Computing Cost Estimates for Proof Strategies

Knut Hinkelmann Helge Hintze
DFKI, Postfach 2080, 67608 Kaiserslautern, F.R. Germany
e-mail: hinkelma@dtki.uni-kl.de

Abstract

In this paper we extend work of Treitel and Genesereth for calculating
cost estimates for alternative proof methods of logic programs. We consider
four methods: (1) forward chaining by semi-naive bottom-up evaluation, (2)
goal-directed forward chaining by semi-naive bottom-up evaluation after Gen-
eralized Magic-Sets rewriting, (3) backward chaining by OLD resolution, and
(4) memoing backward chaining by OLDT resolution. The methods can in-
teract during a proof. After motivating the advantages of each of the proof
methods, we show how the effort for the proof can be estimated. The calcu-
lation is based on indirect domain knowledge like the number of initial facts
and the number of possible values for variables. From this information we can
estimate the probability that facts are derived multiple times. An important
valuation factor for a proof strategy is whether these duplicates are eliminated.
For systematic analysis we distinguish between in costs and out costs of a rule.
The out costs correspond to the number of calls of a rule. In costs are the
costs for proving the premises of a clause. Then we show how the selection
of a proof method for one rule influences the effort of other rules. Finally we
discuss problems of estimating costs for recursive rules and propose a solution
for a restricted case.

Contents

1

2

Introduction 3
Proof Methods 4
Proof Strategies 7
Cost Estimates for a Proof Strategy 8
Computing Cost Estimates 9
5.1 Number of Rule Instantiations 9
5.2 Unique Rule Instantiations 10
5.3 Separating In-Costs and Out-Costs for a single Rule 12
Propagating Cost Estimates 15
Recursive Rules 18
Conclusion 19

1 Introduction

Besides the traditional depth-first backward-chaining (top-down) strategy for evalu-
ating logic programs there are a number of alternative proof methods. The motivation
for considering alternative approaches comes from the following two main drawbacks
of the depth-first search underlying most implementations. First, the operational
semantics does not correspond to the model-theoretic semantics. The proof of a
theorem may not terminate although the theorem is in the model of the program.
Second, a large portion of the problem space may be searched redundantly if there
are multiple ways in which a subgoal can be derived. A well-known example is the
standard specification of Fibonacci numbers.

These disadvantages can be overcome by memoing or caching queries and their so-
lutions for later use. This led to the development of extension tables [Dietrich, 1987]
and the tabulation extension of OLD resolution [Tamaki and Sato, 1986]. Deduc-
tive databases contribute another motivation for alternative approaches: the tuple-
oriented execution performs a lot of database accesses with small granularity. For
the coupling with a database a set-oriented approach would be preferable, e.g. the
Query-Subquery approach [Vieille, 1986].

Forward-chaining (bottom-up) evaluation corresponds to a model-generation ap-
proach. It is both complete and efficient because it avoids the derivation of du-
plicates. But if bindings for some argument positions are given in the query, it
derives a lot of redundant facts which do not contribute to the proof. Recent de-
velopments in bottom-up query evaluation, which are based on program transforma-
tions, retain the focusing properties of top-down evaluation ([Ramakrishnan, 1988;
Rohmer et al., 1986; Beeri and Ramakrishnan, 1991; Sacca and Zaniolo, 1986]).

Which of these proof methods should be used for a logic programming system?
In [Bancilhon and Ramakrishnan, 1988] performance evaluations of several recursive
query evaluation algorithms are presented. They measure the computation cost of
each method individually over five examples.

Instead of deciding on a proof method once and for all, however, it might be
advantageous to have a collection of them in one system. Then the problem is
to decide when to use which proof method. We will discuss criteria on which the
selection of a proof strategy for one particular query depends. Thereby we will
concentrate on criteria that affect the efficient execution. In [Treitel, 1986] algorithms
for estimating the computation costs of forward and backward application of rules!
for LLNR resolution have been presented. For one query both forward and backward
chaining inference steps can be mixed. In the following sections of this paper we will
extend this approach. The main difference lies in the proof methods that we consider.
In our system we do not only have forward and backward reasoning but also goal-
directed forward reasoning (after Generalized-Magic-Sets rewriting) and backward
reasoning with tabulation. We will also clarify how the cost estimates for one rule
have to be propagated to other rules by distinguishing between in costs and out costs

'We use the term deduction rule or short rule synonymously for clause.

of a rule.

2 Proof Methods

As pointed out by [Beeri and Ramakrishnan, 1991] there are two modes of informa-
tion passing in evaluating a query to a logic program. The first is called sideway
information passing. By solving a premise predicate variable bindings are obtained
which can be passed to another premise in the same rule to restrict the computation
for that predicate. In the second mode information is passed to a rule from the query
by unification with the head of the rule; it is called top-down propagation.

In principle, logic programs may be evaluated by forward or backward chaining.
Backward chaining supports both information passing modes but the declarative
meaning of a program is contradicted by the termination problem of many imple-
mentations.

Example 1 The simple left-recursive ancestor program

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Y).

with query

7- ancestor(john,A).

will not terminate, when evaluated by a depth-first, left-to-right backward-chaining
proof method like OLD resolution. To avoid this problem, we have to change the
order of the clauses and of the premises in the first clause to get a right-recursive
program. It would be nice, however, if the programmer would not need to think
about it. Therefore we are looking for complete methods.

By memoizing (sub)goals and their solutions for further use, we can get a com-
plete version of backward-chaining evaluation (e.g. OLDT resolution [Tamaki and
Sato, 1986], extension tables [Dietrich, 1987], QSQR [Vieille, 1986], RQA/FQI [Ne-
jdl, 1987]). The principle of memoing is similar for all methods. The backward
chaining system has an additional memory, the so-called solution table. At the first
occurrence of a query (), a new entry into the solution table is created. The solution
list for Q is still empty. Then Q will be proved by ordinary backward chaining. Ev-
ery solution of () will be added to the solution list of Q. If the same query Q occurs
multiple times — i.e. there already exists an entry for () in the solution table — no new
proof will be started but the solutions already in the solution list are retrieved. By
this approach every query is proved only once. Additionally, some non-terminating
loops are avoided: if a query (occurs a second time but no solutions have been

derived the evaluation stops. For a more detailed description of this approach and a
proof of its completeness see for example [Tamaki and Sato, 1986].

Evaluating the above left-recursive program of Example 1 with a memoing method
will terminate. Since memoing is space-consuming, the incomplete, non-memoing
approach can still be useful but only for ‘safe’, e.g. non-recursive, programs. Besides
being complete the memoing methods can also dramatically increase efficiency of
programs by reusing previously computed solutions:

Example 2 A well-known example for redundant recomputation is the standard
specification of Fibonacci numbers.

£ib(0,1).

fib(1,1).

fib(N,F) :- N1 = N - 1, fib(N1,F1),
N2 = N - 2, fib(N2,F2),
F=F1l+F2.

The complexity can be reduced from exponential to linear by memoizing instead of
recomputing the values of the first n-1 fibonacci numbers.

Forward chaining by naive or semi-naive evaluation is a complete fixpoint proce-
dure [Bancilhon and Ramakrishnan, 1986]. Since pure forward chaining evaluation
does not take into account a query, sideway information passing is the only informa-
tion passing mode (see above). To restrict model generation to those ground facts
relevant to answer a particular query, the Magic-Sets rewriting technique introduces
auxiliary ‘magic’ predicates to simulate the second (top-down) information passing
mode [Bancilhon et al., 1986]. An additional fact — called Magic Seed — carries
the bindings of the query; the arguments of the seed fact are exactly the variable
bindings of the query. All relevant rules will get an additional premise that can be
satisfied by magic facts. Thus, the variable bindings of the query are passed to the
body of the applicable rules. The Generalized Magic Sets (GMS) transformation
[Beeri and Ramakrishnan, 1991] extends the sideway information passing strategy
from base predicates to derived predicates. The rewriting strategy depends on the
particular strategy for sideway information passing. A detailed description of GMS
rewriting would require too much space. Therefore we will demonstrate it with an
example. For more information and an algorithm see [Beeri and Ramakrishnan, 1991;
Balbin et al., 1991].

In addition to the introduction of Magic Sets an adorned version of the program
is created. The adornment of a predicate depends on the binding pattern of the goal
for which it can be called: A predicate p**f is assumed to be evaluated with the first
two arguments bound to a ground term and the third argument being a term with
free variables.

Example 3 The simple ancestor program

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Y).

with query

7- ancestor(john,A).

will be rewritten to

magic_ancestor_bf(john).
magic_ancestor_bf(Y) :- magic_ancestor_bf(X), parent(X,Y).
ancestor_bf(X,Y) :- magic_ancestor_bf(X),
ancestor_bf(X,Z),
parent (Z,Y).
ancestor_bf(X,Y) :- magic_ancestor_bf(X), parent(X,Y).

The initial bindings of the query are given by the seed magic_ancestor_bf (john)
while the rule for magic_ancestor bf is responsible for the simulation of the top-
down propagation of variable bindings. The adornment bf indicates that the argu-
ment of magic_ancestor bf delivers the bindings for the first argument of ancestor.
This transformation is data independent. For every set of facts forward chain-
ing of the rewritten program derives all the facts necessary to answer the query
ancestor(john,A).

Model generation without rewriting may pay if the query does not restrict the
model generation so much. A trivial example would be that the program consists
only of facts containing John’s ancestors. But also for more realistic programs, if the
query does not heavily restrict the model generation, it might be better to renounce
rewriting. A preferable approach would be simply to select the relevant rules, execute
them by simple bottom-up evaluation, and select the matching facts.

As part of the COLAB knowledge representation system [Boley et al., 1993] we
have extended a logic programming language with various alternative proof meth-
ods. These are a modification of OLDT resolution [Tamaki and Sato, 1986], where
we can explicitly specify the tabulation predicates, and the semi-naive bottom-up
evaluation [Bancilhon, 1985] with optional Generalized-Magic-Sets [Beeri and Ra-
makrishnan, 1991] rewriting. Thus, we distinguish four kinds of proof methods in
our system:

Forward Chaining: semi-naive bottom-up evaluation

Goal-Directed Forward Chaining: semi-naive bottom-up evaluation
after Generalized-Magic-Sets rewriting

Backward Chaining: top-down proof by OLD resolution

Memoing Backward Chaining: top-down proof by OLD resolution
with tabulation (OLDT resolution)

There are interfaces between the forward-chaining and the backward-chaining
implementation, such that for proving a theorem any combination of the four proof
methods can be applied. The programmer may prejudice (part of) the strategy by
explicitly determining the proof methods for individual rules. The control of the
combined forward/backward-chaining system is rather complex: Evaluation starts
with the bottom-up execution of the (potentially GMS-rewritten) rules that can
be triggered by the facts of the program. The top-down reasoner is called for the
remaining backward-provable premises of an applied rule (if any). The derived facts
of this phase are added to the program. If the query has already been derived in
this phase, execution stops. Otherwise, the backward-chaining component is applied
reusing forward-derived facts without recomputing them. A detailed description of
the system can be found in [Labisch, 1993].

As already mentioned above, the choice of the proof method depends on complete-
ness and efficiency criteria. In the following sections we will present an approach for
estimating the efficiency of a proof based on cost estimates. It extends the compu-
tation of cost estimates as described in [Treitel, 1986] and [Treitel and Genesereth,
1987], where only the first two types of evaluation (forward and backward chaining)
were considered. The cost estimates can then be used to choose a proof method for
every rule.

3 Proof Strategies

Since there are a number of proof methods available for logic programs, we have to
decide when to apply which method. We will first define what a proof strategy is:

Definition 4 (Proof Strategy) A proof strategy is an assignment of a proof method
to each clause of a logic program P.

Now we will consider at which level and time a decision for a proof method can
be made. Possible levels on which a strategy can be determined are (in order of
decreasing specificity):

Rule: Each rule is associated with one of the four proof methods. This
could mean that two clauses defining the same relation are evaluated
by different proof methods.

Definition: All clauses defining one predicate must be evaluated by the
same proof method.

Module: Procedures can be collected to modules, for which a uniform
proof method is seeked.

Program: There is no collaboration between proof methods. A goal is
proved by selecting one of the available proof methods in advance,
which is used for the whole program.

System: Only one proof strategy is available in the system and conse-
quently there is no choice. This is the case for most of the logic
programming languages. Prolog, for instance, only supports a kind
of SLD-resolution.

In principle, control decisions can be made either at run time or at compile
time. Decisions made at run time can benefit from up-to-date information (e.g.
actual variable bindings) and therefore are more precise. Their overhead, however,
may counteract their improvement. Decisions made at compile time might be less
accurate, but they can be made once and used several times. Also they can be more
complex because the time they consume themselves does not increase the waiting
time for an answer. OQur approach is a compile-time approach making a decision at
definition level and taking into account information from the query. The decision
for a rule’s strategy depends on cost estimates for its application. Then an overall
strategy is an assignment of one of the four proof methods to every clause of the
program such that all rules defining a particular predicate are evaluated by the same
method.

It should be noted that it can be advantageous to apply different proof methods
to a single rule depending on the variable bindings of the query. This will not
be considered by our approach, but can be achieved in combination with program
specialization techniques like partial evaluation [Komorowski, 1992]. In this case,
the rules defining a predicate p are duplicated and specialized for a particular query
p(a,X). After renaming the predicate we have a new predicate p’, which will be
applied if p is called with first argument bound to a. The rules defining p” can be
assigned a proof method different from that of p.

4 Cost Estimates for a Proof Strategy

For each clause the cost estimates for evaluating them by any of the available proof
methods are calculated. The total cost of a strategy S for a program P is computed
by the following equation:

cost(S) = (1)
Z;va(r, SYskesr(r) 4+ vp(r, S) * ep(r) + vgp(r,) * €y (r) + Vimp(r,.S) * €mp(r)

where ef(r) is the estimated cost for applying rule r in forward direction by semi-
naive evaluation, ey(r) is the estimated cost for applying r in backward direction,
e,¢(r) is the estimated cost for using a goal-directed forward-chaining approach (after

rewriting), and e,,;(r) is the estimated cost for applying memoing backward chaining
by OLDT resolution. The parameters v, play the role of selectors:

1 if r is executed as a forward rule according to strategy S
vs(r,5) = 0 else
1 if r is executed as a backward rule in strategy S
v(r,) = { 0 else
1 if r is executed as a goal-directed forward rule in S
vyp(r,) = 0 else
1 if r is executed as a backward rule with memoing in S
oms(1,) = 0 else

The task is to choose values for v¢(r,S), vy(r,5), vye(r,S), and vy(r,S) such
that cost(.S) is minimal.

5 Computing Cost Estimates

The decision is made on indirectly domain-dependent information. It is more informa-
tive than purely syntactic approaches which are applicable to any program without
any advice concerning their content. On the other hand, they abstract from deep
knowledge about the domain and the concrete data of the program. In particular,
we consider

e estimates on the number of facts for each predicate,

e the probability of deriving duplicates,

e the distribution of possible variable instantiations, and

e the number of answers that are needed (one answer or all answers).

o Additionally, we take into account the degree of restrictions given by the query.

In this section we will first repeat some equations from [Treitel and Genesereth,
1987] for calculating the basic values, i.e. the number of (unique) rule instantiations.
Then we will present a systematic way for computing the costs of rule execution with
any of the available proof methods.

5.1 Number of Rule Instantiations

An important value for the computation of cost estimates is the number of facts,
which can be computed by a rule, i.e. the number of consistent instantiations of the
body of a rule. The instantiation of two literals is consistent if common variables

have identical bindings. The probability of consistent instantiations depends on the
number of possible values for common variables. Consider two literals p(X,Y) and
q(X,Y,Z). Let n(Q) be the number of possible instantiations for a literal @ and let
d(X) be the number of possible values for a variable X. Then the probability that
their instantiation is consistent is equal to d(X)™! * d(Y)™' and thus the number of
consistent instantiations is

n(p(X,Y)) * n(q(X,Y,2)) * d(X)"" xd(Y)™" .

The number of consistent instantiations of a rule is calculated iteratively simulat-
ing a left-to-right information passing strategy: Let r be a rule P «+— @1,Qs, ..., @,
let 3; be the set of variables of premise ();11 that have already been bound by the
premises (J1, Qa, ..., Q;. Let A(r,7) be the number of consistent instantiations of the
first ¢ premises. Then

A(r, 1) = n(Q1)

A(ryi4+1) = A(r,i)#n(Qipa) * [d(V)™ (2)
Vep,

and the number n(P) of derivable facts is equal to A(r,n).

Example 5 If the premises of a rule do not share any variable, the number of possible
facts derived by a rule is computed by the product of the possible instantiations for
each premise. Consider the following rule:

p(X,Y) <= s(X), t(Y).

If there are 100 possible instantiations for s and 10 possible instantiations for t, the
rule can compute 1000 facts. If the premises share variables, these must have the
same value at each occurrence, which reduces the number of possible derivations.
Then the number of consistent instantiations is equal to the number of possible
instantiations divided by the number of possible values for each multiple occurrence
of a variable. Consider the rule

p(X,Y) <- s(X,2), t(Z,Y).

If the number d(Z) of possible values for variable Z is 5 and there are again 100
possible instantiations for s and 10 possible instantiations for t, then the number of
derivable facts is computed by 100 * 10/5, i.e. there are 200 possible derivations.

5.2 Unique Rule Instantiations

Different instantiations of the variables in a rule may lead to identical instantiations
of the conclusion. This may be the case, for example, if rule instantiations differ

10

only for variables, which do only occur in the premises. These multiple derivations of
identical facts are called duplicates. A substantial factor for the selection of a method
is whether duplicates are eliminated or proved redundantly. Therefore this has to be
considered by the cost estimation. This means that we need to know not only how
many consistent instantations of a rule can be found but also how many of them are
unique.

Consider a rule p(X) «— @Q1,Q2,...,Q,. Let again d(X) be the number of possible
values for a variable X. We first assume that every possible value for a variable
occurs with equal probability. Then the number Fx(m) of unique derivations after
m derivation steps is computed by the following recursive formula:

Ex(1) =1
Ex(m+1) = Ex(m)+ P,(m) .

with P,(m) being the probability that the m-th fact has not already been derived:

_ Ex(m)
(X

P,(m)=1

The recursive definition for Fx(m) can be approximated by the following formula:

(LX)

Bl =

Now we generalize this formula for conclusions with multiple variables: Let P «
Q1,Q2,...,Q, be a rule, let Xy,..., X} be the variables of P and let m = n(P) =
A(r,n) be the number of consistent instantiations for P computed by formula (2).
Then the number of unique instantiations nyuigue (P) is approximated by the formula

Nunigue (P) = Ex,,.x,(m) = —, vith »= [Td(x:) (3)
=1
Example 6 Assume that the rule

p(X) <- s(X,2), t(Z,Y).

has 100 consistent instantiations, i.e. n(p(X)) = 100, and the domain of X has cardi-
nality 200, i.e. d(X) = 200. Using formula (3) above we get

1 — (0.995)1°0
78 < Ex(100) = % = 788 < 79

Thus, from 100 derived facts we get probably 21-22 duplicates if they are not elimi-
nated.

11

For these approximations it has been assumed that every possible value for a
variable occurs with equal probability. If it is known that some values occur more or
less often, we can use weight factors. The formula

Ex(n,a) =1—(1—(g(a)*d(X)™))"

computes the probability that variable X is instantiated with value a after n deriva-
tion steps. The weight ¢g(a) is a measure for the frequency of the value a being an
instantiation for X.

5.3 Separating In-Costs and Out-Costs for a single Rule

With these basic values we can now compute the costs for evaluating a rule with any
of the available proof methods. For systematic analysis we distinguish between in
costs and out costs of a rule. The out costs correspond to the number of calls of a
rule. In costs are the costs for proving the premises of a clause. Then the total costs
of a rule are equal to the product of in costs and out costs because for each call the
premises have to be tested.

The main value for in costs of a rule is the number of consistent instantiations
for its premises. Here the elimination of duplicates has to be taken into account.
However, premises are not proved by the rule itself, but by other rules. Thus, we see
how the costs of one rule are influenced by the proof method of other rules. Let I(r,i)
be the number of instantiations for the :** premise of rule . Depending on the proof
method of the rule that derives these instantiations, its value is calculated either by

formula (2) or (3):

Ex, .. x,(A(r,2)) if the i’ premise is proved by a
I(r,e) = duplicate-eliminating method
A(r,) if duplicates are not elimated.

For goal-directed reasoning (i.e. goal-directed forward chaining, backward chain-
ing and memoing backward chaining) we have to consider that a rule is called with
a query, such that not all instantiations are computed. Therefore we compute their
costs with respect to a binding pattern.

Forward Chaining

The in costs of a forward rule are equal to the number of instantiations of the
premises. To these costs we have to add the costs S for storing each of the unique
derived facts.

n

InCostss(r) = Z I(ry0)+ Ex, ... x,(A(r,n))* S

=1

12

The out costs for forward chaining are equal to 1 because each instantiation is com-
puted exactly once and can be used multiple times. This means that the forward
costs for a rule r are simply the in costs:

ef(r) = InCostss(r)* OutCostss(r)
= Y) + Exyex (Al) + S “
=1

Goal-directed Forward Chaining

Goal-directed forward chaining is based on a rewriting of the rules to restrict the
derivation of facts. The cost estimates must reflect the effort of evaluating the rewrit-
ten rules: the rewriting algorithm adds an additional premise with a magic predicate
to the original rule and introduces new rules to derive instantiations for this new
predicate. Thus, for goal-directed forward chaining the number of premises is in-
creased because of the magic predicates, but the number of instantiations is reduced.
The Magic-Sets rewriting depends on the binding pattern of the query. Consequently,
the cost estimates are also computed with respect to a binding pattern.

Given a rule p(X) « Q1,Qa,...,Q, and a query 7 — p(X;) with binding pattern
(adornment) ad. X stands for a vector of terms involving variables and constants
and X, stands for the ground terms of X. The rewriting algorithm generates a new

rule r,q with additional premise magic_p*(X;):

rod P X) — magicp™(X3),Q1,Q2, . .., Qn
and k rules m.r%% ... m.r¢? defining magic_p*®, one for each rule defining p.

Rewriting does not effect the calculation of a rule’s out costs. Because the out
costs for forward-chaining rules are always equal to 1, this is also true for each of the
rules that result from rewriting. The in costs, however, must be calculated differently.
They are calculated by adding to the in costs of the original rules the costs of deriving
the magic facts, which are equal to the costs for the rules m_p?®:

egf(r) = InCostsys(r,ad)

k
= InCostss(r) + Z ef(m.r?d)
=1 (5)

k
= InCostss(r) —I—ZInCastS(m.rfd))

=1

Backward Chaining

Similar to forward chaining the in costs for backward chaining depend on the num-
ber of rule instantiations. The number of instantiations is less, however, because

13

some of the variables are assumed to be already instantiated by the query. Multiple
instantiations in backward chaining mode are computed by backtracking steps. But
for backtracking an additional price has to be paid for restoring the environment.
We assume that these additional costs B are constant. If we assume that a rule
p(X,Y) — Q1,Q2,...,Q, is called with unbound arguments in the query (i.e. the
adornment ad is ff), the in costs are

InCostsy(r, [y = > I(r,i)« B .
=1

For ordinary backward chaining a rule can be called from many places with iden-
tical binding pattern. Each time a rule is called all the instantiations are derived
again. This is taken into consideration by the out costs. The out costs are equal to
the number of calls for the rule with repect to a binding pattern for the query. If only
one solution is needed, the out costs are 1. Most frequently, even if for the topmost
goal one solution is sufficient, identical subgoals may be proved multiple times (cp.
the Fibonacci numbers of Example 2).

Let the rule r be called by premise ¢ + 1 in the body of another rule r’. The
number of valid partial instantiations of premises 1,...,¢ (as given by the interme-
diate solutions A(r’,7)) corresponds to the calls of the backward chaining rule r. To
calculate the number of calls for rule r we can use formula (2). The final out costs
are computed by adding up the number of partial instantiations of every calling rule.
There is no upper bound for the out costs.

To compute the cost estimates of a rule for backward chaining we have to sum
up the product of in and out costs for each binding pattern ad:

ep(r) = Z(InCostsb(r, ad) * OutCostsy(r,ad)) . (6)

ad

Memoing Backward Chaining

While for ordinary backward rules the out costs are equal to the number of calls for
the rule, for the memoing method from these costs the probability for duplicates has
to be subtracted. This means that the out costs are less than or equal to the number
of the unique instantiations of the query ¢) with adornment ad. On the other hand,
we have to add the costs S for storing the derived facts.

OutCostspp(ryad) < Nynigue (@) xS < A(r,n)* S .

The costs of looking up the tables, however, are much smaller than for redoing
the proof and are therefore neglected. Thus, the in costs for backward chaining with
memoing are the same as without memoing and we get:

emp(r) = Z(InCostsmb(r, ad) * OutCostsy,,(r,ad)) . (7)

ad

14

a(X) < p(X), r(X

Goals

Facts

t o r LS

(X < (X, t(b X
(X < (X, s(a X

FIGURE 1: A rule graph

6 Propagating Cost Estimates

Now that we can compute cost estimates of individual rules we must find a strategy
with optimal cost value, i.e. we have to minimize cost(.S) as defined by formula (1)
in Section 4. To illustrate the types of proof strategies we will extend the definition
of a rule graph introduced in [Treitel, 1986

Definition 7 (Rule Graph [Treitel, 1986]) A rule graph is a directed graph. The
nodes in the graph are labeled by rules. There is an arc from rule v to rule s iff v’s
output literal (the head of the clause) is unifiable with one of s’s input (body) literals.
The rule r is said to be a predecessor of s and s a successor of r.

Fig. 1 shows a rule graph with sample rules. At the bottom we see the facts and
at the top we see the goal for the proof. The direction of an arc is from bottom to
top. A proof strategy is drawn in the rule graph by using different kinds of arrows
for the different evaluation methods of rules. Downward arrows starting from a node
denote a backward rule and upward arrows ending in a node denote a forward rule
(see Fig. 2). No rule can have both downward arrows starting from its corresponding
nodes and upward arrows ending in its node.

An important aspect is the sequence of calculation. On the one hand, we sepa-
rated in costs and out costs to determine the influences of the evaluation. In Sec-
tion 5.3 we saw that the in costs of a rule depend on the number of consistent
instantiations of its premises, where we have to take into account, whether dupli-
cates are eliminated. On the other hand, the distinction between in and out costs

15

Goals /\

Facts

FIGURE 2: A coherent rule graph

Goals

ry

Facts ®

FIGURE 3: The rule graph for example 8

shows that the direction of one rule can only have a restricted influence on the costs

of other rules.

Example 8 The simple rule system

™.
o @
rs .
rq .

pl1(Y) <- p2(Y), p3(Y).
p2(Y) <- b1(Y,W).
p3(Y) <- p4(X,Y).
p4(X,Y) <- b2(X%,Y,2).

is represented by the rule graph of Fig. 3. From the arrows we see that ry, ry are
forward rules and r{, r3 are backward rules. The number of derived facts can be
calculated bottom-up in the graph rule by rule. For example, we have to consider
ro and r3 before ri. The number of instantiations for p4(X,Y) and for p2(Y) can
be calculated from the base facts for bl and b2. The number of instantiations for

16

p4(X,Y) again is used to compute the number of instantiations for p1(Y). The in
costs for each rule are computed in the same order as the facts because they require
the number of instantiations, while the out costs are computed top-down using the
values of the in costs and the number of derived facts. The out costs mainly depend
on the number of times the rules are evaluated.

In general, the problem of finding an optimal strategy is NP-complete if only
forward and backward chaining of rules are available [Treitel and Genesereth, 1987].
We have considered memoing backward chaining and goal-directed forward chaining
as additional proof methods. Thus, the search space for the optimal strategy is
increased by giving more alterntives to evaluate a rule. Restrictions on allowed
strategies can reduce the effort. Coherence is an important property of strategies:

Definition 9 (Coherence) A strategy is called coherent, if all successors of a back-
ward rule are also backward rules and all predecessors of a forward rule are also
forward rules. Otherwise the strategy ts called incoherent.

In the rule graph a coherent strategy can be identified, if it is possible to make a
cut through the arcs, such that all rules below the cut are forward rules and all rules
above are backward rules (Fig. 2).

The algorithm for computing an optimal strategy depends on the A* algorithm
[Nilsson, 1980] and a lower bound of the estimates for the in costs and the number of
derived facts of the rules. If only coherent strategies are allowed, the cost estimates
for a rule do not depend on the direction of other rules. An important reason for
this is that in a coherent strategy only rules at the cutting edge can change their
direction for the strategy to remain coherent. This means that changing the direction
of one rule cannot require changing the direction of any other rule. As [Treitel and
Genesereth, 1987] and [Treitel, 1986] showed, for coherent strategies where no rules
can generate duplicates an optimal strategy can be computed with effort O(N?),
where N is the number of rules.

For incoherent strategies, changing the proof method of one clause can influence
the costs for neighboring rules in the rule graph. This can lead to the consequence
that the proof method for other rules should be changed. In our system a strategy
is not required to be coherent. Any combination of proof methods is allowed. But
also for incoherent strategies the propagation of costs (and consequently changing
the direction of rules) is restricted. Considering these restrictions can improve the
propagation algorithm. Most important, forward rules have the function of a wall
for propagation, because their out costs are always equal to 1. This means that any
changes of their in costs does not affect the out costs. Additionally, it does not matter
how often their derived facts are used. This means that changing the direction of
any rule that uses the result of a forward rule does not affect its costs.

17

7 Recursive Rules

The calculation of cost estimates works fine for nonrecursive rules. If we allow recur-
sion we need, besides the indirect domain knowledge (Section 5), additional direct
knowledge about the application domain. For example, it is hard to cope with tran-
sitivity and with equivalence relations.

Example 10 Consider the rules

t(X,Y) <- g(X,Y).
t(X,Y) <- g(X,Z, t(Z,Y).
t(X,Y) <- t(Y,X).

and the two fact bases:

DB1: g(1,2). g(2,3). g(3,4). g4,5). g(5,6).
g(6,7). g(7,8). g(8,9). g(9,10).

DB2: g(1,2). g(2,3). g@3,2). g(1,3). g(3,1).
g(8,9). g(9,10). g(10,8). g(9,8).

The rule system derives 100 tuples for t if using the facts from DB1 and only
18 tuples for t if using the facts from DB2. This difference cannot be detected by
our approach for calculating cost estimates, because it uses only indirect domain
knowledge (number of facts and possible values for the variables) which is identical
for both databases.

But for a restricted form of recursion (e.g. without transitivity and equivalence
relations) we can calculate cost estimates®. In a first step we identify clusters of
mutually recursive rules. For propagating costs we collaps the rule graph treating all
the mutually recursive rules of one cluster as a single node (Fig. 4). All the rules of a
cluster are required to be evaluated in the same direction. To calculate the number of
facts derived by the rules of one cluster we use an iterative approach. This iterative
approach corresponds to the semi-naive strategy for evaluating recursive rules. A
problem with this approach, however, is that — as for the corresponding evaluation
— the iterative computation of possible facts is not guaranteed to terminate if the
number of possible facts is infinite.

Consider for instance the clauses defining ancestor in Section 2. These two rules
are collected into one cluster and the number of possible facts is estimated: Let’s
assume that our program contains parent-relations of at least four generations. To
calculate the cost estimates we use the additional domain knowledge that every

?For the remaining cases the user can fix the proof method and give a constant cost estimation
value.

18

/\ PN

FIGURE 4: Collapsing nodes in recursive rule graphs

person has at least two parents. By iteration of four steps we can see that there are
at least 30 solutions for every query of ancestor with the first argument bound, e.g.
7- ancestor(john,X). This estimated number of possible facts can then be used to
compute the in costs of the rules calling ancestor.

The problems of calculating cost estimates for recursive rules must not be confused
with the termination and completeness problems of the proof method. One problem is
that there may be an infinite number of solutions. Then a complete system will derive
all these solutions and thus will not terminate. However, this must not be the case
for the calculation of cost estimates which must be finite. Completeness is a problem
only for recursive programs. In Section 2 we saw that incompleteness occurs only
if we execute recursive rules by ordinary backward chaining. To reduce termination
problems we do not allow this method. If backward chaining is appropriate, the
memoing version must be used.

8 Conclusion

We have presented an approach for selecting an efficient proof strategy for logic
programs, which is based on cost estimates for evaluating each rule with any of the
available proof methods. The basic information for calculation is the number of
facts for each base predicate and the cardinality of the domain for each variable.
From these values we can estimate the probability that an actually derived fact
has been derived already in a previous step. An important valuation factor for a
proof strategy is, whether these duplicates are eliminated or whether they lead to
further redundant derivations by evaluating other rules. Additionally, we consider
storage costs for derived facts and the expense for backtracking. To systematically

19

analyze the influence that the evaluation of one rule has for other rules, we distinguish
between in costs and out costs of a rule. In general, the in costs for forward reasoning
are higher than for backward reasoning because either the number of instantiations
is not restricted by a query or the effort of evaluating magic rules has to be added.
For out costs the opposite is true because forward rules are evaluated exactly once
and their results can be used several times.

The calculation of cost estimates for a strategy may vary with the particular
implementations of the proof methods and with the intended application of the pro-
gram: For instance, an enormous efficiency gain would be reached if we can use
matching instead of unification. This is possible if the rules are required to be range-
restricted, i.e. every variable in the head of a clause has to be bound by a literal in
the body. This decreases the in costs for a forward chaining rule because the premises
have to be tested against ground facts only requiring just matching instead of unifi-
cation. This means that instead of simply counting the number of instantiations and
backtracking steps they have to be multiplied by different factors for forward and
backward chaining, respectively.

The memoing version of backward chaining can dramatically reduce the com-
plexity of a proof compared to backward chaining without memoing. Since it also
forces termination in many cases, memoing backward chaining should be preferred
for safety reasons. On the other hand, the tabulation of solutions may be very space
consuming. Since it cannot be determined automatically whether rules are safe, it
should be in the responsiblity of the programmer to annotate rules as ‘safe’. Only
for safe rules backward chaining without tabulation of solutions should be selected
as an allowed proof method.

Bry showed by partial evaluation of an upside-down meta-interpreter that — with
respect to the proved subgoals — bottom-up reasoning of a Magic Set-rewritten pro-
gram is equivalent to top-down reasoning of the original program [Bry, 1990]. Since
bottom-up evaluation avoids multiple derivations of lemmas, the cost estimates for a
top-down proof with tabulation and goal-directed bottom-up reasoning are compara-
ble. But for real implementations the effort for accessing previous solutions and for
satisfying premises may differ. For example, having matching instead of unification
for forward chaining reduces the costs compared to backward chaining. Also, while
bottom-up evaluation and the QSQR top-down evaluation are set-oriented, OLDT
resolution is tuple-oriented. Therefore we have separated the computation of their
cost estimates.

Goal-directed forward chaining requires additional effort for program rewriting,
in particular if there is a large number of rules. This effort has not been considered
by the cost calculation. It is assumed that the program will be rewritten at compile-
time. This is usually the case for deductive databases and many applications of
logic programs, where queries are embedded into fixed application scenarios. On
the other hand, there may be applications of information systems, where not every
possible query can be anticipated at compile time. Then the system has to react on
various kinds of unpredicted queries, such that program rewriting would considerably

20

increase the answer time and must not be ignored for cost estimation.

Access to external data has not been taken into account in any way, although it
may considerably influence the selection of a proof method. If some facts reside in
a database instead of main memory, the number of accesses is a considerable value.
For this reason, deductive databases heavily prefer set-oriented evaluation instead of
tuple-oriented approaches.

In summary, the decision for a proof strategy can depend on general as well as
query-specific factors. Many of these influences are considered by the cost estimates
presented in this paper.

References

[Balbin et al., 1991] 1. Balbin, G.S. Port, K. Ramamohanarao, and K. Meenakshi. Efficient
bottom-up computation of queries on stratified databases. Journal of Logic Program-
ming, 11:295-344, 1991.

[Bancilhon and Ramakrishnan, 1986] Francois Bancilhon and Raghu Ramakrishnan. An
amateur’s introduction to recursive query processing strategies. In Proceedings of the

ACM SIGMOD Conference, pages 16-52. ACM, 1986.

[Bancilhon and Ramakrishnan, 1988] Francois Bancilhon and Raghu Ramakrishnan. Per-
formance evaluation of data intensive logic programs. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 441-517. Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1988.

[Bancilhon et al., 1986] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets
and other strange ways to implement logic programs. In Proceedings 5th ACM SIGMOD-
SIGACT Symposium on Principles of Database Systems, pages 1-15. ACM, 1986.

[Bancilhon, 1985] F. Bancilhon. A note on the performance on rule-based systems. Tech-
nical Report DB-022-85, MCC, 1985.

[Beeri and Ramakrishnan, 1991] Catriel Beeri and Raghu Ramakrishnan. On the power of
magic. Journal of Logic Programming, 10:255-299, October 1991.

[Boley et al., 1993] Harold Boley, Philipp Hanschke, Knut Hinkelmann, and Manfred
Meyer. COLAB: A hybrid knowledge compilation laboratory. Research Report RR-
93-08, DIFKI, Kaiserslautern, Germany, January 1993. Also to appear in Annals of
Operations Research.

[Bry, 1990] Francois Bry. Query evaluation in recursive databases: bottom-up and top-
down reconciled. Data and Knowledge Engineering, 5:289-312, 1990.

[Dietrich, 1987] S. W. Dietrich. Extension tables: Memo relations in logic programming.
In SLP-87, 1987.

[Komorowski, 1992] J. Komorowski. An introduction to partial deduction. In A. Pet-
torossi, editor, Meta-Programming in Logic, Uppsala, Sweden, June 1992 (Lecture Notes
in Computer Science, vol. 649), pages 49-69. Berlin: Springer-Verlag, 1992.

21

[Labisch, 1993] Thomas Labisch. Developing a combined forward/backward-chaining sys-
tem for logic programs in a hybrid expertsystem shell. Master’s thesis, Universitat
Kaiserslautern, June 1993. In German.

[Nejdl, 1987] Wolfgang Nejdl. Recursive strategies for answering recursive queries — the
RQA/FQI strategy. In Proceedings of the 13th International Conference on Very Large
Databases (VLDB), pages 43-50, Brighton, 1987.

[Nilsson, 1980] Nils J Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA,
1980.

[Ramakrishnan, 1988] Raghu Ramakrishnan. Magic templates: A spellbinding approach
to logic programms. In R.A. Kowalski and K.B. Bowen, editors, Proceedings of the 5th
International Conference and Symposium on Logic Programming, 1988.

[Rohmer et al., 1986] J. Rohmer, R. Lescoeur, and J. M. Kerisit. The alexander method - a
technique for the processing of recursive axioms in deductive databases. New Generation
Computing, pages 273-285, 1986.

[Sacca and Zaniolo, 1986] D. Sacca and C. Zaniolo. The generalized counting method for
recursive logic queries. In First International Conference on Database Theory, 1986.

[Tamaki and Sato, 1986] Hisso Tamaki and Taisuke Sato. OLD resolution with tabulation.
In E. Shapiro, editor, Third International Conference on Logic Programming (ICLP),
LNCS 225, pages 505-512, London, July 1986. Springer Verlag.

[Treitel and Genesereth, 1987] Richard Treitel and Michael R. Genesereth. Choosing di-
rections for rules. Journal of Automated Reasoning, 3:395-431, 1987.

[Treitel, 1986] Richard Treitel. Sequentialization of logic programs. Technical Report
STAN-CS-86-1135, Stanford University, Department of Computer Science, November
1986.

[Vieille, 1986] Laurent Vieille. Recursive axioms in deductive databases: The
query/subquery approach. In L. Kerschberg, editor, Proceedings of the First Interna-
tional Conference on Fxpert Database Systems, April 1986.

22

