
Dynamic Remeshing and Applications

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

vorgelegt von
Diplom-Mathematiker Jens Vorsatz
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Saarbrücken, 2006

ii

Dekan der Naturwissenschaftlich-Technischen Fakultät I:

Prof. Dr. Thorsten Herfet

Mitglieder des Prüfungsausschusses:

Prof. Dr. Philipp Slusallek (Vorsitzender)

Prof. Dr. Hans-Peter Seidel (1. Gutachter)

Prof. Dr. Leif Kobbelt Seidel (2. Gutachter)

Dr. Alexander Belyaev (Akademischer Mitarbeiter)

Tag des Kolloquiums

12. Juni 2006

iii

Die sichtbare Welt meinte Platon,

sei nur die Projektion einer tiefe-

ren rein mathematischen Wirklichkeit:

Abstrakte Linien, die sich zu Drei-

ecken verbinden, die zu den Seiten-

flächen von Körpern werden. Und da

es nur fünf völlig regelmäßige plato-

nische Körper gibt, müssen diese den

Grundbausteinen des Universums ent-

sprechen, aus denen die verwirrende

Vielzahl der sichtbaren Erscheinungen

konstruiert ist.

iv

Abstract

Triangle meshes are a flexible and generally accepted boundary representa-

tion for complex geometric shapes. In addition to their geometric qualities

such as for instance smoothness, feature sensitivity ,or topological simplicity,

intrinsic qualities such as the shape of the triangles, their distribution on

the surface and the connectivity is essential for many algorithms working on

them. In this thesis we present a flexible and efficient remeshing framework

that improves these “intrinsic” properties while keeping the mesh geometri-

cally close to the original surface.

We use a particle system approach and combine it with an iterative remesh-

ing process in order to trim the mesh towards the requirements imposed by

different applications. The particle system approach distributes the vertices

on the mesh with respect to a user-defined scalar-field, whereas the itera-

tive remeshing is done by means of “Dynamic Meshes”, a combination of

local topological operators that lead to a good natured connectivity. A dy-

namic skeleton ensures that our approach is able to preserve surface features,

which are particularly important for the visual quality of the mesh. None

of the algorithms requires a global parameterization or patch layouting in a

preprocessing step, but works with simple local parameterizations instead.

In the second part of this work we will show how to apply this remeshing

framework in several applications scenarios. In particular we will elaborate on

interactive remeshing, dynamic, interactive multiresolution modeling, semi-

regular remeshing and mesh simplification and we will show how the users

can adapt the involved algorithms in a way that the resulting mesh meets

their personal requirements.

vi

Kurzfassung

Dreiecksnetze sind eine flexible und weit verbreitete Darstellung der Aus-

senhülle von komplexen geometrischen Modellen und Formen. Zusätzlich zu

ihren geometrischen Eigenschaften, wie z.B. Glattheit bzw. die Darstellung

von besonderen geometrischen Merkmalen wie scharfen Kanten und topo-

logischer Schlichtheit, spielen intrinsische Eigenschaften des Netzes, wie die

Form der einzelnen Dreiecke, deren Verteilung auf der Oberfläche und die

lokale Vernetzung, eine entscheidende Rolle, um eine Vielzahl von Algorith-

men effektiv anwenden zu können. Diese Dissertation stellt eine flexible und

effiziente Methode vor, die eine neue Darstellung eines Netzes erstellt, indem

ein vorgegebenen Netzes neu trianguliert wird. Das neue Netz weist dabei

verbesserte intrinsichen Eigenschaften auf, während es gleichzeitig eine gute

Approximation an das Ursprungsnetz darstellt.

Durch die Kombination eines Partikelsystems mit einem iterativen Retri-

angulierungsalgorithmus erhalten wir eine flexible Methode, um die resultie-

renden Netze an die Anforderungen verschiedener Anwendungen anzupassen.

Mit Hilfe eines Skalarfeldes verteilt dabei das Partikelsystem die Knoten des

Netzes gleichmässig über die Fläche, während einfache lokale topologische

Operatoren, der Kern des Retriangulierungsalgorithmus, eine gleichmässige

lokalen Vernetzung erzeugen. Ein dynamisches Skelett, bestehend aus Kanten

des Netzes, stellt dabei sicher, dass erhaltenswerte Details des Ursprungsnet-

zes auch im retriangulierten Netz vorhanden sind. Diese Detailerhaltung ist

essentiell für einen guten visuellen Eindruck und ein Qualitätsmerkmal des

resultierenden Netzes. Zu bemerken ist, dass keiner der in dieser Arbeit vor-

gestellten Algorithmen eine globale Parameterisierung des Ursprungsnetzes

benötigt, sondern lediglich einfache und lokal begrenzte Paremeterisierung

viii

verwendet werden.

Im zweiten Teil der Arbeit zeigen wir, wie unsere Retriangularungsmetho-

de auf verschiedene Anwendungsszenarien übertragen werden kann. Hierbei

gehen wir speziell auf interaktives Retriangulieren, interaktives multiskalen

Modellieren, semi-reguläres Retriangulieren und Netzsimplifikation ein. Da-

bei zeigen wir auf, wie die im ersten Teil der Arbeit erarbeiteten Algorithmen

so adaptiert werden können, daß sich die resultierenden Netze verschiedenen

Anforderungen angepassen.

Acknowledgements

This thesis would have not been possible with the help and support of many

people. First of all my sincere thanks to my advisor Prof. Dr. Hans-Peter

Seidel, who gave me the opportunity to write this thesis in the stimulating,

inspiring and inimitable environment here at the Max-Planck-Institut für In-

formatik in Saarbrücken. He gave me the chance to be part of an exceptional

team of researchers working on the leading edge of computer graphics.

Many appreciation goes also to my co-advisor Prof. Dr. Leif Kobbelt. He

lead me to the fascinating world of triangle meshes that have been part of

my life since then. It has always been a great experience to work with him.

His knowledge and his great breadth of understanding complex problems in

no time is amazing.

I am very grateful to the people at Ag4 for providing such an enjoy-

able and stimulating working environment. I would like to name explic-

itly Mario Botsch, Stefan Brabec, Sabine Budde, Katja Daubert, Kolja

Kähler, Jan Kautz, Hendrick Lensch, Conny Liegl, Annette Scheel, Ulrich

Schwanecke, Hartmut Schirmacher, Marc Stamminger, Betty Stiller, Holger

Theisel, Christian Theobalt, Christel Weins and Frank Zeilfelder. A very

warm and special thanks to my room-neighbor Christian Rössl who was al-

ways patient and ever helpful whenever I needed his aid. Thank you all, it

was a pleasure working with you.

Lastly, and most importantly, I wish to thank my parents Ute and Michael.

They have always supported and encouraged me and guided me to inde-

pendence, never trying to limit my aspirations. I am grateful to them and

amazed at their generosity. To them I dedicate this thesis.

x

Contents

Abstract v

Kurzfassung vii

Acknowledgments ix

1 Introduction 1

1.1 Main Contributions . 5

1.2 Chapter overview . 6

2 Background and Previous Work 9

2.1 Triangle Meshes . 9

2.2 Topological Operators on Meshes 11

2.3 Parameterizing Triangle Meshes 14

2.4 Remeshing Algorithms . 15

2.5 Meshes with Subdivision Connectivity 17

2.6 Semi-Regular Remeshing . 20

2.7 Mesh Simplification . 24

3 The Remeshing Framework 27

3.1 Relaxation . 29

3.2 Dynamic Connectivity Meshes 37

xii CONTENTS

3.3 Preserving Features . 43

3.3.1 Alias reduction by feature snapping 45

3.3.2 The Snapping algorithm 53

3.3.3 Tagging a Skeleton . 56

4 Applications 61

4.1 Interactive Remeshing . 62

4.2 Mesh Simplification . 63

4.3 Semi-Regular Remeshing . 65

4.4 Interactive Multiresolution Modeling with Changing Connec-

tivity . 67

4.4.1 Freeform modeling . 70

4.4.2 Multiresolution modeling 73

4.4.3 Robust Multi-Band Detail Encoding 74

4.4.4 Hierarchy levels . 81

4.4.5 Multiresolution modeling with changing connectivity . 84

4.4.6 Discussion . 85

5 Conclusion and Future Work 89

A A Framework to Implement Dynamic Connectivity Meshes 93

A.1 The Callback Mechanism . 95

A.2 Passing Data to MyInfo . 98

A.3 Distributing to Multiple Clients 99

A.4 An Example Application . 101

A.5 Extensions . 104

A.6 Results and Conclusion . 106

B Calculating Phong-Detail 109

Chapter 1

Introduction

Information technology has found its way into almost all areas of modern

life and nowadays it is even hard to imagine life without it. Information

technology has changed the business of almost all enterprises and is often

the source for strategic advantages. We use it to make our daily work easier

and in particular in private life information technology is the key to ever

increasing entertainment offerings.

The first statement is particularly true for geometry processing. Computer

based geometry processing has become an appealing alternative to working

with hand crafted real world geometric models in the last decades. On the

one hand the underlying models share all the advantages inherent to com-

puter models. Just to name a few, with the ever increasing speed of the

internet, computer models are interchangeable over large distances which for

instance enables distributed work on shared models over several continents.

One can duplicate them at almost no cost, i.e., generate several instances of

one and the same model or one can even put a modified version back to its

original state if the newer version does not meet the expectations one was

aiming at. On the other hand representing geometric shapes with computer

models is particularly beneficial since one can, e.g., easily prescribe exact

measures and high precisions in terms of geometric tolerances, symmetries

can easily be achieved. Geometric models are scalable and one can view an

object from arbitrary perspectives. Even partial views like slices or inside-

2 Introduction

out-views of closed objects are possible. Last but not least due to excellent

research in this area there exist a multitude of algorithms that work on geo-

metric computer models that provide the users with potent means to perform

challenging operations in an intuitive manner. Nowadays even unexperienced

users can create complex geometric models, the skills needed for generating

and modifying geometric models have shifted from mechanical skills towards

profound knowledge of geometric modeling software.

Even though the designers, the artists and the engineers mainly want to focus

on the actual modeling, the underlying algorithms and the mathematical

object representations are still crucial for the degrees of freedom, the power

and also the robustness of the available modeling operations. Over the years

a variety of different object representations have established themselves, each

of which inherently has its own advantages and drawbacks.

As an initial coarse classification, object representations may be described

as volume-, surface- or point-based. An object has a volume-based rep-

resentation if the object’s interior is described by solid information; it is

surface-based, if the object’s surface is represented by surface primitives and

it is point-based, if the object is represented by a cloud of points that give

the viewer the impression of a solid object. We will elaborate on the most

prominent representations of geometric shapes in Chapter 2 and will for now

give a sneak preview of the representation we have turned our attention to in

this thesis. It investigates different aspects of triangle meshes, one particular

surface-based shape representation. Triangle meshes have become a gener-

ally accepted and versatile boundary representation for complex geometric

shapes. To give a first impression of this representation Figure 1.1 shows

two different triangle meshes approximating a technical part as it is used in

mechanical engineering. The main advantage of this representation is on the

one hand its simplicity of its base primitive, the triangle, and on the other

hand one can approximate objects of arbitrary complexity with them. In

particular the simplicity of the base primitive and due to this the availability

of specialized 3D graphics libraries and highly optimized graphics hardware

for their efficient display has reinforced the trend to make triangle meshes

the de facto standard for display and exchange of 3D data sets.

Nowadays the literature on triangle meshes comprises a huge amount of excel-

3

lent work and is still growing rapidly. The virtual mesh-processing pipeline

starting from acquisition down to rendering is well covered, thus triangle

meshes are widely spread and used in a variety of application scenarios.

Many algorithms have been carried over from semantically rich and mathe-

matically more sophisticated representations like spline-surfaces (cf. e.g., [64,

19]). That way one can combine the flexibility inherently provided by tri-

angle meshes with powerful methods originally developed to represent and

modify spline surfaces.

Opposed to meshes that, e.g., represent characters in the animation-/game

industry, which are often hand-made and highly optimized with respect to tri-

angle count, visual quality, and kinematics, we turn our attention to densely

sampled triangle meshes often stemming from 3D scanning devices, iso sur-

face extraction from volumes, or the sampling of parametric surfaces by CAD

software. These meshes are often challenging when it comes to work with

them beyond merely displaying them. For instance, models generated from

CAD software often reflect a regular sampling of the underlying parameter

domain, which might result in triangles with poor aspect ratios. Models gen-

erated by scanning devices suffer from holes due to limited visibility of the

“camera” or due to the surface reflectance of the scanned object. As a conse-

quence the meshes cannot be used as-is for 3D applications. An intermediate

step, correcting the mesh geometry and connectivity is required. This is ei-

ther done in a tedious and error prone manual optimization procedure or

with semi-automated software tools. Such corrections, commonly known as

remeshing is a fundamental part of the digital mesh processing pipeline.

In this thesis we develop a framework for dynamic remeshing, i.e., a frame-

work that takes an arbitrary triangle mesh as input and iteratively changes

the mesh connectivity and the sampling of the original mesh due to some

quality criteria. In its simplest form triangle meshes with an equal vertex

distribution and a regular connectivity are generated and the resolution of

the mesh can be adapted to the users needs. Our approach is flexible in a

way that different objective functions can be plugged in. For instance we can

adapt the vertex distribution with respect to some scalar field and we can also

preserve or recapture feature lines inherent to the original model. But our

approach is also versatile in a way that we can use it in various application

4 Introduction

Figure 1.1: With this figure we want to give a first example for a trian-

gle mesh. Triangle meshes are able to approximate even complex geometric

models and they are particularly well supported by today’s graphics hard-

ware. At the same time this figure shows a glimpse of the algorithm we have

developed during our research on triangle meshes and that we are going to

describe in this thesis. The left image shows a triangle mesh of a mechanical

part as it is used in mechanical engineering. This mesh is stemming from a

meshing algorithm, which is state of the art in industry. A regular approxi-

mation generated with our framework is shown on the right. At a first glance

the left triangulation seems to reflect the geometric properties of the object

better than the right model. However, even very recent and powerful algo-

rithms are not capable to further process this model due to the shapes of the

triangles that form the mesh. Long and thin triangles lead to degenerated

normals or derivatives and make numerical calculations unstable. Opposed

to this, our remeshed version of the model is a “good natured” triangulation

and it is well suited for further processing.

scenarios like mesh simplification, multiresolution modeling or semi-regular

remeshing. We will formally introduce these techniques in Chapter 2 and

describe applications of our approach that realize these techniques in Chap-

ter 4. The focus application of our remeshing framework is multiresolution

modeling and we will therefore elaborate on this and put it into a broader

perspective. However, we will also describe how we use our framework in the

1.1 Main Contributions 5

above mentioned areas. With our approach a user can manipulate a triangle

mesh in various ways with one common framework and we hope that many

more algorithms based on our work will be developed.

1.1 Main Contributions

Throughout the course of this work, parts have already been published at

different conferences and journals [47, 83, 84, 46, 48, 85]. This thesis builds

on these publications, presents them in a unified framework, and includes

improvements and updated results.

The main contributions of this thesis can be summarized as follows.

• An novel algorithm for regularly sampling a surface with a triangle

mesh. A particle system which merely utilizes simple local parameter-

izations evenly distributes vertices on the surface.

• A method for incrementally adapting the sampling density of a given

shape. Simple local topological operators change the connectivity of

the mesh in a way that approximations to the original shape can reach

from very coarse to (theoretically) arbitrarily fine. Moreover a regular

connectivity can be achieved.

• An algorithm for capturing and preserving sharp features, i.e., corners

and edges. This includes a vertex snapping algorithm for recapturing

surface features in regions with high curvature and a dynamic skele-

ton preserving feature lines and vertices while the underlying mesh is

retriangulated.

• The application of the above methods and adaptation to different ap-

plications. In particular to interactive remeshing, interactive multires-

olution geometric modeling, semi-regular remeshing and mesh simpli-

fication.

• A software design based on a callback mechanisms that enables the

users to efficiently implement algorithms that can handle dynamic

6 Introduction

meshes while maintaining encapsulation of the single reusable com-

ponents.

1.2 Chapter overview

We will first introduce the notations we are going to use throughout this

thesis in Sections 2.1 to 2.3 which gives us the common bases to start with.

In particular we will introduce a more precise definition of triangle meshes

and notions and concepts associated with them. In Sections 2.4 to 2.7 we

will elaborate on previous investigations on adapting the representation of a

given geometric shape to different application scenarios and will show how

our work fits into this context. The technical part of this thesis starts with

Chapter 3. At first we briefly discuss the overall idea of our remeshing frame-

work and go into the details of it. In Section 3.1 we describe a particle-system

approach which lets vertices of our objective mesh float on an input mesh in

order to redistribute them equally. In this context we will show that different

(local) parameterization methods influence the relaxation process and we will

discuss how to construct parameterizations based on a minimal local domain.

Section 3.2 introduces the notion of Dynamic Connectivity Meshes (DCM),

a technique for integrated connectivity optimization that enables us to adapt

the complexity of a triangle mesh to our needs. Here we will explain how

the vertex-relaxation in the particle-system and DCM are combined. Sec-

tion 3.3 is dedicated to features, i.e., prominent creases, sharp edges and

corners that we strive to preserve. We will demonstrate an effective “feature

snapping” technique that is able to recapture such features and we will in-

troduce the notion of a skeleton that enables us to preserve these important

surface features even if the representation of shape changes. Chapter 4 shows

application scenarios for our dynamic remeshing approach. In particular we

will go into interactive multiresolution modeling, semi-regular- and interac-

tive remeshing and mesh simplification. This chapter also includes results we

have achieved with the different techniques. In the Appendix we present a

software design that facilitates implementing our remeshing framework and

shows how one can easily incorporate it in complex applications. Moreover

1.2 Chapter overview 7

we give some mathematical background on geometric calculations in order

to understand and reproduce some results of this thesis more easily.

8 Introduction

Chapter 2

Background and Previous Work

In this chapter we introduce the terms and notions and the background ma-

terial that is needed to understand the new algorithms and techniques that

we are going to explain in the subsequent chapters. We will first formally

introduce the notion of triangle meshes since they are at the core of our

work. We will then show how the connectivity of a triangle mesh can be

changed with simple local operators. After that we explain the term param-

eterization of a mesh. In our context a parameterization is a mapping of

a 2-dimensional domain to a triangle mesh living in 3-space. Among oth-

ers these parameterizations differ in the nature of the domains and we use

this characteristic to explain different approaches that have been published

to generate them. Moreover, parameterizations are tightly coupled with the

actual remeshing and we again use the same characteristic of different base

domains to give detailed background information about the most prominent

remeshing techniques known from literature throughout the remainder of this

chapter .

2.1 Triangle Meshes

One can think of a simple triangle mesh as follows. The 3-dimensional bound-

ary of an object is covered by vertices defining positions in 3-space. The mesh

itself is formed by triangles that connect three vertices at a time in a way

10 Background and Previous Work

that the surface of the object is completely covered by the triangles (cf. Fig-

ure 1.1).

In literature one finds various abstract and formal definitions for triangle

meshes. For instance Lee et al. [54] adapt from an algebraic approach of [74]

and formally define a triangular mesh as a pair (P, K), where P is a set

of N point positions pi = (xi, yi, zi) ∈ R3 with 1 6 i 6 N , and K is an

abstract simplicial complex which contains all the topological, i.e., adjacency

information. However, since our work does not draw on specific algebraic

properties of meshes, we choose to introduce triangle meshes in a less strict

and more depictive manner. Throughout the definition we also build our

common terminology that we will use in this thesis.

We say that a triangle mesh M is represented by its vertex data and by its

connectivity. Vertex data can be seen as a set V of vertices comprising all

coordinates (and optionally associated properties such as normal informa-

tion, color etc.) and the connectivity which captures the incidence relation

between the vertices as follows. The connectivity is defined by a set H of

half-edges. A half-edge connects two vertices (its startpoint and its endpoint),

three consecutive half-edges form a triangle. H and the set of all triangles

T have an explicit mapping and depending on the context we use either the

one or the other term.

In practice M often obeys additional constraints associated with specific

topological restrictions which we are going to discuss below.

M is a 2-manifold mesh if the interiors of its triangles are pairwise dis-

joint and if the set of all triangles T forms a connected 2-manifold surface

with boundary. This implies that the neighborhood of each point p in T
is homeomorphic to a disc or to a half disc. We call a half-edge, a trian-

gle, or a vertex that contains a point that is homeomorphic to a half disc

a boundary-edge,boundary-triangle or boundary-vertex. The remaining half-

edges, triangles and vertices are called interior half-edge, interior triangle or

interior vertex respectively. This also implies, that every interior half-edge

has exactly one adjacent neighbor half-edge. If clear without ambiguity we

call two adjacent half-edges simply an edge.

We say that a triangle mesh whose set of boundary-edges is either empty or

2.2 Topological Operators on Meshes 11

consists of a single loop has no holes and say that a mesh has no handles,

if any closed loop of edges within M separates T into two disjoint sets.

Finally we call a connected manifold mesh with no holes and no handles

simply connected.

Within the scope of our work we restrict ourselves to manifold meshes and

explicitly note, if an algorithm requires additional properties of a mesh. In

practice, in particular for meshes generated by laser range scanning and

merging processes, we often observe, that undesired holes or handles occur.

This would clearly limit the scope of meshes our framework can process.

However, recent work [11, 30, 58] effectively address this problem and thus a

focus on manifold meshes with no topological noise, i.e., with no unwanted

holes or handles, is not really a restriction.

2.2 Topological Operators on Meshes

Triangle meshes arise in many different contexts and it is obvious that their

initial triangulation cannot always be optimal with respect to all possible

application scenarios. Before we elaborate on how to re-triangulate a given

geometric shape in Section 2.4 we want to show how to locally change the

connectivity of a triangle mesh. We will introduce the basic operators that

change the connectivity of a mesh while preserving the topology and the

2-manifoldness. Of course one can think of many more local topological op-

erators working on triangle meshes. We limit ourselves to the ones that we

are using in our framework. These operators are also the most prominent

ones known from literature (cf. [49] for a detailed overview). We will intro-

duce three edge based and two face based operators. Furthermore, we will

illustrate that the probably most prominent refinement operator for triangle

meshes, the 1–to–4-split can easily be derived from edge based operators [80].

But let us start with the description of the different topological operators.

First we describe edge-based operators (cf. Figure 2.1) followed by triangle

based operators (cf. Figure 2.2 and Figure 2.3):

edge-flip An edge “flips” and therafter connects the two vertices of the

adjacent triangles, that were previously separated by this edge. This

12 Background and Previous Work

Figure 2.1: The figure shows three edge based topological operators that

incrementally perform local changes of the connectivity of a triangle mesh.

The top row shows the initial configuration, the lower row shows the altered

mesh after having applied the operator. The area that is affected by the

operator is marked in blue.

The left most column shows the edge-flip, where an edge “flips” and therafter

connects the two vertices of the adjacent triangles.

The edge split shown in the middle column inserts one new vertex on an edge

and connects it with the opposite node(s) of the adjacent triangle(s).

The half-edge collapse shown on the right lets one vertex “collapse” along

an edge into the vertex on the opposite side and remove all degenerated

triangles.

operator can of course only be applied to edges inside the mesh and is

not allowed for boundary-edges.

edge-split It inserts one new vertex on an edge and connects it with the

opposite node(s) of the adjacent triangle(s). In the general case of

inner edges, two new triangles are introduced. Opposed to the edge-

flip operator, the edge-split can be extended to boundary-edges in a

natural way. In this case just one new triangle is introduced.

half-edge collapse The half-edge collapse shown on the right lets one ver-

tex “collapse” along an edge into the vertex on the other side of this

2.2 Topological Operators on Meshes 13

edge while removing all degenerated triangles. This way one can reduce

the complexity of the mesh by one vertex and two triangles.

1-to-3-split The 1-to-3-split of a triangle is a face based topological operator

for triangle meshes. It inserts a new vertex inside the triangle (e.g. in

its centroid) and connects all vertices of this triangle with it. This way

the triangle is split in a one to three manner.

1-to-4-split This split introduces one new vertex on every edge of a triangle.

In a second step the vertices are connected by edges in a way that the

original face is split in a 1-to-4 manner. Figure 2.3 shows that this

operator is not atomic, but can be decomposed into three edge-splits

followed by an edge-flip.

Figure 2.2: The 1-to-3-split of a triangle is a face based topological operator

for triangle meshes. It inserts a new vertex inside the triangle (usually in its

centroid) and connects all the vertices of this triangle with it. The triangle

is split in a one by three manner.

Note that for now we have introduced the basic topological properties of the

operators in order to have a foundation for the discussion in the remainder

of this chapter. By simply using the three edge based operators we would be

in the situation to define Dynamic Connectivity Meshes (DCM), a class of

meshes that incrementally optimize their connectivity. This class of meshes

was originally introduced by Kobbelt et al. [44]. DCM show their full po-

tential only if we combine the connectivity optimization with an additional

optimization of the geometry, i.e., the optimization of its vertices. For this

14 Background and Previous Work

Figure 2.3: For a 1–to–4-split of a triangle, every edge is bisected by insertion

of three new vertices followed by a re-triangulation. The sequence of images

shows, that this subdivision can be divided into three edge-splits followed

by one edge-flip [80]. Note that by using this refinement procedure we au-

tomatically handle the problem of “dangling nodes” that arise when näıvely

1–to–4-splitting just a single triangle within a mesh.

reason we dedicate Section 3.2 to this class of meshes after we have discussed

the geometric optimization in Section 3.1.

2.3 Parameterizing Triangle Meshes

Before coming to the remeshing background, we would like to give a brief

overview over parameterization techniques for triangle meshes. Even though

at a first glance, these two topics are not directly related, they turn out to

be tightly coupled.

A parameterization of a surface can be seen as a one-to-one mapping from a

domain to the surface. In case the surface is approximated by a triangle mesh,

the vertices are mapped and the interiors of the triangles are linearly blended.

The inverse mapping from the surface to the domain is called embedding, this

is the mapping that usually is constructed for a given surface.

Parameterizations have many applications from engineering to science, e.g.,

texture mapping [57, 69], approximation [53] and interpolation of scattered

data, editing [6], etc., and we refer to [33, 20] for an excellent overview

and an in depth discussion of the theory and the various parameterization

methods that were proposed in the last decades. One major problem with

such a global parameterization is the impact of the distortion imposed by

2.4 Remeshing Algorithms 15

the specific parameterization that is used.

Basically two degrees of freedom can be exploited in order to minimize the

unavoidable distortion and obtain a mapping that is close to isometric. One

degree is the construction of the domain (also called the base complex), the

other is the functional (cf. [14] for further details) that computes the actual

mapping. A good layout of the patches of a domain can greatly decrease the

distortion. In order to illustrate this, consider the two extreme cases, where

the mesh is parameterized over itself. This would lead to no distortion at

the cost of a large base complex. The other extreme would parameterize the

entire surface over one single patch [27] at the cost of having to cut the surface

along seams, thus having to deal with smooth transitions across them.

Recent algorithms try to base the parameterization on as few domain patches

as possible while keeping the distortion low [14]. Since most of the recent

mesh parameterization methods aim at remeshing we will discuss them in the

next section. Remeshing by means of a global parameterization can be done

by resampling of the parameter domain. The sample points are connected

in the parameter domain. After this one evaluates the parameterization in

order to map the samples back into 3D.

2.4 Remeshing Algorithms

As we have discussed in the last chapter, there is obviously a multitude of

possible mesh representations for a given geometric shape. This is true even

if we prescribe a certain approximation tolerance. Depending on the applica-

tion for which the mesh is supposed to be used, different quality requirements

have to be satisfied. Such requirements can be as diverse as, e.g., a low tri-

angle count, a certain regularity of the connectivity (cf. next section), the

triangles aspect ratios, adaptive sampling with respect to some underlying

scalar field, alignment of edges with respect to an underlying tensor-field, for

instance with respect to the directions of main curvature, or the normal jump

between adjacent triangles. Hence, to prepare a given mesh D for a specific

application, we need remeshing algorithms which take a triangle mesh and

resample it in a way that the new tessellation still approximates the same ge-

16 Background and Previous Work

ometric shape by a 2-manifold meshM, but additionally satisfies the quality

requirements imposed by a specific application.

The first methods we are going to discuss in this section all belong to the 1-

step-methods. Opposed to an incremental method, that performs the remesh-

ing in small atomic optimization steps, these methods analyze a given input

mesh, disregard the original connectivity and generate a new optimized con-

nectivity.

Sometimes remeshing a triangle mesh of arbitrary connectivity tries to es-

tablish a special connectivity, the so called subdivision-connectivity, and we

dedicate the next section to it. However, beyond this semi-regular remeshing,

a number of remeshing techniques that merely re-sample and reconnect the

original mesh and again generate a triangle mesh of arbitrary connectivity

have been proposed.

In his pioneering work in this area, Turk [77] advocated introducing new

points onto a mesh by a method of point repulsion which adds more vertices

in regions of higher curvature. The old points can then be discarded, with

repeated local re-triangulation (or re-tiling) as necessary, until a new mesh

consisting of the new points is obtained. This approximated surface is guar-

anteed to be topologically equivalent to the original. This approximation

technique works best for smooth surfaces with no discontinuities.

Alliez and coworkers [4] proposed an interactive isotropic remeshing scheme

that uses a halftoning technique known from image analysis and sample a

set of patches. They triangulate the samples and by using parameterizations

that map each of the patches to parts of the original 3D surface a remeshing

is obtained. In [3] they extend their method to sampling triangles instead of

a regular grid. Alliez was also the first who came up with a 3D anisotropic

remeshing scheme [2]. In this approach they generate a coarse base mesh by

tracing lines of principal curvature along the mesh. The result is a remesh

composed of quadrilaterals and triangles. Due to the global parameterization

that is used, this method is limited to genus-0 patches.

An approach that avoids generating a global parameterization but operates

directly on the surface is presented in [72]. In this approach geodesic curves

are generated by means of geodesic distances, which are more expensive to

2.5 Meshes with Subdivision Connectivity 17

compute compared to our approach. They introduce a segmentation into

regions in order to avoid crossing geodesics. This implies that the resulting

submeshes have to be joined at the end of the algorithm.

An incremental method that is similar to the method we are proposing is

presented by Surazhsky and Gotsman [75]. They perform local topological

operations in order to set the target complexity of the remesh. In a second

step they move vertices in a way that the areas of all triangles are equalized.

In a third step they perform edge-flips in order to further regularize the

connectivity. Their method leads to highly regular meshes, but it is also

computationally expensive.

2.5 Meshes with Subdivision Connectivity

In the preceding Sections we have discussed several approaches that take a

mesh of arbitrary connectivity as input and resample the original geometry

as faithfully as possible. The output is again a triangle mesh of arbitrary con-

nectivity that usually satisfies additional quality requirements. The schemes

are primarily designed in a way that the afore mentioned goals are fulfilled.

Besides having a valence close to 6 (Euler’s formula), the connectivity is

usually of minor importance and does not have any specific structure. But

there is the important class of subdivision-connectivity meshes having the so

called subdivision-connectivity that have established themselves in the liter-

ature in the past two decades and now play an important role in the world

of geometry processing. Figure 2.4 shows a hierarchy of meshes that have

this special connectivity. Subdivision is one of the most prominent sources

for these meshes and has become a popular tool to generate smooth sur-

faces. A subdivision scheme generates a coarse–to–fine hierarchy of meshes

by successively refining a coarse base mesh (i.e., by inserting new vertices

and triangles). A smoothing rule places the newly inserted vertices such that

the resulting meshes become (a discrete approximation to a) smooth and

visually appealing limit surface. A lot of research has been devoted to anal-

ysis and design of the smoothing rules in the past and we refer to ,e.g., [18]

for a detailed discussion.

18 Background and Previous Work

After having inserted new vertices, the resulting degrees of freedom can be

used in two ways. Whereas subdivision schemes position the new vertices in

a way that the limit surface becomes smooth, semi-regular remeshing meth-

ods on the other hand take an input surface and position the vertices such

that more and more geometric detail becomes visible. This is done by plac-

ing points on the original surface. The result is a mesh with subdivision-

connectivity approximating the input surface. The approximation quality

can be improved by further refining the mesh.

Figure 2.4: Semi-regular meshes with subdivision–connectivity are generated

by uniformly subdividing a coarse base mesh (leftmost image). The figure

shows a classical scheme where each triangle is split into four sub-triangles

by inserting 1 new vertex in the middle of each edge. On the refined meshes

we can easily identify regular submeshes which topologically correspond to a

single triangle of the base mesh (right image).

Until recently, subdivision and remeshing of triangles has almost exclusively

used the 1–to–4-split [16, 60] as it is shown above, that recursively splits

each triangular face into 4 subtriangles (cf. also Section 2.2). With the√
3-subdivision scheme Kobbelt and Labsik [43] introduced a new class of

semi-regular meshes. For the uniform version, a 1-to-3-split is applied to

every triangle followed by flipping all the edges of the mesh. Such a step

is called
√

3-split since two such steps generate a regular 1–to–9 split of

each face similar to the 1–to–4-split, but this time, each edge is trisected.

Since for both mesh types every submesh that corresponds to one base tri-

angle has the structure of a regular grid and the whole hierarchy is based

on a not necessarily regular coarse base mesh (cf. Figure 2.4), the resulting

2.5 Meshes with Subdivision Connectivity 19

subdivision-connectivity meshes are also said to be semi-regular.

The implicitly defined connectivity established on a coarse base mesh and the

direct availability of multiresolution semantics gives rise to many techniques

exploiting this convenient representation as the following enumeration shows.

Compression/progressive transmission Lounsbery et al. [12] perform a

multiresolution analysis, i.e., they introduce a wavelet decomposition

for meshes with subdivision–connectivity. By suppressing small wavelet

coefficients, a compressed approximation within a given error tolerance

can be achieved. Moreover such a wavelet representation can easily be

transmitted in a progressive fashion. (Send the base mesh first and

refine it with successively arriving wavelet coefficients.)

Multiresolution editing For instance Zorin and co–workers [86] com-

bine subdivision and smoothing techniques and present an interactive

multiresolution mesh editing system, which is based on semi–regular

meshes and enables efficient modifications of the global shape while

preserving detailed features.

Parameterization Each submesh (subdivision–patch) can be parameterized

naturally by assigning barycentric coordinates to the vertices. Com-

bining the local parameterizations of the subdivision–patches yields a

global parameterization (cf. Section 2.3). Texturing is just one appli-

cation of such a parameterization.

Level–of–detail control Standard rendering libraries are able to display

objects at various levels of detail, that is they display a coarse approxi-

mation, if the object is far away and switch to a finer one, if the viewer

zooms in. The different subdivision levels naturally support this fea-

ture. In combination with multiresolution analysis, switching to finer

resolutions can be done smoothly by fading in the wavelet coefficients.

Recent investigations show, that compact and convenient representations for

multiple of the applications above can be derived when using semi-regular

meshes [29, 53, 41].

20 Background and Previous Work

2.6 Semi-Regular Remeshing

However, even if semi–regular meshes are particularly convenient for various

types of applications, in practice it is rather unlikely that a given triangle

mesh has this special type of connectivity (except those meshes originating

from subdivision). During the last years, a couple of methods have been

presented to convert a manifold triangle mesh into one having subdivision–

connectivity and thus having access to the powerful methods developed for

semi–regular meshes even if an input mesh of arbitrary connectivity is given.

Before we give an overview over three conversion schemes, we start by estab-

lishing the notation for subdivision-connectivity meshes and describe some

quality criteria. Let an arbitrary (manifold) triangle mesh D be given. In

this context semi-regular remeshing means to find a sequence of meshes

S0, . . . ,Sm such that each Si+1 emerges from Si by applying a uniform sub-

division operator (either 1–to–4- or
√

3-split) on every triangular face of Si.

Since the Si should be differently detailed approximations to D, the vertices

p ∈ Si have to lie on the continuous geometry of D but they do not neces-

sarily have to coincide with D’s vertices. Furthermore it is allowed but not

required, that the vertices of Si are a subset of Si+1’s vertices.

In general it would be enough to generate the mesh Sm since the coarser

levels of detail Si can be extracted by subsampling. Nevertheless, building

the whole sequence S0, . . . ,Sm from coarse to fine often leads to more efficient

multi–level algorithms.

The quality of a subdivision–connectivity mesh is measured in different as-

pects. First, we want the resulting parameterization, which maps points

from the base mesh S0 to the corresponding points on Sm, to be close to iso-

metric, i.e., the local distortion of the triangles should be small and evenly

distributed over the patch. To achieve this, it is necessary to adapt the trian-

gles in the base mesh S0 carefully to the shape of the corresponding surface

patches in the given mesh D. The second quality requirement rates the base

mesh S0 itself according to the usual quality criteria for triangle meshes.

Last but not least S0 should contain as few triangles as possible because the

algorithms working on them can directly benefit from this. This is obvious

2.6 Semi-Regular Remeshing 21

in the context of progressive transmission and for the level-of-detail control,

but also for example the “radius” of a multiresolution editing operation is

limited by the coarsest mesh in the hierarchy, which implies that a coarse

base domain enables edits with larger support.

As we have explained in Section 2.3, a resampling of D can be performed, if a

global parameterization is available. In particular, if the parameterization is

built upon triangular charts, a semi–regular mesh can easily be constructed.

Therefore, semi-regular remeshing schemes often implicitly build a set of pa-

rameterizations based on triangular domains and evaluate them to generate

semi-regular meshes. The first two schemes we are going to discuss in this

Section take this venue. However, it is also possible the other way around,

i.e., a global (chart based) parameterization of D can easily be derived if Sm

is given. The third scheme we are going to discuss falls into this category.

The discussion shows that it is difficult to distinguish between semi-regular

remeshing schemes and schemes that calculate a global parameterization.

However, since the classical remeshing schemes that convert an input mesh

into one with subdivision–connectivity play an important role, we are dis-

cussing them separately.

In 1995 Eck et al.[17] were the first who came up with a three–step remeshing

scheme. They partition a mesh D of arbitrary connectivity and topology into

regions T0, . . . , Tr using discrete Voronoi tiles. The algorithm ensures that

the union of these tiles is dual to a triangulation which is used as the base

mesh S0. Using harmonic maps, a close to isometric parameterization for

each submesh ofM and thus for each base triangle of S0 is constructed in a

second step. This results in a global parameterization which is C0 continuous

over the edges of the base triangles only. Eck applies recursive 1–to–4-splits

to the domain triangles to generate a semi-regular mesh and evaluates the

global parameterization to map the new vertices onto D. The user has little

control over the base domain. This means that the amount of base triangles

is difficult to control and the base triangles are usually not aligned with

surface features. Due to this the resulting remesh cannot always capture

them faithfully. This is an important aspect when evaluating the quality of

the remesh and we pay special attention to this in our algorithm.

An alternative approach that also constructs parameterizations on a base

22 Background and Previous Work

domain consisting of triangles is the MAPS algorithm [54] and its improve-

ment [40]. Opposed to Eck’s scheme S0 is found by applying an incremen-

tal mesh decimation algorithm to the original mesh (cf. Section 2.7) This

approach provides more control on the generation of the base mesh since

feature lines and local curvature estimates can be taken into consideration.

Again, by means of local parameterizations, that are built on top of S0’s

triangles, the final remesh is obtained. An additional smoothing step based

on a variant of Loop’s subdivision scheme [60] is used to generate a certain

smoothness across patch boundaries. The major shortfall of this method is

the fact, that the decimation algorithm can run into local minima and thus

the base mesh S0 can have small base triangles in certain areas.

A completely different approach to the remeshing problem for genus–zero

objects is presented by Kobbelt et al. [47]. We are going to discuss this

approach in more detail since it is in spirit similar to the remeshing scheme

we are going to develop throughout this thesis.

The physical model behind the algorithm is the process of shrink wrapping,

where a plastic membrane is wrapped around an object and shrunk either

by heating the material or by evacuating the air from the space in-between

the membrane and the object’s surface. At the end of the process, the plas-

tic skin provides an exact imprint of the given geometry. To simulate the

shrink wrapping process, we approximate the plastic membrane by a semi–

regular mesh Sm. Two forces are applied to its vertices. An attracting force

pulls them towards the surface. A relaxing force is applied in order to opti-

mize the local distortion energy and to avoid folding. This ensures an even

distribution of the vertices. The attracting part is realized by a projecting

operator P that simply projects Sm’s vertices onto D. The relaxing is done

by applying an operator U to all vertices of Sm. This iteratively balances

the vertex distribution. Thus, shrink–wrapping is an iterative process, where

one alternates the operators P and U.

Nevertheless, the proposed scheme works slightly different in order to accel-

erate the underlying optimization process. Instead of immediately shriveling

up Sm , the remeshing process starts with an initial convex mesh S0 (e.g. an

icosahedron). Once the iteration converges on level Si, the scheme switches

to the next refinement level Si+1. Hence, this multi–level approach generates

2.6 Semi-Regular Remeshing 23

intermediate levels, which are close to the final solution, with relatively low

computational costs.

Unfortunately, the algorithm described so far works for simple input meshes

only. One of the problems that arise is that especially for the coarser approx-

imations, the projection operator P might produce counter–intuitive results.

For this reason, the basic shrink–wrapping algorithm is extended with the

aid of a parameterization F of D over the unit sphere. Both, D (using F ’s

inverse) and S0 (projection) are mapped onto a sphere. Thus, P becomes

trivial. The relaxation operator U is adapted to this in such a way, that it still

measures the geometry on the original surface. This is done by associating

triangles of D to corresponding surface areas of S0 (which is trivial, if both

meshes are mapped to a sphere). This guarantees an equal distribution of

S0’s vertices on D when evaluating F (S0). In areas where the surface metric

of S0 and D differ considerably, which would lead to severe stretching in

the resulting remesh, new vertices are inserted into S0 by performing edge-

splits. Once S0 is found, successive levels can be computed by either using

the stabilizing parameterization over the sphere or directly, if Si and D do

not differ too much.

Similar to the shrink wrapping algorithm, our framework does not explicitly

calculate a parameterization, but we can generate a semi-regular mesh in

the first place and thus implicitly generate a parameterization over triangu-

lar base patches. Our framework improves the shrink wrapping process in

two ways. From a technical point of view, our framework is able to process

arbitrary manifold meshes with holes and handles, since we replace the pa-

rameterization over the sphere with small local parameterizations over the

input mesh. Moreover we can tag and recapture features on the mesh and

calculate base meshes with few triangles that are aligned with them. From

an application point of view, we have extended the algorithm, that we can

use it in different scenarios beyond semi-regular remeshing (cf. Chapter 4).

For instance the process of generating the coarsest version of our remesh

(with our without tagged feature lines) can be seen as a mesh simplification

algorithm.

24 Background and Previous Work

2.7 Mesh Simplification

Mesh simplification schemes in general also belong to the class of remesh-

ing algorithms since they change the mesh connectivity (while reducing the

overall complexity). Due to their diversified applications, these schemes be-

long to the well-studied areas in computer graphics and a variety of sophisti-

cated techniques for simplifying polygonal models have been published. Even

though the remeshing scheme we are going to present within the scope of this

thesis can be put into action in the context of mesh simplification, the well-

known techniques differ considerably from our framework and we thus want

to give just a very brief overview of this field.

Mesh simplification schemes differ primarily in that they either are custom

tailored for specific application scenarios or in that they trade speed and/or

memory consumption for quality of the resulting mesh. Among all simplifica-

tion schemes, incremental decimation algorithms that perform atomic local

decimation operators (generally a single vertex gets removed) have gained

remarkable popularity. A list to prioritize these removals is computed and

the removals are performed with respect to this list until a target complexity

of the mesh is reached. Usually vertices that do not contribute significantly

to the geometrical appearance of the mesh get scheduled first, if the resulting

mesh still fulfills quality criteria.

Pioneering work in this field has been done by Schroeder et al. [71]. They

perform a vertex-removal followed by a re-triangulation of the resulting hole.

An even simpler form of this operator are the pair-contraction schemes, that

replace two vertices by one single vertex and remove all the degenerated ge-

ometry. A special case of this technique is the so called halfedge-collapse

(cf. Fig.2.1 right) which can be considered as mere sub-sampling [45] of the

original geometry. A true re-sampling is performed if new vertex positions

are generated during the decimation [26]. Geometric and topological qual-

ity criteria can be used to control the algorithm, i.e., to decide in a greedy

fashion which decimation step to apply next. Notable in this context is the

progressive mesh representation proposed by Hoppe [32]. It uses the half-

edge collapse as incremental simplification operator and stores the resulting

coarse base mesh together with a sequence of vertex splits (the inverse of

2.7 Mesh Simplification 25

the halfedge-collapse) which can be used to reconstruct the original mesh.

We mention this representation since we will be using it in a different sce-

nario and generate a hierarchy of meshes with varying geometric smoothness

(cf. Chapter 4.4).

Rossignac et al. [66] take another approach and apply vertex clustering. A

vertex clustering step can be viewed as an extension of localized vertex re-

moval in that a group of vertices are identified for elimination and then they

are replaced by a single representative vertex. The simplicity of this step per-

mits its application to meshes with billions of triangles [59, 36] and at this

time, mesh simplification of huge meshes is in the focus of current research

efforts. However, the major drawback of this technique is the still rather

poor quality of the output meshes (even non-manifold meshes can occur).

26 Background and Previous Work

Chapter 3

The Remeshing Framework

Before we go into the details of our remeshing framework in the next three

Sections, we want to give a high level overview, that shows the basic idea

of our framework in a more prescriptive manner. Here we skip all the tech-

nicalities that we will go into later on. The goal of our work is to have an

adaptable method that takes a triangle mesh D as input and is able to gener-

ate a preferably regular remeshM that is a good approximation to the input

mesh. The remesh should capture details like creases or sharp edges and we

also want it to gradually change, whenever the underlying input mesh changes

its geometry. This property is particularly useful in the context of multires-

olution modeling. For this reason we developed the incremental remeshing

framework.

The idea is, that we see our remesh as an object of nodes that are connected

by springs which is spanned around the input mesh. It can either be that

we start with a copy of the input mesh as remesh, but our framework is

also capable of taking an arbitrary remesh that is merely attached to the

input mesh. If we let the nodes of the remesh go, the springs ensure, that

the nodes slide over the surface of the input mesh and reposition themselves

in a regular way. A key property of this repositioning is the fact, that all

calculations are done locally in the vicinity of that node, i.e., no calculations

of global parameterizations etc. are necessary.

A mechanism that is able to adapt the density of the spring mesh by removing

28 The Remeshing Framework

or inserting nodes and by reconnecting the springs makes sure that we can

approximate the input mesh as densely as desired. The density of the remesh

is not restricted by the underlying input mesh or a precalculated patch layout.

Together, the springs and the density adaptation lead to a regular remesh,

that approximates the input mesh.

In order to improve the quality of the remesh, we have introduced a skeleton.

The skeleton makes sure, that fine detail like corners, creases or sharp edges

of the input mesh is present in the remesh. The skeleton is not rigid and

gives as much flexibility to the spring model as possible. In case we start off

with an arbitrary remesh, we present a feature snapping algorithm that is

even capable of recapturing detail of the input, which was not present in the

remesh in the first place.

3.1 Relaxation 29

3.1 Relaxation

In this section we introduce the concept of vertex relaxation, the first building

block of our remeshing framework. This section describes the geometric part

of our incremental remeshing framework. For clarity reasons, we introduce

the geometrical and topological optimization separately, even though they

run in parallel in our implementation. Leaving our goal of remeshing a

triangle mesh aside for the moment, the basic idea is quite simple and can be

described as follows. We are given a set of vertices that we want to (evenly)

distribute on a 3D surface. All these vertices already reside on that surface

and we let them float on it with respect to a relaxing force. At the point

when the relaxation procedure is in an equilibrium the vertices reach their

final position. In order to achieve this goal, that initially sounds simple,

we are facing two challenges. First, we have to define a proper relaxation

operator that mimics the relaxation force. We want this operator to be

flexible in a way that we can define different vertex distributions. Since we

want to make the vertices float on a 3D surface the second challenge is to

define this force in a way, that the movement of the vertices is restricted to

the surface. There are different ways to approach this problem.

One could define a true 3D relaxation operator, that defines a 3D direction

in which a vertex moves. In a second step one has to make sure, that the

vertex is shifted back to the surface. This can for instance be done by a pro-

jection or a similar operator. Since the relaxation operator can be defined

independently from the surface, this method can be implemented quite effi-

ciently. However, one can easily construct examples, where the shift operator

generates degeneracies. In general, such an approach is only applicable for

densely sampled and smooth surfaces without sharp corners or creases.

Another way to approach the relaxation challenge would be to do all calcula-

tions on the surface directly and thus avoiding the shift back to the surface.

Using this approach, one has to define the relaxation operator and with it all

input parameters like, e.g. distances, directly on the surface. Theoretically

this is an elegant approach and Sifri et.al [72] use it to calculate geodesic

distances on meshes for their remeshing framework. However in our incre-

mental setting, we found that repeatedly calculating these distances is way

30 The Remeshing Framework

to time consuming and cannot be used if interactive response times for input

models of realistic sizes are required.

One way to achieve quick response times while avoiding artifacts as they

occur when using a true 3D relaxation operator is to calculate local parame-

terizations in the vicinity of the vertex that is subject to the relaxation step.

That way one could do 2D calculations in the parameterization plane and

eventually map the vertex back onto the surface. As we have described in

Section 2.3 there exist a multitude of parameterization schemes. For our

purpose of vertex relaxation, we have to deal with the trade-off between the

following two questions:

• How often do we have to recalculate the mapping?

• How faithful is the mapping?

On the one hand one can precalculate a global parameterization of that sur-

face the vertices are floating on in advance with all the challenges that come

along with it. These challenges are mainly the need to cut the surface if it

is topologically complex, numerical instabilities when parameterizing large

areas of a surface and last but not least the distortion that is introduced. We

found that calculating a global parameterization is only suitable for rather

flat (sub-)regions of a mesh. In fact we use this method in Chapter 4. Since

using this method is rather straightforward once the global parameteriza-

tion is known, we will not detail this approach. One could also precalculate

parameterizations patch-wise and thus reducing the distortions of the indi-

vidual parameterizations. This method has the drawback however, that the

remeshing is sensitive to the patch structure and it is difficult to work across

patch boundaries.

The other approach is to repeatedly calculate small local parameterizations

in the vicinity of every vertex that is to be shifted. In the remainder of this

section we will describe this approach in detail. We will show how one can

compute minimal local parameterizations that minimize the distortion of the

mapping while keeping the number and the effort of recalculations as small

as possible.

After having informally described the basic procedure and discussed why we

3.1 Relaxation 31

are taking the approach that is based on local parameterizations, we now

want to come back to our remeshing problem and describe more formally

how our relaxation procedure works. We optimize the vertex distribution

of M by relaxing its vertices while restricting their positions to the input

mesh (domain) D. This way we make sure, that our algorithm is faithful to

the topology of D. We define a particle-system that allows the vertices to

float on the original surface represented by D. A relaxation operator locally

repositions a vertex with respect to its direct neighbors (1-ring). This opti-

mization process iteratively applies the local relaxation. Again, the physical

interpretation of this process is the minimization of the energy of a global

system of spring-edges connecting the vertices.

The relaxation is done in a 2D parameter domain. So we need to be able

to parameterize regions of M over the plane. For this purpose we first

parameterizeM over the domain meshD by assigning to every vertex vi ∈M
the domain triangle ∆̃j ∈ D that includes vi and barycentric coordinates

w.r.t. ∆̃j . We call the mapping

L : vi 7→
(
∆̃j, (αi1, αi2, αi3)

)
,

3∑
k=1

αik = 1 ∧ αik ≥ 0

of all vertices vi ∈M the link betweenM and D. So if we flatten a region of

D to the plane, the link will provide us also with a mapping of the associated

vertices and triangles ofM to the plane.

Now we define the local relaxation operator U as the so called weighted 2D

Umbrella operator. It shifts a vertex vi depending on a convex combination

of its direct neighbors vij. Let pi and pij be the respective parameter values

obtained from the link to D. Then U is defined as

U(pi) :=
1∑n

j=0 ωij

n∑
j=0

ωij(pij − pi) , ωij ≥ 0

pi ← pi + λU(pi) , 0 < λ ≤ 1

The appropriate choice of the weights ωij will be discussed at the end of this

section. The Umbrella operator U shifts vertices in the parameter domain,

32 The Remeshing Framework

that are lifted back to 3-space using the link. This allows the restriction to

D without expensive and error-prone projection operators.

The actual relaxation process is similar to parameter-based fairing applied

in FSR [83] where a global parameterization (MAPS [54]) of D is used. In

contrast to FSR (and also, e.g. [4, 3]), we give up the global parameterization

and replace it by a set of local parameterizations mapping regions of D to the

plane. The benefit is that we do not have to rely on the quality of the global

parameterization that may in some cases (depending on the input mesh) even

be hard to construct. For a global parameterization of D that is defined over

a coarse base domain, this prescribed domain limits the coarsest resolution

of the remesh, as the size of a 1-ring in M is then restricted to that of a

1-ring in D. On the other hand, for global flattening methods that induce

cuts to the original surface, it is not clear how the relaxation operator should

behave if a 1-ring intersects a cut. The price we have to pay with the new

approach is the on-the-fly construction of the local parameterizations which

cannot be done in a preprocessing step anymore. For this reason we keep

the domains of the different local parameterizations as small as possible and

apply caching whenever feasible.

We construct a set of local parameterizations {Φi}. Each parameterization Φi

provides a piecewise linear mapping from a set of domain triangles – the local

domain Di
L ⊂ D – to the plane. With the link to the remeshM we can thus

map associated vertices and triangles ofM. When we start remeshing with

M = D the initial link provides a 1-to-1 mapping between the corresponding

vertices. Formally, for a vertex v ∈M corresponding to ṽ ∈ D we can choose

a single triangle ∆̃ ∈ D that contains ṽ as its local domain.

As we start the optimization process, U will compute a shift vector for v

from a convex combination of the direct neighbors vj in the 1-ring. Hence

shifting v requires a larger domain, since a parameterization of the 1-ring is

needed. We try to keep this local domain small as well as the updates on

it. So we restrict the shift to parameter points located in the intersection of

the 1-ring ∆1(v) ⊂M and the subset Dv
L ⊂ DL of triangles that this vertex

v is assigned to. This way we ensure that the new position is well defined,

i.e. has a mapping in the parameterization, and we avoid a more expensive

point-in-triangle test.

3.1 Relaxation 33

Figure 3.1: Example for calculating the shift vector for the vertex inside

triangle (left), on edge (middle), and on vertex (right) case. The remeshM
is drawn in black, the domain mesh D is drawn in red. The green arrow shows

the vector calculated by the relaxation operator U . The shift is restricted to

the red area, the green dot marks the final position of the center vertex.

This determines the minimal domain that has to be covered by the local

parameterization. It consists of the union of

• triangles of DL covered by the triangles of v’s 1-ring, i.e., {∆̃ ∈
DL|Φ(∆̃) ∩ Φ(∆1(v)) 6= ∅},

and Dv
L which is defined as

• a single triangle ∆̃ ∈ DL, if the vertex is inside this triangle, i.e.,

Φ(v) ∈ Φ(∆̃), or

• two neighboring triangles ∆̃1, ∆̃2 ∈ DL, if v is located on their common

edge, i.e., Φ(v) ∈ Φ(∆̃1 ∩ ∆̃2), or

• a 1-ring in DL, if v corresponds to a vertex ṽ in DL, i.e., Φ(v) = Φ(ṽ).

Fig. 3.1 shows the three different cases.

The reasons for keeping DL small are the lower costs for the construction of

a local parameterization as well as the lower distortion that is induced. In

fact, we might not even be able to construct a reasonable parameterization

in situations where the area is topologically or geometrically complex. Thus,

U cannot be computed for the corresponding vertex and we keep its position.

This rarely happens, and as the neighborhood of the vertex is relaxed we are

likely to find a parameterization in the next iteration.

34 The Remeshing Framework

Figure 3.2: A closeup view of Tweety’s tail. A local parameterization based

on a projection into a fitting plane leads to degeneracies in areas with high

curvature (left), whereas a local mapping with Floater’s shape preserving

parameterizations performs well (right).

In order to significantly speed up the algorithm, we use a much simpler

method to generate the local parameterization. If the cone of normals of

the triangles in DL has only a small opening angle we can even use a simple

projection to a fitting plane for constructing the parameterization. This

is especially useful in the case when D is relatively coarse compared to M.

(Just consider the trivial case when a 1-ring ofM is completely contained in a

single domain triangle ofD.) In general we have to apply a more sophisticated

parameterization scheme. Figure 3.2 shows the degeneracies that occur, when

exclusively using the projection operator.

There are a number of methods for flattening disk-like 2-manifold meshes to

the plane [21, 14, 34, 73]. We use Floater’s [21] shape preserving parameter-

ization after projecting the boundary of DL to a plane. Due to the definition

of U the boundary is usually “fairly convex” and we almost always get a

valid, bijective parameterization without foldovers of triangles. In case of an

invalid parameterization we either could map the boundary to a circle and

3.1 Relaxation 35

apply Floater’s method again, thus ensuring a valid mapping, or give up for

this iteration as mentioned above. Our experiments show that the less ex-

pensive second alternative works well. We use the first alternative only after

constructing a local parameterization for this vertex has failed several times.

Figure 3.3: The remesh M (black) might miss some feature part of the

domain mesh D (red) if we set ωij = 1. We have to incorporate the area

of the triangles of D that are covered by a 1-ring of a vertex in M into the

relaxation operator to solve this problem and get a uniform sampling of D.

Consider a configuration as illustrated in Fig. 3.3. Despite the fact that a

projection parameterization is in general not a good choice for highly curved

surface regions (cf. Fig. 3.2), there is the problem that the remeshM misses

some feature part of the domain D. This situation is likely to happen if M
is coarse (cf. the connectivity optimization described in the next section)

compared to the surface feature on D. In order to avoid this situation the

relaxation operator U will take into account not only a 1-ring ofM but also

the covered domain triangles, i.e., the convex weights ωij used for relaxation

depend on the area of domain triangles. This explains why the local domain

DL must cover a 1-ring inM.

Formally, we can assign a local domain to every 1-ring. Practically, we assign

to every mesh triangle ∆ ∈M the set

C(∆) := {∆̃ ∈ D|Φ(∆) ∩ Φ(∆̃) 6= ∅}

of domain triangles that have a non-empty intersection with ∆ in the pa-

rameter domain. The application of U requires the union of all C(∆j) with

triangles ∆j from the respective 1-ring.

In every single relaxation step only a single vertex v is repositioned. So

the corresponding C(∆j) have to be updated. We intersect each parameter

36 The Remeshing Framework

triangle Φ(∆′
j) of the new 1-ring with all triangles of Dv

L and reassign them

to the new triangles ∆′
j. This update step can be implemented efficiently

since the intersection tests are done for all triangles of the 1-ring which are

sharing common edges. Thus, intermediate intersection results can be reused.

Moreover, the outer hull of the 1-ring remains unchanged, hence there is no

need to test against it. Also, we only need to recompute a parameterization

if domain triangles have been added to the set of triangles assigned to a

1-ring. This caching of local parameterizations considerably speeds up our

algorithm.

The choice of the weights ωij determines the energy to be minimized in the

optimization process. Uniform weights will provide a uniform distribution of

triangles in the local parameter domains. As the local domains are kept small,

the resulting parameterizations are near isometric resulting in a uniform point

distribution in 3-space. However, Fig. 3.3 illustrates, that surface features of

D might be missed in the remesh. Hence we choose the weights ωij for the

weighted umbrella proportional to the area (in 3-space) of all those domain-

triangles that are covered by the 1-ring of vij.

Before we show results of this relaxation procedure, in addition to the geo-

metrical optimization we first have to introduce the topological optimization

that adapts and optimizes the connectivity of the remesh. This optimization

is subject to the next section.

3.2 Dynamic Connectivity Meshes 37

3.2 Dynamic Connectivity Meshes

Whereas the last section dealt with the geometric properties, i.e., the repo-

sitioning ofM’s vertices, this section presents a technique that is capable of

adapting the resolution of a mesh to a target complexity by changing its con-

nectivity. Since changing the connectivity of M is one of the main building

blocks of our remeshing framework, we will explain in detail how to achieve

our goal of adapting M’s resolution. Here, we will focus on the topological

operation and its operators, which locally change M’s connectivity, as we

have introduced them in Chapter 2. (Figure 3.4 again shows the operators

we are going to use in our framework.)

We will also show how to combine adapting M′s connectivity with the re-

laxation procedure from Section 3.1 and explain how to efficiently put the

techniques into practice.

Figure 3.4: The three basic topological operations involved in DCM. The

top row shows the initial configuration, the lower row shows the altered

mesh applying an operator. From left to right: edge-flip, edge-split and

halfedge-collapse. The affected area is marked in blue.

By means of the particle system, up to now, our remeshing scheme is able

to reposition the vertices of M on D. As already mentioned the other im-

38 The Remeshing Framework

portant component is to adapt the resolution of M while optimizing the

connectivity. Starting from the initial connectivity of M0, we apply simple

topological operators that insert or remove vertices and regularize the con-

nectivity. This way we can incrementally adjust the complexity of M to a

desired target resolution. In order to achieve this, we apply an algorithm

similar to DCM [44], since we want to obtain a good mesh quality according

to the following criteria:

• No edge should be shorter than εmin.

• No edge should be longer than εmax.

• According to Euler’s formula, a vertex’ valence should be 6 (or 4 at

boundaries of a surface)

In order to achieve our first goal, we apply the half-edge collapse (cf. Fig-

ure 3.4), which reduces the triangle count ofM by removing two triangles (or

one triangle for boundary edges) by collapsing one edge into a single vertex.

This is done to all edges that fall below a length of εmin. Note again, that a

half-edge collapse is allowed only if the resulting mesh remains two manifold

(cf. [82] for a detailed explanation).

In order to increase the triangle count of M, we perform an edge-split and

insert a vertex on every edge that is longer than εmax and connect it with the

opposite vertex in the adjacent triangle(s). The new vertex will be positioned

on one of the endpoints of that edge e that was split. We call this vertex

the parent-vertex of the newly inserted vertex. In fact, we are creating two

geometrically degenerated triangles in the first place. But inserting the new

vertex on the midpoint of e would require an extra point-in-triangle-search

(cf. [9]) in the parameter plane, since we have to establish the link to D for

the new vertex as we have described it in the previous section. Instead we

let the relaxing procedure do the repositioning.

To regularize the connectivity, we perform edge-flipping. This becomes nec-

essary since both edge-collapse and edge-split affect the vertex balance,

and according to Euler’s formula we want most inner vertices to have va-

lence six. Consequently, for every two neighboring triangles 4(A, B, C) and

3.2 Dynamic Connectivity Meshes 39

4(A, B, D) we flip the common edge between A and B, if that reduces the

total valence excess: ∑
p∈{A,B,C,D}

(valence(p)− 6)2

Note that all three topological operations are inexpensive and local since

they do not need any global optimization and since they only affect a small

region on M. Moreover, M always remains a valid 2-manifold (opposed to

the basic 1–to–4 triangle-split which is used in many subdivision schemes).

Now the desired resolution ofM can be set by adapting εmin and εmax. Notice

that εmax > 2εmin has to be satisfied in order to avoid generating two (with

respect to εmin) invalid edges during the split operation.

In theory, both algorithms, i.e., relaxation and DCM work independently of

each other. The relaxation operator U is iteratively applied to all the vertices.

Here, the algorithm simply steps through the list of vertices in a linear order.

As soon as an edge exceeds εmax or falls below εmin, the corresponding topo-

logical operation is performed. In practice however, we additionally schedule

those vertices for immediate relaxation that were affected by the topological

operation (the remaining vertex during the half-edge collapse and the newly

inserted vertex introduced by the edge–split) thus ensuring a faster conver-

gence of the particle system. Moreover, we particularly test the affected

regions for possible edge-flips, since both half–edge–collapse and edge–split

change the local valence-excess.

Obviously changes in the connectivity enforce an update of the local domains

that are used in the relaxation step. This is trivial for the edge-split, since we

introduce degenerated triangles which by definition cannot have an intersec-

tion with domain triangles. The recalculation of the local parameterization

is done in the next relaxation step for the new vertex. During the half-edge

collapse, we assign those domain triangles that were associated to the re-

moved triangles to their respective neighbors. Again, since the recalculation

is local it does not require much effort. Last but not least, the reassignment

in case of an edge-flip is straightforward.

In addition to this basic adaptation of the connectivity which takes merely

the edge length and the valence into account, we also experimented with

40 The Remeshing Framework

a variety of geometric constraints that could prevent certain geometrically

degenerated situations. For instance one could prevent edges from flipping

or from collapsing, whenever the normals of the affected triangles would flip

over, i.e., one normal would change by more than 90 degrees. We found,

that these restraints (that in addition would prevent the remesh striving for

a regular connectivity) can indeed temporarily increase the mesh quality,

but the basic algorithm is capable of fixing local degeneracies and thus we

abandoned additional geometric restraints completely.

An approach that leads to an even more regular structure than the meshes

we are generating is proposed by Surazhsky et al. [75]. They color the mesh

according to valences of vertices and let edges drift over the whole mesh in

order to find edges that can be flipped and thus decrease the total valence

excess. Since this searching procedure is not local and the valence excess is

decreased only punctually by one, we do not include this approach in our

framework and stick to the simple and basic optimization method.

Now we can show first results that we have achieved with the framework

we have built so far. A video, showing our dynamic remeshing framework

in action is available on our web-site (www.mpi-sb.mpg.de/˜vorsatz). This

video shows, that the relaxation procedure combined with DCM runs at

interactive speed for meshes with about 100k4.

3.2 Dynamic Connectivity Meshes 41

Figure 3.5: Remeshing of Tweety, a geometrically more complex model (orig-

inal data-sets on the left, remeshed version on the right). The result uses the

plain vanilla remeshing approach, except for setting the target resolution, no

interaction of the user is necessary. The remeshing procedure for this 20k4
model runs in less than 5 seconds. Thin parts of the model are faithfully

recaptured (closeup view of Tweety’s tail can be found in Fig. 3.2).

42 The Remeshing Framework

Figure 3.6: Remeshing of the Elch model, a geometrically and topologically

complex model Opposed to the original model (left) , no degenerated tri-

angles are present in the remesh (right) which facilitates further processing

steps. Even though the geometry is topologically challenging for a remesh-

ing algorithm, our algorithm can handle such type of models, since it works

without an explicit patch-layout or a global parameterization but uses small

local parameterizations instead.

3.3 Preserving Features 43

3.3 Preserving Features

Figure 3.7: Example for aliasing artifacts. Without taking care of feature

lines, aliasing artifacts cannot be avoided even though a regular sample grid

is used. Edge-flipping and aligning the sample grid with the features slightly

improves the situation but still, sharp edges are lost.

A general challenge of most geometry resampling techniques is the alias prob-

lem. If the geometry has salient features, such as creases where the original

geometry does not have a continuous tangent plane, or ridge lines, we can

often observe surface reconstruction artifacts (cf. Figure 3.7). Feature detec-

tion is a well studied problem in a variety of areas in particular for images

and volumetric data defined on regular grids. For triangle meshes however,

the literature on feature detection is by far not as mature.

Although, e.g., some mesh decimation techniques are quite reliable in pre-

serving feature edges, we are generally facing the problem of finding the exact

location of the features when placing the surface samples on the mesh. But

the underlying fundamental problem is in fact much deeper. Features are

not solely defined by, e.g., a single mathematical property such as curvature,

rather than they are a subjective and application dependent property of the

mesh and it is difficult to specify them in the first place. However, if we do

44 The Remeshing Framework

consider regions of high (or even infinite) curvature to be good indicators for

feature edges there are also problems of technical nature to identify surface

features. For instance it turns out to be rather difficult to estimate curva-

tures in a reliable and robust fashion on piecewise linear surfaces. Although

many powerful curvature discretizations are known [63, 76, 13, 5], these op-

erators still suffer from random noise affecting the vertex positions. Hence

simple thresholding techniques to detect sharp features almost never work

fully automatically.

Very recently geometric snakes [56] a generalization of Kass et al’s image

based snakes [38] to interactively reconstruct features has been proposed.

The user prescribes a polygonal curve as a rough estimate of the feature

s/he wants to capture. This curve is deformed by an energy functional. The

result is a piecewise linear curve that traces the exact surface feature. Hubeli

et al. [35] presented a semi-automatic framework to extract a collection of

piecewise linear curves describing the salient features of a surface. Their two

step multiresolution approach first classifies patches of high curvature and

extracts feature edges by a skeletonizing algorithm.

The method we are going to present in this section not only computes piece-

wise linear curves representing salient features of a mesh, but starts out with

an input meshM0 and remeshes it in a way that it reconstructs features of

a domain mesh D. In order to do the remeshing, we merely require M0 to

be linked (cf. Section 3.1) to D. One source for problems to recapture sharp

features is also the fact that placing some samples on the feature does not

guarantee a correct reconstruction. To achieve this, we additionally have to

align mesh edges to the feature. This however implies that for correct feature

reconstruction we have to change the mesh connectivity in general. Hence

the task of resampling a given mesh requires geometric and topological op-

timization. In the last sections we have already built a powerful framework

to address both optimization problems.

In the next section we extend the relaxation procedure (cf. section 3.1) by an

effective mechanism to attract vertices ofM to feature edges of D to exactly

find the surface features [83]. The attracting force is imposed by means of a

hierarchical curvature field. Again, DCM provides the means to align edges

of M to feature edges. Our algorithm does not require any thresholding

3.3 Preserving Features 45

parameters to classify the features but works fully automatically.

Subsequent to this Section 3.3.3 describes a method to preserve already

tagged features edges and feature vertices when they are subject to the relax-

ation procedure or changing connectivity as introduced in the last sections.

The method in its basic form is restricted in that it requires the initial remesh

M0 to be identical to the domain mesh D though. In many situations, e.g.,

in the application scenario we have described in the preceding chapter, how-

ever we are facing exactly this situation and do not have to deal with the

more complicated case where M0 6= D. Nevertheless we will also describe

a way how to extend the basic method to the more complicated case. As a

prerequisite for this extension, we use the feature snapping procedure as it

is described in the next section.

3.3.1 Alias reduction by feature snapping

In Section 3.1 we saw how to equally distribute the vertices of the remesh

M on D, such that M consists of nicely shaped triangles. Moreover, the

DCM approach presented in Section 3.2 makes sure that we get a regularized

connectivity. But without explicitly taking care of it, the relaxed vertices

and the connecting edges not necessarily sample feature regions accurately.

The reconstructed mesh still suffers from aliasing (cf. Figure 3.7). In this

section we propose a technique that reduces aliasing by snapping vertices

to features of the original surface. In Section 3.3.2 these techniques will be

integrated into an explicit snapping algorithm.

The underlying idea is to start a relaxation step with different forces that

make the vertices move towards feature regions of D. We do not explic-

itly classify these regions by thresholding curvature or more sophisticated

techniques as used, e.g., in the context of surface segmentation in reverse

engineering [79], texturing [57], or parameterizations [68]. This way we avoid

specifying any application specific parameters. As a consequence we prefer

the metaphor of vertices that move into the direction of higher curvature to

that of a force that is induced by the feature and pulls vertices towards it.

Note that even though the method we are going to present in this chapter

46 The Remeshing Framework

is in spirit similar to the general remeshing framework we have described in

the previous sections, we do not mix these two methods, but mainly use the

feature detection as a preprocessing step to recapture and tag the features

only. One advantage of this two step approach is the fact that, we can pro-

cess almost arbitrary input meshes as long as we can establish a link to a

domain mesh. We get a reasonable initial remesh with reconstructed features

in the first step and fine tune the remeshing with our more general frame-

work including the skeleton approach from Section 3.3.3. We have done this

separation mainly for two reasons. First, and more importantly, since the

particle system is a versatile approach that can be trimmed towards many

different objective functions, we do not want to have the process of feature

recapturing interfere with it. This combination would imply that two pos-

sibly contradicting goals would have to be incorporated into the relaxation

operator of the particle system. The second reason is due to the fact that

separating the two objectives is not really a restriction, since we have de-

veloped a method to preserve tagged features during the remeshing process.

We are going to present this method in the next section.

The short answer to the question what makes vertices move in the direction

of the features is that we use a hierarchical scalar curvature field defined

on the domain surface D whose gradient provides the (candidate) directions

towards which the vertices can move.

The link establishes a one-to-one correspondence between the two meshes,

and points on M can be mapped to points on D (and vice versa). Hence,

having this correspondence, directions defined on M can be transferred to

directions or motion of vertices on D. At first, we will focus on the definition

of the curvature field on D and treat the details of vertex shifting after that.

Mathematically, curvature is defined for smooth, differentiable surfaces only.

Regarding a piecewise linear triangle mesh as an approximation to a continu-

ous surface leads to curvature discretizations as proposed ,e.g., in [63, 76, 13].

For our purpose a rather simple curvature measure is sufficient, as we do not

need convergence to a smooth surface in the limit case. We require that flat

regions have smaller curvature than feature edges that in turn have lower cur-

vature than “corners”. This setting allows vertices from flat regions to snap

onto edges first, and vertices residing on feature edges to snap to corners.

3.3 Preserving Features 47

We calculate a discrete analogon to mean curvature at a vertex v as follows:

regard all edges emanating from v. For every edge we calculate the angle

between the normals of the two attached triangles. The sum of all these

angles is the curvature value of this vertex. It is straightforward that this

measure is reasonable according to our requirements. This can be illustrated

for a cube: the eight corner vertices have curvature 3
2
π, on edges the curvature

is π, and all other vertices in the flat regions have zero curvature.

Up to now we defined curvature for D′s vertices only, but we can easily assign

curvature values to all points of the piecewise linear manifold D by simple

linear interpolation of the curvature values that are defined at the vertices.

Using this simple measure there is one challenge we have to pay attention to.

Suppose two vertices with high curvature are connected by an edge. Although

this edge may be in a flat region, i.e., the normal deviation of its attached

triangles is zero, it is assigned a high curvature due to linear interpolation

between the two high curvature vertices. This situation can be avoided by

preprocessing the original meshM0: bisecting every edge (cf. Section 3.2) is a

straightforward solution to this problem. In practice we restrict the splitting

to regions with noticeable curvature. Note that this is done for reasons of

efficiency only. The induced curvature threshold does not affect the rest of

the algorithm, in particular it is not used for classification of features and

their detection, but just truncates regions of very low curvature. This is no

problem in principle, but just an artifact caused by linear interpolation of

this simple curvature measure.

From the scalar curvature field we can construct a gradient field that indicates

the direction into which a vertex should move in order to snap to some

feature. However, the näıve approach of calculating the curvature gradient

for every triangle greatly suffers from (high frequency) noise effecting in more

or less random vertex shifting. Imagine, e.g., a planar region: even minimal

geometric disturbance will produce a meaningless direction field. Our aim

is to move vertices of M towards prominent sharp feature edges of D while

minimizing disturbance by noise.

In order to fit our needs we make use of a noise reduction scheme that

smoothes the curvature and hence the gradient field. The initial scalar val-

48 The Remeshing Framework

ues are low pass filtered by weighted averaging and again truncated. This is

iterated several times resulting in a hierarchy of curvature fields on different

frequency bands. So the gradient of the lowest frequency field points reliably

towards sharp feature edges over a wide region, but smaller features may

be missed. In contrast, the higher frequency fields faithfully respect smaller

features but also geometric noise and are thus less reliable. Figure 3.9 illus-

trates curvature fields of the fan-disk model at three different levels of the

hierarchy.

Figure 3.8: Curvature filtering. This example shows a 1D setup of vertices

with their curvature values at levels 1 (input values, light grey line), 2 (red

line) and 3 (blue line) of the smoothing hierarchy (y-axis). We use the

curvature field that is defined by the maximum curvatures over all levels

(thick yellow line). The arrows show the direction of the resulting gradient

field in the different intervals. Notice how the smoothing has enlarged these

intervals allowing more distant vertices to snap onto the sharp features.

The idea is to first move vertices along the direction of the lowest frequency

gradient. Higher frequency bands of the scalar curvature field are subse-

quently faded in by taking the maximum of the values of different levels

in the hierarchy. This defines new gradients on successive levels respecting

smaller features while the “support” of a feature depends on its significance.

The filtered curvature field provides sharpness in the vicinity of features and

smoothness elsewhere as illustrated by Figure 3.9 and 3.8. We found that

in practice it is sufficient to use the gradients of this scalar field for moving

3.3 Preserving Features 49

vertices rather than to successively shift vertices according to gradients on

different filter levels.

Figure 3.9: Three different levels of the hierarchical curvature on the fan-disk

model. The red colors indicate regions of high curvature, the green regions

represent areas of lower curvature. The leftmost image shows the unfiltered

curvature field where due to the definition of the curvature measure the

influence of the dominant features is limited to triangles that are adjacent to

them. As the curvature gets filtered (2 times in the middle, 5 times in the

right image), sharp features get blurred, but cover larger areas of the mesh.

Certainly, the number of filter levels could be used to suppresses small fea-

tures and hence to serve as feature selection. This is not the intention of the

algorithm: the main purpose of filtering is to provide a meaningful gradient

field over a considerably large support with enough candidate vertices to be

attracted by the features.

Ideally, a vertex is moved along the filtered direction field. If a local curvature

maximum is detected on its route, the vertex snaps to this position. Such a

maximum occurs on edges/vertices only due to its construction. In order to

avoid a constant flow in the direction of the maximum curvature, the vertex

will remain at its original position if there is no local maximum. This way

vertices are blocked by adjacent vertices that are already closer to the feature

and as curvature maxima can appear only on the edges of D it is sufficient

to test for maxima on (intersections with) these edges only.

Using this snapping technique we can reconstruct features of the original

surface by plain geometric optimization. Of course, the quality of the result-

50 The Remeshing Framework

ing remesh is unacceptable without introducing additional constraints that

prevent degeneration such as orientation flipping of triangles. In our method

this is achieved by restricting a vertex’ movement to the “kernel” of its 1-

ring. The kernel is the convex subregion of the 1-ring that is bounded by the

straight lines defined by outer edges. Figure 3.10 shows an example.

Figure 3.10: Starting from the current position (left), the vertex is shifted

with respect to the gradient field indicated by the black arrow. Moving in

the direction of the gradient can cause caps in the vicinity of features (center

left). This can be avoided by shifting along the edge that encloses the smallest

angle with the gradient (center right). A potential short edge gets removed

during the restructuring process (cf. Section 3.2). Note that the shift has

to be restricted to the kernel of the 1-ring (grey area) to avoid flipping of

triangles (right).

When shifting the vertex inside its kernel along the gradient, caps may arise

(Figure 3.10, center left). These are triangles with almost zero area and

one inner angle close to π. We must avoid such configurations as neither a

snapped vertex will move any further nor the topological optimization (cf.

Section 3.2) can remove all of them. For this reason we discretize directions:

curvature maxima are searched on the edge emerging from a vertex vi of the

current remesh M that encloses the smallest angle with the gradient at vi

(Figure 3.10, center right). Of course, only edges with an enclosing angle

less then π
2

are allowed as we want to shift vertices in the direction of the

higher curvature. Since the mesh is consistent we can always find at least

one edge with this property. Restricting the direction this way ensures that

vertices are still moved with respect to the gradient, merely the convergence

to features is slowed down.

Hence, the direction along that a vertex vi ∈ M is attracted towards the

3.3 Preserving Features 51

feature always points to some neighboring vertex vj. We now evaluate cur-

vature on D at the intersections of the edge between (vi,vj) with all edges of

D. If a local curvature maximum is detected the vertex is moved to this po-

sition, else it remains untouched, i.e., it stays in its current position. Again,

in order to avoid constant flow, vertex movement is restricted: vi may not

move further than half of the length of the edge (vi,vj). The reason for

this damping is that the neighbor vj may reach the same position easier and

we do not want to be dependent on the order we feed the vertices to the

snapping procedure. In the extreme case vj lies on the feature already and

collapsing of two vertices is prevented that way.

Vertices that do not snap to a feature are subject to a relaxation step (cf.

Section 3.1) instead of moving along the gradient. This ensures that vertices

remain equally distributed. At a first glance the need to relax vertices that

were not allowed to move is not obvious, but the rationale behind it is rather

simple. As outlined before, vertices are allowed to move within the kernel

of its one-ring only. Since the relaxation procedure is built in a way that it

produces equilateral triangles wherever possible, we are facing convex one-

rings for almost all vertices which in turn implies that the kernel is equal to

the one-ring and that vertices are allowed to move freely within this region.

This way we are able to reduce situations with “locked” vertices and thus

speed up the algorithm significantly.

Vertices that have been shifted onto an edge of D due to a curvature max-

imum are restricted to move only on edges in D in the following stages of

the algorithm. This allows us to use the same snapping technique in a one

dimensional subspace of the parameter domain in order to resample corners

of the domain surface D. Again, a vertex vi ∈M tries to move towards high

curvature, but this time along edges of D. Its movement is still restricted to

the kernel of the one-ring. If a local maximum is found at a vertex v ∈ D a

corner is assumed, and vi is shifted to that position. vi remains untouched

either in case of there is no maximum or if there is another vertex vj ∈ M
already sampling v. All vertices that have not snapped to corners are finally

relaxed on their feature edges in D.

After feature snapping to edges (in 2D) and to corners (in 1D) the vertices

of the remeshM are equally distributed, and they sample feature edges and

52 The Remeshing Framework

V0

V1

V2

V3

Figure 3.11: Even after the relaxation procedure some special cases may

occur. The gradient field (black arrows) shifts vertices towards a feature

(horizontal line). Vertex v0 is locked by an adjacent vertex v1 that is already

residing on the edge (left). Flipping the edge that crosses the feature line

aligns M with M0. On the right, vertex v2 moves onto the horizontal line,

generating a degenerated triangle. Relaxing v3 fixes this problem.

corners of the original surface. Now we make sure that edges connecting

vertices in M are aligned to sharp features of D. Due to the previously

described discretization of directions for vertex movement, a vertex might

be locked which leads to an edge crossing a feature of D. Figure 3.11 (left)

illustrates the situation. These cases rarely happen due to the intermediate

relaxation and can be solved by flipping the affected edge. Since the proce-

dure can be applied iteratively, the algorithm works in the same fashion for

several edges attached to one vertex.

In a final step we take care of triangles with poor aspect ratios. Such a con-

figuration can occur, if the vertex is shifted towards the border of the kernel

in a non-convex one-ring. Figure 3.11 (right) shows such a configuration. In

situations where we detect these triangles, we apply the relaxation operator

to the vertex with the largest enclosing angle. In case this vertex happens

to reside on a feature, we let it drift away from it, since the edge that is

opposite to the vertex is a good approximation to the feature edge already.

3.3 Preserving Features 53

3.3.2 The Snapping algorithm

In the previous sections we discussed the components of our feature frame-

work and elaborated on the different aspects. Now we are able to outline

the overall snapping algorithm that recaptures features and is applied in a

preprocessing step prior to the actual remeshing process.

We assign every vertex vi ∈ M a state that will be evaluated and modified

by the algorithm. A vertex can either have status free, snapped–to–edge or

snapped–to–corner. Initially, all vertices are free.

In step one an initial remesh can optimally be built using DCM as described

in Section 3.2. The resulting mesh has the desired complexity in the number

of vertices and is optimal with respect to the connectivity criteria. This way

we can adjust how densely the features of D get sampled. This step also sets

all vertex states to free.

Vi

Vj

iV

Vj

Figure 3.12: Illustration of our feature snapping algorithm for a single vertex

vi. Left: The regular, light mesh denotes the original mesh M0 with a

feature edge (thick). The dark mesh shows a 1-ring of M with the sampled

curvature gradient (arrow). All vertices are in free state. The search direction

is determined by the edge enclosing the smallest angle with the gradient.

Curvature values ck are sampled at the intersections with M0, displayed

by the boxes. The size of the boxes reflects the value of ck. Right: The

center vertex snaps to the local maximum of the ck and changes its state to

snapped–to–edge.

The optimization only effects the connectivity of the triangle mesh but not

its geometry. In the next step we start the geometric optimization (cf. Sec-

54 The Remeshing Framework

tion 3.1): the positions of all free vertices are shifted using the simple area

based relaxation operator. This results in a mesh with a uniform vertex

distribution.

Still, the surface is an unacceptable reconstruction of the original geometry

due to aliasing in feature regions. Näıve local refinement cannot solve this

problem. In order to ensure that vertices of M lie on the features of D we

now apply the snapping procedure.

The third step snaps vertices ofM to feature edges of D (cf. Section 3.3.1).

The filtered curvature field on D provides a gradient direction that guides

vertices towards features. Note that no feature regions or edges of D are clas-

sified, so no application specific parameters are needed. As a vertex vi ∈M
may only move towards a feature edge along an edge (vi,vj), only intersec-

tions of D with this edge are new candidate positions for vi. Curvature is

evaluated for these potential target positions only and used as the snapping

criterion to find the final position.

If a local curvature maximum is encountered between vi and vj, a feature

edge is assumed. As a consequence vi is snapped to the intersection point

of this maximum, and its state changes to snapped–to–edge. Figure 3.12

illustrates this situation. If there is no such maximum, vi stays at its position

thus avoiding constant flow and degenerated edges. Also, vi is not allowed

to snap onto a snapped–to–edge vertex to avoid edge collapses.

Vertices that remain in state free may now be scheduled for another relaxation

step. Steps two and three are iterated until no more snapped–to–edge vertices

are generated. This ensures that there are enough candidates for snapping.

Now vertices of the resulting remeshM sample edges of the original surface,

but still corners are subject to aliasing.

It turns out that the corner problem can be solved in just the same way as

we have addressed the edge problem. We have to snap vertices to corners of

the original surface, e.g., to vertices where feature edges meet. In contrast

to step three the search space is restricted from the entire 2D parameter

domain to the 1D feature edges. We have already detected these edges, as

they connect snapped–to–edge vertices.

So step four can be formulated as follows: For every vertex vi ∈ M with

3.3 Preserving Features 55

Figure 3.13: The particle system it its simple form is not sensitive to features

which results in aliasing effects (left). After the snapping algorithm, all the

features are reconstructed (middle), snapped vertices are colored in blue. A

closeup view of the same model at a coarser resolution is shown on the right.

state snapped–to–edge the curvature values at the two endpoints of the corre-

sponding edge inD are used to select one of the two possible search directions.

If the vertex happens to lie on a vertex in D and there are more than two

candidate directions, the vertex remains untouched as it is assumed that a

corner is found already.

Again, we are looking for a local maximum between vi and its neighbor vj

with the same state. If a curvature maximum is detected, vi snaps to the

associated vertex in D and its state changes to snapped–to–corner. If the

maximum happens to be in vj, the vertex vi is left unchanged. The vertices

remaining in state snapped–to–edge are scheduled for relaxation on their

feature edge. Corner snapping and 1D relaxation are iterated until there

are no more vertices that snap to corners. Now M reconstructs edges and

corners of D in so far as vertices are placed on feature edges respectively

corners.

The last step in the algorithm fixes edges that are still not aligned and

cross a feature. This is achieved by edge flipping. This is in contrast to the

requirements of balanced number of adjacent vertices, but has to be tolerated

for the sake of an improved approximation to D. In this step we also release

vertices that form degenerated triangles as illustrated in Figure 3.12 and

reset it from the snapped–to–edge status into the free status.

56 The Remeshing Framework

3.3.3 Tagging a Skeleton

Figure 3.14: The skeleton on the fan-disk model was extracted by threshold-

ing of dihedral angles between adjacent triangles. The figure shows the three

different primitives the skeleton consists of before the remeshing starts. The

corner vertices remain fixed, bone-vertices are allowed to freely float on the

bone-edges.

For now let us consider the case whereM0 = D. In this simpler case similarly

to [37, 3], we make use of skeletons that are attached to both meshes. In

principle, we define a skeleton to be a set of edges of D that can be either

selected by an automatic [67, 57] or semi-automatic [56, 35] algorithm or even

by an interactive selection done by the user. Additionally the user can add

vertices to the skeleton that s/he wants to be preserved during the remeshing.

In order to preserve this basic set of vertices and edges, we define the skeleton

of M to consists of the following three primitives. In doing so, we exploit

the fact that the two meshes are identical. See Figure 3.14 for an example.

bone-edges are edges that were selected by the user/feature detection al-

gorithm.

bone-vertices are vertices that have exactly 2 adjacent bone-edges.

corner-vertices are vertices that have 6= 2 adjacent bone-edges or vertices

that are explicitly selected by the user.

3.3 Preserving Features 57

The skeleton which is attached toD remains fixed during the whole remeshing

process while its counterpart on M is modified. In order to ensure that

the skeleton on M preserves the structure of D’s skeleton, the key idea

is to restrict the relaxation operator U for the bone-vertices of M to the

bone-edges of D. At the same time we ensure that the three topological

operations, namely edge-flip, edge-split and half-edge collapse used in the

re-triangulation process do not destroy this structure.

Hence, we apply the following restrictions to the relaxation operator U and

to the topological operations onM.

• Corner-vertices remain fixed and never get touched by any geometri-

cal nor topological operation. We legitimate this approach with the

argument that vertices that have exactly one adjacent bone–edge are

likely to be an endpoint of a ridge line. If the vertex has more than two

bone–edges adjacent to it, it is probably a complex node of the skeletal

structure of a feature and should be preserved.

• Bone-vertices are moving on bone-edges of D exclusively – U(p) is sim-

ply projected back to that bone-edge, that has the smallest enclosing

angle with U(p). This strategy is effective for vertices that reside in the

middle of a ridge line and ensures that bone-vertices are able to float

freely within this ridge. If the movement of a bone-vertex is prohib-

ited since it represents, e.g., some important surface feature, the user

simply tags it as corner-vertex.

• A half-edge-collapse of a bone-edges are allowed only if both endpoints

and the connecting edge belong to the skeleton. This also implies,

that no bone–vertex is allowed to drop out of the skeleton by a half-

edge collapse. However, vertices that do not belong to the skeleton are

allowed to collapse into the skeleton, and become part of it in that case

(cf. Figure 3.14).

• Bone-edges never get flipped since they represent an important surface

feature that has to be preserved.

58 The Remeshing Framework

• If a bone-edge e gets split, the new vertex is a bone-vertex as well. If

the parent-vertex (see Section 3.2) happens to be a corner-vertex, it is

allowed to move in the direction of that bone-edge of D that has the

smallest enclosing angle with e and where the other endpoint of e is

reachable (cf. Figure 3.15).

Figure 3.15: After a split of a bone-edge of M the newly inserted bone-

vertex (green) gets attached to a bone-edge of D (red). If the new vertex

has a corner-vertex as its parent (central vertex), we attach it to that bone-

edge that has the smallest enclosing angle with the bone-edge that was split.

Additionally we require, that the opposite vertex of M can be reached via

D’s skeleton (dotted arc). After that, the new vertex is allowed to move on

bone-edges of D exclusively.

With these restrictions we are able to guarantee that the topology of the

skeleton does not change, while the vertices and edges faithfully sample the

initial skeleton. Even though we impose the above restrictions to the particle

system and the DCM as we have introduced them in the first place, we

found that preserving the skeleton does not severely affect the quality of the

resulting remesh. Still, a line of bone-edges separates the “freely floating”

areas that are adjacent to it and particles are not allowed to cross this barrier.

Future work in this area might therefore include a less rigid skeleton metaphor

where particles are allowed to leave the skeleton while at the same time an

adjacent vertex snaps to the ridge line and thus preserves a good feature-

sampling.

In the last part of this section we want to describe a way to extend our

skeleton approach to the case whereM0 differs from D. The only aspect we

3.3 Preserving Features 59

have to take care of is the creation of the skeleton that is attached to M0.

As soon as this skeleton is defined, we are in the same situation as described

above and can use the restricted topological and geometrical operators. As

input we are assuming that we are given a set of polygonal lines that consists

of edges of D. These lines form D’s skeleton, i.e., all the edges are tagged as

bone-edges. We also assume that we are given a set of vertices Vs from M0

(the potential bone- respectively corner-vertices) and a link between D and

M0. We can, e.g., get this set of vertices as output of the feature snapping

procedure from the last section. The remaining subtask is to classify the

vertices of Vs to be either corner- or bone-vertices and to identify the bone-

edges ofM0’s skeleton.

Initially we tag all vertices of Vs to be corner vertices. By means of the

link we immediately know if a vertex from Vs is residing on a bone-edge

of D. These vertices are candidates to become bone-vertices. In order to

eventually determine M0’s bone-edges and thus completing M0’s skeleton,

we apply the following strategy. For every v ∈ Vs we regard all emanating

edges and check if the vertex vj ∈ Vs on the opposite side is reachable. If this

is the case, the corresponding edge becomes part of M0’s skeleton. vj is said

to be reachable, if there exists a connected set of bone-edges of D’s skeleton

that connects v and vj and there is no other vertex of M0 on this path.

Now we can proceed by tagging bone- and corner-vertices according to their

number of emanating bone-edges just as previously described. Figure 3.16

shows a result we have generated with the skeleton approach we have escribed

throughout this section. It shows a remeshing of the fandisk data-set where

a skeleton is preserved at different levels of resolution.

60 The Remeshing Framework

Figure 3.16: The original fandisk data-set with its skeleton and corner-

vertices (top left) gets remeshed (top right). Due to the restrictions im-

posed on the relaxation and topological operators, the skeleton is preserved

even though we generated a really coarse approximation to the original mesh

(bottom).

Chapter 4

Applications

After having the detailed technical description of the general framework in

place we can now put it into practice. With our framework a user can ma-

nipulate a triangle mesh in various ways with one common approach and we

hope that many more algorithms based on our work will be developed. In

this chapter we will describe how to adapt the general technique to different

application scenarios. We will explain when to plug in different relaxation

functions or parameterizations in order to have a hands on description for

an application of our work. At first we will describe a method for interactive

remeshing, a straightforward application of the framework. We explicitly

mention it since it is a valuable tool when a user wants to locally improve

a given mesh and wants to have the improvement seamlessly integrated into

the input mesh. We will briefly describe mesh simplification that generates

a coarser version of a base mesh. Based on this simplified version we will

describe several ways to generate semi–regular remeshes. The focus appli-

cation of our remeshing framework is multiresolution modeling and we will

therefore elaborate on this and put it into a broader perspective in the last

section of this chapter.

62 Applications

Figure 4.1: An interactive remeshing session operating on the ear of the Max-

Planck model. The original triangulation on the left gets refined. Note that

the partially remeshed area automatically connects to the fixed vertices on

the boundary and still forms a valid 2-manifold mesh.

4.1 Interactive Remeshing

While the remeshing per se is fully automatic once the user has specified

input parameters like, e.g., the target resolution and/or a feature skeleton,

we can also use it to provide a framework for interactive mesh optimization.

Therefore, the optimization process is visualized by updating the displayed

remesh after each iteration. The user can change input parameters during

the optimization process, and gets immediate visual feedback as the mesh

converges to the desired remesh.

Even more important in this context is the fact that one can specify only cer-

tain regions on the mesh that are subject to the remeshing process while the

rest remains fixed. This can be regions on the original surface that include

only few sample points for example. The optimization process runs just as

4.2 Mesh Simplification 63

before but schedules only vertices and edges in the specified regions for opti-

mization. Again, this automatically ensures that the remeshed regions stay

connected to the fixed part of the mesh as its resolution and its connectivity

is optimized, and no additional zippering or stitching [78] is necessary.

In practice the user-defined regions are often small enough to allow the pa-

rameterization of a whole region over the plane. As no local parameteri-

zations have to be updated, this will significantly speedup the algorithm.

Plugging in different parameterizations can be quite efficient, but it also

demonstrates how flexible the general framework is.

Of course, the user can always modify the feature skeleton during the remesh-

ing process. Fig. 4.1 shows an example of an interactive remeshing session.

Here we locally increased the vertex density in order to have additional de-

grees of freedom for a subsequent step in the virtual geometric modeling

pipeline.

4.2 Mesh Simplification

Due to the ever increasing size of geometric models and the limited amount

of hardware resources, mesh simplification has been one of the most active

research areas in geometric geometry processing for the last decade. We

have already given a brief overview over the relevant research directions in

this field in Section 2.7. Incremental mesh simplification steered by a priority

queue and by means of the edge-collapse as atomic decimation operator is

unquestionable the most popular method to reduce the size of a geometric

model. Our remeshing framework is in some way similar to this approach in

that it utilizes the same topological operator but in contrast to these meth-

ods we steer the decimation process by the particle system while prescribing

certain edge-lengths. However, by simply increasing the minimal and maxi-

mal edge length we can easily adopt our scheme for mesh simplification and

can thus generate “fairly” coarse approximations to the original input mesh.

Our approach has the theoretical advantage, that it is less likely to run into

local minima during the decimation. In practice however, we observe an

advantage for fairly coarse and irregularly sampled input meshes only. By

64 Applications

using the skeleton approach we are in addition able to preserve features of the

input mesh which drastically improves the quality of the decimated mesh.

Theoretically, for genus zero objects, we can perform a simplification down

to a tetrahedron as long as we find a valid parameterization for every 1–ring

in M. In practice, for objects with features, we are restricted by the rules

imposed by the skeleton (see Section 3.3.3).

We do not claim, that our method outperforms any of the sophisticated, ap-

plication specific simplification schemes known from literature, but nonethe-

less we see several aspects where using our scheme in the context of mesh

simplification is useful.

• First, and most importantly, the meshes that come out of our remeshing

framework are particularly well suited as base-meshes in the context

of semi-regular remeshing and as meshes that are subject to discrete

fairing. We will detail this in the subsequent sections.

• A link between the original mesh and the remesh is always available,

thus we can easily exchange properties between corresponding regions

of both meshes.

• As we have seen in Section 4.1 on interactive remeshing, we can apply

the remeshing to small parts of the complete mesh while ensuring an

intact triangulation. Even for very coarse triangulations the particle

system equally distributes vertices on the original geometry. By attach-

ing skeletons to the original mesh and its remesh the user can thereby

exert influence on the overall result.

• Our remeshes interpolate the original geometry at its vertices and we

do not just approximate it.

• Last but not least, we have developed an application that implements

all the algorithms that were described so far in one single framework.

Performing mesh simplification with this application comes at no extra

costs, since it is inherently part of our general framework already.

4.3 Semi-Regular Remeshing 65

4.3 Semi-Regular Remeshing

Arbitrary (irregular) meshes are the most general and flexible contiguous

boundary representation and meanwhile we have become familiar with them

throughout this thesis. But there is also the important class of semi–regular

– or subdivision–connectivity – meshes often stemming from subdivision-

algorithms [18] that offer many advantages over the irregular setting. On

the one hand this is due their regular structure and on the other hand one

can exploit their mathematical proximity to polynomial surfaces. Many al-

gorithms, in particular in the context of rendering, filtering, texturing, and

compression, can benefit from this special structure. In the past, a number

of algorithms have been proposed to convert an arbitrary input mesh into

one having subdivision–connectivity. Since we have already introduced the

notion of semi–regular meshes in Chapter 2, please refer to page 20 for a

more detailed description of this special and important class of meshes.

In this section we want to show that our remeshing framework can be di-

rectly applied to perform such a conversion. Since we have described all the

required algorithms already, the conversion is rather straightforward. We

merely have to deal with generating the subdivision–connectivity. Once this

special connectivity is established, the geometric part of the remeshing pro-

cedure, can be adopted “as is” from Section 3.1. This eventually guarantees

the desired vertex density on the final remesh. In other words the particle

system guarantees fine grained control over the vertex distribution by adapt-

ing the relaxation operator in the desired way. By means of the skeleton

(Section 3.3) we can additionally set edge and vertex constraints in order to

preserve and eventually reconstruct feature lines of the domain mesh.

The conversion is done in two phases. Similarly to the MAPS -algorithm [54]

or its successor [40], we first generate a coarse version of the input mesh

M = D just as we have described it in the last section on mesh simplifica-

tion. Again, in terms of coarseness of the base-mesh we are solely restricted

by the constraints imposed by the skeleton (if at all present) and by the

availability of parameterizations for every one-ring ofM. Thus we can build

the hierarchy of meshes upon a very coarse base domain with a small number

of triangles. We have given the rationale why this is desirable in Section 2.6.

66 Applications

The particle system ensures, that the areas of the triangles of this coarse

approximation (all all finer approximations in the course of the remeshing)

to D are uniform.

Once we have generated this coarse base-domain, we can start with the refine-

ment phase in a second step. This is done similarly to the above remeshing

algorithm in that we apply topological changes combined with permanent re-

laxation. But instead of using the DCM -approach, we go from coarse to fine

by applying the topological operations as they are given by the underlying

subdivision scheme.

We can plug in either the classical dyadic refinement (repeated 1–to–4–split

operation). This does not imply dealing with non-manifold “intermediate”

meshes containing T-junctions. As mentioned in the Chapter 2, we split

the operator into edge-flips and vertex-splits. In doing so we are in the

DCM situation in that we are dealing with the same topological operators

and we can thus let our framework to the remeshing.

We can also follow the idea of Kobbelt [43] and perform
√

3-adic splits.

Again, we can reuse the basic topological operators from Section 3.2. (The

1–to–3 split can be implemented similar to the edge–split operation, i.e., we

perform a topological 1–to–3 split of a triangle, place the newly inserted

vertex on one of corner vertices of the triangle which was just split and

let the relaxation operator handle the repositioning.) Note that due to the

hierarchical approach, the particle system converges quickly and we need just

a few relaxation steps until the length of the relaxation vectors falls below

some user defined threshold.

For both methods, we have to make one restriction in order to preserve the

skeleton ofM. As mentioned in Section 3.3.3, a skeleton-edge is not allowed

to flip in the first place. However, applying two refinement steps at once leads

to a complete dyadic or triadic split of all triangles (and edges). Thus we

have a 1–to–1 correspondence of edges from the coarser level to those on the

finer level and consequently are able to preserve the skeleton. The limitation

however is, that we always have to perform two refinement steps at once and

might eventually end up with a model that is finer and thus more complex

than required by the application.

4.4 Interactive Multiresolution Modeling with Changing Connectivity 67

Figure 4.2 shows one example of a
√

3 remeshing. Here a user first tags

feature points on the original model and and the algorithm generates the

coarse base domain(upper right. The feature points ensure that vertices

that are important to the user are present in are present in all models of

the hierarchy. The figure shows the coarsest model we can generate with

our algorithm while preserving the feature points. In the next step we start

refining by applying the topological
√

3 split operator twice per step (middle

row). The lower row shows the final remesh. Even at highest resolution

(77K∆), the response times for this model never exceeded 4-5 seconds.

4.4 Interactive Multiresolution Modeling

with Changing Connectivity

Having all the means at hand, we are able to focus on (interactive) multireso-

lution modeling, where a designer modifies a given surface using editing oper-

ations. There are many different ways and means to modify a given surface.

Traditionally, geometric modeling is based on polynomial surface represen-

tations [23, 50, 55]. However, while special polynomial basis functions are

well suited for describing and modifying smooth triangular or quadrilateral

patches, it turns out to be rather difficult to smoothly join several pieces of

a composite surface along common (possibly trimmed) boundary curves. As

flexible patch layout is crucial for the construction of non–trivial geometric

shapes, spline–based modeling tools spend much effort on maintaining the

global smoothness of a surface. The situation is simpler for triangle meshes.

This section discusses our approach that make freeform and multiresolution

modeling with dynamic connectivity available for triangle meshes. Opposed

to splines, where the control vertices provide a convenient way to smoothly

edit the surface, this is a challenging task, since plain triangle meshes do not

have any reasonable control mechanism to perform large scale edits. Before

we describe in detail, how intuitive modeling metaphors for triangle meshes

can be accomplished, we describe the general requirements a modeling tool

should satisfy.

68 Applications

Figure 4.2:
√

3-remeshing of a tooth-model (original upper left). The coarse

base mesh with user defined feature points (top right) is refined (middle row)

until the target resolution is reached (bottom left). The final remesh (bottom

right) cannot be distinguished visually from the original mesh, but now has

subdivision connectivity.

Intuitive I.e., editing the overall shape with an easy to use control mecha-

nism (cf. control vertices of splines) in a broad, smooth manner while

4.4 Interactive Multiresolution Modeling with Changing Connectivity 69

preserving little features residing on the surface should be possible.

Independent The editing interface should abstract from the underlying

mesh representation, since in general a designer is not interested in

how the surface is actually represented.

Interactive This is crucial, since a designer heavily depends on immediate

visual feedback when performing further edits.

We distinguish between two different approaches: Freeform modeling is the

process of modifying subregions of the surface in a smooth manner whereas

the notion of multiresolution modeling describes edits where we can addi-

tionally preserve little geometric features [86, 46]. Our work aims at mul-

tiresolution modeling. In addition to merely changing the geometry of the

model we also change the underlying representation, i.e., the connectivity of

the triangle mesh itself. This is done in order to adapt it to the modeling op-

eration. However, we use freeform modeling for the underlying modification

of the surface. Detail preservation and the changing connectivity is done on

top of the modified freeform surface.

We split the description of our approach into three parts. In the first part of

this chapter we will deal with freeform modeling. This can be done with the

help of discrete fairing or subdivision respectively. We will review these meth-

ods just very briefly. Here we are aiming at developing a control mechanism

(similar to the control–points of spline–based methods) for these methods

only and thus do not explain these methods in full detail.

After that we will first show how to build a hierarchical structure for semi–

regular meshes before we describe how this can be done for arbitrary, i.e.,

unstructured meshes. Combined with freeform modeling, this enables us to

perform true multiresolution modeling.

In the third part we will extend the multiresolution modeling with a dynamic

remeshing component, which eventually completes the modeling approach.

70 Applications

Figure 4.3: A simple subdivision–surface (left) is modified by moving the

vertices of corresponding control meshes. Editing the coarse control mesh

leads to a wide “bump” (middle), whereas altering a vertex on a finer level

affects a smaller area (right).

4.4.1 Freeform modeling

In Chapter 2 we have briefly mentioned Subdivision schemes that can also

be considered as the algorithmic generalization of classical spline techniques,

enabling control meshes with arbitrary topology. They provide easy access

to globally smooth surfaces of arbitrary shape by iteratively applying sim-

ple refinement rules to the given control mesh. A coarse–to–fine hierarchy of

meshes generated by this process quickly converges to a smooth limit surface.

For most practical applications, the refined meshes are already sufficiently

close to the smooth limit after only a few refinement steps. Since our mod-

eling approach extends the classical approach for semi-regular meshes, lets

for now assume we are given a semi–regular mesh Sn. Sn was generated by

applying some subdivision operator S to a base mesh S0, and we want to

modify Sn with specific support. The usual way to implement this operation

is to run a decomposition scheme several steps until the desired resolution

level corresponding to the mesh Si is reached. In our setting, this can simply

be done by sub-sampling, i.e., we just switch to Si. On this level the mesh Si

is edited. Applying S to the modified mesh S ′i (n− i)–times yields the final

result. This operation can be performed quite efficiently due to the simplicity

and numerical robustness of S. Figure 4.3 illustrates the varying support of

modifications at different levels. The major drawback of this procedure is the

fact, that edits are restricted to vertices residing on a specific level. However,

4.4 Interactive Multiresolution Modeling with Changing Connectivity 71

one can fake low–frequency modifications by moving a group of vertices from

a finer level simultaneously. But besides being cumbersome, this annihilates

the mathematical elegance of the multiresolution representation.

Figure 4.4: Freeform edits for unstructured meshes (cf. [46]): The dark line

indicates the area which is subject to the modification. The bright line defines

the handle geometry which can be moved by the designer (middle,right).

Both boundaries can have an arbitrary shape and hence they can, e.g., be

aligned to geometric features in the mesh. The dark and the bright line

impose C1 and C0 boundary conditions to the mesh respectively and the

modified smooth version is found by discrete fairing while preserving these

conditions. Notice, that the designer can apply arbitrary modifications to

the handle polygon and does not have to take the mesh connectivity into

account.

In order to apply global and smooth modifications to arbitrary (manifold)

triangle meshes we make use of a slightly different approach. We first define

the area of influence, the boundary of the modification, and a set of vertices

(inside this area) that will remain fixed. This defines the boundary conditions

for the calculation of a smooth or fair surface that follows the principle of

the simplest shape [70]. Significant amount of work has been dedicated to

this problem. We refer to [49] for an in depth discussion, since our work only

marginally touches this area. The key idea for the actual freeform modeling

is now relatively simple and can roughly be stated as follows:

Define the edit by altering boundary conditions to the mesh and

72 Applications

recalculate the fair surface by solving the corresponding optimiza-

tion problem.

Fig. 4.4 shows a convenient way how boundary conditions can be defined

by the user. However, more sophisticated methods can easily be derived.

The following sections show how to apply discrete fairing in the context of

interactive modeling.

Note that since interactivity is crucial, an efficient solver for the chosen fairing

scheme has to be available. We use multi–level schemes to solve the problem

on a coarse level first and use this solution to predict initial values for a

solution on the next refinement level [31]. In our case, we can use incremental

mesh decimation (cf. Sec. 2.7) to build a fine–to–coarse hierarchy of the mesh

in such a way that intermediate meshes can be used to solve the optimization

problem (OP). The optimization algorithm in our case can be described in

the following way.

go to coarsest level

solve OP directly

Repeat:

reinsert some vertices

solve OP in vicinity of new vertices

Until mesh is reconstructed

Note, that we do not make use of the relaxing procedure we have defined,

but merely use plain mesh simplification here. However, we can exploit one

feature of the remeshing framework to stabilize the calculation of the fair

surface. We can remesh the input mesh prior to the modeling just as we have

done it during the interactive remeshing. That way we feed a fairly regular

mesh to the optimization problem. This reduces the computational effort and

at the same time enhances the numerical robustness of many algorithms.

For now we have described the freeform modeling for arbitrary triangle

meshes, a way to modify triangle meshes in a smooth manner. In the re-

mainder of this chapter we use this modification mechanism and define mul-

tiresolution modeling on top of it.

4.4 Interactive Multiresolution Modeling with Changing Connectivity 73

Figure 4.5: A flexible metaphor for multiresolution edits. On the left, the

original mesh is shown. The smooth version of the original mesh is found

by applying discrete fairing while preserving the boundary constraints (dark

and bright line, cf. Fig. 4.4). The center left shows the result of the opti-

mization. The geometric difference between the two left meshes is stored

as detail information with respect to local frames. Now the designer can

move the handle polygon and this changes the boundary constraints for the

optimization. Hence the discrete fairing generates a modified smooth mesh

(center right). Adding the previously stored detail information yields the

final result on the right. Since we can apply fast multi-level smoothing when

solving the optimization problem, the modified mesh can be updated with

several frames per second during the modeling operation. Notice that all

four meshes have the same connectivity.

4.4.2 Multiresolution modeling

The previous section shows how to perform freeform modeling on triangle

meshes. Let us now assume we want to modify the face of the bust model (see

Fig. 4.5) and we would, e.g., like to shift its nose. This could be accomplished

with the above methods, but the face would lose its features like eyes and

mouth since this detail information would be removed by the optimization

process. In order to enable such types of edits, we extend freeform modeling

to multiresolution modeling. This means that we have to be able to distin-

guish between high–frequency detail information that has to be preserved

and the low–frequency shape we want to edit. This is where multiresolution

representations for triangle meshes come in. In this chapter we already got

74 Applications

to know two different ways to build hierarchies. Coarse–to–fine hierarchies in

the context of semi-regular remeshing and fine–to–coarse hierarchies in the

section about mesh simplification. In the context of multiresolution modeling

however, we do not want hierarchies of different coarseness, i.e., with varying

triangle count, but of different smoothness. Nevertheless, it turns out, that

both types of hierarchies are closely related.

Given an arbitrary surface Sm, a multiresolution decomposition consists of

a sequence of topologically equivalent surfaces Sm−1, . . . ,S0 with decreasing

level of geometric detail. The differenceDi = Si+1−Si between two successive

surfaces is the detail on level i which is added or removed when switching be-

tween the two approximations. The reconstruction Sm = Si+Di+ . . .+Dm−1

of the original surface Sm can start on any level of detail Si. Multiresolution

modeling means that on some level of detail, the surface Si is replaced by S ′i.
This operation does not have any effect on S0, . . . ,Si−1 but Di−1 and hence

Si+1, . . . ,Sm change since the (unchanged) detail information Di, . . . ,Dm−1

is now added to the modified base surface S ′i for the reconstruction of S ′m.

In order to guarantee the intuitive preservation of the shape characteristics

after a modification on some lower level of detail, this basic setting has to

be extended in the sense that the detail information Di is encoded with re-

spect to local frames. These frames are aligned to the surface geometry of Si

[24, 23, 46, 86]. The next section will put the calculation of the local frames

into a broader perspective and will derive a multiresolution representation

for arbitrary triangle meshes.

4.4.3 Robust Multi-Band Detail Encoding

Again like their real world equivalent, surfaces often carry detail information

on various scales and often give the surface its characteristic look. Whenever

one wants to change the overall shape of this surface, these characteristic

properties should still be part of the altered surface or at least they should

be preserved as good as possible. To give an example, Figure 4.6 shows

Max-Planck’s head model at three different frequencies of geometric detail.

If one wants to perform a smooth deformation on the geometric level of the

rightmost image, i.e., a deformation that affects the whole face, the levels of

4.4 Interactive Multiresolution Modeling with Changing Connectivity 75

higher geometric detail like, e.g., the skin texture (cf. images to the left of

that level) should be preserved.

In this section we want to describe a hierarchical representation of a geo-

metric model. We generate a sequence of differently smooth versions of the

original model. as described in the previous section. This way we can apply

modifications at different geometric scales while preserving detail information

of the higher levels.

Figure 4.6: Different scales of detail on Max-Planck’s head. Whereas the left-

most image shows the head with full detail, i.e., high geometric frequencies,

the geometric frequencies decrease in the middle and in the right image.

During the last years, hierarchical representations of geometric shape have

become the de facto standard for those purposes. The basic idea is to encode a

high-frequency detail level relative to a coordinate frame induced by a coarser

approximation of the original shape such that modifications on a coarser level

can be propagated to the finer ones. Pioneering work in this area was done

by Forsey and Barthels in [24, 23], where they used hierarchical polynomial

patches (H-Splines) to represent and edit a surface. Though splines have

a straightforward shape control mechanism based on control vertices, it is

well-known to be rather complicated to preserve boundary conditions when

handling complex geometry.

76 Applications

This is one of the reasons, why the interest in surface representations based on

triangular meshes increased over the last years. Generalizing the patch-based

concepts, the wide family of subdivision techniques (cf. [18] for an overview)

start with a coarse base mesh approximating a geometric shape of arbitrary

topology and refine it iteratively. An exponential number of vertices is in-

troduced to capture finer detail information, until a prescribed tolerance is

reached. When refining a mesh, the position of the inserted control-vertices

is predicted by the smoothing-rule of a subdivision-scheme. A detail vector

(relative to linked to the coarser level (and follows modifications, if the global

shape changes). Storing the base mesh and the sequence of detail vectors for a

fixed subdivision scheme leads to a hierarchical representation of the original

shape [61, 86]. In order to generate a smooth low–frequency approximation

of Sm, we simply suppress the detail reconstruction starting from some in-

termediate level j (Di = 0, i ≥ j).Note that the smooth mesh and the mesh

with reconstructed detail information share the same connectivity, but are

merely differently smooth versions of the original shape.

Within the scope of this thesis however, we are in a more general context,

i.e., we are dealing with meshes of arbitrary connectivity. Of course we could

apply our semi-regular remeshing framework we have developed to generate

this special structure, but this way we would loose the flexibility of arbitrary

meshes. Similarly to the technique we have described to generate differ-

ently smooth semi-regular meshes, we now generate a hierarchy of differently

smooth arbitrary meshes. A popular way for arbitrary meshes is to build the

hierarchial structure the other way around, i.e., from fine to coarse. For this,

mesh simplification (cf. Section 2.7) can be used. Note that the technique

we are going to describe in the following uses differently coarse meshes (with

low triangle count) merely to efficiently generate differently smooth versions

of a mesh using multilevel methods. The method can be seen as a general-

ization from semi-regular meshes to arbitrary meshes. All meshes share the

same connectivity after they are fully reconstructed. However, the smooth

hierarchy of meshes could also be the result of a smoothing scheme that does

not change the connectivity of the mesh at all [49].

Multiple levels of resolution are produced by incrementally decimating the

fine mesh (cf. 2.7). This is done by applying the half-edge collapse as decom-

4.4 Interactive Multiresolution Modeling with Changing Connectivity 77

position operator. To capture the detail information, which would be lost

otherwise, similar to the semi-regular setting, detail vectors have to be stored.

For a hierarchical representation, a proper reconstruction has to be ensured.

Hence, we need a base point, where the detail vector could be attached to.

In contrast to the subdivision scheme, where the base point is predicted by

the subdivision operator, no such point exists for the coarse to fine approach,

since the mesh-connectivity does not provide the necessary regular structure.

For this reason, a vertex removal is split into two steps. First, the original

position is altered such that it is optimal with respect to the optimization

problem just as we have described it for the freeform modeling. The second

step removes the original vertex and encodes the position with respect to its

optimized counterpart. This would require a optimization process for every

single vertex. One could also apply the optimization to all vertices before

storing the detail information to lower the computational costs. This would

lead to a two-band representation, i.e., a smoothed version, and the original

mesh. Both meshes would be linked by a set of detail vectors. In practice,

a multi-band hierarchy, similar to a level of detail representation would be

desirable. This could reflect the multiple scales of features on the surface to

stabilize the modeling-process on the one hand and keep down the costs on

the other hand.

Hence, to build an appropriate hierarchical structure of a triangular mesh

for our modeling purposes, we have to solve two problems. First, we have

to choose the right intermediate frequency-bands, such that a modification

of a coarser level will lead to reasonable changes of the finer ones. On the

other hand, the detail has to be encoded with respect to a proper base point,

to ensure a stable reconstruction. The following sections discuss several ap-

proaches for both problems.

As mentioned before, we cannot simply store the detail vectors with respect

to a global coordinate system but have to define them with respect to local

frames which are aligned to the low-frequency geometry [24, 23, 62, 65, 77].

This guarantees the intuitive detail preservation under modification of the

global shape. Usually, the associated local frame for each vertex has its origin

at the location predicted by the reconstruction operator with suppressed

detail. However, in many cases this can lead to rather long detail vectors

78 Applications

with a significant component within the local tangent plane. Since we prefer

short detail vectors for stability reasons, it makes sense to use a different

origin for the local frame. In fact, the optimal choice is to find that point

q on the low-frequency surface whose normal vector points directly to the

original vertex p. In this case, the detail is not given by a three dimensional

vector (4x,4y,4z)T but rather by a base point q = q(u, v) on the low-

frequency geometry plus a scalar value h for the displacement in normal

direction. If a local parameterization of the surface is available then the base

point q can be specified by a two-dimensional parameter value (u, v).

The general setting for detail computation is that we have given two meshes

Mm+1 and M′
m+1 where Mm+1 is the original data while M′

m+1 is recon-

structed from the low-frequency approximationMm with suppressed detail,

i.e., for coarse-to-fine hierarchies, the mesh M′
m+1 is generated by applying

a stationary subdivision scheme and for fine-to-coarse hierarchies M′
m+1 is

optimal with respect to some global bending energy functional. Encoding the

geometric difference between both meshes requires to associate each vertex

p of Mm+1 with a corresponding base point q on the continuous (piecewise

linear) surface M′
m+1 such that the difference vector between the original

point and the base point is parallel to the normal vector at the base point.

In order to do so, an arbitrary point q onM′
m+1 can be specified by a triangle

index i and barycentric coordinates within the referred triangle.

To actually compute the detail coefficients, we have to define a normal field on

the meshM′
m+1. The most simple way to do this is to use the normal vectors

of the triangular faces for the definition of a piecewise constant normal field.

The point q = q(i, u, v) can be computed efficiently by a simple projection

and works fine, if the resulting coefficient is short compared to the edges

of the assigned triangle and if M′
m+1 is sufficiently smooth. But since the

orthogonal prisms spanned by a triangle mesh do not completely cover the

vicinity of the mesh, we have to accept negative barycentric coordinates

for the base points if it does not lie within such a prism. This leads to

non-intuitive detail reconstruction if the low-frequency geometry is modified

(cf. Fig. 4.7).

A technique used in [46] is based on the construction of a local quadratic

interpolant F to the low-frequency geometry. For a vertex p ∈ Mm+1 it is

4.4 Interactive Multiresolution Modeling with Changing Connectivity 79

Figure 4.7: The position of a vertex in the original mesh (high-frequency

geometry) is given by a base point on the low-frequency geometry plus a

displacement in normal direction. There are many ways to define a normal

field on a triangle mesh. With piecewise constant normals (left) we do not

cover the whole space and hence we sometimes have to use virtual base points

with negative barycentric coordinates. The sketch shows, that this can lead

to non intuitive reconstructions, if the “base mesh” is for example flattend

out. The use of local quadratic patches and their normal fields (center)

somewhat improves the situation, but problems still occur since the overall

normal field is not globally continuous. Such difficulties are avoided if we

generate a Phong-type normal field by blending estimated vertex normals

(right).

based on the closest triangle T ∈M′
m+1 and its adjacent vertices, which can

be found in constant time by a simple local search procedure, starting from

p’s corresponding vertex p′ ∈ Mm+1. Since now a local parameterization

is given, parameter values (u,v) defining the base point q can be found by

a multidimensional Newton-iteration. We start off from the center of T at

q0 = F(1
3
, 1

3
),qn+1 is defined by the projection of p into the tangent plane of

F at qn. In terms of parameter values (u, v), this leads to the simple update

rule (un+1, vn+1) ← (un, vn) + (4u,4v), where (4u,4v) is the solution of

the linear system (
F T

u Fu F T
u Fv

F T
u Fv F T

v Fv

) (
4u

4v

)
=

(
F T

u d

F T
v d

)
(4.1)

with detail vector d = p − qn, which is perpendicular (within a pre-

80 Applications

scribed tolerance) to F(un, vn) after a few steps. The absolute value of

the displacement-coefficient h is set to ‖d‖ and has to be multiplied by

−1 if dT (fu(un, vn) × fv(un, vn)) < 0. Although this reduces the number

of pathological configurations with negative barycentric coordinates for the

base point, we still observe artifacts in the reconstructed high-frequency sur-

face which are caused by the fact that the resulting global normal field of the

combined local patches is not continuous (cf. Fig 4.8 center).

We therefore propose a different approach which adapts the basic idea of

Phong-shading [22] where normal vectors are prescribed at the vertices of a

triangle mesh and a continuous normal field for the interior of the triangular

faces is computed by linearly blending the normal vectors at the corners.

We use the same search procedure as described above and obtain a triangle

4(a,b, c) with the associated normal vectors Na, Nb, and Nc. For each

interior point

q = α a + β b + γ c

with α + β + γ = 1 we find the associated normal vector Nq by

Nq = α Na + β Nb + γ Nc.

Hence, we are searching for scalars α, β such that

p = q + λNq

Computing α and β is slightly more involved than it seems at a first glance

and we have thus included a detailed description of this calculation in Ap-

pendix B.

As a result we get a similar update rule as described in Equation 4.1. Starting

with (α0, β0) = (1
3
, 1

3
), the difference (4α,4β) between two consecutive steps

can be denoted as follows.

4α = (F T
u Fv · F T

v F − F T
v Fv · F T

u F)/s

4β = (F T
u Fv · F T

u F − F T
u Fu · F T

v F)/s

with s = F T
u Fu · F T

v Fv − (FuFv)
2.

In case one of the barycentric coordinates of the resulting point q is negative,

4.4 Interactive Multiresolution Modeling with Changing Connectivity 81

we continue the search for a base point in the corresponding neighboring tri-

angle. Since the Phong normal field is globally continuous we always find a

base point with positive barycentric coordinates. Fig. 4.7 depicts the situa-

tion schematically and Fig. 4.8 shows an example edit where the piecewise

constant normal field causes mesh artifacts which do not occur if the Phong

normal field is used.

Figure 4.8: The original shape (left) is modified by pushing a single vertex

while minimizing a membrane energy functional. A piecewise linear normal

field leads to undesirable mesh artifacts (middle), while storing detail in-

formation with respect to a Phong normal field (left) performs a satisfying

modification.

4.4.4 Hierarchy levels

For coarse-to-fine hierarchies the levels of detail are determined by the uni-

form refinement operator. Starting with the base meshM0, the mth refine-

ment level is reached after applying the refinement operator m times. For

fine-to-coarse hierarchies there is no such canonical choice for the levels of

resolution. Hence we have to figure out some heuristics to define such levels.

In [46] a simple two-band decomposition has been proposed for the mod-

eling, i.e., the high frequency geometry is given by the original mesh and

the low-frequency geometry is the solution of some constrained optimization

problem. This simple decomposition performs well if the original geometry

can be projected onto the low-frequency geometry without self-intersections.

82 Applications

Fig 4.9 schematically shows a configuration where this is not satisfied and

consequently the detail feature does not deform intuitively with the change

of the global shape.

Figure 4.9: If the high-frequency detail cannot be projected onto the succes-

sive level (top), intermediate levels have to be inserted to guarantee a feasible

detail reconstruction (bottom).

This effect can be avoided by introducing several intermediate levels of de-

tail, i.e., by using a true multi-band decomposition. The definition of the

Phong-type normal field introduced in the last section provides the means to

guarantee a stable reconstruction. The number of hierarchy levels has to be

chosen such that the (i+1)st level can be projected onto level i without self-

intersection. Detail information has to be computed for every intermediate

level.

Figure 4.10: Starting from the original shape (left), a two-band decomposi-

tion (middle) can lead to long detail-vectors and hence to exaggerated modi-

fications or even self-intersections for relatively small edits. Multiple levels of

detail avoid these artifacts and the modifications behave in a natural fashion

(right).

4.4 Interactive Multiresolution Modeling with Changing Connectivity 83

Intermediate levels can be generated by the following algorithm. We start

with the original mesh and apply an incremental mesh decimation algorithm

which performs a sequence of edge collapse operations. When a certain mesh

complexity is reached, we perform the reverse sequence of vertex split opera-

tions which reconstructs the original mesh connectivity. The position of the

re-inserted vertices is found by solving a global bending energy minimization

problem [42, 46, 28]. The mesh that results from this procedure is a smoothed

version of the original mesh where the degree by which detail information has

been removed depends on the target complexity of the decimation algorithm.

Suppose the original mesh has nm vertices, where m is the number of in-

termediate levels that we want to generate. We can compute the meshes

Mm, . . . ,M0 with fewer detail by applying the above procedure where the

decimation algorithm stops at a target resolution of nm, . . . , n0 remaining

vertices respectively. The resulting meshes yield a multi-band decomposition

of the original data. When a modeling operation changes the shape of M0

we first reconstruct the next level M′
1 by adding the stored detail vectors

and then proceed by successively reconstructingM′
i+1 fromM′

i.

The remaining question is how to determine the numbers ni. A simple way

to do this is to build a geometric sequence with ni+1/ni = const. This mimics

the exponential complexity growth of the coarse-to-fine hierarchies. Another

approach is to stop the decimation every time a certain average edge length

l̄i in the remaining mesh is reached.

A more complicated heuristic tries to equalize the sizes of the differences

between levels, i.e., the sizes of the detail vectors. We first compute a multi-

band decomposition with, say, 100 levels of detail where we choose i
√

n̄i =

const. For every pair of successive levels we can compute the average length

of the detail vectors (displacement values). From this information we can

easily choose appropriate values nj = n̄ij such that the geometric difference

is distributed evenly among the detail levels.

In practice it turned out that about five intermediate levels is usually enough

to guarantee correct detail reconstruction. Fig. 4.10 compares the results of

a modeling operation based on a two-band and a multi-band decomposition.

We have presented a new method to encode high-frequency detail with re-

84 Applications

spect to a low-frequency base mesh. Now, we are able to perform a robust

true multi-band decomposition for a given fine triangular mesh of arbitrary

connectivity. This leads to intuitive modifications of global shapes under

preservation of detail features. However, the user can still apply particular

edits, where undesirable effects like self intersection of detail vectors during

the reconstruction process happen. A promising volume preserving approach

to address this challenge is presented in [7]. However, this approach is compu-

tationally more involved than the Phong-type normals. Since we are aiming

at interactive rates for our modeling tool, we decided to stick with the Phong

approach.

4.4.5 Multiresolution modeling with changing connec-

tivity

In the last section of this chapter we want to discuss several approaches,

how in addition to performing multiresolution edits one can change the con-

nectivity of the resulting mesh. This is in particular necessary, if the edit

induces severe stretches or compressions to certain parts of the mesh which

might lead to badly shaped triangles. We distinguish between two differ-

ent approaches. Approach one is rather straightforward once the remeshing

framework and multiresolution modeling is available. Nonetheless we pri-

marily use this approach in our interactive modeling tool. The key idea is

rather simple and can be described in one sentence:

Take the reconstructed modified mesh as it comes out of the mul-

tiresolution modeling process and perform an interactive remesh-

ing afterwards.

In other words the remeshing and the modeling run independently of each

other. In this method the modeling starts off with the input mesh D and the

hierarchy of meshes meshes Si is constructed for the multiresolution model-

ing part. After that we create a copy M of the input mesh and establish a

one-to-one link betweenM and D. M will later be the final remeshed result

and D is equal to the the fully reconstructed mesh hierarchy Sm before any

4.4 Interactive Multiresolution Modeling with Changing Connectivity 85

modeling operation is performed. The advantage of this method is twofold.

On the one hand side due to the fact that the two methods run indepen-

dently of each other it is rather simple to put into practice. For instance in

our implementation we just transmit the altered vertex positions from the

modeling part to the remeshing part of the application. We change the base

mesh with respect to the new coordinates and do one remeshing iteration.

On the other hand the remeshing is quite efficient since only regions where

the modeling is done require the full calculation effort, the other regions re-

main more or less static. This way we get immediate visual feedback due to

the fact that the remeshing is done incrementally.

However, the above method performs a true remeshing of the object that

undergoes a modeling operation. This effect might not be desired since even

in case only a small edit is done, the triangulation might change completely.

For this reason we propose a slightly modified method that overcomes this

shortfall but sacrifice the relaxation based on local parameterizations and

pre-calculate a global parameterization of the area which is to be modified

instead. This user defined area is in practice significantly smaller than the

object itself and a global parameterization can be constructed. More pre-

cisely we project D’s boundary of the modeling area to a 2D polygon. The

2D positions of D’s vertices in the interior of this boundary are calculated

with the exactly same relaxation operator that is subsequently used for the

remeshing process itself. Typically the precalculation of this parameteriza-

tion takes only a fraction of a second for moderately large modeling areas of 5

- 10K4. By choosing this parameterization we ensure, that vertices ofM do

not change positions until the user performs a modification. The remaining

modeling algorithm works just as in method one.

4.4.6 Discussion

In this section we have shown how to do interactive multiresolution modeling

with triangle meshes of changing connectivity. The main advantage of our

method is the fact that we can clearly separate the three different stages of

the scheme that eventually allow the edits and that in each stage we can easily

plug in different algorithms that do not interfere with the other two stages.

86 Applications

We have shown how to smoothly edit user defined areas on arbitrary triangle

meshes. We have extended this freeform modeling to true multiresolution

modeling with fixed connectivity by generating a multiresolution hierarchy

of differently smooth meshes that are defined as offsets to some smooth base

mesh. Eventually we have taken the mesh with the multiresolution edits we

have proposed two methods to adapt the connectivity of the mesh to the

users edits.

4.4 Interactive Multiresolution Modeling with Changing Connectivity 87

Figure 4.11: Multiresolution editing of a bust (62k triangles,left). The handle

lies around the nose, the whole face is marked as the area of influence. The

edits where achieved by scaling and translating the nose (from left to right).

88 Applications

Chapter 5

Conclusion and Future Work

In this thesis we presented a new remeshing framework for the optimization

of triangular meshes. In the following we summarize our main contributions

and conclude by showing directions for future research.

In the first part we presented our incremental remeshing framework. This

includes the optimization of the mesh connectivity based on the DCM ap-

proach, the optimization of the vertex distribution by means of a particle

system as well as a method for preserving features like sharp edges. We see

the main advantage of our work in the fact that the framework is versatile

in the sense that we can use it for many types of applications and that it

can easily be adapted by assembling the components in different orders and

ways or by plugging in different types of operators.

Our particle system requires only local parameterization of the original sur-

face. Constructing a global parameterization can explicitly be avoided and

we can thus handle topologically complex models, which are particularly

challenging for traditional remeshing procedures. In particular, we devel-

oped a method that efficiently flattens the local domains to the plane and

demonstrated how to incrementally update these domains whenever the con-

nectivity of the mesh changes. Three local topological operators are at the

core of our topological optimization method. The method we have presented

is particularly simple but can nevertheless generate meshes of sufficient regu-

larity and it is also capable to generate semi-regular meshes. In this context

90 Conclusion and Future Work

multiresolution algorithms benefit from the fact that our framework is able

to generate particularly coarse base meshes. We introduced a skeleton that

a user can attach to the mesh in order to preserve certain features of it.

The main advantage of this skeleton is that it is flexible and adapts itself

if the underlying mesh changes its resolution. The skeleton, but also the

entire framework, does not require to start with an initial remeshM, that is

mapped 1-to-1 to the domain mesh D, but we can also start with an arbitrary

mesh if a link, i.e., a mapping betweenM and D is given. In order to recap-

ture feature lines of the original mesh, we have developed and described an

algorithm that runs without any external thresholds, but fully automatically

aligns vertices with respect to the feature lines.

The second part of this thesis was dedicated to applications, which we de-

rived from our framework. In this context we mainly wanted to show that

the theory can effectively be put into practice and that there is a wide range

of applications that our framework covers. We also gave explicit advice how

to implement the algorithms (cf. also Appendix). We started with an in-

teractive remeshing technique that can be used to remesh only certain parts

of the mesh. Our method is designed in a way that the remesh seamlessly

integrates itself into the otherwise untouched rest of the mesh. We briefly

showed how to use the framework for mesh simplification and based on this

we presented two semi-regular remeshing techniques. Last but not least we

presented a three step modeling framework. The user can perform smooth

multiresolution deformations to a mesh while the connectivity adapts itself

automatically. We put emphasis on the second step where we constructed a

hierarchical multiresolution representation of the original mesh that is based

on differently smooth approximations to the original mesh. The hierarchy is

robust in a sense that one can modify one level of a mesh and the following

levels can be reconstructed in a natural manner.

We see several opportunities for future research directions, that can be based

on our work. On the technical side we would like further to explore different

types of parameterizations and relaxation operators. A promising approach

might be to construct a set of local parameterizations that can be smoothly

blended into one global parameterization. Due to the fact that our smoothing

operator is relatively simple we also think of a hardware implementation of

91

it, which could drastically improve the speed of our framework.

From an application point of view we would also like to extent our framework.

Of course we would like to see more applications besides the approaches for

the applications that we have already described. In order to achieve this

we would like to further modularize our algorithms. On the one hand this

would make implementations reusable and exchangeable. On the other hand

we would have a construction kit of algorithms that a user can assemble and

custom tailor to his needs. This way one could fine tune own algorithms and

generate even better remeshes than it is possible at the moment.

92 Conclusion and Future Work

Appendix A

A Framework to Implement

Dynamic Connectivity Meshes

Implementing algorithms that are based on dynamic triangle meshes often

requires updating internal data-structures as soon as the connectivity of the

mesh changes. The design of a class hierarchy that is able to deal with such

changes is particularly challenging if the system reaches a certain complexity.

In this chapter we propose a software design that enables the users to effi-

ciently implement algorithms that can handle these dynamic changes while

still maintaining a certain encapsulation of the single components.

Our design is based on a callback mechanism. A client can register at some

Info-object and gets informed whenever a change of the connectivity occurs.

This way the client is able to keep internal data up-to-date. Our framework

enables us to write small client classes that cover just a small dedicated

aspect of necessary updates related to the changing connectivity. These

small components can be combined to more complex modules and can often

easily be reused. Moreover, we do not have to store related “dynamic data”

in one central place, e.g. the mesh, which could lead to a significant memory

overhead if an application uses some modules just for a short time.

Compared to dynamic meshes, algorithms that are based on static meshes

are usually easier to implement from a design point of view. Modules that

realize such an algorithm just need to store static data, with respect to the

94 A Framework to Implement Dynamic Connectivity Meshes

mesh, that does not change during the runtime of the application.

To give a simple example, the application might comprise one module that

sets a flag whenever an edge of the mesh gets selected by a user. Since the

connectivity of the mesh does not change the module can use an internal

vector-of-bools that reflects the current status of each edge.

When it comes to meshes that change their connectivity during runtime,

however, implementing algorithms that operate on them gets more involved.

Data that is stored internally to some module has to be aware of these

changes. This task is particularly challenging if the application reaches a

certain complexity and one wants to implement components that can be

reused. One way of solving such a problem is to store the data (edge-flags)

outside of the module, e.g., directly along with the mesh-data-structure that

obviously “knows” when its connectivity changes.

One possible way to store data within the mesh are the so called Meshtraits

or Meshitems that have been effectively used in several libraries [8, 39]. This

is an excellent approach, if the data that is to be stored is an “established

property” that can be reused. This might for instance be a vertex-property

such as the valence, a list of all adjacent triangles, texture-coordinates etc.

The major advantage is the fact that multiple modules that work with the

mesh have easy access to this data and the data is stored/updated in just

one place. We found that in this case, the loss of data encapsulation is

not a severe restriction (as long as it gets updated correctly). However, the

documentation of a module that uses such a Meshitem should explicitly state

that it needs a specific Meshitem and a compile-time check[1] should make

sure that the appropriate Meshitems are present.

On the other hand, if a module makes use of module specific data that is

used only temporarily, inflating/polluting the Meshitems with this data is

problematic. In particular for more complex applications one can easily lose

control over all the different components, which clearly limits the maintain-

ability. Even worse, the data consumes memory throughout the lifetime of

the application even though it might get used for a short period of time only.

For this reason we have developed a framework that enables independent

modules of an application to be alerted whenever the connectivity of the mesh

A.1 The Callback Mechanism 95

changes. We ensure that the modules do not have to expose internal data

to the outside, which facilitates their reusability. Our framework is based on

a callback mechanism, all client classes that have to be aware of a changing

connectivity supply a common interface (they derive from a common base-

class).

In Section A.1 we will build up the callback mechanism that informs a cus-

tom tailored client class whenever the connectivity of the mesh changes.

Section A.2 illustrates how we can make necessary information available to

a client. In Section A.3 we show the concept of informing multiple modules

of a change in the connectivity while being completely independent of each

other. To clarify our concept, we will describe an example application in

Section A.4 and point out some extensions of our framework in Section A.5.

Figure A.1: Illustration of an edge-flip, the example-operator in this chapter.

The common edge (red) of the triangles4ABC and4ACD (left) “flips” and

forms the new triangles 4ABD and 4BCD (right).

A.1 The Callback Mechanism

In order to keep our explanations of the class design and the examples as

simple as possible, we will restrict ourselves to one single topological oper-

ation, the edge-flip (cf. Fig A.1). A fully-fledged library would of course

comprise the complete set of operators that change the connectivity of the

mesh, e.g., edge-split, edge-collapse, face-split, etc. The additional operators

can be integrated into our framework in a similar way as the edge-flip and

are thus omitted here.

96 A Framework to Implement Dynamic Connectivity Meshes

As we have illustrated in the beginning of this chapter, we will store data

that is sensitive to changes of the connectivity of the mesh along with the

modules that are using this data, instead of storing them in Meshitems inside

the mesh. This way however we are not able to update our data inside some

private method of the mesh whenever Mesh::flipedge() gets called. Hence,

we cannot call Mesh::flipedge directly and therefore outsource calls that

change the connectivity of the mesh to another class. It makes sure that

“dynamic data” is always up-to-date and calls Mesh::flipedge.

So instead of calling

mesh−>f l i p e d g e (edge handle) ;

directly and thus risking that some modules remain clueless about the fact

that the connectivity of the mesh has just changed and consequently that

the data they store might be outdated, we wrap the call to Mesh::flipedge

by two calls to methods which the users can custom tailor to their needs.

Later we will show how a module can hook into these calls and thus updates

its own data whenever an edge-flip occurs.

For now we will show a very simple example of this concept and will later

develop a more complex class that we are using in a real-world application.

The heart and soul of our framework is called Dynamic, the following listing

illustrates the basic form of the callback mechanism.

Listing A.1: Dynamic::flipedge shows the basic form of the callback mech-

anism a user can hook into.

s t r u c t Dynamic<Mesh> {

void f l i p e d g e (EdgeHandle edge hand le){
i f (in fo−>preF l ip ()){

mesh . f l i p e d g e (edge hand le) ;

in fo−>pos tF l ip () ;

}
}

Mesh& mesh ;

A.1 The Callback Mechanism 97

In foBase ∗ i n f o ;

} ;

in this example, InfoBase is implemented as follows:

c l a s s InfoBase {
v i r t u a l bool p r e f l i p (){ r e turn true ;}
v i r t u a l void pos tF l ip () { } ;
} ;

InfoBase is meant as a dummy base-class that does nothing but illustrate a

certain interface, i.e., in its simplest form the call to Dynamic::flipedge()

does nothing but flip an edge of the mesh just as a direct call to

Mesh::flipedge() would have done. So what is the benefit of introduc-

ing this additional layer?

The users can derive their own MyInfo-class from InfoBase and replace

Dynamic::info with it. This way additional functionality can be im-

plemented and the appropriate MyInfo::pre/postFlip-method gets called

whenever Dynamic::flipedge gets called.

As a simple example we implement a MyInfo class as in Listing A.2.

Listing A.2: A simple custom tailored MyInfo class that does nothing but

print a message just before and after an edge-flip.

c l a s s MyInfo : pub l i c InfoBase

{
bool p r e f l i p () {cout<<”preF l ip ” ; r e turn true ;}
void pos tF l ip () {cout<<”pos tF l ip ” ;}
} ;

Using an instance of MyInfo Listing A.3 illustrates how to flip the edge with

the EdgeHandle 0 while getting feedback about the MyInfo::pre/postFlip-

calls.

Listing A.3: Getting feedback about the flip of edge 0 via MyInfo.

i n t main ()

{
Dynamic dynamic ;

98 A Framework to Implement Dynamic Connectivity Meshes

// read mesh & pass i t to dynamic

MyInfo myinfo ;

dynamic . i n f o = &myinfo ;

dynamic . f l i p e d g e (EdgeHandle (0)) ;

// output o f the program :

preFl ip−c a l l e d postFl ip−c a l l e d

}

Please note that you can prevent an edge from flipping by returning false

in your own MyInfo::preFlip()-method. This way you can (in addition to

executing edge-flip specific code) influence the optimization process.

Conceptually it would make sense to distinguish between the influence on

the optimization process (cf. Section A.4) and the execution of edge-flip spe-

cific code. Consequently we should separate between, for example, a class

MyDataUpdateBase which provides the pre/postFlip-interface and another

MyStrategyBase-class where the users can implement different strategies to

influence the optimization process. In practice however, we found it more

convenient to have everything in one single MyInfo-object.

A.2 Passing Data to MyInfo

Up to this point we get informed via our own pre/postFlip-method when-

ever an edge-flip occurs. Of course, a very important fact we are interested

in is where the flip actually took place. This is crucial for executing flip-

specific code in MyInfo. It would be straightforward to pass the edge to the

pre/postFlip-method as an argument. In practice however, we found that

we often need more information about the flip that is going to take place or

just took place. For this reason we pass a pointer to a whole Data-struct to

pre/postFlip, which is of the form:

s t r u c t Data{
EdgeHandle f l i p e d g e ;

. . .

A.3 Distributing to Multiple Clients 99

} ;

and is a member of Dynamic. Opposed to our toy-example, this struct also

holds all the information that is needed for the other topological operations

(cf. Section A.1). This additional information can be exploited for instance

if the user needs to know which was the last edge that collapsed prior to the

current edge-split etc.

We have made Data a member of Dynamic instead of storing it directly

in InfoBase for two reasons: First, for reasons of efficiency since we can

use the members of Data to store the current edge directly while being in

Dynamic::flipedge() and thus do not need any additional copy operation.

Second and more importantly, in the next expansion stage of our framework

we will introduce the concept of multiple InfoBase-objects that work inde-

pendently of each other. Each of them gets notified by a special instance of

an InfoBase-object, however, we would like to avoid multiple instances of

Data. We will see how our framework can benefit from this and point out

some implementation issues in the next section.

A.3 Distributing to Multiple Clients

With the current implementation of MyInfo we would have to put all code,

which has to be executed in order to respond correctly to an edge-flip, into

MyInfo.

In practice, for a more complex application, a comprehensive, custom tailored

MyInfo class can easily become a Blob [10], i.e., a single class with a large

number of attributes and operations. Even worse, we would not have gained

much compared to the “embed-all-edge-flip-specific-code-in-the-mesh-class”-

approach (cf. introduction of this chapter), meaning that if a module puts

flip-specific code into MyInfo entails that this module cannot encapsulate

and manage its own data anymore.

By using the observer/observable-pattern[25], the diagram in Figure A.2

shows how we can get around the two problems that we have just mentioned.

A client can register at the Observer, in our framework we call it Hub, and

100 A Framework to Implement Dynamic Connectivity Meshes

Figure A.2: UML-diagram of our framework. A client class derives from

InfoBase and registers at the Hub. The Hub gets passed to Dynamic and is

thus “aware” of a (scheduled) edge-flip. Additional information about that

flip is stored in Data which is a member of Dynamic. A pointer to this struct

is passed to the pre/postFlip methods and can thus be exploited by a client

class.

gets called whenever an edge-flip is performed. This way we can write small,

independent client classes that are aware of changes of the mesh-connectivity.

The whole concept works as follows.

We create a Hub that is derived from InfoBase and let Dynamic::info point

to it - this way the Hub gets called by Dynamic::flipedge(). A client class

derives from InfoBase and hence supports the pre/postFlip interface. Now

an object of this client class registers at the Hub by passing a reference to

it. The Hub maintains a list of these client objects, the callees. Whenever

Hub::pre/postFlip gets called, the Hub passes the call to all its callees.

Additional information about that flip is available via Data. A pointer to

this struct is passed to the pre/postFlip methods and can thus be exploited

by the callees.

Again, using this approach we are able to hide client specific code and data-

structures and do not have to expose it to some central instance. We found

that the Hub also encourages users of our framework to write small and

independent and thus reusable components.

In our current implementation the Hub holds a simple list of references to

A.4 An Example Application 101

callees that get called one after the other. However, if the user needs fine

grained control over the order of execution of the client classes, one can easily

incorporate a more sophisticated calling strategy. This could either be calls

by priority, but one can also think of a calling-tree similar to a scenegraph

(the Hub serve as nodes, the clients are the leaves).

A.4 An Example Application

In this section we will showcase a small application scenario that demon-

strates how the framework can be put into practice. We just want to give

an impression how the parts of our concept play together and show that the

different modules form a closed entity that can be reused easily. Of course,

many more applications can be realized similarly to our simple example and

we hope that the pool of modules that uses our framework will grow rapidly.

Assume we are given a triangle mesh that contains vertices with high va-

lences, i.e. many edges emanate from these vertices. A multitude of al-

gorithms in geometric modeling prefer vertices with valence six (or at least

close to six). The edge-flip is one operator that can reduce this valence-excess

(cf. [44, 83] for a detailed description).

In our example we will use two client classes that register at a Hub (cf. Sec-

tion A.3). ValenceStore manages the valences of all mesh-vertices - it serves

as an example for a module that holds its own data and updates it if the

connectivity of the mesh changes.

c l a s s ValenceStore : pub l i c InfoBase {

// assume the va l ence s are s to r ed in valenceMap

// and i n i t i a l i z e d by the con s t ruc to r o f t h i s c l a s s .

//update va l ence s a f t e r an e d g e f l i p

bool po s tF l ip (const Data& data){

EdgeHandle e = data . f l i p e d g e ;

102 A Framework to Implement Dynamic Connectivity Meshes

// Update t h e i r va l ence s o f the four adjacent

// v e r t i c e s v i o f e // v3

valenceMap [v [0]] −=1; // / | \
valenceMap [v [1]] +=1; // v0 | v2

valenceMap [v [2]] −=1; // \ | /

valenceMap [v [3]] +=1; // v1

}

std : : map<VertexHandle , int> valenceMap ;

} ;

Note that we do not have to enumerate all adjacent vertices of a vertex to

recalculate its valence, since we know how the valences of the four vertices

are affected by an edge-flip.

The second class is an example for exerting influence on the execution of

edge-flips. BalanceStrategy is a class that calculates the valence-excess of

vertices incident to an edge and indicates via preFlip if an edge-flip would

improve it.

c l a s s BalanceStrategy : pub l i c InfoBase {

// Pass a ValenceStore ob j e c t to

// t h i s c l a s s in the con s t ruc to r

bool p reF l ip (const Data& data){

EdgeHandle e = data . f l i p e d g e ;

// Now get the four adjacent v e r t i c e s o f e and

// t h e i r va l ence s va l [0 , . . . , 3] from va l en c eS to r e

/ / . . . and c a l c u l a t e the valence−exce s s . . .

c u r r e n t e x c e s s = sqr (va l [0]−6)+. . .+ sqr (va l [3] −6) ;

// New va l ence s under the assumption that

A.4 An Example Application 103

// a f l i p has taken p lace

va l [0] −= 1 ; va l [1] += 1 ;

va l [2] −= 1 ; va l [3] += 1 ;

f l i p e x c e s s = sqr (va l [0]−6)+. . .+ sqr (va l [3] −6) ;

i f (new excess < cu r r e n t e x c e s s) re turn true ;

e l s e re turn f a l s e ;

}
} ;

Eventually we can assemble the components. A sketch of the main parts of

the program that balances the valence-excess of a triangle mesh is shown in

Listing A.4.

Listing A.4: Reducing the valence excess

i n t main ()

{
Dynamic dynamic ;

// read mesh & pass i t to dynamic

Hub hub ;

ValenceStore vStore (mesh) ;

hub . r e g i s t e rC a l l e e (&vStore) ;

BalanceStrategy balance (vStore) ;

hub . r e g i s t e rC a l l e e (&balance) ;

dynamic . i n f o = &hub ;

//now i t e r a t e . . .

f o r (e = mesh . edge s beg in () ; e != mesh . edges end ();++e)

dynamic . f l i p e d g e (e) ;

}

104 A Framework to Implement Dynamic Connectivity Meshes

A.5 Extensions

As capturing all details of our framework exceeds the scope of this chapter,

we have only outlined the core concepts. However, there are many ways to

extend the concept we have shown so far and we want to highlight some of

them.

In our implementation we have used an iterator for processing multiple edges

at once. So, instead of passing edges to Dynamic::flipedge() one-by-one,

we iterate over a whole set of edges. We will illustrate the advantage of this

concept by means of a small example.

Let’s stick to the valence-excess example of the previous section. Assume we

have a module A that wants to prevent the four blue edges (cf. Figure A.1)

from flipping as soon as the red edge has flipped - the four edges remain

locked as long as we have not processed every edge in the mesh. After one

iteration over all edges, the status of these edges is set to “free” again. If a

module B of our application processes edges one-by-one, we need an indicator

when it is done with processing. The problem is that both modules might

be unaware of each other. We can solve this problem by leaving the control

over the edge-flips to Dynamic and inform the user via the InfoBase-interface

after all the edges provided by the iterator are processed. This way all clients

that have registered at the Hub can respond in their specific way. Of course,

the iterator is not limited to iterating over all edges of a mesh , but it can

feed an arbitrary set of edges to Dynamic::flipedge().

Listings A.5 and A.6 show the extension we have to make in order to realize

the concept.

Listing A.5: Incorporating the iterator-concept into Dynamic.

s t r u c t Dynamic<Mesh> {

// cand i ta t e s e r v e s as i t e r a t o r over a s e t o f edge

void f l i p e d g e (){
f o r (candidate−> i n i t () ; candidate−>hasmore () ;

candidate−>next ()){

A.5 Extensions 105

i f (in fo−>preF l ip (const Data& d)){
mesh . f l i p e d g e (candidate−>get ()) ;

in fo−>pos tF l ip (const Data& d) ;

}
}//end : f o r a l l cand idate s

in fo−>endFl ip () ;

}

Mesh& mesh ;

InfoBase ∗ i n f o ;

Candidate∗ candidate ;

} ;

Listing A.6: Extended version of InfoBase.

c l a s s InfoBase<Dynamic>{
v i r t u a l bool p r e f l i p (const Dynamic : : Data&){ r e turn true ;}
v i r t u a l void pos tF l ip (const Dynamic : : Data&){} ;
v i r t u a l void endFl ip (){}
} ;

Another venue for extending our framework is the design of small client

classes that cover just one specific aspect of the changing connectivity. In this

context we do not limit ourselves to the edge-flip, but think of the complete

set of operators that change the connectivity of a mesh. The aspects can be

as diverse as:

• a change of the adjacency list of a vertex.

• a notification that some triangles/edges/vertices have vanished.

• a change of normals in the vicinity of an operation.

For instance we could address the first item by designing a module that

maintains a list of adjacent vertices for each vertex in a mesh. This modules

registers at the Hub and updates its internal list with respect to a notification

106 A Framework to Implement Dynamic Connectivity Meshes

it gets via the callback mechanism - this can be done efficiently, since the

module “knows” how the adjacency lists have to be updated for e.g. an edge-

flip. Now the module can grant a client access to these lists. The client does

not need to worry if the lists are up-to-date or maintain its own list.

We can even go one step further and separate the data (the adjacency lists)

from the information about the update (which list has changed in which

way). Using this concept we can design a class A that registers at the Hub

and just takes care of the update. Another class B1, which registers at A,

can e.g. hold the adjacency lists. To carry on this thought, we also think

of a class B2 that just needs to be notified about a change of the adjacency-

information, but does not hold a complete adjacency-list at all. Eventually,

this concept will lead to a tree-like structure of callbacks that enable a client

to register at those points that are vital for its algorithms.

A.6 Results and Conclusion

We have used the framework we have described in this chapter to implement

FSR, a program that comprises the algorithms propose in [83, 84]. In FSR

we register dozens of modules that inter-operate with each other, it showed

that managing these modules without clearly separating between them is

quite error-prone. We have also implemented a small example which is based

on OpenMesh[8]. A tar-archive can be downloaded from our web-site [81].

Please note that the current version is just a feasibility study and is not

mature enough to be used in a production environment.

Certainly, our framework comes along with some overhead compared to di-

rectly calling the member functions (edge-flip/edge-split, etc.) of the mesh.

As a worst case scenario we have tested our implementation for OpenMesh[8].

We have passed an empty InfoBase-object to Dynamic in order to disable the

callback-mechanism and have executed one single edge-flip via our iterator-

interface. This setup is 2.5x slower that the direct call to mesh.flip().

However, after changing our FSR-program to the proposed concept, we not

only found that it was easier to incorporate new algorithms, but we were

also able to discarded many calls to redundant update routines and eventu-

A.6 Results and Conclusion 107

ally make FSR significantly faster.

We have proposed a framework for efficiently handling and working with

dynamic connectivity meshes from a design point of view. In particular we

have shown how encapsulated modules that depend on the changing connec-

tivity of a mesh can keep internal data-structures up-to-date. Our callback-

mechanism facilitates implementing new algorithms which base on dynamic

meshes and shows how to add this new functionality to complex applications

that make use of our framework.

Of course, there are many venues for further extensions and improvements.

We expect, that a rich pool of small and reusable clients, which cover one

specific aspect of the changing connectivity, will significantly speed up the

development of algorithms that depend on dynamic meshes.

108 A Framework to Implement Dynamic Connectivity Meshes

Appendix B

Calculating Phong-Detail

This section gives some background on encoding a vertex in a local coor-

dinate frame that is given by one triangle and a Phong-type normal field.

The normal field is determined by three prescribed normals located at the

triangle’s vertices and gets blended in-between. We stumbled across this

seemingly simple geometric problem when encoding high frequency geomet-

ric detail levels on top of a lower frequency domain (cf. 4.4.3). Assume we

are given a point p in a global 3D coordinate system and a triangle t with

vertices a,b and c and corresponding vertex normals Na, Nb and Nc.

As it is depicted in Figure B.1 we are looking for that point q inside t and

a scalar offset h such that

p = q + hNq (B.1)

where
q = αa + βb + γc

Nq = αNa + βNb + γNc

1 = α + β + γ

Once we have α, β and h calculated, we can express p with respect to the

given triangle and the normal-field. This way, whenever t is transformed, p

changes it’s position accordingly. The straightforward approach, i.e., plug-

ging in the definitions for q and Nq leads to the equation:

det
([

a− p b− p c− p
]
+ λ

[
Na Nb Nc

])
= 0

110 Calculating Phong-Detail

Figure B.1: The given vertex-normals Ni create a smooth Phong-type normal

field. The objective is to calculate the point q in a way that the blended

normal at q points in the direction of p.

This equation of third degree can be solved with Cardano’s Formula [15].

In a second step α and β can be obtained as the solution of the remaining

over determined linear system. Since our initial problem is a time critical

operation in our interactive environment, we favor a faster approach that we

want to discuss in more detail within the scope of this thesis.

Instead of calculating the whole detail vector in one single step, we first

calculate the base point q as the solution of(
p− q

)
×Nq = 0

In a second step we can simply calculate the offset h by computing the

distance between p and q . Again, by plugging in the definition of q and Nq

we obtain the bivariate quadratic function

F : R2 → R3

(u, v) 7→ (p− ua− vb− (1− u− v) c)× (uNa + vNb + (1− u− v)Nc)

and we have to find a tuple (α, β) such that F (α, β) = (0, 0, 0)T . We numer-

ically solve this equation with Newton’s multidimensional method since it is

111

known to converge quickly. In the remainder, we determine the iteration rule

for one step of Newton’s method and present a reasonable starting value.

Newton’s iteration rule in its general form for a mapping

F : Rn → Rn , x 7→ F (x)

is of the form:

xk+1 = xk − J−1
F (xk)F (xk) , k = 0, 1, . . .

where J−1
F denotes the inverse of the Jacobian of F . In our context it is more

convenient to rewrite this formula in the following way:

JF (xk) (xk+1 − xk) = −F (xk)

Notice that F can be interpreted as a quadratic surface patch in R3, which

passes through the origin, and that we can solve the system of equations in

a least squares sense only, i.e., we solve for dx := xk+1 − xk in the following

equation.

J t
F JF dx = −J t

F F

Hence, in our context we get the difference (4α,4β) between two iteration

steps as the solution of the linear system.(
F T

u Fu F T
u Fv

F T
u Fv F T

v Fv

) (
4α

4β

)
=

(
−F T

u F

−F T
v F

)
(B.2)

where the partial derivatives Fu and Fv of F can explicitly be given by doing

a Taylor expansion of F about the origin.

F = (p− c)×Nc

Fu = (2c− a− p)×Nc + (p− c)×Na

Fv = (2c− b− p)×Nc + (p− c)×Nb

In our application scenario, i.e., encoding detail information with respect to

a geometrically smooth base domain, we are typically not facing geometric

degeneracies. For this reason we simply apply Cramer’s rule to solve the

112 Calculating Phong-Detail

linear system. This way the update rules for two consecutive Newton steps

can explicitly be given.

4α = (F T
u Fv · F T

v F − F T
v Fv · F T

u F)/s

4β = (F T
u Fv · F T

u F − F T
u Fu · F T

v F)/s

with s = F T
u Fu · F T

v Fv − (FuFv)
2.

As a good starting value (α0, β0) we can simply project p into the plane that

is spanned by t. Since our application requires positive values for α and β

only, we found that the barycenter (α0, β0) = (1
3
, 1

3
) is a sufficient starting

value and we typically do not need more than 5-7 iterations until the error

falls below some reasonable threshold.

As a side remark: In case one of the barycentric coordinates of the resulting

point q is negative, we continue the search for a base point in the correspond-

ing neighboring triangle of our domain mesh. Since the Phong normal field

is globally continuous we always find a base point with positive barycentric

coordinates.

List of Figures

1.1 Two different triangulations of a geometric object 4

2.1 Basic edge based topological operators on triangle meshes . . . 12

2.2 The 1-to-3-split of a triangle 13

2.3 Divide a 1–to–4-split into three edge-splits and one edge-flip . 14

2.4 A Semi-regular mesh at different resolutions 18

3.1 Shift vector: The three situations 33

3.2 Tweety’s tail: Projection causes artifacts 34

3.3 Controlling the approximation error 35

3.4 The topological operators used in DCM 37

3.5 Remeshing of Tweety, a geometrically more complex model . . 41

3.6 Remeshing of the Elch model, a geometrically and topologi-

cally complex model . 42

3.7 Aliasing artifacts at sharp features 43

3.8 1D sketch of filtered curvature field 48

3.9 Hierarchical curvature field on mesh with sharp features 49

3.10 Shift-vector restriction by kernel 50

3.11 Aligning edges to features by edge-flips 52

3.12 Feature snapping with restricted snap-directions 53

3.13 Feature reconstruction by edge-snapping 55

3.14 Skeleton on the fan-disk model 56

114 LIST OF FIGURES

3.15 How to insert new bone-vertices 58

3.16 Skeleton preservation at different resolutions 60

4.1 Interactive Remeshing of Max Planck’s ear 62

4.2
√

3-remeshing of a tooth model 68

4.3 Freeform modification of a semi-regular mesh 70

4.4 Freeform modification of an unstructured mesh 71

4.5 Multiresolution modeling metaphor 73

4.6 Different scales of detail on Max Planck’s head 75

4.7 Comparison of detail encoding with respect to different normal

fields . 79

4.8 Comparison of modeling results wrt. different normal fields . . 81

4.9 Single vs. multiple detail levels 82

4.10 3D comparison of single vs. multiple detail levels 82

4.11 Multiresolution Modeling shown on the bust’s face. 87

A.1 Illustration of an edge-flip . 95

A.2 UML-diagram of the dynamic remeshing framework 100

B.1 Detail encoding with respect to Phong-type normal field. . . . 110

Bibliography

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and De-

sign Patterns Applied. Addison-Wesley, 2001.

[2] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and

Mathieu Desbrun. Anisotropic polygonal remeshing. In SIGGRAPH

2003 Conference Proceedings, pages 485–493, 2003.

[3] Pierre Alliez, Éric Colin de Verdière, Olivier Devillers, and Martin Isen-

burg. Isotropic surface remeshing. In Proceedings of Shape Modeling

International, 2003.

[4] Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive geometry

remeshing. In SIGGRAPH 2002 Conference Proceedings, pages 347–354,

2002.

[5] Alan H. Barr, Mark Meyer, Mathieu Desbrun, and Peter Schröder. Dis-

crete differential-geometry operators for triangulated 2-manifolds, 2001.

[6] Henning Biermann, Ioana Martin, Fausto Bernardini, and Denis Zorin.

Cut-and-Paste editing of multiresolution surfaces. In SIGGRAPH 2002

Conference Proceedings, pages 312–321, 2002.

[7] M. Botsch and L. Kobbelt. Multiresolution surface representation based

on displacement volumes. In Computer Graphics Forum (Eurographics

2003), 2003.

[8] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh - a

generic and efficient polygon mesh data structure. In OpenSGPlus Sym-

posium, 2002.

116 BIBLIOGRAPHY

[9] P. J. C. Brown and C. T. Faigle. A robust efficient algorithm for point

location in triangulations. Technical report, Cambridge University, 1996.

[10] William J. et al. Brown. Antipatterns. John Wiley and Sons, 2000.

[11] James Davis, Steven R. Marschner, Matt Garr, and Marc Levoy. Filling

holes in complex surfaces using volumetric diffusion. In Proceedings of

the 1st International Symposium on 3D Data Processing Visualization

and Transmission (3DPVT-02), pages 428–438, Los Alamitos, CA, 2002.

[12] T. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis for

sufaces of arbitrary topological type. Technical Report 93–10–05, De-

partment of Computer Science and Engineering, University of Washing-

ton, 1993.

[13] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing

of irregular meshes using diffusion and curvature flow. In SIGGRAPH

1999 Conference Proceedings, pages 317–324, 1999.

[14] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameter-

izations of surface meshes. In Computer Graphics Forum (Eurographics

2002), pages 209–218, 2002.

[15] W. Dunham. Journey Through Genius: The Great Theorems of Math-

ematics, Cardano and the Solution of the Cubic. Wiley, 1990.

[16] N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme

for surface interpolation with tension control. ACM Transactions on

Graphics, 9(2):160–169, 1990.

[17] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and

W. Stuetzle. Multiresolution analysis of arbitrary meshes. In SIG-

GRAPH 1995 Conference Proceedings, pages 173–182, 1995.

[18] D. Zorin et. al. Subdivision for modeling and animation. In SIGGRAPH

2000 Course Notes, 2000.

BIBLIOGRAPHY 117

[19] Gerald Farin. Curves and Surfaces for Computer-Aided Geometric De-

sign: A Practical Guide. Academic Press, New York, NY, USA, fourth

edition, 1997.

[20] M. S. Floater and K. Hormann. Surface parameterization: a tutorial

and survey. In Advances in Multiresolution for Geometric Modelling,

Mathematics and Visualization, pages 157–186. Springer, 2005.

[21] Michael S. Floater. Parametrization and smooth approximation of sur-

face triangulations. Computer Aided Geometric Design, 14(3):231–250,

1997. ISSN 0167-8396.

[22] Foley, van Dam, Feiner, and Hughes. Computer Graphics. Addison

Wesley, 1990.

[23] D. Forsey and R. H. Bartels. Surface fitting with hierarchical splines.

ACM Transactions on Graphics, 14(2):134–161, 1995.

[24] David R. Forsey and Richard H. Bartels. Hierarchical B-spline refine-

ment. In SIGGRAPH 1988 Conference Proceedings, pages 205–212,

1988.

[25] Gamma, Helm, Johnson, and Vlissides. Design Patterns. Addison-

Wesley, 1995.

[26] M. Garland and P. S. Heckbert. Surface simplification using quadric

error metrics. In SIGGRAPH 1997 Conference Proceedings, pages 209–

216, 1997.

[27] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images.

ACM Transactions on Graphics, 21(3):355–361, July 2002.

[28] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal pro-

cessing for meshes. In SIGGRAPH 1999 Conference Proceedings, pages

325–334, 1999.

[29] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes.

In SIGGRAPH 2000 Conference Proceedings, 2000.

118 BIBLIOGRAPHY

[30] Igor Guskov and Zoë Wood. Topological noise removal. In Proceedings

of Graphics Interface 2001, pages 19–26, 2001.

[31] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlang,

1986.

[32] H. Hoppe. Progressive meshes. In SIGGRAPH 1996 Conference Pro-

ceedings, pages 99–108, 1996.

[33] K. Hormann. Theory and Applications of Parameterizing Triangula-

tions. PhD thesis, Department of Computer Science, University of Er-

langen, November 2001.

[34] K. Hormann and G. Greiner. MIPS: An efficient global parametrization

method. In Curve and Surface Design: Saint-Malo 1999, pages 153–162.

2000.

[35] A. Hubeli and M. Gross. Multiresolution feature extraction from un-

structured meshes. In IEEE Visualization 2001 Conference Proceedings,

pages 287–294, 2001.

[36] Martin Isenburg and Stefan Gumhold. Out-of-core compression for gi-

gantic polygon meshes. In SIGGRAPH 2003 Conference Proceedings,

2003.

[37] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring

of hermite data. In SIGGRAPH 2002 Conference Proceedings, pages

339–346, 2002.

[38] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour mod-

els. In Interational Journal of Computer Visision, pages 321–331, 1987.

[39] L. Kettner. Using generic programming for designing a data structure

for polyhedral surfaces. CGTA: Computational Geometry: Theory and

Applications, 13, 1999.

[40] A. Khodakovsky, Nathan Litke, and P. Schröder. Globally smooth pa-

rameterizations with low distortion. In SIGGRAPH 2003 Conference

Proceedings, 2003.

BIBLIOGRAPHY 119

[41] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry

compression. In SIGGRAPH 2000 Conference Proceedings, 2000.

[42] L. Kobbelt. Discrete fairing. In Proceedings of the Seventh IMA Con-

ference on the Mathematics of Surfaces, pages 101–131, 1996.

[43] L. Kobbelt.
√

3–subdivision. In SIGGRAPH 2000 Conference Proceed-

ings, 2000.

[44] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution shape de-

formations for meshes with dynamic vertex connectivity. In Computer

Graphics Forum (Eurographics 2000), volume 19(3), pages 249–260,

2000.

[45] L. Kobbelt, S. Campagna, and H.-P. Seidel. A general framework for

mesh decimation. In Proceedings of the Graphics Interface 1998, pages

43–50, 1998.

[46] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive

multi–resolution modeling on arbitrary meshes. In SIGGRAPH 1998

Conference Proceedings, pages 105–114, 1998.

[47] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. A shrink wrapping

approach to remeshing polygonal surfaces. Computer Graphics Forum

(Eurographics 1999), 18(3):119–130, 1999.

[48] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hierarchies on

unstructured triangle meshes. Computational Geometry: Theory and

Applications, 14, 1999.

[49] Leif Kobbelt, Stephan Bischoff, Mario Botsch, Kolja Kähler, Christian

Rössl, Robert Schneider, and Jens Vorsatz. Geometric modeling based

on polygonal meshes. In Tutorial Notes (Eurographics 2000), pages 1–

47. European Association for Computer Graphics, Eurographics, August

2000.

[50] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense

polygon meshes. In SIGGRAPH 1996 Conference Proceedings, pages

313–324, 1996.

120 BIBLIOGRAPHY

[51] Ulf Labsik and Günther Greiner. Interpolatory sqrt(3)-subdivision.

Comput. Graph. Forum, 19(3), 2000.

[52] Ulf Labsik, Kai Hormann, and Günther Greiner. Using most isometric

parametrizations for remeshing polygonal surfaces. In GMP, pages 220–

228, 2000.

[53] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. In

SIGGRAPH 2000 Conference Proceedings, 2000.

[54] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin.

MAPS: Multiresolution adaptive parameterization of surfaces. In SIG-

GRAPH 1998 Conference Proceedings, pages 95–104, 1998.

[55] S. Lee. Interactive multiresolution editing of arbitrary meshes. Computer

Graphics Forum (Eurographics 1999), 18(3):73–82, 1999.

[56] Y. Lee and S. Lee. Geometric snakes for triangular meshes. Computer

Graphics Forum (Eurographics 2002), pages 229–238, 2002.

[57] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least

squares conformal maps for automatic texture atlas generation. In SIG-

GRAPH 2002 Conference Proceedings, pages 362–371, 2002.

[58] Peter Liepa. Filling holes in meshes. In Eurographics Symposium on

Geometry Processing, pages 200–20, 2003.

[59] P. Lindstroem. Out-of-core construction and visualization of multireso-

lution surfaces. In SIGGRAPH 2003 Conference Proceedings, 2003.

[60] C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s

thesis, University of Utah, Department of Mathematics, 1987.

[61] M. Lounsbery, T. DeRose, and J. Warren. Multiresolution Analysis for

Surfaces of Arbitrary Topological Type. ACM Transactions on Graph-

ics, 16(1):34–73, January 1997.

BIBLIOGRAPHY 121

[62] David Luebke and Carl Erikson. View-Dependent Simplification of Ar-

bitrary Polygonal Environments. In SIGGRAPH 1997 Conference Pro-

ceedings, pages 199–208, 1997.

[63] H. P. Moreton and C. H. Séquin. Functional optimization for fair surface

design. In SIGGRAPH 1992 Conference Proceedings, volume 26, pages

167–176, 1992.

[64] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bezier and

B-spline techniques. Springer, 2002.

[65] Jarek Rossignac. Simplification and Compression of 3D Scenes. In Tu-

torial Notes (Eurographics 1997), 1997.

[66] Jarek Rossignac and Paul Borrel. Multi-Resolution 3D Approximations

for Rendering Complex Scenes. In Modeling in Computer Graphics,

pages 455–465. Springer, 1993.

[67] Christian Rössl, Leif Kobbelt, and Hans-Peter Seidel. Recovering struc-

tural information from triangulated surfaces. In Mathematical Methods

for Curves and Surfaces: Oslo 2000, pages 423–432, 2000.

[68] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-chart

geometry images. In Eurographics Symposium on Geometry Processing,

pages 157–166, 2003.

[69] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe.

Signal-specialized parametrization. In Eurographics Rendering Work-

shop. Eurographics Association, 2002.

[70] N. Sapidis. Designing fair curves and surfaces: shape quality in geomet-

ric modeling and computer-aided design. 1994.

[71] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.

Decimation of triangle meshes. In SIGGRAPH 1992 Conference Pro-

ceedings, pages 65–70, 1992.

[72] Oren Sifri, Alla Sheffer, and Craig Gotsman. Geodesic-based surface

remeshing. In 12th International Meshing Roundtable, 2003.

122 BIBLIOGRAPHY

[73] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.

Bounded-distortion piecewise mesh parameterization. In IEEE Visual-

ization 2002 Conference Proceedings, pages 355–362, 2002.

[74] Edwin H. Spanier. Algebraic Topology. Tata McGraw-Hill, Bombay,

1966.

[75] Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In

Eurographics Symposium on Geometry Processing, pages 020–030. Eu-

rographics Association, 2003.

[76] G. Taubin. Estimating the tensor of curvature of a surface from a poly-

hedral. In Proc. International Conference on Computer Vision, pages

902–907, 1995.

[77] G. Turk. Re–tiling polygonal surfaces. In SIGGRAPH 1992 Conference

Proceedings, pages 55–64, 1992.

[78] Greg Turk and Marc Levoy. Zippered Polygon Meshes from Range Im-

ages. In SIGGRAPH 1994 Conference Proceedings, pages 311–318, 1994.

[79] T. Várady and P. Benko. Reverse engineering B-rep models from multi-

ple point clouds. In Proc. of Geometric Modeling and Processing 2000,

pages 3–12, 2000.

[80] Luiz Velho. Stellar subdivision grammers. In Eurographics Symposium

on Geometry Processing, pages 201–212, 2003.

[81] J. Vorsatz. www.mpi-sb.mpg.de/ vorsatz.

[82] J. Vorsatz. Interaktives multi-resolution modellieren mit polygo-

nalen netzen beliebiger topologie. Master’s thesis, Friedrich-Alexander-

Universität Erlangen-Nürnberg, 1998.

[83] J. Vorsatz, Ch. Rössl, L. Kobbelt, and H.-P. Seidel. Feature sensitive

remeshing. In Computer Graphics Forum (Eurographics 2001), pages

393–401, 2001.

BIBLIOGRAPHY 123

[84] J. Vorsatz, Ch. Rössl, and H.-P. Seidel. Dynamic remeshing and appli-

cations. In ACM Symposium on Solid Modeling and Applications, pages

167–175, 2003.

[85] J. Vorsatz and H.-P. Seidel. A framework for dynamic connectivity

meshes. In OpenSG Symposium, 2003.

[86] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution

mesh editing. In SIGGRAPH 1997 Conference Proceedings, pages 259–

268, 1997.

Jens Vorsatz

Persönliche Angaben

Geburtsdatum/-ort 13.01.1971 in Schwerte

Staatsangehörigkeit deutsch

Familienstand ledig

Kontakt Schinkelstr. 26, 80805 München
+49-176-20068493
mail@jensvorsatz.de

Werdegang

12/2005 – heute Unternehmensberater bei TNG Technology Consulting in
Unterföhring

10/2003 – 7/2005 Unternehmensberater bei McKinsey & Company, Inc. in München

4/1999 – 9/2003 Promotionsstudium als wissenschaftlicher Mitarbeiter am
Max-Planck-Institut für Informatik in Saarbrücken

8/1998 – 3/1999 Promotionsstudium als wissenschaftlicher Mitarbeiter am Lehr-
stuhl für Graphische-Datenverarbeitung der Friedrich-Alexander-
Universität in Erlangen-Nürnberg (FAU)

10/1992 – 7/1998 Studium der Mathematik an der FAU

Abschluß: Diplom-Mathematiker Univ. (Note: sehr-gut)

10/1990 – 9/1992 Wehrdienst in der Sportfördergruppe Sonthofen

5/1990 Abitur am Friedrich-Bährens-Gymnasium Schwerte (Note: 1,7)

