
Integrated Data, Message, and Process Recovery
for Failure Masking in Web Services

Dissertation
zur

Erlangung des Grades des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

vorgelegt von

Diplom-Informatiker
GERMAN SHEGALOV

Saarbrücken, im Juli 2005

ii

Dekan der Naturwissenschaftlich-Technischen Fakultät I: Prof. Dr. Jörg Eschmeier

Vorsitzender der Prüfungskommission: Prof. Dr. Joachim Weickert

Erstgutachter: Prof. Dr. Gerhard Weikum

Zweitgutachter: Dr. David Lomet

Akademischer Beisitzer Dr. Ralf Schenkel

Tag des Promotionskolloquiums 26. August 2005

iii

In memory of my father Isaac

To my mother Betti

iv

Abstract
Modern Web Services applications encompass multiple distributed interacting

components, possibly including millions of lines of code written in different

programming languages. With this complexity, some bugs often remain undetected

despite extensive testing procedures, and occasionally cause transient system failures.

Incorrect failure handling in applications often leads to incomplete or to unintentional

request executions. A family of recovery protocols called interaction contracts provides a

generic solution to this problem by means of system-integrated data, process, and

message recovery for multi-tier applications. It is able to mask failures, and allows

programmers to concentrate on the application logic, thus speeding up the development

process.

This thesis consists of two major parts. The first part formally specifies the interaction

contracts using the state-and-activity chart language. Moreover, it presents a formal

specification of a concrete Web Service that makes use of interaction contracts, and

contains no other error-handling actions. The formal specifications undergo verification

where crucial safety and liveness properties expressed in temporal logics are

mathematically proved by means of model checking. In particular, it is shown that each

end-user request is executed exactly once. The second part of the thesis demonstrates the

viability of the interaction framework in a real world system. More specifically, a

cascadable Web Service platform, EOS, is built based on widely used components,

Microsoft Internet Explorer and PHP application server, with interaction contracts

integrated into them.

v

Kurzfassung
Heutige Web-Service-Anwendungen setzen sich aus mehreren verteilten interagierenden

Komponenten zusammen. Dabei werden oft mehrere Programmiersprachen eingesetzt,

und der Quellcode einer Komponente kann mehrere Millionen Programmzeilen

umfassen. In Anbetracht dieser Komplexität bleiben typischerweise einige

Programmierfehler trotz intensiver Qualitätssicherung unentdeckt und verursachen

vorübergehende Systemsausfälle zur Laufzeit. Eine ungenügende Fehlerbehandlung in

Anwendungen führt oft zur unvollständigen oder unbeabsichtigt wiederholten

Ausführung einer Operation. Eine Familie von Recovery-Protokollen, die so genannten

„Interaction Contracts“, bietet eine generische Lösung dieses Problems. Diese Recovery-

Protokolle sorgen für die Fehlermaskierung und ermöglichen somit, dass Entwickler ihre

ganze Konzentration der Anwendungslogik widmen können. Dies trägt zu einer

erheblichen Beschleunigung des Entwicklungsprozesses bei.

Diese Dissertation besteht aus zwei wesentlichen Teilen. Der erste Teil widmet sich der

formalen Spezifikation der Recovery-Protokolle unter Verwendung des Formalismus der

State-and-Activity-Charts. Darüber hinaus entwickeln wir die formale Spezifikation einer

Web-Service-Anwendung, die außer den Recovery-Protokollen keine weitere

Fehlerbehandlung beinhaltet. Die formalen Spezifikationen werden in Bezug auf kritische

Sicherheits- und Lebendigkeitseigenschaften, die als temporallogische Formeln

angegeben sind, mittels „Model Checking“ verifiziert. Unter anderem wird somit

mathematisch bewiesen, dass jede Operation eines Endbenutzers genau einmal ausgeführt

wird. Der zweite Teil der Dissertation beschreibt die Implementierung der Recovery-

Protokolle im Rahmen einer beliebig verteilbaren Web-Service-Plattform EOS, die auf

weit verbreiteten Web-Produkten aufbaut: dem Browser „Microsoft Internet Explorer“

und dem PHP-Anwendungsserver.

vi

Summary
Recovery is the last resort for preserving data and system state consistency in a failure-

prone environment. Critical applications use transactional database servers whose data

recovery mechanisms establish atomic updates and durability of data in the presence of

transient system failures. Unfortunately, data recovery on database servers does not

enforce an appropriate exception handling in the other application components. It is the

responsibility of every single component in the system to handle all system failures such

as message losses, timeouts, and crashes in a correct manner. In a distributed application

with a rich state some component interdependences are often overlooked, which leads to

incorrect application behavior in that some requests may unintentionally be repeated

whereas others may not be executed at all due to message losses.

This has motivated several recovery protocols aiming at masking system failures, and so

relieving developers from dealing with them. The queued transactions approach has been

the most successful industrial solution thus far. It requires that components store their

state in transactional input and output message queues mostly residing on a database

server, or in a database. In a multi-tier system, a single end-user request incurs a number

of instances of the Two-Phase-Commit protocol incurring high logging overhead. Due to

an inconvenient programming model and for insufficient scalability in the context of

multi-tier applications, queued transactions have not been adopted for Web Services,

although most of them are stateful by nature since they require several interactions with

the user to accomplish a deal: authentication, catalog search, price negotiation or bidding,

and finally committing the deal. This thesis elaborates on a recently proposed framework

of interaction contracts geared towards general multi-tier applications that is more

efficient than the queued transactions approach, and does not enforce any specific

programming style.

This thesis provides for the first time a formal specification for each interaction contract

previously only informally described in the original literature. To this end, we adopted

the state-and-activity chart language as defined and implemented in the commercial tool

Statemate, widely used for modeling reactive systems such as embedded devices in the

automotive and airspace industries. Each individual interaction contract is defined by a

generic activity that can be easily reused in every application context. We model a

complex Web Service comprising several components, which pass messages to each

other either in synchronous or asynchronous fashion with the generic interaction contract

vii

activities as building blocks. Most importantly, the Web Service model does not involve

any recovery actions other than those defined in the underlying interaction contract

activities that are invisible at the application layer.

After completing the formal specification process, we start with verification of the

interaction contracts using Statemate’s integrated model checker. For this purpose, we

formulate crucial safety and liveness properties as temporal logic formulae. As for safety,

we show that no message is ever executed more than once. For liveness, we prove that

with a finite number of failures each interaction contract eventually terminates, and the

corresponding requests are executed exactly once. While the verification of the individual

bilateral interaction contracts is straightforward due to their relatively small model size,

additional design engineering effort is needed to keep the Web Service model verifiable.

We succeed in designing equivalent or more general, verifiable models, whose safety

properties carry over into the original specification of the interaction contracts.

Along with the formal specification of the interaction contract framework, in this thesis

we describe a prototype Web Service platform called EOS that we built to investigate the

framework’s viability in a real-world setting. More specifically, we consider two popular

products used in the Web Service context: Microsoft Internet Explorer as a browser (user

front-end), and a script engine PHP as a Web application server which can be invoked

either by a browser or by another application server. We implement the external

interaction contract to handle interactions between an end-user and her browser.

Interactions between a pair of Web application servers, and between a browser and a Web

application server run under either the committed or the immediately committed

interaction contract. To this end, we turned the browser and the Web application server

into persistent components by equipping them with logging and recovery routines. In

accordance with the framework goals, we achieved this without rewriting existing

application programs such as PHP scripts and the browser by solely changing their

runtime environment. The most challenging part of this work was providing the

deterministic replay of the multi-threaded PHP script engine in the business-to-business

context, in which the state is shared by multiple sessions and may be simultaneously

accessed by several other application servers. Thus, deterministic replay requires logging

of original output messages. Enhanced components exhibit acceptable overhead in

comparison with the original implementation, which shows their viability in large-scale

Web Services.

viii

Zusammenfassung
Die Recovery ist das letzte Mittel, das die Inkonsistenz der Daten und des

Systemzustandes in einer fehleranfälligen Ausfürungsumgebung verhindern kann.

Kritische Anwendungen benutzen transaktionsfähige Datenbanksysteme, die die atomare

Ausführung von mehreren Schreiboperationen und deren Dauerhaftigkeit trotz kurzzeitig

auftretender Fehler gewährleisten. Die Daten-Recovery im Datenbanksystem erzwingt

jedoch nicht, dass Fehler auch in den anderen Anwendungskomponenten adäquat

behandelt werden. Jede Komponente ist selbst dafür verantwortlich, allen möglichen

Fehlern wie Nachrichtenverlusten, Wartezeitüberschreitungen und Abstürzen richtig zu

begegnen. In einer verteilten Anwendung mit einem großen Zustand werden

wechselseitige Abhängigkeiten oft übersehen, was zu einem falschen Systemverhalten

führt, in dem manche Operationen unbeabsichtigt mehrmals ausgeführt werden, während

die Ausführung anderer Operationen wegen Kommunikationsstörungen gänzlich

unterbleibt.

Diese Problematik diente als Motivation für mehrere fehlermaskierende Recovery-

Protokolle, die Entwicklern die Behandlung von Fehlern abnehmen. Den bisher

erfolgreichsten industriellen Ansatz stellt das Queued-Transactions-Verfahren dar. Es

erfordert, dass Komponenten ihren Zustand in transaktionsfähigen, meistens von

Datenbanksystemen verwalteten, Ein- und Ausgabewarteschlangen oder in einer

Datenbank speichern. In einem Mehrschichtensystem zieht eine einzige Operation des

Endbenutzers mehrere Instanzen des Two-Phase-Commit-Protokolls nach sich, was hohe

Protokollierungskosten verursacht. Aufgrund des unbequemen Programmiermodells und

der für verteilte Anwendungen ungenügenden Skalierbarkeit wurde das Queued-

Transactions-Verfahren nicht in den Bereich der Web-Services übertragen, obwohl wir es

dort auch mit fehleranfälligen zustandsvollen Anwendungen zu tun haben. Diese

Dissertation beschäftigt sich mit dem in den letzten Jahren veröffentlichten Framework

der „Interaction Contracts“, das eigens für Mehrschichtensysteme entworfen wurde. Es ist

effizienter als das Queued-Transactions-Verfahren und erzwingt keinen bestimmten

Programmierstil.

Diese Dissertation präsentiert erstmalig formale Spezifikationen der „Interaction

Contracts“, die bis jetzt nur informal in der Literatur eingeführt wurden. Zu diesem

Zweck setzen wir mit State-and-Activity-Charts einen automatentheoretischen

Formalismus ein. Dieser Formalismus ist implementiert im kommerziellen Tool

ix

Statemate, das eine breite Verwendung in der Automobilindustrie und der Luft- und

Raumfahrtbranche hat. Jeder einzelne „Interaction Contract“ wird modelliert durch eine

generische Aktivität, die sich leicht in unterschiedlichen Anwendungsszenarien

wiederverwenden lässt. Darüber hinaus, wir modellieren einen komplexen Web-Service,

der aus mehreren Komponenten besteht. Die Komponenten tauschen mehrere

Nachrichten synchron und asynchron aus, jeweils unter Verwendung der generischen

Aktivitäten. Besonders wichtig ist, das hierbei keine andere als die für die

Anwendungsebene unsichtbaren, in den generischen Aktivitäten definierten Recovery-

Aktionen zum Tragen kommen.

Die erstellten Spezifikationen der „Interaction Contracts“ werden mit Hilfe des

„Statemate Model Checker“ verifiziert. Dazu formulieren wir wichtige Sicherheits- und

Lebendigkeitseigenschaften als temporallogische Formeln. Als eine der

Sicherheitseigenschaften beweisen wir beispielsweise, dass keine vom Endbenutzer

initiierte Operation mehr als einmal ausgeführt wird. Unter der Annahme einer endlichen

Anzahl von Fehlern beweisen wir, dass jeder „Interaction Contract“ terminiert

(Lebendigkeit) und die betreffenden Operationen genau einmal ausgeführt werden.

Während sich die Verifikation der einzelnen „Interaction Contracts“ aufgrund der

verhältnismäßig geringen Modellkomplexität einfach gestalten ließ, erforderte die

Verifikation der Web-Service-Anwendung zusätzlichen Aufwand, um analoge

verifizierbarere Modelle zu finden, deren Sicherheitseigenschaften sich ins

Ursprungsmodell übertragen lassen.

Neben der formalen Spezifikation und Verifikation der „Interaction Contracts“,

beschreiben wir eine prototypische Implementierung der Web-Service-Plattform EOS,

mit der die Praxistauglichkeit der „Interaction Contracts“ in einer realen Software-

Anwendung untersucht wird. Wir betrachten zwei beliebte Web-technologische Produkte:

Internet Explorer, den Web-Browser von Microsoft, und den Interpreter der Skriptsprache

PHP, die Ausführungsumgebung für Webanwendungsserver. Ein Webanwendungsserver

kann entweder von einem Browser oder von einem anderen Webanwendungsserver

aufgerufen werden. Wir implementieren den „External Interaction Contract“, um die

Interaktionen des Endbenutzers mit seinem Browser zu behandeln. Die Interaktionen

zwischen zwei Webanwendungsservern und zwischen einem Browser und einem

Webanwendungsserver werden durch den „Committed Interaction Contract“ oder den

„Immediately Committed Interaction Contract“ geregelt. Hierzu statten wir den Browser

x

und den Webanwendungsserver jeweils mit einer Protokolldatei und Recovery-

Funktionen aus. Die Änderungen betreffen nur die Ausführungsumgebungen, ohne dass

die Anwendungen, d.h. die PHP-Skripte, geändert werden müssen. Die Wiederherstellung

der PHP-Ausführungsumgebung im Zusammenhang mit Business-to-Business-

Anwendungen stellt eine der größten Herausforderungen dar, weil wir es dort mit

gemeinsam benutzten Daten zu tun haben, auf die parallel zugegriffen wird. Die korrekte

Wiederherstellung erfordert die Protokollierung von Antwortnachrichten. Die

verbesserten Web-Service-Komponenten haben nur geringfügig höhere

Ausführungskosten im Vergleich zur ursprünglichen Software und empfehlen sich

dadurch für den Einsatz in komplexen Web-Service-Anwendungen.

xi

Acknowledgements
I would like to thank my advisor, Prof. Gerhard Weikum, for his guidance and

encouragement during my research that led to this thesis. My interest in transaction

processing in general and in recovery technology specifically owes to a very great extent

to Gerhard’s inspiring lecture on transactional information systems during my master

study. Working out the sample solutions for the underlying textbook authored by Gerhard

jointly with Prof. Gottfried Vossen made me feel like a real TP expert. I have spent six

exciting years with Gerhard’s group at the campus of Saarland University learning about

the workflow and peer-to-peer technology, the theory of concurrency control and

recovery, information retrieval, and so on and so forth.

I take this opportunity to thank Dr. David Lomet for agreeing to act as a second reviewer

of this thesis without hesitating to commit to attending my defense in Saarbrücken. I

would also like to thank Dave for the opportunity to work with him during my fall

internship at Microsoft Research in Redmond in 2002. Sometimes I think I would deserve

another university degree given how much I learned from Dave during our weekly

meetings about how to implement the database internals right. Our email discussions of

several thesis details were always insightful for me.

I would like to thank my mother, Mrs. Betti Shegalova, for all her love and

encouragement all my life and especially during my university studies. I learned that the

science can be that exciting only because she succeeded in persuading me to pass the

entrance examination of the Lyceum of Physics and Mathematics in Saint-Petersburg. I

also owe a great debt of gratitude to my father, Dr. Isaac Shegalov, for a happy childhood

during the first fourteen years of my life. He died too early and I had no chance to talk to

him as to a scientist, which I can only regret because not a few of his students made

excellent scientific careers after talking to him.

Last but not least, I would like to thank Janna for her love and patient listening to my

complaints about the troubles I was experiencing during completion of this thesis.

xii

Contents
1. INTRODUCTION.. 1

1.1 TRANSACTIONAL INFORMATION SYSTEMS ... 1
1.2 PROBLEM STATEMENT .. 2
1.3 CONTRIBUTION.. 3
1.4 THESIS OUTLINE.. 4

2. BACKGROUND ON FORMAL METHODS... 5

2.1 COMPUTATION TREE LOGIC.. 5
2.2 EXPLICIT CTL MODEL CHECKING .. 6
2.3 SYMBOLIC CTL MODEL CHECKING.. 7
2.4 ORDERED BINARY DECISION DIAGRAMS..10
2.5 STATE-AND-ACTIVITY CHARTS ..12

2.5.1 Statechart State Configurations ..15
2.5.2 Statechart Transitions..16
2.5.3 Statechart Textual Expression Language..17
2.5.4 Statechart Semantics..19
2.5.5 Sample Scenario ..22
2.5.6 Statechart Time Models ...23
2.5.7 Generic Activities...24

3. BACKGROUND ON RECOVERY TECHNOLOGY...25

3.1 FAILURE MODEL ...25
3.2 DATA RECOVERY ..26
3.3 DISTRIBUTED TRANSACTIONS...29
3.4 RELATED WORK ON APPLICATION RECOVERY...33

3.4.1 Queued Transactions...34
3.4.2 Stateful Client Server Application...38
3.4.3 Fault Tolerance in Web Services and Middleware...38
3.4.4 General Process Recovery...39

3.5 RELATED WORK ON RECOVERY VERIFICATION ...40
3.5.1 (Local) Data Recovery...40
3.5.2 Distributed System Recovery ...40

4. INTERACTION CONTRACTS FRAMEWORK..43

4.1 COMPUTATIONAL MODEL ...43
4.1.1 Components ...43
4.1.2 Message and Process Recovery Principles...43

4.2 MODELING ISSUES IN STATEMATE ..46
4.2.1 Stable Log ..46
4.2.2 Messages and Communication Failures ...47
4.2.3 Component Crashes...48
4.2.4 Timeouts and Execution Time ...48

4.3 STATEMATE SPECIFICATIONS AND VERIFICATION ..50
4.3.1 Common Design of the IC Specifications..50
4.3.2 Common IC Properties ..51
4.3.3 Committed and Immediately Committed IC ..51
4.3.4 External IC...58
4.3.5 Transactional IC..61
4.3.6 Sample Application of the IC Framework...67
4.3.7 Verification Run-Time ...71

4.4 LESSONS LEARNED..71
4.4.1 Efficient Verifiability ...71
4.4.2 Composability ..73

5. EOS: EXACTLY-ONCE WEB SERVICE..75

5.1 INTRODUCTION..75
5.1.1 The World Wide Web ...75
5.1.2 Apache Web Server..77
5.1.3 PHP and the Zend Engine ...78

xiii

5.1.4 PHP Session Management...80
5.1.5 PHP Business-to-Business...82
5.1.6 Microsoft Internet Explorer ...83
5.1.7 Big Picture of EOS...83

5.2 PERSISTENT EOS BROWSER ..84
5.2.1 Supported Browser Applications ...85
5.2.2 Unique Identifiers ..86
5.2.3 URI Logging and Recovery ...87
5.2.4 Browser XIC Logging ..88
5.2.5 Browser CIC Logging..89
5.2.6 Browser Recovery ..90
5.2.7 Browser Garbage Collection...91
5.2.8 Future Directions...91

5.3 PERSISTENT EOS-PHP ..91
5.3.1 Normal Operation and Logging Issues ...92
5.3.2 Spinlocks and Latches..99
5.3.3 Physical Organization of Stable Log...106
5.3.4 LRU Buffers for PHP Session Data and the Log ..108
5.3.5 Failure Detection ...111
5.3.6 Recovery: Analysis and Redo Passes ..112
5.3.7 Installation Points and Garbage Collection ...114
5.3.8 Run-Time Overhead...116

6. CONCLUSION AND OUTLOOK ...119

REFERENCES...121

INDEX ...129

xiv

Figures
Figure 1: Sample Money Order Transaction 2
Figure 2. Explicit Model Checking Algorithm 7
Figure 3: Initial OBDD for (x1 Ÿ x2) ⁄ (x3 Ÿ x4) with p(1) < p(2) < p(3) < p(4) 10
Figure 4: OBDD Reduction Algorithm 11
Figure 5: Canonical OBDD for (x1 Ÿ x2) ⁄ (x3 Ÿ x4) with p(1) < p(2) < p(3) < p(4) 11
Figure 6: Canonical OBDD for (x1 Ÿ x2) ⁄ (x3 Ÿ x4) with p(1) < p(3) < p(2) < p(4) 11
Figure 7: Sample Activitychart 12
Figure 8: Sample Statechart 13
Figure 9: State Hierarchy of the Statechart 14
Figure 10: Conversion of Static Reactions 21
Figure 11: Conversion of External Stimuli 22
Figure 12: Statechart of the 2PC Coordinator 30
Figure 13: Statechart of the ith 2PC Participant 31
Figure 14: Normal Operation of a Queued Transaction Server 35
Figure 15: Behavior of a Stateless Queued Transaction Client 35
Figure 16: Normal Operation of a Pseudo-Stateful Queued Transaction Client 36
Figure 17: Three-Tier Application with Queued Transactions 38
Figure 18: Sample Two-Component System 43
Figure 19: CIC Heartbeat Checker 50
Figure 20: A Message Sequence Diagram of the CIC 52
Figure 21: CIC Sender and Receiver 53
Figure 22: XIC Input and Output 58
Figure 23: A Message Sequence Diagram of the Transactional Client (Pcom) and Server (Tcom) 62
Figure 24: TIC Pcom and Tcom 63
Figure 25: IC Application in Web Service Activitychart 67
Figure 26: Orthogonal Component of the Web Server Control 69
Figure 27: Simple Static HTML Page 75
Figure 28: Simple PHP Page 79
Figure 29: Sample Usage of PHP Session Support 81
Figure 30: Sample Usage of the CURL Module 82
Figure 31: Sample EOS Web Application 84
Figure 32: XML Store Log 85
Figure 33: JavaScript for XIC Logging 89
Figure 34: JavaScript Recovery 90
Figure 35: Chained Log Buffer of EOS-PHP 95
Figure 36: IMLT and OMLT in Action 96
Figure 37: Spinlock Implementation for Windows in C 100
Figure 38: Latch Implementation for Windows in C 104
Figure 39: Latches as PHP Resource Type Variables 105
Figure 40: Layout of EOS-PHP Log File 107
Figure 41: Log Entry Format 107
Figure 42: EOS-PHP Log Buffer Management 109
Figure 43: EOS-PHP Redo Pass 114
Figure 44: Test Application in the Experiments 115
Figure 45: Test PHP Script 116

xv

Tables
Table 1. CIC Sender and Receiver Obligations ..52
Table 2. Verified Properties of CIC ...56
Table 3. Verified properties of XIC Input/0utput ..60
Table 4. TIC: Pcom (Client) and Tcom (Server) Obligations ...61
Table 5. Verified Properties of TIC..65
Table 6. Verified Properties of a Sample Web Service ...70
Table 7. Verification Run-Times ..71
Table 8: Request Access Pattern in EOS-PHP ...99
Table 9: 1 Client Experiment..117
Table 10: 5 Clients Experiment ..118

1 Introduction 1

1. Introduction
“There is nothing quite so bad as bad service, unless it is a bad product too.”
- Anonymous

The Web is currently the broadest available technology on the Internet. Therefore, a

steadily growing number of businesses deliver mission-critical applications such as stock

trading, airline ticket reservation, procurement, and business accounting systems to their

end and business customers in the form of Web Services. These applications are often

complex, comprise heterogeneous components such as application servers, workflow

engines, and databases distributed over multiple layers; they pose strong requirements for

service and consistent data availability from both legal and business standpoints.

However, since many of those components count many millions of lines of code some

bugs pass quality assurance undetected which inevitably leads to unpredictable outages of

hardware and software systems at some point.

1.1 Transactional Information Systems

In the last three decades, it has become a common standard to manage the state of critical

applications inside a transactional information system [Weikum and Vossen 2001]. An

application can declare a sequence of requests to a transactional system as a transaction

by including it between a “begin transaction” and a “commit transaction” requests.

The transactional system behaves according a contract coined ACID (the abbreviation of

the guarantees constituting the contract):

• Atomicity (all-or-nothing): A transaction is executed either completely or not at

all. Uncompleted transactions (hit by a failure prior to commit or explicitly

aborted by a “rollback transaction” request) are undone; this is also referred to

as at-most-once execution.

• Consistency: Transactions violating consistency constraints defined in the

transactional system are rejected (i.e., aborted and undone).

• Isolation: Concurrency control of the transactional system masks intermediate

effects from transactions. From the perspective of applications using the highest

isolation level serializable, transactions are executed one at a time.

• Durability (Persistence): State modifications done by committed transactions

survive subsequent system failures.

2 1 Introduction

Figure 1 outlines a transactional procedure for transferring funds between two bank

accounts managed in an SQL database [Henderson 2000]. Assume that the database

relation accounts contains integer attributes id and balance. The transaction (started at

line 4) charges the account denoted by the integer variable @from and credits the account

denoted by the integer variable @to. Transaction atomicity guarantees that the account

balances are recovered to their state before the transaction begin, if a failure occurs before

the transaction commit (line 7) has been executed. After the transaction commit the effect

of the money transfer is definite. As you may see in the source code, the application

developer is completely relieved from the responsibility of treating intermediate states.

1.2 Problem Statement

Unfortunately, transaction atomicity does not mask failures from the application, which

shifts the responsibility to properly deal with them towards the application developers.

Moreover, there are pathological situations in which a transactional system is not capable

of faithfully reporting the transaction outcome to the application, which may make it

erroneously assume the transaction abort case. A subsequent transaction restart leads to a

non-idempotent request execution as can be demonstrated by the following real-life

scenarios:

Scenario 1 (E-Commerce): One of the most prominent examples is unintentional

purchase of multiple copies of the same item (e.g., a DVD) in an online store. This may

happen when the user sees a browser timeout for the final “checkout” (“place order”)

request caused by a short outage or overload of the network or the backend servers.

Whereas the request has been successfully albeit slowly processed, the user attempts to

send the checkout request once again by hitting the browser “refresh” button,

unintentionally buying another copy of the same item.

01. CREATE PROCEDURE money_transfer
02. @from integer,
03. @to integer,
04. @amount integer
05. AS
06. BEGIN TRANSACTION
07. UPDATE ACCOUNTS SET balance = balance - @amount \
 WHERE id = @from
08. UPDATE ACCOUNTS SET balance = balance + @amount \

 WHERE id = @to
09. COMMIT TRANSACTION

Figure 1: Sample Money Order Transaction

1 Introduction 3

Scenario 2 (Home Banking): A bank offers home banking where each user is identified

by a personal identification number (PIN). The users obtain a list of unique transaction

numbers (TAN’s). A TAN has to be provided for each user transaction to be accepted and

for security reasons each TAN can be used just once. The following problem has

happened to customers. After the first attempt to place a money order, the user perceives

a long delay. The user re-submits the request and the “resurrected” application responds

with “A TAN was used twice. Your TAN list has been frozen. Please visit your nearest

branch office to have your TAN’s reactivated”, which is embarrassing for a service that is

referred to as home banking.

Scenario 3 (Intranet Application): A friend’s family consisting of three persons applied

for a new health insurance by sending a filled-out form via conventional mail. After the

application form was computerized and reviewed by the insurance company, the friend

got back a letter with the positive response. There was nothing wrong with this except for

the fact that eight smart cards (insurance ids) were attached to the letter, and five of them

were duplicates.

In a complex multi-tier application such as stock trading, a single request is often routed

through more than ten system components hosted by different companies depending on

the market model. The complexity of failure handling routines in such a system is

accordingly high, and the task to cover all possible component interdependences is a real

challenge. This motivates a system infrastructure that is able to mask system failures from

applications by automatically taking appropriate recovery actions and providing exactly-

once execution. Such an infrastructure would allow developers to concentrate on the

application logic, thus increasing their productivity, and improve application availability,

as the application would be able to resume normal operation after a system failure

without manual intervention.

1.3 Contribution

This thesis elaborates on the interaction contracts framework introduced by Barga et

al. [2002, 2004]. The framework is especially geared for Web-based middleware in that,

in contrast to the previous solutions, it does not put limitations on programming style, and

is much more lightweight in terms of logging costs during normal operation.

In many Web applications, components exchange request and reply messages more than

once. For instance, it takes several browser requests to find desired items in an online-

4 1 Introduction

store and add them to the shopping cart, to select the method of payment, and finally to

provide the shipping address. A component that remembers the state of the conversation

is called stateful, as opposed to stateless components whose interactions with other

components are not related to each other. A client component may have a state as little as

the id of the current user. Its server counterpart may maintain shopping profile of the

current user as a long-term state and items in her shopping cart as a short-term state.

Providing persistence for stateful components and ensuring that each state transition

occurs exactly once are among the most important assets of the framework.

The contribution of this thesis consists of the following points:

• Formal specification of the individual interaction contracts with state-and-activity

charts in an easy-to-compose manner for usage in a concrete application.

• Formal verification of the formal specifications at the level of the bilateral

interaction contracts and their concrete application in a formal specification of a

sophisticated Web Service by means of the model checking technology.

• Implementation of the interaction contract framework in the Exactly-Once Web

Service (EOS) prototype. It differs from another prototype implementation coined

Phoenix/App [Barga et al. 2003, 2004] in that it delivers recovery guarantees to

the human end-user by considering the Web browser, an end-user front-end, as

part of the framework.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the formal methods

used in this thesis: the state-and-activity-chart language for formal specification, a

temporal logic CTL used for describing a dynamic computer system behavior, and model

checking algorithms utilized for the verification of temporal logic propositions in a

formally specified computer system. Chapter 3 puts this thesis into perspective of the

state-of-the-art data and application recovery technology for monolithic and distributed

applications. In Chapter 4, we provide the formal specifications charts of the interaction

contracts in the form of state-and-activity charts and apply model checking to prove that

it guarantees exactly-once execution. Chapter 5 deals with a prototype implementation of

the IC framework for arbitrarily distributed Web Services. Chapter 6 concludes the thesis

and outlines directions for future work.

2 Background on Formal Methods 5

2. Background on Formal Methods
“Logic! Good gracious! What rubbish! How can I tell what I think till I see what I say?”
- Edward Morgan Forster

This chapter introduces the methods used for the formalization of computational systems

exploited for the verification of the interaction contract framework in this thesis. In

particular, it deals with the temporal logic CTL used to characterize the behavior of a

computational system, the statechart formalism, an automata-theoretical approach for

abstract specification of a computational system, and model checking approach for

automatic verification of CTL formulae against formal specifications.

2.1 Computation Tree Logic

For capturing properties of a system’s dynamic behavior, variants of temporal logic are a

well-established formalism [Emerson 1990]. In linear-time temporal logics, temporal

operators describe events along a single execution path, also called a system run. A

system reacting to external input has multiple alternative execution paths. The system

satisfies a linear-time temporal logic formula if the formula holds in all system runs.

Often the user would like to describe a property that holds only in some specific runs.

Branching-time temporal logics provide quantifiers for the paths originating from a

given state. A system that reacts to external input is considered as a computation tree. The

system is a model of a branching-time temporal formula if the formula holds for the

corresponding computation subtree. The model checker used in this thesis verifies

temporal logic formulae provided in a branching-time temporal logic called

Computation Tree Logic (CTL).

CTL uses propositional logic formulae over a finite set of variables as its elementary

building blocks. In a given state of a computation, such a formula is evaluated to either

true or false in the usual manner. In addition, CTL allows applying existential and

universal quantifiers, denoted E and A, respectively, to state transition paths originating

from a given state. The quantifiers are combined with so-called temporal modalities like

neXt, Globally, Until, and Finally, abbreviated X, G, U, and F. The syntax of CTL is

defined as follows:

1. An atomic proposition is a CTL formula

2. If p and q are CTL formulae, then so are Ÿp, p ⁄ q, EX p, E (p U q) and A(p U q)

6 2 Background on Formal Methods

3. Given the basic operators above the following additional operators can be derived:

p ¤ q ª Ÿ(Ÿp ⁄ Ÿq); AX p ª ŸEX Ÿp; AF p ª A (true U p);

EF p ª E (true U p); AG p ª ŸE (true U Ÿp); EG p ª ŸA (true U Ÿp)

Let P be a finite set of atomic proposition. The CTL formulae are interpreted over a

Kripke structure K = (S, R, L), where S is the finite set of states, R Œ S µ S is the state

transition relation with (s, t) œ R if t is an immediate successor of s, and

L: S µ P ö {0, 1} is the valuation function. Note that for a software system, the function

L is interpreted as a valuation of individual bits of the program variables in the given

program state. A computation tree is obtained through unwinding the graph (S, R). A path

of the structure K is a potentially infinite state sequence (s0, … , si, si+1, …) with each

successive pair of states (si, si+1) œ R.

Whether a current state s of the Kripke structure K fulfills the formula f denoted K, s 6= f

is recursively defined over the formula structure:

K, s 6= p ñ L(s , p) = 1, where p is an atomic proposition

K, s 6= Ÿp ñ K, s 6∫ p

K, s 6= p ⁄ q ñ K, s 6= p and K, s 6= q

K, s0 6= EX p ñ for at least one path (s0, s1, …) holds K, s1 6= p

K, s0 6= E(p U q) ñ for at least one path (s0, s1, …) there is an i with

 K, si 6= q and for all j < i holds K, sj 6= p

K, s0 6= A(p U q) ñ for all paths (s0, s1, …) there is an i with

 K, si 6= q and for all j < i holds K, sj 6= p

2.2 Explicit CTL Model Checking

The automatic recursive procedure that verifies whether K, s 6= f holds by using the finite

state-transition graph (S, R) is called explicit model checking [Clarke and Schlinghoff

2001].

For a subset P Œ S the set of predecessor states is defined as Pred(P) ú { s | (s, t) œ R and

t œ P }, and the set of successors is defined as Succ(P) ú { t | (s, t) œ R and s œ P }

Let g be a subformula of f and Mg Œ S such that s œ Mg if K, s 6= g. Then, one can

recursively apply the following explicit model checking algorithm of Figure 2 that

considers seven different cases with regard to the structure of the formula f.

2 Background on Formal Methods 7

This simple model checking algorithm is subject to the state-explosion phenomenon

because it requires instantiating of the complete state-transition graph. The state-

transition graph of a software system grows exponentially with the amount of memory

used to store program variables.

2.3 Symbolic CTL Model Checking

McMillan [1993] developed a more efficient variant of model checking coined symbolic

model checking that rather than using the state-transition graph considers the Kripke

structure encoded in Quantified Boolean Formulae (QBF). Given a finite set of atomic

propositions V = {v1, …, vn}, the set QBF(V) of formulae is defined as:

1. The constants true and false are formulae, i.e., { true, false} Œ QBF(V),

2. Each variable v œ V is a formula, i.e., V Œ QBF(V)

3. If p œ QBF(V) and q œ QBF(V) then {p ⁄ q, Ÿp, Ÿq} Œ QBF(V)

4. Given the basic formulae p œ QBF(V) and q œ QBF(V), and a vi œ V the following

formulae can be derived:

 p ¤ q ª Ÿ(Ÿp ⁄ Ÿq)

 p(vi ≠ q) denotes the formula p in which each occurrence of vi is

substituted by q

 $vi. p ª p(vi ≠ true) ¤ p(vi ≠ false)

 "vi. p ª Ÿ($vi. Ÿp)

01. if g = p and p is an atomic proposition then
 Mg ú «
 for all states si œ S
 if L(si,p) = 1 then Mg ú Mg » {si}

02. if g = Ÿp then Mg ú S \ Mp
03. if g = p ⁄ q then Mg ú Mp … Mq
04. if g = EX p then Mg ú Pred(Mp)
05. if g = E(p U q) then

 Mg ú Mq
 repeat
 M’g ú Mg
 Mg ú Mg » (Mp … Pred(Mg))
 until M’g = Mg

06. if g = A(p U q) then
 Mg ú Mq
 repeat
 M’g ú Mg
 for each s œ Mp … Pred(Mg) … (S \ Mg)
 if Succ({s}) Œ Mg then Mg ú Mg » {s}
 until M’g = Mg

07. if g = f and s œ Mg then print K, s |= f
else print K, s |∫ f

Figure 2. Explicit Model Checking Algorithm

8 2 Background on Formal Methods

 $(vi, …, vj). p ª $vi. … $vj. p

For the truth assignment a: V ö{true, false} we define the evaluation function

evala: QBF(V) ö{true, false} is defined as follows:

• eval a(true) = true and eval a(false) = false

• evala(vi) = b, if vi œ V and a(vi) = b

• evala(Ÿp) = true, if evala(p) = false; evala(Ÿp) = false, otherwise

• evala(p ⁄ q) = true, if evala(p) = evala(q) = true; evala(p ⁄ q) = false, otherwise

• evala(p(vi ≠ q)) = true, if evala(p(vi ≠ evala(q))) = true

For a vector W = (w1, .., wk) with wi œ V, a vector F = (f1, .., fk) with fi œ QBF(V), and a

formula p œ QBF(V) we also define the vector substitution:

p(W ≠ F) =((((((p(w1 ≠ f1))(w1 ≠ f2) … (wk ≠ fk).

For a formula q œ QBF(V), we define the set of assignments [q] = { a | evala(q) = true} in

which the formula q is true. Let S’ = {a | a:V ö{true, false}} be the set of all possible

assignments. The set operations can then be expressed in QBF formulae as follows:

• « = [false]; S’ = [true]; [p] » [q] = [p ¤ q]; [p] … [q] = [p ⁄ q]; S’ \ [p] = [Ÿp].

Now consider a Kripke structure K = (S, R, L) that is defined over V. We are going to

encode the states and the transitions by a set of QBF formulae. We occasionally use the

notation vfalse = Ÿv and vtrue = v for convenience. We encode a state s œ S by the set of

assignments [qs], where (,)L s v
s

v V

q v
∈

=⁄ . In order to be able to encode transitions, we

introduce another set of atomic propositions V’ that is a copy of V. The entire state

transition relation is encoded by the formula
(,)

' (')s t
s t R

R q q
∈

= ⁄ ¤ , where qs and q’t are

defined over V and V’, accordingly. A binary relation Rsym Œ (V ö{true, false})2 is

defined by (x, y) œ Rsym ‹ x » (v’i ú y(vi)) œ [R’]. We define a derived valuation

function L’ : S’ µ V ö {true, false}by L’(s’, v) = s’(v). Symbolic model checking deals

with the derived Kripke structure K’ = (S’, R’, L’).

The image set that results from applying the relation Rsym to the assignments [p] is

represented by the formula: R’(p) = ($V.(p ⁄ R’)) (V’ ≠ V). The following derivation

proves this:

y œ [R’(p)] ¤ y œ [($V.(p ⁄ R’)) (V’ ≠ V)] ¤ y » {v’i ú y(vi)} œ [$V.(P ⁄ R’)] ¤

exists an x: V ö {true, false} such that y » {v’i ú y(vi)} œ {(p ⁄ R’) (vi ≠ x(vi))} ¤

2 Background on Formal Methods 9

exists an x: V ö {true, false} such that x œ [p] and ({vi ú x(vi)} » {v’i ú y(vi)}) œ [R’]

¤ exists an x: V ö {true, false} such that x œ [p] and (x, y) œ Rsym ¤ y œ Rsym ([p])

The formula R-1
sym(P) = $V’.(P(V ≠ V’) ⁄ R’) for the inverse image can be proved by a

very similar derivation.

Now consider a function t: 2S ö 2S for the original state set S. Such a function is said to

be monotonic if for X Œ Y Œ S the inclusion t(X) Œ t(Y) holds. A subset Y Œ S is called a

fixed point of t if Y = t(Y). For a monotonic function t there is a least fixed point

denoted mY. t(Y) and a greatest fixed point denoted nY. t(Y). For a finite S the least fixed

point is the limit of the chain [false] Œ t([false]) Œ t(t([false])) …, and the greatest fixed

point is the limit of the chain [true] û t([true]) û t(t([true])) …. Note that since S is a

finite set the convergence of both chains is reached in at most |S| + 1 steps.

Analogously, consider a CTL formula f defined over (V » V’) » {x} with x being an

additional non-interpreted atomic proposition. For some CTL formula Y over (V » V’) we

recursively define a sequence of CTL formulae fi(Y) with fo(Y) = f(x ≠ Y) and

fi+1(Y) = f(x ≠ fi(Y)). The formula sequence is monotonic if [fi(Y)] Œ [fi+1(Y)] (or

[fi(Y)] Œ [fi+1(Y)]) for each i. The fixed points mY.f(Y) and nY.f(Y) for this sequence are

similarly computed in at most |S| + 1 steps. For fE(p»q) = q ¤ (p ⁄ EX x) the sequence

fi
E(p»q)(false) is monotonically increasing: q, q ⁄ (p⁄EXq), q ⁄ (p⁄EX (q ⁄ (p⁄EX q))), …

Similarly we observe that for fA(p»q) = q ¤ (p ⁄ AX x) the sequence fi
A(p»q)(true) is

monotonically decreasing.

From the explicit model checking algorithm the following equivalences can be derived:

K’, s’ 6= p ñ s’ œ [p]

K’, s’ 6= Ÿp ñ s’ œ [Ÿp]

K’, s’ 6= p ⁄ q ñ s’ œ [p ⁄ q]

K’, s’ 6= EX p ñ s’ œ [$V’.(p(V ≠ V’) ⁄ R’)]

K’, s’ 6= E(p U q) ñ s’ œ [mY.(q ¤ (p ⁄ EX Y))]

K’, s’ 6= A(p U q) ñ s’ œ [nY.(q ¤ (p ⁄ AX Y))], where AX Y = ŸEX ŸY

These equivalences define the mapping QBFCTL between CTL and QBF formulae over V.

Hence, the original model checking problem K, s 6= p can be reduced to the symbolic

model checking problem of verifying whether qs œ [QBFCTL(p)]. The cost of the

10 2 Background on Formal Methods

symbolic model checking problem boils down to the cost of manipulating QBF formulae

by computing their conjunctions, disjunctions, negations, etc.

2.4 Ordered Binary Decision Diagrams

Many symbolic model checkers including that of Statemate use a graph-based data

structure coined ordered binary decision diagram (OBDD) for representing Boolean

functions. Algorithms that allow efficient manipulation (composition, conjunction,

negation, etc.) of several Boolean formulae represented as OBDD’s are described in

[Meinel, C. and T. Theobald 1998].

Consider a Boolean function f given by a propositional formula over the set of atomic

propositions X = {x1, …, xn} » {0, 1}. The Shannon expansion of f around the variable

xi is the function f’ = (xi ⁄ f(xi ≠ true)) ¤ (Ÿxi ⁄ f(xi ≠ false)). Clearly, f and f’ are

equivalent.

The initial OBDD of the function f with respect to a variable ordering p (p(1) < p(2) …) is

recursively obtained by applying the following procedure. An OBDD is a binary tree with

nodes from X. The root node xp(1) is associated with the original function f. Each node xp(i)

associated with some function g and g is connected by the 0-edge and by the 1-edge to

the nodes xp(i+1) associated with the left side g(xp(i) ≠ false) and the right side

g(xp(i) ≠ true) of the Shannon extension of g, accordingly. The value of the function for

the given assignment a can be found through the top-down traversal of the OBDD in that

the 0-edge or the 1-edge are taken at a node xi if a(xi) = false or a(xi) = true, accordingly.

As an example consider the function f = (x1 ⁄ x2) ¤ (x3 ⁄ x4) with the ordering

p(1) < p(2) < p(3) < p(4) whose initial OBDD is depicted in Figure 3 (0-edges are

represented by dash lines).

 x1

x2 x2

x3

x3

x3

x3

x4

0

0

x4

0

1

x4

0

0

x4

0

1

x4

0

0

x4

0

1

x4

1

1

x4

1

1

(0)

(2)

(0)

(2)

(0)

(2)

(1)

(1)

(1)

(3)

(3)

(3)

(3)

(4)

(5)

Figure 3: Initial OBDD for (x1 Ÿ x2) ⁄ (x3 Ÿ x4)
with p(1) < p(2) < p(3) < p(4)

2 Background on Formal Methods 11

An OBDD can be reduced to the canonical form as described by Bryant [1986] (see

Figure 4). To this end, each node is assigned a virtual id (parenthesized number in the

Figure above) based on their child node values in a bottom-up manner. A new id is

created for a node labeled xp(i) with a previously unseen child id pair which is captured in

a two-dimensional array id_table[0-child(xi)][1-child(xi)]. Each id stands for a unique

Boolean function, such that several nodes with the same id are replaced by a single node

which makes sure that equivalent sub-functions are computed only once by the OBDD.

The resulting reduced OBDD is optimal for the given variable ordering in that it does not

contain any isomorphic subtrees computing identical Boolean functions. Figure 5 depicts

the canonical (reduced) form of the sample OBDD of Figure 3. An interesting peculiarity

of canonical OBDD’s consists in that their size highly depends on the chosen variable

01. the id of a leaf node is its Boolean value (0 or 1)
02. maxid ú 1
03. for each non-leaf node xp(i)
04. if id(0-child(xp(i)) = id(0-child(xp(i)) then
05. id(xp(i)) ú id(0-child(xp(i))
06. else if id_table[id(0-child(xp(i))][id(1-child(xp(i))] ∫ nil then
07. id(xp(i)) ú id_table[id(0-child(xp(i))][id(1-child(xp(i))]
08. else
09. maxid ú maxid + 1
10. id(xp(i)) ú maxid
11. id_table[id(0-child(xp(i))][id(1-child(xp(i))] ú maxid
12. end if
13. end for
14. replace all nodes with the same id by a single node
15. label the two leaf nodes 0 and 1, correspondingly
16. for k ú 2 to maxid
17. label the node k as xm where m = max { p(i)| id(xp(i)) = k}
18. end for

Figure 4: OBDD Reduction Algorithm

1 0

x4
(2)

x3
(3)

x2
(4)

x1 (5)

Figure 5: Canonical OBDD for
(x1 Ÿ x2) ⁄ (x3 Ÿ x4) with
p(1) < p(2) < p(3) < p(4)

1 0

x4

x3 x3

x1

x2 x2

Figure 6: Canonical OBDD for
(x1 Ÿ x2) ⁄ (x3 Ÿ x4) with
p(1) < p(3) < p(2) < p(4)

12 2 Background on Formal Methods

ordering. As an example consider the canonical OBDD shown in Figure 6 which

computes the same function as the left-hand example relatively to slightly different

variable ordering, where x2 and x3 are swapped: This ordering is certainly less preferable

because the OBDD size increases by two nodes and four edges, accordingly. OBDD-

based symbolic model checking works with the OBDD representation of the QBF-

encoded Kripke structure K’. It outperforms the explicit model checking algorithm when

it “guesses” a good variable ordering.

There are several heuristics for finding a good variable ordering to minimize an input

OBDD. Among most popular reordering heuristics that are also used in Statemate we

would like to mention the sifting algorithm [Rudell 1993] and the window technique

[Fujita et al. 1991]. The sifting algorithm picks one variable xi and tries out all of its

possible orderings relatively to the remaining variables whose order remains fixed (i.e.,

first p1(i) < p1(1) < p1(2) < p1 (3) …, second p2(1) < p2(i) < p2(2) < p2(3) …, third

p3(1) < p3 (2) < p3(i) < p3(3) …, and so on.). The window technique looks for an optimal

OBDD using a sliding window of k variables and trying out all k-factorial permutations of

the variables within the window.

2.5 State-and-Activity Charts

The following brief introduction to state-and-activity charts is based on [Harel and

Naamad 1996] (see [Harel and Politi 1998] for the complete Statemate semantics). A

system model is based on a hierarchical activitychart, in which the functional capabilities

of the system are captured by activities, and the data elements and signals that can flow

between them. The semantics of this functional description is that information can flow,

but it does not specify what will happen, when, or why. These behavioral aspects except

for external, nondeterministic activities are specified in statecharts, sometimes called

control activities, usually one for each activity in the activitychart.

CLIENT_SERVER_APPLICTION

@CLIENT_SERVER_APPLICATION_CTRL

FAILURE_PRONE_ENVIRONMENT
CLIENT_CRASH

SERVER_CRASH

NETWORK_OUTAGE, TIMEOUT

CLIENT_SERVER_APPLICTION

@CLIENT_SERVER_APPLICATION_CTRL

FAILURE_PRONE_ENVIRONMENT
CLIENT_CRASH

SERVER_CRASH

NETWORK_OUTAGE, TIMEOUT

Figure 7: Sample Activitychart

2 Background on Formal Methods 13

Figure 7 shows a sample activitychart. The activitychart consists of the actual activity

client-server-application and an external activity (the dashed rectangle) that supplies the

failure events client-crash, server-crash, network-outage, and timeout as nondeterministic

input. The behavior of the client-server-application is determined by the control activity

client-server-application-ctrl as indicated by the rounded rectangle. The statechart (see

Figure 8) of this control activity is a subchart of the activitychart, which is declared

through the prefix “@”. The detailed behavior of the statechart will be explained in the

following subsections.

Statecharts are finite state automata (FSA) with additional features:

• Event-condition-action rules (ECA rules, written in the form e[c]/a as

annotations of state transitions) determine that in response to an occurrence of the

event e the system executes within a step the action a, moves from the source state

to the target state of the transition when the condition c is true. ECA-rules can also

be associated with a state, which defines its static reactions.

• Nesting of entire statecharts into subordinate states is a mechanism for

specification refinement and composability.

• Orthogonal components (essentially cross products of automata) express

parallelism of the system.

CLIENT_SERVER_APPLICATION_CTRL

CLIENT

CLIENT_CRASHED

CLIENT_CRASH

not CLIENT_CRASH

SERVER_CRASHED

SERVER_CRASH

not SERVER_CRASH

INITIALIZED

/Iõ0;REQ_NRõ3

REQUESTING
/REQ[i]

not REP[i] and TIMEOUT/REQ[I]
T

[I=REQ _NR]

REP[i]/IõI+1

LISTENING

(not NETWORK_OUATGE and REQ[I])/
ENQUEUE(Q, REQ[I])

EXECUTING

[not EMPTY(Q)]/
DEQUEUE(Q, CURR)

/if CURR=REQ[I]
then REP[I]

SERVER

IDLE

LISTENER EXECUTOR

SERVER_SITE

CLIENT_SITE

CLIENT_SERVER_APPLICATION_CTRL

CLIENT

CLIENT_CRASHED

CLIENT_CRASH

not CLIENT_CRASH

SERVER_CRASHED

SERVER_CRASH

not SERVER_CRASH

INITIALIZED

/Iõ0;REQ_NRõ3

REQUESTING
/REQ[i]

not REP[i] and TIMEOUT/REQ[I]
T T

[I=REQ _NR]

REP[i]/IõI+1

LISTENING

(not NETWORK_OUATGE and REQ[I])/
ENQUEUE(Q, REQ[I])

EXECUTING

[not EMPTY(Q)]/
DEQUEUE(Q, CURR)

/if CURR=REQ[I]
then REP[I]

SERVER

IDLE

LISTENER EXECUTOR

SERVER_SITE

CLIENT_SITE

Figure 8: Sample Statechart

14 2 Background on Formal Methods

For example, in the statechart of Figure 8 the transition of the executor from the state idle

to the executing state fires if the condition not empty(q) holds, and then triggers the action

dequeue(q, curr). The entire statechart for the executor is a substate of the server; and the

executor and the listener are orthogonal components, running in parallel with

synchronization based on the events, conditions, and actions on globally shared variables,

i.e., the request queue in this particular case.

There are three types of states in a statechart: OR-states, AND-states, and basic states.

All states together form a tree. OR-states have substates that are related to each other by

exclusive or, whereas AND-states enclose orthogonal substates (separated by dash-lined

boundaries) related by and. An orthogonal substate is an OR-state that usually contains

other substates. States that contain substates are sometimes called superstates. Basic

states have no substates, and are the leaves of the state hierarchy. Figure 9 depicts the

state hierarchy of the sample statechart specification of Figure 8.

When an AND state is entered, all its orthogonal substates are entered, too. When an OR

state is being entered (activated), its default substate is being entered at the same time.

The default substate is defined by specifying it as a target of a special default transition

without a source state (e.g., the substate initialized of the state client in Figure 8). The set

of currently entered (active) states is called a state configuration. The state configuration

is closed upwards in the sense that if a state is active then so is its parent state. Thus, the

set of the active basic states called basic configuration suffices to describe the complete

state configuration.

The formal definition of a statechart is provided as a tuple (S, SM, R, SR, DT, T, D, ES),

where

• S is the set of statechart states

CLIENT_SERVER_APPLICATION_CTRL (Ÿ)

SERVER_SITE (⁄) CLIENT_SITE (⁄)

SERVER (Ÿ) SERVER_CRASHED (^)

LISTENER (⁄)

LISTENING (^) IDLE (^)

EXECUTOR (⁄)

EXECUTING (^)

CLIENT_CRASHED (^)CLIENT (⁄)

INITIALIZED (^) REQUESTING (^)

^ ⁄ ŸLEAF XOR AND Legend:

Figure 9: State Hierarchy of the Statechart

2 Background on Formal Methods 15

• SM Œ S µ {AND, OR, basic} is the state type relationship

• SR Œ S µ S is the substate relationship with (p, q) œ SR if p is a substate of q, we

write p
SR
< q for (p, q) œ SR; SR* is the transitive closure of SR, we write p

*SR
< q

for (p, q) œ SR*; the root state is R
*

max()
SR

S=

• DT Œ S µ L and T Œ S µ S µ L are the sets of default and regular transitions,

respectively, with labels of the form e[c]/a from the label set L

• D is the finite set of Boolean variables representing individual bits of data items

along with events and conditions

• ES Œ D is the set of external stimuli out of control of the system.

2.5.1 Statechart State Configurations

Given the statechart state set S, the set of state configurations SC Œ 2S is computed in a

top-down manner by flattening the statechart. We define a function confset: S ö 2S. For

a state s œ S the expression confset(s) computes the configuration set of the sub-statechart

rooted in s. The expression confset(R) corresponds to the set of all syntactically possible

state configurations of the original statechart.

In the definition of the function confset we use a cross union operator ¥ that we

introduce to compute the set system consisting of pairwise unions of the elements of two

other systems A and B, i.e., A µ B = { a » b | a œ A and b œ B }

For an s œ S, the expression confset(s) is recursively computed as:

• confset(s) = (
(',)

(')
s s SR

confset s
∈
∪) µ {{s}}, if s is an OR-state.

• confset(s) = (
(',)

(')
s s SR

confset s
∈

µ) µ {{s}}, if s is an AND-state.

• confset(s) = {{s}}, if s is a basic state.

For instance, the configuration set of the sample statechart of Figure 8 is computed by

resolving the following equations:

SC = confset(client_server_application_ctrl) = confset(server_site) µ

 confset(client_site) µ

 {{client_server_application_ctrl}}

confset(server_site) = (confset(server) » confset(server_crashed)) µ {{server_site}}

confset(server) = confset(listener) µ confset(executor) µ {server}

16 2 Background on Formal Methods

confset(listener) = confset(listening) µ {{listener}}

confset(listening) = {{listening}}

confset(executor) = (confset(idle) » confset(executing)) µ {{executor}}

confset(idle) = {{idle}}

confset(executing) = {{executing}}

confset(server_crashed) = {{server_crashed}}

confset(client_site) = (confset(client) » confset(client_crashed)) µ {{client_site}}

confset(client) = (confset(initialized) » confset(requesting)) µ {{client}}

confset(initialized) = {{initialized}}

confset(requesting) = {{requesting}}

confset(client_crashed) = {{client_crashed}}

The default subconfiguration of a state is defined by the function defaultconf: S ö 2S:

• defaultconf(s) = {s} » (
'

(')
SR

s s

defaultconf s
<
∪), if s is an AND-state.

• defaultconf(s) = {s} » defaultconf(s’), if s is an OR-state, and s’ is the default

substate of s (i.e., s’
SR
< s and there is a (s’, l) œ DT).

• defaultconf(s) = {s}, if s is a basic state.

The initial configuration of the statechart is given by conf0 = defaultconf(R), which is an

implication of entering the root state. In Figure 8, the system will enter in the initial step

the following states: The root state client-server-application-ctrl, its orthogonal substates

client-site and server-site, the default substates of the client and server-site client and

server accordingly, the client’s default basic state initialized, the server’s orthogonal

components listener and executor, and finally their corresponding default substates

listening and idle.

2.5.2 Statechart Transitions

There are several subtleties of transition behavior stemming from nesting, i.e., when the

source and the target states have different parent states. Entering the target state implies

entering of its previously inactive ancestors in addition to the default substate. If the state

is left, then so are all its descendant states. This implies that the state can be left, even if it

is visually presented as a sink. Moreover, if the transition crosses boundaries of any

ancestor states of the source state (i.e., the target state is neither a source state sibling nor

a descendant of a source state sibling), these ancestor states are left as well. In order to

2 Background on Formal Methods 17

describe precisely which states would be left and entered if a transition tr = (s, t, l) œ T

would fire in some configuration conf with s œ conf, we need to provide definitions of the

following auxiliary structures:

• The set branch(s) = {s} » {p œ S | s
*SR

< p} comprises the nodes of the branch

from the root down to the state s including s on the state hierarchy. The states

from branch(s) are always implicitly active when s is active.

• The set tree(s) = {s} » {p œ S | p
*SR

< s} consists of the nodes of the complete

subtree rooted in the node s, and s itself. These nodes are implicitly left whenever

s is left.

The set EN(tr, conf) of the states entered due to tr is computed in three steps:

1. EN1 ú (branch(t) \ branch(s)) » defaultconf(t)

2. EN2 ú «; missed_orth ú «;

for each AND-state ands œ EN1

 missed_orth ú missed_orth » {orthc | orthc
SR
< ands and orthc – EN1}

for each orthc œ missed_orth

 EN2 ú EN2 » default(orthc)

(These for-loops are necessary when tr directly enters a substate that has one or

more AND-states as ancestors because their orthogonal components aside the

branch of the target state still need to be activated)

3. EN(tr, conf) ú EN1 » EN2

The set EX(tr, conf) of the states exited due to tr is defined as:

1. EX(tr, conf) = conf \ (conf … EN(tr, conf)), if s ∫ t neither
*SR

s t< nor
*SR

t s<

2. EX(tr, conf) = conf … tree(
*

max
SR

{s, t}), otherwise

2.5.3 Statechart Textual Expression Language

ECA labels are written in the statechart textual expression language for event,

condition, and action expressions. An event is conceptually different from a condition in

that it lasts only for a single step unless explicitly internally re-generated during the step

or re-supplied by the environment, whereas the condition keeps its value until explicitly

changed. In addition to user-defined events and conditions, Statemate defines a number of

system events and conditions, called condition and event operators, respectively. The

18 2 Background on Formal Methods

configuration-related events exited(s) (abbreviated ex(s)) and entered(t) (abbreviated

en(t)) fire when s is left and t is entered (regardless whether explicitly or implicitly). A

counterpart condition in(s) is true if s is active. The event-array-related-events any(arr)

and all(arr) are syntactical sugar for event expressions arr[1] or arr[2] … or arr[n] and

arr[1] and arr[2] … and arr[n], correspondingly. The activity-related events started(act)

(abbreviated st(act))and stopped(act) (abbreviated sp(act)) are generated when an activity

is started and terminated by an action part of some transition. We will often use the event

written(d) (abbreviated wr(X)) when an action assigns a value to X to show that data is

written exactly once.

An event expression is defined as propositional formulae over atomic events. A

condition expression is analogously defined as propositional formulae over atomic

conditions. An atomic event is either an atomic proposition (interpreted as “the event has

been generated”) or an event operator. An atomic condition is an atomic proposition or a

condition operator. We consider another type of atomic conditions that are given by the

user in the form of comparisons of data-items (=, <, etc) encoded in ALU-style

propositional formulae over individual bits. For instance, when two n-bit numbers d and

d’ need to be tested for equality, this is converted into the formula
0

n

i=
⁄Ÿ(di ¤ d’i). Let E

and C be event and condition expressions, accordingly. The event-condition-part of a

transition label is an event-condition expression (ECX) whose syntax is recursively

defined as follows:

• E[C] is an ECX

• If E is omitted, [C] is a syntactical sugar for true[C]

• If C is omitted, E is a syntactical sugar for E[true]

• An empty ECX is a syntactical sugar for true[true]

• If ecx1 and ecx2 are ECX, then so are ecx1 or ecx2, ecx1 xor ecx2, and ecx1 and ecx2.

Note that the expression e1 or e2[c2] allows the transition to fire when e1 occurs or when

e2 is sensed while c2 is true, which is different from the expression (e1 or e2)[c2] that fires

only while c2 is true for either event occurrences.

An action can be as simple as generating an internal output event (written as …/e) or a

complex action sequence including IF and WHILE statements. Higher level control

activities usually orchestrate subordinate activities by starting (…/st!(act)) and stopping

them (…/sp!(act)), accordingly.

2 Background on Formal Methods 19

2.5.4 Statechart Semantics

The behavior of a system (S, SM, R, SR, DT, T, D, ES) is a set of possible runs, each

representing the responses of the system to a sequence of external stimuli of ES (i.e.,

external events, conditions, and data-items) generated by its environment. A run consists

of a series of snapshots of the system’s situation; such a snapshot is called a status that

consists of the state configuration and the execution context. An execution context is a

valuation of events, conditions, and data-items. That is, a status is element of

statusset = confset(R)µ{ val | val: D ö {true, false}}. The initial status is given by the

initial configuration and the default values of the data-items and conditions. The status

changes after executing a step. At the beginning of each step, the environment supplies

the system under description with external stimuli. These, together with internal changes

that occurred in the system during the previous step, trigger transitions between states.

Note that from the perspective of model checking that exhaustively tests all possible

situations, external stimuli are just convenient syntactical sugar elements. We will show

later in this section that we need to consider only internal data and signals because

external stimuli are equivalent to internal events, conditions and variable whose values

are generated in a nondeterministic way.

To perform the i+1st step, the system evaluates the status statusi = (confi, vali) after the ith

step in the following manner. The system identifies the set of enabled transitions

ETi = { (source, target, ecx/action) œ T | source œ confi and eval(ecx) = true}, where the

function eval: ECX µ statusset ö {true, false} is defined as follows:

• eval(ecx1 op ecx2, confi, vali) = eval(ecx1, confi, vali) op eval(ecx2, confi, vali) for

op œ{ and, nand, or, nor, xor}

• eval(not ecx, confi, vali) = Ÿeval(ecx, confi, vali).

• eval(E[C], confi, vali) = eval(E, confi, vali) ⁄ eval(C, confi, vali)

• eval(in(s), confi, vali) = true ‹ s œ confi

• eval(d, confi, vali) = vali(d), for d œ D.

• eval(const, confi, vali) = const, for const œ {true, false}

Clearly, there may be multiple enabled transitions. However, in contrast to an FSA, this

does not necessarily imply a nondeterministic situation. An enabled transition that implies

leaving a higher-level state of the statechart hierarchy is prioritized over enabled

transitions that imply leaving any descendent states (transition priority rule). Just

enabled transitions whose effect leads to leaving the same state at the highest level are

20 2 Background on Formal Methods

called to be in conflict, and constitute a nondeterministic situation that is randomly

resolved by Statemate. Enabled non-conflict transitions deterministically fire at once

(greediness property).

For any two different transitions tr and tr’ from ETi we define the transition priority

relation
TP
< by tr

TP
< tr’ if

*
max

SR
(EX(tr, confi))

*SR
<

*
max

SR
(EX(tr’, confi)). The transitions tr

and tr’ are in conflict if
*

max
SR

(EX(tr, confi)) =
*

max
SR

(EX(tr’, confi)), which we express as

tr
TP
= tr’. If tri and trj are incomparable, i.e., EX(tr, confi) … EX(tr’, confi) = «, then tri and

trj will fire simultaneously unless they are suppressed by some other prioritized transition.

The possible maximum subsets of enabled transitions are computed as follows:

1. NSTi = { tr œ ETi | there is no tr’ œ ETi with tr
TP
< tr’ } is the set of non-

suppressed transitions in statusi.

2. NSTi[tr] = { tr’ œ NSTi | tr
TP
= tr’} is the equivalence class of transitions that are in

conflict with tr including the transition tr itself. There are k § #NSTi such

partitions. If #NSTi[tr] > 1, the statechart is nondeterministic. Note that the

removal of the suppressed transitions in the previous step was correct by the

following argument. If tr’’
TP
< tr’ for some tr’ œ #NSTi[tr], then the property

tr’’
TP
< tr’ holds for all tr’ œ #NSTi[tr]. Regardless of the nondeterministic choice

of a transition from NSTi[tr], a suppressed transition always remains suppressed.

3. FIRESETSi =
0

[]
k

i j
j

NST tr
=

µ is the set of maximum transition subsets in statusi.

Each fs œ FIRESETSi determines an alternative successor status (confi+1, vali+1) for statusi

that is constructed by the function next(confi, vali, fs) as follows:

1. The set ENfs ú ()
tr fs

EN tr
∈
∪ contains the states that were entered through

transitions. For each states s œ ENfs we set vali+1(en(s)) ú true; otherwise,

vali+1(en(s)) ú false

2. The set EXfs ú ()
tr fs

EX tr
∈
∪ contains the states that were exited through transitions.

For each states s œ ENfs we set vali+1(ex(s)) ú true; otherwise, vali+1(ex(s)) ú

false

2 Background on Formal Methods 21

3. confi+1 ú ()
fss EN

branch s
∈
∪

4. The action set ACTfs = {a | (s,t, ecx/a) œ fs} determines the rest of the valuation

function vali+1. For instance, vali+1(e) ú true if e is generated by some a œ ACTfs

and vali+1(e) ú false, otherwise. The valuation of data-items and conditions is

obtained by evaluating the action expressions. Clearly, if d œ D is not affected by

any action, we obtain vali+1(d) ú vali(d).

The image set step(confi, vali) = { next(confi, vali, fs) | fs œ FIRESETSi} defines possible

successor statuses.

The system terminates either explicitly when some higher-level activity calls action sp! or

implicitly by entering a termination connector (a circle labeled T in Figure 8). Upon

termination, the state configuration becomes an empty set, and the control activity

remains terminated until explicitly restarted by some higher-level activity through the

action st!.

At this point we are able to construct the Kripke structure Ksc = (Ssc, Rsc, Lsc) of the

statechart and apply model checking as described in Sections 2.2 through 2.4:

• Ssc = statusset,

• Rsc = {(sti, sti+1) | sti+1 œ step(confi, vali)}

• Lsc
 : Ssc ä D ö {true, false} with Lsc(conf, val, d) = val(d)

Last but not least, we show how advanced Statemate features such as external input and

static reactions are mapped to basic statechart elements. In Figure 10, you may see the

conversion of a state with three static reactions to an equivalent statechart without static

reactions. A statechart specification (with the root state R) using external events e1 and e2

can be converted to an equivalent statechart (with the new root state R’) that has an

A

A

e1[c1]/act1

e2[c2]/act2

e3[c3]/act3

static reactions

e1[c1]/act1 e2[c2]/act2 e3[c3]/act3

A

A

e1[c1]/act1

e2[c2]/act2

e3[c3]/act3

static reactions

e1[c1]/act1 e2[c2]/act2 e3[c3]/act3

Figure 10: Conversion of Static Reactions

22 2 Background on Formal Methods

additional orthogonal component for each external event (or data-item bit) that generates

them nondetermistically as depicted in Figure 11.

2.5.5 Sample Scenario

Now we are ready to describe how the model in Figure 8 works. The system starts up in

the initial configuration as shown above. The single-threaded client is going to submit

three requests modeled as a bounded event array req to the server, which is controlled by

the integer variable req_nr. Thus, we can immediately verify a simple CTL formula

AG i § req_nr, i.e., the counter i never exceeds req_nr. The server owns two threads

(orthogonal components): the listener that accepts and queues client requests, and the

executor responsible for the queued request execution.

Regardless of the application progress, normal operation of the client and the server is

interrupted when the corresponding crash events are sensed due to the transition priority

rule, which can be expressed in CTL as AG (server_crash ¨ AX in(server_crashed)).

Normal operation of the component is resumed as soon as the external environment stops

supplying the crash event. More precisely, the following CTL formula holds for the

server: AG (server_crash ⁄ AX Ÿserver_crash Ø AX (AX (in(listening) ⁄ in(idle))).

With the second step during normal operation, the client moves from the state initialized

to the state requesting and generates the 0th element of the event array req; if the queue Q

is not empty, the server dequeues and executes a request in the state executing in the very

same step. When there is no network_outage, the server adds req[0] to Q with the third

step, whereas the server checks if the reply rep[0] for the client request is already

available and returns it to the idle state (note that this is an unconditional transition with a

conditional reply action). On the client side, nothing changes until the step after the

corresponding reply has been generated by the server or the external event timeout has

been sensed. In the former case, the client prepares the next request and returns to the

R

R’

/e1
/e2

R

Figure 11: Conversion of External Stimuli

2 Background on Formal Methods 23

state initialized; in the latter case, the original request is resubmitted. The statechart

terminates when the request counter i has reached the value of req_nr, and the

termination connector is entered. Obviously, there is an execution path with a finite

number of external failure events, and the following formula must hold:

EF (i=req_nr ⁄ in(T)).

2.5.6 Statechart Time Models

Statemate supports two models of timing: synchronous and asynchronous. The

synchronous time model assumes that the system executes a single step every time unit,

reacting to all the external changes that occur in the one time unit that elapsed since the

completion of the previous step. Prior to computing a new step the system always senses

for external stimuli. The asynchronous time model assumes that the system reacts

whenever an external change occurs, allowing several external changes to occur

simultaneously and, most importantly, allowing several steps to take place within a single

point in time. Such a collection of steps is sometimes called a superstep. New external

changes are not sensed until the superstep completes.

At first glance, one might think that the asynchronous time model is the best choice for

modeling an asynchronous environment like a Web service with virtually all components

residing on distinct machines. However, it turns out that the asynchronous model

unnecessarily complicates modeling arbitrary failure situations because a superstep, once

started, is executed atomically. In the sample statechart of Figure 8, the client would

never crash in the state initialized because this state is left within the same superstep via

the unconditional transition into the state requesting, whereas the server would never fail

in the state executing because it would immediately go back to the state idle. In a real

world model we have to allow failures to occur in each and every state configuration, i.e.,

even between micro-steps. In order to achieve this with the asynchronous model, we

would have to add to each transition an external event in a conjunctive manner, such that

the model checker will consider also runs in which a super step comprises only one single

step by setting such an event initially to false. Besides the fact that this method is far from

elegant, one should also consider that the complexity of model checking is O(n2) in the

size n of the specification that in turn grows exponentially with each new Boolean

variable. As the result, this discussion suggested using the synchronous model. However,

in the specifications we do not assume that any changes on different components have to

24 2 Background on Formal Methods

take place at the same time, and we do not pass time parameters across component

boundaries either. Thus, we do not lose generality.

2.5.7 Generic Activities

Statemate supports modularized specification designs and module reusability. It provides

a notion of a generic activity. A generic activity exposes a set of formal in- and output

parameters, which have to be bound to concrete variables (events, conditions, etc.)

whenever the activity is instantiated (reused) just like arguments for a function call in a

programming language.

3 Background on Recovery Technology 25

3. Background on Recovery Technology
“It's not whether you get knocked down. It's whether you get up again.” - Vince Lombardi

It is sad but true that there is no large-scale software without bugs. The only response

consists in modularizing software into components thereby trying to isolate bugs and

limit their impact on the overall system. Software designers pay special attention to

keeping critical components, e.g., those responsible for durable changes on a hard drive

as small as possible thereby reducing the likelihood of bug occurrences in them.

Operations relevant for the component state are logged in the order of occurrence on

component’s persistent storage. As soon as the failure is detected through the runtime

environment (e.g., a virtual machine or a recovery manager) abnormally terminates and

restarts the component, i.e., the runtime environment triggers a soft crash of the

component. A component terminating upon detecting a failure is called fail-stop. The

task of recovery is to recreate the most recent component state that is consistent with the

states of other components.

3.1 Failure Model

It is very important to understand when recovery is applicable. Recovery deals only with

omission failures, where the system fails to execute some action. From the recovery

standpoint, two relevant classes of software bugs may lead to an omission failure [Gray

and Reuter 1993]:

• Bohrbugs are deterministic programming errors that can be reproduced after their

first occurrence repeatedly such that they are normally eliminated during

development and testing phases. In some cases, even Bohrbugs pass quality

assurance undetected and when such an error occurs in a released production

system, recovery will always drive the system into the same problem. This makes

it impossible to resume normal operation automatically but the log sequence

containing an entire execution path leading to the Bohrbug will help developers

rectify the system.

• Heisenbugs occur only under specific hard-to-reproduce conditions usually

during a peak load, which makes them appear nondeterministic from the system

operation and debugging perspectives. Recovery “works” when a Heisenbug does

not corrupt stable state and because a Heisenbug is unlikely to recur after the

subsequent restart. This does not imply that the system cannot fail during recovery

26 3 Background on Recovery Technology

again but it is almost impossible for the system to fail because of the original

Heisenbug several times in a row.

A number of failures are outside the recovery scope and consequently are not covered in

this thesis. They are subject to other areas of fault-tolerant computing.

• Recovery does not handle commission, so-called Byzantine, faults typically

caused by malicious code intrusion of the system [Castro and Liskov 1999].

• Recovery usually does not deal with transient hardware failures such as bit flips,

instant network outages etc. These failures are mostly intercepted and masked

either by the hardware-integrated self-correcting code or at the operation system

level (consider, e.g., RAID storage systems [Katz et al. 1989], and the Internet

protocols TCP/IP [Comer 1988]). However, if they are not masked, recovery will

trigger a soft crash.

• Human user faults such as intentionally or unintentionally provided inaccurate

input normally cannot be handled automatically. Some systems are able to assist

system administrators by suggesting compensating transactions that would restore

a valid system state [Korth et al. 1990].

• Recovery depends on correctly functioning stable storage hardware. High

recovery log availability can be achieved by replication. Recovery cannot be

performed if all replicas with state and logging information corrupt

simultaneously.

• Faulty recovery code leads to durable system failures. Even worse, it can create an

inconsistent state without any further notice. This is why it is so important that

recovery algorithms be verified.

3.2 Data Recovery

Database systems provide durable data storage service for applications. They are large-

scale multi-user systems that are therefore highly optimized for response time. The most

significant performance bottleneck is exhibited by the hardware used to store data

persistently. An access to secondary storage providing persistence, typically a magnetic

disk, also called hard disk, is five to six orders of magnitude slower than a main

memory access. Thus, database systems are geared to reduce the number of disk I/O’s.

Database systems physically arrange logical data units and derived data structures such

as indices in uniquely identified fixed-size blocks called disk pages. The cost to access a

3 Background on Recovery Technology 27

disk page of several KB is one order of magnitude higher than the cost of fetching it into

main memory. A typical disk page size ranges from two to eight KB. In order to save disk

I/O’s the database system caches a subset of disk pages in main memory and lazily writes

them back, e.g., when a cached page needs to be dropped to accommodate a new page.

The disk-resident pages constitute the stable state of a database. The non-cached fraction

of the stable state and the cached pages define altogether the current state of the

database. The fact that changes made by completed transactions may be missing in the

stable state, whereas uncommitted changes may have been made persistent, is dealt with

by transaction recovery.

Database systems use high-level logical operations coined access methods for reading

and manipulating logical data units (e.g., tuples). A logical operation usually implies

accessing multiple pages. For example, an update of a key attribute of a tuple in a sorted

table may reposition the tuple on its original page, or move it to a different page, and this

also potentially incurs updating pointers in indexing structures.

Transaction atomicity and persistence is usually implemented by logging data update

operations. The recovery log is organized as a list of sequence-numbered entries. A log

entry contains information needed for redoing and undoing the operation logged. There

are three ways to log depending on the system-level of operations [Gray and Reuter

1993]:

• (Physical) Logical operations are considered as a sequence of physical page

writes (operations). The before- and the after-image of each page (fragment) are

logged for undo and redo, respectively, which makes recovery of a page very

simple but log entries consume amount of space that is too large relatively to

actually updated parts of the pages.

• (Logical) High-level operations are logged along with its parameters. High-level

operations have to be designed in a way that an inverse operation for undo is

always computable. Logical log entries are compact but redo recovery becomes

more complicated since a single operation involves multiple pages, and

conventional redo recovery of the given operation requires replaying of all

previous logical operations in the original order. Hence, logical recovery incurs a

much higher I/O load in comparison to physical recovery.

• (Physiological) Physiological logging reconciles both methods above in that it

considers high-level operations as a sequence of logical operations within a single

28 3 Background on Recovery Technology

physical page each, e.g., update the column j of a record at slot i on page p with

the bit vector v, etc. Physiological log entries are compact and redo recovery of a

physiological operation on page p requires replaying of all previous operations on

page p only.

In the following, we sketch an ARIES-style data recovery algorithm [Mohan et al. 1992]

implemented in some commercial database products, e.g., in IBM DB/2 and Microsoft

SQL Server.

Recovery after a crash comprises three passes. In the analysis pass, the entire log is

scanned and ids of encountered transactions are added to the active transaction table

(ATT). When a commit log entry is scanned for a transaction, it is called a winner, and its

id is removed from the ATT. The transactions left in the ATT after the analysis pass are

losers, i.e., incomplete to-be-undone transactions. During the redo pass, recovery

performs a forward scan of the log again and applies physiological redo operations

regardless whether it belongs to a loser or to a winner, which recreates the database state

as of crash. During the undo pass, the log is scanned backwards, and each operation

belonging to a loser transaction is undone.

Physiological and logical operations are usually not idempotent (e.g., insertion of a tuple

into a page). Recovery applied multiple times has to recreate the same committed state

(idempotence) for the database to survive multiple failures. Redo and undo are designed

to test whether the disk page under consideration has already been affected by the given

operation. To provide a testable state, every data page is stamped with the log sequence

number (LSN) of the last operation applied to it. Recovery compares the LSN in the

page header with the LSN of the given log entry in order to determine whether to apply

the logged operation to the page.

As with data pages, initially log entries are created in main memory, in the log buffer;

they are lazily written to disk (stable log) in increasing LSN order. In order to preserve

data recoverability, the log manager has to obey certain rules when it flushes log entries

from the log buffer up to some LSN to disk, which we call force-logging.

• Write-Ahead-Logging. Prior to flushing a disk page from the cache, the log

manager has to make sure that the log entry for the most recent update to this page

and its predecessors are forced to the stable log. Otherwise, undo of uncommitted

changes on this page is impossible.

3 Background on Recovery Technology 29

• Write-On-Commit. Persistence of a committing transaction is achieved by

flushing the commit log entry and all of its preceding entries including those

belonging to yet uncommitted transactions. Otherwise, the committed transaction

cannot be replayed.

The stable log usually resides on a dedicated disk, and in contrast to the data disks, it is

written in an append-only manner. Sequential writes are one order of magnitude faster

than random I/O’s. This is one of the reasons why managing persistence of committed

transactions using a recovery log is more efficient than flushing pages with committed

data, potentially scattered all over the disk.

Fast recovery is crucial for high availability. To speed up recovery, the log manager

periodically determines the smallest LSN’s currently needed for redo and undo,

respectively, and truncates the log part containing the operation with the LSN’s smaller

than the minimum redo and undo LSN’s.

3.3 Distributed Transactions

Many real-world applications must be able to perform transactions that involve multiple

transactional systems. For instance, there are more cross-institutional money orders than

those inside a single bank, and certainly, different banks do not use one central database

server. Guaranteeing the transaction atomicity and persistence in a distributed database

system is more complex because failures usually affect only one or a few of the

participating data servers at once whereas the rest of them remain up and running. A

mechanism is needed to prevent a distributed transaction from being committed partially,

where some data servers commit while the other ones abort updates of the same

transaction. Obviously, the transaction participants have to exchange messages to learn

whether they all are able to commit.

A family of Two-Phase-Commit (2PC) protocols has been developed as a means to

ensure unanimous commit decision among participants of distributed transactions. A

dedicated process or one of the transaction participants is used as a coordinator. When

the application finishes updating data on the participants, it sends the commit request to

the transaction coordinator. In the first voting phase, the coordinator sends a prepare

message to each participant. When every participant has responded with a yes message, it

initiates the second commit phase by sending commit messages; otherwise, it sends abort

messages starting the abort phase. The participants report the completion of the second

30 3 Background on Recovery Technology

phase by an ack message. A particularly interesting variant of 2PC has been adopted for

the industry standard XA [The Open Group 1994].

The statechart specifications of the coordinator and participant behaviors under XA-2PC

are provided in Figure 12 and Figure 13, respectively. They are used as two orthogonal

components of a single statechart that is left out for a better readability. The coordinator

starts the protocol after receiving an app_commit_req message from the application, and

sends back either app_commit_rep or app_abort_rep to report the transaction outcome.

Protocol messages are modeled by event arrays, where an expression msg[i] stands for a

message sent from the coordinator to the ith participant or vice versa, which becomes

clear out of context depending on by what component it is generated. Failures related to

the ith participant are modeled analogously. The coordinator log and the participants log

are represented by the string variables coord_log and part_log[i], accordingly. A forced

write corresponds to an assignment to a log variable. The garbage collector whose effect

COORDINATOR

AWAIT_VOTE

XACT_START

RUNNING

APP_COMMIT_REQ/
PREPARE[1];…;PREPARE[n];

FIRST_PHASE

OK_1

YES[1]

VOTE_1 …

[in(OK_1) and … and in(OK_n)]/
COORD_LOG õ 'COMMIT‘
COMMIT[1];…;COMMIT[n];

AWAIT_ACK

SECOND_PHASE

ACKED_1

ACK[1]

ACK_1 …

COORD_CRASH

COORDINATOR_RECOVERY

not COORD_CRASH
[COORD_LOG = 'COMMIT‘]

not COORD_CRASH
[COORD_LOG = ' ‘]

[in(ACKED_1) and … and in(ACKED_n)]/
APP_COMMIT_REP;

any(NO)/
ABORT[1];…;ABORT[n]
APP_ABORT_REP;

not ACK[1] and
(AWAIT_TM[1] or
YES[1])/
COMMIT[1]

FORGOTTEN

REPEAT_ABORTMSG

…

NO[1] or YES[1]/
ABORT[1];

COORD_CRASH

FORGOTTEN_1

not YES[1] and
AWAIT_TM[1]/
PREPARE[1]

COORDINATOR

AWAIT_VOTE

XACT_START

RUNNING

APP_COMMIT_REQ/
PREPARE[1];…;PREPARE[n];

FIRST_PHASE

OK_1

YES[1]

VOTE_1 …

[in(OK_1) and … and in(OK_n)]/
COORD_LOG õ 'COMMIT‘
COMMIT[1];…;COMMIT[n];

AWAIT_ACK

SECOND_PHASE

ACKED_1

ACK[1]

ACK_1 …

COORD_CRASH

COORDINATOR_RECOVERY

not COORD_CRASH
[COORD_LOG = 'COMMIT‘]

not COORD_CRASH
[COORD_LOG = ' ‘]

[in(ACKED_1) and … and in(ACKED_n)]/
APP_COMMIT_REP;

any(NO)/
ABORT[1];…;ABORT[n]
APP_ABORT_REP;

not ACK[1] and
(AWAIT_TM[1] or
YES[1])/
COMMIT[1]

FORGOTTEN

REPEAT_ABORTMSG

…

NO[1] or YES[1]/
ABORT[1];

COORD_CRASH

FORGOTTEN_1

not YES[1] and
AWAIT_TM[1]/
PREPARE[1]

Figure 12: Statechart of the 2PC Coordinator

3 Background on Recovery Technology 31

consists of resetting a log variable is not shown for better readability. However, we do

consider the implications of an asynchronous garbage collection, i.e., the situations where

only some components truncate their logs whereas the others do not.

The failure model comprises:

• Crashes (occurrences of the external events coord_crash and part_crash[i]

standing for coordinator and participant crashes, accordingly),

• Local transaction aborts at the ith participant, e.g., due to concurrency control

related issues (the external event internal_abort[i])

• Timeouts of a message from the ith participant (the external event await_tm[i]),

• Participant timeouts of the commit decision (the external event prepared_tm[i]),

• Belated or unexpected receiving of a (possibly duplicated) message due to the

periodic resending and crashes.

Prior to sending a yes message, the participant forces the log for the first time because it

has to be able to redo the transaction when it fails in the prepared state. A crash before

this point leads to the transaction abort. A participant cannot recover a prepared

transaction autonomously until it learns the global decision from the coordinator, and it is

blocked as long as the coordinator is down. To regain the recovery autonomicity, the

participant forces the log for the second time upon arrival of the decision message, and

sends an acknowledgement ack[i] in the commit case. This terminates the protocol from

PARTICIPANT_i

RUNNING

PARTICIPANT_RECOVERY

PART_CRASH[i]

WORKING

PREPARED
FORGOTTEN

PREPARE[i]/
PART_LOG[i] õ 'PREPARED‘;
YES[i]

PREPARE[i]/
NO[i];

INTERNAL_ABORT[i]

not COMMIT[i] and
PREPARED_TM[i]/
YES[i]

COMMIT[i]/
PART_LOG[i] õ 'COMMIT‘;
ACK[i]

COMMIT[i]]/
ACK[i]

not PART_CRASH[i]
[PART_LOG[i] != 'PREPARED‘]

not PART_CRASH[i]
[PART_LOG[i] = 'PREPARED‘]

ABORT[i]/
PART_LOG[i] õ ' ‘;

Figure 13: Statechart of the ith 2PC Participant

32 3 Background on Recovery Technology

the participant perspective, and it does no longer prevent the garbage-collection as

indicated by the name of the state forgotten.

The coordinator runs the first phase until all yes messages have arrived or at least one no

message (given by the statechart expression any(no)). The coordinator performs a single

forced write only when it is about to broadcast the positive commit decision to the

participants. When the coordinator recovers from a crash having occurred during the first

phase, it finds no information about the given transaction in the log, and presumes the

abort case. This is safe because no participant is committed yet, and a prepared

participant will eventually receive an abort message after resending its positive vote. For

this behavior, this protocol is referred as to presumed-abort 2PC in the literature. In the

commit case, the coordinator is allowed to terminate the protocol by releasing the

transaction log entries for the garbage collection only after each participant has

acknowledged the commit message. Otherwise, the coordinator would not be able to

repeat the commit message for participants who have not received it because of a failure.

The complexity of a failure-free run of an XA-2PC transaction on n participants

accumulates to 2n + 1 forced writes and 4n messages. Since the ack messages are needed

only for the garbage collection at the coordinator site, they can be sent asynchronously,

e.g., as a batch, or they can be piggybacked on the vote messages of the next transaction

instance. Thus, the communication cost is reduced to 3n messages. If one of the

participants takes the role of the coordinator, we save one set of messages at the

coordinator site, and we save one forced write since we do not need to log transaction

commit twice at the coordinator site. Thus, the overhead of a 2PC commit can be further

reduced to 2n forced writes and 3n-3 messages.

Another interesting alternative variant of 2PC coined presumed-commit 2PC is

optimized for a more frequent commit case. When inquired by a participant, the

coordinator considers the garbage-collected transactions committed, which has the

following implications. The coordinator has to be able to distinguish the “forgotten” state

from the active voting phase, which is accomplished by forcing the transaction

information to the log already at the beginning of the voting phase. The coordinator

forces the log to disk once more prior to sending commit messages. The participant forces

the log on first arrival of a prepare message. However, the participant does not have to

force the log on arrival of a commit message because it can learn from the coordinator

about the transaction outcome during recovery when the commit log entry is missing in

3 Background on Recovery Technology 33

its local log. Due to the commit presumption at the coordinator, the participants also do

not have to send an ack message in response to commit. With one of the n participants

being in the role of the coordinator, a failure-free presumed-commit 2PC transaction runs

with the overhead of n + 1 forced writes and 3n - 3 messages. There are no savings in

rare abort cases because rollback log entries have to be forced and explicit ack messages

are required. Despite the lower complexity of the presumed-commit 2PC in flat database

federations, the presumed-abort 2PC protocol has been chosen for the XA standard due to

the higher optimization potential in connection with local read-only transactions when

used in hierarchical database federations in which a participant may in turn be a

federation [Weikum and Vossen 2001.

This consideration motivated the New Presumed-Commit (NPrC) 2PC protocol

developed by Lampson and Lomet [1993]. In terms of forced writes and messages, NPrC

allows the same optimizations for committing read-only transactions as the XA-2PC

while having the same cost for committing update transactions as the conventional

presumed-commit 2PC. This is achieved at the price of retaining a small amount of non-

collectible garbage information in the log after each crash, which is acceptable since

crashes do not occur frequently.

3.4 Related Work on Application Recovery

Transaction recovery in database systems guarantees committed data to survive system

crashes. However, most components in a multi-tier system including database clients are

not transactional and are not provided with fault-tolerance. When the client application

crashes and comes up again, the database server will not be able to assist it in finding out

whether the crash occurred before, during, or after a certain transaction.

Even if one could disregard client crashes, the database server fails to report the

transaction outcome to the clients waiting for a reply to the request submitted prior to or

during the server outage. Since the server loses the mapping between network

connections and transactions after restart, it normally responds with an error message

“Transaction unknown”. When such a reply comes to a request issued before the commit

request, the client will correctly conclude that the given transaction has been aborted, and

the transaction should be retried. Concerning the final, i.e., the commit request, no clear

conclusion is possible because the server may have failed before flushing the commit log

entry for the transaction in question (the commit case) or afterwards (the abort case).

34 3 Background on Recovery Technology

This problem may affect many clients simultaneously. For each sequential write, the disk

controller has to wait until the position stored in the cursor of the log file rotates under the

disk head. Due to this rotational delay, a single sequential write of n bytes is faster than

multiple sequential writes of the same amount. For this reason, many production servers

commit multiple transactions completed within a reasonable time window by a single

sequential write [Gray and Reuter 1993]. For instance, with the reference performance of

1 million transactions per minute and the time window of 100 ms, more than 1500 clients

may suffer the anomaly described above.

For the true fault-tolerance of multi-tier applications, recovery must be available for each

component and cover its process state, data, and messages.

3.4.1 Queued Transactions

Queued transactions have been one of the most successful solutions to this problem. It

is supported by virtually all commercial vendors of transactional systems. The basis of

this approach is that the client and the server applications communicate through

transactional input and output queues, which allows passing messages within a

transaction. The client application has to be designed to be stateless. The state

information, maintained in the data server, is made available for the client at a specific

location or is encoded into server reply messages.

A transactional queue Q is a persistent structure that consists of a message store and an

integer field lastId with the id the most recent committed message that is/was in the

queue. It supports the following opereations:

• Q.enqueue(in msg, in id) adds a message msg to the tail of Q. Undoing this

operation incurs deleting msg from Q and restoring the previous value of lastId.

• Q.dequeue(out msg, out id) returns the oldest message and its id in the queue Q,

and subsequently deletes it. Undoing this operation incurs restoring the message

in the head of Q.

• Q.getLastId() returns the current value of lastId

• Q.isEmpty() returns true when there are no messages in the queue, and false

otherwise

3 Background on Recovery Technology 35

A client processes some input from the end-user. Instead of directly invoking update

routines on the server, the client creates a request message (typically a call to a batch of

SQL statements stored on the server), enqueues it into the server input queue IQ. The

server behavior outlined in Figure 14 is simple: the server periodically checks the input

queue for new requests (line 1), extracts the oldest request message, executes it, and

enqueue the reply message into the output queue OQ (lines 2-6) inside a single

transaction. Initially, let us assume the queue objects are stored on the server, and so there

01. while(TRUE)
02. {
03. while(IQ.isEmpty()) Sleep(pollingPeriod);
04. BEGIN TRANSACTION;
05. IQ.dequeue(reqMsg, reqId);
06. repMsg = executeRequest(reqMsg)
07. OQ.enqueue(repMsg, reqId);
08. COMMIT TRANSACTION
09. }

Figure 14: Normal Operation of a Queued Transaction Server

01. user_input_label:
02. reqMsg = readEndUserInput();
03. loggedId = readIdFromClientDisk();
04. id = loggedId + 1;
05. forceWriteIdToClientDisk(id);
06. BEGIN TRANSACTION;
07. IQ.enqueue(reqMsg, id);
08. COMMIT TRANSACTION;
09.
10. user_output_label:
11. while (OQ.isEmpty()) Sleep(pollingPeriod);
12. BEGIN TRANSACTION;
13. OQ.dequeue(repMsg, repId);
14. print(repMsg);
15. awaitEndUserAcknowledgement();
16. COMMIT TRANSACTION;
17.
18. request_recovery_on_any_error:
19. loggedId = readIdFromClientDisk();
20. lastInputId = IQ.getLastId();
21. if (loggedId > lastInputId)
22. {
23. print("ERROR: please repeat previous input");
24. goto user_input_label;
25. }
26. lastOutputId = OQ.getLastId();
27. if (loggedId > lastOutputId)
28. goto user_output_label;
29. if (loggedId == lastOutputId && !OQ.isEmpty())
30. goto user_output_label;
31. goto user_input_label;

Figure 15: Behavior of a Stateless Queued Transaction Client

36 3 Background on Recovery Technology

are no distributed transactions. If the transaction fails, the server recovery will undo the

request execution along with the queue operations. Since the failed request is returned to

the head of the input queue during recovery, the request execution will be retried again

during normal operation. Hence, a request message that the client has been able to insert

into the input queue is executed exactly once without any further client intervention. The

client just needs to poll the output queue to pick up the reply when the request execution

eventually succeeds.

A more difficult part of this approach is to ensure that the client whose logic is shown in

Figure 15 (lines 1-16 for normal operation, lines 18-28 for crash recovery) does not try to

insert the same request more than once into the input queue (e.g., when a commit reply is

lost). As a fail-stop process, the client executes the recovery code on every failure

regardless of the failure type (a server-call-timeout or a real client crash).

In the normal operation mode, the client first prompts the end-user for an input that is

used to construct a server request message (line 2). The client reads the id (a sequence

number) of the previous request (loggedId) from a specific location of the client disk, and

force-writes a new id back (lines 3-5). Now, the client is ready to insert the new request

into the server input queue within a transaction (lines 6-8). Subsequently, when the server

reply arrives in the output queue, the client starts a new transaction (lines 12-16) to obtain

the reply, and present it to the end-user. The output transaction is not committed until the

end-user acknowledges the output message.

When the client fails before the input transaction is committed, the recovery code will

detect that loggedId is greater than the last committed request id in the input queue, and it

will ask the user to repeat the input (lines 19-25). If the input transaction is committed,

there are three cases:

01. while(TRUE) // infinite loop
02. {
03. while (OQ.isEmpty()) Sleep(pollingPeriod);
04. BEGIN TRANSACTION;
05. OQ.dequeue();
06. print repMsg;
07. reqMsg = readEndUserInput();
08. IQ.enqueue(reqMsg, id);
09. COMMIT TRANSACTION;
10. }

Figure 16: Normal Operation of a Pseudo-Stateful Queued Transaction Client

3 Background on Recovery Technology 37

• The server is still executing, detected if loggedId is greater than last committed

reply id in the output queue (lastOutputId) (lines 27-28).

• The server completed the request execution, but the output transaction has not

started or it has been aborted if loggedId is equal to lastOutputId and the output

queue is not empty (lines 29-30). Thus, the client may potentially display the

output message several times.

• In the remaining case, if loggedId is equal to lastOutputId and the output queue is

empty, the user acknowledged the output. The user prompts the end-user for the

next input.

The overhead of such an interaction consist of four forced writes: three transaction

commits and a forced write for the request id at the client side.

In a stateful application comprising multiple steps (a session), each subsequent request is

a function of the preceding server reply and a new end-user input. In this application

model, the number of client transactions (and consequently the number of forced writes

per request message) can be reduced by combining the output transaction for the

preceding reply with the input transaction of the subsequent request. Moreover, the

request id logging can be skipped. A new request serves as an implicit acknowledgement

of the previous intermediate reply. The client program is called pseudo-stateful because

it does not maintain its own state although it is used in a stateful application. The server

behavior does not change. After a failure, the client simply resumes normal operation (see

Figure 16) without any specific actions. Exactly-once execution is guaranteed although

some output messages may be displayed multiple times and some input messages may

have to be repeated in the course of the application run. The overhead of a queued

transaction interaction in the pseudo-stateful setting boils down to two forced writes due

to one client-initiated and one server initiated transaction.

Unfortunately, there are two major disadvantages of building applications with queued

transactions:

• It requires an extremely inconvenient, unnatural programming style, which makes

it unsuitable for state-rich applications such as CAD systems and long-running

multiplayer strategy games on the Internet.

• It does not scale with the number of application tiers and components, which is

unacceptable for a Web-scale application.

38 3 Background on Recovery Technology

The latter can be demonstrated by an example application that uses the popular three-tier-

architecture with a client program as a user-frontend, an application server at the middle

tier, and a database backend (see Figure 17). No transactional queues are needed between

the application server and the database because one can enclose their interactions into a

single distributed transaction with the application server acting as both a 2PC coordinator

and 2PC participant.

Hence, you see two forced writes for the client output and input transactions, and one

forced write of the client request id. The 2PC commit with two participants incurs four

forced writes and three additional messages. The overall overhead is too high for a single

end-user request.

3.4.2 Stateful Client Server Application

There is some prior work on masking failures and providing recovery for stateful

applications, but only in limited contexts. Freytag et al. [1987], Lomet and Weikum

[1998], Barga et al. [2000] are focused only on client-server systems, and do not consider

multi-tier Internet applications. Other work is restricted to applications embedded in the

database server, like stored procedures [Lomet 1998]. It is not obvious how these

protocols can be generalized to apply to multi-tier systems. The notion of interaction

contracts, developed by Barga et al. [2002], is the key for this generalization.

3.4.3 Fault Tolerance in Web Services and Middleware

Fault tolerance is being discussed also for component middleware like CORBA [OMG

2000] and EJB [Sun 2001], but the focus is on service availability for stateless

interactions (i.e., restarting re-initialized application server processes). Products (e.g.,

VisiBroker, Orbix, BEA WebLogic, or Sun’s J2EE suite) at best support simple failover

deq(reply)enq(request)

deq(request) enq(reply)

client:

application server:

output
queue

output
queue

input
queue

input
queue

database server:

distributed transaction

deq(reply)enq(request)

deq(request) enq(reply)

client:

application server:

output
queue

output
queue

input
queue

input
queue

database server:

distributed transaction

Figure 17: Three-Tier Application with Queued Transactions

3 Background on Recovery Technology 39

techniques that do not relieve the application programmer from having to either write

failure-handling logic or structure his application as stateless, and are not geared for

masking process or message failures to users. More recently, failover techniques for Web

servers have been presented in [Luo and Yang 2001], based on application-transparent

replication and redirection of HTTP requests.

The need for execution guarantees for Web Services, raised by Tygar [1998], Martin and

Ramamritham [1999, 2001], Dutta et al. [2001], Fu et al. [2001], Popovici et al. [2000],

Schuldt et al. [2000], has been concerned with specific applications such as payment

protocols or mobile data exchange and does not specifically address failure masking in

general multi-tier architectures.

Closest to this thesis in terms of objectives is the work by Frølund and Guerraoui [2002]

that presents a three-tier protocol for exactly-once transaction execution based on

asynchronous message replication and a distributed consensus protocol. However, this

work focuses on stateless application servers and does not address the autonomy

requirements of components, the optimization of logging, and the need for effective log

truncation.

3.4.4 General Process Recovery

Recovery for general systems of communicating processes has been extensively studied

in the fault-tolerance community (e.g., Johnson and Zwaenpol [1987], Strom et al.

[1988], Cristian [1991], Alvisi and Marzullo [1995], and Elnozahy et al. [2002]), where

the main focus has been to avoid losing too much work in long-running computations

(e.g., scientific applications), usually using distributed checkpointing. Most of this work

does not mask failures. Methods that do mask failures exploit “pessimistic logging” (see,

e.g., Huang and Wang [1995]), with forced log I/Os at both sender and receiver on every

message exchange. Techniques that are even more expensive, such as process

checkpointing (i.e., writing process state to disk) upon every interaction, were used in the

fault-tolerant systems of the early eighties [Bartlett 1981, Borg et al. 1989, and Kim

1984]. Thus, failure masking has been considered a luxury affordable only by mission-

critical applications (e.g., stock exchanges).

40 3 Background on Recovery Technology

3.5 Related Work on Recovery Verification

Given that state-of-the-art recovery algorithms have evolved to complex, highly

optimized procedures, the need of their formalization and verification has been

recognized and led to a number of publications.

3.5.1 (Local) Data Recovery

Hadzilacos [1988] developed an abstract formal model of recovery. He stated logging

rules in terms of which information must be in the log to ensure the redo of the committed

and undo of uncommitted transactions in a schedule, and showed how these rules apply to

different classes of data managers regarding the usage of the undo/redo paradigms.

However, this paper does not verify the behavior of recovery algorithms.

Kuo [1996] used I/0-Automata [Lynch 1996] as a formal method for modeling a

simplified ARIES algorithm [Mohan et al. 1992], and presented proofs of important

invariants for the model that includes checkpoints and redo tests.

There also have been attempts to build formal frameworks to characterize recovery in a

more general fashion. However, such models are often too abstract for verifying such a

critical property as idempotence. They rather concentrate on showing the atomicity and

durability guarantees [Gurevich et al. 1997, Martin and Ramamritham 1997].

Lomet and Tuttle [2003] devised a general recoverability relationship between the log,

data, and the recovery managers. The paper shows how the data, installed in the stable

storage, affects the operations having to be repeated during the redo recovery. Their

recoverability invariant can be used for verification of most redo recovery algorithms.

3.5.2 Distributed System Recovery

Chkliaev et al. [2000], used an interactive theorem prover to show the serializability and

the durability of distributed transactions when the system deploys the Two-Phase-

Locking (2PL) protocol [Weikum and Vossen 2001] for the concurrency control on each

site and 2PC as agreement procedure for transaction outcomes. To keep the model

verifiable, the authors did not model 2PC messages, and used a finite set of finite

schedules.

Close to the formal verification part of the thesis, is the work presented by Younas and

Eaglestone [2002]. This paper deals with a 2PC-based protocol that relies on local

3 Background on Recovery Technology 41

compensating transactions to provide the semantic atomicity of Web Transactions. The

protocol is formally specified by finite state automata and its key property of at-most-

once execution is verified by an automatic theorem prover. The effects of

nondeterministic interleaving of concurrent transactions are not considered in this work.

All prior work on recovery verification leaves out important aspects and stays at an

abstract level, rather far from the actual implementation.

4 Interaction Contracts Framework 43

4. Interaction Contracts Framework
“A good businessman never makes a contract unless he’s sure he can carry it through ...”
- Dalton Trumbo

4.1 Computational Model

4.1.1 Components

The framework considers three types of components. Its core is constituted by persistent

components (Pcom) representing any kind of clients, servers or their parts that should

provide an exactly-once guarantee for a single request. Furthermore, it includes

transactional components (Tcom) such as database systems that execute a given request

at most once because they play a very prominent role in the modern business information

systems. Users and systems that provide no guarantees are captured by the notion of

external component (Xcom).

Persistence of Pcom’s and Tcom’s is implemented by exploiting a log and a recovery

manager. The log is used for capturing nondeterministic events and their order. During

normal operation, log entries are initially created in the log buffer allocated in the main

memory to minimize disk I/O overhead. At certain points, the log entries of the log

buffers have to be forced to the stable log on disk, in order to preserve recoverability.

Stable log is used by the recovery manager after a crash for recreating the most recent

consistent component state.

4.1.2 Message and Process Recovery Principles

Let us consider a simple application consisting of just two persistent components C1 and

C2 of Figure 18. The components exchange messages via a network link in a

conversational manner. We denote the messages from the component C1 initiating the

conversation requests and those from the counterpart component C2 replies. Requests

and replies change the state of their corresponding receivers in that they cause data

C1

C2

req10

rep20

req11

rep21

time21

C1

C2

rep20 rep21

time

C1

C2

req10

rep20

req11

rep21

time21

C1

C2

rep20 rep21

time

Figure 18: Sample Two-Component System

44 4 Interaction Contracts Framework

modifications and have impact on the control flows. The incoming messages are

nondeterministic from the receiver perspective. Note that replies to internal system calls

are sometimes nondeterministic as well (e.g., replies to calls to timing functions). The

outgoing messages result from processing the incoming messages. At any point in time

during the conversation, one or both components may crash and the link between them

may break down.

Component state recovery: The component has always to provide recoverability of the

current state. For this purpose, the component may physically log, i.e., dump a new state

to disk after each and every update to it, which is very inefficient since single updates

concern only a small portion of the component state. Instead, incremental logical logging

of state-relevant nondeterministic events (typically update requests from other

components) can be used. After a crash, the state is recreated by reading the most recent

state dump, called an installation point, and replaying subsequent events from the log.

Such a replay is deterministic if the component is deterministic up to nondeterministic

events out of its control, referred to as piecewise-determinism. The component commits

its state by either modifying data on local disk or sending to another component a

message that already reflects the new state (e.g., a reply to a request). In fact, the former

can be seen as a special case of the latter because the file system (or the operation system

responsible for it) is simply a different component in the framework view. At any rate

prior to sending a message, either a new installation point or the log has to be forced to

disk. Otherwise, the system would not be able to resume coherent conversation after a

failure.

Output message recreation: The sender may fail before the message transfer is

completed. The sender is responsible for message recreation because neither the network

layer nor the receiver may have even a chance to capture the message. An output message

usually results from the processing of preceding input messages. In contrast to the

traditional database recovery, this implies that replies to read-only requests have to be

captured in the log because the result of a read-only request is in general

nondeterministic: the corresponding reply would change through subsequent state

updates. During deterministic replay, output messages are recreated and placed into

output buffers for delivery.

Message uniqueness: Deterministic replay may lead to a message resend. Therefore, the

receiver must be provided with the capability to detect duplicate requests, which is

4 Interaction Contracts Framework 45

normally achieved by stamping all messages with a unique message sequence number. As

in the traditional database recovery, a component that caches update operations in volatile

memory must be able to determine whether stable state already includes the effects of the

current message in order to skip or to repeat the message execution during recovery.

Input message recreation: We have already shown above that the sender inevitably has

to take care of message recreation. This fact makes it possible to defer logging of the

message on the receiver component. Only when the receiver in turn is about to send out

another message, which reveals its state to the outside world, may forced logging of the

incoming message be unavoidable to keep the reply message deterministically replayable.

The forced write can be avoided if the receiver component is stateless or when all

interacting component pairs work on isolated state portions. As an example, consider a

Web-based E-mail system. Each session includes a dedicated Web browser on the client

side and a dedicated inbox on the server side. Therefore, there is no interleaving of

requests on behalf of different users that would have to be forced to disk for deterministic

replay. In the sample application from Figure 18, you may observe that the component C1

does not need to force log incoming messages rep20 and rep21 as they will be resent by

deterministic replay of C2 in the original order after C1 reproduced the message req10. If,

for instance, the state of C1 were also modified by some third incoming message req31

between rep20 and req11 this would be reflected in the state and in subsequent messages

req11 and rep21. Since the components recover asynchronously after a failure, the original

message ordering on C1 has to be fixed in the stable log once C1 commits its state.

Periodic message resend: A message can be lost not only because of a sender crash. A

receiver crash and the network outage may have an identical effect without any notice

provided to the sender. The only way to treat such situations is timeout-based message

resend until the receiver will manage to acknowledge the message. Sometimes nothing

goes wrong but the receiver executes unexpectedly slowly. Nevertheless, with all

messages being unique the receiver is able to eliminate duplicates and remains

idempotent.

Autonomous components: In the context of cross-enterprise Web Services, remote

components might have poorer connectivity, less satisfactory performance or they may

simply enjoy less confidence. In order to keep the local components recovery-

independent from the remote ones to the greatest possible extent, the local component

must immediately force the log upon arrival of a remote message.

46 4 Interaction Contracts Framework

Log truncation: In order to accelerate component restart after a crash, a component

should notify its counterparts about the oldest incoming message that has not been

captured in the log yet. A counterpart component can consequently determine the oldest

output message it would need to replay which allows truncation of the log head up to the

most recent installation point prior to the oldest message yet to be recreated.

Resource virtualization: Component crashes in connection with allocated system

resources such as file and TCP connection handles conceal another source of

nondeterminism. After a crash, the resource handles cannot be reused even if the

corresponding structures have not yet been garbage-collected by the operating system

because a restarted component appears as a new process to the operating system. Thus,

instead of physically logging resource handles, each component resource has to be

assigned a virtual id. To this end, file operation log entries should contain the logical file

name and each remote operation log entry should include the remote component’s virtual

id and possibly an explicit session id (e.g., HTTP session cookie) that establishes logical

context in which the operation is executed.

4.2 Modeling Issues in Statemate

In this section, we discuss how the key elements of the computational model can be

modeled in Statemate. Although Statemate offers several alternatives that are logically

equivalent, they may differ in terms of the model and verification complexity.

4.2.1 Stable Log

A stable log is used to recreate the last valid application state as of the time immediately

prior to the crash.

Statemate provides an elegant way to remember last active substate configuration of a

superstate. When the system enters the superstate through a so-called history connector

(a circle labeled H), Statemate will activate those substates, which were active as the

superstate was exited last time instead of taking the default transitions. Hence, we can

simply put states relevant for logging in such a history-connected superstate. Whenever a

force-logged operation needs to be executed, the system has to take two transitions

consecutively: it first takes a direct transition to the corresponding substate of the log-

enabled superstate (i.e., not through a history connector) according to the write-ahead

logging rule [Gray and Reuter 1993, Weikum and Vossen 2001], and only after that it

takes a transition with the action representing the actual operation. Not that the latter

4 Interaction Contracts Framework 47

transition should lead out of the log-enabled superstate, if it does not require force-

logging. After a “crash”, the system always starts with entering the log-enabled superstate

through a history connector. Unfortunately, due to yet immature support of history-

connected states in the Statemate verification software, we had to drop this option in the

IC specifications.

Instead of implicitly logging by means of history-connected superstates, we introduce a

local variable suffixed with “last_logged” for each instance of the IC parts running within

a component. Whenever we have to force-log the current IC status, we explicitly store the

name of the currently active states into the corresponding “last_logged” variables. Only a

few of states in an IC instance have to be memorized. After a crash, the component first

goes into the recovery states of all IC instances it has run. A recovery state is connected

to the rest of the chart by transitions each of which handles one particular of all possible

“last logged” values. This solution does not use advanced Statemate features, and has not

posed any difficulties to Statemate verification tools. In addition, this method allows one

to see immediately the global component configuration currently logged by observing all

“last_logged” variables managed on the component.

4.2.2 Messages and Communication Failures

We model messages as follows: when a sender wants to send a message during the ith

step, it does so by generating a corresponding event. According to the Statemate

semantics this event becomes visible and can be consumed by a receiver in the i+1st step.

Communication failures of any kind (TCP/IP stack crashes, network interface card or

router failures, etc) that lead to a message loss are captured in an external event

link_outage, where the term link refers to a logical connection between a pair of

components rather than to their physical or TCP/IP connections. Transitions of a receiver

reacting on a message m use a compound event m_ok abbreviating m⁄Ÿlink_outage.

Thus, in the specification a message generated in the ith step is lost due to a

communication failure if the corresponding link outage event was sensed between the ith

and i+1st step.

From the receiver’s perspective, a message loss is not immediately distinguishable from a

sender’s crash. However, for the sender the former just requires simply resending the

message whereas the latter means a complete message and state recovery run through

deterministic log replay. A deterministic replay usually takes longer than a transient

48 4 Interaction Contracts Framework

network failure, and incurs combinations of component configurations that are more

complicated. Because of this fundamental difference, we decided to model

communication failures explicitly.

The IC framework requires that messages are unique, in order to detect duplicates. In

practice, components would use message sequence numbers to tag messages. In the

specifications, message uniqueness is achieved in consequence of that we model ICs as

generic activities, such that each individual message in a specification for a concrete

application is local to the corresponding instance. This makes the use of additional ids

unnecessary. While this modeling technique is equivalent to one using ids, it reduces the

verification run time. Although integers do not pose conceptual difficulties from the

modeling perspective (they have to be finite to preserve the model finiteness though),

they significantly increase verification costs. An event (i.e., a Boolean one-bit variable)

clearly adds less complexity to an OBDD than an n-bit integer.

4.2.3 Component Crashes

Component crashes are modeled similar to link outages by external events supplied by

the runtime environment. All IC statecharts are arranged to terminate interacting

components immediately after they are hit by a crash. This is done by enclosing IC’s

orthogonal components in a superstate with a transition to a termination connector. It fires

whenever the corresponding crash event is sensed, and according to the Statemate

semantics, it suppresses all enabled transitions inside the superstate. We also model

process monitors that are responsible for restarting activities of crashed components. In

the real world, process monitors may be part of the operating system or they may run as

dedicated heartbeat-checking processes.

4.2.4 Timeouts and Execution Time

System failures often result in message losses: messages are either never generated or

they never reach their destinations. To cope with such situations, some interaction

contracts require that the sender resends the message periodically until it gets an

acknowledgement from the receiver. Clearly, in a concrete application system

administrators or developers will have to define appropriate timeout values for each

component interaction: when the acknowledgement does not arrive in the given time

window, the message will be resent.

4 Interaction Contracts Framework 49

Another important aspect of a model for a distributed multi-user environment is that

request timeouts on a sender component may occur not only due to failures. Rather, the

capacity of the link between the sender and the receiver might be saturated, and thus,

messages are delivered too slowly or dropped by a router. On the other hand, the receiver

may suffer a load peak and is not able to respond within the expected time window.

These issues are the reason par excellence for non-idempotent behavior of Web Services,

where the user blindly repeats the request after a timeout. In the formal specifications, we

address these issues by having the receiver react on messages originating from other

components after some random delay, which we refer to as “message execution time”,

and which subsumes processing (due to concurrency) as well as delivery (due to network

latency) delays.

For these purposes Statemate supports special timeout events of the form tm(e, d). This

event is generated d time units after the most recent occurrence of the event e. In the

synchronous time model, one time unit matches a single step. The way in which the time

is advanced in the asynchronous model is under explicit control by the user or execution

environment, and can be defined for each activity separately. Simplicity of the timeout

semantics is thus another argument for using the synchronous time model for verification.

When the event e is generated again earlier than the corresponding timeout event, the

timer for the timeout event will be restarted. It is, however, impossible to cancel the

timeout event. That is why it is important to pay attention, when modeling crashes, that

the system is not confused by timeout events whose timers has been started in previous

component incarnations. To avoid such situations, we design statecharts such that on all

execution paths starting in the recovery state the original event is used before its timeout

counterparts.

In order to keep the specification general, we use external integer variables as timeout

values with the range [0...30]. They are read from the execution environment once upon a

component (re)start and remain unchanged up to the next crash/restart. The model

checker systematically enumerates system runs with all possible timeout values. We

could work with this model at the level of every single interaction contract.

Unfortunately, the attempts to verify a concrete system with multiple IC instances at a

higher level have not terminated even after a week of uninterrupted computations.

50 4 Interaction Contracts Framework

Therefore, for application-level verification we replace timeout events by simple atomic

external events. Clearly, external events are nondeterministic and in general do not occur

periodically in contrast to timeout events. Nevertheless the system runs with periodic

generation of such external events is a proper subset of the runs the model checker will

have to consider. Thus, a CTL formula we were able to verify in the adapted

specification, would be also valid for the original specification. With new specification,

we reduced verification time due to a reduced state space from virtually infinity (i.e.,

more than one week) to one to one and a half hours.

Timeout events in the specifications are suffixed “_tm”. When we talk about timeouts in

the context of an IC specification, we mean compound events referring to timeout

expressions. In the context of application-level specification timeouts are

nondeterministic external events.

4.3 Statemate Specifications and Verification

4.3.1 Common Design of the IC Specifications

All interaction contracts, i.e., (I)CIC, TIC, XIC input and XIC output, are represented by

generic activities. Each generic IC activity x_AC follows an identical pattern. An IC

consists of the corresponding control activity x_SC which orthogonally monitors all

processes involved in the IC. The control activity starts these processes and restarts them

after they have crashed. As an example consider cic_sc, the control activity of CIC,

whose specification is depicted in Figure 19. While it is running, it checks whether the

sender or receiver activity (their behavior is defined in charts cic_receiver_sc and

cic_sender_sc accordingly) has to be launched. This is the case when the execution

environment does not supply crash events any longer. Checking the condition “not

ac(…)” (i.e., “not active”) for IC activities prevents the system from re-launching the

CIC_SC

SENDING

RECEIVING

(not SNDR_CRASH)
[SNDR_LAST_LOGGED=='INSTALLED']

(not RCVR_CRASH)[not ac(CIC_RECEIVE)]/
st!(CIC_RECEIVE)

T

(not SNDR_CRASH)
[not ac(CIC_SEND) and SNDR_LAST_LOGGED!='INSTALLED']/
st!(CIC_SEND)

Chart: CIC_SC Version:2 5-NOV-2003 13:32:24

CIC_SC

SENDING

RECEIVING

(not SNDR_CRASH)
[SNDR_LAST_LOGGED=='INSTALLED']

(not RCVR_CRASH)[not ac(CIC_RECEIVE)]/
st!(CIC_RECEIVE)

T

(not SNDR_CRASH)
[not ac(CIC_SEND) and SNDR_LAST_LOGGED!='INSTALLED']/
st!(CIC_SEND)

Chart: CIC_SC Version:2 5-NOV-2003 13:32:24Chart: CIC_SC Version:2 5-NOV-2003 13:32:24

Figure 19: CIC Heartbeat Checker

4 Interaction Contracts Framework 51

listening thread during normal operation. Note that this is orthogonal to elimination of

message duplicates. After an IC has been installed, all involved components have enough

information to recover autonomously, such that the IC may terminate as indicated by

entering a termination connector, which stops the given activity along with all its sub-

activities. Checking just the sender log for the CIC installation status suffices because the

sender’s installation always come after that of the receiver as you will see later.

We do not show activitycharts describing the data flow between particular activities

because they are straightforward. Instead, we explain these details while describing

statecharts where events, conditions, and data are immediately used or generated.

4.3.2 Common IC Properties

As ICs are used in piecewise deterministic components, IC specifications have to be

deterministic up to events external to the components involved. As part of the debugging

process, we have verified for each specification that it does not contain any

nondeterminism, i.e., in a non-orthogonal state there is at most one enabled transition per

step.We also have verified that no specifications contain unreachable states. An

unreachable state s is characterized by the CTL formula AG ¬in(s). This is to say that

every state makes sense and is used in some situations.

4.3.3 Committed and Immediately Committed IC

According to Barga et al. [2002] a committed interaction contract (CIC) between two

persistent components (a sender and a receiver) consists of the obligations given in Table

1. An immediately committed interaction contract (ICIC) is a committed interaction

where sender is released from both message persistence requirements, S2a and S2b when

receiver notifies sender (usually via another message) that the message-received state has

been installed, without previously notifying sender that its state is stable. Receiver's

announcement thus makes the interaction both stable and installed simultaneously [Barga

et al. 2002].

52 4 Interaction Contracts Framework

Figure 20 shows a message sequence diagram that summarizes the messages exchanged

between the sender and the receiver under the CIC in a single interaction. Figure 21

depicts the statecharts that describe the underlying generic sender’s and receiver’s logics

under the CIC and ICIC, whereas the latter is treated as a particular case of the former.

Table 1. CIC Sender and Receiver Obligations
Sender Obligations Receiver Obligations
S1: Persistent State. Sender promises that
its state at the time of the message send or
later is persistent.

S2: Persistent Message.

S2a: Sender promises to send the message
repeatedly (driven by timeouts) until
receiver releases it (perhaps implicitly)
from this obligation.

S2b: Sender promises to resend the
message upon explicit receiver request
until the receiver releases it from this
obligation. This is distinct from S2a,
typically longer lasting and usually more
explicit.

S3: Unique Messages. Sender promises
that its messages have unique contents
(including all header information such as
timestamps, HTTP cookies, etc.).

R1: Duplicate Message Elimination.
Receiver promises to eliminate duplicate
messages (which sender may send to
satisfy S2a).

R2: Persistent State.

R2a: Receiver promises that before
releasing sender obligation S2a, its state at
the time of message receive or later is
persistent without the sender periodically
re-sending. After S2a release, receiver must
explicitly request the message from sender
should it be needed. The interaction is
stable, i.e., it persists (via recovery if
needed) with the same state transition as
originally.

R2b: Receiver promises that before
releasing the sender from obligation S2b,
its state at the time of the message receive
or later is persistent without the need to
request the message from the sender. After
S2b release, the interaction is installed,
i.e., replay of the interaction is no longer
needed.

send_msg(id, content)

send_msg(id, content)

stable(id)

get_msg(id)

installed(id)

sendersender receiverreceiver

send_msg(id, content)

send_msg(id, content)

stable(id)

get_msg(id)

installed(id)

sendersender receiverreceiver

Figure 20: A Message Sequence Diagram of the CIC

4 Interaction Contracts Framework 53

As you may observe in the statechart cic_sender_sc the sender starts up in the state

recovery. Upon (re)start the sender first checks the CIC status in the stable log. When the

log turns out to be empty, the sender waits for the event sndr_trigger. This event is

defined as a formal input parameter. It is supposed to be used as an interface to the

application logic of a concrete system specification. It allows me to define in response to

which other event the given IC instance is called. Imagine that an instance of

cic_sender_sc is used to model the HTTP request sending routine of the Web browser.

The Web browser is an interactive component and it initiates a request on behalf of its

user clicking on a link or typing a new URL. In the browser specification, we would bind

the formal parameter sndr_trigger to the event link_clicked sensed by the browser.

When sndr_trigger is finally fired, the sender must prepare its persistence, i.e., make its

receiving activities stable, such that the ordering of incoming messages is guaranteed to

persist. This will become clearer, when we explain the receiver’s behavior. The internal

CIC_RECEIVER_SC

MSG_RECOVERY

STABLE_R> INSTALLED_R>

MSG_RECEIVED RECOVERY

MSG_PROCESSED

RCVR_INSTALL_TM/ RCVR_LAST_LOGGED:='INSTALLED'; INSTALLED

[RCVR_LAST_LOGGED=='INSTALLED']
[RCVR_LAST_LOGGED=='STABLE']

SEND_MSG_OK

[RCVR_LAST_LOGGED=='STABLE']/
GET_MSG

[ICIC]/
RCVR_LAST_LOGGED:='INSTALLED';
INSTALLED

MSG_EXEC_TM/
RECEIVED;

(RCVR_STABLE_TM or
RCVR_ND[MSG_ORDER_MATTERS])
[not ICIC and RCVR_LAST_LOGGED=='']/
RCVR_LAST_LOGGED:='STABLE';
STABILITY

SEND_MSG_OK
[RCVR_LAST_LOGGED=='']

not SEND_MSG_OK
and
GET_MSG_TM/
GET_MSG

RCVR_CRASH

T
SNDR_CRASH

T
Chart: CIC_RECEIVER_SC Version:3 Date: 5-NOV-2003 13:32:19

Chart: CIC_SENDER_SC Version:2 Date: 5-NOV-2003 13:32:19

CIC_SENDER_SC

STABLE_S

SENDING INSTALLED_S

RECOVERY

MSG_LOOKUP

PREPARE_PERSISTENCE

INSTALLED_OK/SNDR_LAST_LOGGED:='INSTALLED'

SNDR_MSG_TM and
not (STABILITY_OK or

INSTALLED_OK)/
SEND_MSG

SNDR_ND/
SEND_MSG SNDR_TRIGGER

[SNDR_LAST_LOGGED=='']/
SNDR_ND

MSG_RECOVERED_TM/
SEND_MSG GET_MSG_OK

[SNDR_LAST_LOGGED=='INSTALLED']

INSTALLED_OK/
SNDR_LAST_LOGGED:='INSTALLED'

STABILITY_OK
SNDR_STABLE_TM and
not (INSTALLED_OK or GET_MSG_OK)/
IS_INSTALLED

CIC_RECEIVER_SC

MSG_RECOVERY

STABLE_R> INSTALLED_R>

MSG_RECEIVED RECOVERY

MSG_PROCESSED

RCVR_INSTALL_TM/ RCVR_LAST_LOGGED:='INSTALLED'; INSTALLED

[RCVR_LAST_LOGGED=='INSTALLED']
[RCVR_LAST_LOGGED=='STABLE']

SEND_MSG_OK

[RCVR_LAST_LOGGED=='STABLE']/
GET_MSG

[ICIC]/
RCVR_LAST_LOGGED:='INSTALLED';
INSTALLED

MSG_EXEC_TM/
RECEIVED;

(RCVR_STABLE_TM or
RCVR_ND[MSG_ORDER_MATTERS])
[not ICIC and RCVR_LAST_LOGGED=='']/
RCVR_LAST_LOGGED:='STABLE';
STABILITY

SEND_MSG_OK
[RCVR_LAST_LOGGED=='']

not SEND_MSG_OK
and
GET_MSG_TM/
GET_MSG

RCVR_CRASH

T
SNDR_CRASH

T
Chart: CIC_RECEIVER_SC Version:3 Date: 5-NOV-2003 13:32:19

Chart: CIC_SENDER_SC Version:2 Date: 5-NOV-2003 13:32:19

CIC_SENDER_SC

STABLE_S

SENDING INSTALLED_S

RECOVERY

MSG_LOOKUP

PREPARE_PERSISTENCE

INSTALLED_OK/SNDR_LAST_LOGGED:='INSTALLED'

SNDR_MSG_TM and
not (STABILITY_OK or

INSTALLED_OK)/
SEND_MSG

SNDR_ND/
SEND_MSG SNDR_TRIGGER

[SNDR_LAST_LOGGED=='']/
SNDR_ND

MSG_RECOVERED_TM/
SEND_MSG GET_MSG_OK

[SNDR_LAST_LOGGED=='INSTALLED']

INSTALLED_OK/
SNDR_LAST_LOGGED:='INSTALLED'

STABILITY_OK
SNDR_STABLE_TM and
not (INSTALLED_OK or GET_MSG_OK)/
IS_INSTALLED

Figure 21: CIC Sender and Receiver

54 4 Interaction Contracts Framework

event sndr_nd (a formal output parameter) is generated, while the system is moving to the

state prepare_persistence. In the next step, the sender sends the message as indicated by

generating the event send_msg. In the very same step, the receiving threads on the sender

have become stable as a reaction on sndr_nd. The sender is now in the state sending,

where it periodically resends the message based on the timeout sndr_msg_tm until it

receives either stability or installed notification.

The fact that the sender gets an installed notification before a stability notification may

indicate that the receiver deploys the immediate variant of CIC or the stability

notification has been lost due to previous network failures or crashes. In case of the

installed notification, the sender force-logs this by modifying the variable

sndr_last_logged and moves to the state installed, where the CIC actually terminates. In

case of the stability notification the sender advances to the state stable_s, and stops

periodical sending attempts.

When the receiver runs without any problems, it will eventually install the current CIC

instance and send the corresponding notification. However, if this final notification gets

lost, the sender will need to inquire (is_installed) the receiver about the CIC outcome

after a relatively long timeout (sndr_stable_tm). If the receiver does not find the

corresponding CIC id in the list of active interactions, it will respond with an installed

notification again.

In addition, the receiver may crash, while the sender is in the state stable_s. Upon restart,

the receiver will inquire the sender about the message content by firing the event

get_msg. The sender moves to the state msg_lookup. After a random amount of time

needed for the message recovery (msg_recovered_tm) the sender is able to resend the

message and moves to the state stable_s again. The whole procedure described in this

chart is repeated after every crash and restart until the CIC is finally installed.

The statechart cic_receiver_sc defines receiver’s behavior under CIC. After a (re)start the

receiver enters the state recovery. When the log is empty, the receiver just waits for the

sender to (re)send the message. When this happens, the messages is placed into the

receive queue and waits for being processed. The receiver moves to the state

msg_received. After a random msg_exec_tm the message is processed and the system

fires the internal output msg_received which is an interface to application logic and is

normally coupled to some sndr_trigger event.

4 Interaction Contracts Framework 55

When the receiver uses the immediate CIC variant (i.e., the condition icic is true), it will

force-log CIC installation and notify the sender by the event installed in the same step, in

which the Pcom’s logic would also react on the message. The receiver advances to the

state installed_r>. The sign “greater than” in its name indicates that this state has static

reactions. While in the state installed_r the receiver simply responds to repeated

messages or inquiries is_installed by anew generating the event installed.

With the normal CIC, however, initially nothing happens in the state msg_processed.

Force-logging that make the current CIC instance stable will be performed: either a)

when CIC’s instability exceeds (rcvr_stable_tm) specified by Pcom’s system

administrator in order to prevent unnecessary resending of the message (the log is

periodically flushed when Pcom is idle) or b) as a reaction on the event rcvr_nd. Most

importantly recvr_nd is coupled together with pcom_nd events of all XIC instances,

pcom_nd output of all TIC client instances (see Section 4.3.4) and sndr_nd output of all

CIC sender instances running on the same Pcom (i.e., all these formal parameters are

bound to the same global event, e.g., websrvr_nd). Thus, when the Pcom reveals its state

to the outside world by sending a message or by committing a transaction after processing

the current CIC message, the message is logged in the proper order and is available for

deterministic replay of the Pcom if necessary.

Only a small log entry with the message header (i.e., sender and message ids along with

the timestamp) is added to the stable log, when CIC is being made stable. With a full

message copy in the stable log, CIC would become installed because the receiver would

no longer need the sender to recover.

When the receiver is becoming stable, it writes the corresponding value to the variable

the rcvr_last_logged, generates the event stability and moves to the state stable_r. As

long as the receiver stays in this state, it responds to periodic send attempts with the

stability notification (defined as a static reaction) as the notification might have been lost.

During the normal operation, the receiver will remain uninstalled for the user-defined

amount of time rcvr_install_tm. No other factors have impact on installation because the

CIC is already recoverable.

Supposedly, the receiver fails while being stable. Then after restart in the state recovery,

it finds out that the stably logged status (rcvr_last_logged) of the given CIC instance is

‘stable’. Thus, the CIC receiver knows that it has to replay the message, but it does not

56 4 Interaction Contracts Framework

have its content though. Thus, the receiver generates the event get_msg and moves to the

state msg_recovery, where it awaits arrival of the message. Message inquiries are

repeated based on the user-defined timeout get_msg_tm. When the message arrives, the

receiver moves to the state msg_received where the message is processed (replayed) as

originally. The difference arises in the state msg_processed: stability of the current CIC

instance is not logged once again, and the receiver moves with no action to the state

stable_r.

We summarize the recovery procedure for the CIC receiver. There are three possible

cases:

1. The log is empty: this implies that the receiver is dealing with a completely new

message or the message has not left any traces (i.e., neither it has generated any

output to Xcoms nor committed a transaction nor stored anything in a local file.

2. The log indicates CIC stability: no local changes have survived the most recent

crash but some other components might be aware of the previous message

execution because they have received resulting output messages. Thus the

message is re-obtained from the sender in order to be deterministically replayed

which results in identical state and triggers identical output to the outside world as

originally.

3. The log indicates CIC installation: this implies that the receiver can be recovered

without the sender because the message content is either part of the stable log or it

is reflected in a more recent installation point.

Table 2 summarizes some interesting safety and liveness properties of CIC sender and

receiver. Initially, we consider only a simple application specification consisting only of

one interacting pair of Pcoms. Thus, we assume that the message being sent is a result of

internal computations and is not caused by any external event, i.e., the event sndr_trigger

is always on (i.e., true), such that the sender always tries to send a message. The formulae

Table 2. Verified Properties of CIC
Nr CTL Formula Res.
F1 AG(¬sc) Ø AG(rll=’’ Ø AF<30(send_msg)) True
F2 AG(sll=’i’ Ø AG (rll = ‘i’ ⁄ ¬get_msg)) True
F3 AG(rll=’' ¤ rll=’s’ ¤ rll=’i’ True

F4
AG((wr(rll) ⁄ rll=’s’) Ø AG(¬(rll=’’))) ⁄
AG((wr(rll) ⁄ rll=’i’) Ø AG(¬(rll=’’ ¤ rll=’s’)))

True

F5 AG((wr(rll) ⁄ rll=l) Ø AX AG (¬(wr(rll) ⁄ rll=l))) True

F6
AF<500(AG¬(sc ¤ rc ¤ lo)) Ø
AF<700(in(installed_r) ⁄ in(installed_s))

True

4 Interaction Contracts Framework 57

presented in this section are valid for both normal and immediate CIC instances unless

explicitly stated otherwise.

The sender obligation of persistent state S1 from the CIC definition is outside the

specification, when only one protocol instance is concerned. However, it will play a role,

when we will verify a complex Web service specification with multiple different protocol

instances at the application level (see Section 3). The sender obligation S3 requiring

message uniqueness is provided in the specification without any special measures as we

have already discussed in Section 4.2.2 above.

As for the sender obligation S2a, we have verified that as long as the sender is running

and has not obtained stability or installation notification, it periodically resends the

message at least after every 30th step (formula F1 with maximum timeout 30). We

abbreviate the event sndr_crash by sc; rcvr_last_logged is abbreviated by rll.

In connection to the CIC specification we present here, we reformulate the sender

obligation S2b as follows. On all execution paths is true that when the sender is installed,

then so does the receiver and no message inquiries occur anymore (formula F2). We

abbreviate sndr_last_logged by sll and ‘installed’ is abbreviated by ‘i'.

Formula F3 shows that the CIC receiver log may assume only the following values: ‘’,

‘stable’ (‘s’) and ‘installed’ (‘i'). By F4 we show that logging occurs exactly in the given

order except that ICIC skips stability, and F5 proves that each log entry l out of {‘s’, ‘i'}

is created exactly-once given the fact that this happens.

The modality of the form F<n accepted by the Statemate model checker means

“eventually after at most n steps”. F6 demonstrates liveness of the (I)CIC specification:

stating that when errors do not occur anymore after at most 500 steps, the sender and the

receiver will both install the given (I)CIC instance. In this formula and elsewhere rc

stands for rcvr_crash and lo for link_outage. Interestingly, however, that the original

paper does not say anything, how to make the stable sender terminate, if the final

installation notification from the receiver has been lost. This question led to introduction

of the new event is_installed, by which the sender can inquire the receiver about whether

it finally has installed the given interaction. In fact, F6 could not be proved without this

event.

58 4 Interaction Contracts Framework

4.3.4 External IC

Barga et al [2002] define an external interaction contract (XIC) as a contract between a

persistent component that subscribes to the rules for an immediately committed

interaction, and an external component, which does not. The impacts on external sender

or receiver (or users) of Pcom interactions with it are described below. Note that these are

impacts on, not obligations of, the external component.

X1: Output Message Send. A Pcom (usually a client machine) sends (displays) a

message to an Xcom (e.g., external user), after having logged the message send. The

sender Pcom crashes before knowing whether the message was seen. Hence it must re-

send the message. Because an Xcom might not eliminate duplicates, a user may see a

duplicate message.

X2: Input Message Receive. An external user (Xcom) sends a message, via keyboard,

mouse, or other input device, to a (client) Pcom. The Pcom crashes before logging the

message. On restart, the user must re-send the message. But the user (an Xcom) has not

promised to re-send the message automatically, but rather makes only a "best effort" at

this. Moreover, the failure is not masked.

Figure 22 depicts statecharts defining Pcom’s behavior during external interactions under

XIC. The statechart xic_sender_sc shows external output processing on a Pcom. When

this activity is started, the system will enter the recovery state and check the log (i.e.,

Chart: XIC_RECEIVER_SC Version:1
Date: 5-NOV-2003 13:32:20

PCOM_CRASH

XIC_RECEIVER_SC

INSTALLED_R

MSG_UNLOGGED RECOVERY

MSG_RECEIVED

[LAST_LOGGED=='INSTALLED']/
XIC_I_COMMITTED

MSG_EXEC_TM/
LAST_LOGGED:='INSTALLED';
XIC_I_COMMITTED

USER_INPUT/
PCOM_ND

[LAST_LOGGED=='']/
USER_INPUT_PROMPT

T

XIC_SENDER_SC

INSTALLED_S

MSG_NOT_SENT

MSG_SENT

RECOVERY

USER_ACK/
LAST_LOGGED:='INSTALLED';
X_COMMITTED

MSG_EXEC_TM/
PCOM_OUTPUT

SNDR_TRIGGER
[LAST_LOGGED=='']/
PCOM_ND

[LAST_LOGGED=='INSTALLED']

PCOM_CRASH

T

Chart: XIC_SENDER_SC Version:1
Date: 5-NOV-2003 13:32:21

Chart: XIC_RECEIVER_SC Version:1
Date: 5-NOV-2003 13:32:20

PCOM_CRASH

XIC_RECEIVER_SC

INSTALLED_R

MSG_UNLOGGED RECOVERY

MSG_RECEIVED

[LAST_LOGGED=='INSTALLED']/
XIC_I_COMMITTED

MSG_EXEC_TM/
LAST_LOGGED:='INSTALLED';
XIC_I_COMMITTED

USER_INPUT/
PCOM_ND

[LAST_LOGGED=='']/
USER_INPUT_PROMPT

T

XIC_SENDER_SC

INSTALLED_S

MSG_NOT_SENT

MSG_SENT

RECOVERY

USER_ACK/
LAST_LOGGED:='INSTALLED';
X_COMMITTED

MSG_EXEC_TM/
PCOM_OUTPUT

SNDR_TRIGGER
[LAST_LOGGED=='']/
PCOM_ND

[LAST_LOGGED=='INSTALLED']

PCOM_CRASH

T

Chart: XIC_SENDER_SC Version:1
Date: 5-NOV-2003 13:32:21

Figure 22: XIC Input and Output

4 Interaction Contracts Framework 59

current value of the local (internal) variable last_logged). When the log is empty, the

system waits for the event sndr_trigger to be generated or replayed.

After the sndr_trigger has been generated, the output message is moved to the output

queue, where it waits for being processed. The system advances to the state

msg_not_sent. In the very same step, the system generates the event pcom_nd (Pcom

nondeterminism). This is a formal output parameter of the generic XIC output activity,

which signals to the receiver parts of CIC protocol instances running on the same Pcom

to prepare persistence of the current Pcom state. This is explained in full detail in Section

4.3.3. When the timeout event msg_exec_tm is generated after a random amount of time,

the Pcom is ready to display the current message. The system generates the internal event

pcom_output and moves to the state msg_sent, where it waits for the end-user somehow

to acknowledge reception of the new output e.g., by editing input elements on the new

HTML page in her Web browser. Such kind of events is bound to the formal parameter

user_ack in a concrete setting. When the Xcom supplies the event user_ack, the system

will force-log the XIC installation and in the very same step the system moves to the

installed state. This procedure is repeated upon Pcom restart as long as the external event

pcom_crash is generated before the system enters the installed state for the first time.

Otherwise the system always takes the direct transition from the state recovery to the state

installed after a restart.

In the statechart xic_receiver_sc you may observe how a Pcom processes input messages

originating from an Xcom. Upon a (re)start this activity first lookups its last valid state

while in the state recovery. When no logging information has been found the system

enters the state msg_unlogged, and the user is prompted to provide an input as indicated

by generating the internal event user_input_prompt. After the Xcom has finished

inputting data, the execution environment (e.g., the operating system) supplies the

external event user_input, and input data is placed into the Pcom’s input buffer; the

internal output event pcom_nd is fired. When the Pcom is ready to consume the data after

a random amount of time (i.e., when the external event msg_exec_tm is generated), it will

immediately install the given XIC instance by changing the value of last_logged. Should

the Pcom fail (i.e., when the external event pcom_crash occurs) prior to installing the

message but after the Xcom has provided the input, the Xcom will have to repeat the

input after Pcom’s restart.

60 4 Interaction Contracts Framework

Table 3 summarizes interesting properties of XIC in- and output charts that we have tried

to verify with the Statemate model checker. For both charts, xic_sender_sc and

xic_receiver_sc, we have the model checker verify that the variable last_logged is always

either empty or equal to ‘installed’ abbreviated ‘i’ (F7). Then we want to make sure that

each XIC instance is installed at-most-once. This is again identical for both input and

output charts. For this purpose, we can use the internal event wr(variable) that is

generated when variable’s value is changed (i.e., it is assigned a new value). F8 states that

on all execution paths on which last_logged is set to ‘installed’ last_logged is never

written again.

We also verify for xic_output_sc that as long as the Pcom does not get Xcom’s

acknowledgement Pcom will keep trying to deliver output after crashes. We actually want

to show the formula F9 (pcom_crash and pcom_output are abbreviated by pc and po

respectively). However, the Statemate model checker accepts only a concrete modality of

the form F<n. In order to be able to determine when the system achieves some particular

progress, we need to know, over which period the system will have to deal with failures.

Since we model Heisenbugs, this period must be a finite one. Thus, we pick a reasonably

big number (e.g., 500 steps). Note that in a failure-free execution an XIC output

completes in maximum 34 steps (i.e., 4 transitions plus maximum message execution

time of 30). F10 has been verified by the model checker.

In the same manner, we verify the following liveness property for both, XIC in- and

output. When failures no longer occur after 500 steps at latest, the XIC will be finally

installed after 600 steps. This is verified with the formula F11.

For an XIC input, we have been interested to make sure that once an input message is

captured by the system the user is never asked for this input again as stated in F12. We

abbreviate user_input_prompt by uip.

Table 3. Verified properties of XIC Input/0utput
Nr CTL Formula Res.
F7 AG(ll=’’ ¤ ll=’i’) True
F8 AG(wr(ll) ⁄ ll=’i’ Ø AX AG(¬wr(ll))) True
F9 AG((¬(ll=’i’) ⁄ pc Ø AF(po)) N/A
F10 AF<500 AG(¬pc) ØAG((¬(ll=’i’) ⁄ pc Ø AF<600(po)) True
F11 AF<500 AG(¬pc) Ø AF<600 in(installed) True
F12 AG(ll=’i’ Ø AG(¬uip)) True
F13 AG(po Ø AX AG(¬po)) False
F14 AG(uip Ø AX AG(¬uip)) False

4 Interaction Contracts Framework 61

As explained by impacts X1 and X2 in the XIC definition above, failures during external

interactions are not masked. The Xcom might receive the output message more than once

(F13 is false). With F14 being false it is shown that the Xcom may be asked to provide

the same input more than once.

4.3.5 Transactional IC

A transactional interaction contract (TIC) between a Pcom client and a Tcom server

consists of the obligations given in Table 4. A message sequence diagram summarizing

the messages exchanged between the interacting components under the TIC is shown in

Figure 23. Figure 24 shows the statecharts which define behavior of a Pcom

(xact_client_sc) executing a transaction on a Tcom (xact_server_sc) under the TIC

Table 4. TIC: Pcom (Client) and Tcom (Server) Obligations
Pcom Obligations Tcom Obligations
PS1: Persistent Reply-Expected State.
The Pcom’s state as of the time at which
the reply to the commit request is ex-
pected, or later, must persist without hav-
ing to contact the Tcom to repeat its ear-
lier sent messages.

PS2: Persistent commit request mes-
sage. The Pcom’s commit request mes-
sage must persist and be resent, driven by
timeouts, until the Pcom receives the
Tcom’s reply message.

PS3: Unique message. The Pcom prom-
ises that its commit request message has
unique contents (including all header in-
formation such as timestamps, etc.).

PR1: Duplicate Message Elimination.
The Pcom promises to eliminate duplicate
reply messages to its commit request mes-
sage (which the Tcom may send as a re-
sult of Tcom receiving multiple duplicate
commit request messages sent by Pcom
because of PS2).

PR2: Persistent Reply Installed State:
The Pcom promises that, before releasing
Tcom from its obligation under TS1, its
state at the time of the Tcom commit reply
message receive or later is persistent
without the need to request the reply mes-
sage again from the Tcom.

TR1: Duplicate elimination. Tcom
promises to eliminate duplicate commit
request messages (which Pcom may send
to satisfy PS2). It treats duplicate copies
of the message as requests to resend the
reply message.

TR2: Atomic, isolated, and persistent
state transition. The Tcom promises that
before releasing Pcom from its obligations
under PS2 by sending a reply message,
that it has proceeded to one of two possi-
ble states, either committing or aborting
the transaction (or not executing it at all,
equivalent to aborting), and that the re-
sulting state is persistent.

TS1: Persistent (faithful) reply message.
Once the transaction terminates, the Tcom
replies acknowledging the commit re-
quest, and guarantees persistence of this
reply until released from this guarantee by
the Pcom. The Tcom promises to resend
the message upon explicit Pcom request,
as indicated in TR1 above. The Tcom re-
ply message identifies the transaction
named in the commit request message and
faithfully reports whether it is committed
or aborted.

TS2: Unique message. The Tcom prom-
ises that its commit reply message has
unique contents (including all header in-
formation such as timestamps, etc.)

62 4 Interaction Contracts Framework

protocol.

The client tries to execute a transaction comprising a number of sql statements (input

parameter sql_nr). A new statement is issued after getting a reply to the previous one.

The client (re)starts in the state recovery. When its log (clnt_last_logged) is empty, it

knows that the given transaction has not been committed. After the external event

clnt_trigger (interface to the application logic) is fired (perhaps replayed) the client

advances to the superstate sql_processing where it immediately enters the default basic

state xact_start, and sends the transaction begin event begin_xact to the server.

Note that each transaction execution attempt can be aborted by the server anytime for

whatever reason. Thus, the client is always prepared to receive the corresponding

notification (aborted) from the server. In such a case, the client leaves the superstate and

enters the state recovery again. The same has to be done, when the server does not

acknowledge the new transaction by generating the event begun for more than the user-

defined timeout begin_tm.

When the new transaction is started, the client sends the first sql statement i.e., it

generates the first element of the event array sql_req and advances to the state

querying_updating. When the client application logic discovers some inconsistency

(signaled to the system by event rollback) in one of the server replies that are modeled

here by the event array sql_rep, it will send the event user_abort to the server and move

to the state aborting. The event user_abort is periodically generated based on the timeout

sql_req(content)

user_abort

sql_rep(content)

committed(id)

xact_clientxact_client xact_serverxact_server

aborted

sql_req(content)

sql_rep(content)

commit(id)

commit(id)

sql_req(content)

user_abort

sql_rep(content)

committed(id)

xact_clientxact_client xact_serverxact_server

aborted

sql_req(content)

sql_rep(content)

commit(id)

commit(id)

Figure 23: A Message Sequence Diagram of the Transactional Client (Pcom) and Server (Tcom)

4 Interaction Contracts Framework 63

user_abort_tm until the server does not confirm abortion of this transaction by the event

aborted. In a normal failure-free run the client is able to collect all server replies as it

receives the event final_sql_rep (alias of sql_rep(sql_nr)) while in the state

querying_updating, and prepares client persistence by generating the formal output event

pcom_nd. The client moves to the state ready_to_commit.

In the next step, the CIC receiver instances running on the same Pcom are given a chance

to make the interactions stable. In the very same step the client makes the first forced log

write by setting client_last_logged to ‘pre_commit’, sends the event commit to the server

and advances to the corresponding state. While being in this state, the client periodically

resends the commit message based on the timeout commit_tm until the servers either

confirms by the message committed or rejects by aborted.

not ROLLBACK and
SQL_REP_OK[I<SQL_NR]/
SQL_REQ(I+1);I++

Chart: XACT_SERVER_SC Version:2 Date: 5-NOV-2003 13:32:20

XACT_SERVER_SC

COMMITTEDBEGIN

SQL_CALL_EXEC> COMMITTING

FAILURE

WAIT_FOR_SQL

RECOVERY

COMMIT_OK

(INTERNAL_ABORT or COMMIT_OK)
[SRVR_LAST_LOGGED!='COMMITTED']
or
SQL_REQ_OK or
USER_ABORT_OK

BEGIN_OK or
USER_ABORT_OK or
INTERNAL_ABORT

not INTERNAL_ABORT
and SQL_REQ_OK

BEGIN_OK or
USER_ABORT_OK or
INTERNAL_ABORT

not INTERNAL_ABORT and SQL_REQ_OK

COMMIT_OK_TM
[SRVR_LAST_LOGGED=='COMMITTED']/
COMMITTED

not INTERNAL_ABORT
and BEGIN_OK

BEGIN_OK or USER_ABORT_OK or INTERNAL_ABORT

COMMIT_OK

RECOVERY_TM/
ABORTED

COMMIT_OK_TM/
SRVR_LAST_LOGGED:='COMMITTED';
COMMITTED;

not INTERNAL_ABORT
and
not USER_ABORT_OK
and not BEGIN_OK
and
BEGIN_OK_TM/
BEGUN

XACT_SERVER_CRASH

T

T

XACT_CLIENT_SC

PRE_COMMIT
COMMITTED

RECOVERY

SQL_PROCESSING

XACT_START QUERING_UPDATING
ABORTING

READY_TO_COMMIT

COMMIT_TM and
not COMMITTED_OK and not ABORTED_OK/
COMMIT

COMMITED_OK/
CLNT_LAST_LOGGED='COMMITTED' ;
CLIENT_COMMITTED

not ROLLBACK and
FINAL_SQL_REP_OK/
PCOM_ND

/I:=1;
BEGIN_XACT

BEGUN_OK/
SQL_REQ(I)

USER_ABORT_TM/
USER_ABORTROLLBACK or

(not SQL_REP_OK and
SQL_TM) /USER_ABORT

PCOM_ND/
CLNT_LAST_LOGGED:='PRE_COMMIT';
COMMIT

not ABORTED_OK and
not BEGUN_OK
and BEGIN_TM

ABORTED_OK

[CLNT_LAST_LOGGED=='COMMITTED']/
CLIENT_COMMITTED

CLNT_TRIGGER
[CLNT_LAST_LOGGED=='']

[CLNT_LAST_LOGGED=='PRE_COMMIT']/
COMMIT

ABORTED_OK/
CLNT_LAST_LOGGED:=''

XACT_CLIENT_CRASH
Chart: XACT_CLIENT_SC Version:3 Date: 5-NOV-2003 13:32:20

not ROLLBACK and
SQL_REP_OK[I<SQL_NR]/
SQL_REQ(I+1);I++

Chart: XACT_SERVER_SC Version:2 Date: 5-NOV-2003 13:32:20

XACT_SERVER_SC

COMMITTEDBEGIN

SQL_CALL_EXEC> COMMITTING

FAILURE

WAIT_FOR_SQL

RECOVERY

COMMIT_OK

(INTERNAL_ABORT or COMMIT_OK)
[SRVR_LAST_LOGGED!='COMMITTED']
or
SQL_REQ_OK or
USER_ABORT_OK

(INTERNAL_ABORT or COMMIT_OK)
[SRVR_LAST_LOGGED!='COMMITTED']
or
SQL_REQ_OK or
USER_ABORT_OK

BEGIN_OK or
USER_ABORT_OK or
INTERNAL_ABORT

not INTERNAL_ABORT
and SQL_REQ_OK

BEGIN_OK or
USER_ABORT_OK or
INTERNAL_ABORT

not INTERNAL_ABORT and SQL_REQ_OK

COMMIT_OK_TM
[SRVR_LAST_LOGGED=='COMMITTED']/
COMMITTED

not INTERNAL_ABORT
and BEGIN_OK

BEGIN_OK or USER_ABORT_OK or INTERNAL_ABORT

COMMIT_OK

RECOVERY_TM/
ABORTED

COMMIT_OK_TM/
SRVR_LAST_LOGGED:='COMMITTED';
COMMITTED;

not INTERNAL_ABORT
and
not USER_ABORT_OK
and not BEGIN_OK
and
BEGIN_OK_TM/
BEGUN

XACT_SERVER_CRASH

T

T

XACT_CLIENT_SC

PRE_COMMIT
COMMITTED

RECOVERY

SQL_PROCESSING

XACT_START QUERING_UPDATING
ABORTING

READY_TO_COMMIT

COMMIT_TM and
not COMMITTED_OK and not ABORTED_OK/
COMMIT

COMMITED_OK/
CLNT_LAST_LOGGED='COMMITTED' ;
CLIENT_COMMITTED

not ROLLBACK and
FINAL_SQL_REP_OK/
PCOM_ND

/I:=1;
BEGIN_XACT

BEGUN_OK/
SQL_REQ(I)

USER_ABORT_TM/
USER_ABORTROLLBACK or

(not SQL_REP_OK and
SQL_TM) /USER_ABORT

PCOM_ND/
CLNT_LAST_LOGGED:='PRE_COMMIT';
COMMIT

not ABORTED_OK and
not BEGUN_OK
and BEGIN_TM

ABORTED_OK

[CLNT_LAST_LOGGED=='COMMITTED']/
CLIENT_COMMITTED

CLNT_TRIGGER
[CLNT_LAST_LOGGED=='']

[CLNT_LAST_LOGGED=='PRE_COMMIT']/
COMMIT

ABORTED_OK/
CLNT_LAST_LOGGED:=''

XACT_CLIENT_CRASH
Chart: XACT_CLIENT_SC Version:3 Date: 5-NOV-2003 13:32:20

Figure 24: TIC Pcom and Tcom

64 4 Interaction Contracts Framework

When the transaction is committed, the client installs this fact by changing the value of

client_last_logged to ‘committed’ and moves to the state committed. During the same

transition it generates the application interface event client_committed that normally

would trigger some CIC reply to the client on whose behalf the transaction has been

executed. If the transaction is aborted, the client will clear the transaction status in the log

and start a new attempt to execute this transaction by moving to the superstate

sql_processing.

Thus, after a crash (xact_client_crash) the client considers three possible cases:

1. The log is empty meaning that the transaction needs to be retried.

2. The log contains ‘pre_commit’ meaning that the transaction has been executed,

and the client has to learn its status from the server by resending the commit

message.

3. The log contains ‘committed’ meaning that the transaction is definitely committed

and the client can recover the reply client_committed to proceed with its

deterministic replay autonomously.

Now we describe how the Tcom processes transactions. When the Tcom comes up in the

state recovery and detects that the log (srvr_last_logged) for the given protocol instance

is empty, it waits for the client to start a transaction. After the server receives the

corresponding message from the client, it advances to the state begin. Because a Tcom is

normally an extensively used multi-user system, the server does not immediately confirm

the transaction being started. This rather happens after a random timeout (begin_ok_tm)

when the Tcom replies with begun and advances to the state wait_for_sql.

Throughout transaction execution, some events may lead to a transaction abort:

• the nondeterministic event internal_abort that models Tcom-initiated aborts e.g.,

as part of deadlock resolution,

• user_abort generated by the client as explained above,

• a repeated out-of-order begin message coming from the client implying that it has

crashed in the mid of the transaction and is now recovering.

In all these cases, the server moves to the state failure. Since transaction rollback is not

different from normal transaction execution, it takes some random time recovery_tm until

the client is notified about the transaction abort. It moves again to the state recovery and

is ready to accept new transaction execution attempts.

4 Interaction Contracts Framework 65

In a normal failure-free run the server advances from the state wait_for_sql to the state

sql_call_exec after receiving the first request, i.e., sql_req(i) with i=1. As you see the

state is always exited and more importantly entered again when the compound event

sql_req_ok (defined Ÿlink_outage ⁄ sql_req(i)) occurs. As a static reaction on entrance

of this state the server generates randomly timed replies sql_rep(i). This seemingly

complicated mechanism as opposed to just specifying tm(sql_req(i, …)) is needed in

order to prevent confusion by “old” timeouts after a crash as we have already mentioned

in Section 4.2.4 above.

After the server receives the event commit from the client, it advances to the state

committing and waits there for a random period of time commit_ok_tm. Then the server

commits transaction (i.e., it writes ‘committed’ to sndr_last_logged), sends the

notification committed to the client and advances to the final state committed. When the

client resends the commit message, the server will repeat the event commited after the

random timeout commit_tm.

Table 5 summarizes the properties we have verified for a simple database client-server

application. The event clnt_trigger is on throughout every step because the transaction is

a result of internal computations. The client transaction encompasses three SQL requests.

As part of the debugging process, we have verified one of the most important safety

properties. F15 proves that the client never even tries to execute already committed

transactions. We abbreviate here and in further formulae srvr_last_logged by sll. The

statechart expression any(a) evaluates to true when one or more elements of the array a

are generated in the given step. Thus, non-idempotent execution is out of question with

this specification.

Now we would like to verify if and how individual TIC obligations are provided by this

specification. The Pcom obligation PS1 like S1 can be shown only at the application level

Table 5. Verified Properties of TIC
Nr CTL Formula Res.
F15 AG(sll=’c’ Ø AG(¬any(sql_req))) True
F16 AG(¬cc) Ø AG ((cll = ‘p’ ⁄ ¬(c_ok ¤ a_ok)) Ø AF<30(c)) True
F17 AG(cll=’’ ¤ cll=’p’ ¤ cll=’c’) ⁄ AG(sll=’’ ¤ sll=’c’) True
F18 AG((wr(cll) ⁄ cll=x) Ø AX AG (¬(wr(cll) ⁄ cll=x))) True
F19 AG((wr(sll) ⁄ sll=y) Ø AX AG (¬(wr(sll) ⁄ sll=y)) True
F20 AG(sll=’c’ Ø AG(¬ (sll =’’))) True
F21 AG((cd Ø sll=’c’) ⁄ (ad Ø sll=’’)) True
F22 AF<500(AG¬(failures)) Ø AF<700(AG(cll=’c’ ⁄ sll=’c’)) True

66 4 Interaction Contracts Framework

as far as the IC framework is concerned. The Pcom obligation PR2 about when to allow

the Tcom to drop commit reply message from the stable log goes beyond the interactions

within a single transaction and therefore cannot be shown with the given one-transaction-

specification.

The Pcom obligation PS2 (periodic resend of the commit message is verified by the

formula F16. Assuming that the client does not crash (i.e., clnt_crash (cc) is false) the

following holds: when the client is prepared to commit the transaction (i.e.,

client_last_logged (cll) is equal to ‘pre_commit’ (‘p’)) and no reply (i.e., neither aborted

nor committed) reaches the client (i.e.,¬(c_ok ¤ a_ok)), then the client will resend the

message commit (c) after at most 30 steps.

By verifying the formula F17, we show that

1. the variable sndr_last_logged assumes one of the two possible values: empty ‘’ or

‘committed’,

2. the client_last_logged variable may be one of the following: empty ‘’,

‘pre_commit’, or ‘committed’.

F18 shows for each possible value x that it is written to clnt_last_logged at most once.

The identical formula F19 is shown for each possible value y of srvr_last_logged. Thus,

one can infer from F19 that the client detects duplicate commit notifications and logs

commit only once. Similarly, the server detects commit request duplicates issued by the

client and logs the transaction at most once as it follows from F19. F20 proves that a

committed transaction is durable. Together with the formula F17, the specification is

proved to provide transaction atomicity.

F21 demonstrates that the Tcom always provide faithful reply. The server never generates

the message committed (abbreviated cd) with the transaction outcome log entry being

empty and it does not respond aborted (abbreviated ad) after having committed the

transaction.

Finally yet importantly, we present a liveness property of TIC. We show that with a finite

number of failures (xact_client_crash, xact_server_crash, link_outage, application-

initiated rollback due to some inconsistency or internal_abort on server) and reasonable

server performance (when client requests do not pathologically time out causing

transaction restarts) every transaction under TIC is executed exactly-once. The timeouts

4 Interaction Contracts Framework 67

that cause transaction restarts are begin_tm and sql_tm. They do not occur as long as long

as msg_exec_time < client_to - RTT holds for the random execution time on the server

(msg_exec_time), the current integer value of the client timeouts (client_to), and the

round trip time (RTT) of two steps in the synchronous time model. (When the request

message is generated in step i, it is seen by the receiver in step i+1 in which it also

generates the reply which is seen by the original sender in step i+2.)

Assume that all the failure and timeout events we have just described are OR-ed in the

compound variable failures. Then the CTL formula F22 can be verified. This formula

states that if no failures occur anymore after at most 500 steps, both client and server will

commit and install TIC after at most 700 steps.

4.3.6 Sample Application of the IC Framework

Now we are ready to build composed specifications for concrete real-world application

scenarios. In this section, we model a sample Web Service that encompasses Web

browsers, a Web server, two application servers, and a database server. The browsers, the

Web server, and the application servers are Pcoms; the database server is a Tcom; solely

USER1_REQ

@USER1_SC

XACT_UPDATE
<TIC_AC

BROWSER_INPUT
<XIC_I_AC

BROWSER_OUTPUT
<XIC_O_AC

APPSRVR2_REP
<CIC_AC

APPSRVR1_REQ
<CIC_AC

APPSRVR2_REQ
<CIC_AC

APPSRVR1_REP
<CIC_AC

WEBSRVR_REP
<CIC_AC

WEBSRVR_REQ
<CIC_AC

CUSTOMER

BUTTON_CLICKEDHTML_PROMPT HTML_ACKHTML_REPLY

CLICK_CAPTURED

WEBSRVR_REQ_RCVD

APPSRVR1_REQ_RCVD

APPSRVR2_REP_RCVD APPSRVR1_REP_RCVD

WEBSRVR_REP_RCVD

LOCAL_FAILURES

BROWSER_CRASH,
XACT_{USER, INTERNAL}_ABORT,
BROWSER_WEBSRVR_LINK_OUTAGE

GLOBAL_FAILURES

WEBSERVER_CRASH, APPSERVER{1;2}_CRASH, DBSRVR_CRASH,
WEB_APP{1,2}_LINK_OUTAGE, APP1_DB_LINK_OUTAGE

XACT_COMMITTED

APPSRVR2_REQ_RCVD

USER1_REQ

@USER1_SC

XACT_UPDATE
<TIC_AC

BROWSER_INPUT
<XIC_I_AC

BROWSER_OUTPUT
<XIC_O_AC

APPSRVR2_REP
<CIC_AC

APPSRVR1_REQ
<CIC_AC

APPSRVR2_REQ
<CIC_AC

APPSRVR1_REP
<CIC_AC

WEBSRVR_REP
<CIC_AC

WEBSRVR_REQ
<CIC_AC

CUSTOMER

BUTTON_CLICKEDHTML_PROMPT HTML_ACKHTML_REPLY

CLICK_CAPTURED

WEBSRVR_REQ_RCVD

APPSRVR1_REQ_RCVD

APPSRVR2_REP_RCVD APPSRVR1_REP_RCVD

WEBSRVR_REP_RCVD

LOCAL_FAILURES

BROWSER_CRASH,
XACT_{USER, INTERNAL}_ABORT,
BROWSER_WEBSRVR_LINK_OUTAGE

GLOBAL_FAILURES

WEBSERVER_CRASH, APPSERVER{1;2}_CRASH, DBSRVR_CRASH,
WEB_APP{1,2}_LINK_OUTAGE, APP1_DB_LINK_OUTAGE

XACT_COMMITTED

APPSRVR2_REQ_RCVD

Figure 25: IC Application in Web Service Activitychart

68 4 Interaction Contracts Framework

the customers (i.e., end-users) are considered to be outside the framework and are

handled as external components. Figure 25 shows the activitychart of an end-user request

in the Web Service. In the interest of clarity, the dataflow information in the activitychart

is limited to the trigger events that drive the execution of the end-user request, and the

failure events. The control activity user_sc is not shown here because it consists almost

only of orthogonally starting the activities for sending and receiving of the messages

defined in the activitychart. The real complexity is hidden in the generic charts of the

interaction contracts introduced above. An activity declaration of the form

activity<generic_activity means that activity is an instance of generic_activity in the

Statemate design.

An informal description of the application logic follows:

1. The user review initial HTML page in her browser (the formal parameter

user_input_prompt of the XIC input instance browser_input is bound to the user-

scope event html_prompt). The user fills in some data under XIC and clicks on a

submit button (the formal parameter user_input of the XIC input instance is bound

to the user-scope event submit_clicked). The installed XIC generates the user-

scope event click_captured, to which the formal output parameter xic_i_installed

is bound.

2. In turn, click_captured is the sndr_trigger of the ICIC instance websrvr_req (i.e.,

the condition parameter icic equals true) standing for the call of the Web server by

the browser. An arrival of the request at the server is signaled by the user-scope

event websrvr_req_rcvd, to which the formal output parameter received of the

CIC receiver is bound.

3. The event websrvr_req_rcvd is the sndr_trigger of the two CIC instances

appsrvr1_req and appsrvr2_req handling the application server requests initiated

by the Web server.

4. The output event appsrvr2_req_rcvd of the CIC instance appsrvr2_req is the

sndr_trigger for the CIC instance appsrvr2_rep dealing with the corresponding

reply to the Web server.

5. The output event appsrvr1_req_rcvd of the CIC instance appsrvr1_req is the

sndr_trigger of the TIC instance xact_update handling a two-statement-

transaction on the database server on behalf of the first application server. Once

transaction is completed the client part of the TIC instance generates the user-

4 Interaction Contracts Framework 69

scope event xact_committed to which the TIC client output event

client_committed is actually bound.

6. The event xact_committed is the sndr_trigger of the CIC instance appsrvr1_rep

that handles the reply message of the first application server to the Web server.

7. For the Web server we manage a slightly more complicated application logic that

is defined by the orthogonal component websrvr of the control activity user_sc in

Figure 26. The Web server generates the event websrvr_done that is the

sndr_trigger for the CIC instance websrvr_rep only after it detects for the first

time during uninterrupted normal operation to have gathered both replies from the

asynchronously called application servers. As you may see, the Web server loses

the information about previously received reply messages on each occurrence of

websrvr_crash by assuming the default configuration (wait_app1, wait_app2)

again.

8. The user-scope event websrvr_rep_rcvd is also the input parameter sndr_trigger

of the XIC output instance of the browser.

9. Finally, the browser presents to the customer the output html_reply, to which the

output parameter pcom_output of the XIC output is bound which is acknowledged

by the user-scope event html_ack.

We limit the specification to only two users (i.e., parallel end-user requests) due to the

high verification costs. However, this suffices to introduce inter-user concurrency into the

specification. Random order of the replies resulting from asynchronous calls to the

application servers represents an additional source of intra-request nondeterminism.

As for failure events, we distinguish between failures that are local to a particular

customer and failures that affect every customer in the system. The global failures are all

WAIT_APP1

WEBSRVR
/st!WEBSRVR_REQ);
st!/WEBSRVR_REP)

WAIT_APP2

APP1_DONE

APP2_DONE

WEBSRVR_CRASH

APPSRVR2_REP_RCVD

APPSRVR2_REP_RCVD

[in(APP1_DONE) and in(APP2_DONE)]/
WEBSRVR_DONE

WAIT_APP1

WEBSRVR
/st!WEBSRVR_REQ);
st!/WEBSRVR_REP)

WAIT_APP2

APP1_DONE

APP2_DONE

WEBSRVR_CRASH

APPSRVR2_REP_RCVD

APPSRVR2_REP_RCVD

[in(APP1_DONE) and in(APP2_DONE)]/
WEBSRVR_DONE

Figure 26: Orthogonal Component of the Web Server Control

70 4 Interaction Contracts Framework

server crashes and outages of the network between the servers. Browser crashes and

broken internet connection between the browser and the Web server as well as user-

initiated and server-enforced transaction aborts affect individual end-users. All failure

events are routed correspondingly to the instances of the generic IC activities.

Each Pcom possesses its own nondeterminism alert. On a shared component such as the

Web server such an event is shared by all users. To elaborate more on this particular

example, websrvr_nd is generated as the output parameter sndr_nd of the CIC instances

appsrvr{1, 2}_req, websrvr_rep of every user and is consumed as the input parameter

rcvr_nd by the CIC instances websrvr_req and appsrvr{1, 2}_rep of every user.

Table 6 summarizes the results of the application-level verification of the IC framework.

We start verification by proving that the state corresponding to displaying HTML output

to the user is reachable, i.e., there are successful runs in the composite system. The

formula F23 is true. Then we have shown that each message is logged at-most-once, i.e.,

for each instance, for each logging variable l and each value v that it can assume we have

proved the formula F24.

The most interesting safety property of the Web server results from its application logic.

The Web server replies to the browser after receiving the browser request and processing

the replies from the application servers. Thus, the first attempt to send a reply to the

browser commits the exact order of these messages, most importantly that of the

asynchronous application server replies. Therefore, for each of the corresponding

variables rcvr_last_logged (rll) and the event send_msg from the instance websrvr_rep

the formula F25 should be true. This has been successfully proved.

Unfortunately, we have not been able to prove any properties for two concurrent users

because the model checker has not terminated even after 10 days. On the other hand, it

has not produced counterexamples for the safety properties either, and we could

demonstrate the correct handling of multiple asynchronous nondeterministic messages

with the Web server above in a smaller context.

Table 6. Verified Properties of a Sample Web Service
Nr CTL Formula Res.
F23 EF html_reply True
F24 AG((wr(l) ⁄ l=v) Ø AX AG(¬(wr(l) ⁄ l=v)) True
F25 AG(send_msg Ø (rll=’s' ¤ rll=’i')) True

4 Interaction Contracts Framework 71

4.3.7 Verification Run-Time

This work has been accomplished on a server with 64x 1.2 GHz UltraSPARC-III+

processors and 184 Gigabytes RAM. The specifications at the level of individual IC

contracts result in OBDDs whose size does not exceed 105 nodes. It took at most 15 sec

to verify the safety properties and 1 to 17 hours were needed for the liveness properties

depending on the execution path lengths used for the Finally modality, varying between

100 and 700 steps. The OBDD size for the specification of the Web Service model is in

the order of 107 nodes. The maximum run-time for the safety properties (in the single-

user context) is less than two hours.

The verification of liveness in the application-level context has not terminated even after

one week. The safety could only be proved for the nondeterministic request execution for

a single user. Table 7 gives an overview of model checker run-times for different types of

specifications and properties to be proved. Different run-times and OBDD sizes are given

for the specification variants with and without integer expressions where available.

4.4 Lessons Learned

Our initial hope for applying formal specification and model checking techniques to

recovery protocols was that this would be a nontrivial but not too difficult engineering

exercise. However, in the process of working with Statemate and the model checker, we

realized that there are many subtleties and modeling choices that can make the difference

between a verifiable, readable, and composable specification, and a model that is too

complex for the model checker, difficult to match with the informal descriptions of the

protocols, or unsuitable for reuse in a more comprehensive application-level model. In the

following section, we report some of the lessons learned.

4.4.1 Efficient Verifiability

We faced a number of design choices for modeling the basic elements of the IC

framework: messages, failures, logs.

Table 7. Verification Run-Times
Property/Specification Type OBDD size Verification Time

Integers used ~104 ~5 seconds
IC-level safety

Without integers ~103 ~1sec.
Integers used ~106 ~10 hours

IC-level liveness
Without integers ~105 ~10 hours
Integers used ~107 Not terminated

1-user WS safety
Without integers ~106 ~10 hours

72 4 Interaction Contracts Framework

As for messages, we had to find an appropriate representation for message uniqueness

required in the IC framework. The first attempt was to use integer-valued message

sequence numbers, but this created tremendous problem for the model checker. Statemate

translated (bounded) integers into their bit representations, leading to a state explosion

that led to unacceptable, often non-terminating behavior of the model checker in the

global context. Instead, we encapsulated all messages used in a given interaction contract

as event variables local to the protocol instance. Thus, messages belonging to different

protocol instances cannot be confused, and this trick sped up the model checker

substantially while retaining the semantics of sequence numbers.

As for logs, we considered the following three options: (bounded) queues, history-

connected states, and string variables. Queues seemed to be the most intuitive choice, but

they are not yet supported by the Statemate model checker. History-connected states were

used in the first attempt, but led to disastrous behavior of the model checker. Finally, we

resorted to using string variables for explicitly remembering the most recent persistent

state of a given protocol instance. This can be seen as an efficient emulation of

Statemate’s concept of history-connected states.

Another interesting issue was how to capture effects of a message execution since we

wanted to show the impossibility of non-idempotent execution with interaction contracts.

The solution that led to efficient verification was to show globally that identical values

are never written to a log variable. Initially we used integer counters for critical

transitions. Showing that these integers can never exceed one would also prove the

impossibility of non-idempotence at the IC level, but the verification of this at the

application level did not terminate. The general insight is that specification tools such as

Statemate offer some convenient modeling elements with hidden complexity. They

should be used with great caution.

As for failures, we wanted to model both component crashes and network problems such

as router failures, without having to model a detailed network, as this would have grown

the model beyond tractability. We modeled all failures simply as nondeterministic events.

As failures of one component lead to timeouts in other components, the time model was a

critical issue, too. We found that between the two Statemate options, synchronous or

asynchronous time, only the former was suitable and led to readable specifications with

clear semantics. For modeling timeouts, we initially used Statemate’s native timeout

mechanism that uses integer expressions, but this led to unacceptable run-time of the

4 Interaction Contracts Framework 73

model checker. The final solution models timeouts as elementary nondeterministic events

that do not lead the model checker into complexity pitfalls. The correctness of the

original specification follows from the following consideration. Execution paths with

properly periodic event recurrence are a proper subset of a complete set of execution

paths. With most safety properties being all-quantified everything we have proved for the

latter will also hold for the former.

We took request execution times into account because the model primarily aims at

multi-user environments where response times may significantly vary depending on the

current load. The ability of the framework to deal with repeated requests caused by very

slow request execution in the absence of failures is one of the key features to be verified.

It is also well known from empirical studies of so-called Heisenbugs that stress

conditions like high load and high variability in the timing behavior of threads may

exhibit bugs that do not occur at all under normal conditions. We have reply messages

generated at random points triggered by nondeterministic events rather than simply using

a default setup with constant execution times. This created a symbolic and exhaustive

stress “test” for handling timeouts at all levels of the system. It did slow down the model

checker, but this is well justified by the additional confidence in the correctness of the

complete system.

4.4.2 Composability

One of the most challenging tasks was to design the interaction contract specifications in

an easy-to-compose way. This was achieved by defining IC’s as generic activities. They

have a simple interface to the application logic which abstractly defines that receiving a

message in one instance (e.g., an application server request) causes a message send in

another instance (e.g., the application server reply or a further request). Activities running

on the same component share the same failure events. More importantly, they share the

same nondeterminism event such as websrvr_nd causing a forced write to the

corresponding log variables, which is atomically accomplished in a single step.

Verification of an entire composite system is orders of magnitude more complex than for

a single IC. In the sample application, one end-user request encompasses five

request/reply pairs which results in ten protocol instances running simultaneously; this is

doubled in the two-user model. Since each protocol instance is a cross product factor in

the overall system, the size of the underlying OBDD increases exponentially with each

74 4 Interaction Contracts Framework

new component added to the system. This explains the difficulties we faced during the

application-level verification. Nevertheless, the proofs of the underlying IC’s already give

very high confidence in correctness.

5 EOS: Exactly-Once Web Service 75

5. EOS: Exactly-Once Web Service
“All is well, provided the light returns and the eclipse does not become endless night.
Dawn and resurrection are synonymous. …” - Victor Hugo

In this chapter, we describe another major contribution of this thesis: an efficient

implementation of the IC framework for general stateful Web Services. We enhance

popular Web technology products: (i) the server-side script language PHP run on Apache

Web Server, and (ii) the browser Internet Explorer, to enable the system-failure-resilience

of arbitrarily structured Web applications without any coding overhead.

5.1 Introduction

5.1.1 The World Wide Web

The World Wide Web (abbreviated as WWW) and often called simply the Web for short

is a system of interconnected autonomous Internet servers that offer specially formatted

interlinked documents. Most documents on the Web are written in Hypertext Markup

Language (HTML) [W3.org] that is a mixture of plain text and markups defining the

text structure, the text layout, and links to other, either local or remote, documents. Figure

27 depicts a sample HTML document with markups displayed in boldface. The scope of a

markup is defined by the corresponding start and end tags (e.g., <html> and </html>

enclose a complete HTML document). A markup may have additional attributes that are

defined in the start tag. In the current example, the attribute href of the markup <a>

provides a reference to a document containing more information on HTML. All objects

on the Internet including Web documents have a unique uniform resource identifier

(URI) [IETF 1998] as e.g., http://w3.org/, the value of the attribute href.

The Web users access objects via the Hypertext Transfer Protocol (HTTP) [IETF

1999]. It was designed as a simple plain-text-based application-level protocol layered just

01. <html>
02. <head>
03. <title>Example</title>
04. </head>
05. <body>
06. Hi, I'm a static
07. HTML
08. Page!"
09. </body>
10. </html>

Figure 27: Simple Static HTML Page

76 5 EOS: Exactly-Once Web Service

on top of the transport protocol stack TCP/IP [Comer 1988] to download static HTML

pages from a remote site. Typically, an interactive client program called a Web browser

translates a URI provided by the end-user into an HTTP request to a Web server. The

first line of the header request defines the operation on the URI to be executed by the

server. HTTP supports several operations with GET and POST being the most frequently

used.

The HTTP GET request was initially used to download static objects such as HTML

pages along with multimedia objects embedded in them (all fetched by separate requests).

With the need to query the growing Web resources, HTTP allowed adding a query string

containing parameters in the form of name-value pairs to the URI (e.g., as in

http://google.com/search?sourceid=navclient&q=application+recovery). The query

string is processed by a program connected to the Web server through the common

gateway interface (CGI) [W3.org]. Since the query string is physically a part of the

URI, its length is limited by the maximum URI length, which has varied over the time

from 256 to 4,096 bytes. Although the maximum URI length is not specified in IETF

[1999], the HTTP POST request was proposed as a more flexible way of submitting

versatile input including large files to Web servers. Instead of encoding parameters into

the URI of a CGI resource, an unlimited number of objects can be attached to the request.

Moreover, the current HTTP specification recommends that the GET method should no

longer be used for purposes other than object retrieval, i.e., it should not have any side

effects on the server state.

The initial usage of the Web for download of published HTML documents is reflected in

that HTTP was designed as a stateless protocol. With the increasing usage of the Web as

a gateway for business application, a special mechanism, coined cookie, was added to

HTTP. The HTTP cookies allow storing the HTTP session state with the HTTP client.

The client submits the session context with each request; the server produces a new state,

and sends it back with the reply such that the server still does not have to maintain the

state information. If the application is state-rich, this significantly degrades the end-user

experience because of the latency overhead. Currently, cookies are normally used to keep

the session identifier only that allows the server to put the current request into the

appropriate context. This makes such a Web application truly stateful.

5 EOS: Exactly-Once Web Service 77

5.1.2 Apache Web Server

Apache is an open-source project focusing on a complete and correct implementation of

the server side part of the HTTP protocol [Apache.org]. According to a recent survey that

included responses received from 56,923,737 sites, Apache remains the leading Web

server product, having more than 67% percent of the market [Netcraft 2004]. Apache is

implemented in C, and it is available on most mainstream hardware and operating system

platforms including various UNIX and Windows systems. Apache serves as a code base

for Web servers shipped with many commercial products, e.g., with Oracle’s database

and application servers, IBM HTTP Server for iSeries, etc. In the rest of the chapter, we

use the term Apache to refer to the Apache 1.3 port for Windows that served as the code

base for the prototype. The following review of the Apache architecture follows the

documentation from the project Web site [Apache.org]

Although the port for Windows is almost identical with the reference implementation for

UNIX, it uses a slightly different process model. Apache on UNIX implements a pre-

forking server model. The parent process is responsible for spawning child processes that

listen for, accept, and execute incoming HTTP requests one at a time. The parent process

solely monitors the child processes, and restarts them upon a failure. It also periodically

proactively replaces the child processes to prevent them from occupying the entire

memory due to potential memory leakages. Thus, the code of the parent process is

relatively small and well-tested and its failures have been extremely rare, as reported by

the users. The child process logic is much more complex and it usually contains third

party code linked either dynamically or statically via modules. If a child process becomes

corrupted, only one client request will be affected whereas the other requests will

continue to be served. The pre-forking model has been criticized for the high overhead of

spawning a process, the overhead of context switches between the processes, and missed

opportunities for reply caching.

The Apache port for Windows is an experimental multithreaded implementation (a

prototype predecessor of Apache 2) that consists of a heartbeat checking parent process

and a single child process maintaining a pool of worker threads. It responds to the critic

points mentioned above with the penalty of having all concurrent requests interrupted

upon a crash.

Apache breaks down processing of a request into the following phases.

78 5 EOS: Exactly-Once Web Service

1. Translation of the URI into the complete local file path of the requested object.

2. End-user identification (optional).

3. Authorization check of the user for the given URI.

4. MIME type detection of the object requested (e.g., application/x-httpd-php for a

PHP script, see below). MIME stands for Multipurpose Internet Mail

Extensions [IETF 1996] and is a standard way to encode arbitrary data using just

plain text (i.e., ASCII characters).

5. Detection of an appropriate module that provides a handler for the MIME type.

The module takes over request execution and sends a reply back to the client.

6. Logging the request information for statistics (not for recovery), which is

optional.

In each of these phases, Apache scans the list of loaded modules, checks if they offer a

handler for the current phase, and attempts to invoke the handler should it be there. A

handler function may execute the current phase completely, decline execution, or detect

an error and stop. Many phases, specifically phase 5, are terminated after the very first

module has been found whose corresponding phase handler returns the success code.

5.1.3 PHP and the Zend Engine

The material on PHP can be found on the project homepage [PHP.net]. PHP (recursive

acronym for "PHP: Hypertext Preprocessor") is a widely used general-purpose scripting

(i.e., interpreted) language that is especially geared for the Web (CGI) application

development. PHP is platform-independent and is available as an add-on module for a

wide variety of Web servers including Apache, Microsoft IIS, and Sun ONE, to name just

a few of them. PHP is used with more than 50% of the Apache installations

[SecuritySpace].

The PHP implementation is an open-source project consisting of many PHP modules

responsible for different PHP function subsets of the PHP language and the Zend engine

implementing the language interpreter [Zend.com].

Consider the following example of Figure 28 that produces a simple HTML page

displaying the string “Hi, I'm a PHP script!” in the browser window. As you may see,

PHP code can be embedded into an HTML page (as well as into any other format) as a

code island enclosed by special start and end tags(“<?php” and “?>”, respectively) that

make the Web server switch into the PHP mode instead of producing output identical to

5 EOS: Exactly-Once Web Service 79

the source page line by line. The server executes the PHP code, and replaces the code

island including the enclosing tags (the enclosing tags are not valid HTML tags) by the

script output. This differs from Web applications written in conventional programming

languages (e.g., C/C++ and Java) where one annoyingly has to printf every single HTML

line no matter how much dynamic content it contains. Similar technology is used by

many other Web scripting languages, e.g., by JSP [Sun] and ASP.NET[Microsoft]. An

HTML page may contain several PHP code islands, which is equivalent, up to the HTML

output in-between, to the sequential execution of the concatenated code islands as a single

code island.

Most of PHP’s syntax is borrowed from C with a small fraction of elements coming from

C++, Java, and Perl. PHP owes its rapid spread to the ease of its syntax and its

expression power. In the rest of the thesis, the term PHP is used to refer to PHP 4.0.6 that

served as the basis of our prototype.

In PHP, a variable does not require a formal declaration. The variable is allocated

automatically when a value is assigned to it for the first time in the script. Variables are

prefixed by a dollar sign (e.g., $varname). The type of the variable does not have to

remain constant: it is determined by the very last value assignment. Variables can be

accessed by value and by reference (e.g, &$varname). A PHP variable type is one of the

following: Integer, Double, Boolean, String, Array, Object, and Resource.

A string is implemented as a C structure containing a pointer to the character array and

the length of this array. PHP arrays are actually hash tables that allow enumerating values

starting with zero as in C, indexing values by strings, by non-contiguous integers, or by a

mix of strings and integers. An object is a hash table mapping the property names to the

corresponding values, and the method names to the implementations. Resource variables

are created by PHP interface modules for external software such as file system and

01. <html>
02. <head>
03. <title>Example</title>
04. </head>
05. <body>
06. <?php
07. echo "Hi, I'm a PHP script!\n";
08. ?>
09. </body>
10. </html>

Figure 28: Simple PHP Page

80 5 EOS: Exactly-Once Web Service

network support of the operating system, database connectivity modules, etc. PHP

resource variables contain integer keys that are mapped through a hash table to module-

specific resource representation (e.g., file handles, sockets, and so on).

PHP relieves developers from manually parsing the HTTP request by providing uniform

access to the most important HTTP request parameters through predefined global arrays:

• $HTTP_GET_VARS maps the names of the parameter provided in the query string

part of the URI to the corresponding values. This also works with a POST request

when the requested URI contains a query string.

• $HTTP_POST_VARS maps the names of the parameters provided in the body of a

POST request except for files.

• $HTTP_POST_FILES maps a name of an input field in HTML to the array

containing details of the corresponding file POSTed: its name on the client’s file

system, its MIME type, its size, and its temporary name on the server’s file

system.

• $HTTP_COOKIE_VARS is a mapping of names to the values of the cookies that

have been found in the request header.

5.1.4 PHP Session Management

PHP provides a session module for maintaining the PHP application state across

subsequent HTTP requests. The session module supports various methods of storing the

session state (e.g., in a file, shared memory, central database, etc.). The state of a PHP

application running may be private (e.g., a shopping cart) or shared, concurrently

accessed by multiple users (e.g., the highest bid in an electronic auction). The state

variables, accessed by their string names through the global session array

$HTTP_SESSION_VARS, may be of any basic or derived data types except resources.

PHP typically uses a cookie to propagate the session (state) id to the client.

The session support is activated either explicitly by calling the function session_start

somewhere in the script or it is started automatically, if appropriately configured, prior to

executing the PHP code for the given request. The session module reads the state

associated with the session id provided with the request from the session storage and

makes it accessible for the PHP script as the session array. When the request does not

contain a session id cookie, the session module generates a new session id (that will be

included as a cookie in the reply) and creates an empty session array. The PHP script may

5 EOS: Exactly-Once Web Service 81

update the session array by changing or deleting the existing entries or by adding new

ones. The new state is made available for subsequent requests by either calling the

function session_write_close or implicitly when the script terminates. Calling this

function at the end irrespectively of whether the script has really modified the state is an

obvious weak point of the current PHP implementation. The state accesses follow

consequently a simple pattern: a read operation followed by a write. As you will see later,

we modify PHP to allow scripts logically consisting of a single read.

The sample script of Figure 29 counts how often it has been invoked by a user. It looks

up the current state (line 2), zeroes the state variable count upon the first access (lines 4-

7), and increments this variable for each invocation (line 9). If this script maintains a

shared state for several users, their accesses must be serialized for consistency. The

session module relies on the session storage module in current use to achieve this. For

instance, the standard session storage module that makes use of the server’s file system

exploits file locking for this purpose. This, however, works only on UNIX systems where

requests are executed by different Apache processes. File locking cannot synchronize

threads of the same process. Our prototype provides a more flexible concurrency control

mechanism coined latches to cope with this and some other issues that we describe

below.

The shared memory storage module is available solely for Linux. The database storage

module is better administrable than the other alternatives, but, relatively inefficient. The

most popular session storage module uses the server file system to store session data

persistently. It allocates a physical file for each session upon the very first call to the

function session_start that exists until the function session_destroy is called at the end of

the session. The original implementation is inefficient because it does not cache session

01. <?php
02. session_start();
03.
04. if(isset($HTTP_SESSION_VARS["count"]) == FALSE)
05. {
06. $HTTP_SESSION_VARS["count"] = 0;
07. }
08. $HTTP_SESSION_VARS["count"]++;
09.
10. echo "Hi, I have been called ";
11. echo $HTTP_SESSION_VARS["count"];
12. echo "times\n";
13. ?>

Figure 29: Sample Usage of PHP Session Support

82 5 EOS: Exactly-Once Web Service

data in the main memory, which implies having to perform a random I/O for every access

to a particular PHP application state.

5.1.5 PHP Business-to-Business

As in the most other cases, PHP offers several options to interact with (potentially PHP-

enabled) Web services. One of the most popular and elegant methods provides the CURL

module that allows PHP applications to access remote HTTP, secured HTTP, FTP,

LDAP, and some other resources in a uniform fashion. The complexity of the protocols is

hidden behind a very simple interface that keeps the coding effort at minimum. This

functionality is implemented by the CURL library for C developed as an open-source

project [Stenberg].

Figure 30 shows a fragment of a PHP script that makes use of CURL to call another Web

service to bid for an auction item. It first initializes a resource variable for this operation

(line 2) and defines its parameters in an array variable (lines 3-6). Next, the PHP script

specifies that the POST method should be used, and associates the parameter array with

the request (lines 7-8). Some Web Services are invoked via SOAP, the Simple Object

Access Protocol layered on top of HTTP [W3.org]. When SOAP is involved, we would

pass a SOAP message as a POST parameter. The HTTP request is sent to the URI

provided during the resource initialization and the reply string is assigned to the variable

$b2b_reply (line 9). When the CURL resource is no longer needed, it can be either

explicitly closed (line 10) or it is automatically garbage collected at some point after the

termination of the script.

Note that by implementing CIC for CURL and Session modules of PHP, EOS-PHP

provides recovery guarantees at the HTTP layer and thus, higher-level applications

01. <?php
02. $b2b = curl_init("http://eos-auctions.com/b2b/");
03. $params = array(
04. "auction_id" => 100232,
05. "bid" => 50.74
06.);
07. curl_setopt($b2b, CURLOPT_POST, TRUE);
08. curl_setopt($b2b, CURLOPT_POSTFIELDS, $params);
09. $b2b_reply = curl_exec($b2b);
10. curl_close($b2b);
11. ?>

Figure 30: Sample Usage of the CURL Module

5 EOS: Exactly-Once Web Service 83

including PHP script libraries for SOAP and other protocols over HTTP are relieved from

dealing with system errors.

5.1.6 Microsoft Internet Explorer

Internet Explorer (IE) is currently the dominant browser on the Web as recent surveys

show [WebSideStory 2004]. The complete documentation on the IE is provided in the

Web Development section of the MSDN home page [Microsoft]. The key features of IE6

that served as a client platform for this thesis are the following:

• Dynamic HTML (DHTML) [W3.org] allows creating powerful graphical user

interfaces (GUI) for the client side of Web applications. DHTML allows client-

side scripts (written in JavaScript, VBScript, etc. [W3.org, Microsoft]) defined in

script markups to interact with the end-user by intercepting her mouse and

keyboard input. DHTML allows manipulating the document through its tree-

structured representation coined HTML Document Object Model (HTML

DOM) [W3.org] without contacting the server.

• User Data Persistence Behavior allows managing a limited portion of the Web

application state on the client’s disk. The state is stored as a file in eXtensible

Markup Language (XML) format that allows describing data objects in a

platform-independent manner [W3.org]. XML documents can be manipulated in a

similar way as HTML thorough the XML Document Object Model (XML

DOM).

5.1.7 Big Picture of EOS

Using the technologies and the components described in the previous section developers

are able to build arbitrarily distributed (potentially stateful) Web applications. Figure 31

sketches a sample service configuration of an EOS-based Web application. End-users call

Web applications on the server sites PHP 1 and PHP 4 using their browsers. PHP 1

invokes (through the CURL client interface) Web Services on PHP 2 and PHP 3 that in

turn call PHP 5 and PHP 6, accordingly. The other frontend Web application server PHP

4 normally follows an identical procedure; occasionally, however, it optimizes this

execution path by having the browser immediately invoke PHP 5 from one of the

embedded HTML elements. Such a system enabled by EOS provides system-failure-

resilience.

84 5 EOS: Exactly-Once Web Service

In order to comply with the IC framework, the PHP application servers and the browsers

must be turned into Pcoms whereas the end-users can only be viewed as Xcoms. The

interactions between a browser and an end-user must follow the XIC. PHP servers

interact under the CIC or the ICIC.

5.2 Persistent EOS Browser

There are two major design goals of EOS enhancements to the browser. The first is to

improve the user experience by saving as much of her input across a failure (such as a

browser crash or Web Service unavailability) as possible. This avoids the need for

annoying repetition of long inputs, which may happen with lengthy forms such as e-

government applications (tax declarations, visa applications, etc.) and e-business

applications (e.g., insurance and credit approval requests). This is the task of the XIC

implementation for the browser. The second design goal is to give the guarantee to the

end-user that all server requests are executed exactly once which is the task of the CIC

stub of the browser.

For this purpose, the browser has to be provided with logging capabilities. Several

implementation strategies have been considered. Most browsers support proprietary plug-

in interfaces for additional modules connected with significant coding effort. ActiveX

elements and Java applets are extremely unpopular among home users and limited in

intercepting user events generated by HTML elements. As a compromise, we decided to

restrict ourselves to using the standard features of the most popular Web browser as of

the time we started developing the EOS prototype, Internet Explorer (IE). More radical

Browser Browser

PHP 1

PHP 3PHP 2

PHP 4

PHP 6

Browser Browser

PHP 5

Browser Browser

PHP 1

PHP 3PHP 2

PHP 4

PHP 6

Browser Browser

PHP 5

Figure 31: Sample EOS Web Application

5 EOS: Exactly-Once Web Service 85

solutions such as building a derivate browser that hosts various Web browser components

(e.g., via the WebBrowser control of IE) or extending an open source browser (e.g.,

Mozilla) would have been feasible as well but they would have consumed more time

without significantly enlarging the feature set covered by the implementation described in

this subsection. The downside of our approach, however, is that we do not have the full

control of some important issues, e.g., when persistent cookies and user data are really

flushed to disk.

We do not expect end users to explicitly store our recovery JavaScript on their computers.

The server counterpart EOS-PHP adds the browser logging and recovery code as the last

step of output processing. Original server scripts do not have to be changed. Logging is

done by modifying a so-called XML store, an XML structure managed by IE on the

client’s disk similarly to persistent cookies. Figure 32 depicts a sample instance of an

XML store. Usage of particular elements of the XML store is explained in the following

subsections. An XML store can keep up to 640 KB per application, which is sufficient

because we are going to keep no more than one copy of an HTML tree, typically

occupying less than 50 KB. The XML store feature is provided by IE as part of its default

persistence behavior called “userData Behavior”. The recovery code inserted by the

EOS-PHP server contains an invisible user-defined HTML element <sdk:logger

id=pagestate style="behavior:url(#default#userData);"> with attached userData

behavior. The XML object associated with the XML store can be accessed through a

simple interface {get,set}Attribute or using the XML DOM that is natively supported by

IE as well. When we need to force the XML store with the logging information to disk we

call pagestate.save(XMLStoreName). For recovery the content of the XML store is

fetched by invoking pagestate.load(XMLStoreName).

5.2.1 Supported Browser Applications

EOS concentrates on providing the recovery guarantees of pure browser applications

using solely DHTML, XML, and JavaScript engines of the browser and interacting with

01. <ROOTSTUB
02. MSN="123"
03. logged_uri="http://localhost/b2c_user1/test7.php"
04. title="EOS: Test (Screen 7)"
05. body="escaped HTML string"
06. user_commit_msn="122"
07. user_commit_element_id="form1"/>
08. </ROOTSTUB>

Figure 32: XML Store Log

86 5 EOS: Exactly-Once Web Service

Web servers through HTTP. Enhanced, embedded GUI applications implemented as Java

applets or Flash animations are not considered in our prototype. Leading e-business

providers try to attract more customers by keeping the software and hardware

requirements as low as possible, and do not use these technologies on the client side

anyway. Logging is based on intercepting certain DHTML events such as mouse clicks,

and keyboard inputs. Events affecting the look of the HTML page (e.g., entering a word

into a form field, clearing a checkbox) are handled by the XIC. Events causing the

browser to send a request to the Web server (e.g., clicking on a form submit button or a

simple link) are subject to CIC. The only way we have found to save the browser state

boils down to dumping the DHTML tree to disk.

The browser state may be richer than mere visible and invisible HTML elements. It may

also include global JavaScript variables. As we have no access to the IE scripting engine

we have the only chance to capture changes to such variables when they are bound to a

(potentially invisible) HTML element each. For the prototype we assume that a user event

on an element is handled by a single script function or the default browser event

processing. We limit the application to changing only a single element on a user event.

We can take this for granted for default edits to form fields but not for changing values of

global variables. We are not able to provide deterministic replay for event processing

functions that affect multiple HTML elements at once between two consecutive end-user

events because we may erroneously dump an inconsistent HTML tree. However, the

likelihood of running into this incorrectness is really small because typically multiple

changes would normally occur in a very small time window as compared to the overall

time the user spends on editing the HTML forms of the given page.

We assume that all relevant HTML input elements are manually assigned unique ids

using standard HTML attribute id because ids generated by the HTML DOM parser are

nondeterministic, varying from parse to parse of the same HTML document as stated in

the IE documentation [Microsoft].

5.2.2 Unique Identifiers

Since we do not change the browser implementation, we need to consider a couple of

technical points to make the browser fit into the IC framework: unique client and message

identification in the overall system.

5 EOS: Exactly-Once Web Service 87

The client identification by the HTTP header field “User-Agent” is not feasible because it

usually contains some generic information about the browser software used. The real

client IP is often not visible to the servers in the extranet and it is out of the question for

multi-user computers in any event because then we need also the physical TCP client port

for unique identification. TCP client ports are a typical source of system nondeterminism

because they change all the time. We use a persistent cookie client_id that is assigned by

the Web server to the browser, which is a standard solution in the state-of-the-art Web

business. Consequently, a browser is identified differently by different Web applications,

but always unambiguously. The value of the cookie client_id serves as the name of the

persistent XML store used to log interactions with the given Web service.

Similarly, we manage message sequence numbers (MSN) as persistent cookies. A pair

(client_id, MSN) uniquely tags a request message. To acknowledge this message, the

server increments the request MSN and includes it as a cookie into the reply, such that the

next client request will be tagged by (client_id, MSN + 1). There is a potential problem

when only an incomplete reply arrives, e.g., a few HTTP headers including the MSN

cookie. When the user or our CIC stub initiates a “refresh” of the Web page by

resubmitting the HTTP request, the new MSN value could be used that would violate

duplicate elimination at the server. To cope with this, we additionally log the MSN

cookie to the XML store, however only after the reply message has been completely

received by the browser manifested in DHTML by document.readyState having the value

complete. Thus, when a request is resubmitted, the EOS code checks the logged MSN

value against the MSN cookie that is replaced by the logged MSN when the values differ.

5.2.3 URI Logging and Recovery

Another issue arises when treating browser crashes. The operating system can be

configured to automatically restart the browser. But after the restart, the browser loads the

start page that is stored in the browser settings instead of resuming the interrupted Web

session. Clearly, changing the start page of the browser each time the user proceeds to a

new Web application step is nonsense. In our prototype, we would like the user to revisit

the greeting page of the interrupted Web application to restore her session. Analogously

to the MSN logging, we store the URI of the most recent complete page viewed by the

user during normal operation in the attribute logged_uri of the XML store. When the user

calls the greeting page, the Web application will detect that the browser with an active

session needs assistance in recovery; based on the session id cookie it compares the

88 5 EOS: Exactly-Once Web Service

current URI with the URI stored in a special hash table mapping session ids to the start

URI’s as you will see in Section 5.3. To provide the browser with an appropriate

assistance, the Web server replies with an empty HTML page (i.e., HTTP headers plus

“<html></html>”) supplemented with the browser recovery code inserted on the fly. The

MSN cookie is not incremented and a special volatile cookie uri_recovery is set to true,

in order to prevent logging of the start page URI during recovery.

First, the recovery code reads the last complete URI from the XML store and redirects the

browser to this page by assigning logged_uri to the DHTML property

document.location.href. This restores the URI in the browser address bar and issues a

GET request to the server. It does not matter that the original request may have been a

POST because it will not be executed anyway (the server eliminates duplicate requests

based on (client_id, MSN) pairs). The GET request to the server carries the cookie

uri_recovery equaling true. Seeing this, the Web server responds again only with the

recovery code without incrementing the MSN and resets the cookie uri_recovery to false.

After these additional steps connected with the recovery of the pre-crash URI, which also

involved the server, EOS browser behaves precisely according to the CIC with the server

(until the next crash) as explained in the following subsections.

5.2.4 Browser XIC Logging

To implement the XIC between the user and the browser, we monitor all HTML elements

(they are enumerated by the DHTML collection document.all) for changes while the

HTML page is being displayed. A universal event propertychange is fired by an element

when it is changed either by the user herself or programmatically. Typical changes are

modifications of the element attributes and insertions and deletions of child elements.

E.g., when the user types into a text input field, she actually modifies its attribute value.

We register the function updatePageSnapshot saving the whole page in the attribute body

of the XML store to process the property change events for each element e by calling

e.attachEvent(‘onpropertychange’, updatePageSnapshot).

We figured out that flushing XML store on each key stroke, while the user is entering her

input into a text input field, may significantly degrade the browser performance. To deal

with this issue, the user can specify a number n of her input losses she is willing to

tolerate in the worst case. Setting n=1 offers the best possible failure masking. With an

increasing n the browser performance improves. Flushing the XML store on every 5th

5 EOS: Exactly-Once Web Service 89

event and every 500 ms worked fine on our test computer (Pentium III, 1 GHz, 256 MB

RAM). The source code of the XIC logging is sketched in Figure 33.

5.2.5 Browser CIC Logging

As for the CIC, we need to intercept the DHTML events that precede issuing an HTTP

request and switching to the next page. These are click events generated by HTML links,

and submit events generated by HTML forms. The links of an HTML document are

enumerated in the DHTML collection document.anchors. The HTML forms are listed in

the DHTML collection document.forms. For every link l we register the function

handleCIC to process clicks by calling l.attachEvent(‘onclick’, handleCIC). Similarly,

handleCIC is attached to processing of submit events of each form f by calling

f.attachEvent(‘onsubmit’, handleCIC).

Prior to returning to the default browser event processing, the function handleCIC is

called. First it writes the current document body (document.body.innerHTML) to the

01. var n = 5;
02. var timer_id = null;
03. var unflushed_events = 0;
04.
05. function deferredXMLFlush()
06. {
07. unflushed_events++;
08.
09. if(unflushed_events % n == 0)
10. {
11. pagestate.save(client_id);
12. unflushed_events = 0;
13. if(timer_id != null) clearTimeout(timer_id);
14. timer_id = null;
15. return;
16. }
17.
18. // reset 100 ms timeout. Flush after n*100 ms at latest
19. timer_id = setTimeout(
20. 'pagestate.save(' + client_id + ')', 100);
21. }
22.
23. function updatePageSnapshot()
24. {
25. // logging page title and body
26. pagestate.setAttribute('body', document.body.innerHTML);
27. pagestate.setAttribute('title', document.title);
28.
29. deferredXMLStoreFlush();
30. }

Figure 33: JavaScript for XIC Logging

90 5 EOS: Exactly-Once Web Service

XML store because by clicking on a submit button or a link the user commits her edits (in

some countries and in some situations, this is even equivalent to signing a contract from

the legal perspective). Second, in the XML store, it sets the attribute user_commit_msn to

the current MSN, updates the attribute user_commit_element_id with the id of the form or

the link having fired the current event, and forces the XML store to disk. Third, as

message and state persistence is already guaranteed, the function handleCIC registers the

operation associated with the even for periodic repetition. If the event source element is

an HTML form with id f, handleCIC calls the JavaScript function setInterval(‘f.submit()’,

timeout). If the event stems from the link l, handleCIC calls the function

setInterval(‘l.click()’, timeout). At this point the control is returned to the browser that

generates an HTTP request from the given event.

5.2.6 Browser Recovery

When the browser crashes, it recovers as follows. As the last action of the URI recovery,

an empty page with the last valid URI displayed in the browser address bar arrives at the

01. var msn_cookie, timeout;
02.
03. function rollRecovery()
04. {
05. var el_id;
06.
07. if(msn_cookie > pagestate.getAttribute("MSN"))
08. {
09. return; //new message – no recovery
10. }
11. else if(uri_recovery == true)
12. {
13. return; //called only after uri recovery
14. }
15.
16. document.body.innerHTML = pagestate.getAttribute("body");
17.
18. if(msn_cookie == pagestate.getAttribute("user_commit_msn"))
19. {
20. el_id = pagestate.getAttribute("user_commit_element_id");
21.
22. if(document.all[el_id].tagName == 'A')
23. {
24. setInterval(el_id + '.click()', timeout);
25. }
26. else
27. {
28. setInterval(el_id + '.submit()');
29. }
30. }
31. }

Figure 34: JavaScript Recovery

5 EOS: Exactly-Once Web Service 91

client. The browser recovery code first replaces the empty HTML body by the value

logged in the XML store. At this point the HTML page has the form as of the time

immediately before the crash. The MSN cookie that still carries the pre-crash value as

ensured by the EOS recovery code is used to compare against the value of

user_commit_msn. If they differ (i.e., the MSN cookie is greater), the browser resumes

normal operation and starts accepting user events. Otherwise, we know that the user has

committed her input on the current page. Browser recovery finds the form or the anchor

link by calling the function document.getElementById(user_commit_element_id) and

calls the methods click() or submit() according to the element type. The browser restarts

CIC resend and resumes normal operation. Figure 34 shows the most important fragments

of the EOS browser recovery code.

5.2.7 Browser Garbage Collection

Garbage collection is not an issue for the browser because we steadily reuse identical

elements of the XML store, such that it does not grow in terms of added attributes and

elements. The size of the XML store depends only on the size of the last page having

been displayed in the browser window.

5.2.8 Future Directions

We have made a small compromise in the implementation of the XIC and the CIC for the

browser (by having the user manually revisit the greeting page of the Web application)

because we had no access to the browser source code. Note that this compromise does not

affect the exactly-once execution guarantee. However, for a rigorous IC implementation,

we should consider enhancing an open-source browser. This would also allow us to

provide deterministic replay for arbitrary DHTML applications that contain complex

JavaScript functions.

5.3 Persistent EOS-PHP

EOS-PHP is the major part of our prototype. It can serve as both an HTTP server and a

middle-tier HTTP client at the same time. It transparently implements the (I)CIC stubs for

incoming and outgoing HTTP interactions of PHP applications with other PHP

applications and Web browsers. EOS-PHP is geared to provide the recovery guarantees

for stateful PHP applications. The log is provided as a universal storage for log entries

and the session state data. Log access is accelerated by LRU buffers. In addition, EOS-

PHP delivers basic concurrency control in the form of latches.

92 5 EOS: Exactly-Once Web Service

5.3.1 Normal Operation and Logging Issues

When considering a single PHP Zend engine, we can distinguish three relevant system

layers from the logging perspective. We observe HTTP requests at the highest level L2,

individual PHP language statements at the middle level L1, and finally I/O calls to

external resources such as the file system and TCP sockets (level L0). EOS-PHP does not

support interactions with the file system, i.e., the PHP file system functions. Instead,

EOS-PHP efficiently manages persistent application states stored as session variables.

EOS-PHP does not deal with the PHP socket interface. Instead, EOS-PHP supports

recoverable HTTP interactions through the CURL module. The purpose of this subsection

is to describe HTTP request processing by EOS-PHP and logging that is necessary for

correct PHP application recovery.

A request execution by EOS-PHP breaks down into the following stages: client

identification (Stage 1), URI recovery (Stage 2 for interactive clients only), reply resend

(Stage 3), request execution (Stage 4), output processing (Stage 5). Note that Stages 2 and

3 are EOS-PHP operations needed for client recovery. Prior to the request execution, a

shared activity latch is obtained for the duration of the request execution. It prevents the

garbage collection mechanism that uses this latch in the exclusive mode from physical

reorganization of the log file as explained in Section 5.3.7.

Stage 1: Client Identification

During request startup, EOS-PHP identifies the client id information submitted as

cookies. If this information is missing the client is assigned a new id and is redirected to

the first session URI (interactive clients only). A B2B component (i.e., another EOS-PHP

node) autonomously generates its id by concatenating its host name and TCP listen port

(socket) number. Note that this does not incur any nondeterminism since the listen port

number is fixed and uniquely identifies a server application on the given host. Web

servers typically listen to port 80. A Web application reachable through the URI

http://eosphp.com/ would introduce itself as “eosphp.com:80” when calling other Web

services.

The following Stages 2, 3, and the state initialization part of Stage 4 are initiated on

behalf of the function session_start. The request thread acquires an exclusive log latch

because all these operations have to be performed atomically.

5 EOS: Exactly-Once Web Service 93

Stage 2: URI Recovery

Interactive clients (i.e., those whose user agent field submitted with the request header

information is different from EOS_CURL) need an additional stage for assisting in

recovering the last message sent to the EOS-PHP engine. EOS-PHP checks if the current

URI coincides with the URI that started the session (i.e., the greeting page URI). If this is

the case, we know that this is an interactive client revisiting the greeting page to restore

the interrupted session. As described in Section 5.2.3 an empty page containing solely

client recovery code is sent to back to the browser without incrementing the MSN cookie.

The volatile cookie uri_recovery is set to true.

Stage 3: Reply Message Resend.

The log is consulted through the request message id lookup in the volatile input message

lookup table (IMLT) (client id, MSN, reply LSN), in order to determine if the HTTP

reply is already present. In the positive case, the HTTP reply is served right away and the

current request is terminated. When the uri_recovery cookie is provided, the server

knows that the browser is solely restoring the message URI in the address bar without the

need for message resend. To save the network latency, the server responds again with an

empty HTML page with the browser recovery code as explained in Section 5.2.3. The

cookie uri_recovery is set to false. When the IMLT contains an entry for the request with

the reply LSN being invalid, EOS-PHP is dealing with a request message resend: this

thread is paused until the reply LSN is set, and the reply can be served.

When the current request is not a duplicate, it is not terminated by this stage. It is

important that we hold an exclusive latch for the log at least until the request is registered

in the IMLT during the next stage, in order to prevent two identical messages (resends)

from being handled both as original requests.

Stage 4: Request Execution

The request execution starts with fetching the PHP application state through the state

buffer. The state buffer is latched in the shared mode to find the proper application state.

If the entry for the current PHP application state could not be found (i.e., the request

initializes a new PHP session), the request upgrades the state buffer latch to the exclusive

mode and inserts a newly created empty state into the state buffer. At this point the PHP

application definitely has a valid state. A new LSN is generated for the request and EOS-

PHP adds an initial log entry to the log buffer that contains PHP representation of the

94 5 EOS: Exactly-Once Web Service

HTTP request and the translated PHP script file path. (In fact, a PHP script may depend

on more than mere HTTP parameters, e.g., when it uses OS shell environment variables

or Apache configuration parameters that change over time. If this is the case, an

administrator of the EOS-PHP site should mark these variables for logging in the PHP

configuration file). An entry is also added to the IMLT containing the client id, the MSN

of the message (both as submitted by the client cookies), and an invalid LSN. At this

point the request thread latches the PHP application state in the shared or exclusive mode

(as specified in the enhanced PHP function session_start that now accepts a Boolean flag

$read_only as an optional argument) and releases the exclusive log latch as well as the

shared state buffer latch. In contrast to the original PHP implementation, the ability to

access the application state in the shared mode is an appropriate response to the fact that

the load of e-commerce sites is dominated by read-only catalog browsing requests. The

latch for the application state is held until the script calls the function session_close

(explicitly or implicitly during the request termination) that replaces the original PHP

function session_write_close to avoid irritation. If the request has been declared as a write

by calling session_start(false), the application state is stamped with the request LSN

before the state latch is released, whereas the volatile read LSN field of the buffer cell is

updated in any event.

The information logged during request initialization as described above would suffice for

deterministic replay of the HTTP request log entries one after another using the high-

level routine zend_execute_scripts without any further consideration, if we had not to

deal with nondeterministic calls throughout request execution. Nondeterministic calls

generate further log entries need for a potential replay of the current request. Since EOS-

PHP currently can only replay HTTP requests sequentially one after another as opposed

to an arbitrary interleaving of PHP statements issued on behalf of distinct HTTP requests,

we need to be able to find the needed log entry quickly. For this purpose we link each

entry in the log buffer to its successor using the next_php pointer of the buffer cell as

depicted in Figure 35. Each PHP-level log entry includes the LSN of its predecessor in

the next_php chain, such that the next_php chain can be restored during recovery.

We use a last_php pointer to keep track of script-internal nondeterministic events. Note

that at the beginning of the request execution last_php refers to the very first (HTTP-

level) request log entry whose next_php field is NULL. The log is consulted upon every

statement call that requires logging. If there is a successor of the log entry pointed by

5 EOS: Exactly-Once Web Service 95

last_php, we deal with a replay. EOS-PHP has the last_php pointer refer to its current

successor and returns the logged return value from this log entry without executing the

statement. If there is no successor of the previously checked entry last_php (i.e.,

last_phpØnext_php is NULL), EOS-PHP either operates normally or completes request

execution during the redo phase, such that the statement is executed and a new PHP level

log entry is added to the log buffer (using an exclusive log latch). It is connected to the

next_php chain and becomes new last_php. Note that the new PHP log entry contains the

LSN of the previous last_php that is used during analysis pass to restore the next_php

chain. Note that log entries of different requests interleave in the log when they use

shared latches or an updating request calls session_close before its completion.

We are aware that dealing with the next_php chains would not be an issue, if we

implemented logging with a granularity finer than a single HTTP request. However, a

finer-grained logging is more difficult to implement because different thread contexts

(consisting of a number of hierarchical function stacks each) would have to be recreated

and applied when replaying individual PHP actions (local and global variable reads and

writes). Thread memory management of PHP is deeply integrated with system routines

that require valid distinct thread handles that are not available during single-threaded redo

recovery. For the lack of time, we gave the other issues described in this thesis priority

treatment. On the other hand, we still have an argument for the current solution because

the simpler recovery is, the more trust we have in its correctness.

Note that when PHP script developers are about to deploy a new script version they need

to keep the last version on disk because the ordering of logged operations in the new

version may change, and using it to replay HTTP requests would be incorrect. To avoid

this, the version number could be attached to the script filename (e.g., script.php.v2).

After a new version is copied to the script folder, the Apache configuration file needs to

be changed to remap the URI to the new script file. At the same time EOS-PHP will

1. HTTP 2. PHP 3. HTTP 4. PHP 5. PHP

next_php next_php

next_php

…1. HTTP 2. PHP 3. HTTP 4. PHP 5. PHP

next_php

…

last_php

last_php

1. HTTP 2. PHP 3. HTTP 4. PHP 5. PHP

next_php next_php

next_php

…1. HTTP 2. PHP 3. HTTP 4. PHP 5. PHP

next_php

…

last_php

last_php

Figure 35: Chained Log Buffer of EOS-PHP

96 5 EOS: Exactly-Once Web Service

always be able to find the proper version to replay a particular HTTP request using the

local file path stored in the log.

Nondeterministic functions treated by EOS-PHP include system clock reads (e.g., time()

returning the current time, random value generators such as rand(min, max) generating a

random number in the interval between min and max, and last but not least curl_exec

returning output of a different Web Service. The routines asking for the system clock and

random values are not only interesting because of their potential direct usage in a PHP

script, but also because their C prototypes are used as input for generating PHP session

ids that are pairwise distinct with a high probability. This avoids a potential bottleneck of

having a single node in a Web farm assign sequence numbers as session ids to all clients.

The C prototype of the function curl_exec($handle) implements the CIC transparently to

PHP developers. One part of it is implementing periodic resend. The original code

reporting failures to the user is replaced by a loop repeating requests on timeouts until the

underlying libcurl function curl_easy_perform returns the success return code

CURL_OK. When curl_easy_perform needs to be retried, we use a new copy of the

previous CURL handle containing the same URI and the other original request settings

while destroying the old one. Otherwise, libcurl would try to recycle its existing sockets,

which saves resources and is right with regard to intact connections. However, the socket

that timed out is likely to belong to a dead TCP connection and therefore should not be

used for retry to avoid blocking.

Since curl_exec incurs sending a request message to a different EOS-PHP Web Service,

we need to keep track of when the CIC interaction is installed by this counterpart, such

that we can move on with the garbage collection at our own discretion. This is done via

the volatile output message lookup table (OMLT) containing the URI invoked, our

client id MSN Reply LSN
URI MSN CIC status

http://eosphp1/auctions/ 3 installed

http://eosphp2/books/ 5 stable

http://eosphp1/auctions/ 6 unknown

http://eosphp1/auctions/ 7 installed

eosphp3 3 324

http://eosphp2/books/ 8 installed

OMLT of eosphp3
IMLT of eosphp1

… … …

client id MSN Reply LSN

eosphp3 5 324

IMLT of eosphp2

… … …

Figure 36: IMLT and OMLT in Action

5 EOS: Exactly-Once Web Service 97

MSN, and the current CIC status. We currently assume that all PHP scripts belonging to

the same Web Application are stored in the same Web server directory. In a B2B Web

application we assume that a reply to calling /auctions/bid.php on behalf of one end-user

and /auctions/search.php on behalf of another user stems from the same EOS-PHP

instance. Thus, we store only the URI paths without the script file names in the OMLT.

In terms of a CIC, we need to answer the question of when we have to force the log other

than for LRU buffer management as described in Section 5.3.4. In our current prototype,

EOS-PHP communication with the outside world is limited to returning HTTP replies and

sending CURL requests. Thus, the log is forced prior to sending out these messages

because otherwise the interleaving with other requests and nondeterministic values used

would not be recoverable. Since we currently log an entire HTTP request, we

implemented only ICIC for EOS-PHP. When a reply arrives to an EOS-PHP CURL

client, it can mark the interaction as cic_installed in its OMLT. Furthermore periodic

resend of the curl_exec request message is stopped.

Now we need a mechanism of getting rid of unneeded IMLT and OMLT entries. When

we deal with a request form a single-threaded browser client, we know that as part of its

XIC obligation, it has already installed all previous Web server replies. Thus, we can

drop all entries stemming from the same client with MSN’s lower than we see in the

current request. Note that there are no OMLT records for browsers because we record

only outgoing requests, but no replies. When we see a request from a multi-threaded B2B

client with a particular MSN, it is not even guaranteed that we have already processed its

previous requests. Thus, each B2B client includes into each request to a URI an

additional cookie containing an installed-MSN with the following property: there is no

OMLT entry with the same URI and MSN less than this installed-MSN whose CIC status

differs from cic_installed. Thus, the B2B server is able to drop all entries for the given

B2B client in its IMLT with MSN less or equal to installed-MSN of the B2B client. In

turn, the B2B client can drop the OMLT entries with the B2B URI and the MSN less or

equal to installed-MSN. Figure 36 depicts a scenario illustrating usage of IMLT and

OMLT. A B2B client eosphp3 generates calls to applications eosphp1 and eosphp2 on

behalf of end-users. When eosphp3 sends the next message to eosphp1, it includes

installed-MSN 3 into this request and removes this entry from its OMLT because

eosphp1 can garbage collect every interaction with eosphp3 having lower MSN’s. As for

eosphp2, the entry with the minimum MSN in eosphp3’s OMLT is not marked installed

98 5 EOS: Exactly-Once Web Service

yet. Thus, the installed-MSN cookie is not included into the next request message sent

from eosphp3 to eosphp2.

To implement this mechanism efficiently, we organize the OMLT as a hash tale that

maps URI’s to the interaction lists containing (MSN, CIC status) pairs. When the

function curl_exec is called, it finds the proper list associated with the URI being called,

traverses the list while remembering the maximum installed MSN seen so far until it finds

the first pair belonging to an uninstalled interaction. This pair becomes a new head of the

interaction list for the given URI, whereas the other traversed pairs are garbage collected.

The new interaction with the CIC status set to unknown is appended to the end of the

shortened list. The maximum installed MSN will be inserted as a cookie installed-MSN

into the HTTP request built by curl_exec. The IMLT is implemented similar to a PHP

two-dimensional array indexed by client id and MSN with the LSN of the corresponding

HTTP reply as the content, i.e., as a hash table that is used to find by client id the hash

table mapping HTTP request MSN’s to HTTP reply LSN’s. For reply recovery in Stage

3, we perform a simple lookup IMLT[clien id][msn]. For garbage collection when a new

request arrives (Stage 4), we find a pointer to the hash table mapping request MSN’s to

reply LSN’s as referred to by IMLT[client id]. Then we traverse this hash table as a list in

the ascending MSN order (buckets in a Zend hash table are linked together as in Java and

C# implementations) and throw away all entries with MSN less or equal to the submitted

cookie installed-MSN.

Stage 5: HTTP Output Processing

When the execution of the request is finished, EOS-PHP updates the reply LSN field of

the request entry in the IMLT. In the current prototype solution, the log entries with

HTTP output do not require immediate log forcing, since these messages are recreated

during deterministic replay. In fact, for curl_exec requests EOS-PHP does not even create

a log entry with the content of the outgoing message, just the reply is logged to resolve

recovery dependency, as you saw above. The point is that EOS-PHP is able to send out

the HTTP reply messages prior to forcing them to stable log. Therefore, EOS-PHP can

lazily force output messages (from several KB to several MB) that are orders of

magnitude larger than preceding log entries of the same request whose sizes range from

less than 256 bytes to some KB.

5 EOS: Exactly-Once Web Service 99

In addition, the browser recovery code that is always cached in the main memory is

inserted into original HTTP replies to interactive clients between the opening tag <html>

and the successor opening tag that is typically <head>. This does not have to be logged of

course, which otherwise would further increase the size of the output message log entry.

5.3.2 Spinlocks and Latches

Since PHP usually runs in a multithreaded environment, parallel accesses to an identical

resource need to be synchronized appropriately. The recovery log is the most frequently

used shared resource of the EOS prototype. However, the session state may also be

accessed in a parallel manner. First, when the GUI displayed in the Web browser consists

of multiple frames, the browser normally loads their sources simultaneously. If the frame

sources are PHP scripts using an identical PHP session, the session state will be read and

written concurrently. Usually, most popular business Web sites (as e.g., Amazon.com,

eBay.com, etc.) refrain from using multiple stateful frames and we can disregard this

issue. Secondly and really relevant from our perspective, a session state may be shared by

several clients as explained in Section 5.1.4.

Unfortunately, the PHP port for Windows does not offer an adequate means for

concurrency control, whereas the UNIX implementation is not sufficiently flexible to

distinguish read-only and write requests to allow more concurrency. We resolve these

issues by implementing spinlock-based latches well-studied in the literature on database

and operating systems [Gray and Reuter 1993, Silberschatz et al. 2002]. Latches are used

when the system disallows by design deadlock situations (i.e., there are no cyclic lock

waits among threads). In EOS-PHP, a typical request thread has the access pattern given

in Table 8. The access pattern is constant except for occurrences of nondeterministic calls

in the PHP script. To preserve the deadlock freedom, we cannot allow PHP developers to

Table 8: Request Access Pattern in EOS-PHP
Stage Action Latching Order
Stage 2
Stage 3

session_start($mode) latch Log (X-mode)

 latch State buffer (SH-mode)
latch State ($mode)
unlatch Log
unlatch State buffer

session_close() unlatch State

Stage 4

a nondeterministic call latch Log (X-mode)
unlatch Log

Statge 4/5 eos_force_log latch Log (X-mode)
unlatch Log

100 5 EOS: Exactly-Once Web Service

make nondeterministic calls as long as the state latch is held, i.e., between the calls to

session_start and session_close. Otherwise, we may run into a cycle where one thread

(the state latch holder) cannot proceed with a nondeterministic call because the other

thread processing the function session_start (the log latch holder) cannot release the log

latch as long it does not have the state latch.

Typical mutual exclusion mechanisms such as mutex locks supported by operating

systems provide first-come-first-served (FCFS) access to resources. They need to

maintain a queue of lock requests to wake up the thread whose lock resides in the queue

head, and to make the others yield. In contrast, a spinlock can be implemented using a

01. #define SPINLOCK_CLOSED 1L
02. #define SPINLOCK_OPEN 0L
03.
04. long globalspinlock = SPINLOCK_OPEN;
05.
06. //call this for a blocking spinlock request
07. __forceinline void eos_get_spinlock(ulong *lock)
08. {
09. long prior_lockstate;
10.
11. while(TRUE)
12. {
13. prior_lockstate = InterlockedExchange(lock, SPINLOCK_CLOSED);
14.
15. if(prior_lockstate == SPINLOCK_CLOSED)
16. {
17. Sleep(0); //yield and retry later
18. }
19. else
20. {
21. break; //done: the lock was open, current thread closed it
22. }
23. }
24. }
25.
26. //call this to release the spinlock; doesn’t block
27. __forceinline void eos_release_spinlock(long *lock)
28. {
29. *lock = SPINLOCK_OPEN;
30. }
31.
32. //sample spinlock usage: money transfer from acc1 to acc2
33. void moneytransfer(long *acc1, long *acc2, long amount)
34. {
35. eos_get_spinlock(&globalspinlock)
36. *acc1 -= amount;
37. *acc2 += amount;
38. eos_release_spinlock(&globalspinlock);
39. }

Figure 37: Spinlock Implementation for Windows in C

5 EOS: Exactly-Once Web Service 101

single shared Boolean variable with the values true and false meaning locked and open,

respectively (lines 1 - 4 in Figure 37). To obtain a spinlock, the current thread has to call

the function eos_get_spinlock. The gist of this function is that the test for spinlock

availability and locking itself are performed without interleaving with concurrent threads

to avoid the situation where the spinlock is granted to multiple requestors. Such an atomic

test-and-set operation can be implemented either in the scheduler of the operating system

or in the hardware. Through the intrinsic interface function long

InterlockedExchange(long *target, long value) (lines 1 - 4 in Figure 37), Windows

provides an access to the corresponding multiprocessor-safe instruction LOCK

CMPXCHNG of the Pentium CPU. This function updates the 32-bit-segment pointed to

by target with the new value and returns the previous one while preventing other threads

(regardless on which processor) from accessing the target segment. Consequently, if the

previous value of the lock equals SPINLOCK_CLOSED, the current thread returns

control to some other thread (by calling Sleep(0)) and retries when rescheduled. In the

jargon of operating systems, the busy-waiting thread is said to spin around the lock, hence

the name. The spinlock is released by calling the function eos_release_spinlock that uses

a simple C assignment (line 29) instead of atomic assignment InterlockedExchange

because the locking thread has already an exclusive access to the lock flag. Since Apache

assigns an identical normal priority to all request threads, there is no starvation of waiting

threads. Lines 32-39 show a sample usage of the spinlock mechanism for an exclusive

access to two account variables. Spinlocks are lightweight and extremely efficient when

they are held for the duration of only a handful of instructions, which prevents high

contention of concurrent threads. Their performance increases even further on a

symmetric multiprocessor system, where the busy-waiting threads steal less CPU cycles

from the locking ones that are thus able to release locks earlier. We use spinlocks to

implement a more advanced locking mechanism coined latches.

Unlike spinlocks, latches (see Figure 38) can be used for both shared and exclusive

accesses (SH-mode and X-mode, respectively). A latch is requested and released by

calling the functions eos_acquire_latch and eos_release_latch, respectively. Latch

requests in SH-mode can be admitted concurrently. To this end, we increment the counter

of SH-latch holders eos_latch.SH_count (line 35) that is decremented again upon a latch

release request (line 90). A shared latch request has to wait for the release of an X-latch.

An X-mode latch request is not admitted while the latch is used by other threads in either

mode. However, we allow a holder (eos_latch.owner) of a shared latch to upgrade it to

102 5 EOS: Exactly-Once Web Service

the X-mode when there are no other latch holders at this point (lines 47-52). If the latch

upgrade is not possible, the thread should release its shared latch and issue a new X-latch

request to prevent a deadlock of multiple upgrading threads. A latch downgrade from X-

mode to SH-mode is always possible. This functionality is implemented by the function

eos_relatch(eos_latch *l, eos_latch_mode new_mode) (not shown in Figure 38).

The latch request and the latch release routines both need an exclusive access to multiple

fields of the structure eos_latch which is achieved using the spinlock eos_latch.slock.

Shared latches are well suited to allow concurrent traversals of chained data structures.

01. typedef enum _eos_latch_mode { SH_MODE, X_MODE} eos_latch_mode;
02.
03. typedef struct _eos_latch
04. {
05. long slock;
06. long SH_count;
07. long X_count;
08. long owner;
09. }
10. eos_latch;
11.
12. //a blocking latch request
13. void eos_acquire_latch(eos_latch *l, eos_latch_mode m)
14. {
15. long this_thread;
16. zend_bool acquired;
17.
18. if(EOS(in_replay) == TRUE)
19. {
20. return; // recovery is a single thread
21. }
22.
23. this_thread = tsrm_thread_id();
24. acquired = FALSE;
25.
26. while(TRUE)
27. {
28. eos_get_spinlock(&l->slock);
29.
30. switch(m)
31. {
32. case SH_MODE:
33. if(l->X_count == 0)
34. {
35. l->SH_count++;
36.
37. if(l->SH_count == 1)
38. {
39. l->owner = this_thread;
40. }
41.
42. acquired = TRUE;

5 EOS: Exactly-Once Web Service 103

43. }
44. break; //done with SH-mode processing
45.
46. case X_MODE:
47. if(l->SH_count == 1 && l->X_count == 0 &&

 l->owner == this_thread) // latch upgrade
48. {
49. l->SH_count = 0;
50. l->X_count = 1;
51. acquired = TRUE;
52. }
53. if(l->X_count == 0 && l->SH_count == 0)
54. {
55. l->X_count = 1;
56. l->owner = this_thread;
57. acquired = TRUE;
58. }
59. break; // done with X-mode processing
60.
61. default:
62. assert(m == SH_MODE || m == X_MODE);
63. }
64. eos_release_spinlock(&l->slock);
65. if(acquired == FALSE) // latching failed => spin again
66. {
67. Sleep(0); // yield
68. }
69. else
70. {
71. break; // resources latched, go ahead
72. }
73. }
74. }
75.
76. // don’t forget to release the latch
77. void eos_release_latch(eos_latch *l)
78. {
79. long this_thread;
80.
81. if(EOS(in_replay) == TRUE)
82. {
83. return; // recovery is a single thread
84. }
85. this_thread = tsrm_thread_id();
86.
87. eos_get_spinlock(&l->slock);
88.
89. if(l->SH_count > 0)
90. {
91. l->SH_count--;
92.
93. if(l->owner == this_thread)
94. {
95. l->owner = 0;
96. }
97. }
98.

104 5 EOS: Exactly-Once Web Service

99. if(l->X_count == 1)
100. {
101. l->X_count = 0;
102. l->owner = 0;
103. }
104.
105. eos_release_spinlock(&l->slock);
106. }

Figure 38: Latch Implementation for Windows in C

Special attention must be paid to handling of unexpected thread shutdowns triggered by

failure management routines of PHP applications or the Zend engine due to some failures

encountered at the level of a PHP statement. When an entire process (i.e., Apache) fails,

the operating system is responsible for releasing resources such as allocated memory, file

handles, TCP sockets, etc. In a multithreaded server, this task has to be implemented

inside the server process. Zend provides this functionality in the form of the memory and

resource variable managers. The memory manager of Zend is designed to keep track of

resources allocated privately by a thread serving the given HTTP request using a special

zval structure for bookkeeping. Thus, in order to benefit from Zend resource

management, we allocate a zval container private to a thread, using the same mechanism

that Zend would use to allocate a global PHP script variable (lines 26-27 in Figure 39)

having a reference to the global latch. The function eos_create_latch_resource provides

the calling thread with a zval handle that will be used for latching via Zend resource

interface (lines 33-53).

During the server initialization, we introduce a new resource type for latches and

associate it with a destructor function that in turn calls the function eos_release_latch if

necessary (lines 5-13). In order to avoid erroneous unlatching of the resource that has

never been latched by the current thread, we use the reference count field of the resource

variable.

01. eos_latch global_latch;
02. long eos_latch_rsrc_type_id;
03.
04. // latch resource variable destructor
05. ZEND_RSRC_DTOR_FUNC(_eos_latch_cleanup)
06. {
07. eos_latch *l = (eos_latch *) rsrc->ptr;
08.
09. if(rsrc->refcount > 0) // case > 1 implies an SH-latch upgrade
10. {
11. eos_release_latch(l);
12. }
13. }

5 EOS: Exactly-Once Web Service 105

14.
15. // register destructor during server initialization
16. void eos_register_latch_type()
17. {
18. eos_latch_rsrc_type_id =

 zend_register_list_destructors_ex(_eos_unlatch_if_needed, …);
19. }
20.
21. // obtain a handle during request thread initialization
22. void eos_create_latch_resource(zval **latch_id, eos_latch *l)
23. {
24. zval *tmp;
25.
26. MAKE_STD_ZVAL(tmp); // alloc a zval container
27. tmp->refcount = 0;
28. ZEND_REGISTER_RESOURCE(tmp, &global_latch, /* other params */);
29. *latch_id = tmp; // out: a private handle of the global latch
30. }
31.
32. // latch function for resource variable interface
33. void eos_latch_resource(zval **id, eos_latch_mode m)
34. {
35. eos_latch *l;
36.
37. ZEND_FETCH_RESOURCE(l, (eos_latch *), id, /* other params */);
38. eos_acquire_latch(l, m);
39.
40. // need to unlatch upon request script-level failure
41. zend_list_addref(Z_LVAL_PP(id));
42. }
43.
44. // unlatch function for resource variable interface
45. void eos_unlatch_resource(zval **id)
46. {
47. eos_latch *l;
48. ZEND_FETCH_RESOURCE(l, eos_latch *, id/* other params */);
49. eos_release_latch(l);
50.
51. // need to unlatch upon request script-level failure
52. zend_list_delete(Z_LVAL_PP(id));
53. }

Figure 39: Latches as PHP Resource Type Variables

Disregarding derived data structures such as the log and the state buffers, we have a

single object, the PHP application state, for which the request synchronization is needed.

With this coarse granularity (that does not allow concurrent accesses to different state

variables), simple latching enforces the proper serialization of the request threads in a

single EOS-PHP node. Certainly, it is impossible to achieve a request serialization in an

arbitrary multi-tier PHP application that would be consistent throughout all the nodes

(e.g., request 1 before request 2 at every EOS-PHP node) unless we would employ a

sophisticated distributed concurrency control algorithm.

106 5 EOS: Exactly-Once Web Service

However, EOS-PHP is currently capable of handling the following realistic layered

architecture. Web frontend nodes manage application states for individual end-users such

as user profiles and shopping carts. End-users access them through a single-framed

HTML-GUI, which ensures that no application state is accessed by more than one thread

simultaneously. The EOS-PHP nodes at the backend layer manage a number of shared

application states such as current auction bids. With each request the end-user accesses

her private state at the Web frontend layer and a single shared object at the backend layer

that enforces the proper serialization. Some users will just read the current auction state,

the others will bid themselves.

5.3.3 Physical Organization of Stable Log

The stable log managed by EOS-PHP is stored as an ordinary file in Windows native file

system NTFS. Its layout is shown in Figure 40. The log file begins with a boot sector that

contains three 32-bit integer fields. The start position field stores the position at which the

recovery manager has to start scanning the log. The start LSN field is used to store last

used LSN when the corresponding log entry is garbage collected. The start MSN field

contains the last MSN used by the CURL module to tag a request to another EOS-enabled

Web Service in order to ensure the proper message duplicate detection after garbage

collection. The space following the boot sector is used for storing variable-size log

entries. Log entries have the format depicted in Figure 41. First nine bytes constitute the

header of the log header including the log entry size, type (HTTP, PHP, or state), and the

LSN. In addition, PHP-level log entries contain the LSN of the previous log entry created

on behalf of the same HTTP request that may be either a PHP or an HTTP level log entry.

HTTP and state log entries contain no back pointers. Information stored in the log entry

body is formatted as Zend representation of PHP variables, so-called zval containers.

The purpose of HTTP log entries is to store the input of an HTTP request. A PHP level

log entry normally stores a nondeterministic return value. The very last PHP log entry

stores the complete HTTP reply including the reply header and body. State log entries are

normally used to create installation points and to store LRU buffer replacement victims.

The LSN field of a state log entry reflects the last HTTP request having updated the state

as of the time the state log entry is created as you have seen in Section 5.3.1 above.

In order to ensure the recovery correctness, we need to make sure that log entries are

written to disk atomically, i.e., the log file must not contain incomplete log entries. State-

5 EOS: Exactly-Once Web Service 107

of-the-art hard disks support atomic writes of data that fits into a single sector (256 to 512

bytes). Request and state log entries are certainly much bigger since they may occupy

from several kilobytes to some megabytes. This, however, does not pose a problem on

NTFS due to its transaction support that is based on sufficiently small log entries. In the

operating system jargon such a file system is called journaled [Silberschatz et al. 2001].

Some file systems offer journaling just for metadata. Windows NTFS logging service,

IBM JFS, and Linux ext3 support all file operations. To benefit from NTFS journaling,

output to the log file is performed using the low-level I/O functions _write(file_handle,

data_buf, data_size) and _commit(file_handle). By committing the log file after a series

of writes that encompasses one or more complete logical units such as one or more

complete log entries, we always keep the log file in the consistent shape. When an error is

encountered during an I/O (i.e., an I/O function returns -1), we make the Apache child

process crash, and NTFS undoes uncommitted writes.

The log file has a particular size as configured by an administrator, in order to save the

cost of claiming new disk sectors from the file system when appending a new log entry.

Hence, EOS-PHP maintains its own logical end-of-file (EOF) represented by a signature

of four zeroed bytes. Writing the logical EOF always completes an I/O transaction as the

very last operation before _commit. Then the log writer pointer is moved to the real end

of the very last log entry such that the EOF signature is overwritten by the successive I/O

transaction. When a write operation reaches the physical EOF as managed by the file

system, EOS-PHP continues writing from the end of the boot sector of the log file. A log

file written in this manner is known as a ring file. The ring log file is full when a pending

write would move beyond the current start position. Note that the start position is also

continuously moved forward in the process of garbage collection with the advancing

minimum redo LSN. Thus, log truncation does not incur a physical log file truncation on

start
pos

start
lsn

start
msn

start
pos

start
lsn

start
msn

12 bytes boot sector physical
EOF

start poslogical
EOF

currently
unused

Figure 40: Layout of EOS-PHP Log File

size type lsn

9 bytes entry header

prev_lsn

logged data of size bytes

Figure 41: Log Entry Format

108 5 EOS: Exactly-Once Web Service

disk Rather the start position field of the boot sector is updated. When the space in the log

file is exhausted, EOS-PHP tries to double the size of the log file and copies the wrapped

part of the log between the boot sector and the logical EOF to the area starting with the

prior physical EOF inside a single I/O transaction. A log-file-shrinkage occurs in the

process of garbage collection if the log data does not wrap and occupies less than a

specified percentage (e.g., 10 %) of the physical log file size. To this end, the logical

content of the log file is moved back to the end of the boot sector and the start position in

the boot sector is updated within the same I/O transaction. Changing the log file size

incurs updating the log file position field of the log and state buffer cells. Let

log_file_size be the size of the log file and log_file_pos the offset of an entry before the

change of the log file size. When the log file grows, the new offset of a moved log entry

log_file_pos’ is given by log_file_pos + (log_file_size - boot_sector_size). When the log

file shrinks, the offset log_file_pos’ of every log entry changes to log_file_pos -

(start_pos - boot_sector_size).

5.3.4 LRU Buffers for PHP Session Data and the Log

Unlike the original PHP session module, EOS-PHP uses only the log to store PHP session

data, which allows limiting interactions with hard disk to solely sequential I/O in most

situations. The PHP application state and log buffers in the main memory with

configurable size limits accelerate access to the data stored in the stable log, which is also

novel to the original PHP session module that does not cache session data. Distinction

between these two buffers arises from the different natures of their usage. The log buffer

is normally accessed sequentially in the LSN order and occasionally through a hash table

by an LSN as a key. The PHP application state buffer is usually accessed through a hash

table by a session id as a key and occasionally by a sequential scan (e.g., during

replacement victim selection and creation of installation points). During recovery, the

state buffer may be looked up by a key pair (session id, LSN), which returns the youngest

available version of the PHP application state as of LSN. All this functionality is provided

with the EOS-enhanced Zend hash table implementation that serves as a basic data

structure of both buffers. EOS-PHP could not benefit from sophisticated Zend memory

manager due to its orthogonal design goal of freeing memory cells allocated during the

execution of a request upon termination of the request. Hence, EOS-PHP maintains the

buffers separately and provides its own copy constructors for Zend objects to avoid

deletions of logged values upon the request completion.

5 EOS: Exactly-Once Web Service 109

01. typedef struct _eos_log_entry
02. {
03. long lsn;
04. long log_file_pos;
05. eos_log_entry *next_php
06. long size;
07. HashTable *val;
08. zend_bool is_dirty; // used for only for PHP states
09. eos_latch lock; // used for only for PHP states
10. long read_lsn; // used for only for PHP states
11. }
12. eos_log_entry;
13.
14. typedef struct _eos_cache
15. {
16. long size;
17. long size_limit; // specified in the php.ini file
18. HashTable buf;
19. }
20. eos_cache
21.
22. eos_cache eos_state_buf, eos_log_buf;
23.
24. void eos_select_cache_victims(eos_cache *e, long min_size)
25. {
26. eos_log_entry *victm = NULL;
27. zend_bool commit_pending = FALSE;
28.
29. while(e.size + min_size > e.size_limit)
30. {
31. eos_find_min_lsn(eØbuf, &victim);
32.
33. if(victimØdirty == TRUE)
34. {
35. eos_write_log_entry_to_disk(victim);
36.
37. commit_pending = TRUE;
38. }
39.
40. eos_free_hashtable(victimØval);
41.
42. eØsize -= victimØsize;
43. }
44.
45. if(commit_pending == TRUE)
46. {
47. eos_commit_physical_log();
48. }
49. }

Figure 42: EOS-PHP Log Buffer Management

Figure 42 shows the data structures EOS-PHP uses for LRU buffer management. The

structure eos_log_entry implements an LRU buffer cell. It stores an LSN field, the log

file position of the log entry needed to fetch it from disk in case of a cache miss as

opposed to a cache hit when the val field is not NULL. The next_php field contains a

110 5 EOS: Exactly-Once Web Service

pointer to the PHP-level log entry created next after the current log entry within the same

HTTP request. Clearly, the eos_log_entries of type state do not use the next_php field.

The size field caches the current amount of space occupied by the log entry in order to

save expensive computation of the size that includes recursive traversing of Zend hash

tables. For the log entries representing PHP application states EOS-PHP maintains two

further fields: an is_dirty flag and a latch. The structure eos_cache implementing the

LRU buffers of EOS-PHP contains an incrementally managed size field, a configurable

size_limit field, and a Zend hash table to access individual log entries. A graphical

representation of the log buffer is depicted in Figure 35.

EOS-PHP implements the PHP application state buffer using the LRU algorithm

selecting the least recently used entry (hence the name of the algorithm) as a replacement

victim. The volatile read LSN stamp of the PHP application state serves as a measure of

recency (the higher LSN the more recently the PHP session state has been accessed) as

illustrated in the code fragment of Figure 42.

Since EOS-PHP guarantees state recovery through deterministic replay, there only two

situations when the state has to be forced to disk: When a particular PHP application state

is replaced in the buffer by the LRU algorithm, and when EOS-PHP creates an

installation point. Log entries for PHP application states are also written in a write-once

manner, which implies that EOS-PHP never updates a log entry physically. Instead a new

physical log entry is appended with the effect that the minimum redo LSN for the given

PHP application state advances to the LSN of the newly created log entry thus enabling

garbage collection of the former physical installation of this state. Note that prior to

forcing a new state version to disk the log entries must have been forced to disk. They are

copied rather than removed. We incrementally maintain the last forced LSN in order to

avoid redundancy.

The log buffer of EOS-PHP is implemented in a similar manner with minor exceptions.

When the log buffer is not able to accommodate a new entry, it first tries to free a

sufficient amount of space by dropping log entries belonging to installed interactions.

When the garbage collection of these log entries has not sufficed, LRU is used to select

further log entries as replacement victims analogously to the PHP application state buffer.

5 EOS: Exactly-Once Web Service 111

5.3.5 Failure Detection

There are five classes of detectable system failures from our perspective. The first class

includes heavy failures such as power outages that are either handled by the

uninterrupted power supply hardware or by waiting until the system boots again and the

Apache child process can recover pre-crash interactions. Heavy operating system kernel

exceptions, causing a reboot analogously, constitute the second class of system failures.

Apache process-level exceptions, internal or originating in modules other than PHP,

causing restart of Apache processes alone fall into the third class of system failures. The

fourth class of system failures originates in and is detected by the Zend engine that

terminates only the current request thread. Last but not least, the fifth class of system

failures is treated by EOS-PHP. In this subsection, we are going to discuss the last two

failure classes.

Whenever EOS-PHP encounters a failure that affects the newly introduced log, LRU

buffer, or recovery managers, a soft-crash is issued by calling the abort() routine that

causes an abnormal termination of the Apache child process running the PHP engine as

one of its modules. This is usually encoded as consistency assertions of successful return

codes as e.g.: assert(seek(log, lØlog_file_pos) != -1). Typical sources of severe failures

that EOS-PHP checks for are I/O operations, memory allocations, and pointer arithmetic.

Before a log entry (request or application state) is written to disk, EOS-PHP verifies that

it is in a consistent shape having the size matching the cached value of the size field of the

eos_log_entry structure. Aborting the server guarantees that no inconsistent entries can

make it to stable log as ensured by I/O transactions. In order to clearly isolate EOS-PHP

failures, additional measures are needed to protect the shared EOS data structures in the

main memory from erroneous manipulation through straying pointers by other modules.

By compiling EOS enhancements to PHP as a stand-alone Windows dynamic link library

(DLL) that allows to access memory only through the exported functions, we can use a

Windows mechanism to prevent other modules from manipulating EOS-specific data

directly (similar to the process-level address space protection).

The Zend engine distinguishes different levels of failures depending on which part of the

PHP runtime is affected and a failure severity. Failure reports are often included into

regular HTML output for the end-user. If a failure is severe, the execution of the PHP

script is halted. For instance, the Zend engine produces a warning when a script is trying

to read an undefined variable without aborting the script. However, attempts to write to a

112 5 EOS: Exactly-Once Web Service

file using an invalid handle, compilation errors of dynamically included scripts are real

hard failures causing script aborts. Note that since in the original PHP engine, script

threads do not share memory they can be safely aborted without affecting parallel threads.

Thus, since it is not the EOS-PHP routine causing a failure, such a drastic response as

shutting down the entire server process is not necessary.

There are two possible situations to consider from the EOS perspective: 1) the failure is

detected by the PHP script itself, 2) the failure is detected inside a PHP statement either

by the Zend engine or by one of the PHP modules. In the first situation, we are dealing

with a so-called user-level failure in the PHP jargon caused by an erroneous user input.

Since the developer detected this situation, she provides an appropriate output allowing

the end-user to correct her input. EOS treats such interactions as failure-free. In the

second case however, we are dealing with another transient system failure according to

our failure model. EOS-PHP initially suppresses the output to the client and awaits it to

resend the request as required by CIC and starts the retry counter for this interaction. If

the retry counter exceeds the configurable value (the default value is 3), EOS-PHP

notifies the client component (a browser or the CURL module of another PHP server) that

the current HTML output containing the error message is neither stabilizing nor installing

its original request. The output is not added to the log buffers, neither by EOS-PHP nor

by the client component. CURL module ignores this mechanism and simply keeps

retrying. Such an error report is rather for convenience of the end-user. She sees that the

system is not working smoothly right now, but she will be able to retry again by revisiting

the greeting page of the Web Service. The exactly-once-execution guarantee will hold in

any event.

5.3.6 Recovery: Analysis and Redo Passes

The analysis pass of the log is performed to initialize the log and PHP application state

buffers using eos_log_entry elements defined in Figure 42. Just compact log entry

headers (32 bytes each) are fetched into main memory, whereas the large val fields are

skipped, in order to avoid unnecessary buffer cell replacements in this pass.

As for the log buffer, EOS-PHP needs to restore the forward links between the log entries

of the same HTTP request using the previous LSN field stored with the log entries. As for

the state buffers, the log file positions of all available versions of every PHP application

state have to be inserted because an HTTP request can be correctly replayed only when it

5 EOS: Exactly-Once Web Service 113

gets the proper version of the application state, i.e., that is identical to the original

execution. If we managed just a single, current version during recovery, replay of an

incomplete HTTP request could be confused by an application state version forced by

LRU buffer cell replacement after the request end. Log entries of a partially executed

HTTP request are usually appended to the stable log for the following two reasons: due to

nondeterministic events such as CIC commit of a concurrent request or flushing from the

full log buffer.

In an unlikely case, in which EOS-PHP is not able to accommodate every eos_log_entry

header in the main memory buffers, two B-tree files are generated during the analysis

pass: one indexing request log entries using LSN as a key and an other indexing state log

entries using a (state id, LSN) pair as a key (this feature is not implemented yet). Another

answer to this problem could be a garbage collection policy that does not allow a number

of active interactions that is greater than the number of log entry headers that fit into the

log buffer. As an example, the log buffer of 8M can accommodate more than 250.000 log

entry headers. When the maximum number is exceeded, EOS-PHP should not admit

further requests until it receives a sufficient number of interaction installation

notifications from other components.

During normal operation, EOS-PHP concurrency control ensured that the LSN order of

HTTP requests coincides with the logical order of accesses to PHP application states.

Thus, the redo pass simply replays all HTTP log entries starting with the minimum LSN

encountered in the log (which is always an HTTP log entry) using a single thread as

sketched in Figure 43. EOS-PHP speeds up the redo pass by checking in the request

startup phase whether a replay is really needed (line 19). When the current LSN of the

affected PHP application state is higher than the request LSN and the HTTP log entry is

complete (i.e., the PHP level log entry with the reply message can be reached via the

next_php chain), the HTTP request log entry is skipped for replay. When the request has

to be replayed, EOS-PHP restores its execution environment including main global

variables $HTTP_{GET,POST,COOKIE,SESSION}_VARS and $HTTP_POST_FILES

that constitute PHP language representation of the HTTP request. A proper version of the

PHP application state $HTTP_SESSION_VARS is recovered when the statement

session_start is replayed that ultimately translates to calling the C function

eos_fetch_state_as_of(lsn, &app_state, &eos_state_buf).

114 5 EOS: Exactly-Once Web Service

5.3.7 Installation Points and Garbage Collection

During normal operation the portion of the log that would need to be replayed after a

crash steadily increases due to uninstalled interactions with other components outside our

control and because most popular PHP application states mostly remain in the session

state buffer without being flushed to disk. In addition, as explained above, browser

recovery requires remembering the first URI0 called to start a PHP session. If we naively

always tried to retrieve URI0 from a regular log entry, we would have to keep the first log

entry until the session ends. To avoid this, EOS-PHP maintains the session-id-URI0 table

as part of a pseudo PHP application state that does not belong to any particular PHP

session. This allows us not only an efficient lookup of an initial URI but also releasing of

01. eos_cache eos_state_buf, eos_log_buf;
02. long min_lsn;
03.
04. void eos_replay_log()
05. {
06. long curr_lsn = min_lsn;
07. long sess_id;
08. eos_log_entry *rle, *app_state;
09. char *http_reply;
10. char *script_file_name;
11.
12. while(eos_fetch_log(&rle, curr_lsn, &eos_log_buf)!= END_OF_LOG)
13. {
14. sess_id = eos_log_extract_sessid(rle);
15. http_reply = eos_log_extract_reply(rle);
16.
17. eos_fetch_current_state(&app_state, &eos_state_buf);
18.
19. if(http_reply == NULL || app_stateØlsn < curr_lsn)
20. {
21. script_file_name = eos_log_extract_filename(rle);
22.
23. // recover $HTTP_{COOKIE, GET, SESSION}_VARS
24. eos_recover_globals(rle, app_state);
25.
26. zend_execute_scripts(script_file_name, …);
27. }
28. else
29. {
30. // NOTHING TO DO
31. }
32.
33. curr_lsn = find_next_http_lsn ();
34. }
35. }

Figure 43: EOS-PHP Redo Pass

5 EOS: Exactly-Once Web Service 115

log entries for garbage collection before the session ends by forcing the state with the

session-id-URI0 table as a state-type log entry to disk.

The procedure of lazily creating installation points and subsequent garbage collection

runs in a separate installation thread as an infinite loop that is repeatedly resumed after a

configurable amount of time.

The installation thread interrupts the normal operation of EOS-PHP by acquiring a special

activity latch in the X-mode. Usual requests obtain this latch in the SH-mode before the

actual execution and hold it until completion. After successful exclusive latching, it is

safe to reorganize the log, and the state of EOS-PHP is consistent because previously

running requests are guaranteed to have been completed whereas arriving requests are

being queued for later admission to execution.

The loop body of the installation thread consists of the following phases. First a new

minimum redo LSN is determined by finding the oldest uninstalled interaction with other

components in the input message lookup table IMLT. If the minimum redo LSN has not

increased since the last check, it is not worthwhile to proceed with the installation such

that further actions are skipped and the activity latch is released. Otherwise, we proceed

with the next phases each of which corresponds to an NTFS I/O transaction. EOS-PHP

forces the request log to disk, in the next phase. Subsequently, EOS-PHP flushes dirty

PHP application states from the state buffer. The pseudo PHP application state

maintaining the session-id-URI0 table is flushed to disk regardless of its dirty-status in the

same phase unless it is empty. Last but not least, the boot sector of the log file is updated

with the new start position for the analysis pass and last used LSN and MSN. Note that in

rare cases in which all PHP sessions have been terminated and all CIC instances have

been installed, the start position field of the boot sector will point to the logical EOF.

Backend
Server

Frontend
Server

shared
count

1234Æ1235

private
count
2Æ3

private
count
2Æ3

private
count
2Æ1

private
count
2Æ3

POST (ICIC)
action=increment
b2b=true

1235<html>
<p>Privatel Count: 3
<p>Shared Count: 1235
</html>

POST (ICIC)
action=increment

Web
Client

Figure 44: Test Application in the Experiments

116 5 EOS: Exactly-Once Web Service

5.3.8 Run-Time Overhead

EOS-PHP extensions are implemented in the C language and comprise ca. 5500 lines of

source code. For the implementation we used as much of the existing efficient Zend

engine infrastructure as possible. To evaluate the run-time overhead of EOS-PHP, we

performed measurements with Apache/1.3.20 and PHP/4.0.6 running on two PC’s each

with a 3 GHz Intel Pentium IV processor and 1 GB main memory under Windows XP.

01. <?php
02. $time = time();
03. if(isset($HTTP_POST_VARS["b2b"]))
04. {
05. session_id("SHAREDSTATE");
06. }
07.
08. session_start(false);
09.
10. if(isset($HTTP_POST_VARS["destroy"]))
11. {
12. session_destroy();
13. exit();
14. }
15.
16. if(!session_is_registered["count"])
17. {
18. session_register("count");
19. }
20.
21. $HTTP_SESSION_VARS["count"]++;
22. session_close();
23.
24. if(!isset($HTTP_POST_VARS["b2b"]))
25. {
26. $ch = curl_init("http://b2b_server/test.php");
27. curl_setopt($ch, CURLOPT_HEADER, false);
28. $params = array();
29. $params["b2b"] = true;
30. curl_setopt($ch, CURLOPT_POSTFIELDS, $params);
31. $b2b_reply = $curl_exec($ch);
32. }
33. else
34. {
35. echo $HTTP_SESSION_VARS["count"];
36. exit();
37. }
38. ?>
39. <html>
40. <p>Private count:
41. <?php echo $HTTP_SERVER_VARS["count"]; ?>
42. <p>Shared count: <?php echo $b2b_reply; ?>
43. </html>

Figure 45: Test PHP Script

5 EOS: Exactly-Once Web Service 117

The call structure of the evaluated application is shown in Figure 44. The load on the

frontend Web application server was generated by the synthetic HTTP request generator

Apache JMeter/2.0.3 [Apache.org]. The generator simulated conversations of n steps

without involving human user interactions. Think times were not simulated.

Both servers deploy the same PHP script outlined in Figure 45. The script calls the

nondeterministic function time() (line 2), reads the current application state (line 8) and

increments the state variable count (lines 16-21). On the backend server that receives the

flag b2b as a POST parameter, the accessed state is shared among all clients as specified

by the explicit call to the function session_id (line 5). The new value of the state variable

count is the only content of the HTTP reply body produced by the backend server (lines

35-36). In contrast, the frontend server accesses a private state to increment the variable

count and invokes another instance of this script on the backend server (lines 24-32).

Moreover, the frontend server replies with a complete HTML page containing the shared

and private count values (lines 39-43) that is returned to the load generator. In the

following two experiments we compare the three-tier system of two servers run by the

original PHP engine against the equivalent system run by EOS-PHP.

Table 9 shows the total elapsed time, between the first request and the last reply as seen

by the client, and the CPU time on the frontend and backend servers for n = 1, 5, 10

steps, comparing the original PHP engine to EOS-PHP with the rigorous recovery

guarantees. The original PHP manages each session in a separate file. Changes to the

session variables are made quasi persistent by the original PHP because the session file is

written without being forced to disk. The function _close(int filehandle) called by the

original PHP engine at the request end does not incur a synchronous I/O on Windows.

The response time overhead of 135-152% results also from the fact that the original PHP

sends the reply before the disk write, the latter being performed during the request

Table 9: 1 Client Experiment
 Sessions 1 step 5 steps 10 steps
PHP elapsed time [sec] 0.0480 0.2200 0.4500
EOS-PHP elapsed time [sec] 0.1130 0.5550 1.1000
Overhead [%] 135% 152% 144%
PHP frontend CPU time [sec] 0.0240 0.1625 0.3455
EOS-PHP frontend CPU time [sec] 0.0305 0.2125 0.4636
Overhead [%] 27% 31% 34%
PHP backend CPU time [sec] 0.0050 0.0300 0.0700
EOS-PHP backend CPU time [sec] 0.0090 0.0550 0.1200
Overhead [%] 80% 83% 71%

118 5 EOS: Exactly-Once Web Service

shutdown. The CPU time overhead on the frontend server is lower than on the backend

server by a factor of approximately two due to the file (de)allocation activity of the

original PHP when starting new sessions and terminating the old ones by calling the

function session_destroy (line 12 of Figure 45) on the frontend server, whereas a single

file is used all the time on the backend server. Nevertheless, we need to mention that the

cost for forced I/O’s dominates the overhead because inserting the function _commit

before the call to _close in an additional test made the overhead shrink to less than 20%.

We also performed multi-user measurements by replicating the HTTP request driver on

five different client machines generating requests to the frontend server. Table 10 shows

the measured average response and CPU times in terms of the simulated n-step user

sessions. The figures show that the response time overhead decreases in comparison to

the one client measurement because concurrency becomes a more significant factor.

Although the original PHP does not need concurrency control, the Apache Web server

manages a number of shared data structures that are protected by internally implemented

semaphores and mutex locks that increasingly suffer access contention. In this

experiment, the overhead on the frontend server is larger than on the backend server due

to a higher contention on the log latch which protects two synchronous log writes: one

before calling curl_exec and another performed prior to sending the output to the client.

The cost for the recovery guarantees is less than factor of two, which is an acceptable

overhead. The price is worthwhile given the increased dependability and ease of

programming.

Table 10: 5 Clients Experiment
 Session 1 step 5 steps 10 steps
PHP elapsed time [sec] 0.1560 0.7900 1.6100
EOS-PHP elapsed time [sec] 0.3140 1.6850 3.1000
Overhead [%] 101% 113% 93%
PHP frontend CPU time [sec] 0.0390 0.2708 0.5727
EOS-PHP frontend CPU time [sec] 0.0815 0.6000 1.1545
Overhead [%] 109% 122% 102%
PHP backend CPU time [sec] 0.0090 0.0550 0.1200
EOS-PHP backend CPU time [sec] 0.0130 0.0750 0.1600
Overhead [%] 44% 36% 33%

6 Conclusion and Outlook 119

6. Conclusion and Outlook
“Real generosity towards the future lies in giving all to the present.” -Albert Camus

This thesis has introduced a formal specification of the interaction contract framework in

the form of Statemate state-and-activity charts. The generic design of the three types of

interaction contracts allows a rapid and rigorous specification of complex multi-tier

software system architectures. This thesis presents automatic proofs that the formal

specifications have the required property of exactly-once execution using the symbolic

model checker provided with Statemate. Although we were successful in verifying of

standalone interaction contracts and we were able to verify a sample Web application

model with nondeterminism caused by the parallel asynchronous execution, we observed

that the model checker performance does not scale with the number of modeled users.

Providing proofs for realistic systems handling hundreds of parallel user session were out

of question. The results achieved in this thesis show that mechanical verification

technology still requires seeking a compromise between the verifiability and the realism

of a model for a complex software system. A promising direction for future work may lie

in the combination of model checking with induction proofs (e.g., see the paper by

McMillan et al. [2000]).

The second major accomplishment of this thesis is a transparent integration of the

interaction contract support with the popular real-world Web technology products:

Microsoft's browser Internet Explorer and Zend's server-side scripting engine for the PHP

language. Our prototype EOS allows deploying arbitrarily distributed PHP application

with the exactly-once execution guarantee. Good performance has been achieved due to

efficient log and state data organization, and the LRU buffer management added to PHP

by EOS. Experiments show that the rigorous recovery guarantees are provided with

acceptable overhead. Performance of EOS-PHP can be further improved by deeper

integration of the log and recovery managers with the Zend engine, which would allow

replaying the log at the PHP statement level rather than at the HTTP request level. This

could make the analysis pass in the current solution obsolete, and make the redo pass

simpler. Moreover, such a solution would allow creating installation points in midst of

request execution, which would accelerate replaying lengthy scripts during redo.

Providing a distributed concurrency control protocol for PHP would be another

interesting direction to pursue in future work.

References 121

References

Alvisi, L. and K. Marzullo, 1995: Message Logging: Pessimistic, Optimistic, and

Causal, In Proceedings of the 15th International Conference on Distributed Computing

Systems, Vancouver, Canada, May 30 - June 2, 1995, IEEE Computer Society, Los

Alamitos, CA, U.S.A., 229-236.. 39

Apache.org: Apache HTTP Server Project, http://httpd.apache.org/....................... 77, 117

Barga, R., D. Lomet, and G. Weikum, 2002: Recovery Guarantees for General Multi-

Tier Applications, in Proceedings of the 18th International Conference on Data

Engineering, San Jose, CA, U.S.A., February 26 - March 1, 2002. IEEE Computer

Society, Los Alamitos, CA, U.S.A., 543-554... 3, 38, 51, 58

Barga, R., D. Lomet, G. Shegalov and G. Weikum, 2004: Recovery Guarantees for

Internet Applications, ACM Transactions on Internet Technologies (TOIT) 4(3), 289-

328... ... 3

Barga, R., D. Lomet, S. Agrawal, and T. Baby, 2000: Persistent Client-Server

Database Sessions, in Proceedings (Lecture Notes in Computer Science, 1777) of the

7th International Conference on Extending Database Technology, Constance, Germany,

March 2000, Springer, Heidelberg, Germany, 462-477... .. 38

Barga, R., D. Lomet, S. Paparizos, H. Yu, and S. Chandrasekaran, 2003: Persistent

Applications via Automatic Recovery, in Proceedings of the 17th International

Database Engineering and Applications Symposium, Hong Kong, China, July 2003.

IEEE Computer Society, Los Alamitos, CA, U.S.A., 258-267... 4

Barga, R., S. Chen, and D. Lomet, 2004: Improving Logging and Recovery

Performance in Phoenix/App, in Proceedings of the 20th International Conference on

Data Engineering, 30 March - 2 April 2004, Boston, MA, U.S.A., IEEE Computer

Society, Los Alamitos, CA, U.S.A., 486-497... 4

Bartlett, J., 1981: A NonStop Kernel, in Proceedings (Operating System Review 15(5))

of the 8th Symposium on Operation Systems Principles, Asilomar, CA, U.S.A.,

December 1981, ACM, New York, NY, U.S.A., 22-29... .. 39

122 References

Borg, A., W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, 1989: Fault Tolerance

Under UNIX, ACM Transactions on Computer Systems,7(1), 1-24... 39

Bryant, R., 1986: Graph-Based Algorithms for Boolean Function Manipulation, IEEE

Transactions on Computers, 35(8), 677-691... 11

Castro, M. and B. Liskov, 1999: Practical Byzantine Fault Tolerance, in Proceedings of

the 3rd USENIX Symposium on Operating Systems Design and Implementation,

February 22-25, 1999, New Orleans, Louisiana, Operating Systems Review, Special

Issue, ACM, NY, U.S.A., 1998 and USENIX Association, 173-186... 26

Chkliaev, D., J. Hooman, and P. van der Stok, 2000: Mechanical Verification of

Transaction Processing Systems, in Proceeding of the 3rd IEEE International

Conference on Formal Engineering Methods, September 4-7, 2000, York, England,

U.K., IEEE Computer Society, Los Alamitos, CA, U.S.A., 89-97............................... 40

Clarke, E. and B. Schlinghoff, 2001: Model Checking, in Handbook of Automated

Reasoning, Volume 2, Elsevier and MIT, 2001, 1635-1790... 6

Comer, D., 1988: Internetworking with TCP/IP Principles, Protocols, and Architecture,

Prentice Hall, Englewood Cliffs, NJ, U.S.A., 1988.. 26, 76

Cristian, F., 1991: Understanding Fault-tolerant Distributed Systems, in

Communications of the ACM, 34(2), 56-78... 39

Dutta, K., D. VanderMeer, A. Datta, and K. Ramamritham, 2001: User Action

Recovery in Internet SAGAs (iSAGAs), in Proceedings (Lecture Notes in Computer

Science 2193) of the 2nd International Workshop on Technologies for E-Services

(TES), Rome, Italy, September 2001, Springer, Heidelberg and Berlin, Germany, 132-

146... ... 39

Elnozahy, E., L. Alvisi, Y. Wang, and D. Johnson,, 2002: A Survey of Rollback-

Recovery Protocols in Message-Passing Systems, ACM Computing Surveys, 34(3),

375-408... 39

References 123

Emerson, E., 1990: Temporal and Modal Logic, in Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics, Elsevier and MIT, 1990, 995-

1072... ... 5

Freytag, J., F. Cristian, and B. Kähler, 1987: Masking System Crashes in Database

Application Programs, in Proceedings of the 13th International Conference on Very

Large Data Bases, Brighton, U.K., September 1987, Morgan Kaufmann, San

Francisco, CA, U.S.A., 407-416... 38

Frølund, S. and R. Guerraoui, 2002: e-Transactions: End-to-End Reliability for Three-

Tier Architectures, IEEE Transactions on Software Engineering, 28(4), 378-395... ... 39

Fu, X., T. Bultan, R. Hull, and J. Su, 2001: Verification of Vortex Workflows, in

Proceedings (Lecture Notes in Computer Science 2031) of the 7th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

Genoa, Italy, April 2001, Springer, Berlin and Heidelberg, 143-157........................... 39

Fujita, M., Y. Matsunaga, , and T Kakuda, 1991: On Variable Ordering of Binary

Decision Diagrams for the Application of Multi-Level Logic Synthesis. In Proceedings

of the European Conference on Design Automation, Amsterdam, Netherlands, March

1991, IEEE Computer Society, Los Alamitos, CA, U.S.A., 50-54.... 12

Gray, J. and A. Reuter, 1993: Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, San Francisco, CA, U.S.A., 1993......................... 25, 27, 34, 46, 99

Gurevich, Y., N. Soparkar, and C. Wallace, 1997: Formalizing Database Recovery, in

the Journal of Universal Computer Science 3(4), 320-340... 40

Hadzilacos, V., 1988: A Theory of Reliability in Database Systems, Journal of the ACM

35(1), 121-145... ... 40

Harel, D. and M. Politi, 1998: Modeling Reactive Systems with State-charts: The

Statemate Approach, McGraw-Hill, New York, NY, U.S.A., 1998............................ 12

Harel, D., and A. Naamad, 1996.: The STATEMATE Semantics of Statecharts, ACM

Transactions on Software Engineering and Methodology, 5(4), 293-333.................... 12

124 References

Henderson, K., 2000: The Guru's Guide to Transact-SQL, Addison-Wesley Professional,

Boston, MA, U.S.A., 2000.. 2

Huang, Y. and Y. Wang, 1995: Why Optimistic Message Logging Has Not Been Used In

Telecommunications Systems, in Proceedings of the 25th International Symposium on

Fault-Tolerant Computing Systems, Pasadena, CA, U.S.A., June 1995, IEEE Computer

Society, Los Alamitos, CA, U.S.A., 459... ... 39

Internet Engineering Task Force, 1996: Multipurpose Internet Mail Extensions, RFC

2045-2049, http://www.ietf.org/... .. 78

Internet Engineering Task Force, 1998: Uniform Resource Identifiers (URI): Generic

Syntax, RFC2396, http://www.ietf.org/... ... 75

Internet Engineering Task Force, 1999: Hypertext Transfer Protocol – HTTP/1.1, RFC

2616, http://www.ietf.org/... ... 75

Johnson, D. and W. Zwaenepoel, 1987: Sender-based Message Logging, in Proceedings

of the 7th International Symposium on Fault-Tolerant Computing, Pittsburgh, PA,

U.S.A., July 1987, IEEE Computer Society, Los Alamitos, CA, U.S.A., 14-19... 39

Katz, R., G. Gibson, and D. Patterson, 1989: Disk system architectures for high

performance computing, in Proceedings of the IEEE, 77(12), 1842-1858................... 26

Kim, W., 1984: Highly Available Systems for Database Applications, ACM Computing

Surveys, 16(1), 71-98... .. 39

Korth, H., E. Levy, and A. Silberschatz, 1990: A Formal Approach to Recovery by

Compensating Transactions, in Proceedings of the 16th International Conference on

Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, 95-

106... ... 26

Kuo, D., 1996: Model and Verification of a Data Manager Based on ARIES, ACM

Transactions on Database Systems 21(4), 427–479... .. 40

Lampson, D. and D. Lomet, 1993: A New Presumed Commit Optimization for Two

Phase Commit, in Proceedings of the 19th International Conference on Very Large

References 125

Data Bases, Dublin, Ireland, August 1993, Morgan Kaufmann, San Francisco, CA,

U.S.A., 630-640.. 33

Lomet, D. and G. Weikum, 1998: Efficient Transparent Application Recovery in Client-

Server Information Systems, in Proceedings of 1998 ACM SIGMOD International

Conference on Management of Data, Seattle, WA, June 1998, ACM, New York, NY,

U.S.A., 460-471.. 38

Lomet, D. and M. Tuttle, 2003: A Theory of Redo Recovery, In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, San Diego, CA,

U.S.A., June 9-12, 2003, ACM, New York, NY, U.S.A., 397-406.............................. 40

Lomet, D., 1998: Persistent Applications Using Generalized Redo Recovery, in

Proceedings of the 14th International Conference on Data Engineering, Orlando, FL,

U.S.A., February 1998, IEEE Computer Society, Los Alamitos, CA, U.S.A., 154-163...

.. 38

Luo, M. and C. Yang, 2001: Constructing Zero-Loss Web Services, in Proceedings IEEE

INFOCOM 2001 of the 20th Joint International Conference of the IEEE Computer and

Communication Societies on Computer Communications, Anchorage, AK, U.S.A.,

April 2001. IEEE, Los Alamitos, CA, U.S.A., 1781-1790... 39

Lynch, N., 1996: Distributed Algorithms, Morgan Kaufmann, San Francisco, CA,

U.S.A., 1996... .. 40

Martin, C. and K. Ramamritham, 1999: Recovery Guarantees in Mobile Systems, in

Proceedings of the ACM International Workshop on Data Engineering for Wireless

and Mobile Access, Seattle, WA, U.S.A., August 1999, ACM, New York, NY, 22-29...

.. 39

Martin, C., and K. Ramamritham, 1997: Toward Formalizing Recovery of (Advanced)

Transactions, in Advanced Transaction Models and Architectures, Kluwer, Norwell,

MA, U.S.A., 1997, 213-234... .. 40

McMillan, K., 1993: Symbolic Model Checking, Kluwer , Norwell, MA, U.S.A., 1993...7

126 References

McMillan, K., S. Qadeer, and J. Saxe, 2000: Induction in Compositional Model

Checking, in Proceedings of 12th International Conference on Computer Aided

Verification (CAV), Chicago, IL, USA, July 15-19, 2000, Springer, Heidelberg,

Germany, 2000, 312-327... ... 119

Meinel, C. and T. Theobald, 1998.: Algorithms and Data Structures in VLSI Design -

OBDD Foundations and Applications, Springer, Heidelberg, 1998............................. 10

Microsoft: Microsoft Developer Network Home Page, http://msdn.microsoft.com/... ... 79,

86

Mohan, C., D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, 1992: ARIES: A

Transaction Recovery Method Supporting Fine-Granularity Locking and Partial

Rollbacks Using Write-Ahead Logging, ACM Transactions on Database Systems,

17(1), 94-162... ... 28, 40

Netcraft, 2004: December 2004 Web Server Survey, http://news.netcraft.com/.............. 77

OMG 2000: Fault Tolerant CORBA Spec v1.0, http://cgi.omg.org/cgi-bin/doc?ptc/00-04-

04... ... 38

PHP.net: PHP: Hypertext Preprocessor, http//www.php.net/... 78

Popovici, A., H. Schuldt, and H. Schek, 2000: Generation and Verification of

Heterogeneous Purchase Processes, in Proceedings of the 1st International Workshop

on Technologies for E-Services, Cairo, Egypt, September 2000, 5-22... 39

Rudell, R., 1993: Dynamic Variable Ordering for Ordered Binary Decision Diagrams, in

Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided

Design, Santa Clara, CA, U:S.A., November 07 - 11, 1993, IEEE Computer Society,

Los Alamitos, CA, U.S.A., 42-47... .. 12

Schuldt, H., A. Popovici, and H. Schek, 2000: Automatic Generation of Reliable E-

Commerce Payment Processes, in Proceedings of the 1st International Conference on

Web Information Systems Engineering, Hong Kong, China, June 2000, IEEE

Computer Society, Los Alamitos, CA, U.S.A., 434-441... ... 39

SecuritySpace: Apache Module Report, http://www.securityspace.com/........................ 78

References 127

Silberschatz, A., G. Gagne, and P. Galvin, 2002: Operating Systems Concepts, Willey,

Indianapolis, IN, USA... ... 99, 107

Stenberg, D.: cURL and libcurl, http://curl.haxx.se/... .. 82

Strom, R., D. Bacon, and S. Yemini, 1988: Volatile Logging in n-Fault-Tolerant

Distributed Systems, in Digest of the 18th Annual International Symposium on Fault-

Tolerant Computing, Tokyo, Japan, June 1988, IEEE Computer Society, Los Alamitos,

CA, U.S.A., 44-49... ... 39

Sun 2001: Enterprise Java Beans Specification v2.0,

http://java.sun.com/products/ejb/docs.html... ... 38

Sun: Java Technology, http://java.sun.com/... ... 79

The Open Group, 1994: Distributed TP: The XA+ Specification, Version 2,

http://www.opengroup.org/online-pubs?DOC=8095979699&FORM=PDF... 30

Tygar, J., 1998: Atomicity versus Anonymity - Distributed Transactions for Electronic

Commerce, in Proceedings of the 24th International Conference on Very Large Data

Bases, New York, NY, U.S.A., August 1998, Morgan Kaufmann, San Francisco, CA,

U.S.A., 1-12.. 39

W3.org: W3C:World Wide Web Consortium, http://w3.org/... 75, 76, 82, 83

WebSideStory, 2004: Browser Trends Survey, Oct. 29th 2004,

http://www.entmag.com/news/article.asp?EditorialsID=6432... 83

Weikum, G. and G. Vossen, 2001: Transactional Information Systems, Morgan

Kaufmann, San Francisco, CA, U.S.A., 2001... ... 1, 33, 40, 46

Younas, M., and B. Eaglestone, 2002: A Formal Verification Strategy for Crash

Recovery in Web-Database Applications, in Proceedings of the 3rd International

Conference on Web Information Systems Engineering Workshops, Singapore,

December 11, 2002, IEEE Computer Society, Los Alamitos, CA; U.S.A., 113-119... 40

Zend.com: Zend Technologies, Inc. The PHP Company, http://zend.com/... 78

Index 129

Index
After-image ...27
All or nothing See transaction atomicty
Analysis pass ...28
Apache Web server ...77

module ..77
pre-forking..77

At-most-once execution1
Atomicity.......................................See transaction
Before-image ...27
Bohrbugs ...25
Cache

hit 109
least recently used (LRU)...........................110
miss ...109

Common Gateway Interface (CGI)...................76
Component

external ...43
persistent...43
transactional..43

Computation Tree Logic5
ConsistencySee transaction
Control activity................................See statechart
Cross union operator µ......................................15
CTL......................... See Computation Tree Logic
CURL

library..82
module ..82

Database system ..26
Document Object Model (DOM)

HTML...83
XML ...83

Durability.......................................See transaction
Dynamic HTML (DHTML)..............................83
Exactly-once execution3
eXtensible Markup Language (XML)83
Fail stop ...25
Failure

Byzantine................................See commission
commission...26
ommission...25

File system
journaled ...107

Force-logging ..28
Generic activity ...24
Hard disk ...26
Heisenbugs ..25
Hypertext Markup Language (HTML)75
Hypertext Transfer Protocol (HTTP)................76
Hypertext Transfer Protocol (HTTP)................75
I/O

random..29
sequential ..29

Idempotence ..28
installation point..44
Interaction contract

committed (CIC)...51
external (XIC)...58
immediately committed (ICIC)51

Internet Explorer (IE) ..83

Isolation .. See transaction
Latch ..99
Latches

deadlock..99
Log

ring file..107
Log buffer ..28
Log sequence number..28
Logging

logical ...27
physical ...27
physiological...27
Write-ahead ..28
Write-on-commit ..29

Memory
main ..26

Message Lookup Table
input MLT (IMLT).......................................93
output MLT (OMLT)96

Model checking
explicit ..6
symbolic..9

Nonedeterminism
statecharts ...20

Non-idempotent request execution2
OBDD....See Ordered Binary Decision Diagrams
Ordered binary decision diagram......................10
Persistence See transaction
PHP: Hypertext Preprocessor............................78
Piecewise-determinism......................................44
Presumed-abort 2PC..32
Presumed-commit 2PC......................................32
pseudo-stateful...37
Query string...76
Queued transaction ..34
recovery autonomicity.......................................31
Redo pass...28
Reply..43
Request ..43

read-only ...44
update..44

secondary storage ..26
session..37
Shannon expansion..10
Soft crash ...25
Spinlock...99
Stable log ...28
State

current ...27
stable ...27

State-and-activity charts
execution context..19
nondeterminism ..20

State-and-activity Charts
status ...19

Statechart ...12
AND-state...14
asynchronous time model.............................23
basic configuration14

130 Index

basic state ... 14
condition... 17
condition expression..................................... 18
default subconfiguration 16
default substate... 14
default transition... 14
ECA rules ... 13
enabled transition ... 19
event expression ... 18
event operator... 17
event-condition expression (ECX)............... 18
greediness ... 20
history connector .. 46
OR-state.. 14
orthogonal components 13
state configuration.. 14
static reaction.. 13
substate ... 14
superstate .. 14
superstep... 23
synchronous time model 23
termination connector 21
textual expression language 17
transition conflict ... 20
transition priority rule 19

Temporal logic
Branching ... 5
Linear.. 5

Testable state ...28
Transaction .. 1

ACID .. 1
commit.. 1
loser ..28
rollback... 1
winner ...28

Transactional message queue............................34
Two-Phase-Commit (2PC)................................29

abort phase..29
commit phase..29
coordinator..29
participant...29
voting phase..29

Undo pass ..28
uniform resource identifier (URI).....................75
WebSee World Wide Web
Web browser ...76
Web Service .. 1
World Wide Web (WWW)75
Zend engine...78

