
Deutsches
Forschungszentrum
fUr KOnstliche
Intelligenz GmbH

Research
Report

RR-94-13

Planning from Second Principles
-A Logic-based Approach

Jana Koehler

June1994

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbriicken, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Dr. Dr. D. Ruland
Director

Planning from Second Principles-A Logic-based Approach

Jana Koehler

DFKI-RR-94-13

This work has been supported by a grant from The Federal Ministry for Research
and Technology (FKZ ITW-9000 8).

© Deutsches Forschungszentrum fUr KGnstliche Intelligenz 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by permission of
Deutsches Forschungszentrum fUr KGnstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an
acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum fUr KGnstliche Intelligenz.

ISSN 0946-008X

Planning from Second Principles
- A Logic-based Approach -

J ana Koehler
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3,
D-66123 Saarbriicken, Germany
e-mail: koehler@dfki.uni-sb.de

Abstract

In this paper, a logical formalization of planning from second prin­
ciples is proposed, which relies on a systematic decomposition of the
planning process. Deductive inference processes with clearly defined
semantics formalize planning from second principles.

Plan modification is based on a deductive approach which yields
provably correct modified plans.

Reusable plans are retrieved from a dynamically created plan li­
brary using a description logic as a query language to the library.

Apart from sequential plans, this approach enables a planner to
efficiently reuse and modify plans containing control structures like
conditionals and iterat ions.

Contents

1 Introduction

2 A Four-Phase Model

3 The Formal Framework

3.1 Plan Modification.

3.2 The Plan Library . . .

1

2

5

6
7

10 4 Second-Principles Planning with MRL

4. 1 The Planning Logic LLP .. 10

5 Plan Determination: Efficient Retrieval of Plan Candidates 13

5.1 Description Logics as Query Languages 14
5.2 The Encoding Scheme 16
5.3 Weak and Strong Classification 21

5.4 Ranking of Plan Entries ~~

6 Plan Modification: Provably Correct Plans 25

6.1 Plan Interpretation 25
6.2 Plan Refitting 31

6.3 Reuse of Control Structures 36

7 Updating the Plan Library 38

8 Related Work 40

9 Conclusion 44

1 Introduction

Planning from first principles generates plans from "scratch", e.g., the plan­
ner searches for a set of actions (a plan) that achieves the desired goal with
respect to specified preconditions. A serious limitation of first-principles
planners is the constancy of the planning process over time: If a planner
receives the same planning problem, it will repeat exactly the same planning
operations. In other words, it is unable to benefit from experience that can
be drawn from previous planning processes.

Approaches to planning from second principles try to overcome this limitation
of planning from scratch by flexible reuse and modification of plans. In cases
of execution failures, where a plan has to be revised in the light of new
information, and changes of plan specifications, where a plan has to meet
new requirements, modification of the existing plan seems more reasonable
than generating a new one.

The current state of the art comprises a variety of approaches tackling the
problems from a cognitive point of view (cf. [Kolodner, 1993] for a summary
of approaches) or in the framework of STRIPS-based planning, cf. [Kamb­
hampati and Hendler, 1992; Hanks and Weld, 1992a; Veloso, 1992a].

Using a formal framework, we present a logic-based approach to planning

from second principles, which makes no commitments to particular planning
formalisms and application domains.

Plan modification is based on deductive inference processes that yield prov­
ably correct modified plans. As a new issue in plan modification we discuss
the reuse and refitting of control structures occurring in plans, like case anal­
yses and iterations, which introduce qualitatively new problems.

As for the plan library we propose a hybrid knowledge representation for­
malism linking the planning logic with a description logic. In this approach,
description logics are used as a kind of query language to the plan library.
This leads to well-defined abstraction, retrieval and update procedures pos­
sessing interesting t heoretical and practical properties. In particular, we
demonstrate that the bottleneck of plan retrieval [Nebel and Koehler, 1993b]
can be overcome by developing efficient approximation algorithms that are
guaranteed to find existing solutions to current planning problems in the plan
library.

Summarizing, the properties of this new approach are:

• Second-principles planning is addressed in a strictly logic-based way .

• The planner is based on a general unified formal framework. It covers

the modification of plans and the representation of the plan library,
including retrieval and update operations.

1

• Besides simple sequential plans, this approach enables a second-prin­
ciples planner to flexibly reuse plans containing control structures like
case analysis and iteration .

• The formal framework allows us to prove important properties like the
correctness and completeness of the underlying inference procedures.

The paper is organized as follows: The foundation of the logic-based ap­
proach is a four-phase model, described in Section 2. It supports a temporal
view as well as a task-specific view on the second-principles planning pro­
cess. In Section 3 the formal framework of planning from second principles
is presented. It provides the theoretical basis for the system MRL that is
described in the main part of this paper. MRL extends the generati ve ded uc­
tive planner PHI, which is briefly introduced in Section 4, with the ability
to reuse and modify plans that are stored in a dynamically updated plan
library.

Sections 5 and 7 are devoted to the inference procedures working on the
plan library, while in Section 6 the deductive approach to plan modification
is presented. Finally, in Section 8 we propose a systematic categorization
of the various principles and design decisions underlying second-principles
planners, and summarize the main properties of the MRL planner in the
light of this categorization.

2 A Four-Phase Model

Second-principles planners work in a basic cycle of problem input- activation
of previous plans-adaptation, cf. [Riesbeck and Schank, 1989]. The prob­
lem of plan activation addresses questions of how to represent and store
previous plans and knowledge extracted from planning processes including
learning and abstraction as well as the problem of how to retri eve relevallt.
information from a plan library, including organization, indexing and search .
The problem of adapting an old plan to a new planning problem compri s­
es a matching or test phase where plans are matched against current pla ll­
ning problems or executed in simulated environments and a subsequent r·efit­
ting/adaptation/repair phase where the plan is modified in accordance with
the result of the matching or test.

We distinguish four phases in a second-principles planning process:

Phase I achieves retrieval by a process called plan determination.

(I) Plan Determination: The description of a current planning problem ,
i.e., the current plan specification is the input to the plan-determination

2

phase. From this specification, an index has to be computed , which rep­
resents the search key to the plan library. The plan library contains
a collection of plan entries that are extracted from previously solved
planning problems. A plan entry provides comprehensive information
about a planning problem and its solution, e.g., the specification of the
problem describing initial and goal states, the plan which was gener­
ated as a solution for it, and information that is extracted from the
plan generation process. Each plan entry possesses an index which
determines its position in the hierarchically organized plan library.

The current search key is matched against the indices of the stored plan
entries. Based on the result of the matching a set of reuse candidates is
determined. Ranking heuristics are applied in order to determine the
best candidate.

Phase II compares of the current plan specification with the reused plan
specification. It is based on a deductive inference process called plan inter­
pretation.

(II) Plan Interpretation: Plan interpretation attempts to prove that the
current plan specification is a logical instance of the reused plan specifi­
cation by proving relations between preconditions and goals. A success­
ful proof attempt means that the reused plan specification is sufficient
for the current one, i.e., solving the old planning problem will solve the
current planning problem.

In contrast to a purely syntactic matching, knowledge about regularities
in the application domain can be applied during the proof. The result
of the plan-interpretation phase is a plan skeleton in the case of a proof
failure. An instance of the library plan that solves the current planning
problem is obt ained when the proof is successful.

Phase III completes the plan skeleton to a correct plan with the help of an
interleaved process of plan verification and generative planning called plan
refitting.

(III) Plan Refitting: A plan skeleton provides an entry point into the
search space of possible plans. It represents an incomplete solution to
the current planning problem, because it may contain "placeholders"
for subplans achieving open subgoals, which the reused plan is unable
to achieve. The plan skeleton keeps any actions of the reused plan that
were determined as reusable during plan interpretation and in which
variables are appropriately instantiated with object parameters taken
from the current plan specification.

3

The planning process terminates with a plan-library update in phase IV.

(IV) Plan-Library Update: A new plan entry is constructed from three
sources of information: the current plan specification, the plan which
was generated by modifying an existing plan, and information that is
extracted from the proof tree which was constructed as a result of the
completion of the plan skeleton. The plan entry is related to the current
index that was computed in phase I. The modified plan is now available
to subsequent planning processes.

Figure 1 shows the architecture of the MRL system. The system comprises
four modules, each of which implements a phase occurring during second­
principles planning.

PLAN GENERATOR

plan specification plan

MRL

PHASE I PHASE IV
PLAN DETERMINATION I-j, UPDATE OF PLAN LIBRARY

current plan spec~ication current plan spec~ication

I plan

I search in plan library I
const;uction I I . l

reuse candidate new plan entry

~ "' f

PLAN LIBRARY I
PHASE II PHASE III
PLAN INTERPRETATION PLAN REFITTING

current plan specification current plan specification
reused plan specification plan jkeleton

proof rnempt I I I completion by proof I
plan skeleton ptan

Figure 1: Architecture of the MRL system

The four phase model describes a temporal view on the reuse process. The
phases I to III are necessary to generate a plan by reusing an existing one.
They are also distinguished by other authors who sometimes denote thelll

4

as retrieval - matching - adaptation phases, cf. [Hanks and Weld, 1992a].
The fourth phase comprises the maintenance of the plan library. The phases
which perform similar tasks are grouped together, so that the reuse process
can be formalized. Operat ions on the plan library provide the basis for phases
I and IV, while plan interpretation and refitting (phases II and III) work on
plan specifications and are summarized as plan modification.

3 The Formal :Framework

The formal framework assumes that planning problems are specified in a
formal way. We presuppose some kind of logical planning formalism with
planning problems given as formal plan specification formulae in the under­
lying planning logic. In particular, we develop our framework in the general
setting of deductive planning as introduced in [Green, 1969]. Deductive plan­
ning generates plans by performing constructive proofs of formal plan spec­
ifications, i.e., "to construct a plan that will meet a specified condition, one
proves the existence of a state in which the condition is true" , cf. [Manna and
Waldinger, 1987b], page 14. Usually, this requires us to prove constructively
plan specifications of the form

VSo Va ::Jz Q[so, a, z]

where So denotes the initial state, a is an argument or input parameter, and
z is a planvariable representing the plan term that has to be constructed,
cf. [Manna and Waldinger, 1987b]. Recently, an approach to deductive plan­
ning has been introduced in [Biundo et al., 1992; Bauer et al., 1993] with
plans represented as formulae. Plan specifications are universally quantified
formulae of the form Plan /\ pre --+ goal, cf. Section 4. In the following, we
develop the formal framework for planning from second principles using this
latter form of plan specifications.

In general, a plan specification comprises the description of

• an initial state, i.e., the preconditions, pre, that can be assumed to
hold,

• a goal state, goal, which has to be achieved by executing the plan.

Planning from first principles receives a current plan specification Snew and
tries to find a Plan new by "inspecting" the set of available actions . Planning
from second principles tries to find a Plannew by adapting a Planold solving
an old plan specification Sold in such a way that it solves Snew.

5

In order to formalize the retrieval of candidate plans from the plan library
we have to answer the question

Question 1: "How to find a Planold possibly solving Snew?"

while the formalization of plan modification requires an answer to the ques­
tion

Question 2: "Does Planold solve Snew?"

3.1 Plan Modification

The answer to Question 2 is found with the help of Definition 1:

Definition 1 Planold solves Snew if and only if Ax f- Sold ~ Snew.

This means, Sold is sufficient for Snew under the axiomatization A:r: of tlle
considered application domain, i.e., Ax, Sold F Snew. In other words, Snew
specifies a logical instance of Sold. Thus, solving Sold is sufficient for solving
Snew and consequently, an instance of Planold will solve Snew.

Since plan specifications contain formal descriptions of initial and goal states,
we can show that Ax f- Sold ~ Snew holds by proving sufficient relations
between precondi tions and goals according to Theorem 1:

Theorem 1 Ax f- Sold ~ Snew holds if

Ax f- prenew ~ preold and Ax f- goalold ~ goalnew .

This means, we have to prove that the preconditions required by the old plan
are satisfied in the current initial state and that the goals achieved by the
old plan are sufficient for the currently required goals. If these relationships
between initial and goal state specifications hold, we know that

• Planold is applicable in prenew and

• Planold achieves at least all of the goals required in goaLnew.

Proof:

The validity of Theorem 1 is obvious. Assuming that plan specification
formulae are of the form Plan 1\ pre ~ goal we ground plan modification on
a proof of a formula of the form

(1) [Planold 1\ preold ~ goaloldl ~ [Plan new 1\ prenew ~ goalnew l

6

under the domain axiomatization. Equivalent transformations of this formula
lead to a conjunction of the following three formulae, the proof of which is
sufficient for the validity of formula (1)

(la) 1 Plan new 1/\ prenew -71 Plan old 1 V goalnew

(lb) Plan new /\ Iprenew !-7lpreold! V goalnew

(lc) Plan n ew /\ prenew /\ Igoalold 1-7lgoalnew I
A closer look at these formulae reveals that they lead on one the hand to a
valid proof if prenew -7 goalnew can be proved, i.e., the current plan spec­
ification is a tautology. But in most cases this will not be case and it is
not the aim of the proof to act as a tautology checker. On the other hand,
we can prove relationships between subformulae from Snew and Sold. Thus,
we obtain three subproofs that are sufficient for the validity of the relation
between the two plan specifications Sold -7 Snew:

(I)
(II)
(III)

P1annew

prenew
goalold

=* Planold

=* preold
=* goalnew

The first subproof reflects the aim of second-principles planning: Planold is
identified with P1annew , i.e., the planvariable Plan new , which represents the
plan that has to be found, is instantiated with the plan Planold taken from
the plan library.

The reader may note that we made no assumption about a particular plan­
ning logic or planning calculus. Furthermore, a similar theorem can be ob­
tained when syntactically different plan specifications are used as for example
in [Green, 1969; Kowalski, 1979; Manna and Waldinger, 1987b; Manna and
Waldinger, 1987al. In this case, planvariables representing plan terms occur
as additional arguments in the goal-state specifications. -

Thus, plan modification is based on attempting to prove relations between
preconditions and goals. If the proofs are successful, an instance of Planold

will solve Snew. This instance is obtained by applying substitutions to Planold

that were computed during the proof. If the proof attempt fails, refitting
information can be extracted from it, cf. Section 6.

3.2 The Plan Library

In principle, the inference procedures working on the plan library can be
formalized in the same way as plan modification. A plan solving the cur­
rent planning problem can be found by proving sufficient conditions between

7

preconditions and goals. But obviously, this is too restrictive because such
a search process can only retrieve solutions, i.e., plans that are applicable
in the current initial state and achieve at least all of the current goals. But
an appropriate reuse candidate is a plan that can be properly instantiated
to obtain the desired solution or that can be "easily" revised. Therefore, we
have to ground the retrieval process on a "relaxation" of these conditions.

Usually, such a "relaxation" is performed on the inference relation , i.e., so­
called partial matches are computed, cf. [Kolodner, 1993]. The disadvantage
of such an approach is that we give up clear semantics of the inference relat ioll
and therefore may lose soundness as well. In order to avoid this , we propose
an alternative approach by defining an encoding scheme w mapping formal
plan specifications to abstract indices.

The encoding scheme formalizes an abstraction process: A given plan spec­
ification (formula) is mapped to an abstract index (formula) reflecting the
main features of the underlying planning problem. Furthermore, we want the
abstraction process to be well-defined, i.e., if a plan from the library provides
a solution to the current planning problem this plan must be in the retrieval
set. The advantage of such a property is obvious. The efficiency of planning
from second principles depends on the reuse of existing solutions. When­
ever a planning problem can be solved by directly reusing a plan from the
library, the system should be able to find this plan in order to minimize the
plan-modification effort. This property of the encoding scheme w is formally
stated in Condi tion 1:

Condition 1 If Sold -+ Snew then W(Sold) -+ w(Snew).

Condition 1 gives a monotonicity property of wand has to be proved for eacll
particular encoding scheme used in a second-principles planner. It expre::;::;e::;
that an existing subset relationship between the models M of Sold aIld Snew i::;
preserved as a subset relationship between the models of the indi ces W(Sold)
and w(Snew):

If M[Pold] ~ M[Pnew] then M[W(Po1d)] ~ M[w(Pnew)].

The monotonicity property of the encoding scheme guarantees that an existing
solution can be found by searching the plan library along the -+ dimension
between indices. Note that the inverse of the monotonicity property does
not hold in general. A plan retrieved from the library, the index of which
entails the new index, will not, with certainty, provide a solution to the new
planning problem. This reflects reasoning by approximation. The retrieval
algorithm approximates the relationship between the plan specifications when
it compares the indices of the plan entries. Thereby, it extends the solution
set computed by the retrieval algorithm.

8

The definition of a particular encoding scheme depends on three factors:

• the representation formalism for plan specifications and plans,

• the representation formalism for indices,

• the application domain.

In Section 5, we illustrate the definition of an encoding scheme used in the
second-principles planning system MRL. The planning formalism used by
MRL is a temporal logic. The representation formalism for the indices is a
description logic, i.e., indices are represented as concepts in a KL-ONE like
concept language. With that, the indexing of the plan library is ground­
ed on the subsumption relation (~) between indices and a classifier is used
to retrieve candidate plans. This overcomes the problem of defining par­
tial matches between cases, the semantics of which remains often unclear.
Furthermore, theoret ical properties of the retrieval like its soundness, com­
pleteness and runtime complexity can be proved.

Figure 2 summarizes the formal framework. It bases planning from second
principles on deductive inference processes. Plan modification is formalized
by proving sufficient conditions between preconditions and goals in the un­
derlying planning logic. A formalization of the inference procedures working
on the plan library is obtained by computing their approximation in a de­
scription logic.

plan modification: pre new -t preold and goalold -t goalnew

plan library:

Figure 2: The logical framework for planning from second principles

The idea of exploiting relationships between preconditions and goals can be
found in other approaches as well, but they are restricted to a syntactical
check of these relations. Hanks and Weld [Hanks and Weld, 1992a] write
that "retrieval takes the problem's initial and goal conditions and finds in
the plan library a plan that has worked under circumstances similar to those
posed by the current problem". The basic approach described by Hammond
[Hammond, 1990] is "to find a past plan in memory that satisfies as many

9

of the most important goals as possible". Plan modification as formalized
by Kambhampati and Hendler [Kambhampati and Hendler, 1992J relies on
marking "the differences between the initial and goal state specifications".

In the remaining part of the paper we show how this formal framework serves
as a theoretical foundation for the implemented second-principles planner
MRL. The formal framework allows us to implement well-defined inference
processes. Thus, the behavior of the system becomes predictable, and theo­
retical properties like soundness, completeness, and efficiency of the inference
procedures can be proved.

4 Second-Principles Planning with MRL

The system MRU has been developed as an integrated part of the system
PHI by extending the PHI planner with the ability to reuse and modify com­
plex plans. PHI is a logic-based tool for intelligent help systems which inte­
grates plan generation and plan recognition components [Biundo et al., 1992;
Bauer et al., 1993]. Planner and recognizer work in close mutual coopera­
tion, e.g., generated plans can serve as hypotheses for the recognition process
[Bauer and Paul, 1994J.

A prototypical application of PHI is the UNIX mail domain where objecLs
like messages and mailboxes are manipulated by actions like read, delete, and
save.

The logical framework of PHI, which is also used by MRL, is the modal tem­
poral logic LLP [Biundo and Dengler, 1994] that will be shortly introduced
in the following section.

4.1 The Planning Logic LLP

LLP [Biundo et al., 1992; Biundo and Dengler, 1994J provides the modal
operators 0 (next), 0 (sometimes), 0 (always) and the binary modal oper­
ator ; (chop) which expresses the sequential composition of formulae. As in
programming logics, local variables the value of which may vary from state
to state are available. Furthermore, control structures like iterations and
conditionals can be defined as operators in LLP.

Plans are represented by a certain class of LLP formulae. They may contain
basic actions which are expressed by the execute predicate ex, the argumellL
of which is an action term, the chop operator for the sequential compos iLiol1
of plans and actions, and control structures like if-then-else and while tiJrt,(,

can be expressed in this logic.

1 MRL stands for Modification and Reuse in Logic .

10

The atomic actions available to the planner are the elementary commands
of the UNIX mail system. They are axiomatized like assignment statements
in programming logics. Changes of state caused by executing an action are
reflected in a change of the values of local variables which represent the
mailboxes in the mail system. For example, the axiomatization of the delete­
command which deletes a message x in a mailbox mbox2 reads

Vx [open-flag(mbox) = T /\ delete_flag(msg(x, mbox)) = F /\
ex(delete(x,mbox))

-+ Odelete-flag((msg(x,mbox)) = TJ

The state of a mailbox is represented with the help of flags. As a precon­
dition, the delete-command requires that the mailbox mbox is open, i.e., its
open_flag yields the value true (T) and that the message x has not yet been
deleted, i.e., its delete_flag yields the value false (F). As an. effect, the action
sets the delete_flag of message x in mailbox mbox to the value true in the
next state.

Planning problems are represented with the help of formal plan specifica­
tions in the logic LLP. They contain the specification of an initial state, the
preconditions of the plan, and the specification of the goals that have to be
achieved by executing the plan. Thus, plan specifications are LLP formulae
of form

Plan /\ preconditions -+ goals,

i.e., if the Plan is carried out in the initial state where the preconditions
hold then a state will be achieved where the goals hold. Plan is a plan­
variable, i.e., a non-logical variable, representing the plan formula that has
to be generated by performing constructive proofs of the plan specifica­
tion in a sequent calculus which was developed for LLP. During the proof,
the plan variable Plan is replaced by a plan formula satisfying the specifi­
cation. The proofs are guided by tactics that can be described in a tac­
tic language provided by the system, an idea which was borrowed from
the field of tactical theorem proving [Constable, 1986; Hei~el et al., 1990;
Paulson, 1990J . The use of tactics supports the declarative representation of
control knowledge and makes deductive planning more efficient. The search
space considered during the proof can be kept to a manageable size and only
those deduction steps which appear to be the most promising are performed.

Let us consider three specifications of example plans that will be used through­
ou t this paper. The first specification S PI specifies a plan PI for the planni ng

2Constants begin with capital letters, while variables are written in lower case.

11

problem "read and delete a message m in the mailbox mybox" . As precondi­
tions, we assume that the mailbox mybox has already been opened and that
the message m has not yet been deleted.

Pianpl/\
open_flag(mybox) = T /\ delete_flag(msg(m,mybox)) = F
~ <; [read_flag(msg(m, mybox)) = T /\

<; [delete-flag(msg(m, mybox)) = T]]

It should be noted that in using the logic LLP in a planning system it be­
comes possible to specify temporary goals with the help of nested sometim es
operators, i.e., goals that have to be achieved at some point and not neces­
sarily in the end, something which could not be done in the usual STRIPS
or TWEAK type planning systems, cf. [Kautz and Selman, 1992J. In the
example, the goal specification requires the message to be read first and t hen
deleted.

The second specification SP2 specifies an example of a conditional plan P2
which reads and deletes a message x in a mailbox mbox.

Planp2 /\ delete-flag(msg(x, mbox)) = F
SP2 : ~ <; [read_flag(msg(x,mbox)) = T /\

delete_flag(msg(x,mbox)) = T]

As a precondition for P2 we only know that the message has not been deleted ,
but no information about the state of the mailbox is available, i.e., we do not
know whether the mailbox is open or closed. Thus, the plan P2 must contain
a case analysis on the state of the mailbox mbox: If the mailbox is open, the
message x can be read and deleted. If the mailbox is closed, we first have to
open it before the message x can be read and deleted. In contrast to the goal
specification in S PI, the specification of goals in S P2 specifies no temporary
goals, but a conjunctive goal.

The third specification S P3 specifies an iterative plan reading all message~

from sender Joe in the mailbox mbox. The specification of its precondi t i on ~

and goals contains universally quantified formulae:

Planp3 /\ open-flag(mbox) = T /\
"Ix [sender(msg(x,mbox)) = Joe

~ delete_flag(msg(x, mbox)) = F J
~ <;Vx [sender(msg(x,mbox)) = Joe

~ reaLflag(msg(x, mbox)) = T /\
delete_flag(msg(x, mbox)) = T]

A restricted syntactic class of LLP formulae is used for the representation
of plan specifications. For example, implicit negation of atomic formulae

12

occurs in implications. Furthermore, atomic formulae are equations assigning
values to local variables appearing in terms of a certain syntactic structure.
The term msg(x, mbox) denotes a message in a mailbox mbox at position
x. Unary functions like read_flag and delete_flag represent features of a
mailbox with respect to a particular message. The effects of actions are
reflected in changed features.

5 Plan Determination: Efficient Retrieval of
Plan Candidates

Assume as an example that the plan P2 solving SP2 has to be generated
from second principles, i.e., by reusing the plans PI or P3 that are stored
in the plan library.

The plan PI is a simple sequence containing the actions type and delete.
The plan P2 which we want to generate is a conditional plan, while P3 is
an iterative plan:

PI: I ex(type(m, mybox)) ; ex(delete(m, mybox)) I
P2: if open-flag(mbox) = T then ex(empty_action)

else ex(mail(mbox));

I ex(type(x, mbox)) ; ex(delete(x, mbox)) I
P3: n:= 1 ;

while n < length(mbox) do

od

if sender(msg(n, mbox)) = joe

then I ex(type(n, mbox)); ex(delete(n, mbox)) I
else ex(empty....action) ;

n:= n + 1

Plan determination has to answer the question of whether PI or P3 are
appropriate candidates to guide the planning process for P2 and which of
the two candidates should be preferred. A closer look at the plans reveals that
they have a sequential subplan in common, cf. the framed formula. Apart
from this, the plans differ mainly in the control structures they contain.
Therefore, we are faced with two problems:

1. Existing frameworks from case-based reasoning fail in comparing such
complex structures. There is no technique available in the literature on
which the comparison and retrieval process of complex plans containing
control structures can be based.

13

2. Even human experts are unable to compare such abstract logical de­
scriptions of plans. It is by no means obvious whether we should take

• plan PI and add a case analysis or

• plan P3 and remove the superfluous iterative control structure

in order to obtain P2.

Both problems challenge a formal approach to the determination of reuse can­
didates from a plan library. The identification of PI and P3 as appropriate
reusable plans requires abstraction from

• specific objects occurring in the specifications,

• temporary subgoal states,

• universally quantified goals.

The basic effects of actions which cause a mailbox's features to be changed
have to be preserved during the abstraction process. These requirements are
reflected in the definition of the encoding scheme w, which is used in MRL
to map LLP plan specifications to concepts in a description logic.

5.1 Description Logics as Query Languages

We define the encoding scheme w as a mapping from the planning logi c
LLP to a description logic. The advantages in using a description logi c as
representation language for indices are obvious:

Description logics support a structured representation of abstract knowledge.
As fragments of predicate logic they possess formal semantics [Brachmann
and Levesque, 1984]. With that, the meaning of expressions within the for­
malism is clearly defined and it is possible to verify whether or not the
knowledge-representation system correctly implements the intended behav­
IOr.

Thus, indices are provided with clearly defined semantics. The monotonicity
property of the encoding scheme w can be proved, which ensures that existing
solutions are found in the plan library when a complete retrieval algorithm
is used.

The mathematical properties of various description logics are well under­
stood. In particular, concept languages with decidable subsumption relations
have been identified. Remember that retrieval from plan libraries must be
efficient, i.e., the complexity of the retrieval algorithm must be investigated.
The use of description logics possessing polynomial subsumption algorithms

14

ensures that the ret rieval algorithm runs in polynomial time on the size of
the plan library.

Usually, the indexing schemes used in case-based reasoning, for example dis­
crimination networks [Feigenbaum, 1963], restrict the case library to have a
tree structure. In using description logics, case libraries are indexed on a more
general lattice structure provided by the subsumption hierarchy [Koehler,
1994a].

Summarizing, it is possible to define retrieval algorithms with the following
formal properties:

• Correctness: The retrieved plan entry meets the search criterion .

• Completeness: Existing solutions are in the retrieval set .

• Complexity: The retrieval algorithm runs in polynomial time.

The description logic ACe [Schmidt-SchauB and Smolka, 1991] is chosen as
the target formalism of w because of its expressiveness and mathematical
properties. Concept descriptions in ACe are built from concepts, intersec­
tion, complements and universal role quantifications. The logic possesses a
decidable and complete subsumption algorithm which is PSPACE-complete.
This means that deciding subsumption in ACe is intractable. Remember
that we required the retrieval algorithm to be efficient, i.e., to run in poly­
nomial time. There are two possibilities to obtain polynomial complexity:
either to give up completeness or to restrict the description logic. Giving
up completeness in an application system often also implies giving up cor­
rectness, because inability to detect existing subsumption relations may lead
to incorrect behavior of the system. In particular for a plan library, the
incompleteness of the retrieval algorithm leads to the following problems:

• Existing solutions may be not found in the library. This can lead to an
undesirable computational overhead in second-principles planning be­
cause the system does not reuse the best available plan during problem
solving.

• Uncontrolled growth of the plan library may occur. Plan specifications
with the same indices are added to the library because the incomplete
subsumption algorithm is unable to recognize the equivalence of the
concepts representing the indices.

Therefore, we decided to restrict concept descriptions to a normal form for
which a sound, complete and polynomial subsumption algorithm exists. We
define so-called admissible concepts as a subset of ACe that are consistent

15

concept descriptions in conjunctive normal form. They are built only from
primitive components, i.e., existential role restrictions of the form :JR.C and
:JR. -,C where C is required to be a primitive concept and R is restricted to
be a chain of primitive roles . This simplifies the computation of subsumption
relationships between concepts. To determine subsumption in a terminology,
the relation between the extensions of concepts is symbolically evaluated.
First, the relevant part of a terminology has to be transformed in a normal
form. Secondly, constraints must be propagated and inconsistencies must be
recognized. Finally, the resulting expressions are structurally compared, cf.
[Nebel, 1990]. The restriction of w's target formalism to admissible concepts
makes the first and second step superfluous and reduces the computation of
subsumption to a structural comparison of the concepts. A normal form is
already given and no inconsistencies or constraints between concepts may
occur. In fact, admissible concepts define a subset of propositional logic.
Primitive components can be treated as atomic units during the computation
of subsumption because there is no need to expand them further. Thus, the
following subsumption algorithm is defined for admissible concepts Ca :

Definition 2 SUBS(u, t) : C~ -+ {true, false}

SUBS(u, t) computes its result using the rules3
:

z ~ x, z ~ y -+ z~xl\y

x~z -+ xl\y~z

x~z,y~z -+ xVy(;z

z~x -+ z~xVy
x C x

Theorem 2 SUBS is sound and complete, and decides the subsumption re­
lation in polynomial time for admissible concepts.

The proof is straightforward and can be found in [Koehler, 1994eJ.

5.2 The Encoding Scheme

The encoding scheme w maps LLP plan specifications to indices in ALC on
the basis of the declarative semantics both logics possess.

LLP plan specifications are a restricted class of temporal logic formulae con­
taining the modal operator O. In order to map them to concept descriptions

3This rule set is equivalent to a sound and complete rule set for lattices given in [Givan
and McAllester, 1992] that decides the defined inference relation in polynomial time. Note,
that SUBS(u , t) is incom'plete for arbitrary concept descriptions in ACe.

16

they are equivalently translated into first-order predicate logic using a re­
lational translation method for modal logics as for example introduced in
[Ohlbach, 1991]. A function 7r is defined that translates an LLP formula into
a formula in CPL, a constraint predicate logic. Below, a subset of 7r is shown,
which is needed for the translation of plan-specification formulae:

1l'[X,W]
7r[x, W]

7r[J(tl, ... , t n), W]
7r[P(tl, ... , tn), W]

7r[F /\ G, w]
7r[OF, w]

x for x a global variable
x(w) for x a local variable
f(7r[t 1 , w], ... , 7r[tn' w])
P(7r[t ll w], ... , 7r[tn' w])
7r[F, w] /\ 7r[G, w]
3v(w ~ v /\ 7r[F, vJ)

Using the method developed in [Frisch and Scherl, 1991], which has been
extended to LLP in [Koehler and Treinen, 1993], the formulae resulting from
the translation of modal operators can be considered as constraints. As an
example, let us consider the encoding of the goal specification of SPI

o [read_fLag(msg(m, mybox)) = T /\
o [delete_flag(msg(m,mybox)) = T]]

An application of the translation rules of 7r to this LLP formula leads to a
formula in the logic CPL. The function 7r translates local variables into unary
functions mapping an interval to the value of the local variable in this interval.
Modal operators are translated into constraints reflecting the accessibility
relations defined over intervals. Observe that function and predicate symbols
are so-called rigid designators, i.e., their interpretation is fixed and thus, they
do not have to be equipped with an interval argument during the translation.
We obtain the following CPL formula:

3Wl, W2 [Wo ~ WI /\ WI ~ w2 /\

read_fLag(msg(m, mybox(wl))) = T /\
delete-flag(msg(m, mybox(w2))) = T]

A constraint formula C can be separated from the constraint-free part of the
formula according to the following rule [Frisch and Scherl, 1991]:

[3 y C /\ ¢] /\ t/J == 3 y C /\ [¢ /\ t/J]

In a next step, information about the ordering of temporary subgoal states
is eliminated from the formula, which implements the process of temporal

17

abstraction. Obviously, this transformation leads to a weaker logical formula.
In order to ensure the correctness of this transformation, the monotonicity
property (Condition 1) has to be proved for it, i.e., the elimination of a set
of constraints resulting from the translation of 0 operators has to preserve
an existing subset relationship between the models of the formulae. 4 The
elimination of the constraint formulae from the example formula leads to

read_flag(msg(m, mybox(wl))) = T 1\ delete_flag(msg(m, mybox(w2))) = T

Now, each atomic formula is mapped to a primitive component, i.e., an ex­
istential role restriction of the form 3R.C, while the logical conjunction 1\ is
mapped to the concept intersection n.
Let us have a closer look at the syntactical structure of the atomic formula
read_flag(msg(m, mybox(wJ))) = T. First, the constant T is replaced by
an existentially quantified variable y using the rule P(a) ~ 3y P(y) . This
implements an abstraction from specific objects ocquring in the specification
formulae. Furthermore, we add a unary predicate true(y) expressing the
sort information for the variable y. We treat the equality predicate like an
ordinary predicate P and thus obtain

3y P(read_flag(msg(m,mybox(wl)))'y) 1\ true(y)

Implicit or explicit universal quantification is repiaced by existential quantifi­
cation according to the rule Vx P(x) ~ 3x P(x), which implements, e.g., a
process of abstraction from universally quantified goals.

With that we have obtained a formula of the form <Pc(x): 3x 3yP(x,y) 1\

Q(y) to which a concept C : 3P.Q corresponds. A model of the formula <Pc(x)
is a model of the concept C and vice versa. In particular, C is unsatisfiable
if and only if <Pc (x) is unsatisfiable [Holl under et al., 1990 J.
The structure of the term read_flag(msg(m, mybox(wJ))) is reflected in the
composition of roles. The unary function mybox is of type interval ~
mailbox and is abstracted by a binary relation interval x mailbox. The binary
function msg is of type mailbox x integer ~ message, i.e., it takes a mailbox
and an integer as arguments and returns the message that can be found in
the mailbox at the position indicated by the integer. Thus, this function is
abstracted by the composition of binary relations mailbox x integer 0 integer x
message. The unary function read_flag is of type message ~ boolean,

4The proof can be found in [Koehler, 1994e). It is not presented here because it does
not directly contribute to the aim of this paper which is to present a logic-based framework
for planning from second principles .

18

i.e., we abstract it by a binary relation of type message x boolean. Con­
sequently, for the whole term the composition of binary relations

interval x mailbox 0 mailbox x integer 0 integer x message 0 message X boolean
" " ,f , ".. " , V' "

mailbox position message read_flag

is obtained, leading to the following role chain

:3 mailbox 0 position 0 message 0 readJlag.TRUE

the value of which is existentially restricted to the concept TRU E.

After the encoding process has been completed, the conjunctive normal form
of the indices is computed. Of course, the computatjonal effort for this op­
eration grows exponentially with the length of the formulae. But remember
that the subsumption algorithm is only complete for concepts ~n conjunc­
tive normal form. Nevertheless, for pragmatic reasons it is more efficient
to compute the normal form only once during the encoding process instead
of computing it several times during the classification of an index. Besides
this, plan specifications are often given in a conjunctive normal form 5 and
the refore , this costly operation is not necessary in most cases.

mailbox

Figure 3: Subset of the mail domain terminology

5Exist ing second-principles planning systems are limited to deal with state descriptions
rest ricted to conjunctions of literals. This means that the PHI planner poses addi t ional
requirements on the encoding scheme unknown in the usual STRIPS-based planners .

19

Figure 3 shows a subset of the mail-domain terminology that is used for
the encoding of the example specifications. Nested terms, which are used
to represent features of mailboxes in the source formalism LLL, map to role
chains in the target formalism. 6

The encoding scheme w used in MRL leads to the following encodings of the
specifications SPI to SP3'

w(prepd: 3 mailbox 0 open_flag.TRUE n
:3 mailbox 0 position 0 message 0 delete_flag. FALSE

w(goalpd: 3 mailbox 0 position 0 message 0 read_flag. TRUE n
3 mailbox 0 position 0 message 0 deleteJlag.TRUE

w(prep2): :3 mailbox 0 position 0 message 0 delete_flag. FALSE

w(goalp2): 3 mailbox 0 position 0 message 0 readJlag.TRUE n
3 mailbox 0 position 0 message 0 deleteJlag.TRUE

w(prep3): 3 mailbox 0 open_flag.TRUE n
[3 mailbox 0 position 0 message 0 sender.-,SENDER u
3 mailbox 0 position 0 message 0 deleteJlag.FALSE 1

w(goalp3): [:3 mailbox 0 position 0 message 0 sender.-,SENDER u
:3 mailbox 0 position 0 message 0 delete_flag.TRUE] n

[3 mailbox 0 position 0 message 0 sender.-,SENDER u
3 mailbox 0 position 0 message 0 delete_flag.TRU E]

The expressiveness of admissible concepts is sufficient to represent the mail
domain adequately. The reader may note that this property may not gen­
eralize to other application domains for which different encoding schemes
must be defined. In some cases this can require the use of more expressi ve
concept languages possessing undecidable inference relations as target for­
malisms. Further research is necessary to find out "tractable" application
domains. The general idea of using description logics as query languages to
case libraries seems to be widely applicable. Given a logical description of
a case, i.e., a logical formula, it is possible to map it to some weaker logical
formula, which can be interpreted as a concept description. Nevertheless, the
development of encoding schemes mapping logical specifications to concept
descriptions is a creative process. It's mechanization is an interesting subject
for further research.

The encoding scheme used in MRL satisfies the monotonicity property as
stated in Theorem 3. Thus, the retrieval algorithm is guaranteed to find

6In principle, it seems to be possible to automatically generate the encoding terminology
from the signature used in the source formalism.

20

existing solutions when a complete subsumption algorithm is used.

Theorem 3 If prenew --+ preold and goal old --+ goalnew then
w(prenew) ~ w(preold) and w(goalold) ~ w(goalnew).

The proof can be found in [Koehler, 1994el. It relies on the model-theoretic
semantics the logics LLP, CPL and A.ce possess.

5.3 Weak and Strong Classification

The results of the encoding process are the admissible concepts w(pre) and
w(goal) from which the index of a plan is obtained as the pair (w(pre), w(goal)).
Indices are considered as new representational primitives in the description
logic. The computation of the subsumption relation between indices is re­
duced to computing the subsumption relation between the concepts encoding
goals and preconditions as defined in Definition 3:

Definition 3 (w(preold), w(goalold)) is subsumed by (w(pre new), w(goalnew))

if and only if

Now, the retrieval of a plan from the plan library is formalized as follows:
Given a new plan specification, its index is computed first. Then, this index
is classified in the plan library. Two classification operations are available:

• Strong classification which classifies the new index by computing the
subsumption relation between encodings of preconditions and goals

The result of strong classification determines the position of the new
index in the plan library according to the subsumption of indices as
defined in Definition 3. All indices that are subsumed by the new index
are considered as potential reuse candidates. The plans belonging to
the subsumed indices are assumed to be applicable in the current initial
state and to achieve all of the current goals .

• Weak classification is activated when strong classification fails in
ret rieving a reuse candidate. It is based on a weaker search criterion
and can classify according to goals or preconditions:

w(prenew) ~ w(preold) or w(goalold) ~ w(goalnew)

21

P3
1----1

while ... de
ex(..);ex ..

Pl

" ex(•• ad);
" .x(delete)

, ,
P2

K open
then .. .
else .. .

Figure 4: The example library

Figure 4 shows the small example library obtained for the three plan specifica­
tions under consideration: Obviously, the index w(P2) of SP2 subsumes only
the bottom concept, i.e., strong classification fails in retrieving a cand idate
plan. Therefore, weak classification is activated searching for an w(vreold)
that subsumes w(p'rep2) or for an w(goalold) that is subsumed by w(gualp2).
Weak classification of the preconditions fails as well, while weak classification
of the goals is successful for w(goalpd since w(goalpd [: w(goalp2) holds. 7

Therefore, the plan stored in the plan entry belonging to w(Spd is activated
as a reuse candidate. Since strong classification failed we know that this plan
cannot represent a solution to the current planning problem SP2. We expect
it to achieve all of the current goals, but we know that its preconditions are
not satisfied in the current initial state. Thus, plan refitting has to start as
will be described in Section 6.

5.4 Ranking of Plan Entries

Only one candidate plan has been retrieved from the plan library in the
example under consideration. But in general, strong as well as weak classi­
fication can retrieve several appropriate reuse candidates. Consequently, a
ranking is needed for the candidates in order to determine the best .

Strong classification determines plans from the plan library that are sup­
posed to be applicable in the initial state and to achieve at least all of the

71n a working system it seems to be a good restriction to implement only one of th e
possible approaches to weak classification in order to improve retrieval efficiency. lIere, we
discuss both possibilities in order to present how retrieval based on classification works.
MRL applies weak classification only to preconditions, i.e., it requires plans to be appli­
cable in the current initial state as a heuristic to reduce the refitting effort during plan
modification .

22

current goals. This implies that the candidate set retrieved by strong classifi­
cation may contain plans which achieve superfluous goals, i.e., goals that are
currently unnecessary. Actions achieving these goals can be eliminated from
the reused plan by making attempts at optimizing it. Thus, the ranking of
the candidates is based on an estimation of the optimization effort for each
candidate, i.e., the number of superfluous actions that have to be eliminated
from the candidate plan. The heuristic estimates the number of atomic sub­
goals that are achieved by a candidate plan but that are not required in the
current plan specification. It assumes that this number reflects the minimal
number of primitive actions in the candidate plan that have to be eliminated.
Therefore, the plan with the smallest number is selected as the best reuse
candidate and sent to the plan-modification module. If several candidates
receive the same ranking value, one of them is selected arbitrarily.

Definition 4 Let COldl , ... ,Coldn be the set of candidates retrieved by strong
classification of w(Cnew). The goal concepts occurring in the indices of the
candidates are w(goaloldl), ... ,w(goaloldn) J the goal concept occurring in the
current index is w(goaln ew). The set of primitive components that occur in
a concept c is denoted by P[c]. The cardinality of the set P[c] is as usually

denoted by I P[c] I.
The optimization effort for each candidate is defined as

OPTw(goalold) = I P[w(goalold;}] \ P[w(goalnew)] 1 .
The ranhng hew'istic HOPT selects the candidate with th e smallest optimiza­
tion effort:

Weak classification selects plans from the plan library that are either sup­
posed to be applicable in the initial state or to achieve the desired goals,
i.e., we have to expect that every candidate has to be modified. Consequent­
ly, the heuristic estimates the modification effort for each candidate in the
retrieval set. It compares the goal concept of the current index w(goaln ew)

with the goal concepts w(goalold.} of all indices occurring in the retrieval set
and computes the intersection of the concepts, i.e. the number of primitive
components occurring in w(goalnew) as well as in w(goalold.} . This number
measures the modification effort by an estimation of the number of current
atomic goals that are achieved by each candidate. The candidate with the
biggest number is selected as the best reuse candidate, because it is assigned
the highest "success rate" and therefore its modification effort is estimated
as being minimal. Furthermore, the ranking heuristic verifies whether the

23

ranking value of the best candidate exceeds a lower bound: it requires that at
least half of the primitive components from w{goalnew) must be contained in
w{goaloldJ. If this condition is satisfied, the ranking heuristic assumes that
the best candidate achieves at least half of the current atomic goals.

Definition 5 The estimated success rate for each candidate is defined as:

MODw(goalold,) = I P[w{goaloldJ] n P[w{goalnew)] I
The ranking heuristic llMoD selects the candidate with the biggest s'uccess
rate that exceeds the lower bound:

llMO D = { Cold, I MODw(goalold,) = max(MODw(goaIOld1b"" MODw(g oaloldn))

and
MOD > N[w(gOal n ew)]}

w(goalold,) - 2

If no candidate receives a ranking value which exceeds the lower bound,
all candidates are rejected because their modification effort is estimated as
too expensive. In this situation, plan determination reports a failure and
planning from scratch with the PHI planner is activated.

The ranking heuristics guide the interaction between planning from first and
planning from second principles, cf. Figure 5.

strong classification succeeds I approximation of }
search for applicable plan L optimization effort J

~ reaching all current goals

best candidate
fails activates

plan modification

i weak classification succeeds I approximation of t
search for applicable plan "" L modification effort J

fails below
lower bound

I Activation of Plan Generator

Figure 5: Interaction between first and second-principles planning

24

6 Plan Modification: Provably Correct Plans

Plan modification is based on deductive inference processes which lead to
modified plans that are provably correct. As introduced in Section 3 it pro­
ceeds in two phases. First, plan interpretation computes a plan skeleton and
second, plan refitting completes the plan skeleton to a correct plan satisfying
the current specification.

In the following, we apply the formal approach to plan modification as defined
in Section 3 to the example under consideration and discuss deductive plan
modification in MRL.

6.1 Plan Interpretation

Plan interpretation receives two sources of input:

1. the current plan specification for which a plan has to be generated

2. the plan entry containing the best reusable plan which the detel'llliu a­
tion phase could identify in the plan library.

It takes the plan specification from the plan entry and the current plan spec­
ification and attempts to prove the required relations between preconditions
and goals:

Ax f-- prenew -+ preold and Ax f-- goalold -+ goalnew

During the proof, knowledge concerning regularities in the planning domain is
applied that can be extracted, e.g., from the action axiom schemata available
to the planner. For example, from the axiomatization of the save-command

Vx [open_flag(mailbox) = T /\ delete_flag(msg(x, mailbox)) = F /\
ex(save(x, fi le, mailbox))

-+ 0 [jile(msg(x , mailbox)) = file /\ save-flag(msg(x, mailbox)) = I'll

we can derive the following consequences that can be used as additional
non-logical axioms

save-flag{msg(x, mailbox)) = T -+ file(msg(x, mailbox)) = fil e

file(msg(x,mailbox)) = file -+ save_flag(msg(x,ma:ilbox)) = I'

reflecting the relationship between the atomic effects of this command . When­
ever the save_flag of a message has been set to T then there must be a file in

25

which the message has been saved and vice versa. This makes plan interpre­
tation more flexible than syntactic matching because it can identify plans as
reusable, even if their specifications are syntactically different.

Plan interpretation attempts to prove that Sold --* Snew holds in the do­
main theory using the LLP sequent calculus [Biundo and Dengler, 1994].8 In
the example, it builds the sequent SPl ::::} SP2 and applies the derived rule
rule_one, which extracts the starting sequents for the subproofs of precondi­
tions and goals:

Plannew ::::} Planold prenew ::::} p'reold goalold ::::} goalnew
------------~~----~------~~--------~------~------rule_one

Planold 1\ preold --+ goalold ::::} Plannew 1\ prenew --+ goalnew

In the example, the proof of the relations between the preconditions requires
Sequent 1 to be proved:

delete_flag(msg(x,mbox)) = F
::::} open-flag(mybox) = T 1\ delete_flag(msg(m, mybox)) = F

Starting point for the goal proof is Sequent 2:

<:; [read-flag(msg(m, mybox)) = T 1\
<:;[delete-flag(msg(m, mybox)) = TJ J

::::} <:; [read_flag(msg(x,mbox)) = T 1\
delete-flag(msg(x, mbox)) = T]

(1)

(2)

Special-purpose proof tactics guide the proof attempt in the LLP sequent
calculus. They run in polynomial time on the length of the input formula.
On the one hand, this enables plan interpretation to compute an entry point
into the search space of plans efficiently. On the other hand, this implies
that the tactic is incomplete in the sense that it cannot compute a maximal
plan skeleton which has been shown to be a PSPACE-hard problem in [Nebel
and Koehler, 1993aJ. Figure 6 partially sketches the tactic precond_tac that
is used in MRL.9 The tactic specifies a well defined ordering of deduction
rule applications. It is composed of tacticals [Biundo and Dengler, 1994J like
iterate_1'ule, apply_rule_st1'ict, and calUac. Each tactical specifies a specific
mode of rule or tactic applications.

8 A general introduction into sequent calculi can be found in [Gallier , 1987; Wa.llen ,
1989].

9S ubtactics dealing with universally quantified formulae are discussed in [Koehler ,
1994cl .

26

precond_tac (pre....seq, LisLoLAxioms):-
or _else([caILtac(separate-Ilew ,[pre....seq], LisLoLAxioms),

caILtac(expandJinaLnew,[pre....seq], LisLoLAxioms)]).
separate-Ilew (pre....seq, LisLoLAxioms):-

apply _rule....strict(Iv , [pre....seq] ,[newl ,rest-Ilew]),
iterateJule(IA,[newl],[newl...atom]),
caILtac(expand....subtree,[newl_atom],LisLoLAxioms),
calLtac (precond _tac,[restJlew]).

expandJinaLnew(pre....seq, LisLoLAxioms):­
iterateJule(IA,[pre....seq],[newLatom]),
calLtac(expand....subtree,[newLatom] ,List..oLAxioms) .

expand....subtree(newLatom, LisLoLAxioms):-
or _else([caILtac (split.1'u rthersu btree,[newLatom] ,LisLoLAxioms),

calLtac(close_final....su btree,[newLatom] ,List_oLAxioms)]).
spliLfurther....su btree(newLatom, LisLoLAxioms):-

apply _ru le....strict(spliLproo/,[newLatom],[old 1 ,remaining_old]),
iterateJule(rA,[old l] ,LisLoLSu btree_Leaves),
calLtac(closeJeaves,LisLoLSu btree_Leaves,LisLoLAxioms),
calLtac(expand....su btree,[remaining_old] ,LisLoLAxioms).

close_final....subtree(newLatom, LisLoLAxioms):-
ite rateJ' u le(rA, [newLatom] ,LisLoLSu btree_Leaves) ,

calLtac(closeJeaves,LisLoLSu btree_Leaves,LisLoLAxioms) .

Figure 6: Sketch of the tactic for the precondition proof

The tactical apply_rule_strict applies the rule specified in its first argument to
a sequent specified in its second argument and returns as a result the sequent
specified in its third argument. It fails when the specified rule is not applica­
ble to the input sequent . The tactical apply_rule works like apply_rule_slTict
with the di[('ercnce that it always succeeds, i.e., if the specified rule is not
appli cable to the input sequent this sequent is returned unchanged. The
tactical iterate_1'ule repeats a rule application as long as possi ble, while the
tactical calLtac calls another tactic.

The tactic precond_tac is able to deal with disjunctive and conjunctive pre­
conditions and applies the following sequent rules:

•

•

r, A, B =}.6. L/\
r, A A B =} .6.

r, A=}.6. r, B =}.6. Lv
r , A VB=} .6.

27

r =} A,.6. r =} B,.6.
• r/\

r=}AAB,.6.

•
r =} A, B,.6.

r=}AVB,.6.
T'V

•
r=>A r=>6 .
--------- spliLprooj

r=>AV6

The precondition proof for the example sequent is very simple because no
disjunctive preconditions occur in the sequent expressing uncertainty about
the initial state. The first rule that is successfully applied to Sequent I is
rule r/\. It leads to Sequents 3 and 4:

delete_flag(msg(x, mbox)) = F => open_flag(mybox) = T (3)

del ete-flag(msg(x, mbox)) = F => delete_fLag(msg(m, mybox)) = F (4)

Sequent 4 can be closed, i.e., it leads to Axiom Al using the substitution
{x -+ m,mbox -+ mybox}.

(AI) I del ete_flag(msg(x, mbox)) = F => delete_f1ag(msg(x , mbox)) = F I
In order to obtain an appropriate instantiation of the reused plan, variclbles
in the reused specification Sold are substituted by terms whi ch occur ill tile
current specification Snew. Furthermore, different variables must be Inclpped
to different terms, i.e., the substitutions must be injective. Injectivity may
not always be required but it is a save condition ensuring that a proper
instance of the reuse candidate is computed during the proof. The reader may
note that an instantiation of sequents during a sequent proof is only possible
when quantifier rules are applied. Plan specification formulae are implicitly
universally quantified, i.e., when proving Sold => Snew in the sequent calculus
we remove the universal quantifiers using the rules L V and r V and have to
"guess" the appropriate instantiation. Of course, this is unacceptable ill all
implemented prover due to the resulting computational overhead. Therefore,
the instantiation is delayed until we know which instantiation is appropriate ,
i.e., which one will lead to a proof of the sequent. The restrictiolls w e pose 011

the instantiations of the leaf sequents ensure that only those instantiatiolls
are computed that can be introduced with the help of the quantifier rul es LV
and rV:

•
r, A[c/x] => 6
r,VxA=> 6

LV •
r => 6, A[a/x]

r => 6,VxA
'rV

Eigenvariable condition: a must not occur in the conclusioll of 1V

The tactic for the goal proo/is shown in Figure 7. It has to cope with modal
operators and therefore additionally uses the following sequent rules :

28

•

goaLtac (goal..seq ,List_oLAxioms):-
apply _rule..strict(10 , [goal..seq],[first_old]) ,
apply _rule..strict(rO, [first...old) ,[firskold_and_new]),
i terateJule(1/\ ,[first_old _and..new), [first_atom Jeft]),
iterateJule (r /\ ,[firskatomJeft), [first...atomJight, remaining..seq)) ,
calLtac(c1oseJeaves,[first...atomJight) ,LiskoLAxioms),
calLtac(expand..goal..su btree,[remaining...seq) ,LiskoLAxioms),
call_tac(goal_tac, [remaining..seq) ,List_of ..Axioms).

expand _goal..su btree(remaining...seq ,List_of..Axioms):­
apply _rule...strict(rO,[remaining..seq),[nexLnew]),
iterateJule(r/\,[nexknew),[nextJlew _atom]),
calLtac(c1oseJeaves,[nextJlew _atom) ,Liskof..Axioms),
calLtac(expand..goal..su btree,[nextJlew) , Liskof..Axioms).

Figure 7: Sketch of the tactic for the goal proof

r*, A=> 6* LO
r,OA => 6 •

r => A,6 -----'--- rO
r => OA,6

. df df
With f * and 6, * : f* = {oBloB E r} and 6,* = {OBIOB E 6,}.

,

The tactic proceeds recursively over the sometimes operators in both goal
specifications in order to compare every temporary subgoal state specified in
goaLold with each of the temporary subgoal states from goaLnew.

The proof of the goal sequent proceeds straightforwardly with the help of
the tactic. lO The tactic applies rule LO to Sequent 2 followed by rule rO and
obtains Sequent 5:

'f' ead_fLag(m sg(m , mybox)) = T /\

=>
o [del et e-fLag(msg(m, mybox)) = TJ

(5)

,,.ead-fLag(msg(x, ·mbox)) = T /\ deLete-/Lag(msg(x,mbox)) = T

Now , the tactic applies rule L/\ followed by rule r/\ to Sequent 5 which leads
to Sequents 6 and 7

1'ead-fLag(rrtsg(m, mybox)) = T,
o [deLete-flag(rnsg(rrt,mybox)) = TJ

=> 'l' ead-flag('I71sg(x, m,box)) = T
(6)

10 A ll10re complex example dealing with universally quantified subgoals call be fo und ill
[Koeh ler, 1994c).

29

read_flag(msg(m, mybox)) = T,
<) [delete_flag(msg(m, mybox)) = T 1

=> delete_flag(msg(x, mbox)) = T
(7)

Sequent 6 can also be closed under the substitution {x ~ m, mbox ~
mybox}, i.e., the current subgoal read-flag(msg(x,mbox)) = T has been
successfully proved by the tactic:

(A2) Iread_flag(msg(x,mbox)) = T => read_flag(msg(x,mbox)) = TI
The tactic proceeds on Sequent 7 and removes the remaining <) operator
with the help of rule t<) which leads to Sequent 8

deLete_flag(msg(m, mybox)) = T => 0 (8)

The formula deLete_flag(msg(x, mbox)) = T from the succedent of Sequent 7
disappears in Sequent 8 because it does not occur in the scope of a <) operator.
Thus, the tactic fails in proving the remaining subgoal. The reason for this
failure is obvious: The current goal specification requires the two subgoals to
be achieved in the same state, while the reused goal specification only requires
the two subgoals to be achieved one after the other. Of course, deleting a
mail preserves the effect that the mail has been read, i.e., the reused plan that
first reads the mail and then deletes it also leads to a final state where the
mail has been read and deleted. But we have no way to derive this fact from
the original plan specification formula. This is a motivation for a completion
process of plan specification formulae that is described in Section 7.

(direction) (alaorithm) (load tree)

Figure 8: Visualization of the plan interpretation phase in MRL

30

Figure 8 illustrates the deduction tree which is constructed by the tactics
during the example proof. The black nodes designate two axioms that were
found. Axiom axioml represents one atomic precondition of the reused plan
that holds in the current initial state, while axiom2 represents one atomic
current goal that is achieved by the reused plan.

The white nodes (treeID352 and treeID364) visualize leaves that could not
be closed during the proof attempt, i.e., the tactics failed in proving that the
plan is applicable in the current initial state and that it achieves all of the
currently required goals . Thus, plan refitting must begin.

6.2 Plan Refitting

The proof tactics are designed always to terminate. In addition, they are
considered as decision procedures: If a tactic does not result in a proof tree ,
it is assumed that no proof is possible and that a falsifying valuation for
some of the leaves has been obtained. Two situations are possible after the
termination of the proof tactics in the sequent calculus:

1. A proof tree has been constructed, i.e., the leaves of the tree describe
a set of logical axioms from which the formula follows. In this case the
formula was proved to be valid.

2. No proof tree has been found and the assumption is made that no proof
is possible and that a counter-example tree has been constructed.

This assumption is a save condition ensuring the soundness of plan modifica­
tion. Remember that the tactics are incomplete, i.e., when a tactic terminates
with a failure it might either be the case that the formula is invalid or that
the formula is valid, but the tactics failed to find a proof.

Assuming that the formula is invalid ensures that the correctness of a plan
is verified during plan refitting. Thus it prevents a reuse of plans that are
not provably correct with respect to the current plan specification.

The proof tactics guarantee that the leaves of a counter-example tree contaiu
only atomic formulae . The falsifying valuation makes

• all old atomic goals (in the example from Spd true, however some of
the atomic formulae which describe current goals (in the example from
SP2) are valued as false. These falsified goals are interpreted as those
current goals that are not achieved by the reused plan (in the example
by PI) .

• all atomic formulae describing current preconditions (in the example
from SP2) true, but some of the old preconditions (in the example

31

from S PI) false. These falsified preconditions are interpreted as those
preconditions of the reused plan (in the example of PI) that do not
hold in the current initial state.

Therefore, plan PI must be modified by constructing a plan skeleton from it.
First, the plan is instantiated with the substitutions computed during plan
interpretation leading to

PI': ex(type(x, mbox)) ; ex(delete(x, mbox))

Plan refitting concludes from the two non-axiom leaves that the (instantiat­
ed) precondition open-flag(msg(mbox)) = F required by PI' does not hold
in the initial state and that the current goal delete_flag(msg(x, mbox)) = T
is not achieved by it. Furthermore, PI' achieves a subgoal

delete-flag(msg(m,mybox)) = T

that is not contained in one of the axioms constructed during the goal proof.
Thus, plan refitting concludes that the action ex(delete(m, mybox)) achieving
this subgoal ll is (at least at the current position where it occurs) superfluous
and can be removed from the plan skeleton. Table 9 summarizes the analysis
of plan interpretation that is performed by plan refitting for the example un­
der consideration. The necessary modification operations are derived based
on these results.

preconditions
old delete_flag(msg(m,mybox)) = F
new delete_flag(msg(x, mbox)) = F Axiom
old open-flag(msg(mybox)) = T no
new - Axiom

goals
old read_flag(msg(m,mybox)) = T
new read_flag(msg(x,mbox)) = T Axiom
old - no
new delete-flag(msg(x,mbox)) = T Axiom
old delete-flag(msg(m,mybox)) = T no
new - Axiom

Figure 9: Analysis of the plan interpretation phase

The following modification operations have to be performed on the instant i­
ated plan PI':

11 Knowledge about relations between actions and effects is stored ill the plan elltries,
cf. Section 7.

32

1. A planvariable has to be introduced in front of the reused plan. It
represents a subplan achieving the missing precondition.

2. The superfluous action is removed from the plan skeleton .

3. A planvariable representing the subplan for the open subgoal must be
introduced into the plan skeleton. In order to determine the position iu
the skeleton where this planvariable has to be added, the current goal
state specification must be analyzed with the help of the PHI planner.

The current plan specification is instantiated with the preliminary plan skele­
ton P 1/1. It serves as a starting point for the planner:

PI/l: Plan 1 ;ex(type(x,mbox))

Planl ; ex(type(x,mbox)) A delete_flag(msg(x,mbox)) = F
--t 0 ['read_f1ag(msg(x,mbox)) = TA

delete-flag(msg(x,mbox)) = TJ

In a first step, a subplan to replace Planl has to be generated. Plan refitting
applies the rule efJecLinl1'o [Biundo and Dengler, 1994J and introduces the
missing precondition as the new subgoal goalnew :

p're, Planl =? o [goalnew A OF A pre'J pre', Plan2 =? Ogoal
-'---' __ =--_-'--!::'----'..:c..::....-___ "'-----'-__ =-----'-_---=. __ -=-_ efJecL intro

pre, Plan 1 ; Plan2 =? Ogoal

It obtains the two subplan specifications 9 and 10 where Plan2 is instanti­
ated with the action ex(type(x, m.box)) taken from the plan skeleton . The
preconditiolls pre' are instantiated with delete_Ilag(m,sg(x, 'Inb01:)) = F by
a.pplying the mechanism for the computation of frame conditions that is pro­
vided by the PHI planner [Biundo et ai., 1992J:

delete-flag(msg(x, mbox)) = F, Planl
=? 0 [open_flag(msg(mbox)) = T A OFA

delete-flag(msg(x,mbox)) = FJ

upen_flag(msg(mbox)) = T A delete_flag(msg(x, mbox)) = F,
e:r(type(:r, mbox))
=? o [7' ead_flag(m,sg(x,mbox)) = TA

delet e-flag(rHsg(:r,mbox)) = TJ

(9)

(10)

The proof of the subplan specification 9 leads to a conditional plan because
there is no action available in the domain axiomatization that achieves the
required goal under the given precondition. Plan refitting applies the rule
if_i1l.tro [Biundo and Dengler, 1994J to insert the case analysis:

33

pre, if(cond, PlanA, Plans) => Ogoal j ..
--=----'_-'--_-'--_....:....:..:._----'::...c..._--'''--_ I _ mtro

p're, Plan => Ogoal

In the example, the planvariable Planl is instantiated with a case analysis
over the state of the mailbox, which is the missing precondition that plan
interpretation failed to prove:

Planl:= if open_flag(mbox) = T then Plan3
else P1an4

Applying the rule if_splitting [Biundo and Dengler, 1994] to Sequent 9, plan
refitting obtains the following subplan specifications:

pre, cond, PlanA => Ogoal pre, -,cond, PlanS => Ogoal
-'-----'---'----.!....:...----==------'----'-----'----=---=---- ij~8]Jlitti1/,!J

p're,if(cond, PlanA, Plans) => Ogoal

delete_flag(m::;g(x,mbox)) = F,open,-flag(mbox) = T , Plan3
=> 0 [open_flag(mbox) = T 1\ OF 1\ (11)

delete_flag(msg(x,mbox)) = F]

delete-flag(msg(x, mbox)) = F, -,open_flag(mbox) = T, Plan4
=> 0 [open_flag(mbox) = T 1\ OF 1\ (12)

delete-flag(msg(x,mbox)) = F]

Plan3 is instantiated with the empty action ex(empty_aclion) becausc tllC
desired subgoal already holds in the initial state (see the underlill cd for­
mulae in Sequent 11), while Plan4 is instantiated with the actioll iw;1.all cc
ex(mail(mbox)) which opens the mailbo;(and starts a mail sessioll:

Vx [open_flag(mailbox) = F 1\ ex(mail(ma'ilbox))
-+ 0 open-flag(mailbox) = TJl2

Thus, the following conditional plan is obtained as an instantiatioll of Plan 1:

Planl:= if open-flag(mbox) = T then ex(empiY..fl,clion)
else ex (rnail(mbox))

The proof of the subplan specification 10 proceeds as an interleaved process
of plan generation and plan verification. First, a tactic for the ordering of
conjunctive goals is activated [Biundo and Dengler, 1994] which decides to
achieve the subgoal

12Note that -,open_flag{mbox) = T is equivalent to open-flag(mailbox) = F.

34

read-flag(msg(x, mbox)) = T

before the subgoal

delete_flag(msg(x, mbox)) = T

because the former is a necessary precondition for an action achieving the
latter. The first subgoal is isolated with the help of the set rule [Biundo and
Dengler, 1994]:

pre, PlanA =} O[goall A OF A pre'] pre', PlanS =} O[goall A goal2] I
se

pre, PlanA; PlanS =} O[goall A goal2]

This rule requires a sequential composition of two planvariables that can be
split such that the first planvariable represents a subplan achieving the first
subgoal, while the second planvariable represents a subplan achieving the
remaining subgoals. But the planvariable Plan2 introduced by the effecLsplit
rule has been instantiated with the action ex(type(x, mbox)) in specifica­
tion 10. Thus, this instantiation must be withdrawn and plan refitting sets
Plan2 to PlanS; Plan6.

The first subgoal read-flag(msg(x, mbox)) = T has successfully been proven
during plan interpretation using the old subgoal read_f lag(msg(m , mybox)) =

T. Consequently, the action from the plan skeleton ex(type(x, mbox)) achiev­
ing the isolated subgoal is reused as an instantiation of the planvariable PlanS :

open-flag(msg(mbox)) = T A delete_flag(msg(x,mbox)) = F,
ex(type(x,mbox)) (13)
=} O[read_flag(msg(x,mbox)) = T A OF Apre']

The instantiation can be successfully verified by plan refitting. The vari­
able pre' is instantiated by computing frame conditions using PHI. With the
second subgoal delete_flag(msg(x, mbox)) = T plan refitting addresses the
open subgoal that plan interpretation failed to prove. Plan refitting con­
cludes that the reused plan provides no instantiation and relies on planning
from scratch. It generates the action ex(delete(x, mbox)) that instantiates
the remaining planvariable Plan6' With this, all planvariables have been
successfully instantiated and a correct proof of the plan specification has
been constructed by plan refitting. The result is the desired plan P2 that is
obtained by reusing the sequential plan PI:

P2: if open-flag(mbox) = T then ex(empty...action)
else ex(mail(mbox));

ex(type(x,mbox)) ;ex(delete(x,mbox))

35

The planning process benefits from the reuse of plan PI in two situations:

• When a conditional control structure has to be introduced; here plan­
ning from second principles "knows" on which formula the case analysis
has to be performed .

• When thesubgoal reaLfLag(msg(m,mybox)) = Thas to be addressed ;
here planning from second principles reuses an action instantiation that
achieved the same goal in the plan candidate.

The search space during planning can be dynamically restricted in both cas­
es , which leads to a speed up of the second-principles planner when com­
pared to the generative planner. 13 A maximal reuse of the library plan
is not possible according to the complexity-theoretic results from [Nebel
and Koehler, 1993al. In the example, this leads to some overhead during ·
plan refitting where the action instance ex(deLete(m, mybox)) is eliminated
from the original plan, but subsequently re-introduced as the action instance
ex(deLete(x , mbox)). This demonstrates "that it is not possible to determine
efficiently (i.e., in polynomial time) a maximal reusable plan skeleton be­
fo re plan generation starts to extend this skeleton" (cf. [Nebel and Koehler ,
1993a], page 1440).

The example demonstrated the generation of a conditional plan by reusing
a sequential plan. MRL is the first system that is able to reuse and modify
correctly plans containing control structures.

6.3 Reuse of Control Structures

The reuse and modification of plans with control structures leads to quali ta­
tively new problems that do not occur in approaches restricting t hemselves to
sequential plans. The modification of sequential plans comprises operations
like the instantiation, deletion, addition or reordering of atomic actions. The
modification of complex plans raises the question of whether these operations
can be extended to control structures. Two main decisions have to be made:

1. Are control structures reused?
versus
Are only those sequential subplans reused that occur in the scope of
control structures?

2. Are control structures introduced by the modification strategy if this
is required by the refitting process?

13A summary of the results of an empirical study can be found in [Koehler , 1994d ;
Koehler, 1994bj .

36

versus
Are control structures introduced if the current planning problem re­
quires a plan containing control structures?

The treatment of control structures in a second-principles planner requires
to make these decisions carefully and to take into consideration specific re­
quirements from the application domain. The MRL system provides the reuse
component of the PHI planner which is working in a help-system application.
Here, plans are generated to provide active help to users of complex software
environments [Bauer et al., 1993]. This means that plans are required to
meet exactly the user's goals and to be as simple as possible. Therefore,
control structures are only reused in a restricted way in the implemented
system MRL. They are introduced into the modified plan or preserved in the
plan skeleton only if the current planning problem requires the generation of
a plan containing control structures.

An unrestricted reuse of control structures can lead to the following problems:

• Reused control structures are not guaranteed to correspond to the re­
quirements of the current planning situation. This can result in over­
complicated plans. For example, a case analysis makes the execution
of a plan more complicated because a test on the conditional has to
be performed during execution time. Thus, a case analysis should only
be introduced into a plan skeleton when the current planning problem
requires us to generate a conditional plan.

• Plans can achieve unintended side-effects. Plan refitting makes some
attempts at optimizing a reused plan by removing superfluous actions
from it, but it is not able to generate optimal plans because this is
usually harder than planning. Superfluous control structures render
the problem worse. For example, an iterative plan which achieves a
particular goal for all objects satisfying a precondition could in principle
be reused to satisfy the goal for only one of the objects. As an example,
the reader may think of reusing a plan achieving the goal "delete all
my files in di rectory x" that achieves also the goal" delete file x.ps
in directory x" . Without any attempts at optimizing the reused plan
by removing the superfluous iterative control structure a drastic and
harmful side effect is achieved.

Restricting the reuse of control structures as in MRL is one way of coping
with these problems. Further research is necessary in order to identify other
solutions.

37

7 Updating the Plan Library

The plan library is updated dynamically in MRL. The system starts with the
initial plan library containing only the indices top and bottom. A new plan
entry is added to the library under the following conditions:

• no reusable plan has been found and the planner has to generate a plan
from first principles,

• the reused plan has to be modified.

The plan library is not updated when

• a library plan directly solves a current planning problem,

• the index of the current planning problem is already contained in the
library.

MRL automatically builds a taxonomy of planning problems based on the
indexing of plan specifications with the help of the encoding scheme. Each
index represents an abstract class of planning problems in the appli cat ioll
domain. An index is related to a plan entry containing stored information
about a successfully solved planning problem: the plan, the plan specifica­
tion, and information extracted from the planning process that has led to
this plan. The plan in the plan entry is stored on a "first come- first serve"
basis and represents an instance of the abstract class represented by the in­
dex. Planning problems belonging to the same abstract class can be solved
by a modification of the stored plan in the plan entry. Thus, the plan li­
brary can be kept small. Furthermore, regularities of the application domain ,
e.g., typically occurring planning problems are reflected in the structure of
the taxonomy.

Let us continue the example from Section 6. According to the above men­
tioned conditions, the plan library is updated because the reused plan has
been modified. Three sources of information are available for the construc­
tion of the plan entry:

1. the current plan specification,

2. the modified plan satisfying the specification,

3. the proof tree that is stored as result of plan refitting .

The index of the plan entry has already been computed during plan determi­
nation. The current plan specification is completed before it is added to the

38

plan entry. This requires us first, to complete the goal specification, i.e., to
specify additional goals a plan can achieve as side-effects and secondly, to
minimize the preconditions of a plan, i.e., to eliminate preconditions from
the specification formula which are not necessary for the plan.

The completion process analyses the instances of planning rules and action
axiom schemata that have been applied during the proof performed by plan
refitting. Action axiom schemata specify the necessary preconditions of an
action and the effects it achieves (cf. Section 4). The computation of the
index is repeated if the completion process leads to a changed specification
formula.

In the example under consideration, the completion of plan specification S P2

leads to a disjunctive precondition reflecting the complete case analysis that
has been introduced into the plan with the help of the if_intra rule:

Planp2 A
[delete_flag(msg(x, mbox)) = FA open-flag(mbox) = T] V
[delete-flag(msg(x,mbox)) = FA open-flag(mbox) = F)
-+ 0 [read_f lag(msg(x, mbox)) = T A

delete_flag(msg(x, mbox)) = T]

An explicit representation of the possible preconditions for plan P2 supports
the identification of applicable subplans during the plan interpretation phase.
A recomputation of the index is not necessary because the conjunctive normal
form of the completed precondition formula is logically equivalent to the
originally specified precondition in SP2.

A major part of a plan entry comprises information that is extracted from
the proof tree leading to a plan:

• relation of sequential subplans occurring in conditional plans to their
minimal preconditions,

• extraction of sequential body plans occurring in iterative plans,

• relation of atomic actions to the atomic goals achieved by the plan.

In order to relate sequential subplans to their minimal preconditions the
proof tree is analyzed for applications of the rule if_intro (cf. Section 6). In
the example, plan refitting has led to the conditional plan

Planl: if open-flag(mbox) = T then ex(empty_action)
else ex (mail (mbox))

39

preceding the sequential plan ex(type(x, mbox)) ; ex(delete(x, mbox)). Two
possible preconditions for this plan are explicitly represented in the completed
plan specification formula. Now, each of them is related to the sequential
plan that belongs to one of the preconditions. Consequently, the following
information is stored in so-called belongs_to entries:

• belongs_to[ex(type(x, mbox)); ex(delete(x, mbox)),
delete_flag(msg(x, mbox)) = F 1\ open-flag(mbox) = T]

• belongs_to[ex(mail(mbox)); ex(type(x, mbox)) ; ex(deLete(x, mbox)),
delete_flag(msg(x, mbox)) = F 1\ open_flag(mbox) = F]

Plan refitting relies furthermore on information about the relationship be­
tween actions and atomic subgoals. When a current atomic subgoal has
successfully been proved with the help of an old subgoal during plan inter­
pretation, plan refitting looks this old subgoal up in so-called reaches entries
stored with the plan entry and reuses the action or subplan which achieved
the old subgoal.

The action instances which achieve atomic goals are extracted from the leaves
of the proof tree resulting from the application of action axiom schemata. In
the example, we obtain the following reaches entries:

• reaches[ex(maiL(mbox)),open_flag(mbox) = T]

• reaches[ex(type(x, mbox)), read_flag(x, mbox) = T]

• reaches[ex(delete(x, mbox)), delete_flag(msg(x, mbox)) = T]

The construction of a plan entry is completed by a systematic renaming of
variables with internal designators and by a sort-preserving abstraction of
constants like sender Joe with existentially quantified variables .

Finally, the plan entry is related to its index which uniquely determines its
position in the plan library. It is now available to subsequent planning from
second principles.

8 Related Work

The implementation of a second-principles planner based on the formal frame­
work as introduced in Section 3 requires design decisions that specify how
planning from second principles proceeds in detail. In this section, we discuss
the most important of these decisions underlying MRL and relate the system
to other approaches.

40

Meta Level versus Object Level

Planning from second principles can proceed on a meta level or on an object
level. On the object level, previously generated plans are directly reused to
solve the current planning problem. This means that the plans as the ob­
jects of the planning process guide planning from second principles. On the
meta level, knowledge extracted from previous planning processes represent­
ing "planning experience" guides the search for the desired plan.

The commitment of a particular planner to one of these levels is a fundamen­
tal design decision. A commitment to the object level leads to case-based
planners and reuse systems, e.g., PRIAR [Kambhampati and Hendler, 1989]
and SPA [Hanks and Weld, 1992a] . A commitment to the meta level leads to
adaptive and reactive systems based on learning techniques, e.g. , PRODIGY
[Minton, 1988] and GRASSHOPPER [Leckie and Zuckerman , 1993].

MRL proceeds mainly on the object level because it relies on the reuse of
stored plans. Meta level knowledge is reused, e.g., when plan refitting is
supplied with information about preconditions on which case analyses have
to be performed, cf. the example in Section 6.

Skeletal Plan Refinement versus Flexible Modification

If planning from second principles proceeds on the object level, plans are
modified in order to construct the desired plan from them . Plan modificatioll
can be implemented as skeletal plan refinement [Friedland and Iwasaki, 1985]
or as flexible modification [Kambhampati, 1990; Hanks and Weld , 1992a].

Skeletal plan refinement computes an appropriate ground-level instantiation
for each operator occurring in the abstract skeleton. The admissi ble mod­
ification operations are restricted to instantiation, but they can proceed in
several hierarchical steps and backtracking may occur. The modified plan is
obtained as an instance of the skeleton.

Flexible modification as implemented in MRL admits a variety of operations
on plans , e.g., the delet ion and addition of operators and control structures.

Skeletal refinement occurs in MRL when the current plan specification has
successfully been proved to be a logical instance of the reused plan specifica­
tion. In this situation, an instance of the library plan will solve the current
planning problem and plan modification can be restricted to instantiation
operations.

Transformation-based versus Generation-based

The modification of a plan can be done with the help of transformations [Mc­
Dermott , 1978; Hammond, 1990; Beetz and McDermott, 1992] or by extend-

41

ing a first-principles planner with the ability to modify plans [Kambhampati,
1989; Hanks and Weld, 1992a; Veloso, 1992b].

Transformation-based approaches execute a plan in a simulated environment.
Failures are classified in a failure hierarchy and resolved by activating trans­
formations on the plan. This approach requires a prediction of all possi ble
failures, i.e., a proof of the completeness of the failure hierarchy and the
available transformation rules, which is hard to achieve. 14 Further problems
are related to the soundness and termination of the transformations. Trans­
formations resolving a failure may introduce other failures, which makes it
difficult to ensure that the transformation process does not loop and that the
transformed plan is sound, i.e., that it solves the current planning problem.

To overcome these problems, a generation-based approach has been intro­
duced in the PRIAR system [Kambhampati, 1989]. The proof of the com­
pleteness of plan modification with respect to the planner is trivial since plan
modification can rely on plan generation as a "fall-back" possibility. Sound­
ness and termination are also easy to ensure if the underlying first-principles
planner possesses these properties.

The modification of a plan in MRL proceeds generation-based. MRL com­
putes a plan skeleton and sends it to plan refitting for completion, which
interacts with the generative PHI planner. The plan skeleton preserves those
control structures and actions that are assumed to be reusable. The exten­
sion of a skeleton to a correct plan requires flexible modification operations ,
which add or delete new operators and control structures. The correctnes:;
of the planning process with the help of which the skeleton is completed,
ensures that the modified plan is sound. Planning knowledge represented
by the plan skeleton guides the current planning process and dynamically
constrains the search space.

MRL is "complete" with respect to the planner because plan refitting can
"fall back" on plan generation. The system is incomplete in the sense that
it will not always find a plan if there is one because the use of tactics makes
the underlying LLP theorem prover incomplete.

Conservative versus Non-Conservative

A desirable property of plan modification is conservatism, which means to
"produce a plan ... by minimally modifying [the original plan]" [Kambham­
pati and Hendler, 1992]. Minimal modification of a plan implies a preser­
vation the maximal number of applicable operators in a plan skeleton. A
critical analysis of conservatism in [Nebel and Koehler, 1993al shows that
the computation of such maximal plan skeletons is PSPACE-hard. There-

l4As an example see the incompleteness proof of CHEF in [Hanks and Weld , 1992bj .

42

fore, implemented systems including MRL are non-conservative. In order to
ensure efficiency of the plan modification process they rely on polynomial
approximations, for example proof tactics for plan interpretation that run in
polynomial time, which compute an "entry point" into the search space of
possible plans as made explicit by Hanks and Weld [Hanks and Weld, 1992a].
This entry point cannot be guaranteed to be the best, but it is the best the
approximation algorithm can compute. It is an open problem whether the
maximal applicable subplan is approximable within a constant ratio. Recent
results for similar problems [Backstrom, 1994] seem to hint at a negative
result.

The Plan Library

Recently, the representation of plans based on terminological knowledge­
representation systems has led to several approaches, which extend descrip­
tion logics with new application-oriented representational primitives for the
representation of actions and plans.

One such extension is the system RAT [Heinsohn et al., 1991] which is based
on KRIS [Baader et al., 1992]. RAT implements reasoning about plans
by inferences in the underlying description logic. The system simulates the
execution of plans, verifies the applicability of plans in particular situations
and solves tasks of temporal projection.

An application of description logics to tasks of plan recognition is developed
in T-REX [Weida and Litman, 1994]. Plans in T-REX may contain condi­
tions and iterations as well as non-determinism in the form of disjunctive
actions.

The plan library can be static as well as dynamic in MRL. A static library
comprises user-predefined typical plans. The system retrieves these plans for
reuse, but does not add new plans to the library. A dynamic plan library
grows during the lifetime of the system. MRL starts with an empty library
and incrementally adds new plan entries to it.

The main advantage in using a description logic as a query language to the
plan library as in MRL lies in the theoretically well-founded properties of
the retrieval algorithm. For the first time, retrieval is guaranteed to retrieve
sol-utions from a library in polynomial time. This contrasts with approach­
es that are restricted to retrieving "reasonable similar past cases ... within
limited bounded resources" (cf. [Veloso, 1992b], p. 103) . Furthermore, an
indexing of plan libraries based on the lattice structure provided by the sub­
sumption hierarchy overcomes problems occurring in indexing schemes based
on discrimination networks. On the one hand, discrimination networks fail
in indexing complex plan specifications because they are restricted to coping
with conjunctions of literals. On the other hand, such pathological situations

43

may occur where retrieval algorithms working on discrimination networks
are provided with an exponentially growing input set. For example, given a
goal state containing n atomic subgoals, the retrieval algorithm developed in
[Veloso, 1992b] first searches a plan covering these n subgoals . If this fails ,
it computes all subsets of subgoals of cardinality n - 1, then n - 2 and so
on until it takes the atomic subgoals as input. This means, the retrieval
algorithm takes the power set of n except the empty set as input in the
worst case, which is 2n -1. An indexing based on the subsumption hierarchy
avoids such problems because existing relationships between sets of subgoals
are reflected in the lattice structure of the index taxonomy.

9 Conclusion

We have presented a logic-based approach to planning from second principles ,
which relies on a systematic decomposition of the planning process wi th
the help of a four-phase model. Deductive inference processes with clearly
defined semantics formalize each phase. The formal model is independent or
a particular planning formalism and makes no commitments to application
domains , implementational details, the nature of plans or planning situations.

Plan modification yields provably correct modified plans and enables a second­
principles planner to reuse plans containing control structures like condition­
als and iterations.

Reusable plans are retrieved from a dynamically updated plan library using
a description logic as query language to the library. The plan library can
be indexed based on a lattice structure and retrieval is formalized using a
KL-ONE like classifier which is guaranteed to find existing solutions.

The formal framework leads to an implemented system with predictable be­
havior . Furthermore, in contrast to heuristic approaches, theoretical proper­
ties like the correctness, completeness and efficiency of the inference proce­
dures can be proved .

Acknow ledgements

This work was supported by the German Ministry for Research alld Techll ol­
ogy (BMFT) under contract ITW 9000 8 as part of the PHI proj ect. I wallt
to thank the members of the PHI group, Mathias Bauer, Susanne Biundo,
Dietmar Dengler, and Gaby Paul for their interest in my work and for fruitful
discussions. Furthermore, I am indebted to Wolfgang Wahlster for his advice
and support and to Bernhard Nebel for joint work. Hans-Jiirgen Ohlbach
made helpful comments on an earlier version of this paper.

44

References

[AIPS-92, 1992] Proceedings of the 1st International Conference on Artifi­
cial Intelligence Planning Systems, Washington, D.C., 1992. Morgan Kauf­
mann, San Mateo.

[Baader et al., 1992] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitliell, and
E. Franconi. An empirical analysis of optimization techniques for termino­
logical representation systems, or making KRIS get a move on. In Nebel
et al. [1992], pages 270- 281.

[Backstrom and Sandewall, 1994] C. Backstrom and E. Sandewall, editors.
Current Trends in AI Planning. lOS Press, Amsterdam, Washington,
Tokyo, 1994.

[Backstrom, 1994] C. Backstrom. Finding least constrained plans and op­
timal parallel executions is harder than we thought. In Backstrom and
Sandewall [1994].

[Bauer and Paul, 1994] M. Bauer and G. Paul. Logic-based plan recognitioll
for intelligent help systems. In Backstrom and Sandewall [1994], pages
60- 73.

[Bauer et al., 1993] M. Bauer, S. Biundo, D. Dengler, J. Koehler, and
G. Paul. PHI - a logic-based tool for intelligent help systems. In IJCAI-9:3
[1993], pages 460- 466.

[Beetz and McDermott, 1992] M. Beetz and D. McDermott. Declarative
goals in reactive plans. In AIPS-92 [1992], pages 3- 12.

[Biundo and Dengler, 1994] S. Biundo and D. Dengler. The logical language
for planning LLP. Research Report, German Research Center for Artificial
Intelligence, 1994.

[Biundo et al., 1992] S. Biundo, D. Dengler, and J. Koehler. Deductive plan­
ning and plan reuse in a command language environment. In Neumann
[1992], pages 628- 632.

[Brachmann and Levesque, 1984] R. Brachmann and H. Levesque. The
tractability of subsumption in frame based description languages. III P1'O­
ceedings of the 4th National Conference of the Amer'ican Association IO 'I'

Artificial Intelligence, pages 34- 37, Austin, TX, 1984. MIT Press.

[Constable, 1986] R. Constable. Implementing Mathematics with ihe Nup'l'i
Proof Development System. Prentice Hall, 1986.

45

[Feigenbaum, 1963] E.A. Feigenbaum. The simulation of natural learning
behavior. In E.A. Feigenbaum and J. Feldman, editors, Compute1's and
Thought. Me Graw-Hill, New York, 1963.

[Friedland and Iwasaki, 1985] P. Friedland and Y. Iwasaki. The concept and
implementation of skeletal plans. Journal of Automated Reasoning, 1:161-
208, 1985.

[Frisch alld Scherl, 1991] A. M. Frisch and R. B. Scher!. A gelleral fram ework
for Illodal deductioll. III J.A. Allell, R. Fikes, and E. Salldewall, editors ,
Proceedings of the 2nd International Confe1'ence on Principles of Knowl­
edge R ep.,·esentation and Reasoning, pages 196- 207. Morgan Kaufmann,
Sail Mateo, 1991.

[Gallier, 1987] J. II. Gallier. Logic for Computer Science: Foundations of
Automatic Th eo·rem P1'Oving. John Wiley and Sons, New York, 1987.

[Givan and McA licster, 1992] R. Givan and D. McAllester. New results on
local illference relations. In Nebel et al. [1992], pages 403- 412.

[Creen,1969] C. Creell. Application of theorem proving to problem solv­
ing. In P.roceedings of the 1st Inienwtional Joint Confer·ence on Ar·tificial
Intelligence, pages 219- 239, Washington, D.C., May 1969.

[I-lammond, 1990] K. J. Hammond. Explaining and repairing plans that fai!.
Artificial Intelligence, 45:173 - 228, 1990.

[Hanks and Weld, 1992a] S. Hanks and D. Weld. Systematic adaptation for
case-based plannillg. In AIPS-92 [1992], pages 96- 105.

[Hanks alld Weld , 1992b] S. Hanks and D. Weld. The systematic plan adap­
tor: A formal foundatioll of case-based planning. Technical Report 9~-

09-04, Uuiversity of Washington, Department of Computer Science and
Engineering, 1992.

[Heinsohn et al., 1991] J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Prof­
itlich. Integration of action representation in terminological logics. In
C. Peltason, K. Luck, and C. Kindermann, editors, Proceedings of th e Te1'­

minological Logic Use1's Workshop. KIT- Report 95, TU Berlin, Germany,
1991.

[Heisel et (1,1., 1990] M. Heisel , W. Reif, and W. Stephan. Tactical theorem
proving ill program verification. In Proceedings of the 1 Dth Int ernation­
al Confe1·ence on Automated Deduction, Lecture Notes in Artificial In­
telligence 449, pages 117- 131, Kaiserslautern, Germany, 1990. Springer,
Berlin.

46

[Hollunder et al., 1990J B. Hollunder, W. Nutt, and M. Schmidt-Schauf).
Subsumption algorithms for concept description languages. In L.C. Aiel­
lo, editor, Proceedings of the 9th European Conference on A rtificial In­
telligence, pages 348- 353, Stockholm, Sweden, August 1990. Clays Ltd,
England.

[IJCAI-93, 1993J Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Chambery, France, August 1993. Morgan Kauf­
mann.

[Kambhampati and Hendler, 1989J S. Kambhampati and J.A. Hendler. Con­
trol of refitting during plan reuse. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence, pages 943- 949, Detroit, MI,
August 1989. Morgan Kaufmann.

[Kambhampati and Hendler, 1992J S. Kambhampati and J.A. Hendler. " A
validation-structure-based theory of plan modification and reuse. Artificial
Intelligence, 55:193 - 258, 1992.

[Kambhampati, 1989J S. Kambhampati. Flexible reuse alld modificaLioll ill
hierarchical planning: A validation-structure-based approach. PhD Tlle­
sis MD 207 42-3411, University of Maryland, Cente r for Automa tioll R e­

search, Computer Vision Laboratory, 1989.

[Kambhampati, 1990] S. Kambhampati. A theory of plan modification. In
Proceedings of the 8th National Conference of the American Association
for Artificial Intelligence, pages 176-182, Boston, MA, August 1990. MIT
Press.

[Kautz and Selman, 1992J H. Kautz and B. Selman. Planning as satisfiabil­
ity. In Neumann [1992], pages 359- 363.

[Koehler and Treinen, 1993] J. Koehler and R. Treinen. Constraint deduc­
tion in an interval-based temporal logic. In W01'king Notes of the AAAJ
Symposium on Automated Deduction in Nonstandard Logics. AAAI Press,
Menlo Park, 1993.

[Koehler, 1994aJ J. Koehler. An application of terminological logi cs to case­
based reasoning. In J. Doyle, E. Sandewall, and P. Torasso, ed itors , Pr"o­
ceedings of the 4th Inter"national Conference on Principles of J(lwwledge
Representation and Reasoning, pages 351- 362. Morgan Kauflllallll, Sa.11

Francisco, CA, 1994.

[Koehler, 1994b] J. Koehler. Avoiding pitfalls in case-based planning. In
Proceedings of the 2nd International Conference on A rtificial Int elligence
Planning Systems, Chicago, IL, 1994. Morgan Kaufmann, San Mateo.

47

[Koehler, 1994c] J. Koehler. Correct modification of complex plans. In
A. Cohn, editor, Proceedings of the 11th European Conference on Artificial
Intelligence, pages 605-609, Amsterdam, NL, August 1994. John Wiley &
Sons.

[Koehler,1994d] J. Koehler. Flexible plan reuse in a formal framework. In
Backstrom and Sandewall [1994], pages 171-184.

[Koehler, 1994e] J. Koehler. Reuse of Plans in Deductive Planning Systems.
PhD thesis, University of Saarland, 1994. In German.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufman,
1993.

[Kowalski, 1979] R. Kowalski. Logic for Problem Solving. North Holland,
Amsterdam, 1979.

[Leckie and Zuckerman, 1993] C. Leckie and 1. Zuckerman. An inductive
approach to learning search control rules for planning. In IJCAI-93 [1993],
pages 1100-1105.

[Manna and Waldinger, 1987a] Z. Manna and R. Waldinger. How to clear a
block: Plan formation in situational logic. Journal of Automated Reason­
ing, 3:343-377, 1987.

[Manna and Waldinger, 1987b] Z. Manna and R. Waldinger. A theory of
plans. In M. Georgeff and A. Lansky, editors, Reasoning about Actions
and Plans: P1'oceedings of the 1986 Workshop, pages 11-45. Morgan Kauf­
mann, 1987.

[McDermott, 1978] D. McDermott. Planning and acting. Cognitive Science,
2:71- 109, 1978.

[Minton, 1988] S. Minton. Quantitative results concerning the utility of
explanation-based learning. In Proceedings of the 7th National Confer­
ence of the American Association for Artificial Intelligence, pages 564-569,
Saint Paul , MI, August 1988. MIT Press.

[Nebel and Koehler, 1993a] B. Nebel and J . Koehler. Plan modification ver­
sus plan generation: A complexity-theoretic perspective. In IJ CAI-93
[1993], pages 1436- 144l.

[Nebel and Koehler, 1993b] B. Nebel and J. Koehler. Plan reuse versus plall
generation: A theoretical and empirical analysis. Research Report RR-93-
33, German Research Center for Artificial Intelligence (DFKI), 1993.

48

[Nebel et al., 1992J B. Nebel, W. Swartout, and C. Rich, editors. Proceedings
of the 3rd International Conference on Principles of Knowledge Represen­
tation and Reasoning. Morgan Kaufmann, San Mateo, 1992.

[Nebel, 1990J B. Nebel. Reasoning and Revision in Hybrid Representation
Systems. Lecture Notes in Artificial Intelligence 422. Springer, 1990.

[Neumann, 1992J B. Neumann, editor. Proceedings of the 10th European
Conference on Artificial Intelligence, Vienna, Austria, August 1992. John
Wiley & Sons.

[Ohlbach, 1991J H.J. Ohlbach. Semantics-based translation methods for
modal logics. Journal of Logic and Computation, 1(5):691- 775, 1991.

[Paulson, 1990J L. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifredi, editor, Logic and Computer Science. Academic Press, 1990.

[Riesbeck and Schank, 1989] C.K. Riesbeck and R.C. Schank. Inside Case­
based Reasoning. Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1989.

[Schmidt-SchauB and Smolka, 1991] M. Schmidt-SchauB and G. Smolka. At­
tributive concept descriptions with complements. A rtificial Intelligence,
48:1-26, 1991.

[Veloso, 1992a] M. Veloso. Automatic storage, retrieval, and replay of multi­
ple cases using derivational analogy in PRODIGY. In Working Notes of the
AAAI Spring Symposium on Computational Considerations in Suppor·ting
Incremental Modification and Reuse, pages 131-136, Stanford University,
CA, 1992.

[Veloso, 1992b] M. Veloso. Learning by Analogical Reasoning in Gew~ '/·(/.L
Problem Solving. PhD thesis, Carnegie Mellon University, 1992.

[Wallen, 1989J L.A. Wallen. Automated Deduction in Nonclassical Logics.
MIT Press, Cambridge, London, 1989.

[Weida and Litman, 1994] R. Weida and D. Litman. Subsumption and
recognition of heterogeneous constraint networks. In Proceedings of the
Tenth IEEE Conference on Artificial Intelligence for Applications, 1994.

49

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI VerOffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse oder per anonymem ftp von ftp.dfki.uni­
kl.de (131.246.241.1 00) unter pub/Publications
bezogen werden.
Die Berichte werden, wenn nicht anders gekenn­
zeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-93-09
Philipp Hanschke , Jorg Wurtz :
Satisfiability of the Smallest Binary Program
8 pages

RR-93-10
Martin Buchheit. Francesco M . Donini. Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, l/ans-Jwgen Bwckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader. Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren. Andreas Podelski, RalfTreinen:
Equational and Membership Constraints for Infinite
Trees
33 pages

RR-93-1S
Frank Berger, Thomas Fehrle, Kristof Klockner,
Volker SchOlles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

DFKI
-Bi bliothek­
PF 2080
67608 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or via anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.
The reports are distributed free of charge except if
otherwise indicated.

RR-93-16
Gert Smolka, Martin Henz, Jorg Wurtz : Object­
Oriented Concurrent Constraint Programming in Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional Jl-Calculus
32 pages

RR-93-20
Franz Baader, Bernhard HoI/under:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jorg Muller :
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Oltmar LUlzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR-93-2S
Klaus Fischer, Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain
93 pages

RR-93-26
lorg P. Muller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation WiLhout Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, lohn Nerbonne,
Hannes Pirker: Feature-Based AJlomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent
Worlds viaTenninologica1 Logics
35 pages

RR-93-30
Stephen P. Spackman, Elizabeth A. Hinkelman:
Corporate AgenlS
14 pages

RR-93-31
Elizabeth A . Hinkelman, Stephen P. Spackman:
Abductive Speech Act Recognition, Corporate
AgenlS and Lhe COSMA System
34 pages

RR-93-32
David R. Traum, Elizabeth A . Hinkelman:
Conversation AclS in Task-Oriented Spoken
Dialogue
28 pages

RR-93-33
Bernhard Nebel, lana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, Fran~ois Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KJ­
Programmierung - Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt : Von IDA bis IMCOD:
Expertcnsysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, Werner NUll, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried II. Graf: LA YLAB: A Constraint-Based
Layout Manager for Multimedia Presentations
9 pages

RR-93-42
lIubert Comon , RalfTreinen:
The First-Order Theory of Lexicographic PaLh
Orderings is Undecidable
9 pages

RR-93-43
M. Bauer, G. Paul: Logic-based Plan Recognition
for Intelligent Help Systems
15 pages

RR-93-44
Martin Buchheit , Manfred A. leusfeld, Werner Nutt,
Martin Staudt : Subsumption between Queries to
Object-Oriented Databases
36 pages

RR-93-4S
Rainer Hoch : On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven, and
Goal-directed Reasoning
81 pages

RR-93-48
Franz Baader, Martin Buchheit. Bernhard lIol/under:
Cardinality Restrictions on Concepts
20 pages

RR-94-01
Elisabeth Andre, Thomas Rist:
Multimedia Presentations:
The Support of Passive and Active Viewing
15 pages

RR-94-02
Elisabeth Andre. Thomas RisL:
Von Textgeneratoren zu Intellimedia­
Prasentationssystemen
22 Seilen

RR-94-03
Gert Smolka:
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-0S
Franz Schmalhofer.
J.Stuart Aitken. Lyle E. Bourne jr.:
Beyond the Knowledge Level: Descriptions of
Rational Behavior for Sharing and Reuse
81 pages

RR-94-06
Dietmar Dengler:
An Adaptive Deductive Planning System
17 pages

RR-94-07
lIarold Boley: Finite Domains and Exclusions as
First-Class Citizens
25 pages

RR-94-08
Otto Kuhn. BjOrn I-Iofling : Conserving Corporate
Knowledge for Crankshaft Desi!,'ll
17 pages

RR-94-10
Knut I-linkelmann. I-Ielge Hintze :
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-11
Knut I-linke/mann : A Consequence Finding
Approach for Feature Recognition in CAPP
18 pages

RR-94-12
Hubert Comon. RalfTreinen :
Ordering Constraints on Trees
34 pages

RR-94-13
lana Koehler: Planning from Second Principles
- A Logic-based Approach
49 pages

RR-94-14
Harold Boley. Ulrich Buhrmann. Christof Kremer:
Towards a Sharable Knowledge Base on Recyclable
Plastics
14 pages

RR-94-1S
Winfried H. Graf. Stefan Neurohr: Using Graphical
Style and Visibility Constraints for a Meaningful
Layout in Visual Programming Interfaces
20 pages

RR-94-16
Gert Smolka: A Foundation for Higher-order
Concurrent Constraint Programming
26 pages

DFKI Technical Memos

TM-92-04
lii.rgen Muller. lorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer. Christoph Globig. lorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kuhn. Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn. Andreas Birk: Reconstructive Integrated
Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles. Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley. Ulrich Buhrmann. Christof Kremer:
Konzeption einer deklarativen Wissensbasis tiber
recyclingrelevante Materialien
11 pages

TM-93-04
Hans-GUnther Hein:
Propagation Techniques in W AM-based
Architectures - The FIOO-III Approach
105 pages

TM-93-0S
Michael Sintek: Indexing PROLOG Procedures into
DAGs by Heuristic Classification
64 pages

TM-94-01
Rainer Bleisinger. Klaus-Peter Gores:
Text Skimming as a Part in Paper Document
Understanding
14 pages

TM-94-02
Rainer Bleisinger. Berthold Kroll:
Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

DFKI Documents

D-93-07
Klaus-Peter Gores. Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur partieUen
Textanalyse
53 Seiten

D-93-08
Thomas Kieninger. Rainer Hoch :
Ein Generator mit Anfragesystem fiir strukturierte
Wl>rterbiicher zur Unterstiitzung von Texterkennung
und Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger. Ulrich Schiifer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelman. Markus Vonerden. Christoph
lung: Natural Language Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann . Armin Laux (Eds.):
DFK1 Workshop on Knowledge Representation
Techniques - Proceedings
88 pages

D-93-12
Harold Boley. Klaus Elsbernd.
Michael Herfert. Michael Sintek. Werner Stein:
RELFUN Guide: Programming with Relations and
Functions Made Easy
86 pages

D-93-14
Manfred Meyer (Ed.): Constraint Processing­
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-15
Robert Laux:
Untersuchung maschineUer Lernverfahren und
heuristischer Methoden im Hinblick auf deren
Kombination zur Unterstiitzung eines Chart-Parsers
86 Seiten

D-93-16
Bernd Bachmann. Ansgar Bernardi. Christoph
Klauck. Gabriele Schmidt: Design & Kl
74 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene fiir einen
hybriden Wissensreprasentationsformalismus
97 Seiten

D-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen am
Beispiel Terminologischer Logiken
53 Seiten

D-93-22
Andreas Abecker:
Implementierung graphischer Benutzungsober­
flachen mit Tcl/Tk und Common Lisp
44 Seiten

D-93-24
Brigitte Krenn. Martin Volk :
DiTo-Datenbank: Datendokumentation zu
Funktionsverbgefiigen und Relativsatzen
66 Seiten

D-93-25
Hans-liirgen Burckert. Werner Nutt (Eds.):
Modeling Epistemic Propositions
118 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-26
Frank Peters: Unterstiitzung des Experten bei der
Formalisierung von Textwissen
INFOCOM:
Eine interaktive Formalisierungskomponente
58 Seiten

D-93-27
Rolf Backo/en. Hans-Ulrich Krieger.
Stephen P. Spackman. Hans Uszkoreit (Eds.):
Report of theEAGLES Workshop on
Implemented Formalisms at DFKI, Saarbriicken
110 pages

D-94-01
losua Boon (Ed.):
DFKl-Publications: The First Four Years
1990 - 1993
75 pages

D-94-02
Markus Steffens: Wissenserhebung und Analyse
zum EntwicklungsprozeB eines DruckbehaIters aus
Faserverbundstoff
90 pages

D-94-06
Ulrich Buhrmann:
ErsteUung einer deklarativen Wissensbasis iiber
recyclingrelevante Materialien
117 pages

D-94-08
Harald Feibel: IGLOO 1.0 - Eine grafIkunterstiitzte
Beweisentwicklungsumgebung
58 Seiten

Planning from Second Principles-A Logic-based Approach

Jana Koehler

RR-94-13
Research Report

