac-
tion: Software and Hardware Interfaces. Amsterdam: Elsevier, 1993. Proceedings
of HCI International’93 (5th International Conference on Human-Computer Inter-
action jointly with 9th Symposium on Human Interface (Japan)).

[Sarkar et al. 93] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss. Stretching
the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens. In:
Proceedings of the UIST’93 (ACM SIGGRAPH Symp. on User Interface Software

and Technology), pp. 81-92, Atlanta, GA, 1993.

[Seligmann & Feiner 91] D. Seligmann and S. Feiner. Automated Generation of Intent-
Based 3D Illustrations. Computer Graphics, 25(3), July 1991.

[Sistare 90] S. Sistare. A Graphical Editor for Constraint-Based Geometric Modeling.
PhD thesis, Department of Computer Science, Harvard University, 1990.

[Sullivan & Tyler 91] J. Sullivan and S. Tyler (eds.). Intelligent User Interfaces. Fron-
tier Series. New York, NY: ACM Press, 1991.

[Vander Zanden et al. 91] B. T. Vander Zanden, B. A. Myers, D. Guise, and
P. Szekely. The Importance of Pointer Variables in Constraint Models. In: Pro-
ceedings of the UIST’91 (ACM SIGGRAPH Symp. on User Interface Software and
Technology), pp. 155-164, Hilton Head, SC, 1991.

[Wahlster et al. 93] W. Wahlster, E. André, W. Finkler, H.-J. Profitlich, and
T. Rist. Plan-based Integration of Natural Language and Graphics Generation.
Artificial Intelligence, Special Issue on Natural Language Processing, 63, 1993.

20

Deutsches
Forschungszentrum
far Kanstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Verdffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kénnen von der oben angegebenen
Adresse oder per anonymem ftp von ftp.dfki.uni-
kl.de (131.246.241.100) unter pub/Publications
bezogen werden.

Die Berichte werden, wenn nicht anders gekenn-
zeichnet, kostenlos abgegeben.

DFKI

-Bibliothek-

PF 2080

67608 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or via anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-93-09

Philipp Hanschke, Jorg Wiirtz:

Satisfiability of the Smallest Binary Program
8 pages

RR-93-10

Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems

35 pages

RR-93-11

Bernhard Nebel, Hans-Jiirgen Biirckert:
Reasoning about Temporal Relations:

A Maximal Tractable Subclass of Allen's Interval
Algebra

28 pages

RR-93-12

Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion

51 pages

RR-93-13

Franz Baader, Karl Schlechta:

A Semantics for Open Normal Defaults via a
Modified Preferential Approach

25 pages

RR-93-14

Joachim Niehren, Andreas Podelski, Ralf Treinen:
Equational and Membership Constraints for Infinite
Trees

33 pages

RR-93-15

Frank Berger, Thomas Fehrle, Kristof Klockner,
Volker Scholles, Markus A. Thies, Wolfgang
Wahlister: PLUS - Plan-based User Support
Final Project Report

33 pages

RR-93-16

Gert Smolka, Martin Henz, Jorg Wiirtz: Object-
Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-17

Rolf Backofen:

Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the

Propositional pi-Calculus
32 pages

RR-93-20

Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22

Manfred Meyer, Jorg Miiller:

Weak Looking-Ahead and its Application in
Computer-Aided Process Planning

17 pages

RR-93-23

Andreas Dengel, Ottmar Lutzy:

Comparative Study of Connectionist Simulators
20 pages

RR-93-24

Rainer Hoch, Andreas Dengel:

Document Highlighting —

Message Classification in Printed Business Letters
17 pages

RR-93-25

Klaus Fischer, Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain

93 pages

RR-93-26

Jorg P. Miiller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27

Hans-Ulrich Krieger:

Derivation Without Lexical Rules
33 pages

RR-93-28

Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29

Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics

35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman:

Corporate Agents
14 pages

RR-93-31

Elizabeth A. Hinkelman, Stephen P. Spackman:
Abductive Speech Act Recognition, Corporate
Agents and the COSMA System

34 pages

RR-93-32

David R. Traum, Elizabeth A. Hinkelman:
Conversation Acts in Task-Oriented Spoken
Dialogue

28 pages

RR-93-33

Bernhard Nebel, Jana Koehler:

Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis

33 pages

RR-93-34

Wolfgang Wahlster:

Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35

Harold Boley, Frangois Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI-
Programmierung — Proceedings

150 Seiten

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36

Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld

13 Seiten

RR-93-38

Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40

Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner Nutt, Andrea Schaerf:

Queries, Rules and Definitions as Epistemic
Statements in Concept Languages

23 pages

RR-93-41

Winfried H. Graf: LAYLAB: A Constraint-Based
Layout Manager for Multimedia Presentations

9 pages

RR-93-42

Hubert Comon, Ralf Treinen:

The First-Order Theory of Lexicographic Path
Orderings is Undecidable

9 pages

RR-93-43

M. Bauer, G. Paul: Logic-based Plan Recognition
for Intelligent Help Systems

15 pages

RR-93-44

Martin Buchheit, Manfred A. Jeusfeld, Werner Nutt,
Martin Staudt: Subsumption between Queries to
Object-Oriented Databases

36 pages

RR-93-45

Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition

21 pages

RR-93-46

Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven, and
Goal-directed Reasoning

81 pages

RR-93-48

Franz Baader, Martin Buchheit, Bernhard Hollunder :
Cardinality Restrictions on Concepts

20 pages

RR-94-01

Elisabeth André, Thomas Rist:

Multimedia Presentations:

The Support of Passive and Active Viewing
15 pages

RR-94-02

Elisabeth André, Thomas Rist:

Von Textgeneratoren zu Intellimedia-
Prisentationssystemen

22 Seiten

RR-94-03

Gert Smolka:

A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards

34 pages

RR-94-05

Franz Schmalhofer,

J.Stuart Aitken, Lyle E. Bourne jr.:

Beyond the Knowledge Level: Descriptions of
Rational Behavior for Sharing and Reuse

81 pages

RR-94-06

Dietmar Dengler:

An Adaptive Deductive Planning System
17 pages

RR-94-07

Harold Boley: Finite Domains and Exclusions as
First-Class Citizens

25 pages

RR-94-08

Otto Kiihn, Bjorn Hofling: Conserving Corporate
Knowledge for Crankshaft Design

17 pages

RR-94-10

Knut Hinkelmann, Helge Hintze:

Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11

Knut Hinkelmann: A Consequence Finding
Approach for Feature Recognition in CAPP
18 pages

RR-94-12

Hubert Comon, Ralf Treinen:
Ordering Constraints on Trees
34 pages

RR-94-13

Jana Koehler: Planning from Second Principles
—A Logic-based Approach

49 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof Kremer:
Towards a Sharable Knowledge Base on Recyclable

Plastics
14 pages

RR-94-15

Winfried H. Graf, Stefan Neurohr: Using Graphical
Style and Visibility Constraints for a Meaningful
Layout in Visual Programming Interfaces

20 pages

RR-94-16

Gert Smolka: A Foundation for Higher-order
Concurrent Constraint Programming

26 pages

DFKI Technical Memos

TM-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05

Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures

14 pages

TM-92-08

Anne Kilger: Realization of Tree Adjoining
Grammars with Unification

27 pages

TM-93-01

Otto Kiihn, Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans

20 pages

TM-93-02

Pierre Sablayrolles, Achim Schupeta:

Conlfict Resolving Negotiation for COoperative
Schedule Management

21 pages

TM-93-03

Harold Boley, Ulrich Buhrmann, Christof Kremer:
Konzeption einer deklarativen Wissensbasis iiber
recyclingrelevante Materialien

11 pages

TM-93-04

Hans-Giinther Hein:

Propagation Techniques in WAM-based
Architectures — The FIDO-III Approach
105 pages

TM-93-05

Michael Sintek: Indexing PROLOG Procedures into
DAGs by Heuristic Classification

64 pages

TM-94-01

Rainer Bleisinger, Klaus-Peter Gores:

Text Skimming as a Part in Paper Document
Understanding

14 pages

TM-94-02

Rainer Bleisinger, Berthold Krill:

Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations

11 pages

DFKI Documents

D-93-07

Klaus-Peter Gores, Rainer Bleisinger:

Ein erwartungsgesteuerter Koordinator zur partiellen
Textanalyse

53 Seiten

D-93-08

Thomas Kieninger, Rainer Hoch:

Ein Generator mit Anfragesystem fiir strukturierte
Worterbiicher zur Unterstiitzung von Texterkennung

und Textanalyse
125 Seiten

D-93-09

Hans-Ulrich Krieger, Ulrich Schdfer:
TDL ExtraLight User's Guide

35 pages

D-93-10

Elizabeth Hinkelman, Markus Vonerden, Christoph
Jung: Natural Language Software Registry

(Second Edition)

174 pages

D-93-11

Knut Hinkelmann, Armin Laux (Eds.):

DFKI Workshop on Knowledge Representation
Techniques — Proceedings

88 pages

D-93-12

Harold Boley, Klaus Elsbernd,

Michael Herfert, Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations and
Functions Made Easy

86 pages

D-93-14

Manfred Meyer (Ed.): Constraint Processing —
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993

264 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-15

Robert Laux:

Untersuchung maschincller Lenverfahren und
heuristischer Methoden im Hinblick auf deren
Kombination zur Unterstiitzung eines Chart-Parsers
86 Seiten

D-93-16

Bernd Bachmann, Ansgar Bernardi, Christoph
Klauck, Gabriele Schmidt: Design & KI

74 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene fiir einen

hybriden Wissensreprisentationsformalismus
97 Seiten

D-93-21

Dennis Drollinger:

Intelligentes Backtracking in Inferenzsystemen am
Beispiel Terminologischer Logiken

53 Seiten

D-93-22

Andreas Abecker:

Implementierung graphischer Benutzungsober-
flichen mit Tcl/Tk und Common Lisp

44 Seiten

D-93-24

Brigitte Krenn, Martin Volk:
DiTo-Datenbank: Datendokumentation zu
Funktionsverbgefiigen und Relativsitzen
66 Seiten

D-93-25

Hans-Jiirgen Biirckert, Werner Nutt (Eds.):
Modeling Epistemic Propositions

118 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-26

Frank Peters: Unterstiitzung des Experten bei der
Formalisierung von Textwissen

INFOCOM:

Eine interaktive Formalisierungskomponente
58 Seiten

D-93-27

Rolf Backofen, Hans-Ulrich Krieger,

Stephen P. Spackman, Hans Uszkoreit (Eds.):
Report of theEAGLES Workshop on
Implemented Formalisms at DFKI, Saarbriicken
110 pages

D-94-01

Josua Boon (Ed.):

DFKI-Publications: The First Four Years
1990 - 1993

75 pages

D-94-02

Markus Steffens: Wissenserhebung und Analyse
zum EntwicklungsprozeB eines Druckbehiilters aus
Faserverbundstoff

90 pages

D-94-06

Ulrich Buhrmann:

Erstellung einer deklarativen Wissensbasis iiber
recyclingrelevante Materialien

117 pages

D-94-08

Harald Feibel: IGLOO 1.0 - Eine grafikunterstiitzte
Beweisentwicklungsumgebung

58 Seiten

Using Graphical Style and Visibility RR-94-15
Constraints for a Meaningful Layout in Visual Programming Interfaces Research Report

Winfried H. Graf, Stefan Neurohr

