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Abstract

The amount of user interaction is the prime cause of costs in interactive pro�
gram veri�cation� This paper describes an internal analogy technique that reuses
subproofs in the veri�cation of state�based speci�cations� It identi�es common
patterns of subproofs and their justi�cations in order reuse these subproofs� thus
signi�cant savings on the number of user interactions in a veri�cation proof are
achievable�
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� Introduction

Software veri�cation is the job of taming complexity� in order to verify� say one hundred
thousand lines of source code� several ten thousands of proof obligations have to be
shown� some of which may require formal proofs of up to eight or ten thousand steps�
Usually these long proofs consist of a considerable number of relatively simple subproofs
to be established� Even for a small percentage of interactive steps� i�e�� those steps
the user has to supply as opposed to those steps that are generated automatically by
the system �in the VSE system ��	 currently about �
 to �
� are user supplied
� the
interaction amounts to quite an e�ort for proofs with ten thousands of proof steps�
Consequently� a major problem in software veri�cation is the tremendous amount of
user interaction needed that causes costs and a long development time� To minimize
user interaction� is therefore a primary goal in order to reduce the cost of veri�ed
software� Again� from the experience with industrial applications of the VSE system�
the cost of veri�ed code may be between twice and ten times the costs of ordinary
software� The reuse of user�guided subproofs can contribute to that goal�
An important class of real world software veri�cation problems have state�based spec�
i�cations� State�based means that an invariant� e�g� a reliability statement� has to be
proved for an initial state p� and for all states that can be reached by certain �admis�
sible
 state transitions Ti� Put formally� the theorem to be proved is

Inv�p�

�
i

�Inv�p
� Inv�Ti�p


� ��


where usually� the invariant Inv�X
 is a conjunction of many conjuncts and the proof of
Inv�p
� Inv�Ti�p

 may be similar for the di�erent state transitions Ti� Therefore� a
decomposition of the theorem leads to many similar proof obligations for one veri�cation
task and naturally suggests a reuse of these subproofs�
Reusing proofs has been addressed in di�erent settings� A reuse of proofs in program
veri�cation after slightly changing the program �e�g�� after a bug has been �xed
 is
addressed in ��
	� External analogy� i�e�� analogy between proofs of di�erent theorems
has been described in ��	 and reuse of generalized rewrite proofs is described in ��	� As
far as we know� internal analogy for verifying state�based speci�cations has not been
tackled before�
This paper is organized as follows� First we describe the internal analogy paradigm
suitable for reusing subproofs within the same large proof attempt� In particular� the
reuse in verifying state�based speci�cations is addressed� Then we illustrate the usage
of internal analogy with an example that is taken from a case study that� among others�
veri�ed the state�based speci�cation of a communication �lter�

Notation

We work with a sequent calculus� for other calculi we believe the procedure can be
adapted appropriately� H�� � � � �Hn � C�� � � � � Cm abbreviates the sequentH��� � ��Hn �
C��� � ��Cm� A normal form �NF
 of this sequent is the set fH�� � � � �Hn��C�� � � � ��Cmg�
Note that this normal form does not distinguish between variants having�e�g�� H as hy�
pothesis and having �H in the conclusion� respectively� A proof obligation is provable

if H and �H belong to its NF for some formula H� Variables are ��quanti�ed if not
stated otherwise�
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� Internal Derivational Analogy in the Veri�cation of State�

Based Speci�cations

Problem solving by analogy transfers the solution or the problem solving experience of
a source problem to guide the search for a problem solution of a similar target problem�
In general� the process of reasoning by analogy can be described as follows� A case
base is kept of previously solved problems with accompanying solutions� When a new
target problem is encountered� a similar problem is retrieved from this case base and
its solution is used as a guide to the solution of the new problem by analogical replay�
Analogy requires �i
 to map� and sometimes to reformulate� the source problem to the
target problem� �ii
 to extend the mapping and reformulation to the solutions� �iii
 to
replay� and �nally to adapt the solution to the requirements of the target�
Derivational analogy ��	 guides the target solution by replaying decisions of the source
problem solving process� and it uses information about reasons for the decisions �justi�
�cations
�
Internal analogy ��� �	 is a process that transfers experience from a completed subgoal
�source
 in the same problem solving process to solve a current subgoal �target
� That
is� in internal analogy the source and the target are subproblems of a single problem�
Therefore� this technique does not require the e�ort to set up a permanent case base
and needs relatively little search for the retrieval of a source� as opposed to analogy
in general� Furthermore� little or no e�ort at all is required for the mapping because
corresponding subgoals in one proof are very similar�
Still� internal analogy needs some extra e�ort for storing the justi�cations and for the
mapping and hence� internal analogy pays in particular when it replaces search�intensive
subtasks or interaction�intensive subtasks� see ��	�

��� Internal Analogy for State�Based Veri�cation

Internal analogy in software veri�cation can sometimes be used to replace interaction�
intensive subtasks� The accumulation of a library of cases is not required in our internal
analogy� Usually� the subproofs need only to be cached� and often the source terms
need not to be mapped into di�erent target terms�
The internal analogy has two steps� retrieval and replay� Two modes of the retrieval
are possible for the internal analogy as described in this paper�

� The retrieval of a source is done automatically�

� The source is provided interactively�

In the �rst case� the analogy procedure includes searching for a source which is left to
the user in the second case� The automated retrieval searches for �source
 nodes in the
proof plan the proof obligations of which are proved already and that have justi�ca�
tions holding in the current �target
 node� For instance� as described in sections ���
and �� the search for a reusable subproof automatically compares the essence justi��
cation of source nodes with the NF of the target problem� An e�cient retrieval can be
achieved by �lexicographically
 ordering the formulae in the justi�cations and in the
NFs� Henceforth� we use �NF� for ordered NF�
The analogical replay is an automated one in any case� It is given in a nutshell in
Table �� The justi�cations are checked in order to perform a warranted analogical
transfer only� Its check of justi�cations is also simpli�ed by ordering the formulae in
the NF� The replayed subplan � may consist of a single step ci� of several steps� or
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input� source goal� guiding source subplan� target goal
output� �partial
 target plan

�� Let C be the guiding subplan and ci the current step in C�

�� Terminate if the target goal is proved�

�� Check of justi�cations� If the justi�cation of ci that corresponds to a subplan �
holds in the target� then replay ��

�� Advance the case C to the next usable step cj � i� j� goto ��

Table �� Outline of the analogical replay

even of the whole source subplan� The �next usable step� depends on the satis�ed
justi�cation j of ci in C� All the steps that belong to the subproof corresponding to j
are skipped� A generalization of the retrieval and the replay to multiple source subplans
is possible�
In order to use internal derivational analogy� we have to store justi�cations of the source
proof plan steps which we are going to replay�

��� Justi�cations

Justi�cations represent reasons for proof decisions� It is a non�trivial task to select ap�
propriate justi�cations in a proof planning environment� For inductive theorem proving
this task and a set of appropriate justi�cations are described in ��	 and ��	�
Our justi�cations are represented in a data structure attached to the proof plan nodes�
This justi�cation structure has di�erent slots that store di�erent kinds of justi�cations�
as explained below� The justi�cations are checked during the replay� Only if at least
one justi�cation holds� the corresponding step or the subplan can be replayed�
For the veri�cation of state�based speci�cations we analyzed the most common proof
patterns and associated them with appropriate justi�cations� Frequent proof patterns
are� �i
 the reduction to small essential proof obligations by extracting relevant subfor�
mulae� �ii
 the use of derived lemmata� and �iii
 term generalization� These patterns
can be combined in a proof�
In order to make the e�ort for the proof by analogy that includes checking the justi��
cations as small as possible� we need to

� store all the information relevant for the replay but not more�

� store it in a form that is available during the source solution process and that can
be easily interpreted in the target�

Taking into consideration the two requirements� we identi�ed the following justi�cations
for state�based speci�cations�

�� The user reduces the problem to essential proof obligations� If a proof obligation
at a root node N�

H�� � � � �Hn � C�� � � � � Cm

is reduced to a proof of a sequent

Hi� � � � � �Hil � Cj� � � � � � Cjk
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for i�� il 	 f�� � � � � ng and j�� jk 	 f�� � � � �mg� then the NF of the reduced sequent�
called essence� is stored as a justi�cation in the essence slot� e�g�� �essence�
fHi� � � � � �Hil ��Cj� � � � � ��Cjkg
� essence contains all the relevant subformulae�
Note that essence is a justi�cation for a whole subproof rather than for single
proof steps� Therefore� this justi�cation is stored after the subproof has been
completed� It is computed by goal regression ��	 over the whole subproof�

For a new subproblem in a node N it can be checked automatically whether its
NF is a superset of N��s essence� That is� it is checked whether the source and
the target problem di�er in irrelevant subformulae only� If yes� the subproof at N�

can be fully replayed� In a target node� the essence is the justi�cation checked
�rst�

Example� The essence of ���� below is a subset of the NF of ���� The rest of
the proof obligation does not matter� and so the subproof of ���� can be
completely replayed�

Interpretation� If the NF of a target proof obligation is a superset of the NF in
the justi�cation slot essence� then this justi�cation holds� and the source
subproof can be replayed�

Even in cases where no reduction was performed in the source� it is reasonable to
store the essence of a subproof in order to be able to discover a similar essence of
a target problem later on�

�� The user provides a lemma in the source that enables or considerably simpli�es
the proof� For instance in the subproofs of the example below� the lemma x 	
insert�Y�Z
 � x �	 Z 
 x � Y is provided� that helps to complete several
subproofs� The subset of �generalized
 elements of the source NF that is needed
to apply the lemma is stored as a justi�cation in the lemma justi�cation� lemma
is computed by goal regression �backward
 from the lemma application node Nl�
The current value of the regressed goal is stored as lemma justi�cation at each
node visited by the goal regression�

Example� In example ���� below� the lemma justi�cation at node N� is� fx 	
err� err � insert�next�in�
� err�
���x 	 err�
g because the goal regression
yields fx 	 insert�next�in�
� err�
���x 	 err�
g in the �rst step and fx 	
err� err � insert�next�in�
� err�
���x 	 err�
g in the second step�

Interpretation� If the NF of the target problem is a superset of the source
node�s lemma justi�cation� then the justi�cation holds� and the lemma can
be applied in the target�

lemma is a justi�cation for several steps rather than for a large subproof�

�� An extended form of the justi�cation check does not require the source essence
to be an exact subset of the target NF but additionally allows for a substitution
of variables or even a mapping of terms� This more general g�lemma justi�cation
is produced by

�a
 in lemma replacing the substitution terms by the variables of the lemma they
are substituted for and

�b
 replacing other constants not occurring in the lemma by variables�

�The semantics of the functions does not play a role at this moment� It will be explained in section ��
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When we replace the lemma subset by the g�lemma subset in essence� we also
obtain a more general g�essence�

Example� From the lemma justi�cation above and from the substitution �Y �
next�in�
� Z � err�	� the g�lemma justi�cation fx 	 B�B � insert�Y�Z
�
��x 	 Z
g is produced�

Interpretation� If g�lemma of a source node matches a subset of the NF of the
target problem� then the justi�cation holds and the lemma can be applied
in the target node again� If the g�essence of a source matches a subset of
the NF of the target problem� then the justi�cation holds and the source
subproof can be replayed�

�� Often� the theorem provers of a veri�cation system are not able to prove a proof
obligation without a user supplied generalization� Automated generalization is a
very di�cult task and� therefore� most often left to the user�

The justi�cations gen�essence and gen�lemma� stored at a generalization node
NG of a plan� is produced by computing the essence and lemma of the generalized
goal� respectively�

Example� The proof of ���� in section � includes at node NG the term general�
ization max value�sender�next�in�

� clients�
 to X and of value�next�in�


to Y � The gen�essence for the node is f�X � Y 
���Y � X
g� Note that
this is a justi�cation for the subplan with root NG�

Interpretation� If a subset of the NF of a target goal matches the gen�essence
of a source node N � then the substitution provided by the match is used
for the term generalization in the target� and the subproof for the goal at
N can be replayed� If a subset of the NF of a target goal �node
 matches

the gen�lemma of a source node only� then the substitution provided by the
match is taken for a generalization� and then the lemma application can be
replayed�

� Example� Proofs of Invariants

The following example stems from a case study performed with VSE� a veri�cation
support environment ��	 at the DFKI in Saarbr�ucken� The goal of this case study is to
model a communication �lter� From an input queue a message is checked for certain
properties� If these properties hold� the message is sent to an output queue� In case
the properties do not hold� it is sent to an error queue�
A message is a compound object of several components� the addressee� the sender� the
subject� and the message text� The input queue �in
� the output queue �out
� as well
as the error queue �err
 are �rst�in��rst�out queues with the following functions�

� nil �� queue generating the empty queue�

� insert � message� queue� queue inserts a message into a queue�

� 	� message � queue � bool determining whether a message is contained in a
queue�

� next � queue� message returning the message from the queue which is handled
next� and
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� rest � queue � queue deletes the message that is handled next from the queue
and leaving all other entries unchanged�

In addition� for the communication system there is a data base �base
 of all clients�
The check whether a message can pass the �lter is done in two steps� First� it is checked
whether the sender is a legal client� A function known � name � data base � bool
returns true if for the name there is an entry in the data base� Secondly� the message is
evaluated� and a natural number is computed� value � message � nat� Moreover� for
each client in the data base there is a maximal value� max value � name�data base�
nat� If the value of a message does not exceed the maximal value associated with the
sender� then the respective message is allowed to pass� As values one could imagine�
for instance� the allowed lengths of a message text�
For this scenario a state�based speci�cation ���� �	 was used� We have several state
variables for the di�erent queues and for the client data base� Furthermore� some
state transitions were speci�ed for the insertion operation on queues� and for the check
whether a message can pass the �lter� Each state transition is speci�ed by the details
of the changes they produce� i�e�� by de�ning the precondition and the postcondition
of a state transition� In these pre� and postconditions a state variable prior to the
execution of the state transition is quoted as opposed to the state variable after the
transition has been performed� For example� in� denotes the input queue before the
transition has been performed� and in is the input queue afterwards�
A state�based speci�cation is called correct� if a �rst�order formula � the invariant �
holds for all reachable states� Hence� this invariant has to be proved for the initial
state� and for all states that can be reached from the initial state� The invariant from
our case study is�

x 	 out �

�
known�sender�x
� base
�

value�x
 
 max value�sender�x
� base


�
�

x 	 err �

�
�known�sender�x
� base
�

value�x
 � max value�sender�x
� base


�

During the veri�cation process the original large proof obligation has been decomposed
into seven smaller proof obligations denoted by proo�nv�i for i � �� � � � � �� By simpli�
�cations and equation applications each proo�nv�i is decomposed into several simpler
proof obligations� For instance� proo�nv��� proo�nv��� proo�nv�� are each reduced to
eight subgoals� We shall have a look at the proofs of these subgoals� In the following
examples the shaded parts of the proof obligations indicate the relevant parts of the
proof obligations� Note� how these relevant parts occur in several proof obligations
giving rise to a reuse of proofs�
proo�nv�� is a rather large proof obligation�

in� �� nil� x 	 out� � known�sender�x
� base�
 �
value�x
 
 max value�sender�x
� base�
�
x 	 err� � �known�sender�x
� base�

� value�x
 � max value�sender�x
� base�
��known�sender�next�in�

� base
�
err � insert�next�in�
� err�
 � out � out� � in � rest�in�
 �
�x 	 out� known�sender�x
� base�
 �
value�x
 
 max value�sender�x
� base�

 � �x 	 err �
�known�sender�x
� base�
 � value�x
 � max value�sender�x
� base�

�

All but the resulting third and eighth subgoal can easily be simpli�ed and proved�
Originally� for the �� proof steps of proo�nv�� �
 user interactions were needed � By
internal analogy approximately �
� of the interactions can be saved�
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���� known�sender�x
� base�
� x 	 err� err � insert�next�in�
� err�
�
out � out�� in � rest�in�
 �
value�x
 � max value�sender�x
� base�
� x 	 err� � x 	 out��
known�sender�next�in�

� base�
� in� � nil
is proved by

� manually suggesting the lemma

x 	 insert�Y�Z
 � x �	 Z 
 x � Y� ��


With the substitution �Y � next�in�
� Z � err�	 the application of this
lemma gives

x � next�in�
� ��


� By simpli�cation with ��
 we obtain a subgoal � � � �H� � � � � � � � �H� � � � where
H abbreviates known�sender�x
� base�
�

The justi�cations at the root node of ���� look as follows�
essence made up from all the shaded formulae�
lemma� fx 	 err� err � insert�next�in�
� err�
���x 	 err�
g is constructed from
x 	 err� err � insert�next�in�
� err�
 at the left hand side of the proof obligation
and x 	 err� at the right hand side� lemma provides the elements of the essence
relevant for the lemma application� The other shaded formulae are relevant for
the remaining proof steps�
g�lemma� fx 	 B�B � insert�Y�A
���x 	 A
g�

���� known�sender�x
� base�
� x 	 err� err � insert�next�in�
� err�
� out � out��
in � rest�in�
� known�sender�x
� base�
�
value�x
 
 max value�sender�x
� base�
 �
value�x
 � max value�sender�x
� base�
� x 	 err� �
known�sender�next�in�

� base�
� in� � nil
can be proved by analogy to proof obligation ���� because the essence of ���� is
a subset of the NF of ���� as well�

proo�nv�� is decomposed into eight proof obligations� All but the resulting third
and eighth subgoal can be immediately simpli�ed and proved automatically� The more
complicated subproofs are outlined below� Originally� for the �� proof steps of proo�nv�
� �� user interactions were needed � By internal analogy approximately �
� of the
interactions can be saved�

���� known�sender�x
� base�
� x 	 err� out � out�� in � rest�in�

max value�sender�next�in�

� base�
 � value�next�in�

 �
known�sender�next�in�
� base�

� err � insert�next�in�
� err�
��
value�x
 � max value�sender�x
� base�
� x 	 err� � x 	 out�� in� � nil�
is proved by

� reusing the lemma application from ���� because the lemma justi�cation holds
in ���� The rest of the subproof di�ers though�

� Then interactively generalizing max value�sender�x
� clients�
 to X and
value�x
 to Y at node NG results in the problem � � � � X � Y� � � � � � � � � Y �
X� � � �� This goal can be proved automatically�

� This subproof automatically uses the lemma X � Y � Y � X�

�



essence at the root node of ���� is provided by all the shaded formulae�
gen�essence at NG is fX � Y���Y � X
g�

���� known�sender�x
� base�
� x 	 err� in � rest�in�
� known�sender�x
� base�
�
max value�sender�next�in�

� base�
 � value�next�in�

 �
known�sender�next�in�
� base�

� err � insert�next�in�
� err�
� out � out��
value�x
 
 max value�sender�x
� base�
 �
value�x
 � max value�sender�x
� base�
� x 	 err� � in� � nil�
is proved by reusing the proof of ���� because essence of ���� is a subset of �����s
NF�

Only the third and eighth subgoal of proo�nv�� can be simpli�ed and proved imme�
diately� The other goals are proved by analogy� Originally� for the �
 proof steps of
proo�nv�� �� user interactions were needed � By internal analogy approximately �
�
of the interactions can be saved�

���� x 	 out� known�sender�next�in�

� base�
� err � err��
out � insert�next�in�
� out�
� in � rest�in�
 �
known�sender�x
� base�
� x 	 err�� x 	 out�

max value�sender�next�in�

� base�
 � value�next�in�

in� � nil
is proved by reusing the subproof of ����

���� x 	 out� known�sender�next�in�

� base�
�
err � err�� out � insert�next�in�
� out�
� in � rest�in�
 �
value�x
 
 max value�sender�x
� base�
� x 	 err�� x 	 out� �
max value�sender�next�in�

� base�
 � value�next�in�


in� � nil

The lemma application of ���� is reused�
Then at NG� interactive generalization yields � � � � � � � � X 
 Y� Y � X� � � � which
can be proved automatically�
This provides the gen�essence f��X 
 Y 
���Y � X
g for �X � value�x
� Y �
max value�sender�x
� base�
	�

���� For x 	 out� known�sender�next�in�

� base�
� err � err��
out � insert�next�in�
� out�
� in � rest�in�
 �
known�sender�x
� base�
� known�sender�x
� base�
� x 	 out� �
max value�sender�next�in�

� base�
 � value�next�in�

� in� � nil�

the subproof of ��� can be reused�

���� For x 	 out� known�sender�next�in�

� base�
� err � err��
out � insert�next�in�
� out�
� in � rest�in�
 �
value�x
 
 max value�sender�x
� base�
� known�sender�x
� base�
�
x 	 out� �max value�sender�next�in�

� base�
 � value�next�in�

� in� � nil�

the subproof of ��� can be reused�

���� For x 	 out� value�x
 � max value�sender�x
� base�
�
known�sender�next�in�

� base
 � err � err�

out � insert�next�in�
� out�
� in � rest�in�
 �
known�sender�x
� base�
� x 	 out� �
max value�sender�next�in�

� base�
 � value�next�in�

in� � nil�

the subproof of ��� can be reused�
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���� x 	 out� value�x
 � max value�sender�x
� base�
�
known�sender�next�in�

� base�
� err � err��
out � insert�next�in�
� out�
� in � rest�in�
 �
value�x
 
 max value�sender�x
� base�
� x 	 out� �
max value�sender�next�in�

� base�
 � value�next�in�

 � in� � nil�

The lemma application of ���� can be reused�
Then the resulting subgoal is proved by automatically applying the lemma
X � Y � ��X 
 Y 
� The �rst step of ���� can be replayed because its lemma
justi�cation holds�

� Conclusion and Future Work

Since user interaction accounts for the lions share of the costs for the formal proofs in
program veri�cation� there is every incentive to reduce these costs by a higher degree
of automation� This paper has addressed the problem of saving user interaction in the
veri�cation of state�based speci�cations�
From the given examples it is clear that and how whole subproofs� generalizations� and
lemma applications can be reused if the same justi�cations hold for the target subprob�
lem� In our example the savings of user interactions achieved by internal analogy sums
up to about �
��
Our technique is based on the general idea of internal analogy that transfers source
subproofs to target subproofs in the same proof attempt� It turns out that state�
based speci�cations give rise to many similar proof obligations in their veri�cation�
We identi�ed common patterns of subproofs and their justi�cations in order to employ
them for the reuse of subproofs and proof steps�
The presented techniques are just a beginning� More elaborate justi�cations and map�
ping techniques will be explored in the future in order to reuse more and even larger
proofs� In particular� retrieval and replay have to be extended to handle multiple
sources�
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