
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Universität des Saarlandes Max-Planck-Institut für Informatik

Naturwissenschaftlich-Technische Fak. I AG 5 - Datenbanken und Informationssysteme

Fachrichtung 6.2 - Informatik Prof. Dr. Ing. Gerhard Weikum

Combination Methods for Automatic

Document Organization

Stefan Siersdorfer

Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften

an der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

November 2005

Abstract

Automatic document classification and clustering are useful for a wide range of app-

lications such as organizing Web, intranet, or portal pages into topic directories,

filtering news feeds or mail, focused crawling on the Web or in intranets, and many

more. This thesis presents ensemble-based meta methods for supervised learning

(i.e., classification based on a small amount of hand-annotated training documents).

In addition, we show how these techniques can be carried forward to clustering based

on unsupervised learning (i.e., automatic structuring of document corpora without

training data). The algorithms are applied in a restrictive manner, i.e., by leaving

out some ’uncertain’ documents (rather than assigning them to inappropriate topics

or clusters with low confidence).

We show how restrictive meta methods can be used to combine different document

representations in the context of Web document classification and author recogni-

tion. As another application for meta methods we study the combination of different

information sources in distributed environments, such as peer-to-peer information

systems. Furthermore we address the problem of semi-supervised classification on

document collections using retraining. A possible application is focused Web crawl-

ing which may start with very few, manually selected, training documents but can be

enhanced by automatically adding initially unlabeled, positively classified Web pages

for retraining.

The results of our systematic evaluation on real world data show the viability of the

proposed approaches.

Kurzfassung

Automatische Dokumentklassifikation und Clustering sind für eine Vielzahl von An-

wendungen von Bedeutung, wie beispielsweise Organisation von Web-, Intranet- oder

Portalseiten in thematische Verzeichnisse, Filterung von Nachrichtenmeldungen oder

Emails, fokussiertes Crawling im Web oder in Intranets und vieles mehr. Diese Arbeit

untersucht Ensemble-basierte Metamethoden für Supervised Learning (d.h. Klassi-

fikation basierend auf einer kleinen Anzahl von manuell annotierten Trainingsdoku-

menten). Weiterhin zeigen wir, wie sich diese Techniken auf Clustering basierend auf

Unsupervised Learning (d.h. die automatische Strukturierung von Dokumentkorpora

ohne Trainingsdaten) übertragen lassen. Dabei wenden wir die Algorithmen in restrik-

tiver Form an, d.h. wir treffen keine Aussage über eine Teilmenge von ”unsicheren”

Dokumenten (anstatt sie mit niedriger Konfidenz ungeeigneten Themen oder Clustern

zuzuordnen).

Wir verwendenen restriktive Metamethoden um unterschiedliche Dokumen-

trepräsentationen, im Kontext der Klassifikation von Webdokumentem und der Au-

torenerkennung, miteinander zu kombinieren. Als weitere Anwendung von Metame-

thoden untersuchen wir die Kombination von unterschiedlichen Informationsquellen in

verteilten Umgebungen wie Peer-to-Peer Informationssystemen. Weiterhin betrachten

wir das Problem der Semi-Supervised Klassifikation von Dokumentsammlungen durch

Retraining. Eine mögliche Anwendung ist fokussiertes Web Crawling, wo wir mit sehr

wenigen, manuell ausgewählten Trainingsdokumenten starten, die durch Hinzufügen

von ursprünglich nicht klassifizierten Dokumenten ergänzt werden.

Die Resultate unserer systematischen Evaluation auf realen Daten zeigen das gute

Leistungsverhalten unserer Methoden.

Summary

This thesis addresses the problem of automatically structuring heterogenous doc-

ument collections into thematically coherent subsets. This issue is relevant for a

variety of applications, such as organizing large personal email folders, dividing top-

ics in large Web directories into subtopics, structuring large amounts of company and

intranet data, focused crawling on the Web, and many more. The methods of choice

for accomplishing this are either based on supervised classification, which requires

explicit, manually labeled, training data, or unsupervised clustering.

In this thesis we investigate the engineering and, in particular, tuning issues of using

automatic classification and clustering algorithms for text document organization.

We study ensemble-based meta methods for supervised learning (i.e., classification

based on a small amount of hand-annotated training documents). In addition, we

show how these techniques can be carried forward to clustering based on unsupervised

learning (i.e., automatic structuring of document corpora without training data). The

algorithms are applied in a restrictive manner, i.e., by leaving out some ’uncertain’

documents (rather than assigning them to inappropriate topics or clusters with low

confidence).

We develop a constructive and practically efficient methodology for tuning a reper-

toire of classifiers and meta methods to the application’s specific goals in terms of

classification error and document loss (the fraction of documents where the restrictive

classifier abstains). A key element in our approach is to devise analytic estimators

that can predict the error and loss for a given parameter setting sufficiently accu-

rately. Although our techniques are anchored upon empirical leave-one-out or cross-

validation estimators on the underlying training data to some extent, we take great

care to avoid computationally expensive steps that would involve repeated retraining.

In the classical scenario it is often assumed that all topic categories (classes) are

known and that the training corpus provides example documents for all these cat-

egories. However in many real world applications these assumptions do not hold.

As an example consider a focused crawler where we are interested just in a limited

number of topics and subtopics. Here we have to deal with the problem that the Web

covers such a large variety (and growing number) of other topics that it is impossible

to build a training set that comprises all these topics. However a focused crawler will

very likely see such ”junk documents”, although the underlying classifier has never

seen (and never had a chance to see) any training data for the “junk” class, and will

have to make a decision about them. We show, by a probabilistic model as well as by

experiments on various data sets, that restrictive classification methods can be used

to eliminate junk documents.

In many situations explicit training data is unavailable, so that clustering is the only

viable option. Conventional clustering methods partition the entire data set into

clusters, but this may lead to poor results in terms of cluster impurity, for exam-

ple, mixing thematically unrelated documents into the same cluster. We propose an

approach for automatically clustering heterogenous document collections by using

restrictive clustering methods. A key element in our approach is to construct restric-

tive meta methods that result in higher cluster purity. The introduced algorithms

ensure better accuracy and make clustering results robust and accurate at the cost

of a moderate loss of uncertain samples.

In the context of a distributed peer-to-peer (P2P) network that connects multiple

users with shared topics of interest, it is natural to aggregate their knowledge and

construct better machine learning models that could be used by every network mem-

ber for his information demands. We address this task using meta methods. We

combine multiple independently learned models from several peers and construct the

advanced decision model that simultaneously takes the knowledge of multiple P2P

users into account in a decentralized manner.

We describe classification with different document representations. In addition to

well known features like document terms in the Bag-Of-Words model, part-of-speech

tagging, etc., we consider alternative stylistic features like the depth or the structure

of syntax trees. We combine the feature representations using two techniques: 1)

combination vectors, where we construct a single vector from the different feature

vectors, 2) meta methods combining the classification results based on the different

representations into a meta result.

Our work on semi-supervised classification is motivated by the fact that the availabil-

ity of training data is often a critical point in real applications. This has led us to a

semi-supervised learning approach with iterative retraining using initially unlabeled

data. An additional difficulty that real applications often pose is the imbalance be-

tween acceptable and unacceptable documents in the corpus that creates a mismatch

with the ratio of positive and negative training samples and may result in a wrong

bias of the classifier. In Web applications, but also for large-scale intranet corpora,

this is a typical situation and creates a major impediment to the previously proposed

state-of-the-art techniques for semi-supervised classification. Our method success-

fully addresses these practically relevant issues, which were largely disregarded by

prior work, and significantly outperforms the other methods in terms of classification

accuracy.

Zusammenfassung

Diese Arbeit untersucht die Problematik der automatischen Strukturierung von

Dokumentkorpora in thematisch koheränte Teilmengen. Dies ist für eine Vielzahl

von Anwendungen von Bedeutung, wie die Organisation von großen Email-Ordnern,

Aufteilung von Themen innerhalb großer Webverzeichnisse in Unterthemen, Struk-

turierung großer Mengen von Unternehmens- und Intranetdaten, fokussiertes Crawl-

ing im Web und vieles mehr. Die Methoden der Wahl für solche Aufgaben basieren

entweder auf supervised Klassifikation, die eine Menge von manuell kategorisierten

Trainingsdokumenten erfordert, oder auf unsupervised Clustering.

In dieser Arbeit untersuchen wir die Ingenieurs- und insbesondere Tuning-Aspekte

der Nutzung von automatischen Klassifikations- und Clusteringalgorithmen zur Or-

ganisation von Textdokumenten. Wir betrachten ensemble-basierte Metamethoden

für das Supervised Learning (d.h. Klassifikation basierend auf einer kleinen Anzahl

von manuell annotierten Trainingsdokumenten). Weiterhin zeigen wir, wie sich diese

Techniken auf das Clustering basierend auf Unsupervised Learning (d.h. automa-

tische Strukturierung von Dokumentkorpora ohne Verwendung von Trainingsdaten)

übertragen lassen. Wir wenden diese Algorithmen auf ’restriktive’ Weise an, d.h.

durch Auslassen von ’unsicheren’ Dokumenten (anstatt sie mit geringer Konfidenz

zu unpassenden Themen oder Clustern zuzuordnen).

Wir entwickeln eine konstruktive und effiziente Methode zum Tuning einer Menge

von Klassifikatoren und Metamethoden um anwendungsspezifische Ziele hinsichtlich

des Errors der Klassifikation und des Dokument Loss (Anteil der Dokumente über die

der restriktive Klassifikator keine Aussage trifft) zu erzielen. Ein Schlüsselelement

unseres Ansatzes ist die Entwicklung analytischer Estimatoren, die Error und Loss

für eine gegebene Wahl der Parameter hinreichend genau bestimmen können. Ob-

wohl unsere Techniken zu einem gewissen Maß auf empirischen Leave-One-Out- oder

Crossvalidierungs-Estimatoren auf den zugrunde liegenden Trainingsdaten basieren,

vermeiden wir sorgfältig teure Berechnungen, die ein wiederholtes Neutrainieren von

Klassifikatoren bedingen würden.

Im klassischen Szenario wird oft angenommen, dass alle thematischen Kategorien

(Klassen) bekannt sind und dass der Trainingkorpus Beispiele für all diese Kate-

gorien bereitstellt. Allerdings trifft dies für viele reale Anwendungen nicht zu. Man

betrachte zum Beispiel einen fokussierten Crawler, bei dem wir nur an einer begrenz-

ten Anzahl von Themen und Unterthemen interessiert sind. Hier tritt das Problem

auf, dass im Web eine solche Vielfalt (und wachsende Anzahl) von Themen existiert,

dass es praktisch unmöglich ist, eine Trainingsmenge zu konstruieren, die alle diese

Themen abdeckt. Ein fokussierter Crawler wird jedoch mit sehr hoher Wahrschein-

lichkeit mit solchen ’Junk-Dokumenten’ konfrontiert werden, obwohl der zugrunde

liegende Klassifikator auf Trainingsdaten der ’Junk’ Klasse nicht trainiert wurde.

Trotzdem muß zu solchen Dokumenten eine Entscheidung getroffen werden. Wir

zeigen, sowohl mit einem probabilistischen Modell als auch durch Experimente auf

unterschiedlichen Datensätzen, dass man restriktive Klassifikationsmethoden zur Eli-

minierung von Junk-Dokumenten verwenden kann.

In vielen Situationen sind keine expliziten Trainingsdaten verfügbar, so dass Cluster-

ing die einzig realisierbare Option ist. Konventionelle Clusteringmethoden partition-

ieren die gesamte Datenmenge in Cluster, aber dies kann zu schlechten Resultaten

in Form von unreinen Clustern führen, zum Beispiel bei Vermischung von thema-

tisch nicht verwandten Dokumenten im selben Cluster. Wir schlagen einen Ansatz

zum automatischen Clustering von heterogenen Dokumentsammlungen vor, der auf

restriktiven Clusteringmethoden basiert. Ein Schlüsselelement bei diesem Ansatz

ist die Konstruktion von restriktiven Metamethoden, die zu einer höheren Reinheit

der Cluster führen. Die eingeführten Algorithmen gewährleisten eine bessere Clus-

terqualität und machten die Clusterresultate robust, auf Kosten eines moderaten

Dokument-Loss durch unsichere Beispiele.

Im Kontext eines verteilten Peer-to-Peer (P2P) Netzwerks, das mehrere Benutzer

mit gemeinsamen Interessengebieten miteinander verbindet, ist es natürlich, deren

Wissen zu aggregieren und bessere maschinelle Lernmodelle zu konstruieren, die

von jedem Mitglied des Netzwerkes für seine Informationsbedürfnisse genutzt wer-

den können. Wir lösen diese Aufgabe mithilfe von Metaverfahren. Wir kom-

binieren mehrere unabhängig voneinander gelernete Modelle von unterschiedlichen

Peers und konstruieren ein erweitertes Entscheidungsmodell, das gleichzeitig das Wis-

sen mehrerer Peers auf dezentrale Weise einbezieht.

Wir beschreiben Klassifikation mit unterschiedlichen Dokumentrepräsentationen.

Zusätzlich zu wohlbekannten Features, wie Dokumentterme im Bag-Of-Words-

Modell, Part-of-Speech-Tags, usw., betrachten wir alternative stilistische Features

wie die Tiefe und die Struktur von Syntaxbäumen. Wir kombinieren die Feature-

repräsentationen durch zwei Techniken: 1) Kombinationsvektoren, wo wir einen

einzelnen Featurevektor aus mehreren Fearturevektoren konstruieren und 2) Metame-

thoden, die die auf unterschiedlichen Repräsentationen basierenden Klassifikations-

resultate zu einem Metaresultat kombinieren.

Unsere Arbeit über semi-supervised Klassifikation ist durch die Tatsache motiviert,

dass die Verfügbarkeit von Trainingsdaten oft ein kritischer Punkt bei realen Anwen-

dungen ist. Dies führt uns zu einem semi-supervised Ansatz, der auf iterativem Re-

training mit initial nicht klassifizierten Daten basiert. Eine zusätzliche Schwierigkeit

bei realen Anwendungen ist das Auftreten von Unbalanciertheiten von akzeptablen

und unakzeptablen Dokumenten in einem Korpus, der zu einer Fehlanpassung des

Verhältnisses von positiven und negativen Trainingsbeipielen, und damit zu einer

Fehlausrichtung des Klassifikators, führen kann. Bei Web-Applikationen, aber auch

für große Intranetkorpora ist dies eine typische Situation und stellt ein Hindernis

für in der Vergangenheit vorgeschlagene Techniken zur semi-supervised Klassifika-

tion dar. Unsere Methode behandelt diese praktisch relevanten Punkte erfolgreich

und übertrifft die anderen Methoden signifikant hinsichtlich der Klassifikationsgüte.

Contents

1 Motivation and Overview 1

1.1 Motivation . 1

1.2 Contribution . 6

1.3 Overview . 7

2 Technical Basics 9

2.1 Preprocessing of Documents and Indexing 9

2.1.1 Preprocessing . 9

2.1.2 Indexing . 9

2.2 Classification . 11

2.2.1 Naive Bayes . 11

2.2.2 k-Nearest-Neighbors . 12

2.2.3 Support Vector Machines . 12

2.2.4 Transductive Support Vector Machines 14

2.2.5 The Centroid Method . 15

2.2.6 Multi-Class Classification . 15

2.3 Performance Measures and Estimators for Classification 17

2.3.1 Performance Measures . 17

2.3.2 Estimators for Classification . 18

2.4 Clustering . 19

2.4.1 Families of Clustering Methods 19

2.4.2 Partitioning Clustering: k-Means 20

2.5 Dimensionality Reduction . 21

2.5.1 Feature Selection . 21

2.5.2 Re-Parameterization . 23

2.6 Linguistic Basics . 24

2.6.1 Parts of Speech and Morphology 24

2.6.2 Phrase Structure . 24

i

Contents

3 Related Work 27

3.1 Meta Classification and Clustering . 27

3.2 Alternative Document Representations 28

3.3 Distributed Learning . 30

3.4 Semi-Supervised Classification . 30

4 Restrictive Meta Classification 33

4.1 Making Classifiers Restrictive and Tunable 33

4.2 Restrictive Meta Classifiers . 33

4.3 k-split Meta Classifier . 35

4.4 Estimators for Accuracy and Loss . 36

4.4.1 Estimators for Single Classifiers 36

4.4.2 Estimators for Restrictive Classifiers 39

4.4.3 Estimators for k-split Meta Classifiers 39

4.4.4 Parameter Search Heuristics . 42

4.5 Experiments . 44

4.5.1 Setup . 44

4.5.2 Results . 46

4.5.3 Summary and Lessons Learned 47

5 Using Restrictive Meta Classification for Junk Elimination 53

5.1 Tradeoffs for Restrictive Classification in the Junk Elimination Scenario 53

5.2 Making Simple Methods Restrictive 54

5.3 Restrictive Meta Methods . 55

5.4 A Probabilistic Model for Restrictive Meta Methods in a Junk Reduc-

tion Scenario . 55

5.5 Experiments . 58

5.5.1 Setup . 58

5.5.2 Results . 59

5.5.3 Discussion . 61

6 Restrictive Meta Clustering 65

6.1 Making Simple Methods Restrictive 65

6.2 Restrictive Meta Methods . 66

6.2.1 Metamapping . 66

6.2.2 Metafunctions . 69

6.2.3 A Probabilistic Model for Metaclustering 70

6.3 Combination of Restrictive Clustering with Supervised Learning . . . 71

ii

Contents

6.4 Experiments . 72

6.4.1 Quality Metrics for Clustering 72

6.4.2 Setup . 72

6.4.3 Results . 73

6.4.4 Discussion . 76

6.5 Meta Clustering using Confidence Values for Clustering 76

6.5.1 Confidence Values of Cluster Membership for k-Means 77

6.5.2 Generalized Meta Clustering Problem 77

6.5.3 Meta Mapping . 78

6.5.4 Meta Functions . 79

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems 81

7.1 System Architecture . 81

7.2 Properties of the Network Layer . 81

7.3 Properties of the Application Layer . 82

7.3.1 Exchanging Data Models among Peers 82

7.3.2 Application to Supervised and Unsupervised Document Labeling 82

7.4 Experiments . 86

7.4.1 Setup . 86

7.4.2 Experiments with Supervised Learning Methods (Classification) 86

7.4.3 Experiments with Unsupervised Learning Methods (Clustering) 88

7.4.4 Discussion . 90

8 Construction of Feature Spaces and their Combination 93

8.1 Web Document Classification . 93

8.1.1 Word Pairs . 93

8.1.2 Anchor Terms . 94

8.1.3 Document Union . 95

8.1.4 Combining Features . 95

8.1.5 Experiments . 96

8.2 Stylistic and Linguistic Features for Author Recognition 97

8.2.1 Word-Based Features . 98

8.2.2 Using Linguistic Constituents 99

8.2.3 Functional Dependencies . 100

8.2.4 Writing Style: Using Syntax Trees 100

8.2.5 Syntax Tree Depth . 101

8.2.6 Combining Features . 103

iii

Contents

8.2.7 Experiments . 105

9 Adaptive Retraining 111

9.1 A Simple Base Algorithm . 111

9.2 Tuning the Number of Iterations . 112

9.3 Tuning the Ratio of Positive and Negative Samples 113

9.4 The Enhanced Retraining Algorithm 115

9.5 Experiments . 116

9.5.1 Setup . 116

9.5.2 Results . 117

10 Conclusion 123

iv

1 Motivation and Overview

1.1 Motivation

This thesis addresses the problem of automatically structuring heterogenous doc-

ument collections into thematically coherent subsets. This issue is relevant for a

variety of applications, such as organizing large personal email folders, dividing top-

ics in large Web directories into subtopics, structuring large amounts of company

and intranet data, focused crawling on the Web, and many more [29]. The methods

of choice for accomplishing this are either based on supervised classification, which

requires explicit, manually labeled, training data, or unsupervised clustering.

Restrictive Meta Classification

There exists a great variety of classification methods such as Naive Bayes, kNN,

Rocchio, linear SVM, etc. [88, 29, 43], all of which operate on a high-dimensional

feature space usually constructed from word occurrence frequencies in documents

(and possibly some additional input such as anchor texts in hyperlink neighbors,

neighbor topics, etc.). All methods face inherent tradeoffs regarding the result quality

metrics: precision, which is the fraction of documents that are automatically placed

under some topic and do indeed belong there (as per a human expert’s assessment),

can be improved by making the classifier more conservative, but this way recall,

which is the fraction of positively classified documents among all documents that the

human expert would place under the given topic, usually becomes worse.

Whether precision or recall is more important is application dependent, and this

raises the need for tuning classification methods towards the goals of the applica-

tion. To this end we exploit the fact that many methods have certain calibration

parameters anyway by which we can control their degrees of making more conser-

vative or more speculative decisions. For example, a Bayesian classifier may accept

a given document for some topic only if the probability of the document belonging

there exceeds some specific threshold. Similarly, an SVM (support vector machine)

classifier may choose to accept only documents whose positive distance from the sep-

arating hyperplane is above some threshold (SVM outputs can be also mapped to

1

1 Motivation and Overview

probabilities as described, e.g., in [97]). In this work we will also discuss families

of “ensemble-based” meta methods (combining results from multiple classifiers) that

come with explicitly designed parameters of this kind.

We consider classifiers for a given topic that make a ternary decision on a newly seen

document: they can accept the document for the topic, reject it, or abstain if there is

neither sufficiently strong evidence for acceptance nor for rejection. The third option

is important as it makes a key difference for constructing meta classifiers that combine

the results of different classifiers (e.g., in a quorum consensus manner). Now the

quality metrics of interest are primarily the classification error, which is the fraction

of erroneously accepted or erroneously rejected documents, and the document loss,

which is the fraction of documents for which the classifier or meta classifier makes

no decision at all (i.e., abstains).

Junk Elimination

In the classical scenario it is often assumed that all topic categories (classes) are

known and that the training corpus provides example documents for all these cat-

egories. However in many real world applications these assumptions do not hold.

As an example consider a focused crawler where we are interested just in a limited

number of topics and, as the case may be, subtopics. Here we have to deal with the

problem that the Web covers such a plethora (and growing number) of other topics

that it is impossible to build a training set that comprises all these topics. However a

focused crawler will very likely see such ”junk documents”, although the underlying

classifier has never seen (and never had a chance to see) any training data for the

“junk” class, and will have to make a decision about them. It is not clear how a clas-

sifier trained to discriminate topics based on training data about ”computer sciene”,

”mathematics”, and ”physics” will behave on documents about, say, ”esoterism”;

there is a significant difference between negative examples and ”junk” documents.

We propose restrictive classification methods to tackle the ”junk problem”. In re-

strictive classification, we consider classifiers for a given topic that make a ternary

decision on a newly seen document: they can accept the document for the topic, re-

ject it for the topic, or abstain if there is neither sufficiently evidence for acceptance

nor for rejection. With the abstention option we aim to achieve a lower error on the

remaining documents and to eliminate the junk documents that would be spuriously

assigned to one of the classes of interest.

2

1.1 Motivation

Restrictive Meta Clustering

In many situations explicit training data is unavailable, so that clustering is the only

viable option.

Conventional clustering methods partition the entire data set into clusters, but this

may lead to poor results in terms of cluster impurity, for example, mixing thematically

unrelated documents into the same cluster. The approach that we advocate and

further develop is to cluster only a subset of the available data, but do so with a higher

clustering quality. This is analogous to restrictive classification in the supervised

scenario. The left-out data which is not assigned to any cluster is collapsed into an

extra container with “miscellaneous” documents.

We call this approach restrictive clustering methods. With simple restrictive meth-

ods we provide restrictive modifications of conventional clustering methods; with

meta-clustering methods we combine different clustering methods in a restrictive

way. Additionally, by using supervised learning techniques (e.g., SVM-based text

classification) on the results of the restrictive clustering methods and meta methods,

we can generalize the clusters to a larger subset or even the entire dataset.

As a possible application scenario for our techniques consider a focused Web

crawler [29, 116]. Such a crawler starts with a set of training documents for a given

topic or an entire topic directory, e.g., for topic ”sports” with subtopics ”ball games”,

”track and fields”, and ”swimming”. The result of a large crawl populate these ex-

plicitly labeled classes, and we may obtain a huge number of documents in the ball

games topics and a much smaller number of documents in the other two subclasses.

Obviously this suggests that the originally given topic directory was not wisely chosen

and should have foreseen additional subsubtopics under the ball games class. What

we would like to achieve now is an automatic, but unsupervised, organization of the

ball games documents by partitioning this class into appropriate subsubclasses. In

doing this we strive for high accuracy in the sense that whatever subsubclasses we

form should indeed be reasonably homogeneous, but it would be perfectly accept-

able to completely leave out documents for which a cluster assignment can be made

only with very low confidence. These left out documents would simply be considered

as a subsubtopic ”/sports/ball games/miscellaneous”. Suppose we can create three

new clusters that correspond to ”soccer”, ”basketball”, and ”handball” documents.

Initially, these clusters would be unlabeled, but if each of them has very high the-

matic purity then the user could easily assign labels after inspecting a few samples

from each class (or additional methods based on term statistics analysis could au-

tomatically suggest appropriate class labels). This is when the restrictive nature of

3

1 Motivation and Overview

our clustering methods and the resulting higher class purity, relative to traditional

clustering, would pay off towards making personal data collections self-organizing.

Document Organization in P2P Systems

In the context of a distributed peer-to-peer (P2P) network that puts together mul-

tiple users with shared topics of interest, it is natural to aggregate their knowledge

and construct better machine learning models that could be used by every network

member for his information demands. The naive solution would be to share available

data (training samples and/or results of the focused crawl) along a higher number of

peers with others. However, the following reasons may prevent the peer from sharing

all of its data with other members of the overlay network:

• significantly increased network costs for downloads of additional training data

on every peer

• increased runtimes for the training of the decision models

• privacy, security, and copyright aspects of the user’s personal information sources

We tackle this problem using meta methods. Our objective is to combine multiple

independently learned models from several peers and to construct the advanced de-

cision model that simultaneously takes the knowledge of multiple P2P users into

account in a decentralized manner.

Document Representations and their Combination

Most of the text classification approaches deal with topic-oriented classification (e.g.

classifying documents into classes like ”Sports”, ”Politics” or ”Computer Science”).

Here the Bag-Of-Words model, taking just the occurrences of words into account

(often using additional techniques like stemming, stopword elimination and different

weighting schemes), has been shown to be very effective for this task [66, 130].

But there are also classification tasks like author recognition (e.g. classifying a doc-

ument as either written by ”A.C. Doyle” or by ”A. Christie”), classifying different

writing styles (e.g., adults vs. children, native vs. non-native speakers, etc.), or

the classification of opinions (e.g. training a classifier to distinguish ”positive” from

”negative” movie reviews). Although a certain amount of topic and word correlation

occurs here, too (in books written by Doyle we will typically find the names ”Holmes”

and ”Watson”, in books written by Christie we have, e.g., ”Poirot” and ”Marple”),

in addition, writing style and linguistic information become important issues.

4

1.1 Motivation

In this thesis we study, in addition to some known approaches (like Bag-Of-Words,

filtering based on Part-Of-Speech tagging, etc.), several new approaches for feature

construction. These include writing style features using the syntax structure, con-

sidering term tuples according to the constituent structure, or syntax tree depth

distributions. Some of these techniques even do not use any word information at

all. As a result we obtain different and, to a certain degree, orthogonal document

representations. We combine these representations using two different techniques:

combination vectors and meta classification.

Another application domain is the classification of Web documents, where we can

take specific features like anchor texts and the neighborhood of the documents into

account.

Adaptive Retraining

In some applications, the availability of good training data for the classifier is the

key bottleneck. As an example, consider a personalized or community information

tool that uses thematically focused crawling [29] to build and maintain a directory

or index for browsing, search, or recommendations. The quality of this approach

stands or falls with the amount and quality of the training data that the underlying

classifier has available. But this training data has to be provided by the user, and it

is unrealistic to expect humans to spend extensive time on this task. Thus, focused

crawling is often bound to start with a few dozen or at most a few hundred training

documents (e.g., taken from bookmark collections).

To overcome the training bottleneck, semi-supervised learning techniques could be

applied. In our given setting, the classifier could be bootstrapped by training it with

whatever explicitly class-labeled training data are available and used for making

decisions about the classes of previously unseen, unlabeled test documents retrieved

by the crawler. These decisions would have a certain degree of uncertainty, depending

on the classifier’s statistical learning model. However, some of the test documents

are usually accepted for their corresponding classes with high statistical confidence,

and these could then be selected for re-training the classifier, now with considerably

more training documents. Obviously, this simple idea does not provide a robust

solution, for the automatically selected, additional training data may also increase

the classifier’s uncertainty and may eventually lead to an unintended topic drift.

We address the issue of how to make such a semi-supervised classifier robust and

practically viable.

5

1 Motivation and Overview

1.2 Contribution

This thesis makes the following contributions:

• We develop a methodology for tuning a classifier or committee-based meta clas-

sifier to the error and loss goals of a given application. As base methods we

consider linear SVM and a simple but robust centroid separation method, but

our approach to meta classification, estimation, and tuning would apply to other

base classifiers (e.g., Naive Bayes) as well. We show how to leverage split-based

meta methods for the purpose of goal-oriented tuning. We investigate under

which conditions it is beneficial to split a larger set of training documents into

subsets for independent training of multiple classifiers whose decisions for previ-

ously unseen document are then combined in a quorum consensus manner. We

develop estimators for predicting the error and loss of a specific meta classifier

setup (with specific parameter settings). We use special care in ensuring that

the estimations and the training phase for the classifiers under consideration are

efficient, so that interactive exploration of document collections with repeated

re-training is feasible.

• We develop decision procedures for junk elimination based on restrictive classi-

fiers and meta classifiers. We develop a probabilistic explanation model which

analytically shows that the elimination ratio of junk documents is larger than

the loss of potentially interesting documents. We present comprehensive experi-

ments, using four different data sets, including a Web document collection, that

demonstrate the benefits of meta classification for junk elimination.

• We show that, analogous to restrictive meta classification, restrictive meta meth-

ods can be applied to combine different clustering results. We identify a partic-

ularly beneficial technique, coined metamapping, where we combine the clusters

found under different simple clustering methods. We provide a simple proba-

bilistic model that explains why the meta technique improves accuracy at the

expense of “losing” some fraction of documents (which will then be organized into

the “miscellaneous” container); the model could even be used for approximately

predicting the achievable accuracy and loss of our techniques. We show how

to combine the restrictive clustering methods and meta methods with standard

classification such as SVM. We provide a comprehensive experimental study of

the pros and cons of a variety of methods, including our metamapping technique

and also transductive SVMs.

6

1.3 Overview

• For collaborative peer-to-peer (P2P) systems, we combine multiple independently

learned models from several peers and construct an advanced decision model

that takes simultaneously the knowledge of multiple P2P users into account in

a decentralized and restrictive manner.

• We describe alternative ways to construct feature spaces for the domains of Web

document classification and author recognition and show how the different docu-

ment representations can be combined using meta classification and combination

vectors.

• We develop a robust, practically viable procedure for automated retraining of

classifiers with careful selection of initially unlabeled documents. We perform

comprehensive experiments that evaluate our retraining procedure against state-

of-the-art semi-supervised classification methods like EM-iterated Bayesian clas-

sifiers, Transductive SVMs, and Spectral Graph Transduction.

Preliminary results from this thesis have been published in [111, 113, 112, 115, 110,

114].

1.3 Overview

This thesis is organized as follows.

We describe the technical basics for this thesis in Chapter 2. These include ba-

sic classification and clustering algorithms, quality measures for classification and

clustering and apriori quality estimators for classification. Furthermore we discuss

feature selection and, specific to the application domain of document classification,

the Bag-Of-Words model and some linguistic basics.

Related work for this thesis is discussed in Chapter 3.

Chapter 4 deals with restrictive classification and meta classification in more detail.

We provide a probabilistic model for the tradeoff between loss, a measure for the

restrictivity of a classifier, and the classification accuracy. We use this model to tune

the parameter of a special instance of restrictive classifier: the ensemble based k-split

meta classifier. In Chapter 5 we show how restrictive classification can be applied to

eliminate ”junk” documents.

In Chapter 6 we carry the concepts of restrictive meta classification, described in

Chapter 4, forward to clustering. Here we introduce a technique to reduce the prob-

lem of combining cluster labels to combining class labels: the meta mapping.

7

1 Motivation and Overview

Chapter 7 applies the concepts of meta classification and clustering in the context of

P2P information systems.

In Chapter 8 we describe the construction of alternative feature spaces for classifi-

cation and combination for two different domains: classification of Web documents

and author classification. Here we apply two combination techniques: 1) restrictive

meta classification, and 2) combination vectors.

We tackle the problem of an insufficient number of labeled documents in Chapter 9.

We consider the automatic parameter tuning of ”retraining”, a semisupervised learn-

ing method that iteratively considers automatically assigned class labels.

8

2 Technical Basics

This chapter describes the technical basics necessary for the understanding of this

thesis.1 These include foundations of document processing and indexing, classifica-

tion and clustering, feature selection and some basics from linguistics.

2.1 Preprocessing of Documents and Indexing

2.1.1 Preprocessing

Documents, which typically are strings of characters, need to be transformed into a

representation suitable for automatic processing. The text is usually transformed as

follows:

1. Remove HTML (or other) tags

2. Remove stopwords

3. Perform word stemming

The stopwords are frequent words that carry no information (i.e. pronouns, preposi-

tions, conjunctions, etc.). By word stemming we mean the process of suffix removal

and other translations to generate word stems. This is done to normalize morpholog-

ical variants, such as ”connect”, ”connected”, ”connection”, and ”connecting”. The

Porter stemmer [99] is a well-known algorithm for this task.

2.1.2 Indexing

The most commonly used document representation is the so called vector space

model [104]. In the vector space model, documents are represented by vectors of

words. Usually, one has a collection of documents, which is represented by a word-

by-document matrix A, where each entry represents the occurrences of a word in a

1It is mostly based on [58, 29, 8, 84].

9

2 Technical Basics

document, i.e.,

A = (aik) , (2.1)

where aik is the weight of word i in document k. This representation is called Bag-

of-Words representation.

There are several ways of determining the weight aik of word i in document k. Most

of the approaches are based on two empirical observations regarding text:

• The more times a word occurs in a document, the more relevant it is to the topic

of the document.

• The more times a word occurs throughout all documents in the collection, the

more poorly it discriminates between documents.

Let fik be the frequency of word i in document k, N the number of documents in the

collection, M the number of words in the collection after stopword removal and word

stemming, and ni the total number of documents in the whole collection in which

word i occurs. We describe 3 examples for weighting schemes that are based on these

quantities.

Boolean weighting The simplest approach is to let the weight be 1 if the word

occurs in the document and 0 otherwise:

aik =

{

1 if fik > 0

0 otherwise
(2.2)

Word frequency weighting Another simple approach is to use the frequency of the

word in the document:

aik = fik (2.3)

Alternatively the frequency can be normalized by the document length |dk|:

aik =
fik

|dk|
(2.4)

tf×idf-weighting The previous two schemes do not take into account the frequency

of the word throughout all documents in the collection. A well-known approach for

computing word weights is the tf×idf-weighting [104], which assigns the weight to

word i in document k in proportion to the number of occurrences of the word in the

10

2.2 Classification

document, and in inverse proportion to the number of documents in the collection

for which the word occurs at least once.

aik = fik · log

(

N

ni

)

(2.5)

There are other enhanced weighting methods based, e.g., on Statistical Language

Models [98, 21].

2.2 Classification

Classification (also called Supervised Learning) is the process of finding a set of models

(or functions) which describe and distinguish data classes or concepts, for the purpose

of predicting the class of objects whose class label is unknown. The derived model is

based on the analysis of a set of training data (i.e., data objects whose class label is

known). In the context of document classification our objects are the documents and

we aim to automatically assign thematic labels like ”Sports”, ”Music”, or ”Computer

Science” to these documents.

In what follows we describe some of the algorithms for text categorization that have

been proposed and evaluated in the past, but first some general notion is given: Let
~d = (d1, . . . , dM) be the document vector to be classified and c1, . . . , cK the possible

topics. Further assume that we have a training set consisting of N document vectors
~d1, . . . , ~dN with true class labels y1, . . . , yN . Nj is the number of training documents

for which the true class is cj.

2.2.1 Naive Bayes

The Naive Bayes classifier is constructed by using the training data to estimate the

probability of each class given the document feature values of a new instance. We

use Bayes theorem to estimate the probabilities:

P (cj |~d) =
P (cj)P (~d|cj)

P (~d)
(2.6)

The denominator in the above equation does not differ between categories and can

be left out. Moreover, the naive part of such a model is the assumption of word

independence, i.e., we assume that the features are conditionally independent, given

11

2 Technical Basics

the class variable. This simplifies the computations yielding

P (cj |~d) ∼ P (cj)

M
∏

i=1

P (di|cj) (2.7)

An estimate P̂ (cj) for P (cj) can be calculated from the fraction of training documents

that is assigned to class cj:

P̂ (cj) =
Nj

N
(2.8)

Moreover, an estimate P̂ (di|cj) for P (di|cj) is given by:

P̂ (di|cj) =
1 + Nij

M +
∑M

k=1 Nkj

(2.9)

where Nij is the number of times word i occurred within documents from class cj in

the training set. (Here 1 is added to the numerator and M to the denominator to

avoid null values. This is a variant of the so called Laplace Smoothing.)

Despite the fact that the assumption of conditional independence is generally not

true for word appearance in documents, the Naive Bayes classifier is surprisingly

effective.

2.2.2 k-Nearest-Neighbors

To classify an unknown document vector ~d, the k-Nearest-Neighbors (kNN) algorithm

ranks the document’s neighbors among the training document vectors, and uses the

class labels of the k most similar neighbors to predict the class of the input document.

The classes of these neighbors are weighted using the similarity of each neighbor to ~d,

where similarity may be measured by, for example, the cosine similarity. The cosine

similarity between two vectors ~a and ~b is defined as follows:

cosine(~a,~b) =
~a ·~b

‖~a‖ · ‖~b‖
(2.10)

2.2.3 Support Vector Machines

With the usual assumption that the training and test samples are drawn from the

same distribution, a hyperplane that is close to many training data points has a higher

risk of misclassifying test instances compared to a hyperplane that passes through

a no-man’s land clear of any training instances. This is the basic intuition behind

12

2.2 Classification

+
-

+ ++

-

-

-

0wx b+ =� �
V

¬V

δ

δ

Figure 2.1: Linear SVM Classifier

support vector machines (SVMs), which are currently the most accurate classifiers

for text. Linear SVMs make a binary decision by thresholding a function ~w ~d+ b (the

estimated class is +1 or -1 according to whether the quantity is greater or less than

0) for a suitable vector ~w and constant b.

Initially, let us consider the case that the N training documents (represented as

vectors) from the two classes are linearly separable by a hyperplane perpendicular to

a suitable ~w. SVM seeks a ~w that maximizes the distance of any training point from

the hyperplane; this can be written as

Minimize
1

2
~w · ~w

subject to ci(~w · ~di + b) ≥ 1 ∀i = 1, . . . , N (2.11)

where ~d1, . . . , ~dN are the training document vectors and c1, . . . , cN their correspond-

ing classes. The optimal separator maximizes the margin δ to the nearest training

points (see Figure 2.1). Since all ci ∈ {−1, 1}, ~w and b can be scaled so that for all

training documents ~di we obtain:

ci(~w · ~di + b) ≥ 1 (2.12)

If ~d1 and ~d2 are points touching the separator slab on opposite sides, it follows that

~w · (~d1 − ~d2) = 2 (2.13)

and therefore
~w

‖~w‖
· (~d1 − ~d2) =

2

‖~w‖
(2.14)

13

2 Technical Basics

The distance of any training point from the optimized hyperplane (called the margin)

will be at least 1
‖~w‖ .

In real life, the classes in the training data are sometimes, but not always, separable.

To handle the general case where a single hyperplane may not be able to correctly

separate all training points, slack variables {ξ1, . . . , ξN} are introduced, and Equa-

tion 2.11 is extended into

Minimize
1

2
~w · ~w + C

∑

i

ξi

subject to ci(~w · ~di + b) ≥ 1 − ξi ∀i = 1, . . . , N (2.15)

ξi ≥ 0 ∀i = 1, . . . , N

If ~di is misclassified, then ξi ≥ 0, so
∑

i ξi bounds from above the number of training

errors, which is traded off against the margin using the tuned constant C. SVM

packages [63, 7] solve the dual of Equation 2.15, involving scalars λ1, . . . , λN , given

by

Maximize
∑

i

λi −
1

2

∑

i,j

λiλjcicj(~di
~dj)

subject to
∑

i

ciλi = 0 (2.16)

0 ≤ λi ≤ C ∀i = 1, . . . , N

Formula 2.16 represents a quadratic optimization problem.

2.2.4 Transductive Support Vector Machines

Unlike the inductive SVM setting, for Transductive SVM (TSVM) [64, 125], a hyper-

plane is computed that separates both training data ~d1, . . . , ~dN and (unlabeled) test

data ~d′1, . . . ,
~d′k with maximum margin, as illustrated in Figure 2.2 (with unlabeled

data shown as plain points). For the linearly separable case this leads to the following

optimization problem:

Minimize
1

2
~w · ~w

subject to ci(~w · ~di + b) ≥ 1 ∀i = 1, . . . , N

c′j(~w · ~d′j + b) ≥ 1 ∀j = 1, . . . , k (2.17)

The minimization is carried out over ~w, b, and the c′j ∈ {+1,−1}.

14

2.2 Classification

+
-

+ ++

-

-

-

Figure 2.2: Linear SVM Classifier and Linear TSVM Classifier (dashed hyperplane)

Analogously to inductive SVM, this optimization problem can be generalized to the

non-separable case, and can be formulated as a dual optimization problem.

2.2.5 The Centroid Method

We consider also a much simpler centroid classifier that separates the centroids of

positive and negative training sets with maximum margin. The positive centroid ~cpos

and the negative centroid ~cneg are defined as follows:

~cpos =
1

∣

∣

∣
{i|ci ∈ {+1}}

∣

∣

∣

∑

{i|ci∈{+1}}

~di (2.18)

~cneg =
1

∣

∣

∣
{i|ci ∈ {−1}}

∣

∣

∣

∑

{i|ci∈{−1}}

~di (2.19)

Obviously this method, which can be regarded as a variant of the Rocchio family

of classifiers [62], is much faster than SVMs in the training phase, as its centroid

and hyperplane computation are linear in the number of training documents. As for

the decision phase for test documents, there is no difference between an SVM and a

centroid classifier.

2.2.6 Multi-Class Classification

For multi-class classification we are given a set Ω = {c1, . . . , cK} of K > 2 classes

and aim to assign one of these classes to a previously unknown document. Some

machine learning algorithms, such as Naive Bayes or kNN, described in Section 2.2.1

15

2 Technical Basics

Ω1 = {c1} Ω1 = {c2} Ω1 = {c3} Ω1 = {c4} Ω1 = {c1, c2} Ω1 = {c1, c3} Ω1 = {c1, c4}

c1 1 0 0 0 1 1 1

c2 0 1 0 0 1 0 0

c3 0 0 1 0 0 1 0

c4 0 0 0 1 0 0 1

Figure 2.3: Code Matrix (Cij) for four Classes {c1, . . . , c4}

and Section 2.2.2, can handle the multiclass case. For other algorithms, such as SVM

(Section 2.2.3), a direct extension to the multiclass case may be problematic. Typi-

cally, in such cases, the multiclass problem is reduced to multiple binary classification

problems that can be solved separately [11, 86]. Below we describe two methods to

reduce multiclass classification to binary classification.

One vs. All

One of the simplest multiclass classification schemes built on top of real-valued binary

classifiers is to train K different binary classifiers, each one trained to distinguish the

examples in a single class ci from the examples in all remaining classes Ω\{ci}. To

classify a new example, the K classifiers are run, and the classifier that outputs the

largest (most positive) value is chosen. For instance, for SVM, we can choose the

distance of the test example from the hyperplane as an output value.

Error Correcting Output Codes (ECOC)

For error correcting output codes (ECOC) each classifier discriminates between two

possible compound classes Ω1,Ω2 ⊂ Ω with Ω1,Ω2 6= ∅, Ω1∩Ω2 = ∅, and Ω1∪Ω2 = Ω.

The number of possible different splits {Ω1,Ω2} of a set Ω of K classes is

S = 2(K−1) − 1 . (2.20)

For example a set {c1, . . . , c4} of four classes can be split in S = 7 ways into Ω1 = {c1},

{c2}, {c3}, {c4}, {c1, c2} {c1, c3}, or {c1, c4}, and corresponding sets Ω2 = Ω\Ω1.

The (ideal) classifier assignments can be represented as a binary code matrix Cij with

Cij = 1 if ci ∈ Ω1 for split number j, Cij = 0 otherwise. Figure 2.3 shows the code

matrix for four classes. Suppose that the classifiers output binary labels (l1, . . . , lS)

for a given test example. The class with the shortest Hamming distance between the

classifier outputs and the codewords for the classes is chosen as the label for the test

16

2.3 Performance Measures and Estimators for Classification

example. For the above example, let (l1, . . . , lS) = (0, 1, 1, 0, 0, 1, 0). The Hamming

distances are 5, 4, 1 and 5 respectively; hence label c3 is assigned to the test example.

To avoid a combinatorial explosion of the code matrix, different approaches that

choose an appropriate subset of splittings are suggested [40, 105]; one of the simplest

methods is a random choice of splittings.

2.3 Performance Measures and Estimators for Classification

2.3.1 Performance Measures

In this section we consider the issue of measuring the performance of the classifiers.

Many measures have been used, each of which has been designed to evaluate some

aspect of the categorization performance of a system. We describe some of the

measures that are widely used in the literature.

A common approach for multi-class categorization is to break the task into disjoint

binary categorization problems. For each category and each document one deter-

mines whether the document belongs to the category or not. When evaluating the

performance of the classifiers, four quantities are of interest for each category:

• a - the number of documents correctly assigned to this category.

• b - the number of documents incorrectly assigned to this category.

• c - the number of documents incorrectly rejected from this category.

• d - the number of documents correctly rejected from this category.

From these quantities, we define the following performance measures:

recall =
a

a + c
(2.21)

precision =
a

a + b
(2.22)

accuracy =
a + d

a + b + c + d
(2.23)

error =
b + c

a + b + c + d
(2.24)

An evaluation criterion that combines recall and precision is the F-measure (weighted

harmonic mean):

Fβ =
(β2 + 1) ∗ precision ∗ recall

β2 + precision + recall
(2.25)

17

2 Technical Basics

where β is a parameter allowing different weighting of recall and precision (usually

β = 1).

Micro- and Macro-Averaging For evaluating average performance across cate-

gories, there are two conventional methods, namely macro-averaging and micro-

averaging. Macro-averaged performance scores are determined by first computing

the performance measures per category and then averaging these to compute the

global mean. Micro-average performance scores are determined by first computing

the totals a, b, c, and d for all categories and then use these totals to compute the

performance measures. Micro-averaging gives equal weight to every document, while

macro-averaging gives equal weight to each category.

Sometimes micro- and macro-averaging is accomplished on a set of class pairs.

2.3.2 Estimators for Classification

Estimating classifier accuracy or other performance measures is important in that

it allows to evaluate how accurately a given classifier will label future data, that is,

data on which the classifier has not been trained. Accuracy estimates can help in the

comparison of different classifiers.

Using training data to derive a classifier and then to estimate the accuracy of the

classifier can result in misleading overoptimistic estimates due to over-fitting of the

learning algorithm (or model) to the training data.

The most widely used technique for empirically estimating the classifier quality is

cross-validation [84] on a set of independent data samples with known topic mem-

berships (aka. class labels). The partitioning is systematically varied by dividing

the overall training data into k groups and investigating each of the k choices for

using one group as test data and the other k − 1 groups for training; the empirical

results are finally averaged over all choices. An important special case is leave-one-

out validation [84]. Here the N documents of a data collection are divided by the

ratio (N − 1) : 1. Leave-one-out prediction is more accurate than prediction based

on cross-validation with smaller k but requires training the classifier N times, unless

special properties of the classifier’s underlying model could be exploited.

Another method of estimating classifier accuracy is bootstrapping, which samples the

given training instances uniformly with replacement.

The use of such techniques to estimate classifier accuracy increases the overall com-

putation time, yet is useful for selecting among several classifiers.

18

2.4 Clustering

2.4 Clustering

Unlike classification, which analyzes class-labeled data objects, clustering analyzes

data objects without consulting a known class label (Unsupervised Learning); i.e. for

class labels are not known and training data are not available. Clustering can be used

to generate such labels. The objects are clustered or grouped based on the principle

of maximizing the intracluster similarity and minimizing the intercluster similarity.

That is, clusters of objects are formed so that objects within a cluster have high

similarity in comparison to one another, but are very dissimilar to objects in other

clusters. Each cluster that is formed can be viewed as a class of objects, from which

rules can be derived. Clustering can also facilitate taxonomy formation, that is, the

organization of observations into a hierarchy of classes that group similar subclasses

together. In our context, we aim to cluster documents into groups of thematically

related documents.

2.4.1 Families of Clustering Methods

There exist a large number of clustering algorithms in the literature. The choice of

clustering algorithm depends both on the type of data available and on the particular

purpose and application.

In general, major clustering methods can be classified into the following categories.

Partitioning methods Given a database of n objects or data tuples, a partitioning

method such as k-means [83] constructs k partitions of the data, where each partition

represents a cluster and k ≤ n. That is, it classifies the data into k groups, which

together satisfy the following requirements: 1) each group must contain at least one

object, and 2) each object must belong to exactly one group. Notice that the second

requirement can be relaxed in some fuzzy partitioning techniques.

Hierarchical methods A hierarchical method such as AGNES, or DIANA [70] cre-

ates a hierarchical decomposition of the given set of data objects. A hierarchical

method can be classified as being either agglomerative or divisive, based on how

the hierarchical decomposition is formed. The agglomerative approach, also called

bottom-up approach, starts with each object forming a separate group. It succes-

sively merges the objects or groups close to one another, until all of the groups are

merged into one (the topmost level of the hierarchy), or until a termination condition

holds. The divisive approach, also called the top-down approach, starts with all the

19

2 Technical Basics

objects in the same cluster. In each successive iteration, a cluster is split up into

smaller clusters, until eventually each object is in one cluster, or until a termination

condition holds.

Density-based methods The general idea of density-based methods such as DB-

SCAN, OPTICS, or DENCLUE [46, 14, 60] is to continue growing the given cluster as

long as the density (number of object or data points) in the ”neighborhood” exceeds

some threshold; that is, for each data point within a given cluster, the neighborhood

of a given radius has to contain at least a minimum number of points.

Grid-based methods Grid-based methods such as STING, or CLIQUE [127, 9]

quantize the object space into a finite number of cells that form a grid structure.

All of the clustering operations are performed on the grid structure (i.e., on the

quantized space). The main advantage is its fast processing time, which is typically

independent of the number of data objects and dependent only on the number of

cells in each dimension in the quantized space.

Model-based methods Model-based methods such as COBWEB, or CLASSIT [49,

54] hypothesize a model for each of the clusters and find the best fit of the data to the

given model. A model-based algorithm may locate clusters by constructing a density

function that reflects the spatial distribution of the data points. It also leads to a

way of automatically determining the number of clusters based on standard statistics,

taking ”noise” or outliers into account and thus yielding robust clustering methods.

In what follows we will present an example of a partitioning clustering method.

2.4.2 Partitioning Clustering: k-Means

The k-means algorithm takes the input parameter, k, and partitions a set of n objects

into k clusters so that the resulting intracluster similarity is high but the intercluster

similarity is low. Cluster similarity is measured with regard to the mean value of the

objects in a cluster.

The k-means algorithm proceeds as follows. First, it randomly selects k objects, each

of which initially represents a cluster centroid. For each of the remaining objects, an

object is assigned to the cluster to which it is the most similar, based on the distance

between the object and the cluster centroid. It then computes the new mean for each

cluster. This process is iterated until the objective function converges. Typically, the

20

2.5 Dimensionality Reduction

squared error criterion is used as an objective function, defined as

E =

k
∑

i=1

∑

~p∈Ci

‖~p − ~mi‖
2 (2.26)

where E is the sum of squared errors for all objects, ~p is the point in space representing

a given object, and ~mi is the centroid of cluster Ci. This criterion tries to make the

resulting k clusters as compact as possible.

2.5 Dimensionality Reduction

A central problem in statistical text classification is the high dimensionality of the fea-

ture space. There exists one dimension for each unique word found in the collection of

documents, typically many thousands. Some classification and clustering techniques

cannot deal with such a large feature set. Hence there is a need for a reduction of

the original feature set, which is commonly known as dimensionality reduction in the

pattern recognition literature. Most of the dimensionality reduction approaches can

be classified into one of two categories: feature selection or re-parameterization.

2.5.1 Feature Selection

Feature selection attempts to remove non-informative words from documents in order

to improve categorization effectiveness and reduce computational complexity. In [131]

a thorough evaluation of the five feature selection methods, Document Frequency

Thresholding, Information Gain, χ2-statistic, Mutual Information and Term Strength

is given. Below we give a short description of four methods:

Document Frequency Thresholding The document frequency df for a word is the

number of documents in which the word occurs. In Document Frequency Thresh-

olding one computes the document frequency for each word in the training corpus

and removes those words whose document frequency is less than som predetermined

threshold. The basic assumption is that rare words are either non-informative for

category prediction, or not influential in global performance.

Information Gain Information Gain (IG) measures the number of bits of informa-

tion obtained for category prediction by knowing the presence or absence of a word in

21

2 Technical Basics

a document. Let {c1, . . . , cK} denote the set of possible categories. The information

gain of a word w is defined to be:

IG(w) = −
K
∑

j=1

P (cj)logP (cj) + P (w)
K
∑

j=1

P (cj |w)logP (cj |w) + P (w̄)
K
∑

j=1

P (cj |w̄)logP (cj |w̄)

(2.27)

Here P (cj) can be estimated from the fraction of documents in the total collection

that belongs to class cj and P (w) from the fraction of documents in which the word w

occurs. Moreover, P (cj |w) can be computed as the fraction of documents from class

cj among the documents that have at least one occurence of word w, and P (cj |w̄)

as the fraction of documents from class cj among the documents that do not contain

word w.

The Information Gain is computed for each word of the training set, and the words

whose information gain is less than some predetermined threshold are removed or

the m words with the highest IG value are chosen.

χ2-Statistics The χ2-statistics measures the lack of independence between word w

and class cj . It is given by:

χ2(w, cj) =
N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
(2.28)

Here A is the number of documents from class cj that contains word w, B is the

number of documents that contains w but does not belong to class cj , C is the

number of documents from class cj that does not contain word w, and D is the

number of documents that neither belongs to class cj nor contains word w. N is still

the total number of documents.

Two different measures can be computed based on the χ2-statistics:

χ2(w) =
K
∑

j=1

P (cj)χ
2(w, cj) (2.29)

or

χ2
max(w) = max

j
χ2(w, cj) (2.30)

Mutual Information Mutual Information (MI) is a criterion commonly used in sta-

tistical language modeling of word associations and related applications. The mutual

information criterion between a word w and a class cj is defined to be:

MI(w, cj) = log
P (w ∧ cj)

P (w)P (cj)
(2.31)

22

2.5 Dimensionality Reduction

With A, B, C, D, and N , as defined above, it is estimated using:

MI(w, cj) ≈ log
A × N

(A + C) × (A + B)
(2.32)

MI(w, cj) has a natural value of zero if w and cj are independent.

2.5.2 Re-Parameterization

Re-parameterization is the process of constructing new features as combinations or

transformations of the original features. In this section we describe one such ap-

proach: Latent Semantic Indexing (LSI) [22].

LSI is based on the assumption that there is some underlying or latent structure

in the pattern of word usage across documents, and that statistical techniques can

be used to estimate this structure. LSI uses singular-value decomposition (SVD), a

technique closely related to eigenvector decomposition and factor analysis. In what

follows we describe the mathematics underlying the particular model of the latent

structure; the singular value decomposition.

Assume that we have an M×N word-by-documents matrix A, where M is the number

of words, and N the number of documents. The singular value decomposition of A

is given by:

A = UΣVT (2.33)

where U (M × R) and V (N × R) have orthonormal columns and Σ (R × R) is the

diagonal matrix of singular values (i.e., eigenvalues of AAT). R ≤ min(M,N) is the

rank of A. If the singular values of Σ are ordered by size, the K largest may be kept

and the remaining smaller ones set to zero (with their corresponding eigenvectors in

U and VT set to zero, too). The product of the resulting matrices is a matrix AK

which is an approximation to A with rank K.

AK = UKΣKVK
T (2.34)

where ΣK (K ×K) is obtained by deleting the zero columns of Σ, and UK (M ×K)

and VK (N × K) are obtained by deleting the corresponding rows and columns of

U and V. AK is the rank-K matrix which minimizes ||A−AK ||2.

AK in some sense captures most of the underlying structure in A, yet at the same time

removes the noise or variability in word usage. Since the number of dimensions K is

much smaller than the number of unique words M , minor differences in terminology

will be ignored. Words which occur in similar documents may be near each other in

23

2 Technical Basics

the K-dimensional space even if they never co-occur in the same document. Moreover,

documents that do not share any words with each other may turn out to be similar.

Using LSI, a document vector ~d can be represented in a K-dimensional space using

the following transformation:
~̂
d = ~dT UKΣ−1

K (2.35)

2.6 Linguistic Basics

2.6.1 Parts of Speech and Morphology

Linguists group the words of a language into classes (sets) which show similar syn-

tactic behavior, and often a typical semantic type. These word classes are called

parts of speech (POS). Three important parts of speech are noun, verb, and adjective.

Nouns typically refer to people, animals, concepts and things. The prototypical verb

is used to express the action in a sentence. Adjectives describe properties of nouns.

Word classes are normally divided into two types. The open or lexical categories are

the ones like nouns, verbs, and adjectives which have a large number of members,

and to which new words are commonly added. The closed or functional categories

are categories such as prepositions and determiners (containing words like of, on, the,

a) which have only a few members, and the members of which normally have a clear

grammatical use.

Traditional systems of parts of speech distinguish about 8 categories, but corpus

linguists normally want to use more fine-grained classifications of word classes. There

are well-established sets of abbreviations for naming these classes, usually referred

to as POS tags. A particularly widely known tag set is, e.g., the Penn-Treebank-

Tagset [85].

Word categories are systematically related by morphological processes such as a for-

mation of the plural form (e.g., dog-s) to the singular form of the noun (dog).

2.6.2 Phrase Structure

Words do not occur in just any order. Languages have constraints on word order. But

is also the case that the words in a sentence are not simply combined as a sequence of

parts of speech. Instead, words are organized into phrases, groupings of words that

are combined into one unit. Syntax is the study of the regularities and constraints of

word order and phrase structure.

24

2.6 Linguistic Basics

�

���

����� ���

	 �

 � ��

� ���

� ��� �

� � � �
 � �� ��

 ��� �

� �

� �� � � �

� ���

� � � � �� �

��� � �

� � � � � � � �

� ����� ��� � � � �

� � �

! � � � �

��� ��

"��#�$�%���
&

���

&
�'���%�#�$�

&

&

�

��� ���

�#(��� 	 � �'� ���*)%�'� ���"��

� � �+� � ��,� ! �� �-� �.��� ���",�

�#�#(

�#�$� �

�#(�'� � �$����

�$��'� ��(/��� ���"$�#��������

������#��#�'� ���0���'�1�$�

����� ���#�

���

Figure 2.4: PCFG-Tree

One fundamental idea is that certain groupings of words behave as constituents.

Constituents can be detected by their being able to occur in various positions, and

showing uniform syntactic possibilities for expansion.

As an example consider the sentence Next, he examined the framework of the door

we had broken in, assuring himself that the bolt had really been shot. and its syntax

tree representation in Figure 2.4. In particular, consider the part he examined the

framework. This part is a constituent of the sentence with sub-constituents, e.g. ”the

door”. The sub-constituents can change their positions inside the bigger constituent.

Just considering that specific part, he examined the framework has the same meaning

as the framework he examined.

Formally syntax trees are generated by a probabilistic context-free grammar (PCFG)

as follows: Consider a set Σ of tags for linguistic corpus annotation (e.g., the Penn-

Treebank-Tagset [85]). Let s be a sentence and Ts := (V,E, σ) an ordered tree

with a set of nodes V , a set of edges E and a labeling function σ : V → Σ, that

assigns a label l ∈ Σ to each node of the tree. We call Ts the syntax tree of sentence

s. A PCFG is a contextfree grammar enriched by transition probabilities for each

rewriting rule ([84]). For example, consider Figure 2.4. There, the sentence Next, he

examined the framework of the door we had broken in, assuring himself that the bolt

had really been shot. is represented as a syntax tree. The leaves of the tree represent

the words themselves, i.e. terminal symbols, where the higher nodes represent the

PCFG Tags, i.e., non terminal symbols. Non-terminals can be subdivided into other

non-terminals or terminals, e.g. NP (a noun phrase) into DT (determiner, an article)

and NN (a noun in singular case) and NN into ”framework”.

25

2 Technical Basics

In the following we briefly mention some of the major phrase types:

Noun phrases A noun is usually embedded in a noun phrase (NP), a syntactic unit

of the sentence in which information about the noun is gathered. The noun is the head

of the noun phrase, the central constituent that determines the syntactic character of

the phrase. Noun phrases are usually the arguments of verbs, the participants of the

action, activity or state described by the verb. Noun phrases normally consist of an

optional determiner, zero or more adjective phrases, a noun head and the modifiers,

with the constituents appearing in that order. Here is an example of a large noun

phrase: The homeless old man in the park that I tried to help yesterday.

Prepositional phrases Prepositional phrases (PPs) are headed by a preposition and

contain a noun phrase complement. They can appear within all the other major

phrase types. They are particular common in noun phrases and verb phrases where

they usually express spatial and temporal locations and other attributes.

Verb phrases Analogous to the way nouns head noun phrases, the verb is the head

of the verb phrase (VP). In general, the verb phrase organizes all elements of the

sentence that depend syntactically of the verb (except that in most syntactic theories

the verb phrase does not contain the subject noun phrase). Here is an example for a

verb phrase: ”Getting in school on time was a struggle.”

Adjective phrases Complex adjective phrases (APs) are less common, but encom-

pass examples like ”She is very sure of herself.” or, ”He seemed a man who was quite

certain to succeed.”.

26

3 Related Work

3.1 Meta Classification and Clustering

There is a plethora of work on text document classification using a variety of proba-

bilistic and discriminative models [29]. The emphasis of this body of work has been

on the mathematical and algorithmic aspects, and the engineering aspects of how

to cope with tradeoffs and how to tune a classifier with regard to properties of the

training data and, most importantly, specific application goals have been largely ne-

glected (exceptions being, e.g., [23, 35, 126], which address different settings and are

only marginally related to our work, however).

The machine learning literature has studied a variety of ensemble based meta meth-

ods such as bagging, stacking, or boosting [26, 129, 82, 52, 77], and also combinations

of heterogeneous learners (e.g., [132]). For bagging, an ensemble consists of classifiers

built on bootstrap replicates of the training set. The classifiers outputs are combined

by the plurality vote. For stacking, multiple classifiers are trained on parts of the

training set and evaluated on the remaining training documents. The outputs of the

classifiers are used as feature values for training a new classifier (stacked generaliza-

tion). Boosting can be viewed as a model averaging method. Here a succession of

models is built, each one trained on a data set in which the points misclassified by

the previous model are given more weight.

Our notion of a meta method is closest to bagging (see, e.g., [26]). To our knowl-

edge none of the prior work on bagging and related techniques has considered the

parameter tuning of such methods towards application-specific quality goals.

The approach of intentionally splitting a training set for meta learning has been

investigated by [31]. However, that work has focused on the efficiency versus accuracy

tradeoff; so the improvements in efficiency were achieved at the expense of reduced

accuracy. In contrast, our approach preserves and even improves high accuracy, and

the measure that we are trading this for is document loss. The notion of loss in a

ternary decision model, on the other hand, has not received wide attention. The

recent paper [106] studied the accuracy-loss tradeoff in a ROC curve model (for a

27

3 Related Work

recommender system), but has not looked at how to systematically engineer and tune

methods for judicious application choices regarding this tradeoff.

For SVM classifiers some isolated tuning issues have been considered in the literature.

The popular SVM Light software package [63] provides various kinds of thresholds

and variations of SVM training (e.g., SVM regression, transductive SVMs, etc.), but

there is no systematic discussion of how to adjust these tuning knobs for a given

application. [25] have proposed to introduce a bias for the separating hyperplane

towards negative training samples, and advocated that this is beneficial when the

number of positive training samples is very low. To our knowledge, these techniques

were, up to now, not considered in the context of restrictive classification and junk

reduction.

There is recent work on combining multiple clustering methods in an ensemble learn-

ing manner, using consensus functions for clusterings based on information theoretic

measures [118], constructing a co-association matrix and performing hierarchical clus-

tering on this matrix [51], combining clusterings pair-wise and iteratively [41], using

graph partitioning methods [48], or combining clusterings on different subspaces of

a given feature space [121]. Neither of these papers considers restrictive methods

where documents may be completely left out and are not assigned to any cluster; we

believe that this is crucial for aiming at very high precision. Also, none of the prior

work provides analytical estimation models, which is crucial for understanding why

such methods work. Finally, our application context is broader and combines meta

clustering with other techniques like supervised classification, and we present much

more comprehensive application-oriented experimental results with real-life datasets.

3.2 Alternative Document Representations

There is considerable prior work about alternatives to the Bag-Of-Words approach

for document classification [89]. These include: using Part-Of-Speech (POS) tags

(”verbs”, ”nouns”, ”adjectives”, etc.) [95] either for disambiguation or for feature

selection, using a thesaurus like Wordnet [47] for feature construction [107, 102],

and feature selection based on statistical measures like Mutual Information or In-

formation Gain [131]. N-grams of characters are popular for distinguishing different

languages [28, 18]; also word based n-grams and phrases were examined for the text

classification task [119, 79].

In [117] sentiment classification is performed by a rule based approach using manually

chosen features for a very specific classification task. In [122] reviews are classified as

28

3.2 Alternative Document Representations

”positive” or ”negative” using a semantic orientation measure for the phrases in the

documents based on an information theoretic measure between these phrases and the

manually chosen key words ”excellent” vs. ”poor”. This measure was computed on a

set of documents obtained by querying a search engine. More general manually chosen

linguistic structures are used in [128] to recognize opinions in newspaper articles.

In [95] various approaches using POS tags, unigrams and bigrams are studied for

the classification of movie reviews. Here the best performance was obtained by a

simple unigram approach. The identification of unique users among a set of online

pseudonyms using features such as simple words, misspellings, punctuation etc., is

described in [92]. Various techniques exist to tackle the problem of spam recognition:

besides manually engineered methods like keyword filters, source blacklists, signature

blacklists, etc., also machine learning methods, using mostly Bag-Of-Words features,

are applied [42, 13, 56].

The problem of authorship attribution is also different from the classical topic based

classification task. Here, stylometric features may become important [61]. Baayen

et. al. [15] show the occurrence of some kind of ”stylistic fingerprint” for authors by

considering a text corpus produced by student writers of different age and education

level. They use the most frequent function words and apply principal component

analysis (PCA) as well as linear discriminant analysis (LDA).

Diederich et al. [39] present a study on authorship attribution with Support Vector

Machines. Their feature set consists of ”full word forms” (in fact Bag-Of-Words)

and so called tagwords, a combination of function words and grammatical informa-

tion. Here, simple Bag-Of-Words outperforms their combination techniques with

more enhanced linguistic features, in contrast to our combination vectors and meta

methods.

In [16], Baayen et al. present a methodological study on the usefulness of stylometry-

based features. They investigate features related to our writing style technique,

taking grammatical rewriting rules derived from syntax trees into account. De Vel’s

work [36] deals with the exploration of style based features for identification of email

authors. They use features such as style markers (average sentence or word length,

total number of function words, vocabulary richness, etc.) and structural attributes

(availability of signatures, number of attachments, etc.).

There are also several alternative learning paradigms for authorship attribution, e.g.,

Khmelev and Tweedie [71] considering learning models for authorship attribution

tasks using Markov chains of characters, or Oakes [93] using a kind of swarm intelli-

gence simulation technique called Ant Colony Optimization.

29

3 Related Work

Combination vectors are used for authorship attribution (e.g. [124, 73, 39]), but

neither explicit component weighting nor normalization are considered. The machine

learning literature has studied a variety of meta methods such as bagging, stacking,

or boosting [26, 129, 82, 52], and also combinations of heterogeneous learners (e.g.,

[132]). But, to our knowledge, meta classification was not applied in the context of

authorship recognition.

There is a variety of work on Web document classification based on different docu-

ment representations. These representations are based on text from neighbors in the

Web graph [30], classes from neighbors (using an iterative labeling process for neigh-

bors with apriori unknown classes) [30], link similarity [68, 33, 50], anchor texts of

neighbors [55], HTML structures (such as headings and paragraphs) [53], etc. Typ-

ically one enhanced representation is combined with a simple Bag-of-Words model,

see e.g. [68, 33, 27], but no restrictive meta classification has been applied.

3.3 Distributed Learning

Algorithms for distributed clustering are described in [69, 81], but here data samples

(i.e., in our context, documents) must be provided to a central server, making these

solutions inconsistent with our requirements. The distributed execution of k-means

was discussed in [38]. However, this method requires multiple iterations that must

be synchronized among the peers and causes a considerable amount of coordina-

tion overhead. Privacy-preserving distributed classification and clustering were also

addressed in the prior literature: in [123] a distributed Naive Bayes classifier is com-

puted; in [87] the parameters of local generative models are transmitted to a central

site and combined, but not in a decentralized and restrictive peer-to-peer manner.

3.4 Semi-Supervised Classification

There is a considerable prior of work on classification using unlabeled data (also called

semi-supervised learning), see [108] for an overview. Naive Retraining where new doc-

uments with highest classification confidence are iteratively added to the training set,

is, e.g., described in [29]; but these methods perform often worse than the underly-

ing base learning method. A more advanced EM (Expectation Maximization) based

variant for Bayesian Classifiers is proposed in [91] and applied to text classification.

For Transductive SVM [64, 125] and Semi-Supervised SVM [19] unlabeled samples

are taken into account (opposite to standard SVM) in a modified optimization prob-

30

3.4 Semi-Supervised Classification

lem (standard SVM cannot use unlabeled samples at all). Co-training [24] splits

the feature space into conditionally independent dimensions and performs retrain-

ing on the corresponding classifiers. Recent graph-based semi-supervised learning

algorithms work by formulating the assumption that ”nearby” points, and points in

the same structure should have similar labels [74, 133, 67]. In [20] semi-supervised

learning is combined with ensemble classification methods. An approach for the case

that only positive (and no negative) training data plus unlabeled data are available

is described in [78]. In [12] semi-supervised learning is used for text summarization;

in [134] a retraining method with user feedback as a stopping criterion is used for

image retrieval. However, to our knowledge, none of these methods deals with the

problem of automatically tuning their parameters.

The issue of asymmetric distribution of documents among different classes is ad-

dressed, e.g., in [75, 25, 57], and the problem of automated parameter tuning has

been considered in the field of machine learning, e.g., in [72], but, to our knowledge,

not in the context of retraining.

31

4 Restrictive Meta Classification

In this chapter we investigate restrictive forms of classifiers and we develop meta

methods that combine the results of different classifiers. These techniques tend to

improve accuracy at the expense of document loss. We develop estimators that help

to predict the accuracy and loss for a given setting of the methods’ tuning parameters,

and a methodology for efficiently deriving a setting that meets the application’s goals.

4.1 Making Classifiers Restrictive and Tunable

The idea of restrictive classification is to avoid making a decision about a test doc-

ument at all if that decision can be made only with relatively low confidence. So

out of a given set of unlabeled data U , our method chooses a subset S of documents

that are either accepted or rejected for the given topic label, and abstains on the

documents in U − S. The quality measures precision, recall, F1, accuracy, and error

are computed on the subset S, and we call the ratio |U − S|/|U | the document loss.

We can use confidence measures to make simple methods restrictive. For SVMs or

the Centroid method a natural confidence measure is the distance of a test document

vector from the separating hyperplane. So we can tune these methods by requiring

that accepted or rejected documents have a distance above some threshold, and ab-

stain otherwise. The threshold is our tuning parameter. This approach is illustrated

in Figure 4.1: all test documents that fall in the shaded region are dismissed.

Given an application-acceptable loss of L percent, we can make a classifier restrictive

by dismissing the L percent of the test documents with the lowest confidence values.

4.2 Restrictive Meta Classifiers

For meta classification we are given a set V = {v1, . . . , vk} of k binary classifiers

with results R(vi, d) in {+1,−1} for a document d, namely, +1 if d is accepted for

the given topic by vi, and -1 if d is rejected. We can combine these results into a

meta result: Meta(d) = Meta(R(v1, d), . . . , R(vk, d)) in {+1,−1, 0} where 0 means

33

4 Restrictive Meta Classification

+
-

+ ++

-

-

-

���������	
	�

� �

δ

δ

Figure 4.1: Restrictive SVM Classifier

abstention. A family of such meta methods is the linear classifier combination with

thresholding [111]. Given thresholds t1 and t2, with t1 > t2, and weights w(vi) for

the k underlying classifiers we compute Meta(d) as follows:

Meta(d) =

+1 if
∑n

i=1 R(vi, d) · w(vi) > t1
−1 if

∑n
i=1 R(vi, d) · w(vi) < t2

0 otherwise

(4.1)

This meta classifier family has some important special cases, depending on the choice

of the weights and thresholds:

1. voting [26]: Meta returns the result of the majority of the classifiers.

2. unanimous decision: if all classifier give us the same result (either +1 or -1),

Meta returns this result, 0 otherwise.

3. weighted averaging [126]: Meta weighs the classifiers by using some predeter-

mined quality estimator, e.g., a leave-one-out estimator for each vi.

The restrictive and tunable behavior is achieved by the choice of the thresholds: we

dismiss the documents where the linear result combination lies between t1 and t2.

In the rest of the work we will consider only the unanimous-decision meta classifier

as the simplest of the above cases in order to demonstrate the feasibility of our

approach. The approach itself carries over to more sophisticated instantiations of

the meta classifier framework.

34

4.3 k-split Meta Classifier

4.3 k-split Meta Classifier

One possibility to obtain a set V of k different classifiers is to split the training set

T0 into k disjoint subsets T1, . . . , Tk and build one classifier vi for each set Ti. Then

we can easily construct a meta classifier, coined the k-split meta classifier.

Why would such a partitioning of the training data be useful at all? There are two

aspects to consider:

• First, it may help to make the overall classification procedure to become more

robust and reduce its error. The rationale for this is that subsets of T0 may

be good enough for effectively training a classifier and that the consensus or

averaging step over all classifiers then helps to counteract possible overfitting

effects and thus makes the meta classifier more robust. Obviously, there are

limitations to this desirable but not always achievable effect; we would expect

some optimal choice of k beyond which further splitting becomes detrimental

(and with very small training sets the optimal k would often be 1, i.e., not

splitting at all).

• Second, the time for training a classifier often depends in some super-linear way

on the cardinality of the training set T (e.g., more than quadratic with SVM).

So we can improve the training efficiency by learning with subsets of T0. This is

particularly intriguing for applications that require interactive re-training such

as personalized focused crawlers where user feedback after some initial results

can help to calibrate the focus.

A similar approach has been studied by Chan [31], but his classifiers were not restric-

tive and tunable, so that he obtained efficiency gains at the expense of significantly

increasing the classification error. In contrast, our method trades efficiency for loss,

but keeps accuracy high or even improves it.

The naturally arising next question is how to search the tuning parameter space for

the most appropriate value of k. Before we turn to this issue in Section 4.4.4, we first

discuss, in Section 4.4, how to estimate the accuracy and loss for a fixed setting of k

and the other tuning parameters.

A natural alternative to splitting the training set into disjoint partitions would be

to allow overlapping partitions and not necessarily use all training documents. This

could be easily implemented using random sampling to create a training partition,

where the number k of partitions and their size m in terms of training documents are

tuning parameters. Note that the sampling procedure is allowed to select duplicates

35

4 Restrictive Meta Classification

in different partitions, hence the name random resampling. This method has the same

need for parameter tuning that the k-split approach faces. We will study random

resampling as a competitor to k-split meta classification in our experiments.

4.4 Estimators for Accuracy and Loss

4.4.1 Estimators for Single Classifiers

For tuning the use of a classifier in an application it is desirable to have apriori

estimators for the accuracy and loss of the classification method given its training

data. While such estimators entirely based on analytical models are conceivable,

our experience has led us to believe that some degree of empirical estimation is

inevitable for sufficiently accurate predictions, at least as a baseline upon which

analytical reasoning can build. We will see that good estimators for the k-split meta

classifiers can be constructed without (repeatedly) performing time-consuming leave-

one-out estimation on the full training set. Likewise, for restrictive variants of the

base classifiers SVM and Centroid we can avoid having to fully recompute (with

repeated invocation of the training procedure) the leave-one-out estimator for every

setting of the threshold parameters.

SVM requires an initial full-fledged leave-one-out estimator which involves n times

retraining, where n is the cardinality of T0, or at least an initial cross-validation

with m partitions of size n/m and m times retraining. For the Centroid method a

more efficient technique is feasible: we compute the two centroids that result from

all documents in T0. For each leave-one-out choice we incrementally “subtract” the

left-out test document yielding the adjusted centroids and the adjusted hyperplane

in time O(1) and classify the document. So just like the entire training procedure for

Centroid has run-time O(n), the complete leave-one-out estimator (over all n choices)

can be carried out in the same O(n) time.

For the k-split meta methods we will need to estimate the accuracy of each of the

underlying classifiers trained with subsets T1, . . . , Tk. We can exploit this situation

by estimating the accuracy acc(Ti) via cross-validation on the complementary subsets

T1, . . . , Ti−1, Ti+1, . . . , Tk. In the experiments we refer to this estimator as the CV

estimator.

We notice that this step does not require expensive leave-one-out estimations, and

it is carried out over training sets that are significantly smaller than T0. However,

depending on the application situation we may like to avoid having to re-run the

36

4.4 Estimators for Accuracy and Loss

estimations on all candidate choices of k, as this would still require the training and

cross-validation of k classifiers for every value of k. Rather we would prefer analyti-

cally reasoning, with very low computational cost, about the quality degradation that

we are likely to see when training with some subset Ti instead of T0. Our rationale

is the following: the accuracy for training with Ti, acc(Ti), should really be the same

as for T0 itself, acc(T0), if Ti is still a representative sample for the same stochastic

feature distribution for which T0 is our baseline sample; conversely, if the distribu-

tion in Ti deviates significantly from that of T0 we should see some degradation in

accuracy. Deviations diff between probability distributions can be measured by the

Kullback-Leibler divergence (relative entropy) KL(Ti, T0).

We performed extensive experiments to study the viability of such heuristic esti-

mators, and also looked at variations and other entropy- or χ2-based measures for

deviation. It turned out that the correlation coefficient between our diff metric and

the resulting accuracy was consistently above 0.9 for a number of experiments with

k-splits on Newsgroups and Reuters datasets; so acc(Ti) does indeed deteriorate ap-

proximately linearly with increasing KL(Ti, T0). Our estimator for acc(Ti) is based

on a simple linear regression using two (or possibly more) data points for acc and

KL derived from two (or more) k-split partitionings. This way we fit the coefficients

a and b in the following equation:

acc(Ti) = a · KL(Ti, T0) + b (4.2)

Note that this procedure requires acc(Ti) estimators, using the cross-validation tech-

nique outlined above, for only two choices of k, and we can choose relatively large

values of k (e.g., 10 and 20) so that the training and cross-validation of k classifiers on

relatively small training sets is fairly inexpensive. Further note that this computation

is carried out outside the actual search procedure for the best possible k, and that

we do not need to be particularly judicious about choosing our two sample points for

k. We refer to this alternative estimator as the KL estimator in our experiments.

The KL divergence itself is estimated by

KL(Ti, T0) =
∑

j

fj(Ti) · log2
fj(Ti)

fj(T0)
(4.3)

where fj(S) is the relative frequency of documents in document set S that contain

feature j (i.e., a word stem). This computation is linear in the cardinality of the

training set Ti. For a robust estimate we actually average the KL values over all

subsets Ti of a given k-split partitioning.

37

4 Restrictive Meta Classification

One complication that arises with this approach is that positive and negative training

examples follow radically different distributions, and we have to make sure that our

KL-based distance measure captures this. To this end we actually compute the KL

divergence for positive and negative samples separately and take their maximum for

the scaling factor in the accuracy prediction:

diff(Ti, T0) = max{KLpos(Ti, T0),KLneg(Ti, T0)} (4.4)

acc(Ti) = a · diff(Ti, T0) + b (4.5)

Figures 4.2 and 4.3 illustrate the viability of this analytic approximation technique.

Test pos. neg. k correlation

samples samples KL - acc

Reuters:

money-fx vs. acq 700 700 1..20 -0.93

earn vs. trade 500 500 1..10 -0.92

Newsgroups:

rec.autos vs. 700 700 1..20 -0.97

rec.motorcycles

talk.politics.guns vs. 700 700 1..20 -0.98

talk.politics.mideast

Figure 4.2: Correlation between diff(Ti, T0) and accuracy(Ti)

Figure 4.3: Accuracy Prediction by KL for Newsgroups Topics ”rec.cars” and

”rec.motorcycles”

The run-time cost of constructing the accuracy estimator for a basic SVM classifier,

using leave-one-out estimation, is between O(n3) and O(n4) (n times retraining each

38

4.4 Estimators for Accuracy and Loss

with complexity of typically between O(n2) and O(n3)) with n denoting the cardi-

nality of the complete training set T0. With m − fold cross-validation instead of

leave-one-out the cost is between O(mn2) and O(mn3). The ξα estimator of [65]

would require only a single training procedure (thus typically running in time O(n2)

to O(n3)), but is way too crude to be useful in our framework. For the Centroid

method, training and leave-one-out estimation are combined and have only O(n)

run-time cost. Finally, for estimating the accuracy of an SVM classifier trained on

some subset Ti we need time O(n) for the KL computation (needed only in the KL es-

timator) plus the a priori probing cost, with training, cross-validation, and regression

(needed in both the CV and the KL estimators), which in total is between O((n/k)2)

and O((n/k)3) where k is the smaller one of our two probing points. With k being

10 or larger, this is a substantial saving compared to the basic SVM estimator.

4.4.2 Estimators for Restrictive Classifiers

For a basic classifier like SVM or Centroid, the leave-one-out decision step gives

us a set of tuples (d, confidence, isCorrect) where d is the left-out-document,

confidence is the classification confidence (i.e., hyperplane distance or probability),

and isCorrect is a Boolean value that tells us if the classifier trained with the n − 1

remaining documents correctly classifies d (value 1) or not (value 0). Note that the

confidence value may not be exported by the built-in estimators of existing software

packages such as SVM light; in this case we either need to re-implement the leave-

one-out estimator on top or modify the software or switch to a package that makes

these values easily accessible.

Given a threshold for the confidence, it is now easy to compute the adjusted accuracy.

We only need to restrict the summation over the isCorrect values that form the basis

of the average accuracy estimation to those isCorrect values for which confidence

exceeds the threshold, and the denominator for accuracy then is the count of all

tuples with confidence higher than the threshold. Likewise, loss simply is the count

of the tuples with confidence below the threshold divided by n.

4.4.3 Estimators for k-split Meta Classifiers

Now we explain how to construct an estimator for loss and accuracy (or equivalently

error) of a k-split meta classifier with unanimous decision, given the estimators for

the underlying classifiers {v1, . . . , vk}.

Let T0 = T1 ∪ . . . ∪ Tk be our partitioning of the overall training data and let vi be

39

4 Restrictive Meta Classification

the classifier trained on Ti. We associate a Bernoulli random variable Xi with each

vi, where Xi = 1 if vi classifies a document correctly, 0 otherwise.

A simple, but unfortunately oversimplified, approach would be to estimate the accu-

racy, P [Xi = 1], or equivalently error, P [Xi = 0], for every vi by 1) assuming that Xi

and Xj are pairwise independent for different vi and vj, and 2) using the KL-based

prediction model of Section 4.4.1. Unfortunately, the independence assumption leads

to fairly inaccurate estimations for both accuracy and document loss. Instead we

pursue a more sophisticated approach that takes the correlations between classifiers

into account.

To this end we run an additional cross-validation upfront. We consider three mutually

disjoint subsets T1, T2, T3 of T0 where T1 and T2 serve to train classifiers v1 and v2

and T3 is held-back test data to assess v1 and v2 such that neither v1 nor v2 has seen

this test data before. Note that the three subsets may be easily derived by a random

partitioning of a medium-sized random subset of T0; we do not need to take all of

T0 into consideration thus reducing the computational cost. The training procedure

gives us data points (x1, x2) for the joint distribution of (X1, X2). Thus we obtain

an estimator for the covariance

cov(X1, X2) =
1

n − 1
·
∑

(x1 − x1)(x2 − x2) (4.6)

where n is the number of data points in T3 and x1, x2 are the means of the marginal

distributions of X1 and X2. From basic probability theory it follows that

P (X1 = 1 ∧ X2 = 1) = cov(X1, X2) + P (X1 = 1) ∗ P (X2 = 1) (4.7)

This procedure requires training the classifiers v1 and v2, but we do not need any

further expensive steps for k > 3 by making two assumptions:

1. For any two subsets Ti, Tj in any possible k-split partitioning, the covariance is

the same as cov(X1, X2) computed above. So the covariance estimator for k = 3

can be reused without additional computations. Below we therefore refer to the

covariance estimator simply as cov without any subscripts or arguments.

2. In a k-split partitioning we consider only the dependencies between vi and vi+1

and postulate that all other pairs vi and vj can be considered as independent.

Assumption 1 is justified as long as all subsets Ti in a k-split partitioning are reason-

ably representative samples for the original data T0.

We can justify Assumption 2 by using a tree dependence model, which is a well known

approximation method in probabilistic IR ([100]): We define a Dependence Graph

40

4.4 Estimators for Accuracy and Loss

G = (V,E) where V consists of the Bernoulli Variables Xi, and which contains for all

Xi, Xj (i 6= j) an undirected edge e(Xi, Xj) with weight w(e(Xi, Xj)) = cov(Xi, Xj).

We approximate the Dependence Graph by a Maximum Spanning Tree G′ = (V,E′)

which maximizes the sum of the edge weights. The nodes in G′ with no edges in

between are considered as independent. So we obtain:

P (X1 = x1, . . . , Xk = xk) = P (Xroot = 1)
∏

(i,j)∈E′

P (Xi = xi, Xj = xj)

P (Xi = xj)
(4.8)

where Xroot is the root node of the tree G′ and xi ∈ {0, 1}. Because w(e(Xi, Xj)) =

cov (where cov is a constant according to Assumption 1) we can w.l.o.g. choose

X1 as the root node and the edges (Xi, Xi+1) as tree edges. This corresponds to

Assumption 2.

Now we have:

P (X1 = 1, . . . , Xk = 1) = P (X1 = 1)

k−1
∏

i=1

P (Xi+1|Xi)

= P (X1 = 1)

k−1
∏

i=1

P (Xi = 1, Xi+1 = 1)

P (Xi = 1)
(4.9)

By considering equation 4.7 and Assumption 1 we obtain:

P (X1 = 1, . . . , Xk = 1) = P (X1 = 1)

k−1
∏

i=1

P (Xi = 1)P (Xi+1 = 1) + cov

P (Xi = 1)
(4.10)

Analogously we obtain P (X1 = 0, . . . , Xk = 0).

Estimators for P (Xi = 1) and P (Xi = 0) (i.e., for accuracy and error of the single

classifiers vi) can be determined by either the CV or the KL estimator explained in

Section 4.4.1.

Finally we can substitute these results in the following formulas for the loss estimator

loss(Meta(v1, . . . , vk)) =

1 − P (X1 = . . . = Xk) =

1 − (P (X1 = 1, . . . , Xk = 1) + P (X1 = 0, . . . , Xk = 0)) (4.11)

and the error and accuracy estimator

error(Meta(v1, . . . , vk)) = P (X1 = 0, . . . , Xk = 0|X1 = . . . = Xk)

=
P (X1 = 0, . . . , Xk = 0)

P (X1 = 1, . . . , Xk = 1) + P (X1 = 0, . . . , Xk = 0)
(4.12)

41

4 Restrictive Meta Classification

accuracy(Meta(v1, . . . , vk)) = 1 − error(Meta(v1, . . . , vk)) (4.13)

The point of these analytic derivations is that we can start with a limited set of

empirically determined quality measures (based on cross-validation techniques) and

can assess candidates for a k-split partitioning meta classifier in an efficiently com-

putable, solely analytic manner without further retraining. This capability is crucial

for an efficient traversal of the space of possible k-split partitionings, as discussed in

the next section.

In principle, the same estimation procedure can be carried over to a meta classifier

based on k-fold random resampling. The only potential caveat is that the indepen-

dence assumption for more than two partitions could be more critical in the case of

overlapping partitions. We will discuss the estimators’ accuracy in our experiments

in Section 4.5.

4.4.4 Parameter Search Heuristics

Our goal is to minimize the error subject to the constraint that the loss is bounded

by some application specific threshold.

For the basic classifiers, SVM, Centroid, and Naive Bayes, we simply perform a

binary search over their control parameters, which are either hyperplane distance

or probability threshold. This way we can easily find their best parameter settings.

Varying these parameters does not require retraining the classifier with the above

range of methods. Our estimation techniques presented in Section 4.4 allow us to

predict loss and accuracy from the leave-one-out predictions for the non-restrictive

baseline cases (with all thresholds set to 0).

For the k-split meta classifier, the parameter search space is much larger. We need

to decide

• into how many partitions we split T0,

• how we divide the positive training samples among the resulting partitions

T1, . . . , Tk, and

• how we divide the negative training samples (note that we may consider treat-

ing positive and negative samples differently for they may vary significantly in

cardinality).

Obviously, there is some danger of combinatorial explosion here (e.g., exponentially

many options in the cardinality of T0); so we restrict ourselves to a fairly simple greedy

42

4.4 Estimators for Accuracy and Loss

heuristics. We only consider splitting T0 into k equally sized subsets (plus/minus

one if exactly equal sizes were impossible) and we always preserve the original ratio

of positive to negative samples. For dividing the training samples themselves, we

only consider random partitioning, which is both efficient and guarantees that the

resulting training subsets reasonably preserve the statistical properties (e.g., feature

distributions) of the original data. More sophisticated alternatives (e.g., dividing

based on information-theoretic models) are subject to future research.

The meta classifiers that we tentatively construct consider a 1-split, a 2-split, a 3-

split, and so on, and this leads to the fairly simple search procedure described in

Figure 4.4.

Input: lower bound threshold for loss

Output: best choice of k,

training subsets T1, ..., Tk

Algorithm:

k=1; T1 = T0; best := 1;

estimate loss(1) for

the meta classifier with k=1; // in our case: 0

while (loss(k) < threshold) {

randomly partition T0 into k subsets

estimate loss(k+1);

estimate error(k+1);

if (loss(k+1) < threshold)

{

if (error(k+1) < best) best = k+1;

};

k = k+1;

};

Figure 4.4: Pseudocode: Search Procedure for the best Split Parameter

This procedure exploits that loss is almost certainly monotonically increasing with

increasing k, not only with the unanimous-decision variant that we are using but also

with most other variants of our meta classifier framework. For unanimous decision our

experiments even showed that accuracy is monotonically increasing with increasing

k; so in this particular case our procedure returns the maximum k such that the

43

4 Restrictive Meta Classification

estimated loss is still acceptable.

4.5 Experiments

4.5.1 Setup

We performed a series of experiments with real-life data from:

1. The Newsgroups collection at [1]. This collection contains 17,847 postings col-

lected from 20 Usenet newsgroups from topics like ’rec.autos’, ’sci.space’, etc.

2. The Internet Movie Database (IMDB) at [4]. Documents of this collection are

short movie descriptions that include the storyboard, cast overview, and user

comments. This collection contains 20 topics according to particular movie gen-

res (’drama’, ’horror’ etc.). Only movies were considered that have a unique

genre (avoiding movies that belong to, say, both ’drama’ and ’science fiction’).

Thereof it holds a total of 34,681 documents.

For our experiments we selected subsets of 250 and 500 documents for training (i.e.,

a small and a medium-sized training set), and tested our various methods with the

remaining held-out data. We performed two kinds of experiments:

• baseline experiments investigated the classification error as a function of the

document loss, and compared the measured results to the predictions by our

various estimators, and

• use-case experiments investigated the error and loss as functions of the applica-

tion goal for the maximum tolerable loss, and studied to what extent we could

indeed automatically tune the methods to a given loss threshold.

All experiments were based on software written in Java, except for the base classifiers

SVM, where we used SVM light, and Centroid, which we implemented in C++. We

compared the following methods and meta methods:

• Restrictive variants of the base classifiers SVM and Centroid. (We also studied

restrictive variants of a Bayesian classifier, but it was consistently outperformed

by the other base methods, both as a classifier and as a base method in meta

methods. Therefore we do not include these results here.)

44

4.5 Experiments

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Base-SVM

Base-Centroid

e
rr

o
r

loss

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16
SVM disjoint splitting

SVM resampling A

SVM resampling B

e
rr

o
r

loss

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Centroid disjoint splitting

Centroid resampling A

Centroid resampling B

e
rr

o
r

loss

Figure 4.5: Loss-Error Tradeoff for ”Drama vs. Horror”

• The k-split meta method, based on (non-restrictive variants of) either SVM or

Centroid, where k was varied from 1 to 16.

• Two variants of the k-fold random resampling meta method, one with replace-

ment of drawn samples (variant A) and one without replacement for the same

training partition (variant B). Each one of these was based on either SVM or

Centroid. k was varied from 1 to 16, and the number m of samples per training

partition was set to 1.5 ∗ (#training docs)/k (e.g., 375 for a total training set

of 500 documents and k = 2 partitions).

Our systematic experiments capture the behavior of classifiers and meta classifiers

for pairs of topics such as ”Drama vs. Horror” for IMDB data or ”rec.autos vs.

rec.motorcycles” for the Newsgroups data. For each data set we identified all topics

with sufficiently many documents (> 900 for Newsgroups, > 550 for IMDB) for

training and testing. These were 17 topics for Newsgroups and 5 for the genres of

IMDB documents. We randomly choose 100 topic pairs from Newsgroups and 10

from IMDB. We computed micro-averaged results for these topic pairs.

45

4 Restrictive Meta Classification

4.5.2 Results

Baseline Experiments

Figure 4.5 illustrates the loss-error tradeoff for the two base methods SVM and Cen-

troid, the k-split meta method and the two variants of random resampling. A typical

observation is that being willing to lose up to 40 percent of the documents by ab-

staining on low-confidence decisions could reduce the classification error from about

20 percent down to less than 10 percent. This behavior was consistent across all

methods, with variation of the quantitative results.

When comparing k-split vs. random resampling (Figure 4.6), we see that resampling

(both variants) usually led to lower loss but often to significantly higher error for

the same number of partitions. But the affordable loss can be effectively controlled

by our tuning procedure; so for the same tolerable loss, k-split may simply use a

slightly smaller number of partitions and would still usually be at least as good as

resampling in terms of error. The analytical estimators for document loss turned

out to be fairly accurate and slightly conservative. The estimator for error, on the

other hand, turned out to be optimistically biased and moderately accurate at best.

Figure 4.9 illustrates this on the example of two IMDB topics.

It is much easier to construct accurate and computationally inexpensive estimators

for the k-split meta method than for the resampling approach. Therefore, we will

disregard resampling in our discussion of use-case results in the next subsection.

The simple Centroid method as a basis for the k-split and resampling meta methods

performed amazingly well relative to the theoretically much superior SVM classifiers.

However, the Centroid-based meta methods did exhibit a non-negligible penalty in

terms of classification error.

Use-Case Experiments

In a second line of experiments we studied how well our procedure for goal-oriented

tuning was indeed able to determine practically viable parameter settings (Fig-

ure 4.7). Here we gave ourselves a goal for the acceptable loss threshold, ran our

automatic tuning procedure for the various methods, and finally evaluated the tuned

methods on the held-out validation data. The base methods can exactly control the

loss, and thus inherently performed much better in terms of the actual loss. In terms

of error, the base Centroid method was also superior to the Centroid-based k-split

meta method, but lost against the SVM-based k-split meta method (for the same

loss goal). In situations where the low error rate is critical (e.g., when automatically

46

4.5 Experiments

selecting new, initially unlabeled, training documents for a focused crawler), this

gain may be important. The SVM-based k-split meta method was still outperformed

by the base SVM method (albeit sometimes only by a small margin), but the key

point here is that base SVM requires expensive cross-validation or even leave-one-out

validation for building estimators.

Figure 4.8 compares the training times for the various meta methods and base meth-

ods that are necessary to construct the estimators. Base SVM without any partition-

ing would often be considered prohibitively expensive for interactive applications (i.e.,

when the training and estimation procedures themselves are part of user-perceived

response times).

4.5.3 Summary and Lessons Learned

Summary

We have gained new insights into the fundamental tradeoffs between classification ac-

curacy, loss in ternary classification, amount of necessary training data, and training

efficiency.

The experiments clearly show that our analytical estimators are useful for driving the

tuning procedure. In terms of absolute quality and meeting the error and loss goals

of the application, the k-split meta methods are very competitive. The restrictive

variant of the basic SVM classifier still is usually the best classifier, but its training

and tuning time is an order of magnitude higher than the corresponding cost of the

k-split meta method.

Lessons Learned

Our findings suggest the following guidelines for selecting the most appropriate

method and tuning it towards a given application setting:

• When only few training documents (say < 100) are available and the time needed

for training (incl. error estimation) is uncritical, then the restrictive variant

of SVM is the method of choice. Its accuracy is usually the best among all

competitors, and it can be easily tuned, as shown in this chapter, for a specified

loss tolerance. A typical situation where these properties are important is for

classifying query results in a personalized search engine. Such a system would

be trained with few documents that reflect an individual user’s interest profile,

but this is performed offline, i.e., not within the response time of a query, so

47

4 Restrictive Meta Classification

that training efficiency is not critical. At query time, it may be desirable for an

advanced user to tolerate a certain loss and see only query results that clearly

fall into the given scope of interest.

• When only few training documents (say < 100) are available and the efficiency of

training (incl. error estimation) is critical, then the restrictive Centroid variant

is the method of choice. Its accuracy is worse than for the other methods, but

may still be acceptable to the application. Moreover, it can be easily tuned

with regard to the accuracy-loss tradeoff. Last but not least, its training time is

drastically shorter than that of an SVM classifier on the same training data. A

situation where these arguments in favor of restrictive Centroid apply is within an

expert user’s focused crawler with online re-training [116]. Here a classifier may

start with very few, manually selected, training documents that capture a user’s

interest profile. To incrementally improve the focused crawler, semisupervised

learning techniques can be used to automatically select additional training data

among the automatically classified documents and to dynamically re-train the

classifier. As this additional training data comes with a non-negligible error

probability, it may be important to accept only the highest-confidence documents

and tolerate a certain loss. As the re-training is performed within an interactive

session with an expert user, its efficiency is highly critical.

• When a medium or large number (say ≥ 100) of training documents are available

and training efficiency (incl. error estimation) is a critical issue, then the k-split

meta method with SVM as base method is most appropriate (with a reasonably

chosen value of k, e.g. k = 4, so that the training partitions are sufficiently

large). Its training time is substantially shorter than for restrictive SVM, and its

accuracy is competitive to SVM, albeit not quite as good, and significantly better

than that of restrictive Centroid. With regard to the accuracy-loss tradeoff, the

k-split meta method can be automatically tuned using the estimators developed

in this paper. A situation where this case arises is in generating, maintaining, and

organizing Web information portals or digital libraries on special topics (e.g., for

hiking and climbing, for music styles, for cultural heritage projects, etc.). Here

a classifier can be used to aid a human portal administrator or digital-library

curator to organize information more easily, quickly, and accurately. In such an

environment, there should be a sufficient number of initial training documents,

but the administrator may occasionally select additional high-quality documents

for re-training, e.g., when she decides that a topic with (too) many documents

should be subdivided into more specialized topics. If such reorganizations are to

48

4.5 Experiments

be carried out interactively, allowing the administrator to intellectually validate

the resulting classification quality, then efficient re-training is a must and flexible

control over accuracy versus loss is important.

49

4 Restrictive Meta Classification

Newsgroups
Disjoint k-Split Resampling A Resampling B Method

Partitions avg(error) avg(loss) avg(error) avg(loss) avg(error) avg(loss) #TrainDocs

2 0.03 0.052 0.036 0.038 0.037 0.024

4 0.018 0.131 0.023 0.101 0.024 0.09 SVM

8 0.008 0.26 0.013 0.2 0.013 0.188 250

16 0.003 0.456 0.005 0.368 0.005 0.351

2 0.024 0.04 0.027 0.03 0.029 0.02

4 0.016 0.097 0.019 0.076 0.02 0.066 SVM

8 0.008 0.187 0.011 0.15 0.013 0.141 500

16 0.004 0.331 0.006 0.262 0.006 0.256

2 0.057 0.05 0.062 0.04 0.067 0.02

4 0.038 0.135 0.045 0.111 0.049 0.084 Centroid

8 0.023 0.314 0.029 0.248 0.03 0.206 250

16 0.014 0.59 0.017 0.49 0.017 0.445

2 0.057 0.032 0.059 0.03 0.062 0.016

4 0.041 0.09 0.048 0.073 0.048 0.058 Centroid

8 0.025 0.194 0.031 0.153 0.033 0.132 500

16 0.014 0.397 0.019 0.296 0.019 0.276

IMDB
Disjoint k-Split Resampling A Resampling B Method

#Partitions avg(error) avg(loss) avg(error) avg(loss) avg(error) avg(loss) #TrainDocs

2 0.113 0.193 0.139 0.133 0.155 0.078

4 0.068 0.399 0.103 0.315 0.092 0.288 SVM

8 0.026 0.629 0.046 0.533 0.048 0.51 250

16 0.005 0.791 0.017 0.739 0.016 0.729

2 0.176 0.171 0.142 0.105 0.166 0.067

4 0.14 0.359 0.119 0.246 0.117 0.228 SVM

8 0.066 0.6 0.068 0.409 0.072 0.413 500

16 0.018 0.789 0.016 0.629 0.017 0.612

2 0.105 0.149 0.119 0.141 0.13 0.063

4 0.067 0.376 0.088 0.291 0.085 0.25 Centroid

8 0.027 0.623 0.045 0.545 0.051 0.47 250

16 0.008 0.895 0.026 0.816 0.024 0.771

2 0.125 0.098 0.126 0.071 0.151 0.032

4 0.085 0.264 0.091 0.215 0.095 0.176 Centroid

8 0.027 0.467 0.05 0.395 0.067 0.345 500

16 0.012 0.66 0.018 0.631 0.016 0.583

Figure 4.6: Micro-Averaged Results for Different Restrictive Splitting and Resam-

pling Methods for the Newsgroups and the IMDB Data Set

50

4.5 Experiments

Newsgroups
Loss Disjoint k-Split BaseMethod Method

Threshold Avg(error) Avg(error) #TrainDocs

0.1 0.033 0.021

0.3 0.017 0.009 SVM

0.5 0.011 0.005 250

0.7 0.007 0.003

0.9 0.004 0.002

0.1 0.024 0.014

0.3 0.013 0.005 SVM

0.5 0.009 0.003 500

0.7 0.006 0.002

0.9 0.005 0.001

0.1 0.059 0.074

0.3 0.0403 0.045 Centroid

0.5 0.027 0.018 250

0.7 0.017 0.01

0.9 0.014 0.006

0.1 0.052 0.068

0.3 0.032 0.039 Centroid

0.5 0.021 0.015 500

0.7 0.016 0.008

0.9 0.015 0.005

IMDB
Loss Disjoint k-Split BaseMethod Method

Threshold Avg(error) Avg(error) #TrainDocs

0.1 0.176 0.15

0.3 0.137 0.114 SVM

0.5 0.095 0.076 250

0.7 0.069 0.046

0.9 0.028 0.042

0.1 0.176 0.154

0.3 0.149 0.108 SVM

0.5 0.109 0.075 500

0.7 0.086 0.042

0.9 0.047 0.025

0.1 0.136 0.121

0.3 0.122 0.088 Centroid

0.5 0.08 0.073 250

0.7 0.074 0.053

0.9 0.038 0.042

0.1 0.153 0.128

0.3 0.128 0.092 Centroid

0.5 0.097 0.065 500

0.7 0.07 0.039

0.9 0.045 0.033

Figure 4.7: Micro-Averaged Tuning Results for the Newsgroups and the IMDB Data

Set

51

4 Restrictive Meta Classification

partitions k-Split SVM k-Split Centroid

1 19.64 0.67

2 8.44 0.44

4 4.12 0.32

8 2.0 0.2

16 1.12 0.19

L-fold SVM Centroid

2 8.22 0.45

3 25.65 1.05

4 52.88 1.64

5 69.55 2.3

L-1-O SVM L-1-0 Centroid

670064.64 2.64

Figure 4.8: Training and Estimation Times for k-Split, L-fold Cross Validation, and

Leave-one-out (in Seconds), on 3 GHz Intel Pentium 4 PC

Disjoint k-Split Resampling A Resampling B Method

#par- #Train-

titions Loss estLossCV estLossKL Error estErrorCV estErrorKL Loss Error Loss Error Docs

2 0.266 0.247 0.462 0.126 0.11 0.043 0.205 0.157 0.113 0.156

4 0.566 0.581 0.688 0.063 0.046 0.009 0.473 0.088 0.399 0.102 SVM

8 0.869 0.91 0.922 0.019 0.008 0.001 0.809 0.046 0.726 0.05 250

16 0.99 0.999 0.999 0 0 0.002 0.989 0 0.959 0.06

2 0.179 0.215 0.311 0.082 0.099 0.041 0.141 0.096 0.115 0.096

4 0.418 0.54 0.514 0.061 0.028 0.011 0.291 0.075 0.312 0.056 SVM

8 0.744 0.871 0.813 0.023 0.002 0.001 0.609 0.045 0.541 0.026 500

16 0.947 0.995 0.996 0 0 0 0.85 0.039 0.862 0.043

2 0.409 0.29 0.635 0.199 0.311 0.133 0.141 0.255 0.09 0.234

4 0.593 0.778 0.849 0.175 0.1 0.05 0.686 0.092 0.411 0.168 Centroid

8 0.869 0.948 0.976 0.057 0.03 0.01 0.84 0.063 0.79 0.077 250

16 0.996 0.999 0.1 0 0.003 0.004 0.959 0 0.983 0.071

2 0.494 0.192 0.655 0.18 0.368 0.18 0.1 0.225 0.056 0.24

4 0.647 0.867 0.865 0.075 0.059 0.08 0.309 0.243 0.321 0.182 Centroid

8 0.809 0.737 0.976 0.0462 0.012 0.015 0.676 0.1 0.65 0.118 500

16 0.95 0.998 0.999 0 0.004 0.001 0.898 0 0.856 0.041

Figure 4.9: Different Restrictive Splitting and Resampling Methods for ”Drama vs.

Horror”

52

5 Using Restrictive Meta Classification

for Junk Elimination

Up to now it was assumed that all underlying classifiers had sufficient training data:

both positive and negative samples of every thematic that might occur among the test

documents. In this chapter we drop this assumption and make a major step forward

to cope with corpora that are not necessarily “in tune” with the thematic classes

that were defined apriori. This is a very significant case with “open” corpora like the

Web with a huge amount of topics and documents for which comprehensive training

is absolutely impossible. It is not clear how a classifier trained to discriminate topics

based on training data about ”computer sciene”, ”mathematics”, and ”physics” will

behave on documents about, say, ”esoterism”; there is a significant difference between

negative examples and ”junk” documents.

5.1 Tradeoffs for Restrictive Classification in the Junk

Elimination Scenario

In this section we describe the tradeoffs that occur in restrictive classification if the

test set contains junk documents (beside documents of interest). Consider a training

set T consisting of documents from two classes pos and neg, and a set of unlabeled

documents U containing documents from pos and neg, and junk documents that

are not in these classes. (The scenario can be easily generalized to a set of l classes

C = {c1, . . . , cl} instead of two classes.) Given a document d ∈ U , a restrictive

classifier gives us the result +1 if it classifies the document into pos, −1 if it classifies

the document into neg, 0 if the classifier abstains. The possible combinations between

the real classes and the possible results of a classifier are shown in the contingency

table in Figure 5.1. In this notation N+ is the set of documents in neg which are

assigned to class pos by the classifier, J0 is the set of junk documents from U where

the classifier abstains, etc.

53

5 Using Restrictive Meta Classification for Junk Elimination

classification

+ - 0

pos P+ P- P0

real class neg N+ N- N0

junk J+ J- J0

Figure 5.1: Contingency Table for Restrictive Classification with Junk Reduction

An appropriate restrictive classifier should optimize the following quality measures:

1. Maximize junk reduction (fraction of junk documents dismissed by the classi-

fier):

junkRed :=
|J0|

|J + | + |J − | + |J0|
(5.1)

2. Minimize loss (fraction of dismissed documents from the classes of interest pos

and neg):

loss :=
|P0| + |N0|

|P + | + |P − | + |N + | + |N − | + |P0| + |N0|
(5.2)

3. Minimize error (fraction of non-dismissed documents classified into the wrong

class):

error :=
|P − | + |N + | + |J + | + |J − |

|P + | + |P − | + |N + | + |N − | + |J + | + |J − |
(5.3)

As document reduction (not to confuse with the loss), we define the fraction of

documents in U , where the classifier abstains:

docRed :=
|P0| + |N0| + |J0|

|U |
(5.4)

The document reduction can be observed directly from the classifier output without

knowing the real class labels of the documents in U . The document reduction has an

implicit influence on junkRed, loss and error.

In practice we observe a tradeoff between the loss on one hand and junk-reduction

and error on the other hand.

5.2 Making Simple Methods Restrictive

We can use confidence measures to make simple methods restrictive, as described in

Section 4.1.

54

5.3 Restrictive Meta Methods

5.3 Restrictive Meta Methods

For meta classification with a given set V = {v1, . . . , vk} of k binary classifiers we can

perform meta classification using a linear classifier combination with thresholding, as

described in Section 4.2:

Meta(d) =

+1 if
∑n

i=1 R(vi, d) · w(vi) > t1
−1 if

∑n
i=1 R(vi, d) · w(vi) < t2

0 otherwise

(5.5)

5.4 A Probabilistic Model for Restrictive Meta Methods in a

Junk Reduction Scenario

In this section we extend the probabilistic model of Section 4.4.3 to the case that

test documents may contain junk documents and we provide approximations for loss,

error and junkRed. This leads to a better understanding of why meta classification

can be used for junk reduction.

Consider the unanimous-decision meta method. We associate a Bernoulli random

variable Xi with each classification method vi, where Xi = 1 if vi classifies a document

into class pos and Xi = 0 if vi classifies a document into class neg. We want to

compute the probability P (X1 = . . . = Xk|Junk) that the classifiers vi provide a

unanimous decision if they are presented a junk document. From basic probability

theory it follows that

P (X1 = 1 ∧ X2 = 1|Junk) =

cov(X1, X2|Junk) + P (X1 = 1|Junk) · P (X2 = 1|Junk) (5.6)

Where

cov(X1, X2|Junk) =
1

n − 1

∑

j

(x1 − x1)(x2 − x2) (5.7)

is the covariance for the data points (x1, x2) of the joint distribution of (X1, X2) on

the set of junk documents.

To model the most important correlations among l > 2 classification methods we

use a tree dependence model, which is a well known approximation method in prob-

abilistic IR ([100]). We define a Dependence Graph G = (V,E) where V consists of

the Bernoulli variables Xi and which contains for all Xi,Xj (i 6= j) an undirected

55

5 Using Restrictive Meta Classification for Junk Elimination

edge e(Xi, Xj) with weight w(e(Xi, Xj))) = cov(Xi, Xj). We approximate the De-

pendence Graph by a maximum spanning tree G′ = (V,E′) which maximizes the

sum of the edge weights. The nodes in G′ with no edges in between are considered

as independent. So we obtain:

P (X1 = x1, . . . , Xk = xk|Junk) =

P (Xroot = 1|Junk)
∏

(i,j)∈E′

P (Xi = xi, Xj = xj|Junk)

P (Xi = xj|Junk)
(5.8)

where Xroot is the root node of the tree G′ and xi ∈ {0, 1}. Now we introduce the

following special case: For any two classification methods vi,vj the covariance has

approximately the same value cov. With w(e(Xi, Xj)) = cov we can (without loss of

generality) choose X1 as the root node and the edges (Xi, Xi+1) as tree edges.

Now we have:

P (X1 = 1, . . . , Xk = 1|Junk) =

P (X1 = 1|Junk)

k−1
∏

i=1

P (Xi+1 = 1|Xi = 1|Junk) =

P (X1 = 1|Junk)

k−1
∏

i=1

P (Xi = 1, Xi+1 = 1|Junk)

P (Xi = 1|Junk)
(5.9)

By considering equation 5.6 and the above assumption about the covariance we obtain

P (X1 = 1, . . . , Xk = 1|Junk) =

P (X1 = 1|Junk)

k−1
∏

i=1

P (Xi = 1|Junk)P (Xi+1 = 1|Junk) + cov

P (Xi = 1|Junk)
(5.10)

Analogously we obtain P (X1 = 0, . . . , Xk = 0|Junk).

If we assume that for junk documents the classes pos and neg are equally likely, we

can substitute in the above formulas:

P (Xi = 1|Junk) = P (Xi = 0|Junk) =
1

2
(5.11)

For the junk reduction we substitute the above formulas into:

junkRed = 1 − P (X1 = . . . = Xk|Junk) =

1 − (P (X1 = 0, . . . , Xk = 0|Junk) + P (X1 = 1, . . . , Xk = 1|Junk)) (5.12)

56

5.4 A Probabilistic Model for Restrictive Meta Methods in a Junk Reduction Scenario

To compute the probabilities that all classifiers vi classify a document into the same

class, if the document belongs to one of the classes in C = {pos, neg}, we associate a

Bernoulli variable X ′
i with each classification method vi, where X ′

i = 1 if vi classifies

a document correctly, 0 otherwise. We want to compute the probabilities P (X ′
1 =

1, . . . , X ′
k = 1|C) and P (X ′

1 = 0, . . . , X ′
k = 0|C) that all classifiers classify a document

correctly / incorrectly if the document belongs to one of the classes in C.

With analogous arguments as above we obtain the following approximation:

P (X ′
1 = 1, . . . , X ′

k = 1|C) =

P (X ′
1 = 1|C)

k−1
∏

i=1

P (X ′
i = 1|C)P (X ′

i+1 = 1|C) + cov′

P (X ′
i = 1|C)

(5.13)

where cov′ is the covariance on the documents in C. Analogously we obtain P (X ′
1 =

0, . . . , X ′
k = 0|C).

Let P (C) be the probability that a document belongs to a class in C and P (Junk) be

the probability that a document is a junk document. Then we obtain approximations

for junkRed, loss, error, and docRed by inserting the above expressions into:

junkRed = 1 − (P (X1 = 1, . . . , Xk = 1|Junk) + P (X1 = 0, . . . , Xk = 0|Junk))

(5.14)

loss = 1 − (P (X ′
1 = 1, . . . , X ′

k = 1|C) + P (X ′
1 = 0, . . . , X ′

k = 0|C)) (5.15)

error =
P (C)P (X ′

1 = 0, . . . , X ′
k = 0|C) + P (Junk)P (X1 = . . . = Xk|Junk)

1 − junkRed · P (Junk) − loss · P (C)
(5.16)

docRed = junkRed · P (Junk) + loss · P (C) (5.17)

As an illustrative example we consider the case that the k > 2 classification methods

have the same probability p < 0.5 to misassign a document from C (i.e. the classi-

fication methods perform better than random), that in the case of a junk document

the assignment of the classes pos or neg are equally likely, that we have in all cases a

covariance c < p(1− p) (i.e. the classification methods are not perfectly correlated.),

and that our document corpus contains 50 percent junk documents. In this case we

would obtain for junkRed, loss and error:

junkRed = 1 −

(

c + 1/4

1/2

)k−1

(5.18)

57

5 Using Restrictive Meta Classification for Junk Elimination

loss = 1 −

(

(1 − p)

(

c + (1 − p)2

1 − p

)k−1

+ p

(

c + p2

p

)k−1
)

(5.19)

error =
p
(

c+p2

p

)k−1
+
(

c+1/4
1/2

)k−1

(

c+1/4
1/2

)k−1
+ (1 − p)

(

c+(1−p)2

1−p

)k−1
+ p

(

c+p2

p

)k−1
(5.20)

It is easy to show that for k → ∞ the loss converges monotonically to 1, and the

error to 0 (i.e. with more classification methods we can obtain a lower error but pay

the price of a higher loss). Furthermore also junkRed converges to 1 and the salient

invariant loss > junkRed holds. Even 1−loss
1−junkRed converges to ∞; this means, that

with increasing k we dismiss much more junk documents than documents of interest.

The covariance plays the role of a “smoothing constant”: with higher correlated

classification methods the convergence of both loss and error is slowed down.

5.5 Experiments

5.5.1 Setup

We performed a series of experiments with real-life data from

1. The Newsgroups collection as described in Section 4.5

2. The Internet Movie Database (IMDB) described in Section 4.5.

3. The Reuters articles [80]. This is the most widely used test collection for text

categorization research. The collection contains 21,578 Reuters newswire arti-

cles; 12,904 of them are subdivided into categories (’earn’, ’grain’, ’trade’, etc.).

For each data set we identified all topics with sufficiently many documents. These

were 20 topics for Newsgroups, 7 for Reuters and 9 from IMDB. Among these topics

we randomly chose 100 topic pairs from Newsgroups, 30 from IMDB and 20 from

Reuters. For each topic pair we randomly chose 25, 50 or 100 training documents per

class and kept 500 documents per class for Newsgroups, 200 documents per class for

IMDB and 400 documents per class from Reuters (distinct from the training set and

also randomly chosen) for the validation of the classifiers for each pair. Additionally

we ”spoiled” the validation set for each pair by increasing this set by 50 percent

by adding randomly chosen ”junk documents” from different topics. Finally, we

computed macro-averaged results for these topic pairs.

58

5.5 Experiments

5.5.2 Results

Meta restrictive Base Base

base1 base2 base3 base1 base2 base3

avg avg avg avg avg avg avg avg
TrainDocs (docRed) (error) (error) (error) (error) (error) (error) (error) Dataset

25 0.159 0.489 0.493 0.489 0.489 0.52 0.515 0.518

50 0.208 0.457 0.463 0.457 0.457 0.506 0.499 0.499 IMDB

100 0.188 0.432 0.439 0.433 0.433 0.483 0.475 0.479

25 0.165 0.344 0.358 0.358 0.358 0.419 0.416 0.417

50 0.166 0.316 0.327 0.328 0.329 0.398 0.396 0.397 Newsg.

100 0.143 0.31 0.318 0.315 0.315 0.385 0.381 0.381

25 0.099 0.326 0.335 0.334 0.331 0.378 0.374 0.375

50 0.086 0.318 0.323 0.319 0.318 0.366 0.362 0.362 Reuters

100 0.078 0.314 0.321 0.316 0.315 0.360 0.357 0.356

79 0.074 0.301 0.282 0.319 0.327 0.323 0.348 0.351 Web

Figure 5.2: Error of Meta Classification on Reuters, Newsgroups, and IMDB

Meta restrictive Base

base1 base2 base3 base1 base2 base3 D
a
t
a
s
e
t

TrainDocs avg avg avg avg avg avg avg avg avg
(docRed) (loss) (jRed) (loss) (loss) (loss) (jRed) (jRed) (jRed)

25 0.159 0.147 0.183 0.149 0.146 0.148 0.181 0.186 0.182

IM
D

B
50 0.208 0.192 0.239 0.188 0.186 0.187 0.246 0.252 0.248

100 0.188 0.167 0.231 0.165 0.162 0.163 0.234 0.24 0.238

25 0.165 0.109 0.276 0.118 0.122 0.12 0.259 0.251 0.254

N
ew

sg
.

50 0.166 0.098 0.301 0.103 0.108 0.108 0.29 0.281 0.282

100 0.143 0.077 0.275 0.078 0.079 0.078 0.272 0.271 0.273

25 0.099 0.047 0.202 0.055 0.057 0.055 0.186 0.184 0.187

R
eu

te
rs

50 0.086 0.034 0.188 0.038 0.037 0.037 0.181 0.182 0.184

100 0.078 0.024 0.186 0.034 0.029 0.028 0.167 0.178 0.179

79 0.074 0.044 0.144 0.032 0.055 0.06 0.173 0.118 0.143 W
eb

Figure 5.3: Loss and JunkReduction of Meta Classification on Reuters, Newsgroups

and IMDB

59

5 Using Restrictive Meta Classification for Junk Elimination

In all discussed experiments, the standard bag-of-words model (using tf-values to

build L1-normalized feature vectors) with different feature selection methods was

used for document representation and we used SVM as learning algorithm

In our experiments we considered the following base methods:

• base1: Feature selection by Mutual Information (top 200 terms); learning by

linear SVM

• base2: Feature selection by Information Gain(top 200 terms); learning by linear

SVM

• base3: Feature selection by Chi Squared Statistics (top 200 terms); learning by

linear SVM

There are many alternative ways to build the base classifiers, e.g. using Naive Bayes,

Decision Trees, etc. Here we chose linear SVM because it has been shown to often

outperform other methods in text classification tasks - see e.g. [44].

In the first experimental serial we compared the meta results with the results of

the underlying base methods and the restrictive base methods (inducing the same

document reduction as the meta method). (Figures 5.2 and 5.3)

In the second experimental serial we compared each base method for different degrees

of restrictivity 1 (inducing different document reductions). (Figure 5.4).

The main observations are:

• For all experiments the average error of the meta method was lower than the

error of the best underlying base method.

• The junk reduction is (for restrictive base methods as well as for meta methods)

always significantly higher than the loss (i.e. we dismiss a higher percentage of

junk than of documents of interest).

• For the IMDB data set the ratio junkRed : loss is best for the best base method,

for the Reuters and Newsgroups data sets this ratio is best for the meta method.

• We can clearly observe the tradeoffs between loss on the one hand and error and

junkRed on the other hand described in Section 5.1 and analyzed in Section 5.4.

1We randomly chose the training and test documents once more for these experiments, causing

minimal differences in the results for docRed = 0 compared to the base methods of the first

experimental serial.

60

5.5 Experiments

As an application example we tested junk reduction for a Web crawl. We obtained our

training set from a bookmark file containing 79 documents of the categories ”Movies”

and ”Computer Science” and started the crawl on the portals shown in Figure 5.5.

By this crawl we obtained an overall number of 1061 documents consisting of 400

documents about computer science, 348 about movies, and 313 junk documents. We

evaluated the techniques described above on this data set. The results are shown

in Figures 5.2 through 5.4 (data set ”Web”). As in the previous experiments, the

junk reduction was much higher than the loss for all restrictive methods. In terms

of loss, error and junkReduction the meta method performed better than two of the

3 underlying base methods but the best restrictive base method outperformed the

meta method in this experiment.

5.5.3 Discussion

The experiments show that all restrictive methods (i.e. meta methods as well as

restrictive base methods) dismiss a significantly higher percentage of junk than of

documents of interest, and additionally decrease the classification error on all data

sets.

Comparing meta classifiers and restrictive base classifiers there is no clear winner:

For the IMDB and Web data, the best base classifier outperformed the meta classifier;

for Newsgroups and Reuters, the meta classifier outperformed the base classifiers.

61

5 Using Restrictive Meta Classification for Junk Elimination

base1 base2 base3 base1 base2 base3 base1 base2 base3

avg avg avg avg avg avg avg avg avg
docRed (error) (error) (error) (loss) (loss) (loss) (jRed) (jRed) (jRed) Dataset

0 0.517 0.509 0.509 0 0 0 0 0 0

0.1 0.498 0.492 0.489 0.094 0.091 0.092 0.111 0.117 0.116

0.2 0.48 0.472 0.47 0.183 0.182 0.183 0.234 0.237 0.233

0.3 0.461 0.449 0.451 0.278 0.273 0.277 0.345 0.354 0.346

0.4 0.441 0.431 0.433 0.372 0.369 0.374 0.456 0.462 0.452 IMDB

0.5 0.416 0.407 0.412 0.466 0.464 0.47 0.568 0.572 0.561

0.6 0.397 0.389 0.391 0.567 0.565 0.567 0.666 0.669 0.666

0.7 0.375 0.369 0.372 0.67 0.667 0.67 0.76 0.765 0.759

0.8 0.351 0.345 0.348 0.777 0.776 0.777 0.847 0.849 0.847

0.9 0.309 0.313 0.307 0.884 0.885 0.885 0.932 0.93 0.93

0 0.42 0.417 0.417 0 0 0 0 0 0

0.1 0.386 0.384 0.383 0.073 0.075 0.074 0.154 0.15 0.153

0.2 0.348 0.346 0.345 0.145 0.147 0.146 0.31 0.307 0.309

0.3 0.307 0.305 0.304 0.218 0.22 0.219 0.463 0.461 0.462

0.4 0.261 0.259 0.26 0.297 0.298 0.298 0.605 0.605 0.604 Newsg.

0.5 0.216 0.215 0.216 0.385 0.387 0.387 0.729 0.727 0.726

0.6 0.176 0.172 0.173 0.488 0.487 0.487 0.825 0.827 0.825

0.7 0.139 0.135 0.137 0.602 0.6 0.601 0.897 0.899 0.897

0.8 0.108 0.102 0.105 0.727 0.725 0.726 0.947 0.95 0.948

0.9 0.081 0.076 0.078 0.86 0.859 0.859 0.98 0.982 0.981

0 0.38 0.377 0.377 0 0 0 0 0 0

0.1 0.336 0.336 0.334 0.057 0.06 0.058 0.185 0.181 0.183

0.2 0.291 0.292 0.29 0.119 0.121 0.119 0.362 0.359 0.361

0.3 0.247 0.247 0.245 0.188 0.19 0.189 0.523 0.52 0.522

0.4 0.209 0.209 0.208 0.272 0.274 0.275 0.656 0.652 0.65 Reuters

0.5 0.174 0.172 0.172 0.369 0.369 0.37 0.763 0.762 0.761

0.6 0.142 0.144 0.144 0.477 0.479 0.48 0.847 0.842 0.841

0.7 0.113 0.111 0.109 0.596 0.595 0.595 0.908 0.909 0.91

0.8 0.087 0.083 0.085 0.724 0.723 0.723 0.952 0.955 0.954

0.9 0.068 0.064 0.068 0.86 0.859 0.859 0.981 0.983 0.981

0 0.323 0.348 0.351 0 0 0 0 0 0

0.1 0.266 0.311 0.316 0.041 0.074 0.079 0.24 0.163 0.15

0.2 0.214 0.265 0.284 0.095 0.143 0.164 0.45 0.335 0.284

0.3 0.168 0.215 0.229 0.166 0.214 0.225 0.62 0.505 0.479

0.4 0.152 0.198 0.206 0.27 0.31 0.317 0.709 0.613 0.597 Web

0.5 0.134 0.162 0.177 0.377 0.4 0.409 0.792 0.738 0.716

0.6 0.127 0.146 0.167 0.497 0.509 0.521 0.843 0.815 0.786

0.7 0.116 0.119 0.15 0.62 0.62 0.634 0.888 0.888 0.856

0.8 0.113 0.117 0.122 0.745 0.746 0.747 0.93 0.927 0.923

0.9 0.131 0.056 0.093 0.873 0.862 0.868 0.962 0.987 0.974

Figure 5.4: Error, Loss and Junk Reduction for Restrictive Base Methods on Reuters,

Newsgroups, and IMDB and T = 25 TrainDocs per Class and for Web

Documents with T = 79 TrainDocs per Class

62

5.5 Experiments

Computer Science:

http://dir.yahoo.com/Science/Computer_Science/

http://www.developer.com/

http://www.techweb.com/

http://directory.google.com/Top/Computers/Computer_Science/

http://library.albany.edu/subject/csci.htm

Movies:

http://www.allmovieportal.com/

http://www.galatta.com/

http://adutopia.subportal.com/cgi-bin/apollo/apollo.cgi

http://dir.yahoo.com/Entertainment/Movies_and_Film/Genres/

http://www.badmovies.org/

Figure 5.5: Starting Points for the Web Crawl

63

6 Restrictive Meta Clustering

This chapter addresses the problem of automatically structuring heterogenous doc-

ument collections by using clustering methods. We adapt and extend the concept

of restrictive (supervised) classification, described in the previous chapter to (unsu-

pervised) clustering. So, in contrast to traditional clustering, we study restrictive

methods and ensemble-based meta methods that may decide to leave out some doc-

uments rather than assigning them to inappropriate clusters with low confidence.

These techniques result in higher cluster purity, and better overall accuracy, and

make unsupervised self-organization more robust.

6.1 Making Simple Methods Restrictive

Analogously to the idea of restrictive classification, as described in the previous chap-

ters, the idea of restrictive clustering is to avoid making a decision about a document

at all if that decision can be made only with low confidence. So out of a given set of

unlabeled data U , our method chooses a subset S of documents that are assigned to

clusters, and abstains on the documents in U − S. We call the ratio |U − S|/|U | of

dismissed documents the document loss.

We can use confidence measures to make simple methods restrictive. For the different

variants of the k-means method a natural confidence measure is the inverse distance

of a document vector from the nearest centroid (or some other similarity measure).

So we can tune these methods by requiring that the documents accepted for one

of the clusters have a distance below some threshold, and abstain otherwise. The

threshold is our tuning parameter.

Given an application-acceptable loss of L percent, we can make a clustering method

restrictive by dismissing the L percent of the documents with the lowest confidence

values. Although this is a fairly straightforward idea, we are not aware of prior

literature that has explicitly considered such restrictive clustering methods.

65

6 Restrictive Meta Clustering

6.2 Restrictive Meta Methods

For meta clustering we are given a set C = {c1, . . . , cl} of different clustering methods.

A document d is assigned to one of k clusters with labels {1, . . . , k}: ci(d) ∈ {1, . . . , k}.

The idea of meta clustering is now to combine the different clustering results in an

appropriate way.

6.2.1 Metamapping

To combine the ci(d) into a metaresult, the first problem is to determine which cluster

labels of different methods ci correspond to each other. Note that cluster label 2 of

method ci does not necessarily correspond to the same cluster label 2 of method

cj , but could correspond to, say, cluster label 5. With perfect clustering methods

the solution would be trivial: the documents labeled by ci as a would be exactly the

documents labeled by cj as b, and we could easily test this with one representative per

cluster. This assumption is, of course, unrealistic; rather clustering results exhibit a

certain fuzziness so that some documents end up in clusters other than their perfectly

suitable cluster. Informally, for different clustering methods we would like to associate

the clusters whith each other which are “most correlated”

Formally, for every method ci we want to determine a bijective function mapi :

{1, . . . , k} → {1, . . . , k} which assigns each label a ∈ {1, . . . , k} assigned by ci to a

meta label mapi(a). By this mapping the clustering labels of the different methods

are associated with each other and we can define the clustering result for document

d using method ci as:

resi(d) := mapi(ci(d)) (6.1)

We now describe different ways to obtain the mapi functions.

Method A: Correlation-based Approach We want to maximize the correlation be-

tween the cluster labels. For sets A1, . . . , Ax, we can define their overlap as

overlap(A1, . . . , Ax) :=
|A1 ∩ . . . ∩ Ax|

|A1| + . . . + |Ax| − |A1 ∩ . . . ∩ Ax|
(6.2)

Now using

Aij := {d ∈ U |resi(d) = j} (6.3)

66

6.2 Restrictive Meta Methods

we can define the average overlap for a document set U and the set of clustering

methods C as

1

k

k
∑

j=1

1
(l
2

)

∑

(i,m)∈{1,...,k}2,i<m

overlap(Aij , Amj) (6.4)

We are interested in the mappings mapi which maximize the average overlap. How-

ever there is a combinatory explosion: there are k!l−1 possibilities to build map-

pings. This problem can be transformed into a multi-dimensional assignment prob-

lem (MAP) [96] which has been shown to be NP-complete; thus this approach is only

viable for small values of k and l.

A greedy approach is to maximize the overlap between pairs of clustering methods,

e.g. c1 and c2, c2 and c3, ..., cl−1 and cl, and to use transitivity to compute an overall

mapping. Each of these subproblems can be formulated as an assignment problem

that can be solved by the Hungarian Algorithm [76] which has been shown to have a

runtime complexity of O(k3). Since we have to solve l − 1 of such subproblems, the

complexity of the greedy approach is O(k3 · l).

An even greedier approach is to find for all ci−1 and ci the highest, second highest,

third highest, etc. overlap(Ai−1,j, Aij), to derive the mapping for ci−1 and ci and

to compute the overall mapping using again transitivity. This can be done by first

sorting the k2 overlap measures in time O(k2 log k2) = O(k2 log k), and at most one

scan of the obtained list. Thus the overall complexity is O(k2 log k · l).

Method B: Purity-based Approach Instead of maximizing the average overlap for

all mappings, one may consider a ranked list of meta clusters, ordered by their “pu-

rity”. The underlying idea of this approach is to prioritize the clusters that produce a

high overlap only in one particular (potentially proper) combination and low overlaps

otherwise. A detailed description of this approach can be found in our paper [112].

Method C: Association-Rule-based Approach Another approach is to use associ-

ation rules mining [10, 58], which was popularized for market basket analysis. Our

(shopping) items here would be tuples (ci, ci(d)) of clustering methods and cluster

labels. To every document d ∈ U we can now assign an itemset:

{(c1, c1(d)), . . . , (ck, ck(d))} (6.5)

For these itemsets we can now apply a data mining algorithm like the well known

Apriori algorithm [10] to compute a ranked list of association rules. As an example

67

6 Restrictive Meta Clustering

we could obtain the following rule:

{(c5, 3)} =⇒ {(c2, 4), (c3, 3)} (6.6)

This can be interpreted as: ”Cluster label 3 of method c5 corresponds to cluster label

4 of c2 and cluster label 3 of c3.”

Now starting with the highest ranked rule we can process the list of rules by succes-

sively deducing our mapings this way until we have obtained all mappings (ignoring

all mapping proposals from lower ranked rules which contradict previous, higher

ranked mappings).

More precisely we iteratively construct an (undirected) association graph G = (V,E),

with nodes consisting of all k ·l method-label pairs. To the initially empty set of edges

E, we successively add edges which do not violate the consistency constraint that

the label of one method must not be connected to more than one label of another

method, as described in the pseudo code in Figure 6.1.

initialize graph G = (V,E) with k*l vertices (c_i,label_j)

, i=1,..,l j=1,..,k and E empty

while (G contains < k*(l-1) edges) do

select next association rule :r_i: antecedent -> consequent

for all (c_i,a) in antecedent, (c_j,b) in consequent do

if (! Exists Label L with: Exists path from (c_i,L) to (c_j,b)

and ! Exists Label L with: Exists path from (c_i,a) to (c_j,L)

)

then

add {(c_i,a),(c_j,b)} to E

Figure 6.1: Construction of the Association Graph for Meta Mapping

Figure 6.2 shows an example of an association graph. We assign the same meta label

to all cluster labels which lie on a path in the graph.

Like for method A we can apply here also a greedier approach by computing the map-

ping for pairs of clustering methods and using transitivity to find the overall mapping.

The introduced approaches were designed for methods with constant pre-defined

number of resulting clusters (e.g. partitioning-based clustering algorithms, such as

k-means). The generalization for methods with a variable number of clusters, or

68

6.2 Restrictive Meta Methods

L �

L �

L �

L �

C �C �C �

Figure 6.2: Association Graph for l = 3 Clustering Methods and k = 4 Clusters

hierarchical clustering approaches is subject of our current work.

6.2.2 Metafunctions

After having computed the mapping we are given a set C = {c1, . . . , cl} of l clustering

methods with results resi(d). For simplicity we consider here the case of k = 2

clusters and choose resi(d) ∈ {+1,−1} for a document d, namely, +1 if d is assigned

to cluster 1, and -1 if d is assigned to cluster 2. We can combine these results into

a meta result: Meta(d) = Meta(res1(d), . . . , resl(d)) in {+1,−1, 0} where 0 means

abstention. This is analogous to combination of results in meta classification, as

described in Section 4.2.

Given thresholds t1 and t2, with t1 > t2, and weights w(ci) for the l underlying

clustering methods we compute Meta(d) as follows:

Meta(d) =

+1 if
∑l

i=1 resi(d) · w(ci) > t1
−1 if

∑l
i=1 resi(d) · w(ci) < t2

0 otherwise

(6.7)

These considerations can be easily extended to the case of k >= 2 possible clusters,

e.g., by computing the linear combination for each cluster label separately, and by

assigning the label with the maximum value to the document d if this value is above

some threshold.

Analogously to meta classification, the restrictive and tunable behavior is achieved

by the choice of the thresholds as t1 and t2. For this family of meta methods we

obtain the same special cases, as described in Section 4.2 for classification.

69

6 Restrictive Meta Clustering

6.2.3 A Probabilistic Model for Metaclustering

In this subsection we develop a simplified probabilistic model (for k = 2) to a better

understanding of why metaclustering works. Consider the unanimous-decision meta

clustering method. We assume that we have found appropriate mappings mapi as

described above. We associate a Bernoulli random variable Xi with each clustering

method ci, where Xi = 1 if ci clusters a document correctly, 0 otherwise.

With these settings the analysis becomes completely analogous to the derivations in

Section 4.4.3. We obtain:

P (X1 = 1, . . . , Xl = 1) = P (X1 = 1)
l−1
∏

i=1

P (Xi = 1)P (Xi+1 = 1) + cov(Xi, Xi+1)

P (Xi = 1)
(6.8)

and the analog expression for P (X1 = 0, . . . , Xl = 0).

Finally we can substitute these results in the following formulas for the loss proba-

bility

loss(Meta) = 1 − P (X1 = . . . = Xl)

= 1 − (P (X1 = 1, . . . , Xl = 1) + P (X1 = 0, . . . , Xl = 0)) (6.9)

and the error and accuracy probability

error(Meta) = P (X1 = 0, . . . , Xl = 0|X1 = . . . = Xl)

=
P (X1 = 0, . . . , Xl = 0)

P (X1 = 1, . . . , Xl = 1) + P (X1 = 0, . . . , Xl = 0)
(6.10)

accuracy(Meta) = 1 − error(Meta) (6.11)

As an illustrative example we consider the case that the l clustering methods have the

same probability p < 0.5 (i.e. the clustering method performs better than random)

to mis-assign a document, and a covariance c < p(1− p) (i.e. the clustering methods

are not perfectly correlated). In this case we would obtain for loss and error:

loss = 1 −

(

(1 − p)

(

c + (1 − p)2

1 − p

)l−1

+ p

(

c + p2

p

)l−1
)

(6.12)

error =
p
(

c+p2

p

)l−1

(1 − p)
(

c+(1−p)2

1−p

)l−1
+ p

(

c+p2

p

)l−1
(6.13)

70

6.3 Combination of Restrictive Clustering with Supervised Learning

It is easy to show that for l → ∞ the loss converges monotonically to 1, and the

error to 0 (i.e. with more clustering methods we can obtain a lower error but pay

the price of a higher loss). The covariance plays the role of a “smoothing constant”:

with higher correlated clustering methods the convergence of both loss and error is

slowed down.

6.3 Combination of Restrictive Clustering with Supervised

Learning

The partitioning produced by a restrictive meta algorithm is expected to have a

higher accuracy than the results of the underlying (non-restrictive) base methods.

However, the higher clustering quality is connected with the loss of some data. This

situation is acceptable in precision-oriented applications (e.g. data filtering) but may

cause problems in recall-sensitive cases. To overcome this limitation of the restrictive

clustering, the filtered output of the meta algorithm can be considered as training

input for supervised or semisupervised classification methods (e.g. Naive Bayes,

SVM, transductive SVM, etc.). The latter method allows customizable partitioning

of unlabeled data (usually proportional to sizes of labeled data sets). The collection

of documents that were dismissed by meta clustering can be assigned to clusters

using this new decision model. It is obvious that the combination of restrictive meta-

clustering and classification acts as a non-restrictive clustering approach (with zero

loss).

More formally, let U = L ∪ L̄ be the set of unlabeled data, where L is the set

of documents which were assigned a cluster label by the restrictive meta cluster-

ing method, and L̄ is the set of documents where the restrictive meta method ab-

stained. Now we train a classifier C (e.g., an SVM classifier) on the training samples

{(d, res(d))|d ∈ L}, where res(d) is the meta label for document d, i.e., we treat

the meta labels like class labels in conventional classification. We use the obtained

classifier C to assign cluster labels to the documents in L̄, and thus obtain an overall

clustering for all documents in U .

In Section 6.4, we show results of preliminary evaluations for meta clustering in

connection with linear SVM and transductive SVM algorithms.

71

6 Restrictive Meta Clustering

6.4 Experiments

6.4.1 Quality Metrics for Clustering

Our quality measure describes the correlation between the actual topics of our

datasets and the clusters found by the algorithm. Consider that the clusterlabels

can be permutated: Given two classes class1 and class2, it does not matter for ex-

ample whether a clustering algorithm assigns label a to all documents contained in

class1 and label b to the documents contained in class2 or vice versa; the docu-

ments belonging together are correctly put together and the quality should reach its

maximum value 1 and the error should be 0.

Let k be the number of classes and clusters, Ni the total number of clustered docu-

ments in classi, Nij the number of documents contained in classi and having cluster

label j. We define:

accuracy = max(j1,...,jk)∈perm((1,...,k))

∑k
i=1 Ni,ji
∑k

i=1 Ni

(6.14)

and

error = 1 − accuracy (6.15)

As loss we simply define the fraction of documents dismissed over the whole document

set. We use the macro-average of loss and error as an aggregation measure for a larger

number of experiments.

6.4.2 Setup

We performed a series of experiments with real-life data from

1. The Newsgroups collection described in Section 4.5.

2. The Reuters articles described in Section 5.5.

3. The Internet Movie Database (IMDB) described in Section 4.5.

In all discussed experiments, the standard bag-of-words model [17] (using term fre-

quencies to build L1-normalized feature vectors) was used for document representa-

tion.

Our experiments capture the behavior of (restrictive) base clustering methods and

meta clustering, for tuples of topics such as ”Drama vs. Horror vs. Western” for

72

6.4 Experiments

IMDB data or ”rec.autos vs. rec.motorcycles vs. rec.sport.hockey” for the News-

groups data. For each data set we identified all topics with sufficiently many docu-

ments. These were 20 topics for Newsgroups, 15 for Reuters and 15 for the genres

of IMDB documents. We randomly chose 50 topic tuples from Newsgroups, from

IMDB, and from Reuters for every set of k-tuples (k = 2, 3, 5). Finally, we computed

macro-averaged results for these topic tuples.

6.4.3 Results

In our experiments we considered the following base methods:

1. base1: k-means, no feature selection, preclustering [45] with k ∗ 20 documents

- a standard heuristics for this initialization phase: before starting the actual

clustering algorithm, a clustering is computed on a much smaller subset

2. base2: iterative feature selection applied on k-means - Mutual Information, when

applied to a document corpus, requires an apriori partitioning of documents

into thematically coherent subsets. If this partitioning is not already given, a

clustering algorithm can provide us with an initial approximation. This initial

step may use either all features or a df based feature selection. Once we have

clusters, we can compute MI values and identify the most discriminative features,

and then we can iterate this procedure, alternating between feature selection

and clustering. We developed an iterative clustering algorithm based on this

approach, using k-means as the underlying base method. - , preclustering with

k∗20 documents on a preselected feature space (df), after each iteration: feature

selection (step 1: top-2000 according to df , step 2: top-500 according to MI),

number of iterations: 5

3. base3: transforming feature vectors using SVD - see Section 2.5.2 - (SVD rank =

2), application of k-means on the transformed vectors (We found that a higher

SVD rank results in a lower clustering accuracy in consistence with observations

made by [59].)

Of course, the introduced meta approach can be used with any other clustering

methods as well.

Figure 6.3 shows the loss-error tradeoff for the base methods for k = 3 and k = 5:

By inducing a loss as described in Section 6.1 we can obtain a significant reduction

of the error.

73

6 Restrictive Meta Clustering

k = 3 k = 5

base1 base2 base2 base1 base2 base3

loss avg(error) avg(error) avg(error) avg(error) avg(error) avg(error) Dataset

0.0 0.301 0.324 0.336 0.489 0.502 0.556

0.1 0.289 0.316 0.319 0.486 0.487 0.540

0.2 0.284 0.308 0.304 0.487 0.486 0.535

0.3 0.279 0.302 0.284 0.485 0.488 0.528

0.4 0.274 0.302 0.277 0.475 0.491 0.503 IMDB

0.5 0.260 0.295 0.260 0.465 0.478 0.466

0.6 0.256 0.279 0.227 0.439 0.465 0.434

0.7 0.244 0.269 0.213 0.416 0.447 0.378

0.8 0.204 0.254 0.165 0.382 0.398 0.303

0.9 0.178 0.199 0.098 0.329 0.365 0.213

0.0 0.346 0.332 0.317 0.430 0.403 0.572

0.1 0.337 0.321 0.303 0.416 0.390 0.551

0.2 0.325 0.311 0.293 0.403 0.380 0.521

0.3 0.315 0.302 0.282 0.386 0.369 0.486

0.4 0.302 0.294 0.272 0.371 0.363 0.451 Newsg.

0.5 0.286 0.289 0.260 0.351 0.356 0.413

0.6 0.266 0.278 0.229 0.328 0.347 0.365

0.7 0.251 0.270 0.186 0.302 0.327 0.303

0.8 0.237 0.259 0.142 0.270 0.294 0.234

0.9 0.209 0.341 0.088 0.224 0.233 0.156

0.0 0.219 0.221 0.292 0.211 0.205 0.348

0.1 0.256 0.221 0.315 0.220 0.202 0.359

0.2 0.246 0.242 0.317 0.210 0.191 0.358

0.3 0.224 0.233 0.267 0.194 0.176 0.362

0.4 0.207 0.218 0.258 0.170 0.171 0.342 Reuters

0.5 0.193 0.234 0.207 0.162 0.144 0.314

0.6 0.175 0.214 0.191 0.171 0.163 0.291

0.7 0.144 0.193 0.204 0.166 0.144 0.307

0.8 0.176 0.162 0.181 0.138 0.132 0.269

0.9 0.359 0.149 0.191 0.094 0.080 0.150

Figure 6.3: Restrictive Base Methods for k = 3, k = 5 on Reuters, Newsgroups and

IMDB

With the three base methods we built a restrictive meta clustering model based on

the ”unanimous decision” function and the 3 different meta-mappings described in

Section 6.2.1 namely:

1. MapA: correlation-based mapping

2. MapB: purity-based mapping

3. MapC: mapping using association rules

74

6.4 Experiments

k = 3
Meta restrictive Base Base

base1 base2 base3 base1 base2 base3

avg avg avg avg avg avg avg avg
Map (loss) (error) (error) (error) (error) (error) (error) (error) Dataset

MapA 0.497 0.234 0.275 0.277 0.250

MapB 0.542 0.229 0.276 0.274 0.232 0.339 0.312 0.337 IMDB

MapC 0.458 0.236 0.287 0.281 0.263

MapA 0.420 0.242 0.269 0.304 0.255

MapB 0.479 0.199 0.255 0.291 0.242 0.341 0.326 0.317 Newsg.

MapC 0.413 0.240 0.268 0.300 0.257

MapA 0.408 0.133 0.193 0.242 0.243

MapB 0.638 0.130 0.170 0.233 0.290 0.179 0.215 0.300 Reuters

MapC 0.365 0.190 0.209 0.255 0.268

k = 5
Meta restrictive Base Base

base1 base2 base3 base1 base2 base3

avg avg avg avg avg avg avg avg
Map (loss) (error) (error) (error) (error) (error) (error) (error) Dataset

MapA 0.704 0.346 0.400 0.441 0.376

MapB 0.800 0.361 0.375 0.413 0.292 0.506 0.470 0.559 IMDB

MapC 0.636 0.427 0.438 0.467 0.433

MapA 0.622 0.320 0.316 0.330 0.348

MapB 0.758 0.264 0.286 0.281 0.264 0.439 0.403 0.578 Newsg.

MapC 0.567 0.341 0.329 0.339 0.378

MapA 0.623 0.103 0.142 0.140 0.333

MapB 0.735 0.111 0.136 0.111 0.290 0.222 0.194 0.351 Reuters

MapC 0.571 0.150 0.155 0.163 0.351

Figure 6.4: Metaclustering Results for k=3 and k=5 on Reuters, Newsgroups and

IMDB

We compared the meta results with the results of the underlying base methods and

the restrictive base methods (inducing the same loss as the meta method in each

experiment). The results are shown in Figure 6.4. The results clearly show that the

meta approach provides a lower error than its underlying base methods at the cost

of moderate loss. More important, the meta method performs typically better than

the restrictive version of each base method for the same loss. Figure 6.4 also shows

that mappings produced by particular meta algorithms are not always identical; this

leads to different losses on the same dataset.

Although all proposed meta-mapping algorithms perform fairly well and predict the

same mapping in most of the cases, there are marginal differences for experiments on

topics that are very different in size (especially Reuters). In such cases the overlap

mapping (MapA) tends to produce slightly better results. The purity-based mapping

(MapB) is more stable in experiments with fairly comparable class sizes (Newsgroups

75

6 Restrictive Meta Clustering

Base Methods Meta-Method Comb. Supervised Learning

base1 base2 base2 svm tsvm Dataset

avg(error) avg(error) avg(error) avg(loss) avg(error) avg(error) avg(error)

0.246 0.255 0.231 0.409 0.159 0.228 0.204 IMDB

0.260 0.252 0.299 0.347 0.243 0.281 0.313 Newsg.

0.121 0.209 0.291 0.328 0.076 0.188 0.207 Reuters

Figure 6.5: Combination of Restrictive Clustering and Supervised Learning in Com-

parison with underlying Base Methods for k=2

and IMDB). The underlying Apriori algorithm of the association rule-based mapping

(MapC) has calibration parameters (such as the delta value by which the minimum

support is decreased in each iteration) that, depending on properties of the cur-

rent data, may lead to slightly less accurate results. The optimal, task-dependent,

parameterization of this algorithm is subject of our future work.

To test the combination of clustering and supervised or semisupervised learning we

performed a restrictive metaclustering for k = 2 (using MapB) as described in Sec-

tion 6.2.1. The obtained new partitioning for the whole document set (i.e. loss =

0) was compared to the clusterings provided by the underlying non-restrictive base

methods. The evaluation is shown in Figure 6.5. Although the partitioning provided

by restrictive meta-clustering has high accuracy and results in many cases in good

training sets and accurate classifiers, the high loss (and small training sets) causes,

in particular experiments, reduced generalization performance leading to moderate

average accuracy.

6.4.4 Discussion

The restrictive meta methods result in higher cluster purity. The introduced algo-

rithms of meta mapping ensure better accuracy and make clustering results robust

and accurate at the cost of moderate loss of uncertain data.

We have experimentally shown that meta clustering has higher accuracy than partic-

ular clustering methods, and, more importantly, in almost all cases performs better

than the restrictive version of each underlying base method with the same loss.

6.5 Meta Clustering using Confidence Values for Clustering

Up to now, we have assumed that each document is assigned to exactly one cluster.

We drop this assumption now, and consider ”soft” assignments of cluster labels. For

example EM clustering [84, 58] assigns to a document the probabilities of membership

76

6.5 Meta Clustering using Confidence Values for Clustering

to the different clusters. Confidence values for cluster memberships can be also

assigned to the results of other clustering algorithms, e.g., k-means.

6.5.1 Confidence Values of Cluster Membership for k-Means

The k-means algorithm provides us with a set of k centroids {z1, . . . , zk}. Centroid

zi is a representation of cluster i. Each document d is assigned to the cluster i for

which the similarity sim(d, zi) between zi and the document d is maximized (e.g., in

terms of cosine similarity).

But the similarities sim(d, zi) can also be used to make soft assignments. The sim-

plest way to do this is to assign to each document d a confidence value c(i, d) for the

membership to cluster i proportional to sim(d, zi):

c(i, d) =
sim(d, zi)

∑k
j=1 sim(d, zj)

(6.16)

We have chosen the normalization constant such that:
k
∑

j=1

c(j, d) = 1 (6.17)

6.5.2 Generalized Meta Clustering Problem

For meta clustering we are given a set C = {c1, . . . , cl} of clustering methods, and

a set U of unlabeled documents. Each method ci assigns to a cluster label j in

{1, . . . , k} and to a document d in U a cluster confidence:

ci(j, d) = cij(d) (6.18)

with
k
∑

j=1

cij(d) = 1 for all i = 1, . . . , l (6.19)

Our objective is to find l meta mappings

mapi : {1, . . . , k} → {1, . . . , k} (6.20)

that map the cluster labels of each method ci to a meta label. Furthermore we aim

to determine a meta function

meta(d) = meta(c11(d), . . . , clk(d),mapi, . . . ,mapk) (6.21)

that assigns to each document d a meta label in {1, . . . , l}∪{0} (”0” means abstention,

as described above).

77

6 Restrictive Meta Clustering

6.5.3 Meta Mapping

Correlation-based Mapping Now we generalize the correlation-based mapping, de-

scribed in Section 6.2.1, for the occurrence of soft assignments. We define:

|Aij | =
∑

d∈U

cix(d) (6.22)

with

x = map−1
i (j) (6.23)

We define the intersection, |Aij ∩ Amj |, as follows:

|Aij ∩ Amj | =
∑

d∈U

cix(d) · cmy(d) (6.24)

with

x = map−1
i (j) and y = map−1

m (j) (6.25)

Note that for the special case of a ”hard” assignment of documents to clusters, i.e,

cij(d) = 1 for exactly one j ∈ {1, . . . , k}, 0 otherwise

for all i ∈ {1, . . . , l}, d ∈ U , (6.26)

these definitions are equivalent to those given in Section 6.2.1.

Now we can define the optimization problem exactly as in Section 6.2.1. For the

overlap we have:

overlap(A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|
(6.27)

We obtain the mapping by solving the following optimization problem:

Maximize over (map1, . . . ,mapl) :

1

k

k
∑

j=1

1
(

l
2

)

∑

(i,m)∈{1,...,k}2,i<m

overlap(Aij , Amj) (6.28)

Mapping with Association rules For the case of hard cluster assignment (see Sec-

tion 6.2.1), the item sets used for finding association rules for cluster labels were in

the following form:

{(c1, c1(d)), (c2, c2(d)), . . . , (cl, cl(d))} with ci(d) ∈ {1, . . . , k} (6.29)

78

6.5 Meta Clustering using Confidence Values for Clustering

In case of soft cluster assignment, we obtain for each document a ”pseudo item set”

with l · k elements:

{(c1, c11(d)), (c1, c12(d)), . . . , (cl, clk(d))} with cij(d) ∈ [0, 1] (6.30)

For these kinds of item sets we cannot perform a classical association mining algo-

rithm. To transform these sets into a standard form we 1) perform a discretization of

the values cij(d) and 2) perform a duplication of itemsets according to the discretiza-

tion. For the discretization we divide the interval [0, 1] into q equidistant subintervals.

The values cij(d) are mapped to {0, . . . , q} by

discr(cij(d)) = round(cij(d) · q) , (6.31)

where the round-function rounds a number to an integer value. The new pseudo item

sets are:

{(c1, discr(c11(d))), (c1, discr(c12(d))), . . . , (cl, discr(clk(d)))}

with discr(cij(d)) ∈ {0, . . . q} (6.32)

Using this discretization, we construct standard item sets as follows:

for all (j1, . . . , jl) ∈ {1, . . . , k}l

construct
l
∏

i=1

discr(ciji
(d)) association rules of the form:

{(c1, j1), . . . , (ck, jl)} (6.33)

Since we obtain an exponential number of item sets this way, for efficiency reasons, the

proposed method is only suitable for small numbers k of clusters and l of clustering

methods.

6.5.4 Meta Functions

Having obtained the mapping mapi as described above, we can compute the meta

labels for clustering method ci applied to document d as:

resi(d) = mapi(arg max
x

cix(d)) for all i ∈ {1, . . . , l} (6.34)

and compute the meta result by a linear combination of these results as described in

Section 6.2.2.

Alternatively, we can take the confidence values not just for the mapping, but also

for the meta function into account, for instance, by replacing the resi(d) with the

confidence values maxx cix(d).

79

7 Restrictive Methods and Meta

Methods in Peer-to-Peer Systems

In this chapter we apply the meta classification and clustering approach, described

in the previous chapters, in the context of peer-to-peer (P2P) systems. We consider

this approach for distributed Web exploration applications like focused crawling.

Typical applications are user-specific classification of retrieved Web contents into

personalized topic hierarchies as well as automatic refinements of such taxonomies

using unsupervised machine learning methods (e.g. clustering). Our approach is to

combine models from multiple peers and to construct an advanced decision model

that takes the knowledge of multiple P2P users into account.

7.1 System Architecture

The implementation of a peer in our distributed system consists of two layers. The

lower (network) layer determines the communication among the peers. The peers

form an autonomous agent environment: the exact way one particular peer solves its

Web retrieval problem (e.g. crawling the Web, sending queries to ’Deep Web’ portals,

analyzing recent newsgroup discussions or publications in electronic journals, etc.)

is not restricted in any way. We assume that all peers share the same thematic

taxonomy such as dmoz.org [2]. The upper (application) layer is the distributed

algorithm that utilizes results from particular peers to construct improved learning

models (e.g. classification and/or clustering models) that can be used to continue

the focused crawl with higher accuracy and to adjust the topics of a user-specific

personalized ontology.

7.2 Properties of the Network Layer

In our model, the peers use the epidemic-style communication [37]. Every peer main-

tains an incomplete database about the rest of the network. This database contains

81

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems

entries (e.g. addresses) on some other peers (neighbors) together with timestamps of

the last successful contact to that neighbors. The neighbor list is refreshed using a

push-pull epidemic algorithm.

To connect a new peer to the network one needs only one living address. The database

of the new peer is initialized with the entry containing this living address only, and

the rest is taken care of by the epidemic algorithm. Removal of a peer does not

require any administration at all.

When new data becomes available, the peer initiates the building of a new meta

learning method together with its direct neighbors as described in Section 7.3.1.

With the next epidemic messages, it is broadcast to all neighboring peers.

7.3 Properties of the Application Layer

In this section we first describe a general framework for aggregating information

from k peers in meta models, and then consider two typical applications for such a

framework: classification and clustering of document collections.

7.3.1 Exchanging Data Models among Peers

In our framework we are given a set of k peers P = {p1, . . . , pk}. Each peer pi

maintains its collection of documents Di. The idea is to build concise individual

models on each peer and then combine the models into a meta model. More formally,

in the first step each peer pi builds a model mi(Di) using its own document set Di.

In the second step, the models mi are propagated among the k peers as described in

Section 7.2. To avoid high network load, it is crucial for this step that the models mi

are a very compressed representation of the document sets Di. In the next step, each

peer pi uses the set of received models M = {m1, . . . ,mk} to construct a meta model

Metai(m1, . . . ,mk). From now on, pi can use the new meta model Metai (instead of

the ’local’ model mi) to analyze its own data Di.

7.3.2 Application to Supervised and Unsupervised Document Labeling

Meta Classifiers on k Peers

In the context of classification algorithms, the introduced general approach 7.3.1

can be substantiated as follows. Each peer pi contains a document collection Di,

consisting of a set of labeled training documents Ti and unlabeled documents Ui.

82

7.3 Properties of the Application Layer

Every peer wants to automatically classify the documents in Ui. In the first step,

every peer pi builds its own feature vectors of topic labeled text documents Ti (e.g.,

capturing tf · idf weights of terms). The model mi corresponds to the classifier

obtained by running a supervised learning algorithm on the training set Ti.

Now, instead of transferring the whole training sets Ti, only the models mi need to be

exchanged among the peers. For instance, linear support vector machines (SVMs), as

described in Section 2.2.3, construct a hyperplane ~w ·~x+ b = 0 that separates the set

of positive training examples from a set of negative examples with maximum margin.

For a new, previously unseen, document ~d the SVM merely needs to test whether

the document lies on the “positive” side or the “negative” side of the separating

hyperplane. The classifiers mi can be represented in a very compressed way: as

tuples (~w,~l, b) of the normal vector ~w and bias b of the hyperplane and ~l, a vector

consisting of the encodings of the terms (e.g., some hashcode) corresponding to the

dimensions of ~w. ~l provides us with a synchronization between the feature spaces of

the different peers.

Similar space saving representations are possible for other learning methods (e.g.,

Bayesian Learners). In addition, building the classifiers this way is much more effi-

cient than building one ’global’ classifier based on T =
⋃

Ti because the computation

is distributed among the peers, and for classifiers with highly nonlinear training time

(e.g. SVM) the splitting can save a lot of time (see Chapter 4).

In the next step, every peer pj considers the set M = {m1, . . . ,mk} of k binary

classifiers with results R(mi, d) in {+1,−1} for a document d ∈ Uj , namely, +1 if d

is accepted for the given topic by mi, -1 if d is rejected. These results can be easily

combined into a meta result:

Meta(d) = Meta(R(m1, d), . . . , R(mk, d)) ∈ {+1,−1, 0} (7.1)

A family of such meta methods is the linear classifier combination with thresholding

as described in Section 4.2:

Meta(d) =

+1 if
∑n

i=1 R(mi, d) · w(mi) > t1
−1 if

∑n
i=1 R(mi, d) · w(mi) < t2

0 otherwise

(7.2)

The restrictive behavior is achieved by the choice of the thresholds: we dismiss the

documents where the linear result combination lies between t1 and t2.

If a fixed set U of unlabeled documents (that does not change dynamically) is given,

we can classify the documents with a user-acceptable loss of L as follows:

83

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems

1. for all documents in U compute their classification confidence
∑n

i=1 R(mi, d) ·

w(mi)

2. sort the documents into decreasing order according to their confidence values

3. classify the (1 − L)|U | documents with the highest confidence values according

to their sign and dismiss the rest

In our experiments we assigned equal weights to each classifier, and instead of

R(mi, d), we considered a ”confidence” value conf(mi, d) for the classification of

document d by the classifier. For SVM we chose the SVM scores, i.e., the distance of

the test points from the hyperplane. A more enhanced method to map SVM outputs

to probabilities is described, e.g., in [97].

Note that meta classifiers can be, similar as base classifiers, easily transferred

between peers as tuples

(m1, . . . ,mk, w(m1), . . . w(mk), t1, t2). (7.3)

Meta Clustering Algorithms on k Peers

For clustering, each peer pi contains a document collection Ui of unlabeled data.

Every peer wants to cluster its unlabeled data.

Analogously to the classification task every peer pi can execute a clustering algorithm

on its own data Ui to build the model mi; a representation of the resulting clustering

models mi can be propagated to the other peers.

For the k-means algorithm (see Section 2.4.2), the clustering model mi can be rep-

resented as (~z1, . . . , ~zl,~l), where the ~zi are vector representations of the computed

centroids, and ~l contains encodings of the feature dimensions, and provides us with

a synchronization of the feature spaces, as described above for the supervised case.

Now we can apply a meta clustering algorithm as described in Section 6: First by

applying a meta mapping, we obtain the meta labels resi(d) := mapi(mi(d)) for the

clustering of document d with clustering model mi. Then we can compute the overall

meta result:

Meta(d) =

+1 if
∑k

i=1 resi(d) · w(mi) > t1
−1 if

∑k
i=1 resi(d) · w(mi) < t2

0 otherwise

(7.4)

Thus by an intermediate meta mapping step we have a completely analogous situa-

tion to the one for the supervised case described above: Class labels for classification

84

7.3 Properties of the Application Layer

correspond to meta labels for clustering. Confidence values conf(mi, d) for the clus-

tering of a document d by the base methods mi can be obtained, say for k-means

clustering, by computing the similarity (e.g., using the cosine measure) to the nearest

centroid. The restrictive behavior can be obtained in exactly the same way as for the

supervised case.

Estimators and Tuning

For a restrictive meta classifier, we are interested in its behavior in terms of error

and loss (fraction of unclassified documents). A typical scenario could be a number

of users in different peers accepting a loss up to a fixed bound, to obtain a lower

classification error for the remaining documents. In Section 4.4 the tuning of the

number k of classifiers for a user-acceptable loss threshold was described. We will

not repeat this here and will instead focus on the P2P specific aspects.

The main ingredients of the estimation and tuning process are:

1. estimators for base classifiers (based on cross-validation between the training

sets Ti)

2. estimators for the pairwise correlations between the base classifiers {m1, . . . ,mk}

3. probabilistic estimators for loss and error based on 1. and 2.

For the cross-validation, at least two peers, pi and pj, must cooperate: pi sends a

tuple (mi, IDs(Ti)), consisting of its classifier mi and a list of IDs (not contents!) of

its training documents, to pj. The peer pj uses the list of submitted IDs to identify

duplicates in both collections and performs cross-validation by mi on Tj − Ti. (In

the Web context, the IDs of Ti can be easily obtained by computing content-based

’fingerprints’ or ’message digests’ (e.g. MD5 [101])). The resulting error estimator

(a simple numerical value) for mi can be forwarded from pj back to pi or to other

peers.

For the computation of pairwise covariance, at least three peers, pi,pj and pm, must

cooperate: pi and pj send their classifiers and document IDs to pm, and pm cross-

validates in parallel both classifiers on Tm−Ti−Tj. By this procedure we also obtain

error estimators.

Finally, the estimators for covariance and error (numerical values) can be distributed

among the peers and estimators for the overall meta classifier can be built. When the

estimated quality of the resulting meta classifier does not meet the application-specific

85

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems

peer requirements (e.g. the expected error is still above the specified threshold), the

initiating peer may decide to invoke additional nodes for better meta classification.

Note that for meta clustering, estimators cannot be built in the same easy way because

for the unsupervised case, we cannot evaluate base methods by cross-validation.

7.4 Experiments

7.4.1 Setup

To simulate different P2P Web retrieval scenarios (crawling the Web, sending queries

to ’Deep Web’ portals, analyzing recent newsgroup discussions or publications in

electronic journals) we performed multiple series of experiments with real-life data

from

1. The academic WebKB dataset [34] that contains 8282 HTML Web pages from

multiple universities, manually classified into the categories ’student’, ’faculty’,

’staff’, ’department’, ’course’, ’project’, and ’other’.

2. The Newsgroups collection described in Section 4.5.

3. The Reuters articles described in Section 5.5.

4. The Internet Movie Database (IMDB) described in Section 4.5.

We used the Porter stemming algorithm [99] in combination with stopword elim-

ination to transform documents into the vector space model. In all discussed ex-

periments, the standard bag-of-words approach [17] (using term frequencies to build

L1-normalized feature vectors) was used for document representation.

7.4.2 Experiments with Supervised Learning Methods (Classification)

For each data set we identified all topics with more than 200 documents. These

were 20 topics for Newsgroups, 6 for Reuters, 12 for IMDB, 4 for WebKB. Among

these topics we randomly chose 100 topic pairs from Newsgroups and all possible

combinations for the others, i.e. 66 topic pairs from IMDB, 15 for Reuters, and 6

for WebKB. For each topic pair we randomly chose 200 training documents per class

and kept - depending on the available topic sizes in particular collections - a distinct

and also randomly chosen set of documents for the validation of the classifiers.

86

7.4 Experiments

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification Newsgroups

1 peer
2 peers
4 peers
8 peers

16 peers
 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification Reuters

1 peer
2 peers
4 peers
8 peers

16 peers

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification IMDB

1 peer
2 peers
4 peers
8 peers

16 peers
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification WebKB

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 7.1: Results of Restrictive Meta Classification

In each experiment, the training data was distributed over 16 peers using equal-sized

subsets with approximately 15% overlap (corresponding to peers that contain non-

disjoint training data). Among these peers we randomly chose 1,2,4,8, and all 16

peers to simulate various P2P classification scenarios. We considered various num-

bers of cooperating peers that share their linear SVM classifiers and performed the

meta classification on local subsets. The configuration with 1 cooperating peer cor-

responds to the ’local’ peer classification that does not involve sharing of classifiers.

As discussed in Section 7.3.2, we also compared the restrictive form of meta classifi-

cation, where we dismissed at each peer exactly the same amount of documents with

the lowest classification confidence using confidence values as discussed in Section 7.3.

Our quality measure is the fraction of correctly classified documents (the accuracy)

among the documents not dismissed by the restrictive algorithm. The loss is the

fraction of dismissed documents.

Finally, we computed micro-averaged results along with their 95% confidence intervals

for all groups of topic pairs. Figure 7.1 shows the observed dependencies between

the numbers of cooperating peers, the induced loss, and the resulting accuracy for

87

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems

accuracy
loss 1 peer 2 peers 4 peers 8 peers 16 peers

0.0 0.772 ± 0.007 0.808 ± 0.007 0.824 ± 0.006 0.844 ± 0.006 0.848 ± 0.006

0.1 0.797 ± 0.007 0.832 ± 0.007 0.853 ± 0.006 0.870 ± 0.006 0.875 ± 0.006

0.2 0.812 ± 0.007 0.853 ± 0.007 0.873 ± 0.006 0.891 ± 0.006 0.896 ± 0.006

0.3 0.831 ± 0.007 0.870 ± 0.007 0.889 ± 0.006 0.909 ± 0.006 0.911 ± 0.006

0.4 0.850 ± 0.008 0.884 ± 0.007 0.901 ± 0.006 0.921 ± 0.006 0.923 ± 0.006

0.5 0.863 ± 0.008 0.898 ± 0.007 0.912 ± 0.007 0.933 ± 0.006 0.933 ± 0.006

0.6 0.877 ± 0.009 0.909 ± 0.008 0.923 ± 0.007 0.936 ± 0.006 0.943 ± 0.006

0.7 0.891 ± 0.009 0.921 ± 0.008 0.928 ± 0.008 0.944 ± 0.007 0.947 ± 0.007

0.8 0.898 ± 0.011 0.939 ± 0.009 0.936 ± 0.009 0.949 ± 0.008 0.952 ± 0.008

0.9 0.905 ± 0.015 0.947 ± 0.012 0.940 ± 0.013 0.948 ± 0.012 0.944 ± 0.012

Figure 7.2: Classification Results: IMDB Collection

various reference collections. An example of our evaluation summary including 95%

confidence intervals for the IMDB collection is shown in Figure 7.2 (we obtained

analogous results for the remaining three collections).

It can be observed that the meta classification and restrictive meta classification

by multiple cooperating peers clearly outperforms the single-peer solution for all

settings of the user-defined loss, including the non-restrictive meta classification with

loss = 0. The quality of the meta algorithm clearly increases with the number of

participating peers. In general, the difference between the one-peer solution and

the meta solution is statistically significant for 4 and more participating peers and

all values of the induced loss. The only exceptions are the results for Reuters with

loss > 0.7 (the accuracy of all peer combinations, including the one-peer experiment,

becomes nearly 1.0) and the WebKB collection (due to the very limited number of

possible topic combinations).

7.4.3 Experiments with Unsupervised Learning Methods (Clustering)

The same collections and topics were used to evaluate distributed meta clustering.

All documents from randomly combined selections of 3 or 5 topics were considered as

unlabeled data and distributed among peers analogously to classification experiments

from the previous section, with approximately 15% overlap.

The goal of the clustering algorithm was to reproduce the partitioning into topics

on each peer with as high accuracy as possible. Our quality measure describes the

correlation between the actual topics of our datasets and the clusters found by the

88

7.4 Experiments

algorithm. Let k be the number of classes and clusters, Ni the total number of

clustered documents in classi, Nij the number of documents contained in classi and

having cluster label j. Unlike classification results, the clusters do not have explicit

topic labels; we define the clustering accuracy as follows:

accuracy = max(j1,...,jk)∈perm((1,...,k))

∑k
i=1 Ni,ji
∑k

i=1 Ni

(7.5)

The loss is the fraction of documents dismissed by the restrictive algorithm.

For all peers, k-means was used as the underlying base method. We compared the

one-peer clustering (i.e. clustering that can be executed by one peer on its local

dataset without cooperation with others) with meta clustering by exchanging cen-

troids from cooperating peers and correlation-based mapping (Chapter 6) of the final

clusters. Analogously to classification experiments, we considered restrictive meta

clustering, dismissing exactly the same number of documents with the worst cluster-

ing confidence on each peer.

The results are summarized in Figure 7.3. The main observations are similar to the

ones discussed for the supervised case:

• The quality of the meta clustering results is consistently higher than for isolated

one-peer solutions.

• The quality of the meta algorithm tends to increase with the number of partic-

ipating peers and is in almost all cases statistically significant. For the Reuters

collection, the difference between one-peer solution and the meta result is sta-

tistically significant for 8 and more participating peers and all values of the

induced loss. For the IMDB and Newsgroups collections, the difference between

the one-peer solution and the meta result is statistically significant for 4 and

more participating peers and all loss values.

In the experiments with the Reuters dataset, the accuracy decreases for high loss

values (greater 0.7). Possibly this can be explained by the fact that the Reuters topics

- unlike the other considered reference collections - are very different in size (e.g. the

topics ’earn’ and ’grain’ contain about 3900 and 280 documents, respectively). The

in-depth analysis of such artifacts is subject of our future work.

In systematic evaluations of further application scenarios (Figure 7.4 shows an ex-

ample for clustering with k = 5 topics on the IMDB collection) we observed similar

results.

89

7 Restrictive Methods and Meta Methods in Peer-to-Peer Systems

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering Newsgroups

1 peer
2 peers
4 peers
8 peers

16 peers
 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering Reuters

1 peer
2 peers
4 peers
8 peers

16 peers

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering IMDB

1 peer
2 peers
4 peers
8 peers

16 peers
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering WebKB

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 7.3: Results of Restrictive Meta Clustering, k=3 Clusters

7.4.4 Discussion

The accuracy of our restrictive meta methods outperforms the models that can be

built separately on training sources of isolated peers and - more importantly - also

the restrictive variant of such one-peer solutions with same induced loss. This holds

for the supervised as well as for the unsupervised case.

90

7.4 Experiments

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering IMDB, k=5

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 7.4: Clustering Results for k=5 Clusters, IMDB

91

8 Construction of Feature Spaces and

their Combination

In this chapter we describe document representations and their combination for au-

tomatic classification for two different domains: Web document classification and

author recognition.

8.1 Web Document Classification

Classification of Web content is one of the most important tasks in Data Mining.

Conventional classification strategies apply statistical learning methods to purely

term-based feature vectors. In this section we want to describe alternative features

based on linked neighbors of a document, structural characteristics, etc. We combine

the different document representations using meta classification.

8.1.1 Word Pairs

In many documents, words form compound expressions (e.g. ”network protocol”) or

words typically co-occur in a certain context. The idea is to combine these words

into tuples (n-grams).

To consider all possible n-tuples of words would result in an exponential explosion of

the feature space. Instead, we consider the case n = 2 (pairs). This can be justified

by the fact that higher dimensional tuples often do not occur in a significant number

of documents. Furthermore, a correlation of N terms also implies a correlation of

the
(N

2

)

possible term pairs.

Formally we represent a document d as set of tuples (t, pos), where t is a term in

the document and pos is its position in the document (starting with position 1 for

the first term in the document). Thus, considering term pairs, a document can be

represented as a set of tuples

(ta, tb, posa, posb) (8.1)

93

8 Construction of Feature Spaces and their Combination

Here ta and tb are the terms and posa and posb are the positions of ta and tb respec-

tively in the document. We appoint that ta 6= tb, i.e. we do not associate a term

with itself.

We can restrict our term space by restricting to a set of terms T̃ = {t1, . . . , tq},

obtained, e.g., by feature selection.

For building pairs we can use a sliding window strategy, i.e., we consider only those

pairs that are contained in a virtual window of size dis sliding over the text of the

document:

∀(ta, tb, posa, posb) ∈ d : |posa − posb| < dis (8.2)

This way we avoid having too many pairs from different contexts.

For a pair {ta, tb} we could now simply count the number of tuples (ta, tb, posa, posb)

in a document d. But this could produce the following situation: For a term-position

tuple (ta, posa) there could exist two term-position pairs (tb, posb) and (tb, pos′b) such

that pos′b > posb, i.e., we would count the term pair {ta, tb} twice. But we assume,

that in most of these cases, ta should be associated with the nearest of the two

terms tb. We do not want to count the other pairs which we call the pseudo pairs,

Pseudo(d), of document d.

Thus for a pair p = {ta, tb} we define its absolute frequency in document d as:

habs(p, d) =
∣

∣

∣
{(ws, wt, k, l) ∈ d | (8.3)

ws = ta ∧ wt = tb ∧ (ws, wt, k, l) 6∈ Pseudo(d) ∧ |k − l| < dis}
∣

∣

∣

The components of the feature vector consist of the relative frequencies of each pair

p:

tf(p, d) =
habs(p, d)

∑

q∈d habs(q, d)
(8.4)

Having obtained a set of pair-features, we can apply of course feature selection tech-

niques as described in Section 2.5.1.

8.1.2 Anchor Terms

Anchor terms are the terms in the text belonging to the links in a HTML-page. They

often provide us with a concise description of the linked Web page and therefore can

be useful for automatic classification. We consider the concatenation of the anchor

texts from the links pointing to the document of interest as one virtual document;

thus we can consider the relative frequencies of the anchor terms as components of

our feature vectors.

94

8.1 Web Document Classification

8.1.3 Document Union

For the document union strategy we consider the (linked) neighbors of a document

d in the Web. Neighbor documents of document d are often related to d in terms

of category and content. There are different ways to construct feature vectors for

document d using its neighbors:

1. concatenate d and all of its neighbors into a single virtual document and compute

the relative term frequencies

2. compute the relative term frequencies for d and its neighbors, and for each term

compute an averaged term frequency as component of the feature vector

For both strategies we can apply different weighting schemes for document d and its

neighbors.

8.1.4 Combining Features

In the previous section we have described several different representations of Web

documents. In this section we describe two approaches to put these pieces of infor-

mation together.

Combination Vectors

We can mix up different document representations by building combination vectors.

One way to do this is to concatenate the components of different feature vector repre-

sentations. For instance let T̃ = {t1, . . . , tn} be our term space and P = {p1, . . . , pm}

be our pair space. We can represent document d by a combination vector as follows:

(tf(t1, d), . . . , tf(tn, d), tf(p1, d), . . . , tf(pm, d)) (8.5)

Features of the same type (such as text terms and anchor terms) can be combined

alternatively by computing a weighted linear combination of their components.

Meta Classification

With a given set V = {v1, . . . , vk} of k binary classifiers (obtained by using different

documents representations) we can perform meta classification using a linear classifier

combination with thresholding, as described in Section 4.2:

95

8 Construction of Feature Spaces and their Combination

category number of training documents

Business and Economy 47

Computers and Internet 45

Health 44

Sports 46

Table 8.1: Categories and Number of Training Documents

Meta(d) =

+1 if
∑n

i=1 R(vi, d) · w(vi) > t1
−1 if

∑n
i=1 R(vi, d) · w(vi) < t2

0 otherwise

(8.6)

8.1.5 Experiments

Setup

In our experiments we used the BINGO! [116] focused crawler for the acquisition of

Web documents. The training categories and the number of training documents per

class are listed in Table 8.1.

By manual evaluation of the categorized Web pages we obtained the accuracy, the

fraction of correctly classified documents.

Results

We compared SVM classification applied to the following feature representations:

1. simple word-based features without feature selection (AllTerms)

2. word-based features with feature selection by MI (100 features for a given class)

(SelTerms(100))

3. word-based features and ”contrast features” with feature selection by MI

(100 features for a given class, 100 features for the other classes) (Con-

trTerms(100,100))

4. document union with feature selection as in 2.) (UnionA)

5. document union with feature selection as in 3.) (UnionB)

96

8.2 Stylistic and Linguistic Features for Author Recognition

strategy classified correctly classified accuracy

AllTerms 242 231 95,45 %

SelTerms(100) 241 215 89,21 %

UnionA 242 218 90,08 %

UnionB 241 214 88,80 %

Pairs(pre:100,SW:4) 213 189 88,73 %

Pairs&Terms(pre:100,SW:4) 241 214 88,79 %

Anchors 85 63 74,12 %

Meta 183 182 99,45 %

Table 8.2: Classification Results for Web Pages with different Feature Spaces and

their Combination

6. pair-based features; sliding window size dis = 4; pre-selection of Terms using MI

(100 terms for a given class) (Pairs(pre:100,SW:4))

7. combined feature vector on terms and pairs (terms as in 2., pairs as in 6.)

(Pairs&Terms(pre:100,SW:4))

8. Anchor Terms with the features selected in 2. (Anchors)

9. Meta Classification using a ”Unanimous Decision”-strategy (Meta)

We did not classify documents which were transformed into a null vector. For meta

classification we did not consider anchor terms, because here we obtained too many

null vectors.

Table 8.2 shows the results of the experiments.

We can observe that meta classification outperforms the single methods in terms of

accuracy.

8.2 Stylistic and Linguistic Features for Author Recognition

In this section, we provide several alternatives to the classical Bag-Of-Words model

for automatic authorship attribution. To this end, we consider linguistic and writing

style information such as grammatical structures to construct different document

representations. Furthermore we describe two techniques to combine the obtained

representations: combination vectors and ensemble based meta classification.

97

8 Construction of Feature Spaces and their Combination

8.2.1 Word-Based Features

Using word based features is the most popular and, despite of its simplicity, very

effective feature construction method. We briefly describe several variants from the

literature that we will consider as a baseline for other methods.

Bag-Of-Words

In the Bag-Of-Words approach the ordering of the words is not considered. Optionally

a stopword list can be used to eliminate very common terms like articles, prepositions,

etc. Often additional techniques like stemming [99] are applied to the words. There

are different options to construct feature weights: taking the absolute or relative

frequency of term occurrences as components, constructing a binary feature vector

by just considering the pure occurrence of a term, computing the tf*idf values of the

terms, etc. [90, 103]. Because it is the state-of-the-art method for feature construction

in automatic document classification we will consider Bag-Of-Words as a baseline for

our experiments.

Function Words

In case of authorship attribution it can make sense to use ”content-free” features,

i.e., terms that do not contain information about the document’s content such as

prepositions, pronouns, determiners etc. These terms are called function words (see

e.g. Diederich et. al. [39]). In our implementation we regard all words other than

nouns, verbs and adjectives as function words.

POS Annotation

In this approach, the part of speech (POS) group of the words (e.g. verb, noun,

adjective) is taken into account [95]. This can be used to filter documents, e.g., by

considering only nouns or verbs. POS is also used for simple disambiguation, e.g.,

by distinguishing the verb ”book” from the noun ”book”.

Feature Selection

The idea of feature selection is to just take the most discriminating features into

account. Intuitively a well discriminating term for two classes A and B occurs fre-

quently in documents of class A and infrequently in documents of class B or vice

98

8.2 Stylistic and Linguistic Features for Author Recognition

versa. Examples of feature selection measures are Mutual Information, Information

Gain, and Chi Square [131].

Semantic Disambiguation

Here a thesaurus, e.g. Wordnet [47], is used to disambiguate terms (treating syn-

onyms like ”automobile” and ”car” as the same feature). In some approaches also

more complex relationships between words are taken into account [102, 107].

8.2.2 Using Linguistic Constituents

The structure of natural language sentences shows that word occurrences follow a spe-

cific order, called word order. Words are grouped into syntactic units (constituents)

that can be deeply nested. Such constituents can be detected by their ability to

occur in various positions and showing uniform syntactic possibilities for expansion

(see [84]). Consider the sentence Next, he examined the framework of the door we

had broken in, assuring himself that the bolt had really been shot. and its syntax

tree representation in Figure 8.1. In particular, consider the part he examined the

framework. This part is a constituent of the sentence with sub-constituents, e.g.

”the framework”. The sub-constituents can change their positions inside the bigger

constituent. Just considering that specific part, he examined the framework has the

same meaning as the framework he examined. We can use this information about

the word relationships by extracting constituents for feature construction. To this

end, we first subdivide the document into sentences, and then construct a syntax tree

as shown in Figure 8.1 for each sentence (note that the grey-boxed parts belong to

another technique, the writing style, described in 8.2.4). In our framework, we use

the Connexor Machinese Phrase Tagger [120] to subdivide a document into sentences

and Lexparser [5] to build the syntax trees. We define a minimal and maximal length,

min and max, of the constituents that we want to use for feature construction.

The simplest way to construct features would be to just concatenate the features

inside a constituent using an appropriate separation character (e.g. ”$”).

For our example sentence, this would result in features such as

he$examined$the$framework. But such very specific features may occur very

rarely in the document corpus. To obtain more ”common” features a combination

of some of the following options is applied:

• Performing stemming and stopword elimination on the words contained in a

constituent.

99

8 Construction of Feature Spaces and their Combination

• Abstracting from the ordering of words by putting the words into lexicographic

order.

• Instead of a feature x1$x2$. . . $xn consider pairs xi$xj or triples contained in

the constituents (bi- and trigrams).

• Performing feature selection on the constituent-features themselves. This can be

done completely analogously to the feature selection for simple words.

In Section 8.2.7, we provide experiments on using whole constituents with stemming

and stopword-elimination as well as using bigrams (also stemmed and stopword-

cleaned).

8.2.3 Functional Dependencies

Functional dependencies represent relational information in sentences. Consider

again a part of the sentence used in Figure 8.1, he examined the framework of the

door. Here, he is the subject (agent) and framework and door are the objects of

the predicate examined (action). We used the Connexor Machinese Syntax [120] to

determine such dependencies. Our features have the form

x1$x2$. . . $xn (8.7)

where x1 is the subject of an action, x2 is the predicate and x3 through xn are the

objects. To obtain a canonical form, words are reduced to their base forms, using

the Connexor Machinese Phrase Tagger [120], and objects are sorted in lexicographic

order. In our example case, we get the feature he$examine$door$framework.

8.2.4 Writing Style: Using Syntax Trees

Different authors may construct sentences in their writings in a completely different

way. The idea is to consider a syntax tree representation of their sentences as fea-

tures. In the extreme case we could encode the whole tree into a string; but this would

result in very sparse feature spaces. Instead we should restrict ourselves to nodes up

to a certain maximum tree depth. In our experiments we observed that considering

just the children of the root nodes of sentences and sub-clauses (labeled with S) pro-

vides us already with interesting features. So our example tree in Figure 8.1 could be

encoded into the features ADV P$, NPV P , V P , and two times NP$V P (empha-

sized by the grey boxes). Note that this method does not use any word information

100

8.2 Stylistic and Linguistic Features for Author Recognition

���������	��
 ����	�����

�����	�����

�����	�����

�����

Figure 8.1: PCFG-Tree and Writing Style Features

at all. Table 8.3 shows the top-5 features for the authors A. C. Doyle and R. Burton

according to their Mutual Information values (we considered only books available

from the Gutenberg Project [3]; see Section 8.2.7 for details). We do not apply any

kind of filtering mechanism to the structure features such as removing punctuation

marks. Experiments showed that those marks provide interesting information about

the sentence structure. Note, that ”, ” in the feature ADV P$, NPV P represents

an annotation tag for a word phrase in the syntax tree, not the comma itself.

A.C. Doyle R. Burton

Feature MI Feature MI

S$,$CCS. 0.23 S$:$S 0.26

PPNPVP$. 0.16 S$CC$S 0.23

SBAR$,$NPVP. 0.14 XXNP$VP 0.21

SBAR$,$XNPVP$. 0.13 S$:S. 0.20

PP$,$NPVP. 0.11 S$:$CC$S 0.18

Table 8.3: TOP 5 Writing Style Features according to MI

8.2.5 Syntax Tree Depth

Other research discovered the benefit of sentence length as feature either by com-

puting the average sentence length [36, 39], or by using histograms over the sentence

length [124]. Another simple but, to our knowledge, novel approach to distinguish

101

8 Construction of Feature Spaces and their Combination

different writing styles is to consider the depth of the syntax trees in the documents.

We consider two approaches.

Statistical Moments

Statistical moments are one way to characterize a distribution. The k-th moment of

a random variable X is defined as E(Xk). The expression E([X − E(X)]k) is called

the k-th central moment of X.

For a given document d, containing n sentences (and so n trees), we can approximate

the k-th moment and the k-th central moment as follows:

E(Xk) =
1

n

n
∑

j=1

xk
j (8.8)

and

E([X − E(X)]k) =
1

n

n
∑

j=1

[X − E(X)]k (8.9)

where xi is equal to the syntax tree depth of the i-th sentence of document d. Note,

that E(X) is known as the exspectation value and E([X − E(X)]2) the variance of

the random variable X.1

The values for different k vary in their order of magnitude. To avoid an overestimation

of higher moments we take the k-th root of the k-th moment. For the construction

of the feature vectors we consider the first three moments and the second and third

central moments.2 Thus we can represent our document d by the following vector:

(

E(X),
√

E(X2), 3
√

E(X3),
√

E([X − E(X)]2), 3
√

E([X − E(X)]3)
)

(8.10)

Histogram Approach

The most common form of a histogram is obtained by splitting the range of the data

into equal-sized bins. Then for each bin, the number of points from the data set that

fall into the bin is counted [6].

In our scenario the data consists of the syntax tree depths of a document d. The value

assigned to a bin is the number of trees within a certain range of depth (for example

all trees of depth 6 to 10). Let b(i) be the value of the i-th bin. As components of

1The fact that the central moment is not perfectly unbiased is not an issue for large n.
2The first central moment, E([X −E(X)]), is equal to 0.

102

8.2 Stylistic and Linguistic Features for Author Recognition

�

��� �

��� �

��� �

��� �

��� �

��� �

� 	 � � 	 � � � � 	 � � � � 	 �
� ��� 	 �
� � �
�

� �
� � � �

� ��
���
��
�

��� � !
"�# $ % � &

Figure 8.2: Tree Depth Histogram for two Authors

the feature vector for document d we consider these values normalized by the overall

number n of trees in d and obtain the following vector:

(b(1)

n
, . . . ,

b(m)

n

)

(8.11)

We used 5 as concrete bin-size in our implementation. Figure 8.2 shows a comparison

between the tree depth distributions for the authors A. C. Doyle and R. Burton

(books from Gutenberg Project [3] - see Section 8.2.7) in the form of histograms.

8.2.6 Combining Features

In the previous sections we have described several alternative document representa-

tions, providing us with different kinds of information about content and style. In

this section we describe two approaches to put these pieces of information together.

Combination Vectors

The idea of combination vectors is to merge the vectors obtained by different docu-

ment representations into a single vector. This can be done by the concatenation of

feature spaces. More precisely we are given k vector representations

~v1(d), . . . , ~vk(d) (8.12)

for document d with

~vi(d) = (vi1(d), . . . , vimi
(d)) (8.13)

103

8 Construction of Feature Spaces and their Combination

where mi is the size of the feature space for the i-th representation.

These vectors can be combined into a combination vector as follows:

(v11(d)

n1
, . . . ,

v1m1
(d)

n1
, ,

vk1(d)

nk
, . . . ,

vkmk
(d)

nk

)

(8.14)

Here the values ni are normalization constants. The rationale for this normalization

is that strong variations between the order of magnitude of the components of the

feature vectors might occur (this holds, e.g., for Bag-of-Words vs. moments of syn-

tax tree depth distributions). We choose the normalization constants such that the

average component value is the same for all subspaces corresponding to the original

feature spaces. Formally, for a document set D, we choose the constants ni such that

the following requirement is satisfied:

1

ni

1

mi

∑

d∈D

mi
∑

l=1

vil(d) =
1

nj

1

mj

∑

d∈D

mj
∑

l=1

vjl(d)

for all i, j ∈ {1, . . . , k} (8.15)

We can assign to one of the ni an arbitrary value (say n1 = 1); then the other normal-

ization constants can be computed by elementary transformations of equations 8.15.

Meta Classification

With a given set V = {v1, . . . , vk} of k binary classifiers (obtained by using different

documents representations) we can perform meta classification using a linear classifier

combination with thresholding, as described in Section 4.2:

Meta(d) =

+1 if
∑n

i=1 R(vi, d) · w(vi) > t1
−1 if

∑n
i=1 R(vi, d) · w(vi) < t2

0 otherwise

(8.16)

If a fixed set U of unlabeled documents (that does not change dynamically) is given,

we can classify the documents with a user-acceptable loss of L as follows:

1. for all documents in U compute their classification confidence
∑n

i=1 R(vi, d) ·

w(vi)

2. sort the documents into decreasing order according to their confidence values

104

8.2 Stylistic and Linguistic Features for Author Recognition

Author # Books # Test Documents

Richard Burton 49 7425

Charles Dickens 55 7869

Arthur Conan Doyle 40 3473

Henry Rider Haggard 55 6882

George Alfred Henty 60 7169

Jack London 38 3566

Edgar Allan Poe 7 636

William Shakespeare 89 4025

Robert Louis Stevenson 45 6451

Mark Twain 129 9087

Table 8.4: Authors used from Gutenberg Corpus

3. classify the (1 − L)|U | documents with the highest confidence values according

to their sign and dismiss the rest

In our experiments we assigned equal weights to each classifier, and instead of R(vi, d),

we considered a ”confidence” value conf(vi, d) for the classification of document d

by the classifier. For SVM we considered the SVM scores, i.e., the distance of the

test points from the hyperplane. A more enhanced method to map SVM outputs to

probabilities is described, e.g., in [97].

8.2.7 Experiments

Setup

For the validation of the presented techniques, we considered a literature data set

obtained from the Gutenberg Project [3], a volunteer effort to digitize, archive, and

distribute cultural works. We selected 10 English and American authors with a

sufficient number of books (listed in Table 8.4). For each author we divided each book

into parts with 20 paragraphs and stored each part as a document in the database.

From these documents, we randomly choose 600 per class for our experiments. We

divided these documents for each author into a training set (100 documents) and an

test set (500 documents).

For our experiments we considered binary classification on all 45 possible pairs of au-

thors (e.g. ”Burton” vs. ”Dickens”). For every pair we chose T ∈ {20, 40, 60, 80, 100}

105

8 Construction of Feature Spaces and their Combination

documents from the authors’ training sets as positive and the same number of doc-

uments as negative samples. The classification was performed on the corresponding

test sets.

Then, we computed the micro-averaged error, i.e. the ratio of incorrectly classified

documents among all test documents. For restrictive meta classification we con-

sidered in addition the loss, the fraction of documents dismissed by the restrictive

classifier. Additionally, we computed the 95 percent confidence interval for the error.

We compared the following methods for feature construction:

1. word based features

a) Bag-of-Words using porter stemming and stopword elimination - see Section

8.2.1 (BoW)

b) Function words - see Section 8.2.1 (FW)

c) Part of Speech extraction of nouns and verbs; annotation with Connexor

Machinese Phrase Tagger, using base forms of words constructed by Con-

nexor - see Section 8.2.1 (N&V)

d) n-grams within constituents; using the Stanford Lexparser, considering con-

stituents of each sentence represented as PCFG-tree - see Section 8.2.2

(Constit.)

2. structure based features

a) functional dependencies using Connexor Machinese Syntax for dependency

tagging - see Section 8.2.3 (FunctDep)

b) writing style using the Stanford Lexparser - see Section 8.2.4 (Style)

c) histograms for syntax tree depth distribution - see Section 8.2.5 (Hist.)

3. combination vectors using Bag-of-Words, writing style, and tree depth his-

tograms - see Section 8.2.6 - (Combi)

As classification method we chose standard linear SVM with parameter C = 1000.0.

We used the popular SVMlight implementation [63].

Results

In our first experiment we compared the classification results of the different feature

construction methods and their combination (see Table 8.5, Figure 8.3 for a chart

106

8.2 Stylistic and Linguistic Features for Author Recognition

��� ���
��� ���
��� ���
��� ���
��� ���
��� 	
�
��� 	��
��� 	��
��� 	��
��� 	
�

��� ��� ��� ��� 	���
��� ����� � ��� ��� ������

����
�

� �������� ��� !"�
��$&%'� ��
� � �'��()��*�� �'�
+ ������� $,��-
�&./��*�� ��� ���

Figure 8.3: Comparison: Bag-of-Words and Combination Techniques on the Guten-

berg Corpus

representation of Bag-of-Words - the best base classifier - vs. combination methods).

As meta method we used a simple unanimous decision (Unanimous Decision)

classifier with base classifiers based on Bag-of-Words, writing style, and tree depth

histograms.

In a second experiment we took the confidence values for classification into ac-

count and induced different loss values for the meta classification as described in

Section 8.2.6 (Table 8.6 and Figure 8.4).

The main observations are:

• The stylistic features work significantly better than random; nevertheless Bag-

Of-Words provides us with better results. Obviously, in the Gutenberg corpus

there is a high correlation between authors’ vocabulary and generes of their

novels (e.g., crime, horror, etc.).

• By combining Bag-Of-Words with the alternative features, we obtained signifi-

cant improvements. For combination vectors we have especially improvements

for a low number of training documents. With restrictive meta methods we ac-

cept a certain loss, but obtain a much lower error on the remaining documents.

107

8 Construction of Feature Spaces and their Combination

BoW FW N&V Style FunctDep Hist. Constit. Bigrams

T error error error error error error error error

20 0.164 0.354 0.225 0.186 0.171 0.299 0.356 0.458

±0.0034 ±0.0044 ±0.0039 ±0.0036 ±0.0035 ±0.0042 ±0.0044 ±0.0046

40 0.110 0.240 0.159 0.138 0.123 0.278 0.279 0.390

±0.0029 ±0.0039 ±0.0034 ±0.0032 ±0.0030 ±0.0041 ±0.0041 ±0.0045

60 0.083 0.177 0.096 0.123 0.123 0.273 0.245 0.323

±0.0026 ±0.0035 ±0.0027 ±0.0030 ±0.0030 ±0.0041 ±0.0040 ±0.0043

80 0.073 0.147 0.084 0.114 0.116 0.275 0.221 0.285

±0.0024 ±0.0033 ±0.0026 ±0.0029 ±0.0030 ±0.0041 ±0.0038 ±0.0042

100 0.044 0.115 0.065 0.103 0.089 0.272 0.204 0.230

±0.0019 ±0.0030 ±0.0023 ±0.0028 ±0.0026 ±0.0041 ±0.0037 ±0.0039

Meta

Combination Unanimous Decision

T error error loss

20 0.142 0.059 0.482

±0.0032 ±0.0016

40 0.092 0.037 0.399

±0.0027 ±0.0014

60 0.074 0.035 0.362

±0.0024 ±0.0013

80 0.065 0.033 0.349

±0.0023 ±0.0013

100 0.040 0.017 0.345

±0.0018 ±0.0010

Table 8.5: Error for Classification based on Different Features and their Combination

on the Gutenberg Corpus

Loss T = 20 T = 40 T = 60 T = 80 T = 100

0 % 0.165 0.111 0.083 0.073 0.044

10 % 0.146 0.092 0.069 0.058 0.033

20 % 0.130 0.079 0.058 0.048 0.027

30 % 0.114 0.068 0.048 0.039 0.021

40 % 0.099 0.059 0.040 0.032 0.017

50 % 0.086 0.049 0.033 0.025 0.014

60 % 0.075 0.043 0.028 0.021 0.011

70 % 0.064 0.038 0.023 0.016 0.008

80 % 0.053 0.034 0.019 0.013 0.008

90 % 0.039 0.030 0.016 0.010 0.009

Table 8.6: Error for Different User-Provided Loss Values using a Meta Classifier with

BoW, Writing Style, and Functional Dependencies on the Gutenberg Cor-

pus

108

8.2 Stylistic and Linguistic Features for Author Recognition

��� ���
��� ���
��� ���
��� ���
��� ���
��� 	
�
��� 	��
��� 	��
��� 	��
��� 	
�

���	
���
� ���
�

����
�

���! #"
���!$#"
���!%#"
���'&�"
���)(
"�"

Figure 8.4: Comparison: Classification Results for Restrictive Meta Classification on

the Gutenberg Corpus

109

9 Adaptive Retraining

This chapter addresses the problem of semi-supervised classification on document col-

lections using retraining (also called self-training). A possible application is focused

Web crawling which may start with very few, manually selected, training documents

but can be enhanced by automatically adding initially unlabeled, automatically clas-

sified Web pages for re-training. Such an approach is by itself not robust and faces

tuning problems regarding parameters like the number of selected documents, the

number of retraining iterations, and the ratio of positive and negative classified sam-

ples used for retraining. We develop methods for automatically tuning these pa-

rameters, based on predicting the leave-one-out error for a re-trained classifier and

avoiding that the classifier is diluted by selecting too many or weak documents for

retraining.

9.1 A Simple Base Algorithm

Consider a training set T and a set of unlabeled data U . We can perform retraining by

iteratively building a classifier C on T , classifying the documents in U and adding the

documents with the highest classification confidence to the training set. Classification

confidence could be estimated, e.g., by the distance from the separating hyperplane

in the SVM case or by the probability of accepting a document for a class. This

procedure can be described more precisely by the algorithm in Figure 9.1.

This algorithm provides us with a tradeoff. On one hand, a higher number of training

examples could potentially improve the classification accuracy; on the other hand,

there are potentially incorrectly labeled documents among the docs in Upos and Uneg,

which can dilute the training set. The algorithm has two important tuning parame-

ters:

1. the number m of iterations

2. the ratio p/n between new positively classified and negatively classified docs

used for retraining

111

9 Adaptive Retraining

Input: training set T = T_0

set of unlabeled Data U = U_0

for i = 1, ..., m do

build classifier C on T

classify U

U_pos := top-p positively classified docs

U_neg := top-n negatively classified docs

T = T + U_pos + U_neg

U = U - U_pos - U_neg

Figure 9.1: Simple Retraining Algorithm

In the following we show how we can automatically tune these parameters. Note that

the total number of selected documents for each retraining step, r := p + n could

be considered as an additional tuning parameter. However, we can simply choose it

sufficiently small to be on the conservative side.

9.2 Tuning the Number of Iterations

Because of the tradeoffs mentioned above, a higher number of iterations do not

necessarily imply a lower error. Our idea now is to approximate this error curve on

the test set U by an estimated error curve.

For a retraining step we can build an error estimator by performing leave-one-out

validation of the current classifier C on the original training set T0, i.e., the part of

the training set that consists of the manually labeled documents (which are assumed

to be correctly labeled). This partial leave-one-out is described in Figure 9.2.

For a set of sample estimates

{(i0, estError(i0)), . . . , (il, estError(il))}, (9.1)

where the ij values are the iteration numbers and estError(ij) is the estimated error,

we can now approximate the overall error curve by fitting the sample estimates, as

illustrated in Figure 9.3.

There are various approaches to this curve fitting. In our experiments we obtained

good performance using cubic splines. Cubic splines are used in many areas, e.g., bio

112

9.3 Tuning the Ratio of Positive and Negative Samples

Input: initial training set T = T_0

L = set of automatically labeld data

used for retraining

C = classifier trained on T+L

Output: estimated error for C

classifiedDocs = 0

incorrectlyClassified = 0

for all docs d in T do

build classifier C_L1o on T+L-{d}

if (realClass(d) != classsify(d,C_L1o))

incorrectlyClassified++

classifiedDocs++

return incorrectlyClassified/classifiedDocs

Figure 9.2: Partial Leave-One-Out

medicine, signal processing, and computer graphics [32, 94, 109]. In our experiments

we also tested other approaches like linear splines, and error estimation by the less

time consuming k-fold-cross-validation instead of leave-one-out.

Having approximated the error estimation curve S(x), we choose the retraining classi-

fier C in the iteration i with minimum S(i) (see Figure 9.3). Choosing the number of

supporting points for the fitting is an efficiency issue. The more supporting points the

better the approximation but the higher the overall cost for computing the estimator

values.

The classifier can be optimized in the same way for other quality measures like the

F-measure (the harmonic mean of precision and recall).

9.3 Tuning the Ratio of Positive and Negative Samples

For an effective classification the training set should be an appropriate represen-

tation of the test set. For binary classification, it is especially helpful if the ratio

between positive and negative documents is approximately the same for the test and

113

9 Adaptive Retraining

� � ��� ��� � �	��

���
�

� ���	����� � ���

��
�� � ����� ������� � ���

����� � ���	�

��
�� � ����� ���

�	��� � ���	�

��	���	� �

��
�� � ����� �

Figure 9.3: Optimal Number of Iterations: Approximation by Estimated Error Curve

the training set. For example, Bayesian classifiers take the prior class probabilities

explicitly into account. For SVM a badly proportionate training set can also lead to

a disadvantageous bias [25]. The assumption of having a training set with the same

ratio of positive and negative documents as a test set is not at all self-guaranteed or

easy to satisfy in practice. Typically a human, collecting training documents, would

rather choose roughly the same number of documents for each class, even if there are

significant (but a priori unknown) differences in the real world.

The idea is to overcome this problem by adjusting the training set such that it better

represents the test set. To do so, in each iteration of our retraining algorithm we

approximate the ratio between positive and negative documents by applying the

current classifier to the set of initially unlabeled data U0 (test data). Among a small

number r of new retraining documents we choose the number of positive and negative

documents, n and p, such that the difference between the overall ratio of positive and

negative training docs and the estimated ratio on the unlabeled data is minimized.

More formally let tpos be the number of positive, tneg be the number of negative train-

ing documents in the current iteration, vpos be the number of unlabeled documents

classified as positive by the current classifier C, and vneg be the number of documents

classified as negative. Then we choose the number of newly added positive and neg-

ative documents for retraining, p and n, such that the ratio (tpos + p) : (tneg + n)

between the overall number of positive and negative training documents provides the

114

9.4 The Enhanced Retraining Algorithm

best approximation for the ratio vpos : vneg of positive and negative test documents

estimated by the current classifier:

p = arg minx∈{0,...,r}

∣

∣

∣

∣

tpos + x

tneg + r − x
−

vpos

vneg

∣

∣

∣

∣

(9.2)

and

n = r − p (9.3)

As an illustrative example consider the case that the initial (manually labeled) train-

ing set consists of 100, and the set of initially unlabeled (test) data, that we aim to

classify automatically, consists of 200 documents. Furthermore assume that, after i

iterations, 100 of the test documents were automatically classified during previous

iterations, and were, along with the initial training set, used to build the current

classifier. Assume that the initial training set contains 50 positive and 50 negative

examples and the 100 additional retraining documents after i iterations contain 60

examples classified as pos and 40 examples classified as neg. Thus after the i-th

iteration, the ratio
tpos

tneg
on the total number of examples used for training the current

classifier is 50+60
50+40 ≈ 1.22.

For the i + 1-th iteration, we apply the current classifier (obtained in the i − th

iteration) to the the 200 initially unlabeled documents, resulting in, say, 120 positively

and 80 negatively classified documents, i.e.
vpos

vneg
= 120

80 = 1.5. In the next step of

the i + 1-th iteration, we add r = 10 new retraining documents, such that the ratio

pos : neg for the overall number of training documents used for the next classifier

provides the best approximation for
vpos

vneg
. In our example this holds for p = 10

positive and n = 0 negative retraining documents. For this choice the fraction of

positive and negative examples for the new classifier is 50+60+10
50+40+0 ≈ 1.33, a better

approximation than the ratio 1.22 after iteration i.

9.4 The Enhanced Retraining Algorithm

With the parameter tuning methods described above, our retraining algorithm now

works as follows: We retrain as long as documents for retraining are available. In

each retraining iteration we add a small number r of documents to the training

set, determining the ratio between new positive and negative training documents as

described in Section 9.3. Every stepsize iterations we compute and save an error

estimator. We apply curve fitting to the estimated error, and choose the classifier

corresponding to the minimum estimated error (see Section 9.2).

115

9 Adaptive Retraining

The pseudo code in Figure 9.4 summarizes our modified retraining algorithm.

Input: training set T = T_0

set of unlabeled Data U = U_0

stepsize

set of classifiers C-Set = empty

set of supporting points Support-Set = empty

iteration number i = 0;

while (U is not empty) do

build classifier C on T

add (i,C) to C-Set

estimate p and n \\see Section 9.3

classify U

U_pos := top-p positively classified docs

U_neg := top-n negatively classified docs

T = T + U_pos + U_neg

U = U - U_pos - U_neg

if (i mod stepsize = 0)

estimate error estError of C by leave-one-out on T_0

add (i,estError) to Support-Set

i++

compute interpolating curve S on Support-Set \\see Section 9.2

choose j which minimizes S(i)

return Classifier c from C-Set with iteration number = j

Figure 9.4: Enhanced Retraining Algorithm

9.5 Experiments

9.5.1 Setup

We performed a series of experiments with real-life data from the following sources.

1. The Newsgroups collection described in Section 4.5.

116

9.5 Experiments

2. The Reuters articles described in Section 5.5.

3. The Internet Movie Database (IMDB) described in Section 4.5.

For every data collection we considered each class with at least 300 documents. We

obtained 20 classes for Newsgroups, 8 for Reuters and 9 for IMDB. For each class

we randomly chose 100 documents as positive training examples and 100 negative

examples from all other classes. For validation we considered two cases:

1. the symmetric case: we chose equal numbers of positive and negative test doc-

uments for each class (200 per class)

2. the asymmetric case: we chose the number of positive and negative test docu-

ments in a ratio of 1 : 6 (i.e., 200:1200).

In all experiments, the standard bag-of-words model [17] (using term frequencies to

build L1-normalized feature vectors, stemming with the algorithm of Porter [99],

and deletion of stopwords) was used for document representation. We used binary

classifiers so as to recognize documents from one specific topic against all other topics;

this setup was repeated for every topic.

For each data collection we computed the macro-averaged error (i.e., the average

ratio of incorrectly classified documents to the number of test documents) along with

the 95 percent confidence interval and the macro-averaged F1 value (the harmonic

mean of precision and recall).

9.5.2 Results

We compared the following classification methods:

1. Standard linear SVM (SVM)

2. Standard linear TSVM. Here the fraction f of unlabeled examples to be classified

into the positive class is a selectable parameter. As default setting we used

the ratio between the positive and the negative examples in the training data.

(TSVM)

3. Linear TSVM where the ratio f between positive and negative test documents

was set according to the SVM classification (Method 1) on the test documents.

(TSVM+est)

117

9 Adaptive Retraining

Newsg. IMDB Reuters Newsg. IMDB Reuters

Method avg(error) avg(error) avg(error) avg(F1) avg(F1) avg(F1)

SVM 0.106 ± 0.0067 0.262 ± 0.0144 0.06 ± 0.0082 0.891 0.734 0.941

TSVM 0.1 ± 0.0066 0.261 ± 0.0143 0.059 ± 0.0082 0.9 0.739 0.941

TSVM+est 0.105 ± 0.0067 0.262 ± 0.0144 0.059 ± 0.0082 0.892 0.734 0. 942

EM-Bayes 0.129 ± 0.0073 0.245 ± 0.014 0.072 ± 0.009 0.884 0. 764 0.93

SGT 0.119 ± 0.0071 0.277 ± 0.0146 0.088 ± 0.0098 0.882 0.727 0.914

RetCsplL1o 0.123 ± 0.0072 0.263 ± 0.0144 0.068 ± 0.0087 0.867 0.723 0.934

RetCsplCv 0.116 ± 0.007 0.257 ± 0.0143 0.062 ± 0.0083 0.877 0.729 0.939

RetLsplL1o 0.123 ± 0.0072 0.256 ± 0.0143 0.066 ± 0.0086 0.871 0.731 0.936

RetLsplCv 0.115 ± 0.007 0.258 ± 0.0143 0.062 ± 0.0083 0.879 0.731 0.939

RetCv 0.111 ± 0.0069 0.254 ± 0.0142 0.061 ± 0.0083 0.882 0.735 0.94

Figure 9.5: Macro-averaged Results for Symmetric Test Set: Baseline and Retrain-

ing Methods

Newsg. IMDB Reuters Newsg. IMDB Reuters

Method avg(error) avg(error) avg(error) avg(F1) avg(F1) avg(F1)

SVM 0.097 ± 0.0035 0.246 ± 0.0075 0.075 ± 0.0049 0.726 0.481 0.783

TSVM 0.364 ± 0.0056 0.401 ± 0.0086 0.362 ± 0.0089 0.434 0.376 0.437

TSVM+est 0.096 ± 0.0035 0.249 ± 0.0075 0.076 ± 0.0049 0.728 0.475 0.78

EM-Bayes 0.202 ± 0.0047 0.267 ± 0.0077 0.093 ± 0.0054 0.596 0.498 0.75

SGT 0.216 ± 0.0048 0.329 ± 0.0082 0.167 ± 0.0069 0.543 0.402 0.606

RetCsplL1o 0.077 ± 0.0031 0.207 ± 0.0071 0.058 ± 0.0043 0.749 0.497 0.818

RetCsplCv 0.08 ± 0.0032 0.211 ± 0.0071 0.059 ± 0.0044 0.749 0.496 0.817

RetLsplL1o 0.081 ± 0.0032 0.212 ± 0.0071 0.058 ± 0.0043 0.744 0.49 0.813

RetLsplCv 0.083 ± 0.0032 0.209 ± 0.0071 0.06 ± 0.0044 0.744 0.491 0.812

RetCv 0.084 ± 0.0032 0.204 ± 0.007 0.059 ± 0.0044 0.745 0.499 0.816

Figure 9.6: Macro-averaged Results for Asymmetric Test Set: Baseline and Re-

training Methods

4. The augmented EM-iterated Bayesian classifier with weighting of the unlabeled

data as described in [91]. Here we determined the weighting parameter λ by

leave-one-out validation (considering the values between 0 and 1 with a step

width of 0.2), choosing the λ with the lowest estimated error. (EM-Bayes)

5. Spectral Graph Transduction as described in [67] (SGT)

6. Our retraining approach with linear SVM (Method 1) as the underlying base

classifier and 10 new retraining documents per iteration and

a) error/F1 prediction by leave-one-out estimation invoked after every 10 it-

erations and cubic spline interpolation (RetCsplL1o)

b) error/F1 prediction by leave-one-out estimation invoked after every 10 it-

erations and linear spline interpolation (RetLsplL1o)

118

9.5 Experiments

c) error/F1 prediction by 5-fold cross-validation invoked after every 10 itera-

tions and cubic spline interpolation (RetCsplCv)

d) error/F1 prediction by 5-fold cross-validation invoked after every 10 itera-

tions and linear spline interpolation (RetLsplCv)

e) error/F1 prediction by 5-fold cross-validation invoked after every iteration

- and no interpolation (RetCv)

For SVM and TSVM we used the popular SVMlight implementation [63] with pa-

rameter C = 1000 (tradeoff between training error and margin). For the Spectral

Graph Transductor we used the SGTlight implementation with parameterization as

described in [67].

The average results for the symmetric and asymmetric test sets are shown in Fig-

ures 9.5 and 9.6. Detailed results for the different classes are shown in Figures 9.7

through 9.9. (The best values are highlighted in boldface.)

The main observations are:

• For the symmetric test case, there is no clear winner. For IMDB the EM-Bayes

Method performs best, for Newsgroups and Reuters the TSVM algorithm is the

best algorithm. An explanation for the good performance of standard TSVM is,

that, for the symmetric case, the parameter f agrees completely with the real

ratio between positive and negative documents in the test set.

• In the asymmetric test case, our retraining algorithm clearly provides the best

performance on all three datasets. For example, on the IMDB data, which is

the hardest test case in terms of the absolute accuracy that was achievable,

we reduce the error from approximately 25-27 percent (for SVM and TSVM

with estimator and for EM-iterated Bayes) to 20.7 percent, quite a significant

gain. The very bad performance of standard TSVM can be explained by the big

gap between the parameter f , estimated on the training set, and the real ratio

between positive and negative documents in the asymmetric test set.

As we regard the asymmetric test case, significantly more unacceptable test docu-

ments than acceptable ones, as the far more realistic setting (e.g. in focused crawling,

news filtering, etc.), we conclude that the newly proposed retraining method is the

clear winner and outperforms the previously known state-of-the-art algorithms by a

significant margin.

119

9 Adaptive Retraining

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

error error error error error error

alt.atheism 0.108 0.361 0.105 0.238 0.229 0.071

comp.graphics 0.116 0.36 0.113 0.258 0.186 0.093

comp.os.ms-windows.misc 0.085 0.357 0.084 0.171 0.115 0.081

comp.sys.ibm.pc.hardware 0.117 0.36 0.12 0.218 0.174 0.113

comp.sys.mac.hardware 0.106 0.363 0.109 0.222 0.285 0.102

comp.windows.x 0.084 0.36 0.089 0.298 0.191 0.071

misc.forsale 0.058 0.369 0.056 0.099 0.246 0.051

rec.autos 0.079 0.361 0.077 0.148 0.272 0.066

rec.motorcycles 0.066 0.364 0.064 0.324 0.248 0.049

rec.sport.baseball 0.07 0.363 0.071 0.089 0.237 0.069

rec.sport.hockey 0.048 0.361 0.048 0.084 0.129 0.044

sci.crypt 0.061 0.361 0.063 0.104 0.199 0.056

sci.electronics 0.199 0.363 0.201 0.201 0.307 0.176

sci.med 0.141 0.364 0.138 0.093 0.219 0.064

sci.space 0.074 0.37 0.07 0.354 0.182 0.074

soc.religion.christian 0.07 0.361 0.066 0.361 0.189 0.066

talk.politics.guns 0.096 0.369 0.094 0.162 0.251 0.069

talk.politics.mideast 0.066 0.364 0.066 0.128 0.167 0.036

talk.politics.misc 0.142 0.367 0.142 0.231 0.199 0.092

talk.religion.misc 0.153 0.371 0.153 0.257 0.288 0.103

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

F1 F1 F1 F1 F1 F1

alt.atheism 0.708 0.438 0.716 0.544 0.524 0.771

comp.graphics 0.665 0.44 0.674 0.51 0.551 0.679

comp.os.ms-windows.misc 0.725 0.444 0.73 0.617 0.681 0.725

comp.sys.ibm.pc.hardware 0.675 0.44 0.667 0.559 0.561 0.659

comp.sys.mac.hardware 0.7 0.436 0.692 0.553 0.467 0.699

comp.windows.x 0.742 0.44 0.729 0.488 0.571 0.754

misc.forsale 0.808 0.427 0.812 0.72 0.493 0.819

rec.autos 0.757 0.438 0.761 0.65 0.498 0.768

rec.motorcycles 0.787 0.433 0.796 0.463 0.513 0.826

rec.sport.baseball 0.776 0.436 0.772 0.753 0.51 0.769

rec.sport.hockey 0.845 0.438 0.845 0.77 0.674 0.855

sci.crypt 0.811 0.438 0.806 0.728 0.548 0.824

sci.electronics 0.541 0.436 0.535 0.557 0.449 0.555

sci.med 0.644 0.433 0.651 0.747 0.549 0.684

sci.space 0.767 0.424 0.78 0.439 0.583 0.767

soc.religion.christian 0.787 0.438 0.8 0.438 0.576 0.791

talk.politics.guns 0.723 0.427 0.727 0.63 0.513 0.768

talk.politics.mideast 0.801 0.433 0.801 0.687 0.602 0.866

talk.politics.misc 0.641 0.429 0.641 0.548 0.547 0.718

talk.religion.misc 0.622 0.422 0.622 0.521 0.459 0.684

Figure 9.7: Asymmetric Test Set: Detailed Results for Newsgroups

120

9.5 Experiments

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

error error error error error error

Action 0.267 0.403 0.283 0.281 0.456 0.239

Adventure 0.309 0.416 0.312 0.284 0.421 0.324

Comedy 0.349 0.434 0.355 0.304 0.396 0.32

Documentary 0.128 0.364 0.125 0.107 0.174 0.094

Drama 0.324 0.43 0.328 0.404 0.308 0.259

Horror 0.217 0.397 0.223 0.246 0.324 0.199

Sci-Fi 0.179 0.38 0.176 0.182 0.186 0.114

Thriller 0.308 0.41 0.311 0.492 0.482 0.22

Western 0.13 0.377 0.127 0.106 0.217 0.094

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

F1 F1 F1 F1 F1 F1

Action 0.445 0.373 0.412 0.475 0.333 0.435

Adventure 0.393 0.353 0.387 0.42 0.304 0.383

Comedy 0.359 0.324 0.349 0.402 0.338 0.341

Documentary 0.664 0.433 0.672 0.7 0.561 0.718

Drama 0.357 0.331 0.349 0.369 0.35 0.364

Horror 0.486 0.382 0.473 0.493 0.371 0.484

Sci-Fi 0.573 0.409 0.58 0.576 0.525 0.626

Thriller 0.392 0.362 0.386 0.337 0.323 0.41

Western 0.657 0.413 0.664 0.712 0.516 0.715

Figure 9.8: Asymmetric Test Set: Detailed Results for IMDB

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

error error error error error error

acq 0.107 0.36 0.113 0.083 0.205 0.096

crude 0.031 0.361 0.031 0.094 0.149 0.026

earn 0.049 0.369 0.049 0.057 0.15 0.031

grain 0.083 0.363 0.086 0.056 0.187 0.064

interest 0.098 0.359 0.098 0.13 0.146 0.08

money-fx 0.079 0.363 0.081 0.115 0.191 0.062

trade 0.064 0.359 0.065 0.136 0.151 0.04

wheat 0.091 0.364 0.088 0.069 0.156 0.063

class SVM TSVM TSVM+est EM-Bayes SGT RetCsplL1o

F1 F1 F1 F1 F1 F1

acq 0.71 0.44 0.695 0.773 0.572 0.722

crude 0.897 0.438 0.897 0.746 0.629 0.912

earn 0.836 0.427 0.836 0.804 0.607 0.885

grain 0.759 0.436 0.751 0.803 0.568 0.794

interest 0.738 0.442 0.738 0.684 0.655 0.77

money-fx 0.772 0.436 0.768 0.711 0.568 0.798

trade 0.811 0.442 0.807 0.675 0.624 0.865

wheat 0.741 0.433 0.749 0.8 0.628 0.797

Figure 9.9: Asymmetric Test Set: Detailed Results for Reuters

121

10 Conclusion

In this thesis we have started out to investigate the engineering and, in particu-

lar, tuning issues of using automatic classification and clustering algorithms for text

document organization.

We have developed a constructive and practically efficient methodology for tuning a

repertoire of classifiers and meta methods to the application’s specific goals in terms

of classification error and document loss. A key element in our approach has been to

devise analytic estimators that can predict the error and loss for a given parameter

setting sufficiently accurately. Although our techniques are anchored upon empirical

leave-one-out or cross-validation estimators on the underlying training data to some

extent, we have taken great care to avoid computationally expensive steps that would

involve repeated retraining. While the approach applies to a wider repertoire of

classifiers, we have especially worked on the k-split meta classifier based on SVM

or Centroid, and we have experimentally shown that we can tune these methods to

meet the application goals with a classification error that is competitive to that of

conservative SVM variants at drastically reduced training cost.

We have shown, by a probabilistic model as well as by experiments on various data

sets, that restrictive classification methods can be used to eliminate junk documents.

Theory and experiments show that the junk reduction is significantly higher than the

loss, and the classification error is decreased. This holds for restrictive base methods

as well as meta methods.

We proposed an approach for automatically grouping heterogenous document collec-

tions by using restrictive clustering methods. A key element in our approach has

been to construct restrictive meta methods that result in higher cluster purity. The

introduced algorithms of meta mapping ensure better accuracy and make clustering

results robust and accurate at the cost of moderate loss of uncertain samples. While

the introduced approach applies to a wide range of partitioning methods, we have

especially worked on k-means and its extensions. We have experimentally shown

that meta clustering has higher accuracy than particular clustering methods and,

more importantly, performs better than the restrictive version the underlying base

123

10 Conclusion

methods with the same loss.

We used meta classification and clustering to construct distributed machine learn-

ing algorithms for P2P Web exploration applications. The results of the evaluation

clearly show the advantages of cooperation between nodes for building meta deci-

sion models. Our method does not require the comprehensive exchange of private

data collections between peers and thus provides substantial advantages for aspects

of privacy, network bandwidth, storage, and computational expense. Furthermore,

our restrictive meta methods clearly outperform the models that can be separately

built on training sources of isolated peers and, more importantly, also the restrictive

variant of such one-peer solutions with the same induced loss.

We described classification with different document representations. In addition to

well known features like document terms in the Bag-Of-Words model, POS tagging,

etc., we considered alternative stylistic features like the depth or the structure of

syntax trees. We combined the feature representations using two techniques: 1)

combination vectors, where we constructed a single vector from the different feature

vectors with automatic normalization of the combination vector’s components, 2)

meta methods combining the classification results based on the different representa-

tions into a meta result. Our experiments on the author recognition task show that

our new features are suitable for discriminating different styles and, used within com-

bination techniques, lead to significant improvements of the classifier performance.

We obtained similar results for the combination of document representations for Web

document classification.

Our work on semi-supervised classification has been motivated by the fact that the

availability of training data is often a critical point in real applications. This has

led us to a semi-supervised learning approach with iterative retraining using initially

unlabeled data. An additional difficulty that real applications often pose is the im-

balance between acceptable and unacceptable documents in the corpus that creates

a mismatch with the ratio of positive and negative training samples and may result

in a wrong bias of the classifier. In Web applications, but also for large-scale intranet

corpora, this is a typical situation and creates a major impediment to the previously

proposed state-of-the-art techniques for semi-supervised classification. Our method

successfully addresses these practically relevant issues, which were largely disregarded

by prior work, and significantly outperforms the other methods in terms of classifi-

cation accuracy.

124

Bibliography

[1] The 20 newsgroups data set. http://www.ai.mit.edu/ jrennie/20Newsgroups/.

[2] dmoz - open directory project. http://dmoz.org/.

[3] Gutenberg project. http://www.gutenberg.org/.

[4] Internet movie database. http://www.imdb.com.

[5] Lexparser. http://www-nlp.stanford.edu/downloads/lex-parser.shtml.

[6] National Institute of Standards and Technology, Gaithersburg (MD), USA.

http://www.nist.gov/.

[7] The open-source biojava project. http://www.biojava.org.

[8] K. Aas and L. Eikvil. Text categorisation: A survey. Technical report, Norwe-

gian Computing Center, 1999.

[9] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. Automatic subspace clustering of high dimensional data for data

mining applications. In SIGMOD ’98: Proceedings of the 1998 ACM SIG-

MOD international conference on Management of data, pages 94–105, Seattle,

Washington, United States, 1998. ACM Press.

[10] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-

ciation rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo

Zaniolo, editors, VLDB’94, Proceedings of 20th International Conference on

Very Large Data Bases, September 12-15, 1994, pages 487–499, Santiago de

Chile, Chile, 1994. Morgan Kaufmann.

[11] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to

binary: a unifying approach for margin classifiers. Journal of Machine Learning

Research, 1:113–141, 2001.

v

Bibliography

[12] Massih-Reza Amini and Patrick Gallinari. The use of unlabeled data to im-

prove supervised learning for text summarization. In SIGIR ’02: Proceedings

of the 25th annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 105–112, Tampere, Finland, 2002.

ACM Press.

[13] I. Androutsopoulos, J. Koutsias, Chandrinos Chandrinos, G. Paliouras, and

C. D. Spyropoulos. An evaluation of naive bayesian anti-spam filtering. In

G. Potamias, V. Moustakis, and M.n van Someren, editors, Proceedings of the

Workshop on Machine Learning in the New Information Age, 11th European

Conference on Machine Learning (ECML 2000), pages 9–17, Barcelona, Spain,

2000.

[14] Michael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.

Optics: ordering points to identify the clustering structure. In SIGMOD ’99:

Proceedings of the 1999 ACM SIGMOD international conference on Manage-

ment of data, pages 49–60, Philadelphia, Pennsylvania, United States, 1999.

ACM Press.

[15] H. Baayen, H. van Halteren, A. Neijt, and F. Tweedie. An experiment in

authorship attribution. In Actes des 6èmes Journées Internationales d’Analyse

des Données Textuelles (JADT), INRIA (Institut National de Recherche en

Informatique et en Automatique), France, 2002.

[16] H. Baayen, H. van Halteren, and F. Tweedie. Outside the Cave of Shadows:

Using Syntactic Annotation to Enhance Authorship Attribution. Literary and

Linguistic Computing, 11(3):121–131, 1996.

[17] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, 1999.

[18] K. R. Beesley. Language identifier: A computer program for automatic natural-

language identification on on-line text. In 29th Annual Conference of the Amer-

ican Translators Association, Medford (NJ), USA, 1988.

[19] Kristin P. Bennett and Ayhan Demiriz. Semi-supervised support vector ma-

chines. In Proceedings of the 1998 conference on Advances in neural information

processing systems II, pages 368–374. MIT Press, 1999.

[20] Kristin P. Bennett, Ayhan Demiriz, and Richard Maclin. Exploiting unla-

beled data in ensemble methods. In KDD ’02: Proceedings of the eighth ACM

vi

Bibliography

SIGKDD international conference on Knowledge discovery and data mining,

pages 289–296, Edmonton, Alberta, Canada, 2002. ACM Press.

[21] Adam Berger and John Lafferty. Information retrieval as statistical translation.

In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR con-

ference on Research and development in information retrieval, pages 222–229,

Berkeley, California, United States, 1999. ACM Press.

[22] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear

algebra for intelligent information retrieval. SIAM Rev., 37(4):573–595, 1995.

[23] Henk Ernst Blok, Djoerd Hiemstra, Sunil Choenni, Franciska de Jong, Henk M.

Blanken, and Peter M.G. Apers. Predicting the cost-quality trade-off for infor-

mation retrieval queries: facilitating database design and query optimization.

In CIKM ’01: Proceedings of the tenth international conference on Informa-

tion and knowledge management, pages 207–214, Atlanta, Georgia, USA, 2001.

ACM Press.

[24] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. In COLT’ 98: Proceedings of the eleventh annual conference on Com-

putational learning theory, pages 92–100, Madison, Wisconsin, United States,

1998. ACM Press.

[25] J. Brank, M. Grobelnik, N. Milic-Frayling, and D. Mladenic. Training text

classifiers with SVM on very few positive examples. Technical Report MSR-

TR-2003-34, Microsoft Corp., 2003.

[26] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[27] Pável Calado, Marco Cristo, Edleno Silva de Moura, Nivio Ziviani, Berthier A.

Ribeiro-Neto, and Marcos André Gonçalves. Combining link-based and

content-based methods for web document classification. In CIKM ’03: Pro-

ceedings of the twelfth international conference on Information and knowledge

management, pages 394–401, New Orleans, LA, USA, 2003. ACM Press.

[28] W. B. Cavner and J. M. Trenkle. Text categorization and information retrieval

using wordnet senses. In Third Annual Symposium on Document Analysis and

Information Retrieval, 1994.

[29] Soumen Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext

Data. Morgan-Kauffman, 2002.

vii

Bibliography

[30] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hypertext cat-

egorization using hyperlinks. In SIGMOD ’98: Proceedings of the 1998 ACM

SIGMOD international conference on Management of data, pages 307–318,

Seattle, Washington, United States, 1998. ACM Press.

[31] P. Chan. An extensible meta-learning approach for scalable and accurate in-

ductive learning. PhD thesis, Department of Computer Science, Columbia Uni-

versity, New York, 1996.

[32] E.Q. Chen and C.F. Lam. Predictor-corrector with cubic spline method for

spectrum estimation in compton scatter correction of spect. Computers in

biology and medicine, 1994, vol. 24, no. 3, pp. 229, Ingenta.

[33] David A. Cohn and Thomas Hofmann. The missing link - a probabilistic model

of document content and hypertext connectivity. In Todd K. Leen, Thomas G.

Dietterich, and Volker Tresp, editors, Advances in Neural Information Process-

ing Systems 13, Papers from Neural Information Processing Systems (NIPS)

2000, pages 430–436, Denver, CO, USA, 2000. MIT Press.

[34] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M.

Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract symbolic knowl-

edge from the world wide web. In Proceedings of the Fifteenth National Con-

ference on Artificial Intelligence, pages 509–516, Madison, Wisconsin, USA,

1998.

[35] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. Predicting query

performance. In SIGIR ’02: Proceedings of the 25th annual international ACM

SIGIR conference on Research and development in information retrieval, pages

299–306, Tampere, Finland, 2002. ACM Press.

[36] O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for

author identification forensics. SIGMOD Rec., 30(4):55–64, 2001.

[37] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epi-

demic algorithms for replicated database maintenance. In 6th Annual ACM

Symposium on Principles of Distributed Computing (PODC’87), pages 1–12,

Vancouver, British Columbia, Canada, 1987. ACM Press.

viii

Bibliography

[38] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm

on distributed memory multiprocessors. In Large-Scale Parallel Data Mining,

Lecture Notes in Artificial Intelligence, pages 245–260, 2000.

[39] Joachim Diederich, Jörg Kindermann, Edda Leopold, and Gerhard Paass. Au-

thorship attribution with support vector machines. Applied Intelligence, 19(1-

2):109–123.

[40] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems

via error-correcting output codes. Journal of Artificial Intelligence Research,

2:263–286, 1995.

[41] Evgenia Dimitriadou, Andreas Weingessel, and Kurt Hornik. A combination

scheme for fuzzy clustering. In AFSS ’02: Proceedings of the 2002 AFSS

International Conference on Fuzzy Systems., pages 332–338, Calcutta, 2002.

Springer-Verlag.

[42] Harris Drucker, Vladimir Vapnik, and Dongui Wu. Support vector machines for

spam categorization. IEEE Transactions on Neural Networks, 10(5):1048–1054,

1999.

[43] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, 2000.

[44] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive

learning algorithms and representations for text categorization. In CIKM ’98:

Proceedings of the seventh international conference on Information and knowl-

edge management, pages 148–155, Bethesda, Maryland, United States, 1998.

ACM Press.

[45] M. Ester, H.-P. Kriegel, and J. Sander. Knowledge Discovery in Databases.

Springer, 2001.

[46] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with noise.

In Second International Conference on Knowledge Discovery and Data Mining

(KDD), pages 226–231. AAAI Press, 1996.

[47] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[48] Xiaoli Zhang Fern and Carla E. Brodley. Solving cluster ensemble problems

by bipartite graph partitioning. In ICML ’04: Proceedings of the twenty-first

ix

Bibliography

international conference on Machine learning, page 36, Banff, Alberta, Canada,

2004. ACM Press.

[49] D. Fisher. Improving inference through conceptual clustering. In Proceedings

AAAI-87 Sixth National Conference on Artificial Intelligence, pages 461–465,

Seattle, WA., USA, 1987. AAAI Press.

[50] Michelle Fisher and Richard M. Everson. When are links useful? experiments in

text classification. In Fabrizio Sebastiani, editor, Advances in Information Re-

trieval, 25th European Conference on IR Research, ECIR 2003, Lecture Notes

in Computer Science, pages 41–56, Pisa, Italy, 2003. Springer.

[51] Ana L. N. Fred and Anil K. Jain. Data clustering using evidence accumulation.

In International Conference on Pattern Recognition ICPR (4), pages 276–280,

Quebec, Canada, 2002. IEEE Computer Society.

[52] Yoav Freund. An adaptive version of the boost by majority algorithm. Mach.

Learn., 43(3):293–318, 2001.

[53] Johannes Fürnkranz. Exploiting structural information for text classification

on the www. In David J. Hand, Joost N. Kok, and Michael R. Berthold,

editors, Advances in Intelligent Data Analysis, Third International Symposium,

IDA-99, volume 1642 of Lecture Notes in Computer Science, pages 487–498,

Amsterdam, The Netherlands, 1999. Springer.

[54] J. Gennari, P. Langley, and D. Fisher. Models fro incremental concept forma-

tion. In Artificial Intelligence, pages 40:11–61, 1989.

[55] Eric J. Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M. Pennock, and

Gary W. Flake. Using web structure for classifying and describing web pages.

In WWW ’02: Proceedings of the 11th international conference on World Wide

Web, pages 562–569, Honolulu, Hawaii, USA, 2002. ACM Press.

[56] José M. Gómez Hidalgo, Manuel Maña López, and Enrique Puertas Sanz. Com-

bining text and heuristics for cost-sensitive spam filtering. In Claire Cardie,

Walter Daelemans, Claire Nedellec, and Erik Tjong Kim Sang, editors, Pro-

ceedings of the Fourth Computational Natural Language Learning Workshop,

CoNLL-2000, pages 99–102, Lisbon, Portugal, 2000.

[57] H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting

and data generation: the databoost-im approach. ACM SIGKDD Explorations

x

Bibliography

Volume 6, Special issue on learning from imbalanced datasets, Pages: 30 - 39

(June 2004).

[58] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2001.

[59] M.M. Hasan and Y. Masumoto. Document clustering: before and after the

singular value decomposition. Technical Report Information Processing Society

of Japan, Natural Language Technical Reports, No.134, 1999.

[60] Alexander Hinneburg and Daniel A. Keim. An efficient approach to clustering

in large multimedia databases with noise. In Proceedings of the Fourth Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD-98), pages

58–65, New York City, New York, USA, 1998. AAAI Press.

[61] D.I. Holmes. The Evolution of Stylometry in Humanities Scholarship. Literary

and Linguistic Computing, 13(9):111–117, 1998.

[62] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf

for text categorization. In ICML ’97: Proceedings of the Fourteenth Interna-

tional Conference on Machine Learning, pages 143–151, Nashville, TN, USA,

1997. Morgan Kaufmann Publishers Inc.

[63] Thorsten Joachims. Text categorization with suport vector machines: Learn-

ing with many relevant features. In Claire Nedellec and Céline Rouveirol,

editors, Machine Learning: ECML-98, 10th European Conference on Machine

Learning, Chemnitz, Germany, April 21-23, 1998, Proceedings, volume 1398 of

Lecture Notes in Computer Science, pages 137–142. Springer, 1998.

[64] Thorsten Joachims. Transductive inference for text classification using support

vector machines. In Proceedings of the Sixteenth International Conference on

Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999, pages

200–209. Morgan Kaufmann, 1999.

[65] Thorsten Joachims. Estimating the generalization performance of an svm effi-

ciently. In ICML ’00: Proceedings of the Seventeenth International Conference

on Machine Learning, pages 431–438, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc.

[66] Thorsten Joachims. A statistical learning learning model of text classification

for support vector machines. In SIGIR ’01: Proceedings of the 24th annual

xi

Bibliography

international ACM SIGIR conference on Research and development in infor-

mation retrieval, pages 128–136, New Orleans, Louisiana, United States, 2001.

ACM Press.

[67] Thorsten Joachims. Transductive learning via spectral graph partitioning. In

Tom Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the

Twentieth International Conference (ICML 2003), August 21-24, 2003, Wash-

ington, DC, USA, pages 290–297. AAAI Press, 2003.

[68] Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite ker-

nels for hypertext categorisation. In Proceedings of the Eighteenth International

Conference on Machine Learning (ICML 2001), pages 250–257, Williams Col-

lege, Williamstown, MA, USA, 2001.

[69] Hillol Kargupta, Weiyun Huang, Krishnamoorthy Sivakumar, and Erik L.

Johnson. Distributed clustering using collective principal component analy-

sis. Knowledge and Information Systems, 3(4):422–448, 2001.

[70] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley & Sons, 1990.

[71] D. Khmelev and F.J. Tweedie. Using Markov Chains for Identification of Writ-

ers. Literary and Linguistic Computing, 16(3):299–308, 2001.

[72] Ron Kohavi and George John. Automatic parameter selection by minimizing

estimated error. In Armand Prieditis and Stuart Russell, editors, Machine

Learning: Proceedings of the Twelfth International Conference, pages 304–312,

Tahoe City, California, USA, July 1995. Morgan Kaufmann.

[73] M. Koppel, S. Argamon, and A.R. Shimoni. Automatically Categorizing Writ-

ten Texts by Author Gender. Literary and Linguistic Computing, 17(4):401–

412, 2002.

[74] Balaji Krishnapuram, David Williams, Ya Xue, Alexander Hartemink,

Lawrence Carin, and Mario Figueiredo. On semi-supervised classification. In

Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural

Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

[75] M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets:

One-sided selection. In Proceedings of the 14th International Conference on

Machine Learning, ICML’97, Nashville, TN, U.S.A., 179-186, 1997.

xii

Bibliography

[76] H.W Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2:83–97, 1955.

[77] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley-Interscience, 2004.

[78] Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples

using weighted logistic regression. In Tom Fawcett and Nina Mishra, edi-

tors, Machine Learning, Proceedings of the Twentieth International Conference

(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 448–455.

AAAI Press, 2003.

[79] D. Lewis. Representation and learning in information retrieval. PhD thesis, De-

partment of Computer and Information Science, University of Massachusetts,

1992.

[80] David D. Lewis. Evaluating text categorization. In Proceedings of Speech and

Natural Language Workshop, pages 312–318, Asilomar, CA, USA, February

1991. Defense Advanced Research Projects Agency, Morgan Kaufmann.

[81] Tao Li, Shenghuo Zhu, and Mitsunori Ogihara. Algorithms for clustering high

dimensional and distributed data. Intelligent Data Analysis, 7(4):305–326,

2003.

[82] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.

In IEEE Symposium on Foundations of Computer Science, pages 256–261, 1989.

[83] J. MacQueen. Some methods for classification and analysis of multivariate

observations. In Proc. 5th Berkley Symp. Math. Statist, Prob.,, pages 1:281–

297, 1967.

[84] C.D. Manning and H. Schuetze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.

[85] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-

ing a large annotated corpus of english: The penn treebank. Computational

Linguistics, 19(2):313–330, 1994.

[86] Francesco Masulli and Giorgio Valentini. Comparing decomposition methods

for classification. In International Conference on Knowledge-Based Intelligent

Engineering Systems and Applied Technologies, KES, pages 788–792, Brighton,

UK, 2000.

xiii

Bibliography

[87] S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using gen-

erative models. In International Conference on Data Mining (ICDM’03), Mel-

bourne, FL, 2003.

[88] T. Mitchell. Machine Learning. McGraw Hill, 1996.

[89] Alessandro Moschitti and Roberto Basili. Complex linguistic features for text

classification: A comprehensive study. In Sharon McDonald and John Tait,

editors, Advances in Information Retrieval, 26th European Conference on IR

Research, ECIR 2004, Sunderland, UK, April 5-7, 2004, Proceedings, volume

2997 of Lecture Notes in Computer Science, pages 181–196, 2004.

[90] N. Nanas, V. Uren, and A. de Roeck. Learning with positive and unlabeled

examples using weighted logistic regression. In 15th International Workshop on

Database and Expert Systems Applications(DEXA’04), Zaragoza, Spain, 2004.

[91] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from

labeled and unlabeled documents using em. Machine Intelligence, 39(2/3),

2000.

[92] Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins. Anti-aliasing on

the web. In WWW ’04: Proceedings of the 13th international conference on

World Wide Web, pages 30–39, New York, NY, USA, 2004. ACM Press.

[93] Michael Oakes. Ant colony optimisation for stylometry: The federalist papers.

In Proceedings of the 5th International Conference on Recent Advances in Soft

Computing, pages 86–91. Nottingham Trent University, 2004.

[94] E.I. Okanla and P.A. Gaydecki. A real-time audio frequency cubic spline inter-

polator. Signal processing, 1996, vol. 49, no. 1, pp. 45, Ingenta.

[95] Bo Pang and Lillian Lee. Thumbs up? sentiment classification using machine

learning techniques. In Conference on Empirical Methods in Natural Language

Processing (EMNLP), Philadelphia, PA, USA, 2002.

[96] W.P. Pierskalla. The multi-dimensional assignment problem. Operations Re-

search, 16:422–431, 1968.

[97] J. Platt. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in Large Margin Classifiers, MIT

Press, 1999.

xiv

Bibliography

[98] Jay M. Ponte and W. Bruce Croft. A language modeling approach to infor-

mation retrieval. In SIGIR ’98: Proceedings of the 21st annual international

ACM SIGIR conference on Research and development in information retrieval,

pages 275–281, Melbourne, Australia, 1998. ACM Press.

[99] M. F. Porter. An algorithm for suffix stripping. Readings in information re-

trieval, pages 313–316, 1997.

[100] C. Van Rijsbergen. A theoretical basis for the use of co-occurence data in

information retrieval. Journal of Documentation, 33:2, pp. 106-119, 1977.

[101] R. Rivest. The MD5 message digest algorithm. RFC 1321, 1992.

[102] Paolo Rosso, Edgardo Ferretti, Daniel Jiménez, and Vicente Vidal. Text Cat-

egorization and Information Retrieval Using WordNet Senses. In Petr Sojka,

Karel Pala, Pavel Smrž, Christiane Fellbaum, and Piek Vossen, editors, Pro-

ceedings of the Second International WordNet Conference—GWC 2004, pages

299–304, Brno, Czech Republic. Masaryk University Brno, Czech Republic.

[103] G. Salton and C. Buckley. Term-weighting approaches in automatic text re-

trieval. Information Processing and Management, 1988, p. 513-523.

[104] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw Hill, 1983.

[105] Robert E. Schapire. Using output codes to boost multiclass learning prob-

lems. In ICML ’97: Proceedings of the Fourteenth International Conference on

Machine Learning, pages 313–321, Nashville, Tennessee, USA, 1997. Morgan

Kaufmann Publishers Inc.

[106] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.

Methods and metrics for cold-start recommendations. In SIGIR ’02: Proceed-

ings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 253–260, Tampere, Finland, 2002.

ACM Press.

[107] Sam Scott and Stan Matwin. Text classification using WordNet hypernyms.

In Sanda Harabagiu, editor, Use of WordNet in Natural Language Processing

Systems: Proceedings of the Conference, pages 38–44. Association for Compu-

tational Linguistics, Somerset, New Jersey, 1998.

xv

Bibliography

[108] M. Seeger. Learning with labeled and unlabeled data. Tech. Rep., Institute for

Adaptive and Neural Computation, University of Edinburgh, UK, 2001.

[109] Chris Seymour and Keith Unsworth. Interactive shape preserving interpolation

by curvature continuous rational cubic splines. Special issue: computational

methods in computer graphics. J. Comput. Appl. Math. 102 (1999), no. 1, 87–

117, Math. Sci. Net.

[110] Stefan Siersdorfer, Andreas Kaster, and Gerhard Weikum. Combining text

and linguistic document representations for authorship attribution. In SIGIR-

Workshop on Stylistic Analysis of Text for Information Access (STYLE), Sal-

vador, Bahia, Brazil, 2005.

[111] Stefan Siersdorfer and Sergej Sizov. Konstruktion von Featureräumen und

Metaverfahren zur Klassifikation von Webdokumenten. In Gerhard Weikum,

Harald Schöning, and Erhard Rahm, editors, Datenbanksysteme für Business,

Technologie und Web (BTW) : 10. GI-Fachtagung, volume P-26 of Lecture

Notes in Informatics, Leipzig, Germany, February 2003. German Informatics

society (GI), Bonner Köllen.

[112] Stefan Siersdorfer and Sergej Sizov. Restrictive clustering and metaclustering

for self-organizing document collections. In SIGIR ’04: Proceedings of the 27th

annual international conference on Research and development in information

retrieval, pages 226–233, Sheffield, United Kingdom, 2004. ACM Press.

[113] Stefan Siersdorfer, Sergej Sizov, and Gerhard Weikum. Goal-oriented methods

and meta methods for document classification and their parameter tuning. In

CIKM ’04: Proceedings of the thirteenth ACM conference on Information and

knowledge management, pages 59–68, Washington, D.C., USA, 2004. ACM

Press.

[114] Stefan Siersdorfer and Gerhard Weikum. Automated retraining methods for

document classification and their parameter tuning. In The 6th International

Conference on Web Information Systems Engineering (WISE), New York City,

USA, 2005.

[115] Stefan Siersdorfer and Gerhard Weikum. Using restrictive classification

and meta classification for junk elimination. In David Losada and Juan

M. Fernández Luna, editors, Proceedings of the 27th European Conference on

Information Retrieval (ECIR ’05), volume 3408 of Lecture Notes in Computer

xvi

Bibliography

Science, pages 287–299, Santiago de Compostela, Spain, 2005. Information Re-

trieval Specialist Group of the British Computer Society (BCS-IRSG), Springer.

[116] Sergej Sizov, Martin Theobald, Stefan Siersdorfer, Gerhard Weikum, Jens

Graupmann, Michael Biwer, and Patrick Zimmer. The BINGO! system for

information portal generation and expert Web search. In CIDR 2003. Proceed-

ings of the 2003 Conference on Innovative Data Systems Research, January

5-8, 2003, pages 69–80, Asilomar, USA, 2003. VLDB.

[117] Ellen Spertus. Smokey: Automatic recognition of hostile messages. In

AAAI/IAAI Proceedings of the Fourteenth National Conference on Artificial

Intelligence and Ninth Innovative Applications of Artificial Intelligence Con-

ference, pages 1058–1065, Providence, Rhode Island, USA, 1997. AAAI Press

/ The MIT Press.

[118] A. Strehl and J. Gosh. Cluster ensembles - a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research 3, pp.

583-617, 2002.

[119] C. M. Tan, Y. F. Wang, and C. D. Lee. The use of bigrams to enhance text

categorization. Information Processing and Management., vol. 30, No. 4, pp.

529-546, 2002.

[120] Pasi Tapanainen and Timo Järvinen. A non-projective dependency parser. In

Proceedings of the fifth conference on Applied natural language processing, pages

64–71, Washington, DC, USA, 1997. Morgan Kaufmann Publishers Inc.

[121] Alexander Topchy, Anil K. Jain, and William Punch. Combining multiple

weak clusterings. In ICDM ’03: Proceedings of the Third IEEE International

Conference on Data Mining, page 331, Melbourne, Florida, USA, 2003. IEEE

Computer Society.

[122] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied

to unsupervised classification of reviews. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL), pages 417–

424, Philadelphia, PA, USA, 2002.

[123] Jaideep Vaidya and Chris Clifton. Privacy preserving näıve bayes classifier for

vertically partitioned data. In Proceedings of the Fourth SIAM International

Conference on Data Mining (SDM’04), Lake Buena Vista, Florida, USA.

xvii

Bibliography

[124] H. van Halteren. Writing Style Recognition and Sentence Extraction. In Work-

shop on Text Summarization, DUC, Philadelphia, Pennsylvania, USA, 2002.

[125] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[126] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting

data streams using ensemble classifiers. In KDD ’03: Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, pages 226–235, Washington, D.C., 2003.

[127] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical informa-

tion grid approach to spatial data mining. In VLDB ’97: Proceedings of the

23rd International Conference on Very Large Data Bases, pages 186–195, San

Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[128] Janyce Wiebe, Eric Breck, Chris Buckley, Claire Cardie, Paul Davis, Bruce

Fraser, Diane J. Litman, David R. Pierce, Ellen Riloff, Theresa Wilson, David

Day, and Mark T. Maybury. Recognizing and organizing opinions expressed

in the world press. In Mark T. Maybury, editor, New Directions in Question

Answering, pages 12–19. AAAI Press, 2003.

[129] D.H. Wolpert. Stacked generalization. Neural Networks, Vol. 5, pp. 241-259,

1992.

[130] Yiming Yang. An evaluation of statistical approaches to text categorization.

Journal of Information Retrieval, 1(1-2):69–90, 1999.

[131] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in

text categorization. In ICML ’97: Proceedings of the Fourteenth International

Conference on Machine Learning, pages 412–420, San Francisco, CA, USA,

1997. Morgan Kaufmann Publishers Inc.

[132] Hwanjo Yu, Kevin Chen-Chuan Chang, and Jiawei Han. Heterogeneous learner

for web page classification. In ICDM ’02: Proceedings of the 2002 IEEE Inter-

national Conference on Data Mining (ICDM’02), page 538, Washington, DC,

USA, 2002. IEEE Computer Society.

[133] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and

Bernhard Schölkopf. Learning with local and global consistency. In Sebastian

Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural

Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

xviii

Bibliography

[134] Zhi-Hua Zhou, Ke-Jia Chen, and Yuan Jiang. Exploiting unlabeled data in

content-based image retrieval. In Machine Learning: ECML 2004, 15th Eu-

ropean Conference on Machine Learning, Pisa, Italy, September 20-24, 2004,

Proceedings, volume 3201 of Lecture Notes in Computer Science, pages 525–536.

Springer, 2004.

xix

