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Abstract 

In this paper, a logical formalization of planning from second prin­
ciples is proposed, which relies on a systematic decomposition of the 
planning process. Deductive inference processes with clearly defined 
semantics formalize planning from second principles. 

Plan modification is based on a deductive approach which yields 
provably correct modified plans. 

Reusable plans are retrieved from a dynamically created plan li­
brary using a description logic as a query language to the library. 

Apart from sequential plans, this approach enables a planner to 
efficiently reuse and modify plans containing control structures like 
conditionals and iterat ions. 
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1 Introduction 

Planning from first principles generates plans from "scratch", e.g., the plan­
ner searches for a set of actions (a plan) that achieves the desired goal with 
respect to specified preconditions. A serious limitation of first-principles 
planners is the constancy of the planning process over time: If a planner 
receives the same planning problem, it will repeat exactly the same planning 
operations. In other words, it is unable to benefit from experience that can 
be drawn from previous planning processes. 

Approaches to planning from second principles try to overcome this limitation 
of planning from scratch by flexible reuse and modification of plans. In cases 
of execution failures, where a plan has to be revised in the light of new 
information, and changes of plan specifications, where a plan has to meet 
new requirements, modification of the existing plan seems more reasonable 
than generating a new one. 

The current state of the art comprises a variety of approaches tackling the 
problems from a cognitive point of view (cf. [Kolodner, 1993] for a summary 
of approaches) or in the framework of STRIPS-based planning, cf. [Kamb­
hampati and Hendler, 1992; Hanks and Weld, 1992a; Veloso, 1992a]. 

Using a formal framework, we present a logic-based approach to planning 

from second principles, which makes no commitments to particular planning 
formalisms and application domains. 

Plan modification is based on deductive inference processes that yield prov­
ably correct modified plans. As a new issue in plan modification we discuss 
the reuse and refitting of control structures occurring in plans, like case anal­
yses and iterations, which introduce qualitatively new problems. 

As for the plan library we propose a hybrid knowledge representation for­
malism linking the planning logic with a description logic. In this approach, 
description logics are used as a kind of query language to the plan library. 
This leads to well-defined abstraction, retrieval and update procedures pos­
sessing interesting t heoretical and practical properties. In particular, we 
demonstrate that the bottleneck of plan retrieval [Nebel and Koehler, 1993b] 
can be overcome by developing efficient approximation algorithms that are 
guaranteed to find existing solutions to current planning problems in the plan 
library. 

Summarizing, the properties of this new approach are: 

• Second-principles planning is addressed in a strictly logic-based way . 

• The planner is based on a general unified formal framework. It covers 

the modification of plans and the representation of the plan library, 
including retrieval and update operations. 
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• Besides simple sequential plans, this approach enables a second-prin­
ciples planner to flexibly reuse plans containing control structures like 
case analysis and iteration . 

• The formal framework allows us to prove important properties like the 
correctness and completeness of the underlying inference procedures. 

The paper is organized as follows: The foundation of the logic-based ap­
proach is a four-phase model, described in Section 2. It supports a temporal 
view as well as a task-specific view on the second-principles planning pro­
cess. In Section 3 the formal framework of planning from second principles 
is presented. It provides the theoretical basis for the system MRL that is 
described in the main part of this paper. MRL extends the generati ve ded uc­
tive planner PHI, which is briefly introduced in Section 4, with the ability 
to reuse and modify plans that are stored in a dynamically updated plan 
library. 

Sections 5 and 7 are devoted to the inference procedures working on the 
plan library, while in Section 6 the deductive approach to plan modification 
is presented. Finally, in Section 8 we propose a systematic categorization 
of the various principles and design decisions underlying second-principles 
planners, and summarize the main properties of the MRL planner in the 
light of this categorization. 

2 A Four-Phase Model 

Second-principles planners work in a basic cycle of problem input- activation 
of previous plans-adaptation, cf. [Riesbeck and Schank, 1989]. The prob­
lem of plan activation addresses questions of how to represent and store 
previous plans and knowledge extracted from planning processes including 
learning and abstraction as well as the problem of how to retri eve relevallt. 
information from a plan library, including organization, indexing and search . 
The problem of adapting an old plan to a new planning problem compri s­
es a matching or test phase where plans are matched against current pla ll­
ning problems or executed in simulated environments and a subsequent r·efit­
ting/adaptation/repair phase where the plan is modified in accordance with 
the result of the matching or test. 

We distinguish four phases in a second-principles planning process: 

Phase I achieves retrieval by a process called plan determination. 

(I) Plan Determination: The description of a current planning problem , 
i.e., the current plan specification is the input to the plan-determination 
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phase. From this specification, an index has to be computed , which rep­
resents the search key to the plan library. The plan library contains 
a collection of plan entries that are extracted from previously solved 
planning problems. A plan entry provides comprehensive information 
about a planning problem and its solution, e.g., the specification of the 
problem describing initial and goal states, the plan which was gener­
ated as a solution for it, and information that is extracted from the 
plan generation process. Each plan entry possesses an index which 
determines its position in the hierarchically organized plan library. 

The current search key is matched against the indices of the stored plan 
entries. Based on the result of the matching a set of reuse candidates is 
determined. Ranking heuristics are applied in order to determine the 
best candidate. 

Phase II compares of the current plan specification with the reused plan 
specification. It is based on a deductive inference process called plan inter­
pretation. 

(II) Plan Interpretation: Plan interpretation attempts to prove that the 
current plan specification is a logical instance of the reused plan specifi­
cation by proving relations between preconditions and goals. A success­
ful proof attempt means that the reused plan specification is sufficient 
for the current one, i.e., solving the old planning problem will solve the 
current planning problem. 

In contrast to a purely syntactic matching, knowledge about regularities 
in the application domain can be applied during the proof. The result 
of the plan-interpretation phase is a plan skeleton in the case of a proof 
failure. An instance of the library plan that solves the current planning 
problem is obt ained when the proof is successful. 

Phase III completes the plan skeleton to a correct plan with the help of an 
interleaved process of plan verification and generative planning called plan 
refitting. 

(III) Plan Refitting: A plan skeleton provides an entry point into the 
search space of possible plans. It represents an incomplete solution to 
the current planning problem, because it may contain "placeholders" 
for subplans achieving open subgoals, which the reused plan is unable 
to achieve. The plan skeleton keeps any actions of the reused plan that 
were determined as reusable during plan interpretation and in which 
variables are appropriately instantiated with object parameters taken 
from the current plan specification. 
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The planning process terminates with a plan-library update in phase IV. 

(IV) Plan-Library Update: A new plan entry is constructed from three 
sources of information: the current plan specification, the plan which 
was generated by modifying an existing plan, and information that is 
extracted from the proof tree which was constructed as a result of the 
completion of the plan skeleton. The plan entry is related to the current 
index that was computed in phase I. The modified plan is now available 
to subsequent planning processes. 

Figure 1 shows the architecture of the MRL system. The system comprises 
four modules, each of which implements a phase occurring during second­
principles planning. 

PLAN GENERATOR 

plan specification plan 

MRL 

PHASE I PHASE IV 
PLAN DETERMINATION I-j, UPDATE OF PLAN LIBRARY 

current plan spec~ication current plan spec~ication 

I plan 

I search in plan library I 
const;uction I I . l 

reuse candidate new plan entry 

~ "' f 

PLAN LIBRARY I 
PHASE II PHASE III 
PLAN INTERPRETATION PLAN REFITTING 

current plan specification current plan specification 
reused plan specification plan jkeleton 

proof rnempt I I I completion by proof I 
plan skeleton ptan 

Figure 1: Architecture of the MRL system 

The four phase model describes a temporal view on the reuse process. The 
phases I to III are necessary to generate a plan by reusing an existing one. 
They are also distinguished by other authors who sometimes denote thelll 
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as retrieval - matching - adaptation phases, cf. [Hanks and Weld, 1992a]. 
The fourth phase comprises the maintenance of the plan library. The phases 
which perform similar tasks are grouped together, so that the reuse process 
can be formalized. Operat ions on the plan library provide the basis for phases 
I and IV, while plan interpretation and refitting (phases II and III) work on 
plan specifications and are summarized as plan modification. 

3 The Formal :Framework 

The formal framework assumes that planning problems are specified in a 
formal way. We presuppose some kind of logical planning formalism with 
planning problems given as formal plan specification formulae in the under­
lying planning logic. In particular, we develop our framework in the general 
setting of deductive planning as introduced in [Green, 1969]. Deductive plan­
ning generates plans by performing constructive proofs of formal plan spec­
ifications, i.e., "to construct a plan that will meet a specified condition, one 
proves the existence of a state in which the condition is true" , cf. [Manna and 
Waldinger, 1987b], page 14. Usually, this requires us to prove constructively 
plan specifications of the form 

VSo Va ::Jz Q[so, a, z] 

where So denotes the initial state, a is an argument or input parameter, and 
z is a planvariable representing the plan term that has to be constructed, 
cf. [Manna and Waldinger, 1987b]. Recently, an approach to deductive plan­
ning has been introduced in [Biundo et al., 1992; Bauer et al., 1993] with 
plans represented as formulae. Plan specifications are universally quantified 
formulae of the form Plan /\ pre --+ goal, cf. Section 4. In the following, we 
develop the formal framework for planning from second principles using this 
latter form of plan specifications. 

In general, a plan specification comprises the description of 

• an initial state, i.e., the preconditions, pre, that can be assumed to 
hold, 

• a goal state, goal, which has to be achieved by executing the plan. 

Planning from first principles receives a current plan specification Snew and 
tries to find a Plan new by "inspecting" the set of available actions . Planning 
from second principles tries to find a Plannew by adapting a Planold solving 
an old plan specification Sold in such a way that it solves Snew. 
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In order to formalize the retrieval of candidate plans from the plan library 
we have to answer the question 

Question 1: "How to find a Planold possibly solving Snew?" 

while the formalization of plan modification requires an answer to the ques­
tion 

Question 2: "Does Planold solve Snew?" 

3.1 Plan Modification 

The answer to Question 2 is found with the help of Definition 1: 

Definition 1 Planold solves Snew if and only if Ax f- Sold ~ Snew. 

This means, Sold is sufficient for Snew under the axiomatization A:r: of tlle 
considered application domain, i.e., Ax, Sold F Snew. In other words, Snew 
specifies a logical instance of Sold. Thus, solving Sold is sufficient for solving 
Snew and consequently, an instance of Planold will solve Snew. 

Since plan specifications contain formal descriptions of initial and goal states, 
we can show that Ax f- Sold ~ Snew holds by proving sufficient relations 
between precondi tions and goals according to Theorem 1: 

Theorem 1 Ax f- Sold ~ Snew holds if 

Ax f- prenew ~ preold and Ax f- goalold ~ goalnew . 

This means, we have to prove that the preconditions required by the old plan 
are satisfied in the current initial state and that the goals achieved by the 
old plan are sufficient for the currently required goals. If these relationships 
between initial and goal state specifications hold, we know that 

• Planold is applicable in prenew and 

• Planold achieves at least all of the goals required in goaLnew. 

Proof: 

The validity of Theorem 1 is obvious. Assuming that plan specification 
formulae are of the form Plan 1\ pre ~ goal we ground plan modification on 
a proof of a formula of the form 

(1) [Planold 1\ preold ~ goaloldl ~ [Plan new 1\ prenew ~ goalnew l 
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under the domain axiomatization. Equivalent transformations of this formula 
lead to a conjunction of the following three formulae, the proof of which is 
sufficient for the validity of formula (1) 

(la) 1 Plan new 1/\ prenew -71 Plan old 1 V goalnew 

(lb) Plan new /\ Iprenew !-7lpreold! V goalnew 

(lc) Plan n ew /\ prenew /\ Igoalold 1-7lgoalnew I 
A closer look at these formulae reveals that they lead on one the hand to a 
valid proof if prenew -7 goalnew can be proved, i.e., the current plan spec­
ification is a tautology. But in most cases this will not be case and it is 
not the aim of the proof to act as a tautology checker. On the other hand, 
we can prove relationships between subformulae from Snew and Sold. Thus, 
we obtain three subproofs that are sufficient for the validity of the relation 
between the two plan specifications Sold -7 Snew: 

(I) 
(II) 
(III) 

P1annew 

prenew 
goalold 

=* Planold 

=* preold 
=* goalnew 

The first subproof reflects the aim of second-principles planning: Planold is 
identified with P1annew , i.e., the planvariable Plan new , which represents the 
plan that has to be found, is instantiated with the plan Planold taken from 
the plan library. 

The reader may note that we made no assumption about a particular plan­
ning logic or planning calculus. Furthermore, a similar theorem can be ob­
tained when syntactically different plan specifications are used as for example 
in [Green, 1969; Kowalski, 1979; Manna and Waldinger, 1987b; Manna and 
Waldinger, 1987al. In this case, planvariables representing plan terms occur 
as additional arguments in the goal-state specifications. -

Thus, plan modification is based on attempting to prove relations between 
preconditions and goals. If the proofs are successful, an instance of Planold 

will solve Snew. This instance is obtained by applying substitutions to Planold 

that were computed during the proof. If the proof attempt fails, refitting 
information can be extracted from it, cf. Section 6. 

3.2 The Plan Library 

In principle, the inference procedures working on the plan library can be 
formalized in the same way as plan modification. A plan solving the cur­
rent planning problem can be found by proving sufficient conditions between 
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preconditions and goals. But obviously, this is too restrictive because such 
a search process can only retrieve solutions, i.e., plans that are applicable 
in the current initial state and achieve at least all of the current goals. But 
an appropriate reuse candidate is a plan that can be properly instantiated 
to obtain the desired solution or that can be "easily" revised. Therefore, we 
have to ground the retrieval process on a "relaxation" of these conditions. 

Usually, such a "relaxation" is performed on the inference relation , i.e., so­
called partial matches are computed, cf. [Kolodner, 1993]. The disadvantage 
of such an approach is that we give up clear semantics of the inference relat ioll 
and therefore may lose soundness as well. In order to avoid this , we propose 
an alternative approach by defining an encoding scheme w mapping formal 
plan specifications to abstract indices. 

The encoding scheme formalizes an abstraction process: A given plan spec­
ification (formula) is mapped to an abstract index (formula) reflecting the 
main features of the underlying planning problem. Furthermore, we want the 
abstraction process to be well-defined, i.e., if a plan from the library provides 
a solution to the current planning problem this plan must be in the retrieval 
set. The advantage of such a property is obvious. The efficiency of planning 
from second principles depends on the reuse of existing solutions. When­
ever a planning problem can be solved by directly reusing a plan from the 
library, the system should be able to find this plan in order to minimize the 
plan-modification effort. This property of the encoding scheme w is formally 
stated in Condi tion 1: 

Condition 1 If Sold -+ Snew then W(Sold) -+ w(Snew). 

Condition 1 gives a monotonicity property of wand has to be proved for eacll 
particular encoding scheme used in a second-principles planner. It expre::;::;e::; 
that an existing subset relationship between the models M of Sold aIld Snew i::; 
preserved as a subset relationship between the models of the indi ces W( Sold) 
and w(Snew): 

If M[Pold] ~ M[Pnew ] then M[W(Po1d )] ~ M[w(Pnew )]. 

The monotonicity property of the encoding scheme guarantees that an existing 
solution can be found by searching the plan library along the -+ dimension 
between indices. Note that the inverse of the monotonicity property does 
not hold in general. A plan retrieved from the library, the index of which 
entails the new index, will not, with certainty, provide a solution to the new 
planning problem. This reflects reasoning by approximation. The retrieval 
algorithm approximates the relationship between the plan specifications when 
it compares the indices of the plan entries. Thereby, it extends the solution 
set computed by the retrieval algorithm. 
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The definition of a particular encoding scheme depends on three factors: 

• the representation formalism for plan specifications and plans, 

• the representation formalism for indices, 

• the application domain. 

In Section 5, we illustrate the definition of an encoding scheme used in the 
second-principles planning system MRL. The planning formalism used by 
MRL is a temporal logic. The representation formalism for the indices is a 
description logic, i.e., indices are represented as concepts in a KL-ONE like 
concept language. With that, the indexing of the plan library is ground­
ed on the subsumption relation (~) between indices and a classifier is used 
to retrieve candidate plans. This overcomes the problem of defining par­
tial matches between cases, the semantics of which remains often unclear. 
Furthermore, theoret ical properties of the retrieval like its soundness, com­
pleteness and runtime complexity can be proved. 

Figure 2 summarizes the formal framework. It bases planning from second 
principles on deductive inference processes. Plan modification is formalized 
by proving sufficient conditions between preconditions and goals in the un­
derlying planning logic. A formalization of the inference procedures working 
on the plan library is obtained by computing their approximation in a de­
scription logic. 

plan modification: pre new -t preold and goalold -t goalnew 

plan library: 

Figure 2: The logical framework for planning from second principles 

The idea of exploiting relationships between preconditions and goals can be 
found in other approaches as well, but they are restricted to a syntactical 
check of these relations. Hanks and Weld [Hanks and Weld, 1992a] write 
that "retrieval takes the problem's initial and goal conditions and finds in 
the plan library a plan that has worked under circumstances similar to those 
posed by the current problem". The basic approach described by Hammond 
[Hammond, 1990] is "to find a past plan in memory that satisfies as many 
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of the most important goals as possible". Plan modification as formalized 
by Kambhampati and Hendler [Kambhampati and Hendler, 1992J relies on 
marking "the differences between the initial and goal state specifications". 

In the remaining part of the paper we show how this formal framework serves 
as a theoretical foundation for the implemented second-principles planner 
MRL. The formal framework allows us to implement well-defined inference 
processes. Thus, the behavior of the system becomes predictable, and theo­
retical properties like soundness, completeness, and efficiency of the inference 
procedures can be proved. 

4 Second-Principles Planning with MRL 

The system MRU has been developed as an integrated part of the system 
PHI by extending the PHI planner with the ability to reuse and modify com­
plex plans. PHI is a logic-based tool for intelligent help systems which inte­
grates plan generation and plan recognition components [Biundo et al., 1992; 
Bauer et al., 1993]. Planner and recognizer work in close mutual coopera­
tion, e.g., generated plans can serve as hypotheses for the recognition process 
[Bauer and Paul, 1994J. 

A prototypical application of PHI is the UNIX mail domain where objecLs 
like messages and mailboxes are manipulated by actions like read, delete, and 
save. 

The logical framework of PHI, which is also used by MRL, is the modal tem­
poral logic LLP [Biundo and Dengler, 1994] that will be shortly introduced 
in the following section. 

4.1 The Planning Logic LLP 

LLP [Biundo et al., 1992; Biundo and Dengler, 1994J provides the modal 
operators 0 (next), 0 (sometimes), 0 (always) and the binary modal oper­
ator ; (chop) which expresses the sequential composition of formulae. As in 
programming logics, local variables the value of which may vary from state 
to state are available. Furthermore, control structures like iterations and 
conditionals can be defined as operators in LLP. 

Plans are represented by a certain class of LLP formulae. They may contain 
basic actions which are expressed by the execute predicate ex, the argumellL 
of which is an action term, the chop operator for the sequential compos iLiol1 
of plans and actions, and control structures like if-then-else and while tiJrt,(, 

can be expressed in this logic. 

1 MRL stands for Modification and Reuse in Logic . 
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The atomic actions available to the planner are the elementary commands 
of the UNIX mail system. They are axiomatized like assignment statements 
in programming logics. Changes of state caused by executing an action are 
reflected in a change of the values of local variables which represent the 
mailboxes in the mail system. For example, the axiomatization of the delete­
command which deletes a message x in a mailbox mbox2 reads 

Vx [open-flag(mbox) = T /\ delete_flag(msg(x, mbox)) = F /\ 
ex(delete(x,mbox)) 

-+ Odelete-flag((msg(x,mbox)) = TJ 

The state of a mailbox is represented with the help of flags. As a precon­
dition, the delete-command requires that the mailbox mbox is open, i.e., its 
open_flag yields the value true (T) and that the message x has not yet been 
deleted, i.e., its delete_flag yields the value false (F). As an. effect, the action 
sets the delete_flag of message x in mailbox mbox to the value true in the 
next state. 

Planning problems are represented with the help of formal plan specifica­
tions in the logic LLP. They contain the specification of an initial state, the 
preconditions of the plan, and the specification of the goals that have to be 
achieved by executing the plan. Thus, plan specifications are LLP formulae 
of form 

Plan /\ preconditions -+ goals, 

i.e., if the Plan is carried out in the initial state where the preconditions 
hold then a state will be achieved where the goals hold. Plan is a plan­
variable, i.e., a non-logical variable, representing the plan formula that has 
to be generated by performing constructive proofs of the plan specifica­
tion in a sequent calculus which was developed for LLP. During the proof, 
the plan variable Plan is replaced by a plan formula satisfying the specifi­
cation. The proofs are guided by tactics that can be described in a tac­
tic language provided by the system, an idea which was borrowed from 
the field of tactical theorem proving [Constable, 1986; Hei~el et al., 1990; 
Paulson, 1990J . The use of tactics supports the declarative representation of 
control knowledge and makes deductive planning more efficient. The search 
space considered during the proof can be kept to a manageable size and only 
those deduction steps which appear to be the most promising are performed. 

Let us consider three specifications of example plans that will be used through­
ou t this paper. The first specification S PI specifies a plan PI for the planni ng 

2Constants begin with capital letters, while variables are written in lower case. 
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problem "read and delete a message m in the mailbox mybox" . As precondi­
tions, we assume that the mailbox mybox has already been opened and that 
the message m has not yet been deleted. 

Pianpl/\ 
open_flag(mybox) = T /\ delete_flag(msg(m,mybox)) = F 
~ <; [read_flag( msg(m, mybox)) = T /\ 

<; [delete-flag(msg(m, mybox)) = T]] 

It should be noted that in using the logic LLP in a planning system it be­
comes possible to specify temporary goals with the help of nested sometim es 
operators, i.e., goals that have to be achieved at some point and not neces­
sarily in the end, something which could not be done in the usual STRIPS 
or TWEAK type planning systems, cf. [Kautz and Selman, 1992J. In the 
example, the goal specification requires the message to be read first and t hen 
deleted. 

The second specification SP2 specifies an example of a conditional plan P2 
which reads and deletes a message x in a mailbox mbox. 

Planp2 /\ delete-flag(msg(x, mbox)) = F 
SP2 : ~ <; [read_flag(msg(x,mbox)) = T /\ 

delete_flag(msg(x,mbox)) = T] 

As a precondition for P2 we only know that the message has not been deleted , 
but no information about the state of the mailbox is available, i.e., we do not 
know whether the mailbox is open or closed. Thus, the plan P2 must contain 
a case analysis on the state of the mailbox mbox: If the mailbox is open, the 
message x can be read and deleted. If the mailbox is closed, we first have to 
open it before the message x can be read and deleted. In contrast to the goal 
specification in S PI, the specification of goals in S P2 specifies no temporary 
goals, but a conjunctive goal. 

The third specification S P3 specifies an iterative plan reading all message~ 

from sender Joe in the mailbox mbox. The specification of its precondi t i on ~ 

and goals contains universally quantified formulae: 

Planp3 /\ open-flag(mbox) = T /\ 
"Ix [sender(msg(x,mbox)) = Joe 

~ delete_flag(msg(x, mbox)) = F J 
~ <;Vx [sender(msg(x,mbox)) = Joe 

~ reaLflag(msg(x, mbox)) = T /\ 
delete_flag(msg(x, mbox)) = T] 

A restricted syntactic class of LLP formulae is used for the representation 
of plan specifications. For example, implicit negation of atomic formulae 
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occurs in implications. Furthermore, atomic formulae are equations assigning 
values to local variables appearing in terms of a certain syntactic structure. 
The term msg( x, mbox) denotes a message in a mailbox mbox at position 
x. Unary functions like read_flag and delete_flag represent features of a 
mailbox with respect to a particular message. The effects of actions are 
reflected in changed features. 

5 Plan Determination: Efficient Retrieval of 
Plan Candidates 

Assume as an example that the plan P2 solving SP2 has to be generated 
from second principles, i.e., by reusing the plans PI or P3 that are stored 
in the plan library. 

The plan PI is a simple sequence containing the actions type and delete. 
The plan P2 which we want to generate is a conditional plan, while P3 is 
an iterative plan: 

PI: I ex(type(m, mybox)) ; ex(delete(m, mybox)) I 
P2: if open-flag(mbox) = T then ex(empty_action) 

else ex(mail(mbox)); 

I ex(type(x, mbox) ) ; ex( delete(x, mbox)) I 
P3: n:= 1 ; 

while n < length(mbox) do 

od 

if sender(msg(n, mbox)) = joe 

then I ex(type(n, mbox)); ex(delete(n, mbox)) I 
else ex( empty....action) ; 

n:= n + 1 

Plan determination has to answer the question of whether PI or P3 are 
appropriate candidates to guide the planning process for P2 and which of 
the two candidates should be preferred. A closer look at the plans reveals that 
they have a sequential subplan in common, cf. the framed formula. Apart 
from this, the plans differ mainly in the control structures they contain. 
Therefore, we are faced with two problems: 

1. Existing frameworks from case-based reasoning fail in comparing such 
complex structures. There is no technique available in the literature on 
which the comparison and retrieval process of complex plans containing 
control structures can be based. 
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2. Even human experts are unable to compare such abstract logical de­
scriptions of plans. It is by no means obvious whether we should take 

• plan PI and add a case analysis or 

• plan P3 and remove the superfluous iterative control structure 

in order to obtain P2. 

Both problems challenge a formal approach to the determination of reuse can­
didates from a plan library. The identification of PI and P3 as appropriate 
reusable plans requires abstraction from 

• specific objects occurring in the specifications, 

• temporary subgoal states, 

• universally quantified goals. 

The basic effects of actions which cause a mailbox's features to be changed 
have to be preserved during the abstraction process. These requirements are 
reflected in the definition of the encoding scheme w, which is used in MRL 
to map LLP plan specifications to concepts in a description logic. 

5.1 Description Logics as Query Languages 

We define the encoding scheme w as a mapping from the planning logi c 
LLP to a description logic. The advantages in using a description logi c as 
representation language for indices are obvious: 

Description logics support a structured representation of abstract knowledge. 
As fragments of predicate logic they possess formal semantics [Brachmann 
and Levesque, 1984]. With that, the meaning of expressions within the for­
malism is clearly defined and it is possible to verify whether or not the 
knowledge-representation system correctly implements the intended behav­
IOr. 

Thus, indices are provided with clearly defined semantics. The monotonicity 
property of the encoding scheme w can be proved, which ensures that existing 
solutions are found in the plan library when a complete retrieval algorithm 
is used. 

The mathematical properties of various description logics are well under­
stood. In particular, concept languages with decidable subsumption relations 
have been identified. Remember that retrieval from plan libraries must be 
efficient, i.e., the complexity of the retrieval algorithm must be investigated. 
The use of description logics possessing polynomial subsumption algorithms 
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ensures that the ret rieval algorithm runs in polynomial time on the size of 
the plan library. 

Usually, the indexing schemes used in case-based reasoning, for example dis­
crimination networks [Feigenbaum, 1963], restrict the case library to have a 
tree structure. In using description logics, case libraries are indexed on a more 
general lattice structure provided by the subsumption hierarchy [Koehler, 
1994a]. 

Summarizing, it is possible to define retrieval algorithms with the following 
formal properties: 

• Correctness: The retrieved plan entry meets the search criterion . 

• Completeness: Existing solutions are in the retrieval set . 

• Complexity: The retrieval algorithm runs in polynomial time. 

The description logic ACe [Schmidt-SchauB and Smolka, 1991] is chosen as 
the target formalism of w because of its expressiveness and mathematical 
properties. Concept descriptions in ACe are built from concepts, intersec­
tion, complements and universal role quantifications. The logic possesses a 
decidable and complete subsumption algorithm which is PSPACE-complete. 
This means that deciding subsumption in ACe is intractable. Remember 
that we required the retrieval algorithm to be efficient, i.e., to run in poly­
nomial time. There are two possibilities to obtain polynomial complexity: 
either to give up completeness or to restrict the description logic. Giving 
up completeness in an application system often also implies giving up cor­
rectness, because inability to detect existing subsumption relations may lead 
to incorrect behavior of the system. In particular for a plan library, the 
incompleteness of the retrieval algorithm leads to the following problems: 

• Existing solutions may be not found in the library. This can lead to an 
undesirable computational overhead in second-principles planning be­
cause the system does not reuse the best available plan during problem 
solving. 

• Uncontrolled growth of the plan library may occur. Plan specifications 
with the same indices are added to the library because the incomplete 
subsumption algorithm is unable to recognize the equivalence of the 
concepts representing the indices. 

Therefore, we decided to restrict concept descriptions to a normal form for 
which a sound, complete and polynomial subsumption algorithm exists. We 
define so-called admissible concepts as a subset of ACe that are consistent 
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concept descriptions in conjunctive normal form. They are built only from 
primitive components, i.e., existential role restrictions of the form :JR.C and 
:JR. -,C where C is required to be a primitive concept and R is restricted to 
be a chain of primitive roles . This simplifies the computation of subsumption 
relationships between concepts. To determine subsumption in a terminology, 
the relation between the extensions of concepts is symbolically evaluated. 
First, the relevant part of a terminology has to be transformed in a normal 
form. Secondly, constraints must be propagated and inconsistencies must be 
recognized. Finally, the resulting expressions are structurally compared, cf. 
[Nebel, 1990]. The restriction of w's target formalism to admissible concepts 
makes the first and second step superfluous and reduces the computation of 
subsumption to a structural comparison of the concepts. A normal form is 
already given and no inconsistencies or constraints between concepts may 
occur. In fact, admissible concepts define a subset of propositional logic. 
Primitive components can be treated as atomic units during the computation 
of subsumption because there is no need to expand them further. Thus, the 
following subsumption algorithm is defined for admissible concepts Ca : 

Definition 2 SUBS( u, t) : C~ -+ {true, false} 

SUBS(u, t) computes its result using the rules3
: 

z ~ x, z ~ y -+ z~xl\y 

x~z -+ xl\y~z 

x~z,y~z -+ xVy(;z 

z~x -+ z~xVy 
x C x 

Theorem 2 SUBS is sound and complete, and decides the subsumption re­
lation in polynomial time for admissible concepts. 

The proof is straightforward and can be found in [Koehler, 1994eJ. 

5.2 The Encoding Scheme 

The encoding scheme w maps LLP plan specifications to indices in ALC on 
the basis of the declarative semantics both logics possess. 

LLP plan specifications are a restricted class of temporal logic formulae con­
taining the modal operator O. In order to map them to concept descriptions 

3This rule set is equivalent to a sound and complete rule set for lattices given in [Givan 
and McAllester, 1992] that decides the defined inference relation in polynomial time. Note, 
that SUBS(u , t) is incom'plete for arbitrary concept descriptions in ACe. 
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they are equivalently translated into first-order predicate logic using a re­
lational translation method for modal logics as for example introduced in 
[Ohlbach, 1991]. A function 7r is defined that translates an LLP formula into 
a formula in CPL, a constraint predicate logic. Below, a subset of 7r is shown, 
which is needed for the translation of plan-specification formulae: 

1l'[X,W] 
7r[x, W] 

7r[J(tl, ... , t n ), W] 
7r[P(tl, ... , tn ), W] 

7r[F /\ G, w] 
7r[OF, w] 

x for x a global variable 
x( w) for x a local variable 
f(7r[t 1 , w], ... , 7r[tn' w]) 
P(7r[t ll w], ... , 7r[tn' w]) 
7r[F, w] /\ 7r[G, w] 
3v( w ~ v /\ 7r[F, vJ) 

Using the method developed in [Frisch and Scherl, 1991], which has been 
extended to LLP in [Koehler and Treinen, 1993], the formulae resulting from 
the translation of modal operators can be considered as constraints. As an 
example, let us consider the encoding of the goal specification of SPI 

o [read_fLag(msg(m, mybox)) = T /\ 
o [delete_flag(msg(m,mybox)) = T]] 

An application of the translation rules of 7r to this LLP formula leads to a 
formula in the logic CPL. The function 7r translates local variables into unary 
functions mapping an interval to the value of the local variable in this interval. 
Modal operators are translated into constraints reflecting the accessibility 
relations defined over intervals. Observe that function and predicate symbols 
are so-called rigid designators, i.e., their interpretation is fixed and thus, they 
do not have to be equipped with an interval argument during the translation. 
We obtain the following CPL formula: 

3Wl, W2 [ Wo ~ WI /\ WI ~ w2 /\ 

read_fLag(msg(m, mybox(wl))) = T /\ 
delete-flag(msg(m, mybox(w2))) = T] 

A constraint formula C can be separated from the constraint-free part of the 
formula according to the following rule [Frisch and Scherl, 1991]: 

[3 y C /\ ¢] /\ t/J == 3 y C /\ [¢ /\ t/J] 

In a next step, information about the ordering of temporary subgoal states 
is eliminated from the formula, which implements the process of temporal 
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abstraction. Obviously, this transformation leads to a weaker logical formula. 
In order to ensure the correctness of this transformation, the monotonicity 
property (Condition 1) has to be proved for it, i.e., the elimination of a set 
of constraints resulting from the translation of 0 operators has to preserve 
an existing subset relationship between the models of the formulae. 4 The 
elimination of the constraint formulae from the example formula leads to 

read_flag(msg(m, mybox(wl))) = T 1\ delete_flag(msg(m, mybox(w2))) = T 

Now, each atomic formula is mapped to a primitive component, i.e., an ex­
istential role restriction of the form 3R.C, while the logical conjunction 1\ is 
mapped to the concept intersection n. 
Let us have a closer look at the syntactical structure of the atomic formula 
read_flag(msg(m, mybox(wJ))) = T. First, the constant T is replaced by 
an existentially quantified variable y using the rule P( a) ~ 3y P(y) . This 
implements an abstraction from specific objects ocquring in the specification 
formulae. Furthermore, we add a unary predicate true(y) expressing the 
sort information for the variable y. We treat the equality predicate like an 
ordinary predicate P and thus obtain 

3y P(read_flag(msg(m,mybox(wl)))'y) 1\ true(y) 

Implicit or explicit universal quantification is repiaced by existential quantifi­
cation according to the rule Vx P(x) ~ 3x P(x), which implements, e.g., a 
process of abstraction from universally quantified goals. 

With that we have obtained a formula of the form <Pc(x): 3x 3yP(x,y) 1\ 

Q(y) to which a concept C : 3P.Q corresponds. A model of the formula <Pc( x) 
is a model of the concept C and vice versa. In particular, C is unsatisfiable 
if and only if <Pc (x) is unsatisfiable [Holl under et al., 1990 J. 
The structure of the term read_flag(msg(m, mybox(wJ))) is reflected in the 
composition of roles. The unary function mybox is of type interval ~ 
mailbox and is abstracted by a binary relation interval x mailbox. The binary 
function msg is of type mailbox x integer ~ message, i.e., it takes a mailbox 
and an integer as arguments and returns the message that can be found in 
the mailbox at the position indicated by the integer. Thus, this function is 
abstracted by the composition of binary relations mailbox x integer 0 integer x 
message. The unary function read_flag is of type message ~ boolean, 

4The proof can be found in [Koehler, 1994e). It is not presented here because it does 
not directly contribute to the aim of this paper which is to present a logic-based framework 
for planning from second principles . 
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i.e., we abstract it by a binary relation of type message x boolean. Con­
sequently, for the whole term the composition of binary relations 

interval x mailbox 0 mailbox x integer 0 integer x message 0 message X boolean 
" ..... " , .... .f , ".. " , V' " 

mailbox position message read_flag 

is obtained, leading to the following role chain 

:3 mailbox 0 position 0 message 0 readJlag.TRUE 

the value of which is existentially restricted to the concept TRU E. 

After the encoding process has been completed, the conjunctive normal form 
of the indices is computed. Of course, the computatjonal effort for this op­
eration grows exponentially with the length of the formulae. But remember 
that the subsumption algorithm is only complete for concepts ~n conjunc­
tive normal form. Nevertheless, for pragmatic reasons it is more efficient 
to compute the normal form only once during the encoding process instead 
of computing it several times during the classification of an index. Besides 
this, plan specifications are often given in a conjunctive normal form 5 and 
the refore , this costly operation is not necessary in most cases. 

mailbox 

Figure 3: Subset of the mail domain terminology 

5Exist ing second-principles planning systems are limited to deal with state descriptions 
rest ricted to conjunctions of literals. This means that the PHI planner poses addi t ional 
requirements on the encoding scheme unknown in the usual STRIPS-based planners . 
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Figure 3 shows a subset of the mail-domain terminology that is used for 
the encoding of the example specifications. Nested terms, which are used 
to represent features of mailboxes in the source formalism LLL, map to role 
chains in the target formalism. 6 

The encoding scheme w used in MRL leads to the following encodings of the 
specifications SPI to SP3' 

w(prepd: 3 mailbox 0 open_flag.TRUE n 
:3 mailbox 0 position 0 message 0 delete_flag. FALSE 

w(goalpd: 3 mailbox 0 position 0 message 0 read_flag. TRUE n 
3 mailbox 0 position 0 message 0 deleteJlag.TRUE 

w(prep2): :3 mailbox 0 position 0 message 0 delete_flag. FALSE 

w(goalp2): 3 mailbox 0 position 0 message 0 readJlag.TRUE n 
3 mailbox 0 position 0 message 0 deleteJlag.TRUE 

w(prep3): 3 mailbox 0 open_flag.TRUE n 
[3 mailbox 0 position 0 message 0 sender.-,SENDER u 
3 mailbox 0 position 0 message 0 deleteJlag.FALSE 1 

w(goalp3): [:3 mailbox 0 position 0 message 0 sender.-,SENDER u 
:3 mailbox 0 position 0 message 0 delete_flag.TRUE] n 

[3 mailbox 0 position 0 message 0 sender.-,SENDER u 
3 mailbox 0 position 0 message 0 delete_flag.TRU E] 

The expressiveness of admissible concepts is sufficient to represent the mail 
domain adequately. The reader may note that this property may not gen­
eralize to other application domains for which different encoding schemes 
must be defined. In some cases this can require the use of more expressi ve 
concept languages possessing undecidable inference relations as target for­
malisms. Further research is necessary to find out "tractable" application 
domains. The general idea of using description logics as query languages to 
case libraries seems to be widely applicable. Given a logical description of 
a case, i.e., a logical formula, it is possible to map it to some weaker logical 
formula, which can be interpreted as a concept description. Nevertheless, the 
development of encoding schemes mapping logical specifications to concept 
descriptions is a creative process. It's mechanization is an interesting subject 
for further research. 

The encoding scheme used in MRL satisfies the monotonicity property as 
stated in Theorem 3. Thus, the retrieval algorithm is guaranteed to find 

6In principle, it seems to be possible to automatically generate the encoding terminology 
from the signature used in the source formalism. 
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existing solutions when a complete subsumption algorithm is used. 

Theorem 3 If prenew --+ preold and goal old --+ goalnew then 
w(prenew ) ~ w(preold) and w(goalold) ~ w(goalnew ). 

The proof can be found in [Koehler, 1994el. It relies on the model-theoretic 
semantics the logics LLP, CPL and A.ce possess. 

5.3 Weak and Strong Classification 

The results of the encoding process are the admissible concepts w(pre) and 
w(goal) from which the index of a plan is obtained as the pair (w(pre), w(goal)). 
Indices are considered as new representational primitives in the description 
logic. The computation of the subsumption relation between indices is re­
duced to computing the subsumption relation between the concepts encoding 
goals and preconditions as defined in Definition 3: 

Definition 3 (w(preold), w(goalold)) is subsumed by (w(pre new ), w(goalnew )) 

if and only if 

Now, the retrieval of a plan from the plan library is formalized as follows: 
Given a new plan specification, its index is computed first. Then, this index 
is classified in the plan library. Two classification operations are available: 

• Strong classification which classifies the new index by computing the 
subsumption relation between encodings of preconditions and goals 

The result of strong classification determines the position of the new 
index in the plan library according to the subsumption of indices as 
defined in Definition 3. All indices that are subsumed by the new index 
are considered as potential reuse candidates. The plans belonging to 
the subsumed indices are assumed to be applicable in the current initial 
state and to achieve all of the current goals . 

• Weak classification is activated when strong classification fails in 
ret rieving a reuse candidate. It is based on a weaker search criterion 
and can classify according to goals or preconditions: 

w(prenew ) ~ w(preold) or w(goalold) ~ w(goalnew ) 
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P3 
1----1 

while ... de 
ex( .. );ex .. 

---
Pl 

" ex( •• ad); 
" .x(delete) 

, , 
P2 

K open 
then .. . 
else .. . 

Figure 4: The example library 

Figure 4 shows the small example library obtained for the three plan specifica­
tions under consideration: Obviously, the index w(P2) of SP2 subsumes only 
the bottom concept, i.e., strong classification fails in retrieving a cand idate 
plan. Therefore, weak classification is activated searching for an w(vreold) 
that subsumes w(p'rep2) or for an w(goalold) that is subsumed by w(gualp2). 
Weak classification of the preconditions fails as well, while weak classification 
of the goals is successful for w(goalpd since w(goalpd [: w(goalp2) holds. 7 

Therefore, the plan stored in the plan entry belonging to w(Spd is activated 
as a reuse candidate. Since strong classification failed we know that this plan 
cannot represent a solution to the current planning problem SP2. We expect 
it to achieve all of the current goals, but we know that its preconditions are 
not satisfied in the current initial state. Thus, plan refitting has to start as 
will be described in Section 6. 

5.4 Ranking of Plan Entries 

Only one candidate plan has been retrieved from the plan library in the 
example under consideration. But in general, strong as well as weak classi­
fication can retrieve several appropriate reuse candidates. Consequently, a 
ranking is needed for the candidates in order to determine the best . 

Strong classification determines plans from the plan library that are sup­
posed to be applicable in the initial state and to achieve at least all of the 

71n a working system it seems to be a good restriction to implement only one of th e 
possible approaches to weak classification in order to improve retrieval efficiency. lIere, we 
discuss both possibilities in order to present how retrieval based on classification works. 
MRL applies weak classification only to preconditions, i.e., it requires plans to be appli­
cable in the current initial state as a heuristic to reduce the refitting effort during plan 
modification . 
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current goals. This implies that the candidate set retrieved by strong classifi­
cation may contain plans which achieve superfluous goals, i.e., goals that are 
currently unnecessary. Actions achieving these goals can be eliminated from 
the reused plan by making attempts at optimizing it. Thus, the ranking of 
the candidates is based on an estimation of the optimization effort for each 
candidate, i.e., the number of superfluous actions that have to be eliminated 
from the candidate plan. The heuristic estimates the number of atomic sub­
goals that are achieved by a candidate plan but that are not required in the 
current plan specification. It assumes that this number reflects the minimal 
number of primitive actions in the candidate plan that have to be eliminated. 
Therefore, the plan with the smallest number is selected as the best reuse 
candidate and sent to the plan-modification module. If several candidates 
receive the same ranking value, one of them is selected arbitrarily. 

Definition 4 Let COldl , ... ,Coldn be the set of candidates retrieved by strong 
classification of w( Cnew ). The goal concepts occurring in the indices of the 
candidates are w(goaloldl ), ... ,w(goaloldn) J the goal concept occurring in the 
current index is w(goaln ew ). The set of primitive components that occur in 
a concept c is denoted by P[c]. The cardinality of the set P[c] is as usually 

denoted by I P[c] I. 
The optimization effort for each candidate is defined as 

OPTw(goalold) = I P[w(goalold;}] \ P[w(goalnew )] 1 . 
The ranhng hew'istic HOPT selects the candidate with th e smallest optimiza­
tion effort: 

Weak classification selects plans from the plan library that are either sup­
posed to be applicable in the initial state or to achieve the desired goals, 
i.e., we have to expect that every candidate has to be modified. Consequent­
ly, the heuristic estimates the modification effort for each candidate in the 
retrieval set. It compares the goal concept of the current index w(goaln ew ) 

with the goal concepts w(goalold.} of all indices occurring in the retrieval set 
and computes the intersection of the concepts, i.e. the number of primitive 
components occurring in w(goalnew ) as well as in w(goalold.} . This number 
measures the modification effort by an estimation of the number of current 
atomic goals that are achieved by each candidate. The candidate with the 
biggest number is selected as the best reuse candidate, because it is assigned 
the highest "success rate" and therefore its modification effort is estimated 
as being minimal. Furthermore, the ranking heuristic verifies whether the 
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ranking value of the best candidate exceeds a lower bound: it requires that at 
least half of the primitive components from w{goalnew ) must be contained in 
w{goaloldJ. If this condition is satisfied, the ranking heuristic assumes that 
the best candidate achieves at least half of the current atomic goals. 

Definition 5 The estimated success rate for each candidate is defined as: 

MODw(goalold,) = I P[w{goaloldJ] n P[w{goalnew )] I 
The ranking heuristic llMoD selects the candidate with the biggest s'uccess 
rate that exceeds the lower bound: 

llMO D = { Cold, I MODw(goalold,) = max(MODw(goaIOld1b"" MODw(g oaloldn )) 

and 
MOD > N[w(gOal n ew )]} 

w(goalold,) - 2 

If no candidate receives a ranking value which exceeds the lower bound, 
all candidates are rejected because their modification effort is estimated as 
too expensive. In this situation, plan determination reports a failure and 
planning from scratch with the PHI planner is activated. 

The ranking heuristics guide the interaction between planning from first and 
planning from second principles, cf. Figure 5. 

strong classification succeeds I approximation of } 
search for applicable plan L optimization effort J 

~ reaching all current goals 

best candidate 
fails activates 

plan modification 

i weak classification succeeds I approximation of t 
search for applicable plan "" L modification effort J 

fails below 
lower bound 

I Activation of Plan Generator 

Figure 5: Interaction between first and second-principles planning 
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6 Plan Modification: Provably Correct Plans 

Plan modification is based on deductive inference processes which lead to 
modified plans that are provably correct. As introduced in Section 3 it pro­
ceeds in two phases. First, plan interpretation computes a plan skeleton and 
second, plan refitting completes the plan skeleton to a correct plan satisfying 
the current specification. 

In the following, we apply the formal approach to plan modification as defined 
in Section 3 to the example under consideration and discuss deductive plan 
modification in MRL. 

6.1 Plan Interpretation 

Plan interpretation receives two sources of input: 

1. the current plan specification for which a plan has to be generated 

2. the plan entry containing the best reusable plan which the detel'llliu a­
tion phase could identify in the plan library. 

It takes the plan specification from the plan entry and the current plan spec­
ification and attempts to prove the required relations between preconditions 
and goals: 

Ax f-- prenew -+ preold and Ax f-- goalold -+ goalnew 

During the proof, knowledge concerning regularities in the planning domain is 
applied that can be extracted, e.g., from the action axiom schemata available 
to the planner. For example, from the axiomatization of the save-command 

Vx [open_flag(mailbox) = T /\ delete_flag(msg(x, mailbox)) = F /\ 
ex(save(x, fi le, mailbox)) 

-+ 0 [jile(msg(x , mailbox)) = file /\ save-flag(msg(x, mailbox)) = I'll 

we can derive the following consequences that can be used as additional 
non-logical axioms 

save-flag{msg(x, mailbox)) = T -+ file(msg(x, mailbox)) = fil e 

file(msg(x,mailbox)) = file -+ save_flag(msg(x,ma:ilbox )) = I' 

reflecting the relationship between the atomic effects of this command . When­
ever the save_flag of a message has been set to T then there must be a file in 
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which the message has been saved and vice versa. This makes plan interpre­
tation more flexible than syntactic matching because it can identify plans as 
reusable, even if their specifications are syntactically different. 

Plan interpretation attempts to prove that Sold --* Snew holds in the do­
main theory using the LLP sequent calculus [Biundo and Dengler, 1994].8 In 
the example, it builds the sequent SPl ::::} SP2 and applies the derived rule 
rule_one, which extracts the starting sequents for the subproofs of precondi­
tions and goals: 

Plannew ::::} Planold prenew ::::} p'reold goalold ::::} goalnew 
------------~~----~------~~--------~------~------rule_one 

Planold 1\ preold --+ goalold ::::} Plannew 1\ prenew --+ goalnew 

In the example, the proof of the relations between the preconditions requires 
Sequent 1 to be proved: 

delete_flag(msg(x,mbox)) = F 
::::} open-flag(mybox) = T 1\ delete_flag(msg(m, mybox)) = F 

Starting point for the goal proof is Sequent 2: 

<:; [read-flag( msg( m, mybox)) = T 1\ 
<:;[delete-flag(msg(m, mybox)) = TJ J 

::::} <:; [read_flag(msg(x,mbox)) = T 1\ 
delete-flag(msg(x, mbox)) = T] 

(1) 

(2) 

Special-purpose proof tactics guide the proof attempt in the LLP sequent 
calculus. They run in polynomial time on the length of the input formula. 
On the one hand, this enables plan interpretation to compute an entry point 
into the search space of plans efficiently. On the other hand, this implies 
that the tactic is incomplete in the sense that it cannot compute a maximal 
plan skeleton which has been shown to be a PSPACE-hard problem in [Nebel 
and Koehler, 1993aJ. Figure 6 partially sketches the tactic precond_tac that 
is used in MRL.9 The tactic specifies a well defined ordering of deduction 
rule applications. It is composed of tacticals [Biundo and Dengler, 1994J like 
iterate_1'ule, apply_rule_st1'ict, and calUac. Each tactical specifies a specific 
mode of rule or tactic applications. 

8 A general introduction into sequent calculi can be found in [Gallier , 1987; Wa.llen , 
1989]. 

9S ubtactics dealing with universally quantified formulae are discussed in [Koehler , 
1994cl . 

26 



precond_tac (pre....seq, LisLoLAxioms):-
or _else([caILtac(separate-Ilew ,[pre....seq], LisLoLAxioms), 

caILtac(expandJinaLnew,[pre....seq], LisLoLAxioms)]). 
separate-Ilew (pre....seq, LisLoLAxioms):-

apply _rule....strict( Iv , [pre....seq] ,[newl ,rest-Ilew]), 
iterateJule( IA,[ newl],[ newl...atom]), 
caILtac(expand....subtree,[newl_atom],LisLoLAxioms), 
calLtac (precond _tac,[ restJlew]). 

expandJinaLnew(pre....seq, LisLoLAxioms):­
iterateJule( IA,[pre....seq],[ newLatom]), 
calLtac( expand....subtree,[newLatom] ,List..oLAxioms) . 

expand....subtree(newLatom, LisLoLAxioms):-
or _else([caILtac (split.1'u rther ....su btree,[ newLatom] ,LisLoLAxioms), 

calLtac( close_final....su btree,[ newLatom] ,List_oLAxioms)]). 
spliLfurther....su btree(newLatom, LisLoLAxioms):-

apply _ru le....strict( spliLproo/,[ newLatom ],[old 1 ,remaining_old]), 
iterateJule( rA,[old l] ,LisLoLSu btree_Leaves), 
calLtac( closeJeaves,LisLoLSu btree_Leaves,LisLoLAxioms), 
calLtac( expand....su btree,[ remaining_old] ,LisLoLAxioms). 

close_final....subtree(newLatom, LisLoLAxioms):-
ite rateJ' u le( rA, [newLatom] ,LisLoLSu btree_Leaves) , 

calLtac( closeJeaves,LisLoLSu btree_Leaves,LisLoLAxioms) . 

Figure 6: Sketch of the tactic for the precondition proof 

The tactical apply_rule_strict applies the rule specified in its first argument to 
a sequent specified in its second argument and returns as a result the sequent 
specified in its third argument. It fails when the specified rule is not applica­
ble to the input sequent . The tactical apply_rule works like apply_rule_slTict 
with the di[('ercnce that it always succeeds, i.e., if the specified rule is not 
appli cable to the input sequent this sequent is returned unchanged. The 
tactical iterate_1'ule repeats a rule application as long as possi ble, while the 
tactical calLtac calls another tactic. 

The tactic precond_tac is able to deal with disjunctive and conjunctive pre­
conditions and applies the following sequent rules: 

• 

• 

r, A, B =}.6. L/\ 
r, A A B =} .6. 

r, A=}.6. r, B =}.6. Lv 
r , A VB=} .6. 
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r =} A,.6. r =} B,.6. 
• r/\ 

r=}AAB,.6. 

• 
r =} A, B,.6. 

r=}AVB,.6. 
T'V 



• 
r=>A r=>6 . 
--------- spliLprooj 

r=>AV6 

The precondition proof for the example sequent is very simple because no 
disjunctive preconditions occur in the sequent expressing uncertainty about 
the initial state. The first rule that is successfully applied to Sequent I is 
rule r/\. It leads to Sequents 3 and 4: 

delete_flag(msg(x, mbox)) = F => open_flag(mybox) = T (3) 

del ete-flag(msg(x, mbox)) = F => delete_fLag(msg(m, mybox)) = F (4) 

Sequent 4 can be closed, i.e., it leads to Axiom Al using the substitution 
{x -+ m,mbox -+ mybox}. 

(AI) I del ete_flag(msg(x, mbox)) = F => delete_f1ag(msg(x , mbox)) = F I 
In order to obtain an appropriate instantiation of the reused plan, variclbles 
in the reused specification Sold are substituted by terms whi ch occur ill tile 
current specification Snew. Furthermore, different variables must be Inclpped 
to different terms, i.e., the substitutions must be injective. Injectivity may 
not always be required but it is a save condition ensuring that a proper 
instance of the reuse candidate is computed during the proof. The reader may 
note that an instantiation of sequents during a sequent proof is only possible 
when quantifier rules are applied. Plan specification formulae are implicitly 
universally quantified, i.e., when proving Sold => Snew in the sequent calculus 
we remove the universal quantifiers using the rules L V and r V and have to 
"guess" the appropriate instantiation. Of course, this is unacceptable ill all 
implemented prover due to the resulting computational overhead. Therefore, 
the instantiation is delayed until we know which instantiation is appropriate , 
i.e., which one will lead to a proof of the sequent. The restrictiolls w e pose 011 

the instantiations of the leaf sequents ensure that only those instantiatiolls 
are computed that can be introduced with the help of the quantifier rul es LV 
and rV: 

• 
r, A[c/x] => 6 
r,VxA=> 6 

LV • 
r => 6, A[a/x] 

r => 6,VxA 
'rV 

Eigenvariable condition: a must not occur in the conclusioll of 1V 

The tactic for the goal proo/is shown in Figure 7. It has to cope with modal 
operators and therefore additionally uses the following sequent rules : 
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• 

goaLtac (goal..seq ,List_oLAxioms):-
apply _rule..strict( 10 , [goal..seq],[first_old]) , 
apply _rule..strict( rO, [first...old) ,[firskold_and_new]), 
i terateJule( 1/\ ,[first_old _and..new), [first_atom Jeft]), 
iterateJule (r /\ ,[firskatomJeft), [first...atomJight, remaining..seq)) , 
calLtac( c1oseJeaves,[first...atomJight) ,LiskoLAxioms), 
calLtac( expand..goal..su btree,[ remaining...seq) ,LiskoLAxioms), 
call_tac(goal_tac, [remaining..seq) ,List_of ..Axioms). 

expand _goal..su btree( remaining...seq ,List_of..Axioms):­
apply _rule...strict( rO,[ remaining..seq),[ nexLnew]), 
iterateJule(r/\,[ nexknew),[nextJlew _atom]), 
calLtac( c1oseJeaves,[ nextJlew _atom) ,Liskof..Axioms), 
calLtac( expand..goal..su btree,[ nextJlew) , Liskof..Axioms ). 

Figure 7: Sketch of the tactic for the goal proof 

r*, A=> 6* LO 
r,OA => 6 • 

r => A,6 -----'--- rO 
r => OA,6 

. df df 
With f * and 6, * : f* = {oBloB E r} and 6,* = {OBIOB E 6,}. 

, 

The tactic proceeds recursively over the sometimes operators in both goal 
specifications in order to compare every temporary subgoal state specified in 
goaLold with each of the temporary subgoal states from goaLnew. 

The proof of the goal sequent proceeds straightforwardly with the help of 
the tactic. lO The tactic applies rule LO to Sequent 2 followed by rule rO and 
obtains Sequent 5: 

'f' ead_fLag(m sg(m , mybox)) = T /\ 

=> 
o [del et e-fLag(msg(m, mybox)) = TJ 

(5) 

,,.ead-fLag(msg(x, ·mbox)) = T /\ deLete-/Lag(msg(x,mbox)) = T 

Now , the tactic applies rule L/\ followed by rule r/\ to Sequent 5 which leads 
to Sequents 6 and 7 

1'ead-fLag(rrtsg(m, mybox)) = T, 
o [deLete-flag(rnsg(rrt,mybox)) = TJ 

=> 'l' ead-flag('I71sg( x, m,box)) = T 
(6) 

10 A ll10re complex example dealing with universally quantified subgoals call be fo und ill 
[Koeh ler, 1994c). 
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read_flag(msg(m, mybox)) = T, 
<) [delete_flag( msg( m, mybox)) = T 1 

=> delete_flag(msg(x, mbox)) = T 
(7) 

Sequent 6 can also be closed under the substitution {x ~ m, mbox ~ 
mybox}, i.e., the current subgoal read-flag(msg(x,mbox)) = T has been 
successfully proved by the tactic: 

(A2) Iread_flag(msg(x,mbox)) = T => read_flag(msg(x,mbox)) = TI 
The tactic proceeds on Sequent 7 and removes the remaining <) operator 
with the help of rule t<) which leads to Sequent 8 

deLete_flag(msg(m, mybox)) = T => 0 (8) 

The formula deLete_flag(msg(x, mbox)) = T from the succedent of Sequent 7 
disappears in Sequent 8 because it does not occur in the scope of a <) operator. 
Thus, the tactic fails in proving the remaining subgoal. The reason for this 
failure is obvious: The current goal specification requires the two subgoals to 
be achieved in the same state, while the reused goal specification only requires 
the two subgoals to be achieved one after the other. Of course, deleting a 
mail preserves the effect that the mail has been read, i.e., the reused plan that 
first reads the mail and then deletes it also leads to a final state where the 
mail has been read and deleted. But we have no way to derive this fact from 
the original plan specification formula. This is a motivation for a completion 
process of plan specification formulae that is described in Section 7. 

( direction) ( alaorithm ) (load tree) 

Figure 8: Visualization of the plan interpretation phase in MRL 
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Figure 8 illustrates the deduction tree which is constructed by the tactics 
during the example proof. The black nodes designate two axioms that were 
found. Axiom axioml represents one atomic precondition of the reused plan 
that holds in the current initial state, while axiom2 represents one atomic 
current goal that is achieved by the reused plan. 

The white nodes (treeID352 and treeID364) visualize leaves that could not 
be closed during the proof attempt, i.e., the tactics failed in proving that the 
plan is applicable in the current initial state and that it achieves all of the 
currently required goals . Thus, plan refitting must begin. 

6.2 Plan Refitting 

The proof tactics are designed always to terminate. In addition, they are 
considered as decision procedures: If a tactic does not result in a proof tree , 
it is assumed that no proof is possible and that a falsifying valuation for 
some of the leaves has been obtained. Two situations are possible after the 
termination of the proof tactics in the sequent calculus: 

1. A proof tree has been constructed, i.e., the leaves of the tree describe 
a set of logical axioms from which the formula follows. In this case the 
formula was proved to be valid. 

2. No proof tree has been found and the assumption is made that no proof 
is possible and that a counter-example tree has been constructed. 

This assumption is a save condition ensuring the soundness of plan modifica­
tion. Remember that the tactics are incomplete, i.e., when a tactic terminates 
with a failure it might either be the case that the formula is invalid or that 
the formula is valid, but the tactics failed to find a proof. 

Assuming that the formula is invalid ensures that the correctness of a plan 
is verified during plan refitting. Thus it prevents a reuse of plans that are 
not provably correct with respect to the current plan specification. 

The proof tactics guarantee that the leaves of a counter-example tree contaiu 
only atomic formulae . The falsifying valuation makes 

• all old atomic goals (in the example from Spd true, however some of 
the atomic formulae which describe current goals (in the example from 
SP2) are valued as false. These falsified goals are interpreted as those 
current goals that are not achieved by the reused plan (in the example 
by PI) . 

• all atomic formulae describing current preconditions (in the example 
from SP2) true, but some of the old preconditions (in the example 
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from S PI) false. These falsified preconditions are interpreted as those 
preconditions of the reused plan (in the example of PI) that do not 
hold in the current initial state. 

Therefore, plan PI must be modified by constructing a plan skeleton from it. 
First, the plan is instantiated with the substitutions computed during plan 
interpretation leading to 

PI': ex(type( x, mbox)) ; ex( delete( x, mbox)) 

Plan refitting concludes from the two non-axiom leaves that the (instantiat­
ed) precondition open-flag(msg(mbox)) = F required by PI' does not hold 
in the initial state and that the current goal delete_flag(msg(x, mbox)) = T 
is not achieved by it. Furthermore, PI' achieves a subgoal 

delete-flag(msg(m,mybox)) = T 

that is not contained in one of the axioms constructed during the goal proof. 
Thus, plan refitting concludes that the action ex( delete( m, mybox)) achieving 
this subgoal ll is (at least at the current position where it occurs) superfluous 
and can be removed from the plan skeleton. Table 9 summarizes the analysis 
of plan interpretation that is performed by plan refitting for the example un­
der consideration. The necessary modification operations are derived based 
on these results. 

preconditions 
old delete_flag(msg(m,mybox)) = F 
new delete_flag(msg(x, mbox)) = F Axiom 
old open-flag(msg(mybox)) = T no 
new - Axiom 

goals 
old read_flag(msg(m,mybox)) = T 
new read_flag(msg(x,mbox)) = T Axiom 
old - no 
new delete-flag(msg(x,mbox)) = T Axiom 
old delete-flag(msg(m,mybox)) = T no 
new - Axiom 

Figure 9: Analysis of the plan interpretation phase 

The following modification operations have to be performed on the instant i­
ated plan PI': 

11 Knowledge about relations between actions and effects is stored ill the plan elltries, 
cf. Section 7. 
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1. A planvariable has to be introduced in front of the reused plan. It 
represents a subplan achieving the missing precondition. 

2. The superfluous action is removed from the plan skeleton . 

3. A planvariable representing the subplan for the open subgoal must be 
introduced into the plan skeleton. In order to determine the position iu 
the skeleton where this planvariable has to be added, the current goal 
state specification must be analyzed with the help of the PHI planner. 

The current plan specification is instantiated with the preliminary plan skele­
ton P 1/1. It serves as a starting point for the planner: 

PI/l: Plan 1 ;ex(type(x,mbox)) 

Planl ; ex(type(x,mbox)) A delete_flag(msg(x,mbox)) = F 
--t 0 ['read_f1ag(msg(x,mbox)) = TA 

delete-flag(msg(x,mbox)) = TJ 

In a first step, a subplan to replace Planl has to be generated. Plan refitting 
applies the rule efJecLinl1'o [Biundo and Dengler, 1994J and introduces the 
missing precondition as the new subgoal goalnew : 

p're, Planl =? o [goalnew A OF A pre'J pre', Plan2 =? Ogoal 
-'---' __ =--_-'--!::'----'..:c..::....-___ "'-----'-__ =-----'-_---=. __ -=-_ efJecL intro 

pre, Plan 1 ; Plan2 =? Ogoal 

It obtains the two subplan specifications 9 and 10 where Plan2 is instanti­
ated with the action ex(type(x, m.box)) taken from the plan skeleton . The 
preconditiolls pre' are instantiated with delete_Ilag(m,sg(x, 'Inb01:)) = F by 
a.pplying the mechanism for the computation of frame conditions that is pro­
vided by the PHI planner [Biundo et ai., 1992J: 

delete-flag(msg(x, mbox)) = F, Planl 
=? 0 [open_flag(msg(mbox)) = T A OFA 

delete-flag(msg(x,mbox)) = FJ 

upen_flag(msg(mbox)) = T A delete_flag(msg(x, mbox)) = F, 
e:r( type(:r, mbox)) 
=? o [7' ead_flag(m,sg(x,mbox)) = TA 

delet e-flag(rHsg(:r,mbox)) = TJ 

(9) 

(10) 

The proof of the subplan specification 9 leads to a conditional plan because 
there is no action available in the domain axiomatization that achieves the 
required goal under the given precondition. Plan refitting applies the rule 
if_i1l.tro [Biundo and Dengler, 1994J to insert the case analysis: 

33 



pre, if(cond, PlanA, Plans) => Ogoal j .. 
--=----'_-'--_-'--_....:....:..:._----'::...c..._--'''--_ I _ mtro 

p're, Plan => Ogoal 

In the example, the planvariable Planl is instantiated with a case analysis 
over the state of the mailbox, which is the missing precondition that plan 
interpretation failed to prove: 

Planl:= if open_flag(mbox) = T then Plan3 
else P1an4 

Applying the rule if_splitting [Biundo and Dengler, 1994] to Sequent 9, plan 
refitting obtains the following subplan specifications: 

pre, cond, PlanA => Ogoal pre, -,cond, PlanS => Ogoal 
-'-----'---'----.!....:...----==------'----'-----'----=---=---- ij~8]Jlitti1/,!J 

p're,if(cond, PlanA, Plans) => Ogoal 

delete_flag(m::;g(x,mbox)) = F,open,-flag(mbox) = T , Plan3 
=> 0 [open_flag(mbox) = T 1\ OF 1\ (11) 

delete_flag(msg(x,mbox)) = F] 

delete-flag(msg(x, mbox)) = F, -,open_flag(mbox) = T, Plan4 
=> 0 [open_flag(mbox) = T 1\ OF 1\ (12) 

delete-flag(msg(x,mbox)) = F] 

Plan3 is instantiated with the empty action ex(empty_aclion) becausc tllC 
desired subgoal already holds in the initial state (see the underlill cd for­
mulae in Sequent 11), while Plan4 is instantiated with the actioll iw;1.all cc 
ex(mail(mbox)) which opens the mailbo;( and starts a mail sessioll: 

Vx [open_flag(mailbox) = F 1\ ex(mail(ma'ilbox)) 
-+ 0 open-flag(mailbox) = TJl2 

Thus, the following conditional plan is obtained as an instantiatioll of Plan 1: 

Planl:= if open-flag(mbox) = T then ex(empiY..fl,clion) 
else ex (rnail(mbox)) 

The proof of the subplan specification 10 proceeds as an interleaved process 
of plan generation and plan verification. First, a tactic for the ordering of 
conjunctive goals is activated [Biundo and Dengler, 1994] which decides to 
achieve the subgoal 

12Note that -,open_flag{mbox) = T is equivalent to open-flag(mailbox) = F. 
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read-flag(msg(x, mbox)) = T 

before the subgoal 

delete_flag(msg(x, mbox)) = T 

because the former is a necessary precondition for an action achieving the 
latter. The first subgoal is isolated with the help of the set rule [Biundo and 
Dengler, 1994]: 

pre, PlanA =} O[goall A OF A pre'] pre', PlanS =} O[goall A goal2] I 
se 

pre, PlanA; PlanS =} O[goall A goal2] 

This rule requires a sequential composition of two planvariables that can be 
split such that the first planvariable represents a subplan achieving the first 
subgoal, while the second planvariable represents a subplan achieving the 
remaining subgoals. But the planvariable Plan2 introduced by the effecLsplit 
rule has been instantiated with the action ex( type( x, mbox)) in specifica­
tion 10. Thus, this instantiation must be withdrawn and plan refitting sets 
Plan2 to PlanS; Plan6. 

The first subgoal read-flag(msg(x, mbox)) = T has successfully been proven 
during plan interpretation using the old subgoal read_f lag( msg( m , mybox)) = 

T. Consequently, the action from the plan skeleton ex( type( x, mbox)) achiev­
ing the isolated subgoal is reused as an instantiation of the planvariable PlanS : 

open-flag(msg(mbox)) = T A delete_flag(msg(x,mbox)) = F, 
ex(type(x,mbox)) (13) 
=} O[read_flag(msg(x,mbox)) = T A OF Apre'] 

The instantiation can be successfully verified by plan refitting. The vari­
able pre' is instantiated by computing frame conditions using PHI. With the 
second subgoal delete_flag(msg(x, mbox)) = T plan refitting addresses the 
open subgoal that plan interpretation failed to prove. Plan refitting con­
cludes that the reused plan provides no instantiation and relies on planning 
from scratch. It generates the action ex( delete( x, mbox)) that instantiates 
the remaining planvariable Plan6' With this, all planvariables have been 
successfully instantiated and a correct proof of the plan specification has 
been constructed by plan refitting. The result is the desired plan P2 that is 
obtained by reusing the sequential plan PI: 

P2: if open-flag(mbox) = T then ex(empty...action) 
else ex(mail(mbox)); 

ex(type(x,mbox)) ;ex(delete(x,mbox)) 
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The planning process benefits from the reuse of plan PI in two situations: 

• When a conditional control structure has to be introduced; here plan­
ning from second principles "knows" on which formula the case analysis 
has to be performed . 

• When thesubgoal reaLfLag(msg(m,mybox)) = Thas to be addressed ; 
here planning from second principles reuses an action instantiation that 
achieved the same goal in the plan candidate. 

The search space during planning can be dynamically restricted in both cas­
es , which leads to a speed up of the second-principles planner when com­
pared to the generative planner. 13 A maximal reuse of the library plan 
is not possible according to the complexity-theoretic results from [Nebel 
and Koehler, 1993al. In the example, this leads to some overhead during · 
plan refitting where the action instance ex( deLete( m, mybox)) is eliminated 
from the original plan, but subsequently re-introduced as the action instance 
ex( deLete( x , mbox )). This demonstrates "that it is not possible to determine 
efficiently (i.e., in polynomial time) a maximal reusable plan skeleton be­
fo re plan generation starts to extend this skeleton" (cf. [Nebel and Koehler , 
1993a], page 1440). 

The example demonstrated the generation of a conditional plan by reusing 
a sequential plan. MRL is the first system that is able to reuse and modify 
correctly plans containing control structures. 

6.3 Reuse of Control Structures 

The reuse and modification of plans with control structures leads to quali ta­
tively new problems that do not occur in approaches restricting t hemselves to 
sequential plans. The modification of sequential plans comprises operations 
like the instantiation, deletion, addition or reordering of atomic actions. The 
modification of complex plans raises the question of whether these operations 
can be extended to control structures. Two main decisions have to be made: 

1. Are control structures reused? 
versus 
Are only those sequential subplans reused that occur in the scope of 
control structures? 

2. Are control structures introduced by the modification strategy if this 
is required by the refitting process? 

13A summary of the results of an empirical study can be found in [Koehler , 1994d ; 
Koehler, 1994bj . 
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versus 
Are control structures introduced if the current planning problem re­
quires a plan containing control structures? 

The treatment of control structures in a second-principles planner requires 
to make these decisions carefully and to take into consideration specific re­
quirements from the application domain. The MRL system provides the reuse 
component of the PHI planner which is working in a help-system application. 
Here, plans are generated to provide active help to users of complex software 
environments [Bauer et al., 1993]. This means that plans are required to 
meet exactly the user's goals and to be as simple as possible. Therefore, 
control structures are only reused in a restricted way in the implemented 
system MRL. They are introduced into the modified plan or preserved in the 
plan skeleton only if the current planning problem requires the generation of 
a plan containing control structures. 

An unrestricted reuse of control structures can lead to the following problems: 

• Reused control structures are not guaranteed to correspond to the re­
quirements of the current planning situation. This can result in over­
complicated plans. For example, a case analysis makes the execution 
of a plan more complicated because a test on the conditional has to 
be performed during execution time. Thus, a case analysis should only 
be introduced into a plan skeleton when the current planning problem 
requires us to generate a conditional plan. 

• Plans can achieve unintended side-effects. Plan refitting makes some 
attempts at optimizing a reused plan by removing superfluous actions 
from it, but it is not able to generate optimal plans because this is 
usually harder than planning. Superfluous control structures render 
the problem worse. For example, an iterative plan which achieves a 
particular goal for all objects satisfying a precondition could in principle 
be reused to satisfy the goal for only one of the objects. As an example, 
the reader may think of reusing a plan achieving the goal "delete all 
my files in di rectory x" that achieves also the goal" delete file x.ps 
in directory x" . Without any attempts at optimizing the reused plan 
by removing the superfluous iterative control structure a drastic and 
harmful side effect is achieved. 

Restricting the reuse of control structures as in MRL is one way of coping 
with these problems. Further research is necessary in order to identify other 
solutions. 
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7 Updating the Plan Library 

The plan library is updated dynamically in MRL. The system starts with the 
initial plan library containing only the indices top and bottom. A new plan 
entry is added to the library under the following conditions: 

• no reusable plan has been found and the planner has to generate a plan 
from first principles, 

• the reused plan has to be modified. 

The plan library is not updated when 

• a library plan directly solves a current planning problem, 

• the index of the current planning problem is already contained in the 
library. 

MRL automatically builds a taxonomy of planning problems based on the 
indexing of plan specifications with the help of the encoding scheme. Each 
index represents an abstract class of planning problems in the appli cat ioll 
domain. An index is related to a plan entry containing stored information 
about a successfully solved planning problem: the plan, the plan specifica­
tion, and information extracted from the planning process that has led to 
this plan. The plan in the plan entry is stored on a "first come- first serve" 
basis and represents an instance of the abstract class represented by the in­
dex. Planning problems belonging to the same abstract class can be solved 
by a modification of the stored plan in the plan entry. Thus, the plan li­
brary can be kept small. Furthermore, regularities of the application domain , 
e.g., typically occurring planning problems are reflected in the structure of 
the taxonomy. 

Let us continue the example from Section 6. According to the above men­
tioned conditions, the plan library is updated because the reused plan has 
been modified. Three sources of information are available for the construc­
tion of the plan entry: 

1. the current plan specification, 

2. the modified plan satisfying the specification, 

3. the proof tree that is stored as result of plan refitting . 

The index of the plan entry has already been computed during plan determi­
nation. The current plan specification is completed before it is added to the 
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plan entry. This requires us first, to complete the goal specification, i.e., to 
specify additional goals a plan can achieve as side-effects and secondly, to 
minimize the preconditions of a plan, i.e., to eliminate preconditions from 
the specification formula which are not necessary for the plan. 

The completion process analyses the instances of planning rules and action 
axiom schemata that have been applied during the proof performed by plan 
refitting. Action axiom schemata specify the necessary preconditions of an 
action and the effects it achieves (cf. Section 4). The computation of the 
index is repeated if the completion process leads to a changed specification 
formula. 

In the example under consideration, the completion of plan specification S P2 

leads to a disjunctive precondition reflecting the complete case analysis that 
has been introduced into the plan with the help of the if_intra rule: 

Planp2 A 
[delete_flag(msg(x, mbox)) = FA open-flag(mbox) = T] V 
[delete-flag(msg(x,mbox)) = FA open-flag(mbox) = F) 
-+ 0 [ read_f lag( msg( x, mbox)) = T A 

delete_flag(msg(x, mbox)) = T] 

An explicit representation of the possible preconditions for plan P2 supports 
the identification of applicable subplans during the plan interpretation phase. 
A recomputation of the index is not necessary because the conjunctive normal 
form of the completed precondition formula is logically equivalent to the 
originally specified precondition in SP2. 

A major part of a plan entry comprises information that is extracted from 
the proof tree leading to a plan: 

• relation of sequential subplans occurring in conditional plans to their 
minimal preconditions, 

• extraction of sequential body plans occurring in iterative plans, 

• relation of atomic actions to the atomic goals achieved by the plan. 

In order to relate sequential subplans to their minimal preconditions the 
proof tree is analyzed for applications of the rule if_intro (cf. Section 6). In 
the example, plan refitting has led to the conditional plan 

Planl: if open-flag(mbox) = T then ex(empty_action) 
else ex (mail (mbox)) 
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preceding the sequential plan ex(type( x, mbox)) ; ex( delete( x, mbox)). Two 
possible preconditions for this plan are explicitly represented in the completed 
plan specification formula. Now, each of them is related to the sequential 
plan that belongs to one of the preconditions. Consequently, the following 
information is stored in so-called belongs_to entries: 

• belongs_to[ex(type(x, mbox)); ex(delete(x, mbox)), 
delete_flag(msg(x, mbox)) = F 1\ open-flag(mbox) = T] 

• belongs_to[ex(mail(mbox)); ex(type(x, mbox)) ; ex( deLete(x, mbox)), 
delete_flag(msg(x, mbox)) = F 1\ open_flag(mbox) = F] 

Plan refitting relies furthermore on information about the relationship be­
tween actions and atomic subgoals. When a current atomic subgoal has 
successfully been proved with the help of an old subgoal during plan inter­
pretation, plan refitting looks this old subgoal up in so-called reaches entries 
stored with the plan entry and reuses the action or subplan which achieved 
the old subgoal. 

The action instances which achieve atomic goals are extracted from the leaves 
of the proof tree resulting from the application of action axiom schemata. In 
the example, we obtain the following reaches entries: 

• reaches[ex(maiL(mbox)),open_flag(mbox) = T] 

• reaches[ex(type(x, mbox )), read_flag(x, mbox) = T] 

• reaches[ex( delete(x, mbox)), delete_flag(msg(x, mbox)) = T] 

The construction of a plan entry is completed by a systematic renaming of 
variables with internal designators and by a sort-preserving abstraction of 
constants like sender Joe with existentially quantified variables . 

Finally, the plan entry is related to its index which uniquely determines its 
position in the plan library. It is now available to subsequent planning from 
second principles. 

8 Related Work 

The implementation of a second-principles planner based on the formal frame­
work as introduced in Section 3 requires design decisions that specify how 
planning from second principles proceeds in detail. In this section, we discuss 
the most important of these decisions underlying MRL and relate the system 
to other approaches. 
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Meta Level versus Object Level 

Planning from second principles can proceed on a meta level or on an object 
level. On the object level, previously generated plans are directly reused to 
solve the current planning problem. This means that the plans as the ob­
jects of the planning process guide planning from second principles. On the 
meta level, knowledge extracted from previous planning processes represent­
ing "planning experience" guides the search for the desired plan. 

The commitment of a particular planner to one of these levels is a fundamen­
tal design decision. A commitment to the object level leads to case-based 
planners and reuse systems, e.g., PRIAR [Kambhampati and Hendler, 1989] 
and SPA [Hanks and Weld, 1992a] . A commitment to the meta level leads to 
adaptive and reactive systems based on learning techniques, e.g. , PRODIGY 
[Minton, 1988] and GRASSHOPPER [Leckie and Zuckerman , 1993]. 

MRL proceeds mainly on the object level because it relies on the reuse of 
stored plans. Meta level knowledge is reused, e.g., when plan refitting is 
supplied with information about preconditions on which case analyses have 
to be performed, cf. the example in Section 6. 

Skeletal Plan Refinement versus Flexible Modification 

If planning from second principles proceeds on the object level, plans are 
modified in order to construct the desired plan from them . Plan modificatioll 
can be implemented as skeletal plan refinement [Friedland and Iwasaki, 1985] 
or as flexible modification [Kambhampati, 1990; Hanks and Weld , 1992a]. 

Skeletal plan refinement computes an appropriate ground-level instantiation 
for each operator occurring in the abstract skeleton. The admissi ble mod­
ification operations are restricted to instantiation, but they can proceed in 
several hierarchical steps and backtracking may occur. The modified plan is 
obtained as an instance of the skeleton. 

Flexible modification as implemented in MRL admits a variety of operations 
on plans , e.g., the delet ion and addition of operators and control structures. 

Skeletal refinement occurs in MRL when the current plan specification has 
successfully been proved to be a logical instance of the reused plan specifica­
tion. In this situation, an instance of the library plan will solve the current 
planning problem and plan modification can be restricted to instantiation 
operations. 

Transformation-based versus Generation-based 

The modification of a plan can be done with the help of transformations [Mc­
Dermott , 1978; Hammond, 1990; Beetz and McDermott, 1992] or by extend-
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ing a first-principles planner with the ability to modify plans [Kambhampati, 
1989; Hanks and Weld, 1992a; Veloso, 1992b]. 

Transformation-based approaches execute a plan in a simulated environment. 
Failures are classified in a failure hierarchy and resolved by activating trans­
formations on the plan. This approach requires a prediction of all possi ble 
failures, i.e., a proof of the completeness of the failure hierarchy and the 
available transformation rules, which is hard to achieve. 14 Further problems 
are related to the soundness and termination of the transformations. Trans­
formations resolving a failure may introduce other failures, which makes it 
difficult to ensure that the transformation process does not loop and that the 
transformed plan is sound, i.e., that it solves the current planning problem. 

To overcome these problems, a generation-based approach has been intro­
duced in the PRIAR system [Kambhampati, 1989]. The proof of the com­
pleteness of plan modification with respect to the planner is trivial since plan 
modification can rely on plan generation as a "fall-back" possibility. Sound­
ness and termination are also easy to ensure if the underlying first-principles 
planner possesses these properties. 

The modification of a plan in MRL proceeds generation-based. MRL com­
putes a plan skeleton and sends it to plan refitting for completion, which 
interacts with the generative PHI planner. The plan skeleton preserves those 
control structures and actions that are assumed to be reusable. The exten­
sion of a skeleton to a correct plan requires flexible modification operations , 
which add or delete new operators and control structures. The correctnes:; 
of the planning process with the help of which the skeleton is completed, 
ensures that the modified plan is sound. Planning knowledge represented 
by the plan skeleton guides the current planning process and dynamically 
constrains the search space. 

MRL is "complete" with respect to the planner because plan refitting can 
"fall back" on plan generation. The system is incomplete in the sense that 
it will not always find a plan if there is one because the use of tactics makes 
the underlying LLP theorem prover incomplete. 

Conservative versus Non-Conservative 

A desirable property of plan modification is conservatism, which means to 
"produce a plan ... by minimally modifying [the original plan]" [Kambham­
pati and Hendler, 1992]. Minimal modification of a plan implies a preser­
vation the maximal number of applicable operators in a plan skeleton. A 
critical analysis of conservatism in [Nebel and Koehler, 1993al shows that 
the computation of such maximal plan skeletons is PSPACE-hard. There-

l4As an example see the incompleteness proof of CHEF in [Hanks and Weld , 1992bj . 
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fore, implemented systems including MRL are non-conservative. In order to 
ensure efficiency of the plan modification process they rely on polynomial 
approximations, for example proof tactics for plan interpretation that run in 
polynomial time, which compute an "entry point" into the search space of 
possible plans as made explicit by Hanks and Weld [Hanks and Weld, 1992a]. 
This entry point cannot be guaranteed to be the best, but it is the best the 
approximation algorithm can compute. It is an open problem whether the 
maximal applicable subplan is approximable within a constant ratio. Recent 
results for similar problems [Backstrom, 1994] seem to hint at a negative 
result. 

The Plan Library 

Recently, the representation of plans based on terminological knowledge­
representation systems has led to several approaches, which extend descrip­
tion logics with new application-oriented representational primitives for the 
representation of actions and plans. 

One such extension is the system RAT [Heinsohn et al., 1991] which is based 
on KRIS [Baader et al., 1992]. RAT implements reasoning about plans 
by inferences in the underlying description logic. The system simulates the 
execution of plans, verifies the applicability of plans in particular situations 
and solves tasks of temporal projection. 

An application of description logics to tasks of plan recognition is developed 
in T-REX [Weida and Litman, 1994]. Plans in T-REX may contain condi­
tions and iterations as well as non-determinism in the form of disjunctive 
actions. 

The plan library can be static as well as dynamic in MRL. A static library 
comprises user-predefined typical plans. The system retrieves these plans for 
reuse, but does not add new plans to the library. A dynamic plan library 
grows during the lifetime of the system. MRL starts with an empty library 
and incrementally adds new plan entries to it. 

The main advantage in using a description logic as a query language to the 
plan library as in MRL lies in the theoretically well-founded properties of 
the retrieval algorithm. For the first time, retrieval is guaranteed to retrieve 
sol-utions from a library in polynomial time. This contrasts with approach­
es that are restricted to retrieving "reasonable similar past cases ... within 
limited bounded resources" (cf. [Veloso, 1992b], p. 103) . Furthermore, an 
indexing of plan libraries based on the lattice structure provided by the sub­
sumption hierarchy overcomes problems occurring in indexing schemes based 
on discrimination networks. On the one hand, discrimination networks fail 
in indexing complex plan specifications because they are restricted to coping 
with conjunctions of literals. On the other hand, such pathological situations 
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may occur where retrieval algorithms working on discrimination networks 
are provided with an exponentially growing input set. For example, given a 
goal state containing n atomic subgoals, the retrieval algorithm developed in 
[Veloso, 1992b] first searches a plan covering these n subgoals . If this fails , 
it computes all subsets of subgoals of cardinality n - 1, then n - 2 and so 
on until it takes the atomic subgoals as input. This means, the retrieval 
algorithm takes the power set of n except the empty set as input in the 
worst case, which is 2n -1. An indexing based on the subsumption hierarchy 
avoids such problems because existing relationships between sets of subgoals 
are reflected in the lattice structure of the index taxonomy. 

9 Conclusion 

We have presented a logic-based approach to planning from second principles , 
which relies on a systematic decomposition of the planning process wi th 
the help of a four-phase model. Deductive inference processes with clearly 
defined semantics formalize each phase. The formal model is independent or 
a particular planning formalism and makes no commitments to application 
domains , implementational details, the nature of plans or planning situations. 

Plan modification yields provably correct modified plans and enables a second­
principles planner to reuse plans containing control structures like condition­
als and iterations. 

Reusable plans are retrieved from a dynamically updated plan library using 
a description logic as query language to the library. The plan library can 
be indexed based on a lattice structure and retrieval is formalized using a 
KL-ONE like classifier which is guaranteed to find existing solutions. 

The formal framework leads to an implemented system with predictable be­
havior . Furthermore, in contrast to heuristic approaches, theoretical proper­
ties like the correctness, completeness and efficiency of the inference proce­
dures can be proved . 
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