
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Universität des Saarlandes Max-Planck-Institut für Informatik
Naturwissenschaftlich-Technische Fakultät I D5 Datenbanken und Informationssysteme

Fachrichtung 6.2 - Informatik Prof. Dr.-Ing. Gerhard Weikum

Automatic Generation of
Thematically Focused

Information Portals from Web Data

Sergej Sizov

Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften

an der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Saarbrücken

2005

Abstract

Finding the desired information on the Web is often a hard and time-consuming task.
This thesis presents a methodology for the automatic generation of thematically
focused portals from Web data. The key component of the proposed framework is
the thematically focused Web crawler that is interested only in a specific, typically
small, set of topics. The focused crawler uses classification methods for filtering
of fetched documents and identifying most likely relevant Web sources for further
downloads.
We show that the human efforts for the preparation of a focused crawl can be mini-
mized by automatic extension of the training dataset using additional training sam-
ples coined archetypes. This thesis introduces a combination of classification results
and link-based authority ranking methods for selecting archetypes, combined with
periodic re-training of the classifier. We also explain the architecture of the focused
Web retrieval framework and discuss results of comprehensive use-case studies and
evaluations with a prototype system BINGO!.
The thesis also addresses aspects of postprocessing crawl results: refinements of
the topic structure and restrictive document filtering. We introduce postprocessing
methods and meta methods that are applied in a restrictive manner, by leaving out
some uncertain documents rather than assigning them to inappropriate topics or
clusters with low confidence. We also introduce the methodology of collaborative
crawl postprocessing for multiple cooperating users in distributed environments,
such as peer-to-peer overlay networks.
An important aspect of a thematically focused Web portal is the ranking of search
results. This thesis addresses the aspect of search personalization by aggregating
explicit or implicit feedback from multiple users and capturing topic-specific search
patterns by profiles. Furthermore, we consider advanced link-based authority rank-
ing algorithms that exploit the crawl-specific information, such as classification con-
fidence grades for particular documents. This goal is achieved by weighting edges
in the link graph of the crawl and by adding virtual links between highly relevant
documents of the topic.
The results of our systematic evaluation on multiple reference collections and real
Web data show the viability of the proposed methodology.

Kurzfassung

Die Informationssuche im Web ist oftmals schwierig und zeitaufwändig. Sowohl
große automatische Web-Suchmaschinen als auch manuell gepflegte Informations-
portale sind oft nicht in der Lage, gute Treffer für hochspezialisierte Experten-
Anfragen zu liefern. Diese Dissertation beschreibt die Methodologie der automa-
tischen Generierung von thematisch fokussierten Informationsportalen für Web-
Expertensuche. Die Schlüsselrolle im vorgestellten System spielt der thematisch
fokussierende Crawler, der nur auf spezifische, thematisch abgegrenzte Themen aus-
gerichtet ist. Der fokussierende Crawler verwendet Verfahren der Klassifikation von
Web-Dokumenten, um die gefundenen Inhalte zu filtern und die weiteren thematisch
relevanten Ziele im Web zu bestimmen.
Wir zeigen, dass der menschliche Aufwand für die Vorbereitung des fokussierten
Crawls durch automatische Erweiterung der Trainingsbasis reduziert werden
kann. Eine Kombination aus Textklassifikation und Methoden der Link-basierten
Autoritätsanalyse wird verwendet, um zusätzliche Trainingsbeispiele während
des Crawls automatisch zu bestimmen und ein Neu-Training des Classifiers
durchzuführen. Ausserdem beschreiben wir die Architektur des thematisch
fokussierten Crawlers und analysieren die Ergebnisse und Erfahrungen der Eva-
luationen mit dem Prototyp BINGO!.
Die Dissertation betrachtet außerdem wichtige Aspekte der Aufbereitung des gesam-
melten Datenbestandes, wie die automatische Anpassung der Themenstruktur und
die restriktive Filterung der Inhalte. Wir beschreiben dabei restriktive Methoden
und Metamethoden, die keine Aussage über eine Teilmenge von “unsicheren” Doku-
menten des Datenbestandes treffen (anstatt sie mit niedriger Konfidenz falschen
Themen zuzuordnen). Anschliessend betrachten wir die Aspekte der kollaborativen
Aufbereitung der Crawl-Daten durch mehrere kooperierende Benutzer im Rahmen
eines verteilten Systems, z.B. eines Peer-to-Peer Netzwerks.
Eine wichtige Funktion des thematisch fokussierten Web Portals ist das Ranking
der Suchergebnisse. Die Dissertation betrachtet Aspekte der Personalisierung der
Suchalgorithmen durch Aggregation des Feedbacks von mehreren Benutzern und
Bestimmung der typischen, themenspezifischen Ranking-Varianten. Ausserdem be-
trachten wir erweiterte Linkanalyse-Methoden, die auf verfügbare Informationen des
fokussierten Crawls, wie die Themenstruktur oder die Klassifikationsgüte der ver-
arbeiteten Dokumente, abgestimmt sind. Das erweiterte Modell benutzt klassifika-
tionsabhängige Kantengewichtungen im Link-Graph des Crawls und fügt zwischen
besonders guten Dokumenten des Themas zusätzliche virtuelle Kanten ein.
Die Ergebnisse der systematischen Evaluation auf mehreren Referenz-
Datensammlungen und mit realen Web-Daten demonstrieren die Anwendbarkeit
und die Vorteile der vorgestellten Verfahren.

Summary

Building an information system from Web data is a hard and challenging task.
Automated large-scale Web search engines provide good results for ordinary
informations demands. However, they often fail in satisfying queries with low
recall and highly specialized expert scope. Manually maintained Web directories
and portals may provide good results for such queries; however, they continu-
ously require substantial amount of human input for updating and do not scale
with the Web. This thesis addresses the problem of building thematically fo-
cused information portals from Web data. This solution can be considered as
a hybrid model of fully automatic and manually maintained Web information
services. On the one hand, the scope of the portal is restricted to the taxon-
omy that contains a limited number of pre-defined themes or topics. Each topic
of the taxonomy is characterized by manually selected sample documents. On
the other hand, our approach aims to fill the taxonomy with Web documents
automatically, without human intervention.

The key component of our solution is the thematically focused crawler. It
uses characteristic document samples from each topic to construct the docu-
ment classification model. All documents fetched by the crawler are automat-
ically classified against the topics of the taxonomy. The crawler dynamically
rejects irrelevant documents and estimates the most likely relevant Web sources
for subsequent downloads. We investigate the engineering and tuning issues
of focused crawling: the system architecture of the framework, prioritization
strategies for the crawl frontier, performance optimization, and the design of
data structures.

An important point about the thematic focusing is the quality of initial
training samples. In prior work on classification, the quality of the training
data was considered as an unchangeable fact beyond the responsibility of the
system. We develop a constructive and practically efficient methodology for
automatic expansion of training data for focused crawling. A key element
in our approach is the combination of document classification methods and
link-based authority ranking for automatic selection of additional training sam-
ples, coined “archetypes”, from the crawled and positively classified documents.
The crawler adjusts its focus by periodically re-training its classifier. The pro-
posed methodology successfully addresses the practically relevant issue of in-
sufficient/incomplete training data and substantially reduces human efforts for
crawl preparation.

Another important aspect in automated building of thematically focused por-
tals is the postprocessing of crawl results. Typical tasks include automatic re-
finements of the taxonomy structure (e.g. by proposing additional topics in

order to obtain a new taxonomy with finer granularity) and restrictive filtering
of repository documents. In this connection, we study restrictive methods and
ensemble-based meta methods for clustering and classification. Our objective
is the higher quality of resulting clusters or classification results at the price
of a moderate loss of uncertain samples, i.e. by leaving out some in-doubt do-
cuments, rather than assigning them to topics or clusters with low confidence.
Additionally, we consider the problem of collaborative postprocessing of crawl
results by multiple cooperating users. In the context of a distributed peer-to-
peer network that connects people who share topics of interest, it is natural to
aggregate their knowledge. We address this task using meta methods. The key
rationale of our approach is to combine multiple independently learned models
from several peers, and to construct the advanced meta model in a decentralized
manner.

Furthermore, we consider the important aspect of result ranking for local
search engines of thematically specialized portals. Our work on advanced rank-
ing methods for crawled data collections is motivated by the fact that the focused
crawler provides beneficial taxonomy-specific information like the topic struc-
ture or classification confidence grades of documents. In particular, we consider
options for search personalization using aggregated user feedback. Our objective
is to learn the preferred search parametrization for particular taxonomy topics.
Furthermore, we consider extensions to the computation of link-based authority
scores by modifying the link graph of the crawled data collection. We change
the link graph by weighting of edges and by adding virtual edges between doc-
uments with high classification confidence grades in order to obtain improved
authority scores for crawled documents.

Zusammenfassung

Der Aufbau von Informationssystemen aus Web-Daten ist eine anspruchsvolle
aber schwierige Aufgabe. Automatische Web-Suchmaschinen liefern gute Ergeb-
nisse für konventionelle Anfragen und Informationsbedürfnisse. Allerdings schei-
tern sie oft bei der Expertensuche mit starker thematischer Fokussierung und
geringer Ausbeute. Manuell gepflegte Portale und Web-Verzeichnisse liefern
in solchen Fällen oft bessere Resultate. Der große Nachteil der letzteren ist
allerdings der kontinuierlich hohe Aufwand der Pflege und Aktualisierung der
Inhalte, der die Skalierbarkeit solcher Systeme extrem einschränkt. Diese Disser-
tation betrachtet das Problem der automatischen Generierung von thematisch
fokussierten Informationsportalen aus Webdaten. Diese Lösung kann als eine
Kombination der Konzepte der vollautomatischen und der manuell gepflegten
Web-Informationssysteme gesehen werden. Das Portal wird fokussiert auf eine
- typischerweise kleine - Taxonomie, die aus klar abgegrenzten Themen besteht.
Die Themen der Taxonomie werden durch manuell selektierte Beispieldoku-
mente spezifiziert. Die anschliessende Füllung des Portals mit Web-Inhalten
erfolgt automatisch.

Eine zentrale Rolle in unserem Ansatz spielt der thematisch fokussierende
Web-Crawler. Der Crawler verwendet die charakteristischen Dokumente, um
Klassifikationsmodelle für die Themen der Taxonomie zu generieren. Die vom
Crawler geladenen Web-Dokumente werden automatisch klassifiziert und den
Themen der Taxonomie zugeordnet. Der Crawler verwirft negativ klassifizierte
Dokumente und konzentriert sich bei der Verarbeitung der extrahierten Links
auf die Weiterverfolgung von Webseiten, bei denen eine hohe thematische Rele-
vanz für die Taxonomie vermutet werden kann. Wir betrachten auch praktische
Implementierungsaspekte des Systems wie Systemarchitektur, Strategien der
Link-Priorisierung beim Crawl, Performance-Optimierung sowie Entwurf der
effizienten Datenstrukturen.

Eine wichtige Facette der thematischen Fokussierung ist die Qualität der
Trainingsdaten des Crawlers. In früheren Arbeiten über Klassifikation wurde
die Qualität der Trainingsdaten als unabänderliche Gegebenheit betrachtet, auf
die das fokussierte System keinen Einfluss haben konnte. Wir beschreiben die
einfache und effektive Methode der automatischen Erweiterung der Trainings-
basis des fokussierten Crawlers. Die Schlüsselrolle in unserem Ansatz spielt die
Kombination aus Dokumentklassifikation und Link-basierter Autoritätsanalyse
der Crawl-Resultate. Die neuen Trainingsbeispiele können dynamisch während
des Crawls aus den heruntergeladenen und positiv klassifizierten Dokumenten
ausgewählt werden. Der Fokus des Crawlers wird angepasst durch Trainieren
eines neuen Klassifikators auf ergänzten Trainingsdaten. Die vorgeschlagene

Methode hilft, das Problem der unvollständigen Trainingsdaten zu entschärfen.
Ausserdem kann der intellektuelle Aufwand für die Vorbereitung des fokussierten
Crawls in vielen Fällen drastisch reduziert werden.

Ein wichtiger Aspekt beim Aufbau von thematisch fokussierten Informa-
tionsportalen ist die Aufbereitung der Crawl-Ergebnisse. Zu den typischen
Postprocessing-Aufgaben gehören die automatiche Anpassung der Themenstruk-
tur (z.B. Vorschlagen von zusätzlichen Themen, um eine feinere Granularität
der Taxonomie zu erreichen) und restriktive Filterung der Dokumentsammlung.
Im Kontext dieses Problems betrachten wir restriktive Methoden und Meta-
methoden für Clustering und Klassifikation. Unser Ziel ist die höhere Qualität
der Ergebnisse, die u.a. durch Verzicht auf einige “unklare” Dokumente erreicht
werden kann, d.h. durch Weglassen von solchen Dokumenten statt deren Zuord-
nung zu einem Cluster oder einer Klasse. Zusätzlich betrachten wir das Problem
der kollaborativen Aufbereitung der Crawl-Resultate durch mehrere Benutzer
im Rahmen eines verteilten Systems, z.B. eines Peer-to-Peer (P2P) Netzwerks.
Unsere Lösung basiert auf verteilten Metamethoden, die durch das Kombinieren
von mehreren unabhängigen Modellen einzelner Benutzer erzeugt werden.

Die Tatsache, dass der fokussierte Crawl nützliche themenspezifische Infor-
mationen (wie die vorhandene Themenstruktur oder Klassifikationsgüte einzel-
ner Web-Dokumente) liefern kann, begründet unser Interesse an erweiterten
Ranking-Methoden für Portalinhalte. Wir betrachten Aspekte der Personali-
sierung der Suche durch Aggregation des User-Feedbacks. Unser Ziel ist das
automatische Erlernen von optimalen Ranking-Optionen aus beobachteten In-
teraktionen der Benutzer mit dem Portal. Die resultierenden Suchprofile können
für anwendungstypische Gruppen von Anfragen oder für einzelne Themen der
Taxonomie verwendet werden. Ausserdem betrachten wir erweiterte Algorithmen
der Link-basierten Autoritätsanalyse von Web-Inhalten. Der Link-Graph, der
die Verbindungen zwischen Webseiten modelliert, wird dabei modifiziert. Un-
sere Methode verwendet eine Gewichtung von Kanten im Link-Graph propor-
tional zur Klassifikationsgüte der verbundenen Seiten sowie das Einfügen von
zusätzlichen virtuellen Links zwischen besonders charakteristischen Dokumenten
des Themas.

Contents

1 Introduction 1
1.1 A Brief History . 1
1.2 Motivation . 3

1.2.1 Shortcomings of Existing Systems 3
1.2.2 Challenges . 5
1.2.3 Contributions . 5
1.2.4 Organization of the Thesis 6

2 Focused Crawling 9
2.1 The Hypertext Graph Model . 9

2.1.1 The Web as a Graph . 10
2.1.2 Properties of the Web Graph 13

2.2 Technical Basics . 14
2.2.1 Information Retrieval . 14
2.2.2 Link-Based Ranking . 25
2.2.3 Crawling . 29

2.3 The BINGO! Focused Crawler 34
2.3.1 Brief Overview . 34
2.3.2 The BINGO! Taxonomy 35
2.3.3 Crawler . 43
2.3.4 Link Analysis . 51
2.3.5 Database Repository . 51
2.3.6 Language Recognition 53
2.3.7 Result Postprocessing . 54
2.3.8 Making BINGO! Efficient 55

2.4 Implementation . 59
2.4.1 Crawler . 60
2.4.2 Crawl Frontier . 62
2.4.3 Document Handler . 62
2.4.4 Document Parser . 63
2.4.5 Database Interface . 63
2.4.6 Link Analysis . 64

i

Contents

2.4.7 Feature Selection . 64

2.4.8 Utilities . 64

2.4.9 Base . 65

2.4.10 Configuration . 67

2.4.11 The WebAPI Module . 68

2.4.12 The BINGO! Search Engine 69

2.4.13 The BINGO! Reviser . 71

2.4.14 Application Scenario for the BINGO! Framework 74

2.5 Experimental Evaluation . 77

2.5.1 Experimental Design . 77

2.5.2 Testbed . 78

2.5.3 Topic Exploration . 78

2.5.4 Portal Generation . 82

2.5.5 Expert Web Search . 92

2.6 Related Work . 96

3 Data Organization 109
3.1 Refinements of the Taxonomy Structure (Clustering) 111

3.1.1 Clustering Algorithms 112

3.1.2 Restrictive Clustering . 114

3.1.3 Restrictive Meta Clustering 115

3.1.4 Meta Functions . 117

3.1.5 Probabilistic Background of Meta Clustering 118

3.1.6 Implementation . 119

3.2 Document Filtering (Classification) 121

3.2.1 Restrictive Classification 121

3.2.2 Implementation . 122

3.3 Collaborative Data Management 124

3.3.1 System Architecture . 125

3.3.2 Properties of the Semantic Layer 126

3.3.3 Application to Taxonomy Refinements (Clustering) . . . 126

3.3.4 Application to Document Filtering (Classification) 127

3.4 Experimental Evaluation . 133

3.4.1 Experimental Design . 133

3.4.2 Restrictive Methods and Meta Methods for Taxonomy Re-
finement (Clustering) . 133

3.4.3 Restrictive Methods for Taxonomy Filtering (Classification)135

3.4.4 Collaborative Document Filtering (Classification) 137

3.4.5 Collaborative Taxonomy Refinement (Clustering) 138

3.5 Related Work . 140

ii

Contents

4 Personalized Search and Result Ranking 145
4.1 Search Personalization . 145

4.1.1 The Feedback Model . 146
4.1.2 Feedback Aggregation 148
4.1.3 Result Ranking using Aggregated Profiles 149
4.1.4 Experimental Evaluation 150

4.2 Advanced Link Analysis . 158
4.2.1 Advanced Link Analysis with Extended PageRank 160
4.2.2 Experimental Evaluation 160

4.3 Related Work . 166
4.3.1 Search Personalization 166
4.3.2 Advanced Link Analysis 166

5 Conclusion and Future Work 169
5.1 Conclusion . 169
5.2 Future Work . 170

Bibliography 172

Appendices 195
Appendix A: HIP Taxonomy Structure 196
Appendix B: Database Schema of the BINGO! Repository 199

iii

1 Introduction

The World Wide Web is one of the largest and most widely known repositories
of information available to people. Today, the Web comprises billions of docu-
ments authored by millions of people and distributed over millions of computers.
The Internet standards enable interoperability between Web applications inde-
pendently of the hardware architectures and network protocols. The number of
Internet hosts serving Web documents is rapidly increasing.

The rapid evolution of Web information services in recent years is often
claimed as the “revolution” that globally changed the living conditions of peo-
ple. The social effects of new information services are comparable with inven-
tion of the steam engine, first railways or airplanes. Nowadays, the Web is the
world-wide broadcasting capability, a mechanism for information dissemination,
and a medium for collaboration and interaction between individuals and their
computers beyond limitations of geographic location.

1.1 A Brief History

Web search engines. The oldest Internet search service was proposed in 1990
by the McGill School of Computer Science in Montreal. The search engine
Archie [5, 192] provided automated routines to collect directory listings from
multiple anonymous FTP servers in the Internet and to build a central index
for directories and files. However, the search was restricted to the file names and
provided very limited relationships to the actual content of the search result.

In 1991, the University of Minnesota proposed a new distributed document
search and retrieval network protocol for the Internet coined Gopher [15, 192].
The Gopher protocol provided structured representation of available information
on the server, including automatically generated overviews of files and folders
together with human-made annotations. In addition, the Gopher index pages
contained references (links) to other Gopher servers. The Gopher search engine
Veronica [192] offered a keyword-based search in the Gopher information space.
The search returned a list of pointers to Gopher documents.

With the growing role of World Wide Web and HTML in the Internet, hyper-
text search systems displaced Gopher and Archie. The first public Web search
engines (Lycos, WebCrawler, and AltaVista) [20, 30, 3] were launched in the
middle of the 1990’s. These systems supported simple keyword-based search to

1

1 Introduction

find Web documents that should contain (or not contain) specified keywords.
They used large-scale crawlers to fetch millions of Web pages into a local repos-
itory on a central server and to build an index based on extracted keywords.
The search engines mostly used the vector space model and viewed text doc-
uments (including HTML or XML files) as vectors of term relevance scores.
These terms, also known as features, represented word occurrence frequencies
in documents after stemming and other normalizations. Keyword-based queries
were considered as vectors too, so that similarity metrics between vectors, for
example, the Euclidean distance or the cosine metric, was used for ordering of
search results with the most relevant documents listed first. A few years later,
HotBot and Inktomi [109] proposed a “server farm” architecture for fetching and
processing Web contents. The search engine Excite [12] introduced query ex-
pansion using similarity relationships for queries with no exact matches. Later,
further innovations (advanced document previews, search for similar documents,
query refinements) were introduced for improving the result quality.

The basic shortcoming of first-generation search engines was the exponentially
growing size and diversity of the Web. Nowadays, for almost any combination
of search keywords there are hundreds of qualifying pages. Since Web queries
tend to be short and often do not contain any highly selective keywords, they
may find millions of documents.

Another solution was proposed by second-generation Web search engines by
analyzing the link structure between documents, viewing the Web as a graph,
and defining the authority of Web sites or documents as an additional metric for
result ranking. In 1996, the algorithm coined HITS [132] was proposed by Jon
Kleinberg. It assigned two scores (authority and hub score) to each node in the
hypertext graph. The scores were estimated using a system of linear equations
using the circular definition between authority and hub weights. Around the
same time, the first search system with authority-based ranking Backrub [61]
was developed by L. Page and S. Brin. It used Markov chain based algorithm
called PageRank [61] to estimate the importance of particular Web pages. Due
to the big success of the new technology, the Backrub prototype went 1997 the
commercial large-scale search engine Google [14].

Several studies contradicted the widely held notion that search engines are
more or less alike and that searching one engine is the same as searching them
all. It was observed that result pages returned by leading single engines (e.g.
Google or HotBot) for the same query substantially differ from one another [191].
This fact has motivated the development of numerous meta search engines.
Services like DogPile [11] or MetaCrawler [21] forward the query to several
popular engines simultaneously and bring together the highest ranked results
from multiple sources in one place. Since meta search engines typically do not
maintain own data repositories, they are unable to improve the result quality
beyond the limitations of asked search engines. In addition, the internal ranking

2

1.2 Motivation

schema of the asked search engine and the ingredients of ranking (e.g. link-based
authority scores) are typically unknown to the meta searcher; the adequate
merging of result lists is the important weak point of almost all meta services.

Modern Web information services. Nowadays, there are hundreds of - mainly
commercial - thematically specialized Web portals that serve comprehensive
information on products like books (e.g. Amazon [4]), scientific publications
(CiteSeer, DBLP, ACM Digital Library [6, 9, 1]), news (e.g. CNN [8]), or
patent information (e.g. the U.S. Patent office [26]). They maintain extensive
databases that are systematically built and maintained by experts and serve
context-specific advanced search options for registered customers.

The significant feature to gain visibility of best Web sources related to some
specific theme are topic directories, also known as taxonomies. The paradigm
of browsing a directory of topics arranged in a tree (where children represent
specifications of the parent topic) was pioneered by the Yahoo directory in early
1995. Some portals (e.g. yahoo.com [32]) employ a team of editors to maintain
the taxonomy; others (e.g. the Open Directory project dmoz.org [10]) are main-
tained by the community of volunteers. A large fraction of thematically focused
Web portals incorporates appropriate topic structures as well (e.g. the “genre
browser” of the movie database IMDB [17] provided by Amazon).

Search engines like Vivisimo [28] or Clusty [7] aim to overcome the limi-
tations of the “flat” list of ranked results. They dynamically apply machine
learning methods (e.g. clustering) for partitioning the result set into themati-
cally different sub-collections. This method shows good results for ambiguous
search keywords (e.g. “Java”, “Jaguar”) and for queries with a broad scope
(e.g. “Computer Science”).

1.2 Motivation

1.2.1 Shortcomings of Existing Systems

In many cases, thematical portals and Yahoo-style Web directories provide the
best search results. However, they continuously require substantial intellectual
work for classifying new documents into the directory and do not scale with the
Web. Furthermore, the search within such directories is usually restricted to one
data pool (e.g. the database of one publisher or academic society) and is not
representative for the Web. For example, the search within scientific publication
databases like CiteSeer or DBLP would return for the most relevant publications
from conference proceedings, journals, and books, but not “grey” sources like
project reports, papers submitted for publication, or recent conference talks
(these documents can often be found on authors’ home pages).

3

1 Introduction

Fully automated Web search engines such as Google or AltaVista are very
successful in improving the precision (i.e. “sorting out the junk” in more collo-
quial terms) for typical mass queries such as “Madonna tour” (i.e., information
about the concert tour of pop star Madonna). However, link analysis techniques
do not help much for expert queries where recall is the key problem (i.e. finding
a few useful results at all). For example, finding the text of Hanns Eisler’s song
“Solidarity” by asking “solidarity Eisler” turns out to be a needle-in-a-haystack
search problem (it becomes a bit easier if you knew that the text is by Bertolt
Brecht, but the point is that you typically do not have such complete a priori
information when you are searching the Web). One can easily think of many
more advanced examples such as: searching for infrequent allergies, people who
share an exotic hobby, descriptions of specific hikes off the beaten path, special
mathematical theorems, specific data on gene expression or metabolic pathways
in bioinformatics, and so on. In the most cases, they yield, however, search re-
sults from which the user could possibly reach the actually desired information
by following a small number of hyperlinks; here the problem is that exhaustive
surfing the vicinity of a Web document may take hours and is thus infeasible in
practice.

Furthermore, the high costs of maintaining the large-scale search engine or
portal lead to a concentration of information services in the hands of few suc-
cessful providers. Consequently, the few available large-scale search engines are
becoming the gatekeeper of information on the Web: the view particular users
have of the world is, to a large extent, controlled by such systems. Consequently,
the centralized search engine can easily become a politically or commercially in-
fluenced information filter.

The result organization of Vivisimo-style search engines provides the themat-
ically structured view on obtained results. By selecting one of the shown result
subsets, the user can implicitely provide some feedback about his intentions.
This helps to adjust the scope of the search in a very intuitive and natural
manner. However, the insufficient scalability of underlying Machine Learning
methods becomes the crucial bottleneck in Web-scale application scenarios.

The stated observations have motivated a novel approach known as focused or
personalized crawling [68], which can be viewed as an attempt to automate all
kinds of intellectual preprocessing and postprocessing of Web information. In
contrast to a search engine’s generic crawler (which serves to build and maintain
the engine’s index), a focused crawler is interested only in a specific, typically
small, set of topics such as 19th century Russian literature, desert hiking and
canyoning, or programming with (the Web server scripting language) PHP. The
topics of interest may be organized into a user- or community-specific hierarchy.
The crawl is started from a given set of seed documents, typically taken from
an intellectually built taxonomy, and aims to proceed along the most promising
paths that stay “on topic” while also accepting some detours along digressing

4

1.2 Motivation

subjects with a certain “tunneling” probability. Each of the visited documents
is classified into the crawler’s hierarchy of topics to test whether it is of interest
at all and where it belongs in the user-specific taxonomy; this step must be
automated using classification techniques from Machine Learning such as Naive
Bayes, Maximum Entropy, Support Vector Machines (SVM), or other supervised
learning methods. The outcome of the focused crawl can be viewed as the index
of a thematically specialized search engine.

1.2.2 Challenges

As human expert time is scarce and expensive, building the classifier on exten-
sive, high-quality training data is a luxury. Therefore, the key challenge is to
minimize the time that a human needs for setting up the crawl (e.g. provide
training data, calibrate crawl parameters, etc.). For example, we would expect
the human to spend a few minutes for carefully specifying her information de-
mand and setting up an overnight crawl, and another few minutes for looking
at the results the next morning.

This mode of operation is in significant contrast to today’s Web search engines
which rely solely on precomputed results in their index structures and strictly
limit the computer resource consumption per query in the interest of maximizing
the throughput of “mass user” queries. With human cycles being much more
expensive than computer and network cycles, the above kind of paradigm shift
seems to be overdue for advanced information demands (e.g., of scientists).

Furthermore, the thematically focused Web portal should assist the human
expert with certain information demands. To this end it should be designed as
a comprehensive and flexible workbench and include a local search engine for
querying the result documents of a crawl and various data analysis techniques for
postprocessing (e.g. document filtering, automated refinements and adjustments
of the topic structure).

1.2.3 Contributions

This thesis presents a new approach to the problem of building thematically
focused Web information services. It positions itself at the intersection of Web
Mining, Machine Learning, and Information Retrieval. It addresses the following
three key aspects of Web search in the context of an integrated retrieval system:

Focused crawling. This part addresses the design and implementation of the
focused crawler. The focus lies on adaptive, self-learning methods for Web ex-
ploration. To reduce the preparation expense of the training collection, the
engine can select additional training samples in a restrictive manner from pre-

5

1 Introduction

viously downloaded documents. This way, the focusing of the crawler can be
dynamically improved through semi-automated retraining.

Crawl postprocessing. Our objective is the construction of robust and pre-
cise classification and clustering methods for intelligent organization of retrieved
data (e.g. automated refinements and adjustments of the topic hierarchy). Fur-
thermore, multiple Machine Learning methods (e.g. different clustering or clas-
sification algorithms) can be combined in a restrictive meta model. The high
robustness and precision are achieved by controllable loss of “uncertain” docu-
ments. Analogous ensemble methods can be constructed for application scenar-
ios with multiple cooperating users that share similar topics of interest.

Querying and ranking the results. The local search engine for querying the
crawl results should return relevant matches in a way that maximizes the chances
of the first few responses satisfying the user’s expectations. The appropriate
ranking scheme should take several aspects of personalization into account (e.g.
implicit or explicit user feedback on prior queries, topic-specific classification
confidence values, and link-based authority scores).

Besides the contribution to the application problem of thematically focused
Web retrieval and search, this work introduces some widely applicable Web
techniques. Although our main focus lies on documents with textual content,
it can be adopted for other Web media types (images, video, music) as well.
The methodology of automated generation of thematically focused portals taken
here can be easily adapted to another application scenarios, such as “needle-in-a-
haystack” expert Web search, topic exploration, or generation of Web ontologies.

1.2.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce the
basics of focused crawling, such as hyperlink models of the Web graph, clas-
sification of Web documents, and dynamic adjustment of the crawler’s focus.
This chapter also describes the adaptive focused crawler BINGO! and explains
its architecture and main components. Finally, we outline realistic application
domains for BINGO! and discuss results and learned lessons from various eval-
uation scenarios and use-case studies.

Chapter 3 addresses the aspects of the crawl postprocessing, including au-
tomatic refinements of the taxonomy structure, restrictive filtering of crawl re-
sults, and collaborative management of crawl repositories by multiple users in
the context of an decentralized overlay network. The viability of introduced

6

1.2 Motivation

methods is illustrated by the results of systematical evaluations with reference
data collections.

In Chapter 4, we discuss advanced retrieval methods for the thematically fo-
cused Web search engine built on top of the crawl outcome. The discussed
aspects include adaptive profile management for search personalization and
context-dependent computation of link-based authority scores. Experimental
results of evaluations in use-case studies and with reference collections of Web
data conclude this chapter.

The conclusion summarizes the results of this thesis and provides an outlook
on open issues.

7

2 Focused Crawling

This chapter addresses the methodology of focused crawling for automatic gener-
ation of thematically focused Web portals. In Section 2.1, we give the motivation
for focused Web retrieval using arguments from modern random graph theory
and recent studies of the Web structure. Section 2.2 addresses technical basics
of the focused crawler. In Sections 2.3 and 2.4, we present the architecture of the
focused crawler and describe technical basics of its main components. Following
the argumentation from Section 1.2.1, we also discuss conceptual improvements
to the basic retrieval schema of the focused crawler. Section 2.5 addresses the
methodology of experiments for crawler evaluations and shows experimental re-
sults for realistic application scenarios. Finally, Section 2.6 discusses related
work.

2.1 The Hypertext Graph Model

The pages and hypertext references of the Web may be viewed as nodes and
edges in a directed graph G = {V,E} that contains more than 10 billion vertices
(Web pages) [95], with a directed edge for each link between two sites. The
understanding this topology, aided by modelling efforts, is crucial in developing
search algorithms for Web retrieval applications [120]. Recent measurements
and experiments demonstrate that the Web graph structure is far from being
random and significantly deviates from the topology predicted by the classical
random graph model of Erdős and Rényi [96]. Three properties of the Web
graph have generated considerable attention.

1. The clustering coefficient C(G). This measure of graph connectivity can
be defined as follows: We consider a vertex v ∈ V that is connected
by outgoing edges to kv other vertices (neighbors) in G. The subgraph
Gv ⊂ G that consists of v and its neighbors can contain at most kv∗(kv−1)
directed edges. Let Cv denote the fraction of these allowable edges that
actually exist in E. Then C(G) is the average over all v ∈ V .

Measurements indicate that the Web graph displays a high degree of clus-
tering [40]. The clusters of the Web denote communities with shared
interests, groups of friends, and co-workers [102] that are tightly inter-
connected. Furthermore, such thematically coupled clusters are usually

9

2 Focused Crawling

combined into each other, forming a hierarchical network of thematically
related modules [170].

2. The characteristic path length d(G). In the context of Web graph, the
distance between two nodes dist(v1, v2) with v1, v2 ∈ V is usually defined
as the number of edges ei ∈ E along the shortest path connecting v1 and
v2. Then, the characteristic path length d(G) is defined as the average
distance computed over all pairs v1, v2 ∈ V . The short characteristic path
length of the Web was observed in several recent studies [63].

3. The degree distribution of G. Since the edges of the World Wide Web
are directed, the network is characterized by two degree distributions:
the distribution of outgoing edges signifies the probability P (kout) that a
document has kout outgoing hyperlinks (i.e. has outdegree kout), and the
distribution of incoming edges, Pin(k), is the probability that kin hyper-
links point to a certain document (i.e. the document has indegree kin)). It
was observed that these two probabilities follow the power law P (k) = k−α

with constant degree exponents αin and αout [39, 63, 135].

Inspired by these observations, advanced random graph models have recently
been analyzed in the context of Web modelling.

2.1.1 The Web as a Graph

The small-world concept describes the fact that despite their large size, the
most social networks have a relatively short characteristic path length. The
most popular manifestation of small-worlds is the “six degrees of separation”
concept that concludes that there was a path of acquaintances with a typical
length of about 6 between most pairs of randomly chosen people in the United
States [133]. The recent observation that pairs of Web pages are separated by
only a small number of links, and the suggestion that this number will grow
logarithmically with the size of the Web [44, 63], have motivated the view on
the Web graph as a small-world phenomenon.

Watts and Strogatz proposed in [203] a one-parameter model that interpolates
between two base graph structures: an ordered lattice and a random graph.
Figure 2.1 shows the one-dimensional lattice in which each node is connected
to four nearest neighbors, and the random graph obtained for same nodes by
rewiring edges.

The algorithm behind the model is the following:

1. Start with a ring lattice with N nodes in which every node is connected
to its first K neighbors, K/2 on either side. In order to have a sparse but
connected network at all times, consider N � K � ln(N) � 1

10

2.1 The Hypertext Graph Model

2. Randomly rewire each edge of the lattice with probability p such that self-
connections and duplicate edges are excluded. This process introduces
pNK/2 long-range edges which connect nodes that otherwise would be
part of different neighborhoods. By varying p one can influence the tran-
sition between order and randomness.

Figure 2.1: Base Graph Structures of the Watts-Strogatz Model: Regular Lat-
tice and the Random Graph

This model reflects the key observation that most people are friends with their
immediate neighbors (on the same street, colleagues, etc.). However, everybody
has a few friends who are a long way away (e.g. people in other cities), that are
represented by the long-range edges obtained by rewiring.

It was shown that the characteristic path length of small-world networks d(G)
obeys the general scaling form [43]:

d(G) =
N1/q

K
f(pKN) (2.1)

with parameters p,K and N introduced above. The additional parameter q
is the dimension of the original lattice to which the random edges are added,
and f(x) is a universal scaling function:

f(x) =

{
const, x � 1
ln(x)

x
, x � 1

(2.2)

In fact, the average path length in a small-world model is entirely determined
by the single scalar variable x = pKN . The variable x is two times the average
number of random links (shortcuts) on the graph for a given p, and f(x) is the
average of the fraction by which the distance between two nodes is reduced for
a given x.

In addition to a short average path length, small-world networks have a rela-
tively high clustering coefficient C(G) that can be approximated by [43]:

C(G) =
3K(K − 1)

2K(K − 1) + 8pK2 + 4p2K2
(2.3)

11

2 Focused Crawling

The small-world behavior of the Web was confirmed by practical evaluations
in [40]. In general, it was observed that related documents tend to link to one
another while containing shortcut links to documents with different content.
This leads to a modular topology, quantified by the high clustering coefficient.
However, the modularity of the Web does not mean the coexistence of relatively
independent groups of resources. Observations on real-world data from [170]
show that Web topics combine to form larger, but less cohesive groups, which
combine again to form even larger and even less interconnected clusters. The
self-similar nesting of different groups or topics into each other forces the existing
fine structure of the real Web.

The major shortcoming of the introduced small-worlds model is the static
structure of the graph. The assumption that we start with a fixed number N
of vertices that are then randomly connected or rewired, without modifying N ,
does not hold for the real Web that grows exponentially in time by the ad-
dition of new Web pages. Furthermore, the small-worlds model assumes that
the probability that two nodes are connected (or their connection is rewired)
is independent of the content or degree of the page, i.e., new edges are placed
randomly. However, the real Web clearly exhibits preferential attachment, such
that the likelihood of connecting to a node depends on its properties. For exam-
ple, a Web page would more likely include references to popular or thematically
related sources. This observation inspired the Barabasi-Albert model [42] that
makes an attempt to capture the dynamic behavior of the real Web. The basic
algorithm of this model for undirected graphs (i.e. considering all ei ∈ E as
bi-directional) is the following:

1. Growth: Starting with a small number m0 of nodes, at every time step,
a new node with m < m0 edges that links to m different already existing
nodes is added.

2. Preferential attachment: When choosing the nodes to which the new node
connects, the model assumes that the probability P (vi) that a new node
will be connected to existing node vi ∈ V depends on the degree ki of vi,
such that

P (vi) =
ki∑
j kj

(2.4)

In the recent literature, this basic model was adapted for directed scale-free
graphs with different in- and out-degrees [58] and extended in a variety of ways
(adding various aging, fitness, and accelerating factors to the basic growth model
[134, 90, 136]). Numerical simulations indicated that such networks typically
evolve into a scale-invariant state with the probability that a node has k edges
following a power law with an model-specific exponent between two and three
that is is independent of m, the only parameter in the model.

12

2.1 The Hypertext Graph Model

The predicted power law behavior of degree distributions on the Web have
been confirmed by a number of measurements. Systematic evaluations in [63]
on large-scale Web crawls show remarkable agreement with theoretical results.
In these experiments, the datasets were built from systematic crawls performed
at AltaVista in 1999. The datasets contained between 203 and 271 million re-
trieved pages along with up to 2130 extracted links. In the case of in-degree, the
exponent of the power law was consistently around 2.1, a number predicted by
[42]. Out-degree distributions also exhibited a power law, although the observed
exponent of 2.72 deviates from model prediction. In particular, the initial seg-
ment of the out-degree distribution does not fit well, suggesting that pages with
low out-degree may follow a different distribution.

The general shortcoming of existing models with preferential attachment lies
in the construction of preference functions. Ideally, it should simultaneously
take both degrees of citation and content-based attractiveness factors into ac-
count. However, the extreme heterogenity of real Web sources makes it diffi-
cult to generalize any realistic assumptions about such connection preferences.
Nevertheless, existing models and measurements reflect some important gen-
eral properties of the Web infrastructure that are important in the context of
thematically focused search and retrieval.

2.1.2 Properties of the Web Graph

A particularly important quantity in a search process is the shortest path be-
tween two documents, d, defined as the smallest number of URL links that
must be followed to navigate from one document to the other. Despite the large
number of nodes, the Web displays the small-world property [43]. This was
first reported in [45], where the observed average path length for a sample of
325.000 nodes was only 11. Subsequent measurements in [63] found that the
average path length between nodes in a 50-million node sample of the Web is 16.
Moreover, for documents that belong to the same cluster in the Web topology,
the characteristic path length is even smaller and lies between 4 and 7 [40]. The
domain-level network analysis in [40] displays an average path length between
domains of 3.

The relatively small value of d indicates that an “intelligent” crawler that can
interpret the links and follow only the “promising” ones (in other words, staying
“on topic”), could start from few relevant pages that belong to the desired topic
and collect expected results quickly, without exhaustively combing through the
entire Web.

The further important aspect to the future potential of the focused Web
retrieval is the logarithmic dependence of d on N : the expected 1,000% increase
in the size of the Web would change d from 19 to only 21 [45].

13

2 Focused Crawling

2.2 Technical Basics

The understanding of the Web topology, aided by modelling efforts, has moti-
vated new search algorithms and strategies for search and retrieval. After a brief
overview of the technology for thematically focused crawling, we will discuss its
key aspects in more detail.

2.2.1 Information Retrieval

Relevance estimation. The suitable method for estimation of the “relevance
grade” that the given Web document belongs to the desired topic(s) of interest
is the classification of fetched documents using methods from Machine Learning.
The problem can be formally stated as follows. In the first step, the user needs
to specify his topics of interest C by a collection of sample documents from the
Web D(C). For example, the initial “seed” for the classifier can be constructed
from user’s browser bookmarks. In this case, the folders of the bookmark file
can be interpreted as topics c ∈ C in an hierarchical personalized taxonomy.
The referenced sample pages can be fetched and preprocessed by the system in
order to build a mathematical decision model M . Given a new fetched page q,
a measure of relevance R(q) with regard to the model M is computed. It can be
directly used to control the crawl frontier for prioritizing unvisited links in the
work pool. In each step, the system can inspect the set V of previously visited
documents and then choose to fetch an unvisited link from the crawl frontier
that was extracted from the document q with highest relevance R(q).

Document representation. The representation of documents d ∈ D has a
crucial influence on how well the model M can generalize. Web documents with
textual content are stored in application-oriented formats (e.g. HTML, PDF,
PostScript) that are not directly suitable for learning algorithms. Thus, they
need to be transformed into the representation that is appropriate for the deci-
sion model and for the learning task. In particular, word-based representations
have been found very effective in Information Retrieval and text classification
[177]. The substantial advantage of words as representative units is their sim-
plicity. Decomposition of textual documents into words (parsing) can be applied
straightforward during the crawl with less computational effort. Ignoring log-
ical structure and formatting, using words as features, the parser transforms
the document into a sequence of words. In addition, it is usually assumed that
the order of words in the document is of minor importance. In the resulting
bag-of-words, only the frequency of the word occurrences needs to be taken into
account.

Under the assumption that different word forms (based on the same stem)
are equivalent with respect to the classification task, the bag-of-words can be

14

2.2 Technical Basics

represented in a more compact manner. Using linguistic rule-based stemming
algorithms that exist for multiple languages (e.g. the Porter algorithm [166]
for English), all word forms in the document can be projected onto the same
stem that is then considered as a new feature. Another way of grouping words
into sets is the use of thesauri (e.g. WordNet [100, 31]) that describe semantic
relationships between words. In general, the thesaurus makes it possible to
group words with related meanings (e.g. synonyms) into equivalence classes.
However, the generation of the thematically specialized thesaurus for the user’s
of topic of interest is clearly connected with substantial human effort. On the
other hand, the use of general thesauri like WordNet is also not risk-free. The
problem of context-specific disambiguation of word meanings (e.g. different
interpretations of the word “java” in the context of geography and programming
languages) may lead to wrong interpretations of the document content.

The bag-of-words can be easily transformed into the suitable form for Ma-
chine Learning algorithms. They usually require that each document d ∈ D is
described by a vector of fixed dimensionality. Commonly, each word (stem) w
is treated as one document attribute. The document-specific value of w with
respect to d and D can be obtained using various term weighting schemes. In
general, such a scheme consists of three basic components: the document com-
ponent, the collection component, and the normalization factor [126]:

• The document component captures information about the feature w in
a particular document d ∈ D. The basic measure for this component is
the frequency of occurrences of w in d. This implies the assumption that
words occurring more often in the document are potentially more relevant
than infrequent ones.

• The collection component is used to assign lower weights to words that
occur in almost any document and will not help discriminate between
topics. The basic measure is the number of documents that contain the
word w at least once, compared with the total size of current collection
D.

• The normalization component is used to adjust weights along different
documents to make them comparable on the same scale (e.g short HTML
pages and large PDF publications).

The popular term weighting schemes from Information Retrieval like RTF ,
TF · IDF [177] or Robertson-Sparck Jones weights w(1) [174] are widely used
also for text categorization tasks:

RTF (w, d) = tf(w, d)/|d| (2.5)

15

2 Focused Crawling

TF · IDF (w, d) = tf(w, d) ∗ log(idf(w,D)) (2.6)

w(1)(w, d) = log
(df ∗(w) + 0.5)(|D∗| − df ∗ + 0.5)

(df(w) − df ∗(w) + 0.5)(|D| − df(w) − |D∗| + df ∗(w) + 0.5)
(2.7)

where

• tf(w, d) is the number of times the word w occurs in the document d,

• |d| is the document length in arbitrary units (words),

• |D| is the number of documents in the collection,

• |D∗| is the number of relevant documents (e.g. previously classified into
the desired topic),

• df(w) is the number of documents in D that contain the word w at least
once,

• df∗(w) is the number of documents in D∗ that contain the word w at least
once,

• idf(w,D) = |D|/df(w).

The bag-of-words is the most popular text representation model in recent
Information Retrieval. It is clear that this transformation leads to the certain
loss of information about the document. In many cases, a variety of more
sophisticated representations can be applied to construct richer feature spaces.
In the Web environment, the document’s neighborhood, i.e., its predecessors and
successors in the hyperlink graph, can be considered as an additional source of
information that characterizes the document:

• Link annotations: The short texts in hyperlink tags that point to the cur-
rent document (anchor text) may provide concise descriptions of the target
document [59, 110]. Usually, the standalone analysis of anchor texts is not
sufficient for focusing the crawler [45]. However, these annotations may
be used to adjust weights of particular words in the actual document. In
practice, it is very crucial to use an extended form of stopword elimination
on anchor texts (to remove standard phrases such as “click here”).

16

2.2 Technical Basics

• Neighbor’s content: It is also possible to construct feature vectors that
contain both the current document’s terms and the most significant terms
of its neighbor documents. This approach is somewhat risky as it may
as well dillute the feature space (as reported in [70]); so it is crucial to
combine it with conservative feature filtering algorithms.

• Link semantics: This solution can be considered as a compromise between
two above methods. Its key idea is to interpret the description of the
target document by hyperlinks with respect to the context in that these
references occur [198]. The context is defined as a (relatively small) part of
the referencing page around the location of the anchor tag. The “anchor
window” restricts the scope of the referencing page to the part that is
potentially related to the referred document.

The important shortcoming of annotation-based document representations
lies in the structure of the real Web. As discussed in Section 2.1, the in-degrees of
Web pages (and thus the numbers of utilizable annotations) follow the power law
distribution. This implies that representative annotations can be constructed
only for a small part of Web pages. To ensure better stability, various feature
options can be used simultaneously by constructing combined feature spaces or
by creating multiple alternative classifiers. For example, document representa-
tion can be constructed using term frequencies and anchor terms of document
predecessors as complementary vector components.

There is a comprehensive work about alternative representations for text doc-
uments [156]. Advanced methods that analyze selected linguistic structures
(such as N-grams and phrases [138, 194], part-of-speech tags [160], or other
manually chosen linguistic features [190, 195, 204]) are often combined with the
baseline bag-of-words model. However, the improvements resulting from such
combinations are often far from conclusive [126]. Without loss of generality, we
will restrict our discussion here to the bag-of-words model. The methods dis-
cussed in next sections can be easily adapted for other document representations
(and their combinations) as well.

Feature Selection. It is clear that not all features from the bag-of-words are
of equivalent eligibility for the classification task. The feature selection algo-
rithms provide the classifier with the most characteristic features for a given
topic T ; these are also the features that are used by the classifier for testing
new documents. The feature selection techniques help to increase a classifiers
computation speed, and to reduce the overfitting effects.

The simplest methods for identifying irrelevant features that applies to Web
documents is the stopword elimination. It is based on the assumption that words
like “the” or “is” are irrelevant independent of current topics of interest. Such

17

2 Focused Crawling

words are removed from the attribute set based on language-specific blacklists,
e.g. the FreeWais stopword list [13].

While stopword elimination removes typically high-frequency words (df(w) �
|D|), the document frequency thresholding (df thresholding) [206] can be applied
to remove particularly infrequent words. This kind of filtering is based on the
assumption that extremely infrequent words (df(w) � 1) are not influental to
the classification task due to their rare occurrences. Consequently, all words w
that occur in less than m documents of the corpus (df(w) < m) with problem-
specific threshold m can be ignored and not considered as features.

A good feature for classification should discriminate competing topics from
each other, i.e., those topics that are at the same level of the taxonomy tree.
Therefore, feature selection has ideally to be topic-specific. As an example, we
may consider a directory with topics T ∈ { mathematics, agriculture, and arts
}, where mathematics has subclasses algebra and stochastics. Obviously, the
term theorem is very characteristic for math documents and thus an excellent
discriminator between mathematics, agriculture, and arts. However, it is of no
use at all to discriminate algebra versus stochastics. A term such as field, on the
other hand, is a good indicator for the topic algebra when the only competing
topic is stochastics ; however, it is expected to be of less use for a classifier
that tests mathematics versus agriculture. Obviously, stopword elimination and
frequency thresholding cannot capture such dependencies. They are typically
used in combination with more flexible (and computationally more expensive)
selection algorithms known from information theory that select relevant features
with respect to the class labels in the document collection.

Information gain [153] is a popular feature selection method, frequently em-
ployed as a term goodness criterion in the field of Machine Learning. It is
known as one of the most effective methods [206]. Information Gain measures
the number of bits of information obtained for category prediction by knowing
the presence or absence of a term in a document. Let D∗

j , j = 1..m denote the
set of categories in the target space (e.g. D∗

1 = arts, D∗
2 = agriculture). The

information gain of the feature w is defined to be

G(f) = −
m∑

i=1

P (D∗
i) · logP (D∗

i)

+ P (w)
m∑

i=1

P (D∗
i |w) · logP (D∗

i |w) (2.8)

+ P (¬w)
m∑

i=1

P (D∗
i |¬w) · logP (D∗

i |¬w)

(2.9)

18

2.2 Technical Basics

where P (D∗
i) is the probability that the randomly chosen document of the col-

lection belongs to D∗
i , P (w) denotes the probability that the randomly chosen

document contains the feature w, and P (D∗
i |w) denotes the conditional proba-

bility that the randomly chosen document containing the feature w belongs to
the category D∗

i . In practice, the values of P (D∗
i) can be estimated by |D∗

i |/|D|.
The value of P (w) can be estimated as df ∗(w)/|D|. The conditional probabil-
ities P (D∗

i |f) and P (D∗
i |¬f) can be estimated as fractions of documents that

contain / not contain w and belong to the category D∗
i .

Another widely used selection criterion is the Mutual Information (MI), a spe-
cialized case of the notions of cross-entropy or Kullback-Leibler divergence [145].
The MI weight of the term wi in the topic D∗

j is defined as:

MI(w,D∗
j) = P [w ∧ D∗

j] log
P [w ∧ D∗

j]

P [w]P [D∗
j]

(2.10)

In practice, MI(w,D∗
j) is usually approximated by

MI(w,D∗
j) ≈ log

A · N
(A + C) · (A + B)

(2.11)

where

• A is the number of documents in D∗
j that contain w

• B is the number of documents in D∗ − D∗
j that contain w

• C is the number of documents in D∗
j that do not contain w and

• N is the size of collection |D∗|

Mutual information MI(w,D∗
j) can be interpreted as measure of how much

the joint distribution of w and D∗
j deviate from a hypothetical distribution in

which features and topics are independent of each other (hence the remark about
MI being a special case of the Kullback-Leibler divergence which measures the
differences between multivariate probability distributions in general).

Given a training corpus, Information Gain, Mutual Information, or further
similar characteristics (like the χ2 statistics [93, 181] that captures the inde-
pendence between w and D∗

j) must be computed for each feature w to obtain
a ranked list of feature candidates. For each feature, it costs a constant opera-
tions given a certain number of categories. The computations of both Mutual
Information and Information Gain have a time complexity of O(n)+O(mk) for
n documents, m terms and k competitive topics. For better efficiency, these
methods can be combined with stopword elimination and document frequency
thresholding for raw “pre-filtering” of candidate sets.

19

2 Focused Crawling

The result of feature selection for a given topic T is a ranking of the features,
with the most discriminative features listed first. The document vectors d ∈
D(C) are constructed using the subset F T of best features (using the fixed
number of best features for each topic, e.g. top-1000, or some application-
specific selection thresholds) and passed to the classification algorithm that
builds the appropriate decision model M for classifying new fetched documents.

Several comparative studies have shown that feature selection results in a
moderate increase of effectiveness and accuracy of text categorization [142, 105,
155]. However, the entropy-based feature selection methods have a common
drawback, which is that they do not consider the relationships among the se-
lected features. Natural language is known to have a high level of redundancy
[126]. This means that many words have a similar distribution and document
vectors are redundant with respect to the learning task. Discussed entropy-based
selection methods are based on a features individual predictive power, regard-
less of mutual relationships and correlations across them. Selected features have
the highest scores individually, which are always representative for a part of the
categories, but not for all. When the selected features tend to bias towards
major categories, such selection methods have been shown not very effective.
Advanced methods like conditional Mutual Information MaxiMin proposed in
[200] try to overcome this limitation by capturing correlations between feature
occurrences. In this case, F T is constructed in an iterative manner, adding
next best features one by one. On each step, the new candidate wk is required
to maximize the conditional Mutual Information MI(wk, D

∗|w1..wk−1) with re-
spect to previously selected features. This procedure is repeated in a loop until
the desired dimensionality of F T is reached.

Classification. The goal of the topic-specific decision model MT introduced
before is to recognize whether the new fetched document d belongs to T or
not. Furthermore, the decision model should provide a suitable measure of
relevance R(d) for the guidance of direction for further crawling. The choice of
the appropriate learning model for this purpose depends of the key properties
of our Web data.

The bag-of-words model for HTML and textual documents involves high-di-
mensional feature spaces. If each word occuring in the documents is threated
as feature, classification problems with few hundreds of training samples can
lead to several thousands of dimensions. This property is specific for all text
classification tasks. Independent of the type of text, there is a stable connection
between the size of the document and the number of distinct words that occur
in it. The Heaps law [115] states that the number of distinct words v is related
to the total number of words in the document s by

20

2.2 Technical Basics

v = ksβ (2.12)

with sufficiently large s and collection-specific tuning factors k = 10..100 [51]
and β = 0.4..0.6 [50]. For typical values k = 20 and β = 0.5, the predicted
feature set for a collection of 1000 short documents having an average length of
50 words would contain over 600 features.

On the other hand, the occurrence frequencies of particular words in natural-
language text behave in a very unbalanced way. The simple approximation
modelling the distribution of term frequencies is Zipf’s law [209]. It states that
the k-th most frequent word occurs approximately 1/r times the term frequency
of most frequent words. This implies that there is a small number of words that
occur very frequently, while most words occur very infrequently. This basic
observation from late 1940s was generalized in [49] in experimental studies using
Mandelbrot distributions [144] as a generalized form of Zipf’s law

TF (w) =
c

(k + r)α
(2.13)

with collection-specific additional coefficients c, k, and α provided for better
fit [152].

While each topic T typically serves a reach vocabulary, each particular doc-
ument contains only a small number of distinct words from this terminology.
Extremely sparse high-dimensional document vectors usually lead to linear sep-
arability between vectors of documents that belong to different topics. This
means that there exist a hyperplane such that all positive examples of the topic
are on one side of the hyperplane, while all examples of competitive topic(s), or
negative examples, are on the other. Our systematic experiments on reference
datasets and real-world collections of Web documents resulting from focused
crawl (explained later in Section 2.5 in more detail) have shown that the almost
topics in these categorization tasks are linearly separable with a large margin.
These two quantities have motivated the use of discriminative statistical learning
methods for categorization of Web crawling results.

The typical representatives of this class of classification algorithms are linear
Support Vector Machines (SVM) [197, 64] that have been experimentally shown
to be efficient and very precise for text classification tasks (see, e.g., [125, 92, 77]).
According to the arguments discussed before, the linear form of SVM aims to
find the hyperplane in the m-dimensional feature vector space that separates a
set of positive training examples (document collection Di

+ of the topic Ti) from
a set of negative examples (document collection Di

− of all competing topics Tj

with the same parent as Ti) with maximum margin. The hyperplane can be
formally stated as �w�x + b = 0. The problem of finding an optimal separating
hyperplane consists of determining parameters �w ∈ Rm and b ∈ R such that

21

2 Focused Crawling

the Euclidean distance δ of the closest vectors among the training data to the
hyperplane is maximal, that is:

Ci
1

‖�w‖ (�w�xi + b) ≥ δ (2.14)

for all i where �xi ∈ Rm is the i-th training document and Ci ∈ {−1, 1} denotes
whether �xi belongs to the topic (Ci = 1) or not (Ci = −1). Numerically, the
problem 2.14 is difficult to handle. It has been shown that this optimization
problem is equivalent to the following quadratic optimization problem that is
often solved in practice [197]:

minW (�α) = −
n∑

i=1

αi +
1

2

n∑
i=1

n∑
j=1

yiyjαiαj(�xi · �xj) (2.15)

subject to:

n∑
i=1

yiαi = 0

∀i ∈ 1..n : 0 ≤ αi (2.16)

The result of solving 2.15 with respect to 2.16 is a vector �α for which W (�α)
is minimized. These coefficients can be used to construct the solution for 2.14:

�w · �x =
n∑

i=1

αi(�xi · �x) (2.17)

and

b = ysv − �w · �xsv (2.18)

The principles of training a linear SVM classifier are illustrated in Figure 2.2,
for two-dimensional feature vectors (dimensions x1 and x2) that belong to the
hypothetic class T1 = circles or its complementary class T2 = squares. The
equations 2.17 and 2.18 show that the optimal hyperplane is constructed as a
linear combination of the training examples (more precisely, this is a linear com-
bination of support vectors, since only support vectors have non-zero coefficients
αi).

The empirical time complexity of solving this optimization problem is between
O(n2) and O(n3) for n documents [64]. Thus, it is somewhat more expensive
than, for example, training a Naive Bayes classifier [153], but still reasonably
efficient (e.g., in the order of a few minutes for 1000 training documents with 500
most discriminative features). In the decision phase, the SVM classifier is very

22

2.2 Technical Basics

efficient. For a new, previously unseen, document �d ∈ Rm in the m-dimensional
feature space, it merely needs to test whether the document lies on the “positive”
side or the “negative” side of the separating hyperplane. The decision simply
requires computing an m-dimensional scalar product of two vectors.

The special form of soft-margin SVM method can also cope with outliers
where a few of the training vectors lie on the wrong side of the hyperplane (e.g.,
belong to the “circles” class but are on the right side of the hyperplane shown in
Figure 2.2); it then aims to maximize a weighted sum of the separation margin
δ and the accumulated distance of the outliers from the hyperplane.

Figure 2.2: The Separating Hyperplane of the Linear SVM Classifier

In the context of focused crawling, the user may provide multiple topics of
interest. In this case, the classification task involves more than two classes.
Unlike another classification algorithms (e.g. decision tree learners), SVM in its
discussed form cannot handle multi-class problems directly. However, the multi-
class solution for k topics Tk can be constructed from several binary tasks. In the
simple one-against-the-rest strategy, a binary learning problem is constructed
for each class Ti, i = 1..k (in the binary learning problem i the class label is set
to +1 for documents from Ti, and to −1 for documents from all other topics
y = Ti). The output of SVM classifiers of each topic Ti

SV M(�d, Ti) = �wi�x + bi, i = 1..k (2.19)

can be interpreted as an estimate of P (y = i|�d) [67]. To classify a new

document �d, the output of all classifiers SV M(�d, Ti) is compared. The doc-
ument is classified into that class Tresult for which the corresponding value
of SV M(�d, Tresult) is largest. When all classifiers return negative values (i.e.

∀i : SV M(�d, Ti) < 0), the document �d is rejected. Another similar solutions
(e.g. pair-wise classification [47]) can be constructed analogously.

23

2 Focused Crawling

For hierarchically organized topics of interest (e.g. topic trees discussed be-

fore), the estimation of P (y = i|�d) must be justified. Under the assumption
that a document cannot belong to more than one path, the confidence values
for particular topics can be estimated by [92]

P (y = i|�d) =
∑

k∈predecessors(i)

P (y = k|�d) (2.20)

The greedy search strategy for optimal class labels would be to classify new
documents against all topics Ti of the tree in a top-down manner. Starting with
the root, which corresponds to the union of the user’s topics of interest, we feed
the document’s features into each of the topic-specific decision models (including
topic-specific feature selection) and invoke the binary classifiers for all topics
with the same parent. We assign the document to the topic with the highest
confidence P (y = i|�d) in a positive decision. Then the classification proceeds
with the children of this topic, until eventually a leaf node is reached. If none
of the children topics with the same parent T returns the positive decision, the
document is assigned to T and the classification is finished. For small thematical
hierarchies (that are typical for focused crawling), the optimal path with respect
to (2.20) can be also found directly by applying all available topic classifiers to
�d.

An important point about the SVM classifier is that it automatically returns
a confidence measure P (y = i|�x) (2.19) in its decision. The distance of the
tested document from the separating hyperplane is a direct measure of how
“clearly” the document belongs to the tested topic. For the prioritization of
links on the crawl frontier, the absolute values of the confidence measure are
not relevant, the only aspect that matters is the ordinal ranking of different
documents’ confidence in their membership to a given node of the taxonomy
tree.

Note that training documents have a confidence score associated with them,
too, by simply running them through the classifier’s decision model after com-
pleted training. To make confidence values returned by particular nodes of the
taxonomy comparable, the classifier of each node Tj can normalize the confi-
dence value (2.19) by the average distance of its training documents:

svmScore(Tj) =
1

|D+
j | + |D−

j |
avgd∗∈D+

j ∪D−
j
SV M(d∗) (2.21)

For the (new) document d, the normalized confidence value conf(d, Tj) re-
turned by the topic-specific classifier of Tj is defined as

conf(d, Tj) =
SV M(d)

svmScore(Tj)
(2.22)

24

2.2 Technical Basics

2.2.2 Link-Based Ranking

The presence of the hierarchical architecture on the Web [170] emphasizes the
role of the hubs in the network connectivity. Hubs, the highly connected nodes
at the tail of the power law degree distribution, are known to play a key role in
keeping the Web together. Evaluations discussed in Section 2.1.2 indicate that
the clustering coefficient characterizing the hubs decreases linearly with the
degree. This implies that while the small Web pages are part of highly cohesive,
densely interlinked clusters, the hubs are not, as their neighbors have a small
chance of linking to each other. Therefore, the hubs play the important role
of bridging the many small communities of Web pages into a single, integrated
Web community.

In practice, hubs often contain little descriptive text and may pertain simul-
taneously to multiple topics. To this end, they are not threated well by classi-
fication algorithms like SVM. To overcome this limitation, the focused crawler
should make use of ranking algorithms for Web pages based on links.

The HITS model

The algorithm HITS (hyperlink induced topic search) was proposed by Kleinberg
in [132]. Initially, the goal of this method was to remedy the abundance problem
inherent to broad queries on hypertext data. Initially, the query was used to
construct the relevant subgraph from the Web. From this subgraph, two kinds
of nodes were identified: authoritative pages to which many other pages link,
and hub pages that contain many links to good pages of the subject.

Initially, the query q was sent to the Web search engine to obtain (in Klein-
berg’s terminology) the “root set” Rq of potentially relevant pages using stan-
dard text retrieval methods. Next, nodes u that neighbor any r ∈ R (both via
inbound or outbound links) were added to construct the expanded set of can-
didates Vq. The query-specific graph Gq = (Vq, Eq) stated the set of potential
candidates for analysis.

The quality of each page in Vq was characterized by two scores: the authority
score a and the hub score h. The dependency between authority and the hub
scores for each page in Gq were defined recursively: the authority a of the node
depends on the hub scores of its referers {hk}, and vice versa. By representing
of authority scores a for all documents in Gq as a vector �a and hub scores h for

all documents in Gq as a vector �h, we obtain the following mutually recursive
definitions:

�a = ET�h
�h = E�a (2.23)

25

2 Focused Crawling

The intuition behind these relationships is that a good hub is a page that
points to many good authorities and a good authority is a page that is pointed
to by many good hubs. It can be shown that �a and �h are principal eigenvectors of
ET E and EET derived from the adjacency matrix of the graph G, respectively
[132]. The mutual re-inforcement relationship between hub scores and authority
scores can be resolved directly using well-known methods from linear algebra,
or approximated in an iterative manner. In the latter case, authority and hub
scores for all nodes from G are initialized with uniform values and the power
iterations using (2.23) are sequentially applied several times.

In practice, runs with several thousand nodes converge after 20 to 30 power
iterations, in the sense that ranking lists of best hubs and authorities stabilize
[132]. Since we are not really interested in computing the authority and hub
scores of all nodes in G but merely want to identify a small number of best
authorities and hubs, the notion of convergence in this somewhat loose manner
is usually appropriate.

Given a topic Tj od the user-specific taxonomy, the mean authority score of
its training documents can be defined as

authScore(Tj) =
1

|D+
j | + |D−

j |
avgd∗∈D+

j ∪D−
j
authScore(d∗) (2.24)

The average authority score of training documents can be used as one of
the selection thresholds for additional training samples to re-train the adaptive
focused crawler.

The PageRank model

Another widely used algorithm for link-based computation of prestige scores,
PageRank, was introduced by Brin and Page [61]. The basic idea of PageRank
is the modelling of the “random surfer” behavior. The random surfer visits the
page, extracts all embedded links, picks one link uniformly and random, and
jumps to the referenced page. The surfer starts from a randomly chosen node
(with probability p0(u) to start from a randomly chosen Web node u, where∑

u p0(u) = 1) and begins the visiting of further pages by following randomly
chosen links. The collection of possible jumps on the Web can be summarized
by the Web adjacency matrix E, where E[u, v] = 1 when the Web document u
contains the link to the document v, and E[u, v] = 0 otherwise.

The visiting probability of the node v in the random surfing can be estimated
as follows. To reach the page v, the random surfer must have been on some
node u that points to v (i.e. E[u, v] = 1) and then selected the link from u to
v for the next jump. Given E, the outdegree of the node u is Nu =

∑
v E[u, v].

Assuming duplicate edges disallowed, the probability to get from u to v is

26

2.2 Technical Basics

p1(v) =
∑

(u,v)∈E

p0(u)

Nu

(2.25)

By L1-normalizing all row-sums of E, we obtain the matrix of probabilistic
transitions for the random surfing:

L[u, v] =
E[u, v]

Nu

(2.26)

In the vector form, the transitions from ith Web node to the (i + 1)th Web
node in the random movement can be expressed as

�pi+1 = LT · pi (2.27)

Assuming that E contains no “dead nodes” with zero outdegrees, the Markov
chain that corresponds to L has following properties:

• It is irreducible (i.e. there is a directed path from every node to every
other node).

• It is aperiodic (i.e. for all u, v there are paths with all possible number of
hops betwen them, with except of a finite number of missing path lengths).

Under these conditions, the Markov chain of L is ergodic and the sequence
�p1, �p2, �p3, ... converges to the principal Eigenvector of LT , i.e. for the converged
probability vector holds

�p = LT �p (2.28)

For the node u, p[u] is the stationary probability to be visited by the random
surfer at any given time moment (in other words, p[u] can be interpreted as the
rate at that the random surfer visits u). The stationary distribution does not
depend of the choice of initial �p0. In the PageRank model, p[u] is interpreted as
a measure for the prestige of u.

The real Web graph is not guaranteed to be aperiodic and strongly connected.
To ensure the satisfying of convergence conditions for (2.27), the model uses low-
probability transitions between nodes that are not explicitely connected by the
link:

• With probability δ, the surfer jumps to a random page on the Web (δ is
the tuning parameter of PageRank, typically δ = 0, 1..0, 2)

• With probability 1− δ, the surfer randomly chooses one of the links of the
current node.

27

2 Focused Crawling

The equation (2.28) can be changed to

�p = (1 − δ)LT �p +
δ

N
�1 (2.29)

For a large segment E of the Web graph (e.g. the outcome of large-scale
crawl), the direct solution of the Eigen system is usually not feasible. A common
approach is to use power iterations [67]. Usually, the computation is initialized
with a uniform vector �p with all components set to 1/N . The multiplication
using (2.29) is repeated multiple times in a loop. The sparse nature of E and
L allows the very compact and efficient implementation of iterative approach.
Since we are primarily interested in the ordering of Web pages according to
their prestige values, numeric convergence of the solution is of less importance.
The iterative approximation can be often cancelled after a few power iterations,
when the particular order of prestige scores becomes stable.

The known PageRank problem that arises in connection with crawlers is the
substantial fraction of pages with zero outdegree. On the one hand, some doc-
ument types (e.g. PDF) usually do not contain HTML references at all; on the
other hand, the natural performance limitations of the crawler lead to the certain
loss of connectivity information (crawled documents point to other Web pages
that are not yet fetched by the crawler). To avoid this problem, the pages with
zero outdegree can be transitively removed from the PageRank graph model.
However, this approach is not feasible for the focused crawler that tends to
produce “chains” of thematically relevant documents fetched one by one. The
transitive removal of the last page leads to the loss of the entire chain. In
our preliminary experiments, we observed that transitive removal of dead ends
typically leads to the loss of the significant fraction (50-80%) of crawl results.
Another solution is to increase for “dead ends” the value of δ to one. Pages with
zero indegree do not serve any problems in PageRank computation; as they can
be only accessed via random jump from other nodes, it is trivial to verify that
all zero indegree nodes would have equal prestige values that are lesser than
prestige values of other nodes with positive indegree. Due to the nature of the
crawler, only training documents and starting points of the crawl can have zero
indegree.

Given a topic Tj od the user-specific taxonomy, the mean PageRank score of
its training documents can be defined as

pageRank(Tj) =
1

|D+
j | + |D−

j |
avgd∗∈D+

j ∪D−
j
p[d∗] (2.30)

Analogously to (2.24), the average PageRank score of training documents in
the topic is one of the selection criterions for dynamic focus adjustment that
will be described in the next section.

28

2.2 Technical Basics

2.2.3 Crawling

Web pages are usually written in a markup language called HTML (Hypertext
Markup Language) [16]. This international ISO standard is maintained mainly
by the World Wide Web Consortium (W3C) [29]. The main focus of HTML
is on the presentation of information rather than the semantics of the page
content: it lets the author specify layout and typeface of the document, embed
tables, images and objects that can be handled by external programs or special
browser components (e.g. Flash animations, Java applets, etc.). For interaction
with server-side applications, the HTML page may also contain forms for user
inputs and selections (e.g. action buttons, text input fields, or lists of selectable
options). For flexible and dynamic HTML-based applications, the Web pages
may embed small programs written in special script languages (JavaScript [19],
VBScript [27]) that allow dynamic page updates, verification of user inputs, and
other useful functions for interactive application scenarios. Furthermore, it is
possible to create references (links) to other Web documents using the so-called
anchor tag provided by HTML. The reference itself is expressed as specially
formatted string, called uniform resource locator (URL) [34]. In its simplest
form, the URL contains the protocol field, the hostname of the server, and the
file path to the target resource. The Web page may contain links to a wide
range of Internet resources: other Web pages, files in various formats (e.g. PDF
documents or MPEG videos), etc.

Web clients (browsers) and servers communicate by exchanging specifically
formatted messages using the standard internet communication protocol TCP/IP
[192]. The format of these messages is prescribed by the HTTP (HyperText
Transfer Protocol) standard [35, 36]. Every message has the header with sys-
tem informations (e.g server response code, the content size in bytes, the date
of last document modification, etc.) and the body that contains the actual
data to be transferred (requested HTML document, or user inputs that must
be returned back to the server). Given a valid URL string, the Web browser
fetches the specified page using HTTP and displays the rendered HTML content
to the user. By clicking the computer mouse on text or images highlighted as
hyperlinks, the user can jump to the referenced page. The associated URL is
translated transparently by the browser into a network request, and the new
page is fetched. The basic principle of crawlers is to progressively collect Web
pages by following hypertext references (links) from already fetched documents
without human intervention.

In contrast to Web crawlers of large-scale Web search engines, the focused
crawler aims to retrieve only a small fraction of the entire Web that corresponds
to the user-specific topics of interest. For this reason, the suitable focused
crawler should prioritize links from Web pages that:

1. are highly relevant to the desired topic(s) of interest, and

29

2 Focused Crawling

2. are expected to contain multiple links to other relevant Web sources

To satisfy these requirements, the crawler must combine content-based meth-
ods for relevance estimation and link-based methods for identifying promising
directions in the hyperlinked environment.

Relevance estimation for focused crawling. The precision of the classifica-
tion step is clearly crucial for the overall quality and usefulness of the focused
crawler. It depends on three key aspects:

1. the mathematical model and algorithm that are used for the classifier (e.g.,
Naive Bayes vs. SVM),

2. the feature set upon which the classifier makes its decision (e.g., all terms
vs. the most frequent terms vs. a careful selection of the “most discrimi-
native” terms), and, last but not least,

3. the quality of the training data that is initially classified by a human
expert and from which the classifier derives parameters (in the sense of
statistical estimation) for its mathematical decision model.

Effective learning algorithms for highly heterogeneous environments like the
Web would require a large training basis, yet human users would rarely be will-
ing to invest hours of intellectual work for putting together a rich document
collection that is truly representative of their interest profiles. For typical ap-
plication scenarios discussed before (the human expert spends a few minutes
for carefully specifying information demands, or uses his collection of browser
bookmarks for this purpose), the training dataset can be expected to be small
and incomplete.

The semi-supervised extension of the training data aims to overcome this
limitation. Its purpose is to identify new good training samples that promise
to extend the classifiers’s knowledge about the learning task. Here good means
characteristic in the sense that the features of the new training data capture
the topic-specific terminology and concepts and are discriminative with regard
to competing topics (i.e., sibling topics in the taxonomy tree).

Ideally, one should consider asking the human user about suggestions for char-
acteristic documents. For instance, the user could periodically inspect interme-
diate crawl results and select additional training samples “by hand”. However,
for scalability and versatility of the focused Web search, this procedure should
be also possible without human intervention. Thus, the goal is to identify the
most characteristic “archetypes’ among the documents that have been posi-
tively classified into a given topic. Two sources of potential archetypes can be
used to identify training documents of very high relevance:

30

2.2 Technical Basics

1. The link analysis provides good authorities for the given topic. The re-
sult of the analysis is a ranked list of documents in descending order of
authority scores authScore(d); the top Nauth of these documents can be
considered as set of potential archetypes Aauth.

2. The linear SVM classifier yields a measure of its confidence about a pos-
itive classification, namely, the distance of the document’s feature vector
from the separating hyperplane svmScore(d). This way, topic documents
can be sorted in descending order of confidence. The Nconf best-rated
documents from this ranking list can be considered as set of potential
archetypes Aconf .

In general, Aauth and Aconf cannot be directly accepted for re-training with-
out further filtering. On the one hand, the high authority score may indicate
that selected documents are popular in the context of some theme, topic, or
Web community that is not necessarily identical with current topic of interest.
The acceptance of such documents may lead to the “topic drift” phenomenon,
where new out-of-focus training data might guide the entire crawl into a wrong
thematic direction. On the other hand, the high classification confidence can
result in the overfitting of the classifier instead of extending its knowledge about
the topic. This side effect can be caused by multiple similar training documents
with thematically redundant contents.

To avoid these side effects, both selection criterions should be taken into ac-
count simultaneously. Intuitively, Aconf ∩Aauth should contain the best results.
However, this restrictive subset is in the most cases empty. The selection re-
quirements can be relaxed in the following way:

• Considering the candidate set Aauth, we may require that the classifica-
tion confidence of an archetype a ∈ Aauth must be higher than the mean
confidence (2.21) of the initial training documents.

• Analogously, for archetypes a ∈ Aconf we may require that the authority
score of a ∈ Aconf must be higher than the mean authority score (2.24) of
the initial training documents.

The retraining step effectively adds (0 ≤ x ≤ Nauth + Nconf) new archetypes,
and it may also remove documents from the training data as the mean confidence
of the training data changes. Once the up to Nauth +Nconf archetypes of a topic
have been selected, the classifier can be re-trained using them plus the original
bookmarks as training data. This step in turn requires invoking the feature
selection first. So the effect of re-training is twofold:

1. the archetypes capture the terminology of the topic better than the original
training data. The feature selection procedure can extract better, more
discriminative, features for driving the classifier,

31

2 Focused Crawling

2. the accuracy of the classifier is improved using richer (e.g, longer but con-
cise) and more characteristic training documents for building its decision
model.

In the case of an SVM classifier, the first point means transforming all docu-
ments into a “clearer” feature space, and the second point can be interpreted as
constructing a “sharper” (i.e., less blurred) separating hyperplane in the feature
space (with more slack on either side of the hyperplane to the accepted or re-
jected documents). After re-training, the crawl can be continued using the new
decision model. Documents that have already been classified can optionally be
reconsidered.

To determine the optimal point for re-training, we may consider performance
indicators that reflect the health of the focused crawler. The most important is
the “harvest rate” [67] that captures the thematical relevance of fetched pages
at any given time. The harvest rate can be defined as the average relevance of
documents fetched by the crawler per time unit (e.g. one minute). The “true”
relevance of fetched pages can be evaluated only with human input. However,
it can also be approximated by the classification confidence (2.22) that guides
the focused crawler:

harvestRate =
1

|Dunit|
∑

dj∈Dunit
conf(dj)

(2.31)

where conf(d) is the normalized classification confidence (2.22) and Dunit is
the collection of Web documents fetched by the crawler within one time unit
(e.g. 1 minute). As long as the classifier’s errors are not correlated with the
structure of the Web graph, evaluating a focused crawler using the classifier is
appropriate.

The drop of the harvest rate may be caused by several reasons:

• The crawler still observes thematically relevant documents, but - due to
the lack of initial training data - does not correctly interpret topic-specific
features they contain.

• Some classification results are inaccurate. Prioritizing of irrelevant links
on the crawl frontier may force the jump into thematically irrelevant Web
localities that contain no useful information.

• The crawler has completely explored the current subtopic but cannot rec-
ognize the hub page to jump to other localities of the same topic.

The re-training can be initiated when the crawler’s harvest rate falls under
the specified threshold. The threshold can be expressed e.g. using the average

32

2.2 Technical Basics

of classifier’s confidence values for training documents. Since the involved au-
thority ranking algorithm also provides the crawler with a ranked list of hubs,
it is natural to combine focus adjustment and re-ordering of the crawl frontier
into one re-organization step. So long as the crawler learns new aspects of the
topic, the re-organization can be repeated in an iterative manner.

Estimation of promising crawl directions. The natural way to estimate the
collection of good “starting points” for the crawler is the periodical applying
of link-based authority estimation methods like HITS. As discussed before, the
HITS algorithm provides the crawler with a ranked list of hubs, from which
the top Nhub candidates can be prioritized for the crawl frontier; these will
be placed on top of the crawler queue. As a side effect, we obtain a set of
best Nauth authorities, which are potentially Web pages with significant and/or
comprehensive information on the user’s topics of interest.

In the context of focused crawl, the collection of documents that have been
retrieved by the crawler and positively classified into the topic under considera-
tion can be naturally interpreted as Rq (Section 2.2.2). We add all successors of
these documents (i.e., documents that can be reached along one direct outgoing
edge) and a reasonably sized subset of predecessors (i.e., documents that have
a direct hyperlink to a document in the base set). The predecessors can be de-
termined by querying a large unfocused Web database that internally maintains
a large fraction of the full Web graph. Unlike the set of successors, the set of
predecessors of the base set can be extremely large (namely, when the base set
already contains an excellent authority or hub that many personal home pages
link to); so the number of added documents can be artificially limited by random
selection. Finally the edge set E for the entire set S of nodes is constructed by
fetching all documents and analyzing their hyperlinks.

33

2 Focused Crawling

2.3 The BINGO! Focused Crawler

This section refines the introduced concept of adaptive focused crawling. As the
next step towards the real-life application framework for building of thematically
focused Web portals, we will discuss the aspects of system architecture and the
organization of its main components.

The main focus of this section lies on the properties and features of our pro-
totype system coined BINGO! (as the taxonomy of the focused crawler can be
easily derived from user’s personal collection of browser bookmarks, the name
BINGO! was chosen as an acronym for “Bookmark-Induced Gathering of Infor-
mation”). After a brief overview of the BINGO! architecture (Section 2.3.1) and
its taxonomy (Section 2.3.2), we discuss the organization and functionality of its
components, such as focused crawler itself (Section 2.3.3), the link analysis mod-
ule (Section 2.3.4), or the database repository (Section 2.3.5). Sections 2.3.6 and
2.3.7 address advanced implementational issues, such as language recognition
for crawled pages, and concepts of crawl postprocessing. Section 2.3.8 discusses
our lessons learned with BINGO! in realistic viability studies and address the
aspects of effectiveness and computational efficiency.

2.3.1 Brief Overview

The BINGO! toolkit consists of four main components that are depicted in
Figure 2.3: the focused crawler itself, the SVM classifier along with its training
data and periodic re-training routines, the link analysis module as a distiller for
topic-specific authorities and hubs, and the storage manager with its repository
for crawled data backed by the database instance which serves as a cache for
the taxonomy of user-specific topics.

The system input is the personalized or community-specific topic directory
that contains samples of thematically relevant Web resources. For instance, this
taxonomy can be derived from user’s personal collection of browser bookmarks.
Figure 2.4 shows a sample bookmark file with topics that were previously intro-
duced in Section 2.2.1. It was generated in the FireFox Web browser with the
Mozilla kernel. Figure 2.5 shows the corresponding taxonomy that BINGO!
derives from this input. The taxonomy contains three subtopics “Mathemat-
ics”, “Agriculture” and “Arts” of the main topic “Science”, where the topic
“Mathematics” has two sub-themes of interest, “Algebra” and “Stochastics”.
Alternatively, the taxonomy can be derived from the collection of folders (direc-
tories) in the local file system. In this case, the folder names are interpreted as
topic labels, and contained files as topic-specific training documents.

In general, the user’s intellectual input specified by the taxonomy serves two
purposes:

34

2.3 The BINGO! Focused Crawler

Figure 2.3: General Overview of the Focused Crawler

1. it provides the initial seeds for the crawl (i.e., documents whose outgoing
hyperlinks are traversed by the crawler)

2. it provides the initial contents for the user’s topic tree and the initial
training data for the classifier.

Note that the run using a single-node topic tree (with a single topic and no
subclass structure) can be considered as a special case for focused Web crawl
for answering a specific expert query. In this case the training data is a virtual
document derived from the user query, and this training basis can be extended
by prompting the user for relevance feedback after a short initial crawl in a
semi-supervised manner.

2.3.2 The BINGO! Taxonomy

The taxonomy of user-specific topics of interests is represented in BINGO! by
the set of tree nodes. Each node T consists of the following elements (Figure
2.5):

• The collections of positive training samples (D+(T)) and negative training
samples (D−(T)) that were extracted from the user’s bookmark file.

35

2 Focused Crawling

Figure 2.4: The Sample Bookmark File

• The set of most discriminative topic-specific features obtained by the fea-
ture selection algorithm that are used to build the SVM decision model
and to classify new documents;

• The linear SVM classifier that was built using topic-specific training doc-
uments using the feature space resulting from the set of selected features;

• References to the children topics (BingoTreeNode objects “algebra” and
“stochastics”, in our case).

The topic-specific training documents are automatically retrieved by the crawler
when the user initiates the import of a new bookmark file or folders of the lo-
cal file system. Fetched documents are internally represented by BINGO! in a
BingoDocument data structure (Figure 2.6) that includes

• the URL of the target document and its priority in the URL queue on the
crawl frontier;

36

2.3 The BINGO! Focused Crawler

Figure 2.5: Nodes of the BINGO! Taxonomy

• the document status (training document, crawled document, HTTP redi-
rect, duplicate of an previously seen document, etc.);

• the information fields extracted from the HTTP response of its Web server;

• the raw body of the document and the data extracted from this body by
the content-specific document analyzer (links, word stems, etc.);

• the topic associated with this document along with classification confi-
dence grade;

• the document title and preview generated by the analyzer.

Negative training samples. The documents from special bookmark folders or
directories named “OTHERS” are interpreted as additional negative samples
of the taxonomy. These topics can be used to specify thematically related
documents that do not belong to the user’s focus of interest. For example,
the folder “Mathematics” in Figure 2.4 may contain negative training samples
from areas “Calculus”, “Discrete Optimization”, “Geometry”, etc. As shown
in Figure 2.5, in the BINGO! model such documents are added to the node
“Mathematics” as negative training samples.

For topics without proper siblings (e.g. the root node “Science”, or for a
single-topic crawl), the virtual folder “OTHERS” can be populated with some
arbitrarily chosen documents that are “semantically far away” from all topics
of the directory. In our preliminary experiments, this approach worked, but
in some situations it was not sufficient to cope with the extreme diversity of

37

2 Focused Crawling

public class BingoDocument

{
URL url; // The absolute URL of the document

double priority; // The priority of the document in the URL queue

String responseMessage; // HTTP header: server response message

int responseCode; // HTTP header: server response code

long expiration; // HTTP header: value of the Expiration field

long lastModified = 0; // HTTP header: value of the Lastmod field

String contentEncoding; // HTTP header: value of the ContentEncoding field

String contentType; // HTTP header: value of the ContentType field

int contentLength; // HTTP header: value of the ContentLength field

long id; // internal ID of the document

int contentSize; // document size in bytes

byte[] content; // document body as byte array

Link[] links; // links extracted from the document

Term[] features; // terms extracted from the document

char status; // document status (training, classified, etc.)

int depth; // crawling depth

BingoTreeNode topic; // topic assigned by classification

double svmScore; // classification confidence

private String title; // The document title

private String preview; // The document preview

}

Figure 2.6: The BingoDocument Data Structure

real Web data. In some sense, saying what the crawl should not return is as
important as specifying what kind of information we are interested in.

As a consequence of this observation, the BINGO! framework was extended
by the ability to populate the sets of negative training samples automatically
in a much more systematic manner. As the positive training documents for the
various topics all contain sample common-sense vocabulary and not just the
specific terms that we are interested in, negative training sets should capture as
much of the common-sense terminology as possible. In most of our experiments
we used top-level categories of the Yahoo [32] and dmoz [10] portals for this pur-
pose. Analogous sampling solution for constructing of negative training sets for
classification of Web data was proposed in [67] (alternatively, these documents
can be initially considered as a collection of unlabeled samples; techniques like
mapping-convergence [208] can be used to construct the extended training set).

The number of negative training samples and the choice of their categories
are tuning parameters of the BINGO! framework. In the experiments discussed
later in Section 2.5, we used 100-300 documents from various topics like ’sports”,
“entertainment”, etc. from Yahoo [32] and dmoz [10] portals as elements of the
’OTHERS” collection of the taxonomy root (in our example, the root node “Sci-
ence”). This choice of negative examples turned out to be a proper complement

38

2.3 The BINGO! Focused Crawler

to improve the classifier’s learning.

Construction of training sets. Both feature selection algorithms and the clas-
sifier need positive and negative training examples for identifying the most dis-
criminative features and for computing the topic-specific decision model. For
each taxonomy node with except of the taxonomy root, BINGO! constructs two
sets: positive training documents (DPOS(T)), and negative training documents
(DNEG(T)):

• DPOS(T): all documents from the positive document collection of T and
all documents from positive collections of its children nodes:

DPOS(T) = D+(T) ∪s∈children(T) D+(s) (2.32)

• DNEG(T): all documents from positive document collections of node’s
siblings (i.e. nodes that share the same predecessor with the current node);
all documents from the sets of their children; negative training samples
from the document set of the predecessor node:

DNEG(T) = D−(parent(T)) ∪s∈siblings(T) D+(s) (2.33)

As an example, we may consider the node “Mathematics” from Figure 2.3.2.
The node has two children, “Algebra” and “Stochastics”. The node “Mathe-
matics” and its siblings “Arts” and “Agriculture” share the predecessor “Sci-
ence”. The node “Mathematics” would construct its set DPOS(Mathematics)
as a union of D+(Mathematics) with all documents from D+(Algebra) and
D+(Stochastics). Its set DNEG(Mathematics) would consist of D+(Arts),
D+(Agriculture), and D−(Science).

Construction of feature spaces. The feature selection algorithm provides the
BINGO! engine with the most characteristic ntop features for each topic. As ex-
plained in Section 2.2.1, BINGO! uses the conditional Mutual Information (MI)
measure for topic-specific feature selection. To estimate the required probabili-
ties P [D], P [wi], and P [wi ∧ D] for all features wi in the current topic T with
respect to the tree structure of the taxonomy, the selection algorithm uses the
sets DPOS(T) (2.32) and DNEG(T) (2.33). Our experiments achieved good re-
sults with the ntop ∈ 1000..5000 features for each topic. To avoid the selection of
extremely rare words (e.g. that occur in only one document of the training col-
lection) as topic-specific features, BINGO! pre-selects feature candidates based
on their document frequency (df) values and evaluates MI weights only for the
10000 most frequently occurring terms within each topic.

39

2 Focused Crawling

Figure 2.1 shows the word stems for Top-10 features for the topics “Stochas-
tics” and “Arts” of our sample taxonomy by using the combination of Mutual
Information and Document Frequency as selection/ranking criterions.

Features of Features of
Pos “Stochastics” MI “Arts” MI
1 number 0.500078 classiqu 0.430927
2 statist 0.500068 indign 0.430927
3 theori 0.500067 sculptor 0.430927
4 inform 0.500028 gauguin 0.430927
5 statsoft 0.250095 porcelain 0.430927
6 statistica 0.250079 courbet 0.430926
7 quantit 0.250068 dega 0.430925
8 data 0.250067 finest 0.430925
9 analyt 0.250066 galeri 0.430923
10 magnitud 0.250065 museum 0.430921

Table 2.1: Top-10 Features for the Topics “Stochastics” and “Arts” of the Sam-
ple BINGO! Taxonomy

The feature space F T of the taxonomy node T is constructed as a union of
best-rated features from T and from its sibling nodes:

F T = bestFeatures(T)) ∪s∈siblings(T) bestFeatures(s) (2.34)

We notice that, according to (2.34), T and siblings(T) share the same feature
space F T . For this reason, BINGO! stores F T only once in the node parent(T);
leaf nodes of the BINGO! taxonomy do not contain locally stored feature spaces.

The feature space F T is used by the classifier to build its decision models for
T and siblings(T), and for testing of new documents fetched by the crawler.

Classification. Document classification in BINGO! consists of a training phase
for building a mathematical decision model based on intellectually pre-classified
documents, and a decision phase for classifying new, previously unseen docu-
ments fetched by the crawler. The new mathematical decision model is built au-
tomatically when the user initiates the import of a new bookmark file. BINGO!
builds a topic-specific classifier for each node of the topic tree.

The BINGO! engine uses support vector machines (SVM) [197, 64] as topic-
specific classifiers. We use the linear form of SVM where training amounts to
finding a hyperplane that separates a set of positive training examples from a
set of negative examples. For each taxonomy node T , the classifier uses the
node-specific positive training set DPOS(T) (2.32) and its negative training set
DNEG(T) (2.33) and constructs the separating hyperplane in the topic-specific

40

2.3 The BINGO! Focused Crawler

feature space F T (2.34). Each new document d is classified against all topics
of the taxonomy tree in a top-down manner. Starting from the root of the
taxonomy, each node T :

• maps the features of d (that contain word stems and associated term fre-
quency TF values) onto the locally stored feature space F (as discussed
before, F is the shared feature space of children(T)). For the resulting fil-
tered subset, relative term frequencies (RTF) are computed. The resulting
feature vector forms the input for topic-specific classifiers of children(T).

• calls topic-specific classifiers from nodes children(T) to obtain classifier
decisions (accept/reject) and the normalized classification confidence val-
ues confi(d) (2.22) for i ∈ children(T).

• when all children(T) return confidence values confi(d) below the speci-
fied threshold, the current node is assigned to the document as its final
classification result, and the classification algorithm ends. Otherwise, the
document d is passed to the child node of T that returned the highest
confidence value confi(d).

The steps of the topic-specific BINGO! classification routine are summarized
in Figure 2.7. The classification algorithm terminates when it has reached one of
the leaf nodes of the taxonomy, or when all children of the current node returned
confidence values below the specified threshold. The setting threshold = 0 cor-
responds to the common SVM classification procedure, higher threshold values
add restrictivity to the classifier decision.

In some cases, the document d may not contain any features from F T at all.
The outcome of the mapping is a zero vector that corresponds to the origin of the
topic-specific feature space F T . In this special case, the classifier of T is unable
to provide any valuable decision. To address this problem, BINGO! requires
that the new document must contain at least Nw features from the topic-specific
feature set to qualify for classification. Otherwise, it is automatically rejected
by the classifier. The value of Nw is a tuning parameter of the framework that
typically lies between 3 and 5.

We notice that the effect of combining feature selection and classification in
the BINGO! framework is twofold:

• it helps to eliminate irrelevant features and to construct better decision
models for user-specific topics of interest

• it adds a certain restrictivity to classifier’s decisions and helps to elimi-
nate documents that do not contain topic-specific features and thus are
expected to be irrelevant in the context of these topics

41

2 Focused Crawling

BingoTreeNode[] children;

double classifierThreshold;

public void classify(BingoDocument document)

{
double bestScore = -1.0;

BingoTreeNode bestNode = null;

for (int i=0; i<chlidren.length; i++)

{
BingoTreeNode currentNode = children[i];

FeatureVector currentVector = currentNode.mapFeatures(document.features);

double confidence = currentNode.classify(currentVector);

double currentScore = normalize(currentScore);

if (currentScore > bestScore)

{
bestScore = currentScore;

bestNode = currentNode;

}
}
if (bestScore > classifierThreshold)

{
document.svmScore = bestScore;

bestNode.classify(document);

}
else

{
document.topic = this;

}
}

Figure 2.7: The BINGO! Classification Procedure

Combining classification and expert Web search. Until now, we implicitly
assumed that the positive classification decision is always reached between a
limited number of user-specific topics of interest. This assumption is appro-
priate for many Machine Learning applications with well-formed, closed data
domains (e.g. catalogues of newspaper articles, scientific publications, images,
or protein actions). In the Web retrieval scenario, we cannot guarantee that
fetched documents belong to the user-specific topic hierarchy at all. On the
other hand, for topics with very small training sets we cannot guarantee that all
ntop features selected by the feature selection algorithm are highly characteristic
for the topic. In the worst case, the classifier is forced to accept all documents
that contain more than Nw features from the topic-specific feature set. The
resulting poor accuracy of classification results was observed in our preliminary
TREC WebTrack evaluations [199].

To avoid such adverse effects, the classifier’s scope can be restricted in the fol-
lowing way. For each topic of interest T , the user may extend the automatically

42

2.3 The BINGO! Focused Crawler

generated set F T that consists of ntop features by a certain number of manually
selected terms F T

user coined indicators. For example, in the context of expert
Web search, F T

user may include the keywords of the expert query. Furthermore,
F T

user can be also constructed by manual inspection of features from F T . The
set can be easily expanded by further similar terms (e.g. synonyms of query
keywords) using language- or domain-specific ontologies. For document d and
topic T , the classifier returns the yes decision if

• the confidence value conf(d) obtained by (2.22) is positive, and

• d contains a number Nw of indicators (typically 3 or 5) from the set F T
user

• When the set F T
user is empty, the classifier’s decision is identical to the

prior general classification scenario.

Although the selection of indicators requires additional human interaction,
this method is appropriate for satisfying very specific expert information de-
mands. In our previously introduced example, the user that is actually inter-
ested in a highly specific subtopic of the theme “Stochastics” (say Kolmogorov-
Smirnov test) may face serious problems to specify the appropriate negative
training collection that should cover all sibling themes of the broad topic stochas-
tics, such as “Chi-square test”, “Estimation theory”, or “Fisher’s ANOVA”.
Since such documents share the same scientific vocabulary and cannot be cor-
rectly assigned even by many humans without having a certain background
in mathematics, we cannot expect good results from automatic classification.
Using indicator keywords, the expert user can justify the decision model with
respect to his actual demands in a natural and simple way. In our example, the
user could state his primary interest more precisely by including into F T

user of
the topic T = “Stochastics” the terms ”kolmogorov”, ”smirnov”, and ”test”.
In this case, the crawl would still run through the broad field of mathemati-
cal themes including probability theory and statistics (the rejected documents
that potentially belong to the topic “Stochastics” but do not contain required
keywords would now be accepted for the parent topic “Mathematics”). On the
other hand, the significantly smaller set of results for “Stochastics” is expected
to contain highly relevant documents that can be directly shown to the user
without time-consuming postprocessing, filtering, or searching.

2.3.3 Crawler

The BINGO! crawler is implemented as a multi-threaded application that fetches
simultaneously multiple sources from the Web. Usually, the crawler starts on
links extracted from documents of the user’s bookmark file. However, the user
can also force the crawler to start from manually selected additional links (e.g.

43

2 Focused Crawling

thematically focused hubs that were selected by hand and serve the reacher
seed of references than training data). For each retrieved document, the crawler
initiates some analysis steps that depend on the document’s data type (known as
MIME type, e.g. HTML, PDF, etc.) and then invokes the classification against
the topics of taxonomy using extracted features. Once a crawled document
has been successfully classified, BINGO! adds all extracted hyperlinks from the
document to the URL queue for further crawling.

The processing of Web documents in the BINGO! framework includes several
steps. When the crawler thread obtains from the URL queue the next URL for
processing, it performs the following main operations:

1. validates the syntax of the URL;

2. resolves the IP network address of the target host of the resource;

3. opens the socket connection to the desired host;

4. sends the HTTP GET request to the server;

5. analyzes the server response and extracts relevant HTTP header fields;

6. downloads the returned body of the response message (that contains the
actual Web document) into internal buffer;

7. applies content-specific parsing procedure; extracts all words and links
from the document;

8. analyzes the textual content of the document for duplicate elimination
(the BINGO! implementation uses the MD5 [173] signature of the textual
content to eliminate duplicates);

9. computes the features of the document;

10. classifies the document against the nodes of the user-specific taxonomy;

11. computes the priorities of document links and adds them to the URL
queue;

12. stores the document into the BINGO! database using the database inter-
face.

Figure 2.8 summarizes the steps of document processing by the BINGO!
crawler.

44

2.3 The BINGO! Focused Crawler

BingoTreeNode rootNode;

function processURL(URL url)

{
URLVerifier.verifyURL(url);

BingoDocument document = new BingoDocument(url);

openConnection(url);

if (document.responseCode == 200) // HTTP code OK

{
extractHeaderFields();

byte[] buffer = new byte[document.ContentLength];

downloadContent(buffer);

Handler handler = HandlerManager.getHandler(document.contentType);

handler.handle (document); // Parse document

if (isDuplicate(document))

{
DuplicateHandler.handle(document);

}
else if (document.features.length > 0) // Non-zero feature vector

{
rootNode.classify(document);

}
if (document.topic != rootNode) // Positively classified

{
assignCrawlingPriority (document.Links);

BingoQueue.addLinks(document.Links);

}
StorageManager.store(document); // Store into repository

}
else if (document.responseCode == 404)

{
...

}
}

Figure 2.8: Overview of the BINGO! Document Processing

Document Analyzer. BINGO! computes document features according to the
standard bag-of-words model, using stopword elimination, Porter stemming, and
TF based term weighting [51, 145].

The document analyzer can handle a wide range of content handlers for dif-
ferent document formats (in particular, PDF, MS Word, MS PowerPoint etc.)
as well as common archive files (ZIP, GZ) and converts the recognized contents
into HTML. So these formats can be processed by BINGO! like common Web
pages. Many useful kinds of documents (like scientific publications, whitepapers,
or commercial product specifications) are published as PDF; incorporating this
material improves the crawling recall and the quality of the classifier’s training
set by a substantial margin.

45

2 Focused Crawling

The output of the document analyzer consists of

• the set of words extracted from the document;

• the set of document features with associated TF values;

• the set of extracted links.

that are stored as elements of the BingoDocument object.

Document preview generation. For positively classified documents, the doc-
ument analyzer generates the title and the preview that are used by the search
engine to generate the user-friendly representation of search results. The doc-
ument title is typically extracted from the HTML TITLE tag. To generate a
meaningful preview of the document in the context of its topic, the analyzer
adopts the method for document annotation discussed in [178, 112]. It splits
the content of the document into particular sentences using punctuation and
HTML tags as sentence borders. The significance of each sentence in the con-
text of the topic is characterized by the total sum of MI weights of its features.
The sequence of sentences with highest significance values (in the order as they
occur in the original document) forms the topic-specific document preview.

Queue management. The crawler traverses the Web using multiple threads
that share the global URL queue. The queue provides crawler threads with
URLs of Web documents for next fetching. Each link l that was extracted by
document analyzer from HTML content of an previously fetched document d
and added to the queue, is internally represented by the object pending task.
Each pending task is associated with following attributes:

• The URL lURL of the target Web document

• The class label lT assigned by the BINGO! classifier to l

• The classification confidence conf(d) (2.22)

The proper ordering of pending tasks on the crawl frontier is a key point for
a focused crawler. To ensure the proper focusing, the URL queue of BINGO! is
sorted by link priorities. Consider the document d that was encountered on the
crawl depth L (in other words, the crawler reached d after L hops from initial
user bookmarks) and was successfully classified into some topic of the user’s
taxonomy with confidence conf(d) (2.22), i.e. d lies on the “positive” side with
normalized distance conf(d) from the topic-specific separating hyperplane. As
discussed before, we interpret the distance of a newly classified document from

46

2.3 The BINGO! Focused Crawler

the separating hyperplane as a measure of the classifier’s confidence. For links l
extracted from d and added to the URL queue, the BINGO! framework supports
several prioritization strategies:

1. Breadth-first : the links with short distances from user bookmarks are
preferred (prio(l) = 1/L). This option is useful for the unfocused search
in the “nearest vicinity” of bookmarks;

2. Depth-first : the links with long distances from user bookmarks are pre-
ferred (prio(l) = L). This option is useful for the fast unfocused sampling
of the desired domain. Since the Web graph has relatively short link dis-
tances, the maximum allowed crawling depth has to be carefully restricted
(typical values are 3 to 5).

3. Classifier : The classification confidence is directly used to prioritize links
on the crawl frontier (prio(l) = conf(d)). Disregard of their depth, links
that were extracted from documents with highest classification confidence
are prioritized. This strategy shows good results for large-scale focused
Web crawls after several preliminary re-training iterations.

4. Classifier, breadth-first : this is the advanced version of the breadth-first
crawling strategy. The links with short distances from user bookmarks and
high SVM classification scores are preferred (prio(l) = conf(d) ∗ 1/L).
This option is useful for the focused search in the “nearest vicinity” of
bookmarks in the initial learning phase to collect more related sources for
re-training of the classifier.

5. Classifier, depth-first : this is the advanced version of the depth-first crawl-
ing strategy. The links with long distances from user bookmarks and high
SVM classification scores are preferred (prio(l) = conf(d) ∗ L). This op-
tion is useful for the fast focused sampling of the desired domain.

6. Bookmark-based prioritization: analogous scores for weighted depth-first,
breadth-first and classification confidence based ordering schemes can be
also constructed using the classification confidence of source bookmarks
from initial seed. For example, when the crawler has reached a document
d starting from the initial bookmark b, it can apply the bookmark-based
“Classifier” strategy prio(l) = conf(b) for links extracted from d. This
method reflects the assumption that classification confidence grades of
bookmarks better reflect the quality of their nearest neighborhood than
the decisions of the classifier. This is often suitable in the preliminary
learning phase, when the crawler starts with extremely sparse training
data.

47

2 Focused Crawling

Tunneling. The above strategy requires that at least some of the crawled docu-
ments are successfully classified into the topic hierarchy; otherwise, the crawler
would quickly run out of pending tasks. This negative situation may occur
when the crawler seed contains no useful links to thematically related Web
sources. Therefore, BINGO! also considers links from rejected documents (i.e.,
documents that do not pass the classification test for a given topic) for further
crawling. However, we restrict the depth of traversing links from such docu-
ments to a threshold value, typically set to 1 or 2. The rationale behind this
threshold is that one often has to “tunnel” through topic-unspecific “welcome”
or “table-of-contents” pages before again reaching a thematically relevant doc-
ument. The tunnelled link adopts the priority of the initial source document;
however, that priority is reduced by a constant factor for each tunnelling step
(typically with exponential decay).

Dynamic focus control. Building a reasonably precise classifier from a very
small set of training data is a very challenging task. To address this problem,
we distinguish two basic crawl strategies:

• The learning phase serves to identify new archetypes and expand the clas-
sifier’s knowledge base.

• The harvesting phase serves to effectively process the user’s information
demands with improved crawling precision and recall.

Depending on the phase, different focusing rules come into play to tell the
crawler when to accept or reject Web pages for addition to the URL queue. In
the learning phase we are exclusively interested in gaining a broad knowledge
base for the classifier by identifying archetypes for each topic. In many cases such
documents can be obtained from the direct neighborhood of the initial training
data, assuming that these have been chosen carefully. For example, suppose
the user provides us with home pages of researchers from her bookmarks on
a specific topic, say data mining; then chances are good that we find a rich
source of topic-specific terminology in the vicinity of these home pages, say a
conference paper on some data mining issue. i.e., a scientists homepage with
links to her topic-specific publications.

Following this rationale, BINGO! uses a ”Classifier, Breadth-first” crawl strat-
egy during the learning phase, and initially restricts itself to Web pages from the
domains that the initial training documents come from. In addition, the crawler
may accept only documents that are reachable via hyperlinks from the original
seeds and are classified into the same topic as the corresponding seeds. We call
this strategy sharp focusing: for all documents p, q ∈ E and links (p, q) ∈ V
accept only those links where class(p) = class(q).

48

2.3 The BINGO! Focused Crawler

After successfully extending the training basis with additional archetypes,
BINGO! retrains all topic-specific classifiers and switches to the harvesting phase
now putting emphasis on recall (i.e., collecting as many documents as possible).
The crawler is resumed with the best hubs from the link analysis, using a “Clas-
sifier” crawling strategy that aims to follow the most promizing paths of the
entire Web, without any host limitation. The now improved crawling precision
allows us to accept all documents that can be successfully classified into anyone
of the topics of interest, regardless of whether this is the same class as that of
its hyperlink predecessor. We call this strategy soft focusing: for all documents
p, q ∈ E and links (p, q) ∈ V accept all links where class(p) = ROOT . The
harvesting usually has tunneling activated.

When the learning phase cannot find sufficient archetypes or when the user
wants to confirm archetypes before initiating a long and resource-intensive har-
vesting crawl, BINGO! can also include a user feedback step between learning
and harvesting. Using the additional toolkit BingoReviser (Section 2.4), the
user can intellectually identify archetypes among the documents found so far
and may even trim individual HTML pages to remove irrelevant and potentially
dilluting parts (e.g., when a senior researcher’s home page is heterogeneous in
the sense that it reflects different research topics and only some of them are
within the intended focus of the crawl). Furthermore, the user can inspect and
adjust the feature spaces of particular topics in order to obtain the cleaner rep-
resentation of documents by topic-specific features and to increase the classifier
accuracy.

Load balancing. Since the absolute priorities obtained from particular topic-
specific classifiers of the taxonomy may vary for different topics of interest, the
shared queue for links from all topics may lead to skewed distribution of down-
loads among topics (e.g. the crawler would always prioritize links from the topic
“Arts” because of higher absolute confidence values that are produced by the
topic-specific classifier, and completely ignore the competitive topics ’Mathe-
matics” and “Agriculture”). To avoid this phenomenon, the queue manager of
BINGO! maintains several sub-queues, one for each topic of the user’s taxon-
omy. The queue manager retrieves best links for further crawling from these
topic-specific queues in a round-robin manner, what ensures fairly balanced
population of all topics with new results.

To avoid numerous parallel downloads from one particular Web server (that
may lead in the worst case to the denial-of-service), the number of parallel
downloads in BINGO! is limited on a per host basis. For this purpose, the
queue maintains a locking mechanism for hosts that are currently involved in
downloads. When the queue returns a new link to the crawler thread, a lock
counter of the target host is created (the already existing counter is increased

49

2 Focused Crawling

by one, respectively). When the crawler thread has finished the processing the
link, it decreases the host lock in the URL queue by one (or completely releases
the empty lock). The queue manager makes its lookups for next best candidates
for crawl with respect to the current locking information, as shown in Figure
2.3.3.

Link[] queue;

Host[] lockedHosts;

public Link getBest () // This function returns the best link

{ // from the topic queue to be crawled next.

for (int i=queue.length; i>=0; i--)

{
Link nextCandidate = queue[i]; // Pick the next best-rated

Host nextHost = nextCandidate.getHost(); // link candidate from the queue

// Check if the next best candidate can be crawled

if (lockedHosts.contains (nextHost) and

lockedHost.counterValue(nextHost) > maxThreadsPerHost)

continue;

if (lockedHosts.contains (nextHost) // Add new lock or increase the existing one

lockedHost.increase(nextHost);

else

lockedHost.add(nextHost);

queue.remove(nextCandidate); // Return the candidate to the crawler thread

return nextCandidate

}
return null;

}
public void finished (Link link) // This function is called by the crawler thread

{ // to release the lock

Host host = link.getHost();

lockedHosts.decrease(host);

if (lockedHosts.counterValue(host) == 0)

lockedHosts.remove(host);

}

Figure 2.9: Lookups for Pending Tasks in the BINGO! Queue Manager

Limitation of queue size. In general, the number of extracted links (and
the set of pending tasks) is growing rapidly as the crawl proceeds. The size
of the crawler queue is an important tuning factor of the focused crawler. The
periodical sorting of large lists may cause substantial computational effort during
the crawl and influence the crawler’s performance. We notice that the focused
crawler, unlike large-scale Web search engines, is typically not interested in
high throughput and large amount of processed data; more important are the
accurate classification and the proper ordering of links on the crawl frontier.

50

2.3 The BINGO! Focused Crawler

To this end, the crawler queues can be limited in size to several thousands of
pending tasks. When new links with high priority values need to be added to
the queue that is already full, the crawler removes the same number of links with
lowest priority values from the end of the list. The URL queues of BINGO! are
implemented as main memory components and do not require external storage.
On the other hand, the extremely small size of the crawler queue, specially in
connection with poor generalization performance of the classifier, may lead to
the preliminary loss of focus (links from few wrongly classified documents with
high classification confidence values may fill the entire queue).

For efficiency reasons, the new pending tasks are initially collected into ad-
ditionally maintained unordered set (bucket). When the bucket becomes full
(i.e. more than the specified number of new tasks were added to the queue),
the queue merges the content of the bucket and the main sorted list. If the
resulting collection contains more than the maximum allowed number of links,
the candidates with lowest priorities are removed from the end of the list.

2.3.4 Link Analysis

As discussed before, the link structure between documents in each topic is an
additional source of information about how well they capture the topic. Upon
each retraining, we apply the method of [55], a variation of Kleinberg’s HITS
algorithm, to each topic of the directory. The actual computation of hub and
authority scores is essentially an iterative approximation of the principal Eigen-
vectors for two matrices derived from the adjacency matrix of the link graph G.
Its outcome are two vectors with authority scores �a and hub scores �h for all pages
fetched by the crawler. The BINGO! framework is interested in the top ranked
authorities and hubs. The former are perceived as topic-specific archetypes and
considered for promotion to training data, and the latter are the best candi-
dates for being crawled next and therefore added to the high-priority end of the
crawler’s URL queue. These steps are performed with each retraining.

2.3.5 Database Repository

A database system serves as repository for storage of all documents and system-
specific data of the BINGO! framework. The Entity-Relationship model (ERM)
of the BINGO! storage component is shown in Figure 2.10. Currently, the
BINGO! framework is equipped with interfaces for running with Oracle 10g
[141] and MySQL [91] database systems; as discussed in Section 2.3.8, it can be
easily adapted for other databases that support the SQL-92 standard [33].

The most important objects of the data model are:

1. BingoDocuments : this entity set corresponds to documents processed by

51

2 Focused Crawling

Figure 2.10: The ERM Model of BINGO! Database Repository

BINGO! during the crawl. It maintains such attributes as URL, general
document properties (size, document type, values of HTTP response fields,
etc.) and the classification result (classified topic, classification confidence
value) for each document fetched by BINGO!;

2. ArchiveFiles : this entity set maintains additional attributes for all posi-
tively classified documents such as document title, document preview, and
the raw document content received with HTTP response message.

3. Classes : this entity set corresponds to the class hierarchy of user-specific
taxonomy. The associated topic-specific feature sets for each topic are
stored as entities ClassFeatures, along with various ranking attributes that
are used for feature selection. The topic-specific classifiers are stored as
entities Classifier (the BINGO! framework stores classifiers as Java seri-
alized objects [18]).

4. Terms : this entity set contains the words extracted from fetched docu-
ments along with weights required for computation of document features;

5. Features : this entity set contains the features extracted from fetched doc-
uments, among with weights that are required to construct topic-specific
feature vectors for classification and searching.

52

2.3 The BINGO! Focused Crawler

Furthermore, the schema contains data structures for storage of language-
specific stopwords (“Stopwords”), framework settings and preferences (“Prefer-
ences”), additional links for starting the crawler (“StartUrls”), recognized du-
plicates of previously retrieved documents (“Duplicates”), and data structures
for advanced classification and clustering methods in the result postprocessing
(e.g. link annotations “AnchorTerms”).

The resulting SQL database schema of BINGO! is shown in Appendix B.

2.3.6 Language Recognition

As an interesting side effect, our preliminary experiments with BINGO! have
shown that classifiers trained barely on Web examples in the English language
have also accepted several documents in French, German, and other foreign
languages (and vice versa). The cause of this phenomenon is obviously the
common Internet vocabulary that is widely adopted in multiple languages (e.g.
keywords like homepage, email, link, or server) and may occur on all Web pages
across the world. When some of these words pass the topic-specific feature
selection filter, the feature vector of the foreign document becomes a non-zero
vector and can be (with a certain probability) accepted for the topic.

A simple and efficient method to eliminate such artefacts during the crawl
is stopword counting. It is natural to assume that content-rich Web sources in
the desired language contain also multiple language-specific stopwords. On the
other hand, the dominating presence of stopwords from other languages can be
interpreted as an indication for the foreign document that cannot be correctly
handled by the classifier. As stopword lists exist for almost all languages of
Web pages (the current BINGO! prototype that uses Snowball-based stemming
algorithms [167] is equipped with 12 associated language-specific stopword col-
lections), the stopword counter can be easily added to almost every crawler that
supports simple lexical analysis of the content.

The BINGO! stopword counting routine can be stated as follows. In the
preparation phase, the user can specify two global framework parameters: the
desired language for the crawl and the threshold value dSTOP that is used for
filtering out “uncertain” documents. For each retrieved document d, the parser
module maintains a stopword counter dCount that is initially set to 0. Each
token (word) extracted from d is looked up in the multi-language stopword
dictionary based on Snowball [167] stopword lists. If the token was found in
the dictionary of the specified language, dCount is increased by one. If the
token was found in the dictionaries of other (“foreign”) languages, its value is
decreased by one. If the token was not found in stopword dictionaries, dCount
remains unchanged. When the processing of d is finished, its counter value
dCount is compared with dSTOP ; documents with dCount < dSTOP are rejected
from further processing.

53

2 Focused Crawling

In general, the language recognition routine serves two purposes:

1. It helps to recognize and reject pages in foreign languages that cannot be
correctly interpreted by the classifier;

2. It helps to reject extremely short pages (error messages, redirect pages,
index pages) that typically do not contain any full centences and serve no
useful topic-specific content.

2.3.7 Result Postprocessing

The result of a BINGO! crawl may be a database with several million documents.
Obviously, the human user needs additional assistance for filtering and analyzing
such result sets in order to find the best answers to her information demands.
To this end BINGO! includes a local search engine that employs IR and data
mining techniques for this kind of postprocessing.

The BINGO! search engine (Section 2.4) supports both exact and vague filter-
ing at user-selectable classes of the topic hierarchy, with relevance ranking based
on the usual IR metrics such as cosine similarity [51] of term-based document
vectors. In addition, it can rank filtered document sets based on the classifier’s
confidence in the assignment to the corresponding classes, and it can perform
the HITS link analysis [132] to compute authority scores and produce a ranking
according to these scores. Different ranking schemes can be combined into a lin-
ear sum with customizable weights; this provides flexibility for trial-and-error
experimentation by a human expert.

Filtering and ranking alone cannot guarantee that the user finds the requested
information. Therefore, when BINGO! is used for expert Web search, the ad-
vanced search (Section 4.1) supports additional interactive feedback. In partic-
ular, the user may select additional training documents among the top ranked
results that he sees and possibly drop previous training data; then the filtered
documents are classified again under the retrained model to improve precision.
For information portal generation, a typical problem is that the results in a
given class are heterogeneous in the sense that they actually cover multiple top-
ics that are not necessarily closely related. This may result from the diversity
and insufficient quality of the original training data.

To help the portal administrator for better organizing the data, BINGO! can
perform a cluster analysis (Section 3.1) on the results of one class and suggest
creating new subclasses with tentative labels automatically drawn from the most
characteristic terms of these subclasses.

54

2.3 The BINGO! Focused Crawler

2.3.8 Making BINGO! Efficient

BINGO! is implemented completely in Java [18] and uses the Oracle [141] or
MySQL [91] database as a storage engine. The database-related components
(document analysis, feature selection, etc.) are implemented as stored proce-
dures, the crawler itself runs as a multi-threaded application under the Java
virtual machine. Our rationale for Java was primarily the easy portability, so
that the personalized Web search can be started on almost desktop computers.

At the beginning, the main attention in building BINGO! was on result quality
and the effectiveness of the crawler. However, the larger-scale experimentation
(Section 2.5) has spawned the importance of performance. In fact, effectiveness
and efficiency of the focused crawl are intertwined: the recall of our preliminary
crawls was severely limited by the poor speed of the crawler. As the consequence,
we focused our efforts on performance improvement and reimplemented the most
performance-critical function components.

This section shortly addresses some of the Java- and database-related perfor-
mance problems and also some of the key techniques for accelerating the focused
crawler. We adopted some useful tips on crawl performance problems from the
literature [118, 117, 183] and also developed various additional enhancements.

Database Design and Usage. The initial version of BINGO! used object-
relational features of Oracle (actually Oracle8i when we started), in particular,
nested tables for hierarchically organized data. This seemed to be the perfect
match for storing documents, as the top-level table, and the corresponding sets
of terms and associated statistics as a subordinate table (document texts were
stored in a LOB attribute of the top-level table). It turned out, however, that the
query optimizer had to compute Cartesian products between the top-level and
the subordinate table for certain kinds of queries with selections and projections
on both tables. Although this may be a problem of only a specific version of
the database system, we decided to drastically simplify the database design and
obtained a schema with 13 flat relations (Appendix B), and also simplified the
SQL queries accordingly.

Crawler threads use separate database connections associated with dedicated
database server processes. Each thread batches the storing of new documents
and avoids SQL insert commands by first collecting a certain number of docu-
ments in workspaces and then invoking the database system’s bulk loader for
moving the documents into the database. This way the crawler can sustain a
throughput of up to ten thousand documents per minute.

Networking aspects. A key point for an efficient Java crawler is the control
over blocking network I/O operations. Java provides the convenient HTTPUrl-
Connection class, but the underlying socket connection is hidden from the pro-

55

2 Focused Crawling

grammer. Unfortunately, it is impossible to change the default timeout setting;
thus, a successfully established but very slow connection cannot be cancelled.
The recommended way to overcome this limitation of the Java core libraries is
to control the blocking connection using a parallel “watcher thread” . To avoid
this overhead, BINGO! implements its own socket-based HTTP connections
following RFC 822 [22].

The Java core networking classes like InetAddress, used for the represen-
tation of network addresses and resolving of host names, is another potential
bottleneck for the crawler [118]. It was observed that the caching algorithm of
InetAddress is not sufficiently fast for thousands of DNS lookups per minute
that are typical for the crawler. To speed up name resolution, we implemented
our own asynchronous DNS resolver. This resolver can operate with multiple
DNS servers in parallel and resends requests to alternative servers upon time-
outs. To reduce the number of DNS server requests, the resolver caches all ob-
tained information (hostnames, IP addresses, and additional hostname aliases)
using a limited amount of memory with LRU replacement and TTL-based in-
validation.

The information about HTTP redirects is stored in the database for use in the
link analysis (see Section 2.3.4). We allow multiple redirects up to a pre-defined
depth (set to 25 by default). Furthermore, the crawler supports robot exclusion
protocols to avoid downloads from directories and pages explicitly excluded by
server administrator.

Crawl queue management. The engine controls the sizes of queues and starts
the asynchronous DNS resolution for a small number of the best incoming links
when the outgoing queue is not sufficiently filled. So expensive DNS lookups
are initiated only for promising crawl candidates.

We also learned that a good focused crawler needs to handle crawl failures.
If the DNS resolution or page download causes a timeout or error, we tag the
corresponding host as “slow” . For slow hosts the number of retrials is restricted
to 3; if the third attempt fails the host is tagged as “bad” and excluded for the
rest of the current crawl.

Duplicate elimination. Since a document may be accessed through different
path aliases on the same host (this holds especially for well referenced author-
ities for compatibility with outdated user bookmarks), the crawler uses several
fingerprints to recognize duplicates. The initial step (before download starts)
consists of simple URL matching (however, URLs have an average length of
more than 50 bytes [37]; for efficiency reasons, our implementation merely com-
pares the hashcode representation of the visited URL). When the new page is
fetched, our implementation compares the MD5 fingerprint [173] computed on

56

2.3 The BINGO! Focused Crawler

the extracted textual content of the fetched document, with a small risk of falsely
dismissing previously unseen documents. The MD5-based duplicate elimination
was chosen due to its computational efficiency at the crawl runtime. In the
crawl postprocessing phase (Section 3), advanced duplicate detection methods
(e.g. shingle-based resemblance estimation [62] or I-Match [81]) can be applied
to the crawl repository in order to identify highly similar documents.

Document type management. To avoid common crawler traps (e.g. endless
loops caused by incorrect server responses, or intentionally generated chains of
useless pages) the maximum length of hostnames is restricted to 255 (RFC 1738
standard [34]), the maximum URL length is restricted to 1000. This reflects the
common distribution of URL lengths on the Web [37], disregarding URLs that
have GET parameters encoded in them.

To recognize and reject data types that the crawler cannot handle (e.g., video
or sound files), the BINGO! engine checks all incoming documents against a list
of MIME types [24]. For each MIME type we specify a maximum size allowed
by the crawler; these sizes are based on large-scale Google evaluations [37]. The
crawler controls both the HTTP response and the real size of the retrieved data
and aborts the connection when the size limit is exceeded.

Analysis of the link graph. Basically, the link analysis algorithm operates
on the n × n matrix M , where n is the number of pages in the repository
(BINGO! ignores duplicate links). The elements of M [i, j] indicate of there is
a link from node i to node j (M [i, j] > 0) or not (M [i, j] = 0). The value of
M [i, j] corresponds to the weight (score) that is assigned to each existing link
connection by advanced link analysis algorithms. Since the fraction of existing
links out of all possible connections between all pages is very small, the matrix
M is usually extremely sparse. Furthermore, we notice that iterations of the
link analysis algorithm (Section 2.2.2) do not require any dynamic updates of
M . For these reasons, the BINGO! engine internally uses the compressed row
storage (CRS) format for representation of the link graph.

The idea is to store explicitly only positive elements of M . The CRS data
structure uses three arrays (values, index, and point) for compressed storage of
link connections:

• The array values contains positive elements of M , sorted by row index and
column index (this order can be obtained by scanning M row by row).

• The column indexes of positive elements are stored in the array index in
the same order.

• The array point contains for each row of M the reference to an element of
values that contains the first positive element of this row.

57

2 Focused Crawling

For the representation of an directed graph G = {V,E} with |V | = n and
|E| = m, this storage schema requires the total of 2m + n + 1 array elements.
Power iterations of the link analysis algorithm require the multiplication of M
with vectors (e.g. vector of authority scores, hub scores, transition probabilities,
etc.). For any vector �v, the multiplication M · �v can be implemented as shown
in Figure 2.11.

// given: the CRS data structure for M that consists of three arrays

double[] values // positive elements of M, sorted by row index and column index

double[] index // indexes of positive elements in M

double[] point // for each row in M, location of its first pos element in values.

// input: vector v that must be multiplied with M

double[] multiply (double[] v)

{
double[] result;

for (int i=0; i<v.length; i++)

{
for (int j=point[i]; j<point[i+1]; j++)

{
result[i] += value[j] * v[index[j]];

}
}
return result;

}

Figure 2.11: The Multiplication Routine for BINGO! CRS Representation of the
Link Graph

The introduced representation of the link graph allows efficient authority
ranking for large crawl collections. As an example, we consider the .GOV ref-
erence collection of Web documents from the TREC Web benchmark [199]. Af-
ter duplicate elimination and cleaning, the collection contains 1.117.652 pages
(graph nodes) and 8.144.358 links (edges). The construction of sparse data
structures, including import of link information from the database repository,
takes 3 to 4 minutes. The computation of the HITS algorithm with 20 power
iterations takes 25 to 30 seconds.

58

2.4 Implementation

2.4 Implementation

The BINGO! framework is implemented as a collection of multiple components
(packages) that include:

• The BINGO! core module. This part contains the actual implementation
of the focused crawler. The core module provides algorithms for fetching
and parsing of Web documents, extraction of document-specific features
and links, classification of documents into user-specific taxonomy, selec-
tion of most discriminative features for each topic, storage of processed
documents into database repository, link-based authority ranking of crawl
results, and the GUI components for user interaction with the BINGO!
framework. The module is implemented in the programming language
Java and consists of 135 Java classes that contain ca. 40.000 lines of
source code.

• The WebAPI module. This toolkit allows the automated retrieval of addi-
tional training documents from large-scale Web search engines and portals.

• The BINGO! search engine. This software is used to perform the search
within results of the focused crawl. The search engine provides a number
of advanced ranking and filtering options for expert Web search. The
implementation consists of 32 Java classes, 2 JSP servlets and contains
ca. 5200 lines of source code.

• The BINGO! reviser. This software is used to evaluate results of the
focused crawl and to manually extend the training base of the system by
additional training samples. Furthermore, it allows the user to inspect the
feature spaces of particular topics that were generated by feature selection
algorithms and to select indicator keywords for restricting the scope of
topic classifiers. This module is implemented as a collection of Java Server
Pages (JSP) that run under the Apache Tomcat engine. The module
consists of 9 Java classes, 18 JSP servlets, and contains ca. 2.800 lines of
source code.

• The collection of supplemental third-party public domain programs and
Java packages. This set includes the SVM*Light software for building lin-
ear SVM classifiers [122], database drivers, the Snowball stemming package
[167], and the IFilter PDF filtering library [2].

The general structure of the BINGO! core module is shown in Figure 2.12.

59

2 Focused Crawling

Figure 2.12: General Overview of the BINGO! Core Software

2.4.1 Crawler

This package contains classes of the BINGO! crawler: the actual crawler im-
plementation, helper classes that allow the communication between the crawler
and other BINGO! components, and the crawler GUI interface for interactive
crawling. The package has 20 Java classes that contain together ca. 5300 lines
of source code. Furthermore, the package contains three sub-packages (frontier,
handler, and parser) that capture the infrastructure for the crawler frontier,
network I/O, and processing of downloaded Web documents.

The user can initiate the crawl by calls from other BINGO! packages or using
the crawler GUI. In the latter case, all details of the crawl progress are visible
to the user (Figure 2.13). The GUI component shows the state of the crawler
(number of active crawler threads, total number of fetched documents, state of
the crawler queue) and detailed information to all fetched documents:

• The URL of the fetched document.

• The assigned topic of the user-specific taxonomy.

• The classification confidence value returned by the classifier.

• Type of the document (MIME type).

• The crawling depth of the document (the number of links followed by the
crawler until the document was reached).

60

2.4 Implementation

Figure 2.13: GUI of the BINGO! Crawler

Each document from this view can be directly opened into the Web browser,
added to the training data of the current taxonomy, or removed from the
BINGO! data repository. Conceptually, the user can inspect the preliminary
results of a new crawl in an interactive manner and extend the training dataset
“on the fly”.

The BINGO! crawl progress can be also illustrated by the visualization of the
crawling graph (as shown in Figure 2.14). In this case, the user can observe
the crawl progress in the vicinity of positively classified Web documents. The
downloads and completely processed documents are represented as graph nodes
with customizable topic-specific icons, the links followed by the crawler to reach
these documents are shown as edges. For each document, BINGO! provides
the short annotation that is shown in a small popup window when the user
moves the mouse over the document icon. In the download phase, the icon
of a new document is annotated by the URL of the target source. When the
document is fetched and completely processed, the URL is replaced by the
extracted document title. The mouse click on the document icon opens the
associated document into the Web browser. Using the visualization component,
the user can identify promising hubs and authorities in a very native manner
and directly add them to the training dataset or to the individual collection of
starting points for further crawl sessions.

61

2 Focused Crawling

Figure 2.14: The BINGO! Crawl Visualization

2.4.2 Crawl Frontier

The sub-package frontier of the crawler framework contains classes of the crawler
frontier. It consists of 12 Java classes that contain together ca. 2300 lines of
source code. The most important part of this package is the BINGO! URL
queue that maintains for each topic of the taxonomy the ordered list of pending
tasks. Furthermore, the package contains the comprehensive library of net-
working functions that are used by crawler threads (DNS lookups and caching,
verification of extracted URLs, opening and monitoring of Internet socket con-
nections, caching of information about server failures, etc.).

2.4.3 Document Handler

The crawler sub-package handler contains handler classes of the crawler. The
handler implement individual scenarios for processing of various data sources
(e.g. HTML pages, PDF documents, or plain text). Furthermore, this package
contains a number of general routines that are applied to each fetched document
(classification, adding of extracted links to the URL queue, storage of document
elements into the database repository, etc.) The package consists of 14 Java
classes that contain together ca. 1600 lines of source code.

62

2.4 Implementation

2.4.4 Document Parser

The crawler sub-package parser contains parser implementations that are used
to extract words, links, and meta information from fetched Web documents.
Furthermore, it contains routines for annotating (preview) of new documents
by most characteristic sentences. The routine of content processing may vary
for different document types (for example, the analyzing of PDF documents
requires the preliminary format-specific text extraction). To this end, the pack-
age maintains one parser for each MIME document type supported by BINGO!.
The package consists of 15 Java classes that contain together ca. 2100 lines of
source code.

2.4.5 Database Interface

The DB (database) package contains classes and routines for communicating
between BINGO! components and the database repository. The main class
of this package (DBInterface) is implemented as a singleton that manages all
database connections of the framework. Furthermore, this class serves prepared
functions for all common interactions between BINGO! and its database (stor-
age of new documents, storage and retrieval of classification models, loading of
topic-specific feature sets, etc.). Almost all actions use SQL-92 [33] compatible
statements and can be used for other SQL databases without any modifications.
However, some parts of the framework need database-specific adaptation (e.g.
storage and retrieval of binary objects (LOBs), such as serialized classifier mod-
els and source files of fetched documents). These functions are implemented in
database-specific classes that extend DBInterface by desired functionality.

The database package also provides the GUI component that allows the user
to inspect and to manage the database repository (Figure 2.15). Each docu-
ment in the view is annotated by its URL, the assigned topic of the taxonomy,
the classification confidence, the Web authority scores computed by link analysis
algorithms, and the current document status (training document, classified doc-
ument, HTML page with frames, HTTP redirect, etc.). The user can customize
filtering options and reorder the document list with respect to any of these at-
tributes. The selected document can be opened into the Web browser, added
to the training base of the current model, or removed from the database. These
options are typically used in the initial phase of crawl preparation to identify
additional training samples and to monitor the health ratio of the crawler.

Furthermore, the package contains the integrated SQL client that provides full
control over the BINGO! repository for expert users (Figure 2.16). The SQL
client can be used for advanced queries and updates of the database that are
not directly provided by the package (creation of additional indexes, managing
tablespaces and storage options, estimating database statistics, etc.).

63

2 Focused Crawling

Figure 2.15: The BINGO! Database Interface

2.4.6 Link Analysis

The Linkanalysis package contains classes and routines for link-based author-
ity ranking of crawl results. It implements two state-of-the-art methods of link
analysis that were introduced in Section 2.2.2, HITS [132] (together with its
modified version proposed in [55]) and PageRank [61]. The HITS algorithm is
used in the re-training phase to identify archetypes that can be used as addi-
tional training samples, and good hubs that should be prioritized on the crawl
frontier in the next crawl iteration. The outcome of HITS and PageRank al-
gorithms is also used by the BINGO! search engine for ranked retrieval of best
crawl results. The package consists of 18 classes and contains ca. 3600 lines of
source code.

2.4.7 Feature Selection

The Featureselection package contains classes and routines for selection of most
discriminative topic-specific features. The algorithms Mutual Information, Con-
ditional Mutual Information [200], and Information Gain can be used to obtain
topic-specific feature sets. The package consists of 6 classes and contains ca.
1000 lines of source code.

2.4.8 Utilities

The Util package provides internal utilities and helper classes for the BINGO!
framework, such as internal timers, tokenizers, and definitions of internal system-

64

2.4 Implementation

Figure 2.16: The BINGO! SQL Client

wide data structures of BINGO! (e.g. the class BingoDocument that represents
one fetched Web source, Figure 2.17). This package contains 33 classes and ca.
8500 lines of source code.

The most important component is the class SessionBuffer that serves the
internal backbone of the BINGO! system. This singleton maintains all system
parameters, user preferences, and the data model of the user-specific taxonomy
along with its training data, topic-specific feature sets, and classifier models.
This class coordinates the internal interaction between all components of the
engine.

The class CommonTasks implements several application scenarios for the
BINGO! framework (e.g. the import of a new taxonomy that includes fetch-
ing and parsing of the new bookmark file, download of referenced documents,
feature selection, building the classifier, and storage of the new data model into
the database). The user can easily adapt the BINGO! system for new scenarios
by modifying or extending of routines in this class.

2.4.9 Base

The package base contains classes of base GUI components: the BINGO! data
model and integrated BINGO! desktop. This package has 6 classes and ca. 1800
lines of source code.

The BINGO! data model interface (Figure 2.18) allows the user to manage the
topic structure of the taxonomy, to inspect and manage the positive and nega-
tive training samples of each topic, and to import new user-specific taxonomies.
The new taxonomy can be directly derived from the personal bookmark file or
from the collection of folders (directories) in the local file system. In the lat-

65

2 Focused Crawling

Figure 2.17: The Document Representation in BINGO!

ter case, the folders are interpreted as topic labels and contained documents
as positive training samples of the taxonomy. Additionally, the user can cre-
ate artificial subfolders named “OTHERS” that are interpreted by BINGO! as
negative training sets for the appropriate branch of the taxonomy tree.

Furthermore, the base package contains classes of the integrated GUI envi-
ronment, coined BINGO! desktop (Figure 2.19). The BINGO! desktop allows
the direct access to all components of the BINGO! engine:

• Application scenarios defined in CommonTasks : preparation of the new
user-specific taxonomy, restoring the previous crawling session from the
database, retraining of topic classifiers.

• Management of the BINGO! data model.

• Feature selection algorithms.

• Building of classifiers.

66

2.4 Implementation

Figure 2.18: The BINGO! Data Model

• Accessing the crawler interface.

• Link-based authority ranking.

• Management of BINGO! database repository.

• Customization of BINGO! settings and preferences.

2.4.10 Configuration

This package contains classes for keeping and customizing of system-wide pref-
erences and settings (Figure 2.20). It consists of 2 classes that contain 200 lines
of source code. BINGO! allows the expert user to customize several system
parameters that directly influence the outcome of the crawler:

• The decision model that should be used to classify new documents.

• The use of indicator keywords for restricting the scope of the classifier.

• Focusing options of the crawler.

• Strategy of link prioritization on the crawl frontier.

• Tunneling on links from negatively classified documents.

• Crawler preferences, such as crawling depth, download timeout, the num-
ber of worm threads, or the size of the URL queue.

• Allowed MIME data types that can be processed by BINGO! handlers.

• Preferences of language recognition.

• Parser settings (stemming, stopword removal).

67

2 Focused Crawling

Figure 2.19: The BINGO! Desktop

2.4.11 The WebAPI Module

This module allows the user to automatically retrieve the specified number of
documents (e.g. for use as training samples) from large-scale Web search engines
and portals. Many existing Web portals provide, in addition to interactive
HTML search forms, additional API interfaces that can be used by corporate
customers or meta search engines for automated execution of keyword-based
queries. This functionality is used in BINGO! to obtain additional topic-specific
training data. For example, the user can add returned documents to the training
base of his taxonomy, or force the crawler to start on links extracted from these
documents. The module uses the specified number of indicator keywords or
most discriminative features for each topic as topic-specific queries .

The BINGO! framework provides support for API search interfaces of the
large-scale Web search engine google and the portal amazon.com. The user can
easily add further information sources by including of portal-specific API calls
into existing WebAPI framework.

In addition, the module provides batch routines for unfocused crawling within
two Web directories, yahoo.com and dmoz.org. The crawl is restricted to the
specified number of pages from the selected portal (host crawling). The fetched
documents are stored into the BINGO! repository without classification. The

68

2.4 Implementation

Figure 2.20: The BINGO! Configuration

outcome of this batch is interpreted as additional negative training collection at
the root level of the user-specific taxonomy.

2.4.12 The BINGO! Search Engine

When the BINGO! crawl is finished, each topic of user-specific taxonomy is
usually populated with hundreds or thousands of potentially relevant Web doc-
uments. The BINGO! search engine is used for retrieval of best matches that
satisfy the current user’s information demands from this data repository.

As shown in Figure 2.21, the interface of the search engine is very similar to
common query forms of large-scale Web search engines. The user initiates the
search by submitting the query string that contains search tokens:

[-]keyword_1[\%] , [-]keyword_n[\%] .. [-]keyword_n[\%]

Particular tokens of the query string are interpreted as follows:

• keyword : The qualifying documents are required to contain the specified
term or word stem.

• -keyword : The qualifying documents are not allowed to contain the spec-
ified term or word stem.

• keyword% : Prefix search. The qualifying documents must contain (not
contain) any terms or word stems with specified prefix.

69

2 Focused Crawling

Figure 2.21: The BINGO! Search Engine

The queries in the BINGO! search engine are conjunctive, i.e. the qualify-
ing document must satisfy all specified conditions. The search engine can use
document features (word stems) or terms (words without stemming) to identify
relevant matches in the data repository. Each returned document is annotated
by

• The document title.

• The automatically generated topic-specific document annotation.

• The topic of the user’s taxonomy assigned to this document.

• Further attributes, such as the document URL, size in bytes, or the date of
last document modification (value of the LastModified HTTP attribute).

In some cases, the full list of query matches can be very long. For better read-
ability, the search engine splits the result set into multiple pages of appropriate
size (e.g. 10). The list of results can be ordered according to one of several
ranking criterions. The matches with highest relevance grades are shown on the
first page. The search engine provides support for following rankings:

70

2.4 Implementation

• SVM confidence. The confidence value assigned to the document by the
classifier of its topic. This ranking is useful to identify documents that are
highly relevant for the theme of the topic.

• Link-based authority score. This ranking option is used to identify au-
thorities of the topic, e.g. root pages of thematically relevant portals and
homepages.

• Link-based hub score. This ranking option can be used to identify relevant
documents that contain multiple references to other thematically relevant
Web sources.

• TFIDF ranking. This ranking option uses the cosine measure [51] to
estimate the similarity between the query and the TF*IDF weighted [51]
document vector. The ranking is used to obtain documents that have the
highest similarity to the specified set of query keywords.

• Recency. The documents are ordered according to the value of the Last-
Modified attribute extracted from the HTTP server response. This rank-
ing can be used to identify recent postings (such as newswire articles).

In addition to the common search scenario introduced before, the BINGO!
search engine provides a number of advanced ranking and filtering options for
expert Web search:

• The search can be restricted to the specified topic or branch of the taxon-
omy tree.

• The search can be continued within the current set of results. The user
can incrementally refine or modify the query and the ranking preferences.

• The search can be continued within the neighborhood of the selected doc-
ument (returns known predecessors and successors of the document in the
link graph).

• Similarity search. Returns documents that are similar to the specified
match. This ranking option uses the cosine measure to estimate similarity
between feature vectors of documents.

2.4.13 The BINGO! Reviser

This interactive component is used to inspect results of the focused crawl. For
this purpose, the crawl results from each topic of the taxonomy can be ordered

71

2 Focused Crawling

Figure 2.22: The BINGO! Reviser

according to one of several ranking criteria (SVM confidence, Link-based au-
thority or hub scores). The specified number of best-scored results for each
topic (e.g. top 10 or top 50) is shown to the user (Figure 2.22).

Each search result shown in the output is annotated by its title, automatically
generated preview, and the URL of the target document. In most cases, this
information is sufficient for the experienced user to verify the correctness of
the classifier decision. In uncertain cases, the user can also open the target
document into a new browser window to see its full content. Incorrectly classified
documents can be re-assigned to other topics of the taxonomy, or to the root
of the topic tree (indicating that the document is completely irrelevant in the
context of the taxonomy).

The results of this evaluation for best-scored crawl results (e.g. the estimated
precision, Figure 2.23) reflect the overall quality of the crawl outcome. Further-
more, the verified documents can be directly added to the training base of the
taxonomy for re-training.

In addition, the reviser allows the user to inspect the feature spaces of par-
ticular topics that were generated by feature selection algorithms (Figure 2.24).
The features are ordered according to the weights of the Mutual Information

72

2.4 Implementation

Figure 2.23: The BINGO! Reviser: Evaluation Results

selection algorithm. Each feature is annotated by its word stem, original words
from fetched documents that BINGO! maps onto this feature, and the sample
context in that the feature may occur in documents. For the context represen-
tation, the reviser embeds for each feature the link to the Web document from
the BINGO! repository with highest classification confidence that contains this
feature.

The user can adjust several filtering options of the view (number of shown
best-scored features, Document Frequency threshold) to localize the segment
of the feature space with highest concentration of characteristic features. The
features from this subset can be individually evaluated by marking them as
“relevant” or “irrelevant”. The result of the evaluation can be directly used
to refine the feature space of the topic, or as a set of indicator keywords that
restricts the scope of the classifier.

73

2 Focused Crawling

Figure 2.24: The BINGO! Reviser: Evaluation of Feature Spaces

2.4.14 Application Scenario for the BINGO! Framework

The use of the introduced BINGO! components can be illustrated by a small
application scenario for the earlier introduced sample taxonomy with topics
Agriculture, Arts, and Mathematics (Section 2.3.1). The typical sequence of
user actions would contain the following steps:

1. At the beginning, the user collects some Web documents that represent
his topics of interest. He may use for this purpose results from large-
scale Web search engines (e.g. www.google.com), thematically focused
portals (e.g. www.mathworld.com), or general knowledge compendiums
like www.wikipedia.org. The references to carefully selected theme-specific
documents are added to the bookmarks of the user’s Web browser.

2. The user exports his browser bookmarks as a specially formatted HTML
file. The export function is provided by all modern browsers including the
Mozilla FireFox that was used in our example (Figure 2.4).

74

2.4 Implementation

3. The user starts the integrated BingoDesktop environment (Figure 2.19)
and makes initial adjustments of the BINGO! configuration (e.g. the stem-
mer language or download parameters of the crawler, as shown in Figure
2.20). In the next step, he initiates the batch import of the bookmark file.
This batch forces the BINGO! framework to analyze the bookmarks, to
initialize data structures for the new taxonomy, do fetch and analyze all
referenced documents, to apply feature selection algorithms, and to build
topic-specific classifiers.

4. The user inspects the import results using the BINGO! data model (Fig-
ure 2.18). In our example, the generated taxonomy contains the useless
empty folder “shortcut bar” that was automatically created by the Fire-
Fox browser. This folder can be manually removed from the topic tree to
avoid confusion. Furthermore, the user shortly verifies all remaining top-
ics to ensure that training documents were imported correctly. In general,
BINGO! cannot guarantee that all referenced documents will be imported
as expected. For example, some PDF documents may be protected from
the content extraction or may contain bitmap images instead of text. In
the worst case, some topics of the taxonomy would remain empty.

5. The user retrieves additional negative training samples for the root level
of the taxonomy from general portals www.yahoo.com and www.dmoz.org
using the WebAPI toolkit, and retrains the classifier.

6. The user initiates the learning phase of the crawl. It uses the crawler frame
(Figure 2.13), the database frame (Figure 2.15), or the visualization tool
(Figure 2.14) to monitor the crawl progress.

7. After several retraining iterations, the user inspects the best results from
each topic using the BINGO! reviser component (Figure 2.22) to ensure
that the retraining correctly captures his interests and there is no “topic
drift” phenomenon. Additionally, the user inspects the feature spaces of
topics and carefully selects topic-specific indicator keywords. For example,
for the topic “Arts” the user marks as irrelevant some general, not topic-
characteristic features such as “work”, “info” or “coast” (Figure 2.24).
Topic-specific, discriminative features such as “sculptor”, “porcelain”, or
“courbet” form the set of indicator keywords to restrict the scope of the
topic classifier.

8. The user initiates the harvesting phase of the crawl. After some hours,
the topics of the taxonomy are populated with hundreds or thousands of
new crawl results.

75

2 Focused Crawling

9. The user initiates the computation of link-based authority scores that can
be used later for ranked retrieval.

10. The user starts the BINGO! reviser component to get the brief overview
over the crawl quality metrics (such as precision, recall, or accuracy, as
shown in Figure 2.23). Finally, it uses the BINGO! search engine for
expert search within the BINGO! repository. In our example shown in
Figure 2.21, the user decides to restrict his query “central limit theorem”
to matches from the topic “Stochastics” and orders the returned results
by text similarity (TFIDF ranking).

76

2.5 Experimental Evaluation

2.5 Experimental Evaluation

2.5.1 Experimental Design

Unlike other facets of Information Retrieval (e.g. document classification), fo-
cused crawling is still a new and underrepresented research area. Since the
Web is a distributed and exponentially groving repository of extremely hetero-
geneous information sources, the evaluation methodology and the construction
of suitable benchmarks pose hard problems.

One natural opportunity is running the focused crawler on Web sampling
collections that typically contain subsets of the crawl by large-scale Web search
engines (e.g the AltaVista crawl [63]). Although such collections are typically
created by aggressive unfocused fetching of all encountered documents up to
some depth from the initial seed, some of them are restricted to particular top-
level Web domains and thus reflect the thematic limitations in the scope (e.g.
the .GOV and Terabyte datasets of the Text Retrieval Conference TREC [25]
are restricted to the .gov domain and contain mostly official government Web
pages and related resources). However, a random walk within a restricted scope
substantially differs from its focused exploration.

Existing evaluation techniques using the real Web as testing ground were, up
to now, concentrated on technical aspects like crawler throughput, harvesting
rate, or robustness in acquiring thematically relevant pages [67]. These mea-
surements are clearly important for assessing a focused crawler. On the other
hand, much less attention was payed to the viability and usefulness of focused
crawling in realistic application scenarios.

We performed several feasibility studies for different realistic user-driven ap-
plications:

1. Topic exploration. The goal of this experiment was to demonstrate the
ability of the focused crawler to exploit the locality of the Web. Start-
ing from an extremely small collection of user bookmarks, the focused
crawler aims to learn and explore the desired topic of interest using semi-
supervised focus adjustment.

2. Expert Web search. In this experiment, the focused crawler was used
to identify Web documents that belong to a (vaguely specified) topic with
extremely low recall. Obviously, this search does not yield satisfactory
results on any of the popular standard search engines (such as Google)
and is extremely time-consuming.

3. Portal generation. In this application study, we used the focused crawler
to create an information portal for specified topics from a small seed of

77

2 Focused Crawling

training documents. The goal was to minimize the human efforts for
building and maintaining such information system.

2.5.2 Testbed

In the experiments discussed here, BINGO! was running on a dual Intel 2GHz
server with 4 GB main memory under Win2k, connected to an Oracle9i database
server on the same computer. The number of crawler threads was initially
restricted to 30; the number of parallel accesses per host was set to 2 and per
recognized domain to 5. The engine used 5 DNS servers located on different
nodes of our local domain. The maximum number of retrials after timeouts was
set to 3. The maximum allowed tunneling distance was set to 2. The allowed
size of the URL queues for the crawl frontier was set to 30,000 for each class. To
eliminate “meta search capabilities”, which could distort our assessment of the
focused crawler’s effectiveness, the domains of major Web search engines (e.g.,
Google) were explicitly disallowed for crawling. For classification, linear SVM
classifiers were used. The feature selection, using the MI criterion, selected
the best 2000 features for each topic; for efficiency these were chosen from a
pre-filtered sets of 10000 terms with the highest df values per topic.

2.5.3 Topic Exploration

To challenge the learning capabilities of our focused crawler and its ability to
exploit the locality of the Web, we aimed to gather a large collection of Web
pages about database research. This single-topic directory was initially popu-
lated with only two authoritative sources, the home pages of researchers David
DeWitt and Jim Gray that are shown in Figure 2.26 (actually 3 pages as Gray’s
page has two frames, which are handled by the crawler as separate documents).

The initial SVM classification model was built using these 2 positive and about
400 negative examples randomly chosen from Yahoo.com and dmoz.org top-level
categories such as sports and entertainment using the BINGO! WebAPI module
(see Section 2.4).

To assess the quality of our results we used the DBLP portal (http://dblp.uni-
trier.de/) as a comparison yardstick. The idea was that we could automatically
construct a crude approximation of DBLP’s collection of pointers to database
researcher homepages. In August 2005, we completely crawled the author
database of the DBLP portal using BINGO! and extracted all entries with ex-
plicit references to author home pages. Figure 2.25 shows the typical example
of an DBLP author page that contains the link to the researchers’s home page
and his list of publications. In the DBLP crawl, we found the information about
31.529 authors from the topic “database research”, 6167 entries contained ex-
plicit links to author home pages. To prevent giving BINGO! any conceivably

78

2.5 Experimental Evaluation

unfair advantage, we disallowed the DBLP domain and the domains of its 7
official mirrors for our crawler in the main experiment.

Figure 2.25: The DBLP Author Page

We compared the outcome of three crawling strategies:

1. Focused crawl with automated retraining. In the learning phase,
BINGO! fully explored the vicinity of the initial seeds and added newly
found archetypes to the topic. To this end the maximum crawl depth
was set to 4 and the maximum tunnelling distance to 2, and we restricted
the crawl of this phase to the domains of the training data (i.e., the CS
department of the University of Wisconsin and Microsoft Research). The
complete crawl within this scope has fetched 3612 Web documents. Since
we started with extremely small training data, we did not enforce the
requirement that the SVM confidence for new archetypes would have to
be higher than the average confidence of the initial seeds. Instead, we
rather admitted all positively classified documents. Altogether we ob-
tained 680 archetypes, many of them being scientific publications, talk

79

2 Focused Crawling

slides, or project overview pages of the two researchers, and then retrained
the classifier with this basis. The harvesting phase then performed for 12
hours the prioritized search with focusing strategy “Classifier; Breadth-
First” (see Section 2.3.3) with the above training basis and seed URLs,
now without any domain limitations other than excluding popular Web
search engines and DBLP.

2. Focused crawl without retraining. In this experiment, the initial
SVM model (built on extremely sparse training data) was directly used
for further Web exploration. We directly started the crawler with focusing
strategy “Classifier; Breadth-First” on links extracted from training doc-
uments (Section 2.3.3). The crawl was limited to the same total runtime
as in our first experiment.

3. Bulk crawl without focusing. In this experiment, we disabled the use
of SVM classification. Each fetched document was directly accepted for
the topic “Database research” with default confidence value 1.0. For the
URL prioritization on the crawl frontier, we used the strategy “Breadth-
First” (Section 2.3.3). The crawl was limited to the same total runtime
of 12 hours as in our first experiment.

Property Focused, Focused, Unfocused
with retraining no retraining

Visited URLs 1.231.652 1.499.853 2.163.723
Extracted links 7.503.126 6.113.843 18.622.231
Positively classified docs 487.028 319.223 1.619.228
Visited hosts 122.169 138.269 279.981
Hosts with positively classified documents 87.211 91.264 241.119
AVG positively classified docs per host 5 3 7

DBLP-relevant docs 74.621 42.812 4.112
DBLP-relevant visited hosts 25.612 10.714 2.080
AVG DBLP-relevant docs per relevant host 3 4 2
max DBLP-relevant docs per relevant host 211 187 75
min DBLP-relevant docs per relevant host 2 1 1

Table 2.2: Topic Exploration: Summary of Crawl Statistics

In evaluating the results, we considered a homepage as “found” if the crawl
result contained a Web page “underneath” the home page, i.e., whose URL had
the homepage path as a prefix; these were typically publication lists, papers, or
CVs of researchers. The rationale for this success measure was that it would
now be trivial and fast for a human user to navigate upwards to the actual home
page.

Table 2.2 summarizes the statistics of the crawls that were performed in Au-
gust 2005. The table shows the number of fetched documents, the fraction of

80

2.5 Experimental Evaluation

relevant documents (Web pages that belong to homepages of DBLP-referenced
researchers), the number of visited hosts (Web servers) and the fraction of rel-
evant hosts (i.e. hosts that contained at least one DBLP-referenced author
homepage that was successfully recognized by the crawler), and further statis-
tics (e.g. the average number of found relevant documents on each visited
host). The focused crawl with retraining has fetched documents from more than
122.000 Web servers; on average, 5 documents on each host were positively clas-
sified by BINGO! into the topic “Database Research”. The substantial fraction
of visited hosts (about 25%) contained some DBLP-referenced author home-
pages. Among all hosts that contained at least one DBLP-referenced author
homepage, the number of positively classified relevant documents from each
host was between 1 and 211 (on average 3). Figure 2.27 shows the hosts with
largest numbers of positively classified relevant documents, mostly Web servers
of Computer Science university departments and research units. It can be ob-
served that the focused crawl with retraining has visited fewer hosts than the
focused crawl without retraining; however, these hosts contain a larger fraction
of desired DBLP-referenced author home pages. The largest number of different
hosts and documents was processed in the unfocused crawl. Since all documents
in the unfocused crawl were directly accepted for the topic “database research”,
the number of positively classified documents is very high (it is slightly lower
than the total number of processed URLs due to found redirects, duplicate
pages, and download errors). However, the missing restriction of the scope and
the absence of thematical guidance on the crawl frontier lead to substantially
lower fraction of relevant matches in this set.

In the next step, we evaluated the quality of the crawl outcome. For this
purpose, we considered two quality measures:

• DBLP recall of the crawl, defined as the fraction of found DBLP-referenced
author homepages (i.e. the crawler found the home page itself or some
Web documents “underneath” of it).

• DBLP precision of the crawl. For this measure, we sorted the DBLP
authors with known home pages in descending order of their number of
publications (ranging from 355 to 2). At the same time, the BINGO! crawl
results of the topic “Database research” were ordered by classification
confidence conf(d) (Section 2.2.3). The DBLP precision was defined as the
fraction of best-rated TopNDBLP author homepages within TopNcrawl best
documents of the topic “Database Research”. We evaluated the DBLP
crawl precision for TopNcrawl ∈ {1000, 5000, allResults} and TopNDBLP ∈
{1000, allAuthors}.

Table 2.3 compares the quality of three introduced experiments. Noteworthy
is the good recall of the focused crawl with retraining: it has found 727 of

81

2 Focused Crawling

Top crawl results
Focused, retraining Focused, no retraining Unfocused

1000 authors All authors 1000 Authors All authors 1000 Authors All authors
1000 489 544 98 166 – –
5000 585 845 122 318 – –
all 727 2571 331 673 108 242

Table 2.3: BINGO! DBLP Precision

the top 1000 DBLP authors (without ever going through any DBLP page). In
addition, 489 of these top-ranked authors can be found in the 1000 documents
with highest classification confidence. Note that our focused crawler was not
intended to be a homepage finder and thus did not use specific heuristics for
recognizing homepages (e.g., URL pattern matching, typical HTML annotations
or HTML formatting, etc.).

The focused crawl without retraining shows the limited ability of topic explo-
ration. Although the crawler found at least some documents that belong to 331
of the top 1000 DBLP authors, only 98 of these top-ranked authors can be found
by inspection of the 1000 documents with highest classification confidence. Due
to the extremely small positive training set, the classification model cannot go
beyond the raw pre-filtering of fetched documents and does not provide the good
ranking of positively classified results.

The unfocused crawl without content-based prioritization of links on the crawl
frontier cannot benefit from the link structure of the topic. Although the crawl
used the “Breadth-First” strategy to prioritize the exploration of nearest “vicin-
ity” of training documents, it found only 108 of the top 1000 DBLP authors.

The results clearly show the advantages of focused crawling for topic explo-
ration. Starting from the extremely small set of manually selected documents,
the focused crawler is able to recognize the most promising directions for further
navigation. The combination with re-training helps to substantially improve the
classifier quality and the context-specific focusing of the crawler.

2.5.4 Portal Generation

In this study, we evaluated the viability of our approach for automatic generation
of thematically focused information portals. The goal of the project was the
automated generation of the thematically focused portal with informations for
craftsmen and small trades of the Saarland. The portal prototype coined HIP
(Handicrafts Information Portal) was originated from our cooperation with the
Saarland’s Chamber of Small Trades (Handwerkskammer des Saarlandes) and
the University of Applied Sciences (Hochschule für Technik und Wirtschaft) in
Saarbrücken.

The HIP portal has been conceptually designed to meet special information

82

2.5 Experimental Evaluation

demands of craftsmen (laws and regulations for handicrafts, financial support,
wage agreements, information for trainees, etc.). The objective of the project
was to meet the context-specific problems of such information services using the
technology of focused crawling:

• The craftsman information portal should cover very broad and hetero-
geneous Web topics (laws and regulations, local craftsmen associations,
homepages of handicraft business, etc.). The mutual referencing within
and between these topics in the Web is much lower than in other themes
topics like travel or computer science.

• The wide pattern of relevant topics makes it difficult for the portal ad-
ministrator to maintain and manage the entire taxonomy by hand. The
selection of training data for every topic of the broad thematical hierarchy
easily becomes the bottleneck of the portal technology.

• The desired audience of the HIP portal is extremely heterogeneous and
consists of multiple groups of users (e.g. master craftsman vs. trainee).
The portal adaptation for information demands of each group requires the
maintaining of multiple thematical hierarchies.

• The search engine should be easy to use and provide high thematical
precision for desired topics.

The next sections give an overview of our case studies and experimentation
with HIP: a short explanation of the resulting goal-oriented implementation and
the results of its practical evaluation.

Overview of the HIP Architecture

The HIP search engine was implemented on top of the BINGO! focused crawler
(Section 2.4). Its overall architecture is shown in Figure 2.28. The resulting
HIP system consists of 3 main components:

1. The BINGO! core software along with its database repository and the
focused crawler that is used to acquire the topic-specific information from
the Web;

2. The HIP search engine that provides the interface for searching in the data
repository;

3. The portal administration interface that is used to operate the BINGO!
system and to tune the system calibration parameters, to manage the topic
directory, to inspect training data and crawl results, and to analyze the
user feedback.

83

2 Focused Crawling

The BINGO! Core Software. The BINGO! crawler (Section 2.4) is the central
component of the HIP framework. It is internally used by HIP for initialization
of new taxonomies, automated retrieval of additional training data, thematically
focused Web crawling, and link-based authority ranking of crawl results. The
BINGO! repository is directly used by the HIP search engine.

Once the new HIP repository was created, it can be periodically refreshed
to ensure the recency of the search results. For this purpose, the crawler can
be periodically restarted as a background process on randomly chosen links
from positively classified documents with highest hub scores. The positively
classified pages are automatically added to the repository. Invalid entries (e.g.
not existing documents) are automatically removed. After the crawl, the link-
based authority ranking is repeated using the refreshed link structure of the
repository.

The HIP Portal Administration. The portal administration toolkit allows the
interactive configuration of the portal and its data repository (Figure 2.29). It
implements following portal maintenance tasks:

• Inspection of the data repository. The portal administrator can use the
extended HIP search engine to list the whole content of particular topics
or to display results for keyword-based queries. The shown documents
can be moved across topics or deleted from the repository. In the latter
case, the toolkit internally adds the document to the negative training set
of the root node in the portal taxonomy. This prevents the crawler from
repeated fetching of the misclassified document in next runs.

• Inspection of the training datasets. This interface allows the portal ad-
ministrator to manage the training base for each topic (i.e. documents
that are used to build the topic-specific classification model), and the col-
lection of starting points that is used to initialize the URL queue of the
crawler in the harvesting phase.

• Inspection of the user feedback. This interface allows the administrator
to verify user opinions about misclassified and wrong documents in the
topics of HIP.

• Inspection of new user proposals: verification of new topic-specific Web
sources proposed by users for the given topic.

• Customization of WebAPI query services: customization of keyword-based
queries to large-scale Web search engines (e.g. google.com) and themat-
ical Web portals (e.g. amazon.com). The queries are executed by the
BINGO! WebAPI framework (Section 2.4.11) to enrich the BINGO! data

84

2.5 Experimental Evaluation

collection with additional negative training samples, or to initialize the
crawler queue.

• Taxonomy management. This module allows the administrator to manage
the topic structure of the portal taxonomy: defining of new topics, deleting
of old and outdated themes, merging of multiple topics, and moving topics
across the topic tree. The updates are directly propagated to the BINGO!
repository.

• Customization of system parameters, such as the number of matches for
each result page, default ranking preferences for simple search scenario,
etc.

Conceptually, the administration toolkit was designed for non-expert users
with limited knowledge about the underlying Web retrieval technology (in our
application study, staff members of the chamber of small trades). To simplify
the maintenance overhead, the administration toolkit was implemented as a
collection of scripts in the programming language PHP. It can be used with
any PHP-enabled Web server (e.g. Apache) and allows the administrator to
customize the portal without any additional software, directly from the Web
browser window. The implementation of the administration toolkit contains 39
scripts in the programming language PHP and consists of 11.478 lines of code
and formatted HTML content.

The HIP Search Engine. The HIP search engine provides the search inter-
faces for the BINGO! data repository. It consists of two basic parts: the query
processor and the user interface.

The user interface is responsible for rendering of search pages and results
returned by the query processor. It is implemented in the scripting language
PHP. The module consists of 86 PHP scripts that contain ca. 63.200 lines of
code and HTML formatting. It provides two basic search scenarios:

• Simple keyword-based search (Figure 2.30). This option is similar to the
typical search scenario with large-scale Web search engines. The user is
required to specify a number of search keywords that are interpreted as a
conjunctive query. The list of results (from the whole BINGO! repository)
can be ordered according to one of several ranking criterions (according
to attributes like classification confidence, link-based authority, TFIDF
similarity, or recency). The matches with highest relevance grades are
listed first.

• Advanced search (Figure 2.31). This interface allows the user to justify
the search in a flexible manner. The user can focus the search on one topic

85

2 Focused Crawling

of the taxonomy, specify negative keywords (i.e. the qualifying documents
are not allowed to contain the specified keyword) and restrict the search
to particular data types (e.g. PDF).

In some cases, the full list of query matches can be very long. For better read-
ability, the search engine splits the result set into multiple pages of appropriate
size (e.g. 10). Each document in the rendered result page is annotated by its
title, the automatically generated topic-specific document annotation, the topic
label, and the summary of user evaluation as shown in Figure 2.30.

To improve the quality of HIP services and for evaluation of the crawl out-
come, we implemented mechanisms for user feedback:

• The user can report his opinions about each visited match. The feed-
back can include three optional parts: the user’s grading of the document
(positive / negative) and the alternate classification topic. The submitted
feedback is stored into the HIP repository and can be inspected by the
portal administrator. This option becomes visible when the user opens
the target link of the match in a new browser window.

• The user can propose additional links (Web sources) for the HIP tax-
onomy. These recommendations are periodically inspected by the portal
administrator.

The user interactions are directly mapped onto appropriate SQL queries and
sent to the query processor of the search engine. The query processor of HIP
directly operates on the database repository of BINGO! (Section 2.3.5). It is
responsible for execution of user queries and returns information about quali-
fying documents. This information is used by the user interface to render the
HTML output.

The implementation of the query processor extends the database schema of
BINGO! by following data structures:

• The relation BingoDocuments is extended by three additional attributes
PosEvaluation, NegEvaluation and Clicks that contain the user feedback
(positive / negative opinions) and the number of accesses (clicks) for each
document of the repository.

• The relation Preferences contains HIP-specific settings and parameters,
such as the number of shown search results per page, the default ranking
of search results, etc.

• For efficiency reasons, the document features in the repository are mapped
onto unique integer values. The index structures that associate mapped

86

2.5 Experimental Evaluation

features with document IDs can be completely loaded into the database
cache. This allows substantially faster index lookups during the query
processing. To ensure the consistency and completeness of the feature
mapping, it is updated after each crawling session as part of the postpro-
cessing routine.

Internally, the query processor uses document features (word stems) to iden-
tify relevant matches. The general routine of query processing in HIP is summa-
rized in Figure 2.32. At the beginning, the query processor tokenizes the query
string and removes stopwords. The stemming algorithm is applied to convert
each of remaining keywords into word stem. The word stems are mapped onto
associated integer feature-IDs. In the next step, the algorithm produces the
list of qualifying document-IDs for each feature, and merges these lists. The
resulting list of result candidates is sorted with respect to the specified rank-
ing attribute (classification confidence, link-based authority, etc.). The specified
number of best matches (that are used by the user interface to render the first re-
sult page) are materialized: the query processor retrieves additional information
for constructing document previews (document title, URL, preview, evaluation
scores) using additional repository lookups. This set is returned to the user
interface. The limited number of remaining document IDs (max 1000 for each
new query) is temporarily stored. The size of this array is used by the user
interface to generate and display links to further result pages. When the user
jumps to one of the next result pages, the user interface requests the appropriate
subset of the array for rendering. These document IDs are directly materialized
and returned to the user interface without new processing of the entire query.

For efficiency reasons, the routines of the query processor are implemented as
a package of server-side SQL scripts in the programming language PL/SQL (ca.
1000 lines of source code). The stemming algorithms and stopword elimination
routines are implemented as server-side Java stored procedures (ca. 800 lines of
source code).

Generation of the Thematically Focused Portal

The goal of our first case study was the automated generation of the thematically
focused HIP portal with BINGO!. The selection of thematical topics for the HIP
taxonomy and the preparation of initial training documents for these themes
was completely dedicated to staff members of the chamber of small trades (i.e.
human experts with expert knowledge of small trades but without Information
Retrieval background).

To meet the information demands of different user groups, the proposed HIP
taxonomy contains three main hierarchies of craftsman-specific topics (profes-
sions and professional groups of the business branch, typical processes and work-
flows, education and careers). Figure 2.33 shows the main topics of the HIP

87

2 Focused Crawling

taxonomy; the full overview of the taxonomy tree can be found in Appendix A.
Each hierarchy contains currently 2 levels with a total of 15 to 25 categories. To
focus the crawler on these themes, the experts of the chamber of small trades
manually selected online tutorials for handicrafts, topic-specific laws and reg-
ulations, and sample business homepages of appropriate trades from the Web
(in German language). Due to the naturally broad thematical spread of small
trades and the relatively high number of resulting subtopics, the number of
sample documents per topic was between 4 and 15, i.e. the initial intellectual
input was extremely sparse and often far from being representative.

Our procedure with HIP for portal generation corresponds to the general
application scenario described in Section 2.4.14. At the beginning, the BINGO!
system was initialized by importing of the new taxonomy structure from Figure
2.33, represented by the appropriate bookmark file. The topic OTHERS on the
root level of the taxonomy was populated with 414 negative training documents
obtained by the WebAPI module (Section 2.4.11) from portals www.yahoo.de
and www.dmoz.org/world/deutsch/ (German versions of the yahoo and dmoz
portals). With respect to the desired information domain (informations about
small trades in Germany), the BINGO! engine used the stemming algorithm for
German language and an appropriate list of German stopwords for stopword
elimination and language recognition.

In the learning phase, the crawl was restricted to the hosts of the initial crawl
seeds and restricted to a depth of 3 with maximum tunnelling distance set to 1.
To explore the nearest vicinity of initial seeds, we used the “Breadth-First” pri-
oritization strategy. The complete exploration of the specified segment returned
about 800 new archetype candidates. After re-training of topic classifiers, the
focused crawl was continued on the Web without host, domain, or depth limita-
tions with focusing strategy ’Classifier; Breadth-First” and maximum tunnelling
distance set to 3.

Property Value
Visited URLs 11.397.625
Visited Hosts 343.915
Extracted Links 96.494.711
Positively classified 1.254.877
Hosts with positively classified docs 101.922
AVG positively classified docs per host 12
Max crawling depth 98

Table 2.4: Web Crawling with HIP

Figure 2.4 illustrates the typical crawling performance of HIP. The 24h run
of the BINGO! engine collected 1.254.877 positively classified documents by
visiting ca. 11 Mio Web pages across 343.915 different hosts.

The key rationale of focused crawling in our application scenario is the higher

88

2.5 Experimental Evaluation

precision by restricting scope: although the collected data repository remains
reasonably small, it serves highly relevant contents for the topics of the taxon-
omy. As an example, we may consider the sample user that looks for books
about small trades (e.g. the apprentice that learns a trade). One way to obtain
the desired information is asking the large-scale search engine such as google.de.
However, queries like “book small trades” (German: “Buch Handwerk”) return
no useful results at all (Figure 2.34). Of course, the information about rele-
vant books can be also found in specialized online bookstores like amazon.de.
However, the results of the Amazon search engine are also more confusing than
helpful (Figure 2.35).

Although the HIP search engine clearly contains significantly fewer potentially
relevant documents than Google or Amazon, its thematic focus on the context
“small trades ’ allows the user to find multiple relevant matches directly on the
first result page, without time-consuming query refinements or manual portal
browsing (Figure 2.36). Table 2.5 contains samples of further queries, provided
by experts from the chamber of small trades for the HIP evaluation. The top-
10 results returned by HIP were compared with answers for identical queries
returned by the unfocused large-scale Web search engine (google.de) and the
thematical portal for printed media (amazon.de). These and further context-
specific information demands (such as search for open vacations, recent laws and
regulations for small trades, calls for tender, etc.) can be often satisfied by the
HIP search engine substantially better than by unfocused information sources.

Requested HIP Ranking Top10 Oppo- Top10
information query attribute HIP prec nent prec
books about book small trades SVM 0.6 Amazon 0.1
small trades (Buch Handwerk)

Google 0.0

books for entrepreneurs book entrepreneur small trades SVM 0.5 Amazon 0.0
in small trades (Buch Existenzgründer Handwerk)

Google 0.2

statictical information PDF: statistics small trades SVM 0.3 Google 0.1
about german small trades (Statistiken Handwerk)
law regulation of small PDF: hwo SVM 0.4 Google 0.0
trades in Germany (HwO = Handwerksordnung)
teaching fields in education PDF: teaching fields baker SVM 0.4 Google 0.0
and traning of bakers (Lernfelder Bäcker)
registration forms PDF registration form small trades SVM 0.2 Google 0.0
for small trades (Antrag Eintragung Handwerksrolle)
general information master baker text 0.4 Google 0.0
about bakers (Meister Bäcker) sim
recent press releases about Saarland press releases small trades recency 0.4 Google 0.0
small trades in Saarland (Saarland Pressemitteilungen Handwerk)

Table 2.5: Samples of Thematically Focused HIP Queries

To evaluate the viability of the BINGO! repository (Section 2.3.5) for the

89

2 Focused Crawling

use in Web applications with realistic load, we stressed the HIP prototype by
simultaneously running multiple concurrent requests. In each experiment we
used the fixed number of clients (1, 5, or 10) for sending requests to the HIP
search engine in a loop, using queries with fixed number of keywords (1, 3, or
6). The testing queries were constructed from available words in the BINGO!
repository by random selection; the selection probability for particular terms
was chosen directly proportional to the document frequency (df) weights of
appropriate features in the collection (see Section 2.2.1 for details about feature
weighting). For simplification, we omitted correlations between query keywords
and did not include TCP/IP delivery delays into time measurements. The
duration of each experiment was set to 1 hour.

Parallel queries Keywords per query Matches
Response time Response time Response time

Max (ms) Min (ms) Avg (ms)
1 1 15508 15250 47 170
1 3 22492 16984 78 330
5 1 16185 110547 78 738
5 3 10798 248984 78 1527
5 6 19876 303891 219 4575
10 1 14053 398781 93 1319
10 3 11924 290718 422 3886

Table 2.6: Performance of the HIP Search Engine

Table 2.6 shows the observed load behavior of the HIP search engine. In
general, it provides interactive response times that are acceptable for the user
in real-world application scenarios. We notice that in these experiments the
HIP system was running on moderately configured desktop hardware (Section
2.5.2). This testbed corresponds to the typical application domain for the HIP
search engine: the Web server of the small-sized organization (in our application
study, the chamber of small trades).

Customization of HIP

An important point about the introduced technology is its versatility and accep-
tance by users from the desired application domain (e.g. staff members of the
small-sized enterprise that maintains the small Web portal and provides focused
information services in the scope of its professional interests). Our objective was
to estimate the real efforts for non-expert users to maintain and to manage the
HIP taxonomy. Thus, this part of the study should be done by users with no
expert knowledge in Web retrieval. We invited the experts from the chamber of
small trades to extend the HIP taxonomy by additional themes of their choice.

The experts from the chamber of small trades decided to extend the HIP
taxonomy by topics of the consulting program “Engineering of building services”
for small trades in Saarland. They provided 7 themes (corresponding to recent
consulting activities in this field) (Figure 2.37).

90

2.5 Experimental Evaluation

Each of the new topics was populated with 4 to 20 PDF articles (regulations,
reports, research articles, technical specifications) from the appropriate appli-
cation domain. The root node of the new taxonomy (Engineering of building
services) was populated with one topic-specific document, the comprehensive
systematic overview of modern building technologies. This reference was used
to extract domain-specific vocabulary and to specify indicator keywords of the
taxonomy and its subtopics. Each topic was associated with 200 to 500 indicator
keywords; Table 2.7) shows the set of indicator keywords for the main topic of
the new sub-taxonomy, Engineering of building services (German: “Hausbau”).

Indicator MI DF Indicator MI DF Indicator MI DF
mehrteilbauweis .000100 1 schornstein .000100 1 verwendbarkeitsnachweis .000099 3
mauerverband .000100 2 horizontallast .000100 1 seitenverfalz .000099 1
kachelh .000100 1 waermeerzeug .000100 1 mindestgrundfl .000099 1
wasserentnahmestell .000100 1 nurdachhaeus .000100 1 gurtgesim .000099 4
widerstandsf .000100 1 sockelgesim .000100 1 gurtfoerd .000099 1
urahmenkonstruktion .000100 1 ueberbaut .000100 3 rohbauraummeterpreis .000099 4
belaeg .000100 2 unstarr .000100 1 deckungsmaterial .000099 1
wohnzweck .000100 1 aufzueg .000099 2 strassenwes .000099 1
biegetrag .000100 1 betriebswassernutz .000099 1 betriebsschaecht .000099 1
tondachziegel .000100 1 grundbuch .000099 1 belueftungsschaecht .000099 1
..........

Table 2.7: Indicator Keywords for the Topic “Engineering of building services”
of the HIP Application Study

In the learning phase, the crawl was restricted to the domain of one authorita-
tive portal about building technologies, www.baulinks.de. The documents from
this portal were completely processed by the focused crawler. After automatic
retraining on positively classified archetypes, the crawl was started on all links
extracted from the portal www.baulinks.de. The scope of each topic classifier
was restricted by the requirement that qualifying documents should contain at
least 2 indicator keywords from the corresponding topic set.

Topic Training docs Archetypes Positively classified Top-20 precision
Companion for building projects 5 9 2716 0,75
Legal board of construction 4 42 2250 0,7
Housetop engineering 21 18 912 0,9
Energy-saving technologies 7 29 1859 0,85
Stonework technologies 17 27 517 0,6
Rainwater utilization 3 8 728 0,65
Heating 4 11 3011 0,75
Building services (macro avg) 8,7 20,5 1713 0,74

Table 2.8: Crawling Precision for User-Specific Custom HIP Topics

The crawler was running for about 12 hours and collected ca. 12.000 new doc-
uments that were positively classified into the sub-topics of the new taxonomy
subtree. Finally, the top 20 best documents of these topics (according to the

91

2 Focused Crawling

classification confidence) were evaluated by human experts of the chamber of
small trades using the BINGO! Reviser (Section 2.4.13). Table 2.8 summarizes
the results of this evaluation. Noteworthy is the good crawler precision that lies
between 0.6 and 0.9 for particular topics.

Task Men-hours
Preparation of training data 3
Monitoring the learning phase 1
Selection of topic-specific indicators 2.5
Result postprocessing 1
Evaluation of crawl results 1

Table 2.9: Human Efforts for Integration of Custom HIP Topics

An important factor of the HIP versatility is the required amount of intel-
lectual inputs from human experts. Table 2.9 summarizes the human efforts
for preparations and evaluation of the new topics in our case study. The entire
integration for custom HIP topics, including crawling and evaluation of results,
requires ca. 1 human working day for non-experienced application users. The
remarkable quality of the crawl outcome (the average topic precision for top 20
results was 0.85) allows the direct use within the HIP search engine without any
further filtering or cleaning iterations. The results of the HIP application study
confirm our expectations concerning the viability of focused Web retrieval for
automated generation of thematically focused Web information systems.

2.5.5 Expert Web Search

To investigate the abilities of the focused crawler for expert Web search, we
studied typical examples of the “needle-in-a-haystack” type search problem.

In May 2005, we used BINGO! to search for freely available open source im-
plementations of the ARIES recovery algorithm. The direct asking a large-scale
Web search engine (such as Google) for “free open source ARIES recovery” did
not return any useful results in the top 10 ranks; it would be a nightmare to
manually navigate through the numerous links that are contained in these poor
matches for further surfing. As an anecdotic remark, the open source software
portal sourceforge.net even returned lots of results about binaries and libraries.

Our procedure for finding better results was as follows. To retrieve useful
training data and starting points for the focused crawl, we invoked the BINGO!
WebAPI module (Section 2.4). The results for queries “aries recovery method”
and “aries recovery algorithm” from the Web search engine Google were auto-
matically fetched and analyzed by BINGO!. The top 20 matches for each query
were intellectually inspected by us, and we selected 7 reasonable documents for
training; these are listed in Table 2.38.

92

2.5 Experimental Evaluation

Note that the Mohan’s ARIES page (the 5th URL in Figure 2.38) does not
provide an easy answer to the query; of course, it contains many references to
ARIES-related papers, systems, and teaching material, but it would take hours
to manually surf and inspect a large fraction of them in order to get to the
source code of a public domain implementation.

These pages were used to build the initial SVM classification model. Anal-
ogously to the prior experiment, we used as negative examples about 400 ran-
domly chosen documents from Yahoo.com and dmoz.org top-level categories
using the BINGO! WebAPI module (Section 2.4).

To restrict the scope of the classifier, we defined for the topic “ARIES” two
mandatory indicator keywords, “free” and “open source”. To avoid the pre-
mature end of the crawl due to the lack of qualifying matches, the maximum
tunnelling distance was set to 4. The maximum allowed crawling depth was in
this experiment not limited in any way.

The focused crawler was then run for a short period of 10 minutes with fo-
cusing strategy “Classifier; Breadth-First”. It visited about 19,000 URLs with
crawling depth between 1 and 4; 38 documents were accepted for the topic
“ARIES”.

Finally, we sorted the positive crawl results in order of their classification con-
fidence conf(d) (2.22) (Section 2.2.3). The obtained result is shown Figure 2.39.
The top-10 results contain the direct reference to the home page of the public
domain open source projects Exodus and Shore (result 2) which implement the
ARIES recovery algorithm. Additionally, pages 1 and 6 contain references to
the home pages of these products. The third open source system, Minibase, is
referenced by links from result pages 5 and 9. Thus, the immediate result of
the focused crawl would provide a human user with a very good reference even
without further filtering.

It is notable that the almost result pages shown in Figure 2.39 do not contain
the keyword “ARIES” at all. On the other hand, pages that contain technical
specifications of recovery components for Minibase, Shore, or Exodus systems
do not contain any information about their licensing or source code options. Of
course, the expert user could realize that the desired algorithm is not available
as a standalone problem-independent solution. He could re-consider his search
intentions and look for public domain open source products that contain the
implementation of the ARIES algorithm. The search might be continued in
the hyperlink vicinity of initial authorities. In our example, the combination of
SVM classification and keyword-based filtering helps to identify good matches
without in-depth analysis of the problem, or time-consuming query refinements.

We emphasize that the expert Web search supported by our focused crawler
required merely a minimum amount of human supervision. The human expert
had to evaluate only 30 to 40 links (20 for training set selection, and 10 to 20
for result postprocessing), collected into prepared lists with content previews.

93

2 Focused Crawling

Including crawling time and evaluation, the overall search cost was about 15
minutes. This overhead is significantly lower than the typical time for manual
surfing in the vicinity of starting points about ARIES (such as IBM Almaden).

In June 2005, we performed analogous experiments with the HIP framework
introduced in Section 2.5.4. Our goal was the finding of local, state-specific
information about small trades (e.g. job offers in the Saarland, trades that
are located in the Saarland, or specialized support programme for young en-
trepreneurs in the Saarland).

In this experiment, the HIP topic structure was initialized as discussed in
Section 2.5.4. In addition, we specified for all topics of the taxonomy the in-
dicator keywords “Saarland”, “Saar”, and “Saarbruecken” (the capital of the
Saarland). Positively classified documents were required to contain at least one
indicator keyword to qualify for the HIP taxonomy. To avoid the premature end
of the crawl due to the lack of qualifying matches, the maximum tunnelling dis-
tance was set to 5. The maximum allowed crawling depth was not limited. The
crawl was started from the homepage of the Saarland’s chamber of small trades
www.hwk-saarland.de. The focused crawler was then run for 3 hours with focus-
ing strategy “Classifier; Breadth-First”. It visited 261.624 URLs with crawling
depth between 1 and 12; 2391 documents were accepted for the topics of HIP
taxonomy.

Requested HIP Ranking Top 10 Oppo- Top 10
information query by HIP prec nent prec
support programme PDF: support programme small trades SVM 0.4 Google 0.1
for small trades (Handwerk Förderprogramme)
support of small support small business autho- 0.2 Google 0.0
businesses (Förderung Mittelstand) rity
program of start program start kapital SVM 0.3 Google 0.1
kapital (Startkapital-Programm)
consultation program for consultation executive personnel SVM 0.2 Google 0.0
executive personnel (Beratung Führungskräfte)
consultation in the founding consultation founding business SVM 0.4 Google 0.0
phase of business (Beratung Gründungsphase)
rent offers for rent offer small business text 0.6 Google 0.0
small businesses (Handwerk Pacht Saarbrücken) sim
support of the first PDF: support first education text 0.2 Google 0.0
education (Förderung Erstausbildung) sim
order placement order placement autho- 0.2 Google 0.1
facilities (Auftragsvermittlung) rity

Table 2.10: Expert Web Search: Evaluation of Saarland-Specific HIP Queries

As in previously discussed HIP experiments, the evaluation of results was
done by experts from the Saarland’s chamber of small trades. They used the
HIP search engine with different search options, including simple and expert
search interfaces, for finding a number of Saarland-specific informations with
low recall on the Web. The top-10 of each result set was fully evaluated by

94

2.5 Experimental Evaluation

human experts and compared with answers from large-scale search engines; we
used google.de with similar settings regarding allowed file types and the pre-
ferred language (German) as a comparison yardstick (by adding the additional
keyword “Saarland” to all google queries in this experiment). Table 2.10 sum-
marizes the results of this assessment. It can be observed that the adaptive fo-
cused crawling by HIP, combined with scope restriction by mandatory indicator
keywords, provides substantially better results than the unfocused large-scale
search system.

95

2 Focused Crawling

2.6 Related Work

There is a substantial amount of work about the methodology of Web crawling.
Many crawler architectures and prototypes (e.g. Mercator [117], PolyBot [183],
UbiCrawler [57]) were proposed in the recent literature. The main focus of prior
work lies on aspects like crawler scalability and throughput [117], distributed
architecture [57], or implementational aspects in connection with particular pro-
gramming languages (e.g. Java) [183]. However, these solutions do not address
the demands of thematically focused Web retrieval applications.

The idea of automatic categorization of Web data was addressed by many
researchers [78, 146, 77, 70]. The observation that the topic-specific information
is on the Web always “a few clicks away” (Section 2.1) has motivated several
improvements to the general crawling scenario [164]. One of the first attempts
to exploit the local connectivity of the Web for crawling was introduced with
the FishSearch system [85]. This system simulates a school of fish, breading
and searching for food. If the fetched page has food (contains user-defined
keywords), the fish breeds and creates offsprings to explore the neighborhood.
The similar idea of heuristic-based neighborhood exploration was proposed by
Menczer in [147]. An analogous approach was addressed by Barabasi and Albert
in [45]. They constructed a robot that added to its database all URLs found
on a document and recursively followed some of them to retrieve the related
documents and further links. To determine the proper direction of further crawl,
the robot used simple keyword matching within link annotations (anchor text).
The experiments have shown however, that this oversimplified search strategy
leads to immediate loss of desired topic and the robot cannot benefit from
the connected nature of the Web. The more aggressive variant SharkSearch
[116] considered the fetched document and the set of user-specified keywords
as vectors and used standard similarity scores from Information Retrieval to
estimate the relevance of the document and the priority of its links in the crawler
queue. This method capitalizes the intuition that relevant documents have
relevant neighbors from the same topic with higher probability than links to
other, randomly chosen, Web pages.

The recent paradigm of thematically focused Web exploration was intensively
studied by Chakrabarti [67]. He considered aspects of hypertext categoriza-
tion into hierarchical topic taxonomies [69, 70], distillation of thematical Web
topics [71, 73, 66, 72], and the methodology of focused crawling [68] for Web
resource discovery. The proposed best-first crawling strategy used the classifier
(trained on sample documents from the taxonomy of the Dmoz.org portal [10])
to guide the focused crawl. Furthermore, the crawler aimed to identify the most
promising crawl directions by periodical estimation of link-based hub scores of
fetched Web pages, e.g. using the HITS [132] algorithm. The similar idea of
URL ordering on the crawl frontier by PageRank [61, 159] was proposed in [80].

96

2.6 Related Work

The concept of an thematically focused Web retrieval framework was studied by
Menczer in [162, 161]. Our approach extends the prior work on focused crawl-
ing by the methodology of automatic focus adjustment in order to overcome the
limitations of initial training data.

In some situations, focused crawlers may miss relevant pages by only crawl-
ing pages that are expected to give immediate benefit. This problem may occur
for topics with low number of direct links between thematically relevant pages.
In order to increase suboptimal harvest rates, strategies have been proposed
that train a learner with features collected from paths leading to a page, as
opposed to just considering the content of the page [171]. An improvement to
the best-first strategy was proposed in [74], where instead of following all links
in relevant pages, the crawler used an additional classifier to predict the links
within a relevant page that are expected to maximize the immediate benefit.
The predictive model was constructed using online relevance feedback. In con-
trast to this method, our focused crawler aims to adjust its focus automatically,
without human intervention.

The method proposed in [171] constructed the link classifier that combined
word-based features from the title and the body of the document, the link
annotation (anchor text), and text blocks in the neighborhood of the anchor
tag. The reinforcement relationship between hyperlinked pages was used for
prediction of the total benefit of following a particular link. Analogously, the
algorithm described in [88] estimated the expected distance from a fetched page
to other relevant pages; if the current page had high benefit, all extracted links
were accordingly prioritized on the crawl frontier. The advanced prioritization
strategies can be combined with our methodology of automatic retraining.

The idea of focused crawling was used for a variety of Web retrieval scenarios,
including exploration of user-specific topics of interest on the Web [67, 185, 187],
expert search within a well-defined set of Web sites (e.g. locating the name of
the CEO within a given company site) [171], location of business information
[163], or finding hidden-Web databases (pages that contain forms and are ex-
pected to be backed by databases with topic-specific contents) [52, 169, 76].
The methodology of evaluating adaptive crawling strategies was addressed in
the studies [150, 149]. In general, focused crawlers have been shown to provide
better results for user-specific topics with substantially lower crawling overhead
than exhaustive, unfocused engines [185, 68, 171, 88, 74]. However, the prior
literature and systems work did not address the problem of sparse training data
and dynamic, unsupervised self-adjustment of the crawler. The prior work on
focused crawling has experimented with different options for aspects like the
mathematical model of the classifier and its tuning options (e.g. naive Bayes vs.
SVM), the construction of the appropriate feature set upon which the classifier
makes its decision, and estimation of the most promising directions for further
crawling to maintain a high harvesting rate - with mixed results that are often

97

2 Focused Crawling

far from conclusive. The aspect of the (fair or poor) quality of the initial training
data has mostly been considered as a given, unchangeable fact that is beyond
the control of the focused crawler. In contrast to other approaches, our solution
aims to overcome the limitations of the training data by periodical re-training
of the classifier. This leads to the more flexible, self-adjusting crawl strategy
that substantially reduces the required human input for crawl preparation.

98

2.6 Related Work

Figure 2.26: BINGO! Seed Pages in the Topic Exploration Experiment

99

2 Focused Crawling

1 http://www.comp.leeds.ac.uk

2 http://www.cs.washington.edu

3 http://www.cs.arizona.edu

4 http://www.cs.umd.edu

5 http://www.informatik.uni-trier.de

6 http://www-i3.informatik.rwth-aachen.de

7 http://os.inf.tu-dresden.de

8 http://www.cs.unc.edu

9 http://www.mpi-sb.mpg.de

10 http://www.research.att.com

Figure 2.27: Top-10 Hosts of the Topic Exploration Experiment

Figure 2.28: The HIP Architecture

100

2.6 Related Work

Figure 2.29: The HIP Administration Toolkit

101

2 Focused Crawling

Figure 2.30: Result Page of the HIP Search Engine (Simple Search)

102

2.6 Related Work

Figure 2.31: Result Page of the HIP Search Engine (Advanced Search)

int[] allResults;

public HipResult[] lookup(String query, int ordering, int numResults)

{
String[] tokens = tokenize(query);

tokens = removeStopwords(tokens);

tokens = stem(tokens);

int[] mappedfeatures = mapFeatures(tokens);

int[][]docIDs;

for (int i=0; i<mappedFeatures.length; i++)

{
docIDs[i] = findCandidates(mappedFeatures[i]);

}
allResults = mergeCandidateLists(docIDs);

sortResults (allResults, ordering);

HipResult[] result = materializeBest(documents);

return result;

}

Figure 2.32: The HIP Query Processing

103

2 Focused Crawling

HIP

Profession and Career

Professional groups

Building Trade

Clothing, Textile, and Leather Trades

Electro and Metal Trades

Health Care, Personal Hygiene, Chemical and Cleaning Trades

Glass, Paper, Ceramic Workmanship

Wood trades

Food trades

Your business

OTHERS

Figure 2.33: The HIP Topic Structure

Figure 2.34: Results of the Google Search Engine for Query “book small trades”
(German: “buch handwerk”)

104

2.6 Related Work

Figure 2.35: Results of the Amazon Portal for Query “book small trades” (Ger-
man: “buch handwerk”)

105

2 Focused Crawling

Figure 2.36: Results of the HIP Portal for Query “book small trades” (German:
“buch handwerk”)

106

2.6 Related Work

HIP

Engineering of building services

Companion for building projects

Legal board of construction

Housetop engineering

Energy-saving technologies

Stonework technologies

Rainwater utilization

Heating

Profession and Career

Professional groups

Your business

OTHERS

Figure 2.37: The User-Specific Extension of the HIP Topic Structure

1 http://www.bell-labs.com/topic/books/db-book/slide-dir/Aries.pdf

2 http://www.cs.brandeis.edu/ liuba/abstracts/mohan.html

3 http://www-2.cs.cmu.edu/afs/cs/academic/class/15721-f01/www/

lectures/recovery with aries.pdf

4 http://icg.harvard.edu/ cs265/lectures/readings/mohan-1992.pdf

5 http://www.almaden.ibm.com/u/mohan/ARIES Impact.html

6 http://www-db.stanford.edu/dbseminar/Archive/FallY99/mohan-1203.html

7 http://www.vldb.org/conf/1989/P337.PDF

Figure 2.38: Initial Training Documents for BINGO! Expert Web Search (search
for ’freely available open source implementations of the ARIES re-
covery algorithm’)

107

2 Focused Crawling

1 http://www.insead.fr/CALT/Encyclopedia/ComputerSciences/Object/oodb.htm

2 http://www.cs.wisc.edu/shore/doc/overview/node2.html

#SECTION00022000000000000000000

3 http://www.daffodildb.com/onedollardb-license-policy.html

4 http://www.geocities.com/mailsoftware42/db/

5 http://netmation.biz/www/i040465d.htm

6 http://www.sigmod.org/sigmod/databaseSoftware/index-20Mar2003.html

7 http://www.daffodildb.com/onedollardb-opensource.html

8 http://dev.mysql.com/downloads/

9 http://www.scilutions.co.uk/freesoft.htm

10 http://www.theregister.co.uk/2005/06/29/

coverity analyses freebsd for flaws/

Figure 2.39: Expert Web Search: Top 10 Results (search for ’freely available
open source implementations of the ARIES recovery algorithm’)

108

3 Data Organization

In the previous chapters, we introduced the BINGO! technology for focused
Web exploration. Our application scenarios (Chapter 2.5) have demonstrated
the viability of the introduced approach for building thematically specialized
portals and user-specific Web exploration systems. Until now, our attention was
mainly focused on the quality of the crawler’s outcome in the context of specified
user taxonomies. The taxonomy itself was considered as a given, unchangeable
set of user-specific topics. However, the open nature of the Web leads to an
extremely broad thematical spread of the documents that are fetched by the
crawler. In many situations, the crawl outcome is disbalanced: some topics
are substantially better populated with crawl results than others. Often this
suggests that the originally given topic directory was not wisely chosen and
should have foreseen a finer granularity for big topics.

In our previously introduced example (Section 2.3.1), the user may realize
after the crawl that the topic “Agriculture” is significantly better populated with
results of the focused crawl than the topics “Mathematics” and “Arts”. In this
case the user may decide to reorganize the topic structure in a semi-supervised
manner in order to obtain additional subtopics of thematically similar results
(say “Farming”, “Forestry”, and “Fishery”). In many situations, it may be
useful to partition only a subset of the available data, but do so with a higher
quality. The left-out documents which does not assigned to any of new subtopics
can remain in the topic “Agriculture”.

Another example of a postprocessing task is the filtering of the data repository.
As a result of the crawl evaluation, the user or portal administrator may decide
to remove from the repository “uncertain” documents with low classification
confidence. The reduced repository is expected to contain the “cleaner” topics
with smaller but concise collections of highly relevant documents. Ideally, the
filtering methods should provide flexible calibration parameters to meet the
relative importance of result quality metrics such as accuracy versus loss.

The tasks of taxonomy filtering and organization can be also considered in the
context of an distributed, decentralized Web information system with multiple
data repositories and models. The typical application scenario for collabora-
tive data organization is the decentralized peer-to-peer (P2P) overlay network
of users with shared topics of interest. For example, we may think of multiple
farmers that maintain local BINGO! instances (e.g. on their office desktop com-
puters) and locally perform the focused Web crawl for topics of “Agriculture”.

109

3 Data Organization

At some point, these users may decide to cooperate for re-organization or fil-
tering of own “Agriculture” repositories, and to exchange their local decision
models in order to combine them into some meta model for the desired task.

In this chapter, we will discuss postprocessing methods for document organi-
zation. In Section 3.1, we will discuss the use of restrictive clustering methods
and meta methods for taxonomy refinements. Section 3.2 addresses the aspects
of restrictive classification for taxonomy filtering. Section 3.3 considers collab-
orative meta methods for distributed application scenarios. In Section 3.4, we
will discuss the evaluation results for the proposed methods. Section 3.5 gives
an overview of related work.

110

3.1 Refinements of the Taxonomy Structure (Clustering)

3.1 Refinements of the Taxonomy Structure
(Clustering)

The general problem of taxonomy refinement can be stated as follows. We
consider the particular taxonomy topic T with the set D of positively classified
documents. Each document �di ∈ D is represented by the s-dimensional feature
vector �di = (fi1, fi2..fis) in the bag-of-words model (Section 2.3.3). At some
point, the user decides to reorganize T in order to obtain multiple subtopics
with higher granularity. The goal of the method is to propose the appropriate
partitioning of D into groups Ci ⊂ D, i = 1..k called clusters.

Clustering algorithms are typical representatives of unsupervised Machine
Learning methods, i.e. they do not require training data or user interaction.
Existing approaches can be conceptually subdivided into the following general
groups [97]:

• Partitioning methods split the dataset into disjoint partitions. Each clus-
ter is required to contain at least one element. Each element of the dataset
can belong to one cluster or none of them (this requirement can be relaxed
in some partitioning techniques). The elements are assigned to clusters
according to some similarity metric. The total number of clusters is a
tuning parameter of the method and is assumed to be given. Algorithms
like k-Means [143] are typical representatives of this class of methods.

• Hierarchical methods create the hierarchical decomposition of the dataset.
The leaf nodes correspond to single elements of the dataset; non-leaf nodes
are interpreted as cluster candidates. The hierarchical methods reorganize
an initial simple tree (all documents belong to the same cluster, or each
document has its own cluster) by splitting or merging nodes according to
some similarity metrics. The desired number of resulting clusters or sim-
ilarity thresholds for stopping are typical tuning parameters. Clustering
methods like DIANA or AGNES [129] are representatives of this family.

• Density based methods consider clusters as density-connected sets [97].
The general idea of methods like DBSCAN, OPTICS, or DENCLUE [98,
48, 119] is to obtain collections of elements such that each element has at
least the specified number of neighbors from the same set in the vicinity
of the given radius. This approach allows to capture clusters of any form
(with respect to the distribution of data points in the address space) and
to recognize outliers.

• Grid based methods quantize the object space into a finite number of seg-
ments (cells) that form a grid structure. The sells are considered as ele-
ments of the new macro dataset and partitioned using common clustering

111

3 Data Organization

methods. The main advantage is the fast processing time which is typically
independent of the number of data objects. Some methods (e.g. STING
[202] or CLIQUE [41]) combine density-based and grid-based methodol-
ogy.

• Model based methods analyze the distribution of data points in the dataset
and generate the decision model (e.g. probabilistic or density-based) for
optimally assigning the elements clusters. Algorithms like COBWEB [101]
or CLASSIT [108] belong to this category.

In this chapter we will restrict ourselves to partitioning methods that divide
the dataset into disjoint partitions: Ci∩Cj = ⊗, i = j. The number k of clusters
is a tuning parameter for this family of clustering algorithms [145]. After the
short introduction of prevalent clustering methods like k-Means or SVD-based
k-Means, we will introduce the methodology of restrictive algorithms and meta
algorithms for advanced taxonomy reorganization.

3.1.1 Clustering Algorithms

A simple, very popular member of the family of partitioning clustering methods
is k-Means [143]. In this method, each cluster Ci that contains documents
d1, d2, ..dm ∈ Ci is represented by the so-called centroid vector �c defined as

�c = (ci1, ci2..cis)
T =

1

m

m∑
i=1

�di (3.1)

Each document vector is assigned to the nearest centroid (according to some
distance or similarity metric). In the context of text retrieval, we use the cosine
similarity measure to assign documents to appropriate clusters:

sim(�c, �d) =

∑s
i=1 ci · di√∑s

i=1 c2
i ·

∑s
i=1 d2

i

(3.2)

The k-Means algorithm can be described as follows. At the beginning, k
initial centers (points) are chosen. Usually, k randomly chosen documents from
D serve as the initial seed. Each of remaining documents from D is assigned to
the nearest center (according to the similarity metric (3.2)). Next, new centers
are obtained by computing the means (centroids) of the sets of vectors in each
cluster using (3.1). This computation is repeated in an iterative manner, until
the specified stopping criterion is satisfied. The stopping rule is usually specified
by the maximum allowed number of iterations; when the centroids do not change
with new iterations, the clustering can be finished earlier. The result of the last
iteration is considered as the clustering outcome.

112

3.1 Refinements of the Taxonomy Structure (Clustering)

A similar algorithm, which can be considered as a “smoothed” form of k-
Means is EM clustering [145]: in every iteration the probabilties of the objects
for being generated by the different clusters are updated using the expectation-
maximization technique.

The result and run-time for k-Means and other iterative clustering algorithms
are strongly dependent on the intitial partitioning (for k-Means this corresponds
to the initial centers). A standard heuristics for this initialization phase is
preclustering [97]: before starting the actual clustering algorithm, a clustering
is computed on a much smaller subset using randomized sampling. This way
one can often obtain better starting points.

Clustering can be easily combined with feature selection techniques intro-
duced in Section 2.2.1. The feature selection algorithm provides the taxonomy
with the most characteristic ntop features for each topic, e.g. using Mutual Infor-
mation (MI). If the partitioning is not already given, a clustering algorithm can
provide us with an initial approximation. This initial step may use the ntop fea-
tures of the processed topic to construct document feature vectors and centroids.
Once the k-Means algorithm is complete, we can recompute MI values and iden-
tify the most discriminative features for each of the produced clusters. Now, the
clustering algorithm can be re-applied in the new feature space and produces
new clusters (that are not necessarily identical with prior approximation). This
procedure can be repeated in an iterative manner until the solution converges
to the steady collection of clusters or the maximum number of allowed loops is
reached. The resulting clusters can be annotated by representative terms (that
correspond to features with highest MI values) and most significant sentences
from cluster documents using techniques introduced in Section 2.3.3.

Another known method that implicitly implements a reduction of the feature
space is the singular value decomposition (SVD) [54]. This algorithm transforms
the initial term-based feature space into a lower dimensional “topic”-based space
of features. For this purpose, the initial document-feature association matrix
A ∈ Rm×n is represented as the product of three matrices:

A = U · S · V T (3.3)

with the following properties:

1. The matrices U ∈ Rm×m and U ∈ Rn×n are orthogonal, such that U ·UT =
UT · U = E and V · V T = V T · V = E, where E is the unit matrix.

2. The matrix S ∈ Rm×m is a diagonal matrix. It contains r < min(n,m)
positive values s1 ≥ s2 ≥ ... ≥ sr that are called singular values of A,
where si =

√
λi, and λi is the ith Eigenvalue of A · AT .

Every matrix A ∈ Rm×n can be represented in the form (3.3). In the context
of Information Retrieval, methods like Latent Semantic Indexing (LSI) interpret

113

3 Data Organization

Figure 3.1: Restrictive Clustering in the 2-dimensional Feature Space

the rows of U as “themes” or “topics”, and columns of V T as document-specific
feature vectors that indicate the relation of the document to these “themes”
[54].

The naive way to perform a clustering would be to assign every document
to one of the top-k SVD “topics” corresponding to the k largest singular val-
ues. [113] describes an SVD-based method which results in substantially better
clustering quality: by using the SVD of the term-document-matrix, one can
transform the document vectors in a new feature space and then apply k-Means
on the transformed vectors extracted from the columns of V T .

3.1.2 Restrictive Clustering

The idea of restrictive clustering is to avoid making a decision about a document
at all if that decision can be made only with low confidence. So out of a given
dataset D, the restrictive method chooses a subset S of documents that are
assigned to clusters, and abstains on the documents in U − S. The ratio |U −
S|/|U | of dismissed documents is interpreted as the document loss.

The confidence measures like cosine similarity can be directly used to make
clustering methods restrictive. They can be directly tuned by requiring that
accepted or rejected documents have a distance above some threshold, and ab-
stain otherwise. The threshold becomes the parameter of the restrictive method.
This situation is illustrated by Figure 3.1 for two clusters in the two-dimensional
feature space. The documents from clusters c1 and c2 (illustrated by squares
and circles) that lie outside of the threshold distance of the centroid (dashed
circles), are excluded from the clustering result.

Given an application-acceptable loss of L percent, the clustering method can
become restrictive by dismissing the L percent of the documents with the lowest
confidence values.

114

3.1 Refinements of the Taxonomy Structure (Clustering)

3.1.3 Restrictive Meta Clustering

In many situations, the best partitioning method and appropriate calibration
parameters (e.g. restrictive thresholds) for the collection D are unknown in
advance. By applying multiple methods from the clustering toolkit, the user
can obtain an ensemble of (potentially not identical) clustering results. The
rationale of meta clustering is to construct the refined taxonomy by combining
these results.

For meta clustering we are given a set C = {C1, . . . , Cl} of different clustering
methods. A document d is assigned by each to one of k clusters with labels
{1, . . . , k}: Ci(d) ∈ {1, . . . , l}. The idea of meta clustering is now to combine
the different clustering results in an appropriate way.

Meta Mapping

To combine the Ci(d) into a metaresult, the first problem is to determine which
cluster labels of different methods Ci correspond to each other. In general, the
cluster label 2 of method C1 does not necessarily correspond to the same cluster
label 2 of method C2, but could correspond to say cluster label 5. With perfect
clustering methods the solution would be trivial: the documents labeled by Ci as
a would be exactly the documents labeled by Cj as b, and we could easily test this
with one representative per cluster. This assumption is, of course, unrealistic;
rather clustering results exhibit a certain fuzziness so that some documents
end up in clusters other than their perfectly suitable cluster. Informally, for
different clustering methods we would like to associate the clusters which each
other which are “most correlated”.

Formally, for every method Ci we want to determine a bijective function
mapi : {1, . . . , k} → {1, . . . , k} which assigns all labels a ∈ {1, . . . , k} assigned
by Ci a meta label mapi(a). By these mappings the clustering labels of the
different methods are associated with each other and we can define the clustering
result for document d using method Ci as:

resulti(d) := mapi(ci(d)) (3.4)

To obtain the desired mapi functions, we may consider the overlap-based
“purity” of cluster combinations. The underlying idea of this approach is to
prioritize the clusters that produce a high overlap only in one particular (poten-
tially correct) combination and low overlaps otherwise. The functions mapi for
all methods Ci are constructed for particular meta labels {1..k} in an iterative
manner (i.e., we identify in each step all particular clusters to be associated with
the given meta label m = 1, .., k).

Starting with m = 1, we construct for every cluster Aij (i.e. jth cluster of the
ith clustering method) the set of all possible mapping functions that would map

115

3 Data Organization

Figure 3.2: Meta Mapping for two Clustering Methods with k=2

this cluster (and some clusters from other methods) onto meta label m. Each
combination corresponds to a set of partial cluster candidates for this label:

Qm
x (Aij) = {A1j1 , A2j2 ..Aij..Aljl

}, jk ∈ 1..l, jk = j (3.5)

where Aij is fixed and all other elements are variable for different x. The
overlap between cluster candidates within a combination is defined as:

overlap(A1j1 , A2j2 ..Aljl
) = |(A1j1 ∩ A2j2 .. ∩ Aljl

)| (3.6)

The overlap of Qm
x (Aij) is defined as the set of values (3.6) for its elements.

The normalized variance purity(Aij), defined as

purity(Aij) =
var(overlap(Qm

x (Aij)

max{overlap(Qm
x (Aij)} (3.7)

characterizes the purity of Aij: this value is higher for Aij with higher speci-
ficity and lower for poor (in the worst case, randomly generated) classes. The
normalization by max{overlap(Qm

x (Aij)} in (3.7) is used to make purity values
comparable for different Aij.

It is natural to consider the cluster A∗
ij with maximum value of purity(A∗

ij)
as a “good” cluster. Now we fix the association of A∗

ij with first meta label
m = 1 and continue the purity-based comparison to identify the second, third,
and further remaining clusters from other methods that should be associated
with the same meta label m = 1. To reduce the computational overhead, the
whole collection Qm

x (A∗
ij) with highest overlap for A∗

ij can be associated with
label m = 1 just after the first “good” cluster A∗

ij is identified.
We notice that clusters from particular methods are selected in the order

of their purity values. Thus, this approach can be also used to produce the

116

3.1 Refinements of the Taxonomy Structure (Clustering)

natural ranking of clustering methods. This option can be useful to recognize
when clustering methods fail (for instance, their results could be excluded from
meta mappings).

When the cluster mapping for the first meta label m = 1 is complete, all
selected clusters are associated with m = 1 and excluded from further consid-
eration. Now, the same procedure can be repeated for meta labels m = 2, 3..k
on remaining clusters until full bijections mapi : {1..k} → {1..k}, i = 1..l are
complete.

The idea of “purity”-based mapping is illustrated in Figure 3.2. As an exam-
ple, we consider two clustering methods C1 and C2 with k = 2. The documents
in the dataset belong to two themes, represented by “circles” and “squares”.
The mapping algorithm aims to find the proper meta association for the cluster
C11 that contains 12 elements. The cardinality of its intersection with C21 and
C22 is 4 and 9, respectively. By substitution of these values into (3.7) we obtain
purity(C11) = 0, 52. Assuming that this purity value is higher than purity val-
ues of the remaining clusters C12, C21, and C22, the clusters C11 and C22 would
be associated with same meta cluster label m = 1. The remaining clusters C12

and C21 would be associated with meta cluster label m = 2.
The proposed mapping method requires the evaluation of k!l−1 possible clus-

ter combinations. In many realistic scenarios with a small number of clusters
(e.g. k = 3..5), the resulting complexity of the algorithm carries no weight.
However, for large values of k the meta mapping would cause the combinatorial
explosion. In this case, simple heuristics can be applied to avoid the unneces-
sary complexity of the mapping task. A greedy approach is to fix the randomly
chosen first clustering C1 and to construct the best cluster candidate incremen-
tally, by adding to C1 clustering results from C2, ..., Ck one by one. An even
greedier approach is to construct for all pairs Ci−1 and Ci the complete purity-
based mapping between clusters {Ai−1,j} and {Aij}, and to compute the final
mapping in an transitive manner.

3.1.4 Meta Functions

After having computed the mapping we are given a set C = {C1, . . . , Cl} of l
clustering methods with results resi(d). For simplicity we consider here the case
of k = 2 clusters and choose resi(d) ∈ {+1,−1} for a document d, namely, +1
if d is assigned to cluster 1, and -1 if d is assigned to cluster 2. We can combine
these results into a meta result:

Meta(d) = Meta(res1(d), . . . , resl(d)) ∈ {+1,−1, 0} (3.8)

where 0 means abstention. A family of such meta methods is the linear
combination with thresholding [184]. Given thresholds t1 and t2, typically with

117

3 Data Organization

t1 > t2, and weights w(ci) for the l underlying clustering methods we can define
Meta(d) as follows:

Meta(d) =

+1 if
∑l

i=1 resi(d) · w(ci) > t1
−1 if

∑l
i=1 resi(d) · w(ci) < t2

0 otherwise

(3.9)

The restrictive and tunable behavior is achieved by the choice of the thresh-
olds: we dismiss the documents where the linear result combination lies between
t1 and t2. The family of meta functions has some important special cases, de-
pending on the choice of its tuning parameters:

1. Voting (analogously to bagging [60] in supervised learning): Meta() re-
turns the result of the majority of the clustering methods.

2. Unanimous decision: if all methods yield the same result (either +1 or
-1), Meta() returns this result, 0 otherwise.

3. Weighted averaging: Meta() weighs the clustering methods by using some
predetermined quality estimator. For example, the ranking of clustering
methods produced by the purity-based meta mapping (Section 3.1.3) can
be used for this purpose.

These considerations can be easily generalized to the case of k ≥ 2 possible
clusters.

3.1.5 Probabilistic Background of Meta Clustering

The rationale of the meta methodology is illustrated by the probabilistic model
introduced in [186]. For simplicity, we consider the “unanimous decision” meta
method as the simplest of the above cases in order to demonstrate the feasibility
of the approach. We assume that we have found appropriate mappings mapi

as described above. As an illustrative example we consider the situation that
the l clustering methods have the same probability p < 0.5 (i.e. the clustering
method performs better than random) to wrongly assign a document, and a
covariance c < 1.0 (i.e. the clustering methods are not perfectly correlated). In
this case we would obtain for loss and error [186]:

loss = 1 −
(

(1 − p)

(
c + (1 − p)2

1 − p

)l−1

+ p

(
c + p2

p

)l−1
)

(3.10)

error =
p
(

c+p2

p

)l−1

(1 − p)
(

c+(1−p)2

1−p

)l−1

+ p
(

c+p2

p

)l−1
(3.11)

118

3.1 Refinements of the Taxonomy Structure (Clustering)

It is easy to verify that for l → ∞ the loss converges monotonically to 1, and
the error to 0 (i.e. with more clustering methods we can obtain a lower error but
pay the price of a higher loss). The covariance plays the role of a “smoothing
constant”: with higher correlated clustering methods the convergence of both
loss and error is slowed down.

3.1.6 Implementation

The proposed methodology of taxonomy refinements was implemented as an
additional package Clustering of the BINGO! framework. The package consists
of 37 classes that contain ca. 10.200 lines of Java source code. The GUI interface
of the package allows interactive modifications of the taxonomy. Figure 3.3
shows the refinement scenario for our previously introduced sample taxonomy
with topic “Arts”, “Agriculture”, and “Mathematics”. Each selected topic (in
our example, “Mathematics”) can be automatically partitioned into a specified
number of clusters by applying following methods:

• The common k-Means algorithm.

• Iterative k-Means algorithm in combination with feature selection.

• Singular Value Decomposition in combination with k-Means .

For restrictive clustering, the outcome of these clustering algorithms can be
merged using meta mapping (Section 3.1.3) in combination with restrictive meta
function that implements the “unanimous decision” strategy (Section 3.1.4).
The new clusters are directly shown to the user as new elements of the taxon-
omy tree. Initially, each cluster is labeled by the set of discriminative keywords
and annotated by characteristic sentences from contained documents (Section
3.1.1). Clusters that are approved by the user are directly propagated to data
structures of BINGO! and its repository as new full-fledged topics of the taxon-
omy, with expect of the initially missing topic classifier. The user can customize
labels of these new topics, inspect their contents, select training documents,
customize feature spaces, create or retrain topic classifiers, or perform further
sub-partitioning using BINGO! packages and methods.

The partitioning produced by a restrictive meta algorithm is expected to have
a higher accuracy than the results of the underlying (non-restrictive) base meth-
ods. However, the higher clustering quality is connected with the loss of more
or less data. Documents that are not assigned by the restrictive method to any
of new clusters, remain in the original topic. In some cases, the use may decide
to split the entire topic dataset, without leaving of any classified documents in
the original node. For this purpose, the filtered output of the meta algorithm

119

3 Data Organization

Figure 3.3: Taxonomy Refinements with BINGO!

can be considered as training input for supervised or semisupervised classifi-
cation methods. The Clustering package provides support for two supervised
classification algorithms, linear SVM (Section 2.3.2) and its modification called
transductive SVM [126]. The latter method allows customizable partitioning of
unlabeled data (usually proportional to sizes of labeled data sets). The combi-
nation of restrictive meta clustering and classification acts as a non-restrictive
clustering approach with zero loss.

120

3.2 Document Filtering (Classification)

3.2 Document Filtering (Classification)

The problem of taxonomy filtering can be stated as follows. At the beginning,
the topic T of the taxonomy contains the set D of positively classified documents.
Analogously to the previous section, we assume that each document �di ∈ D is
represented by the s-dimensional feature vector �di = (fi1, fi2..fis) in the bag-of-
words model.

For the given dataset D, our method chooses a subset S ⊆ D of documents
that are either accepted or rejected for the given topic T , and abstains on the
documents in U − S. In other words, the algorithm makes the ternary decision
on each document d ∈ D: accepting the document for the topic, rejecting it, or
abstaining if there is neither sufficiently strong evidence for acceptance nor for
rejection. We will refer to the ratio |U − S|/|U | as document loss. The quality
metrics of interest are primarily the classification error, which is the fraction of
erroneously accepted or erroneously rejected documents in S, and the document
loss.

Our objective is the tunable filtering of D that allows the user to reduce
the amount of misclassified documents at the price of certain document loss.
In general, the goal would be to optimize one of the two metrics under the
constraint that the other metric is bounded. More specific, in the context of
topic filtering we will focus on the following goal: minimize the error under the
constraint that the document loss stays below a specified upper bound.

3.2.1 Restrictive Classification

We can exploit the fact that the topic-specific linear SVM classifier of our frame-
work (Section 2.3.2) provide natural calibration parameters by which we can
control their degrees of making more conservative or more speculative decisions.
In particular, the classifier may choose to accept only documents whose positive
distance from the separating hyperplane is above some threshold. A natural
confidence measure is the distance of a test document vector from the separat-
ing hyperplane (2.22). So we can tune these methods by requiring that accepted
or rejected documents have a distance above some threshold, and abstain oth-
erwise. The threshold itself becomes the tuning parameter of the framework.
This approach is illustrated in Figure 3.4 for the 2-dimensional feature space:
all documents that fall into the region between dashed lines are dismissed.

Given an application-acceptable loss of L percent, we can make a classifier
restrictive by dismissing the L percent of the test documents with the lowest
confidence values.

The most widely used technique for empirically measuring the error of the
classifier is cross-validation [145] on a set of independent data samples with
known topic membership. For this purpose, the collection D is usually randomly

121

3 Data Organization

Figure 3.4: Restrictive SVM Classification in the 2-dimensional Feature Space

partitioned with ratio of 3:1 into a training set and a disjoint test set. The
partitioning can be systematically varied by dividing the overall data into 4
groups and investigating each of the four choices for using one group as test data
and the other 3 groups for training; the empirical results are finally averaged
over all choices. An important variation is leave-one-out validation [145]. Here
the n documents of a data collection are divided by the ratio (n − 1) : 1. Both
methods are also popular for predicting a classifier’s quality (accuracy).

Leave-one-out prediction is more accurate than prediction based on cross-
validation but requires re-training the classifier n times, unless special prop-
erties of the classifier’s underlying model could be exploited. For SVMs [124]
has proposed a more efficient estimation technique known as the ξα estimator,
but it gives only approximate results and turned out to be too crude in our ex-
periments. For sufficiently precise estimations our framework uses full-fledged
leave-one-out or k-fold cross-validation.

3.2.2 Implementation

The document filtering can be easily implemented on top of the BINGO! frame-
work. For this purpose, the class CommonTasks of the BINGO! util package
(Section 2.4) has been extended by methods that allow the re-applying of the ex-
isting topic classifier to the previously collected documents in an restrictive man-
ner. The restrictivity can be expressed by specifying the desired loss (say L =
20%) or the threshold for classification confidence (each qualifying document d
in the topic T is required to satisfy conf(d) > thresholdFactor ·avg(conf(d∗

i)),
where d∗

i are training documents of T , cp. Section 2.3.2).

122

3.2 Document Filtering (Classification)

The taxonomy filtering is performed in the bottom-up manner, starting from
the leaf nodes. Documents that were not accepted by the restrictive classifier
are moved to the parent node in the taxonomy tree (the BINGO! classification
routine ensures that a document d that was positively classified for the topic T ,
was also positively classified for predecessor(T), cp. Section 2.3.2). At the root
level of the taxonomy, the documents that were not accepted by the restrictive
classifier are moved to the artificial topic “Miscellaneous” and can be optionally
excluded from search or removed from the repository.

123

3 Data Organization

3.3 Collaborative Data Management

In the context of a distributed network that puts together multiple users with
shared topics of interest, it is natural to aggregate their knowledge and to con-
struct better machine learning models that could be used by every network
member for his information demands. In the sample application scenario, each
user may maintain the personalized taxonomy of topics along with BINGO! fo-
cused crawler and its data repository on the local personal computer and use it
for personalized expert Web search. Some user taxonomies may contain shared
topics “Arts”, “Mathematics”, or “Agriculture” from our previously introduced
example. The idea is to allow the cooperation between users with shared topics
of interest for better organization of their local repositories. The typical ap-
plication domain for such collaborative methods are decentralized peer-to-peer
(P2P) overlay networks.

The first naive solution would be to share available data (training samples
and/or results of the focused crawl) along a higher number of peers with others.
However, several reasons may prevent the user from sharing all of its data with
other members of the overlay network:

• Significantly increased network costs for downloads of additional training
data on every node in the network.

• Increased runtimes for the training of the decision models (the empiri-
cal time complexity of solving the SVM optimization problem is between
O(n2) and O(n3) for n documents, Section 2.2.1).

• Privacy, security, and copyright aspects of the user’s personal information
sources.

Another idea could be to exchange the learned models between network nodes.
The objective of this solution is that the description of statistical decision mod-
els is usually orders of magnitude smaller than the amount of training data
that was used to create this model. For the supervised case with verification of
the newly received classifier on local training samples (cross-validation), every
network node could decide to accept it or to maintain the old decision model.
However, it is also realistic to assume that the manually labeled training sets of
particular users will be quite small. The resulting disadvantage is the mediocre
or poor generalization performance of every particular classifier that is built on
a small subset of training samples from only one user. Analogously, existing
unsupervised clustering methods can be easily adapted for distributed execu-
tion [151]. However, such algorithms require strict synchronization of model
parameters between particular users. As a result, the solution requires a special
coordinating server that may become a single point of failure.

124

3.3 Collaborative Data Management

To overcome the limitations of the introduced techniques, the previously intro-
duced methodology of meta methods can be adopted for distributed application
scenarios. Our objective is to combine multiple independently learned mod-
els from several user taxonomies and to construct the advanced decision model
that takes simultaneously the knowledge of multiple users into account in a fully
decentralized manner.

Of course, meta learning can be also applied in a restrictive manner, i.e. with
leaving out some documents rather than assigning them to inappropriate topics
or clusters with low confidence, providing us with significantly more accurate
classification and clustering results on the remaining documents.

3.3.1 System Architecture

The implementation of a network node (peer) in our distributed system consists
of two layers. The lower (network) layer is the BINGO! engine with personalized
training data and its repository of documents that were obtained by focused
Web search. The peers form an autonomous agent environment: the exact way
one particular peer solves its Web retrieval problem (e.g. crawling the Web,
sending queries to “Deep Web” portals, analyzing recent newsgroup discussions
or publications in electronic journals, etc.) is not restricted in any way. For the
sake of simplicity, we assume that all peers share the same thematic taxonomy
such as dmoz.org [10] (this requirement can be relaxed by using probabilistic
algorithms like cross-training [179] that solve the “topic mapping” problem in
the presence of multiple label sets).

The upper (semantic) layer is the distributed algorithm that utilizes results
from particular peers to construct improved learning models (e.g. classifica-
tion and/or clustering models) that can be used to continue the focused crawl
with higher accuracy and to adjust the topics of the user-specific personalized
ontology.

In our model, the peers use the epidemic-style communication overlay [86].
Every peer maintains an incomplete database about the rest of the network.
This database contains entries (e.g. addresses) on some other peers (neighbors)
together with timestamps of the last successful contact to that neighbor. The
neighbor list is refreshed using a push-pull epidemic algorithm as follows:

1. Every peer sa chooses a random address of some sb from its neighbor list
regularly once within a time interval.

2. The peers sa and sb then exchange their neighbor lists and add all obtained
entries to the neighbor list. When sa and sb share the same neighbor sc,
the timestamp of sc is changed in both lists to the youngest value.

125

3 Data Organization

3. Entries older than a given time-to-live (TTL) threshold have to be removed
from the list.

4. Since the size of every neighbor list has to be limited, both sa and sb remove
randomly selected entries from their neighbor lists until the allowed list
size is reached.

To connect a new peer to the network one needs only one living address.
The database of the new peer is initialized with the entry containing this living
address only, and the rest is taken care of by the epidemic algorithm. Removal
of a peer does not require any administration at all.

General results from random graph theory show that new information spreads
very fast over the connected epidemic network (when new information emerges
the system, the number of steps required to reach any given peer with given
probability is O(logN)) [111]. Furthermore, it can be shown that for a network
of size n, the neighbor list of k = log(n) + c entries with c ≥ 25 ensures the
connectivity of the network with high probability [130].

When new data becomes available, the peer initiates the building of a new
meta learning method together with its direct neighbors. With the next epi-
demic messages, it is broadcasted to all neighboring peers.

3.3.2 Properties of the Semantic Layer

In our framework we are given a set of k peers P = {p1, . . . , pk}. For the shared
topic of interest T , each peer pi maintains its own collection of documents Di.
The idea is to build concise individual models on each peer and then combine
the models into a meta model. More formally, in the first step each peer pi

builds a model mi(Di) using its own document set Di. In the second step, the
models mi are propagated among the k peers as described in Section 3.3.1. To
avoid high network load, it is crucial for this step that the models mi are a
very compressed representation of the document sets Di. In the next step, each
peer pi uses the set of received models M = {m1, . . . ,mk} to construct a meta
model Metai(m1, . . . ,mk). From now on, pi can use the new meta model Metai

(instead of the “local” model mi) to analyze its own data Di.

3.3.3 Application to Taxonomy Refinements (Clustering)

In the introduced scenario, each peer pi contains in the shared topic T a col-
lection of crawl results Ui. Every peer wants to reorganize the topic T by
partitioning of Ui into clusters.

In the first step, every peer pi can execute a clustering algorithm on its own
data Ui to build the model mi; a representation of the resulting clustering models

126

3.3 Collaborative Data Management

mi can be propagated to the other peers. For the k-Means algorithm (Section

3.1.1), the clustering model mi can be represented as (�z1, . . . , �zl,�l), where the �zi

are vector representations of the computed centroids, and �l contains encodings
of the feature dimensions (e.g. some hashcode) corresponding to the dimensions
of (�z1, . . . , �zl).

After propagating the models, every peer contains a set M = {m1, . . . ,mk}
of different clustering models. Document d is assigned to one of l clusters with
labels {1, . . . , l} by each model: mi(d) ∈ {1, . . . , l}. The final combination of
different clustering results does not differ from the meta methodology explained
in Section 3.1. The restrictive behavior can be also obtained in exactly the same
way.

3.3.4 Application to Document Filtering (Classification)

In the context of the taxonomy filtering problem, the introduced general ap-
proach can be substantiated as follows. Each peer pi contains for the shared
topic T a document collection Di, consisting of a set of training documents a
set of positively classified crawl results. Every peer wants to automatically filter
the crawl results in Di. At the beginning, every peer pi maintains for the topic
T its own local classifier mi .

Now, instead of transferring the whole training sets Ti to other users, only
the models mi (linear SVM classifiers, in our case) need to be exchanged among
the peers. The classifiers mi can represented in a very compressed way: as
tuples (�w,�l, b) of the normal vector �w and bias b of the hyperplane and �l, and
the encoding of the feature space as described above for the unsupervised case.
Of course, similar space saving representations are possible for other learning
methods (e.g., Bayesian Learners) as well. As a side remark, building the clas-
sifiers this way is much more efficient than building one “global” classifier based
on D =

⋃
Di because the computation is distributed among the peers, and for

classifiers with highly nonlinear training time (such as SVM) the splitting can
save a lot of time (see [188]).

In the next step, every peer pj considers the set M = {m1, . . . ,mk} of k
binary classifiers with results R(mi, d) in {+1,−1} for a document d ∈ Uj ,
namely, +1 if d is accepted for the given topic by mi, and -1 if d is rejected.
These results can be easily combined into a meta result:

Meta(d) = Meta(R(m1, d), . . . , R(mk, d)) ∈ {+1,−1, 0} (3.12)

Given thresholds t1 and t2, with t1 > t2, and weights w(mi) for the k under-

127

3 Data Organization

lying classifiers we compute Meta(d) as follows:

Meta(d) =

+1 if
∑n

i=1 R(mi, d) · w(mi) > t1
−1 if

∑n
i=1 R(mi, d) · w(mi) < t2

0 otherwise
(3.13)

The restrictive behavior is achieved by the choice of the thresholds: analo-
gously to the previously discussed meta clustering algorithm, we dismiss the
documents where the linear result combination lies between t1 and t2. We can
filter the crawl results in T with a user-acceptable loss of L as follows:

1. For all documents d in crawl(T) compute their classification confidence∑n
i=1 R(vi, d) · w(vi)

2. Sort the documents into decreasing order according to their meta classifi-
cation confidence values.

3. Classify the (1 − L)|U | documents with the highest confidence values ac-
cording to their sign and dismiss the rest.

Note that meta classifiers can be, similar as base classifiers, easily transferred
between peers as tuples

(m1, . . . ,mk, w(m1), . . . w(mk), t1, t2). (3.14)

where m1, . . . ,mk are particular classification models (e.g. parameters of sep-
arating hyperplanes for linear SVM), w(m1), . . . w(mk) are weights for particular
classification models in the meta function (3.13), and t1, t2 are thresholds for
restrictive meta decisions.

Estimators and Tuning

For a restrictive meta classifier, we are usually interested in its behavior in
terms of accuracy and loss (fraction of unclassified documents). A typical
scenario for each peer could be accepting a loss up to fixed bound, to obtain
a higher classification accuracy for the remaining documents. An additional
tuning parameter of the meta method is the number k of participating peers.

For the distributed meta methods we will need to estimate the accuracy of
each of the peer classifiers trained with local subsets D1, . . . , Dk. We can exploit
this situation by estimating the accuracy acc(Di) via cross-validation on the
complementary subsets Dj, j = i. For the cross-validation, at least two peers,
pa and pb, must cooperate: pa sends a tuple (ma, IDs(Da)), consisting of its
classifier ma and a list of IDs (not contents!) of its training documents, to
pb. The peer pb uses the list of submitted IDs to identify duplicates in both

128

3.3 Collaborative Data Management

collections and performs cross-validation by ma on Db−Da. The resulting error
estimator (a simple numerical value) for ma can be forwarded from pb back to
pa or to other peers. For a robust estimator the peer takes the average over all
received cross-validation results received values:

acc(ma) ∼ 1

k

k∑
i=1

acc(ma, Dk) (3.15)

We notice that this step does not require expensive leave-one-out estimations.
The cross-validation would force each participating peer pi of the meta method
to receive and to evaluate k−1 classifiers and to transfer the results to all other
participants.

Let D = {D1∪ . . .∪Dk} be our distribution of the overall training data along
peers and let vi be the classifier trained on Di. We associate a Bernoulli random
variable Xi with each vi, where Xi = 1 if vi classifies a document correctly, 0
otherwise.

We consider the training collections of three peers D1, D2, D3 where D1 and
D2 serve to train classifiers v1 and v2 and D3 is held-back test data to assess
v1 and v2 such that neither v1 nor v2 has seen this test data before. The cross-
validation procedure gives us data points (x1, x2) for the joint distribution of
(X1, X2). Thus we obtain an estimator for the covariance cov(X1, X2).

In the next step, the obtained estimators for covariance (numerical values)
can be distributed among the peers and estimators for the overall meta classifier
can be built.

We simplify the model for k > 2 classifiers by making two assumptions:

1. For any two peer training collections Di, Dj, the covariance is the same as
cov(X1, X2) computed above. So the covariance estimator for k = 2 can be
reused without additional computations. Below we therefore refer to the
covariance estimator simply as cov without any subscripts or arguments.

2. For a given set of peers p1..pk we consider only the dependencies between
vi and vi+1 and postulate that all other pairs vi and vj can be considered
as independent.

Under these assumptions, we obtain [188]:

P (X1 = 1, . . . , Xk = 1) =

P (X1 = 1)
k−1∏
i=1

P (Xi = 1)P (Xi+1 = 1) + cov

P (Xi = 1)
(3.16)

Analogously we obtain P (X1 = 0 ∧ ...Xk = 0).

129

3 Data Organization

Estimators for P (Xi = 1) and P (Xi = 0) (i.e., for accuracy and error of
the single classifiers vi) can be determined by the cross-validation of classifiers
across peers.

Finally we can substitute these results in the following formulas for the loss
estimator

loss(Meta(v1, ..., vk)) = 1 − P (X1 = ... = Xk)

= 1 − (P (X1 = 1, . . . , Xk = 1) + P (X1 = 0, . . . , Xk = 0)) (3.17)

and the error and accuracy estimator

error(Meta(v1, ..., vk))

= P (X1 = 0...Xk = 0|X1 = ... = Xk)

=
P (X1 = 0...Xk = 0)

P (X1 = 1...Xk = 1) + P (X1 = 0...Xk = 0)
(3.18)

accuracy(Meta(v1, ..., vk)) = 1 − error(Meta(v1, ..., vk)) (3.19)

The resulting meta algorithm for the distributed environment is summarized
in Figures 3.5 and 3.6. At the beginning, the initiating peer contacts a lim-
ited number of other peers (e.g. its direct neighbors in the overlay network).
The contacted peers exchange the classifiers, perform cross-validation on local
datasets, and submit obtained error estimations and pairwise covariances be-
tween classifiers back to the initiator. The initiator uses this information to
construct meta estimators and to determine the required number of peers to
meet the goal-specific error/loss requirements. In the next step, the initiator
contacts the desired number of peers in the overlay network by multicast. The
contacted peers exchange their classifiers and construct the meta model.

130

3.3 Collaborative Data Management

public int userLoss; // User-defined loss of the meta model

public int userError; // User-defined error of the meta model

public address[] neighborList; // The neighbor list of the current node

// Executed by coordinator

public MetaClassifier buildMetaModel() // Builds the meta model.

{
double[][] singleError; // Error estimators by cross-validation

double[][] covariances; // Estimated Covariances between classifiers

send(neighborList, METAREQUEST); // Initiate algorithm, requests to neighbors

waitForResponses(); // Collect responses from neighbors

singleError = returnedErrors(); // Extract returned cross-validation errors

covariances = returnedCovariances(); // Extract returned covariances

// Estimate the optimal number of single classifiers for the meta model

// with respect to the specified loss

int numNodes = estimateNumNodes(singleError, covariances, userLoss);

// Send request to the specified number of nodes in the network by multicast

sendMulticast(numNodes, METAREQUEST);

// Collect the specified number of node responses

waitForResponses();

// Extract returned classifiers

Classifier[] singleClassifier = returnedClassifier();

// Construct meta model

MetaClassifier result = constructMetaClassifier(singleClassifier);

return result;

}

Figure 3.5: Generation of Meta Model: Function of the Initiator

131

3 Data Organization

Classifier localClassifier; // Local node classifier

public processRequest(address initiator, address[] participants) // Process requests

{ // from coordinator

if (localClassifier == null)

{ // Build local classifier,

localClassifier = buildClassifier; // if not yet available

}
if (participants == null)

{ // Construction of the meta model?

send(initiator, classifier); // Send own classifier to coordinator

}
else // Intermediate step (estimators)?

{
send(neighborList, classifier); // Send own classifier to others

waitForResponses(neighborList); // Collect responses from others

classifier[] singleClassifier = returnedClassifier(); // Extract returned classifiers

double[] errors = applyClassifiers(classifier[]); // Cross-validation

// of classifiers

double[] covariances = estimateCovariances(classifier[]); // Estimate covariances

// between classifiers

// and own model

send(initiator, errors); // Send errors to initiator

send(initiator, covariances); // Send covariances to initiator

}
}

Figure 3.6: Generation of Meta Model: Function of the Contacted Peers

132

3.4 Experimental Evaluation

3.4 Experimental Evaluation

3.4.1 Experimental Design

To simulate the scenarios of taxonomy refinements and document filtering that
were introduced in Sections 3.1, 3.2, and 3.3 for different Web retrieval scenar-
ios (crawling the Web, sending queries to “Deep Web” portals, analyzing recent
newsgroup discussions or publications in electronic journals) we performed mul-
tiple series of experiments with real-life data from several reference collections,
including:

1. The academic WebKB dataset [83] that contains 8282 HTML Web pages
from multiple universities, manually classified into the categories “stu-
dent”, “faculty”, “staff”, “department”, “course”, “project”, and “other”.

2. Newsgroups collection at [23]. This collection contains 17847 postings col-
lected from 20 Usenet newsgroups. Particular topics (“rec.autos”, “sci.spa-
ce”, etc.) contain between 600 and 1000 documents.

3. The Reuters articles [137]. This is the most widely used test collection
for text categorization research. The collection contains 21578 Reuters
newswire stories, subdivided into multiple categories (“earn”, “grain”,
“trade”, etc.).

4. The Internet Movie Database (IMDB) at [17]. Documents of this collec-
tion are articles about movies that include the storyboard, cast overview,
and user comments. The collection contains 6853 movie descriptions sub-
divided into 20 topics according to particular genres (“drama”, “horror”,
etc.).

We used the BINGO! document processing routine (applying Porter stem-
ming algorithm [166] in combination with stopword elimination) to transform
documents from these collections into the vector space model. In all discussed
experiments, the standard bag-of-words approach [51] (using term frequencies
to build L1-normalized feature vectors) was used for document representation.

3.4.2 Restrictive Methods and Meta Methods for Taxonomy
Refinement (Clustering)

The goal of these experimental series was the evaluation of restrictive methods
and meta methods for taxonomy refinement that were introduced in Section 3.1.
Our experiments capture the behavior of (restrictive) base clustering methods
and meta clustering, for tuples of topics such as “Drama vs. Horror vs. Western”

133

3 Data Organization

for IMDB data or “rec.autos vs. rec.motorcycles vs. rec.sport.hockey” for the
Newsgroups data. For each data set we identified all topics with sufficiently
many documents. These were 20 topics for Newsgroups, 15 for Reuters and
15 for the genres of IMDB documents. We randomly chose 50 topic pairs from
Newsgroups, from IMDB and from Reuters for every set of k-tuples (k = 2, 3, 5).
The goal of these series of experiments was to reproduce the partitioning into
topics with possibly high accuracy. We computed macro-averaged results for all
topic tuples. Our quality measure describes the correlation between the actual
topics of our datasets and the clusters found by the algorithm. Let k be the
number of classes and clusters, Ni the total number of clustered documents in
classi, Nij the number of documents contained in classi and having cluster label
j. Unlike classification results, the clusters do not have explicit topic labels; we
define the clustering accuracy as follows:

accuracy = max(j1,...,jk)∈perm((1,...,k))

∑k
i=1 Ni,ji∑k
i=1 Ni

(3.20)

The loss is the fraction of documents dismissed by the restrictive algorithm.
We considered the following base methods (see Section 3.1.1):

1. base1: k-Means, no feature selection, preclustering with k ∗ 20 documents

2. base2: iterative feature selection applied on k-Means, preclustering with
k ∗ 20 documents on a preselected feature space (df), after each itera-
tion: feature selection (step 1: top-2000 according to df , step 2: top-500
according to MI), number of iterations: 5

3. base3: transforming feature vectors using SVD (SVD rank = 2), applica-
tion of k-means on the transformed vectors (We found that a higher SVD
rank results in a lower clustering accuracy in consistence with observations
made by [113].)

Table 3.2 shows the loss-error tradeoff for the base methods for k = 3 and
k = 5: By inducing a loss as described in Section 3.1.2 we can obtain a significant
reduction of the error.

With the three base methods we built a restrictive meta classifier based on the
“unanimous decision” function (Section 3.1.3) in combination with introduced
“purity” based meta mapping. We compared the meta results with the results
of the base methods and the restrictive base methods (inducing the same loss
as the meta method in each experiment). The results are shown in Table 3.1.
The results clearly show that the meta approach provides a lower error than
its underlying base methods at the cost of moderate loss. More important,
the meta method performs also better than the restrictive version of each base
method for the same loss.

134

3.4 Experimental Evaluation

To test the combination of clustering and supervised or semisupervised learn-
ing (Section 3.1.6) we performed a restrictive meta clustering for k = 2. The
obtained new partitioning for the whole document set (i.e. loss = 0) was com-
pared to the clusterings provided by the underlying non-restrictive base meth-
ods. The evaluation is shown in Table 3.3. Although the partitioning provided
by restrictive meta-clustering has high accuracy and results in many cases in
good training sets and accurate classifiers, the high loss (and small training sets)
causes, in particular experiments, reduced generalization performance leading
to moderate average accuracy.

k = 3

Meta restrictive Base Base
base1 base2 base3 base1 base2 base3 Dataset

avg(loss) avg(err) avg(err) avg(err) avg(err) avg(err) avg(err) avg(err)

0,542 0,229 0,276 0,274 0,232 0,339 0,312 0,337 IMDB

0,479 0,199 0,255 0,291 0,242 0,341 0,326 0,317 Newsg.

0,638 0,130 0,170 0,233 0,290 0,179 0,215 0,300 Reuters

k = 5

Meta restrictive Base Base
base1 base2 base3 base1 base2 base3 Dataset

avg(loss) avg(err) avg(err) avg(err) avg(err) avg(err) avg(err) avg(err)

0,800 0,361 0,375 0,413 0,292 0,506 0,470 0,559 IMDB

0,758 0,264 0,286 0,281 0,264 0,439 0,403 0,578 Newsg.

0,735 0,111 0,136 0,111 0,290 0,222 0,194 0,351 Reuters

Table 3.1: Meta Clustering Results for k=3 and k=5 on Reuters, Newsgroups
and IMDB

3.4.3 Restrictive Methods for Taxonomy Filtering
(Classification)

The goal of these experimental series was the evaluation of restrictive methods
for taxonomy filtering that were introduced in Section 3.2. Our experiments
capture the behavior of classifiers for pairs of topics such as “Drama vs. Horror”
for IMDB data.

Table 3.7 summarizes the loss-error tradeoff for our experimental series with
IMDB and Newsgroups data using linear SVM as base classification method. A
typical observation is that willing to lose up to 20 percent of the documents by
abstaining on low-confidence decisions could reduce the classification error from

135

3 Data Organization

k = 3 k = 5
base1 base2 base2 base1 base2 base3

loss avg(error) avg(error) avg(error) avg(error) avg(error) avg(error) Dataset

0,0 0,3006 0,3238 0,3360 0,4894 0,5016 0,5555
0,1 0,2890 0,3156 0,3191 0,4858 0,4868 0,5402
0,2 0,2836 0,3082 0,3036 0,4872 0,4861 0,5346
0,3 0,2794 0,3024 0,2841 0,4851 0,4878 0,5275
0,4 0,2735 0,3020 0,2771 0,4754 0,4906 0,5027 IMDB
0,5 0,2601 0,2952 0,2600 0,4646 0,4780 0,4659
0,6 0,2555 0,2791 0,2273 0,4392 0,4651 0,4336
0,7 0,2440 0,2687 0,2129 0,4162 0,4474 0,3783
0,8 0,2039 0,2536 0,1646 0,3817 0,3976 0,3031
0,9 0,1776 0,1993 0,0983 0,3289 0,3648 0,2130

0,0 0,3462 0,3315 0,3168 0,4299 0,4028 0,5722
0,1 0,3367 0,3214 0,3027 0,4155 0,3898 0,5505
0,2 0,3251 0,3105 0,2930 0,4033 0,3797 0,5212
0,3 0,3151 0,3016 0,2819 0,3861 0,3689 0,4860
0,4 0,3016 0,2937 0,2723 0,3706 0,3626 0,4513 Newsg.
0,5 0,2864 0,2886 0,2600 0,3512 0,3557 0,4127
0,6 0,2655 0,2776 0,2292 0,3283 0,3470 0,3652
0,7 0,2505 0,2698 0,1864 0,3017 0,3271 0,3028
0,8 0,2369 0,2585 0,1416 0,2704 0,2940 0,2336
0,9 0,2093 0,3414 0,0880 0,2241 0,2334 0,1560

0,0 0,2190 0,2209 0,2922 0,2108 0,2046 0,3475
0,1 0,2555 0,2214 0,3145 0,2198 0,2022 0,3590
0,2 0,2456 0,2423 0,3165 0,2100 0,1906 0,3577
0,3 0,2235 0,2332 0,2668 0,1943 0,1760 0,3620
0,4 0,2067 0,2181 0,2582 0,1704 0,1706 0,3424 Reuters
0,5 0,1928 0,2335 0,2068 0,1615 0,1436 0,3136
0,6 0,1751 0,2135 0,1907 0,1714 0,1627 0,2913
0,7 0,1437 0,1928 0,2038 0,1662 0,1436 0,3067
0,8 0,1758 0,1620 0,1810 0,1383 0,1320 0,2690
0,9 0,3588 0,1486 0,1911 0,0935 0,0804 0,1497

Table 3.2: Clustering: Restrictive Base Methods for k = 3, k = 5 on Reuters,
Newsgroups and IMDB

Base Methods Meta-Method Comb. Supervised Learning
base1 base2 base2 svm tsvm Dataset
avg(error) avg(error) avg(error) avg(loss) avg(error) avg(error) avg(error)

0,2461 0,2547 0,2305 0,4090 0,1589 0,2277 0,2040 IMDB
0,2595 0,2521 0,2993 0,3465 0,2426 0,2806 0,3126 Newsg.
0,1208 0,2094 0,2908 0,3277 0,0762 0,1883 0,2066 Reuters

Table 3.3: Combination of Restrictive Clustering and Supervised Learning in
Comparison with underlying Base Methods for k=2

136

3.4 Experimental Evaluation

about 10 percent down to less than 5 percent. Figure 3.8 illustrates the tradeoff
for the filtering task with IMDB topics “Drama vs. Horror”. This behavior
was consistent across all experiments, with little variation of the quantitative
results.

3.4.4 Collaborative Document Filtering (Classification)

The goal of these experimental series was the evaluation of collaborative taxon-
omy filtering using distributed meta methods from Section 3.3.4.

For each data set we identified all topics with more than 200 documents.
These were 20 topics for Newsgroups, 6 for Reuters, 12 for IMDB, 4 for WebKB.
Among these topics we randomly chose 100 topic pairs from Newsgroups and
all possible combinations for the others, i.e. 66 topic pairs from IMDB, 15
for Reuters, and 6 for WebKB. For each topic pair we randomly chose 200
training documents per class and kept - depending on the available topic sizes
in particular collections - a distinct and also randomly chosen set of documents
for the validation of the classifiers.

In each experiment, the training data was distributed over 16 peers using
equal-sized subsets with approximately 15% overlap (corresponding to peers
that contain non-disjoint training data). Among these peers we randomly chose
1,2,4,8, and all 16 peers to simulate various P2P classification scenarios. We
considered various numbers of cooperating peers that share their linear SVM
classifiers and perform the meta classification on local subsets. In our experi-
ments we assigned equal weights to each classifier, and instead of R(vi, d), we
considered a “confidence” value conf(vi, d) for the classification of document d
by the classifier. For SVM we used the confidence values, i.e., the distance of
the test points from the hyperplane. A more enhanced method to map SVM
outputs to probabilities is described, e.g., in [165]. The configuration with 1
cooperating peer corresponds to the “local” peer classification that does not
involve sharing of classifiers.

We also compared the restrictive form of meta classification, where we dis-
missed at each peer exactly the same amount of documents with worst classi-
fication confidence using confidence values as discussed in Section 3.2.1. Our
quality measure is the fraction of correctly classified documents (the accuracy)
among the documents not dismissed by the restrictive algorithm. The loss is
the fraction of dismissed documents.

Finally, we computed micro-averaged results along with their 95% confidence
intervals for all groups of topic pairs. Figure 3.9 shows the observed depen-
dencies between the numbers of cooperating peers, the induced loss, and the

137

3 Data Organization

accuracy
loss 1 peer 2 peers 4 peers 8 peers 16 peers
0,0 0,772 ± 0,007 0,808 ± 0,007 0,824 ± 0,006 0,844 ± 0,006 0,848 ± 0,006
0,1 0,797 ± 0,007 0,832 ± 0,007 0,853 ± 0,006 0,870 ± 0,006 0,875 ± 0,006
0,2 0,812 ± 0,007 0,853 ± 0,007 0,873 ± 0,006 0,891 ± 0,006 0,896 ± 0,006
0,3 0,831 ± 0,007 0,870 ± 0,007 0,889 ± 0,006 0,909 ± 0,006 0,911 ± 0,006
0,4 0,850 ± 0,008 0,884 ± 0,007 0,901 ± 0,006 0,921 ± 0,006 0,923 ± 0,006
0,5 0,863 ± 0,008 0,898 ± 0,007 0,912 ± 0,007 0,933 ± 0,006 0,933 ± 0,006
0,6 0,877 ± 0,009 0,909 ± 0,008 0,923 ± 0,007 0,936 ± 0,006 0,943 ± 0,006
0,7 0,891 ± 0,009 0,921 ± 0,008 0,928 ± 0,008 0,944 ± 0,007 0,947 ± 0,007
0,8 0,898 ± 0,011 0,939 ± 0,009 0,936 ± 0,009 0,949 ± 0,008 0,952 ± 0,008
0,9 0,905 ± 0,015 0,947 ± 0,012 0,940 ± 0,013 0,948 ± 0,012 0,944 ± 0,012

Table 3.4: Classification Results: IMDB Collection

resulting accuracy for various reference collections. An example of our evalu-
ation summary including 95% confidence intervals for the IMDB collection is
shown in Table 3.4.

It can be observed that the meta classification and restrictive meta classifica-
tion by multiple cooperating peers clearly outperforms the single-peer solution
for all settings of the user-defined loss, including the non-restrictive meta clas-
sification with loss = 0. The quality of the meta algorithm clearly increases
with the number of participating peers. In general, the difference between the
one-peer solution and the meta solution is statistically significant for 4 and more
participating peers and all values of the induced loss.

The only exceptions are the results for Reuters with loss > 0.7 (the accuracy
of all peer combinations, including one-peer experiment, becomes nearly 1.0)
and the WebKB collection (due to the very limited number of possible topic
combinations).

3.4.5 Collaborative Taxonomy Refinement (Clustering)

The same collections and topics were used to evaluate distributed meta clus-
tering that was introduced in Section 3.3.3. All documents from randomly
combined selections of 3 or 5 topics were considered as unlabeled data and dis-
tributed among peers analogously to classification experiments from the previous
section, with approximately 15% overlap. The goal of these series of experiments
was to reproduce the partitioning into topics on each peer with possibly high
accuracy.

For all peers, k-Means was used as the underlying base method. We compared
the one-peer clustering (i.e. clustering that can be executed by one peer on its
local dataset without cooperation with others) with meta clustering, exchanging
centroids from cooperating peers and meta mapping of the final clusters. Anal-
ogously to classification experiments, we considered restrictive meta clustering,
dismissing exactly the same number of documents with the worst clustering
confidence on each peer.

138

3.4 Experimental Evaluation

The results are summarized in Figure 3.10. The main observations are similar
to the ones discussed for the supervised case:

• The quality of the meta clustering results is consistently higher than for
isolated one-peer solutions.

• The quality of the meta algorithm tends to increase with the number
of participating peers and is in almost all cases statistically significant.
For the Reuters collection, the difference between one-peer solution and
the meta result is statistically significant for 8 and more participating
peers and all values of the induced loss. For the IMDB and Newsgroups
collections, the difference between the one-peer solution and the meta
result is statistically significant for 4 and more participating peers and all
loss values.

In the experiments with the Reuters dataset, the accuracy decreases for high
loss values (greater 0.7). Possibly this can be explained by the fact that the
Reuters topics - unlike the other considered reference collections - are very dif-
ferent in size (e.g. the topics “earn” and “grain” contain about 3900 and 280
documents, respectively).

In systematic evaluations of further application scenarios we observed similar
results. Figure 3.11 shows an example for clustering with k = 5 topics on IMDB
collection.

139

3 Data Organization

3.5 Related Work

There is a plethora of work on text classification and clustering using all kinds of
probabilistic and discriminative models [67]. The Machine Learning literature
has studied a variety of meta methods such as bagging, stacking, or boost-
ing [60, 205, 140, 104], and even combinations of heterogeneous learners (e.g.,
[207]). The approach of intentionally splitting a training set for meta classi-
fication has been investigated by [75, 188]. Automatic categorization of Web
data using textual content of the document and its neighborhood in the link
graph, hyperlink connections between Web pages, hyperlink annotations, and
other Web-specific sources of information was considered in [77, 70, 78, 146].
The emphasis of this body of work has been on the mathematical and algorith-
mic approaches, and the engineering aspects of how to cope with tradeoffs and
how to tune a classifier with regard to properties of the training data and, most
importantly, specific application goals have been largely neglected (exceptions
being, e.g., [56, 84, 201], which address different settings and are only marginally
related to the introduced methodology). The almost techniques were, up to now,
not considered in the context of distributed systems.

Automatic clustering of Web documents by analysis of hyperlink connections
in combination with textual content and HTML markup was addressed by
[73, 66, 148]. Combining multiple clustering methods in an ensemble learn-
ing manner has been addressed in [193, 103]. Neither of these papers considers
restrictive methods where documents may be completely left out and are not
assigned to any cluster; we believe that this is crucial for aiming at very high
precision. Algorithms for distributed clustering are described in [127, 139], but
here data samples (i.e., in our context, documents) must be provided to a cen-
tral server, making these solutions inconsistent with our requirements. The dis-
tributed execution of k-Means was addressed in [94, 87]. However, this method
requires multiple iterations that must be synchronized among the network nodes
and causes a considerable amount of coordination overhead.

Privacy-preserving distributed classification and clustering were also addressed
in the prior literature: In [196] a distributed Naive Bayes classifier is computed;
in [151] the parameters of local generative models are transmitted to a central
site and combined. However, this approach cannot be adopted for distributed
systems without central coordination instances.

140

3.5 Related Work

Newsgroups
Loss Disjoint k-Split BaseMethod Method

Threshold Avg(error) Avg(error) #TrainDocs

0,1 0,033 0,021
0,3 0,017 0,009 SVM
0,5 0,011 0,005 250
0,7 0,007 0,003
0,9 0,004 0,002

0,1 0,024 0,014
0,3 0,013 0,005 SVM
0,5 0,009 0,003 500
0,7 0,006 0,002
0,9 0,005 0,001

0,1 0,059 0,074
0,3 0,040 0,045 Centroid
0,5 0,027 0,018 250
0,7 0,017 0,01
0,9 0,014 0,006

0,1 0,052 0,068
0,3 0,032 0,039 Centroid
0,5 0,021 0,015 500
0,7 0,016 0,008
0,9 0,015 0,005

IMDB
Loss Disjoint k-Split BaseMethod Method

Threshold Avg(error) Avg(error) #TrainDocs

0,1 0,176 0,15
0,3 0,137 0,114 SVM
0,5 0,095 0,076 250
0,7 0,069 0,046
0,9 0,028 0,042

0,1 0,176 0,154
0,3 0,149 0,108 SVM
0,5 0,109 0,075 500
0,7 0,086 0,042
0,9 0,047 0,025

0,1 0,136 0,121
0,3 0,122 0,088 Centroid
0,5 0,080 0,073 250
0,7 0,074 0,053
0,9 0,038 0,042

0,1 0,153 0,128
0,3 0,128 0,092 Centroid
0,5 0,097 0,065 500
0,7 0,070 0,039
0,9 0,045 0,033

Figure 3.7: Micro-Averaged Tuning Results for the Newsgroups and the IMDB
Data Set

141

3 Data Organization

0,0 0,2 0,4 0,6 0,8 1,0

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Base-SVM

Base-Centroid

e
rr

o
r

loss

Figure 3.8: The Loss-Error Tradeoff for Restrictive Classification (IMDB Topics
“Drama vs. Horror”)

142

3.5 Related Work

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification Newsgroups

1 peer
2 peers
4 peers
8 peers

16 peers
 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification Reuters

1 peer
2 peers
4 peers
8 peers

16 peers

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification IMDB

1 peer
2 peers
4 peers
8 peers

16 peers
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Classification WebKB

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 3.9: Results of Collaborative Meta Classification

143

3 Data Organization

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering Newsgroups

1 peer
2 peers
4 peers
8 peers

16 peers
 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering Reuters

1 peer
2 peers
4 peers
8 peers

16 peers

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering IMDB

1 peer
2 peers
4 peers
8 peers

16 peers
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering WebKB

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 3.10: Results of Collaborative Meta Clustering, k=3 Clusters

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

loss

Clustering IMDB, k=5

1 peer
2 peers
4 peers
8 peers

16 peers

Figure 3.11: Clustering Results for k=5 Clusters, IMDB

144

4 Personalized Search and Result
Ranking

After a large-scale focused crawl, each topic of the user-specific taxonomy is usu-
ally populated with thousands of potentially relevant Web documents. Finding
the best results in a large collection of thematically relevant documents is often
itself a very challenging task. An important component of the BINGO! Web Re-
trieval framework is the search engine that assists the user by flexible searching
and ranking options for advanced repository exploration (Section 2.4.12).

In this chapter, we will discuss improvements to the previously explained gen-
eral search scenario. The proposed ideas include advanced profile management
for search personalization (Section 4.1) and context-dependent computation of
link-based authority scores (Section 4.2). Section 4.3 gives an overview of related
work for these themes.

4.1 Search Personalization

The BINGO! framework provides multiple criteria that can be used for rank-
ing of search results. The collection of ranking attributes includes classification
confidence grades, link-based authority, recency of the last known document
update, etc. In many cases, the expert user can explicitely specify the desired
ranking criterion. For example, the search for recent articles and announcements
should use the document recency, the lookup for home pages of organizations
or persons should prioritize matches with high link-based authority score, etc.
However, the manual customization of the ranking attribute is not always unam-
biguous and may confuse the unexperienced user. A better idea is to provide the
“default” ranking schema that would properly cover the big fraction of typical
information demands. Ideally, the system should recognize the proper ranking
for the query without human intervention. The search results should be ordered
automatically in such a way that is expected to satisfy the user’s needs in the
best manner.

A simple and popular solution is to use for ranking a weighted linear com-
bination of available ranking attributes. For a document d that satisfies the
requirements specified by the query q, the score with respect to Nf available
ranking attributes is computed as

145

4 Personalized Search and Result Ranking

score(q, �w, d) =

Nf∑
i=1

wi · scorei(q, d) (4.1)

where �w are the weights of particular ranking attributes, and scorei(q, d) the
value of the ith attribute with respect to the given document and query. Some
scorei values are query-independent (e.g. the classification confidence of the
document), while others are not (e.g. the cosine similarity between query and
document feature vectors). It is clear that manual tuning of weights in �w by
the portal administrator is extremely time-consuming.

In the context of the thematically focused search engine, it is natural to cap-
ture information about user preferences and demands for search personalization.
Our goal is the optimization of �w according to the needs of the current user in
an semi-automatic manner, without continuous human intervention.

In the next section, we will introduce the concept of user feedback that can be
captured by the engine for search optimization. The aggregated feedback infor-
mation can be used to derive global user patterns that correspond to common
information demands, and to find optimal �w for each pattern. Finally, we will
demonstrate results from the preliminary evaluation and discuss related work.

4.1.1 The Feedback Model

Feedback is an evaluating response of a user on results of his search. The user
may sort the result list in the descending order of subjective relevance, assign
relevance weights to documents, or simply mark results as “relevant” or “not
relevant’. In the latter case, the user behavior can be approximated by monitor-
ing: e.g. we may assume that the user preferably opens relevant documents and
tends to stay on relevant pages substantially longer than on irrelevant ones. The
required information about user interactions can be reconstructed from access
logs of the Web server that hosts the search engine application. In this chapter,
we will focus on such “black-and-white” models and assume that some - not
necessarily all - of the documents in the result set are marked by the user as
“relevant” or “not relevant’.

The captured feedback information can be represented as a tuple of three
components:

F =< q,D+, D− > (4.2)

where q is the query and D+, D− are sets of positively (negatively) marked
search results. The history of user-specific feedbacks F p = {Fi1 , . . . , Fim} forms
the user profile:

P =< F p > (4.3)

146

4.1 Search Personalization

By aggregation of the available feedback into three corresponding sets (queries,
positive matches, negative matches) the profile can be also represented as

P =< Qp, D
+
p , D−

p > (4.4)

with set of queries Qp, a set of positive matches D+
p , and a set of negative

matches D−
p :

Qp = {qi1 , . . . , qim} (4.5)

D+
p = {D+

i1
, . . . , D+

im
} (4.6)

D−
p = {D−

i1
, . . . , D−

im
} (4.7)

The user feedback can be directly used to modify the ordering of search results.
For example, the query can start with a uniform or some pre-defined “default”
�w to produce the initial result set. In the background, the system monitors user
interactions. When the user jumps to the next result pages, refines the query,
or continues search within current search results (Section 2.4.12), the search
engine assumes that the initial result set was not optimal and did not return
the expected matches on top of the result list. In this case, it recomputes the
weights �w, and reorders the result set according to the new scoring function.

Intuitively, the suitable weight vector �w should place relevant documents on
the top of the result list and exclude irrelevant and partly relevant documents
or at least show them at the end of the result list. We assume that the weight
vector �w is appropriate for the given query q if:

1. It orders the result list in such a way that most of the known relevant
documents (positive feedback samples from D+) are brought to the top
of the result list and most of the known irrelevant documents (negative
feedback samples from D−) are pulled down.

2. The produced result list is not larger than the initial one.

The appropriate vector �w that optimally separates positive and negative feed-
back elements can be computed by linear regression:

minF (−→w) =
∑

di⊂D+
⋃

D−
(yi − scorei(q, �w, di))

2 (4.8)

where �w is the desired vector of weights, D+ and D− are sets of positive(negative)
feedback documents, and yi are optimal scores for documents in D+

⋃
D−. The

weight vector �w can be found by solving the system of linear equations. In
theory, the rank of the linear equation system for solving (4.8) can be less than
Nf meaning that the solution is not unique. However, this problem is not very
likely for real-world applications.

147

4 Personalized Search and Result Ranking

4.1.2 Feedback Aggregation

The personal relevance feedback may be helpful for improving the search quality.
However, in previous section we assumed that the feedback contains carefully se-
lected relevant and irrelevant documents. In the scenario with user monitoring,
the captured feedback cannot be guaranteed to be noise-free. Furthermore, the
individual user cannot benefit from similar feedback data generated for other
users in the context of similar information demands.

In order to make the profiling more flexible and robust, we aim to compose
multiple feedback datasets into aggregated, general profiles. We suppose that
the similarity of weight vectors �wi, �wj reflects the similarity of two profiles Pi

and Pj. Under this assumption, the profile similarity PFsim(Pi, Pj) can be
defined as

PFsim(Pi, Pj) = 1 −

Nf∑
k=1

|wi
k − wj

k|

2 ∗ Nf

(4.9)

Thus, ∀k, wk ∈ [−1, 1], then |wi
k−wj

k| ∈ [0, 2] and
∑Nf

k=1 |wi
k−wj

k| ∈ [0, 2∗Nf].
It means that PFsim returns 1 for identical profiles with the same weight
vectors, and 0 for orthogonal profiles.

The similarity metric (4.9) can be used for partitioning of available profiles
into groups. For example, unsupervised learning methods and restrictive meth-
ods (clustering) from Section 3.1 can be used for this purpose. For a given
cluster CLi, the feedback collection F i

p can be defined as a union of all feed-
backs that belong to the profiles Pj in CLi. The cluster weight vector −−→wCLi

can
be calculated as a centroid of �w1.. �wc:

−→
wp =

c∑
j=1

wj
1

|CLi| , . . . ,

c∑
j=1

wj
Nf

|CLi|

 (4.10)

where wj is a weight vector constructed by linear regression for a particular
feedback F j. In the distributed environment, the user can benefit also from
profiles of other network participants by combining clusters using meta methods
and restrictive meta methods introduced in Section 3.3.3.

Every resulting cluster CL corresponds to a global system-wide profile

P g
i =< −→wi, Qi, D

+
i , D−

i > (4.11)

where −→wi is a weight vector, Qi is set of queries and

148

4.1 Search Personalization

D+
i = {D+

i1
, . . . , D+

im
} − {D−

i1
, . . . , D−

im
} (4.12)

D−
i = {D−

i1
, . . . , D−

im
} − {D+

i1
, . . . , D+

im
} (4.13)

where D+
ij

and D−
ij

are sets of relevant and irrelevant documents which belong

to the particular feedback Fij , Fij ∈ F i
p.

4.1.3 Result Ranking using Aggregated Profiles

When the user posts a new query, the search engine makes an attempt to rec-
ognize the matching global profile with optimal ranking preferences. In case of
success, the weight vector �w of the found profile is used instead of pre-defined
“default” weights.

The similarity between the query q and a global profile P g
i can be estimated

by comparing the ranking list of top i matches Ri for q with collections D+
i

and D−
i from P g

i . When the query q meets the search model that was captured
by the profile P g

i , the ranking list of matches Ri should contain many docu-
ments from D+

i and almost no documents from D−
i . In other words, “positive”

profile-specific matches are expected to occur on top of Ri, whereas “negative”
documents are expected to occur in its bottom part:

sim(q, P g
i) =

TopK∑
l=1

TopK − i + 1

TopK/2
· (IN(dl, D

+
i) − IN(dl, D

−
i)

)
(4.14)

where dl ∈ Ri are first TopK documents in the result list Ri and IN is the
count of these documents that occur in D+

i or D+
i . The calibration parameter

TopK defines how many documents from the top of the result list should be
checked using (4.14).

According to this similarity measure, we penalize negative documents if they
occur too high in the result list (in the first half of the chosen chunk) and positive
documents that occur too deep (in the second half of the chunk). Analogously,
we favoritize top-placed positive documents (that occur at the top of the re-
sult list) and accept deep-placed negative documents (in the second half of the
chunk).

When the collections D+
i , D−

i are unbalanced (e.g. |D−
i | >> |D+

i |), it is more
likely that the result list will contain more documents from the “negative” set.
To capture such cases, our similarity measure needs to be normalized:

sim(q, P g
i) =

TopK∑
l=1

TopK − l + 1

TopK/2
·
(

IN(dl, D
+
i)

|D+
i |

− IN(dl, D
−
i)

|D−
i |

)
(4.15)

149

4 Personalized Search and Result Ranking

We assume that the similarity measure (4.15) returns a positive value for
the query q and the profile P g

i is this query corresponds to the search model
captured by P g

i . The global profile with highest similarity to q is used by the
search engine to produce the final ranking that of results.

4.1.4 Experimental Evaluation

The experimental evaluation of the feedback component for the BINGO! search
engine was based on the test collection collected by the BINGO! focused crawler
(Section 2.4). The taxonomy structure was specified by the training data set
with three basic topics: “science and education”, “entertainment”, and “root”
(the latter topic contains negative training examples for the root level of the
taxonomy). To obtain good training documents and appropriate starting points
for the crawl, we used following information sources:

1. Scientific documents from several computer science institutes and depart-
ments (e.g. Saarland University and Max Planck Institute of Informatics),
CiteSeer and ACM bibliography portals, Science directories of large-scale
Web catalogs Google.com and Yahoo.com.

2. Entertainment documents were obtained from movie portals and the-
matically focused Web servers, including internet movie portals IMDB,
Movies.go.com, and the Entertainment directories of large-scale Web cat-
alogs Google.com and Yahoo.com.

3. Negative training samples were obtained by crawling of thematically ir-
relevant topics from large-scale Web catalogs Google.com and Yahoo.com,
and several newswire portals like CNN and BBC.

The resulting test collection contained 86.719 Web documents from 4.661 dif-
ferent hosts. The topic “Science” was populated with 31.715 documents, the
topic “Entertainment” with 18.894 documents. Other documents were rejected
by the classifier but stored into the repository for evaluation. The document
length in the collection was very heterogeneous (20 to 30.072 terms per docu-
ment, on average 163 terms), which is typical for Web documents.

The crawled documents were processed according to the general BINGO!
retrieval routine. For ordering of the result set, 6 ranking criteria of the BINGO!
search engine (Section 2.4.12) were taken into account:

1. The cosine similarity between query and document feature vectors.

2. The link-based authority score according to the modified HITS algorithm.

150

4.1 Search Personalization

3. Document recency, the date of last document modification as extracted
from the LastModified HTTP attribute.

4. Inverted recency.

5. Classification confidence of the document for topics “Science” and “En-
tertainment”.

All ranking attributes were normalized to unit length.

Application scenario. We asked 10 independent human experts to support our
evaluation. Every user was asked to perform the repository search for specified
questions of interest. Although the almost evaluators had fundamental knowl-
edge in Information Retrieval, they were not directly involved in the preparation
or internal details of the experiment.

We manually inspected the entire crawl outcome and defined the set of desired
information demands for repository exploration. It was guaranteed that for each
of these demands the repository contained at least one perfectly matching result:

• history of computer science

• history of internet

• TV series ’Friends’, NBC

• job offers at the Saarland University

• Oscar nominees for this year

• movie ’Minority report’

• Machine Learning

The way the users interpret the given themes and explore the database repos-
itory (queries with incremental refinement, multiple independent short queries,
etc.) was not restricted in any way. All themes of interest were sufficiently broad
and gave enough freedom to the user in specifying personalized queries. The
evaluation of query logs have shown that the human evaluators have submitted
129 requests. By eliminating duplicates (i.e. identical keyword combinations
asked by multiple persons), we obtained 73 unique queries.

151

4 Personalized Search and Result Ranking

Reference sets of relevant documents. The set of relevant documents for
each theme was required to estimate the objective quality of the results. For
queries with known feedback, we obtained the set of manually labeled relevant
documents from user evaluations. Unfortunately, the individual feedback usu-
ally contains only a few matches that are marked as relevant. In addition to the
explicit user feedback, for some themes we carefully inspected the data reposi-
tory and manually added known relevant documents, which were not mentioned
by any evaluator. This approach is similar to the “collaborative evaluation” of
prevalent Web benchmarks (e.g. the TREC Web track [25]).

Quality measures. To estimate the quality of experimental results we used
the following quality metrics:

• Precision. We are given for the query q the set of relevant documents
D+

q ∈ D. The query is submitted to the search engine and returns the
ranked list of documents R, ordered by some ranking criterion. In practice,
the user expects to obtain relevant matches within top k items on the result
list. Our objective is to estimate the fraction of relevant documents in this
segment. Our framework uses Rtop−25 ∈ R, i.e. first k = 25 documents of
the result list to estimate the precision as:

precision(k) =
1

k
·

k∑
i=1

{
1, if Ri ∈ D+

q

0, otherwise
(4.16)

• The granularity of the precision metric is often insufficient to capture
the difference between similar result lists. The advanced precision metric
considers also the positions of relevant and irrelevant documents in the
result list. In addition to the simple precision metric, we consider also the
set of explicitely irrelevant documents D−

q ∈ D. The modified precision
metric is defined as

precisionpn(k) =
1

k
·

k∑
i=1

1

|D+
q |

, if Ri ∈ D+
q

1

|D−
q |

, if Ri ∈ D−
q

0, otherwise

(4.17)

In other words, we consider the numbers of explicitely relevant and ex-
plicitely irrelevant documents in the top-k result list.

152

4.1 Search Personalization

• in the last experiment of the evaluation, the expert users were asked to
compare two result lists and to select the “better” one. We suppose that
this subjective estimation depends both on the relevance of the result list
and of the positioning of relevant matches within this list. Consequently,
we use the following metric to estimate the results quality from this point
of view:

precisionpos(k) =
1

K
·

k∑
i=1

log

k

i
, if Ri ∈ D+

q

0, otherwise

(4.18)

In other words, the relevant document in the first position is “more signif-
icant” than several relevant document at the end of the shown result list.
The logarithm is used for smoothing.

Experimental design. The evaluation was conceptually subdivided in two
parts:

1. User feedback for ranking optimization. The goal of this evaluation was
to analyze the effects of the individual relevance feedback for ranking of
search results. In order to obtain comparable results, the human experts
were asked for evaluation of the final result list.

2. Aggregation of profile information for capturing global groups of informa-
tion demands. The results of the first evaluation were used to build global
search profiles according to the algorithms presented in Section 4.1.3. The
expert users were asked to repeat the search and to evaluate the returned
results. For each query, the user received two result lists in randomized
order that was unknown to the evaluator. One of the lists was ordered ac-
cording to the fixed unit profile that corresponds to the non-personalized
search. The second result list was ordered according to the recognized
global profile (Section 4.1.3). The user was required to compare these two
lists. Possible responses were:

• The first result list seems to be better;

• The second result list seems to be better;

• There is no difference in the quality of both lists.

153

4 Personalized Search and Result Ranking

Figure 4.1: The Modified BINGO! Search Engine for Evaluation of User Feed-
back for Ranking Optimization

precision precisionpn precisionpos

search without feedback 0.1463 0.1300 0.1660
search with feedback 0.1960 0.1288 0.3587

Table 4.1: Result Quality by Using Relevance Feedback

User feedback for ranking optimization. In this part of experiments the
evaluators were asked to provide relevance feedback that was used to generate
the personal feedback profile. The profile was used to re-order the query results
that was evaluated by the user in the second turn. Figure 4.1 shows the modified
interface of the BINGO! search engine for this evaluation.

The results of this evaluation are summarized in Table 4.1. On average, the
use of relevance feedback provides ca. 34% higher precision than the common
search scenario without profiling. As expected, the number of irrelevant docu-
ments among top 20 matches decreases. With respect to the positions of relevant
documents within top 20 matches we achieved the 116% average improvement.
The positions of relevant documents became substantially better.

154

4.1 Search Personalization

Profile Chosen, Chosen, Custom Both Default Custom Both Default
times % better equal better better, % equal, % better, %

default 37 63.79 21 11 5 56.76 29.73 13.51
profile-1 9 10.34 5 3 1 55.56 33.33 11.11
profile-2 9 10.34 1 2 6 11.11 22.22 66.67
profile-3 3 5.17 0 0 3 0.00 0.00 100.00
profile-4 58 100 28 16 15 48.28 27.58 25.86

Table 4.2: Evaluation of Profile Aggregation

PROFILE precision precisionnp precisionpos

profile-1 0.206 0.326 0.449
profile-2 0.192 0.454 0.252
default 0.130 0.142 0.145

Table 4.3: Profile Evaluation - Average Precision

Aggregation of profile information. The outcome of the first evaluation was
used to generate global profiles by k-Means clustering with k = 4. The users
were asked to compare two result lists for the same query that were generated
by applying two different attribute weightings: default unit profile and the
recognized custom profile. In this evaluation, the expert users have posted
57 queries (40 of them unique, 28 new queries were not issued in the first part
of the evaluation).

Table 4.2 summarizes the results of the evaluation. Noteworthy is the good
accuracy of custom profiles: in 48% of experiments the custom profile provided
better results than the default setting. The best custom profile “profile-1”
provided in 55% cases better results than the default profile. On the other
hand, it can be observed that the custom profile “profile-4” completely failed.
The default profile was applied for ca. 64% of queries what means that our
approach did not find any appropriate custom profile. These negative results
can be explained by the low density of feedback information for generating
profiles.

For correctly captured profiles profile-1 and profile-2, we have also estimated
the quality metrics precision, precisionnp and precisionpos. Figure 4.2 shows
the modified interface of the BINGO! search engine for this evaluation. The
results are summarized in Table 4.3. It can be observed that custom profiles
outperform the precision and the precisionpos of the default profile of the search
engine.

Conclusion. The evaluation shows the ability of the introduced approach to
improve the BINGO! search quality by capturing relevance feedback and clustering-
based global profiling. We also observed that the quality of a global profile
strongly depends on its density; custom profiles with low density consistently
failed in the experiments (e.g. the custom profile “profile-3” got 100% nega-
tive evaluations). On the other hand, the global profiles with high density have

155

4 Personalized Search and Result Ranking

Figure 4.2: The Modified BINGO! Search Engine for Evaluation of Aggregated
Profiles

156

4.1 Search Personalization

shown good results. For example, the custom profile “profile-1” produced on
average 10% more precise results than applying of individual relevance feedback.

157

4 Personalized Search and Result Ranking

4.2 Advanced Link Analysis

In Chapter 2, we discussed important general properties of the Web graph. In
particular, measurements indicate that the Web graph has a high degree of clus-
tering [40]. The clusters of the Web denote thematically focused communities
that are tightly interconnected. Such thematically coupled clusters are usu-
ally combined into each other in a hierarchical manner, forming a hierarchical
network of thematically related modules [170, 102, 120]. In general, it can be
assumed that

• Thematically relevant pages point to other relevant sources.

• The link distances between thematically relevant sources tend to be short.

• The distance within clusters (communities) of thematically relevant sources
is short.

In many situations, the link structure in the crawl outcome does not ade-
quately reproduce the original link structure of the desired topic. For example,
the restrictive focusing of the crawler leads to the loss of uncertain documents,
which may serve some parts of the topic connectivity. Furthermore, new infor-
mation sources are at the beginning insufficiently referenced by other members
of the community.

Our objective is the appropriate modification of the link graph after the fo-
cused crawl. Basically, the modification may result in adding or removal of
connections between graph nodes (Web pages). Due to the sequential nature of
link fetching, the removal of links may split the crawl results into not strongly
connected subpartitions. To this end, we will restrict our considerations here to
models that add virtual links to the Web graph in order to obtain more realistic
and objective usage about connectivity. Our objective is to ensure connectivity
for isolated but thematically relevant clusters and communities.

We consider two scenarios of connectivity manipulation:

• Relevant pages are connected to each other by virtual link, as long as there
is no short path between them (Figure 4.3). The critical path length is
the tuning parameter of the approach.

• Thematically relevant Web domains are put together by virtual links that
connect the hub pages of these domains (Figure 4.4). For big hosts, mul-
tiple hub pages can be taken into account. The critical distance between
domains is the tuning parameter of the approach.

158

4.2 Advanced Link Analysis

Figure 4.3: Modification of the Link Structure: Connecting Relevant Pages

Figure 4.4: Modification of the Link Structure: Connecting Hubs of Relevant
Domains

159

4 Personalized Search and Result Ranking

4.2.1 Advanced Link Analysis with Extended PageRank

In Section 2.3.4, we introduced the use of the PageRank algorithm for identi-
fication of authoritative pages. Using the methodology from [172], the original
random surfer model can be modified to capture the behavior of the intelligent,
thematically focused surfer. For this purpose, the jump probabilities can be
expressed in terms of relevance of target documents for the user. We assume
that

1. The user jumps to thematically relevant pages with higher probability
than to other pages.

2. The user can switch to any page of the graph by random jump with equal
probability.

In the context of the focused crawler, it is natural to interpret the classifi-
cation confidence (2.22) conf(d) (Section 2.3.2) as a measure for relevance of
documents. The problem of the thematically focused PageRank algorithm can
be expressed with modified transition matrix A as follows:

�p = (1 − δ)AT �p +
δ

N
�1 (4.19)

with

A[u, v] =
E[u, v] · conf(v)∑N
i=1 E[u, i] · conf(i)

(4.20)

4.2.2 Experimental Evaluation

Dataset. The approach was tested using the .GOV reference collection of the
Text Retrieval Conference (TREC) at NIST [25]. This Web snapshot contains
results of the crawl over pages of the .gov domain, The collection contains ca.
1 Mio. Web pages.

In the first step, we analyzed and cleaned the link structure of the .GOV
collection (removing links that point to not crawled documents, duplicate elim-
ination, etc.). The cleaned repository contained 1.117.652 Web documents and
8.144.358 links between them.

The queries were taken from the TREC Web track 2004. The entire bench-
mark contains 225 queries, subdivided in 3 categories (homepage finding tasks,
page finding tasks, topic distillation). Figure 4.5 illustrates the TREC specifi-
cation of queries.

160

4.2 Advanced Link Analysis

<top>

<num> Number: TD1

<title>mining gold silver coal</title>

<desc>Description:

What can be learned about the location of mines
in the U.S., about the extent of mineral resources,
and about careers in the mining industry?

</top>

<top>

<num> Number: TD2

<title>juvenile delinquency</title>

<desc>Description:

What are rates of juvenile crime in various jurisdictions,
what is the nature of the offenses, how are they punished and
what measures are taken for prevention?

</top>

.....

Figure 4.5: The TREC Specification of Queries

TREC ID Query
225 Japanese surrender document
221 homeland security
172 FCC Freedom of Information act
152 bioengineered food crops
121 identity theft
83 NSA Home for kids
73 solar flares
64 Cell phone radiation
33 teen pregnancy
25 History of Phoenix Symbol
23 Iraq Kuwait threat history
18 Copyright basics
8 Philippines
7 Togo embassy
3 Citizen attitudes toward prairie dogs

Table 4.4: TREC Queries for Advanced Link Analysis

161

4 Personalized Search and Result Ranking

Retrieval scenario. In the first phase, we applied the unfocused computation
of PageRank to the link graph of the .GOV collection to obtain initial link-
based prestige scores of all documents. To identify candidate documents for
each topic, we computed advanced document-specific features that combine link-
based PageRank prestige scores of documents and term frequencies of word
occurrences in documents. For each document d and term-based feature f , the
weight of the advanced feature was defined as follows:

weight(f) = RTF (f) · IDF (f)

log(1 + 1
PageRank(d)

)
(4.21)

where RTF (f) is the relative term frequency of f in d, IDF (f) is the in-
verse document frequency of f in the .GOV collection (Section 2.2.1), and
PageRank(d) is the link-based prestige value of d from PageRank algorithm
(Section 2.2.2).

After tokenization, stopword elimination and stemming, each query was eval-
uated on the .GOV repository. For this purpose, the query was represented as
a feature vector in the advanced feature space. The positions that correspond
to query keywords were set to 1, all others to 0. We used the cosine similarity
measure [51] to estimate the similarity of documents to the query. The sim-
ilarity scores were used for ranking of the result set. The top-50 answers for
each query according to the cosine similarity were stored as preliminary search
results.

In the next step, we analyzed the connectivity between obtained search results
and their domains. In the first scenario, we extended the original .GOV link
graph by virtual links to ensure short link distances of 3 between all matches of
each query. In the second experiment, we applied the HITS algorithm (Section
2.2.2) to identify best hub pages of each target domain. We connected up to
3 hub pages from each of candidate domains to each other to ensure short link
distances between them (the distance between domains was interpreted as link
distance between best-scored domain hubs). Both scenarios increased the total
number of links between candidate pages by ca. 10%.

Finally, we applied the PageRank algorithm to obtain new prestige values for
the modified link structure. The new scores were used to construct the new
document features using (4.21). Finally, we re-evaluated all queries using these
new document features; the final results were completely evaluated by human
experts.

Quality metrics. To analyze the quality of search results, we used standard
TREC metrics, the average precision and the average position count that are
defined as follows. We are given the collection of queries Q. Each query q ∈ Q
performs the search in the collection C and returns the ordered list of search

162

4.2 Advanced Link Analysis

results Retq. The position of the match m in Retq is expressed as posq(m). The
subset of top-x elements from Retq is Retq,x = {i ∈ Retq : posq(i) ≤ x}. The
collection of relevant results for q in C is Relq.

The average precision PRECx for the top-x part of Ret(q) estimates the
fraction of relevant matches in the returned result set:

PRECx =
1

|Q|

∑
q∈Q |{i : i ∈ Retx,q ∩ Relq}|

|Retx,q| (4.22)

The average position count V ALx reflects the positioning of relevant matches
in the result list:

V ALx =
1

|Q|
∑
q∈Q

∑
i∈Retx,q∪Relq

x + 1 − posq(i) (4.23)

The natural way for evaluating search results would be the use of reference
sets for the Topic Distillation track, which is based on merged results from
particular track runs and partly evaluated by human experts of TREC. However,
we observed that the reference sets did not cover many documents found by our
engine. Furthermore, the specifications of the Topic Distillation benchmark
(finding root pages of the desired information sources) partly deviate from our
own goals (finding authoritative topic-specific pages). For these reasons, we
decided to completely evaluate the search results of our prototype by human
inspection. Due to time limitations, we restricted our evaluation to 15 randomly
chosen TREC queries from page finding and topic distillation benchmarks which
are shown in Figure 4.4. For these queries, we compared the outcome of 6
algorithm variations:

1. BASE − PR: The “base” PageRank algorithm, no modifications of link
structure.

2. BASE − IPR: The “intelligent” PageRank algorithm that uses docu-
ment relevance scores to adjust jump probabilities; no modifications of
link structure. In our experiments, the relevance measure was approxi-
mated by the position of the document in the initial result set.

3. V LA−PR: The “base” PageRank algorithm, link structure includes vir-
tual links between result pages for better connectivity.

4. V LA − IPR: The “intelligent” PageRank algorithm, link structure in-
cludes virtual links between result pages for better connectivity.

5. V LB − PR: The “base” PageRank algorithm, link structure includes
virtual links between domain hubs of result pages for better connectivity.

163

4 Personalized Search and Result Ranking

Figure 4.6: The Average Precision PREC-20 of the .GOV Evaluation for 15
Queries

Figure 4.7: The average Position Count VAL-20 of the .GOV Evaluation for 15
Queries

6. V LB − IPR: The “intelligent” PageRank algorithm, link structure in-
cludes virtual links between domain hubs of result pages for better con-
nectivity.

Results. The top-20 result set of each query was separately evaluated by hu-
man experts. Finally, we computed averaged values of PREC20 and V AL20

for the entire collection Q of 15 queries. Figures 4.6 and 4.7 summarize the
evaluation results.

The results clearly show the advantages of context-specific modification of the
link structure. The weighted PageRank algorithm (IPR) and the modification of
the link structure (VLA-PR) improve the result quality by comparable margins.
The best results can be achieved by combining these two approaches (VLA-IPR).
It can be also observed that adding virtual links directly between result pages
is more beneficial than connecting hub pages of qualifying domains.

164

4.2 Advanced Link Analysis

Application in the BINGO! framework. The advanced computation of link-
based prestige scores can be used by the BINGO! search engine in a variety of
ways. On the one hand, the document collection of each topic in the BINGO!
taxonomy can be considered as the set of relevant documents. For each topic,
the prestige scores of positively classified documents can be computed sepa-
rately, using the apropriately modified link graph. The customization of the
connectivity can be combined with advanced link analysis algorithms like intel-
ligent PageRank [172]. Classification confidence values serve the natural source
of information for customizing jump/transition probabilities in the advanced
model. When the user restricts the search scope on one of the taxonomy node,
the search engine can switch for ranking to topic-specific prestige values.

On the other hand, it is possible to construct the advanced link graph for
aggregated search profiles discussed in Section 4.1.2. In this case, the set D+ of
profile-characteristic documents can be considered as the collection of relevant
documents. When the search engine recognizes the appropriate global profile for
the given query, it switches to profile-specific prestige scores for result ranking.

165

4 Personalized Search and Result Ranking

4.3 Related Work

4.3.1 Search Personalization

There is a rich body of work about relevance feedback in Information Retrieval.
Feedback is frequently used in various multimedia retrieval systems [158, 176],
data delivery applications [65], for information filtering [46], text retrieval sys-
tems [53] and various Machine Learning applications [79, 153, 157].

Several approaches are based on the well-studied Rocchio algorithm [123],
first presented in [175]. The Rocchio algorithm is an adaptive learning tech-
nique which uses relevance feedback to rewrite the query in form of a linear
combination for the initial query and labeled feedback documents. The original
query vector is extended by a weighted sum of the vectors corresponding to
the feedback documents. Our approach also aggregates negative and positive
feedback; however, we aim to modify the ranking schema rather than the query
itself [99].

Rui et al [176] describes an algorithm of incorporating relevance feedback for
the content-based image retrieval. He represents an image object as a feature
vector, which contains low-level visual features associated with an object such as
color, texture and shape. Every feature has an associated set of representations
which have their own set of attributes and similarity measures to compare two
image objects. In this model he uses relevance feedback in order to assign weight
coefficients to all features and, thereby, to increase the precision of the search.
In some sense, it is similar to our approach which represents a Web document
as a “two-level” feature vector, where “high-level” features correspond to the
basic “concepts” of the document and “low-level” features are used to estimate
similarity.

Another approach in [158] proposes several algorithms which update the re-
trieval mechanism for image retrieval. One of the tuning parameters in this
approach is the customizable ranking function that uses Lp normalization of
features (L1 is the Manhattan distance and L2 is the Euclidian distance [145]).
The repository object is represented by the feature vector; the Rocchio method
is applied to obtain weight coefficients for all dimensions and then to “reshape”
the ranking function. Our approach uses basically the similar idea; however,
we use the attribute normalization by unit length (L1) which decreases system
complexity and makes computations less expensive.

4.3.2 Advanced Link Analysis

The idea of authority ranking by studying references between documents was
intensively studied in the recent literature. A subfield of classical information
retrieval, called bibliometrics, analyzed citations (e.g., [131, 106, 189, 107]). The

166

4.3 Related Work

field of sociometry developed algorithms [128, 154] is very similar to the PageR-
ank [61, 159] and HITS [132], the first link-based prestige estimation methods for
Web mining. These algorithms are used for estimation of authoritative sources
on the Web [61], to compute the reputation of Web pages [168], for ranking of
Web search results [132], for predictions of personalized Web usage [180], and
many other application scenarios. However, these algorithms are not able to ex-
ploit additional information of the focused crawl (e.g. classification confidence
grades) for topic-specific ranking in the thematically focused engine.

In the recent literature, several improvements to the base algorithms were pro-
posed. In methods proposed in [182, 89], the attention was paid to the aspects of
efficiency and system architecture for scalable link analysis computations. The
methodology of Web graph decomposition for fast incremental computation of
personalized prestige scores was introduced in [121]. In [38], the methodology
of dynamic on-line approximation of personal PageRank authority scores was
proposed. In [55], the structure of the Web graph for HITS computation was
modified in order to distinguish between redundant links, in-domain links, and
links between Web pages from different domains. However, these methods do
not address the aspect of thematically focused connectivity analysis.

In [82], the connectivity of the Web graph is analyzed with respect to the
content-based similarity of documents. The idea of [172] is the modification of
transition probabilities for the PageRank graph model according to content-
based scores (e.g. classification confidence, similarity) of Web pages. The
methodology proposed in [114] aims to compute multiple topic-specific PageR-
ank vectors. Our approach combines two basic ideas, the content-driven mod-
ification of the link graph and the customization of transition probabilities, in
order to obtain better topic-specific prestige scores for Web pages in the the-
matically focused taxonomy.

167

4 Personalized Search and Result Ranking

168

5 Conclusion and Future Work

5.1 Conclusion

This thesis makes a step towards a new generation of advanced Web search
and information mining tools. It investigates the methodology of building the
thematically focused information systems from Web data. For acquiring the-
matically specialized information from the Web, we proposed the use of fo-
cused crawling techniques. The result is a constructive and practically efficient
methodology for automatic extension of the training base for focused crawling.
Our methodology combines supervised Machine Learning techniques (classifi-
cation) and link-based authority ranking of crawl results in order to obtain
additional topic-characteristic archetypes. A key element in our approach is
the periodical retraining of the crawler’s document classifier for automatic focus
adjustment. We also considered the aspects of crawler implementation, its sys-
tem architecture and several efficiency aspects, such as crawling performance,
classification accuracy, restrictive filtering of fetched documents, design of data
structures, etc. Furthermore, we considered the results of comprehensive eval-
uations and use-case studies with our prototype, the focused crawler BINGO!.
Our experimental series include the automatic portal generation study, topic
exploration tasks, and expert Web search scenarios. The evaluation results
show the viability of our methodology for thematically focused Web retrieval
applications.

An important component of our Web retrieval framework is the crawl post-
processing that includes the filtering of crawl results (restrictive classification)
and automatic refinements of the topic structure (clustering). We have pro-
posed restrictive methods and meta methods for this class of postprocessing
problems. A key element in our methodology is the higher accuracy at the price
of certain document loss, i.e. by leaving out some poor crawl results rather
than assigning them to the wrong topics or clusters with low confidence. For
this purpose, we considered restrictive variants of existing Machine Learning
methods as well as new ensemble-based methods that simultaneously use mul-
tiple decision models (e.g. a variety of clustering algorithms) for constructing
the restrictive meta model. We have experimentally shown that restrictive meta
clustering and classification have higher accuracy than underlying base meth-
ods and, more important, perform better than the restrictive versions of these

169

5 Conclusion and Future Work

methods with same induced loss.

We adopted the idea of meta classification and clustering for collaborative
data organization by multiple cooperating users in the context of the themati-
cally organized peer-to-peer overlay networks. The results of our experimental
evaluation clearly show the advantages of cooperating between users for con-
structing meta models. The proposed approach does not require the compre-
hensive exchange of crawled data collections between peers and provides sub-
stantial advantages in the sense of privacy, network bandwidth, storage, and
computational expense. The systematic evaluation has shown that the accu-
racy of distributed meta methods clearly outperforms the models and restrictive
models that can be separately built on isolated peers.

Furthermore, we considered the aspect of result ranking for search and re-
trieval capabilities of thematically specialized portals. Our work on advanced
ranking methods was motivated by the fact that the focused crawler serves ben-
eficial taxonomy-specific information such as the topic structure or classification
confidence grades of fetched documents. In particular, we considered the op-
tions of search personalization using aggregated user feedback. Our objective
was to capture the preferred search parametrization for particular taxonomy
topics. Furthermore, we considered extensions to the computation of link-based
authority scores by modifying the link graph for crawled Web pages. To achieve
more objective estimations of prestige scores for particular crawl results, we
integrated the options of edge weighting and adding virtual links between doc-
uments with high classification confidence grades into the common link graph
model. The evaluation on reference document collections and real Web data has
shown the viability of introduced improvements.

5.2 Future Work

The proposed methodology of thematically focused Web retrieval can be en-
hanced in a variety of ways: alternative representations for Web documents
for categorization and taxonomy organization (using HTML markup, document
neighborhood, link structure, and other properties), strategies for classifier re-
training, and thematically focused authority ranking.

An important direction is the integration of “Deep Web” information sources
into the proposed retrieval scenario. Many Web databases and repositories
are accessible only through Web form interfaces and remain invisible for the
crawler. Our future work aims to integrate the thematically focused crawler with
Web-service-based portal exploration and a semantically richer set of ontology
services. The generation of thematically specialized Web ontologies and topic-
specific Web statistics is an interesting application scenario for our BINGO!
framework.

170

5.2 Future Work

On the other hand, we plan to pursue approaches to generating “semanti-
cally” tagged XML documents from the HTML pages that the crawl returns
and investigate ways of incorporating ranked retrieval of XML data in the re-
sult postprocessing or even as a structure- and context-aware filter during a
focused crawl.

Another interesting aspect of focused Web retrieval is information retrieval in
distributed P2P systems. Issues like query routing, building of distributed index
structures, and query-specific estimation of target peers with promising data
collections are crucial for the full-fledged distributed scenario of thematically
focused Web retrieval framework.

171

5 Conclusion and Future Work

172

Bibliography

[1] ACM Digital Library. http://portal.acm.org/.

[2] Adobe PDF IFilter. http://www.adobe.com/.

[3] AltaVista Web Search Engine. http://www.altavista.com/.

[4] Amazon.com Portal. http://www.amazon.com/.

[5] Archie Search Engine. http://en.wikipedia.org/wiki/Archie search engine.

[6] CiteSeer.IST: the Scientific Literature Digital Library.
http://citeseer.ist.psu.edu/.

[7] Clusty - the Clustering Engine. http://clusty.com/.

[8] CNN Newswire Portal. http://www.cnn.com/.

[9] DBLP Computer Science Bibliography. http://dblp.uni-trier.de/.

[10] DMOZ Open Directory Project. http://www.dmoz.org/.

[11] DogPile Meta Search Engine. http://www.dogpile.com/.

[12] Excite Search Engine. http://www.excite.com/.

[13] FreeWAIS-sf Stopword List.
http://www-fog.bio.unipd.it/waishelp/stoplist.html.

[14] Google Web Search Engine. http://www.google.com/.

[15] Gopher Protocol. gopher://gopher.floodgap.com/.

[16] HTML 4.01 Specification. http://www.w3.org/TR/REC-html40/.

[17] Internet Movie Database. http://www.imdb.com/.

[18] Java 2 Platform. http://java.sun.com/.

[19] JavaScript Source. http://javascript.internet.com/.

173

Bibliography

[20] Lycos Web Search Engine. http://www.lycos.com/.

[21] MetaCrawler Meta Search Engine. http://www.metacrawler.com/.

[22] RFC 822: Standard for the Format of ARPA Internet Text Messages.
http://www.faqs.org/rfcs/rfc822.html.

[23] The 20 Newsgroups Data Set.
http://www.ai.mit.edu/ jrennie/20Newsgroups/.

[24] The Internet Assigned Numbers Authority (IANA).
http://www.iana.org.

[25] TREC: Text REtrieval Conference, National Institute od Standards and
Technology, USA. http://trec.nist.gov/.

[26] United States Patent and Trademark Office. http://www.uspto.gov/.

[27] VBScript. http://msdn.microsoft.com/scripting/.

[28] Vivisimo Web Search Engine. http://vivisimo.com/.

[29] W3C Consortium. http://www.w3.org/.

[30] WebCrawler Search Engine. http://www.webcrawler.com/.

[31] WordNet: a Lexical Database for the English Language.
http://www.cogsci.princeton.edu/wn/.

[32] Yahoo Web Portal. http://www.yahoo.com/.

[33] SQL-92 Standard. American National Standards Institute (ANSI),
X3.135-1992, 1992.

[34] RFC 1738: Uniform Resource Locators (URL).
http://rfc.dotsrc.org/rfc/rfc1738.html, 1994.

[35] RFC 1945: Hypertext Transfer Protocol - HTTP/1.0.
http://www.ietf.org/rfc/rfc1945.txt, 1996.

[36] RFC 2616: Hypertext Transfer Protocol - HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[37] Google Research Project. WebmasterWorld Pub Conference,
http://www.searchengineworld.com/google/, 2002.

174

Bibliography

[38] S. Abiteboul, M. Preda, and G. Cobena. Adaptive On-Line Page
Importance Computation. 12th International World Wide Web
Conference (WWW), Budapest, Hungary, pages 280–290, 2003.

[39] L. Adamic and B. Huberman. The Web’s Hidden Order.
Communications of the ACM, 44(9):55–59, 2001.

[40] L.A. Adamic. The Small World Wide Web. 3rd European Conference on
Research and Advanced Technology for Digital Libraries (ECDL), Paris,
France, pages 443–452, 1999.

[41] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
Subspace Clustering on High Dimensional Data for Data Mining
Applications. 1998 ACM SIGMOD International Conference on
Management of Data, Seattle, USA, pages 94–105, 1998.

[42] R. Albert and A.L. Barabasi. Emergence of Scaling in Random
Networks. Science, 286:509–512, 1999.

[43] R. Albert and A.L. Barabasi. Statistical Mechanics of Complex
Networks. Reviews of Modern Physics, 74(01):47–97, 2002.

[44] R. Albert, A.L. Barabasi, and H. Jeong. Scale-free Characteristics of
Random Networks: The Topology of the World Wide Web. Physica A,
281:69–77, 2000.

[45] R. Albert, H. Jeong, and A.L. Barabasi. Diameter of the World-Wide
Web. Nature, 401:130–131, 1999.

[46] J. Allan. Incremental Relevance Feedback for Information Filtering. 19th
International ACM Conference on Research and Development in
Information Retrieval (SIGIR), Zurich, Switzerland, pages 270–278,
1996.

[47] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing Multiclass to
Binary: A Unifying Approach for Margin Classifiers. Journal of Machine
Learning Research, 1:113–141, 2000.

[48] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander. Optics: Ordering
Points to Identify the Clustering Structure. 1999 ACM SIGMOD
International Conference of Management of Data, Philadelphia, USA,
pages 49–60, 1999.

[49] M.D Araujo, G. Navarro, and N. Ziviani. Large Text Searching Allowing
Errors. 4th South American Workshop on String Processing, Valparaiso,
Chile, pages 2–20, 1997.

175

Bibliography

[50] R. Baeza-Yates and G. Navarro. Block Addressing Indices for
Approximate Text Retrieval. Journal of the American Society for
Information Science, 51(1):69–82, 1997.

[51] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addision Wesley, 1999.

[52] L. Barbosa and J. Freire. Searching for HiddenWeb Databases. 8th
International Workshop on the Web and Databases, Baltimore, USA,
pages 1–6, 2005.

[53] N. Belkin, C. Cool, J. Koenemann, K. Ng, and S. Park. Using Relevance
Feedback and Ranking in Interactive Searching. 4th Text Retrieval
Conference (TREC), Washington, USA, 1996.

[54] M. Berry, S. Dumais, and G.W. O’Brien. Using Linear Algebra for
Intelligent Information Retrieval. SIAM Review, 37(4):573–595, 1995.

[55] K. Bharat and M. Henzinger. Improved Algorithms for Topic Distillation
in a Hyperlinked Environment. 21st International ACM Conference on
Research and Development in Information Retrieval (SIGIR),
Melbourne, Australia, pages 104–111, 1998.

[56] H.E. Blok, D. Hiemstra, S. Choenni, F. de Jong, H.M. Blanken, and
P.M.G. Apers. Predicting the Cost-Quality Tradeoff for Information
Retrieval Queries: Facilitating Database Design and Query
Optimization. 10th International Conference on Information and
Knowledge Management (CIKM), Atlanta, USA, pages 207–214, 2001.

[57] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler: a
Scalable Fully Distributed Web Crawler. Software - Practice and
Experience (SPE), 34(8):711–726, 2004.

[58] B. Bollobas, C. Borgs, J. Chayes, and O. Riordan. Directed Scale-Free
Graphs. 14th ACM-SIAM Symposium on Discrete Algorithms,
Baltimore, Maryland, pages 132–139, 2003.

[59] J. Boyan, D. Freitag, and T. Joachims. A Machine Learning
Architecture for Optimizing Web Search Engines. AAAI Workshop on
Internet-Based Information Systems, 1996.

[60] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[61] S. Brin and L. Page. The Anatomy of a Large Scale Hyper-textual Web
Search Engine. 7th International World Wide Web Conference (WWW),
Brisbane, Australia, 1998.

176

Bibliography

[62] A. Broder, S. Glassman, M.S. Manasse, and G. Zweig. Syntactic
Clustering of the Web. Computer Networks, 29(8-13):1157–1166, 1997.

[63] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J.L. Wiener. Graph Structure in the Web.
Computer Networks, 33(1-6):309–320, 2000.

[64] C.J.C. Burges. A Tutorial on Support Vector Machines for Pattern
Recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[65] U. Cetintemel, M.J. Franklin, and C.L. Giles. Self-Adaptive User
Profiles for Large-Scale Data Delivery. 16th International Conference on
Data Engineering (ICDE), San Diego, USA, pages 622–633, 2000.

[66] S. Chakrabarti. Integrating the Document Object Model with
Hyperlinks for Enhanced Topic Distillation and Information Extraction.
10th International World Wide Web Conference (WWW), Hong Kong,
China, pages 211–220, 2001.

[67] S. Chakrabarti. Mining the Web: Discovering Knowledge from Web
Data. Morgan Kaufmann, 2003.

[68] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: a
New Approach to Topic-Specific Web Resource Discovery. Computer
Networks, 31(11–16):1623–1640, 1999.

[69] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable Feature
Selection, Classification and Signature Generation for Organizing Large
Text Databases into Hierarchical Topic Taxonomies. VLDB Journal,
7(3):163–178, 1998.

[70] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced Hypertext
Categorization Using Hyperlinks. 1998 ACM SIGMOD International
Conference on Management of Data, Seattle, USA, pages 307–318, 1998.

[71] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Kleinberg. Mining the Web’s Link
Structure. IEEE Computer, 32(8):60–67, 1999.

[72] S. Chakrabarti, M. Joshi, K. Punera, and D.M. Pennock. The Structure
of Broad Topics on the Web. 11th International World Wide Web
Conference (WWW), Honolulu, USA, pages 251–262, 2002.

[73] S. Chakrabarti, M.M. Joshi, and V.B. Tawde. Enhanced Topic
Distillation using Text, Markup Tags, and Hyperlinks. 24th

177

Bibliography

International ACM Conference on Research and Development in
Information Retrieval (SIGIR), New Orleans, USA, pages 208–216, 2001.

[74] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated Focused
Crawling through Online Relevance Feedback. 11th International World
Wide Web Conference (WWW), Honolulu, USA, pages 148–159, 2002.

[75] P. Chan. An Extensible Meta-Learning Approach for Scalable and
Accurate Inductive Learning. PhD thesis, Department of Computer
Science, Columbia University, New York, 1996.

[76] K.C.C. Chang, B. He, and Z. Zhang. Toward Large-Scale Integration:
Building a MetaQuerier over Databases on the Web. 2nd Conference on
Innovative Data Systems Research (CIDR), Asilomar, USA, pages
44–55, 2005.

[77] H. Chen and S. Dumais. Bringing Order to the Web: Automatically
Categorizing Search Results. SIG CHI Conference on Human Factors in
Computing Systems, Hague, Netherlands, pages 145–152, 2000.

[78] H. Chen, C. Schuffels, and R. Orwig. Internet Categorization and
Search: A Machine Learning Approach. Journal of Visual
Communication and Image Representation, 7:88–102, 1996.

[79] Z. Chen, X. Meng, B. Zhu, and R.H. Fowler. WebSail: From On-Line
Learning to Web Search. 1st International Conference on Web
Information Systems Engineering (WISE), Hong Kong, China, pages
206–213, 2000.

[80] J. Cho, H. Garcia-Molina, and L. Page. Efficient Crawling through URL
Ordering. 7th International World Wide Web Conference (WWW),
Brisbane, Australia, pages 161–172, 1998.

[81] A. Chowdhury, O. Frieder, D.A. Grossman, and M.C. McCabe.
Collection Statistics for Fast Duplicate Document Detection. ACM
Transactions on Information Systems, 20(2):171–191, 2002.

[82] D. Cohn and T. Hofmann. The Missing Link - a Probabilistic Model of
Document Content and Hypertext Connectivity. Neural Information
Processing Systems (NIPS), Denver, USA, pages 430–436, 2001.

[83] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery. Learning to Extract Symbolic Knowledge
from the World Wide Web. 15th National Conference on Artificial
Intelligence (AAAI), Madison, USA, pages 509–516, 1998.

178

Bibliography

[84] S. Cronen-Townsend, Y. Zhou, and W.B. Croft. Predicting Query
Performance. 25th International ACM Conference on Research and
Development in Information Retrieval (SIGIR), Tampere, Finland, pages
299–306, 2002.

[85] P. De Bra and R. Post. Information Retrieval in the World-Wide Web:
Making Client-based Searching Feasible. Computer Networks and ISDN
Systems, 27(2):183–192, 1994.

[86] A.J. Demers, D.H. Greene, C. Hauser, J. Irish, W. Larson, S. Shenker,
H.E. Sturgis, D.C. Swinehart, and D.B. Terry. Epidemic Algorithms for
Replicated Database Maintenance. 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC), Vancouver, Canada, pages
1–12, 1987.

[87] I.S. Dhillon and D.S. Modha. A Data-Clustering Algorithm on
Distributed Memory Multiprocessors. Large-Scale Parallel Data Mining,
Lecture Notes in Artificial Intelligence, pages 245–260, 2000.

[88] M. Diligenti, F. Coetzee, S. Lawrence, C.L. Giles, and M. Gori. Focused
Crawling Using Context Graphs. 26th International Conference on Very
Large Data Bases (VLDB), Cairo, Egypt, pages 527–534, 2000.

[89] C. Ding, X. He, P. Husbands, H. Zha, and H.D. Simon. PageRank, HITS
and a Unified Framework for Link Analysis. 25th Annual International
ACM Conference on Research and Development in Information Retrieval
(SIGIR), Tampere, Finland, pages 353–354, 2002.

[90] S. Dorogovtsev, A. Goltsev, and J. Mendes. Pseudofractal Scale-Free
Web. Physical Review E, 65(6):066122, 2002.

[91] P. DuBois. MySQL - Developer’s Library. Sams, 2005.

[92] S. Dumais and H. Chen. Hierarchical Classification of Web Content.
23rd ACM International Conference on Research and Development in
Information Retrieval (SIGIR), Athens, Greece, pages 256–263, 2000.

[93] T. Dunning. Accurate Methods for the Statistics of Surprise and
Coincidence. Computational Linguistics, 19(1):61–74, 1994.

[94] M. Eisenhardt, W. Mueller, and A. Henrich. Classifying Documents by
Distributed P2P Clustering. GI-Fachtagung Informatik, pages 286–291,
2003.

179

Bibliography

[95] A. Ellis and T. Hagino. The Indexable Web is more than 11.5 Billion
Pages. 14th International World Wide Web Conference (WWW), Special
Interest Tracks and Posters, Chiba, Japan, pages 902–903, 2005.

[96] P. Erdős and A. Rényi. On Random Graphs I. Publicationes
Mathematicae Debrecen, 6:290–297, 1959.

[97] M. Ester, H.P. Kriegel, and J. Sander. Knowledge Discovery in
Databases. Springer, 2001.

[98] M. Ester, H.P. Kriegel, J. Sander, and X. Xiaowei. A Density-Based
algorithm for Discovering Clusters in Large Spatial Databases with
Noise. 2nd International Conference on Knowledge Discovery and Data
Mining (KDD), Portland, USA, pages 226–231, 1996.

[99] R. Fagin and E.L. Wimmers. A Formula for Incorporating Weights into
Scoring Rules. Theoretical Computer Science, 239(2):309–338, 2000.

[100] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[101] D. Fisher. Improving Inference through Conceptual Clustering. 6th
National Conference on Artificial Intelligence (AAAI), Seattle, USA,
pages 461–465, 1987.

[102] G. Flake, S. Lawrence, and C.L. Giles. Efficient Identification of Web
Communities. 6th International Conference on Knowledge Discovery and
Data Mining (KDD), Boston, USA, pages 150–160, 2000.

[103] A.L.N. Fred and A.K. Jain. Robust Data Clustering. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR), Madison, USA, pages 128–136, 2003.

[104] Y. Freund. An Adaptive Version of the Boost by Majority Algorithm.
Workshop on Computational Learning Theory (COLT), Santa Cruz,
USA, pages 102–113, 1999.

[105] L. Galavotti, F. Sebastiani, and M. Simi. Experiments on the Use of
Feature Selection and Negative Evidence in Automated Text
Categorization. 4th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL), Lisbon, Portugal, pages 59–68,
2000.

[106] E. Garfield. Citation Analysis as a Tool in Journal Evaluation. Science,
178, 1972.

180

Bibliography

[107] E. Garfield. Citation Indexing. ISI Press, 1979.

[108] J. Gennari, P. Langley, and D. Fisher. Models for Incremental Concept
Formation. Artificial Intelligence, 40:11–61, 1989.

[109] A. Glossbrenner and E. Glossbrenner. Search Engines for the World
Wide Web. Peachpit Pr, 1998.

[110] E.J. Glover, K. Tsiouliklis, S. Lawrence, D. Pennock, and G.W. Flake.
Using Web Structure for Classifying and Describing Web Pages. 11th
International World Wide Web Conference (WWW), Honolulu, USA,
pages 562–569, 2002.

[111] I. Gupta, A. Kermarrec, and A. Ganesh. Efficient Epidemic-Style
Protocols for Reliable and Scalable Multicast. IEEE International
Symposium on Reliable Distributed Systems (SRDS), Suita, Japan, pages
180–189, 2002.

[112] U. Hahn and I. Mani. The Challenges of Automatic Summarization.
Computer, 33(11):29–36, 2000.

[113] M.M. Hasan and Y. Matsumoto. Document Clustering: Before and
After the Singular Value Decomposition. Information Processing Society
of Japan, Natural Language Technical Reports, 134, 1999.

[114] T.H. Haveliwala. Topic-Sensitive PageRank. 11th International World
Wide Web Conference (WWW), Honolulu, Hawaii, pages 517–526, 2002.

[115] H.S. Heaps. Information Retrieval, Computational and Theoretical
Aspects. Academic Press, 1978.

[116] M. Hersovici, M. Jacovi, Y.S. Maarek, D. Pelleg, M. Shtalhaim, and
S. Ur. The Shark-Search algorithm. An Application: Tailored Web Site
Mapping. 7th International World Wide Web Conference (WWW),
Brisbane, Australia, pages 317–326, 1998.

[117] A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web
Crawler. World Wide Web, 2(4):219–229, 1999.

[118] A. Heydon and M. Najork. Performance Limitations of the Java Core
Libraries. Concurrency: Practice and Experience, 12(6):363–373, 2000.

[119] A. Hinneburg and D.A. Keim. An Efficient Approach to Clustering in
Large Multimeda Databases with Noise. 4th International Conference on
Knowledge Discovery and Data Mining (KDD), New York, USA, pages
58–65, 1998.

181

Bibliography

[120] J. J. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The Web as a Graph: Measurements, Models and Methods.
International Conference on Combinatorics and Computing, Invited
Survey, 1999.

[121] G. Jeh and J. Widom. Scaling Personalized Web Search. 12th
International World Wide Web Conference (WWW), Budapest,
Hungary, pages 271–279, 2003.

[122] T. Joachims. SVM*Light: the Implementation of Support Vector
Machines. http://svmlight.joachims.org/.

[123] T. Joachims. A Probabilistic Analysis of the Rocchio Algorithm with
TFIDF for Text Categorization. 14th International Conference on
Machine Learning (ICML), Nashville, USA, pages 143–151, 1997.

[124] T. Joachims. Estimating the Generalization Performance of an SVM
Efficiently. 17th International Conference on Machine Learning (ICML),
Stanford, CA, USA, pages 431–438, 2000.

[125] T. Joachims. A Statistical Learning Model of Text Classification for
Support Vector Machines. 24th ACM International Conference on
Research and Development in Information Retrieval (SIGIR), New
Orleans, USA, pages 128–136, 2001.

[126] T. Joachims. Learning to Classify Text using Support Vector Machines.
Kluwer, 2002.

[127] H. Kargupta, W. Huang, K. Sivakumar, and E.L. Johnson. Distributed
Clustering Using Collective Principal Component Analysis. Knowledge
and Information Systems, 3(4):422–448, 2001.

[128] L. Katz. A New Status Index Derived from Sociometric Analysis.
Psychometrika, 18(1):39–43, 1953.

[129] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An
Untroduction to Cluster Algorithms. John Wiley, 1990.

[130] A. Kermarrec, L. Massouli, and A. Ganesh. Probablistic Reliable
Dissemination in Large-Scale Systems. IEEE Transactions on Parallel
and Distributed Systems, 14(3):248–258, 2003.

[131] M.M. Kessler. Bibliographic Coupling Between Scientific Papers.
American Documentation, 14, 1963.

182

Bibliography

[132] J.M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM, 46(5), 1999.

[133] M. Kochen. The Small World: A Volume of Recent Research Advances
Commemorating Ithiel de Sola Pool, Stanley Milgram, Theodore
Newcomb. Ablex Publishing, 1989.

[134] P.L. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of Growing
Random Networks. Physical Review Letters, 85(21):29–32, 2000.

[135] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the
Web for Emerging Cyber-Communities. Computer Networks,
31(11–16):1481–1493, 1999.

[136] R. Kumar, P. Raghavan, S. Rajalopagan, D. Sivakumar, A.S. Tomkins,
and E. Upfal. Stochastic Models for the Web Graph. IEEE Symposium
on Foundations of Computer Science (FOCS), Los Alamitos, CA, USA,
pages 57–65, 2000.

[137] D. Lewis. Evaluating Text Categorization. Proceedings of Speech and
Natural Language Workshop, Pacific Grove, USA, pages 312–318, 1991.

[138] D. Lewis. Representation and Lerning in Information Retrieval. PhD
thesis, Department of Computer and Information Science, University of
Massachusetts, 1992.

[139] T. Li, S. Zhu, and M. Ogihara. Algorithms for Clustering High
Dimensional and Distributed Data. Intelligent Data Analysis,
7(4):305–326, 2003.

[140] N. Littlestone and M.K. Warmuth. The Weighted Majority Algorithm.
Information and Computation, 108(2):212–261, 1994.

[141] K. Loney. Oracle Database 10g: The Complete Reference. McGraw-Hill,
2004.

[142] M. M. Caropreso, S. Matwin, and F. Sebastiani. A Learner-Independent
Evaluation of the Usefulness of Statistical Phrases for Automated Text
Categorization. Text Databases and Document Management: Theory and
Practice, pages 78–102, 2001.

[143] J. MacQueen. Some Methods for Classification and Analysis of
Multivariate Observations. 5th Berkeley Symposium on Math. Statistics
and Probability, pages 281–297, 1967.

183

Bibliography

[144] B. Mandelbrot. A Note on a Class of Skew Distribution Functions.
Information and Control, 2(1):90–99, 1959.

[145] C.D. Manning and H. Schuetze. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[146] H. Mase. Experiments on Automatic Web Page Categorization for IR
System. Technical Report, Stanford University, 1998.

[147] F. Menczer. ARCCHNID: Adaptive Retrieval Agents Choosing Heuristic
Neighborhoods. 14th International Conference on Machine Learning
(ICML), Nashville, USA, pages 227–235, 1997.

[148] F. Menczer. Lexical and Semantic Clustering by Web Links. Journal of
the American Society for Information Science and Technology (JASIST),
55(14):1261–1269, 2004.

[149] F. Menczer, G. Pant, and P. Srinivasan. Topical Web Crawlers:
Evaluating Adaptive Algorithms. ACM Transactions on Internet
Technology (TOIT), 4(4):378–419, 2004.

[150] F. Menczer, G. Pant, P. Srinivasan, and M. Ruiz. Evaluating
Topic-Driven Web Crawlers. 24th International ACM Conference on
Research and Development in Information Retrieval (SIGIR), New
Orleans, USA, pages 241–249, 2001.

[151] S. Merugu and J. Ghosh. Privacy-Preserving Distributed Clustering
using Generative Models. International Conference on Data Mining
(ICDM), Melbourne, USA, pages 211–218, 2003.

[152] G.A. Miller, E.B. Newman, and E.A. Friedman. Length-Frequency
Statistics for Written English. Information and Control, 1(4):470–389,
1958.

[153] T. Mitchell. Machine Learning. McGraw Hill, 1996.

[154] M.S. Mizruchi, P. Mariolis, M. Schwartz, and B. Mintz. Techniques for
Disaggregating Centrality Scores in Social Networks. Sociological
Methodology, pages 26–48, 1986.

[155] D. Mladenic. Feature Subset Selection in Text Learning. 10th European
Conference on Machine Learning (ECML), Chemnitz, Germany, pages
95–100, 1998.

184

Bibliography

[156] A. Moschitti and R. Basili. Complex Linguistic Features for Text
Classification: A Comprehensive Study. 26th European Conference on
IR Research (ECIR), Sunderland, UK, pages 181–196, 2004.

[157] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text
Classification from Labeled and Unlabeled Documents using EM.
Machine Learning, 39(2/3):103–134, 2000.

[158] M. Ortega-Binderberger, K. Chakrabarti, and S. Mehrotra. Efficient
Evaluation of Relevance Feedback for Multidimensional All-pairs
Retrieval. ACM Symposium on Applied Computing (SAC), Melbourne,
USA, pages 847–852, 2003.

[159] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Stanford, Digital Library
Technologies, Working Paper, 1999-0120, 1998.

[160] B. Pang and L. Lee. Thumbs Up? Sentiment Classification using
Machine Learning Techniques. Conference on Empirical Methods in
Natural Language Processing (EMNLP), Philadelphia, USA, pages
79–86, 2002.

[161] G. Pant, S. Bradshaw, and F. Menczer. Search Engine - Crawler
Symbiosis: Adapting to Community Interests. 7th European Conference
on Research and Advanced Technology for Digital Libraries (ECDL),
Trondheim, Norway, pages 221–232, 2003.

[162] G. Pant and F. Menczer. MySpiders: Evolve Your Own Intelligent Web
Crawlers. Autonomous Agents and Multi-Agent Systems, 5(2):221–229,
2002.

[163] G. Pant and F. Menczer. Topical Crawling for Business Intelligence. 7th
European Conference on Research and Advanced Technology for Digital
Libraries (ECDL), Trondheim, Norway, pages 233–244, 2003.

[164] G. Pant, P. Srinivasan, and F. Menczer. Crawling the Web. Web
Dynamics - Adapting to Change in Content, Size, Topology and Use,
pages 153–178, 2004.

[165] J. Platt. Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods. Advances in Large
Margin Classifiers, MIT Press, pages 61–74, 1999.

[166] M. Porter. An Algorithm for Suffix Stripping. ACM Readings in
Information Retrieval, pages 313–316, 1997.

185

Bibliography

[167] M. Porter. Snowball: A Language for Stemming Algorithms.
http://snowball.tartarus.org/texts/, 2001.

[168] D. Rafiei and A. Mendelzon. What is this Page Known for? Computing
Web Page Reputations. 9th International World Wide Web Conference
(WWW), Amsterdam, The Netherlands, pages 823–836, 2000.

[169] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. 27th
International Conference on Very Large Data Bases (VLDB), Roma,
Italy, pages 129–138, 2001.

[170] E. Ravasz and A.L. Barabasi. Hierarchical Organization in Complex
Networks. Physical Review E, 67:026112, 2003.

[171] J. Rennie and A. McCallum. Using Reinforcement Learning to Spider
the Web Efficiently. 16th International Conference on Machine Learning
(ICML), Bled, Slovenia, pages 335–343, 1999.

[172] M. Richardson and P. Domingos. The Intelligent Surfer: Probabilistic
Combination of Link and Content Information in PageRank. Advances
in Neural Information Processing Systems (NIPS), Vancouver, Canada,
14, 2002.

[173] R. Rivest. RFC 1321: The MD5 Message Digest Algorithm.
http://www.ietf.org/rfc/rfc1321.txt, 1992.

[174] S.E. Robertson and K. Sparck Jones. Relevance Weighting of Search
Terms. Journal of the American Society for Information Science,
27:129–146, 1976.

[175] J.J. Rocchio. Relevance Feedback in Information Retrieval. SMART
Retrieval System, pages 313–323, 1971.

[176] Y. Rui, T.S. Huang, and S. Mehrotra. Relevance Feedback Techniques in
Interactive Content-Based Image Retrieval. Storage and Retrieval for
Image and Video Databases (SPIE), San Jose, USA, pages 25–36, 1998.

[177] G. Salton and M.J. McGill. Introduction to Modern Information
Retrieval. McGraw Hill, 1983.

[178] G. Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic Text
Structuring and Summarization. Information Processing and
Management: an International Journal, 33(2):193–207, 1997.

186

Bibliography

[179] S. Sarawagi, S. Chakrabarti, and S. Godbole. Cross-Training: Learning
Probabilistic Mappings between Topics. 9th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
Washington, USA, pages 177–186, 2003.

[180] R. Sarukkai. Link Prediction and Path Analysis using Markov Chains.
9th International World Wide Web Conference (WWW), Amsterdam,
The Netherlands, pages 377–386, 2000.

[181] H. Schuetze and J.O. Pedersen. Information Retrieval Based on Word
Senses. 4th Annual Symposium on Document Analysis and Information
Retrieval, Las Vegas, USA, pages 161–175, 1995.

[182] D.K. Sepandar, T.H. Haveliwala, C.D. Manning, and G.H. Golub.
Extrapolation Methods for Accelerating PageRank Computations. 12th
International World Wide Web Conference (WWW), Budapest,
Hungary, pages 261–270, 2003.

[183] V. Shkapenyuk and T. Suel. Design and Implementation of a
High-Performance Distributed Web Crawler. 18th International
Conference on Data Engineering (ICDE), San Jose, USA, pages
357–368, 2002.

[184] S. Siersdorfer and S. Sizov. Construction of Feature Spaces and Meta
Methods for Classification of Web Documents. 10th Conference
Datenbanksysteme fuer Business, Technologie und Web (BTW), Leipzig,
Germany, pages 197–206, 2003.

[185] S. Sizov, M. Biwer, J. Graupmann, S. Siersdorfer, M. Theobald,
G. Weikum, and P. Zimmer. The BINGO! System for Information Portal
Generation and Expert Web Search. 1st Conference on Innovative
Systems Research (CIDR), Asilomar, USA, 2003.

[186] S. Sizov and S. Siersdorfer. Restrictive Clustering and Metaclustering for
Self-Organizing Document Collections. 27th International Conference on
Research and Development in Information Retrieval (SIGIR), Sheffield,
UK, pages 226–233, 2004.

[187] S. Sizov, S. Siersdorfer, M. Theobald, and G. Weikum. BINGO!:
Bookmark-Induced Gathering of Information. 3rd International
Conference on Web Information Systems Engineering (WISE),
Singapore, pages 323–332, 2002.

[188] S. Sizov, S. Siersdorfer, and G. Weikum. Goal-Oriented Methods and
Meta Methods for Document Classification and their Parameter Tuning.

187

Bibliography

ACM Conference on Information and Knowledge Management (CIKM),
Washington, USA, pages 59–68, 2004.

[189] H. Small. Co-Citation in the Scientific Literature: A New Measure of the
Relationship Between Two Documents. Journal of American Social
Information Science, 24, 1973.

[190] E. Spertus. Smokey: Automatic Recognition of Hostile Messages. 14th
National Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference, Providence, Rhode
Island, USA, pages 1058–1065, 1997.

[191] A. Spink and J. Jansen. Different Engines, Different Results: A Study of
First Page Web Search Engine Results Overlap.
http://comparesearchengines.dogpile.com/, 2005.

[192] W.R. Stevens. TCP/IP Illustrated, Vol.1 : The Protocols.
Addison-Wesley, 1994.

[193] A. Strehl and J. Gosh. Cluster Ensembles - a Knowledge Reuse
Framework for Combining Multiple Partitions. Journal of Machine
Learning Research, 3:583–617, 2002.

[194] C.M. Tan, Y.F. Wang, and C.D. Lee. The Use of Bigrams to Enchance
Text Categorization. Information Processing and Management,
30(4):529–546, 2002.

[195] P.D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation
applied to Unsupervised Classification of Reviews. 40th Annual Meeting
of the Association for Computational Linguistics (ACL), Philadelphia,
USA, pages 417–424, 2002.

[196] J. Vaidya and C. Clifton. Privacy Preserving Naive Bayes Classifier for
Vertically Partitioned Data. SIAM International Conference on Data
Mining, Orlando, USA, 2004.

[197] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[198] I. Varlamis, M. Vazirgiannis, M. Halkidi, and B. Nguyen. THESUS:
Effective Thematic Selection and Organization of Web Document
Collections based on Link Semantics. IEEE Transactions on Knowledge
and Data Engineering, 16(6):585–600, 2004.

[199] E.M. Voorhees and L.P. Buckland. NIST Special Publication: SP
500-255. 12th Text Retrieval Conference (TREC), 2003.

188

Bibliography

[200] G. Wang and F.H. Lochovsky. Feature Selection with Conditional
Mutual Information MaxiMin in Text Categorization. 13th ACM
Conference on Information and Knowledge Management (CIKM),
Washington D.C., USA, pages 342–349, 2004.

[201] H. Wang, W. Fan, P.S. Yu, and J. Han. Mining Concept-Drifting Data
Streams using Ensemble Classifiers. 9th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), Washington,
USA, pages 226–235, 2003.

[202] W. Wang, J. Yang, and R. Muntz. Sting: A Statistical Information Grid
Approach to Spatial Data Mining. 23rd International Conference on
Very Large Databases (VLDB), San Francisco, USA, pages 186–195,
1997.

[203] D.J. Watts and S.H. Strogatz. Collective Dynamics of Small-World
Networks. Nature, 393(06):440–442, 1998.

[204] J. Wiebe, E. Breck, C. Buckley, C. Cardie, P. Davis, B. Fraser, D.J.
Litman, D.R. Pierce, E. Riloff, T. Wilson, D. Day, and M.T. Maybury.
Recognizing and Organizing Opinions Expressed in the World Press.
New Directions in Question Answering, AAAI Press, pages 12–19, 2003.

[205] D.H. Wolpert. Stacked Generalization. Neural Networks, 5:241–259,
1992.

[206] Y. Yang and O. Pedersen. A Comparative Study on Feature Selection in
Text Categorization. 14th International Conference on Machine
Learning (ICML), Nashwille, USA, pages 412–420, 1997.

[207] H. Yu, K.C. Chang, and J. Han. Heterogeneous Learner for Web Page
Classification. IEEE International Conference on Data Mining (ICDM),
Maebashi, Japan, pages 538–545, 2002.

[208] H. Yu, J. Han, and K.C.C. Chang. PEBL: Web Page Classification
without Negative Examples. IEEE Transactions on Knowledge and Data
Engineering, 16(1):70–81, 2004.

[209] G.K. Zipf. Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, 1949.

189

Bibliography

190

List of Figures

2.1 Base Graph Structures of the Watts-Strogatz Model: Regular
Lattice and the Random Graph 11

2.2 The Separating Hyperplane of the Linear SVM Classifier 23
2.3 General Overview of the Focused Crawler 35
2.4 The Sample Bookmark File . 36
2.5 Nodes of the BINGO! Taxonomy 37
2.6 The BingoDocument Data Structure 38
2.7 The BINGO! Classification Procedure 42
2.8 Overview of the BINGO! Document Processing 45
2.9 Lookups for Pending Tasks in the BINGO! Queue Manager . . . 50
2.10 The ERM Model of BINGO! Database Repository 52
2.11 The Multiplication Routine for BINGO! CRS Representation of

the Link Graph . 58
2.12 General Overview of the BINGO! Core Software 60
2.13 GUI of the BINGO! Crawler . 61
2.14 The BINGO! Crawl Visualization 62
2.15 The BINGO! Database Interface 64
2.16 The BINGO! SQL Client . 65
2.17 The Document Representation in BINGO! 66
2.18 The BINGO! Data Model . 67
2.19 The BINGO! Desktop . 68
2.20 The BINGO! Configuration . 69
2.21 The BINGO! Search Engine . 70
2.22 The BINGO! Reviser . 72
2.23 The BINGO! Reviser: Evaluation Results 73
2.24 The BINGO! Reviser: Evaluation of Feature Spaces 74
2.25 The DBLP Author Page . 79
2.26 BINGO! Seed Pages in the Topic Exploration Experiment . . . 99
2.27 Top-10 Hosts of the Topic Exploration Experiment 100
2.28 The HIP Architecture . 100
2.29 The HIP Administration Toolkit 101
2.30 Result Page of the HIP Search Engine (Simple Search) 102

191

List of Figures

2.31 Result Page of the HIP Search Engine (Advanced Search) 103
2.32 The HIP Query Processing . 103
2.33 The HIP Topic Structure . 104
2.34 Results of the Google Search Engine for Query “book small trades”

(German: “buch handwerk”) . 104
2.35 Results of the Amazon Portal for Query “book small trades”

(German: “buch handwerk”) . 105
2.36 Results of the HIP Portal for Query “book small trades” (Ger-

man: “buch handwerk”) . 106
2.37 The User-Specific Extension of the HIP Topic Structure 107
2.38 Initial Training Documents for BINGO! Expert Web Search (search

for ’freely available open source implementations of the ARIES
recovery algorithm’) . 107

2.39 Expert Web Search: Top 10 Results (search for ’freely available
open source implementations of the ARIES recovery algorithm’) 108

3.1 Restrictive Clustering in the 2-dimensional Feature Space 114
3.2 Meta Mapping for two Clustering Methods with k=2 116
3.3 Taxonomy Refinements with BINGO! 120
3.4 Restrictive SVM Classification in the 2-dimensional Feature Space 122
3.5 Generation of Meta Model: Function of the Initiator 131
3.6 Generation of Meta Model: Function of the Contacted Peers . . 132
3.7 Micro-Averaged Tuning Results for the Newsgroups and the IMDB

Data Set . 141
3.8 The Loss-Error Tradeoff for Restrictive Classification (IMDB Top-

ics “Drama vs. Horror”) . 142
3.9 Results of Collaborative Meta Classification 143
3.10 Results of Collaborative Meta Clustering, k=3 Clusters 144
3.11 Clustering Results for k=5 Clusters, IMDB 144

4.1 The Modified BINGO! Search Engine for Evaluation of User Feed-
back for Ranking Optimization 154

4.2 The Modified BINGO! Search Engine for Evaluation of Aggre-
gated Profiles . 156

4.3 Modification of the Link Structure: Connecting Relevant Pages 159
4.4 Modification of the Link Structure: Connecting Hubs of Relevant

Domains . 159
4.5 The TREC Specification of Queries 161
4.6 The Average Precision PREC-20 of the .GOV Evaluation for 15

Queries . 164
4.7 The average Position Count VAL-20 of the .GOV Evaluation for

15 Queries . 164

192

List of Tables

2.1 Top-10 Features for the Topics “Stochastics” and “Arts” of the
Sample BINGO! Taxonomy . 40

2.2 Topic Exploration: Summary of Crawl Statistics 80
2.3 BINGO! DBLP Precision . 82
2.4 Web Crawling with HIP . 88
2.5 Samples of Thematically Focused HIP Queries 89
2.6 Performance of the HIP Search Engine 90
2.7 Indicator Keywords for the Topic “Engineering of building ser-

vices” of the HIP Application Study 91
2.8 Crawling Precision for User-Specific Custom HIP Topics 91
2.9 Human Efforts for Integration of Custom HIP Topics 92
2.10 Expert Web Search: Evaluation of Saarland-Specific HIP Queries 94

3.1 Meta Clustering Results for k=3 and k=5 on Reuters, News-
groups and IMDB . 135

3.2 Clustering: Restrictive Base Methods for k = 3, k = 5 on Reuters,
Newsgroups and IMDB . 136

3.3 Combination of Restrictive Clustering and Supervised Learning
in Comparison with underlying Base Methods for k=2 136

3.4 Classification Results: IMDB Collection 138

4.1 Result Quality by Using Relevance Feedback 154
4.2 Evaluation of Profile Aggregation 155
4.3 Profile Evaluation - Average Precision 155
4.4 TREC Queries for Advanced Link Analysis 161

193

List of Tables

194

Appendices

195

Appendices

Appendix A: HIP Taxonomy Structure

HIP

Beruf & Karriere

Arbeitsrecht

Ausbildung

Berufe

Bewerbung

Karriere

Berufe des Handwerks

Bau- und Ausbaugewerbe

Betonstein- und Terrazzohersteller

Brunnenbauer

Dachdecker

Estrichleger

Fliesen-, Platten- und Mosaikleger

Geruestbauer

Maler und Lackierer

Maurer und Betonbauer

Ofen- und Luftheizungsbauer

Schornsteinfeger

Steinmetzen und Steinbildhauer

Strassenbauer

Stukkateure

Waerme-, Kaelte- und Schallschutzisolierer

Zimmerer

Bekleidungs-, Textil- und Ledergewerbe

Damen- und Herrenschneider

Kuerschner

Modisten

Raumausstatter

Sattler und Feintaeschner

Schuhmacher

Segelmacher

Seiler

Sticker

Weber

Elektro- und Metallgewerbe

Behaelter- und Apparatebauer

Buechsenmacher

Chirurgiemechaniker

Elektromaschinenbauer

Elektrotechniker

Feinwerkmechaniker

Galvaniseure

Gold- und Silberschmiede

Graveure

Informationstechniker

Installateur und Heizungsbauer

Karosserie- und Fahrzeugbauer

Klempner

Kraftfahrzeugtechniker

Kaelteanlagenbauer

Landmaschinenmechaniker

Metall- und Glockengiesser

Metallbauer

Metallbildner

Schneidwerkzeugmechaniker

Uhrmacher

Zweiradmechaniker

Gewerbe fuer Gesundheits- und Koerperpflege sowie chemische und Reinigungsgewerbe

Augenoptiker

Friseure

196

Appendix A: HIP Taxonomy Structure

Gebaeudereiniger

Hoergeraeteakustiker

Orthopaedieschuhmacher

Orthopaedietechniker

Textilreiniger

Wachszieher

Zahntechniker

Glas-, Papier-, keramische und sonstige Gewerbe

Bogenmacher

Buchbinder

Buchdrucker, Schriftsetzer, Drucker

Edelsteinschleifer und -graveure

Feinoptiker

Flexografen

Fotografen

Geigenbauer

Glas- und Porzellanmaler

Glasblaeser und Glasapparatebauer

Glaser

Glasveredler

Handzuginstrumentenmacher

Holzblasinstrumentenmacher

Keramiker

Klavier- und Cembalobauer

Metallblasinstrumentenmacher

Orgel- und Harmoniumbauer

Schilder- und Lichtreklamehersteller

Siebdrucker

Vergolder

Vulkaniseure und Reifenmechaniker

Zupfinstrumentenmacher

Holzgewerbe

Boots- und Schiffbauer

Boettcher

Drechsler (Elfenbeinschnitzer) und Holzspielzeugmacher

Holzbildhauer

Korbmacher

Modellbauer

Parkettleger

Rolladen- und Jalousiebauer

Tischler

Nahrungsmittelgewerbe

Brauer und Maelzer

Baecker

Fleischer

Konditoren

Mueller

Weinkuefer

Ihr Betrieb

Betriebsfuehrung

Arbeitsschutz

Beratung

Fuhrpark

Gesundheit

Innovation & Technik

Krisen-Management

Personal

Ausbildung

Fuehrung

Personalsuche

Qualitaets-Management

Umweltschutz

E-Commerce

197

Appendices

Finanzen

Buchhaltung & Controlling

Foerdergelder

Kredite

Leasing & Factoring

Sicherheiten & Buergschaften

Vermoegensbildung

Versicherungen

Gruendung

Marketing

Recht & Steuern

Arbeitsrecht

Gewaehrleistung

Handelsrecht

Handwerksrecht

Rechtsbeistand

Steuerarten

Steuerhilfen

OTHERS

198

Appendix B: Database Schema of the BINGO! Repository

Appendix B: Database Schema of the BINGO!
Repository

--- ==

--- DB table: Duplicates

--- Recognized duplicates of previously fetched documents

--- ==

CREATE TABLE Duplicates

(

id number NOT NULL, -- Internal document ID

link_id number NOT NULL, -- Link-ID of the duplicate document

MD5 number Default 0, -- MD5 signature of the content

FOREIGN KEY (link_id) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: BingoDocuments

--- Descriptors of fetched documents

--- ==

CREATE TABLE BingoDocuments

(

ID number NOT NULL, -- Internal document ID

URL varchar2(3000) NOT NULL, -- URL of the Web source

Expiration number , -- HTTP Expiration field

Hostname varchar2(255) , -- Hostname of the target server

IP number DEFAULT 0, -- IP Address of the target server

Port integer DEFAULT 80 , -- HTTP Port (default 80)

Filename varchar2(3000) , -- Filename of the Web source

Lastmod date default SYSDATE, -- HTTP LastModified attribute

mime varchar2(300) default ’text/html’ NOT NULL, -- The data MIME type

Responsecode integer DEFAULT 200 , -- HTTP server response code

Contentencoding varchar2(300) DEFAULT ’text/html’ , -- HTTP ContentEncoding attribute

status char , -- The document status

depth integer DEFAULT 0 NOT NULL, -- Crawling depth

origin integer DEFAULT -1 , -- ID of the origin in the crawl

HubScore float DEFAULT 0 , -- Link-based Hub Score

AuthScore float DEFAULT 0 , -- Link-based Authority Score

PageRank number DEFAULT 0 , -- Link-based PageRank Score

SvmScore float DEFAULT 0 , -- Classification confidence

class_id integer , -- Class label of the document

Clicks number DEFAULT 0 , -- HIP: access counter

POSevaluation number DEFAULT 0 , -- HIP: number of positive opinions

NEGevaluation number DEFAULT 0 , -- HIP: number of negative opinions

md5 number default 0, -- MD5 signature of document content

PRIMARY KEY (ID)

FOREIGN KEY (Class_ID) REFERENCES Classes(Class_ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: ArchiveFiles

--- Document preview for rendering by the search engine

--- ==

CREATE TABLE ArchiveFiles

(

199

Appendices

title varchar2(200), -- Document title

preview varchar2(500), -- Automatically generated preview

Source BLOB DEFAULT empty_blob() , -- Bulk source of the document

ID integer NOT NULL , -- Document ID

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

);

--- ==

--- DB table: ClassFeatures

--- Topic-specific Features for classification

--- ==

CREATE TABLE ClassFeatures

(

term varchar2(200) NOT NULL, -- Word stem of the feature

MI number DEFAULT 0 , -- Score of the Mutual Information algorithm

IG number DEFAULT 0 , -- Score of the Information Gain algorithm

DF number DEFAULT 0 , -- Document frequency (DF)

IDF number DEFAULT 0 , -- Inverse document frequency

Class_ID integer NOT NULL, -- Associated topic of the taxonomy

evaluation integer default 1 , -- Flag for indicator features

FOREIGN KEY (Class_ID) REFERENCES Classes (Class_ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- indices

CREATE INDEX Classfeatures_term_index

ON Classfeatures (term)

;

CREATE INDEX Classfeatures_ClassID_index

ON Classfeatures (Class_ID)

;

--- ==

--- DB table: Classes

--- Topics of the BINGO! taxonomy

--- ==

CREATE TABLE Classes

(

Class_ID integer NOT NULL, -- Internal topic ID

Name varchar2(500) NOT NULL, -- Name (label) of the topic

PRIMARY KEY (Class_ID)

)

;

--- indices

CREATE UNIQUE INDEX Classes_Name

ON Classes (Name)

;

--- ==

--- DB table: Classifier

--- The BINGO! classification model

--- ==

CREATE TABLE Classifier

200

Appendix B: Database Schema of the BINGO! Repository

(

id integer primary key, -- ID of the classification model

timestamp DATE DEFAULT sysdate, -- Timestamp of model creation

classifier BLOB DEFAULT empty_blob() , -- Serialized classifier as byte array

Step integer DEFAULT 0 , -- Step (iteration) of the learning phase

Type integer DEFAULT -1 -- Type of the classifier

)

;

--- ==

--- DB table: DocumentFeatures

--- Features of fetched documents

--- ==

CREATE TABLE DocumentFeatures

(

Term varchar2(200) NOT NULL, -- Stem of the document feature

RTF number DEFAULT 0 , -- Relative Term Frequency

TF number DEFAULT 0 , -- Absolute Term Frequency

TF_IDF number DEFAULT 0 , -- TF*IDF Feature Weight

ID integer NOT NULL , -- ID of the source document

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: Feedback

--- Evaluation results of the BingoReviser

--- ==

CREATE TABLE Feedback

(

iteration integer DEFAULT 0 , -- Iteration (step) of the learning phase

result integer DEFAULT -1 , -- Evaluation result

class_old integer NOT NULL, -- Old topic of the document

class_new integer DEFAULT -1 , -- Correct topic of the document

ID integer NOT NULL , -- The document ID

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: FeedbackArchive

--- Results of prior evaluations with BingoReviser

--- ==

CREATE TABLE FeedbackArchive

(

class integer NOT NULL, -- Correct topic of the document

ID integer NOT NULL, -- The document ID

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: Links

--- Links extracted from fetched documents

--- ==

CREATE TABLE Links

201

Appendices

(

Target varchar2(3000) NOT NULL, -- URL of the target

Link_ID integer DEFAULT null , -- ID of the target

Hostname varchar2(255) NOT NULL, -- Hostname of the target

ID integer , -- ID of the source document

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- ==

--- DB table: MimeTypes

--- List of MIME datatypes supported by BINGO!

--- ==

CREATE TABLE MimeTypes

(

mime varchar2(300) NOT NULL, -- The MIME shortcut

application varchar2(200) , -- The associated application

extension varchar2(10) , -- File extension for the datatype

maxsize float DEFAULT 1048576 , -- Max allowed size for fetching

handler varchar2(200) NOT NULL, -- The associated BINGO! handler

PRIMARY KEY (mime)

)

;

--- ==

--- DB table: Preferences

--- HIP: Preferences of the search engine

--- ==

CREATE TABLE Preferences

(

lastmod date DEFAULT sysdate , -- Last modification of the property

Value varchar2(100) NOT NULL, -- Property value

Name varchar2(300) NOT NULL -- Property name

)

;

--- ==

--- DB table: Stopwords

--- Language-specific stopwords

--- ==

CREATE TABLE Stopwords

(

Term varchar2(200) NOT NULL -- Stopword

)

;

--- ==

--- DB table: Terms

--- Keywords (terms) extracted from fetched documents

--- ==

CREATE TABLE Terms

(

Term varchar2(200) NOT NULL, -- The keyword

Stem varchar2(200) , -- The keyword stem

Pos number DEFAULT 0 , -- Absolute position in the text

ID integer NOT NULL -- ID of the source document

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

202

Appendix B: Database Schema of the BINGO! Repository

)

;

--- ==

--- DB view: Documents

--- Used by BINGO! database interface to display repository contents

--- ==

CREATE VIEW Documents AS

SELECT b.url, b.id, c.name as class, b.status, b.authscore as authority,

b.hubscore as hub, b.pagerank as pagerank, b.svmscore as svm,

b.hostname as host, b.mime

FROM BingoDocuments b, classes c

WHERE c.class_id = b.class_id

;

--- ==

--- DB table: Start_Urls

--- Custom start URLs (initial seed) for the crawler

--- ==

CREATE TABLE Start_Urls

(

Link varchar2(1000) -- The absolute URL of the starting point

);

--- ==

--- DB table: TermMapping

--- HIP: Mapping of document terms onto integer values

--- ==

CREATE TABLE TermMapping

(

Term varchar2(200), -- Document Term

ID number default 0 -- HIP Term ID

)

;

--- indices

CREATE INDEX TermMappingIndex1

ON TermMapping (Term, ID)

;

CREATE INDEX TermMappingIndex2

ON TermMapping (Term)’;

--- ==

--- DB table: FeatureMapping

--- HIP: Mapping of document features (stems) onto integer values

--- ==

CREATE TABLE FeatureMapping

(

Term varchar2(200), -- Document Feature

ID number default 0 -- HIP Feature ID

)

;

--- indices

CREATE INDEX FeatureMappingIndex1

ON FeatureMapping (Term, ID)’;

203

Appendices

CREATE INDEX FeatureMappingIndex2

ON FeatureMapping (Term)’;

--- ==

--- DB table: MappedTerms

--- HIP: Internal representation of document terms as integer values

--- ==

CREATE TABLE MappedTerms

(

TERM number NOT NULL, -- Integer representation of the keyword

POS NUMBER, -- Absolute position in document text

ID NUMBER NOT NULL, -- ID of the source document

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

)

;

--- indices

CREATE INDEX MappedTermsIndex1

ON MappedTerms(Term)

;

CREATE INDEX MappedTermsIndex2

ON MappedTerms(ID)

;

CREATE INDEX MappedTermsIndex3

ON MappedTerms(ID,Term)

;

--- ==

--- DB table: MappedFeatures

--- HIP: Internal representation of document features (stems) as integer values

--- ==

CREATE TABLE MappedFeatures

(

TERM Number NOT NULL, -- Integer representation of the feature

RTF NUMBER, -- Relative Term Frequency

TF NUMBER, -- Absolute Term Frequency

TF_IDF NUMBER, -- TF*IDF Feature Weight

ID NUMBER NOT NULL -- ID of the source document

FOREIGN KEY (ID) REFERENCES BingoDocuments (ID) -- Integrity constraint

ON DELETE CASCADE

);

--- indices

CREATE INDEX MappedfeaturesIndex1

ON MappedFeatures(Term)

;

CREATE INDEX MappedfeaturesIndex2

ON MappedFeatures(ID)

;

CREATE INDEX MappedfeaturesIndex3

ON MappedFeatures(ID,Term)

;

204

Appendix B: Database Schema of the BINGO! Repository

CREATE INDEX MappedfeaturesIndex4

ON MappedFeatures(Term,ID);

205

