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Using Rippling to Prove the Termination of

Algorithms

Dieter Hutter

Abstract

When proving theorems by explicit induction the used induction order�

ings are synthesized from the recursion orderings underlying the de�nition

principles for functions and predicates� In order to guarantee the soundness

of a generated induction scheme the well�foundedness of the used recursion

orderings has to be proved�

In this paper we present a method to synthesize appropriate measure

functions in order to prove the termination of algorithms� We use Walthers�

estimation�calculus as a �black�box procedure� in these explicit proofs�

Thus� we inherit both� the 	exibility of an explicit representation of the

termination proof as well as the in�built knowledge concerning the count

ordering�

� Introduction

Proving theorems by induction� the selection of an appropriate induction order�
ing is a source of in�nite branching� In practice �e�g� NQTHM �BM�	
 or INKA
�BHHW��� HS	�

 an induction scheme is synthesized from existing orderings
which are implicitly given by the user while specifying the behavior of functions
and predicates by so�called algorithmic de�nitions� The recursion ordering un�
derlying such an algorithmic speci�cation of a function f is used to formulate
an appropriate induction scheme for properties of f � Yet� the proof that the
underlying recursion ordering is well�founded is a necessary precondition for the
soundness of the generated induction scheme�
While in theory this halting�problem is known to be undecidable� a lot of e�ort has
been spent to develop methods which can prove a reasonable subset of algorithms
to be terminating� In the �eld of Knuth�Bendix�based approaches orderings on
terms � like KB�orderings� recursive path�orderings � are used to guarantee
the termination of rewriting� In the framework of explicit induction we are more
interested in orderings � on the set A�T ��

 of objects denoted by the set of
ground terms� De�ning �� by s �� t i� A�s
 � A�t
� we obtain a partial ordering
on ground terms which we extend to non�ground terms by s�x
 �� t�x
 i� ��s�x

 ��

��t�x

 for all variable assignments � of x��

�Throughout this paper we will not distinguish between � and its implied ordering ���
instead we will use � to denote both orderings�

�



Walther presented an approach �Wal	�
 to prove the termination of algorithms
which are speci�ed on freely generated datatypes� These datatypes possess the
unique�factorization property� i�e� � roughly speaking � the term algebra on
the constructor functions is the intended model of the axiomatization� Thus�
each object has a unique constructor representation and the size of an object
is uniquely determined by the number of �re�exive
 constructors used to denote
the object �see �GTW��� Wal	�
 for details
� Walthers� approach is based on the
so�called count ordering �� which compares this size by �N � Based on a so�
called estimation�calculus � he introduces a rewrite system� which can e�ciently
deal with proof obligations of the form �x� ��x�
 � s�x�
 �� t�x�
� Roughly
speaking� given two terms s�x�
 and t�x�
 it derives � if possible � a tuple hs�x�
 ��

t�x�
���x�
i denoting a theorem �x� ��x�
� s�x�
 �� t�x�
� Thus� we are left
with a proof of �x� ��x�
 � ��x�
 within a �rst�order theorem prover in order
to establish ��x�
� s�x�
 �� t�x�
�
Walthers� approach has severe limitations� Since it is based on the de�nition
of ��� �rstly� it is restricted to datatypes possessing the unique�factorization
property and secondly� it is only able to detect the termination of algorithms
whose recursive calls decrease according the count�ordering ���
Now consider the following example from a case study in speci�cation and ver�
i�cation of an access control system of a nuclear power plant which has been
done within the veri�cation support environment VSE �HLS�	�
� The area of
this plant is divided into several sections and each of these sections possesses a
speci�c security level� In addition each member of the sta� has a speci�c clear�
ance denoted by the security level of rooms he is allowed to enter� The relation
of persons to their clearance is speci�ed by a look�up table rights� Applying
max to rights returns the highest security�level adjoined to anyone in rights� and
levelp�x� l� z
 implements the look�up whether a person x has a speci�c clearance
l wrt� the look�up table z�
Once a person has clearance for a security�level n he also has automatically admit�
tance to all rooms with security�levels less than n� Thus� we de�ne the function
accp denoting whether a person x may enter a room with security�level l wrt� the
look�up table z as follows�

function accp�x �person� l �nat� z �rights
 � bool � ��


if s�max�z

� l � � then false

if s�max�z

� l �� � then levelp�x� l� z
 � accp�x� s�l
� z


Neither of the arguments of accp becomes ���smaller in the recursive call� Thus�
Walthers� approach is not able to detect the termination of accp� In NQTHM
�BM�	
 the idea that is used to prove the termination of accp is to introduce a
so�called measure function m and to prove that the measure of the recursive call
m�x� s�l
� z
 is ���smaller than the measure m�x� l� z
 of the original call� By
choice of m � �u� v� w s�max�w

� v the termination of accp is guaranteed by a
proof of

s�max�z

� l �� �� s�max�z

� s�l
 �� s�max�z

� l ��


�which we call R� throughout the paper
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But problems arise� how to �nd an appropriate measure m automatically� and
how to prove the termination of the algorithm wrt� this measure�
While in �BM�	
 the selection of appropriate measures has to be done by a user�
we propose an extension of Walters� approach that synthesizes measure�functions
for termination proofs automatically and that integrates the estimation�calculus
as a black�box procedure�
Walthers� approach does not rely on an explicit representation of the ordering
��� Yet the property a �� b can be reformulated in a higher�order setting to�

�F a � F�b
 	�F���b
 ��


with the additional condition that 
� ha �� F�b
��F���b
i holds� i�e� we are able
to deduce this tuple within the estimation calculus �� Thus� the termination of
accp can be expressed by

�m �F �x �person �l �nat �z �rights

s�max�z

� l �� ��m�x� s�l
� z
 � F�m�x� l� z
� x� l� z
 	

s�max�z

� l �� �� �F���m�x� l� z
� x� l� z


where 
� hF�m�x� l� z
� x� l� z
 �� m�x� l� z
��F���m�x� l� z
� x� l� z
i

In the following we present a method to deal with these kind of proof obligations
that is based on rippling technics� During the automated proof of the above
termination formula� appropriate instantiations of the variables m� F and �F��
that guarantee the corresponding algorithm to be terminating will be computed�

� The Estimation Calculus

As already mentioned� Walthers� approach �Wal	�
 is based on the count�ordering
�� on freely generated datatypes� The so�called estimation calculus � is used
to incorporate knowledge on �� and depends on the actual axiomatization and
deals with tuples hs�x�
 �� t�x�
���x�
i� If such a tuple can be derived within
the estimation calculus� i�e�


� hq�x
�
 �� r�x�
���x�
i ��


then it holds that

�x� q�x�
 �� r�x�
 	 �x� ��x�
� q�x�
 �� r�x�
� ��


Using the calculus�rules in reverse direction� we obtain a rewrite�systemR� which�
given a problem q�x�
 �� r�x�
� either computes a predicate ��x�
 satisfying ��

�wrt� the actual axiomatization
 or it fails� denoting that the relation q�x�
 ��

r�x�
cannot be established between both terms� This rewrite�system possesses
some nice properties� it is locally �nite and Noetherian which implies that 
�
hq�x�
 �� r�x�
���x�
i is decidable�
The estimation�calculus relies on the notion of p�bounded functions� A function
is p�bounded if �x�� � � � � xn f�x�� � � � � xn
 �� xp holds� In �Wal	�
 a technique is
presented to inspect an algorithmic function de�nitions for f in order to analyze
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whether f is p�bounded� In case the method recognizes f to be p�bounded� a so�
called p�di�erence predicate �f�p is automatically synthesized with the property
that

�x�� � � � � xn �f�p�x�� � � � � xn
� f�x�� � � � � xn
 �� xp ��


holds� Thus� the estimation calculus is especially e�ective for proofs of 
� hq�t
 ��

t���x
i where the second argument t is a subterm of the �rst argument q�t
� In
this case it has to be checked whether all the functions occurring on the way
between to level of q�t
 to some occurrence of t are bounded in the respective
arguments�
In order to illustrate the use of this approach when analyzing the termination of
algorithms consider the following example� Suppose we de�ne subtraction of two
natural numbers by�

function� �X �nat� Y �nat
 � nat � ��


if Y � � then X

if Y �� � then p�X � p�Y 



In order to prove its termination we have to ensure that either the �rst or the sec�
ond argument of � within the recursive call is ���smaller than the corresponding
formal parameter� Using the estimation calculus we obtain hp�Y 
 �� Y��p���Y 
i
for the second argument� Thus� we have to prove that �Y �nat Y �� �� �p���Y 

which is true since �p�� is de�ned by �p���X
� X �� ��
Walthers� approach is a black�box procedure� There is no explicit representation
of �� on the object level� i�e� within the logical database of the underlying the�
orem prover� The reasoning about �� is done completely within the estimation�
calculus and not within the inference machine of the theorem prover which makes
it di�cult to incorporate measure functions into the basic inference�mechanism�

� Computing Measure�functions

Rather than integrating speci�c measure functions into the meta�level algorithm
� i�e� estimation�calculus � we want to obtain a maximal �exibility by de�ning
measure�functions inside the database of the theorem�prover� This allows a user
to specify and to prove properties about measures explicitly within the system�
But doing so� we also want to make use of the implicit knowledge about �� as
it is built implicitly into the estimation�calculus�
Suppose we de�ne a function f by case analysis and recursion and let

if ��x�
 then h�� � � f�t��x�

 � � �


be one of these cases� Then� an appropriate measurem has to be found such that
the recursive call t��x�
 is less than x� with respect to m and ��� i�e� ��x

�
 �
m�t��x�

 �� m�x

�
� In a next step we will eliminate the explicit occurrence of
�� since Walthers� approach does not require an explicit representation of�� and
thus� �� is not explicitly de�ned within the system� In order to prove a property
a �� b we search for an appropriate function F such that a � F�b
 and F is ��
bounded� Thus� we obtain a higher�order equality problem �F a � F�b
� Since F

�



has to be ��bounded we have to check the property that 
� hF�y
 �� y��F���y
i
holds which is done with the help of the system R��
In case we want to prove a �� b� additionally �F���b
 has to be established under
the given conditions� Thus� in general we have to prove the following property�

to guarantee that the recursive call t��x�
 is less than x� in case of ��x�
�

�m �F �x�

��x�
�m�t��x�

 � F�m�x�
� x�
 	 ��


��x�
� �F���m�x
�
� x�
 �	


where 
� hF�m�x
�
� x�
 �� m�x

�
��F���m�x
�
� x�
i ���


For example� when proving the termination of accp we obtain the following proof
obligation�

�m �F �x �person �l �nat �z �rights

s�max�z

� l �� ��m�x� s�l
� z
 � F�m�x� l� z
� x� l� z
 	 ���


s�max�z

� l �� �� �F���m�x� l� z
� x� l� z
 ���


where 
� hF�m�x� l� z
� x� l� z
 �� m�x� l� z
��F���m�x� l� z
� x� l� z
i���


Proving these kind of theorems will result in appropriate instantiations of F� �F��
and m which guarantee the algorithm under consideration to be terminating�
Therefore we split the proof of the termination�theorem into three parts which
will be solved successively�

�� In a �rst step we tackle part ��
 with rippling�techniques in order to obtain
an appropriate instantiation of F� This process will also unveil constraints
on possible instantiations of m

�� Secondly� we use the instantiation of F to solve ���
 with the help of the
system R� which results in an instantiation of �F���

�� Finally� we use the information computed in the steps before to instantiate
�	
 and to compute appropriate instantiations of m�

��� Instantiation of F

In order to prove part ��
 we have to solve the equation

m�t��x�

 � F�m�x�
� x�


Shading the di�erences between left� and right�hand side results in the following
colored equation

m�t��x� 

 � F�m�x�
� x�


In order to prove this equation we have to manipulate the left�hand side until
the di�erences � the so�called wave�fronts � occur on the top of the non�shaded

�Note that F has additional parameters corresponding to the all�quanti�ed variables in the
context of its occurrence

�



parts of the left�hand side �the so�called skeleton
� This can be done by applying
rippling�out equations �BSvH�	�� Hut	�
 of the form

f�� � � g�� � � x � � �
 � � �
 � h�� � � f�� � � x � � �
 � � �
 ���


which will step by step move the wave�fronts towards the top�level� The tech�
niques to perform these manipulations are known as rippling and are typically
used within inductive proofs to enable the use of induction hypothesis inside the
induction conclusion� Once the wave�fronts have reached the top�level� the left�
hand side is an instance of the right�hand side and we may instantiate F to the
respective top�level wave�front�
However� the problem of instantiating F can be solved by rippling the wave�front
t� in front ofm� In addition to standard rippling� we have to obey the constraints
given by ���
� i�e� that F has to be ��bounded� Thus� we admit only rippling�out
equations of form ���
 which have the property that the right�hand side of the
equation is less or equal wrt� �� than its skeleton� i�e�


� hh�� � � f�� � � x � � �
 � � �
 �� f�� � � x � � �
� i

holds for some  ��

In the example of proving the termination of accp we have to prove

m�x� s�l
� z
 � F�m�x� l� z
� x� l� z
 ���


A rippling�out equation has to deal with a wave�front s� � � �
 on the left�hand
side� and the wave�front on the right�hand side has to obey the restrictions con�
cerning argument�bounded functions� Thus� for instance the following annotated
equations from the de�nitions of ! and 
 are not appropriate

s�X 
 ! Y � s�X ! Y 
 � s�X 
 
 Y � Y ! �X 
 Y 


since for both rippling�out equations the top�level wave�front functions s and !
are not argument�bounded and thus� the system R� fails� However the rippling�
out equation created from the de�nition of �

X � s�Y 
 � p�X � Y 
 ���


satis�es the restrictions to admissible top�level wave�fronts� since using the system
R� we can establish�


� hp�x
 �� x� x �� �i� ���


Thus� this very selective procedure gives rise to the approach of instantiating
an appropriate m and F "on the �y#� i�e� during the rippling process� In our
problem of proving the equation ���
 we use ���
 to ripple�out one of the wave�
fronts on the left�hand side� Uni�cation of the left�hand side of ���
 and the
subterm m�x� s�l
� z
 results in a single colored uni�er

fm� �u� v� wm��u� v� w
� v�X �m��x� s�l
� z
� Y � lg�

�This property reduces signi�cantly the branching rates during the rippling process�

�



Applying the instantiated colored equation on ���
 we obtain the modi�ed equa�
tion

p�m��x� s�l
� z
� l
 � F�m��x� l� z
� l � x� l� z
 ���


At this point the rippling�out process stops because one of the following criteria
is satis�ed�

�� There is a non�empty� top�level wave�front on the left�hand side which
can be used as a possible instantiation of F� If non�instantiated measure�
functions� likem orm�� still occur on the left�hand side� there is at least one
of its arguments without any wave�front occurring inside� In the example
above both� the �rst and the third arguments ofm� contain no wave�fronts�

�� There is no top�level wave�front on the left�hand side but the function m
has an argument ti�xi 
 with 
� hti�xi 
 �� xi� �xi
i� E�g� when proving
the termination of � we have to solve the equation

m�x� p�y

 � F�m�x� y
� x� y
 ��	


In this case no rippling�process is required at all� since due to ���
 the
criterion is satis�ed wrt� to the second argument of m�

��� Instantiation of �F��

Once we have �nished the rippling process� we use the obtained equation in order
to determine an appropriate instantiation of F�
In case we �nished the rippling process because of the �rst criterion� we identify
F with the non�empty� top�level wave�front� Thus� we obtain F� �u� v� w� z p�u

as the appropriate instantiation from ���
�
In case the second criterion was responsible for the rippling process to stop� we
identify the measure function with the projection to the argument in which the
argument�bounded wave�front occurs� Thus� in case of ��	
 we choose m �
�u� v v which simpli�es this equation to p�y
 � F�y� x� y
� Now� analogously to
the �rst case� F is identi�ed with the non�empty� top�level wave�front which in
this example results again in F� �u� v� w� z p�u
�
In both cases we obtain an instantiation of F which is used to determine the
corresponding �F�� with the help of the system R�� In both examples R� results
in the derivation


� hp�x
 �� x� x �� �i�

Thus� we instantiate �F�� by �x x �� � and obtain in case of accp the following
simpli�ed proof�obligation�

�m� �x �person �l �nat �z �rights

s�max�z

� l �� �� p�m��x� s�l
� z
� l
 � p�m��x� l� z
� l
 	 ���


s�max�z

� l �� ��m��x� l� z
� l �� � ���


�



��� Instantiation of m

In order to select an appropriate instantiation of the remaining measure func�
tion�s
 we concentrate on the second part �	
 of the proof obligation� i�e� that the
conditions of the recursive case have to imply the instantiated di�erence predicate
�F��� For instance� in case of accp we have to prove the formula ���
� Possible
instantiations are computed by unifying m��x� l� z
 �� � with some appropriate
axiom or condition of the de�nition case� This suggests to use the condition
s�max�z

 � l �� � which results in an instantiation fm� � �u� v� w s�max�w

g�
The set of possible instantiations is restricted by equation ���
� the instantiation
of m� must not use any of its arguments� in which still wave�fronts occur� Thus�
in our example any instantiation of m� that makes use of its second argument is
not admissible since in this case ���
 is not trivially true after the instantiation
of m�
Summing up� we use rippling�out techniques to move the wave�fronts inside the
left�hand side of the equation to the top�level� During this process we allow
only wave�fronts at top�level which dominate the skeleton by argument�bounded
functions� According to di�erent criteria the rippling process stops and F is
instantiated by the top�level wave�front on the left�hand side� Using this instan�
tiation we are able to compute �F�� with the help of the estimation�calculus�
Finally� we instantiate the measure function m by projections to the "wave�front
free# arguments� Inspecting the above proofs� there is almost no search� While
in inductive proofs rippling�out already turned out to be a very restrictive search
strategy� in this application this process is further restricted by the constraints
concerning the admissibility of top�level wave�fronts�

� Lexicographical Orderings

In this section we consider algorithms with multiple recursive calls�
As an example in our scenario� suppose there are visitor�groups within the nuclear
power plant� Hence� persons are either visitors or members of the sta�� We de�ne
a function visitorp on persons which returns �� if the person is a visitor and �
else� A visitor as a member of a guided tour inherits the access rights from the
guide which is a member of the sta�� Thus� we specify a function guide on person
which yields the guide of the person in case he is a visitor� while members of the
sta� are their own guides

�X �person visitorp�X
 � �� guide�X
 � X ���


�X �person visitorp�guide�X

 � �

Incorporating visitor tours to the function accp results in the following speci�ca�
tion�

function accp�x �person� l �nat� z �rights
 � bool �

if s�max�z

� l � � then false

�which is denoted by s��	

�



if s�max�z

� l �� � 	 visitorp�x
 � �

then levelp�x� l� z
 � accp�x� s�l
� z


if s�max�z

� l �� � 	 visitorp�x
 � �

then accp�guide�x
� l� z


In contrast to the previous sections� the de�nition of accp contains two recursive
calls accp�x� s�l
� z
 and accp�guide�x
� l� z
� In order to prove the termination of
accp we will use a lexicographical ordering on di�erent measure functions tailored
to the di�erent calls�
Suppose� t���x

�
� � � � � t�n�x
�
 are the recursive calls of an algorithm which are gov�

erned by the corresponding conditions ���x
�
� � � � ��n�x

�
� then we have to �nd
an appropriate sequence of measure functionsm�� � � � �mk and a mapping � which
relates each recursive call t�i �x

�
 to an appropriate measure function m�	i
� Then�
we have to prove the following theorem for each recursive call t�i �x

�
�

�mj �Fi �x�

�i�x
�
�m

j�t�i �x
� 

 � Fi�mj�x�
� x�
 	

�i�x
�
� �Fi���m

j�x�
� x�


with 
� hF
i�mj�x�
� x�
 �� m

j�x�
��Fi���m
j�x�
� x�
i

In the example of accp we are looking for appropriate measure functions m� and
m

� and argument�bounded functions F� and F� such that the following formulas
hold�

�m� �F� �x �person �l �nat �z �rights ���


s�max�z

� l �� � 	 visitorp�x
 � �

�m
��x� s�l
� z
 � F��m��x� l� z
� x� l� z
 	

s�max�z

� l �� � 	 visitorp�x
 � �� �F��m��x� l� z
� x� l� z


with 
� hF
��m��x� l� z
� x� l� z
 �� m

��x� l� z
��F����m
��x� l� z
� x� l� z
i

and

�m� �F� �x �person �l �nat �z �rights ���


s�max�z

� l �� � 	 visitorp�x
 � �

�m
��guide�x
� l� z
 � F��m��x� l� z
� x� l� z
 	

s�max�z

� l �� � 	 visitorp�x
 � �� �F��m��x� l� z
� x� l� z


with 
� hF
��m��x� l� z
� x� l� z
 �� m

��x� l� z
��F����m
��x� l� z
� x� l� z
i

In order to determine an appropriate measure function m� we start with formula
���
 and analogously to the previous section we obtain the solution

fm� � �u� v� w s�max�w

� v�F� � �u� v� w p�u
��F��� � �u� v� w u �� �g

In order to keep the set of di�erent measure functions as small as possible we
now test whether some other recursive calls decrease according to the measure
function m�� Thus� we instantiate m� by �u� v� w s�max�w

 � v and try to

	



prove the theorems according to the procedure described in section �� But m�

is not appropriate to establish the second theorem since m��guide�x
� l� z
 �
max�z
� l �m��x� l� z
 holds� Thus� we have to �nd another measure according
to which the second recursive call is getting smaller�
Again� we use our procedure described in section � and try to prove the second
formula ���
� We start with the rippling process of the colored equation�

m
��guide�x
� l� z
 � F��m��x� l� z
� x� l� z
 ���


In order to move the wave�front to the top�level we need a rippling�out equation
with guide occurring in the wave�front of the left�hand side and some argument�
bounded functions occurring in the wave�front of the right�hand side� The last
condition rules out the colored version of equation ���
 which does not possess any
wave�front on the right�hand side� Instead we use the following colored equation

�X �person visitorp�X
 � �� visitorp�guide�X 

 � p�visitorp�X

 ���


Unifying the left�hand side of ���
 with the left�hand side of ���
 we obtain the
following substitution�

fm� � �u� v� w visitorp�u
� X � xg

and applying the instantiated equation results in the following formula

p�visitorp�x

 � F��visitorp�x
� x� l� z
 ���


At this point the rippling process stops according to the �rst criterion given
in paragraph ��� and F� is instantiated by �u� v� w� z p�u
 which solves the col�
ored equation ���
� Using the system R� results in an instantiation of �F��� to
�u� v� w� z u �� � such that we are left with the trivial problem of proving�

�x �person �l �nat �z �rights

s�max�z

� l �� � 	 visitorp�x
 � �� visitorp�x
 �� �

Thus� we have proved that the �rst recursive call of accp decreases according
to the measure�function m� while the second call decreases wrt� m�� In order
to obtain a lexicographical ordering using both measure functions� we have to
prove either that the �rst call stays invariant wrt� m� or that the third call stays
invariant wrt� to m�� Hence� we formulate the following proof obligation�

�x �person �l �nat �z �rights

s�max�z

� l �� � 	 visitorp�x
 � ��m
��x� s�l
� z
 �m��x� l� z
 �

s�max�z

� l �� � 	 visitorp�x
 � ��m
��guide�x
� l� z
 �m��x� l� z


Unfolding the de�nitions of m� and m� the formula is easy to prove since m�

does not depend on its �rst argument and thus� m��guide�x
� l� z
 � m��x� l� z

is trivially true�

��



� The Tautology Rule

As illustrated in the above examples� our approach to synthesize appropriate
measure functions m is based on the rippling�out technique� In order to sup�
port the ripple�out process there is a need for a speci�c inference rule� the so�
called tautology�rule which is used to re�annotate the colors of a term with�
out changing the skeleton� A typical application of the tautology�rule is to
manipulate a term s�f�s�a


 into s�f�s�a


� The erasure of the equation

s�f�s�X 


 � s�f�s�X


 needed to perform this manipulation is a tautology�
In a higher�order setting� as it is used in our approach� the tautology�rule inter�
feres with the the use of higher�order variables like m� Given for example a term
m�f�s�a


 we have to instantiate m by �um��s�u

 in order to apply the tau�

tology rule on m��s�f�s�a



 which yields m��s�f�s�a



� Thus the tautology
rule has to be generalized to cover the instantiation of higher�order variables by
a wave�front occurring just right before the skeleton�
In order to demonstrate the use of this generalized tautology�rule we return to
our example of the access�control system� Suppose� our look�up table rights is
implemented as a set of security�levels� Each security�level l is a record which
consists of a natural number level�l
� specifying a speci�c clearance� and a list
of persons which possess this clearance� This fact is denoted by the following
axioms�

�l �seclevel l � mksec�level�l
� pers�l



�n �nat �p �plist level�mksec�n� p

 � n

�n �nat �p �plist pers�mksec�n� p

 � p ���


Now� the following function remove deletes a person from a security�level �assum�
ing that each person occurs at most once in person�list
�

function remove�x �person� l �seclevel
 � seclevel ��	


if pers�l
 � nil then l

if pers�l
 �� nil 	 car�pers�l

 � x

then mksec�level�l
� cdr�pers�l




if pers�l
 �� nil 	 car�pers�l

 �� x

then mksec�level�l
�
cons�car�pers�l

�

pers�remove�x�mksec�level�l
� cdr�pers�l








In order to prove the termination of remove we have to prove the following theo�
rem�

�m �F �x �person �l �seclevel

pers�l
 �� nil 	 car�pers�l

 �� x

�m�x�mksec�level�l
� cdr�pers�l



 � F�m�x� l
� x� l
 	

pers�l
 �� nil 	 car�pers�l

 �� x� �F���m�x� l
� x� l


with 
� hF�m�x� l
� x� l
 �� m�x� l
��F���m�x� l
� x� l
i

��



Again we start with the annotated equation and try to ripple�out the wave�front
on the left�hand side�

m�x�mksec�level�l
� cdr�pers�l



 � F�m�x� l
� x� l


In order to push the rippling�out process we use the tautology�rule as described
above and obtain by instantiating m to �u� vm��u� pers�v

�

m��x� pers�mksec�level�l
� cdr�pers�l




 � F�m��x� pers�l

� x� l


However� the usage of this tautology�rule must be restricted to speci�c situa�
tions� either there is a colored equation applicable� which removes the wave�fronts
moved towards the top�level by this rule$ or the wave�front moved outside is itself
argument�bounded� In our example we can eliminate the wave�front by using a
colored version of ���
�

m��x� cdr�pers�l


 � F�m��x� pers�l

� x� l


According to the second condition given in section � the rippling�process stops
and m� is instantiated to �u� v v which results in�

cdr�pers�l

 � F�pers�l
� x� l


As usual� we instantiate F by the wave�front of the left�hand side �u cdr�u
 and
using R� we obtain 
� hcdr�x
 �� x� x �� nili Therefore we instantiate �F�� by
�u u �� nil and obtain the trivial task of proving�

�x �person �l �seclevel �pers�l
 �� nil 	 car�pers�l

 �� x
� pers�l
 �� nil

which �nishes the termination proof of remove�

� Practical Results

This approach depends on the existence of appropriate rippling�out equations
and of course on the existence of user de�ned functions necessary to synthesize
appropriate measure functions �by higher�order uni�cation
� Hence� the user may
improve the behavior of the system by specifying additional functions or lemmata
giving a kind of hint how to synthesize an appropriate measure function�
The approach described in this paper has been successfully implemented in the
inductive theorem proving system INKA �HS	�
� INKA is itself integrated into
an environment for the formal development of software� "Veri�cation Support
Environment# �VSE
� �HLS�	�
� in order to handle �rst�order proof obligations�
During the execution of various industrial case�studies many algorithms had to
be proved to be terminating� However� for some of these algorithms Walthers ap�
proach failed since they were either speci�ed on non�freely generated datatypes
or descend according to some non�standard ordering� In these cases we could
successfully prove their termination using our approach either completely auto�
matically or with the help of the user who submitted the system appropriate
rippling�out equations �as lemmata
 in order to guide the instantiation of m�
As it turned out� performing these case�studies the time spent to prove the ter�
mination of the algorithms is usually less than a second� This includes also the
backtracking of the rippling�out process in case the instantiation of measure func�
tions fails�

��



� Related Works

Based on Walthers estimation�calculus� Sengler �Sen	�
 has recently extended
this approach to non�freely generated datatypes� Since these datatypes do not
possess the unique factorization property he de�nes the size of an object as the
minimal number of �re�exive
 constructor�symbols necessary to denote an object�
His approach is mainly limited to datatypes which only consist of so�called size
increasing constructors c� i�e� xp �� c�x�� � � � � xn
 holds for all re�exive argument
positions of c� He introduces an estimation�calculus similar to �Wal	�
 which is
also used to recognize p�bounded algorithms� Similar to �Wal	�
 his approach is
only able to prove the termination of algorithm which terminate according to the
count�ordering�
Notice� that our approach does not rely on a speci�c ordering but is based on a
"black�box procedure# detecting whether s � t wrt� some well�founded ordering
� holds� Thus� we are free to use the approach of �Sen	�
 as the underlying
mechanism instead of �Wal	�
 if we want to prove the termination of algorithms
operating on non�freely generated datatypes�
In NQTHM �BM�	
 there is an explicit representation of �� within the database
�using the size function % and �Nat
� In order to prove the termination of an
algorithm the user has to support the system with appropriate induction lemmata
��x�
 � m�t�x�

 �� m�x�
 which introduce possible measure functions m�
Hence� the user has explicitly to specify an appropriate measure function in order
to prove the termination of the algorithm under consideration�
In the �eld of Knuth�Bendix based approaches there has been innumerable work
�e�g� �Der��� Ste	�

 de�ning well�founded orderings on terms� These orderings
are used to direct equations of the axiomatization� and thus to guide the rewriting
of a term t to a term t� such that t is equal to t� under the given theory and t� is a
minimal wrt� the ordering� In our setting we are interested in orderings � on the
semantic objects and thus� � is independent of a speci�c syntactic representation
of a term� i�e� �a� b� c� d a � b 	 c � d� �a � c
� �b � d
 holds�
Selecting a unique syntactic representation for each semantic object� a syntac�
tical ordering � can be used to order their representations� Then� two terms
are compared by comparing their representatives wrt� �� For instance in case
of freely�generated datatypes the constructor�terms can be used as representa�
tives� Following this idea� Giesl �Gie	�
 uses arbitrary polynomial term�orderings
to prove the termination of algorithmic de�nitions which overcomes the limita�
tions of the �xed count�ordering used in �Wal	�
� The problem of proving the
termination is encoded into a set of inequalities� the solution of which speci�es
the appropriate measure function� The approach uses Collins� cylindric algebraic
decomposition algorithm to solve the set of in�equations� Since the size of the
set of inequalities to be solved corresponds to the size of the axiomatization� it
is not clear how Collins� algorithm behaves on large axiomatizations obtained for
instance by industrial case�studies� Furthermore� Giesl� approach is restricted to
freely�generated datatypes and polynomial orderings�

��



	 Conclusion

In this paper we have presented a method to incorporate Walthers� approach of
proving the termination of algorithms as a "black�box procedure# into explicit
proofs about termination using measure functions� Since we do not use internal
knowledge of the estimation calculus� we can also use Senglers� approach �or
even other approaches based on any well�founded orderings
 as an underlying
procedure to deal with problems like� ��x�
 � s�x�
 �� t�x�
� Thus� we inherit
both� the �exibility of an explicit representation of the termination proof and the
in�built knowledge about the count�ordering� The practical results obtained so
far are very promising�
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