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Abstract

This thesis consists of four technical chapters. The first two chapters deal with filtering
algorithms for global constraints. Namely, we show improved algorithms for the well known
Global Cardinality Constraint. Then we define a new constraint, UsedBy and its special
case Same, and show efficient filtering algorithms for both. All of the filtering algorithms
follow the same approach: model the constraint as a flow problem.

The next two chapters deal with dynamic algorithms. That is, algorithms that maintain
information about a directed acyclic graph (DAG) while the graph changes. The third
chapter deals with the problem of maintaining the topological order of the nodes of a DAG
upon a sequence of edge insertions. The fourth chapter deals with the problem of maintaining

the longest paths in a directed acyclic graph upon edge insertions and deletions.

Kurze Zusammenfassung

Die vorliegende Arbeit umfasst vier Kapitel technischen Inhaltes. Die ersten beiden behan-
deln Filteralgorithmen fiir globale Randbedingungen (engl.: constraints): Wir behandeln
zunéchst verbesserte Algorithmen fiir den bekannten Global Cardinality Constraint. Dann
definieren wir den UsedBy-Constraint und seinen Spezialfall Same und beschreiben effiziente
Filteralgorithmen fiir beide. Fiir alle Filteralgorithmen verwenden wir den selben Ansatz:
Wir modellieren die Randbedingung als Flussproblem.

Die nachfolgenden beiden Kapitel behandeln dynamische Algorithmen; namlich Algo-
rithmen, die Informationen iiber einen gerichteten kreisfreien Graphen aufrecht erhalten,
wahrend sich der Graph dndert: Kapitel 3 beschreibt die Aufrechterhaltung einer topologi-
schen Sortierung der Knoten eines Graphen unter Kanteneinfiigungen. Kapitel 4 behandelt
das Problem, die Kenntnis der lingsten Pfade eines gerichteten kreisfreien Graphen unter

Kanteneinfiigungen und -16schungen aufrecht zu erhalten.
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Chapter 1

Introduction

Constraint programming is a programming paradigm in which the programmer models the
problem she wishes to solve by a set of constraints over the program’s variables. That is,
the programmer specifies the semantics of the problem, without the algorithm by which it
is to be solved. The actual solution is found by a constraint solver, which applies a general
solving algorithm combined with constraint-specific heuristics.

Assume that a constraint solver receives a finite collection of constraints over a finite set
of variables, each variable x having a finite domain Dom(z) of values that can be assigned to
it. Then the search space of all possible assignments of values to variables is finite and can
be explored exhaustively: Generate all possible assignments and check, for each, whether it
satisfies all of the constraints. In order to speed up the search, constraint solvers repeatedly
shrink the search space by applying filtering steps in which algorithms that are aware of
the semantics of the constraints reach conclusions such as “there is no solution in which the
variable x is assigned the value v € Dom(z)”. Thus, v can be removed from the domain of
x.

As a simple example of filtering, consider the constraint X < Y with Dom(X) =
{2,3,5,6,8} and Dom(Y) = {1,4,5,7}. It is easy to see that there is no solution in which
X = 8 and there is no solution in which ¥ = 1. Therefore, we can reduce the domains to
Dom(X) = {2,3,5,6} and Dom(Y) = {4,5,7}. Note that it is not possible to reduce the
domains further: for every value in the domain of one of the variables, there is a solution

in which the variable is assigned this value. In other words, the domains of X and Y are



consistent with the constraint X < Y.

Two different types of consistency appear in this thesis. They will be formally defined
in the relevant chapters, but in this introduction we briefly describe them. The first is
arc consistency, which was illustrated above. Given a constraint C' over a set of variables
Xq,..., Xy, we say that the domains of these variables are arc consistent if for every v €
Dom(X;), there is a solution to C' in which X; = v. The second is bound consistency. Here,
we assume that the domain of each variable is an interval Dom(X;) = [X;, X;]. We say that
the variables are bound consistent with respect to the constraint if for every X;, there is a
solution to the constraint in which X; = X and there is a solution to the constraint in which
X; = X;. We say that an algorithm achieves arc (bound) consistency for a certain constraint
if it computes arc (bound) consistent domains for the variables without losing any solutions.
That is, the algorithm removes a value v from the domain of a variable X only if there is no
solution to the constraint in which X = v.

Chapters 2 and 3 deal with filtering algorithms for two global constraints. That is,
constraints that are defined over a large number of variables. In chapter 2 we obtain a
bound consistency algorithm for a well known constraint, GCC. Previously, it was only
known how to efficiently compute arc consistency for this constraint. Simultanously with
our research, another group designed an algorithm that is based on a different approach
and can achieve bound consistency for some of the variables [22]. In chapter 3 we define a
new constraint called UsedBy (and a special case which we call Same) and show that it too
admits efficient arc and bound consistency computations. Our filtering algorithms follow the
flow /matching-based approach that was first used in filtering algorithms by Régin [25]. The
idea is to model the constraint by a variable-value graph such that each solution corresponds
to a feasible integral flow in this graph. Then, one can show that the strongly connected
components of the residual graph define which values can be removed from each variable’s

domain.

Chapter 4 deals with the problem of maintaining the topological order of the nodes of a
DAG online. That is, while inserting new edges. We show that m edge insertions into an
n-node DAG can be handled in O(min{m?3/?logn, m32+n?logn}) time. We then proceed to
explore the complexity of the algorithm on structured graphs. We show that the algorithm



will require only O(mklog®n) time if the treewidth of the input graph is k, and for the case
of trees (k = 1), we further improve this to O(nlogn), which is optimal.

Finally, Chapter 5 contains algorithms that maintain the heaviest paths in a DAG under
both edge insertions and deletions. This problem was studied by Michel and Van Hen-
tenryck [17] in the context of local search for constraint programming. We improve their
algorithms by showing how to handle graphs that include edges with zero or negative weights,

and how to obtain improved complexity for the case in which all edge weights are integers.



Chapter 2

Complete Bound Consistency for the
Global Cardinality Constraint

The Global Cardinality Constraint GCC (1, -+, Ty, Cyy, -+, Cy ) is specified on n assignment
variables x1,...,7, and n' count variables ¢, ,...,c, ,. The idea is that each assignment
variable x; takes a value in D = {vy,---, v, } and each value v; is used exactly ¢,, times.
With each assignment variable z; we associate a domain D; C D, and the domain of a count
variable ¢,, is an interval E; = [L;,U;]. For a tuple ¢ € D™ and v € D denote by occ(v,t)
the number of occurrences of the value v in ¢. Then the set S containing all solutions of the

GCC is defined as follows:
S =A{(wi,...,wp;01,...,00)|Vjw; € D;j A Yocc(vs, (wy,...,wy,)) =0; € E;}

An example of a problem that can be modeled with a GCC is the shift assignment prob-
lem [6, 26] in which we are given a set of workers W = {Wy,..., W} and a set of shifts
S ={51,...,S:} and the problem is to assign each worker to one of the shifts while fulfilling
the constraints posed by the workers and the boss: Each worker W; specifies in which of the
shifts she is willing to work and for each shift S; the boss specifies a lower and upper bound
on the number of workers that should be assigned to this shift. In the GCC, the workers
would be represented by the assignment variables and the shifts by the count variables. The
domain of an assignment variable would contain the set of shifts that the respective worker
is willing to work in and the interval corresponding to each count variable would match the

lower and upper bounds specified by the boss for this shift.



Given a constraint with domains for the variables, the first question is whether S #
(), which means that there is an assignment of values to the variables which satisfies the
constraint. The arc consistency problem for the assignment variables is to reduce the domains
of these variables such that D; is the projection of S onto its jth component. In the bound
consistency problem we assume that v; < ... < v, and each domain D is a contiguous
interval of values, i.e. D = [D,D]. The problem is to shrink the intervals of both the
assignment and the count variables to the minimum sizes such that S C Dy x --- x D,, X
E, x --- x E,. This means that for each 1 < j < n, there is at least one tuple in S whose
jth component is the smallest (largest) value in D;. And for ¢ = 1,...,n/, there is a tuple
in S whose (n + i)th component is the smallest (largest) value in E;.

The AllDifferent constraint [31] is the special case of GCC in which [L;,U;] = [0, 1] for
all 7. Naturally, filtering algorithms for AllDifferent appeared first and the generalizations
to GCC followed. Two parallel approaches were explored (see Table 2.1). The first is to
identify Hall intervals among the values and the second is based on finding a matching or
flow in the variable-value graph, a bipartite graph that represents the problem at hand. The
first approach was used only for bound consistency algorithms while the second yields both

arc consistency and bound consistency algorithms.

Hall Intervals Matchings/Flows

Bound cons. Arc cons. | Bound cons.
AllDifferent || Puget[20], Lépez-Ortiz [13] || Régin [25] | Mehlhorn, Thiel [16]
GCC Quimper et al. [22] Régin [26] | Here

Table 2.1: The two approaches for filtering of AllDifferent and GCC constraints

The righthand side of Table 2.1 shows the history of the matching/flow based approach.
It begins with Régin’s arc-consistency algorithm for AllDifferent, which finds a matching
in the variable-value graph and computes the strongly connected components (SCCs) of an
oriented graph defined by this matching.

When computing bound consistency, the domain of each variable is an interval so the
variable-value graph is conver, which means that the neighborhood! of each variable node is

a contiguous sequence of value nodes. Mehlhorn and Thiel exploit this structural property of

I The neighborhood of a node in a graph is the set of all nodes that are adjacent to it.



the graph to obtain a bound consistency algorithm that does the same as Régin’s algorithm,
but more efficiently.

For GCC, Régin generalized his AllDifferent algorithm. Instead of a matching he finds a
flow in a slightly augmented variable-value graph and then proceeds similarly with an SCC
computation. This algorithm runs in time O(n*?n’) and is dominated by the complexity of
finding a maximum flow using Ford and Fulkerson’s algorithm [10]. We complete this line of
research by showing an efficient version of Régin’s algorithm for bound consistency, again by
exploiting the convexity of the graph. Our algorithm runs in time O(n + n') plus the time
required for sorting the variables according to the endpoints of their domains.

In addition, we show two linear-time algorithms that narrow the domains of the count
variables. The first is very simple and fast in practice but does not always achieve bound
consistency. The second does achieve bound consistency but requires more elaborate data
structures. This is the first efficient algorithm that achieves bound consistency for the count
variables.

The rest of this chapter is organized as follows. In Section 2.1 we show how the correctness
of our construction can be derived from Régin’s results on arc consistency. In Sections 2.2-2.4
we show the algorithm for bound consistency of the assignment variables and in Sections 2.5
and 2.6 we show the two algorithms that filter the domains of the count variables. We

conclude with some open problems.

2.1 Preliminaries

2.1.1 Normalization of the z-ranges

The z-ranges are called normalized if D = {1,---,n'}. This has the advantage that we can
use the values as array indices. Normalization can always be achieved by identifying each
value v; with its index ¢ in the sorted order v; < --- < wv,. To do this we need to compute
for every original domain D; = [v;;, vs,] the corresponding normalized domain D’ = [I;, hy].
After sorting the endpoints of Dy,---, D, in ascending order, this can be done in time
O(n + n'). We want to point out that sorting can be done in time O(n), if the v;’s are
‘]

integers drawn from the range [1,n"] for some fixed k. After achieving bound consistency

for the normalized domains Dj, ..., D! we can easily narrow the original domains to bound



consistency.

2.1.2 A generalization of matching

A matching in a graph is a subset M of its edges such that each node is adjacent to at most
one edge in M. We generalize this notion. We consider capacitated graphs G = (V, E,C)
where C' is a function that maps every node v € V to an interval C(v) = [L,,U,]. We call
C(v) the capacity requirement of v. For a set M of edges and a node v we denote by M (v)
the set of all nodes that are adjacent to v by an edge in M. A generalized matching in G is
a subset M of its edges such that for each node v € V' we have |M(v)| € [L,,U,]. We call
M (v) the set of matching mates of v.

As in [16], we define the variable-value graph of a GCC, which is in this case a capacitated
bipartite graph with n nodes {z1, - -, x, } representing the variables on one side and n’' nodes
{¥1,- -+, yw} representing the values in the ranges of the variables on the other side. The
capacity ranges of the variable nodes are all [1, 1], indicating that each variable must be
assigned exactly one value. For a value node, the capacities are according to the count
requirements of the value represented by the node:

(L, U] v =y

Lo U] = 1,1] V=1

The edge (x;,;) exists in the graph if and only if i € [D;, D;].

Running example: Throughout this chapter, we will illustrate the algorithms with the
following example: GCC/(z1,- -+, %g, €y, "+, Cy,) Where the assignment variable ranges D;

and the count variable ranges F; are as in Figure 2.1.

E, Es E3 Ey y1 y2 y3 y4
[1,3]] [1,2] | [1,1] | [1,1]

D1 D2 D3 D4 D5 D6
[1,1] [1,2] [1,2] [2,2] [3,4] [3,4] x1 X2 x3 x4 x5 X6

Figure 2.1: The variable-value graph of the example GCC and a generalized matching in it, marked with
bold edges.



Lemma 1 Let T' denote the projection of S onto its first n components. Every generalized
matching M = {{xi, y,u)}|1 < i < n} corresponds to the tuple (g(1),---,g(n)) in T and vice

versa.

Proof Immediate from the definition of a generalized matching. |

2.1.3 The connection to Régin’s algorithm

Régin’s algorithm computes a maximum flow in a directed graph H (see Figure 2.2) which
is similar to our variable-value graph with a few differences: it is directed, contains two
additional nodes s and ¢, and the capacity requirements are on the edges and not on the
nodes. The edge set of H is defined as follows.2 There is an edge (z;,y;) with capacity
requirement [0,1] iff ¢ € D;. For every y; there is an edge (y;,s) with capacity bounds
[Li, Uj], and for every x; we have the edge (¢,x;) with capacity requirement [0,1]. Régin

shows that the constraint has a solution iff the maximum flow from ¢ to s has value n.

Figure 2.2: The graphs H (left) and Ry (right) for our running example.

His algorithm searches for a flow F' of value n. If none exists, it reports failure. Otherwise,
it constructs the residual graph Ry (see Figure 2.2), which allows to determine for each
variable the arc consistent values in its domain. Ry has the same nodes as H (except for
t) and the following edges: an edge (xj,y;) iff i € D; A F(xj,y;) = 0, an edge (v;, ;)
iff i € Dj A F(zj,y;) = 1, an edge (v;,s) iff F(y;,s) < U;, and finally an edge (s,y;) iff
F(yi,s) > L;. In Corollary 2 in [26], Régin proves that a value ¢ in the domain Dj is
consistent for x; iff F'(z;,y;) =1 or z; and y; belong to the same SCC of Rp.

2In fact, the edges in H have the opposite direction compared to Régin’s graph. We prefer the reversed orientation because

it is equivalent and simplifies the following presentation.



We will now translate his construction into the language of generalized matchings in the
variable-value graph. Given an variable-value graph G, a generalized matching M corre-
sponds to the following flow Fj; in H. For an edge (x,v:), Fu(xj,ui) = 1if {oj,u;i} e M
and Fy(zj,y;) = 0 otherwise. Fy(y;,s) = |M(y;)| for all 4, and Fi(t,z;) = 1 for all j.
Observe that the total flow from ¢ to s has value n.

We augment the residual graph R that corresponds to Fj; such that we obtain a graph
G with the following property: A value 7 in the domain of a variable z; is arc consistent iff
xj and y; are in the same SCC of G. If x; is matched with y; in M, R contains the edge
(yi,x;), and in G we add the edge (z;,y;) in the opposite direction. So if x; and y,; are
matched (equivalently, Fy/(x;,y;) = 1) then they belong to the same SCC of G. We call G
the oriented variable-value graph. Note that a similar augmentation appears in [16].

Lemma 2 follows easily from the discussion above and Régin’s results cited in it:

Lemma 2 An edge {x;,y;} in G belongs to a generalized matching iff x; and y; are in the

same SCC of G.

This lemma implies the correctness of the following bound consistency algorithm for the

assignment variables:
1. Find a generalized matching in G.
2. Construct G and compute its SCCs.

3. Narrow the ranges as much as possible such that they still represent all edges within

the SCCs.

We want to point out that our algorithm uses O(n + n’) space and does not construct

any of these graphs explicitely.

2.2 Finding a generalized matching in the variable-value graph

The algorithm for finding a generalized matching in a convex graph is given in Figure 2.3.
It receives as input: (1) The ranges of assignment variables, D; = [D;, D;] for each x;,
1 <j <n(2) A capacity requirement [L;, U;] for each value 1 < i < n'. It constructs a

generalized matching if it exists and returns failure otherwise.



The algorithm makes three passes over the y nodes. In the first two passes it goes from
left to right and uses a priority queue P to which x nodes are inserted when they become
candidates for matching and in which they are sorted according to the upper endpoints of
their domains. That is, the node x that is extracted from P by an EztractMin operation is
the one whose domain ends earliest. So any node that remains in P can match the same
future y-nodes as x (by convexity), but maybe even more. And hence, it is reasonable to
extract  and keep the others.

In the first pass the algorithm ignores the lower bound capacities and finds a generalized
matching in the graph G—o = (V, E, Cr—y), where C—o(y;) = [0, U;] for all i and C—o(z;) =
[1,1] for all j. G is the same as G except that the lower bound capacities of all y nodes
are zero. This generalized matching is constructed as follows: The y nodes are traversed
from yy, -+, yn. When y; is reached, all of the = nodes that are connected to y;, but not
to any node with a smaller index, are inserted into the queue; they are now candidates for
matching. Then y; is matched with up to U; nodes from P (less if P does not contain that
many nodes). If, while processing y;, the algorithm extracts a node from the queue which is
not connected to y;, it reports failure (cf. Lemma 3).

In the second pass, the algorithm makes another traversal of the y nodes in the same
order, but this time it ignores the upper bounds and constructs a generalized matching in
the graph GV=> = (V| E, CV=>°), where CV=>(y;) = [L;, oc] for all i and CV=>(z;) = [1,1]
for all 5. In this matching, each y node is matched with the minimal number of x nodes such
that its lower capacity bound is respected and all z nodes which are not connected to y nodes
with higher indices are matched. If the queue becomes empty while the algorithm tries to
fulfil the lower capacity bound L; for node y;, the algorithm reports failure (see Lemma 6).

The matching found in the first pass is used during the second pass to determine the order
in which nodes are inserted into the queue. We will show that if a generalized matching exists,
then there also exists a generalized matching such that each y; is matched only with nodes
that were matched in the first pass with nodes from y;,---,y; (cf. Lemma 4). Hence, when
y; is reached in the second pass, the nodes that were matched with it in the first pass are
inserted into the queue as candidates for matching with it.

The matching found in the second pass may violate the upper capacity bounds in G. The

third pass corrects this by traversing the y nodes from y,s to y; and shifting these excesses

10



to y nodes with lower indices.
For our running example, we show in the table below the mate of x; after the respective

pass of the algorithm.

J 11213]4]5|6
pass1||1]1|1(2(2]|3
pass 2([1(2]2(2|3|4
pass3||1(1|2|2|3|4

Lemma 3 If the algorithm reports failure in the first pass, then there is no generalized

matching in Gr—y. And hence, there is also none in G.

Proof Suppose the algorithm reports failure in iteration ¢ after extracting a node z; (observe
that any extraction in iteration n’ + 1 causes failure.) Then in iteration ¢ — 1 it only extracts
x nodes that are not connected to y;, and P contains x; afterwards. Let ¢’ be the maximum
iteration before 7 — 1 such that an x node connected to y; is extracted or P becomes empty
during iteration ' (see Figure 2.4). If no such iteration exists, choose i' = 0. Let X denote
the x nodes extracted in iterations ¢ + 1,---,7 — 1. Since P never becomes empty during
these iterations, we have |X| = Zﬁc;liurl U, i.e. X exhausts the capacities of the nodes in
Y = {yirs1,, Yic1 )

The nodes in X are not connected to y; or a y node to its right. We show that there is
also no connection to y; or a y node to its left. Suppose otherwise, i.e. x, € X is connected
to y;» with " < i'. As x, was inserted to P in iteration ¢’ or earlier and is extracted in a
later iteration, P was never empty in iteration ¢'. By the choice of ¢', this implies that a
node z;» connected to y; was extracted in iteration 7. As z; was removed later, it must also
be connected to y;, a contradiction to the choice of i'. Thus all neighbors of the nodes in X
are in Y. A similar argument proves that the node x;, which caused the failure in iteration
t, is only connected to nodes in Y.

Since a generalized matching in GY=* would have to match the nodes in Y with at least
|X'| + 1 nodes, but can only match them with | X| different nodes, such a matching cannot

exist. |

11



(* 1st pass: find a matching in Gr—o (encoded in my) *)
P <[] (* priority queue containing = nodes sorted according to D *)
J0; Upgq < 00
fori=1ton'+1do
u + 0; forall z; with D, =i do P.Insert xx
while P is not empty and v < U; do
Jj < j+1; x5y < P.EztractMin
malf ()] i u e ut 1
if D;(jy < i then report failure (* No failure implies i € D;(;, *)
end
Bij
endfor
(* 2nd pass: find a matching in GY=>° and ensure feasibility for G *)
J40; a0+ 0
for i =1 ton' do
forall z;, with mi[h] =i do P.Insert xj
for =1 to L; do
if P is empty then report failure
Jj < j+1; x4y < P.EstractMin
match yi ¢ x4y (% ma[g(j)] <@ *)
endfor
while P is not empty and P.MinPriority < i + 1 do
Jj < j+1; x4y < P.EstractMin
match yi ¢ x4y (% mafg(j)] <@ *)
end
i
endfor
(* 3rd pass: transform the matching from 2nd pass into a matching in G *)
for i =n' to 1 do
if y; has currently h mates s.th. e := h — U; > 0 then
for k =1to e do
choose a current mate z;, of y; with i’ := mi[jx] <4
match y; < z;, (¥ y; looses zj, *)
endfor
endif

endfor

Figure 2.3: Algorithm for generalized matching in a convex capacitated bipartite graph

12



Figure 2.4: Illustration of the proof of Lemma 3

For any matching M and subset Y C {y1,---,yu}, let M(Y) = Uyey M(y), i.e. M(Y) is

the set of all z nodes that are matched with nodes of Y.

Lemma 4 [f there is a generalized matching M' in G, then there is also a generalized match-
ing M with the following property: For all edges {x;,y;} € M, we have my[j] < i.

M can be chosen such that |M(y;)| = |M'(y;)| for i =1,---,n'. And hence, it is impossible
to match {y1,--,y;} with more than B; nodes®.

Proof Let M' be a generalized matching in G, and suppose it does not have the desired
property. Let ¢ be minimal such that there is an edge {z;,y;} with & = m,[j] > 7. Not all
nodes x, with my[¢] = i can be matched with y; in M', otherwise neither the queue nor the
capacity of y; would have been exhausted after iteration ¢ in the first pass. So there is an
edge {z;,ys} € M' with ¢ # i and m4[j'] = ¢ (see Figure 4). By the choice of i we have
i' > 1. When z;; was extracted in the first pass, z; was also in the queue. So we conclude
that z; is also connected to yy. Thus we can swap the mates of ; and x; and obtain a
new generalized matching M". M" does not violate the property for the nodes yy,- -+, y;_1
and the number of violations at y; is less than in M’. This shows that we can transform the
matching until we eventually obtain a matching M with the desired property.

The last statement follows from the fact that f; = [{x; | mi[j] < i} [

Lemma 5 If the algorithm does not report failure in iteration v of the second pass, then for

any generalized matching M in G, |M({y1,---,v:})| > ;.

Proof By induction on 7. For i = 0 and ¢ = 1 the claim is easy to verify. So let us assume

that it holds for ¢ = 1,---,i — 1 and prove it for ¢. If the body of the while-loop is not exe-

3We will refer to the §; values in Section 2.5.
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"""""" m values

M’ edges

****** other edges

Figure 2.5: Illustration of the proof of Lemma 4

cuted, we have a; = a; 1 + L;, and applying the induction for i = ¢ — 1 immediately proves
the claim. So suppose that nodes are extracted in the while-loop, which implies that no z
that is extracted in iteration i is connected to ;1. Let i’ be the maximum iteration before i
such that a node connected to y;, is removed. If no such iteration exists, choose i = 0. Let
X denote the x nodes extracted in the iterations ¢’ +1,...,4, and let Y = {y 11, -, y:}. A
similar argument as in the proof of Lemma 3 shows that the neighbors of any node z € X

are contained in Y. Thus |M(Y)| > |X| = o; — ay. By the induction hypothesis for ¢,

Lemma 6 If the algorithm reports failure in the second pass, then there is no generalized

matching in G.

Proof Suppose that the algorithm reports failure in iteration 7, although a generalized
matching M exists. By Lemma 4, we can assume that for any edge {z;,y;} in M we have
ma[j] < k. So y1,---,y; are matched only with nodes that have been inserted into P so far.
From the previous lemma we can conclude that there must be at least «;_; + L; such nodes.

But since the algorithm reports failure, this is not the case, a contradiction to the existence

of M. |

Lemma 7 If the algorithm does not report failure, it constructs a generalized matching in

G.

Proof If the second pass succeeds, we have a generalized matching in GY=>°, because we

fulfil the lower capacity bounds of every y node (cf. the for-loop), and we match every z
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node with a neighbor on the y side (see the while-loop). So the only problem is the upper
capacity bounds of the y nodes. The third pass takes care of these. Observe that this pass
sweeps over the y nodes from right to left and distributes the excess mates of a node y; only
to y nodes with lower indices, so that it cannot increase the number of mates of a y node
after it was processed. Furthermore, if z; is matched with y; at some point in time then
my[j] < i. Since we have equality for at most U; nodes, we can always select e excessive
mates to distribute, if necessary. Suppose a node z; is removed from y; and matched with
yy in the third pass, where i/ = m;[j]. From the first pass, it is easy to see that i’ € D;, i.e.,

xj and yy are connected. |

Implementing the algorithm in linear time (for normalized domains)

Now we discuss some implementation details of the algorithm. First we show how to imple-
ment it in time O(n' + nlogn), and then we refine this implementation to obtain O(n' + n)
time. In the first variant we use a binary heap of size n to implement the priority queue
P. Then the operations Insert and EztractMin take time O(logn) and MinPriority runs in
constant time. Before we run the algorithm we sort the x nodes according to their lower
range endpoints, which takes time O(n + n') because all domains are in [1,n]. This sorting
allows us to determine efficiently the nodes that have to be inserted into P in each iteration
of the first pass. Recall that the order by which the x nodes are extracted in the first pass
determines the order by which they are inserted in the second pass. So the two passes can
be implemented in time O(n' 4+ nlogn). The third pass takes linear time. To see this we
notice that every = node changes its mate at most once. So we maintain for every y node
two separate lists for the mates that it received in the second and the third pass respectively.
Thus we can make sure that we process every x node only once.

In order to shave off the logarithmic factor in the running time, we have to find a faster
implementation of the priority queue. As in [16] we simulate the priority queue by creating
an instance of the offline-min problem [1, Chapter 4.8], which can be solved in linear time
using a special union-find data structure [9]. (The offline-min algorithm needs a sorting of the
x’s according to their upper interval endpoints, which can be computed in time O(n + n').)

Except for failure detection, the algorithm does not use the mapping f in the first pass at

15



all. So the whole sequence o of Insert and FExtractMin operations can be computed without
knowing the results of the extractions. Checking if P is empty can be done by counting the
number of insertions and comparing it with the number of extractions (which is equal to j).
Failure detection can be done after the mapping f has been computed.

We give a brief description of the offline-min algorithm. When it is applied to a sequence
o it determines for every insertion the corresponding extraction. Let Fi,---,E, be the
extract operations in the order in which they occur in o. The node z; with minimum
priority is the output of the first extraction Fj, that follows its insertion. After deleting Fj,
from o we process the x with next higher priority, and so on. We implement this with a
union-find structure that maintains a partition P of Ey,---, E,. Every set in P has the
form {E}, Ep11,- - -, Ex}, where all extractions except for Fjy have been deleted. Suppose we
process z; and let Eg be the first extraction in the original sequence after the insertion of
xj. Observe that Fy; may have been deleted already. To determine the extraction Ej, for x;,
we simply have to find the set S in P containing E;. Deleting F) amounts to uniting S with
the set of Ery;.

We cannot use the offline-min algorithm directly for the second pass, because we need
to know the result of the MinPriority operation in the while-loop online. But a slight
enhancement will do the job (see Figure 2.6). We initialize our data structures as above but
we only create a set for the mandatory extractions that are made in the for-loop. When we
find a tentative extraction Ej for z;, we verify that Ej occurs in iteration ¢ < D;. If not,
then we know that x; is extracted by the while-loop in iteration 5]-, and we do not delete
E;.. We want to point out that we detect failure if there is a mandatory extraction for which
no corresponding insertion is found. Assuming w.l.o.g. that Z;-"il L; < n, the algorithm runs

in time O(n' 4+ n).

2.3 Finding the SCCs of the oriented variable-value graph

As described above, we construct an oriented graph G from the variable-value graph and
the generalized matching M (see Figure 2.7). The edges which are not within a strongly
connected component of G describe inconsistent assignments of values to variables. Mehlhorn

and Thiel [16] gave an algorithm that finds the SCCs of a simpler oriented variable-value
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k < 1(* E, will always be the next mandatory extraction *)
for i =1 ton' do
forall z; with mi[j] =4 do
(* 2’s inserted in iteration ¢ (before Ej) *)
i)  k
endfor for / =1 to L; do
create set {E} labelled E,(f’l) (* for mandatory extraction £ in iter. i *)
k+Ek+1
endfor
endfor
create set {E} labelled with E,(C"IH’O) (* dummy extraction *)
forall z; sorted in ascending order according to D do
S find(E,p); let £ be its label
if i < D; then
x; is removed by extraction ¢ in the for-loop of iteration ¢
unite S with the set S’ containing Fx41 and
label the union with the former label of S’
else
z; is extracted by the while-loop in iteration D;
endif

endfor

Figure 2.6: Enhanced offline-min algorithm for the second pass

graph in O(n + n') time. Their graph is simpler than G in that it does not contain the
additional node s, which violates the convexity property of the graph because there is an
edge from s to each node in {y; : |[M(y;)| > L;}, and this set is not necessarily consecutive.
We first use their algorithm to compute the SCCs of the graph é\s We can do this despite
the fact that now a y node may be matched with more than one x node by merging its
neighbors into one x node (note that the neighbors of this merged = node still form an
interval of the y-nodes). Let Cy denote the SCC of the node s in G. An SCC of G which
is different from C is also an SCC of é\s Cy, however, may be composed of zero or more
SCCs of é\s We wish to find these SCCs and merge them to obtain C;. Each of these
SCCs has the property that it can reach s and can be reached from s. For each SCC C' of

G'\s we compute two flags, reached_from_s|C] and reaches_s[C], and merge all components
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for which both flags are set to true into C.

Figure 2.7: The oriented variable-value graph for our running example. It has two SCCs:

{s,x1,®2,®3,T4,y1,y2} and {zs5, s, ys,ys}. The dashed edge is inconsistent.

We will use the following notation. For each SCC C of G\s, let min_y[C] = min{i|y; € C}
and maz_y[C| = max{i|y; € C'} be the lowest and highest indices of y nodes in C'. Moreover,
let reaches_left[C] = min{D;|z; € C} and reaches_right[C] = max{D,|z; € C} be the
minimum and maximum indices of y nodes that can be reached from C.

The following lemma states that the y nodes reachable by an edge from C' form a con-

tiguous interval.

Lemma 8 C' can reach every y; with reaches_left[C] < i < reaches_right[C] by one edge

from an x node in C.

Proof

Case 1: reaches_left[C] < i < min_y[C]. Let z, € C be such that D, = reaches_left|C] and
let yx be the node matched with x,. Then D, <7 < k and by convexity ¢ € D,.

Case 2: maz_y[C] < i < reaches_right[C] is symmetric to Case 1.

Case 3: min_y[C] < i < maz_y[C]. Since C is strongly connected, there is a path (y;,,x;,) o
-+-o(xj,_,, ;) in C where iy = min_y[C] and iy, = maz_y[C]. Then there exists 1 <k < k
such that i, < i < 4,11. This implies that D; < i, < i < i, < Dj,, and by convexity

i € Dj,, i.e., y; is a neighbor of z;,_. .

Now we will explain how to determine whether s can reach a component C'. If this is the
case then there is a path ) from s to some node y; in C'. And hence, if we delete the first
edge of (), we obtain a path P from a node y; to y; in é\s In the lemma below, we state

that this implies the existence of path P’ from y; to y; that traverses the SCCs of é\s in
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monotonous manner, either from left to right (cf. Condition (1)) or from right to left (cf.

Condition (2)):

Lemma 9 If there is a path from y;, to y,;, in é\s then there is a path P = (y;,,xj,) o
(x5, Yip) 0+ 0 (25,_,, i) in G\s such that if we let C,; denote the component of y;, for each
1 < k <k, then one of the following holds:

Vi<war min_y|Cy] < min_y[Cyy1] right-monotony (2.1)

Vicwer maz_y[Cy| > maz_y[Cyy1] left-monotony (2.2)

Proof If P visits more than one component, let x be the smallest value such that C,, # C\ ;.
Assume that Condition (1) holds for k. If P does not fulfil Condition (1), then there must
be three components C', Cy, C3 which are visited consecutively by P in that order such that
min_y[Cy] < min_y[Cs] and min_y[C3] < min_y[C2]. We will show that there is a path which
skips C5 and goes directly from C to Cj.

If min_y[C3] < min_y[C}] < min_y[Cs] then by Lemma 8, Cy can reach C; by a single edge,
which closes a cycle that visits both of them. This means that C'; = Cs, in contradiction to
the assumption that they are distinct.

We therefore know that min_y[Ci] < min_y[C3] < min_y[Cs]. Then by Lemma 8, C; can
reach C3 by one edge. So we can construct a path from y; to y;, which visits the same
components as P except that it goes from (' directly to C5 without going through C5. Since
this decreases the number of transitions between components along the path, we can obtain
a monotonous path by a finite number of such modifications.

If Condition (1) does not hold for the first transition in P between two distinct components
C, Cy11 then we show that Condition (2) must hold and then it is clear that we can similarly
find a path that fulfils Condition (2) for all 1 < k < k.

Assume that neither condition holds. Then min_y[Cy11] < min_y[Cy] and maz_y[Cy] <

maz_y[Cyy1]. By Lemma 8, Cy; reaches back to Cy, a contradiction. |

The algorithm in Figure 2.8 performs a left to right scan to mark all the components of
é\s that can be reached from s via a right-monotonous path. In the initialization phase
it marks all components that can be reached from s by a single edge. During the scan it

maintains the index max_y_reached_from_s which describes the rightmost node that can be
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forall SCCs C of G\s do
reached_from_s[C < false

end

for i =1 ton' do

if (s,y;) exists then reached_from_s[C[y;]] + true
endfor
(* Scan from left to right and find the maximum y’s reached from s *)
maz_y_reached_from_s < 0
for i =1 ton' do
C «+ Clyi]
(* Check whether C can be reached from s via a right-monotonous path *)
if maz_y_reached_from_s > i then
reached_from_s[C] < true
endif
(* Advance maz_y_reached_from_s if possible *)
if reached_from_s[C] then

maz_y_reached_from_s < max{maz_y_reached_from_s, reaches_right[C]}

endif

endfor

Figure 2.8: Algorithm for finding SCCs that can be reached from s via a right-monotonous path

reached from a scanned marked component by one edge. The running time is O(n'). A

symmetric algorithm can be used to find left-monotonous paths.

Lemma 10 The algorithm in Figure 2.8 sets reached_from_s[C] to true iff s can reach C by

a right-monotonous path.

Proof It is easy to see that if a component becomes marked, then it can be reached from s.
We will now prove the converse. Consider a path P = (s,y;,) 0+ -0 (¥, _,,%j._,) © (%), _,, Vi)
such that P without its first edge is right-monotonous. We will show the following claim by
induction on the length of P: after the i;-th iteration, the component C} of y; is marked
“reached from s”.

For |P| =1: P = (s,y;) and the component of y;, is marked before the scan.

For |P| > 1: By the induction hypothesis, reached_from_s[Cj_1] is set to true after iter-
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ation min_y[Cr_1]. * Since z;,_, is in Cy_y, reaches_right[Cr_1] > i > min_y[Cyl.

iteration min_y[Cy_1], maz_y_reached_from_s is set to at least min_y[Cy]. By Lemma 9,
we know that iteration min_y[Cy] does not preceed iteration min_y[Cy_1]. Since the index
maz_y_reached _from_s can only increase, we get that in iteration min_y[Cy], the component

of y;, will be marked as reached from s. |

In order to determine whether a component C' can reach s, we can use the same approach:
if we delete the last edge of a path in G from a node in C to s, we obtain a path in é\s
So we can mark all components that can reach s by two scans in time O(n'). The complete
algorithm is given in Figure 2.9. Finally, we merge all components that can reach s and can

be reached from s into the single component C.

2.4 Narrowing the Bounds of the Assignment Variables

Let S denote the set of all solutions of the constraint, which is defined above, and for
J =1,...,nlet S; be the projection of S onto the jth component. We will discuss how to
compute the values Sy, ..., S, in time O(n+n'), a symmetric procedure can be used for the
lower endpoints of the narrowed ranges.

Consider a node z; and let C' be its SCC in G. By Lemma 2, a value 7 € D, is contained
in S; iff y; € C. Thus S; is the index of the rightmost y node in C' that is connected to ;.

Suppose the y nodes y;,, ..., y; in C are sorted such that ¢y < --- < i,. Then §j =1, where
1, < ﬁj < iy41 (and igy = n' 4+ 1). So let us further assume that the x nodes z;,, ...,z
in C are sorted such that D; < --- < D;. Then we can determine S; for every z; in C by
merging the sorted sequences (iy,...,%) and (D;,,...,D;,) in time O(k +1).

We need to say how these sorted sequences are constructed. For the y’s this can be done
with bucketsort. We have a bucket for each component, and for ¢ = 1,...,n’, we append
y; to the bucket corresponding to its component. This takes time O(n') and constructs the
y-sequences for all SCCs of G. Since we have a global sorting of the z’s according to their

upper range endpoints, we can use the same approach to sort them in time O(n).

For the first SCC of our example we would merge the y sequence (1,2) with the = upper

4We may assume w.l.o.g. that if P visits a component C then it also visits the node Ymin_y[C]-
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SCCs + Find_SCCs(G \ s)
forall C' € SCC's do
reached_from_s[C] < false
reaches_s[C] « false
end
for i =1 ton' do
if (s,y;) exists then reached_from_s[Cly;]] < true
if (yi, s) exists then reaches_s[C[y;]] + true
end
(* Scan from start to end and find the maximum y’s connected to s *)
max_y-reached_from_s < 0; max_y-reaches_s < 0
for i =1 ton' do
C < Clyi]
(* Check whether C can be reached from s *)
if max_y_reached_from_s > i then reached_from_s[C] < true
if reached_from_s[C] then
maz_y-reached_from_s < max{maz_y_reached_from_s,reaches_right[C]}
(* Check whether C can reach s *)
if reaches_le ft[C] < maz_y_reaches_s then reaches_s[C] < true
if reaches_s[C] then maxz_y_reaches_s < max{max_y_reaches_s,i}
end for
(* Scan from end to start and find the minimum y’s connected to s *)
min_y-reached_from_s < n' +1; min_y-reaches_s + n’ +1
for i =n' to 1 do
C « Clyi]
(* Check whether C' can be reached from s *)
if min_y_reached_from_s < i then reached_from_s[C] « true
if reached_from_s[C] then
min_y_reached_from_s < min{min_y_reached_from_s,reaches_left|C]}
(* Check whether C' can reach s *)
if reaches_right[C] > min_y_reaches_s then reaches_s[C] + true
if reaches_s[C] then min_y_reaches_s < min{min_y_reaches_s,i}
end for
(* Merge all components that are strongly connected through s *)
C + {s}
foreach C' € SCC's do if reaches_s[C'] A reached_from_s[C'|} then C « C o C’

Figure 2.9: Algorithm for finding SCCs of the oriented variable-value graph
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bounds (2,,, 34,,3z,) and narrow the domains of xy and z3 from [1, 3] to [1,2].

2.5 Narrowing the Bounds of the Count Variables

This section and the next deal with the projections of S onto its components S, 1, -, Spin’-
We show how to compute lower and upper bounds for the values in S, ; for each i =
1,--+,n'. In this section we show a very fast algorithm that narrows the domains of the count
variables but does not achieve bound consistency. In the next section we show a different
algorithm that achieves bound consistency for the count variables. It has the same linear-
time asymptotic complexity but uses more elaborate data structures that can be expected

to make it slower in practice.

For the rest of this section we consider a fixed graph G. We assume that the general-
ized matching algorithm has computed the a; and f3; values for G' and terminated without
reporting failure. Now we show that in any generalized matching, the number of x nodes

matched to each y; are in a certain range that we can compute in linear time.

Lemma 11 Let M be a generalized matching and fori=1,--- n' let u; = |M({y;})|. Then
for all
max (Li;n — Bic1 — i ,Uj) < p; < min (Ui;n — Qi — i Mj) (*)
j=it1 j=it1
Proof By the choice of the p’s we have |M({y1,---,y; 1})| =n— ?,:Z . By Lemmas 4, 5
we know that a;_1 < [M{y1,-- -, yi1})| < Biz1-
Therefore c;_y <n— X1, p; < By or n— By < X0 pp <n— .

And hence n — f;_; — Z?:i-i—l py < phy SN— g — ?:i+1 Hg- |

This motivates the following definition. We call a sequence (fis,- -+, i) a legal count
choice iff inequality (*) is satisfied for all ¢ in [s,n']. The Lemma above implies that any
generalized matching M in G induces the legal choice (|M(y1)|,...,|M(yn)|). This allows
us to compute for any y; a lower bound /; and an upper bound u; on | M (y;)|. Unfortunately
there exist examples where the bounds are not tight. Choosing Dy = [1, 3], Dy = [2,2] and
E, = E;, = E5 = [0, 1] is such an example. The lower endpoint of E, will not be narrowed

to 1 by our algorithm.
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Apart from these bounds the algorithm below determines two count choices. The algo-
rithm maintains the invariant that in iteration i both (k;, ..., ky) and (A, ..., \y) are legal
count choices such that for any legal count choice (p;, . .., f,y) we have E?;Z ki < Z?;Z pi <

;L,:Z Aj. As all sums that appear in the algorithm can be computed incrementally, the

running time is O(n’).

for i=n'to1 do

’ ’

l; < max (Li,n — ,81'71 — Z;‘L:H—l )\j); u; < min (Ui,n — -1 — Z;‘L:H—l Ii]')

i

I
K; < max (Li,n — ﬁifl — Z;L:H_l Ii]'); Ai < min (Ui,n — -1 — Z;L:H_l /\j)

endfor

We will now prove by induction on 7 that the algorithm computes the correct bounds for
the count variables and that the invariant holds. For i = n’ Lemma 11 implies that /,,, and
u, are lower and upper bounds. Since all sums are empty, we have k,, = [,; and A,y = u,,
and hence, the claimed invariant holds.

We come to the induction step, we assume that our claim holds for ¢ + 1 and verify it
for i. Looking at the left-hand side of inequality (*), we see that the minimum legal value
for u; is obtained if Z?,:Z 41 1 is set to its largest possible value. Applying the invariant
for ¢ + 1 this sum is maximized by the legal choice (Aj;1,...,An). So by Lemma 11, the
algorithm computes a lower bound /;. A similar argument holds for the upper bound u;. By
the definition of a legal choice, extending our two count choices by k; and \; respectively
yields two legal choices again.

Fix a legal choice (u;, ..., iy ). What remains to prove are the two inequalities on the

sum of the pu’s.

Pl = it S =3 max(Li,n = fiot = iiin ) + Ziliia iy
max(L; + Z?I:i-i-l pism— Bi—1)

max(L; + Z?I:Hl ki, — Bi—1)

= max(L;,n— fi_1 — Z?;i+1 K;) + E;’l,:iﬂ Ky

= K+ Z?,:Hl Kj = ?Im Ry

n/

An analogous computation shows 327, p; < Z?;Z Aj. So we have just shown the following

lemma:;:
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Lemma 12 Suppose that S # () and let £1,-+-,lp and uy, -+ -, uy be the values computed by

our algorithm. Then S, ; > {; and Snti < u; holds fori=1,---,n.

If we apply the algorithm to our running example, it computes the values listed below:

Ul g || Ki | A ?,:Z Ki ?’:z Ai
4117111 1 1
3(1]1]1]1 2 2
20112112 3 4
10121332 6 6
Ey, then, is narrowed from [1,3] to [2,3] and Ej, ..., E, remain as they were.

2.6 Bound Consistency for the Count Variables

In this section we show a linear-time algorithm that achieves bounds consistency for the

count variables. The following lemma extends the result of Lemma 4.

Lemma 13 Let my[j]| be the index of the y node that x; was matched with in the second
pass of the algorithm. If there is a generalized matching M' in G, then there is also a
generalized matching M with the following property: For all edges {x;,y;} € M, we have
malj] < i < malj] and for all 1 < < n, |M(ys)| = M ().

Proof By Lemma 4, we can assume that for all edges {z;,y;} € M', we have m,[j] < i.
Assume that M’ does not fulfil the condition on the my[j]’s and let ¢ be the minimum index
such that there is an edge {x;,y;} € M’ with ¢ > my[j] = k. Since z; is matched in M’ with
Yi, D(x;) > i > k (see Figure 2.10). This implies that y, was matched in the second pass
with Ly nodes. In M’, yj is not matched with x; so it must be matched with a node z; with
malj'] # k. By the choice of i, we know that k&' = my[j'] > k, and as M’ fulfils Lemma 4
we know that my[j'] < k. Since k = mo[j] and my[j'] < k < mgy[j’], we get that both z;
and x; were in P during the extractions of the kth iteration of the second pass. Since z;
was extracted first, we get that D(z;/) > D(z;) > i, hence there is an edge (z;/,y;). We can
therefore replace in M’ the edges (z;/, yx) and (z;,y;) by the edges (x;,y;) and (x;, yx). We
get a new matching such that |M (y;)| = |M'(y;)| for all 1 <i < n’ and the matching mates of
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yi still do not violate the claim. As for y;, let d; be the sum of the differences i —my[¢] over all
violating matching mates x, of y;. Since k' > k, d; decreases and we can continue performing
such substitutions until d; = 0, which means that there are no violations at y;. We can then

advance to ;41 and continue making such adjustments until we obtain the matching M. |}

"""""" m2 values

M’ edges

****** other edges

Figure 2.10: Illustration of the proof of Lemma 13

The algorithm in Figure 2.11 traverses the y nodes from right to left and deterines for each
y; the minimum number of nodes that it must be matched with in a generalized matching
M that fulfils the conditions of Lemma 13. It uses a priority queue P in which the x nodes
are sorted according their m; values. For each y;, it first inserts into P all nodes x, with
mo[k] = i; these nodes are candidates for matching with y;. By the time the algorithm
finishes handling each y;, it extracts from P as many nodes as y; can be matched with: U;
nodes if there are that many in P or all nodes in P if there are less. When the algorithm
comes to handle y;, then, v, ...y, are matched with as many nodes as possible. The
algorithm extracts L; nodes from P, because this is the minimum number of nodes that
must be matched with y;. Then it extracts from P all nodes x, with m4[k] = i, because
these nodes cannot be matched in a Lemma 13-type matching M with y nodes to the left of
y;. The total number of nodes extracted so far is the minimum number of nodes that must
be matched with y; so MinL; is set to it. The algorithm then proceeds to extract additional
nodes from P, up to a total of U; as described above, so that y; is also matched with as many
nodes as possible before the algorithm proceeds to handle y; ;. In the following, iteration @

will not refer to the ith iteration but rather to the iteration that handles y;.

Lemma 14 The algorithm in Figure 2.11 achieves bound consistency for the lower capacity

bounds of the count variables.
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P «[] (* Priority queue sorted by mi[j] *)
for i =n' to 1 do
(* Insert into P all mates of y; in ma. *)
forall z;, with ma[h] =i do P.Insert xj
{0
for /=1 to L; do
P.EztractMaz
L—0+1
end for
while P is not empty and P.MazPriority = i do
P.EztractMaz
L—0+1
end while
MinL; < ¢
while P is not empty and ¢ < U; do
P.EztractMaz
L—C+1
end while

endfor

Figure 2.11: Narrowing algorithm for the lower bounds of the count variables.

Proof Let M' be the matching generated by the algorithm in Figure 2.11. That is, M’ =
{(z},y;) | x; was extracted in iteration ¢}. Assume that the claim does not hold and let 7 be
maximal such that MinL; > L; and there is a generalized matching M with L; < |[M(y;)| <
MinL;. By Lemma 13 we can assume that for every edge (z;,y;) € M, my[j] < i < mgo[j].
Let N; be the set of nodes that the algorithm extracted from P in the first two loops of
iteration 7. Since MinL; > L;, after the first L; nodes were extracted, there was at least one
node z,, € P with m;[z,] =i and this implies that all nodes that were extracted in iteration
i have mi-value 7 so they are not matched in M with any y node to the left of y;. Let i’ be
the minimum index such that i > 7 and either P was empty at the end of iteration ¢’ of the
algorithm in Figure 2.11 or during iteration i" a node x;; with m,[j’] < i was extracted. If no
such i" < n' exists, let i’ =n’'+ 1. Let x, be a node that was extracted after iteration i’ and

not later than iteration i. Then my[k] > i (if z, was not extracted in iteration 4, this follows
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from the choice of i'). In addition, ms[k] < i’ because if we assume otherwise then x, was in
P in iteration 7', but was not extracted then. So P was not empty at the end of iteration ¢,
which by the choice of i implies that some x,; with m;[k’] < i was extracted. So all nodes
that remained in P after iteration ¢’ (in particular x,) have m;-value smaller than i. We
get that x, can be matched in M only with one of y; ...y 1. In addition, since P was not
empty after any of iterations i + 1...7 — 1, we get that for each i < ¢ < ', |M'(y,)| = U,.

In total, we get that y; . .. yy_1 must be matched in M with all nodes that they are matched
with in M', whose number is at least MinL; + E@;{rl U,. This implies that | M (y;)| > MinL;.

Finally, we need to show that for all 4, there is a generalized matching M; with |M;(y;)| =
MinL;. We construct M; as follows. First put in M; all the edges representing the matchings
of iterations n’ to 7 + 1. For each such edge (z;/,yi), we have by construction that m;[j'] <
i" < ms[j']. In addition, the number of nodes matched with y; is between L; and Uy: At
least Ly because there are at least Ly nodes z, with ms[k] = i' which were inserted into P
in iteration 7'. At most Uy, because if any node was extracted in the second loop because
its my value is ¢’, then the same is true for all of the nodes that were extracted in iteration
i', and this, by construction, holds for at most U; nodes.

y; is matched in M; with the MinL; nodes that were extracted in the first two loops of the
algorithm. The rest of the nodes, ¥, ...y;_1, are matched with the remaining = nodes; those
that remain in the queue after the MinL; extractions of iteration ¢ and those that were not
inserted to the queue up to iteration i. To match these nodes with ¥y ...y;_1, we first match
the nodes in P with y;_; and each node x; that was not yet inserted into P is matched with
Ymo[j7]- The nodes that were not inserted yet to P are exactly all the nodes with my[j'] < 7,
so they fulfil the L; values of yi,...,y;—1. For a node z;» in P, my[j"] <i—1 < msy[j"]. We
can then apply the third pass of the generalized matching algorithm to shift nodes to the
left such that the U; bounds are fulfilled for yy,...,y;—1. |

Figure 2.12 shows an algorithm that achieves bound consistency for the upper bounds of
the count variables. Again, it uses a priority queue P for the x nodes, sorted by m; values.
In each iteration it matches the respective y-node with the minimum required number of
x nodes. At the beginning of iteration ¢ it inserts into P all nodes which were matched

with y; in the second pass of the generalized matching algorithm. P contains at this point
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all candidates for matching with y;. Let |P| be the number of nodes in P at this point in
time. The algorithm compares |P| and U; and sets MazU; to the smaller of them. We will
show that since the nodes that were extracted before iteration ¢ are the minimum number
of nodes that must be matched with y nodes to the right of y; and the nodes that were not
inserted into P before iteration ¢ — 1 cannot be matched with it, the number of nodes in P is
an upper bound on the number of nodes that y; can be matched with. The algorithm then
proceeds to extract from P the minimum number of nodes that must be matched with y; in
a Lemma 13 type matching; first L, nodes and then all nodes x; with m,[j] = i. It can then

advance to iteration 7 — 1.

P «+ [] (* Priority queue sorted by m1[j] *)
for i =n' to 1 do
(* Insert into P all mates of y; in ma. *)
forall x, with mo[h] =i do P.Insert xp
MazU; < min{U;, |P|}
for =1 to L; do
P.EztractMaz
end for
while P is not empty and P.MazPriority =i do
P.EztractMaz
end while

endfor

Figure 2.12: Narrowing algorithm for the upper bounds of the count variables.

Lemma 15 The algorithm in Figure 2.12 achieves bound consistency for the upper capacity

bounds of the count variables.

Proof Let M be a generalized matching, by Lemma 13 we can assume that for every edge
(g, ye) € M, my[c] < £ < mgy[k]. We fix some 7 with 1 < i < n’ and we will prove
|M(y;)] < MazU;. We may assume that MazU; < U;, otherwise there is nothing to show.
Let M’ be the partial matching generated by the algorithm in Figure 2.12 up to iteration
i. That is, for £ =i+ 1,...,n'", M'(y,) is the set of all nodes extracted in iteration ¢, and
M'(y;) consists of all nodes that are in P when MazU; is determined. Observe that any
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x node that has not been inserted into P up to iteration ¢ cannot be matched in M with
Yi, - - -, Y because of its mo-value. Thus M (y;, ..., yn) C M (Yiy- -\ Ynr)-

Below we identify subsets of ;11 ...y, such that for any subset S the x nodes in M'(S)
must be matched with the y nodes in S in any Lemma 13-type matching. We call such a

subset a block and define it to be a consecutive set of y nodes y;, ...y; such that (1) for

every matching mate z, of y;,, m[¢] = i, and (2) 4, is minimal such that i, > i, and y; 41 is
matched with some node x, with m4[r] < i, (see Figure 2.13).

Let B = {y;,...v;, } be a block. By construction, for any z; which is matched with
Yp € B, mi[j] > ip. In addition, for every such z;, mo[j] < i,; otherwise z; was in P in
iteration 7,1 and since x, was extracted first, m;[j] < my[r] < iy, contradicting condition
(1) in the definition of a block above. We get that M'(B) C M(B).

We partition y;i1 ...y, into two sets By, and B, where Bj, contains the nodes that
belong to some block and B,y contains the nodes that do not belong to any block. If a node
.. for some xk > 7 is matched in M’ with more than L, nodes then it is in B;, because for
any of its matching mates x;, m;[j] = k. This implies that any y, € By, is matched with
exactly L, x nodes in M.

From the arguments above we conclude that M (y; U By U Bin) € M'(y; U Boy, U Bin)
and M'(Bin) € M(Bin), which implies M(y; U Bows) € M'(y; U Bow). So we get that
| M (y; U Bow)| < MaxU; + 32, e, Lk- Thus |M(y;)| < MazU;.

It remains to show that for every i there is a generalized matching M; with |M;(y;)| =
MazU;. For a node yy with ¢/ > i, let M;(yy) be the nodes that were extracted from P
in iteration ¢'. If |M;(ys)| > Ly then for every node z; that was extracted in iteration ¢,
my[j'] = i’ so |M;(ys)| < Uy. Otherwise, |M;(yy)| = Ly. In either case the capacities are
respected. M;(y;) is set to the topmost MazU; nodes in the queue at the time when MazU;
is computed. By construction, for each such node z;, my[j] <@ < mo[j]. Finally, y1,...yi1
are matched with the remaining nodes in P and the x nodes that were not yet inserted into

P as described in the proof of Lemma 14. |
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M’ edges
fffffff m1 edges

m2 edges

Figure 2.13: Example of the blocks in the proof of Lemma 15

Implementing the algorithm in linear time

As with the generalized matching algorithm, the algorithms in Figures 2.11 and 2.12 can be
implemented in time O(n’ 4+ nlogn) using a binary heap for the priority queue P. To shave
off the logarithmic factor, we once again simulate the queue with offline-min type algorithms.
In the lower bounds algorithm (Figure 2.11), the insertions and extractions of each iteration
do not depend on the results of previous extractions from P; in iteration ¢ the algorithm
extracts max{U;, |P|} nodes. This means that we can use the usual offline-min algorithm to
determine the sequence of insertions and extractions and then use this sequence to find the
MinL; values. For the upper bounds algorithm (Figure 2.12) we need to know the results of
the extractions in the while loop in order to know how many nodes were extracted in each
iteration. Note that this is similar to the situation of the second pass of the generalized
matching algorithm (cf. Figure 2.3), and can be handled by the algorithm in Figure 2.14

which is analogous to the one in Figure 2.6 on Page 17.

2.7 Conclusion

We have designed a propagation algorithm for the Global Cardinality Constraint that achieves
bound consistency for the assignment variables. We wish to point out that there are two
possible implementations for the algorithm. One runs in time O((n' 4+ n)logn), uses very
simple data structures and performs well in practice. The other one requires more elaborate
data structures (for the offline-min computation) and achieves a running time of O(n + n')
plus the time required to sort the assignment variables by the endpoints of their ranges. In
some cases the latter is asymptotically better.

In addition, we present two linear-time algorithms that narrow the bounds of the count
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k < 1(* E, will always be the next mandatory extraction *)
for i =n' to 1 do
forall z; with m»[j] =i do
(* 2’s inserted in iteration ¢ (before Ej) *)
s[i) &
endfor
for =1 to L; do
create set {E}} labelled ,C,(Ci’[) (* for mandatory extraction £ in iter. i *)
k+—k+1
endfor
endfor
create set {E} labelled with ,C,(C"IH’O) (* dummy extraction *)
forall z; sorted in descending order according to m:[j] do
S ¢+ find(E,p;)); let £{"" be its label
if ¢ > m1[j] then
x; is removed by extraction ¢ in the for-loop of iteration ¢
unite S with the set S’ containing Ej+1 and
label the union with the former label of S’
else
x; is extracted by the while-loop in iteration mi[j]
endif

endfor

Figure 2.14: Enhanced offline-min procedure for the algorithm in Figure 2.12

variables. The first is very simple but does not always achieve bound consistency. The
second does achieve bound consistency but uses the more elaborate data structures that are
required for the offline-min computations.

Several questions remain open. The first is whether there is an efficient algorithm that
uses the Hall interval approach and can narrow the domains of the count variables. The
second is whether there are efficient algorithms that achieve more complex tasks, such as
narrowing the domains of the count variables when the assignment variables are not intervals.

It has been shown that computing arc consistency for all variables is NP-hard [21].
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Chapter 3

Filtering Algorithms for the Same and
UsedBy Constraints

As a motivating example, we consider simple scheduling problems of the following type. The
organization Doctors Without Borders [28] has a list of doctors and a list of nurses, each of
whom volunteered to go on one rescue mission in the next year. Each volunteer specifies a
list of possible dates and each mission should include one doctor and one nurse. The task is
to produce a list of pairs such that each pair includes a doctor and a nurse who are available
on the same date and each volunteer appears in exactly one pair. Since the list of potential
rescue missions at any given date is infinite, it does not matter how the doctor-nurse pairs
are distributed among the different dates.

We model this problem by the Same(X = {z1,...,2,},Z = {z1,...,2,}) constraint
which is defined on two sets X and Z of distinct variables such that |X| = |Z] and each
v € X UZ has a domain D(v). A solution is an assignment of values to the variables such
that the value assigned to each variable belongs to its domain and the multiset of values
assigned to the variables of X is identical to the multiset of values assigned to the variables
of Z.

This problem can be generalized to the case in which there are more nurses than doctors
and the task is to create a list of pairs as above, with the requirement that every doctor
appears in exactly one pair and every nurse in at most one pair (naturally, not all of the nurses

will be paired). For this version we use the general case of the UsedBy(X = {z1,...,z,},Z =
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{z1,...,2m}) constraint where |X|=n > m = |Z| and a solution is an assignment of values
to the variables such that the multiset of values assigned to the variables of Z is contained
in the multiset of values assigned to the variables of X.

Given a constraint with domains for the variables, the first question is whether there
exists an assignment of values to the variables which satisfies the constraint. The second
question is whether we can efficiently identify elements in the domains of the variables that
cannot participate in any solution to the constraint. An algorithm for this task is called a
filtering algorithm. Filtering algorithms are classified according to the level of consistency
they achieve. The arc consistency problem is to reduce the domains of the variables such
that for allv € XUZ and ¢ € D(v), there is a solution to the constraint in which v is assigned
the value 7. In the bound consistency problem we assume that there is a total order on the
values in the domains of the variables and that for each v € X U Z, D(v) is a contiguous
interval of values, i.e., D(v) = [D(v), D(v)]. The problem is to shrink these intervals to the
minimum possible sizes without losing any solutions. This implies that if the domains are
bound consistent, then for each v € X U Z, there is at least one solution to the constraint in
which v is assigned the value D(v) and there is at least one solution in which it is assigned

the value D(v).

3.0.1 Same =2x GCC?

The Same constraint can be modeled by two Global Cardinality constraints, one on the set
X and the other on the set Z, where count variables which are associated with the same
value are not duplicated. We show here that consistency for all of the variables of the GCC
constraints (including assignment and count variables) does not imply consistency for the
Same constraint.

In our example, |X| = |Z| = 2 and |Y| = 4. The domains of the assignment variables
are: D(zy) = {1,2}, D(z2) = {3,4}, D(z1) = {1,2,3,4} and D(z3) = {3,4}. By ex-
amining the variable-value graphs' shown in Figure 3.1, one can easily see that all values
are consistent with respect to the two GCC' constraints GCC ({1, x2}, {v1, v2,v3,v4}) and
GCC({z1, 22}, {v1,ve,v3,v4}), but that an arc consistency or bound consistency computation

for Same({x1, 22}, {21, 22}) would remove 3 and 4 from the domain of z; — if 2; is assigned

I This construction will be formally defined in Section 3.1.
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3 or 4, then 1 and 2 cannot both be assigned to the same number of variables from X and
Z because one of them must be assigned to x; and neither can be assigned to zs.

[01] [01] [01] [0,41] [01] [01] [01] [01]

ySA NN

x1 x2 z1 72

Figure 3.1: Example showing that consistency of the two GCC’s does not imply consistency of the Same

constraint.

3.0.2 Our contribution

In this chapter we show filtering algorithms for the Same and UsedBy constraints. Let Y
be the union of the domains of the variables in X U Z and let n' = |Y'|. The arc consistency
algorithms run in time O(n?n’) and the bound consistency algorithms in time O(n'a(n’, n’) +
nlogn), where « is the inverse of Ackermann’s function?.

We begin with Same and then generalize to UsedBy. The general approach resembles the
flow-based filtering algorithms for the AllDifferent [16, 25] and Global Cardinality (GCC') [11,
26] constraints: We construct a bipartite variable-value graph, find a single solution in it
and compute the strongly connected components (SCCs) of the residual graph. We show
that an edge is consistent iff both of its endpoints are in the same SCC.

The main difference compared to the previous constraints that were solved by the flow-
based approach is that we now have three sets of nodes. One set for each set of variables and
a third set for the values. This difference significantly complicates the bound consistency
algorithms, in particular the SCC computation compared to the corresponding stage in the
AllDifferent and GCC cases. Our contribution is therefore not only in providing a solution
to these constraints but also in showing that the ideas that appear in the previous algorithms
can be extended to much more complex variable-value graphs.

In Section 3.1 we define the variable-value graph for the Same constraint and characterize
the solutions to the constraint in terms of subsets of the edges in this graph. In Section 3.2
we show the arc consistency algorithm for the Same constraint and in Section 3.3 we show

the bound consistency algorithm. Finally, in Section 3.4 we deal with the generalization to

2For all practical purposes, a(n/,n') can be regarded as a small constant.
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UsedBy. Source code for the bound consistency algorithms is available by request from the

authors. A preliminary version of Sections 3.1-3.3 appeared as [3].

3.1 The Same constraint

We represent the Same constraint as a bipartite graph B = (X U Z,Y, E), which we call the
variable-value graph, where E = {{v,y}lv € XU Z Ay € Y Ay € Dom(v)}. That is, the
nodes on one side represent the variables and the nodes on the other represent the values
and every variable is connected by an edge to all values in its domain.

The following definition and lemma characterize the set of all solutions to the constraint

in terms of subsets of edges of B.

Definition 3.1.1 Let M C E be a set of edges of B. For any node v € X UY U Z, let
Ny (v) be the set of nodes which are neighbors of v in B' = (X U Z,Y, M). We say that M
is @ parity matching in B iff Voexuz|Nu(v)| =1 and Vyey [Ny (y) N X| = [Nu(y) N Z].

Lemma 16 There is a one to one correspondence between the solutions to the Same con-

straint and the parity matchings in B.

Proof Given a parity matching M in B, we can construct the solution

Same({Ny (1), ..., Ny(xn) b, {Nm (1), - -, Ny(zn) })-

Since |Npy(v)] = 1 for all v € X U Z, all of the assignments are well defined. In ad-
dition, for each edge (v,y) in B, and in particular in M, y € Dom(v). Finally, since
|INyv(y) N X| = |Nu(y) N Z| for all y € Y, each value is assigned the same number of times
to variables of X and Z. Hence, the constraint is satisfied.

On the other hand, given a solution Same({y(z1),...,y(z.)},{y(21),...,y(z,)}) where y(v)
is the value assigned to the variable v, we can obtain the set of edges M = {{v,y}|v €
XUZ Ay =y(v)}. Since y(v) € Dom(v) for all v, we have M C E. In addition, since y(v)
is determined for all variables, we have that | Ny, (v)| = 1 for all v € X U Z and since each
y € Y appears the same number of times in {y(z1),...,y(z,)} and in {y(z1),...,y(zs)}),
we have that | Ny (y) N X| = |Nu(y) N Z|, so M is a parity matching. [
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J | D(z;) | D(z;)
1 {1,2} {2,3}
2 || {34} {4,5}
3| {4,5,6} | {4,5}

Table 3.1: Domains of the variables for our example.

In the next sections we show the filtering algorithms for the Same constraint, first the
arc consistency algorithm and then bound consistency. We will illustrate the algorithm with
the aid of the following example. | X| = |Z] = 3, |Y| = 6 and the domains of the variables of
XUZ are as in Table 3.1. The domains are intervals, which is suitable for bound consistency.

For the arc consistency setting, each domain [a, b] is to be interpreted as the set {a,...,b}.

3.2 Arc consistency

In this section we show an algorithm that achieves arc consistency for the Same constraint.
Inspired by Régin [26], we convert the graph B into a capacitated and directed graph B =
(17, E), as follows. We direct the edges from X to Y and from Y to Z and assign capacity
requirements of [0, 1] to each of these edges. We add two nodes s and ¢, an edge with capacity
[1,1] from s to each v € X and from each v € Z to ¢t and an edge with capacity [n,n| from ¢
to s. Figure 3.2 shows this graph for the constraint on the variables in Table 3.1. A flow in
B is feasible iff there is a flow of value n on the arc from ¢ to s. This implies that one unit of
flow goes through every node in X U Z. By flow conservation, every node in Y is connected

by edges that carry flow to the same number of nodes from X and from Z.

yl y2 y3 y4 ¥5 ¥6

Figure 3.2: The capacitated graph for the example in Table 3.1.

Observation 1 There is a one to one correspondence between parity matchings in B and
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feasible flows in B.

The algorithm uses Ford and Fulkerson’s augmenting paths method to find a feasible flow
f in B (e.g., the flow shown by the bold edges in Figure 3.3). If there is no such flow it
reports that the constraint is not satisfiable. Otherwise, it removes the nodes s and ¢ and
builds the residual graph éf = (Vf, Ef) where Vf =XUYUZ and Ef = EU{(v,u)|u,ve
V A (u,v) € E A f(e) = 1}. That is, all edges appear in their original orientation and the
edges that carry flow appear also in reverse direction (see Figure 3.4). The following lemma

shows that B 7 can be used to determine which of the edges of the graph are consistent.

Figure 3.3: A feasible flow in the graph of Figure 3.2.

yl y2 3 y4 y5 y6

x1 X2 X3 z1 72 z3

Figure 3.4: The residual graph with respect to the flow of Figure 3.3.

Lemma 17 An edge e = (u,v) € éf is consistent iff u and v belong to the same SCC.

Proof If f(e) = 1 then e participates in the solution that corresponds to the flow f and is
therefore consistent. u and v are connected by two antiparallel edges so they are in the same
SCC. Let M = {€'|f(¢') = 1} be the parity matching that corresponds to the flow f. Assume
that e € M and that v and v are in the same SCC. Then there is a cycle P which uses e in
Ef. Starting at any y node on the cycle, number its nodes: yg, vo, y1,v1, ..., Yp—1, Up—1 Where

y; € Yand v; € XUZ forall0 < i < p. Let M' = M@ P be the symmetric difference between
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the parity matching M and the cycle P. That is, M' = {e'|' € M Ne' € PAe' ¢ M N P}.
If we look at y; € P and its two neighbors, we have four possibilities: If v;_1) moap,vi € X
OT U(i—1) mod p> Vi € Z then in M’ each of v(i_1) mod p, Vi Temains matched and y; is matched
with the same number of nodes from each of X and Z as it was in M.

The two other options are that v(_1)modp € X and v; € Z or v(i_1)modp € Z and v; € X.
Then the edges (v(i—1) mod p,¥i) and (y;,v;) are either both in M or both not in M. To see
that this is true, note that the cycle must leave each v € X U Z that it enters. It can only
enter a node v € X by an edge which is in M so it must leave it by an edge which is not
in M. On the other hand, it can only enter a node v € Z by an edge which is not in M
and leave it by an edge in M. This implies that either v(;_1) moap € Z and v; € X and both
edges are in M or v(i_1)meap € X and v; € Z and both edges are in M'. In either case,
when comparing M with M’, y; either lost or gained a neighbor from each of X and Z, so
the number of neighbors of y; in each of those sets remains equal.

Each of v(;_1) mod p, vi is adjacent on P to one edge from M and one edge which is not in
M. Hence, in M' it is still matched with exactly one y-node. We get that M’ is a parity
matching that contains e, so e is consistent.

It remains to show that an edge e which is not in an SCC of Ef (which implies f(e) = 0)
is not consistent. Let C,...,C; be the SCCs of éf. Since all edges in M appear in both
directions, any edge between two SCCs is not in M. For any node v, let C'(v) be the SCC
that v belongs to and let F;, = {(u,v)|C(u) = C(v)} be the edges for which both endpoints
are in the same SCC. Assume that an edge e € E \ Fj, is consistent and let M’ be a parity
matching such that e € M’. Consider the graph E} = (Vf, E}) where E} = FE;, UM'. That
is, E} contains all the edges within SCCs plus the edges between SCCs which are in M.
If we shrink each SCC of E} into a single node, we get a DAG (directed acyclic graph).
Let D, be the connected component of this DAG which contains e and let C' be a root of
D, i.e., there are only outgoing edges from C. Let E,, be the z — y edges and F,, the
y — z edges out of C'. Since C is not an isolated node, |E,, |+ |E,,| > 1. Let Y be the set
of y nodes in the SCC represented by C. Then |M'(Yo) N X| = |[M(Ye) N X| — |E,y| and
\M'(Ye)N Z| = |M(Ye)N Z| + |E,,|. Hence, M and M' cannot both be parity matchings,

contradicting our assumption. |
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Figure 3.5 shows the SCCs of éf for the example in Table 3.1. The nodes of each SCC

have a distinct shape and the inconsistent edges are dashed.

yl y2 y3 y4 y5 y6

x1 X2 x3 z1 z2 z3

Figure 3.5: The SCCs of the residual graph of Figure 3.4.

Let |E| denote the number of edges in B and recall that n = |X| = |Z| and n’ = |Y].
Clearly, |E| = O(nn'). The running time of the algorithm is dominated by the time required
to find a flow, which is O(n|E|) = O(n?n’) [10, 26].

3.3 Bound consistency

In this section we show the bound consistency algorithm. It does the same as the arc
consistency algorithm of the previous section, but achieves faster running time by exploiting
the simpler structure of the variable-value graph: Since the domain of every variable node is
an interval, the variable-value graph is convez, which means that the neighborhood of every
variable node is a consecutive sequence of value nodes. In the next subsections we show how
each step of the arc consistency algorithm can be performed efficiently on a convex graph.
In particular, we show how to find a parity matching in time O(n’ + nlogn) and how to

compute the SCCs of the residual graph in time O(n'a(n',n’)).

3.3.1 Finding a parity matching

Figure 3.6 shows the algorithm for finding a parity matching in the graph B. It uses two
priority queues, P, for the nodes in X and P, for the nodes in Z. In both queues the nodes
are sorted by the upper endpoints of their domains.

For any v € X U Z, let D(v) and D(v) denote the lower and upper endpoints of D(v),
respectively. The algorithm traverses the value nodes from y; to y,» and for each y; inserts

to the respective queue all variable nodes v € X U Z with D(v) = 4. It then checks whether
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(* Assumption: X and Z are sorted according to D. *)
P, « [| (* priority queue containing z nodes sorted by D *)
P, <[] (* priority queue containing z nodes sorted by D *)
j+<0
for i=1to n do
forall z;, with D(zy) =i do Pr.Insert zj,
forall z;, with D(z) =i do P,.Insert z,
(* Assume that MinPriority of an empty queue is co *)
while P,.MinPriority = ¢ or P,.MinPriority = ¢ do
if P,.IsEmpty or P..IsEmpty then report failure
j+ij+1
x < P,.EztractMin; match x with y;
z < P,.EztractMin; match z with y;
end while
endfor
if P, and P, are both empty then report success

else report failure

Figure 3.6: Algorithm to find a parity matching in a convex graph.

there is a node in one of the queues (the node with minimum priority) whose domain ends
at ¢. If so, it tries to match this node and a node from the other queue with y;. If the other
queue is empty, it declares that there does not exist a parity matching in the graph.

Figure 3.7 shows the parity matching obtained by the algorithm for the example in Ta-
ble 3.1. It corresponds to the flow shown in Figure 3.3. Note that while the flow algorithm
could have produced any one of several different flows, this matching is one of the only two
possible outputs of the algorithm of Figure 3.6. The other option would be to match z, with

ys and z3 with gy, instead of the other way around.
Lemma 18 [f there is a PM in B then the algorithm in Figure 3.6 finds one.

Proof We show by induction on 7 that if there is a PM M then for all 0 < i < n/, there is a

PM M; in B which matches {y1,...,y;} with the same matching mates as the algorithm.
For ¢ = 0, the claim holds with My = M. For larger i, given a PM M, we can assume by

the induction hypothesis that there is a PM M;_; that matches the nodes in {y;,...,y;_1}
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Figure 3.7: The parity matching obtained by the algorithm in Figure 3.6 for our running example.

with the same matching mates as the algorithm. We show how to construct M; from M; ;.
As long as the matching mates of y; are not the same as the ones determined by the algorithm,
perform one of the following transformations:

If y; is matched with a pair x;, z; such that neither one of x; and 2, was matched with
y; by the algorithm, then since z; and 2z, were not matched by the algorithm with any of
{y1,...,¥i1}, they both remained in the queues after iteration i, which implies E(ajj) > 1
and D(z;) > 4. In M; we match both of them with ;.

The other option is that the algorithm matched y; with a pair z;, z; which are not both
matched with y; in M;. Since the algorithm extracted them from the queues, we know that
at least one of them has upper domain endpoint equal to 7. Assume w.l.o.g. that E(xj) = 1.
Since M; 1 agrees with the algorithm on the matching mates of {y,...,y; 1}, we get that
in M,_, x; is matched with y; and 2, is matched with y; for some ¢ > 7. Hence, there is
some other node zp € Z which is matched with y; in M;_; and which was matched by the
algorithm with y;» for some " > i. When the algorithm extracted z;, from the queue, zp
was in the queue because it is a neighbor of ;. Hence, D(z) > D(z) so we can replace 2,
and zg. That is, we can match 2z, with y; and zp with y,.

Each time we apply one of the transformations above to M;_;, we decrease the number of
differences between the set of matching mates of y; in M; ; and in the matching generated
by the first 7 iterations of the algorithm. So we can continue until we obtain a matching M;

that agrees with the algorithm on the matching mates of {yy,...,y;}. [

Lemma 19 If the algorithm in Figure 3.6 reports success then it constructs a parity matching

in B.
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Proof If the algorithm reports success then P, and P, are empty at the end, which means
that all nodes in X U Z were extracted and matched with y nodes. In addition, since the
algorithm did not report failure during the extractions, whenever v € X U Z was matched
with y;, we have that D(v) < i < D(v). For all 1 < i < n/, whenever y; is matched with
some node from X it is also matched with a node from Z, and vice versa. Hence, we get

that the matching that was constructed is a parity matching. |

3.3.2 Finding strongly connected components

Having found a parity matching in B, which we can interpret as a flow in E, we next wish
to find the SCCs of By (cf. Figure 3.5). Mehlhorn and Thiel [16] gave an algorithm that
does this in the residual graph of the AllDifferent constraint in time O(n) plus the time
required for sorting the variables according to the lower endpoints of their domains. Katriel
and Thiel [11] enhanced this algorithm for the GCC' constraint, in which a value node can
be matched with more than one variable node. For our graph, we need to construct a new
algorithm that can handle the distinction between the nodes in X and in Z and the more
involved structure of the graph.

As in [11, 16], the algorithm in Figure 3.10 begins with n’ initial components, each con-
taining a node y; € Y and its matching mates (if any). It then merges these components into
larger ones. While the algorithm used for the AllDifferent graph can do this in one pass over
the y nodes from vy, ..., y,, our algorithm makes two such passes for reasons that will be
explained in the following. The first pass resembles the SCC algorithm for the AllDifferent
graph. It traverses the y nodes from y; to vy, and uses a stack to merge components which
are strongly connected and are adjacent to each other. It maintains a list Comp of completed
components and a stack C'S of temporary components. The components in both Comp and
CS are not guaranteed to be SCCs of Ef. They are strongly connected but may not be
maximal. However, a component in Comp is completed with respect to the first pass, while
the components in C'S may still be merged with unexplored components and with other
components in C'S.

Let é} be the graph induced by {yi,...,y;} and their matching mates. The first pass
begins with the empty graph E? and in iteration ¢ moves from the graph éjfl to E}, as
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follows. As long as the topmost component in C'S does not reach any y; with ¢/ > i by a
single edge, this component is popped from C'S and appended to Comp. Then the algorithm
creates a new component C' with y; and its matching mates. It repeatedly checks if C' and
the topmost component in C'S reach each other by a single edge in each direction. If so,
it pops the component from C'S and merges it into C'. Finally, it pushes C onto C'S and
proceeds to the next iteration (see Figure 3.8).

B Node(s) in X @ Node(s) inY A Node(s)inz

Components of CS
(each "node" represents all nodes of its type in the component) Unexplored nodes

2 1/\/\

Pop from CS all components that do not reach any unexplored node by a single edge

Create a component C with yi and its matching mates
c

Figure 3.8: Iteration 7 of the first pass of the algorithm in Figure 3.10.

The reason that this pass is enough for the AllDifferent graph but not for ours is that in
our case the outgoing edges of a y-node do not fulfil the convexity criteria: It could be that
there is an edge from 7; to a z node which is matched with y; for some ¢’ > i+ 1 while there
is no edge from y; to any of y;,1’s matching mates. In the AllDifferent case, this could not
happen: If a matching mate of y; can reach any y; by a single node then convexity implies
that it can reach all ¥ nodes between y; and y;. This means that in our graph, there could
be two components C,C" in C'S such that C reaches C' by a single edge and C’ reaches C
by a single edge, but this is not detected when the second of them was inserted into C'S

because the first was not the topmost in the stack (see, e.g., Figure 3.9). The second pass,
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which merges such components, will be described later.

B Node(s) in X
@® Node(s) inY
A Node(s)inz

C1 and C2 are strongly connected but will not be merged in
the first pass because C2 (and not C1) is the topmost
component in CS when C3 is created and pushed onto CS.

Figure 3.9: Example of components that will not be merged by the first pass of the SCC algorithm.

In the following, whenever we speak of a component C' of Ef, we refer to a set of nodes
such that for every node in (', all of its matching mates are also in C'. This means that a
component C is strongly connected, but may not be maximal. We say that a component
C reaches a component C' if there is a path in B} from a node in C' to a node in C’. In
addition, two components C' and C' are linked if there is an edge from C to C’ and there
is an edge from C’ to C. They are linked by © — y (linked by y — z) edges if the edges in
both directions are z — y (y — z) edges.

For clarity, the pseudo-code in Figure 3.10 uses the following shortcuts. We will show

how to implement them in Subsection 3.3.4. Let C', C" be two components.
e MinY[C]| (MazY [C]) is the minimum (maximum) index of a y node in C.

e ReachesRight[C] is the largest index 7 such that y; or one of its matching mates can be

reached by a single edge from a node in C'.

o zyLeftLinks[C] (yzLeftLinks|C]) is true iff C' is linked with some component to its left
by £ — y (y — z) edges.

e Linked[C,(C"] is true iff C' and C" are linked.

e zyLinks|C,C’] (yzLinks[C,C"]) is true iff C' and C" are linked by z — y (y — z) edges.

The following lemmas examine the components that are generated by the first pass of the
algorithm, first with respect to their order and connectivity in C'S and then with respect to
the SCCs of Ef that they compose. They will help us to show that the SCCs of Ef, when
viewed as combinations of components that are generated by the first pass of the algorithm,

have a relatively simple structure which enables to identify them in the second pass.
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(* Pass 1: Start with singleton components and merge adjacent ones *)
Comp < empty list; C'S < empty stack
for i=1to n' do
while C'S not empty AReachesRight(Top(CS)) < i do (* Top(C'S) cannot reach y; with i’ > 4. *)
C' < Pop(CS); append C’ to Comp
end while
C < {yi} UNum(y:)
while CS not empty ALinked(TOP(CS),C) do
C' + Pop(CS); C + C" o C (* Merge components *)
end while
push C onto C'S
end for
while CS not empty do C’ < Pop(CS); append C’ to Comp
(* Pass 2: merge non-adjacent components *)
SCCs + empty list; C'S < empty stack
for i =1 to |Comp| do (* Traverse the components of Comp by MinY[C] order *)
while C'S not empty AReachesRight(Top(CS)) < MinY[C;] do (* Top(C'S) cannot reach Cy with i’ > 4. *)
C + Pop(CS)
if zyLeftLinks[C] then push C onto C'Szy
else if yzLeftLinks[C] then push C onto C'Syz
else append C to SCC's
if zyLinks[Top(C'S), Top(CSzy)] then
C + Pop(CS); C' + Pop(CSzy); C < C' o C (* Merge components *)
while Linked[C, Top(CS)] do C' « Pop(CS); C + C' o C (* Merge components *)
push C onto C'S
endif
if yzLinks[Top(CS), Top(CSyz)] then
C + Pop(CS); C' + Pop(CSyz); C + C' o C (* Merge components *)
while Linked[C, Top(CS)] do C" < Pop(CS); C < C' o C (* Merge components *)
push C onto C'S
endif
end while
push C; onto C'S
endfor

return SCC's

Figure 3.10: Algorithm to find the SCCs of the residual graph.
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Lemma 20 Let C'S =< C,C5,... > be the components in CS at the end of iteration i
of the first pass (ordered from bottom to top). Then for all k, MazY [Cy] < MinY [Cyi1].
In other words, no component is nested in another and the components appear in C'S in

increasing order of the indices of their y nodes.

Proof At the beginning C'S is empty and the claim clearly holds. Assume that the claim
holds after iteration ¢ — 1 and consider the changes made to the stack during iteration <.
First some of the topmost components are popped from the stack; this does not affect the
correctness of the claim. Then some of the topmost components are merged with each other
and with the new component C' and the result is pushed to the top of the stack. By the
induction hypothesis, all components that were popped and merged contain y nodes with
larger indices than the components that remained in the stack. In addition, all ¥ nodes
in C'S after iteration 7 — 1 have indices smaller than 7. We get that the claim holds after

iteration 1. |

Lemma 21 Let C'S =< C4,C5,... > be the components in C'S at the end of iteration i of
the first pass (ordered from bottom to top). Then for all k, C\, and Cyy1 are not linked.

Proof Again, the claim clearly holds for the empty stack. Assume that it is true after itera-
tion ¢— 1. By the induction hypothesis, the claim holds for every adjacent pair of components
that remained in C'S after popping the completed components. If the new component C
that is pushed onto C'S is linked with the component C' which is immediately below it, then
the algorithm would have popped C' and merged it with C. Hence, the claim holds at the

end of iteration i. |

Lemma 22 [fCS =< Cy,Cy,... > is as in Lemma 20 and {C;,,...,C;.} is a mazimal set
of components in CS which belong to the same SCC of Ef such that i1 < ... <1, then C;

and C;, are linked.

K—1

Proof Assume that there is such a set of components {C;,,...,C; } in C'S where C;__1, C;

are not linked.

Case 1: (;, does not reach C;

k=1

by a single edge. Then it must reach a component C;. with
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i; < ix—1 by asingle edge. This edge must be a y — z edge because otherwise convexity and
Lemma 20 would imply that it also reaches C;_, by an £ — y edge, in contradiction to our
assumption. Let z, be the target of this edge and y3 be its matching mate. Assume that 3

is maximal among (' such that ys is in one of the components C;,,...,C;, , and it has a

—2
matching mate z,, which is reachable from C;_ by a y — z edge. There is a path from z, to
C;, . If the path includes an z — y edge from a matching mate z, of ysz to yg with 5" > 3,
then D(z,) > 8 and D(z,) > f so the algorithm in Figure 3.6 could not have matched =z,
and z, with ys, a contradiction. If the path includes a y — 2 edge from yg with 5’ < 3 to a
node z,» which is matched with yz» where 5" > /3, then z,» was in P, when 2, was extracted,
so by convexity and Lemma 20 it is reachable from C; by a y — 2z edge, in contradiction
to the maximality of 3. We get that the path must go from z, to the left and then bypass
yg by an z — y edge (xy,ysr) such that z, is matched with yg and f' < § < 3”. We can
assume w.l.o.g. that the path from 2, to z, does not go to the left of x,; if it does then one
can show that either Lemma 21 is violated or there also exists a path that shortcuts the part
that goes to the left of z,. If the path ends with a y — 2 edge into a matching mate 2,
of yg followed by the matching edges (2./,ys) o (ysr, Tor) then D(zo) > 5 and D(z,) > '
so the algorithm in Figure 3.6 could not have matched x, and z, with yg, a contradiction.
So the path ends with an z — y edge (zqn,yg ) followed by the edge (ysr, zqr), Where xqm
is matched with ygn for some g < " < . x4m was in P, when z, was extracted, so it
also reaches ygr by an z — y edge. By continuing backwards along the path and applying
the same considerations, we get that there is an z — y edge from z, to yg, hence again
D(z,) > B and D(z,) > f3, so the algorithm in Figure 3.6 could not have matched z, and
zy with ys, a contradiction.

Case 2: () _, does not reach C; by a single edge. Then Cj;, is reached from another

o1
component C;; by an z — y edge (2q,yp). Assume that z, is matched with yz and that
 is maximal among 3" such that ysz is in one of the components {C;,,...,C;, _,} and has
a matching mate x,» which reaches C; by an z — y edge. There is a path from C;__, to
yg. If there is an edge (x4, yg) from x,» which is matched with yg» for some 5 < " < f',
then by convexity and Lemma 20, x,» reaches C;_ by an z — y edge, in contradiction to the

maximality of 5. If there is an edge (ysr, z,) such that z, is matched with yz and " > S
then D(z,) > 8 and D(z,) > f so the algorithm in Figure 3.6 could not have matched =z,

48



and z, with yg, a contradiction. We get that the path must bypass yz by a y — 2z edge
(ygr, zym) such that z,» is matched with yg» for some 8" < g < 4", and then return from
zym to yg. With arguments similar to the ones used in case 1, we get that the path from
Zym to yg must consist of y — 2z edges, which implies that there is a y — 2 edge from yz»
to 2,, hence again D(z,) > 3 and D(z,) > f3 so the algorithm in Figure 3.6 could not have

matched z, and z, with yg, a contradiction. |

Corollary 1 Let CS =< Cy,Cy, ... > and {C;,,...,C;. } be as in Lemma 22. Then C;__,
and C;. are either linked by © — y edges or linked by y — z edges.

Proof Lemma 22 guarantees that C;,_, and C;, are linked. Assume that these edges are not
of the same type. That is, one is an x — y edge and the other is a y — 2z edge. Then by
convexity and Lemma 20 we get that either C; |, and C;_ 41 or C;, _; and Cj, are linked,

and this contradicts Lemma 21. |

Lemma 23 Let CS =< C1,Cy,... > and {C;,,...,C;.} be as in Lemma 22 and assume
that there is at least one unezplored node which is in the same SCC of Ef as {Ci,,...,Ci. }.

Then there is an edge from C;  to an unexplored node.

Proof Assume the converse. Then there is a component in {C;,,...,C;, |} which is con-
nected by a single edge to an unexplored node. Let j be the maximal index such that
C; € {C;,,...,C;,_,} has an edge to an unexplored node. If this is a y — z edge then by
convexity and Lemma 20 C;,_ is also connected by a y — z edge to an unexplored node. So
it must be an z — y edge. Let z; € C; be its source. With arguments similar to the ones
used in the proof of Lemma 22 we can show that there cannot be a path from Cj;  back to

xj, in contradiction to the assumption that C; and C; are in the same SCC of Ef. [

Corollary 2 If {C},Cy,...,Cy,} are the components found by the first pass of the algorithm
and {C;,,...,C;.} is a mazimal subset of these components which are strongly connected
between them such that MinY[C;,| < ... < MinY|[C;.]. Then

(1) No component in {C;,,...,C;.} is nested in another. That is, for all j,j" € {i1,... i}
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such that j < j', MazY[C;] < MinY [Cj].
(2) C;.—1 and C;, are linked. Furthermore, they are either linked by © — y edges or linked
by y — z edges.

Proof Assume that there is a component C; in the set which is nested in another component
Cj. Then C} consists of nodes which are both to the left and to the right of C';. This means
that at some point, the algorithm merged these nodes into one component. At this point in
time, the topmost component in C'S consisted only of nodes which are to the left of C; and
it was merged with a component that contains only nodes to the right of C;. By Lemma 20,
this means that C; was popped before this iteration, but this contradicts Lemma 23, so we
have shown that (1) holds.

By Lemma 23, we know that none of {C;,,...,C; _ } were popped from CS before C;, was
pushed onto it. At a certain iteration, C;_ was pushed onto C'S and stayed there at least

until the next iteration. This, together with Corollary 1, implies (2). |

To sum up, the first pass partitions the nodes into components such that the components
that compose an SCC of Ef are not nested within one another, and the two rightmost
components of each SCC are linked by edges of the same type. The second pass of the
algorithm merges components that belong to the same SCC. It starts with an empty stack C'S
and an empty list SC'C's and traverses the components found in the first pass by increasing
order of MinY [C]. When considering a new component C, it first pops from C'S all topmost
components that cannot reach C or beyond it. For each such component C’, it first checks
if C" is linked with a component to its left by z — y edges. If so, there are components in
C'S that it needs to be merged with. So the algorithm pushes C' to a second stack C'Sxy.
Otherwise, it checks if C" is linked with a component to its left by y — 2z edges and if so,
pushes it to a third stack C'Syz. Otherwise, it appends C" to SCC's because C' is not linked
with any component in C'S and it does not reach unexplored components.

Before popping the next component, it checks whether the topmost component in C'S
and the topmost component in C'Szy are linked by © — y edges. If so, it pops each from its
stack and merges them. It then repeatedly checks if the merged component is linked with

the topmost component on C'S. If so, the two are merged. Finally, the component which is
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the result of the merges is pushed back onto C'S. The algorithm then checks whether the
topmost component in C'S and the topmost component in C'Syz are linked by y — 2z edges
and if so, handles this in a similar way.

In the remaining part of this section we show that this algorithm finds the SCCs of
Ef_ Denote the set of components found in the first pass of the algorithm by Comp =
{Cy,Cs,...,C,p }, such that for all 1 < i < py, MazY [C;] < MinY[C;141]. Since each of these
components is strongly connected but is not necessarily an SCC of Ef, the components in

Comp are partitioned into sets of components such that the components of each set compose

an SCC of By.

Definition 3.3.1 A subset S = {C},,...,C;.} of Comp is an SCC set if the union of the
components in S is an SCC of éf. In the following we will use this notation while assuming

that MinY [Cy] < ... < MinY[C;,.].

Definition 3.3.2 Let S; = {C;,,...,C;.} and Sy = {C},,...,C; ,} be distinct SCC sets.
Then Sy is nested in Sy if there exists j € {ji,...,Jw_1} Such that for all C; € S,
MinY[C;] < MinY[C;] < MinY[Cj1]. Si and Sy are interleaved if there exist i,i' €
{ir,...vig1} and j,j' € {j1,. .., jw-1} such that MinY[C;] < MinY[C;] < MinY[Cy] <
MinY[C}].

The SCC sets of Comp can be interleaved in one another, but in the following lemma we
show that this can only occur in a restricted form. This will help us to show that the second

pass of Algorithm 3.10 identifies all SCC sets in Comp.

Lemma 24 Let S, = {C;,,...,Ci.} and Sy = {Cj,,...,C; ,} be interleaved SCC sets. If
MinY[C;] < MinY[C;] < MinY[Ci1] < MinY[Cjy1] then there are links between S! =
{C1,...,Ci} and S} = {Cit1,...,Cy.} and there are links between S; = {C4,...,C;} and
Sl ={Cjs1,...,Cj,}. These links can be of one of two forms: (1) S} and S} are linked by
r — y edges; S; and 5’;1 are linked by y — z edges. (2) St and S" are linked by y — 2 edges;
S]l- and Sj’? are linked by x — y edges.

Proof We show that any other option is not possible. If S! and S! are linked by an z — y
edge from S! to S" and a y — 2 edge from S! to S! then by convexity and Lemma 20, S!

and S]l- are also linked, which means that the components of S; and S, belong to the same
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SCC of éf, contradicting the assumption that S; and Sy are distinct SCC sets. The same
follows if S! and S are linked by a y — z edge from S! to S and an z — y edge from S?
to S} and if S} and S are linked by an z — y edge in one direction and a y — z edge in the

other.

Assume that each of the pairs S!, S and Sjl-,S]h is linked by = — y edges in both direc-
tions. Then by convexity and Lemma 20, S]l- and S? are also linked by r — y edges and
again the components of S; and S, are in the same SCC of éf. The same holds if the pairs
Si, S} and S, S} are both linked by y — z edges. |

Figure 3.11 shows an example of two interleaved SCC sets S = {C,C3,C5} and Sy =
{Cs, C,}. For clarity, some of the edges were not drawn but the reader should assume that
all edges that are implied by convexity exist in the graph. The SCCs of S; are linked by
z — y edges and the SCCs of S, are linked by y — 2 edges.

Figure 3.11: Two interleaved SCC sets.

The following resemble Lemmas 20 and 23 but refer to the second pass.

Lemma 25 Let C'S =< C,Cs,... > be the components in C'S at the end of iteration i of
the second pass (ordered from bottom to top). Then for all k, MazY [Cy] < MinY [Cii1].

Proof At the beginning C'S is empty and the claim clearly holds. Assume that the claim
holds after iteration ¢ — 1 and consider the changes made to the stack during iteration i.
When a topmost component of the stack is popped it does not affect the correctness of the
claim. When a new component is pushed onto the stack it is the result of merging some
of the topmost components in the stack with components from the temporary stacks C'Szy
and C'Syz. Since the temporary stacks contain only components with higher y nodes than

CS, the merged component contains indices which are all higher than what is in components

92



which are below it in C'S. [

Lemma 26 Let S = {C;,,...,C;.} be an SCC set. Then for all ¢ € {1,...,k— 1}, C;

reaches at least one of {Cj,,,,...,C;.} by a single edge.

Proof By Lemmas 20 and 25, the components of S appear in C'S in the second pass in the
same order in which they appear in the first pass. This implies that after a certain iteration
of the second pass, {C;,,...,C;,} are in CS and {C;,, , ..., C;, } are unexplored. Since there

10419

is an edge from one of {C;,,...,C;,} to one of {C; C;.}, we can show the claim by

417

arguments which are similar to the ones used in the proof of Lemma 23. |

We can now show that the second pass of Algorithm 3.10 identifies the SCCs of Ef.

Lemma 27 Let S = {C;,,...,C;.} be an SCC set. Then in the second pass of the algorithm,

the components of S will be merged.

Proof Let S be an SCC set such that all SCC sets which are nested in S were merged. We
show by induction that all components of S are merged in the second pass. That is, we
show that for all 7 from i,y to 4y, Cj,...,C;, will be merged. For i = i,_;, we know by
Corollary 2 that C;, | and C;, are linked by either £ — y edges in both directions (case 1)

or y — z edges in both directions (case 2). By Lemma 26, we know that C;__, is not popped

k-1
from C'S before C;, is pushed onto it. When C;, is popped from C'S for the first time, it
is pushed onto the stack C'S” where C'S" is C'Szy (case 1) or C'Syz (case 2). Assume that
when C;_, became the topmost component in CS, C;_ was not the topmost component in
CS'. If it was popped from C'S’ before that time, this is because a component above C;,__,
in C'S is linked with it. Since this component is not in S, this contradicts the assumption
that S is an SCC set. On the other hand, if there was another component C” above Cj,
in C'S', then by Lemma 24 this is because C’ is linked by z — y edges (case 1) or y — 2
edges (case 2) with another component C" which was above C;,  , in CS. If C" and C"
were not merged, we get that there must have been a component above C’" in C'S" when C”
was the topmost component on C'S. Applying the same argument recursively, we get that

the number of components is infinite. Hence, C' and C" were merged before C; _, was the

K—1

topmost component in C'S, so C' could not have been above C;_in C'S’.
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Assume that Cy, 41, ..., C;, were merged by the algorithm into a larger component C'. By
Lemma 26 we know that C;; reaches C' by a single edge and this implies that it was not
popped from CS before any of C, 1,...,C;, . In addition, since C' and Cj, are in the same
SCC, there is a path from C' to Cj;. This path does not go through components that are
between C' and Cj; in the stack because that would place these components in the same SCC
as C' and Cj;, contradicting the assumption that S is an SCC set. Assume that the path
begins with an z — y edge from C' to C;; or a component below it in C'S. Then by convexity
there is also an z — y edge from C' to Cj;. If the edge from C;; to C is a y — z edge then
by convexity and Lemma 25, C' is linked with C;, and all components which are above it
in the stack and will be merged with them by the algorithm. If this edge is an z — y edge
then C' will be pushed onto C'Szy and as in the base case, it will be merged with C;, when
the later will become the topmost component in C'S.

If the path from C' to C;; begins with a y — 2z edge from C' to a component below C;,
then arguments similar to the ones used in the proof of Lemma 22 imply that C' also reaches
Ci; by a y — z edge. If the edge from C;, to C'is an r — y edge then again by convexity
and Lemma 25 C;; and all components above it in C'S are linked with C' and will be merged
with it. If it is a y — 2 edge then C will be pushed onto C'Syz and will be merged with C;;

when the later will become the topmost component in C'S. |

3.3.3 Narrowing the bounds

After the SCC computation we have for each node in X U Z the index of its y mate and
for each y; € Y the component it belongs to. As in [11], we can in time O(n + n’) obtain
for every component a list of its y nodes sorted by index and two lists of its z and z nodes,
one sorted by the lower endpoints and one by the upper endpoints of their domains. Let C'
be a component, let I = (i1,...,i) be the sorted list of the indices of its y nodes and let
D¢ = (Djy, ..., Dj,) be the sorted list of the upper domain endpoints of its  nodes. Then
the upper endpoint of the narrowed domain of z; € C is iy where iy < D; < igyy (with
ix+1 = n' + 1) and this value can be computed for all z nodes in C' with one simultaneous
scan of I and D¢. Narrowing the lower endpoints of the domains of the  nodes and both

endpoints of the domains of the 2z nodes can be done in a similar manner with the relevant
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lists.

3.3.4 Implementation details

Figure 3.12 shows how the shortcuts that are used in the pseudo-code in Figure 3.10 can be
implemented with linear-time preprocessing. After finding the parity matching and before
beginning the SCC algorithm, we compute for each y; € Y several values:

D*[i] = [D%[i], D*[4]] is the union of the domains of the x nodes which are matched with
y;. Similarly, D?[i] = [D?[i], D#[i]] is the union of the domains of the z nodes which are
matched with y;. Both can be computed in linear time. For the D?[i]’s we traverse the z
nodes and for each z;, set D*[i] = min{D(z;), D*[:]} and D?[i] = max{D(z;), D*[i]} where
y; is the value node that x; is matched with. The computation of the D?[i]’s is similar.

MinYZLink[i] (MaxYZLink[i]) is the minimum (maximum) index ¢’ of a y node which is
matched with a node z € Z such that i € Dom(z), i.e., there is an edge from y; to a matching
mate of yy. The MinYZLink[i]’s can be computed in linear time as follows: Traverse the y
nodes from left to right. For each y; and for each i € D*(y;), MinYZLink|[i'] should be set
to ¢ unless it was already set to a smaller value. Since the D?(y;)’s are intervals and each
i € D*(y;), it suffices to maintain the index of the largest i’ for which MinYZLink[i'] was set
and to traverse each D?(y;) beginning at this index. The computation of MazYZLink][i] is
symmetric.

Finally, MazLeftXYLink[i] is the maximum index ¢’ < 4 such that y; is matched with
some z; € X with ¢ € Dom(z;) (if no such y; exists then MazLeftXYLink[i] = n' + 1, i.e.,
infinity). Symmetrically, MinRightXYLink[i] is the minimum index i > 7 with the same
property, and if none exists then MazLeftXYLink[i] = —1, i.e., minus infinity. We begin by
initializing MazLeftXYLink[i]| = n' + 1 for all i. For ¢ = 1, this value remains and for higher
i’s MaxLeftXYLink[i] can be computed as follows. Push ; onto a stack and then traverse
the y nodes from y, to y,,. When processing y;, first pop from the stack all topmost nodes
ys such that D=[i'] < i. If the stack is not empty afterwards, then MazLeftXYLink[i] is the
topmost node on the stack; this is the latest node that was pushed and has a matching mate
x € X whose domain contains . Last, y; is pushed onto the stack. A symmetric algorithm
can compute MinRightXYLink[i] in linear time.

Once these values are known for each individual y node, the SCC algorithm can maintain
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them for every component: When a new component is created it contains a single y node
and its matching mates, and when two components are merged, each value can be updated
in constant time for the merged component. Similarly, it can maintain for each component
C' the value MinY[C] (MazY[C]), which is the smallest (largest) index of a y node in C.
The shortcuts in the pseudocode can then be implemented as follows:

ReachesRight|C] is max{MazYZLink[C], D*[C]}.

zyLeftLinks[C] is true iff D*[C] < MazLeftXYLink[C] < MinY[C], which means that C' is
reached by an x — y edge from a component C' to its left and it also reaches C' by an z — y
edge.

yzLeftLinks[C] is true iff (1) D*[C] < MinY[C] and (2) D*[C] < MinYZLink[C|], which
means that (1) C' is reached by a y — z edge from at least one component to its left and (2)
there is a component C” for which (1) holds and which is also reached from C by a y — 2
edge.

zyLinks[C,C"], where C is to the left of (', is true iff (1) D*[C] > MinY[C’] and (2)
D*[C'] < MazY|[C], which means that (1) C reaches C' by an z — y edge and (2) C'
reaches C' by an z — y edge. Similarly, yzLinks[C,C"] is true iff D?[C] > MinY[C'] and
D?[C"] < MazY[C].

Last, Linked[C,C"] is true iff Reaches|C,C’]| A Reaches[C’, C], where Reaches|Cy, Cs] is true
iff (1) D*[C,] > MinY[Cy] or (2) D?*[Cy] < MazY[C,], which means that (1) there is an
z — y edge from C; to Cy or (2) there is a y — z edge from C) to Cs.

3.3.5 Complexity analysis

The parity matching algorithm performs 2n Insert and FxtractMin operations on the priority
queues while it traverses the y nodes. This takes time O(n' 4+ nlogn). In the SCC compu-
tation everything takes linear time except one thing: Maintaining the component list. We
wish to be able to merge components and to find which component a node belongs to. For
this we use a Union-Find[9] data structure over the y nodes. We perform O(n’) operations
on this structure, which in total take time O(n'a(n’,n')). We get that the total running time

of the algorithm is O(n'a(n',n') + nlogn).
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for i =1to n' do
D"[i] < i; D=[i] < i; D*[i] + i; D*[i] < i
MazYZLink[i] < i; MinYZLink[i] < i
MinRightXYLink[i] + —1; MazLeftXYLink[i] + n' + 1
endfor
for j =1 to n do
i & YMate(z;); D®[i] « min{D*[i], D(z;)}; D[i] < max{D7[i], D(z;)}
i < YMate(z;); D*[i] <~ min{D*[i], D(z;)}; D*[i] «- max{D=[i], D(;)}
endfor
MinYZLink[1] «+ 1
14— 2

for Yindex =1 to n’ do

while i > D#[Yindex] do MinYZLink[i] < Yindex; i < i +1
endfor
MazYZLink[n'] < n’
in' -1
for Yindex = n' to 1 do
while ¢ > D?[Yindex] do MazYZLink[i] < Yindex; i < ¢ —1
endfor
S« [] (* Empty stack *)
S.Push 1
for i =2 to n’' do
while S.NotEmpty A D=[S.Top] < i do S.Pop
if S.NotEmpty then MazLeftXYLink[i] + S.Top
S.Push i
endfor
S <[] (* Empty stack *)
S.Push n'
for i=n'—1to 1 do
while S.NotEmpty A D®[S.Top] > i do S.Pop
if S.NotEmpty then MinRightXYLink[i] < S.Top
S.Push ¢

endfor

Figure 3.12: Preprocessing stage for the algorithm in Figure 3.10
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3.4 The UsedBy constraint

In this section we show algorithms that achieve arc consistency and bound consistency for
the general case of the UsedBy constraint. The simplest solution is to add n — m dummy
variables to Z with domains that include all values: {y,...,y,} in the arc consistency
case and [y1, y,] in the bound consistency case. Let Z be the set obtained by padding Z
in this way. Then we have that |X| = |Z| = n and we can apply the algorithms for the
Same constraint. The correspondence between solutions to Same(X, Z) and solutions to
UsedBy(X, Z) should be obvious.

In the rest of this section we show how the UsedBy constraint can be solved directly.
While these algorithms are not asymptotically faster than what we get with the padding
method described above, they should be faster in practice.

As in the case of the Same constraint, we construct the bipartite graph B and look for a

solution in it. This time, a solution is a z-parity matching, defined as follows.

Definition 3.4.1 Let M C E be a set of edges of B. For any node v € X UY U Z, let
Ny (v) be the set of nodes which are neighbors of v in B' = (X U Z,Y, M). We say that M
is a z-parity matching in B iff Vyexuz| Ny (v)| = 1 and Vyey | Ny (y) N X| > |[Nu(y) N Z].

The following is a simple extention of Lemma 16.

Lemma 28 There is a one to one correspondence between the solutions to the UsedBy con-

straint and the z-parity matchings in B.

3.4.1 Arc consistency

As with the Same constraint, the arc consistency algorithm builds the directed graph B and
finds an s-t flow of value m in it. The edges participating in this flow match all nodes of
7 and an equal number of nodes from X, such that every z node corresponds to an x node
which is assigned the same value. To get a z-parity matching M, we take the set of edges
that participate in the flow and an edge connecting each of the remaining x nodes with an
arbitrary value in its domain. We then construct the residual graph Ef. As in the case of
the Same constraint, B} contains all edges in their original orientation and the matching

edges also in reverse direction. Finally, we add a node s with an edge (y;, s) for each value
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node y; € Y and an edge (s,y;) for each y; € Y such that | Ny (y;) N X| > |Na(yi) N Z] (see
Figure 3.13).

Figure 3.13: Example of a residual graph with the added node s.

The purpose of adding the node s is as follows. Let y; € Y be such that | Ny (y;) N X| >
|Na(y:) N Z] and let z; € Npy(y;) N X. By matching x; with any of its neighbors y; with
i' # i, we get an alternative z-parity-matching. More generally, let M be a z-parity matching
obtained as described above and let P be an alternating path that begins at a node y; with
|INar(yi) N X| > |Ny(y;) N Z| and ends at another node yy € Y. Then M & P is also a
z-parity matching. By construction, there is an edge from s to y; and an edge from y; to
s, so all edges on this path belong to the same SCC of éf. We prove this in the following

lemma.
Lemma 29 An edge e = (u,v) € éf is consistent iff u and v belong to the same SCC.

Proof Let M be the z-parity matching that was obtained from the flow f as described
above. If e € M then e participates in the solution that corresponds to the matching M and
is therefore consistent. u and v are connected by two antiparallel edges so they are in the
same SCC. Assume that e ¢ M and that v and v are in the same SCC. Then there is a cycle
P which uses e in Ef_ If the cycle does not contain the special node s then as in Lemma 17,
M' = M & P is a z-parity matching. If the cycle does contain the node s, consider the path
P’ = P\ s which is the cycle P without s and the edges adjacent to it. P starts with an edge
(y;,v) from a node y; € Y such that [Ny (y;) N X| > |Ny(y;) N Z| and ends with an edge
(u,y;) into another node y; € Y. We show that M' = M & P’ is a z-parity-matching. For
an internal node (a node which is different from y; and y;), the situation is as in Lemma 17
so all nodes preserve the properties required of a z-parity-matching.

If v € X then the edge (y;,v) is in M because otherwise it cannot be traversed in this
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direction. y; is matched in M’ with one X node less than in M, but this is fine because in
M it is matched with more X than Z nodes. If v € Z then the edge may or may not be
in M. In both cases we get that in M’ y; is matched with at least as many X nodes as Z
nodes.

If w € Z then the edge (u,y;) is in M and then y; is matched in M’ with less Z nodes
and the same number of X nodes compared to M. If v € X then it is not in M, because
there must be another edge incoming into v on the path and this must be the single edge
of M which is adjacent to u. We get once again that y; is matched in M’ with one more X
node than in M. So M' is a z-parity-matching.

The proof that an edge e which is not in an SCC of Ef is not consistent is identical to the

corresponding part of Lemma 17. |

3.4.2 Bound consistency

The algorithm in Figure 3.14 finds a z-parity matching in a convex graph. As the parity
matching algorithm of Figure 3.6, it traverses the nodes of Y from left to right. In iteration
i it first inserts into the queue P, (P,) all nodes of X (Z) whose domains start at i, since
they become matching candidates. It then pops from P, all nodes whose domains end at ¢
and matches each of them with y; along with a node from P,. If P, becomes empty during
this process, then not all of these z nodes can be matched so the algorithm reports failure.
Next, it pops from P, all nodes whose domains end at ¢z and matches them with y;. For each
such z node, if P, is not empty then a node is popped from it and is matched with y; as

well. If all n/ iterations complete without reporting failure, the algorithm reports success.
Lemma 30 If there is a z-parity matching in B then the algorithm in Figure 3.14 finds one.

Proof The proof of this lemma is similar to the proof of Lemma 18. There are two cases
that need to be added. The first is that y; was matched by the algorithm with a node x;
and without a corresponding z node. This implies that D(x;) = ¢ and P, was empty when
x; was extracted. Hence, in M;_; z; must also be matched with y; and it does not have a
corresponding z node. The second case is that y; was matched in M;_; with z; and without

a corresponding z node, and y; was not matched with x; by the algorithm. Then D(z;) > i
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and we change M;_; by matching z; with y; 4, instead of y;. |

Lemma 31 If the algorithm in Figure 3.14 reports success then it constructs a z-parity

matching in B.

Proof If the algorithm reports success then P, and P, are empty at the end, which means
that all nodes in X U Z were extracted and matched with y nodes. In addition, since the
algorithm did not report failure during the extractions, whenever v € X U Z was matched
with y;, we have that D(v) < i < D(v). For all 1 < i < n/, whenever y; is matched with
some node from Z it is also matched with a node from X. Hence, we get that the matching

that was constructed is a z-parity matching. |

After finding a z-parity matching in B, we wish to find the SCCs of Ef. We first find the
SCCs of By \ {s}, which is the graph B without the node s and the edges adjacent to it.
For this we can use the algorithm in Figure 3.10; the fact that a y node may be matched
with more x nodes than z nodes does not affect the algorithm or the proofs.

We then merge the SCCs of Ef \ {s} into the SCCs of éf. The general idea follows the
one used in [11]: For each SCC of Ef \ {s} we determine whether it reaches s and whether
it is reached from s. We then merge all components which reach s and are reached from s
into one component. Unlike in the GCC case, all y nodes in the UsedBy graph reach s by a

single edge so it only remains to determine which components are reached from s.

Definition 3.4.2 The index I(v) of a node v € XUY UZ is defined as follows. Fory; €Y,
I(y;) =i. Forve XUZ, I(v) =i where y; is the matching mate of v.

Definition 3.4.3 Let P =< vy,vs,...,v, > be a simple path in éf \ {s} and for each v; let
Complv;] be the SCC of By \ {s} that v; belongs to. The signature S(P) of P is the sequence
of components visited by P. That is, S(P) =< Comp[v,], Compluvy], ..., Comp[v,] >.

Assume that a path visits a node v, proceeds to a node u with Comp[u] # Complv] and
later visits a node w with Comp[w] = Comp[v]. Since v and w are in the same SCC, there is
a path from v to w which visits nodes only inside this SCC. Hence, we will assume w.l.o.g.

that a path does not return to a component that it has already visited and left. This means
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(* Assumption: X and Z are sorted according to D. *)
P, « [] (* priority queue containing x nodes sorted by D *)
P, <[] (* priority queue containing z nodes sorted by D *)
70
for i =1to n' do
forall z;, with D(zy) = ¢ do Pp.Insert xp,
forall z;, with D(z,) =i do P..Insert z,
(* Assume that MinPriority of an empty queue is co *)
while P,.MinPriority =i do
if P,.IsEmpty then report failure
x < P,.EztractMin; match x with y;
z < P,.EztractMin; match z with y;
end while
while P,.MinPriority = ¢ do
x < P,.EztractMin; match x with y;
if P, .NotEmpty then
z < P, .EztractMin; match z with y;
endif
end while
endfor

report success

Figure 3.14: Algorithm to find a z-parity matching in a convex graph.
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that in the signature of a path, Comp|v;] = Comp[v,] implies Compluv,] = Comp[v;] for all

1< Kk <].

Definition 3.4.4 Let P =< vy,vs,...,v, > be a simple path in Ef \ {s} and for each v;
let v} be the first node on P such that Complv;] = Comp|vl]. Then P is left-monotonous
if 1(vy,) > I(vy,,,) for all 1 < k < p. It is right-monotonous if I(vy) < I(v,,,) for all

1<Kk <p.

We next show that if there is a path from a component C' to another component C’ then

there is also a path from C' to C’ which is either left-monotonous or right-monotonous.

Lemma 32 If there is a path P =< vy, vy,...,v, > then there is also a path P' =<
Uy, Uy, ..., Uy > such that uy = vi, uy = v, and P' is either left-monotonous or right-

monotonous.

Proof By induction on p. For p = 1, the claim clearly holds with P' = P. Assume
that it holds for all p < p but not for p. Let P =< wvy,v,...,v, > be a path. By the
induction hypothesis, there is a path P" =< wg,...,uy > such that uy = vy, uy = v,
and P” is monotonous. Assume w.l.o.g. that it is left-monotonous (the right-monotonous
case is symmetric). If P” goes through a node u; with Complu;] = Comp|v;], then since
there is a path @) from v; to w; which lies in the same SCC, the claim holds with P’ =
Qo < u;,...,uy >. Otherwise, if I(v;) > I(v2) then since vy = uy the claim holds with
P' =< vy, us,...,uy >, which is left-monotonous.

If, on the other hand, I(v;) < I(vy) then there are two cases. The first is that I(v;) <
I(uy). If the edge from v to vy is an £ — y edge then by convexity there is also an z — y edge
from v, to all components on the path, and in particular to Complu,y|. Then the claim holds
with P’ =< vy, Yr(u,) > which is right-monotonous. If the edge from vy to vy isa y — 2z edge
then by convexity there is also a y — z edge from YI(u,) tO V2, which means that v,, ..., u, are
on a cycle and hence belong to one SCC. Again, the claim holds with the right-monotonous
path P' =< vy, Y1(u,) >- The second case is that I(uip1) < I(v1) < I(u;) for some 1 < i < p.
Since there is a path from v; to u; and we assume that Comp[vi] # Complu,], the edge from
u; to u; 41 is a y — z edge, because otherwise convexity would imply that there is an z — y

edge from u;, 1 to vy, placing them in the same SCC. Hence, by convexity there is alsoa y — 2
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edge from y(y,) to wiy1, so the claim holds with P’ =< vy, ..., yrw,), Yig1, -, Uy >. |

As a corollary, we get that we can find all components that are reached from s with three
passes over the y nodes as shown in Figure 3.15. The first pass identifies the components
that are reached from s by a single edge. The second pass traverses the y nodes from right
to left and identifies the components that are reached from s by a left-monotonous path
originating in a component that was marked in the first pass. The third pass is symmetric
to the second. It traverses the y nodes from left to right and finds the components that are
reached from s by a right-monotonous path originating at a component that was marked in
one of the previous passes. In the following, when we speak of iteration ¢ of any pass of the

algorithm, we mean the iteration in which ¢ =4, and not the ith iteration.

Lemma 33 The algorithm in Figure 3.15 correctly marks the components that are reached

from s.

Proof Let C' be a component that is reached from s. By Lemma 32, we know that C'is also
reached from s by a left-monotonous or right-monotonous path. Let p be the length of this
path and v € C be the first node on it. If p =1 then there is an edge (s,y;) to some y; € C
and C' will be marked in iteration ¢ of the first pass.

For p > 1, if the last edge on the path is within the same component, then this component
is reached by the path of length p — 1 that is obtained by discarding this edge. Then our
claim follows by the induction hypothesis. We can therefore assume that the last edge on
the path is between two distinct components, and in particular that it is not in M.

There are two cases to consider. The first is that the path is left-monotonous. We show
by induction on p that it will be marked not later than in iteration I(v) of the second pass.
If the last edge on the path is a y — z edge (v;,z;) then Compli] is reached from s by a
left-monotonous path of length p — 1 and by the induction hypothesis, it will be marked
not later than during iteration i of the second pass. Then, min_y_reached_from_s will be
set to D¥[Compli]] < 4. In iteration I(z;), D?[C] > i > min_y_reached_from_s so C will be
marked.

If the last edge on the path is an z — y edge (z;,v;), then by the induction hypoth-
esis Comp[I(z;)] will be marked by the end of iteration I(z;) of the second pass and
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then min_y_reached_from_s will be set to at least D”(xz;) < 4. In iteration i, we have
man_y_reached_from_s < i so C' will be marked.
The second case is that C' is reached from s by a right-monotonous path. We can sym-

metrically show by induction that it will be marked in the third pass of the algorithm. |

3.5 Future directions

We have shown that fast flow-based bound consistency algorithms can be designed when
complex variable-value graphs are involved. We are working on extending these ideas to

solve variations on the Same and UsedBy constraints. For example, a GCC-like restriction

on the Same constraint: We still require that the multiset of values assigned to {xy,...,z,}
is the same as the multiset of values assigned to {z1,...,2,}, and in addition we have for
each value i a lower bound and an upper bound on the number of variables in {zy,...,z,}
(and hence also {z,...,2,}) that can be assigned the value i.
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(* Pass 1: Mark components that are reached from s by a single edge *)
for i =1to n' do
if Reached_from_s[i] then
Reached_from_s[Compl[i]] < true
endif
endfor
(* Pass 2: Mark components that are reached from s by a left-monotonous path *)
min_y_reached_from_s < n' +1
for i =n' to 1 do
C + Compli]
if min_y_reached_from_s < i then
Reached_from_s[C] < true
endif
if D=[C] > min_y_reached_from_s then
Reached_from_s[C] + true
endif
if Reached_from_s[C] then
min_y_reached_from_s < D"[C]
endif
endfor
(* Pass 3: Mark components that reach s by a right-monotonous path *)
maz_y-reached_from_s < 0
for i =1to n' do
C + Compli]
if maz_y_reached_from_s > i then
Reached_from_s[C] < true
endif
if D*[C] < maz_y-reached_from_s then
Reached_from_s[C] < true
endif
if Reached_from_s[C] then
mag _y_reached_from_s + D*[C]
endif

endfor

Figure 3.15: Algorithm to mark the components that reach s.
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Chapter 4

Online Topological Ordering

In this chapter, we study online algorithms to maintain a topological ordering of a directed
acyclic graph. In a topological ordering, each node v € V' of a given directed acyclic graph
(DAG) G = (V,E) is associated with a value ord(v), such that for each directed edge
(u,v) € E, we have ord(u) < ord(v) [29]. In the online variant of the topological ordering
problem, the edges of the DAG are not known in advance but are given one at a time. Each
time an edge is added to the DAG, we are required to update the mapping ord. One directly
observes that there are two cases when an edge is added. Suppose we have a DAG and a
valid topological ordering function ord, and that an edge (z,y) is added to this DAG. If
ord(x) < ord(y) then ord is a valid topological ordering function for the new DAG and no
updating is necessary. Otherwise, the new edge (z,y) is said to violate the topological order
ord. In this case, we need to find a new function ord’ which is a valid topological ordering
function for the new DAG.

The online topological ordering problem has several applications. It has been studied in
the context of compilation [14, 18] where dependencies between modules are maintained to
reduce the amount of recompilation performed when an update occurs, source code anal-
ysis [19] where the aim is to statically determine the smallest possible target set for all
pointers in a program and as a subroutine of an algorithm for incremental evaluation of

computational circuits [2].
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4.0.1 Known Results

The trivial solution for the online problem is to compute a new topological order from scratch
whenever an edge is inserted. Since this takes time ©(n + m) for an n-node m-edge DAG,
the complexity of inserting m edges is ©(m?)'.

Marchetti-Spaccamela et al. [15] gave an algorithm that can insert m edges in O(mn)
time, giving an amortized time bound of O(n) per edge instead of the trivial O(m). This is
the best amortized result known so far. Pearce and Kelly [19] propose a different algorithm
and show experimentally that it achieves a speedup on sparse inputs, although its worst case
running time is slightly higher. It was shown [12] that the algorithm by Pearce and Kelly is
worst-case optimal in terms of the number of node relabelling operations it performs.

Alpern et al. [2] designed an algorithm which runs in time O(]|d]| log||d]|) in the bounded
incremental computation model [24]. In this model, the parameter ||§|| measures, upon an
edge insertion, the size (number of nodes and edges) of a minimal subgraph that we need
to update in order to obtain a valid topological order ord’ for the modified graph. Since
||0|| can be anywhere between 0 and ©(m), the bounded complexity result does not provide
much information about the cost of a sequence of updates. All it guarantees is that each
individual update could not have been performed much faster.

The only non-trivial lower bound for online topological ordering is due to Ramalingam
and Rep [23], who show that an adversary can force any algorithm to perform Q(nlogn)

node relabelling operations while inserting n — 1 edges (and creating a chain).

4.0.2 Our Results

In Section 4.1 we show that a slight variation on the algorithm by Alpern et al. can handle
m edge insertions in O(min{m?3/?logn, m3? + n%logn}) time. This implies an amortized
time of O(min{\/mlogn,/m+ Tﬂ—ln‘ig—"}) per edge; an improvement over the previous result.
We then show that this analysis is almost tight. That is, for any m < n(n — 1)/2, there is
an input of m edges which will take the algorithm Q(m?3/?) time to process.

For m = n — 1 our upper bound is O(n*?logn), which is far from the lower bound

of Q(nlogn). However, the worst case input, on which the algorithm performs Q(n3/ 2)

IHere and in the rest of the chapter we assume m = Q(n).
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work, contains bipartite cliques. In Section 4.2 we analyze the complexity of the same
algorithm on structured graphs, and show that it has an implementation which is optimal
on trees (assuming that the running time is at least proportional to the number of relabelling
operations performed) and in general runs in time O(mklog”n), where k is the treewidth
of the input DAG. While much of the current results that exploit the treewidth of graphs
show that problems can be solved faster when the treewidth of the input graph is bounded,
it is interesting to note that the notion also has other uses. For our result, we do not need
to assume some bound on the treewidth, and we analyze an algorithm that does not use the
treewidth or a tree decomposition of the given graph. Also, little research has so far been

done on the effect of treewidth on online algorithms.

4.1 An O(min{y/mlogn,/m + ”Z—ln?bgﬂ}) Amortized Upper Bound

Figure 4.3 shows a slight variation on the algorithm by Alpern et al. [2]. This variation
works as follows. The ord labels of the nodes are maintained by an Ordered List data
structure ORD, which is a data structure that allows to maintain a total order over a
list of items and to perform the following operations in constant amortized time [4, 7]:
InsertAfter(x,y) (InsertBefore(x,y)) inserts the item x immediately after (before) the item
y in the total order, Delete(x) removes the item z, the query Order(x,y) determines whether
x precedes y or y precedes x in the total order and Nezt(z) (Prev(x)) returns the item that
appears immediately after (before) x in the total order. These operations are implemented
by associating integer labels with the items in the list such that the label associated with x
is smaller than the label associated with y iff x precedes y in the total order.

Initially, no edges exist in the graph so the nodes are inserted into ORD in an arbitrary
order. Then, whenever an edge (Source, Target) is inserted into the graph, the function
AddFEdge is called. When this function returns, the total order ORD is a valid topological
order for the modified graph.

It remains to describe how AddFEdge works. Given a total order ord on the nodes and the
edge (Source, Target) which is to be inserted, we define the affected region AR to be the set of
nodes {v|ord(Target) < ord(v) < ord(Source)}. The set FromTarget contains all the nodes
of AR which are reachable from Target by a path in the DAG and the set ToSource is the set
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of nodes in AR from which Source can be reached by a path. In the example in Figure 4.1,
the nodes appear by the order of their ord labels and the dashed edge (I,C) is inserted.
There, AR ={C,D,E,F,G,H,I}, FromTarget = {C, D, F} and ToSource = {E, H,I}.

Figure 4.1: The dashed edge violates the order ord.

The algorithm relabels the nodes of a subset of FromTarget U ToSource. It begins to
explore the nodes in FromTarget and ToSource, the first by starting at Target and advancing
by order of the ord labels of the nodes, and the second by starting at Source and advancing
in reverse order of the ord labels. It builds two sets of nodes, ToS C ToSource and FromT C
FromTarget, such that the desired order ord’ can be obtained by relabelling the nodes in
ToS U FromT. The intuition behind the construction of these sets is that for each pair of
nodes u, v such that ord(u) > ord(v) and the new edge introduces a path from u to v, at least
one of these nodes is in ToS U FromT. The proof of correctness of this algorithm appears
in [2].

Two priority queues are used for this search: SourceQueue for the nodes that can reach
nodes in ToS and TargetQueue for the nodes that are reachable from nodes in FromT. In
each iteration, there is one node s which is a candidate for insertion into ToS (the node
with maximal ord label which reaches a node in ToS but is not in 70S) and one node ¢
which is a candidate for insertion into FromT (the node with minimal ord label which can
be reached from a node in FromT but is not in FromT). The algorithm adds at least one of
them (possibly both) to the relevant set. The way in which it decides which candidate(s) to
add aims at balancing the number of edges outgoing from nodes in FromT and the number
of edges incoming to nodes in 70S. For each node v € V, let InDegree[v] be the number
of edges incoming into v and QutDegree[v] be the number of edges outgoing from v. Once
a node becomes a candidate for insertion into 70S or FromT, it remains the candidate for
insertion into its set until it is inserted or the function AddEdge terminates. The algorithm
maintains two counters, one for the current s and the other for the current ¢. When a

node v becomes a candidate for insertion into ToS (FromT), the relevant counter is set to
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InDegree[v] (OutDegree[v]). Whenever the two candidates are considered, the value of the
smaller counter is subtracted from both counters. Then, each candidate is inserted into its
respective set if the value of its counter is 0. This means that for every edge outgoing from
a node in FromTarget, there is an edge incoming into a node in ToSource, and vice versa.
When a node is inserted into ToS (FromT), its incoming (outgoing) edges are traversed and
each of its predecessors (successors) is inserted into SourceQueue (TargetQueue) if it is not
already there. It is important to note that the time spent by the algorithm is proportional
to the number of edges adjacent to nodes that were inserted into 70S and FromT, and does
not depend on the degrees of the last candidates for insertion into these sets.

The construction of the sets ToS and FromT ends when ord(s) < ord(t) or ToS =
ToSource or FromT = FromTarget. Then, the nodes in ToS are deleted from ORD and are
reinserted, in the same relative order among themselves, before all nodes in FromTarget \
FromT and the nodes in FromT are deleted and reinserted in the same relative order among
themselves after all nodes in ToSource. Finally, the edge (Source, Target) is inserted into the
DAG. In the example in Figure 4.1, FromT = {C, D}, ToS = {E, H, I} and after relabelling
the nodes appear in ORD in the order shown in Figure 4.2.

FQ_T0—0—~T~Q_ & O _0—~0®

Figure 4.2: The graph of Figure 4.1 after relabelling the nodes and inserting the edge (I, C).

Remark. We have mentioned above that the algorithm we describe is a variation on the
one by Alpern et al. The first change we made is that the SourceDegree and TargetDegree
counters are initialized to the indegree or outdegree of a node. Alpern et al. initialize
these values to the total number of edges incident on the node. In the bounded incremental
complexity model, their definition is appropriate because it is the sum of the total degrees
that should be minimized. For our analysis, however, this change is necessary. In addition,
we have simplified the relabelling phase, compared to what was proposed by Alpern et al.
Their relabelling phase minimizes the number of different labels used. While this gives a
worse asymptotic complexity, they claim that it speeds up the operations on the Ordered

List data structure in practice.
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Function AddEdge (Source , Target )
SourceQueue <« [|; TargetQueue < [|; SourceStack « [| ; TargetStack < ||

s < Source ; t < Target ; SourceDegree < InDegree[s]; TargetDegree < OutDegree[t]

(* Discovery phase: decide which nodes should be relabelled. *)
while (ord(s) > ord(t)) do
d < min{SourceDegree, TargetDegree }
SourceDegree < SourceDegree — d ; TargetDegree < TargetDegree — d
if SourceDegree = 0 then
foreach (w,s) € E do SourceQueue.Insert(w)
SourceStack.Push(s)
if SourceQueue NotEmpty then s < SourceQueue.EztractMaz
else s < Target (* Then we are done *)
SourceDegree < InDegree|s]
endif
if TargetDegree = 0 then
foreach (t,w) € E do TargetQueue.Insert(w)
TargetStack .Push(t)
if TargetQueue NotEmpty then t < TargetQueue.EztractMin
else ¢t + Source (* Then we are done *)
TargetDegree <— OutDegree|t]
endif

end while

(* Relabel the nodes *)

if s = Target then s < ORD.Prev(Target)

while SourceStack.NotEmpty do s’ < SourceStack.Pop ; ORD.Delete(s'); ORD.InsertAfter(s’,s)
if t = Source then t + ORD.Next(Source)

while TargetStack.NotEmpty do t' < TargetStack.Pop ; ORD.Delete(t'); ORD.InsertBefore(t',t)

(* Insert the edge *)

E + EU{(Source, Target)}

InDegree[ Target] < InDegree[ Target] + 1
OutDegree[Source] <— OutDegree[Source] + 1

end

Figure 4.3: A variation on the algorithm by Alpern et al.
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4.1.1 Complexity Analysis

The complexity analysis consists of two parts. In the first part, we show that the time
spent on m edge insertions is O(m??logn). In the second part, we show that this time is

O(m3? + n?logn). The combination of both results gives:

Theorem 4.1.1 The topological order of the nodes of a DAG can be maintained while in-

serting m edges in total time O(min{m3/?logn, m*? 4+ n?logn}).

Let E = {e1,...,en} be the edges of the DAG, sorted by the order in which they are
inserted. After inserting ey,..., e, for any 1 < 7,57 < m we say that the pair of edges
e, = (v5,y:),ej = (x;,y;) is ordered if there is a path from y; to z; or from y; to z; that
uses only edges from {ej,...,er}. That is, if the edges that were already inserted to the
DAG form a path that determines the relative positions of e; and e; in the topological order.
Otherwise, we say that the edges are unordered. Similarly, we say that a pair of nodes u, v
is ordered if there is a path from u to v or from v to u, and unordered otherwise.

We denote by U, C E x E the set of unordered pairs of edges and by U, C V x V the set
of unordered pairs of nodes.

Upon the insertion of an edge, let n; (ns) be the number of nodes in FromT (ToS). Let m;
(ms) be the number of edges outgoing from (incoming to) nodes in FromT (ToS). Finally,
let ¢; (¢5) be the number of edges outgoing from (incoming to) the node that was candidate
for insertion into FromT (ToS) when the algorithm terminated. If this node does not exist,

i.e., TargetQueue (SourceQueue) is empty at the end, then ¢, =0 (¢, = 0).

4.1.2 An O(m??logn) Upper Bound

We define a potential function & = |U,|. Le., the potential is equal to the number of

unordered pairs of edges. Initially, all pairs of edges are unordered, so ®; = m(m —1) < m?.
Lemma 34 The algorithm spends on an insertion O(1 4+ max{m;, ms}logn) time.

Proof The time that the algorithm spends on the insertion is a constant amount ¢, plus
O(mylogm; + mglogms) to construct the sets ToS and FromT and O(n; + n) for the re-
labelling. With n; < m,; for i € {s,t}, we have that the time spent is O(1 + m;logm; +
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mglogmg) = O(1 + (my + mg)logm) = O(1 + max{my, ms} logn). [

Lemma 35 For every edge insertion, (1) my < mgs+ {s and (2) mg < my + ;.

Proof We show by induction on the number of iterations of the while loop which constructs
the sets FromT and ToS, that after each iteration, m; + ¢; — TargetDegree = mg + {5 —
SourceDegree. Since at all times 0 < TargetDegree < ¢; and 0 < SourceDegree < {,, (1) and
(2) follow for the final as well as the intermediate values of my, ¢y, ms, (5.

Initially, m; = m, = 0, TargetDegree = {; and SourceDegree = {,, so the equality holds.
Assume that it holds up to iteration ¢ — 1 of the discovery loop. We will show that it holds
also after iteration i. For any value val € {my, l;, ms, s, TargetDegree, SourceDegree}, let val
denote this value after iteration : — 1 and val the same value after iteration 1.

Since the algorithm did not terminate after iteration ¢ — 1, we know that there is a
candidate for insertion into each of FromT and ToS at the beginning of iteration 7. Assume,
w.l.o.g., that SourceDegree < TargetDegree. Then s will be inserted into 705, so m, = my+¢;
and SourceDegree’ = (.. We get that m/ + ¢/, — SourceDegree’ = my + (5.

For ¢, there are two cases. The first case is that TargetDegree = SourceDegree so t will be
inserted into FromT. Similar to the above, we get that m}+¢,— TargetDegree’ = my+/;. Since
SourceDegree = TargetDegree, we know from the induction hypothesis that m;+£¢; = my+/£;,
which means that m/, + ¢, — SourceDegree’ = m), + ¢, — TargetDegree'.

The second case is that TargetDegree > SourceDegree so t will not be inserted into FromT.
This implies that m) = my, ¢, = ¢, and TargetDegree’ = TargetDegree — SourceDegree. We
get that m} + ¢, — TargetDegree’ = my + {; + TargetDegree — SourceDegree. By the induction
hypothesis, this is equal to mg + £, which is equal to m} + ¢, — SourceDegree'. |
For 0 < i < m, let ®; be the value of the potential function after the insertion of e,...,¢;
to the graph. For 1 < < m, let A®; = &, — &, ;| be the change in potential due to the

insertion of e;.

Lemma 36 When the algorithm handles an insertion, A®; < —max{m?, m?}. That is, the

potential decreases by at least max{m?, m?}.

Proof Let e, = (x4, y;) be one of the m; +¢; edges outgoing from a node in FromT or the last

candidate for insertion into FromT and let e, = (x4, ys) be one of the mg+ £, edges incoming
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into a node in 7T0S or the last candidate for insertion into 70S. We will show that e; and
es were unordered before the insertion and ordered after the insertion. After the insertion,
y; is reachable from Target by a path P, that uses e; and Source is reachable from x, by a
path P; that uses e;. Concatenating the paths with the inserted edge between them gives
the path P; o (Source, Target) o P, from x, to y, that uses both edges. Hence, the edges are
ordered such that ord'(ys) < ord'(z;).

Assume that they are ordered before the insertion as well. If they are ordered with
ord(y;) < ord(zs) then the insertion introduces a cycle, so the graph is not a DAG. So
they are ordered such that ord(ys) < ord(xz;). If ys and z; were candidates for insertion
into their sets in the same iteration of the discovery phase when the algorithm processed
the insertion of the edge (Source, Target), then their relative order in ORD would imply
that the algorithm terminates without adding either one of them, a contradiction. Assume,
w.l.o.g., that y, was inserted before x; became the candidate. Then when z; became the
candidate for insertion into FromT, the candidate for insertion into 70S was a node v such
that ord(v) < ord(ys) < ord(z;). So the algorithm should have terminated without adding
Xy.

We get that the potential decreased by at least (my + ¢;)(ms + £5), which by Lemma 35

is at least max{m?, m?}. [

Theorem 4.1.2 The algorithm in Figure 4.3 needs O(m>/?logn) time to insert m edges

into an initially empty n-node graph.

Proof By Lemma 34, the algorithm spends O(1 + max{m;, ms}logn) time on an insertion,
while by Lemma 36, the potential decreases by at least max{m?, m?}.

Fori=1,...,m, let z; be the value of max{m;, ms} upon the insertion of the ith edge.
We get that the total time spent on the m insertions is O(}/%,(1 + x;logn)) = O(m +
> z;logn) and the potential decreased by a total of ®,, — &y = ¥, AD; < — Y™, 22,
Since ®; < m? and ®,, > 0, we have ®,, — ®; > —m? which implies 3, 77 < m?.

Cauchy’s inequality states that

(Een) = () (£#)
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By substituting a; = x; and b; = 1 for all 1 < i < m, we get that X7 x; < m*?, so
the total time spent by the algorithm on the m edge insertions is O(m + X", z;logn) =
O(m??logn).

4.1.3 An O(m?®? +n?logn) Upper Bound

In this section we change two aspects of the analysis, compared to the previous section. The
first is the potential function - it now counts not only unordered pairs of edges but also
unordered pairs of nodes: ¥ = |U,| + |U,]|.

The second change is in the analysis of the actual time spent by the algorithm when it
processes the insertion of an edge. We assume that the priority queues are implemented
by a data structure that supports insertions in constant amortized time and extractions in
O(logn) amortized time (e.g., Fibonacci Heaps [8]). Note that the number of items inserted
into SourceQQueue can be as large as mg, but the number of items extracted from it is bounded
by ns. This implies that the time spent on identifying the set ToS during the discovery phase
is O(mg + nglogn), which is a tighter bound than the one we had in the previous section,
of O(mglogn). Similarly, the time spent on identifying the set FromT is O(m; + nylogn).

Thus, we have shown:

Lemma 37 The algorithm spends O(1 + max{m;, ms} + max{n;,ns}logn) time on an in-

sertion.
We now analyze the change in potential due to an insertion.

Lemma 38 When the algorithm handles an insertion, AV,; < —max{m?, m?}—max{n;, n,}.

Le., the potential decreases by at least max{m?, m?} + max{n;, ns}.

Proof We have shown in the proof of Lemma 36 that I, | decreases by at least max{m?, m?}.
In addition, for each v € FromT (v € ToS), the pair (Source,v) ({(v, Target)) was ordered
after the insertion. If it was also ordered before the insertion, then the new edge introduces
a cycle in the graph, contradicting our assumption that it is a DAG. So |U,| decreases by at
least |FromT| + |ToS| = ny + ng > max{n;, ns}. [
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Theorem 4.1.3 The algorithm in Figure 4.3 needs O(m?’/Z—i-n2 logn) time to insert m edges
into an initially empty n-node DAG.

Proof By Lemma 37, an insertion takes O(1 + max{m;, ms} +max{n, n,} logn) time while
by Lemma 38 the potential decreases by at least max{m?, m?}+max{n;, n,}, with a decrease
of at least max{m?, m?} in the term |U,| and a decrease of at least max{n;, n,} in the term
[20E

Fori=1,...,m, let z; be the value of max{m;, m;} and y; be the value of max{n;, ns}
upon the insertion of the ith edge. We get that the total time spent on the m insertions
is O(X%, (1 + z; + yilogn)) = O(m + X x; + logn Y, y;) where Y, 22 < m? and
Y™y < n? As in the proof of Theorem 4.1.2, Y™ z; < m?? so the total time spent is
O(m+ X" 2 + X5, yilogn) = O(m*? + n?logn). |

4.1.4 Almost Tightness of the Analysis

We now show that our analysis is almost tight. That is, we show that for each m < n(n—1)/2
there is an input with n nodes and m edges that will take the algorithm in Figure 4.3 Q(m?/?)
time to process, which is equal to the upper bound for dense graphs and is merely a log factor
away for sparse graphs.

Let k = \/m/4 and let {vy,...,v,} be the nodes of the DAG sorted by their initial ord
order. The first part of the input consists of the edge (v;,v;) for all i € {1,...,k},j €
{2k+1,...,3k}and i e {k+1,...,2k},j € {3k +1,...,4k}.

In the second part, an edge is introduced from v; to v, for each ¢ € {2k +1,...,3k} and
j€{k+1,...,2k}, in the following order: For alli € {2k+1,...,3k—1}, all edges outgoing
from v; appear before all edges outgoing from v;,; and for all j € {k +2,...,2k}, the edge
(vi,vj) appears before the edge (v;,vj_1).

So far, the input consisted of 3k? = 3m/16 edges. In the third part, we complete this to
m by inserting any 13m/16 edges that are not already in the DAG.

We show that the second part will cause the algorithm to perform Q(m??) work. Every
edge (v;,v;) that is inserted in the second part is from a node v; to a node v; which is

immediately before it in ORD. Since InDegree|v;] > k and OutDegree[v;] > k, the algorithm
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will insert v; into T0S or v; into FromT (possibly both) and will traverse at least &k incident
edges. Then, it will reverse the order of Source and Target in ORD. Thus, it will spend
Q(k) time for each edge insertion and since the number of edges inserted in the second part

is k2, we get a total complexity of Q(k3) = Q(m?*/?).

4.2 The Complexity on Structured Graphs

The only non-trivial lower bound for online topological ordering is due to Ramalingam and
Rep [23], who show that an adversary can force any algorithm to perform (nlogn) node
relabelling operations while inserting n — 1 edges (creating a chain). The upper bound we
have shown for m = n — 1 is O(n%?logn) time. We have shown that for any m we can
construct an input on which the algorithm performs Q(m?/?) work, but this input contains
bipartite cliques.

In this section we show that the algorithm performs much better when the graph is struc-
tured. In particular, we show that for any DAG G, the algorithm runs in time O(mk log® n)
where £ is the treewidth of G. In addition, we show that the algorithm can be implemented
such that on a tree it spends a total of O(nlogn) time, i.e., it is optimal. The notion of
treewidth was introduced by Robertson and Seymour [27]. We start with giving the definition
of treewidth.

Definition 4.2.1 A tree decomposition of a graph G = (V, E) is a pair ({X; | i € I},T =
(I,F)) with T a tree, and {X; | i € I} a family of subsets of V', such that Ujc; X; =V,
for all {v,w} € E, there is an i € I with v,w € X;, and for all v € V, the set of nodes
T, ={iel|ve X;} induces a connected subgraph (subtree) of T.

The width of a tree decomposition ({X; | i € I},T) is max;er |X;| — 1. The treewidth of
a graph G s the minimum width of a tree decomposition of G. The treewidth of a directed

graph G is the treewidth of the underlying undirected graph of G.

Trees have treewidth one. For an overview of the treewidth of several classes of graphs,

see e.g., [5].

Lemma 39 The algorithm can be implemented such that if G is a tree, it performs a total

of O(nlogn) work.
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Proof sketch Let T, be the tree that node v belongs to. When an edge (u,v) is inserted,
two trees T, and T, are merged into one tree. Assume, w.l.o.g., that |T,| < |T,|. Then the
algorithm can be implemented such that it relabels O(|7,|) nodes and both the discovery
and relabelling phases take O(|7,|) time. To do this, we need to give up the priority queues
used in the discovery phase. Going back from Source is easy, because each node has indegree
at most 1 so at all times there is a single candidate for insertion to 70S. The descendants of
Target will be traversed in DF'S order and will appear in the new topological order according
to their relative postorder DF'S numbers. Since we do not examine the nodes of FromTarget
in increasing topological order, the discovery phase must continue until all of the nodes of
either ToSource or FromTarget have been traversed.

Define the potential function f =Y,y log|T,|. When an edge (u,v) is inserted and the
algorithm performs O(|T},|) work, the potential increases by at least |T},|. The lemma follows

because the potential is initially 0 and it is never larger than nlogn. |

We now turn to the case where £ > 1. We need a simple lemma, which is a small variant
of a well known result. (Compare, e.g., [27].) The proofs of the three lemmas below follow

standard techniques.

Lemma 40 Let T be a tree with ¢ leaves. Then there is a node v in T such that each

connected component of T — v contains at most £/2 leaves from T.

Proof Suppose the lemma does not hold for tree T. For each node v from T, there is then
exactly one subtree of T'— v with more than //2 leaves. Build a directed graph H, by
taking for each node v a directed edge to its neighbor in this subtree. As each node in H
has outdegree one, H must contain a cycle, hence two neighboring nodes vy, v; with edges
(vo,v1) and (v1,vp) in H. The subtree of T'— vy that contains vy is disjoint from the subtree
of T — v; that contains vy, and both these subtrees contain more than ¢/2 leaves, so T has

more than ¢ leaves, contradiction. |

Lemma 41 Let G = (V, E) be a graph with treewidth k. There is a set S C V such that
|S| < k+ 1, and for each connected component of G — S there are at most m/2 edges with

at least one endpoint in the component.

79



Proof Take a tree decomposition ({X; | i € I},T = (I, F)) of G of width at most k. For
each edge e = {v,w} € E, add one node i, to the tree decomposition with X; = {v,w}, and
make i, adjacent in T" to an (old) node i" € I with v,w € Xy. Let ({X; |i e I'},T' = (I', F"))
be the resulting tree decomposition. We have I’ = I U {i. | e € E}. While 7" has one or
more leaf nodes that belong to I, i.e., do not correspond to an edge, remove such leaf nodes.
Let ({X; |i€I'},T" = (I",F")) be the resulting tree decomposition. (One can verify that
this is a tree decomposition of G' of width at most k.) There is a one-to-one correspondence
between the edges of E and the leaves of T".

Let i° be the node in 7" such that each subtree of T" — i, contains at most m/2 nodes
that were a leaf in 7", i.e., correspond to an edge in E. Set S = Xj;,. Clearly, |S| < k + 1.
Consider a connected component of G — S. By the properties of tree decomposition, there
can be only one subtree of 7" — iy whose sets X;, ¢ in the subtree, can contain nodes from
the component. In particular, for each edge e = {z,y} with one endpoint in the component,
we have that i, belongs to that subtree. So, all edges with one endpoint in the component
correspond to a node in the subtree that is a leaf in 7. So, the component has at most m/2

edges with at least one endpoint in it. |

Lemma 42 Let G = (V, E) be a graph with treewidth k. There is partition of V in three
disjoint subsets A, B, and S, such that |S| < k + 1, no node in A is adjacent to a node in
B, the number of edges with at least one endpoint in A is at most 2m/3, and the number of

edges with at least one endpoint in B is at most 2m/3.

Proof Let S be as in Lemma 41. If G — S has a connected component with at least m/3
edges, then put the nodes of this connected component in A, and the nodes of the other
connected component in B, and we are done. Otherwise, put the nodes of the components
one by one in A, until the components in A together have at least m/3 edges. Put the
nodes of the remaining components in B. Now, there are at least m/3 and at most 2m/3
edges with at least one endpoint in A, and hence also at most 2m/3 edges with at least one

endpoint in B. |

Except in some degenerate cases, the set S from Lemma 42 is a separator. Let S be the

80



set as in Lemma 42. Now define the potential function
T=> > I(ve)
vES e€E
where I(v,e) is 1 if v and e are unordered and 0 otherwise. That is, the potential function
counts the number of unordered pairs of an edge from the graph and a node from S. Clearly,
Uy =0 and at all times U < |S||E| < (k + 1)m.

The edges can be partitioned into three sets: the sets F4 (Ep) of edges whose insertions
cause only nodes from A (B) to be relabelled, and the set Ey = E \ (E4 U Eg). Let T'(m)
be the time spent during all m edge insertions. Then the insertion of all edges from E4 (Ep)
occur within the subgraph induced by the nodes in A (B). The time spent on the insertion
of the edges in E4 can thus be bounded by T'(|E4|) (T(|EB]))-

While handling the insertion of an edge e € FE);, the algorithm relabels at least one
node v from S. Assume, w.l.o.g., that v € ToSource. Then by considerations similar to
the ones used in the proof of Lemma 36, there are (m; + ¢;) edges outgoing from nodes in
FromTarget that were not ordered with v before the insertion of e and are ordered afterwards.
Hence, AV > m; + {;, which by Lemma 35 is at least max{mg, m;}. Since the time spent
is O(max{m,, m;}logn), we obtain that the insertion of all edges from E); requires a total
of O(mklogn) time. Hence, we have for the total time that T'(m) < mklogn + T(|E4|) +
T(|Eg|), and as |E4| + |Eg| < m, and |E4| < 2m/3, |Ep| < 2m/3, it follows that T'(m) =

O(mklog®n). So we have shown:

Theorem 4.2.2 The topological order of the nodes of a DAG with treewidth k can be main-
tained while inserting m edges into an initially empty n-node DAG in total time O(mk log? n).

For the special case of trees, this problem can be solved in O(nlogn) time, which is optimal.

4.3 Conclusion

We have shown that the online topological ordering problem can be solved in O(min{+/m logn, /m+
’ﬂ—ln‘ig—”}) amortized time per edge, an improvement over the previous result of O(n) time per
edge. We have also shown that for any m < n(n —1)/2 there is an input with m edges on
which the algorithm performs Q(m?*?) work, indicating that our analysis of the algorithm’s

running time is almost tight if only the number of nodes and number of edges is known.
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We then analyze the algorithm’s complexity on structured graphs. We show that the
algorithm has an optimal implementation on trees and that in general there is a correlation
between the treewidth of the graph and the algorithm’s complexity. There is here still a gap
between upper and lower bound. Observe that for trees (k = 1), the general bound gives
O(nlog®n) and not the O(nlogn) result that we have obtained separately. It is an open

problem whether a different analysis or implementation can yield O(mklogn) running time.
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Chapter 5

Dynamic Heaviest Paths in DAGs
with Arbitrary Edge Weights

The Heaviest Paths (HP) problem is as follows. Given a Directed Acyclic Graph (DAG)
G = (V, E) with a weight w(e) for each edge e, compute for each node v € V' the weight of
the heaviest path from the source of G to v, where the weight of a path is the sum of the
weights of its edges. The Dynamic Heaviest Paths (DHP) problem is to efficiently update
this information when a small change is performed on GG. Here “efficient” means that the
running time is proportional to the size of the portion of the graph that is affected by the
change [24].

Formally, for each v € V' denote by fi(v) the weight of the heaviest path in G from the
source of G to v. Let G’ be the graph obtained by performing an operation on G (such as
adding or deleting an edge) and let 1/'(v) be the weight of the heaviest path to v in G'. We
define § = {v|v € VAR(v) # 1'(v)} to be the set of nodes that were affected by the operation.
That is, the nodes for whom the weight of the heaviest path changed. We define |4 to be
the number of nodes in 6 and ||0|| to be |§| plus the number of edges that are adjacent to
at least one node in §. Assuming that any algorithm would have to do something for each
node in ¢ and to examine each edge adjacent to a node v € 4, we use |§| and ||| as the
parameters for the complexity of an update.

Michel and Van Hentenryck [17] recently studied the DHP problem. Their research was

motivated by scheduling applications, where one wishes to represent the current solution by
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a DAG and to perform tasks such as to evaluate the makespan and update it upon a small
change to the DAG. They present algorithms that solve the DHP problem on DAGs with
strictly positive edge weights. Their algorithms run in time O(]|d]| + |6]log|d|) for an edge
insertion and O(||0||) for an edge deletion. They show that it is possible to replace edges
with zero or negative weights by edges with positive weights and then apply their algorithm.
However, the number of edges added may be large. They conclude by asking whether there is
an efficient algorithm that can handle arbitrary edge weights without graph transformations.

We answer their question by showing such an algorithm. In fact, their algorithm for
updating the graph upon the deletion of an edge works also in the presence of non-positive
edge weights. So what we need to show is an algorithm for edge insertion that can handle
arbitrary weights. Our solution has the same asymptotic complexity as theirs and is not
more complicated to implement.

In addition, we discuss the case in which the edge weights are integers and show an algo-
rithm that runs in time O(||6]| + [0] loglog min{|d|, Apax +1}) where A = max, ey {A'(v) —

Ii(v)} is the maximum change to the heaviest path value of a node due to the edge insertion.

5.1 Fibonacci Heaps

Our algorithms use Fibonacci Heaps [8]. A min-sorted (max-sorted) Fibonacci Heap is a

data structure that supports the following operations:
e Insert(i,p) inserts the item i with priority p.

e UpdatePriority(i,p): If i is not in the heap, performs Insert(i,p). If i is in the heap
and has priority p/, its priority is updated to min{p, p’'} (max{p,p'}).

o ExtractMin (ExtractMaz) returns the item with minimal (maximal) priority and re-

moves it from the heap.

Any sequence of n; Insert operations, n,, UpdatePriority operations and n, EzxtractMin(EztractMaz )

operations on an initially empty Fibonacci Heap can be performed in time O(n; + n, +
n.logn), where n is the maximal number of items in the heap at any point in time. Cer-

tainly, n < n; + n,.
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5.2 Intuition

Figure 5.1 shows the impact of adding the dashed edge to the DAG. The nodes in ¢ are
the ones inside the rectangle and the changes to their A values are shown. Clearly, these
changes propagate along paths in the graph. That is, if we add an edge (x,y) then Ai(v) for
a node v # y can only change if i(u) changed for a predecessor u of v. Furthermore, the
changes propagate in a monotonous manner. That is, the change to 7(v) is not larger than

the maximum of the changes at v’s predecessor.

A\, \/l\.;. o

4 |&/I 5

Figure 5.1: The impact of inserting the dashed edge to the DAG.

The algorithm in [17] would proceed from y in topological order and update the A value
for each node only after the updated h values for all of its predecessors are known. This
is possible when edge weights are strictly positive because the previous A values provide us
with the relative topological order of the nodes. When zero or negative edge weights exist in
the graph, it may be the case that fi(v) < fi(u) while u precedes v in the topological order
(see [17], Section 6 for an example). In other words, we do not know the topological order of
the nodes so we need a different method to traverse them, which would still guarantee that
we do not traverse the same subgraph more than once.

The rule we use is as follows. We begin by updating %(y) < max{h(y), i(x) + w(z,y)}.
This is the final value for 7i(y) because it can only change due to the edge (z,y), so we label
y as processed. Then we go over the edges outgoing from y and for each such edge e = (y, v),
we insert the node v into a set which we call the frontier and which contains the nodes which
are not processed but have a processed predecessor. In addition, we compute the change

AW that would occur to /i(v) by advancing along the edge e: AWY) = h(y) +w(y, v) —A(v).
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We select v for which A®W?) is maximal, update h(v) < A(v) + AW remove v from the
frontier and mark it as processed. As we will show later, we have found the final value for
h(v). We then continue in the same manner: for each successor u of v, we insert u into the
frontier if it is not already there and compute A% Since u may have already been in the
frontier, we set A(u) = max{A® |y’ is processed}. We then select the node v’ from the
frontier with maximal A(v') value and advance on an edge (w,v') such that A(v') = A®@Y),
We repeat this until there is no node v in the frontier with A(v) > 0.

The only point to add is that when we process a node v and compute the value A° for
an edge e = (v,u), u might already belong to the frontier. In that case, we do not want to
add it again but rather to update A(u) if necessary. For this reason, we use a max-sorted

Fibonacci Heap for the nodes in the frontier, where the priority of a node u is A(u).

5.3 The Algorithm

Figure 5.2 shows the algorithm for updating the heaviest path values of the affected nodes
upon insertion of an edge to the DAG. It receives a DAG G = (V, E), the function h for G,
an edge (x,y) which is to be inserted to G and the weight w(z,y) of this edge. It updates
the function 7 for the graph G' = (V, EU {(z,y)}).

Initially, it inserts the node y into the Fibonacci Heap Fh with priority equal to A, =
I(z) + w(z,y) — A(y). It then enters the while loop, which continues as long as Fh is not
empty. It extracts from Fh a node v with maximal priority and updates i (u) for this node.
Then it traverses the edges outgoing from u and updates the A values for the target of each
of these edges. Recall that the operation Fh.UpdatePriority(v,A) inserts v to Fh if it is
not already there, and otherwise sets its priority to the maximum among A and its previous

priority.

5.3.1 Example

Before turning to the correctness proof, we show how this algorithm operates on the example
shown in Figure 5.1. Figure 5.3 reproduces the part of the graph that the algorithm explores,
with labels on the nodes.

Initially, y is inserted to Fh with priority A = h(z) + w(z,y) — h(y) =4+0—-1 = 3.
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Function Insert(G, (z,y),h, w(z,y))
Fh <[] (* Empty Fibonacci Heap. *)
A =h(z) +w(z,y) - hy)
if A > 0 then
Fh.Insert(y, A)
endif
while Fh.NotEmpty do
(u, A) < Fh.EztractMaz
h(u) < h(u) + A (* Update h(u) *)
foreach e = (u,v) € E do
A <= h(u) + w(u,v) — h(v)
if A >0 then
Fh.UpdatePriority (v, A)
endif
endfor
end while

end

Figure 5.2: Algorithm for updating % values upon an edge insertion.

Then the algorithm enters the while loop and performs five iterations.

Iteration 1: (u,A) < (y,3) and h(y) < h(y) + A =1+ 3 = 4. Next, the successors of y
are checked. a is inserted to Fh with priority A, = A(y) + w(y,a) — h(a) =4+3 -5 =2
and b is inserted with priority Ay = h(y) + w(y,b) —h(b) =4 —-2+4+1=3.

Iteration 2: (u,A) < (b,3), i(b) < hA(b) + A = —1 + 3 = 2. c¢ is inserted to Fh with
priority A. = i(b) + w(b,c) —h(c) =2+6—-7=1.

Iteration 3: (u,A) < (a,2), ii(a) < h(a) + A =5+ 2 = 7. The priority of ¢ is updated
from 1 to h(a)+w(a,c)—h(c) =7+2—-T7=2and Ay = h(a)+w(a, f)—h(f) =7-2-5=0
so f is not inserted to Fh.

Iteration 4: (u,A) < (c,2), h(c) < h(c) + A =T7+2=09. d is inserted to Fh with priority
Ag=h(e)+w(c,d) —h(d) =9—-2—-5=2.

Iteration 5: (u,A) < (d,2), A(d) < (d) + A=5+2=7. A, = i(d) + w(d,e) — h(e) =
7+1—15= —7so e is not inserted to Fh.

Now, Fh is empty so the algorithm terminates.
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Figure 5.3: The portion of the graph of Figure 5.1 that the algorithm explores.

NN

5.3.2 Proof of correctness

For a node v € V, let h(v) be the weight of the heaviest path to v in the input DAG G
and let /i'(v) be the weight of the heaviest path to v in the DAG G’ that we get by adding
the edge (7,y) to G. Let A(v) = A'(v) — h(v) be the change that occurs in the heaviest
path value for v due to the insertion of this edge. To show that the algorithm computes the
correct value for h'(v) for all v € V', we will show that (1) If A(v) > 0 then v is inserted to
Fh and when it is extracted from Fh, its priority is equal to A(v). (2) If A(v) < 0 then v is
not inserted to Fh.

It is easy to see that if (1) and (2) hold then the algorithm computes the correct value of
7i'(v) for all nodes.

Lemma 43 For allv € V, if A(v) > 0 then v is inserted into Fh and when it is extracted

from Fh, its priority is equal to A(v).

Proof Assume the converse and let v be minimal w.r.t. the topological order such that
A(v) > 0 and the claim does not hold for v. By construction, the priority of a node in Fh
can never be higher than its A value. So we need to show that v is inserted into the queue
and that its priority when it is extracted is not less than A(v).

By definition of A', there must be a predecessor u of v such that '(v) = A'(u) + w(u,v).
There are two cases.
Case 1: u =z and v = y and (u,v) is the edge that was inserted to the graph. Then v is
inserted into Fh at the beginning with priority A(v) and is extracted immediately afterwards.
Case 2: v # y. Then there is a predecessor u of v such that '(v) = ' (u) + w(u,v). Since
the edge (u,v) was in the graph before the insertion, A'(u) > %i(u), hence A(u) > 0. Since u
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precedes v in the topological order, and by the minimality of v w.r.t. the topological order,
we know that u was inserted to Fh and was extracted with priority equal to A(u). If v
was not extracted from Fh before u, then after u was extracted, v was either inserted with
priority A(v) (if it was not already in the queue) or its priority was updated to A(v) (if it
was already in Fh). Hence, v was inserted to Fh and when it was extracted, its priority was
A(v).

Assume that v was extracted before u. Let P =< z,...,z, > be a heaviest path in G’
from y to v through u. That is, 2y = vy, 2,1 = w and 2, = v and for each 1 < 7 < n,
B'(2) = W' (2 1) + w(zi1,2). Clearly, for all 1 < i < n, A(z) > A(zi4,) > 0. Let i be
maximal such that z; was extracted from Fh before v. Since z; precedes v in the topolog-
ical order and by the minimality of v w.r.t. the topological order, we know that z; was
extracted when its priority was A(z;). Hence, after it was extracted, z;,,’s priority became
I(zi) + Az) + wlzi, zirn) — Mzign) = 1 (z) +wlz, zi) = Wzipn) = B (zi01) = Wz2i) =
A(z41). Since v was extracted before z;,; but when z;;; was in Fh with priority A(z;,1),

the priority of v when it was extracted was at least A(z;1) > A(v). [

Lemma 44 For allv € V, if A(v) = 0 then v is not inserted to Fh.

Proof If A(v) = 0, this means that for every predecessor u of v, h'(u) + w(u,v) < h(v). If
none of the predecessors of v were inserted to Fh then v was never a candidate for insertion.
If there are predecessors of v which were inserted to Fh, then whenever one of them was

extracted and the edge leading from it to v was examined, A < 0 so v was not inserted. [

Corollary 3 The algorithm in Figure 5.2 correctly updates h(v) for all v € V.

5.3.3 Complexity analysis

By Lemma 43, when a node v is extracted from Fh, its priority is equal to A(v) so h(v) is
updated to its final value. This implies that v will never be inserted to Fh again; whenever
another of its predecessors will be extracted from Fh, A will not be positive. In addition,

each edge outgoing from a node in § is examined once to determine whether its target should
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be inserted into Fh (or its priority updated if it is already there). We get that throughout
the algorithm, Fh needs to support a total of |4| insertions, || extractions and at most |||

UpdatePriority operations. The total running time is therefore O(||]| + [0]log|d]).

5.4 Integer Edge Weights

In this section we show an alternative algorithm which works for general inputs, but its
advantages come to play when all edge weights are integers.

Again, for every node v let fi(v) be the heaviest path value of v before the change to the
graph and A'(v) the value after the edge insertion. Let A(v) = A'(v) — h(v) be the change
that occurred at v.

For every edge e = (u,v), let AA(u,v) = h(u) + w(u,v) —h(v). Note that AA(u,v) < 0.
Intuitively, AA(u,v) measures by how much the change in the A values decreases as the

update propagates along the edge e. Formally,
Lemma 45 For each node v, A(v) = max,epredw) {A () + AA(u, v)}.

Proof By definition, '(v) = maxyepred() {7 (u)+w(u, v)}. Soh'(v)—h(v) = maxyepred) {7 (1) —
() + 1) + () — 70)} = maSacpmeo {A() + A, )}, i

We define a new weight function w, over the edges of the DAG where w,(u,v) = —AA(u, v).
This function enables us to prove Lemma 46 which characterizes the set 6. In the follow-
ing a path is a directed path in the DAG and for a path P =< vq,...,v, >, w(P) =
S we(vg, vig1) is the weight of the path with respect to w.. For a pair of nodes u, v,

w? (u,v) is the minimal w.(P) over all paths P from u to v.

Lemma 46 Assume that an edge (z,y) was inserted into G. A node v is in § iff w’ (y,v) <

A(y). That is, there is a path P from y to v such that w.(P) < A(y).

Proof Assume that there is such a path P =<y =vy,...,v, = v >. By definition, for each
1 < i < n we have A(viy1) > A(v;) — we(vi,vip1). So A(vn) > A(y) — w(P) > 0, which
implies v, € 9.

For the other direction, we show by induction that if v € §, which means that A(v) > 0,

then there is a path P from y to v with w.(P) = A(y) — A(v). By definition we know that
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there is a predecessor u of v such that A(v) = A(u)—w,(u,v). If u = y then since A(v) > 0 we
have that the edge (u, v) is a path from y to v such that w,(u,v) = A(u)—A(v) = A(y)—A(v).

Assume that v # y. Then by the induction hypothesis, there is a path P, from y to u
such that w.(P,) = A(y) — A(u). Let P, be the path from y to v that we get by append-

ing the edge (u,v) to P,. Then w.(P,) = we(P,) + we(u,v) = Aly) — A(u) + we(u,v) =
Afy) = Alu) + A(u) = A(v) = Ay) — Av). |

We now know how to identify the nodes of 6. We begin at y and compute shortest paths
w.r.t. the weight function w. to nodes that are reached from y, but only as long as the
length of the path is less than A(y). The following lemma states that once we have found
the length of the shortest path from y to v, we also know A(v) and can update A (v).

Lemma 47 Assume that an edge (x,y) was inserted into G. Let v be a node in § and let

w = wP(y,v). Then A(v) = A(y) — w.

Proof We have shown in the proof of Lemma 46 that if v € § then there is a path P
from y to v with w.(P) = A(y) — A(v). Assume that it is not minimal. That is, there
is a path Q =< y = v1,...,v, = v > with w(Q) < A(y) — A(v). For all 1 < j < n,
let Q; =< vi,...,v; > and let i be minimal such that w.(Q;) < A(y) — A(v;). Note that

= Aly) = A(n) = 0. we(Qimr) = A(y) — A(vi), s0
we(vim1,vi) = we(Qi) — we(Qi1) < A(vie1) — A(v;). By substituting hi(v;) — h(vi—1) —
w(vi, v; 1) for we(vi 1, v;) and B (v; 1) — A(v; 1) — B (v;) + A(v;) for A(v; 1) — A(v;) we get

that 7'(v; 1) + w(v;_1,v;) < A'(v;), contradicting the definition of 7. |

i > 1 because w (Q; =< vy >)

This leads to the algorithm in Figure 5.4 as an alternative to the one in Figure 5.2. In
this version, the nodes of the frontier are inserted into a min-sorted Fibonacci Heap where
the priority of a node at any point in time is the length of the minimal path leading to it
which was discovered so far.

We now prove correctness of this algorithm.

Lemma 48 For all v € V, if wF(y,v) < A(y) then v is inserted into Fh and when it is

extracted from Fh, its priority is equal to wF (y,v).
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Function Insert(G, (z,y),h, w(z,y))
Fh <[] (* Empty Fibonacci Heap. *)
A, = (@) + w(z,y) - h(y)
if A, > 0 then
Fh.Insert(y,0) (* The minimum path from y to y has length 0. *)
endif
while Fh.NotEmpty do
(u, P) < Fh.EztractMin
h(u) < h(u) + A, — P (* Update hi(u) *)
foreach e = (u,v) € E do
P' < P+ w(u,v)
if P < A, then
Fh. UpdatePriority (v, P")
endif
endfor
end while

end

Figure 5.4: Alternative algorithm for updating A values upon an edge insertion.

Proof Assume the converse and let v be minimal w.r.t. the topological order such that
wP (y,v) < A(y) and the claim does not hold for v. By construction, the priority of a node
in Fh can never be lower than w! (y,v). So we need to show that v is inserted into Fh and
that its priority when it is extracted is not higher than w? (y, v).

Since y was extracted with priority 0 = w!(y,y), v # y. By definition of w,, there must
be a predecessor u of v such that w’ (y,v) = w?(y,u) + we(u,v). Since u precedes v in the
topological order, and by the minimality of v w.r.t. the topological order, we know that u
was inserted to Fh and was extracted with priority equal to w” (y,u). If v was not extracted
from Fh before u, then after u was extracted, v was either inserted with priority w? (y,v) (if
it was not already in Fh) or its priority was updated to w?(y,v) (if it was already in Fh).
Hence, v was inserted to Fh and when it was extracted, its priority was w? (y, v).

Assume that v was extracted before u. Let P =< z1,...,2, > be a path from y to
v through u such that w.(P) = w(y,v). That is, 2, = y, 2,1 = v and 2, = v and

for each 1 < i < n, wl(y,2) = wl(y,2zi_1) + we(2zi_1,2). Clearly, for all 1 < i < n,
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wP(y,2) < wP(y,zip1) < wP(y,v) < Ay). Let i be maximal such that z; was extracted
from Fh before v. Since z; precedes v in the topological order and by minimality of v w.r.t.
the topological order, we know that z; was extracted when its priority was w’ (y, 2;). Hence,
after it was extracted, z;,,’s priority became w’ (y, 2;) + we(2;, zi11) = w(y, zi41). Since v
was extracted before z;,; but when z;,; was in Fh with priority w”(y, z;41), the priority of

v when it was extracted was at most w! (y, z;11) < wf(y,v). |

Lemma 49 For allv € V, if w (y,v) > A(y) then v is not inserted to Fh.

Proof If w” (y,v) > A(y), this means that for every predecessor u of v, w! (y, u) +w.(u, v) >
A(y). If none of the predecessors of v were inserted to Fh then v was never a candidate
for insertion. If there are predecessors of v which were inserted to Fh, then by Lemma 48
whenever one of them (say u) was extracted from Fh, its priority was w?(y,u) so v was not

inserted into Fh. |

Lemma 50 The algorithm in Figure 5.4 correctly updates h(v) for all v € V.

Proof If w”(y,v) > A(y) then by Lemma 46, v ¢ §, so '(v) = A(v), and by Lemma 49, v
is never inserted to Fh so i(v) is never updated.

If wP(y,v) < A(y) then by Lemma 48, v is inserted into Fh and when it is extracted its
priority is w? (y, v). So the algorithm sets 1'(v) to h(v) + A, —wF (y,v), which by Lemma 47

is equal to fi(v) + A,. [

5.4.1 Example

To illustrate how the algorithm works, we include here a trace of its execution on the example
in Figure 5.3. Initially, A(y) = 4+0—1 = 3 is computed and y is inserted to Fh with priority
0. Then the algorithm enters the while loop and performs five iterations.

Iteration 1: (u,P) < (y,0) and h(y) < A(y) + A(y) — P = 1+ 3 — 0 = 4. Next, the
successors of y are checked. a is inserted to Fh with priority P, = P + w.(y,a) =0+ 1=1

and b is inserted with priority Pj = P + w¢(y,b) =0+ 0 = 0.
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Iteration 2: (u, P) < (b,0), h(b) < h(b) + A(y) — P = —1+3 — 0 = 2. c is inserted to Fh
with priority P, = P 4+ w.(b,c) =0+2 = 2.

Iteration 3: (u, P) < (a,1), i(a) < Ti(a) + A(y) — P =5+ 3 — 1 = 7. The priority of ¢
is updated from 2 to P + w(a,c) =1+0=1. P} = P+ wc(a, f) =1+2=3so0 f is not
inserted to Fh.

Iteration 4: (u, P) < (c,1), h(c) < h(c) + A(y) — P=7+3—1=29. d is inserted to Fh
with priority P; = P + w(c,d) =14+ 0= 1.

Iteration 5: (u, P) + (d,1), h(d) < h(d)+A(y) —P=5+3-1=7. P =P +w./d,e) =
149 =10 so e is not inserted to Fh.

Now, Fh is empty so the algorithm terminates.

5.4.2 Complexity analysis

When all edge weights are integers, we have that all w, values are non-negative integers
and all priorities in the queue are in the interval [0, A(y)]. This means that we can use
A(y) + 1 buckets for the nodes and place the buckets in the queue instead of the individual
nodes. Since A, = Ay we get that if we use a Fibonacci Heap, the algorithm runs in time
O([[61] + [0 log min{[4], Amax + 1})-

If we use Thorup’s integer priority queue [30] we can achieve an asymptotic running time

of O(||0]| + |9] loglog min{|d|, Apmax + 1}). However, this priority queue is more complicated

to implement.
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Ausfiihrliche Zusammenfassung

Constraint-Programming ist ein Programmierparadigma, bei dem der/die Programmierer(in)
das zu 16sende Problem durch Randbedingungen (engl.: constraints) an die Variablen des
Problems modelliert. Das heifit, er/sie spezifiziert die Semantik des Problems, ohne ein
Losungsverfahren anzugeben. Dann bestimmt ein Constraint-Loser die Losung durch An-
wendung eines allgemeinen Losungsalgorithmus in Kombination mit constraint-spezifischen
Heuristiken.

Angenommen, ein Constraint-Loser wird auf eine endliche Menge von Randbedingungen
iiber einer endlichen Menge von Variablen angesetzt, wobei jede Variable x einen endlichen
Wertebereich Dom(z) hat. Dann ist der Suchraum aller moglichen Variablenbelegungen
endlich und kann erschépfend durchsucht werden, indem man alle moéglichen Belegungen
aufzahlt und fiir jede die Erfiillung der Randbedingungen priift. Zur Beschleunigung ver-
kleinern Constraint-Loser den Suchraum wiederholt durch Filterschritte, in denen Filteralgo-
rithmen, die die Semantik der Randbedingungen kennen, Schliisse wie den folgenden ziehen:
“Es gibt keine Losung, in der die Variable z den Wert v € Dom(x) annimmt”. Daraufhin
kann v aus dem Wertebereich von x getilgt werden.

Als einfaches Beispiel dafiir betrachte man die Randbedingung X < Y mit Dom(X) =
{2,3,5,6,8} und Dom(Y) = {1,4,5,7}. Wie man leicht sieht, gibt es keine Losung mit
X = 8 und keine Losung mit Y = 1. Daher konnen wir die Wertebereiche verkleinern auf
Dom(X) ={2,3,5,6} und Dom(Y') = {4,5,7}. Man bemerke, dass eine weitere Verkleine-
rung nicht moglich ist: Fiir jeden Wert im Bereich einer Variablen gibt es eine Ldsung, in
der die Variable diesen Wert annimmt. Mit anderen Worten, die Wertebereiche von X und
Y sind jetzt konsistent mit der Randbedingung X < Y.

Zwei verschiedene Arten von Konsistenz spielen in der vorliegenden Arbeit eine Rolle.
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Eine formale Definition wird in den entsprechenden Kapiteln gegeben, aber wir beschreiben
sie nun kurz: Die erste Art von Konsistenz ist Kantenkonsistenz (arc consistency), die oben
illustriert wurde: Gegeben eine Randbedingung C' iiber einer Variablenmenge Xi,..., X
heiflen die Wertebereiche dieser Variablen kantenkonsistent, wenn es fiir jede Variable X;
und jeden Wert v € Dom(X;) eine Losung fiir C' gibt, in der X; = v gilt. Die zweite Art
von Konsistenz ist Schrankenkonsistenz (bound consistency). Hierbei nehmen wir an, dass
jeder Wertebereich ein Intervall Dom(X;) = [X;, X;] ist. Wir nennen die Variablen schran-
kenkonsistent beziiglich einer Randbedingung C', wenn es fiir jede Variable X; Losungen fiir
C gibt, so dass X; = X;, bzw. X; = X gilt. Von einem Filteralgorithmus sagen wir, dass
er Kanten- bzw. Schrankenkonsistenz erreicht, wenn er kanten- bzw. schrankenkonsistente
Wertebereiche fiir alle Variablen errechnet, ohne dass dabei eine Lésung verloren geht; d. h.
der Algorithmus entfernt einen Wert v aus dem Wertebereich von X nur dann, wenn es keine
Lésung der Randbedingung mit X = v gibt.

Die Kapitel 2 und 3 behandeln Filteralgorithmen fiir zwei globale Randbedingungen, also
solche, die auf eine grofle Anzahl von Variablen Bezug nehmen. Im Kapitel 2 beschreiben
wir einen Schrankenkonsistenz-Algorithmus fiir die bekannte Randbedingung GCC. Zuvor
waren nur effiziente Kantenkonsistenz-Algorithmen fiir diese Randbedingung bekannt. Zeit-
gleich mit unserer Arbeit hat eine andere Gruppe einen Algorithmus entworfen, der einem
anderen Ansatz folgt und der Schrankenkonsistenz fiir einen Teil der Variablen erreichen
kann [22]. In Kapitel 3 definieren wir eine neue Randbedingung UsedBy (und einen Spe-
zialfall davon, den wir Same nennen), und wir zeigen, dass auch hierfiir effiziente Kanten-
und Schrankenkonsistenzberechnungen moglich sind. Unsere Filteralgorithmen folgen dem
auf Fliissen und Matchings basierenden Ansatz, den erstmals Régin [25] in seinen Filteralgo-
rithmen angewandt hat. Die Grundidee ist, die Randbedingung als einen Variablen/Werte-
Graph zu modellieren, so dass jede Losung einem zuléssigen ganzzahligen Fluss in dem
Graphen entspricht. Dann kann man zeigen, dass die starken Zusammenhangskomponenten
des Residualgraphen angeben, welche Werte jeweils aus den Wertebereichen der Variablen

entfernt werden konnen.

Kapitel 4 behandelt das Problem, eine topologische Sortierung der Knoten eines gerichte-

ten kreisfreien Graphen aufrecht zu erhalten, der sich durch Kanteneinfiigungen fortlaufend
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dndert. Wir zeigen, dass m Kanteneinfiigungen in einen gerichteten kreisfreien Graphen
mit n Knoten in Zeit O(min{m??logn, m3/? + n%logn}) verarbeitet werden kann. Weiter
untersuchen wir sodann die Komplexitdt des Verfahrens auf strukturierten Graphen. Wir
zeigen, dass der Algorithmus Zeit O(mklog” n) benétigt, wobei & die treewidth des Graphen
ist. Fiir den Spezialfall von Badumen (k = 1) verbessern wir dies auf O(nlogn), was optimal
ist.

Kapitel 5 schliellich behandelt Algorithmen, die die Kenntnis gewichtsmaximaler Pfade
in einem gerichteten kreisfreien Graphen unter Kanteneinfiigungen und -16schungen aufrecht
erhalten. Dieses Problem ist von Michel and Van Hentenryck [17] im Zusammenhang mit
lokaler Suche (local search) fiir Constraint-Programming untersucht worden. Wie geben eine
Verbesserung ihrer Algorithmen an, indem wir zeigen, wie man Graphen behandelt, die Kan-
ten mit nicht-positiven Gewichten haben, und wie man verbesserte Komplexitédtsschranken

fiir den Fall erhélt, dass alle Kantengewichte ganzzahlig sind.
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