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Abstract 
Modern Web Services applications encompass multiple distributed interacting 

components, possibly including millions of lines of code written in different 

programming languages. With this complexity, some bugs often remain undetected 

despite extensive testing procedures, and occasionally cause transient system failures. 

Incorrect failure handling in applications often leads to incomplete or to unintentional 

request executions. A family of recovery protocols called interaction contracts provides a 

generic solution to this problem by means of system-integrated data, process, and 

message recovery for multi-tier applications. It is able to mask failures, and allows 

programmers to concentrate on the application logic, thus speeding up the development 

process. 

This thesis consists of two major parts. The first part formally specifies the interaction 

contracts using the state-and-activity chart language. Moreover, it presents a formal 

specification of a concrete Web Service that makes use of interaction contracts, and 

contains no other error-handling actions. The formal specifications undergo verification 

where crucial safety and liveness properties expressed in temporal logics are 

mathematically proved by means of model checking. In particular, it is shown that each 

end-user request is executed exactly once. The second part of the thesis demonstrates the 

viability of the interaction framework in a real world system. More specifically, a 

cascadable Web Service platform, EOS, is built based on widely used components, 

Microsoft Internet Explorer and PHP application server, with interaction contracts 

integrated into them. 
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Kurzfassung 
Heutige Web-Service-Anwendungen setzen sich aus mehreren verteilten interagierenden 

Komponenten zusammen. Dabei werden oft mehrere Programmiersprachen eingesetzt, 

und der Quellcode einer Komponente kann mehrere Millionen Programmzeilen 

umfassen. In Anbetracht dieser Komplexität bleiben typischerweise einige 

Programmierfehler trotz intensiver Qualitätssicherung unentdeckt und verursachen 

vorübergehende Systemsausfälle zur Laufzeit. Eine ungenügende Fehlerbehandlung in 

Anwendungen führt oft zur unvollständigen oder unbeabsichtigt wiederholten 

Ausführung einer Operation. Eine Familie von Recovery-Protokollen, die so genannten 

„Interaction Contracts“, bietet eine generische Lösung dieses Problems. Diese Recovery-

Protokolle sorgen für die Fehlermaskierung und ermöglichen somit, dass Entwickler ihre 

ganze Konzentration der Anwendungslogik widmen können. Dies trägt zu einer 

erheblichen Beschleunigung des Entwicklungsprozesses bei. 

Diese Dissertation besteht aus zwei wesentlichen Teilen. Der erste Teil widmet sich der 

formalen Spezifikation der Recovery-Protokolle unter Verwendung des Formalismus der 

State-and-Activity-Charts. Darüber hinaus entwickeln wir die formale Spezifikation einer 

Web-Service-Anwendung, die außer den Recovery-Protokollen keine weitere 

Fehlerbehandlung beinhaltet. Die formalen Spezifikationen werden in Bezug auf kritische 

Sicherheits- und Lebendigkeitseigenschaften, die als temporallogische Formeln 

angegeben sind, mittels „Model Checking“ verifiziert. Unter anderem wird somit 

mathematisch bewiesen, dass jede Operation eines Endbenutzers genau einmal ausgeführt 

wird. Der zweite Teil der Dissertation beschreibt die Implementierung der Recovery-

Protokolle im Rahmen einer beliebig verteilbaren Web-Service-Plattform EOS, die auf 

weit verbreiteten Web-Produkten aufbaut: dem Browser „Microsoft Internet Explorer“ 

und dem PHP-Anwendungsserver. 
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Summary 
Recovery is the last resort for preserving data and system state consistency in a failure-

prone environment. Critical applications use transactional database servers whose data 

recovery mechanisms establish atomic updates and durability of data in the presence of 

transient system failures. Unfortunately, data recovery on database servers does not 

enforce an appropriate exception handling in the other application components. It is the 

responsibility of every single component in the system to handle all system failures such 

as message losses, timeouts, and crashes in a correct manner. In a distributed application 

with a rich state some component interdependences are often overlooked, which leads to 

incorrect application behavior in that some requests may unintentionally be repeated 

whereas others may not be executed at all due to message losses. 

This has motivated several recovery protocols aiming at masking system failures, and so 

relieving developers from dealing with them. The queued transactions approach has been 

the most successful industrial solution thus far. It requires that components store their 

state in transactional input and output message queues mostly residing on a database 

server, or in a database. In a multi-tier system, a single end-user request incurs a number 

of instances of the Two-Phase-Commit protocol incurring high logging overhead. Due to 

an inconvenient programming model and for insufficient scalability in the context of 

multi-tier applications, queued transactions have not been adopted for Web Services, 

although most of them are stateful by nature since they require several interactions with 

the user to accomplish a deal: authentication, catalog search, price negotiation or bidding, 

and finally committing the deal. This thesis elaborates on a recently proposed framework 

of interaction contracts geared towards general multi-tier applications that is more 

efficient than the queued transactions approach, and does not enforce any specific 

programming style. 

This thesis provides for the first time a formal specification for each interaction contract 

previously only informally described in the original literature. To this end, we adopted 

the state-and-activity chart language as defined and implemented in the commercial tool 

Statemate, widely used for modeling reactive systems such as embedded devices in the 

automotive and airspace industries. Each individual interaction contract is defined by a 

generic activity that can be easily reused in every application context. We model a 

complex Web Service comprising several components, which pass messages to each 

other either in synchronous or asynchronous fashion with the generic interaction contract 
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activities as building blocks. Most importantly, the Web Service model does not involve 

any recovery actions other than those defined in the underlying interaction contract 

activities that are invisible at the application layer. 

After completing the formal specification process, we start with verification of the 

interaction contracts using Statemate’s integrated model checker. For this purpose, we 

formulate crucial safety and liveness properties as temporal logic formulae. As for safety, 

we show that no message is ever executed more than once. For liveness, we prove that 

with a finite number of failures each interaction contract eventually terminates, and the 

corresponding requests are executed exactly once. While the verification of the individual 

bilateral interaction contracts is straightforward due to their relatively small model size, 

additional design engineering effort is needed to keep the Web Service model verifiable. 

We succeed in designing equivalent or more general, verifiable models, whose safety 

properties carry over into the original specification of the interaction contracts. 

Along with the formal specification of the interaction contract framework, in this thesis 

we describe a prototype Web Service platform called EOS that we built to investigate the 

framework’s viability in a real-world setting. More specifically, we consider two popular 

products used in the Web Service context: Microsoft Internet Explorer as a browser (user 

front-end), and a script engine PHP as a Web application server which can be invoked 

either by a browser or by another application server. We implement the external 

interaction contract to handle interactions between an end-user and her browser. 

Interactions between a pair of Web application servers, and between a browser and a Web 

application server run under either the committed or the immediately committed 

interaction contract. To this end, we turned the browser and the Web application server 

into persistent components by equipping them with logging and recovery routines. In 

accordance with the framework goals, we achieved this without rewriting existing 

application programs such as PHP scripts and the browser by solely changing their 

runtime environment. The most challenging part of this work was providing the 

deterministic replay of the multi-threaded PHP script engine in the business-to-business 

context, in which the state is shared by multiple sessions and may be simultaneously 

accessed by several other application servers. Thus, deterministic replay requires logging 

of original output messages. Enhanced components exhibit acceptable overhead in 

comparison with the original implementation, which shows their viability in large-scale 

Web Services. 
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Zusammenfassung 
Die Recovery ist das letzte Mittel, das die Inkonsistenz der Daten und des 

Systemzustandes in einer fehleranfälligen Ausfürungsumgebung verhindern kann. 

Kritische Anwendungen benutzen transaktionsfähige Datenbanksysteme, die die atomare 

Ausführung von mehreren Schreiboperationen und deren Dauerhaftigkeit trotz kurzzeitig 

auftretender Fehler gewährleisten. Die Daten-Recovery im Datenbanksystem erzwingt 

jedoch nicht, dass Fehler auch in den anderen Anwendungskomponenten adäquat 

behandelt werden. Jede Komponente ist selbst dafür verantwortlich, allen möglichen 

Fehlern wie Nachrichtenverlusten, Wartezeitüberschreitungen und Abstürzen richtig zu 

begegnen. In einer verteilten Anwendung mit einem großen Zustand werden 

wechselseitige Abhängigkeiten oft übersehen, was zu einem falschen Systemverhalten 

führt, in dem manche Operationen unbeabsichtigt mehrmals ausgeführt werden, während 

die Ausführung anderer Operationen wegen Kommunikationsstörungen gänzlich 

unterbleibt. 

Diese Problematik diente als Motivation für mehrere fehlermaskierende Recovery-

Protokolle, die Entwicklern die Behandlung von Fehlern abnehmen. Den bisher 

erfolgreichsten industriellen Ansatz stellt das Queued-Transactions-Verfahren dar. Es 

erfordert, dass Komponenten ihren Zustand in transaktionsfähigen, meistens von 

Datenbanksystemen verwalteten, Ein- und Ausgabewarteschlangen oder in einer 

Datenbank speichern. In einem Mehrschichtensystem zieht eine einzige Operation des 

Endbenutzers mehrere Instanzen des Two-Phase-Commit-Protokolls nach sich, was hohe 

Protokollierungskosten verursacht. Aufgrund des unbequemen Programmiermodells und 

der für verteilte Anwendungen ungenügenden Skalierbarkeit wurde das Queued-

Transactions-Verfahren nicht in den Bereich der Web-Services übertragen, obwohl wir es 

dort auch mit fehleranfälligen zustandsvollen Anwendungen zu tun haben. Diese 

Dissertation beschäftigt sich mit dem in den letzten Jahren veröffentlichten Framework 

der „Interaction Contracts“, das eigens für Mehrschichtensysteme entworfen wurde. Es ist 

effizienter als das Queued-Transactions-Verfahren und erzwingt keinen bestimmten 

Programmierstil. 

Diese Dissertation präsentiert erstmalig formale Spezifikationen der „Interaction 

Contracts“, die bis jetzt nur informal in der Literatur eingeführt wurden. Zu diesem 

Zweck setzen wir mit State-and-Activity-Charts einen automatentheoretischen 

Formalismus ein. Dieser Formalismus ist implementiert im kommerziellen Tool 
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Statemate, das eine breite Verwendung in der Automobilindustrie und der Luft- und 

Raumfahrtbranche hat. Jeder einzelne „Interaction Contract“ wird modelliert durch eine 

generische Aktivität, die sich leicht in unterschiedlichen Anwendungsszenarien 

wiederverwenden lässt. Darüber hinaus, wir modellieren einen komplexen Web-Service, 

der aus mehreren Komponenten besteht. Die Komponenten tauschen mehrere 

Nachrichten synchron und asynchron aus, jeweils unter Verwendung der generischen 

Aktivitäten. Besonders wichtig ist, das hierbei keine andere als die für die 

Anwendungsebene unsichtbaren, in den generischen Aktivitäten definierten Recovery-

Aktionen zum Tragen kommen. 

Die erstellten Spezifikationen der „Interaction Contracts“ werden mit Hilfe des 

„Statemate Model Checker“ verifiziert. Dazu formulieren wir wichtige Sicherheits- und 

Lebendigkeitseigenschaften als temporallogische Formeln. Als eine der 

Sicherheitseigenschaften beweisen wir beispielsweise, dass keine vom Endbenutzer 

initiierte Operation mehr als einmal ausgeführt wird. Unter der Annahme einer endlichen 

Anzahl von Fehlern beweisen wir, dass jeder „Interaction Contract“ terminiert 

(Lebendigkeit) und die betreffenden Operationen genau einmal ausgeführt werden. 

Während sich die Verifikation der einzelnen „Interaction Contracts“ aufgrund der 

verhältnismäßig geringen Modellkomplexität einfach gestalten ließ, erforderte die 

Verifikation der Web-Service-Anwendung zusätzlichen Aufwand, um analoge 

verifizierbarere Modelle zu finden, deren Sicherheitseigenschaften sich ins 

Ursprungsmodell übertragen lassen. 

Neben der formalen Spezifikation und Verifikation der „Interaction Contracts“, 

beschreiben wir eine prototypische Implementierung der Web-Service-Plattform EOS, 

mit der die Praxistauglichkeit der „Interaction Contracts“ in einer realen Software-

Anwendung untersucht wird. Wir betrachten zwei beliebte Web-technologische Produkte: 

Internet Explorer, den Web-Browser von Microsoft, und den Interpreter der Skriptsprache 

PHP, die Ausführungsumgebung für Webanwendungsserver. Ein Webanwendungsserver 

kann entweder von einem Browser oder von einem anderen Webanwendungsserver 

aufgerufen werden. Wir implementieren den „External Interaction Contract“, um die 

Interaktionen des Endbenutzers mit seinem Browser zu behandeln. Die Interaktionen 

zwischen zwei Webanwendungsservern und zwischen einem Browser und einem 

Webanwendungsserver werden durch den „Committed Interaction Contract“ oder den 

„Immediately Committed Interaction Contract“ geregelt. Hierzu statten wir den Browser 
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und den Webanwendungsserver jeweils mit einer Protokolldatei und Recovery-

Funktionen aus. Die Änderungen betreffen nur die Ausführungsumgebungen, ohne dass 

die Anwendungen, d.h. die PHP-Skripte, geändert werden müssen. Die Wiederherstellung 

der PHP-Ausführungsumgebung im Zusammenhang mit Business-to-Business-

Anwendungen stellt eine der größten Herausforderungen dar, weil wir es dort mit 

gemeinsam benutzten Daten zu tun haben, auf die parallel zugegriffen wird. Die korrekte 

Wiederherstellung erfordert die Protokollierung von Antwortnachrichten. Die 

verbesserten Web-Service-Komponenten haben nur geringfügig höhere 

Ausführungskosten im Vergleich zur ursprünglichen Software und empfehlen sich 

dadurch für den Einsatz in komplexen Web-Service-Anwendungen. 
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1. Introduction 
“There is nothing quite so bad as bad service, unless it is a bad product too.” 
- Anonymous 

The Web is currently the broadest available technology on the Internet. Therefore, a 

steadily growing number of businesses deliver mission-critical applications such as stock 

trading, airline ticket reservation, procurement, and business accounting systems to their 

end and business customers in the form of Web Services. These applications are often 

complex, comprise heterogeneous components such as application servers, workflow 

engines, and databases distributed over multiple layers; they pose strong requirements for 

service and consistent data availability from both legal and business standpoints. 

However, since many of those components count many millions of lines of code some 

bugs pass quality assurance undetected which inevitably leads to unpredictable outages of 

hardware and software systems at some point. 

1.1 Transactional Information Systems 

In the last three decades, it has become a common standard to manage the state of critical 

applications inside a transactional information system [Weikum and Vossen 2001]. An 

application can declare a sequence of requests to a transactional system as a transaction 

by including it between a “begin transaction” and a “commit transaction”  requests. 

The transactional system behaves according a contract coined ACID (the abbreviation of 

the guarantees constituting the contract):  

• Atomicity (all-or-nothing): A transaction is executed either completely or not at 

all. Uncompleted transactions (hit by a failure prior to commit or explicitly 

aborted by a “rollback transaction” request) are undone; this is also referred to 

as at-most-once execution. 

• Consistency: Transactions violating consistency constraints defined in the 

transactional system are rejected (i.e., aborted and undone). 

• Isolation: Concurrency control of the transactional system masks intermediate 

effects from transactions. From the perspective of applications using the highest 

isolation level serializable, transactions are executed one at a time. 

• Durability (Persistence): State modifications done by committed transactions 

survive subsequent system failures. 
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Figure 1 outlines a transactional procedure for transferring funds between two bank 

accounts managed in an SQL database [Henderson 2000]. Assume that the database 

relation accounts contains integer attributes id and balance. The transaction (started at 

line 4) charges the account denoted by the integer variable @from and credits the account 

denoted by the integer variable @to. Transaction atomicity guarantees that the account 

balances are recovered to their state before the transaction begin, if a failure occurs before 

the transaction commit (line 7) has been executed. After the transaction commit the effect 

of the money transfer is definite. As you may see in the source code, the application 

developer is completely relieved from the responsibility of treating intermediate states. 

1.2 Problem Statement 

Unfortunately, transaction atomicity does not mask failures from the application, which 

shifts the responsibility to properly deal with them towards the application developers. 

Moreover, there are pathological situations in which a transactional system is not capable 

of faithfully reporting the transaction outcome to the application, which may make it 

erroneously assume the transaction abort case. A subsequent transaction restart leads to a 

non-idempotent request execution as can be demonstrated by the following real-life 

scenarios: 

Scenario 1 (E-Commerce): One of the most prominent examples is unintentional 

purchase of multiple copies of the same item (e.g., a DVD) in an online store. This may 

happen when the user sees a browser timeout for the final “checkout” (“place order”) 

request caused by a short outage or overload of the network or the backend servers. 

Whereas the request has been successfully albeit slowly processed, the user attempts to 

send the checkout request once again by hitting the browser “refresh” button, 

unintentionally buying another copy of the same item. 

01. CREATE PROCEDURE money_transfer 
02.  @from integer,  
03.  @to integer,  
04.  @amount integer 
05. AS 
06. BEGIN TRANSACTION 
07.  UPDATE ACCOUNTS SET balance = balance - @amount \ 
  WHERE id = @from 
08.  UPDATE ACCOUNTS SET balance = balance + @amount \ 

  WHERE id = @to 
09. COMMIT TRANSACTION 

Figure 1: Sample Money Order Transaction 



1 Introduction 3 

 

 

Scenario 2 (Home Banking): A bank offers home banking where each user is identified 

by a personal identification number (PIN). The users obtain a list of unique transaction 

numbers (TAN’s). A TAN has to be provided for each user transaction to be accepted and 

for security reasons each TAN can be used just once. The following problem has 

happened to customers. After the first attempt to place a money order, the user perceives 

a long delay. The user re-submits the request and the “resurrected” application responds 

with “A TAN was used twice. Your TAN list has been frozen. Please visit your nearest 

branch office to have your TAN’s reactivated”, which is embarrassing for a service that is 

referred to as home banking. 

Scenario 3 (Intranet Application): A friend’s family consisting of three persons applied 

for a new health insurance by sending a filled-out form via conventional mail. After the 

application form was computerized and reviewed by the insurance company, the friend 

got back a letter with the positive response. There was nothing wrong with this except for 

the fact that eight smart cards (insurance ids) were attached to the letter, and five of them 

were duplicates. 

In a complex multi-tier application such as stock trading, a single request is often routed 

through more than ten system components hosted by different companies depending on 

the market model. The complexity of failure handling routines in such a system is 

accordingly high, and the task to cover all possible component interdependences is a real 

challenge. This motivates a system infrastructure that is able to mask system failures from 

applications by automatically taking appropriate recovery actions and providing exactly-

once execution. Such an infrastructure would allow developers to concentrate on the 

application logic, thus increasing their productivity, and improve application availability, 

as the application would be able to resume normal operation after a system failure 

without manual intervention. 

1.3 Contribution 

This thesis elaborates on the interaction contracts framework introduced by Barga et 

al. [2002, 2004]. The framework is especially geared for Web-based middleware in that, 

in contrast to the previous solutions, it does not put limitations on programming style, and 

is much more lightweight in terms of logging costs during normal operation. 

In many Web applications, components exchange request and reply messages more than 

once. For instance, it takes several browser requests to find desired items in an online-
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store and add them to the shopping cart, to select the method of payment, and finally to 

provide the shipping address. A component that remembers the state of the conversation 

is called stateful, as opposed to stateless components whose interactions with other 

components are not related to each other. A client component may have a state as little as 

the id of the current user. Its server counterpart may maintain shopping profile of the 

current user as a long-term state and items in her shopping cart as a short-term state. 

Providing persistence for stateful components and ensuring that each state transition 

occurs exactly once are among the most important assets of the framework. 

The contribution of this thesis consists of the following points: 

• Formal specification of the individual interaction contracts with state-and-activity 

charts in an easy-to-compose manner for usage in a concrete application. 

• Formal verification of the formal specifications at the level of the bilateral 

interaction contracts and their concrete application in a formal specification of a 

sophisticated Web Service by means of the model checking technology. 

• Implementation of the interaction contract framework in the Exactly-Once Web 

Service (EOS) prototype. It differs from another prototype implementation coined 

Phoenix/App [Barga et al. 2003, 2004] in that it delivers recovery guarantees to 

the human end-user by considering the Web browser, an end-user front-end, as 

part of the framework. 

1.4 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 introduces the formal methods 

used in this thesis: the state-and-activity-chart language for formal specification, a 

temporal logic CTL used for describing a dynamic computer system behavior, and model 

checking algorithms utilized for the verification of temporal logic propositions in a 

formally specified computer system. Chapter 3 puts this thesis into perspective of the 

state-of-the-art data and application recovery technology for monolithic and distributed 

applications. In Chapter 4, we provide the formal specifications charts of the interaction 

contracts in the form of state-and-activity charts and apply model checking to prove that 

it guarantees exactly-once execution. Chapter 5 deals with a prototype implementation of 

the IC framework for arbitrarily distributed Web Services. Chapter 6 concludes the thesis 

and outlines directions for future work. 
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2. Background on Formal Methods 
“Logic! Good gracious! What rubbish! How can I tell what I think till I see what I say?” 
- Edward Morgan Forster 

This chapter introduces the methods used for the formalization of computational systems 

exploited for the verification of the interaction contract framework in this thesis. In 

particular, it deals with the temporal logic CTL used to characterize the behavior of a 

computational system, the statechart formalism, an automata-theoretical approach for 

abstract specification of a computational system, and model checking approach for 

automatic verification of CTL formulae against formal specifications. 

2.1 Computation Tree Logic 

For capturing properties of a system’s dynamic behavior, variants of temporal logic are a 

well-established formalism [Emerson 1990]. In linear-time temporal logics, temporal 

operators describe events along a single execution path, also called a system run. A 

system reacting to external input has multiple alternative execution paths. The system 

satisfies a linear-time temporal logic formula if the formula holds in all system runs.  

Often the user would like to describe a property that holds only in some specific runs. 

Branching-time temporal logics provide quantifiers for the paths originating from a 

given state. A system that reacts to external input is considered as a computation tree. The 

system is a model of a branching-time temporal formula if the formula holds for the 

corresponding computation subtree. The model checker used in this thesis verifies 

temporal logic formulae provided in a branching-time temporal logic called 

Computation Tree Logic (CTL). 

CTL uses propositional logic formulae over a finite set of variables as its elementary 

building blocks. In a given state of a computation, such a formula is evaluated to either 

true or false in the usual manner. In addition, CTL allows applying existential and 

universal quantifiers, denoted E and A, respectively, to state transition paths originating 

from a given state. The quantifiers are combined with so-called temporal modalities like 

neXt, Globally, Until, and Finally, abbreviated X, G, U, and F. The syntax of CTL is 

defined as follows: 

1. An atomic proposition is a CTL formula 

2. If p and q are CTL formulae, then so are Ÿp, p ⁄ q, EX p, E (p U q) and A(p U q) 
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3. Given the basic operators above the following additional operators can be derived: 

p ¤ q ª Ÿ(Ÿp ⁄ Ÿq); AX p ª ŸEX Ÿp; AF p ª A (true U p);  

EF p ª E (true U p); AG p ª ŸE (true U Ÿp); EG p ª ŸA (true U Ÿp) 

Let P be a finite set of atomic proposition. The CTL formulae are interpreted over a 

Kripke structure K = (S, R, L), where S is the finite set of states, R Œ S µ S is the state 

transition relation with (s, t) œ R if t is an immediate successor of s, and  

L: S µ P ö {0, 1} is the valuation function. Note that for a software system, the function 

L is interpreted as a valuation of individual bits of the program variables in the given 

program state. A computation tree is obtained through unwinding the graph (S, R). A path 

of the structure K is a potentially infinite state sequence (s0, … , si, si+1, …) with each 

successive pair of states (si, si+1) œ R. 

Whether a current state s of the Kripke structure K fulfills the formula f denoted K, s 6= f 

is recursively defined over the formula structure: 

K, s 6= p   ñ L(s , p) = 1, where p is an atomic proposition 

K, s 6= Ÿp  ñ K, s 6∫ p 

K, s 6= p ⁄ q  ñ K, s 6= p and K, s 6= q 

K, s0 6= EX p  ñ for at least one path (s0, s1, …) holds K, s1 6= p 

K, s0 6= E(p U q) ñ for at least one path (s0, s1, …) there is an i with 

     K, si 6= q and for all j < i holds K, sj 6= p 

K, s0 6= A(p U q) ñ for all paths (s0, s1, …) there is an i with 

     K, si 6= q and for all j < i holds K, sj 6= p 

2.2 Explicit CTL Model Checking 

The automatic recursive procedure that verifies whether K, s 6= f holds by using the finite 

state-transition graph (S, R) is called explicit model checking [Clarke and Schlinghoff 

2001]. 

For a subset P Œ S the set of predecessor states is defined as Pred(P) ú { s | (s, t) œ R and 

t œ P }, and the set of successors is defined as Succ(P) ú { t | (s, t) œ R and s œ P } 

Let g be a subformula of f and Mg Œ S such that s œ Mg if K, s 6= g. Then, one can 

recursively apply the following explicit model checking algorithm of Figure 2 that 

considers seven different cases with regard to the structure of the formula f. 
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This simple model checking algorithm is subject to the state-explosion phenomenon 

because it requires instantiating of the complete state-transition graph. The state-

transition graph of a software system grows exponentially with the amount of memory 

used to store program variables. 

2.3 Symbolic CTL Model Checking 

McMillan [1993] developed a more efficient variant of model checking coined symbolic 

model checking that rather than using the state-transition graph considers the Kripke 

structure encoded in Quantified Boolean Formulae (QBF). Given a finite set of atomic 

propositions V = {v1, …, vn}, the set QBF(V) of formulae is defined as: 

1. The constants true and false are formulae, i.e., { true, false} Œ QBF(V), 

2. Each variable v œ V is a formula, i.e., V Œ QBF(V) 

3. If p œ QBF(V) and q œ QBF(V) then {p ⁄ q, Ÿp, Ÿq} Œ QBF(V) 

4. Given the basic formulae p œ QBF(V) and q œ QBF(V), and a vi œ V the following 

formulae can be derived: 

 p ¤ q  ª Ÿ(Ÿp ⁄ Ÿq) 

 p(vi ≠ q) denotes the formula p in which each occurrence of vi is 

substituted by q 

 $vi. p  ª p(vi ≠ true) ¤ p(vi ≠ false) 

 "vi. p ª Ÿ($vi. Ÿp) 

01. if g = p and p is an atomic proposition then 
  Mg ú « 
  for all states si œ S 
    if L(si,p) = 1 then Mg ú Mg » {si} 

02. if g = Ÿp then Mg ú S \ Mp 
03. if g = p ⁄ q then Mg ú Mp … Mq 
04. if g = EX p then Mg ú Pred(Mp) 
05. if g = E(p U q) then 

  Mg ú Mq 
  repeat 
    M’g ú Mg 
    Mg ú Mg » (Mp … Pred(Mg)) 
  until M’g = Mg 

06. if g = A(p U q) then 
  Mg ú Mq 
  repeat 
    M’g ú Mg 
    for each s œ Mp … Pred(Mg) … (S \ Mg) 
      if Succ({s}) Œ Mg then Mg ú Mg » {s} 
  until M’g = Mg 

07. if g = f and s œ Mg then print K, s |= f 
else print K, s |∫ f 

Figure 2. Explicit Model Checking Algorithm 
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 $(vi, …, vj). p ª $vi. … $vj. p 

For the truth assignment a: V ö{true, false} we define the evaluation function 

evala: QBF(V) ö{true, false} is defined as follows: 

• eval a(true) = true and eval a(false) = false 

• evala(vi) = b, if vi œ V and a(vi) = b 

• evala(Ÿp) = true, if evala(p) = false; evala(Ÿp) = false, otherwise 

• evala(p ⁄ q) = true, if evala(p) = evala(q) = true; evala(p ⁄ q) = false, otherwise 

• evala(p(vi ≠ q)) = true, if evala(p(vi ≠ evala(q))) = true 

For a vector W = (w1, .., wk) with wi œ V, a vector F = (f1, .., fk) with fi œ QBF(V), and a 

formula p œ QBF(V) we also define the vector substitution: 

p(W ≠ F) =((((((p(w1 ≠ f1))(w1 ≠ f2) … (wk ≠ fk).  

For a formula q œ QBF(V), we define the set of assignments [q] = { a | evala(q) = true} in 

which the formula q is true. Let S’ = {a | a:V ö{true, false}} be the set of all possible 

assignments. The set operations can then be expressed in QBF formulae as follows:  

• « = [false]; S’ = [true]; [p] » [q] = [p ¤ q]; [p] … [q] = [p ⁄ q]; S’ \ [p] = [Ÿp]. 

Now consider a Kripke structure K = (S, R, L) that is defined over V. We are going to 

encode the states and the transitions by a set of QBF formulae. We occasionally use the 

notation vfalse = Ÿv and vtrue = v for convenience. We encode a state s œ S by the set of 

assignments [qs], where ( , )L s v
s

v V

q v
∈

=⁄ . In order to be able to encode transitions, we 

introduce another set of atomic propositions V’ that is a copy of V. The entire state 

transition relation is encoded by the formula 
( , )

' ( ' )s t
s t R

R q q
∈

= ⁄ ¤ , where qs and q’t are 

defined over V and V’, accordingly. A binary relation Rsym Œ (V ö{true, false})2 is 

defined by (x, y) œ Rsym ‹ x » (v’i ú y(vi)) œ [R’]. We define a derived valuation 

function L’ : S’ µ V ö {true, false}by L’(s’, v) = s’(v). Symbolic model checking deals 

with the derived Kripke structure K’ = (S’, R’, L’). 

The image set that results from applying the relation Rsym to the assignments [p] is 

represented by the formula: R’(p) = ($V.(p ⁄ R’)) (V’ ≠ V). The following derivation 

proves this: 

y œ [R’(p)] ¤ y œ [($V.(p ⁄ R’)) (V’ ≠ V)]  ¤ y » {v’i ú y(vi)} œ [$V.(P ⁄ R’)] ¤ 

exists an x: V ö {true, false} such that y » {v’i ú y(vi)} œ {(p ⁄ R’) (vi ≠ x(vi))} ¤ 
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exists an x: V ö {true, false} such that x œ [p] and ({vi ú x(vi)} » {v’i ú y(vi)}) œ [R’] 

¤ exists an x: V ö {true, false} such that x œ [p] and (x, y) œ Rsym ¤ y œ Rsym ([p]) 

The formula R-1
sym(P) = $V’.(P(V ≠ V’) ⁄ R’) for the inverse image can be proved by a 

very similar derivation. 

Now consider a function t: 2S ö 2S for the original state set S. Such a function is said to 

be monotonic if for X Œ Y Œ S the inclusion t(X) Œ t(Y) holds. A subset Y Œ S is called a 

fixed point of t if Y = t(Y). For a monotonic function t there is a least fixed point 

denoted mY. t(Y) and a greatest fixed point denoted nY. t(Y). For a finite S the least fixed 

point is the limit of the chain [false] Œ t([false]) Œ t(t([false])) …, and the greatest fixed 

point is the limit of the chain [true] û t([true]) û t(t([true])) …. Note that since S is a 

finite set the convergence of both chains is reached in at most |S| + 1 steps. 

Analogously, consider a CTL formula f defined over (V » V’) » {x} with x being an 

additional non-interpreted atomic proposition. For some CTL formula Y over (V » V’) we 

recursively define a sequence of CTL formulae fi(Y) with fo(Y) = f(x ≠ Y) and  

fi+1(Y) = f(x ≠ fi(Y)). The formula sequence is monotonic if [fi(Y)] Œ [fi+1(Y)] (or  

[fi(Y)] Œ [fi+1(Y)]) for each i. The fixed points mY.f(Y) and nY.f(Y) for this sequence are 

similarly computed in at most |S| + 1 steps. For fE(p»q) = q ¤ (p ⁄ EX x) the sequence  

fi
E(p»q)(false) is monotonically increasing: q, q ⁄ (p⁄EXq), q ⁄ (p⁄EX (q ⁄ (p⁄EX q))), … 

Similarly we observe that for fA(p»q) = q ¤ (p ⁄ AX x) the sequence fi
A(p»q)(true) is 

monotonically decreasing. 

From the explicit model checking algorithm the following equivalences can be derived: 

K’, s’ 6= p   ñ s’ œ [p] 

K’, s’ 6= Ÿp  ñ s’ œ [Ÿp] 

K’, s’ 6= p ⁄ q  ñ s’ œ [p ⁄ q] 

K’, s’ 6= EX p  ñ s’ œ [$V’.(p(V ≠ V’) ⁄ R’)] 

K’, s’ 6= E(p U q) ñ s’ œ [mY.(q ¤ (p ⁄ EX Y))] 

K’, s’ 6= A(p U q) ñ s’ œ [nY.(q ¤ (p ⁄ AX Y))], where AX Y = ŸEX ŸY 

These equivalences define the mapping QBFCTL between CTL and QBF formulae over V. 

Hence, the original model checking problem K, s 6= p can be reduced to the symbolic 

model checking problem of verifying whether qs œ [QBFCTL(p)]. The cost of the 
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symbolic model checking problem boils down to the cost of manipulating QBF formulae 

by computing their conjunctions, disjunctions, negations, etc. 

2.4 Ordered Binary Decision Diagrams 

Many symbolic model checkers including that of Statemate use a graph-based data 

structure coined ordered binary decision diagram (OBDD) for representing Boolean 

functions. Algorithms that allow efficient manipulation (composition, conjunction, 

negation, etc.) of several Boolean formulae represented as OBDD’s are described in 

[Meinel, C. and T. Theobald 1998]. 

Consider a Boolean function f given by a propositional formula over the set of atomic 

propositions X = {x1, …, xn} » {0, 1}. The Shannon expansion of f around the variable 

xi is the function f’ = (xi ⁄ f(xi ≠ true)) ¤ (Ÿxi ⁄ f(xi ≠ false)). Clearly, f and f’ are 

equivalent. 

The initial OBDD of the function f with respect to a variable ordering p (p(1) < p(2) …) is 

recursively obtained by applying the following procedure. An OBDD is a binary tree with 

nodes from X. The root node xp(1) is associated with the original function f. Each node xp(i) 

associated with some function g and g is connected by the 0-edge and by the 1-edge to 

the nodes xp(i+1) associated with the left side g(xp(i) ≠ false) and the right side  

g(xp(i) ≠ true) of the Shannon extension of g, accordingly. The value of the function for 

the given assignment a can be found through the top-down traversal of the OBDD in that 

the 0-edge or the 1-edge are taken at a node xi if a(xi) = false or a(xi) = true, accordingly. 

As an example consider the function f = (x1 ⁄ x2) ¤ (x3 ⁄ x4) with the ordering  

p(1) < p(2) < p(3) < p(4) whose initial OBDD is depicted in Figure 3 (0-edges are 

represented by dash lines). 
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Figure 3: Initial OBDD for (x1 Ÿ x2) ⁄ (x3 Ÿ x4)  
with p(1) < p(2) < p(3) < p(4) 
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An OBDD can be reduced to the canonical form as described by Bryant [1986] (see 

Figure 4). To this end, each node is assigned a virtual id (parenthesized number in the 

Figure above) based on their child node values in a bottom-up manner. A new id is 

created for a node labeled xp(i) with a previously unseen child id pair which is captured in 

a two-dimensional array id_table[0-child(xi)][1-child(xi)]. Each id stands for a unique 

Boolean function, such that several nodes with the same id are replaced by a single node 

which makes sure that equivalent sub-functions are computed only once by the OBDD. 

The resulting reduced OBDD is optimal for the given variable ordering in that it does not 

contain any isomorphic subtrees computing identical Boolean functions. Figure 5 depicts 

the canonical (reduced) form of the sample OBDD of Figure 3. An interesting peculiarity 

of canonical OBDD’s consists in that their size highly depends on the chosen variable 

01. the id of a leaf node is its Boolean value (0 or 1) 
02. maxid ú 1 
03. for each non-leaf node xp(i) 
04.   if id(0-child(xp(i)) = id(0-child(xp(i)) then 
05.     id(xp(i)) ú id(0-child(xp(i)) 
06.   else if id_table[id(0-child(xp(i))][id(1-child(xp(i))] ∫ nil then 
07.     id(xp(i)) ú id_table[id(0-child(xp(i))][id(1-child(xp(i))] 
08.   else 
09.     maxid ú maxid + 1 
10.     id(xp(i)) ú maxid 
11.     id_table[id(0-child(xp(i))][id(1-child(xp(i))] ú maxid 
12.   end if 
13. end for 
14. replace all nodes with the same id by a single node 
15. label the two leaf nodes 0 and 1, correspondingly 
16. for k ú 2 to maxid 
17.   label the node k as xm where m = max { p(i)| id(xp(i)) = k} 
18. end for 

Figure 4: OBDD Reduction Algorithm 
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Figure 5: Canonical OBDD for  
(x1 Ÿ x2) ⁄ (x3 Ÿ x4) with  
p(1) < p(2) < p(3) < p(4) 
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Figure 6: Canonical OBDD for  
(x1 Ÿ x2) ⁄ (x3 Ÿ x4) with  
p(1) < p(3) < p(2) < p(4) 
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ordering. As an example consider the canonical OBDD shown in Figure 6 which 

computes the same function as the left-hand example relatively to slightly different 

variable ordering, where x2 and x3 are swapped: This ordering is certainly less preferable 

because the OBDD size increases by two nodes and four edges, accordingly. OBDD-

based symbolic model checking works with the OBDD representation of the QBF-

encoded Kripke structure K’. It outperforms the explicit model checking algorithm when 

it “guesses” a good variable ordering. 

There are several heuristics for finding a good variable ordering to minimize an input 

OBDD. Among most popular reordering heuristics that are also used in Statemate we 

would like to mention the sifting algorithm [Rudell 1993] and the window technique 

[Fujita et al. 1991]. The sifting algorithm picks one variable xi and tries out all of its 

possible orderings relatively to the remaining variables whose order remains fixed (i.e., 

first p1(i) < p1(1) < p1(2) < p1 (3) …, second p2(1) < p2(i) < p2(2) < p2(3) …, third 

p3(1) < p3 (2) < p3(i) < p3(3) …, and so on.). The window technique looks for an optimal 

OBDD using a sliding window of k variables and trying out all k-factorial permutations of 

the variables within the window. 

2.5 State-and-Activity Charts 

The following brief introduction to state-and-activity charts is based on [Harel and 

Naamad 1996] (see [Harel and Politi 1998] for the complete Statemate semantics). A 

system model is based on a hierarchical activitychart, in which the functional capabilities 

of the system are captured by activities, and the data elements and signals that can flow 

between them. The semantics of this functional description is that information can flow, 

but it does not specify what will happen, when, or why. These behavioral aspects except 

for external, nondeterministic activities are specified in statecharts, sometimes called 

control activities, usually one for each activity in the activitychart. 

CLIENT_SERVER_APPLICTION 

@CLIENT_SERVER_APPLICATION_CTRL

FAILURE_PRONE_ENVIRONMENT
CLIENT_CRASH 

SERVER_CRASH 

NETWORK_OUTAGE, TIMEOUT

CLIENT_SERVER_APPLICTION 

@CLIENT_SERVER_APPLICATION_CTRL

FAILURE_PRONE_ENVIRONMENT
CLIENT_CRASH 

SERVER_CRASH 

NETWORK_OUTAGE, TIMEOUT

 

Figure 7: Sample Activitychart 
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Figure 7 shows a sample activitychart. The activitychart consists of the actual activity 

client-server-application and an external activity (the dashed rectangle) that supplies the 

failure events client-crash, server-crash, network-outage, and timeout as nondeterministic 

input. The behavior of the client-server-application is determined by the control activity 

client-server-application-ctrl as indicated by the rounded rectangle. The statechart (see 

Figure 8) of this control activity is a subchart of the activitychart, which is declared 

through the prefix “@”. The detailed behavior of the statechart will be explained in the 

following subsections. 

Statecharts are finite state automata (FSA) with additional features:  

• Event-condition-action rules (ECA rules, written in the form e[c]/a as 

annotations of state transitions) determine that in response to an occurrence of the 

event e the system executes within a step the action a, moves from the source state 

to the target state of the transition when the condition c is true. ECA-rules can also 

be associated with a state, which defines its static reactions. 

• Nesting of entire statecharts into subordinate states is a mechanism for 

specification refinement and composability. 

• Orthogonal components (essentially cross products of automata) express 

parallelism of the system. 

CLIENT_SERVER_APPLICATION_CTRL

CLIENT 

CLIENT_CRASHED 

CLIENT_CRASH 

not CLIENT_CRASH 

SERVER_CRASHED 

SERVER_CRASH 

not SERVER_CRASH 

INITIALIZED 

/Iõ0;REQ_NRõ3

REQUESTING 
/REQ[i] 

not REP[i] and TIMEOUT/REQ[I] 
T 

[I=REQ _NR]

REP[i]/IõI+1

LISTENING 

(not NETWORK_OUATGE and REQ[I])/
ENQUEUE(Q, REQ[I])

EXECUTING 

[not EMPTY(Q)]/
DEQUEUE(Q, CURR)

/if CURR=REQ[I]
then REP[I]

SERVER

IDLE 

LISTENER EXECUTOR 

SERVER_SITE 

CLIENT_SITE 

CLIENT_SERVER_APPLICATION_CTRL

CLIENT 

CLIENT_CRASHED 

CLIENT_CRASH 

not CLIENT_CRASH 

SERVER_CRASHED 

SERVER_CRASH 

not SERVER_CRASH 

INITIALIZED 

/Iõ0;REQ_NRõ3

REQUESTING 
/REQ[i] 

not REP[i] and TIMEOUT/REQ[I] 
T T 

[I=REQ _NR]

REP[i]/IõI+1

LISTENING 

(not NETWORK_OUATGE and REQ[I])/
ENQUEUE(Q, REQ[I])

EXECUTING 

[not EMPTY(Q)]/
DEQUEUE(Q, CURR)

/if CURR=REQ[I]
then REP[I]

SERVER

IDLE 

LISTENER EXECUTOR 

SERVER_SITE 

CLIENT_SITE 

 

Figure 8: Sample Statechart 



14 2 Background on Formal Methods  

 

 

For example, in the statechart of Figure 8 the transition of the executor from the state idle 

to the executing state fires if the condition not empty(q) holds, and then triggers the action 

dequeue(q, curr). The entire statechart for the executor is a substate of the server; and the 

executor and the listener are orthogonal components, running in parallel with 

synchronization based on the events, conditions, and actions on globally shared variables, 

i.e., the request queue in this particular case.  

There are three types of states in a statechart: OR-states, AND-states, and basic states. 

All states together form a tree. OR-states have substates that are related to each other by 

exclusive or, whereas AND-states enclose orthogonal substates (separated by dash-lined 

boundaries) related by and. An orthogonal substate is an OR-state that usually contains 

other substates. States that contain substates are sometimes called superstates. Basic 

states have no substates, and are the leaves of the state hierarchy. Figure 9 depicts the 

state hierarchy of the sample statechart specification of Figure 8. 

When an AND state is entered, all its orthogonal substates are entered, too. When an OR 

state is being entered (activated), its default substate is being entered at the same time. 

The default substate is defined by specifying it as a target of a special default transition 

without a source state (e.g., the substate initialized of the state client in Figure 8). The set 

of currently entered (active) states is called a state configuration. The state configuration 

is closed upwards in the sense that if a state is active then so is its parent state. Thus, the 

set of the active basic states called basic configuration suffices to describe the complete 

state configuration. 

The formal definition of a statechart is provided as a tuple (S, SM, R, SR, DT, T, D, ES), 

where 

• S is the set of statechart states 

CLIENT_SERVER_APPLICATION_CTRL (Ÿ)

SERVER_SITE (⁄) CLIENT_SITE (⁄)

SERVER (Ÿ) SERVER_CRASHED (^)

LISTENER (⁄)

LISTENING (^) IDLE (^)

EXECUTOR (⁄)

EXECUTING (^)

CLIENT_CRASHED (^)CLIENT (⁄)

INITIALIZED (^) REQUESTING (^)

^ ⁄ ŸLEAF XOR AND Legend:
 

Figure 9: State Hierarchy of the Statechart 
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• SM Œ S µ {AND, OR, basic} is the state type relationship 

• SR Œ S µ S is the substate relationship with (p, q) œ SR if p is a substate of q, we 

write p 
SR
<  q for (p, q) œ SR; SR* is the transitive closure of SR, we write p 

*SR
<  q 

for (p, q) œ SR*; the root state is R 
*

max( )
SR

S=  

• DT Œ S µ L and T Œ S µ S µ L are the sets of default and regular transitions, 

respectively, with labels of the form e[c]/a from the label set L 

• D is the finite set of Boolean variables representing individual bits of data items 

along with events and conditions 

• ES Œ D is the set of external stimuli out of control of the system. 

2.5.1 Statechart State Configurations 

Given the statechart state set S, the set of state configurations SC Œ 2S is computed in a 

top-down manner by flattening the statechart. We define a function confset: S ö 2S. For 

a state s œ S the expression confset(s) computes the configuration set of the sub-statechart 

rooted in s. The expression confset(R) corresponds to the set of all syntactically possible 

state configurations of the original statechart. 

In the definition of the function confset we use a cross union operator ¥ that we 

introduce to compute the set system consisting of pairwise unions of the elements of two 

other systems A and B, i.e., A µ B = { a » b | a œ A and b œ B } 

For an s œ S, the expression confset(s) is recursively computed as: 

• confset(s) = ( 
( ', )

( ')
s s SR

confset s
∈
∪  ) µ {{s}}, if s is an OR-state. 

• confset(s) = ( 
( ', )

( ')
s s SR

confset s
∈

µ  ) µ {{s}}, if s is an AND-state. 

• confset(s) = {{s}}, if s is a basic state. 

For instance, the configuration set of the sample statechart of Figure 8 is computed by 

resolving the following equations: 

SC = confset(client_server_application_ctrl) = confset(server_site) µ  

                                                                            confset(client_site) µ  

                                                                            {{client_server_application_ctrl}} 

confset(server_site) = (confset(server) » confset(server_crashed)) µ {{server_site}} 

confset(server) = confset(listener) µ confset(executor) µ {server} 
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confset(listener) = confset(listening) µ {{listener}} 

confset(listening) = {{listening}} 

confset(executor) = (confset(idle) » confset(executing)) µ {{executor}} 

confset(idle) = {{idle}} 

confset(executing) = {{executing}} 

confset(server_crashed) = {{server_crashed}} 

confset(client_site) = (confset(client) » confset(client_crashed)) µ {{client_site}} 

confset(client) = (confset(initialized) » confset(requesting)) µ {{client}} 

confset(initialized) = {{initialized}} 

confset(requesting) = {{requesting}} 

confset(client_crashed) = {{client_crashed}} 

The default subconfiguration of a state is defined by the function defaultconf: S ö 2S: 

• defaultconf(s) = {s} » (
'

( ')
SR

s s

defaultconf s
<
∪ ), if s is an AND-state. 

• defaultconf(s) = {s} » defaultconf(s’), if s is an OR-state, and s’ is the default 

substate of s (i.e., s’ 
SR
<  s and there is a (s’, l) œ DT). 

• defaultconf(s) = {s}, if s is a basic state. 

The initial configuration of the statechart is given by conf0 = defaultconf(R), which is an 

implication of entering the root state. In Figure 8, the system will enter in the initial step 

the following states: The root state client-server-application-ctrl, its orthogonal substates 

client-site and server-site, the default substates of the client and server-site client and 

server accordingly, the client’s default basic state initialized, the server’s orthogonal 

components listener and executor, and finally their corresponding default substates 

listening and idle. 

2.5.2 Statechart Transitions 

There are several subtleties of transition behavior stemming from nesting, i.e., when the 

source and the target states have different parent states. Entering the target state implies 

entering of its previously inactive ancestors in addition to the default substate. If the state 

is left, then so are all its descendant states. This implies that the state can be left, even if it 

is visually presented as a sink. Moreover, if the transition crosses boundaries of any 

ancestor states of the source state (i.e., the target state is neither a source state sibling nor 

a descendant of a source state sibling), these ancestor states are left as well. In order to 
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describe precisely which states would be left and entered if a transition tr = (s, t, l) œ T 

would fire in some configuration conf with s œ conf, we need to provide definitions of the 

following auxiliary structures: 

• The set branch(s) = {s} » {p œ S | s 
*SR

<  p} comprises the nodes of the branch 

from the root down to the state s including s on the state hierarchy. The states 

from branch(s) are always implicitly active when s is active. 

• The set tree(s) = {s} » {p œ S | p 
*SR

<  s} consists of the nodes of the complete 

subtree rooted in the node s, and s itself. These nodes are implicitly left whenever 

s is left. 

The set EN(tr, conf) of the states entered due to tr is computed in three steps: 

1. EN1 ú (branch(t) \ branch(s)) » defaultconf(t)  

2. EN2 ú «; missed_orth ú «; 

for each AND-state ands œ EN1  

  missed_orth ú missed_orth » {orthc | orthc 
SR
<  ands and orthc – EN1} 

for each orthc œ missed_orth  

  EN2 ú EN2 » default(orthc) 

(These for-loops are necessary when tr directly enters a substate that has one or 

more AND-states as ancestors because their orthogonal components aside the 

branch of the target state still need to be activated) 

3. EN(tr, conf) ú EN1 » EN2 

The set EX(tr, conf) of the states exited due to tr is defined as:  

1. EX(tr, conf) = conf \ (conf … EN(tr, conf)), if s ∫ t neither 
*SR

s t<  nor 
*SR

t s<  

2. EX(tr, conf) = conf … tree( 
*

max
SR

{s, t} ), otherwise 

2.5.3 Statechart Textual Expression Language 

ECA labels are written in the statechart textual expression language for event, 

condition, and action expressions. An event is conceptually different from a condition in 

that it lasts only for a single step unless explicitly internally re-generated during the step 

or re-supplied by the environment, whereas the condition keeps its value until explicitly 

changed. In addition to user-defined events and conditions, Statemate defines a number of 

system events and conditions, called condition and event operators, respectively. The 
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configuration-related events exited(s) (abbreviated ex(s)) and entered(t) (abbreviated 

en(t)) fire when s is left and t is entered (regardless whether explicitly or implicitly). A 

counterpart condition in(s) is true if s is active. The event-array-related-events any(arr) 

and all(arr) are syntactical sugar for event expressions arr[1] or arr[2] … or arr[n] and 

arr[1] and arr[2] … and arr[n], correspondingly. The activity-related events started(act) 

(abbreviated st(act))and stopped(act) (abbreviated sp(act)) are generated when an activity 

is started and terminated by an action part of some transition. We will often use the event 

written(d) (abbreviated wr(X)) when an action assigns a value to X to show that data is 

written exactly once. 

An event expression is defined as propositional formulae over atomic events. A 

condition expression is analogously defined as propositional formulae over atomic 

conditions. An atomic event is either an atomic proposition (interpreted as “the event has 

been generated”) or an event operator. An atomic condition is an atomic proposition or a 

condition operator. We consider another type of atomic conditions that are given by the 

user in the form of comparisons of data-items (=, <, etc) encoded in ALU-style 

propositional formulae over individual bits. For instance, when two n-bit numbers d and 

d’ need to be tested for equality, this is converted into the formula 
0

n

i=
⁄Ÿ(di ¤ d’i). Let E 

and C be event and condition expressions, accordingly. The event-condition-part of a 

transition label is an event-condition expression (ECX)  whose syntax is recursively 

defined as follows: 

• E[C] is an ECX 

• If E is omitted, [C] is a syntactical sugar for true[C] 

• If C is omitted, E is a syntactical sugar for E[true] 

• An empty ECX is a syntactical sugar for true[true] 

• If ecx1 and ecx2 are ECX, then so are ecx1 or ecx2, ecx1 xor ecx2, and ecx1 and ecx2. 

Note that the expression e1 or e2[c2] allows the transition to fire when e1 occurs or when 

e2 is sensed while c2 is true, which is different from the expression (e1 or e2)[c2] that fires 

only while c2 is true for either event occurrences. 

An action can be as simple as generating an internal output event (written as …/e) or a 

complex action sequence including IF and WHILE statements. Higher level control 

activities usually orchestrate subordinate activities by starting (…/st!(act)) and stopping 

them (…/sp!(act)), accordingly.  
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2.5.4 Statechart Semantics 

The behavior of a system (S, SM, R, SR, DT, T, D, ES) is a set of possible runs, each 

representing the responses of the system to a sequence of external stimuli of ES (i.e., 

external events, conditions, and data-items) generated by its environment. A run consists 

of a series of snapshots of the system’s situation; such a snapshot is called a status that 

consists of the state configuration and the execution context. An execution context is a 

valuation of events, conditions, and data-items. That is, a status is element of  

statusset = confset(R)µ{ val | val: D ö {true, false}}. The initial status is given by the 

initial configuration and the default values of the data-items and conditions. The status 

changes after executing a step. At the beginning of each step, the environment supplies 

the system under description with external stimuli. These, together with internal changes 

that occurred in the system during the previous step, trigger transitions between states. 

Note that from the perspective of model checking that exhaustively tests all possible 

situations, external stimuli are just convenient syntactical sugar elements. We will show 

later in this section that we need to consider only internal data and signals because 

external stimuli are equivalent to internal events, conditions and variable whose values 

are generated in a nondeterministic way. 

To perform the i+1st step, the system evaluates the status  statusi = (confi, vali) after the ith 

step in the following manner. The system identifies the set of enabled transitions 

ETi = { (source, target, ecx/action) œ T | source œ confi and eval(ecx) = true}, where the 

function eval: ECX µ statusset ö {true, false} is defined as follows: 

• eval(ecx1 op ecx2, confi, vali) =  eval(ecx1, confi, vali) op eval(ecx2, confi, vali) for 

op œ{ and, nand, or, nor, xor} 

• eval(not ecx, confi, vali) = Ÿeval(ecx, confi, vali). 

• eval(E[C], confi, vali) = eval(E, confi, vali) ⁄ eval(C, confi, vali) 

• eval(in(s), confi, vali) = true ‹ s œ confi 

• eval(d, confi, vali) = vali(d), for d œ D. 

• eval(const, confi, vali) = const, for const œ {true, false}  

Clearly, there may be multiple enabled transitions. However, in contrast to an FSA, this 

does not necessarily imply a nondeterministic situation. An enabled transition that implies 

leaving a higher-level state of the statechart hierarchy is prioritized over enabled 

transitions that imply leaving any descendent states (transition priority rule). Just 

enabled transitions whose effect leads to leaving the same state at the highest level are 
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called to be in conflict, and constitute a nondeterministic situation that is randomly 

resolved by Statemate. Enabled non-conflict transitions deterministically fire at once 

(greediness property). 

For any two different transitions tr and tr’ from ETi we define the transition priority 

relation 
TP
<  by  tr 

TP
<  tr’ if 

*
max

SR
(EX(tr, confi)) 

*SR
<  

*
max

SR
(EX(tr’, confi)). The transitions tr 

and tr’ are in conflict if 
*

max
SR

(EX(tr, confi)) = 
*

max
SR

(EX(tr’, confi)), which we express as 

tr 
TP
=  tr’. If tri and trj are incomparable, i.e., EX(tr, confi) … EX(tr’, confi) = «, then tri and 

trj will fire simultaneously unless they are suppressed by some other prioritized transition. 

The possible maximum subsets of enabled transitions are computed as follows: 

1. NSTi = { tr œ ETi | there is no tr’ œ ETi with tr 
TP
<  tr’ } is the set of non-

suppressed transitions in statusi.  

2. NSTi[tr] = { tr’ œ NSTi | tr 
TP
=  tr’} is the equivalence class of transitions that are in 

conflict with tr including the transition tr itself. There are k  § #NSTi such 

partitions. If #NSTi[tr] > 1, the statechart is nondeterministic. Note that the 

removal of the suppressed transitions in the previous step was correct by the 

following argument. If  tr’’ 
TP
<  tr’ for some tr’ œ #NSTi[tr], then the property  

tr’’ 
TP
<  tr’ holds for all tr’ œ #NSTi[tr]. Regardless of the nondeterministic choice 

of a transition from NSTi[tr], a suppressed transition always remains suppressed. 

3. FIRESETSi = 
0

[ ]
k

i j
j

NST tr
=

µ  is the set of maximum transition subsets in statusi. 

Each fs œ FIRESETSi determines an alternative successor status (confi+1, vali+1) for statusi 

that is constructed by the function next(confi, vali, fs) as follows: 

1. The set ENfs ú ( )
tr fs

EN tr
∈
∪  contains the states that were entered through 

transitions. For each states s œ ENfs we set vali+1(en(s)) ú true; otherwise, 

vali+1(en(s)) ú false  

2. The set EXfs ú ( )
tr fs

EX tr
∈
∪  contains the states that were exited through transitions. 

For each states s œ ENfs we set vali+1(ex(s)) ú true; otherwise, vali+1(ex(s)) ú 

false 
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3. confi+1 ú ( )
fss EN

branch s
∈
∪  

4. The action set ACTfs = {a | (s,t, ecx/a) œ fs} determines the rest of the valuation 

function vali+1. For instance, vali+1(e) ú true if e is generated by some a œ ACTfs 

and vali+1(e) ú false, otherwise. The valuation of data-items and conditions is 

obtained by evaluating the action expressions. Clearly, if d œ D is not affected by 

any action, we obtain vali+1(d) ú vali(d). 

The image set step(confi, vali) = { next(confi, vali, fs) |  fs œ FIRESETSi} defines possible 

successor statuses. 

The system terminates either explicitly when some higher-level activity calls action sp! or 

implicitly by entering a termination connector (a circle labeled T in Figure 8). Upon 

termination, the state configuration becomes an empty set, and the control activity 

remains terminated until explicitly restarted by some higher-level activity through the 

action st!. 

At this point we are able to construct the Kripke structure Ksc = (Ssc, Rsc, Lsc) of the 

statechart and apply model checking as described in Sections 2.2 through 2.4: 

• Ssc = statusset, 

• Rsc = {(sti, sti+1) | sti+1  œ step(confi, vali)} 

• Lsc
 : Ssc ä D ö {true, false} with Lsc(conf, val, d) = val(d) 

Last but not least, we show how advanced Statemate features such as external input and 

static reactions are mapped to basic statechart elements. In Figure 10, you may see the 

conversion of a state with three static reactions to an equivalent statechart without static 

reactions. A statechart specification (with the root state R) using external events e1 and e2 

can be converted to an equivalent statechart (with the new root state R’) that has an 

A 

A

e1[c1]/act1

e2[c2]/act2

e3[c3]/act3

static reactions

e1[c1]/act1 e2[c2]/act2 e3[c3]/act3

A 

A

e1[c1]/act1

e2[c2]/act2

e3[c3]/act3

static reactions

e1[c1]/act1 e2[c2]/act2 e3[c3]/act3

 

Figure 10: Conversion of Static Reactions 
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additional orthogonal component for each external event (or data-item bit) that generates 

them nondetermistically as depicted in Figure 11. 

2.5.5 Sample Scenario 

Now we are ready to describe how the model in Figure 8 works. The system starts up in 

the initial configuration as shown above. The single-threaded client is going to submit 

three requests modeled as a bounded event array req to the server, which is controlled by 

the integer variable req_nr. Thus, we can immediately verify a simple CTL formula  

AG i § req_nr, i.e., the counter i never exceeds req_nr. The server owns two threads 

(orthogonal components): the listener that accepts and queues client requests, and the 

executor responsible for the queued request execution. 

Regardless of the application progress, normal operation of the client and the server is 

interrupted when the corresponding crash events are sensed due to the transition priority 

rule, which can be expressed in CTL as AG (server_crash ¨ AX in(server_crashed)). 

Normal operation of the component is resumed as soon as the external environment stops 

supplying the crash event. More precisely, the following CTL formula holds for the 

server: AG ( server_crash ⁄ AX Ÿserver_crash Ø AX (AX (in(listening) ⁄ in(idle))). 

With the second step during normal operation, the client moves from the state initialized 

to the state requesting and generates the 0th element of the event array req; if the queue Q 

is not empty, the server dequeues and executes a request in the state executing in the very 

same step. When there is no network_outage, the server adds req[0] to Q with the third 

step, whereas the server checks if the reply rep[0] for the client request is already 

available and returns it to the idle state (note that this is an unconditional transition with a 

conditional reply action). On the client side, nothing changes until the step after the 

corresponding reply has been generated by the server or the external event timeout has 

been sensed. In the former case, the client prepares the next request and returns to the 

R 

R’

/e1
/e2

R 

 

Figure 11: Conversion of External Stimuli 
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state initialized; in the latter case, the original request is resubmitted. The statechart 

terminates when the request counter i has reached the value of req_nr, and the 

termination connector is entered. Obviously, there is an execution path with a finite 

number of external failure events, and the following formula must hold:  

EF (i=req_nr ⁄ in(T)). 

2.5.6 Statechart Time Models 

Statemate supports two models of timing: synchronous and asynchronous. The 

synchronous time model assumes that the system executes a single step every time unit, 

reacting to all the external changes that occur in the one time unit that elapsed since the 

completion of the previous step. Prior to computing a new step the system always senses 

for external stimuli. The asynchronous time model assumes that the system reacts 

whenever an external change occurs, allowing several external changes to occur 

simultaneously and, most importantly, allowing several steps to take place within a single 

point in time. Such a collection of steps is sometimes called a superstep. New external 

changes are not sensed until the superstep completes. 

At first glance, one might think that the asynchronous time model is the best choice for 

modeling an asynchronous environment like a Web service with virtually all components 

residing on distinct machines. However, it turns out that the asynchronous model 

unnecessarily complicates modeling arbitrary failure situations because a superstep, once 

started, is executed atomically. In the sample statechart of Figure 8, the client would 

never crash in the state initialized because this state is left within the same superstep via 

the unconditional transition into the state requesting, whereas the server would never fail 

in the state executing because it would immediately go back to the state idle. In a real 

world model we have to allow failures to occur in each and every state configuration, i.e., 

even between micro-steps. In order to achieve this with the asynchronous model, we 

would have to add to each transition an external event in a conjunctive manner, such that 

the model checker will consider also runs in which a super step comprises only one single 

step by setting such an event initially to false. Besides the fact that this method is far from 

elegant, one should also consider that the complexity of model checking is O(n2) in the 

size n of the specification that in turn grows exponentially with each new Boolean 

variable. As the result, this discussion suggested using the synchronous model. However, 

in the specifications we do not assume that any changes on different components have to 
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take place at the same time, and we do not pass time parameters across component 

boundaries either. Thus, we do not lose generality. 

2.5.7 Generic Activities 

Statemate supports modularized specification designs and module reusability. It provides 

a notion of a generic activity. A generic activity exposes a set of formal in- and output 

parameters, which have to be bound to concrete variables (events, conditions, etc.) 

whenever the activity is instantiated (reused) just like arguments for a function call in a 

programming language. 
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3. Background on Recovery Technology 
“It's not whether you get knocked down. It's whether you get up again.” - Vince Lombardi 

It is sad but true that there is no large-scale software without bugs. The only response 

consists in modularizing software into components thereby trying to isolate bugs and 

limit their impact on the overall system. Software designers pay special attention to 

keeping critical components, e.g., those responsible for durable changes on a hard drive 

as small as possible thereby reducing the likelihood of bug occurrences in them. 

Operations relevant for the component state are logged in the order of occurrence on 

component’s persistent storage. As soon as the failure is detected through the runtime 

environment (e.g., a virtual machine or a recovery manager) abnormally terminates and 

restarts the component, i.e., the runtime environment triggers a soft crash of the 

component. A component terminating upon detecting a failure is called fail-stop. The 

task of recovery is to recreate the most recent component state that is consistent with the 

states of other components. 

3.1 Failure Model 

It is very important to understand when recovery is applicable. Recovery deals only with 

omission failures, where the system fails to execute some action. From the recovery 

standpoint, two relevant classes of software bugs may lead to an omission failure [Gray 

and Reuter 1993]: 

• Bohrbugs are deterministic programming errors that can be reproduced after their 

first occurrence repeatedly such that they are normally eliminated during 

development and testing phases. In some cases, even Bohrbugs pass quality 

assurance undetected and when such an error occurs in a released production 

system, recovery will always drive the system into the same problem. This makes 

it impossible to resume normal operation automatically but the log sequence 

containing an entire execution path leading to the Bohrbug will help developers 

rectify the system. 

• Heisenbugs occur only under specific hard-to-reproduce conditions usually 

during a peak load, which makes them appear nondeterministic from the system 

operation and debugging perspectives. Recovery “works” when a Heisenbug does 

not corrupt stable state and because a Heisenbug is unlikely to recur after the 

subsequent restart. This does not imply that the system cannot fail during recovery 
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again but it is almost impossible for the system to fail because of the original 

Heisenbug several times in a row. 

A number of failures are outside the recovery scope and consequently are not covered in 

this thesis. They are subject to other areas of fault-tolerant computing. 

• Recovery does not handle commission, so-called Byzantine, faults typically 

caused by malicious code intrusion of the system [Castro and Liskov 1999]. 

• Recovery usually does not deal with transient hardware failures such as bit flips, 

instant network outages etc. These failures are mostly intercepted and masked 

either by the hardware-integrated self-correcting code or at the operation system 

level (consider, e.g., RAID storage systems [Katz et al. 1989], and the Internet 

protocols TCP/IP [Comer 1988]). However, if they are not masked, recovery will 

trigger a soft crash. 

• Human user faults such as intentionally or unintentionally provided inaccurate 

input normally cannot be handled automatically. Some systems are able to assist 

system administrators by suggesting compensating transactions that would restore 

a valid system state [Korth et al. 1990]. 

• Recovery depends on correctly functioning stable storage hardware. High 

recovery log availability can be achieved by replication. Recovery cannot be 

performed if all replicas with state and logging information corrupt 

simultaneously. 

• Faulty recovery code leads to durable system failures. Even worse, it can create an 

inconsistent state without any further notice. This is why it is so important that 

recovery algorithms be verified. 

3.2 Data Recovery 

Database systems provide durable data storage service for applications. They are large-

scale multi-user systems that are therefore highly optimized for response time. The most 

significant performance bottleneck is exhibited by the hardware used to store data 

persistently. An access to secondary storage providing persistence, typically a magnetic 

disk, also called hard disk, is five to six orders of magnitude slower than a main 

memory access. Thus, database systems are geared to reduce the number of disk I/O’s.  

Database systems physically arrange logical data units and derived data structures such 

as indices in uniquely identified fixed-size blocks called disk pages. The cost to access a 
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disk page of several KB is one order of magnitude higher than the cost of fetching it into 

main memory. A typical disk page size ranges from two to eight KB. In order to save disk 

I/O’s the database system caches a subset of disk pages in main memory and lazily writes 

them back, e.g., when a cached page needs to be dropped to accommodate a new page. 

The disk-resident pages constitute the stable state of a database. The non-cached fraction 

of the stable state and the cached pages define altogether the current state of the 

database. The fact that changes made by completed transactions may be missing in the 

stable state, whereas uncommitted changes may have been made persistent, is dealt with 

by transaction recovery. 

Database systems use high-level logical operations coined access methods for reading 

and manipulating logical data units (e.g., tuples). A logical operation usually implies 

accessing multiple pages. For example, an update of a key attribute of a tuple in a sorted 

table may reposition the tuple on its original page, or move it to a different page, and this 

also potentially incurs updating pointers in indexing structures. 

Transaction atomicity and persistence is usually implemented by logging data update 

operations. The recovery log is organized as a list of sequence-numbered entries. A log 

entry contains information needed for redoing and undoing the operation logged. There 

are three ways to log depending on the system-level of operations [Gray and Reuter 

1993]: 

• (Physical) Logical operations are considered as a sequence of physical page 

writes (operations). The before- and the after-image of each page (fragment) are 

logged for undo and redo, respectively, which makes recovery of a page very 

simple but log entries consume amount of space that is too large relatively to 

actually updated parts of the pages. 

• (Logical) High-level operations are logged along with its parameters. High-level 

operations have to be designed in a way that an inverse operation for undo is 

always computable. Logical log entries are compact but redo recovery becomes  

more complicated since a single operation involves multiple pages, and 

conventional redo recovery of the given operation requires replaying of all 

previous logical operations in the original order. Hence, logical recovery incurs a 

much higher I/O load in comparison to physical recovery. 

• (Physiological) Physiological logging reconciles both methods above in that it 

considers high-level operations as a sequence of logical operations within a single 
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physical page each, e.g., update the column j of a record at slot i on page p with 

the bit vector v, etc. Physiological log entries are compact and redo recovery of a 

physiological operation on page p requires replaying of all previous operations on 

page p only. 

In the following, we sketch an ARIES-style data recovery algorithm [Mohan et al. 1992] 

implemented in some commercial database products, e.g., in IBM DB/2 and Microsoft 

SQL Server.  

Recovery after a crash comprises three passes. In the analysis pass, the entire log is 

scanned and ids of encountered transactions are added to the active transaction table 

(ATT). When a commit log entry is scanned for a transaction, it is called a winner, and its 

id is removed from the ATT. The transactions left in the ATT after the analysis pass are 

losers, i.e., incomplete to-be-undone transactions. During the redo pass, recovery 

performs a forward scan of the log again and applies physiological redo operations 

regardless whether it belongs to a loser or to a winner, which recreates the database state 

as of crash. During the undo pass, the log is scanned backwards, and each operation 

belonging to a loser transaction is undone. 

Physiological and logical operations are usually not idempotent (e.g., insertion of a tuple 

into a page). Recovery applied multiple times has to recreate the same committed state 

(idempotence) for the database to survive multiple failures. Redo and undo are designed 

to test whether the disk page under consideration has already been affected by the given 

operation. To provide a testable state, every data page is stamped with the log sequence 

number (LSN) of the last operation applied to it. Recovery compares the LSN in the 

page header with the LSN of the given log entry in order to determine whether to apply 

the logged operation to the page. 

As with data pages, initially log entries are created in main memory, in the log buffer; 

they are lazily written to disk (stable log) in increasing LSN order. In order to preserve 

data recoverability, the log manager has to obey certain rules when it flushes log entries 

from the log buffer up to some LSN to disk, which we call force-logging. 

• Write-Ahead-Logging. Prior to flushing a disk page from the cache, the log 

manager has to make sure that the log entry for the most recent update to this page 

and its predecessors are forced to the stable log. Otherwise, undo of uncommitted 

changes on this page is impossible. 
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• Write-On-Commit. Persistence of a committing transaction is achieved by 

flushing the commit log entry and all of its preceding entries including those 

belonging to yet uncommitted transactions. Otherwise, the committed transaction 

cannot be replayed. 

The stable log usually resides on a dedicated disk, and in contrast to the data disks, it is 

written in an append-only manner. Sequential writes are one order of magnitude faster 

than random I/O’s. This is one of the reasons why managing persistence of committed 

transactions using a recovery log is more efficient than flushing pages with committed 

data, potentially scattered all over the disk. 

Fast recovery is crucial for high availability. To speed up recovery, the log manager 

periodically determines the smallest LSN’s currently needed for redo and undo, 

respectively, and truncates the log part containing the operation with the LSN’s smaller 

than the minimum redo and undo LSN’s. 

3.3 Distributed Transactions 

Many real-world applications must be able to perform transactions that involve multiple 

transactional systems. For instance, there are more cross-institutional money orders than 

those inside a single bank, and certainly, different banks do not use one central database 

server. Guaranteeing the transaction atomicity and persistence in a distributed database 

system is more complex because failures usually affect only one or a few of the 

participating data servers at once whereas the rest of them remain up and running. A 

mechanism is needed to prevent a distributed transaction from being committed partially, 

where some data servers commit while the other ones abort updates of the same 

transaction. Obviously, the transaction participants have to exchange messages to learn 

whether they all are able to commit. 

A family of Two-Phase-Commit (2PC) protocols has been developed as a means to 

ensure unanimous commit decision among participants of distributed transactions. A 

dedicated process or one of the transaction participants is used as a coordinator. When 

the application finishes updating data on the participants, it sends the commit request to 

the transaction coordinator. In the first voting phase, the coordinator sends a prepare 

message to each participant. When every participant has responded with a yes message, it 

initiates the second commit phase by sending commit messages; otherwise, it sends abort 

messages starting the abort phase. The participants report the completion of the second 
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phase by an ack message. A particularly interesting variant of 2PC has been adopted for 

the industry standard XA [The Open Group 1994].  

The statechart specifications of the coordinator and participant behaviors under XA-2PC 

are provided in Figure 12 and Figure 13, respectively. They are used as two orthogonal 

components of a single statechart that is left out for a better readability. The coordinator 

starts the protocol after receiving an app_commit_req message from the application, and 

sends back either app_commit_rep or app_abort_rep to report the transaction outcome. 

Protocol messages are modeled by event arrays, where an expression msg[i] stands for a 

message sent from the coordinator to the ith participant or vice versa, which becomes 

clear out of context depending on by what component it is generated. Failures related to 

the ith participant are modeled analogously. The coordinator log and the participants log 

are represented by the string variables coord_log and part_log[i], accordingly. A forced 

write corresponds to an assignment to a log variable. The garbage collector whose effect 
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Figure 12: Statechart of the 2PC Coordinator 
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consists of resetting a log variable is not shown for better readability. However, we do 

consider the implications of an asynchronous garbage collection, i.e., the situations where 

only some components truncate their logs whereas the others do not. 

The failure model comprises: 

• Crashes (occurrences of the external events coord_crash and part_crash[i] 

standing for coordinator and participant crashes, accordingly), 

• Local transaction aborts at the ith participant, e.g., due to concurrency control 

related issues (the external event internal_abort[i])  

• Timeouts of a message from the ith participant (the external event await_tm[i]), 

• Participant timeouts of the commit decision (the external event prepared_tm[i]), 

• Belated or unexpected receiving of a (possibly duplicated) message due to the 

periodic resending and crashes. 

Prior to sending a yes message, the participant forces the log for the first time because it 

has to be able to redo the transaction when it fails in the prepared state. A crash before 

this point leads to the transaction abort. A participant cannot recover a prepared 

transaction autonomously until it learns the global decision from the coordinator, and it is 

blocked as long as the coordinator is down. To regain the recovery autonomicity, the 

participant forces the log for the second time upon arrival of the decision message, and 

sends an acknowledgement ack[i] in the commit case. This terminates the protocol from 

PARTICIPANT_i

RUNNING 

PARTICIPANT_RECOVERY

PART_CRASH[i]

WORKING

PREPARED
FORGOTTEN

PREPARE[i]/
PART_LOG[i] õ 'PREPARED‘;
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PREPARE[i]/
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PREPARED_TM[i]/
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COMMIT[i]]/
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not PART_CRASH[i]
[PART_LOG[i] = 'PREPARED‘]

ABORT[i]/
PART_LOG[i] õ ' ‘;

 

Figure 13: Statechart of the ith 2PC Participant  
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the participant perspective, and it does no longer prevent the garbage-collection as 

indicated by the name of the state forgotten. 

The coordinator runs the first phase until all yes messages have arrived or at least one no 

message (given by the statechart expression any(no)). The coordinator performs a single 

forced write only when it is about to broadcast the positive commit decision to the 

participants. When the coordinator recovers from a crash having occurred during the first 

phase, it finds no information about the given transaction in the log, and presumes the 

abort case. This is safe because no participant is committed yet, and a prepared 

participant will eventually receive an abort message after resending its positive vote. For 

this behavior, this protocol is referred as to presumed-abort 2PC in the literature. In the 

commit case, the coordinator is allowed to terminate the protocol by releasing the 

transaction log entries for the garbage collection only after each participant has 

acknowledged the commit message. Otherwise, the coordinator would not be able to 

repeat the commit message for participants who have not received it because of a failure. 

The complexity of a failure-free run of an XA-2PC transaction on n participants 

accumulates to 2n + 1 forced writes and 4n messages. Since the ack messages are needed 

only for the garbage collection at the coordinator site, they can be sent asynchronously, 

e.g., as a batch, or they can be piggybacked on the vote messages of the next transaction 

instance. Thus, the communication cost is reduced to 3n messages. If one of the 

participants takes the role of the coordinator, we save one set of messages at the 

coordinator site, and we save one forced write since we do not need to log transaction 

commit twice at the coordinator site. Thus, the overhead of a 2PC commit can be further 

reduced to 2n forced writes and 3n-3 messages.  

Another interesting alternative variant of 2PC coined presumed-commit 2PC is 

optimized for a more frequent commit case. When inquired by a participant, the 

coordinator considers the garbage-collected transactions committed, which has the 

following implications. The coordinator has to be able to distinguish the “forgotten” state 

from the active voting phase, which is accomplished by forcing the transaction 

information to the log already at the beginning of the voting phase. The coordinator 

forces the log to disk once more prior to sending commit messages. The participant forces 

the log on first arrival of a prepare message. However, the participant does not have to 

force the log on arrival of a commit message because it can learn from the coordinator 

about the transaction outcome during recovery when the commit log entry is missing in 
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its local log. Due to the commit presumption at the coordinator, the participants also do 

not have to send an ack message in response to commit. With one of the n participants 

being in the role of the coordinator, a failure-free presumed-commit 2PC transaction runs 

with the overhead of n + 1 forced writes and 3n - 3 messages. There are no savings in 

rare abort cases because rollback log entries have to be forced and explicit ack messages 

are required. Despite the lower complexity of the presumed-commit 2PC in flat database 

federations, the presumed-abort 2PC protocol has been chosen for the XA standard due to 

the higher optimization potential in connection with local read-only transactions when 

used in hierarchical database federations in which a participant may in turn be a 

federation [Weikum and Vossen 2001.  

This consideration motivated the New Presumed-Commit (NPrC) 2PC protocol 

developed by Lampson and Lomet [1993]. In terms of forced writes and messages, NPrC 

allows the same optimizations for committing read-only transactions as the XA-2PC 

while having the same cost for committing update transactions as the conventional 

presumed-commit 2PC. This is achieved at the price of retaining a small amount of non-

collectible garbage information in the log after each crash, which is acceptable since 

crashes do not occur frequently.      

3.4 Related Work on Application Recovery 

Transaction recovery in database systems guarantees committed data to survive system 

crashes. However, most components in a multi-tier system including database clients are 

not transactional and are not provided with fault-tolerance. When the client application 

crashes and comes up again, the database server will not be able to assist it in finding out 

whether the crash occurred before, during, or after a certain transaction.  

Even if one could disregard client crashes, the database server fails to report the 

transaction outcome to the clients waiting for a reply to the request submitted prior to or 

during the server outage. Since the server loses the mapping between network 

connections and transactions after restart, it normally responds with an error message 

“Transaction unknown”. When such a reply comes to a request issued before the commit 

request, the client will correctly conclude that the given transaction has been aborted, and 

the transaction should be retried. Concerning the final, i.e., the commit request, no clear 

conclusion is possible because the server may have failed before flushing the commit log 

entry for the transaction in question (the commit case) or afterwards (the abort case). 
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This problem may affect many clients simultaneously. For each sequential write, the disk 

controller has to wait until the position stored in the cursor of the log file rotates under the 

disk head. Due to this rotational delay, a single sequential write of n bytes is faster than 

multiple sequential writes of the same amount. For this reason, many production servers 

commit multiple transactions completed within a reasonable time window by a single 

sequential write [Gray and Reuter 1993]. For instance, with the reference performance of 

1 million transactions per minute and the time window of 100 ms, more than 1500 clients 

may suffer the anomaly described above. 

For the true fault-tolerance of multi-tier applications, recovery must be available for each 

component and cover its process state, data, and messages. 

3.4.1 Queued Transactions 

Queued transactions have been one of the most successful solutions to this problem. It 

is supported by virtually all commercial vendors of transactional systems. The basis of 

this approach is that the client and the server applications communicate through 

transactional input and output queues, which allows passing messages within a 

transaction. The client application has to be designed to be stateless. The state 

information, maintained in the data server, is made available for the client at a specific 

location or is encoded into server reply messages. 

A transactional queue Q is a persistent structure that consists of a message store and an 

integer field lastId with the id the most recent committed message that is/was in the 

queue. It supports the following opereations: 

• Q.enqueue(in msg, in id) adds a message msg to the tail of Q. Undoing this 

operation incurs deleting msg from Q and restoring the previous value of lastId. 

• Q.dequeue(out msg, out id) returns the oldest message and its id in the queue Q, 

and subsequently deletes it. Undoing this operation incurs restoring the message 

in the head of Q. 

• Q.getLastId() returns the current value of lastId 

• Q.isEmpty() returns true when there are no messages in the queue, and false 

otherwise 
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A client processes some input from the end-user. Instead of directly invoking update 

routines on the server, the client creates a request message (typically a call to a batch of 

SQL statements stored on the server), enqueues it into the server input queue IQ. The 

server behavior outlined in Figure 14 is simple: the server periodically checks the input 

queue for new requests (line 1), extracts the oldest request message, executes it, and 

enqueue the reply message into the output queue OQ (lines 2-6) inside a single 

transaction. Initially, let us assume the queue objects are stored on the server, and so there 

01. while(TRUE) 
02. { 
03.   while(IQ.isEmpty()) Sleep(pollingPeriod); 
04.   BEGIN TRANSACTION; 
05.   IQ.dequeue(reqMsg, reqId); 
06.   repMsg = executeRequest(reqMsg) 
07.   OQ.enqueue(repMsg, reqId); 
08.   COMMIT TRANSACTION 
09. } 

Figure 14: Normal Operation of a Queued Transaction Server 

01. user_input_label: 
02. reqMsg = readEndUserInput(); 
03. loggedId = readIdFromClientDisk(); 
04. id = loggedId + 1; 
05. forceWriteIdToClientDisk(id); 
06. BEGIN TRANSACTION; 
07. IQ.enqueue(reqMsg, id); 
08. COMMIT TRANSACTION; 
09.  
10. user_output_label: 
11. while (OQ.isEmpty()) Sleep(pollingPeriod); 
12. BEGIN TRANSACTION; 
13. OQ.dequeue(repMsg, repId); 
14. print(repMsg); 
15. awaitEndUserAcknowledgement(); 
16. COMMIT TRANSACTION; 
17.  
18. request_recovery_on_any_error: 
19. loggedId = readIdFromClientDisk(); 
20. lastInputId = IQ.getLastId(); 
21. if (loggedId > lastInputId) 
22. { 
23.   print("ERROR: please repeat previous input"); 
24.   goto user_input_label; 
25. } 
26. lastOutputId = OQ.getLastId(); 
27. if (loggedId > lastOutputId)  
28.   goto user_output_label; 
29. if (loggedId == lastOutputId && !OQ.isEmpty()) 
30.   goto user_output_label; 
31. goto user_input_label; 

Figure 15: Behavior of a Stateless Queued Transaction Client 
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are no distributed transactions. If the transaction fails, the server recovery will undo the 

request execution along with the queue operations. Since the failed request is returned to 

the head of the input queue during recovery, the request execution will be retried again 

during normal operation. Hence, a request message that the client has been able to insert 

into the input queue is executed exactly once without any further client intervention. The 

client just needs to poll the output queue to pick up the reply when the request execution 

eventually succeeds. 

A more difficult part of this approach is to ensure that the client whose logic is shown in 

Figure 15 (lines 1-16 for normal operation, lines 18-28 for crash recovery) does not try to 

insert the same request more than once into the input queue (e.g., when a commit reply is 

lost). As a fail-stop process, the client executes the recovery code on every failure 

regardless of the failure type (a server-call-timeout or a real client crash). 

In the normal operation mode, the client first prompts the end-user for an input that is 

used to construct a server request message (line 2). The client reads the id (a sequence 

number) of the previous request (loggedId) from a specific location of the client disk, and 

force-writes a new id back (lines 3-5). Now, the client is ready to insert the new request 

into the server input queue within a transaction (lines 6-8). Subsequently, when the server 

reply arrives in the output queue, the client starts a new transaction (lines 12-16) to obtain 

the reply, and present it to the end-user. The output transaction is not committed until the 

end-user acknowledges the output message. 

When the client fails before the input transaction is committed, the recovery code will 

detect that loggedId is greater than the last committed request id in the input queue, and it 

will ask the user to repeat the input (lines 19-25). If the input transaction is committed, 

there are three cases: 

01. while(TRUE) // infinite loop 
02. { 
03.   while (OQ.isEmpty()) Sleep(pollingPeriod); 
04.   BEGIN TRANSACTION; 
05.   OQ.dequeue(); 
06.   print repMsg; 
07.   reqMsg = readEndUserInput(); 
08.   IQ.enqueue(reqMsg, id); 
09.   COMMIT TRANSACTION; 
10. } 

Figure 16: Normal Operation of a Pseudo-Stateful Queued Transaction Client 
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• The server is still executing, detected if loggedId is greater than last committed 

reply id in the output queue (lastOutputId) (lines 27-28). 

• The server completed the request execution, but the output transaction has not 

started or it has been aborted if loggedId is equal to lastOutputId and the output 

queue is not empty (lines 29-30). Thus, the client may potentially display the 

output message several times. 

• In the remaining case, if loggedId is equal to lastOutputId and the output queue is 

empty, the user acknowledged the output. The user prompts the end-user for the 

next input. 

The overhead of such an interaction consist of four forced writes: three transaction 

commits and a forced write for the request id at the client side.  

In a stateful application comprising multiple steps (a session), each subsequent request is 

a function of the preceding server reply and a new end-user input. In this application 

model, the number of client transactions (and consequently the number of forced writes 

per request message) can be reduced by combining the output transaction for the 

preceding reply with the input transaction of the subsequent request. Moreover, the 

request id logging can be skipped. A new request serves as an implicit acknowledgement 

of the previous intermediate reply. The client program is called pseudo-stateful because 

it does not maintain its own state although it is used in a stateful application. The server 

behavior does not change. After a failure, the client simply resumes normal operation (see 

Figure 16) without any specific actions. Exactly-once execution is guaranteed although 

some output messages may be displayed multiple times and some input messages may 

have to be repeated in the course of the application run. The overhead of a queued 

transaction interaction in the pseudo-stateful setting boils down to two forced writes due 

to one client-initiated and one server initiated transaction. 

Unfortunately, there are two major disadvantages of building applications with queued 

transactions: 

• It requires an extremely inconvenient, unnatural programming style, which makes 

it unsuitable for state-rich applications such as CAD systems and long-running 

multiplayer strategy games on the Internet. 

• It does not scale with the number of application tiers and components, which is 

unacceptable for a Web-scale application. 
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The latter can be demonstrated by an example application that uses the popular three-tier-

architecture with a client program as a user-frontend, an application server at the middle 

tier, and a database backend (see Figure 17). No transactional queues are needed between 

the application server and the database because one can enclose their interactions into a 

single distributed transaction with the application server acting as both a 2PC coordinator 

and 2PC participant. 

Hence, you see two forced writes for the client output and input transactions, and one 

forced write of the client request id. The 2PC commit with two participants incurs four 

forced writes and three additional messages. The overall overhead is too high for a single 

end-user request. 

3.4.2 Stateful Client Server Application 

There is some prior work on masking failures and providing recovery for stateful 

applications, but only in limited contexts. Freytag et al. [1987], Lomet and Weikum 

[1998], Barga et al. [2000] are focused only on client-server systems, and do not consider 

multi-tier Internet applications. Other work is restricted to applications embedded in the 

database server, like stored procedures [Lomet 1998]. It is not obvious how these 

protocols can be generalized to apply to multi-tier systems. The notion of interaction 

contracts, developed by Barga et al. [2002], is the key for this generalization. 

3.4.3 Fault Tolerance in Web Services and Middleware 

Fault tolerance is being discussed also for component middleware like CORBA [OMG 

2000] and EJB [Sun 2001], but the focus is on service availability for stateless 

interactions (i.e., restarting re-initialized application server processes). Products (e.g., 

VisiBroker, Orbix, BEA WebLogic, or Sun’s J2EE suite) at best support simple failover 
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Figure 17: Three-Tier Application with Queued Transactions 
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techniques that do not relieve the application programmer from having to either write 

failure-handling logic or structure his application as stateless, and are not geared for 

masking process or message failures to users. More recently, failover techniques for Web 

servers have been presented in [Luo and Yang 2001], based on application-transparent 

replication and redirection of HTTP requests. 

The need for execution guarantees for Web Services, raised by Tygar [1998], Martin and 

Ramamritham [1999, 2001], Dutta et al. [2001], Fu et al. [2001], Popovici et al. [2000], 

Schuldt et al. [2000], has been concerned with specific applications such as payment 

protocols or mobile data exchange and does not specifically address failure masking in 

general multi-tier architectures.  

Closest to this thesis in terms of objectives is the work by Frølund and Guerraoui [2002] 

that presents a three-tier protocol for exactly-once transaction execution based on 

asynchronous message replication and a distributed consensus protocol. However, this 

work focuses on stateless application servers and does not address the autonomy 

requirements of components, the optimization of logging, and the need for effective log 

truncation.  

3.4.4 General Process Recovery 

Recovery for general systems of communicating processes has been extensively studied 

in the fault-tolerance community (e.g., Johnson and Zwaenpol [1987], Strom et al. 

[1988], Cristian [1991], Alvisi and Marzullo [1995], and Elnozahy et al. [2002]), where 

the main focus has been to avoid losing too much work in long-running computations 

(e.g., scientific applications), usually using distributed checkpointing. Most of this work 

does not mask failures. Methods that do mask failures exploit “pessimistic logging” (see, 

e.g., Huang and Wang [1995]), with forced log I/Os at both sender and receiver on every 

message exchange. Techniques that are even more expensive, such as process 

checkpointing (i.e., writing process state to disk) upon every interaction, were used in the 

fault-tolerant systems of the early eighties [Bartlett 1981, Borg et al. 1989, and Kim 

1984]. Thus, failure masking has been considered a luxury affordable only by mission-

critical applications (e.g., stock exchanges). 
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3.5 Related Work on Recovery Verification 

Given that state-of-the-art recovery algorithms have evolved to complex, highly 

optimized procedures, the need of their formalization and verification has been 

recognized and led to a number of publications. 

3.5.1 (Local) Data Recovery 

Hadzilacos [1988] developed an abstract formal model of recovery. He stated logging 

rules in terms of which information must be in the log to ensure the redo of the committed 

and undo of uncommitted transactions in a schedule, and showed how these rules apply to 

different classes of data managers regarding the usage of the undo/redo paradigms. 

However, this paper does not verify the behavior of recovery algorithms. 

Kuo [1996] used I/0-Automata [Lynch 1996] as a formal method for modeling a 

simplified ARIES algorithm [Mohan et al. 1992], and presented proofs of important 

invariants for the model that includes checkpoints and redo tests. 

There also have been attempts to build formal frameworks to characterize recovery in a 

more general fashion. However, such models are often too abstract for verifying such a 

critical property as idempotence. They rather concentrate on showing the atomicity and 

durability guarantees [Gurevich et al. 1997, Martin and Ramamritham 1997]. 

Lomet and Tuttle [2003] devised a general recoverability relationship between the log, 

data, and the recovery managers. The paper shows how the data, installed in the stable 

storage, affects the operations having to be repeated during the redo recovery. Their 

recoverability invariant can be used for verification of most redo recovery algorithms. 

3.5.2 Distributed System Recovery 

Chkliaev et al. [2000], used an interactive theorem prover to show the serializability and 

the durability of distributed transactions when the system deploys the Two-Phase-

Locking (2PL) protocol [Weikum and Vossen 2001] for the concurrency control on each 

site and 2PC as agreement procedure for transaction outcomes. To keep the model 

verifiable, the authors did not model 2PC messages, and used a finite set of finite 

schedules. 

Close to the formal verification part of the thesis, is the work presented by Younas and 

Eaglestone [2002]. This paper deals with a 2PC-based protocol that relies on local 
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compensating transactions to provide the semantic atomicity of Web Transactions. The 

protocol is formally specified by finite state automata and its key property of at-most-

once execution is verified by an automatic theorem prover. The effects of 

nondeterministic interleaving of concurrent transactions are not considered in this work. 

All prior work on recovery verification leaves out important aspects and stays at an 

abstract level, rather far from the actual implementation. 
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4. Interaction Contracts Framework 
“A good businessman never makes a contract unless he’s sure he can carry it through ...” 
- Dalton Trumbo 

4.1 Computational Model 

4.1.1 Components 

The framework considers three types of components. Its core is constituted by persistent 

components (Pcom) representing any kind of clients, servers or their parts that should 

provide an exactly-once guarantee for a single request. Furthermore, it includes 

transactional components (Tcom) such as database systems that execute a given request 

at most once because they play a very prominent role in the modern business information 

systems. Users and systems that provide no guarantees are captured by the notion of 

external component (Xcom).  

Persistence of Pcom’s and Tcom’s is implemented by exploiting a log and a recovery 

manager. The log is used for capturing nondeterministic events and their order. During 

normal operation, log entries are initially created in the log buffer allocated in the main 

memory to minimize disk I/O overhead. At certain points, the log entries of the log 

buffers have to be forced to the stable log on disk, in order to preserve recoverability. 

Stable log is used by the recovery manager after a crash for recreating the most recent 

consistent component state.  

4.1.2 Message and Process Recovery Principles 

Let us consider a simple application consisting of just two persistent components C1 and 

C2 of Figure 18. The components exchange messages via a network link in a 

conversational manner. We denote the messages from the component C1 initiating the 

conversation requests and those from the counterpart component C2 replies. Requests 

and replies change the state of their corresponding receivers in that they cause data 
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Figure 18: Sample Two-Component System 



44 4 Interaction Contracts Framework  

 

 

modifications and have impact on the control flows. The incoming messages are 

nondeterministic from the receiver perspective. Note that replies to internal system calls 

are sometimes nondeterministic as well (e.g., replies to calls to timing functions). The 

outgoing messages result from processing the incoming messages. At any point in time 

during the conversation, one or both components may crash and the link between them 

may break down. 

Component state recovery: The component has always to provide recoverability of the 

current state. For this purpose, the component may physically log, i.e., dump a new state 

to disk after each and every update to it, which is very inefficient since single updates 

concern only a small portion of the component state. Instead, incremental logical logging 

of state-relevant nondeterministic events (typically update requests from other 

components) can be used. After a crash, the state is recreated by reading the most recent 

state dump, called an installation point, and replaying subsequent events from the log. 

Such a replay is deterministic if the component is deterministic up to nondeterministic 

events out of its control, referred to as piecewise-determinism. The component commits 

its state by either modifying data on local disk or sending to another component a 

message that already reflects the new state (e.g., a reply to a request). In fact, the former 

can be seen as a special case of the latter because the file system (or the operation system 

responsible for it) is simply a different component in the framework view. At any rate 

prior to sending a message, either a new installation point or the log has to be forced to 

disk. Otherwise, the system would not be able to resume coherent conversation after a 

failure. 

Output message recreation: The sender may fail before the message transfer is 

completed. The sender is responsible for message recreation because neither the network 

layer nor the receiver may have even a chance to capture the message. An output message 

usually results from the processing of preceding input messages. In contrast to the 

traditional database recovery, this implies that replies to read-only requests have to be 

captured in the log because the result of a read-only request is in general 

nondeterministic: the corresponding reply would change through subsequent state 

updates. During deterministic replay, output messages are recreated and placed into 

output buffers for delivery. 

Message uniqueness: Deterministic replay may lead to a message resend. Therefore, the 

receiver must be provided with the capability to detect duplicate requests, which is 
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normally achieved by stamping all messages with a unique message sequence number. As 

in the traditional database recovery, a component that caches update operations in volatile 

memory must be able to determine whether stable state already includes the effects of the 

current message in order to skip or to repeat the message execution during recovery. 

Input message recreation: We have already shown above that the sender inevitably has 

to take care of message recreation. This fact makes it possible to defer logging of the 

message on the receiver component. Only when the receiver in turn is about to send out 

another message, which reveals its state to the outside world, may forced logging of the 

incoming message be unavoidable to keep the reply message deterministically replayable. 

The forced write can be avoided if the receiver component is stateless or when all 

interacting component pairs work on isolated state portions. As an example, consider a 

Web-based E-mail system. Each session includes a dedicated Web browser on the client 

side and a dedicated inbox on the server side. Therefore, there is no interleaving of 

requests on behalf of different users that would have to be forced to disk for deterministic 

replay. In the sample application from Figure 18, you may observe that the component C1 

does not need to force log incoming messages rep20 and rep21 as they will be resent by 

deterministic replay of C2 in the original order after C1 reproduced the message req10. If, 

for instance, the state of C1 were also modified by some third incoming message req31 

between rep20 and req11 this would be reflected in the state and in subsequent messages 

req11 and rep21. Since the components recover asynchronously after a failure, the original 

message ordering on C1 has to be fixed in the stable log once C1 commits its state. 

Periodic message resend: A message can be lost not only because of a sender crash. A 

receiver crash and the network outage may have an identical effect without any notice 

provided to the sender. The only way to treat such situations is timeout-based message 

resend until the receiver will manage to acknowledge the message. Sometimes nothing 

goes wrong but the receiver executes unexpectedly slowly. Nevertheless, with all 

messages being unique the receiver is able to eliminate duplicates and remains 

idempotent. 

Autonomous components: In the context of cross-enterprise Web Services, remote 

components might have poorer connectivity, less satisfactory performance or they may 

simply enjoy less confidence. In order to keep the local components recovery-

independent from the remote ones to the greatest possible extent, the local component 

must immediately force the log upon arrival of a remote message.  
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Log truncation: In order to accelerate component restart after a crash, a component 

should notify its counterparts about the oldest incoming message that has not been 

captured in the log yet. A counterpart component can consequently determine the oldest 

output message it would need to replay which allows truncation of the log head up to the 

most recent installation point prior to the oldest message yet to be recreated. 

Resource virtualization: Component crashes in connection with allocated system 

resources such as file and TCP connection handles conceal another source of 

nondeterminism. After a crash, the resource handles cannot be reused even if the 

corresponding structures have not yet been garbage-collected by the operating system 

because a restarted component appears as a new process to the operating system. Thus, 

instead of physically logging resource handles, each component resource has to be 

assigned a virtual id. To this end, file operation log entries should contain the logical file 

name and each remote operation log entry should include the remote component’s virtual 

id and possibly an explicit session id (e.g., HTTP session cookie) that establishes logical 

context in which the operation is executed. 

4.2 Modeling Issues in Statemate 

In this section, we discuss how the key elements of the computational model can be 

modeled in Statemate. Although Statemate offers several alternatives that are logically 

equivalent, they may differ in terms of the model and verification complexity. 

4.2.1 Stable Log 

A stable log is used to recreate the last valid application state as of the time immediately 

prior to the crash. 

Statemate provides an elegant way to remember last active substate configuration of a 

superstate. When the system enters the superstate through a so-called history connector 

(a circle labeled H), Statemate will activate those substates, which were active as the 

superstate was exited last time instead of taking the default transitions. Hence, we can 

simply put states relevant for logging in such a history-connected superstate. Whenever a 

force-logged operation needs to be executed, the system has to take two transitions 

consecutively: it first takes a direct transition to the corresponding substate of the log-

enabled superstate (i.e., not through a history connector) according to the write-ahead 

logging rule [Gray and Reuter 1993, Weikum and Vossen 2001], and only after that it 

takes a transition with the action representing the actual operation. Not that the latter 
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transition should lead out of the log-enabled superstate, if it does not require force-

logging. After a “crash”, the system always starts with entering the log-enabled superstate 

through a history connector. Unfortunately, due to yet immature support of history-

connected states in the Statemate verification software, we had to drop this option in the 

IC specifications. 

Instead of implicitly logging by means of history-connected superstates, we introduce a 

local variable suffixed with “last_logged” for each instance of the IC parts running within 

a component. Whenever we have to force-log the current IC status, we explicitly store the 

name of the currently active states into the corresponding “last_logged” variables. Only a 

few of states in an IC instance have to be memorized. After a crash, the component first 

goes into the recovery states of all IC instances it has run. A recovery state is connected 

to the rest of the chart by transitions each of which handles one particular of all possible 

“last logged” values. This solution does not use advanced Statemate features, and has not 

posed any difficulties to Statemate verification tools. In addition, this method allows one 

to see immediately the global component configuration currently logged by observing all 

“last_logged” variables managed on the component. 

4.2.2 Messages and Communication Failures 

We model messages as follows: when a sender wants to send a message during the ith 

step, it does so by generating a corresponding event. According to the Statemate 

semantics this event becomes visible and can be consumed by a receiver in the i+1st step. 

Communication failures of any kind (TCP/IP stack crashes, network interface card or 

router failures, etc) that lead to a message loss are captured in an external event 

link_outage, where the term link refers to a logical connection between a pair of 

components rather than to their physical or TCP/IP connections. Transitions of a receiver 

reacting on a message m use a compound event m_ok abbreviating m⁄Ÿlink_outage. 

Thus, in the specification a message generated in the ith step is lost due to a 

communication failure if the corresponding link outage event was sensed between the ith 

and i+1st step.  

From the receiver’s perspective, a message loss is not immediately distinguishable from a 

sender’s crash. However, for the sender the former just requires simply resending the 

message whereas the latter means a complete message and state recovery run through 

deterministic log replay. A deterministic replay usually takes longer than a transient 
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network failure, and incurs combinations of component configurations that are more 

complicated. Because of this fundamental difference, we decided to model 

communication failures explicitly. 

The IC framework requires that messages are unique, in order to detect duplicates. In 

practice, components would use message sequence numbers to tag messages. In the 

specifications, message uniqueness is achieved in consequence of that we model ICs as 

generic activities, such that each individual message in a specification for a concrete 

application is local to the corresponding instance. This makes the use of additional ids 

unnecessary. While this modeling technique is equivalent to one using ids, it reduces the 

verification run time. Although integers do not pose conceptual difficulties from the 

modeling perspective (they have to be finite to preserve the model finiteness though), 

they significantly increase verification costs. An event (i.e., a Boolean one-bit variable) 

clearly adds less complexity to an OBDD than an n-bit integer. 

4.2.3 Component Crashes 

Component crashes are modeled similar to link outages by external events supplied by 

the runtime environment. All IC statecharts are arranged to terminate interacting 

components immediately after they are hit by a crash. This is done by enclosing IC’s 

orthogonal components in a superstate with a transition to a termination connector. It fires 

whenever the corresponding crash event is sensed, and according to the Statemate 

semantics, it suppresses all enabled transitions inside the superstate. We also model 

process monitors that are responsible for restarting activities of crashed components. In 

the real world, process monitors may be part of the operating system or they may run as 

dedicated heartbeat-checking processes. 

4.2.4 Timeouts and Execution Time 

System failures often result in message losses: messages are either never generated or 

they never reach their destinations. To cope with such situations, some interaction 

contracts require that the sender resends the message periodically until it gets an 

acknowledgement from the receiver. Clearly, in a concrete application system 

administrators or developers will have to define appropriate timeout values for each 

component interaction: when the acknowledgement does not arrive in the given time 

window, the message will be resent. 
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Another important aspect of a model for a distributed multi-user environment is that 

request timeouts on a sender component may occur not only due to failures. Rather, the 

capacity of the link between the sender and the receiver might be saturated, and thus, 

messages are delivered too slowly or dropped by a router. On the other hand, the receiver 

may suffer a load peak and is not able to respond within the expected time window. 

These issues are the reason par excellence for non-idempotent behavior of Web Services, 

where the user blindly repeats the request after a timeout. In the formal specifications, we 

address these issues by having the receiver react on messages originating from other 

components after some random delay, which we refer to as “message execution time”, 

and which subsumes processing (due to concurrency) as well as delivery (due to network 

latency) delays. 

For these purposes Statemate supports special timeout events of the form tm(e, d). This 

event is generated d time units after the most recent occurrence of the event e. In the 

synchronous time model, one time unit matches a single step. The way in which the time 

is advanced in the asynchronous model is under explicit control by the user or execution 

environment, and can be defined for each activity separately. Simplicity of the timeout 

semantics is thus another argument for using the synchronous time model for verification. 

When the event e is generated again earlier than the corresponding timeout event, the 

timer for the timeout event will be restarted. It is, however, impossible to cancel the 

timeout event. That is why it is important to pay attention, when modeling crashes, that 

the system is not confused by timeout events whose timers has been started in previous 

component incarnations. To avoid such situations, we design statecharts such that on all 

execution paths starting in the recovery state the original event is used before its timeout 

counterparts. 

In order to keep the specification general, we use external integer variables as timeout 

values with the range [0...30]. They are read from the execution environment once upon a 

component (re)start and remain unchanged up to the next crash/restart. The model 

checker systematically enumerates system runs with all possible timeout values. We 

could work with this model at the level of every single interaction contract. 

Unfortunately, the attempts to verify a concrete system with multiple IC instances at a 

higher level have not terminated even after a week of uninterrupted computations. 
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Therefore, for application-level verification we replace timeout events by simple atomic 

external events. Clearly, external events are nondeterministic and in general do not occur 

periodically in contrast to timeout events. Nevertheless the system runs with periodic 

generation of such external events is a proper subset of the runs the model checker will 

have to consider. Thus, a CTL formula we were able to verify in the adapted 

specification, would be also valid for the original specification. With new specification, 

we reduced verification time due to a reduced state space from virtually infinity (i.e., 

more than one week) to one to one and a half hours. 

Timeout events in the specifications are suffixed “_tm”. When we talk about timeouts in 

the context of an IC specification, we mean compound events referring to timeout 

expressions. In the context of application-level specification timeouts are 

nondeterministic external events. 

4.3 Statemate Specifications and Verification 

4.3.1 Common Design of the IC Specifications 

All interaction contracts, i.e., (I)CIC, TIC, XIC input and XIC output, are represented by 

generic activities. Each generic IC activity x_AC follows an identical pattern. An IC 

consists of the corresponding control activity x_SC which orthogonally monitors all 

processes involved in the IC. The control activity starts these processes and restarts them 

after they have crashed. As an example consider cic_sc, the control activity of CIC, 

whose specification is depicted in Figure 19. While it is running, it checks whether the 

sender or receiver activity (their behavior is defined in charts cic_receiver_sc and 

cic_sender_sc accordingly) has to be launched. This is the case when the execution 

environment does not supply crash events any longer. Checking the condition “not 

ac(…)” (i.e., “not active”) for IC activities prevents the system from re-launching the 
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(not SNDR_CRASH)
[SNDR_LAST_LOGGED=='INSTALLED'] 

(not RCVR_CRASH)[not ac(CIC_RECEIVE)]/
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T 
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Figure 19: CIC Heartbeat Checker 
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listening thread during normal operation. Note that this is orthogonal to elimination of 

message duplicates. After an IC has been installed, all involved components have enough 

information to recover autonomously, such that the IC may terminate as indicated by 

entering a termination connector, which stops the given activity along with all its sub-

activities. Checking just the sender log for the CIC installation status suffices because the 

sender’s installation always come after that of the receiver as you will see later. 

We do not show activitycharts describing the data flow between particular activities 

because they are straightforward. Instead, we explain these details while describing 

statecharts where events, conditions, and data are immediately used or generated. 

4.3.2 Common IC Properties 

As ICs are used in piecewise deterministic components, IC specifications have to be 

deterministic up to events external to the components involved. As part of the debugging 

process, we have verified for each specification that it does not contain any 

nondeterminism, i.e., in a non-orthogonal state there is at most one enabled transition per 

step.We also have verified that no specifications contain unreachable states. An 

unreachable state s is characterized by the CTL formula AG ¬in(s). This is to say that 

every state makes sense and is used in some situations. 

4.3.3 Committed and Immediately Committed IC 

According to Barga et al. [2002] a committed interaction contract (CIC) between two 

persistent components (a sender and a receiver) consists of the obligations given in Table 

1. An immediately committed interaction contract (ICIC)  is a committed interaction 

where sender is released from both message persistence requirements, S2a and S2b when 

receiver notifies sender (usually via another message) that the message-received state has 

been installed, without previously notifying sender that its state is stable. Receiver's 

announcement thus makes the interaction both stable and installed simultaneously [Barga 

et al. 2002]. 
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Figure 20 shows a message sequence diagram that summarizes the messages exchanged 

between the sender and the receiver under the CIC in a single interaction. Figure 21 

depicts the statecharts that describe the underlying generic sender’s and receiver’s logics 

under the CIC and ICIC, whereas the latter is treated as a particular case of the former. 

Table 1. CIC Sender and Receiver Obligations 
Sender Obligations Receiver Obligations 
S1: Persistent State. Sender promises that 
its state at the time of the message send or 
later is persistent. 

S2: Persistent Message. 

S2a: Sender promises to send the message 
repeatedly (driven by timeouts) until 
receiver releases it (perhaps implicitly) 
from this obligation. 

S2b: Sender promises to resend the 
message upon explicit receiver request 
until the receiver releases it from this 
obligation. This is distinct from S2a, 
typically longer lasting and usually more 
explicit. 

S3: Unique Messages. Sender promises 
that its messages have unique contents 
(including all header information such as 
timestamps, HTTP cookies, etc.). 

R1: Duplicate Message Elimination. 
Receiver promises to eliminate duplicate 
messages (which sender may send to 
satisfy S2a). 

R2: Persistent State. 

R2a: Receiver promises that before 
releasing sender obligation S2a, its state at 
the time of message receive or later is 
persistent without the sender periodically 
re-sending. After S2a release, receiver must 
explicitly request the message from sender 
should it be needed. The interaction is 
stable, i.e., it persists (via recovery if 
needed) with the same state transition as 
originally.  

R2b: Receiver promises that before 
releasing the sender from obligation S2b, 
its state at the time of the message receive 
or later is persistent without the need to 
request the message from the sender. After 
S2b release, the interaction is installed, 
i.e., replay of the interaction is no longer 
needed. 

send_msg(id, content)

send_msg(id, content)

stable(id)

get_msg(id)

installed(id)

sendersender receiverreceiver

send_msg(id, content)

send_msg(id, content)

stable(id)

get_msg(id)

installed(id)

sendersender receiverreceiver

 

Figure 20: A Message Sequence Diagram of the CIC  
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As you may observe in the statechart cic_sender_sc the sender starts up in the state 

recovery. Upon (re)start the sender first checks the CIC status in the stable log. When the 

log turns out to be empty, the sender waits for the event sndr_trigger. This event is 

defined as a formal input parameter. It is supposed to be used as an interface to the 

application logic of a concrete system specification. It allows me to define in response to 

which other event the given IC instance is called. Imagine that an instance of 

cic_sender_sc is used to model the HTTP request sending routine of the Web browser. 

The Web browser is an interactive component and it initiates a request on behalf of its 

user clicking on a link or typing a new URL. In the browser specification, we would bind 

the formal parameter sndr_trigger to the event link_clicked sensed by the browser. 

When sndr_trigger is finally fired, the sender must prepare its persistence, i.e., make its 

receiving activities stable, such that the ordering of incoming messages is guaranteed to 

persist. This will become clearer, when we explain the receiver’s behavior. The internal 
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Figure 21: CIC Sender and Receiver 
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event sndr_nd (a formal output parameter) is generated, while the system is moving to the 

state prepare_persistence. In the next step, the sender sends the message as indicated by 

generating the event send_msg. In the very same step, the receiving threads on the sender 

have become stable as a reaction on sndr_nd. The sender is now in the state sending, 

where it periodically resends the message based on the timeout sndr_msg_tm until it 

receives either stability or installed notification. 

The fact that the sender gets an installed notification before a stability notification may 

indicate that the receiver deploys the immediate variant of CIC or the stability 

notification has been lost due to previous network failures or crashes. In case of the 

installed notification, the sender force-logs this by modifying the variable 

sndr_last_logged and moves to the state installed, where the CIC actually terminates. In 

case of the stability notification the sender advances to the state stable_s, and stops 

periodical sending attempts. 

When the receiver runs without any problems, it will eventually install the current CIC 

instance and send the corresponding notification. However, if this final notification gets 

lost, the sender will need to inquire (is_installed) the receiver about the CIC outcome 

after a relatively long timeout (sndr_stable_tm). If the receiver does not find the 

corresponding CIC id in the list of active interactions, it will respond with an installed 

notification again. 

In addition, the receiver may crash, while the sender is in the state stable_s. Upon restart, 

the receiver will inquire the sender about the message content by firing the event 

get_msg. The sender moves to the state msg_lookup. After a random amount of time 

needed for the message recovery (msg_recovered_tm) the sender is able to resend the 

message and moves to the state stable_s again. The whole procedure described in this 

chart is repeated after every crash and restart until the CIC is finally installed. 

The statechart cic_receiver_sc defines receiver’s behavior under CIC. After a (re)start the 

receiver enters the state recovery. When the log is empty, the receiver just waits for the 

sender to (re)send the message. When this happens, the messages is placed into the 

receive queue and waits for being processed. The receiver moves to the state 

msg_received. After a random msg_exec_tm the message is processed and the system 

fires the internal output msg_received which is an interface to application logic and is 

normally coupled to some sndr_trigger event.  
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When the receiver uses the immediate CIC variant (i.e., the condition icic is true), it will 

force-log CIC installation and notify the sender by the event installed in the same step, in 

which the Pcom’s logic would also react on the message. The receiver advances to the 

state installed_r>. The sign “greater than” in its name indicates that this state has static 

reactions. While in the state installed_r the receiver simply responds to repeated 

messages or inquiries is_installed by anew generating the event installed.  

With the normal CIC, however, initially nothing happens in the state msg_processed. 

Force-logging that make the current CIC instance stable will be performed: either a) 

when CIC’s instability exceeds (rcvr_stable_tm) specified by Pcom’s system 

administrator in order to prevent unnecessary resending of the message (the log is 

periodically flushed when Pcom is idle) or b) as a reaction on the event rcvr_nd. Most 

importantly recvr_nd is coupled together with pcom_nd events of all XIC instances, 

pcom_nd output of all TIC client instances (see Section 4.3.4) and sndr_nd output of all 

CIC sender instances running on the same Pcom (i.e., all these formal parameters are 

bound to the same global event, e.g., websrvr_nd). Thus, when the Pcom reveals its state 

to the outside world by sending a message or by committing a transaction after processing 

the current CIC message, the message is logged in the proper order and is available for 

deterministic replay of the Pcom if necessary.  

Only a small log entry with the message header (i.e., sender and message ids along with 

the timestamp) is added to the stable log, when CIC is being made stable. With a full 

message copy in the stable log, CIC would become installed because the receiver would 

no longer need the sender to recover.  

When the receiver is becoming stable, it writes the corresponding value to the variable 

the rcvr_last_logged, generates the event stability and moves to the state stable_r. As 

long as the receiver stays in this state, it responds to periodic send attempts with the 

stability notification (defined as a static reaction) as the notification might have been lost. 

During the normal operation, the receiver will remain uninstalled for the user-defined 

amount of time rcvr_install_tm. No other factors have impact on installation because the 

CIC is already recoverable.  

Supposedly, the receiver fails while being stable. Then after restart in the state recovery, 

it finds out that the stably logged status (rcvr_last_logged) of the given CIC instance is 

‘stable’. Thus, the CIC receiver knows that it has to replay the message, but it does not 
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have its content though. Thus, the receiver generates the event get_msg and moves to the 

state msg_recovery, where it awaits arrival of the message. Message inquiries are 

repeated based on the user-defined timeout get_msg_tm. When the message arrives, the 

receiver moves to the state msg_received where the message is processed (replayed) as 

originally. The difference arises in the state msg_processed: stability of the current CIC 

instance is not logged once again, and the receiver moves with no action to the state 

stable_r. 

We summarize the recovery procedure for the CIC receiver. There are three possible 

cases: 

1. The log is empty: this implies that the receiver is dealing with a completely new 

message or the message has not left any traces (i.e., neither it has generated any 

output to Xcoms nor committed a transaction nor stored anything in a local file.  

2. The log indicates CIC stability: no local changes have survived the most recent 

crash but some other components might be aware of the previous message 

execution because they have received resulting output messages. Thus the 

message is re-obtained from the sender in order to be deterministically replayed 

which results in identical state and triggers identical output to the outside world as 

originally. 

3. The log indicates CIC installation: this implies that the receiver can be recovered 

without the sender because the message content is either part of the stable log or it 

is reflected in a more recent installation point. 

Table 2 summarizes some interesting safety and liveness properties of CIC sender and 

receiver. Initially, we consider only a simple application specification consisting only of 

one interacting pair of Pcoms. Thus, we assume that the message being sent is a result of 

internal computations and is not caused by any external event, i.e., the event sndr_trigger 

is always on (i.e., true), such that the sender always tries to send a message. The formulae 

Table 2. Verified Properties of CIC 
Nr CTL Formula Res. 
F1 AG(¬sc) Ø AG( rll=’’ Ø AF<30(send_msg) )  True 
F2 AG(sll=’i’ Ø AG (rll = ‘i’ ⁄ ¬get_msg)) True 
F3 AG(rll=’' ¤ rll=’s’ ¤ rll=’i’ True 

F4 
AG( (wr(rll) ⁄ rll=’s’) Ø AG(¬(rll=’’) ) ) ⁄ 
AG( (wr(rll) ⁄ rll=’i’) Ø AG(¬(rll=’’ ¤ rll=’s’)) ) 

True 

F5 AG( (wr(rll) ⁄ rll=l) Ø AX AG (¬(wr(rll) ⁄ rll=l)) ) True 

F6 
AF<500(AG¬(sc ¤ rc ¤ lo)) Ø 
AF<700(in(installed_r) ⁄ in(installed_s)) 

True 
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presented in this section are valid for both normal and immediate CIC instances unless 

explicitly stated otherwise. 

The sender obligation of persistent state S1 from the CIC definition is outside the 

specification, when only one protocol instance is concerned. However, it will play a role, 

when we will verify a complex Web service specification with multiple different protocol 

instances at the application level (see Section 3). The sender obligation S3 requiring 

message uniqueness is provided in the specification without any special measures as we 

have already discussed in Section 4.2.2 above. 

As for the sender obligation S2a, we have verified that as long as the sender is running 

and has not obtained stability or installation notification, it periodically resends the 

message at least after every 30th step (formula F1 with maximum timeout 30). We 

abbreviate the event sndr_crash by sc; rcvr_last_logged is abbreviated by rll.  

In connection to the CIC specification we present here, we reformulate the sender 

obligation S2b as follows. On all execution paths is true that when the sender is installed, 

then so does the receiver and no message inquiries occur anymore (formula F2). We 

abbreviate sndr_last_logged by sll and ‘installed’ is abbreviated by ‘i'. 

Formula F3 shows that the CIC receiver log may assume only the following values: ‘’, 

‘stable’ (‘s’) and ‘installed’ (‘i'). By F4 we show that logging occurs exactly in the given 

order except that ICIC skips stability, and F5 proves that each log entry l out of {‘s’, ‘i'} 

is created exactly-once given the fact that this happens.  

The modality of the form F<n accepted by the Statemate model checker means 

“eventually after at most n steps”. F6 demonstrates liveness of the (I)CIC specification: 

stating that when errors do not occur anymore after at most 500 steps, the sender and the 

receiver will both install the given (I)CIC instance. In this formula and elsewhere rc 

stands for rcvr_crash and lo for link_outage. Interestingly, however, that the original 

paper does not say anything, how to make the stable sender terminate, if the final 

installation notification from the receiver has been lost. This question led to introduction 

of the new event is_installed, by which the sender can inquire the receiver about whether 

it finally has installed the given interaction. In fact, F6 could not be proved without this 

event. 
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4.3.4 External IC 

Barga et al [2002] define an external interaction contract (XIC) as a contract between a 

persistent component that subscribes to the rules for an immediately committed 

interaction, and an external component, which does not. The impacts on external sender 

or receiver (or users) of Pcom interactions with it are described below. Note that these are 

impacts on, not obligations of, the external component. 

X1: Output Message Send. A Pcom (usually a client machine) sends (displays) a 

message to an Xcom (e.g., external user), after having logged the message send. The 

sender Pcom crashes before knowing whether the message was seen. Hence it must re-

send the message. Because an Xcom might not eliminate duplicates, a user may see a 

duplicate message. 

X2: Input Message Receive. An external user (Xcom) sends a message, via keyboard, 

mouse, or other input device, to a (client) Pcom. The Pcom crashes before logging the 

message. On restart, the user must re-send the message. But the user (an Xcom) has not 

promised to re-send the message automatically, but rather makes only a "best effort" at 

this. Moreover, the failure is not masked. 

Figure 22 depicts statecharts defining Pcom’s behavior during external interactions under 

XIC. The statechart xic_sender_sc shows external output processing on a Pcom. When 

this activity is started, the system will enter the recovery state and check the log (i.e., 
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Figure 22: XIC Input and Output 
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current value of the local (internal) variable last_logged). When the log is empty, the 

system waits for the event sndr_trigger to be generated or replayed. 

After the sndr_trigger has been generated, the output message is moved to the output 

queue, where it waits for being processed. The system advances to the state 

msg_not_sent. In the very same step, the system generates the event pcom_nd (Pcom 

nondeterminism). This is a formal output parameter of the generic XIC output activity, 

which signals to the receiver parts of CIC protocol instances running on the same Pcom 

to prepare persistence of the current Pcom state. This is explained in full detail in Section 

4.3.3. When the timeout event msg_exec_tm is generated after a random amount of time, 

the Pcom is ready to display the current message. The system generates the internal event 

pcom_output and moves to the state msg_sent, where it waits for the end-user somehow 

to acknowledge reception of the new output e.g., by editing input elements on the new 

HTML page in her Web browser. Such kind of events is bound to the formal parameter 

user_ack in a concrete setting. When the Xcom supplies the event user_ack, the system 

will force-log the XIC installation and in the very same step the system moves to the 

installed state. This procedure is repeated upon Pcom restart as long as the external event 

pcom_crash is generated before the system enters the installed state for the first time. 

Otherwise the system always takes the direct transition from the state recovery to the state 

installed after a restart. 

In the statechart xic_receiver_sc you may observe how a Pcom processes input messages 

originating from an Xcom. Upon a (re)start this activity first lookups its last valid state 

while in the state recovery. When no logging information has been found the system 

enters the state msg_unlogged, and the user is prompted to provide an input as indicated 

by generating the internal event user_input_prompt. After the Xcom has finished 

inputting data, the execution environment (e.g., the operating system) supplies the 

external event user_input, and input data is placed into the Pcom’s input buffer; the 

internal output event pcom_nd is fired. When the Pcom is ready to consume the data after 

a random amount of time (i.e., when the external event msg_exec_tm is generated), it will 

immediately install the given XIC instance by changing the value of last_logged. Should 

the Pcom fail (i.e., when the external event pcom_crash occurs) prior to installing the 

message but after the Xcom has provided the input, the Xcom will have to repeat the 

input after Pcom’s restart. 
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Table 3 summarizes interesting properties of XIC in- and output charts that we have tried 

to verify with the Statemate model checker. For both charts, xic_sender_sc and 

xic_receiver_sc, we have the model checker verify that the variable last_logged is always 

either empty or equal to ‘installed’ abbreviated ‘i’ (F7). Then we want to make sure that 

each XIC instance is installed at-most-once. This is again identical for both input and 

output charts. For this purpose, we can use the internal event wr(variable) that is 

generated when variable’s value is changed (i.e., it is assigned a new value). F8 states that 

on all execution paths on which last_logged is set to ‘installed’ last_logged is never 

written again. 

We also verify for xic_output_sc that as long as the Pcom does not get Xcom’s 

acknowledgement Pcom will keep trying to deliver output after crashes. We actually want 

to show the formula F9 (pcom_crash and pcom_output are abbreviated by pc and po 

respectively). However, the Statemate model checker accepts only a concrete modality of 

the form F<n. In order to be able to determine when the system achieves some particular 

progress, we need to know, over which period the system will have to deal with failures. 

Since we model Heisenbugs, this period must be a finite one. Thus, we pick a reasonably 

big number (e.g., 500 steps). Note that in a failure-free execution an XIC output 

completes in maximum 34 steps (i.e., 4 transitions plus maximum message execution 

time of 30). F10 has been verified by the model checker. 

In the same manner, we verify the following liveness property for both, XIC in- and 

output. When failures no longer occur after 500 steps at latest, the XIC will be finally 

installed after 600 steps. This is verified with the formula F11.  

For an XIC input, we have been interested to make sure that once an input message is 

captured by the system the user is never asked for this input again as stated in F12. We 

abbreviate user_input_prompt by uip. 

Table 3. Verified properties of XIC Input/0utput 
Nr CTL Formula Res. 
F7 AG(ll=’’ ¤ ll=’i’) True 
F8 AG( wr(ll) ⁄ ll=’i’ Ø AX AG( ¬wr(ll) ) ) True 
F9 AG( (¬(ll=’i’) ⁄ pc Ø AF(po) ) N/A 
F10 AF<500 AG(¬pc) ØAG( (¬(ll=’i’) ⁄ pc Ø AF<600(po) ) True 
F11 AF<500 AG(¬pc) Ø AF<600 in(installed) True 
F12 AG( ll=’i’ Ø AG(¬uip) ) True 
F13 AG( po Ø AX AG(¬po) ) False 
F14 AG( uip Ø AX AG(¬uip) ) False 
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As explained by impacts X1 and X2 in the XIC definition above, failures during external 

interactions are not masked. The Xcom might receive the output message more than once 

(F13 is false). With F14 being false it is shown that the Xcom may be asked to provide 

the same input more than once. 

4.3.5 Transactional IC 

A transactional interaction contract (TIC) between a Pcom client and a Tcom server 

consists of the obligations given in Table 4. A message sequence diagram summarizing 

the messages exchanged between the interacting components under the TIC is shown in 

Figure 23. Figure 24 shows the statecharts which define behavior of a Pcom 

(xact_client_sc) executing a transaction on a Tcom (xact_server_sc) under the TIC 

Table 4. TIC: Pcom (Client) and Tcom (Server) Obligations 
Pcom Obligations Tcom Obligations 
PS1: Persistent Reply-Expected State. 
The Pcom’s state as of the time at which 
the reply to the commit request is ex-
pected, or later, must persist without hav-
ing to contact the Tcom to repeat its ear-
lier sent messages. 

PS2: Persistent commit request mes-
sage. The Pcom’s commit request mes-
sage must persist and be resent, driven by 
timeouts, until the Pcom receives the 
Tcom’s reply message.  

PS3: Unique message. The Pcom prom-
ises that its commit request message has 
unique contents (including all header in-
formation such as timestamps, etc.).  

PR1: Duplicate Message Elimination. 
The Pcom promises to eliminate duplicate 
reply messages to its commit request mes-
sage (which the Tcom may send as a re-
sult of Tcom receiving multiple duplicate 
commit request messages sent by Pcom 
because of PS2). 

PR2: Persistent Reply Installed State: 
The Pcom promises that, before releasing 
Tcom from its obligation under TS1, its 
state at the time of the Tcom commit reply 
message receive or later is persistent 
without the need to request the reply mes-
sage again from the Tcom. 

TR1: Duplicate elimination. Tcom 
promises to eliminate duplicate commit 
request messages (which Pcom may send 
to satisfy PS2). It treats duplicate copies 
of the message as requests to resend the 
reply message.  

TR2: Atomic, isolated, and persistent 
state transition. The Tcom promises that 
before releasing Pcom from its obligations 
under PS2 by sending a reply message, 
that it has proceeded to one of two possi-
ble states, either committing or aborting 
the transaction (or not executing it at all, 
equivalent to aborting), and that the re-
sulting state is persistent.  

TS1: Persistent (faithful) reply message. 
Once the transaction terminates, the Tcom 
replies acknowledging the commit re-
quest, and guarantees persistence of this 
reply until released from this guarantee by 
the Pcom. The Tcom promises to resend 
the message upon explicit Pcom request, 
as indicated in TR1 above. The Tcom re-
ply message identifies the transaction 
named in the commit request message and 
faithfully reports whether it is committed 
or aborted.  

TS2: Unique message. The Tcom prom-
ises that its commit reply message has 
unique contents (including all header in-
formation such as timestamps, etc.) 
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protocol. 

The client tries to execute a transaction comprising a number of sql statements (input 

parameter sql_nr). A new statement is issued after getting a reply to the previous one. 

The client (re)starts in the state recovery. When its log (clnt_last_logged) is empty, it 

knows that the given transaction has not been committed. After the external event 

clnt_trigger (interface to the application logic) is fired (perhaps replayed) the client 

advances to the superstate sql_processing where it immediately enters the default basic 

state xact_start, and sends the transaction begin event begin_xact to the server.  

Note that each transaction execution attempt can be aborted by the server anytime for 

whatever reason. Thus, the client is always prepared to receive the corresponding 

notification (aborted) from the server. In such a case, the client leaves the superstate and 

enters the state recovery again. The same has to be done, when the server does not 

acknowledge the new transaction by generating the event begun for more than the user-

defined timeout begin_tm.  

When the new transaction is started, the client sends the first sql statement i.e., it 

generates the first element of the event array sql_req and advances to the state 

querying_updating. When the client application logic discovers some inconsistency 

(signaled to the system by event rollback) in one of the server replies that are modeled 

here by the event array sql_rep, it will send the event user_abort to the server and move 

to the state aborting. The event user_abort is periodically generated based on the timeout 
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Figure 23: A Message Sequence Diagram of the Transactional Client (Pcom) and Server (Tcom) 
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user_abort_tm until the server does not confirm abortion of this transaction by the event 

aborted. In a normal failure-free run the client is able to collect all server replies as it 

receives the event final_sql_rep (alias of sql_rep(sql_nr)) while in the state 

querying_updating, and prepares client persistence by generating the formal output event 

pcom_nd. The client moves to the state ready_to_commit.  

In the next step, the CIC receiver instances running on the same Pcom are given a chance 

to make the interactions stable. In the very same step the client makes the first forced log 

write by setting client_last_logged to ‘pre_commit’, sends the event commit to the server 

and advances to the corresponding state. While being in this state, the client periodically 

resends the commit message based on the timeout commit_tm until the servers either 

confirms by the message committed or rejects by aborted.  
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Figure 24: TIC Pcom and Tcom 
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When the transaction is committed, the client installs this fact by changing the value of 

client_last_logged to ‘committed’ and moves to the state committed. During the same 

transition it generates the application interface event client_committed that normally 

would trigger some CIC reply to the client on whose behalf the transaction has been 

executed. If the transaction is aborted, the client will clear the transaction status in the log 

and start a new attempt to execute this transaction by moving to the superstate 

sql_processing. 

Thus, after a crash (xact_client_crash) the client considers three possible cases:  

1. The log is empty meaning that the transaction needs to be retried. 

2. The log contains ‘pre_commit’ meaning that the transaction has been executed, 

and the client has to learn its status from the server by resending the commit 

message. 

3. The log contains ‘committed’ meaning that the transaction is definitely committed 

and the client can recover the reply client_committed to proceed with its 

deterministic replay autonomously. 

Now we describe how the Tcom processes transactions. When the Tcom comes up in the 

state recovery and detects that the log (srvr_last_logged) for the given protocol instance 

is empty, it waits for the client to start a transaction. After the server receives the 

corresponding message from the client, it advances to the state begin. Because a Tcom is 

normally an extensively used multi-user system, the server does not immediately confirm 

the transaction being started. This rather happens after a random timeout (begin_ok_tm) 

when the Tcom replies with begun and advances to the state wait_for_sql.  

Throughout transaction execution, some events may lead to a transaction abort:  

• the nondeterministic event internal_abort that models Tcom-initiated aborts e.g., 

as part of deadlock resolution,  

• user_abort generated by the client as explained above,  

• a repeated out-of-order begin message coming from the client implying that it has 

crashed in the mid of the transaction and is now recovering.  

In all these cases, the server moves to the state failure. Since transaction rollback is not 

different from normal transaction execution, it takes some random time recovery_tm until 

the client is notified about the transaction abort. It moves again to the state recovery and 

is ready to accept new transaction execution attempts.  
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In a normal failure-free run the server advances from the state wait_for_sql to the state 

sql_call_exec after receiving the first request, i.e., sql_req(i) with i=1. As you see the 

state is always exited and more importantly entered again when the compound event 

sql_req_ok (defined Ÿlink_outage ⁄ sql_req(i) ) occurs. As a static reaction on entrance 

of this state the server generates randomly timed replies sql_rep(i). This seemingly 

complicated mechanism as opposed to just specifying tm(sql_req(i, …)) is needed in 

order to prevent confusion by “old” timeouts after a crash as we have already mentioned 

in Section 4.2.4 above.  

After the server receives the event commit from the client, it advances to the state 

committing and waits there for a random period of time commit_ok_tm. Then the server 

commits transaction (i.e., it writes ‘committed’ to sndr_last_logged), sends the 

notification committed to the client and advances to the final state committed. When the 

client resends the commit message, the server will repeat the event commited after the 

random timeout commit_tm. 

Table 5 summarizes the properties we have verified for a simple database client-server 

application. The event clnt_trigger is on throughout every step because the transaction is 

a result of internal computations. The client transaction encompasses three SQL requests. 

As part of the debugging process, we have verified one of the most important safety 

properties. F15 proves that the client never even tries to execute already committed 

transactions. We abbreviate here and in further formulae srvr_last_logged by sll. The 

statechart expression any(a) evaluates to true when one or more elements of the array a 

are generated in the given step. Thus, non-idempotent execution is out of question with 

this specification.  

Now we would like to verify if and how individual TIC obligations are provided by this 

specification. The Pcom obligation PS1 like S1 can be shown only at the application level 

Table 5. Verified Properties of TIC 
Nr CTL Formula Res. 
F15 AG( sll=’c’ Ø AG(¬any(sql_req)) ) True 
F16 AG(¬cc) Ø AG ( (cll = ‘p’ ⁄ ¬(c_ok ¤ a_ok)) Ø AF<30(c) ) True 
F17 AG(cll=’’ ¤ cll=’p’ ¤ cll=’c’) ⁄ AG(sll=’’ ¤ sll=’c’) True 
F18 AG( (wr(cll) ⁄ cll=x) Ø AX AG (¬(wr(cll) ⁄ cll=x)) ) True 
F19 AG( (wr(sll) ⁄ sll=y) Ø AX AG (¬(wr(sll) ⁄ sll=y) ) True 
F20 AG( sll=’c’ Ø AG(¬ (sll =’’) ) ) True 
F21 AG( (cd Ø sll=’c’) ⁄ (ad Ø sll=’’) ) True 
F22 AF<500(AG¬(failures)) Ø AF<700(AG(cll=’c’ ⁄ sll=’c’)) True 
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as far as the IC framework is concerned. The Pcom obligation PR2 about when to allow 

the Tcom to drop commit reply message from the stable log goes beyond the interactions 

within a single transaction and therefore cannot be shown with the given one-transaction-

specification. 

The Pcom obligation PS2 (periodic resend of the commit message is verified by the 

formula F16. Assuming that the client does not crash (i.e., clnt_crash (cc) is false) the 

following holds: when the client is prepared to commit the transaction (i.e., 

client_last_logged (cll) is equal to ‘pre_commit’ (‘p’)) and no reply (i.e., neither aborted 

nor committed) reaches the client (i.e.,¬(c_ok ¤ a_ok)), then the client will resend the 

message commit (c) after at most 30 steps. 

By verifying the formula F17, we show that  

1. the variable sndr_last_logged assumes one of the two possible values: empty ‘’ or 

‘committed’,  

2. the client_last_logged variable may be one of the following: empty ‘’, 

‘pre_commit’, or ‘committed’.  

F18 shows for each possible value x that it is written to clnt_last_logged at most once. 

The identical formula F19 is shown for each possible value y of srvr_last_logged. Thus, 

one can infer from F19 that the client detects duplicate commit notifications and logs 

commit only once. Similarly, the server detects commit request duplicates issued by the 

client and logs the transaction at most once as it follows from F19. F20 proves that a 

committed transaction is durable. Together with the formula F17, the specification is 

proved to provide transaction atomicity. 

F21 demonstrates that the Tcom always provide faithful reply. The server never generates 

the message committed (abbreviated cd) with the transaction outcome log entry being 

empty and it does not respond aborted (abbreviated ad) after having committed the 

transaction. 

Finally yet importantly, we present a liveness property of TIC. We show that with a finite 

number of failures (xact_client_crash, xact_server_crash, link_outage, application-

initiated rollback due to some inconsistency or internal_abort on server) and reasonable 

server performance (when client requests do not pathologically time out causing 

transaction restarts) every transaction under TIC is executed exactly-once. The timeouts 
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that cause transaction restarts are begin_tm and sql_tm. They do not occur as long as long 

as msg_exec_time < client_to - RTT holds for the random execution time on the server 

(msg_exec_time), the current integer value of the client timeouts (client_to), and the 

round trip time (RTT) of two steps in the synchronous time model. (When the request 

message is generated in step i, it is seen by the receiver in step i+1 in which it also 

generates the reply which is seen by the original sender in step i+2.)  

Assume that all the failure and timeout events we have just described are OR-ed in the 

compound variable failures. Then the CTL formula F22 can be verified. This formula 

states that if no failures occur anymore after at most 500 steps, both client and server will 

commit and install TIC after at most 700 steps. 

4.3.6 Sample Application of the IC Framework 

Now we are ready to build composed specifications for concrete real-world application 

scenarios. In this section, we model a sample Web Service that encompasses Web 

browsers, a Web server, two application servers, and a database server. The browsers, the 

Web server, and the application servers are Pcoms; the database server is a Tcom; solely 
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Figure 25: IC Application in Web Service Activitychart 
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the customers (i.e., end-users) are considered to be outside the framework and are 

handled as external components. Figure 25 shows the activitychart of an end-user request 

in the Web Service. In the interest of clarity, the dataflow information in the activitychart 

is limited to the trigger events that drive the execution of the end-user request, and the 

failure events. The control activity user_sc is not shown here because it consists almost 

only of orthogonally starting the activities for sending and receiving of the messages 

defined in the activitychart. The real complexity is hidden in the generic charts of the 

interaction contracts introduced above. An activity declaration of the form 

activity<generic_activity means that activity is an instance of generic_activity in the 

Statemate design. 

An informal description of the application logic follows:  

1. The user review initial HTML page in her browser (the formal parameter 

user_input_prompt of the XIC input instance browser_input is bound to the user-

scope event html_prompt). The user fills in some data under XIC and clicks on a 

submit button (the formal parameter user_input of the XIC input instance is bound 

to the user-scope event submit_clicked). The installed XIC generates the user-

scope event click_captured, to which the formal output parameter xic_i_installed 

is bound. 

2. In turn, click_captured is the sndr_trigger of the ICIC instance websrvr_req (i.e., 

the condition parameter icic equals true) standing for the call of the Web server by 

the browser. An arrival of the request at the server is signaled by the user-scope 

event websrvr_req_rcvd, to which the formal output parameter received of the 

CIC receiver is bound. 

3. The event websrvr_req_rcvd is the sndr_trigger of the two CIC instances 

appsrvr1_req and appsrvr2_req handling the application server requests initiated 

by the Web server. 

4. The output event appsrvr2_req_rcvd of the CIC instance appsrvr2_req is the 

sndr_trigger for the CIC instance appsrvr2_rep dealing with the corresponding 

reply to the Web server. 

5. The output event appsrvr1_req_rcvd of the CIC instance appsrvr1_req is the 

sndr_trigger of the TIC instance xact_update handling a two-statement-

transaction on the database server on behalf of the first application server. Once 

transaction is completed the client part of the TIC instance generates the user-
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scope event xact_committed to which the TIC client output event 

client_committed is actually bound. 

6. The event xact_committed is the sndr_trigger of the CIC instance appsrvr1_rep 

that handles the reply message of the first application server to the Web server. 

7. For the Web server we manage a slightly more complicated application logic that 

is defined by the orthogonal component websrvr of the control activity user_sc in 

Figure 26. The Web server generates the event websrvr_done that is the 

sndr_trigger for the CIC instance websrvr_rep only after it detects for the first 

time during uninterrupted normal operation to have gathered both replies from the 

asynchronously called application servers. As you may see, the Web server loses 

the information about previously received reply messages on each occurrence of 

websrvr_crash by assuming the default configuration (wait_app1, wait_app2) 

again. 

8. The user-scope event websrvr_rep_rcvd is also the input parameter sndr_trigger 

of the XIC output instance of the browser. 

9. Finally, the browser presents to the customer the output html_reply, to which the 

output parameter pcom_output of the XIC output is bound which is acknowledged 

by the user-scope event html_ack. 

We limit the specification to only two users (i.e., parallel end-user requests) due to the 

high verification costs. However, this suffices to introduce inter-user concurrency into the 

specification. Random order of the replies resulting from asynchronous calls to the 

application servers represents an additional source of intra-request nondeterminism. 

As for failure events, we distinguish between failures that are local to a particular 

customer and failures that affect every customer in the system. The global failures are all 
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Figure 26: Orthogonal Component of the Web Server Control 
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server crashes and outages of the network between the servers. Browser crashes and 

broken internet connection between the browser and the Web server as well as user-

initiated and server-enforced transaction aborts affect individual end-users. All failure 

events are routed correspondingly to the instances of the generic IC activities. 

Each Pcom possesses its own nondeterminism alert. On a shared component such as the 

Web server such an event is shared by all users. To elaborate more on this particular 

example, websrvr_nd is generated as the output parameter sndr_nd of the CIC instances 

appsrvr{1, 2}_req, websrvr_rep of every user and is consumed as the input parameter 

rcvr_nd by the CIC instances websrvr_req and appsrvr{1, 2}_rep of every user. 

Table 6 summarizes the results of the application-level verification of the IC framework. 

We start verification by proving that the state corresponding to displaying HTML output 

to the user is reachable, i.e., there are successful runs in the composite system. The 

formula F23 is true. Then we have shown that each message is logged at-most-once, i.e., 

for each instance, for each logging variable l and each value v that it can assume we have 

proved the formula F24. 

The most interesting safety property of the Web server results from its application logic. 

The Web server replies to the browser after receiving the browser request and processing 

the replies from the application servers. Thus, the first attempt to send a reply to the 

browser commits the exact order of these messages, most importantly that of the 

asynchronous application server replies. Therefore, for each of the corresponding 

variables rcvr_last_logged (rll) and the event send_msg from the instance websrvr_rep 

the formula F25 should be true. This has been successfully proved. 

Unfortunately, we have not been able to prove any properties for two concurrent users 

because the model checker has not terminated even after 10 days. On the other hand, it 

has not produced counterexamples for the safety properties either, and we could 

demonstrate the correct handling of multiple asynchronous nondeterministic messages 

with the Web server above in a smaller context. 

Table 6. Verified Properties of a Sample  Web Service 
Nr CTL Formula Res. 
F23 EF html_reply  True 
F24 AG( (wr(l) ⁄ l=v) Ø AX AG(¬(wr(l) ⁄ l=v) ) True 
F25 AG( send_msg Ø (rll=’s' ¤ rll=’i') ) True 
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4.3.7 Verification Run-Time 

This work has been accomplished on a server with 64x 1.2 GHz UltraSPARC-III+ 

processors and 184 Gigabytes RAM. The specifications at the level of individual IC 

contracts result in OBDDs whose size does not exceed 105 nodes. It took at most 15 sec 

to verify the safety properties and 1 to 17 hours were needed for the liveness properties 

depending on the execution path lengths used for the Finally modality, varying between 

100 and 700 steps. The OBDD size for the specification of the Web Service model is in 

the order of 107 nodes. The maximum run-time for the safety properties (in the single-

user context) is less than two hours. 

The verification of liveness in the application-level context has not terminated even after 

one week. The safety could only be proved for the nondeterministic request execution for 

a single user. Table 7 gives an overview of model checker run-times for different types of 

specifications and properties to be proved. Different run-times and OBDD sizes are given 

for the specification variants with and without integer expressions where available. 

4.4 Lessons Learned 

Our initial hope for applying formal specification and model checking techniques to 

recovery protocols was that this would be a nontrivial but not too difficult engineering 

exercise. However, in the process of working with Statemate and the model checker, we 

realized that there are many subtleties and modeling choices that can make the difference 

between a verifiable, readable, and composable specification, and a model that is too 

complex for the model checker, difficult to match with the informal descriptions of the 

protocols, or unsuitable for reuse in a more comprehensive application-level model. In the 

following section, we report some of the lessons learned.  

4.4.1 Efficient Verifiability 

We faced a number of design choices for modeling the basic elements of the IC 

framework: messages, failures, logs.  

Table 7. Verification Run-Times 
Property/Specification Type OBDD size Verification Time 

Integers used ~104 ~5 seconds 
IC-level safety 

Without integers ~103 ~1sec. 
Integers used ~106 ~10 hours 

IC-level liveness 
Without integers ~105 ~10 hours 
Integers used ~107 Not terminated 

1-user WS safety 
Without integers ~106 ~10 hours 
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As for messages, we had to find an appropriate representation for message uniqueness 

required in the IC framework. The first attempt was to use integer-valued message 

sequence numbers, but this created tremendous problem for the model checker. Statemate 

translated (bounded) integers into their bit representations, leading to a state explosion 

that led to unacceptable, often non-terminating behavior of the model checker in the 

global context. Instead, we encapsulated all messages used in a given interaction contract 

as event variables local to the protocol instance. Thus, messages belonging to different 

protocol instances cannot be confused, and this trick sped up the model checker 

substantially while retaining the semantics of sequence numbers. 

As for logs, we considered the following three options: (bounded) queues, history-

connected states, and string variables. Queues seemed to be the most intuitive choice, but 

they are not yet supported by the Statemate model checker. History-connected states were 

used in the first attempt, but led to disastrous behavior of the model checker. Finally, we 

resorted to using string variables for explicitly remembering the most recent persistent 

state of a given protocol instance. This can be seen as an efficient emulation of 

Statemate’s concept of history-connected states. 

Another interesting issue was how to capture effects of a message execution since we 

wanted to show the impossibility of non-idempotent execution with interaction contracts. 

The solution that led to efficient verification was to show globally that identical values 

are never written to a log variable. Initially we used integer counters for critical 

transitions. Showing that these integers can never exceed one would also prove the 

impossibility of non-idempotence at the IC level, but the verification of this at the 

application level did not terminate. The general insight is that specification tools such as 

Statemate offer some convenient modeling elements with hidden complexity. They 

should be used with great caution.  

As for failures, we wanted to model both component crashes and network problems such 

as router failures, without having to model a detailed network, as this would have grown 

the model beyond tractability. We modeled all failures simply as nondeterministic events. 

As failures of one component lead to timeouts in other components, the time model was a 

critical issue, too. We found that between the two Statemate options, synchronous or 

asynchronous time, only the former was suitable and led to readable specifications with 

clear semantics. For modeling timeouts, we initially used Statemate’s native timeout 

mechanism that uses integer expressions, but this led to unacceptable run-time of the 



4 Interaction Contracts Framework 73 

 

 

model checker. The final solution models timeouts as elementary nondeterministic events 

that do not lead the model checker into complexity pitfalls. The correctness of the 

original specification follows from the following consideration. Execution paths with 

properly periodic event recurrence are a proper subset of a complete set of execution 

paths. With most safety properties being all-quantified everything we have proved for the 

latter will also hold for the former. 

We took request execution times into account because the model primarily aims at 

multi-user environments where response times may significantly vary depending on the 

current load. The ability of the framework to deal with repeated requests caused by very 

slow request execution in the absence of failures is one of the key features to be verified. 

It is also well known from empirical studies of so-called Heisenbugs that stress 

conditions like high load and high variability in the timing behavior of threads may 

exhibit bugs that do not occur at all under normal conditions. We have reply messages 

generated at random points triggered by nondeterministic events rather than simply using 

a default setup with constant execution times. This created a symbolic and exhaustive 

stress “test” for handling timeouts at all levels of the system. It did slow down the model 

checker, but this is well justified by the additional confidence in the correctness of the 

complete system. 

4.4.2 Composability 

One of the most challenging tasks was to design the interaction contract specifications in 

an easy-to-compose way. This was achieved by defining IC’s as generic activities. They 

have a simple interface to the application logic which abstractly defines that receiving a 

message in one instance (e.g., an application server request) causes a message send in 

another instance (e.g., the application server reply or a further request). Activities running 

on the same component share the same failure events. More importantly, they share the 

same nondeterminism event such as websrvr_nd causing a forced write to the 

corresponding log variables, which is atomically accomplished in a single step. 

Verification of an entire composite system is orders of magnitude more complex than for 

a single IC. In the sample application, one end-user request encompasses five 

request/reply pairs which results in ten protocol instances running simultaneously; this is 

doubled in the two-user model. Since each protocol instance is a cross product factor in 

the overall system, the size of the underlying OBDD increases exponentially with each 
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new component added to the system. This explains the difficulties we faced during the 

application-level verification. Nevertheless, the proofs of the underlying IC’s already give 

very high confidence in correctness. 
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5. EOS: Exactly-Once Web Service 
“All is well, provided the light returns and the eclipse does not become endless night. 
Dawn and resurrection are synonymous. …” - Victor Hugo 

In this chapter, we describe another major contribution of this thesis: an efficient 

implementation of the IC framework for general stateful Web Services. We enhance 

popular Web technology products: (i) the server-side script language PHP run on Apache 

Web Server, and (ii) the browser Internet Explorer, to enable the system-failure-resilience 

of arbitrarily structured Web applications without any coding overhead.  

5.1 Introduction 

5.1.1 The World Wide Web 

The World Wide Web (abbreviated as WWW) and often called simply the Web for short 

is a system of interconnected autonomous Internet servers that offer specially formatted 

interlinked documents. Most documents on the Web are written in Hypertext Markup 

Language (HTML) [W3.org] that is a mixture of plain text and markups defining the 

text structure, the text layout, and links to other, either local or remote, documents. Figure 

27 depicts a sample HTML document with markups displayed in boldface. The scope of a 

markup is defined by the corresponding start and end tags (e.g., <html> and </html> 

enclose a complete HTML document). A markup may have additional attributes that are 

defined in the start tag. In the current example, the attribute href of the markup <a> 

provides a reference to a document containing more information on HTML. All objects 

on the Internet including Web documents have a unique uniform resource identifier 

(URI) [IETF 1998] as e.g., http://w3.org/, the value of the attribute href. 

The Web users access objects via the Hypertext Transfer Protocol (HTTP) [IETF 

1999]. It was designed as a simple plain-text-based application-level protocol layered just 

01. <html> 
02.  <head> 
03.   <title>Example</title> 
04.  </head> 
05.  <body> 
06.   Hi, I'm a static 
07.   <a href=http://w3.org/”>HTML</a> 
08.   Page!" 
09.  </body> 
10. </html> 

Figure 27: Simple Static HTML Page 
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on top of the transport protocol stack TCP/IP [Comer 1988] to download static HTML 

pages from a remote site. Typically, an interactive client program called a Web browser 

translates a URI provided by the end-user into an HTTP request to a Web server. The 

first line of the header request defines the operation on the URI to be executed by the 

server. HTTP supports several operations with GET and POST being the most frequently 

used.  

The HTTP GET request was initially used to download static objects such as HTML 

pages along with multimedia objects embedded in them (all fetched by separate requests). 

With the need to query the growing Web resources, HTTP allowed adding a query string 

containing parameters in the form of name-value pairs to the URI (e.g., as in 

http://google.com/search?sourceid=navclient&q=application+recovery). The query 

string is processed by a program connected to the Web server through the common 

gateway interface (CGI) [W3.org]. Since the query string is physically a part of the 

URI, its length is limited by the maximum URI length, which has varied over the time 

from 256 to 4,096 bytes. Although the maximum URI length is not specified in IETF 

[1999], the HTTP POST request was proposed as a more flexible way of submitting 

versatile input including large files to Web servers. Instead of encoding parameters into 

the URI of a CGI resource, an unlimited number of objects can be attached to the request. 

Moreover, the current HTTP specification recommends that the GET method should no 

longer be used for purposes other than object retrieval, i.e., it should not have any side 

effects on the server state. 

The initial usage of the Web for download of published HTML documents is reflected in 

that HTTP was designed as a stateless protocol. With the increasing usage of the Web as 

a gateway for business application, a special mechanism, coined cookie, was added to 

HTTP. The HTTP cookies allow storing the HTTP session state with the HTTP client. 

The client submits the session context with each request; the server produces a new state, 

and sends it back with the reply such that the server still does not have to maintain the 

state information. If the application is state-rich, this significantly degrades the end-user 

experience because of the latency overhead. Currently, cookies are normally used to keep 

the session identifier only that allows the server to put the current request into the 

appropriate context. This makes such a Web application truly stateful. 
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5.1.2 Apache Web Server 

Apache is an open-source project focusing on a complete and correct implementation of 

the server side part of the HTTP protocol [Apache.org]. According to a recent survey that 

included responses received from 56,923,737 sites, Apache remains the leading Web 

server product, having more than 67% percent of the market [Netcraft 2004]. Apache is 

implemented in C, and it is available on most mainstream hardware and operating system 

platforms including various UNIX and Windows systems. Apache serves as a code base 

for Web servers shipped with many commercial products, e.g., with Oracle’s database 

and application servers, IBM HTTP Server for iSeries, etc. In the rest of the chapter, we 

use the term Apache to refer to the Apache 1.3 port for Windows that served as the code 

base for the prototype. The following review of the Apache architecture follows the 

documentation from the project Web site [Apache.org] 

Although the port for Windows is almost identical with the reference implementation for 

UNIX, it uses a slightly different process model. Apache on UNIX implements a pre-

forking server model. The parent process is responsible for spawning child processes that 

listen for, accept, and execute incoming HTTP requests one at a time. The parent process 

solely monitors the child processes, and restarts them upon a failure. It also periodically 

proactively replaces the child processes to prevent them from occupying the entire 

memory due to potential memory leakages. Thus, the code of the parent process is 

relatively small and well-tested and its failures have been extremely rare, as reported by 

the users. The child process logic is much more complex and it usually contains third 

party code linked either dynamically or statically via modules. If a child process becomes 

corrupted, only one client request will be affected whereas the other requests will 

continue to be served. The pre-forking model has been criticized for the high overhead of 

spawning a process, the overhead of context switches between the processes, and missed 

opportunities for reply caching. 

The Apache port for Windows is an experimental multithreaded implementation (a 

prototype predecessor of Apache 2) that consists of a heartbeat checking parent process 

and a single child process maintaining a pool of worker threads. It responds to the critic 

points mentioned above with the penalty of having all concurrent requests interrupted 

upon a crash. 

Apache breaks down processing of a request into the following phases. 
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1. Translation of the URI into the complete local file path of the requested object. 

2. End-user identification (optional). 

3. Authorization check of the user for the given URI. 

4. MIME type detection of the object requested (e.g., application/x-httpd-php for a 

PHP script, see below). MIME stands for Multipurpose Internet Mail 

Extensions [IETF 1996] and is a standard way to encode arbitrary data using just 

plain text (i.e., ASCII characters). 

5. Detection of an appropriate module that provides a handler for the MIME type. 

The module takes over request execution and sends a reply back to the client. 

6. Logging the request information for statistics (not for recovery), which is 

optional. 

In each of these phases, Apache scans the list of loaded modules, checks if they offer a 

handler for the current phase, and attempts to invoke the handler should it be there. A 

handler function may execute the current phase completely, decline execution, or detect 

an error and stop. Many phases, specifically phase 5, are terminated after the very first 

module has been found whose corresponding phase handler returns the success code. 

5.1.3 PHP and the Zend Engine  

The material on PHP can be found on the project homepage [PHP.net]. PHP (recursive 

acronym for "PHP: Hypertext Preprocessor") is a widely used general-purpose scripting 

(i.e., interpreted) language that is especially geared for the Web (CGI) application 

development. PHP is platform-independent and is available as an add-on module for a 

wide variety of Web servers including Apache, Microsoft IIS, and Sun ONE, to name just 

a few of them. PHP is used with more than 50% of the Apache installations 

[SecuritySpace]. 

The PHP implementation is an open-source project consisting of many PHP modules 

responsible for different PHP function subsets of the PHP language and the Zend engine 

implementing the language interpreter [Zend.com]. 

Consider the following example of Figure 28 that produces a simple HTML page 

displaying the string “Hi, I'm a PHP script!” in the browser window. As you may see, 

PHP code can be embedded into an HTML page (as well as into any other format) as a 

code island enclosed by special start and end tags(“<?php” and “?>”, respectively) that 

make the Web server switch into the PHP mode instead of producing output identical to 
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the source page line by line. The server executes the PHP code, and replaces the code 

island including the enclosing tags (the enclosing tags are not valid HTML tags) by the 

script output. This differs from Web applications written in conventional programming 

languages (e.g., C/C++ and Java) where one annoyingly has to printf every single HTML 

line no matter how much dynamic content it contains. Similar technology is used by 

many other Web scripting languages, e.g., by JSP [Sun] and ASP.NET[Microsoft]. An 

HTML page may contain several PHP code islands, which is equivalent, up to the HTML 

output in-between, to the sequential execution of the concatenated code islands as a single 

code island. 

Most of PHP’s syntax is borrowed from C with a small fraction of elements coming from 

C++, Java, and Perl. PHP owes its rapid spread to the ease of its syntax and its 

expression power. In the rest of the thesis, the term PHP is used to refer to PHP 4.0.6 that 

served as the basis of our prototype. 

In PHP, a variable does not require a formal declaration. The variable is allocated 

automatically when a value is assigned to it for the first time in the script. Variables are 

prefixed by a dollar sign (e.g., $varname). The type of the variable does not have to 

remain constant: it is determined by the very last value assignment. Variables can be 

accessed by value and by reference (e.g, &$varname). A PHP variable type is one of the 

following: Integer, Double, Boolean, String, Array, Object, and Resource. 

A string is implemented as a C structure containing a pointer to the character array and 

the length of this array. PHP arrays are actually hash tables that allow enumerating values 

starting with zero as in C, indexing values by strings, by non-contiguous integers, or by a 

mix of strings and integers. An object is a hash table mapping the property names to the 

corresponding values, and the method names to the implementations. Resource variables 

are created by PHP interface modules for external software such as file system and 

01. <html> 
02.  <head> 
03.   <title>Example</title> 
04.  </head> 
05.  <body> 
06.   <?php 
07.    echo "Hi, I'm a PHP script!\n"; 
08.   ?> 
09.  </body> 
10. </html> 

Figure 28: Simple PHP Page 
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network support of the operating system, database connectivity modules, etc. PHP 

resource variables contain integer keys that are mapped through a hash table to module-

specific resource representation (e.g., file handles, sockets, and so on). 

PHP relieves developers from manually parsing the HTTP request by providing uniform 

access to the most important HTTP request parameters through predefined global arrays: 

• $HTTP_GET_VARS maps the names of the parameter provided in the query string 

part of the URI to the corresponding values. This also works with a POST request 

when the requested URI contains a query string. 

• $HTTP_POST_VARS maps the names of the parameters provided in the body of a 

POST request except for files. 

• $HTTP_POST_FILES maps a name of an input field in HTML to the array 

containing details of the corresponding file POSTed: its name on the client’s file 

system, its MIME type, its size, and its temporary name on the server’s file 

system. 

• $HTTP_COOKIE_VARS is a mapping of names to the values of the cookies that 

have been found in the request header. 

5.1.4 PHP Session Management 

PHP provides a session module for maintaining the PHP application state across 

subsequent HTTP requests. The session module supports various methods of storing the 

session state (e.g., in a file, shared memory, central database, etc.). The state of a PHP 

application running may be private (e.g., a shopping cart) or shared, concurrently 

accessed by multiple users (e.g., the highest bid in an electronic auction). The state 

variables, accessed by their string names through the global session array 

$HTTP_SESSION_VARS, may be of any basic or derived data types except resources. 

PHP typically uses a cookie to propagate the session (state) id to the client. 

The session support is activated either explicitly by calling the function session_start 

somewhere in the script or it is started automatically, if appropriately configured, prior to 

executing the PHP code for the given request. The session module reads the state 

associated with the session id provided with the request from the session storage and 

makes it accessible for the PHP script as the session array. When the request does not 

contain a session id cookie, the session module generates a new session id (that will be 

included as a cookie in the reply) and creates an empty session array. The PHP script may 
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update the session array by changing or deleting the existing entries or by adding new 

ones. The new state is made available for subsequent requests by either calling the 

function session_write_close or implicitly when the script terminates. Calling this 

function at the end irrespectively of whether the script has really modified the state is an 

obvious weak point of the current PHP implementation. The state accesses follow 

consequently a simple pattern: a read operation followed by a write. As you will see later, 

we modify PHP to allow scripts logically consisting of a single read. 

The sample script of Figure 29 counts how often it has been invoked by a user. It looks 

up the current state (line 2), zeroes the state variable count upon the first access (lines 4-

7), and increments this variable for each invocation (line 9). If this script maintains a 

shared state for several users, their accesses must be serialized for consistency. The 

session module relies on the session storage module in current use to achieve this. For 

instance, the standard session storage module that makes use of the server’s file system 

exploits file locking for this purpose. This, however, works only on UNIX systems where 

requests are executed by different Apache processes. File locking cannot synchronize 

threads of the same process. Our prototype provides a more flexible concurrency control 

mechanism coined latches to cope with this and some other issues that we describe 

below. 

The shared memory storage module is available solely for Linux. The database storage 

module is better administrable than the other alternatives, but, relatively inefficient. The 

most popular session storage module uses the server file system to store session data 

persistently. It allocates a physical file for each session upon the very first call to the 

function session_start that exists until the function session_destroy is called at the end of 

the session. The original implementation is inefficient because it does not cache session 

01. <?php 
02.   session_start(); 
03.  
04.   if(isset($HTTP_SESSION_VARS["count"]) == FALSE) 
05.   {  
06.     $HTTP_SESSION_VARS["count"] = 0; 
07.   } 
08.   $HTTP_SESSION_VARS["count"]++; 
09.  
10.   echo "Hi, I have been called "; 
11.   echo $HTTP_SESSION_VARS["count"]; 
12.   echo "times\n"; 
13. ?> 

Figure 29: Sample Usage of PHP Session Support 
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data in the main memory, which implies having to perform a random I/O for every access 

to a particular PHP application state. 

5.1.5 PHP Business-to-Business 

As in the most other cases, PHP offers several options to interact with (potentially PHP-

enabled) Web services. One of the most popular and elegant methods provides the CURL 

module that allows PHP applications to access remote HTTP, secured HTTP, FTP, 

LDAP, and some other resources in a uniform fashion. The complexity of the protocols is 

hidden behind a very simple interface that keeps the coding effort at minimum. This 

functionality is implemented by the CURL library for C developed as an open-source 

project [Stenberg]. 

Figure 30 shows a fragment of a PHP script that makes use of CURL to call another Web 

service to bid for an auction item. It first initializes a resource variable for this operation 

(line 2) and defines its parameters in an array variable (lines 3-6). Next, the PHP script 

specifies that the POST method should be used, and associates the parameter array with 

the request (lines 7-8). Some Web Services are invoked via SOAP, the Simple Object 

Access Protocol layered on top of HTTP [W3.org]. When SOAP is involved, we would 

pass a SOAP message as a POST parameter. The HTTP request is sent to the URI 

provided during the resource initialization and the reply string is assigned to the variable 

$b2b_reply (line 9). When the CURL resource is no longer needed, it can be either 

explicitly closed (line 10) or it is automatically garbage collected at some point after the 

termination of the script. 

Note that by implementing CIC for CURL and Session modules of PHP, EOS-PHP 

provides recovery guarantees at the HTTP layer and thus, higher-level applications 

01. <?php 
02.   $b2b = curl_init("http://eos-auctions.com/b2b/"); 
03.   $params = array( 
04.                "auction_id" => 100232, 
05.                "bid" => 50.74 
06.              ); 
07.   curl_setopt($b2b, CURLOPT_POST, TRUE); 
08.   curl_setopt($b2b, CURLOPT_POSTFIELDS, $params);  
09.   $b2b_reply = curl_exec($b2b); 
10.   curl_close($b2b); 
11. ?> 

Figure 30: Sample Usage of the CURL Module 
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including PHP script libraries for SOAP and other protocols over HTTP are relieved from 

dealing with system errors. 

5.1.6 Microsoft Internet Explorer  

Internet Explorer (IE) is currently the dominant browser on the Web as recent surveys 

show [WebSideStory 2004]. The complete documentation on the IE is provided in the 

Web Development section of the MSDN home page [Microsoft]. The key features of IE6 

that served as a client platform for this thesis are the following: 

• Dynamic HTML (DHTML) [W3.org] allows creating powerful graphical user 

interfaces (GUI) for the client side of Web applications. DHTML allows client-

side scripts (written in JavaScript, VBScript, etc. [W3.org, Microsoft]) defined in 

script markups to interact with the end-user by intercepting her mouse and 

keyboard input. DHTML allows manipulating the document through its tree-

structured representation coined HTML Document Object Model (HTML 

DOM) [W3.org] without contacting the server. 

• User Data Persistence Behavior allows managing a limited portion of the Web 

application state on the client’s disk. The state is stored as a file in eXtensible 

Markup Language (XML) format that allows describing data objects in a 

platform-independent manner [W3.org]. XML documents can be manipulated in a 

similar way as HTML thorough the XML Document Object Model (XML 

DOM). 

5.1.7 Big Picture of EOS 

Using the technologies and the components described in the previous section developers 

are able to build arbitrarily distributed (potentially stateful) Web applications. Figure 31 

sketches a sample service configuration of an EOS-based Web application. End-users call 

Web applications on the server sites PHP 1 and PHP 4 using their browsers. PHP 1 

invokes (through the CURL client interface) Web Services on PHP 2 and PHP 3 that in 

turn call PHP 5 and PHP 6, accordingly. The other frontend Web application server PHP 

4 normally follows an identical procedure; occasionally, however, it optimizes this 

execution path by having the browser immediately invoke PHP 5 from one of the 

embedded HTML elements. Such a system enabled by EOS provides system-failure-

resilience. 
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In order to comply with the IC framework, the PHP application servers and the browsers 

must be turned into Pcoms whereas the end-users can only be viewed as Xcoms. The 

interactions between a browser and an end-user must follow the XIC. PHP servers 

interact under the CIC or the ICIC. 

5.2 Persistent EOS Browser 

There are two major design goals of EOS enhancements to the browser. The first is to 

improve the user experience by saving as much of her input across a failure (such as a 

browser crash or Web Service unavailability) as possible. This avoids the need for 

annoying repetition of long inputs, which may happen with lengthy forms such as e-

government applications (tax declarations, visa applications, etc.) and e-business 

applications (e.g., insurance and credit approval requests). This is the task of the XIC 

implementation for the browser. The second design goal is to give the guarantee to the 

end-user that all server requests are executed exactly once which is the task of the CIC 

stub of the browser. 

For this purpose, the browser has to be provided with logging capabilities. Several 

implementation strategies have been considered. Most browsers support proprietary plug-

in interfaces for additional modules connected with significant coding effort. ActiveX 

elements and Java applets are extremely unpopular among home users and limited in 

intercepting user events generated by HTML elements. As a compromise, we decided to 

restrict ourselves to using the standard features of the most popular Web browser as of 

the time we started developing the EOS prototype, Internet Explorer (IE). More radical 

Browser Browser
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Browser Browser

PHP 5

Browser Browser
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Figure 31: Sample EOS Web Application 
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solutions such as building a derivate browser that hosts various Web browser components 

(e.g., via the WebBrowser control of IE) or extending an open source browser (e.g., 

Mozilla) would have been feasible as well but they would have consumed more time 

without significantly enlarging the feature set covered by the implementation described in 

this subsection. The downside of our approach, however, is that we do not have the full 

control of some important issues, e.g., when persistent cookies and user data are really 

flushed to disk. 

We do not expect end users to explicitly store our recovery JavaScript on their computers. 

The server counterpart EOS-PHP adds the browser logging and recovery code as the last 

step of output processing. Original server scripts do not have to be changed. Logging is 

done by modifying a so-called XML store, an XML structure managed by IE on the 

client’s disk similarly to persistent cookies. Figure 32 depicts a sample instance of an 

XML store. Usage of particular elements of the XML store is explained in the following 

subsections. An XML store can keep up to 640 KB per application, which is sufficient 

because we are going to keep no more than one copy of an HTML tree, typically 

occupying less than 50 KB. The XML store feature is provided by IE as part of its default 

persistence behavior called “userData Behavior”. The recovery code inserted by the 

EOS-PHP server contains an invisible user-defined HTML element <sdk:logger 

id=pagestate style="behavior:url(#default#userData);"> with attached userData 

behavior. The XML object associated with the XML store can be accessed through a 

simple interface {get,set}Attribute or using the XML DOM that is natively supported by 

IE as well. When we need to force the XML store with the logging information to disk we 

call pagestate.save(XMLStoreName). For recovery the content of the XML store is 

fetched by invoking pagestate.load(XMLStoreName). 

5.2.1 Supported Browser Applications 

EOS concentrates on providing the recovery guarantees of pure browser applications 

using solely DHTML, XML, and JavaScript engines of the browser and interacting with 

01. <ROOTSTUB 
02.   MSN="123"  
03.   logged_uri="http://localhost/b2c_user1/test7.php" 
04.   title="EOS: Test (Screen 7)"  
05.   body="escaped HTML string" 
06.   user_commit_msn="122" 
07.   user_commit_element_id="form1"/> 
08. </ROOTSTUB> 

Figure 32: XML Store Log  
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Web servers through HTTP. Enhanced, embedded GUI applications implemented as Java 

applets or Flash animations are not considered in our prototype. Leading e-business 

providers try to attract more customers by keeping the software and hardware 

requirements as low as possible, and do not use these technologies on the client side 

anyway. Logging is based on intercepting certain DHTML events such as mouse clicks, 

and keyboard inputs. Events affecting the look of the HTML page (e.g., entering a word 

into a form field, clearing a checkbox) are handled by the XIC. Events causing the 

browser to send a request to the Web server (e.g., clicking on a form submit button or a 

simple link) are subject to CIC. The only way we have found to save the browser state 

boils down to dumping the DHTML tree to disk. 

The browser state may be richer than mere visible and invisible HTML elements. It may 

also include global JavaScript variables. As we have no access to the IE scripting engine 

we have the only chance to capture changes to such variables when they are bound to a 

(potentially invisible) HTML element each. For the prototype we assume that a user event 

on an element is handled by a single script function or the default browser event 

processing. We limit the application to changing only a single element on a user event. 

We can take this for granted for default edits to form fields but not for changing values of 

global variables. We are not able to provide deterministic replay for event processing 

functions that affect multiple HTML elements at once between two consecutive end-user 

events because we may erroneously dump an inconsistent HTML tree. However, the 

likelihood of running into this incorrectness is really small because typically multiple 

changes would normally occur in a very small time window as compared to the overall 

time the user spends on editing the HTML forms of the given page. 

We assume that all relevant HTML input elements are manually assigned unique ids 

using standard HTML attribute id because ids generated by the HTML DOM parser are 

nondeterministic, varying from parse to parse of the same HTML document as stated in 

the IE documentation [Microsoft]. 

5.2.2 Unique Identifiers 

Since we do not change the browser implementation, we need to consider a couple of 

technical points to make the browser fit into the IC framework: unique client and message 

identification in the overall system. 
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The client identification by the HTTP header field “User-Agent” is not feasible because it 

usually contains some generic information about the browser software used. The real 

client IP is often not visible to the servers in the extranet and it is out of the question for 

multi-user computers in any event because then we need also the physical TCP client port 

for unique identification. TCP client ports are a typical source of system nondeterminism 

because they change all the time. We use a persistent cookie client_id that is assigned by 

the Web server to the browser, which is a standard solution in the state-of-the-art Web 

business. Consequently, a browser is identified differently by different Web applications, 

but always unambiguously. The value of the cookie client_id serves as the name of the 

persistent XML store used to log interactions with the given Web service. 

Similarly, we manage message sequence numbers (MSN) as persistent cookies. A pair 

(client_id, MSN) uniquely tags a request message. To acknowledge this message, the 

server increments the request MSN and includes it as a cookie into the reply, such that the 

next client request will be tagged by (client_id, MSN + 1). There is a potential problem 

when only an incomplete reply arrives, e.g., a few HTTP headers including the MSN 

cookie. When the user or our CIC stub initiates a “refresh” of the Web page by 

resubmitting the HTTP request, the new MSN value could be used that would violate 

duplicate elimination at the server. To cope with this, we additionally log the MSN 

cookie to the XML store, however only after the reply message has been completely 

received by the browser manifested in DHTML by document.readyState having the value 

complete. Thus, when a request is resubmitted, the EOS code checks the logged MSN 

value against the MSN cookie that is replaced by the logged MSN when the values differ. 

5.2.3 URI Logging and Recovery 

Another issue arises when treating browser crashes. The operating system can be 

configured to automatically restart the browser. But after the restart, the browser loads the 

start page that is stored in the browser settings instead of resuming the interrupted Web 

session. Clearly, changing the start page of the browser each time the user proceeds to a 

new Web application step is nonsense. In our prototype, we would like the user to revisit 

the greeting page of the interrupted Web application to restore her session. Analogously 

to the MSN logging, we store the URI of the most recent complete page viewed by the 

user during normal operation in the attribute logged_uri of the XML store. When the user 

calls the greeting page, the Web application will detect that the browser with an active 

session needs assistance in recovery; based on the session id cookie it compares the 
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current URI with the URI stored in a special hash table mapping session ids to the start 

URI’s as you will see in Section 5.3. To provide the browser with an appropriate 

assistance, the Web server replies with an empty HTML page (i.e., HTTP headers plus 

“<html></html>”) supplemented with the browser recovery code inserted on the fly. The 

MSN cookie is not incremented and a special volatile cookie uri_recovery is set to true, 

in order to prevent logging of the start page URI during recovery.  

First, the recovery code reads the last complete URI from the XML store and redirects the 

browser to this page by assigning logged_uri to the DHTML property 

document.location.href. This restores the URI in the browser address bar and issues a 

GET request to the server. It does not matter that the original request may have been a 

POST because it will not be executed anyway (the server eliminates duplicate requests 

based on (client_id, MSN) pairs). The GET request to the server carries the cookie 

uri_recovery equaling true. Seeing this, the Web server responds again only with the 

recovery code without incrementing the MSN and resets the cookie uri_recovery to false. 

After these additional steps connected with the recovery of the pre-crash URI, which also 

involved the server, EOS browser behaves precisely according to the CIC with the server 

(until the next crash) as explained in the following subsections. 

5.2.4 Browser XIC Logging 

To implement the XIC between the user and the browser, we monitor all HTML elements 

(they are enumerated by the DHTML collection document.all) for changes while the 

HTML page is being displayed. A universal event propertychange is fired by an element 

when it is changed either by the user herself or programmatically. Typical changes are 

modifications of the element attributes and insertions and deletions of child elements. 

E.g., when the user types into a text input field, she actually modifies its attribute value. 

We register the function updatePageSnapshot saving the whole page in the attribute body 

of the XML store to process the property change events for each element e by calling 

e.attachEvent(‘onpropertychange’, updatePageSnapshot).  

We figured out that flushing XML store on each key stroke, while the user is entering her 

input into a text input field, may significantly degrade the browser performance. To deal 

with this issue, the user can specify a number n of her input losses she is willing to 

tolerate in the worst case. Setting n=1 offers the best possible failure masking. With an 

increasing n the browser performance improves. Flushing the XML store on every 5th 
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event and every 500 ms worked fine on our test computer (Pentium III, 1 GHz, 256 MB 

RAM). The source code of the XIC logging is sketched in Figure 33. 

5.2.5 Browser CIC Logging 

As for the CIC, we need to intercept the DHTML events that precede issuing an HTTP 

request and switching to the next page. These are click events generated by HTML links, 

and submit events generated by HTML forms. The links of an HTML document are 

enumerated in the DHTML collection document.anchors. The HTML forms are listed in 

the DHTML collection document.forms. For every link l we register the function 

handleCIC to process clicks by calling l.attachEvent(‘onclick’, handleCIC). Similarly, 

handleCIC is attached to processing of submit events of each form f by calling 

f.attachEvent(‘onsubmit’, handleCIC). 

Prior to returning to the default browser event processing, the function handleCIC is 

called. First it writes the current document body (document.body.innerHTML) to the 

01. var n = 5; 
02. var timer_id = null; 
03. var unflushed_events = 0; 
04.    
05. function deferredXMLFlush() 
06. { 
07.   unflushed_events++; 
08.    
09.   if(unflushed_events % n == 0) 
10.   { 
11.     pagestate.save(client_id); 
12.     unflushed_events = 0; 
13.     if(timer_id != null) clearTimeout(timer_id); 
14.     timer_id = null; 
15.     return; 
16.   } 
17.    
18.   // reset 100 ms timeout. Flush after n*100 ms at latest 
19.   timer_id = setTimeout( 
20.                'pagestate.save(' + client_id + ')', 100);  
21. } 
22.  
23. function updatePageSnapshot() 
24. { 
25.   // logging page title and body 
26.   pagestate.setAttribute('body', document.body.innerHTML); 
27.   pagestate.setAttribute('title', document.title); 
28.    
29.   deferredXMLStoreFlush(); 
30. } 

Figure 33: JavaScript for XIC Logging 
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XML store because by clicking on a submit button or a link the user commits her edits (in 

some countries and in some situations, this is even equivalent to signing a contract from 

the legal perspective). Second, in the XML store, it sets the attribute user_commit_msn to 

the current MSN, updates the attribute user_commit_element_id with the id of the form or 

the link having fired the current event, and forces the XML store to disk. Third, as 

message and state persistence is already guaranteed, the function handleCIC registers the 

operation associated with the even for periodic repetition. If the event source element is 

an HTML form with id f, handleCIC calls the JavaScript function setInterval(‘f.submit()’, 

timeout). If the event stems from the link l, handleCIC calls the function 

setInterval(‘l.click()’, timeout). At this point the control is returned to the browser that 

generates an HTTP request from the given event. 

5.2.6 Browser Recovery 

When the browser crashes, it recovers as follows. As the last action of the URI recovery, 

an empty page with the last valid URI displayed in the browser address bar arrives at the 

01. var msn_cookie, timeout; 
02.  
03. function rollRecovery() 
04. { 
05.   var el_id; 
06.  
07.   if(msn_cookie > pagestate.getAttribute("MSN")) 
08.   { 
09.     return; //new message – no recovery 
10.   } 
11.   else if(uri_recovery == true) 
12.   { 
13.     return; //called only after uri recovery 
14.   } 
15.    
16.   document.body.innerHTML = pagestate.getAttribute("body"); 
17.    
18.   if(msn_cookie == pagestate.getAttribute("user_commit_msn")) 
19.   { 
20.     el_id = pagestate.getAttribute("user_commit_element_id"); 
21.      
22.     if(document.all[el_id].tagName == 'A') 
23.     { 
24.       setInterval(el_id + '.click()', timeout); 
25.     } 
26.     else 
27.     { 
28.       setInterval(el_id + '.submit()'); 
29.     } 
30.   } 
31. } 

Figure 34: JavaScript Recovery 
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client. The browser recovery code first replaces the empty HTML body by the value 

logged in the XML store. At this point the HTML page has the form as of the time 

immediately before the crash. The MSN cookie that still carries the pre-crash value as 

ensured by the EOS recovery code is used to compare against the value of 

user_commit_msn. If they differ (i.e., the MSN cookie is greater), the browser resumes 

normal operation and starts accepting user events. Otherwise, we know that the user has 

committed her input on the current page. Browser recovery finds the form or the anchor 

link by calling the function document.getElementById(user_commit_element_id) and 

calls the methods click() or submit() according to the element type. The browser restarts 

CIC resend and resumes normal operation. Figure 34 shows the most important fragments 

of the EOS browser recovery code. 

5.2.7 Browser Garbage Collection 

Garbage collection is not an issue for the browser because we steadily reuse identical 

elements of the XML store, such that it does not grow in terms of added attributes and 

elements. The size of the XML store depends only on the size of the last page having 

been displayed in the browser window. 

5.2.8 Future Directions 

We have made a small compromise in the implementation of the XIC and the CIC for the 

browser (by having the user manually revisit the greeting page of the Web application) 

because we had no access to the browser source code. Note that this compromise does not 

affect the exactly-once execution guarantee. However, for a rigorous IC implementation, 

we should consider enhancing an open-source browser. This would also allow us to 

provide deterministic replay for arbitrary DHTML applications that contain complex 

JavaScript functions. 

5.3 Persistent EOS-PHP 

EOS-PHP is the major part of our prototype. It can serve as both an HTTP server and a 

middle-tier HTTP client at the same time. It transparently implements the (I)CIC stubs for 

incoming and outgoing HTTP interactions of PHP applications with other PHP 

applications and Web browsers. EOS-PHP is geared to provide the recovery guarantees 

for stateful PHP applications. The log is provided as a universal storage for log entries 

and the session state data. Log access is accelerated by LRU buffers. In addition, EOS-

PHP delivers basic concurrency control in the form of latches. 
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5.3.1 Normal Operation and Logging Issues 

When considering a single PHP Zend engine, we can distinguish three relevant system 

layers from the logging perspective. We observe HTTP requests at the highest level L2, 

individual PHP language statements at the middle level L1, and finally I/O calls to 

external resources such as the file system and TCP sockets (level L0). EOS-PHP does not 

support interactions with the file system, i.e., the PHP file system functions. Instead, 

EOS-PHP efficiently manages persistent application states stored as session variables. 

EOS-PHP does not deal with the PHP socket interface. Instead, EOS-PHP supports 

recoverable HTTP interactions through the CURL module. The purpose of this subsection 

is to describe HTTP request processing by EOS-PHP and logging that is necessary for 

correct PHP application recovery. 

A request execution by EOS-PHP breaks down into the following stages: client 

identification (Stage 1), URI recovery (Stage 2 for interactive clients only), reply resend 

(Stage 3), request execution (Stage 4), output processing (Stage 5). Note that Stages 2 and 

3 are EOS-PHP operations needed for client recovery. Prior to the request execution, a 

shared activity latch is obtained for the duration of the request execution. It prevents the 

garbage collection mechanism that uses this latch in the exclusive mode from physical 

reorganization of the log file as explained in Section 5.3.7. 

Stage 1: Client Identification 

During request startup, EOS-PHP identifies the client id information submitted as 

cookies. If this information is missing the client is assigned a new id and is redirected to 

the first session URI (interactive clients only). A B2B component (i.e., another EOS-PHP 

node) autonomously generates its id by concatenating its host name and TCP listen port 

(socket) number. Note that this does not incur any nondeterminism since the listen port 

number is fixed and uniquely identifies a server application on the given host. Web 

servers typically listen to port 80. A Web application reachable through the URI 

http://eosphp.com/ would introduce itself as “eosphp.com:80” when calling other Web 

services.  

The following Stages 2, 3, and the state initialization part of Stage 4 are initiated on 

behalf of the function session_start. The request thread acquires an exclusive log latch 

because all these operations have to be performed atomically. 
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Stage 2: URI Recovery 

Interactive clients (i.e., those whose user agent field submitted with the request header 

information is different from EOS_CURL) need an additional stage for assisting in 

recovering the last message sent to the EOS-PHP engine. EOS-PHP checks if the current 

URI coincides with the URI that started the session (i.e., the greeting page URI). If this is 

the case, we know that this is an interactive client revisiting the greeting page to restore 

the interrupted session. As described in Section 5.2.3 an empty page containing solely 

client recovery code is sent to back to the browser without incrementing the MSN cookie. 

The volatile cookie uri_recovery is set to true. 

Stage 3: Reply Message Resend.  

The log is consulted through the request message id lookup in the volatile input message 

lookup table (IMLT) (client id, MSN, reply LSN), in order to determine if the HTTP 

reply is already present. In the positive case, the HTTP reply is served right away and the 

current request is terminated. When the uri_recovery cookie is provided, the server 

knows that the browser is solely restoring the message URI in the address bar without the 

need for message resend. To save the network latency, the server responds again with an 

empty HTML page with the browser recovery code as explained in Section 5.2.3. The 

cookie uri_recovery is set to false. When the IMLT contains an entry for the request with 

the reply LSN being invalid, EOS-PHP is dealing with a request message resend: this 

thread is paused until the reply LSN is set, and the reply can be served. 

When the current request is not a duplicate, it is not terminated by this stage. It is 

important that we hold an exclusive latch for the log at least until the request is registered 

in the IMLT during the next stage, in order to prevent two identical messages (resends) 

from being handled both as original requests.   

Stage 4: Request Execution 

The request execution starts with fetching the PHP application state through the state 

buffer. The state buffer is latched in the shared mode to find the proper application state. 

If the entry for the current PHP application state could not be found (i.e., the request 

initializes a new PHP session), the request upgrades the state buffer latch to the exclusive 

mode and inserts a newly created empty state into the state buffer. At this point the PHP 

application definitely has a valid state. A new LSN is generated for the request and EOS-

PHP adds an initial log entry to the log buffer that contains PHP representation of the 
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HTTP request and the translated PHP script file path. (In fact, a PHP script may depend 

on more than mere HTTP parameters, e.g., when it uses OS shell environment variables 

or Apache configuration parameters that change over time. If this is the case, an 

administrator of the EOS-PHP site should mark these variables for logging in the PHP 

configuration file). An entry is also added to the IMLT containing the client id, the MSN 

of the message (both as submitted by the client cookies), and an invalid LSN. At this 

point the request thread latches the PHP application state in the shared or exclusive mode 

(as specified in the enhanced PHP function session_start that now accepts a Boolean flag 

$read_only as an optional argument) and releases the exclusive log latch as well as the 

shared state buffer latch. In contrast to the original PHP implementation, the ability to 

access the application state in the shared mode is an appropriate response to the fact that 

the load of e-commerce sites is dominated by read-only catalog browsing requests. The 

latch for the application state is held until the script calls the function session_close 

(explicitly or implicitly during the request termination) that replaces the original PHP 

function session_write_close to avoid irritation. If the request has been declared as a write 

by calling session_start(false), the application state is stamped with the request LSN 

before the state latch is released, whereas the volatile read LSN field of the buffer cell is 

updated in any event. 

The information logged during request initialization as described above would suffice for 

deterministic replay of the HTTP request log entries one after another using the high-

level routine zend_execute_scripts without any further consideration, if we had not to 

deal with nondeterministic calls throughout request execution. Nondeterministic calls 

generate further log entries need for a potential replay of the current request. Since EOS-

PHP currently can only replay HTTP requests sequentially one after another as opposed 

to an arbitrary interleaving of PHP statements issued on behalf of distinct HTTP requests, 

we need to be able to find the needed log entry quickly. For this purpose we link each 

entry in the log buffer to its successor using the next_php pointer of the buffer cell as 

depicted in Figure 35. Each PHP-level log entry includes the LSN of its predecessor in 

the next_php chain, such that the next_php chain can be restored during recovery.    

We use a last_php pointer to keep track of script-internal nondeterministic events. Note 

that at the beginning of the request execution last_php refers to the very first (HTTP-

level) request log entry whose next_php field is NULL. The log is consulted upon every 

statement call that requires logging. If there is a successor of the log entry pointed by 
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last_php, we deal with a replay. EOS-PHP has the last_php pointer refer to its current 

successor and returns the logged return value from this log entry without executing the 

statement. If there is no successor of the previously checked entry last_php (i.e., 

last_phpØnext_php is NULL), EOS-PHP either operates normally or completes request 

execution during the redo phase, such that the statement is executed and a new PHP level 

log entry is added to the log buffer (using an exclusive log latch). It is connected to the 

next_php chain and becomes new last_php. Note that the new PHP log entry contains the 

LSN of the previous last_php that is used during analysis pass to restore the next_php 

chain. Note that log entries of different requests interleave in the log when they use 

shared latches or an updating request calls session_close before its completion. 

We are aware that dealing with the next_php chains would not be an issue, if we 

implemented logging with a granularity finer than a single HTTP request. However, a 

finer-grained logging is more difficult to implement because different thread contexts 

(consisting of a number of hierarchical function stacks each) would have to be recreated 

and applied when replaying individual PHP actions (local and global variable reads and 

writes). Thread memory management of PHP is deeply integrated with system routines 

that require valid distinct thread handles that are not available during single-threaded redo 

recovery. For the lack of time, we gave the other issues described in this thesis priority 

treatment. On the other hand, we still have an argument for the current solution because 

the simpler recovery is, the more trust we have in its correctness. 

Note that when PHP script developers are about to deploy a new script version they need 

to keep the last version on disk because the ordering of logged operations in the new 

version may change, and using it to replay HTTP requests would be incorrect. To avoid 

this, the version number could be attached to the script filename (e.g., script.php.v2). 

After a new version is copied to the script folder, the Apache configuration file needs to 

be changed to remap the URI to the new script file. At the same time EOS-PHP will 
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Figure 35: Chained Log Buffer of EOS-PHP  
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always be able to find the proper version to replay a particular HTTP request using the 

local file path stored in the log. 

Nondeterministic functions treated by EOS-PHP include system clock reads (e.g., time() 

returning the current time, random value generators such as rand(min, max) generating a 

random number in the interval between min and max, and last but not least curl_exec 

returning output of a different Web Service. The routines asking for the system clock and 

random values are not only interesting because of their potential direct usage in a PHP 

script, but also because their C prototypes are used as input for generating PHP session 

ids that are pairwise distinct with a high probability. This avoids a potential bottleneck of 

having a single node in a Web farm assign sequence numbers as session ids to all clients. 

The C prototype of the function curl_exec($handle) implements the CIC transparently to 

PHP developers. One part of it is implementing periodic resend. The original code 

reporting failures to the user is replaced by a loop repeating requests on timeouts until the 

underlying libcurl function curl_easy_perform returns the success return code 

CURL_OK. When curl_easy_perform needs to be retried, we use a new copy of the 

previous CURL handle containing the same URI and the other original request settings 

while destroying the old one. Otherwise, libcurl would try to recycle its existing sockets, 

which saves resources and is right with regard to intact connections. However, the socket 

that timed out is likely to belong to a dead TCP connection and therefore should not be 

used for retry to avoid blocking. 

Since curl_exec incurs sending a request message to a different EOS-PHP Web Service, 

we need to keep track of when the CIC interaction is installed by this counterpart, such 

that we can move on with the garbage collection at our own discretion. This is done via 

the volatile output message lookup table (OMLT) containing the URI invoked, our 

client id MSN Reply LSN
URI MSN CIC status

http://eosphp1/auctions/ 3 installed

http://eosphp2/books/ 5 stable

http://eosphp1/auctions/ 6 unknown

http://eosphp1/auctions/ 7 installed

eosphp3 3 324

http://eosphp2/books/ 8 installed

OMLT of eosphp3
IMLT of eosphp1

… … …

client id MSN Reply LSN

eosphp3 5 324

IMLT of eosphp2

… … …  

Figure 36: IMLT and OMLT in Action 
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MSN, and the current CIC status. We currently assume that all PHP scripts belonging to 

the same Web Application are stored in the same Web server directory. In a B2B Web 

application we assume that a reply to calling /auctions/bid.php on behalf of one end-user 

and /auctions/search.php on behalf of another user stems from the same EOS-PHP 

instance. Thus, we store only the URI paths without the script file names in the OMLT. 

In terms of a CIC, we need to answer the question of when we have to force the log other 

than for LRU buffer management as described in Section 5.3.4. In our current prototype, 

EOS-PHP communication with the outside world is limited to returning HTTP replies and 

sending CURL requests. Thus, the log is forced prior to sending out these messages 

because otherwise the interleaving with other requests and nondeterministic values used 

would not be recoverable. Since we currently log an entire HTTP request, we 

implemented only ICIC for EOS-PHP. When a reply arrives to an EOS-PHP CURL 

client, it can mark the interaction as cic_installed in its OMLT. Furthermore periodic 

resend of the curl_exec request message is stopped. 

Now we need a mechanism of getting rid of unneeded IMLT and OMLT entries. When 

we deal with a request form a single-threaded browser client, we know that as part of its 

XIC obligation, it has already installed all previous Web server replies. Thus, we can 

drop all entries stemming from the same client with MSN’s lower than we see in the 

current request. Note that there are no OMLT records for browsers because we record 

only outgoing requests, but no replies. When we see a request from a multi-threaded B2B 

client with a particular MSN, it is not even guaranteed that we have already processed its 

previous requests. Thus, each B2B client includes into each request to a URI an 

additional cookie containing an installed-MSN with the following property: there is no 

OMLT entry with the same URI and MSN less than this installed-MSN whose CIC status 

differs from cic_installed. Thus, the B2B server is able to drop all entries for the given 

B2B client in its IMLT with MSN less or equal to installed-MSN of the B2B client. In 

turn, the B2B client can drop the OMLT entries with the B2B URI and the MSN less or 

equal to installed-MSN. Figure 36 depicts a scenario illustrating usage of IMLT and 

OMLT. A B2B client eosphp3 generates calls to applications eosphp1 and eosphp2 on 

behalf of end-users. When eosphp3 sends the next message to eosphp1, it includes 

installed-MSN 3 into this request and removes this entry from its OMLT because 

eosphp1 can garbage collect every interaction with eosphp3 having lower MSN’s. As for 

eosphp2, the entry with the minimum MSN in eosphp3’s OMLT is not marked installed 
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yet. Thus, the installed-MSN cookie is not included into the next request message sent 

from eosphp3 to eosphp2.  

To implement this mechanism efficiently, we organize the OMLT as a hash tale that 

maps URI’s to the interaction lists containing (MSN, CIC status) pairs. When the 

function curl_exec is called, it finds the proper list associated with the URI being called, 

traverses the list while remembering the maximum installed MSN seen so far until it finds 

the first pair belonging to an uninstalled interaction. This pair becomes a new head of the 

interaction list for the given URI, whereas the other traversed pairs are garbage collected. 

The new interaction with the CIC status set to unknown is appended to the end of the 

shortened list. The maximum installed MSN will be inserted as a cookie installed-MSN 

into the HTTP request built by curl_exec. The IMLT is implemented similar to a PHP 

two-dimensional array indexed by client id and MSN with the LSN of the corresponding 

HTTP reply as the content, i.e., as a hash table that is used to find by client id the hash 

table mapping HTTP request MSN’s to HTTP reply LSN’s. For reply recovery in Stage 

3, we perform a simple lookup IMLT[clien id][msn]. For garbage collection when a new 

request arrives (Stage 4), we find a pointer to the hash table mapping request MSN’s to 

reply LSN’s as referred to by IMLT[client id]. Then we traverse this hash table as a list in 

the ascending MSN order (buckets in a Zend hash table are linked together as in Java and 

C# implementations) and throw away all entries with MSN less or equal to the submitted 

cookie installed-MSN. 

Stage 5: HTTP Output Processing 

When the execution of the request is finished, EOS-PHP updates the reply LSN field of 

the request entry in the IMLT. In the current prototype solution, the log entries with 

HTTP output do not require immediate log forcing, since these messages are recreated 

during deterministic replay. In fact, for curl_exec requests EOS-PHP does not even create 

a log entry with the content of the outgoing message, just the reply is logged to resolve 

recovery dependency, as you saw above. The point is that EOS-PHP is able to send out 

the HTTP reply messages prior to forcing them to stable log. Therefore, EOS-PHP can 

lazily force output messages (from several KB to several MB) that are orders of 

magnitude larger than preceding log entries of the same request whose sizes range from 

less than 256 bytes to some KB.  
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In addition, the browser recovery code that is always cached in the main memory is 

inserted into original HTTP replies to interactive clients between the opening tag <html> 

and the successor opening tag that is typically <head>. This does not have to be logged of 

course, which otherwise would further increase the size of the output message log entry. 

5.3.2 Spinlocks and Latches  

Since PHP usually runs in a multithreaded environment, parallel accesses to an identical 

resource need to be synchronized appropriately. The recovery log is the most frequently 

used shared resource of the EOS prototype. However, the session state may also be 

accessed in a parallel manner. First, when the GUI displayed in the Web browser consists 

of multiple frames, the browser normally loads their sources simultaneously. If the frame 

sources are PHP scripts using an identical PHP session, the session state will be read and 

written concurrently. Usually, most popular business Web sites (as e.g., Amazon.com, 

eBay.com, etc.) refrain from using multiple stateful frames and we can disregard this 

issue. Secondly and really relevant from our perspective, a session state may be shared by 

several clients as explained in Section 5.1.4. 

Unfortunately, the PHP port for Windows does not offer an adequate means for 

concurrency control, whereas the UNIX implementation is not sufficiently flexible to 

distinguish read-only and write requests to allow more concurrency. We resolve these 

issues by implementing spinlock-based latches well-studied in the literature on database 

and operating systems [Gray and Reuter 1993, Silberschatz et al. 2002]. Latches are used 

when the system disallows by design deadlock situations (i.e., there are no cyclic lock 

waits among threads). In EOS-PHP, a typical request thread has the access pattern given 

in Table 8. The access pattern is constant except for occurrences of nondeterministic calls 

in the PHP script. To preserve the deadlock freedom, we cannot allow PHP developers to 

Table 8: Request Access Pattern in EOS-PHP 
Stage Action Latching Order 
Stage 2 
Stage 3 

session_start($mode) latch Log (X-mode) 
 

 latch State buffer (SH-mode) 
latch State ($mode) 
unlatch Log 
unlatch State buffer 

session_close() unlatch State 

Stage 4 

a nondeterministic call latch Log (X-mode) 
unlatch Log 

Statge 4/5 eos_force_log latch Log (X-mode) 
unlatch Log 
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make nondeterministic calls as long as the state latch is held, i.e., between the calls to 

session_start and session_close. Otherwise, we may run into a cycle where one thread 

(the state latch holder) cannot proceed with a nondeterministic call because the other 

thread processing the function session_start (the log latch holder) cannot release the log 

latch as long it does not have the state latch. 

Typical mutual exclusion mechanisms such as mutex locks supported by operating 

systems provide first-come-first-served (FCFS) access to resources. They need to 

maintain a queue of lock requests to wake up the thread whose lock resides in the queue 

head, and to make the others yield. In contrast, a spinlock can be implemented using a 

01. #define SPINLOCK_CLOSED 1L 
02. #define SPINLOCK_OPEN 0L 
03.  
04. long globalspinlock = SPINLOCK_OPEN; 
05.  
06. //call this for a blocking spinlock request 
07. __forceinline void eos_get_spinlock(ulong *lock) 
08. { 
09.   long prior_lockstate; 
10.  
11.   while(TRUE) 
12.   { 
13.     prior_lockstate = InterlockedExchange(lock, SPINLOCK_CLOSED); 
14.  
15.     if(prior_lockstate == SPINLOCK_CLOSED) 
16.     { 
17.       Sleep(0); //yield and retry later 
18.     } 
19.     else 
20.     { 
21.       break; //done: the lock was open, current thread closed it 
22.     } 
23.   } 
24. } 
25.  
26. //call this to release the spinlock; doesn’t block  
27. __forceinline void eos_release_spinlock(long *lock) 
28. { 
29.   *lock = SPINLOCK_OPEN; 
30. } 
31.   
32. //sample spinlock usage: money transfer from acc1 to acc2 
33. void moneytransfer(long *acc1, long *acc2, long amount) 
34. { 
35.   eos_get_spinlock(&globalspinlock) 
36.   *acc1 -= amount; 
37.   *acc2 += amount; 
38.   eos_release_spinlock(&globalspinlock); 
39. } 

Figure 37: Spinlock Implementation for Windows in C 
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single shared Boolean variable with the values true and false meaning locked and open, 

respectively (lines 1 - 4 in Figure 37). To obtain a spinlock, the current thread has to call 

the function eos_get_spinlock. The gist of this function is that the test for spinlock 

availability and locking itself are performed without interleaving with concurrent threads 

to avoid the situation where the spinlock is granted to multiple requestors. Such an atomic 

test-and-set operation can be implemented either in the scheduler of the operating system 

or in the hardware. Through the intrinsic interface function long 

InterlockedExchange(long *target, long value) (lines 1 - 4 in Figure 37), Windows 

provides an access to the corresponding multiprocessor-safe instruction LOCK 

CMPXCHNG of the Pentium CPU. This function updates the 32-bit-segment pointed to 

by target with the new value and returns the previous one while preventing other threads 

(regardless on which processor) from accessing the target segment. Consequently, if the 

previous value of the lock equals SPINLOCK_CLOSED, the current thread returns 

control to some other thread (by calling Sleep(0)) and retries when rescheduled. In the 

jargon of operating systems, the busy-waiting thread is said to spin around the lock, hence 

the name. The spinlock is released by calling the function eos_release_spinlock that uses 

a simple C assignment (line 29) instead of atomic assignment InterlockedExchange 

because the locking thread has already an exclusive access to the lock flag. Since Apache 

assigns an identical normal priority to all request threads, there is no starvation of waiting 

threads. Lines 32-39 show a sample usage of the spinlock mechanism for an exclusive 

access to two account variables. Spinlocks are lightweight and extremely efficient when 

they are held for the duration of only a handful of instructions, which prevents high 

contention of concurrent threads. Their performance increases even further on a 

symmetric multiprocessor system, where the busy-waiting threads steal less CPU cycles 

from the locking ones that are thus able to release locks earlier. We use spinlocks to 

implement a more advanced locking mechanism coined latches. 

Unlike spinlocks, latches (see Figure 38) can be used for both shared and exclusive 

accesses (SH-mode and X-mode, respectively). A latch is requested and released by 

calling the functions eos_acquire_latch and eos_release_latch, respectively. Latch 

requests in SH-mode can be admitted concurrently. To this end, we increment the counter 

of SH-latch holders eos_latch.SH_count (line 35) that is decremented again upon a latch 

release request (line 90). A shared latch request has to wait for the release of an X-latch. 

An X-mode latch request is not admitted while the latch is used by other threads in either 

mode. However, we allow a holder (eos_latch.owner) of a shared latch to upgrade it to 
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the X-mode when there are no other latch holders at this point (lines 47-52). If the latch 

upgrade is not possible, the thread should release its shared latch and issue a new X-latch 

request to prevent a deadlock of multiple upgrading threads. A latch downgrade from X-

mode to SH-mode is always possible.  This functionality is implemented by the function 

eos_relatch(eos_latch *l, eos_latch_mode new_mode) (not shown in Figure 38).  

The latch request and the latch release routines both need an exclusive access to multiple 

fields of the structure eos_latch which is achieved using the spinlock eos_latch.slock. 

Shared latches are well suited to allow concurrent traversals of chained data structures.  

01. typedef enum _eos_latch_mode { SH_MODE, X_MODE} eos_latch_mode; 
02.  
03. typedef struct _eos_latch 
04. { 
05.  long slock; 
06.  long SH_count; 
07.  long X_count; 
08.  long owner; 
09. } 
10. eos_latch; 
11.   
12. //a blocking latch request 
13. void eos_acquire_latch(eos_latch *l, eos_latch_mode m) 
14. { 
15.   long this_thread; 
16.   zend_bool acquired; 
17.  
18.   if(EOS(in_replay) == TRUE) 
19.   { 
20.     return; // recovery is a single thread 
21.   } 
22.   
23.   this_thread = tsrm_thread_id(); 
24.   acquired = FALSE; 
25.   
26.   while(TRUE) 
27.  { 
28.     eos_get_spinlock(&l->slock); 
29.    
30.     switch(m) 
31.     { 
32.     case SH_MODE: 
33.       if(l->X_count == 0) 
34.       { 
35.         l->SH_count++; 
36.   
37.         if(l->SH_count == 1) 
38.         { 
39.           l->owner = this_thread; 
40.         } 
41.  
42.         acquired = TRUE; 
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43.       } 
44.       break; //done with SH-mode processing 
45.        
46.     case X_MODE: 
47.       if(l->SH_count == 1 && l->X_count == 0 &&  

         l->owner == this_thread) // latch upgrade 
48.       { 
49.          l->SH_count = 0; 
50.          l->X_count = 1; 
51.          acquired = TRUE; 
52.       } 
53.       if(l->X_count == 0 && l->SH_count == 0) 
54.       { 
55.         l->X_count = 1; 
56.         l->owner = this_thread; 
57.         acquired = TRUE; 
58.       } 
59.       break;  // done with X-mode processing 
60.  
61.     default: 
62.       assert(m == SH_MODE || m == X_MODE); 
63.     } 
64.     eos_release_spinlock(&l->slock); 
65.     if(acquired == FALSE) // latching failed => spin again 
66.     { 
67.       Sleep(0); // yield 
68.     } 
69.     else 
70.     { 
71.       break; // resources latched, go ahead 
72.     } 
73.   } 
74. } 
75.   
76. // don’t forget to release the latch 
77. void eos_release_latch(eos_latch *l) 
78. { 
79.   long this_thread; 
80.  
81.   if(EOS(in_replay) == TRUE) 
82.   { 
83.     return; // recovery is a single thread 
84.   } 
85.   this_thread = tsrm_thread_id(); 
86.  
87.   eos_get_spinlock(&l->slock); 
88.  
89.   if(l->SH_count > 0) 
90.   { 
91.     l->SH_count--; 
92.  
93.     if(l->owner == this_thread) 
94.     { 
95.       l->owner = 0; 
96.     } 
97.   } 
98.  
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99.   if(l->X_count == 1) 
100.   { 
101.     l->X_count = 0; 
102.     l->owner = 0; 
103.   } 
104.  
105.   eos_release_spinlock(&l->slock); 
106. } 

Figure 38: Latch Implementation for Windows in C 

Special attention must be paid to handling of unexpected thread shutdowns triggered by 

failure management routines of PHP applications or the Zend engine due to some failures 

encountered at the level of a PHP statement. When an entire process (i.e., Apache) fails, 

the operating system is responsible for releasing resources such as allocated memory, file 

handles, TCP sockets, etc. In a multithreaded server, this task has to be implemented 

inside the server process. Zend provides this functionality in the form of the memory and 

resource variable managers. The memory manager of Zend is designed to keep track of 

resources allocated privately by a thread serving the given HTTP request using a special 

zval structure for bookkeeping. Thus, in order to benefit from Zend resource 

management, we allocate a zval container private to a thread, using the same mechanism 

that Zend would use to allocate a global PHP script variable (lines 26-27 in Figure 39) 

having a reference to the global latch. The function eos_create_latch_resource provides 

the calling thread with a zval handle that will be used for latching via Zend resource 

interface (lines 33-53).  

During the server initialization, we introduce a new resource type for latches and 

associate it with a destructor function that in turn calls the function eos_release_latch if 

necessary (lines 5-13). In order to avoid erroneous unlatching of the resource that has 

never been latched by the current thread, we use the reference count field of the resource 

variable. 

01. eos_latch global_latch; 
02. long eos_latch_rsrc_type_id; 
03.  
04. // latch resource variable destructor 
05. ZEND_RSRC_DTOR_FUNC(_eos_latch_cleanup) 
06. { 
07.   eos_latch *l = (eos_latch *) rsrc->ptr; 
08.    
09.   if(rsrc->refcount > 0) // case > 1 implies an SH-latch upgrade 
10.   { 
11.     eos_release_latch(l); 
12.   } 
13. } 
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14.    
15. // register destructor during server initialization 
16. void eos_register_latch_type() 
17. { 
18.   eos_latch_rsrc_type_id = 

  zend_register_list_destructors_ex(_eos_unlatch_if_needed, …); 
19. } 
20.    
21. // obtain a handle during request thread initialization 
22. void eos_create_latch_resource(zval **latch_id, eos_latch *l) 
23. { 
24.   zval *tmp; 
25.    
26.   MAKE_STD_ZVAL(tmp); // alloc a zval container 
27.   tmp->refcount = 0; 
28.   ZEND_REGISTER_RESOURCE(tmp, &global_latch, /* other params */); 
29.   *latch_id = tmp; // out: a private handle of the global latch 
30. } 
31.  
32. // latch function for resource variable interface 
33. void eos_latch_resource(zval **id, eos_latch_mode m) 
34. { 
35.   eos_latch *l; 
36.  
37.   ZEND_FETCH_RESOURCE(l, (eos_latch *), id, /* other params */); 
38.   eos_acquire_latch(l, m); 
39.    
40.   // need to unlatch upon request script-level failure 
41.   zend_list_addref(Z_LVAL_PP(id)); 
42. } 
43.  
44. // unlatch function for resource variable interface 
45. void eos_unlatch_resource(zval **id) 
46. { 
47.   eos_latch *l; 
48.   ZEND_FETCH_RESOURCE(l, eos_latch *, id/* other params */); 
49.   eos_release_latch(l); 
50.    
51.   // need to unlatch upon request script-level failure 
52.   zend_list_delete(Z_LVAL_PP(id)); 
53. } 

Figure 39: Latches as PHP Resource Type Variables 

Disregarding derived data structures such as the log and the state buffers, we have a 

single object, the PHP application state, for which the request synchronization is needed. 

With this coarse granularity (that does not allow concurrent accesses to different state 

variables), simple latching enforces the proper serialization of the request threads in a 

single EOS-PHP node. Certainly, it is impossible to achieve a request serialization in an 

arbitrary multi-tier PHP application that would be consistent throughout all the nodes 

(e.g., request 1 before request 2 at every EOS-PHP node) unless we would employ a 

sophisticated distributed concurrency control algorithm. 
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However, EOS-PHP is currently capable of handling the following realistic layered 

architecture. Web frontend nodes manage application states for individual end-users such 

as user profiles and shopping carts. End-users access them through a single-framed 

HTML-GUI, which ensures that no application state is accessed by more than one thread 

simultaneously. The EOS-PHP nodes at the backend layer manage a number of shared 

application states such as current auction bids. With each request the end-user accesses 

her private state at the Web frontend layer and a single shared object at the backend layer 

that enforces the proper serialization. Some users will just read the current auction state, 

the others will bid themselves. 

5.3.3 Physical Organization of Stable Log 

The stable log managed by EOS-PHP is stored as an ordinary file in Windows native file 

system NTFS. Its layout is shown in Figure 40. The log file begins with a boot sector that 

contains three 32-bit integer fields. The start position field stores the position at which the 

recovery manager has to start scanning the log. The start LSN field is used to store last 

used LSN when the corresponding log entry is garbage collected. The start MSN field 

contains the last MSN used by the CURL module to tag a request to another EOS-enabled 

Web Service in order to ensure the proper message duplicate detection after garbage 

collection. The space following the boot sector is used for storing variable-size log 

entries. Log entries have the format depicted in Figure 41. First nine bytes constitute the 

header of the log header including the log entry size, type (HTTP, PHP, or state), and the 

LSN. In addition, PHP-level log entries contain the LSN of the previous log entry created 

on behalf of the same HTTP request that may be either a PHP or an HTTP level log entry. 

HTTP and state log entries contain no back pointers. Information stored in the log entry 

body is formatted as Zend representation of PHP variables, so-called zval containers. 

The purpose of HTTP log entries is to store the input of an HTTP request. A PHP level 

log entry normally stores a nondeterministic return value. The very last PHP log entry 

stores the complete HTTP reply including the reply header and body. State log entries are 

normally used to create installation points and to store LRU buffer replacement victims. 

The LSN field of a state log entry reflects the last HTTP request having updated the state 

as of the time the state log entry is created as you have seen in Section 5.3.1 above. 

In order to ensure the recovery correctness, we need to make sure that log entries are 

written to disk atomically, i.e., the log file must not contain incomplete log entries. State-
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of-the-art hard disks support atomic writes of data that fits into a single sector (256 to 512 

bytes). Request and state log entries are certainly much bigger since they may occupy 

from several kilobytes to some megabytes. This, however, does not pose a problem on 

NTFS due to its transaction support that is based on sufficiently small log entries. In the 

operating system jargon such a file system is called journaled [Silberschatz et al. 2001]. 

Some file systems offer journaling just for metadata. Windows NTFS logging service, 

IBM JFS, and Linux ext3 support all file operations. To benefit from NTFS journaling, 

output to the log file is performed using the low-level I/O functions _write(file_handle, 

data_buf, data_size) and _commit(file_handle). By committing the log file after a series 

of writes that encompasses one or more complete logical units such as one or more 

complete log entries, we always keep the log file in the consistent shape. When an error is 

encountered during an I/O (i.e., an I/O function returns -1), we make the Apache child 

process crash, and NTFS undoes uncommitted writes. 

The log file has a particular size as configured by an administrator, in order to save the 

cost of claiming new disk sectors from the file system when appending a new log entry. 

Hence, EOS-PHP maintains its own logical end-of-file (EOF) represented by a signature 

of four zeroed bytes. Writing the logical EOF always completes an I/O transaction as the 

very last operation before _commit. Then the log writer pointer is moved to the real end 

of the very last log entry such that the EOF signature is overwritten by the successive I/O 

transaction. When a write operation reaches the physical EOF as managed by the file 

system, EOS-PHP continues writing from the end of the boot sector of the log file. A log 

file written in this manner is known as a ring file. The ring log file is full when a pending 

write would move beyond the current start position. Note that the start position is also 

continuously moved forward in the process of garbage collection with the advancing 

minimum redo LSN. Thus, log truncation does not incur a physical log file truncation on 
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Figure 40: Layout of EOS-PHP Log File 
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Figure 41: Log Entry Format 
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disk Rather the start position field of the boot sector is updated. When the space in the log 

file is exhausted, EOS-PHP tries to double the size of the log file and copies the wrapped 

part of the log between the boot sector and the logical EOF to the area starting with the 

prior physical EOF inside a single I/O transaction. A log-file-shrinkage occurs in the 

process of garbage collection if the log data does not wrap and occupies less than a 

specified percentage (e.g., 10 %) of the physical log file size. To this end, the logical 

content of the log file is moved back to the end of the boot sector and the start position in 

the boot sector is updated within the same I/O transaction. Changing the log file size 

incurs updating the log file position field of the log and state buffer cells. Let 

log_file_size be the size of the log file and log_file_pos the offset of an entry before the 

change of the log file size. When the log file grows, the new offset of a moved log entry 

log_file_pos’ is given by log_file_pos + (log_file_size - boot_sector_size). When the log 

file shrinks, the offset log_file_pos’ of every log entry changes to log_file_pos - 

(start_pos - boot_sector_size). 

5.3.4 LRU Buffers for PHP Session Data and the Log 

Unlike the original PHP session module, EOS-PHP uses only the log to store PHP session 

data, which allows limiting interactions with hard disk to solely sequential I/O in most 

situations. The PHP application state and log buffers in the main memory with 

configurable size limits accelerate access to the data stored in the stable log, which is also 

novel to the original PHP session module that does not cache session data. Distinction 

between these two buffers arises from the different natures of their usage. The log buffer 

is normally accessed sequentially in the LSN order and occasionally through a hash table 

by an LSN as a key. The PHP application state buffer is usually accessed through a hash 

table by a session id as a key and occasionally by a sequential scan (e.g., during 

replacement victim selection and creation of installation points). During recovery, the 

state buffer may be looked up by a key pair (session id, LSN), which returns the youngest 

available version of the PHP application state as of LSN. All this functionality is provided 

with the EOS-enhanced Zend hash table implementation that serves as a basic data 

structure of both buffers. EOS-PHP could not benefit from sophisticated Zend memory 

manager due to its orthogonal design goal of freeing memory cells allocated during the 

execution of a request upon termination of the request. Hence, EOS-PHP maintains the 

buffers separately and provides its own copy constructors for Zend objects to avoid 

deletions of logged values upon the request completion. 
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01. typedef struct _eos_log_entry 
02. { 
03.   long lsn; 
04.   long log_file_pos; 
05.   eos_log_entry *next_php 
06.   long size; 
07.   HashTable *val; 
08.   zend_bool is_dirty; // used for only for PHP states 
09.   eos_latch lock;     // used for only for PHP states 
10.   long read_lsn;      // used for only for PHP states 
11. } 
12. eos_log_entry; 
13.    
14. typedef struct _eos_cache 
15. { 
16.   long size; 
17.   long size_limit; // specified in the php.ini file 
18.   HashTable buf; 
19. } 
20. eos_cache 
21.    
22. eos_cache eos_state_buf, eos_log_buf; 
23.    
24. void eos_select_cache_victims(eos_cache *e, long min_size) 
25. { 
26.   eos_log_entry *victm = NULL; 
27.   zend_bool commit_pending = FALSE; 
28.    
29.   while(e.size + min_size > e.size_limit) 
30.   { 
31.     eos_find_min_lsn(eØbuf, &victim); 
32.      
33.     if(victimØdirty == TRUE) 
34.     { 
35.       eos_write_log_entry_to_disk(victim); 
36.        
37.       commit_pending = TRUE; 
38.     } 
39.      
40.     eos_free_hashtable(victimØval); 
41.     
42.     eØsize -= victimØsize; 
43.   } 
44.    
45.   if(commit_pending == TRUE) 
46.   { 
47.     eos_commit_physical_log(); 
48.   } 
49. }   

Figure 42: EOS-PHP Log Buffer Management  

Figure 42 shows the data structures EOS-PHP uses for LRU buffer management. The 

structure eos_log_entry implements an LRU buffer cell. It stores an LSN field, the log 

file position of the log entry needed to fetch it from disk in case of a cache miss as 

opposed to a cache hit when the val field is not NULL. The next_php field contains a 
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pointer to the PHP-level log entry created next after the current log entry within the same 

HTTP request. Clearly, the eos_log_entries of type state do not use the next_php field. 

The size field caches the current amount of space occupied by the log entry in order to 

save expensive computation of the size that includes recursive traversing of Zend hash 

tables. For the log entries representing PHP application states EOS-PHP maintains two 

further fields: an is_dirty flag and a latch. The structure eos_cache implementing the 

LRU buffers of EOS-PHP contains an incrementally managed size field, a configurable 

size_limit field, and a Zend hash table to access individual log entries. A graphical 

representation of the log buffer is depicted in Figure 35. 

EOS-PHP implements the PHP application state buffer using the LRU algorithm 

selecting the least recently used entry (hence the name of the algorithm) as a replacement 

victim. The volatile read LSN stamp of the PHP application state serves as a measure of 

recency (the higher LSN the more recently the PHP session state has been accessed) as 

illustrated in the code fragment of Figure 42. 

Since EOS-PHP guarantees state recovery through deterministic replay, there only two 

situations when the state has to be forced to disk: When a particular PHP application state 

is replaced in the buffer by the LRU algorithm, and when EOS-PHP creates an 

installation point. Log entries for PHP application states are also written in a write-once 

manner, which implies that EOS-PHP never updates a log entry physically. Instead a new 

physical log entry is appended with the effect that the minimum redo LSN for the given 

PHP application state advances to the LSN of the newly created log entry thus enabling 

garbage collection of the former physical installation of this state. Note that prior to 

forcing a new state version to disk the log entries must have been forced to disk. They are 

copied rather than removed. We incrementally maintain the last forced LSN in order to 

avoid redundancy. 

The log buffer of EOS-PHP is implemented in a similar manner with minor exceptions. 

When the log buffer is not able to accommodate a new entry, it first tries to free a 

sufficient amount of space by dropping log entries belonging to installed interactions. 

When the garbage collection of these log entries has not sufficed, LRU is used to select 

further log entries as replacement victims analogously to the PHP application state buffer. 
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5.3.5 Failure Detection 

There are five classes of detectable system failures from our perspective. The first class 

includes heavy failures such as power outages that are either handled by the 

uninterrupted power supply hardware or by waiting until the system boots again and the 

Apache child process can recover pre-crash interactions. Heavy operating system kernel 

exceptions, causing a reboot analogously, constitute the second class of system failures. 

Apache process-level exceptions, internal or originating in modules other than PHP, 

causing restart of Apache processes alone fall into the third class of system failures. The 

fourth class of system failures originates in and is detected by the Zend engine that 

terminates only the current request thread. Last but not least, the fifth class of system 

failures is treated by EOS-PHP. In this subsection, we are going to discuss the last two 

failure classes. 

Whenever EOS-PHP encounters a failure that affects the newly introduced log, LRU 

buffer, or recovery managers, a soft-crash is issued by calling the abort() routine that 

causes an abnormal termination of the Apache child process running the PHP engine as 

one of its modules. This is usually encoded as consistency assertions of successful return 

codes as e.g.: assert(seek(log, lØlog_file_pos) != -1). Typical sources of severe failures 

that EOS-PHP checks for are I/O operations, memory allocations, and pointer arithmetic. 

Before a log entry (request or application state) is written to disk, EOS-PHP verifies that 

it is in a consistent shape having the size matching the cached value of the size field of the 

eos_log_entry structure. Aborting the server guarantees that no inconsistent entries can 

make it to stable log as ensured by I/O transactions. In order to clearly isolate EOS-PHP 

failures, additional measures are needed to protect the shared EOS data structures in the 

main memory from erroneous manipulation through straying pointers by other modules. 

By compiling EOS enhancements to PHP as a stand-alone Windows dynamic link library 

(DLL) that allows to access memory only through the exported functions, we can use a 

Windows mechanism to prevent other modules from manipulating EOS-specific data 

directly (similar to the process-level address space protection). 

The Zend engine distinguishes different levels of failures depending on which part of the 

PHP runtime is affected and a failure severity. Failure reports are often included into 

regular HTML output for the end-user. If a failure is severe, the execution of the PHP 

script is halted. For instance, the Zend engine produces a warning when a script is trying 

to read an undefined variable without aborting the script. However, attempts to write to a 
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file using an invalid handle, compilation errors of dynamically included scripts are real 

hard failures causing script aborts. Note that since in the original PHP engine, script 

threads do not share memory they can be safely aborted without affecting parallel threads. 

Thus, since it is not the EOS-PHP routine causing a failure, such a drastic response as 

shutting down the entire server process is not necessary. 

There are two possible situations to consider from the EOS perspective: 1) the failure is 

detected by the PHP script itself, 2) the failure is detected inside a PHP statement either 

by the Zend engine or by one of the PHP modules. In the first situation, we are dealing 

with a so-called user-level failure in the PHP jargon caused by an erroneous user input. 

Since the developer detected this situation, she provides an appropriate output allowing 

the end-user to correct her input. EOS treats such interactions as failure-free. In the 

second case however, we are dealing with another transient system failure according to 

our failure model. EOS-PHP initially suppresses the output to the client and awaits it to 

resend the request as required by CIC and starts the retry counter for this interaction. If 

the retry counter exceeds the configurable value (the default value is 3), EOS-PHP 

notifies the client component (a browser or the CURL module of another PHP server) that 

the current HTML output containing the error message is neither stabilizing nor installing 

its original request. The output is not added to the log buffers, neither by EOS-PHP nor 

by the client component. CURL module ignores this mechanism and simply keeps 

retrying. Such an error report is rather for convenience of the end-user. She sees that the 

system is not working smoothly right now, but she will be able to retry again by revisiting 

the greeting page of the Web Service. The exactly-once-execution guarantee will hold in 

any event. 

5.3.6 Recovery: Analysis and Redo Passes 

The analysis pass of the log is performed to initialize the log and PHP application state 

buffers using eos_log_entry elements defined in Figure 42. Just compact log entry 

headers (32 bytes each) are fetched into main memory, whereas the large val fields are 

skipped, in order to avoid unnecessary buffer cell replacements in this pass.  

As for the log buffer, EOS-PHP needs to restore the forward links between the log entries 

of the same HTTP request using the previous LSN field stored with the log entries. As for 

the state buffers, the log file positions of all available versions of every PHP application 

state have to be inserted because an HTTP request can be correctly replayed only when it 
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gets the proper version of the application state, i.e., that is identical to the original 

execution. If we managed just a single, current version during recovery, replay of an 

incomplete HTTP request could be confused by an application state version forced by 

LRU buffer cell replacement after the request end. Log entries of a partially executed 

HTTP request are usually appended to the stable log for the following two reasons: due to 

nondeterministic events such as CIC commit of a concurrent request or flushing from the 

full log buffer. 

In an unlikely case, in which EOS-PHP is not able to accommodate every eos_log_entry 

header in the main memory buffers, two B-tree files are generated during the analysis 

pass: one indexing request log entries using LSN as a key and an other indexing state log 

entries using a (state id, LSN) pair as a key (this feature is not implemented yet). Another 

answer to this problem could be a garbage collection policy that does not allow a number 

of active interactions that is greater than the number of log entry headers that fit into the 

log buffer. As an example, the log buffer of 8M can accommodate more than 250.000 log 

entry headers. When the maximum number is exceeded, EOS-PHP should not admit 

further requests until it receives a sufficient number of interaction installation 

notifications from other components. 

During normal operation, EOS-PHP concurrency control ensured that the LSN order of 

HTTP requests coincides with the logical order of accesses to PHP application states. 

Thus, the redo pass simply replays all HTTP log entries starting with the minimum LSN 

encountered in the log (which is always an HTTP log entry) using a single thread as 

sketched in Figure 43. EOS-PHP speeds up the redo pass by checking in the request 

startup phase whether a replay is really needed (line 19). When the current LSN of the 

affected PHP application state is higher than the request LSN and the HTTP log entry is 

complete (i.e., the PHP level log entry with the reply message can be reached via the 

next_php chain), the HTTP request log entry is skipped for replay. When the request has 

to be replayed, EOS-PHP restores its execution environment including main global 

variables $HTTP_{GET,POST,COOKIE,SESSION}_VARS and $HTTP_POST_FILES 

that constitute PHP language representation of the HTTP request. A proper version of the 

PHP application state $HTTP_SESSION_VARS is recovered when the statement 

session_start is replayed that ultimately translates to calling the C function 

eos_fetch_state_as_of(lsn, &app_state, &eos_state_buf). 
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5.3.7 Installation Points and Garbage Collection 

During normal operation the portion of the log that would need to be replayed after a 

crash steadily increases due to uninstalled interactions with other components outside our 

control and because most popular PHP application states mostly remain in the session 

state buffer without being flushed to disk. In addition, as explained above, browser 

recovery requires remembering the first URI0 called to start a PHP session. If we naively 

always tried to retrieve URI0 from a regular log entry, we would have to keep the first log 

entry until the session ends. To avoid this, EOS-PHP maintains the session-id-URI0 table 

as part of a pseudo PHP application state that does not belong to any particular PHP 

session. This allows us not only an efficient lookup of an initial URI but also releasing of 

01. eos_cache eos_state_buf, eos_log_buf; 
02. long min_lsn; 
03.  
04. void eos_replay_log() 
05. { 
06.   long curr_lsn = min_lsn; 
07.   long sess_id; 
08.   eos_log_entry *rle, *app_state; 
09.   char *http_reply; 
10.   char *script_file_name; 
11.  
12.   while(eos_fetch_log(&rle, curr_lsn, &eos_log_buf)!= END_OF_LOG) 
13.   { 
14.     sess_id = eos_log_extract_sessid(rle); 
15.     http_reply = eos_log_extract_reply(rle); 
16.      
17.     eos_fetch_current_state(&app_state, &eos_state_buf); 
18.      
19.     if(http_reply == NULL || app_stateØlsn < curr_lsn) 
20.     { 
21.       script_file_name = eos_log_extract_filename(rle); 
22.        
23.       // recover $HTTP_{COOKIE, GET, SESSION}_VARS 
24.       eos_recover_globals(rle, app_state); 
25.       
26.       zend_execute_scripts(script_file_name, …); 
27.     } 
28.     else 
29.     { 
30.       // NOTHING TO DO 
31.     } 
32.  
33.     curr_lsn = find_next_http_lsn (); 
34.   } 
35. } 

Figure 43: EOS-PHP Redo Pass  
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log entries for garbage collection before the session ends by forcing the state with the 

session-id-URI0 table as a state-type log entry to disk. 

The procedure of lazily creating installation points and subsequent garbage collection 

runs in a separate installation thread as an infinite loop that is repeatedly resumed after a 

configurable amount of time.  

The installation thread interrupts the normal operation of EOS-PHP by acquiring a special 

activity latch in the X-mode. Usual requests obtain this latch in the SH-mode before the 

actual execution and hold it until completion. After successful exclusive latching, it is 

safe to reorganize the log, and the state of EOS-PHP is consistent because previously 

running requests are guaranteed to have been completed whereas arriving requests are 

being queued for later admission to execution. 

The loop body of the installation thread consists of the following phases. First a new 

minimum redo LSN is determined by finding the oldest uninstalled interaction with other 

components in the input message lookup table IMLT. If the minimum redo LSN has not 

increased since the last check, it is not worthwhile to proceed with the installation such 

that further actions are skipped and the activity latch is released. Otherwise, we proceed 

with the next phases each of which corresponds to an NTFS I/O transaction. EOS-PHP 

forces the request log to disk, in the next phase. Subsequently, EOS-PHP flushes dirty 

PHP application states from the state buffer. The pseudo PHP application state 

maintaining the session-id-URI0 table is flushed to disk regardless of its dirty-status in the 

same phase unless it is empty. Last but not least, the boot sector of the log file is updated 

with the new start position for the analysis pass and last used LSN and MSN. Note that in 

rare cases in which all PHP sessions have been terminated and all CIC instances have 

been installed, the start position field of the boot sector will point to the logical EOF. 

Backend
Server

Frontend
Server

shared
count

1234Æ1235

private 
count
2Æ3

private 
count
2Æ3

private 
count
2Æ1
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count
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Figure 44: Test Application in the Experiments 
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5.3.8 Run-Time Overhead 

EOS-PHP extensions are implemented in the C language and comprise ca. 5500 lines of 

source code. For the implementation we used as much of the existing efficient Zend 

engine infrastructure as possible. To evaluate the run-time overhead of EOS-PHP, we 

performed measurements with Apache/1.3.20 and PHP/4.0.6 running on two PC’s each 

with a 3 GHz Intel Pentium IV processor and 1 GB main memory under Windows XP.  

01. <?php 
02. $time = time();  
03. if(isset($HTTP_POST_VARS["b2b"])) 
04. { 
05.   session_id("SHAREDSTATE"); 
06. } 
07.    
08. session_start(false); 
09.    
10. if(isset($HTTP_POST_VARS["destroy"])) 
11. { 
12.   session_destroy(); 
13.   exit(); 
14. } 
15.    
16. if(!session_is_registered["count"]) 
17. { 
18.   session_register("count"); 
19. } 
20.    
21. $HTTP_SESSION_VARS["count"]++; 
22. session_close(); 
23.    
24. if(!isset($HTTP_POST_VARS["b2b"])) 
25. { 
26.   $ch = curl_init("http://b2b_server/test.php"); 
27.   curl_setopt($ch, CURLOPT_HEADER, false); 
28.   $params = array(); 
29.   $params["b2b"] = true; 
30.   curl_setopt($ch, CURLOPT_POSTFIELDS, $params); 
31.   $b2b_reply = $curl_exec($ch); 
32. } 
33. else 
34. { 
35.   echo $HTTP_SESSION_VARS["count"]; 
36.   exit(); 
37. } 
38. ?> 
39. <html> 
40.   <p>Private count: 
41.           <?php echo $HTTP_SERVER_VARS["count"]; ?> 
42.   <p>Shared count: <?php echo $b2b_reply; ?> 
43. </html> 

Figure 45: Test PHP Script 
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The call structure of the evaluated application is shown in Figure 44. The load on the 

frontend Web application server was generated by the synthetic HTTP request generator 

Apache JMeter/2.0.3 [Apache.org]. The generator simulated conversations of n steps 

without involving human user interactions. Think times were not simulated. 

Both servers deploy the same PHP script outlined in Figure 45. The script calls the 

nondeterministic function time() (line 2), reads the current application state (line 8) and 

increments the state variable count (lines 16-21). On the backend server that receives the 

flag b2b as a POST parameter, the accessed state is shared among all clients as specified 

by the explicit call to the function session_id (line 5). The new value of the state variable 

count is the only content of the HTTP reply body produced by the backend server (lines 

35-36). In contrast, the frontend server accesses a private state to increment the variable 

count and invokes another instance of this script on the backend server (lines 24-32). 

Moreover, the frontend server replies with a complete HTML page containing the shared 

and private count values (lines 39-43) that is returned to the load generator. In the 

following two experiments we compare the three-tier system of two servers run by the 

original PHP engine against the equivalent system run by EOS-PHP. 

Table 9 shows the total elapsed time, between the first request and the last reply as seen 

by the client, and the CPU time on the frontend and backend servers for n = 1, 5, 10 

steps, comparing the original PHP engine to EOS-PHP with the rigorous recovery 

guarantees. The original PHP manages each session in a separate file. Changes to the 

session variables are made quasi persistent by the original PHP because the session file is 

written without being forced to disk. The function _close(int filehandle) called by the 

original PHP engine at the request end does not incur a synchronous I/O on Windows. 

The response time overhead of 135-152% results also from the fact that the original PHP 

sends the reply before the disk write, the latter being performed during the request 

Table 9: 1 Client Experiment 
 Sessions 1 step  5 steps 10 steps 
PHP elapsed time [sec] 0.0480 0.2200 0.4500 
EOS-PHP elapsed time [sec] 0.1130 0.5550 1.1000 
Overhead [%] 135% 152% 144% 
PHP frontend CPU time [sec] 0.0240 0.1625 0.3455 
EOS-PHP frontend CPU time [sec] 0.0305 0.2125 0.4636 
Overhead [%] 27% 31% 34% 
PHP backend CPU time [sec] 0.0050 0.0300 0.0700 
EOS-PHP backend CPU time [sec] 0.0090 0.0550 0.1200 
Overhead [%] 80% 83% 71% 
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shutdown. The CPU time overhead on the frontend server is lower than on the backend 

server by a factor of approximately two due to the file (de)allocation activity of the 

original PHP when starting new sessions and terminating the old ones by calling the 

function session_destroy (line 12 of Figure 45) on the frontend server, whereas a single 

file is used all the time on the backend server. Nevertheless, we need to mention that the 

cost for forced I/O’s dominates the overhead because inserting the function _commit 

before the call to _close in an additional test made the overhead shrink to less than 20%. 

We also performed multi-user measurements by replicating the HTTP request driver on 

five different client machines generating requests to the frontend server. Table 10 shows 

the measured average response and CPU times in terms of the simulated n-step user 

sessions. The figures show that the response time overhead decreases in comparison to 

the one client measurement because concurrency becomes a more significant factor. 

Although the original PHP does not need concurrency control, the Apache Web server 

manages a number of shared data structures that are protected by internally implemented 

semaphores and mutex locks that increasingly suffer access contention. In this 

experiment, the overhead on the frontend server is larger than on the backend server due 

to a higher contention on the log latch which protects two synchronous log writes: one 

before calling curl_exec and another performed prior to sending the output to the client. 

The cost for the recovery guarantees is less than factor of two, which is an acceptable 

overhead. The price is worthwhile given the increased dependability and ease of 

programming. 

Table 10: 5 Clients Experiment 
 Session 1 step  5 steps 10 steps 
PHP elapsed time [sec] 0.1560 0.7900 1.6100 
EOS-PHP elapsed time [sec] 0.3140 1.6850 3.1000 
Overhead [%] 101% 113% 93% 
PHP frontend CPU time [sec] 0.0390 0.2708 0.5727 
EOS-PHP frontend CPU time [sec] 0.0815 0.6000 1.1545 
Overhead [%] 109% 122% 102% 
PHP backend CPU time [sec] 0.0090 0.0550 0.1200 
EOS-PHP backend CPU time [sec] 0.0130 0.0750 0.1600 
Overhead [%] 44% 36% 33% 
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6. Conclusion and Outlook 
“Real generosity towards the future lies in giving all to the present.” -Albert Camus 

This thesis has introduced a formal specification of the interaction contract framework in 

the form of Statemate state-and-activity charts. The generic design of the three types of 

interaction contracts allows a rapid and rigorous specification of complex multi-tier 

software system architectures. This thesis presents automatic proofs that the formal 

specifications have the required property of exactly-once execution using the symbolic 

model checker provided with Statemate. Although we were successful in verifying of 

standalone interaction contracts and we were able to verify a sample Web application 

model with nondeterminism caused by the parallel asynchronous execution, we observed 

that the model checker performance does not scale with the number of modeled users. 

Providing proofs for realistic systems handling hundreds of parallel user session were out 

of question. The results achieved in this thesis show that mechanical verification 

technology still requires seeking a compromise between the verifiability and the realism 

of a model for a complex software system. A promising direction for future work may lie 

in the combination of model checking with induction proofs (e.g., see the paper by 

McMillan et al. [2000]). 

The second major accomplishment of this thesis is a transparent integration of the 

interaction contract support with the popular real-world Web technology products: 

Microsoft's browser Internet Explorer and Zend's server-side scripting engine for the PHP 

language. Our prototype EOS allows deploying arbitrarily distributed PHP application 

with the exactly-once execution guarantee. Good performance has been achieved due to 

efficient log and state data organization, and the LRU buffer management added to PHP 

by EOS. Experiments show that the rigorous recovery guarantees are provided with 

acceptable overhead. Performance of EOS-PHP can be further improved by deeper 

integration of the log and recovery managers with the Zend engine, which would allow 

replaying the log at the PHP statement level rather than at the HTTP request level. This 

could make the analysis pass in the current solution obsolete, and make the redo pass 

simpler. Moreover, such a solution would allow creating installation points in midst of 

request execution, which would accelerate replaying lengthy scripts during redo. 

Providing a distributed concurrency control protocol for PHP would be another 

interesting direction to pursue in future work. 
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