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Abstract

Parallel disk systems provide opportunities for exploiting I�O parallelism in
two possible ways� namely via inter�request and intra�request parallelism� In
this paper we discuss the main issues in performance tuning of such systems�
namely striping and load balancing� and show their relationship to response
time and throughput� We outline the main components of an intelligent
�le system that optimizes striping by taking into account the requirements
of the applications� and performs load balancing by judicious �le allocation
and dynamic redistributions of the data when access patterns change� Our
system uses simple but e�ective heuristics that incur only little overhead� We
present performance experiments based on synthetic workloads and real�life
traces�
Keywords� parallel disk systems� performance tuning� �le striping� data
allocation� load balancing� disk cooling�

� Introduction� Tuning Issues in Parallel Disk

Systems

Parallel disk systems are of great importance to massively parallel comput�
ers since they are scalable and they can ensure that I�O is not the limiting
factor in achieving high speedup ���� 

� ���� However� to make e�ective use
of the commercially available architectures� it is necessary to develop intel�
ligent software tools that allow automatic tuning of the parallel disk system
to varying workloads� The choice of a striping unit and whether to choose a
�le�speci�c striping unit versus a global striping unit are important param�
eters that a�ect the response time and throughput of the system� Equally
important is the decision of how to allocate the data on the actual disks
and how to perform redistribution of the data when access patterns change�
These tuning options need to be performed dynamically� using simple but
e�ective heuristics that incur only little overhead�

This paper presents a set of performance tuning techniques for parallel
disk systems� These techniques are orthogonal to the techniques for high
availability that are typically employed in parallel disk systems �e�g�� RAID
levels�� and can be applied to a wide spectrum of applications ranging from
conventional �le systems and WWW servers to database systems� Through�
out the paper we assume that the underlying computer architecture is that
of a shared�memory multiprocessor� extensions to distributed�memory archi�
tectures are conceivable but are not considered in this paper�

In order to e�ectively exploit the potential for I�O parallelism in parallel
disk systems� data must be partitioned and distributed across disks� The
partitioning can be performed at two levels�
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�� The physical �block or byte� level� The term striping is used for this
variant of partitioning schemes which divides a �le into �xed�size runs
of logically consecutive data units that are assigned to disks in a round�
robin manner �	�� 
�� �
� �
�� The striping unit denotes the number of
consecutive data bytes or blocks stored per disk�

�� The application level� The term declustering has been employed in re�
lational database systems to denote partitioning schemes that perform
a horizontal division of a relation into fragments based on the values of
one or several attributes� Among the schemes employed for single at�
tribute partitioning are hashing and range partitioning ��
� ���� while
techniques based on Cartesian product �les have been advocated for
multiple attribute declustering �e�g�� ���� ��� ��� 		���

Striping has an advantage over application�level methods in that it can be
applied as a generic low�level method for a wide spectrum of data types �all
of which are ultimately mapped into block�structured �les�� In this paper
we therefore restrict our attention to �le striping for data partitioning� In
the following� a �le may denote a tablespace or indexspace in a relational
database� a logical object cluster in an object�oriented database� a document
such as WWW pages in a multimedia information system� or indeed simply
a Unix�like sequence�of�blocks �le� We shall use the term striping width of
a �le to denote the number of disks over which a �le is spread� A logically
consecutive portion of the �le that resides on one disk and whose size is a
striping unit is called a run� All runs of a �le that are mapped to the same
disk are combined into a single allocation unit called an extent�

Striping provides opportunities for exploiting I�O parallelism in two pos�
sible ways� Intra�request �intra�operation� parallelism allows the parallel ex�
ecution of a single request by multiple disks� Inter�request �inter�operation�
parallelism can be achieved if independent requests are being served by the
disk system at the same time� The degree of parallelism in serving a single
data request is the number of di�erent disks on which the requested data
resides�

��� Tuning Issues in Data Partitioning

The striping unit is an important parameter that must be chosen judiciously
in order to reduce the service time of a single request or to improve the
throughput of multiple requests ���� ��� �
� ��� 	
� 
��� A large striping
unit tends to cluster a �le on one disk� which does not allow any degree of
intra�request parallelism� In consequence� the service time of a request is
not improved� but the throughput is optimal if the requests are uniformly
spread across all disks� At the other end of the spectrum� a small striping

	



unit provides very good response time for light load� but severely limits the
throughput� as the total amount of device�busy time consumed in serving
a single request is increasing with decreasing striping unit� Consequently�
for small striping units the response time may deteriorate under heavy load
due to queueing delays� In practice� it is necessary to choose the striping
unit such that a certain objective function is minimized� One such objective
function aims at minimizing the response time subject to a constraint on the
achievable throughput�

In ���� ��� 	
� heuristic methods are proposed to determine the strip�
ing unit of a disk array� based on the knowledge of the average request size
and the application�s expected multiprogramming level� under the assump�
tion of a closed queueing model� While these assumptions may be valid for
relatively small multiprogramming levels� they do not scale up to data man�
agement systems with large numbers of concurrent users� which translates to
high arrival rates with stochastic load �uctuation� It is most crucial for such
systems to guarantee a certain level of performance during these peak peri�
ods� Most heuristic methods also advocate choosing a global striping unit�
i�e�� the same striping unit for all �les in the system ���� ��� 	
�� However�
many applications such as multimedia information systems �e�g�� in digital
libraries or medical applications� exhibit highly diverse �le characteristics
making it desirable to be able to tune the striping unit individually for each
�le� Consider� for example� the case where a global striping unit may be
appropriate at some moment in time� but later on the load is shifting caus�
ing some crucial �les to exhibit unusually high response time� File�speci�c
striping enables us to incrementally restripe only these crucial �les� leaving
the other �les with the �old� global striping unit�

After the striping unit has been determined �globally or on �le�speci�c
basis� the �le system must derive the striping width� i�e�� the number of
disks across which the �le�s� is �are� spread� In our model� a �le is either
spread across all disks� or� if the �le is relatively small� its width is obtained
as the quotient of the �le size and the striping unit� Similar response�time
constraints to the ones discussed above� may justify� however� that some �les
be stored on a �dedicated� subset of disks in order to avoid contention� and
hence their striping width would be limited by the number of disks in this
subset� This speci�c consideration of incorporating response�time constraints
is not pursued in this paper� however�

��� Tuning Issues in Data Allocation and Load Bal�

ancing

The striping unit�s� and striping width�s� are only some of the parameters
that a�ect the response time or throughput of a parallel disk system� The






decision of how to allocate or place the �les on the actual disks is an equally
important one in order to obtain good load balancing� Load refers to the
amount of work done by each disk and it a�ects both the response time
and throughput� Balancing the load contributes towards minimizing the
average length of the queues associated with the disk �minimizing the service
time variance per disk would be another factor �	��� which is not considered
in this paper� however�� Very small striping units lead to very good load
balancing� in the extreme case each request involves all the disks in the
system so that the load is perfectly balanced� But throughput considerations
require for many applications that we choose large striping units �e�g�� the
size of a cylinder� ���� ��� ��� ��� 	
� 
�� 
��� Thus� load balancing needs to
be performed even if striping is employed�

In order to perform disk load balancing it is necessary to take into account
the frequencies of the requests to the various �les or data partitions as well
as the request sizes� To account for these parameters� the �le system has to
keep track of the following related statistics�

� the heat of extents and disks� where the heat is de�ned as the sum
of the number of block accesses of an extent or disk per time unit� as
determined by statistical observation over a certain period of time�

� and the temperature of extents� which is de�ned as the ratio between
heat and size ��	� ��� 	���

If the striping unit is a byte and all �les are partitioned across all disks
in the system� then we obtain a well balanced I�O load� While this approach
may be adequate for supercomputer applications characterized by very large
request sizes �	�� �i�e�� a high data rate�� it certainly limits the throughput
of transaction processing applications characterized by a high rate of read
and write requests to small amounts of random information ���� �i�e�� a high
I�O rate�� As soon as the striping unit is relatively large �e�g�� a track or
cylinder�� the need for load balancing reappears immediately� even if the �les
are partitioned across all disks� This is due to the fact that the heat of
the various blocks or extents are often distributed in a highly non�uniform
manner�

��� Contribution and Outline of the Paper

This paper presents viable methods for several key issues in the automatic
tuning of parallel storage systems� Various aspects of earlier versions of
our approach have been published in ���� 
�� ��� ���� and ��
� 
	� give an
account of the more general project where this work has been embedded�
In this paper� we emphasize the system perspective and we describe more
advanced automatic tuning methods� We provide guidelines for potential
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system architects of self�reliant storage systems and we give a comprehensive
experimental evidence of the viability and bene�ts of our approach�

We present a procedure for performing data partitioning that is a sig�
ni�cant extension to the algorithm outlined in ����� In particular� our new
algorithm takes into account queueing delays explicitly� by providing a com�
putationally tractable analytical approximation for the fork�join queueing
model ����� We describe in detail an e�ective method for heat bookeeping
and our demon�based dynamic migration procedure based on disk cooling�
Although the problems of data partitioning and load balancing are orthogo�
nal issues� they are not independent� The performance experiments reported
in this paper clearly illustrate this issue and show that the combined e�ects
of data partitioning and load balancing produce signi�cant advantages over
conventional striping methods based on physical device units �e�g� block�
track��

The remainder of this paper is organized as follows� We will describe
in Sections � and � the main components of an intelligent �le manager for
parallel disk systems that performs automatic data partitioning� data allo�
cation� and load balancing by incremental reorganization steps� In Section
	 we report on performance studies of our �le system based on synthetic
workloads and real�life traces� We conclude with an outlook on additional
research avenues that we plan to explore in order to generalize our approach�

� Data Partitioning

We have developed an analytic model to determine heuristically the optimal
striping unit and striping width on an individual �le basis or on a global
basis� These parameters can be chosen for each �le individually� based upon
the �le�s estimated average request size R� or globally by using instead the
average request size over all �les� denoted by R� In either case the optimiza�
tion can be carried out in one or two phases� A and B� depending upon the
anticipated arrival rate of requests� For low arrival rates of requests� where
we can assume that no queueing delays occur� Phase A chooses a degree of
parallelism that minimizes the service time of an average request of size R
�or R� which is equivalent to minimizing the response time if the system
operates in single user mode� Phase B chooses a degree of parallelism that
minimizes the �multi�user� response time subject to the constraint that the
achievable throughput is at least as high as the application�s average arrival
rate of requests to all �les� denoted by �� The optimal degree of parallelism�
Peff � chosen for an average request is then adjusted by choosing the min�
imum �normalized as explained below� between the outcomes of Phases A
and B� The striping unit and width are then derived from the optimal degree
of parallelism� Peff �
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Our Phase B optimization uses an open queueing model in order to take
into account explicitly the throughput considerations and queueing delays�
As mentioned before� the striping method proposed by Chen et al� ���� 	
� is
based on a closed queueing model� There� a heuristic formula is derived from
experiments as well as approximative analytical treatment� which suggests a
global striping unit of

SU �

s
�L X �M � �� R

D
���

where L is the average latency �sum of seek and rotational delays� of a disk�
X is the transfer rate of a disk� M is the multiprogramming level of the
application� R is the average request size� and D is the number of disks� ����
further extends this approach by considering the impact of parity writes in
a RAID level 
 system� Chen et al� ���� 	
� also discuss the di�culty of
estimating the multiprogramming level� As we pointed out earlier� we con�
sider an open queueing model to be more appropriate for a data management
system with a large number of users �as opposed� for example� to a �le server
in a LAN of workstations�� In addition� an estimate of the average arrival
rate of requests to all �les� �� which is used in our model� is generally much
easier to obtain than an estimate of M � the multiprogramming level�

��� Phase A� Minimizing Service Time

Given a number of �les to be allocated� Phase A determines the optimal
degree of partitioning on a �le�speci�c �global� basis based on average request
request size R �R�� This estimate can be derived in many cases from the �le�s
type information� For example� in an OLTP system such as airline reservation
or phone call switching and accounting� one can typically expect an average
request size of a block� On the other hand� in a multimedia application such
as digital libraries or medical archiving� we can expect that all requests will
require access to an entire document �e�g�� an image� and hence R would be
the �le size�

Let P be the degree of parallelism involved in serving an average request
of size R� i�e�� the number of disks involved in serving this request� In the
absence of queueing delays� the expected service time� to be denoted by
Tserv�R�P �� is in fact equal to the expected response time� to be denoted by
Tresp�R�P �� The expected service time is given by�

Tserv�R�P � � max
i

�tseek�i � trot�i� � ttrans�R�P � ���

where tseek�i and trot�i �i � �� ���� P � denote the seek time and rotation time� re�
spectively� of disk i involved in serving the request� For tractability purposes�
we replace the right hand side by the following approximation�






Tserv�R�P � � max
i

�tseek�i� � max
i

�trot�i� � ttrans�R�P � ���

Thus� we note that the solution to equation ��� provides in fact an upper
bound for Tserv�R�P ��

In order to obtain approximate distributions for Tseek � maxi�tseek�i� and
Trot � maxi�trot�i� we make the standard assumption that the delays at each
disk� i�e�� seek times and rotation times are independent and identically dis�
tributed random variables �
� 	
�� In addition� we assume that the delay
probabilities are unconditional� i�e�� the probability of a delay does not de�
pend upon the probabilities of previous delays� In reality� there may be a
certain degree of correlation among these variables� for example in the case
of a synchronized disk array where all disks heads move in tandem� Also�
in some applications� it is possible to have a sequence of requests to succes�
sive blocks on a disk� in other words the probability of a seek distance is
conditional upon the probabilities of previous seek distances�

Let us denote by dseek�i and drot�i �i � �� ���P � the dual random variables
that give us the distances traveled on disk i by the head or arm� respectively�
from the current location to the requested one� We shall compute �rst the
expected values of Dseek � maxi�dseek�i� and Drot � maxi�drot�i� and use these
values to derive the expected values of Tseek and Trot�

Under the assumptions given above� the cumulative distribution func�
tions for Dseek and Drot can be computed� respectively� as the product of P
cumulative distribution functions of the random variables� dseek�i and drot�i�
corresponding to the P disks involved in serving the request�

We compute �rst the probability mass function of dseek�i�

Prob�dseek�i � z� �
��C � z�

C�
�	�

where C denotes the number of cylinders on one disk� From here be obtain
the cumulative distribution function�

Prob�dseek�i � z� � �� ��� z

C
�� �
�

It was shown in �
� that the expected value E�Dseek� is given by �

E�Dseek� � C���
PY
i��

�i

�i� �
� ���

The product in equation ��� can be approximated by the following ex�
pression� with constants a � ��
�� and b � �����
�

E�Dseek� � C�� � a � b ln�P �� ���

�



From here the expected value of Tseek can be approximated by the follow�
ing linear equation with appropriate �disk�type�dependent� constants e and
f �

E�Tseek� � eE�Dseek� � f �
�

We note here that the equation which converts seek distance in cylinders
to seek time consists in fact of two components� a non�linear one and a linear
one �
� ���� However� in our model we are interested only in the expected
value of the seek distance and the corresponding expected value of the seek
time� and the expected value of the seek distance lies in the linear part of
the distance�time equation�

The rotation distance on a given disk i� drot�i� gives the fraction of a full
rotation that is necessary in order to position the arm on the �rst block
of the current request� In order to compute E�Drot�� we make the common
assumption that drot�i is a uniformly distributed variable in the range ��� ���
thus�

Prob�drot�i � r� � r ���

From here we obtain the cumulative distribution function of Drot �
maxi�drot�i� as �

Prob�Drot � r� �
PY
i��

Prob�drot�i � r� � rP ����

and furthermore E�Drot� �
P

P��
� It follows that the expected value of Trot

is given by�

E�Trot� �
P

P � �
ROT ����

where ROT denotes the rotation time of a disk�
It can be seen from these equations that as the degree of parallelism� P �

increases� both the expected seek time� E�Tseek�� and the expected rotation
time� E�Trot�� increase also� For small requests these two components of
service time are the dominant ones� hence the service time increases also�
The only component of the service time that decreases with an increased
degree of parallelism is the transfer time ttrans�R�P �� Each disk transfers R

P

blocks �assuming� for simplicity� identical subrequest sizes on the disks��� and
if we ignore cylinder and head switches� the transfer time can be estimated
as R

P
ROT
B

� where B is the number of blocks in a track� However� in order
to account for the fact that these R

P
blocks span over track and cylinder

boundaries we add corresponding correction terms and obtain�
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E�ttrans�R�P �� � �nhs � ncs�ths � ncstcs �
R

PB
ROT ����

where

nhs is the number of head switches �including cylinder switches��
ncs is the number of cylinder switches�
ths is the head switch delay� and
tcs is the cylinder switch time �time for a seek of distance ���

Using simple probability arguments we estimate

nhs � dR�P
B

e � � �
B � �R�P � �dR�P

B
e � ��B�� �

B
�

R
P
� �

B
����

ncs � dR�P
TB

e � � �
TB � �R�P � �dR�P

TB
e � ��B�� �

TB
�

R
P
� �

TB
��	�

and we obtain�

E�ttrans�R�P �� � �
R
P
� �

B
�

R
P
� �

TB
�ths �

R
P
� �

TB
tcs �

R

PB
ROT ��
�

where T is the number of tracks in a cylinder�
Combining the above results we obtain the following formula for the ex�

pected service time�

E�Tserv�R�P �� � eC��� a� bln�P �� � f �
P

P � �
ROT ����

��
R
P
� �

B
�

R
P
� �

TB
�ths �

R
P
� �

TB
tcs �

R

PB
ROT

The trade�o�s between increased seek and rotation time on one hand and
reduced transfer time on the other hand for various degrees of parallelism
are illustrated also in Figure �� This example considers a �le that is being
striped across 	 disks with three di�erent striping units and resulting degrees
of intra�request parallelism� The �gure traces the execution of an I�O request
of size 	 blocks for the three con�gurations� In addition to the service time�
the �gure also illustrates the device�busy time for the given request� which
is the sum of the times that the disks are involved in the request� For
illustration purposes the seek and rotation times are combined together into
latency time�

The optimal degree of parallelism� Popt� can be determined by �nding the
minimum of the function E�Tserv�R�P ��� i�e�� by solving the following cubic
equation for P �

��



dE�Tserv�R�P ��

dP
�

ROT

P � �
� eCb

P
� PROT

�P � ���
����

��
R

P �TB
� R

P �B
�ths � R

P �TB
tcs � RROT

P �B
� �

��� Phase B� Minimizing Response Time by Consider�

ing Throughput and Queueing Delay

An increased degree of parallelism leads not only to trade�o�s between seek
and rotation time on one hand and reduced transfer time on the other hand�
but also a�ects adversely the device�busy time of a request� i�e�� the sum of
the times that the disks are involved in the request and hence are not available
for other requests� The relationship between the device�busy time and the
various components of the response time is illustrated in the execution of
requests in Figure �� The throughput� measured as the number of requests
completed per time unit� is inversely proportional to the average device�busy
time of a request� Thus� higher degrees of parallelism lead to �unproductive�
positioning times and� hence� to lower throughput�

The Phase A model for service time minimization has assumed that there
are no interferences among the various requests and that no queueing delays
occur� This is obviously not the situation in a multiprogramming environ�
ment� especially under heavy load� i�e�� a high arrival rate� queueing delays
play an important role� The scenario where each I�O request is served by a
single disk is well understood and can be modeled via an M�G�� queueing
model ����� We observe� however� that no general analytical model is known
for so called fork�join queueing model ���� 
��� i�e�� for the case when I�O
requests are served by multiple disks and the number of disks involved varies
from request to request� An exception is the case when exactly two disks are
being involved in serving every request ���� �	��

We present in this section a simpli�ed and computationally tractable
analytic approximation to a fork�join model� under the assumption of perfect
load balance� More speci�cally� we compute �rst the mean response time on
each disk� assuming the requests are equally distributed among the disks
and that each disk can be represented as an M�G�� system� Then� we use
an approximation method outlined in �	
� in order to compute the expected
response time for requests with degree of parallelism P �averaged over the
requests to all �les� as the maximum among the response times of the P
participating disks�

Our analytic approximation to the queueing model requires that we pro�
vide an estimate of the average arrival rate to all �les in the system� denoted

��



as �� in addition to the average request size� across all �les� denoted as R�
Note that the value of R can be derived by sampling� or� alternatively� it can
be computed from the average request sizes Ri to the individual �les and the
access frequencies of the �les� The objective of Phase B is to compute the
optimal value for P � the average degree of parallelism�

Given that requests in our system have an average arrival rate of � and
an average degree of parallelism of P � we obtain the overall arrival rate for
the constituent subrequests as � � P � Under the assumption of a perfectly
balanced system where the subrequests are equally distributed among the
disks� the subrequest arrival rate to a given disk i �i � �� ���� D�� to be denoted
as �i� can be computed as�

�i �
� P

D
��
�

with D standing for the number of disks in the system�
The average subrequest size� to be denoted as S� can be derived as�

S �
R

P
����

The service time for an individual subrequest to disk i� to be denoted by
tserv�i�S�� can be computed by using the standard formulae for the service
time of a single disk� We can express the utilization of disk i� �i� as�

�i � �i � tserv�i�S� ����

Using our assumption that each disk can be viewed as an M�G�� queue�
the expected value of tresp�i�S�� the response time of the subrequests served
at disk i� is given as �����

E�tresp�i�S�� � E�tserv�i�S�� � �i � E�tserv�i�S�� � � � ci
�

���� �i�
����

where c�i stands for the squared coe�cient of variation of the service time of
subrequests at disk i� c�i is de�ned as the ratio of the corresponding variance
�V AR� and expected service time�

c�i �
V AR�tserv�i�S��

E�tserv�i�S���
����

Also from M�G�� queueing theory we obtain the formula below which
relates the variance of the response time of individual subrequests on a disk
i to the �rst three moments of their service time�

VAR�tresp�i�S�� � VAR�tserv�i�S�� �
�iE�tserv�i�S�

��

���� �i�
�
��iE�tserv�i�S�

���

	��� �i��
����

��



The response time for requests of size R served by P disks� to be denoted
as Tresp�R�P �� satis�es the equality�

E�Tresp�R�P �� � max
i

�tresp�i�S�� ��	�

In order to derive an analytic expression for the above equation� we make
use of an approximation method presented in �	
� which has been shown to
be quite accurate if the response times of the individual subrequests� i�e��
tresp�i� obey a normal distribution� This approximation states that the ex�
pected response time for a request can be estimated as the response time of
an individual subrequest plus a �correction� factor� which accounts for the
slowest subrequest�

E�Tresp�R�P �� �

�����
����
E�tresp�i�S�� �

q
VAR�tresp�i�S��

P��p
�P��

for P � �

E�tresp�i�S�� �
q
VAR�tresp�i�S��

q
� logP for P � �

��
�
We have conducted a series of experiments and these have shown that

the assumption of normally distributed response times for the individual
subrequests is a valid one�

We observe that with an increase in the variance of the response time
of individual subrequests� the correction factor increases correspondingly�
The impact of the degree of parallelism P on the di�erent components of
the response time which we described informally in Figure � is taken into
account implicitly by the correction factor in equation ��
��

In order to calculate E�Tresp� in equation ��
� it is necessary to compute
the �rst three moments of the subrequests� service time distribution� namely�
E�tserv�i�S��� E�tserv�i�S�

��� and E�tserv�i�S�
��� For this calculation we need to

derive the probability density function of tserv�i�S�� The probability density
functions of the corresponding seek and rotation times� i�e�� fseek�i and frot�i�
can be derived from equations �
� and ���� respectively� the probability den�
sity function of the transfer time� i�e�� ftrans�i is a constant whose value is
obtained by setting P � � in equation ����� Finally� the probability density
function for tserv�i�S� can be obtained by convoluting the probability density
functions fseek�i� frot�i� and ftrans�i� The full details of this derivation are given
in �
	��

The value P which minimizes equation ��
� can be found iteratively� by
going through the range of possible values for P �this is obviously bounded
by D� the number of disks in the system�� We choose this approach since
equation ��
� is not easily di�erentiable� unlike its counterpart in Phase A�
namely� equation �����
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��� Putting It All Together� the Algorithm for Data

Partitioning

The complete algorithm for data partitioning is outlined in Figure � below� If
we anticipate a low arrival rate of requests and desire to perform optimization
only by using Phase A� then Steps � and � are omitted� For �le�speci�c
partitioning Steps �� �� and 	 need to be iterated over the number of �les in
the system� On the other hand� for global partitioning� the above steps need
to be executed only once� with one exception as explained below�

The e�ective degree of parallelism� Peff � is computed in Step � by choos�
ing the minimum between the the optimal degrees of parallelism computed
in Steps � and �� The factor Ri�R is used to normalize the outcome of Step
�� This is due to the fact that for requests larger than R� we want the degree
of parallelism of �le i to exceed P � and if Ri is smaller than R� then Peff�i

should be smaller than P �
The optimal striping unit and striping width are then derived from Peff�i

�or Peff � respectively� in Step 	� If all I�O requests start at run boundaries
then the striping unit of a �le� SUi� can be derived by using the formula
d Ri

Peff�i
e� This is also the case when the requests are for individual blocks� i�e��

Ri � �� or for the entire �le� i�e�� Ri � Li� with Li being the �le size� On the
other hand� if the requests can start at any block inside a run� the formula
above yields a striping unit which cannot support in most cases the degree
of parallelism Peff�i� this in fact increases Peff�i by one� In order to cover
this case� the striping unit is derived by the alternative formula d Ri��

Peff�i��e
which guarantees a degree of parallelism of Peff�i in all cases� In the case
of Peff�i � �� the striping unit should be chosen as large as possible� i�e��
SUi � Li� with Li being the �le size� Finally� the striping width� denoted as
SWi� is chosen as high as possible in order to support inter�request parallelism
also� in addition to the intra�request parallelism optimized by the above steps�
Notice that the striping width SWi needs to be computed individually also in
the case of global partitioning since some �les may be too small to be spread
over all the disks�

The algorithm outlined in Figure � accomplishes static partitioning� since
all the �les are allocated at the same time� However� the algorithm can
be extended easily to perform dynamic partitioning� Dynamic partitioning
and the complementary procedure of incremental repartitioning need to be
performed when new �les are added� old �les are deleted� or when the access
characteristics of some �les change substantially� Let us discuss here the case
when a new �le needs to be added to the system� We need to recompute �rst
the access characteristics speci�ed in the input to the partitioning algorithm�
i�e�� to readjust R� S� and � in order to account for the addition of the new �le�
In order to perform these calculations we need to estimate Ri� the average �le
request size� as well as �i� the average arrival rate of requests to the new �le�
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As discussed before� this information may be derived by sampling existing
�les of the same type� or may be provided as an administrator hint �e�g��
when we consider a large database application�� We then invoke the static
partitioning algorithm given above on the new �le in order to determine its
e�ective degree of parallelism� Peff�i� and its striping unit and width�

A companion incremental repartitioning procedure is invoked periodi�
cally� This procedure checks �rst if a trigger condition is satis�ed in order
to warrant incremental repartitioning� The trigger condition consists of two
parts�

��� P new �� P old and
��� E�tresp�Rnew� P new�� � E�tresp�Rold� P old�� � ��

with � being a system determined parameter� The new set of statistics is
computed by performing Steps � through � of the static partitioning algo�
rithm� the old set of statistics is the one computed at the last invocation of
this procedure� If the trigger condition is satis�ed then we proceed to do
incremental repartitioning of k �les� The procedure considers candidate �les
for reorganization by using a list in which the �les are sorted in descending
order of heat� We use heat as an ordering criterium since this measures the
product of arrival rate and �le size� an early repartitioning of the hottest �les
will make the biggest contribution to the average degree of parallelism Popt�
Note that� although P new may be di�erent from P old� a particular �le i may
not need to be reorganized if the value of Peff�i does not change�

� Load Balancing

The need for load balancing was mentioned already in Section � in the context
of data allocation� Recall that load balancing does not become obsolete when
striping is employed� Many applications require that we choose large striping
units in order to achieve a certain throughput with multi�block requests� For
example� Gray et al� have proposed the parity striping scheme ����� where the
distribution of data blocks is based on a very large �possibly in�nite� striping
unit� and similar results on the throughput limits of �ne�grained striping have
been stated in ���� ��� 	
� 
�� 
�� ��� 
��� However� a coarser striping unit
increases the probability of load imbalance under a skewed workload ���� 
���
Addressing this tradeo� solely by tuning the striping unit is only a �bad�
compromise� Thus� additional methods for load balancing are called for�
regardless of whether data is partitioned or not�

Obviously� the load balance of a disk system depends on the placement
of data� regardless of whether the �les are partitioned or not� The data
placement problem is similar to the �le allocation problem in distributed
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systems ���� and falls in the class of NP�hard problems �the simplest case
is equivalent to the NP�complete problem of multiprocessor scheduling �see
problem �SS
� in ������ Hence� viable solutions must be based on heuristics�
The worst�case performance of these heuristics methods can be measured in
terms of their competitive ratio� which is de�ned as the ratio between the
heat of the hottest disk under a given heuristic placement and the heat of the
hottest disk under an optimal placement� Good heuristics based on greedy
placement ���� or iterated bin�packing ���� are well understood for the static
�le allocation problem with non�partitioned �les� where the heat of each �le
is known in advance� In the greedy algorithm�which was adopted in the
Bubba parallel database machine ��	�� the �les are �rst sorted by descending
heat and then they are allocated in this order where in each step the disk
with the lowest accumulated heat is selected� Under this greedy heuristic�
the competitive ratio is bounded by �

�
� �

��number of disks
� ���	� while

for the iterated bin�packing algorithm of ���� the corresponding competitive
ratio is approximately ����� We observe here that these results are derived
from speci�cally constructed �adversary� inputs� and there is experimental
evidence that these heuristic allocation algorithms perform better for most
realistic inputs�

In practice� realistic algorithms for static allocation of non�partitioned
�les need to consider additional parameters and system constraints such
as controller contention and storage space limitation� A comprehensive�
heuristic optimization method which considers some of these constrained
is presented in �
��� where a non�linear programming solution embedded in
a queueing network model is described� Moreover� in many application envi�
ronments�the �les are not allocated all at the same time� but rather some �les
are allocated dynamically� For this dynamic case� the following �canonical�
extension of the greedy heuristic mentioned above has been studied inten�
sively in the theory of online algorithms� a new �le is placed on the disk with
the currently lowest accumulated heat� and the heat of the target disk is then
incremented by the heat of the new �le� It has been shown that this online
greedy method guarantees a competitive ratio of r � � � �

number of disks

����� This worst�case bound can be further improved� to a minor extent� by
more sophisticated allocation heuristics �
� 	��� However� it has also been
shown that no online algorithm can achieve a competitive ratio better than
� � �p

�
� ��� ����� When additional constraints on the set of eligible disks

are taken into account� the best possible competitive ratio is bounded �from
below� by � � dlog��number of disks�e ���� The problem of data allocation
in parallel disk systems has an additional constraint that is not considered in
any of the works mentioned above� Namely� in order to support intra�request
parallelism it is necessary to allocate the extents of a �le on di�erent disks�

Not only are �les to be created or deleted dynamically� but �les can grow
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or shrink� In addition� the access characteristics of �les can change over
time� and what was originally a good allocation under a certain workload
may not be any longer the case later in time� In order to deal with all
these dynamics of change it is necessary to incorporate into a �le manager
another tuning component that can redistribute the load by migrating data
from one disk to another at any time a certain imbalance in load is detected�
Migration of entire �les has been considered in the context of replicated �le
systems� On the other hand� migration of �le portions has been considered for
scalable� distributed hashing schemes but with di�erent objective functions
��� �� �� 
�� �
� ��� 
��� The only work that considers data migration in
the context of disk load balancing is ��
�� however� this work is restricted to
o��line and monolithic �i�e�� non�incremental� reorganization�

The load balancing component of our intelligent �le system consists of two
independent modules� one that performs �le allocation and a second one that
performs dynamic redistribution of data� These components are described in
Subsections ��� and ���� Subsection ��� explains how our system keeps track
of the heat and temperature of extents and disks�

��� Data Allocation

We have extended the greedy algorithm of ���� in order to deal with �dy�
namic� allocation of partitioned �les ����� In the static case where all �les
are given in advance� the algorithm �rst sorts all extents by descending heat
and the extents are allocated in sort order� For each extent to be allocated
the algorithm selects the disk with the lowest accumulated heat among the
disks which have not yet been assigned another extent of the same �le� This
method is illustrated in Figure � and is contrasted with a standard round�
robin scheme� The �gure shows the placement of three �les each consisting
of three extents with heat proportional to the height of the corresponding
boxes� We denote by i�j the extent j of �le i� Observe that in Figure � ex�
tents ���� ���� and ��� are allocated in this order to the current disk with the
lowest accumulated disk� however� when extent ��� is to be allocated we do
not choose disk � since it holds already an extent of �le �� but instead of this
allocate it on disk ��

In the dynamic case� the sorting step� is eliminated and the algorithm uses
only the information about the heat of the �les which have been allocated
and for which statistics are collected already� Thus� as compared to the
canonical extension discussed in the previous section� the heat of the target
disk remains unchanged at the time of an extent allocation� The heat will
adjusted correspondingly only after enough accesses to the newly allocated
extent have been recorded�

The disk selection can be made in such a way as to consider also� if
so desired� the cost of additional I�Os necessary to perform partial disk
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reorganization� Partial disk reorganization may have to be performed if�
due to �le additions and deletions� there is room to store an extent on a disk
but the space is not contiguous� Even more expensive is the situation when
disk i has the lowest heat and may appear as the obvious choice to store a
new extent of a �le� but this disk does not have enough free space� In order
to make room for the new extent we have to migrate one or more extents
to a di�erent disk� In order to account for these reorganization costs we
associate with every disk a status variable with regard to the extent chosen
for allocation� The status variable can take the values FREE� FRAG� and FULL�
depending upon whether the disk ��� has enough free space for the extent�
��� has enough space but the the space is fragmented� or ��� does not have
enough free space� Our �le allocation algorithm has the option of selecting
disks in increasing heat order without regard to their status� Alternatively�
we may select the disks in multiple passes� where in the �rst pass we only
choose those that have status FREE� More details and experimental studies
on this combined free�space management and data allocation method are
given in ����� In the current paper� we do not further consider the impact of
fragmented or full disks�

��� �Disk Cooling�

In order to perform dynamic heat redistribution we employ in our system a
dynamic load balancing step� called disk cooling� Basically� disk cooling is
a greedy procedure which tries to determine the best candidate� i�e�� extent�
to remove from the hottest disk in order to minimize the amount of data
that is moved while obtaining the maximal gain� The temperature metric
is used as the criterion for selecting the extents to be reallocated� because
temperature re�ects the bene�t�cost ratio of the reallocation since bene�t
is proportional to heat �i�e�� reduction of heat� and cost is proportional to
size �of the reallocated extents�� This approach is illustrated in Figure 	� the
basic disk cooling algorithm is given in Figure 
� The extent to be moved�
denoted by e� is reallocated on the coolest disk� denoted by t� such that t
does not hold already an extent of the corresponding �le and t has enough
contiguous free space�

In our system the disk cooling procedure is implemented as a background
demon which is invoked at �xed intervals in time� The procedure checks �rst
if the trigger condition is satis�ed or not �Steps � and � in Figure 
�� If
the trigger condition is false� the system is considered load balanced and no
cooling action is performed� In the basic disk cooling procedure the system
is not considered load balanced if the heat of the hottest disk exceeds the
average disk heat by a certain quantity 	� It is important to observe that
during each invocation of the procedure di�erent disks can be selected as
candidates for cooling after each cooling step�
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Our procedure considers implicitly the cost�bene�t ratio of a considered
cooling action and only schedules it for execution if is considered bene��
cial� These cost considerations are re�ected in Step 
 of the algorithm� The
hottest disk is likely to have already a heavy share of the load� which we can
�measure� by observing if its queue is non�empty� A cooling action would
most likely increase the load imbalance if a queue is present at the source
disk since it implies additional I�Os for the reorganization process� Hence�
we choose not to schedule the cooling action if this condition is satis�ed� We
also consider the cooling move not to be cost�bene�cial if� would it be exe�
cuted� the heat of the target disk would exceed the heat of the source disk�
Hence� although our background demon is invoked a �xed number of times�
only a fraction of these invocations result in data migration�

Our generic disk cooling procedure can be generalized in a number of
ways� In ���� we have shown how an explicit objective function based on disk
heat variance �DHV� can be used in a more general test for the cost�bene�t of
a cooling action� Thus� the bene�t is computed by comparing the DHV after
the potential cooling step with the DHV before the potential cooling step� In
addition� we can consider also explicitly the cost of performing the cooling�
Thus� a more accurate calculation of bene�t and cost would consider not
only the reduction in heat on the origin disk and the increase in heat on the
target disk� but also the additional heat caused by the reorganization process
itself� The cooling process is executed during two intervals of time� the �rst
corresponding to the read phase of the action and the second corresponding
to the write phase of the action� The additional heat generated during these
phases can be computed by dividing the size of the extent to be moved by
the corresponding duration of the phase� The duration times of the read and
write phase of a cooling action can be estimated by using a queueing model�
as shown in �����

Our disk cooling procedure can be �ne�tuned so that the unit of reallo�
cation is chosen dynamically in order to increase the potential of a positive
cost�bene�t ratio� In the basic procedure given in Figure 
 the unit of redis�
tribution is assumed to be an extent� However� in the case of large extents
that are very hot the cost of a redistribution may be prohibitive� In this case�
we can subdivide further an extent into a number of �xed�size fragments and
use a fragment as the unit of redistribution� Since all fragments of an extent
are of the same size we can now base the choice of the migration candidates
�see Step � in Figure 
� on the heat statistic instead of temperature�

In addition� the increase in the number of allocation units of a �le also
requires that we remove the allocation constraint on the target disk� namely
we do not require anymore that the disk should hold only one fragment
of a �le� Hence� we put here the objective of a balanced load above the
requirement that the �le partitioning is optimal�
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��� Heat Tracking

The dynamic tracking of the heat of blocks is implemented based on a moving
average of the interarrival time of requests to the same block� Conceptually�
we keep track of the times when the last k requests to each block occurred�
where k is a �ne�tuning parameter �in the range from 
 to 
��� To illustrate
this bookkeeping procedure� assume that a block is accessed at the points in
time t�� t��� � � � tn �n � k�� Then the average interarrival time of the k last
requests is tn�tn�k��

k
� and the estimated heat of the block is the corresponding

reciprocal k
tn�tn�k��

� Upon the next access to this block� say at time tn���

the block heat is re�estimated as k
tn���tn�k��

�

One may conceive an alternative method for heat tracking that keeps a
count of the number of requests to a block within the last T seconds� where
T would be a global tuning parameter� The problem with such a global ap�
proach is that it cannot track the heat of both hot and cold blocks in an
equally responsive manner� Hot blocks would need a relatively short value of
T to ensure that we become aware of heat variations quickly enough� Cold
blocks� on the other hand� would need a large value of T to ensure that we see
a su�cient number of requests to smooth out stochastic �uctuations� The
moving�average method for the interarrival time does not have this problem
since a �xed value of k actually implies a short observation time window for
hot blocks and a long window for cold blocks� Moreover� extensive experi�
mentation with traces from real applications with evolving access patterns
has shown that our tracking method works well for a wide spectrum of k
values� the heat estimation is fairly insensitive to the exact choice of k �
	��
Furthermore� under the assumption that requests to a block arrive according
to a Poisson process �i�e�� with exponentially distributed interarrival time��
the heat estimate would be Erlang�k distributed and the minimum k for
achieving a desired statistical con�dence in the heat estimate can be derived
analytically �	���

The adopted heat tracking method is very responsive to sudden increases
of a block�s heat� the new access frequency is fully re�ected in the heat es�
timate after k requests� which would take only a short while for hot blocks
�and reasonable values of k�� However� the method adapts the heat esti�
mate more slowly when a block exhibits a sudden drop of its heat� In the
extreme case� a hot block may suddenly cease to be accessed at all� In this
case� we would continue to keep the block�s old heat estimate as there are
no more new requests to the block� To counteract this form of erroneous
heat estimation� we employ an additional �aging� method for the heat esti�
mates� The aging is implemented by periodically invoking a demon process
that simulates �pseudo requests� to all blocks� Whenever such a pseudo re�
quest would lead to a heat reduction� the block�s heat estimate is updated�
otherwise the pseudo request is ignored� For example� assume that there is
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a pseudo request at time t� and consider a block with heat H� We compute
tentatively the new heat of the block as H � � k

t��tn�k��
� but we update the

heat bookkeeping only if H � � H� We notice that this selective aging method
is much more e�ective than the global one proposed in ����� The complete
heat tracking method is illustrated in Figure ��

The described heat tracking method requires a space overhead of �k � ��
�oating�point numbers per block� Since we want to keep this bookkeeping
information in memory for fast cooling decisions� it is usually unacceptable
to track the heat of each individual block� In order to reduce the overhead
involved in heat tracking� we actually apply the heat estimation procedure to
entire extents �or fragments of a speci�ed size�� We keep track of the times
tn�� � � � tn�k�� of the last k requests that involve any blocks of the extent in
the manner described above� and also we keep the number of accessed blocks
within the extent for each of the last k requests� Assume that the average
number of accessed blocks is R� Then the heat of the extent is estimated by

kR
tn�tn�k��

� Finally� we estimate the heat of a fraction of an extent by assuming

that each block in the extent has the same heat �which is extent heat divided
by extent size�� This extent�based heat tracking method reduces substantially
the space overhead of the block�based estimation procedure�y On the other
hand� our experimental studies �including studies with application traces�
have shown that the loss in accuracy versus block�based heat tracking is
minimal�

� Experimental Results

In this section we present an experimental performance evaluation of the �le
striping and allocation and load balancing algorithms presented above� The
testbed for these experiments was built on top of the �le system prototype
FIVE �
	�� FIVE runs on shared�memory multiprocessors under Solaris and
a few other Unix versions� It can manage either real data on real disks �i�e��
raw partitions�� or it can interact with a simulated disk system to estimate
the impact the virtual resources� The disk simulation keeps track of exact
arm positions as well as rotational positions of the disk head� Our simulator
considers head switch delays and incorporates a realistic estimation of the
seek time as a nonlinear function of the seek distance� as well as other details
of real disks ����� In the simulation mode� FIVE makes use of the process�
oriented simulation library CSIM ���� which manages the bookkeeping for the
virtual disks �e�g�� disk queues�� For the experiments reported here we used

yAdditional approximation techniques to further decrease the space overhead are de�
scribed in ����� When memory consumption is extremely critical� one can even employ
an approximation that requires only keeping the values of tn and tn�k�� and thus has
constant space overhead independently of k�
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a simulated parallel disk system whose parameters are described in Table ��
FIVE allows for the striping of �les on an individual or global basis and

incorporates heuristic algorithms for �le striping� allocation� and dynamic
load balancing� as described in Sections � and �� These algorithms can be
invoked on�line� i�e�� concurrently with regular requests to existing �les� We
have implemented a load generator that can generate synthetic workloads
according to speci�ed parameter distributions� or analyze �and �lter� exist�
ing traces and feed them as input to FIVE� For the performance studies
reported here we mostly relied on synthetic workloads� for which we could
control and systematically vary all relevant parameters� A representative
set of experiments with a synthetic workload is described in Subsection 	���
We also report on disk cooling studies using two trace�based experiments in
Subsection 	��� Further trace�based performance studies with FIVE can be
found in �
	��

� disks �� capacity of one disk 
�� MBytes
block size � KByte capacity of the disk system ���� GBytes
track size �
 blocks revolutions per minute 		�� rpm
� tracks per cylinder �� average seek time �� ms
� cylinders per disk �	�
 transfer rate per disk ��		 MBytes�s

Table �� Hardware characteristics of the simulated disk system

	�� Experiments With Synthetic Workload

For these experiments we generated a set of ����� �les and two types of work�
loads� one with a uniform access pattern and the second with a skewed access
pattern� as we shall describe in more detail below� The �les themselves were
identical for both workloads� and in both cases each �read or write� request
accessed an entire �le� The �le sizes were hyperexponentially distributed
such that each �le belongs to one of three di�erent classes with certain mean
values �and exponential distribution of �le sizes within each class�� Files of
class A had a mean size of �� KBytes� �les of class B had a mean size of

�� KBytes� and �les of class C had a mean size of ���� KBytes� Class C
�les were not accessed in the generated workload� they represent �passive�
data that occupies disk space and thus in�uence seek times� Class A �les
represent relatively small data objects� e�g�� simple HTML documents on the
WWW� Class B �les� on the other hand� represent relatively large multime�
dia data objects� The important point here is that the workload covered a
wide spectrum of request sizes� which we consider to be a particular challenge
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of advanced applications such as HTTP servers� multimedia information sys�
tems� and object�oriented database systems� In both workloads� we assigned
the same probability of selection to �les from the two classes A and B� Table
� summarizes the common characteristics of both synthetic workloads�

� of �les of class A ����
� of �les of class B ����
fraction of �les of class A ��

fraction of �les of class B ��

average size of �le class A �� KBytes
average size of �le class B 
�� KBytes
overall average request size ��� KBytes
standard deviation of request size 	�� KBytes
read fraction ���

Table �� Characteristics of the synthetic workload

�	�	� Workload With Uniform Access Frequencies

In this subsection we consider a workload with uniform access frequencies�
read and write accesses are generated to �le classes of type A or B� such that
each �le within a class has the same probability of selection� We generated a
sequence of � million �le requests with exponentially distributed interarrival
times�

We compared �rst the response time of �ve di�erent striping strategies�
namely a �le�speci�c one �Opt� and four global strategies �Gopt� Block�
Track� Cylinder� under light load �i�e�� an arrival rate of � request�second��
so that queueing e�ects were negligible� These striping strategies are�

�� Opt� �les are partitioned based on the �rst step of the heuristic ap�
proach described in Section � that minimizes response time in single�
user mode�

�� Gopt� the striping unit for each �le is the global optimum of 
 KBytes�
which was determined by using the �rst step of the heuristic method
of Section � under the assumption that all �les have the same average
request size R � ��� KBytes�

�� Block� the striping unit for each �le is a block �i�e�� � KByte��

	� Track� the striping unit for each �le is a track �i�e�� �
 KBytes��


� Cyl� the striping unit for each �le is a cylinder �i�e�� �

 KBytes��

�	



Note that for this �rst set of experiments we assumed a light load� hence the
striping unit for Opt and Gopt was computed without regard to throughput
and queueing delay considerations� Table � shows the average response time
for the �ve di�erent striping methods� these performance �gures are further
broken down into di�erent categories of request sizes in Table 	�

The Opt method outperforms all other methods for almost all request size
categories� However� the advantage over Block striping is marginal at best�
The improvement is signi�cant only for request sizes up to �� �or possibly
��� KBytes� For larger requests� the latency of the �slowest� disk rapidly
approaches the maximum latency under both Opt and Block� so that the
aggressive intra�request parallelism of the Block method does not incur an
additional penalty once the degree of parallelism exceeds a certain number�
As we will see below� the Block method exhibits severe drawbacks when the
request arrival rate is increased so that disk arm contention and the resulting
queueing delays become a factor� whereas the Opt method scales much better
with increasing load�

Compared to the Track and Cyl methods� Opt achieves signi�cant im�
provements in the order of �� percent �in the case of Track� for medium
to large requests between 
� and 
�� KBytes� For very large requests� all
methods �except Cyl� spread a �le across all �� disk� so that the performance
di�erences eventually become negligible when the request size is further in�
creased beyond � MByte�

The global striping method Gopt turned out to be very competitive to
the �le�speci�c striping method Opt� the advantage of Opt is more or less
negligible throughout the spectrum of request sizes� We also compared these
two methods with Gbest� the best possible global striping strategy whose
striping unit was found through exhaustive trials� For this particular work�
load the Gbest method has a striping unit of 
 KBytes and its performance
was almost identical to that of Opt and Gopt� So� although �le�speci�c strip�
ing did not prove to be truly superior to global striping in these experiments�
the positive conclusion from these light�load experiments is that our heuristic
optimization method did indeed approximate the real optimum very well�

Opt Gopt �
 KB� Block Track Cyl

�	�
	 �	��
 �	�
	 �
�
� 
��
	

Table �� Average response time in milliseconds of the synthetic workload
under light load �� � ��

In order to take into account throughput requirements and queueing de�
lays we performed a second set of experiments in which we varied the request
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request size �KB� Opt Gopt �
KB� Block Track Cyl
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Table 	� Average response time in milliseconds for di�erent request sizes of
the synthetic workload under light load �� � ��

arrival rate� For this set of experiments� we also considered two additional
striping strategies� namely�

�� Opt����� the optimal �le�speci�c striping unit is computed with the
additional constraint that a request arrival rate of � � �	� must be
supported� Accordingly� �les are partitioned subject to the constraint
that the average degree of intra�request parallelism is bounded by � �as
computed by the heuristics described in Section ���

�� Gopt����� the optimal global striping unit is computed for a request
arrival rate of � � �	�� The corresponding striping unit size is d�����e
� 
� KBytes�

Table 
 shows the average response times of the various striping methods
as a function of the request arrival rate� which was varied from �� up to
�	� requests per second� Note that although the �gures show explicitly only
response time� a fast growing curve for response time implies that beyond a
relatively small value for the arrival rate the throughput reaches saturation�
This also explains the � entries in Table 
� they denote those experiments
where the arrival rate exceeded the sustainable throughput and thus led to
excessive queueing and a continuously growing backlog of requests�

As Table 
 shows� the Opt method scales up with increasing arrival rate
much better than Block striping� However� for su�ciently high arrival rate�
Opt is clearly outperformed by Track and Cyl striping� the reason being that
the latter two methods employ lower degrees of intra�request parallelism and
can thus sustain higher load� The �gures also show the trend that Cyl will
eventually pass Track� as it is even more conservative in terms of parallelism
and resource consumption�

The striping methods that are speci�cally tuned for a particular arrival
rate outperform both Track and Cyl by almost a factor of two �in the case
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of ���	��� This demonstrates very nicely the need for application�speci�c
tuning of striping units� We also determined through exhaustive trials the
best possible striping units for the Gbest method under di�erent arrival rates�
For ���	� the response time of Gbest was approximately ��� ms� and this
was obtained for a global striping unit of �� KBytes� We note� however�
that such a tuning method that is based on exhaustive trials is completely
infeasible in practice� Thus� the fact that both the Opt and the Gopt methods
approached the real optima within approximately �� to �
 percent is indeed
a successful result and demonstrates the viability of our tuning heuristics�

� Opt Gopt Block Track Cyl Opt�	� Gopt�	�
�
KB� �
�KB�
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Table 
� Average response time in milliseconds for the synthetic workload as
a function of the request arrival rate �

In the above experiment� the Opt methods achieved only very small im�
provements over the corresponding Gopt methods� This almost negligible
advantage of Opt over Gopt does not seem to justify the increased software
complexity of �le�speci�c striping� However� �le�speci�c striping allows for
incremental restriping of individual �les when changing workload character�
istics require higher I�O rates or data rates for some crucial �les� A global
striping unit strategy does not support this type of recon�guration� Thus� for
global striping� a change of the striping unit requires unloading all �les� re�
initializing the disk system with the new striping unit and reloading the data�
This costly procedure leads to a signi�cant downtime of the system� For this
reason� we still believe that �le�speci�c striping is an essential requirement
for data management in parallel disk systems�

�	�	� Workload With Skewed Access Frequencies

In order to study the in�uence of data access skew and the e�ectiveness of
our�disk cooling� procedure� we have modi�ed the synthetic workload of the
previous subsection so that the distribution of �le access frequencies followed
a Zipf�like curve �everything else was identical to the previous setup�� Thus�
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if the �les are numbered from � to N� the probability of accessing a �le
numbered i� with i � N� is given by the formula� �	���

Prob�i � s� � �
s

N
�log�X����	�log�Y����	 ����

where X and Y are parameters that were set to �� and ��� respectively� The
parameter N denotes the number of active �les� i�e� �les in classes A and B�
which is set to ���� in our experiments� This probability distribution results
in a self�similar� skewed access pattern where a fraction X of the requests
refers to a fraction Y of the �les� and this skew is recursively repeated within
the fraction X of �hot� �les� Such skew patterns are common in many OLTP
and database applications� and they have been observed for WWW servers
as well ����

In order to study the e�ects of load balancing in isolation we did not per�
form any caching of the data in these experiments� Note that load balancing
is still a crucial problem even if caching is used� Caching would keep the
hottest blocks in main memory� but the remaining blocks can still exhibit a
signi�cant access skew�

Table � shows the average response time results for this experiment as a
function of the arrival rate �� We considered three di�erent striping strate�
gies� namely� Gopt�	�� Track� and Cyl� We do not show explicitly the results
for the strategies Block and Opt�	�� the Block strategy could sustain only
a throughput of about �� requests per second and started thrashing at this
point� while the performance of the Opt�	� strategy was almost identical to
that of Gopt�	�� All �les were pre�allocated based on a round�robin scheme�
and we compared the case without cooling against the case with cooling
switched on� The latter case is denoted by the ��C� su�x in Table �� A
cooling step was attempted every ����� seconds �i�e�� equivalently� every
��� regular requests�� the migration units were entire extents� and the load
imbalance threshold 	 was set to 
 percent �see Section �����

The response time �gures demonstrate that access skew does have a disas�
trous e�ect on performance� unless it is counteracted by load balancing� For
example� at an arrival rate of ��� requests per second� the average response
time of Track striping without cooling degrades by a factor of � compared to
the workload with uniform access frequencies� The underlying reason is that
under the skewed load the hottest disk had a much higher utilization �and
corresponding average queue length� than the overall disk system and thus
formed a premature bottleneck� at ����� the hottest disk had a utilization
of ���	 and an average queue length of ���� while the average disk utilization
and queue length �averaged over all disks� were ���� and ��
� respectively
�under Track striping�� In fact� all methods without cooling started thrash�
ing at an arrival rate of ��� requests per second or earlier� The cooling
procedure was able to reduce the utilization and the average queue length
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Table �� Average response time in milliseconds for the skewed synthetic
workload as a function of the request arrival rate �

of the hottest disk down to ��
� and 
�
� respectively� at ����� and could
thus improve the average response time signi�cantly� When approaching
the thrashing region� the response times of any striping strategy with cool�
ing switched on are an order of magnitude lower compared with the same
strategy with cooling turned o�� Note that cooling does incur a certain over�
head by migrating extents between disks� This leads to a small increase of
the overall disk utilization� and this is why the cooling methods exhibit a
slightly higher response time than the no�cooling methods under light load�
However� when the extra load due to cooling becomes a critical factor� cool�
ing is inactivated automatically� as described in Section ���� An analysis of
the invocation frequency distribution of cooling steps over the duration of
an experiment shows that the cooling frequency is high in the �rst tenth of
the experiment� and as soon as the load is su�ciently balanced �as estimated
by the heat bookkeeping� cooling is invoked only very infrequently due to
occasional load �uctuations that exceed the imbalance threshold�

Among the three cooling variants that are shown in Table � the Gopt�
��C method showed signi�cant advantages over Track�C striping under high
load� with response time improvements up to a factor of two� This demon�
strates that although load balancing and striping are orthogonal strategies
they are not independent� rather well tuned striping units and the cooling
procedure exhibit synergetic e�ects� Note that under the skewed load� the
Gopt�� method without cooling could not sustain a throughput of �� as all
our heuristic calculations for the derivation of striping units are based on
uniform access frequencies �i�e�� overly optimistic assumptions�� Track strip�
ing� on the other hand� achieves a better load balance because of its �ner
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striping units� but is still much inferior to the case with both tuned striping
units and cooling�

In summary� application�speci�cally tuned striping in combination with
cooling shows signi�cant performance advantages over conventional meth�
ods� Not surprisingly� load imbalance is only an issue under high load when
queueing delays start becoming a factor� One may argue that an easy cure
against load imbalance thus is to keep disk utilization low� However� for many
applications� this implies unnecessarily high costs as their performance re�
quirements could be met with fewer disks at higher utilization� Furthermore�
although system administration rules of thumb dictate that the disk utiliza�
tion should generally be kept below 
� percent� this is often impossible during
load peaks or when user demands grow faster than one can purchase addi�
tional disks� In fact� it is often exactly during load peaks� e�g�� the Monday
morning rush hour for retail banking or the hours right after an important
sports event for a WWW server� when good response time matters most�

	�� Experiments With Application Traces

To study the viability of the developed tuning procedures in a realistic appli�
cation setting� we also conducted extensive experiments based on block access
traces from a variety of applications including on�line transaction process�
ing� �le systems� o�ce document management� and WWW servers� Most of
these experiments con�rmed the results of the previous subsection� However�
while such traces capture several essential characteristics of real�life applica�
tion workloads �e�g�� workload evolution over time� including transient load
peaks�� one has to be extremely careful about generalizing trace�based re�
sults� Traces constitute short�term snapshots with certain peculiarities that
are not necessarily of fundamental nature� For this reason� we preferred de�
riving our basic performance results from a precisely controllable synthetic
workload� as discussed in the previous subsection� and we restrict ourselves
in this subsection to two sample results that were obtained with a WWW
server trace and a trace from a bank�s on�line transaction processing system�

�	�	� World
Wide
Web Server

This study is based on a trace that was recorded with the httpd logging
facility on the WWW server ucmp��berkeley�edu of the UC Museum of Pale�
ontology at Berkeley over a time period of ��� hours� Note that the fact that
the requests were traced at the server site automatically factors out �client�
caching� The trace contains �
����	 read accesses to an entirety of ����
HTML and other �les with heavily skewed access frequencies� The average
request size was �	 KBytes� and the standard deviation of the requests size
distribution was �
 KBytes�
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We studied this trace under a spectrum of load levels� This was done by
�speeding up� the arrivals in the original trace in the following way� Con�
sider two requests ri and ri�� in the original trace which have an interarrival
time of 	i� Using a speed�up factor of 
 the interarrival time between the
requests becomes 	i�
� Thus� in more general terms� if the original trace has
an average interarrival time of ���� a trace with speed�up factor 
 has an
average interarrival time of ����
�� Note that this method of �speeding up�
a trace� albeit somewhat speculative� preserves all access characteristics of
the original workload other than its arrival rate� particularly� the relative in�
terarrival times between requests are preserved which is essential to capture
load bursts� The only case where the �speed�up� transformation would se�
riously distort the workload is when a large number of consecutive requests
are correlated and must have a certain interarrival time� But this case is
rather unlikely given that a WWW server trace is typically based on a high
number of concurrent users�

Because of the small average request size and the moderate variance of
request sizes� tuning the striping unit was not really an issue for this work�
load� Rather the challenge in this trace was to cope well with the access skew
in combination with the dynamic load �uctuations� So we concentrated our�
selves on the impact of cooling� and compared a round�robin allocation for a
striping unit of one track �i�e�� �
 KBytes� without cooling� labeled �Track��
versus the case with cooling� labeled �Track�C�� Cooling was invoked every
��� seconds of the original time scale �or� equivalently� every ����
 seconds
of the accelerated trace�� with entire extents as migration units and an im�
balance threshold of 	 � ���
� Table � shows the average response time of
Track versus Track�C as a function of the acceleration factor 
�
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Table �� Average response time in milliseconds for the WWW workload as
a function of the request arrival rate �

Cooling exhibits noticeable performance even under medium load� and
dramatically improves response time by an order of magnitude for the highest
measured load� For 
������ the average disk utilization was �	 percent and
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the utilization of the hottest disk was �� percent without cooling� With
cooling� the average utilization increased slightly up to �
 percent because
of the additional load incurred by data migrations� but the utilization of
the hottest disk was reduced down to �� percent� which accounted for the
dramatic performance gain� Note that an average utilization of �
 percent
appears to be a very light load� however� one has to take into account that the
load �uctuates heavily over time with very long disk queues built up during
the load peaks� In terms of average disk queue lengths the improvement
by cooling was even more impressive� without cooling� the average queue
length of the hottest disk �averaged over all points of time when a request
was enqueued� was ��� whereas with cooling� this measure was ��� �i�e�� �
request in service and an expected value of ��� for the number of requests
that wait in the queue�� This e�ect is illustrated in Figure �� which shows
the response time and the cooling frequency as they vary over the duration
of the experiment� for the case of 
������ The improvement of response
time due to cooling even exceeds a factor of �� during the load peak�

�	�	� On
line Transaction Processing

A second study with real application workloads was based on an I�O trace
from the OLTP system of a large Swiss bank �Union Bank of Switzerland��
The database for this study consists of ��� �les with a total size of �� GBytes�
The I�O trace contains approximately 

����� I�O requests to these �les�
recorded during one hour� As in a typical OLTP application� most requests
read or write a single block �of size 
 KBytes in this application�� the av�
erage request size is approximately � KBytes with low variance� Thus� this
workload does not warrant any speci�c tuning of the striping unit� so that
we chose Track striping as the partitioning method� All �les were allocated
using a round�robin scheme� The workload exhibits heavily skewed access
frequencies both across �les and within the hot �les� In addition� the trace
contains signi�cant �uctuations in the access frequencies and in the overall
arrival rate of requests�

We compared the performance of round�robin placement without cooling
to round�robin allocation augmented with the cooling procedure� The cooling
method improved the average response time of the requests by approximately
a factor of � under high load�

As with the WWW experiment we measured response time versus di�er�
ent �speed�up� factors of the arrival rate� The results in Figure 
 are based
on an arrival rate �speed�up� factor of ��� As Figure 
 shows� the cool�
ing method could not improve response time in the initial light�load phase�
since the load imbalance of the vanilla method did not yet incur any severe
queueing� However� the cooling method did collect heat statistics during this
phase� This enabled the cooling method to rebalance the disk load by data
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migration� Then during the load peak �represented in Figure 
 by the sharp
increase of response time�� the cooling method achieved a response time im�
provement by a factor of 
��� Note that many OLTP applications have �soft�
response time constraints such as ensuring a certain response time for �
 per�
cent of the transactions� Thus� it is crucial to guarantee acceptable response
time even during load peaks�

Figure 
 also shows the frequency of the data migration steps invoked by
our cooling method� varying over time� The �gure shows that our algorithm
was careful enough so as not to initiate too many cooling steps during the
high�load phases� rather the data migrations were performed mostly during
the low�load phases� thus improving the load balance for the next high�load
phase at low cost� This robustness is achieved by explicitly trading o� the
bene�t of cooling versus its additional cost� as discussed in Section ��

� Conclusion

We have demonstrated the need for tuning the data placement in parallel
disk systems� and we have presented various tuning heuristics for data parti�
tioning� data allocation� and load balancing� The feasibility of the developed
methods has been shown in a number of performance experiments� including
simulations based on real�life traces�

We have developed an extended optimization procedure for �le strip�
ing that takes into account explicitly throughput requirements and queueing
delays and in the process we have developed an analytical approximation
to the well known fork�join problem ���� in the speci�c setting of parallel
disk systems� We have shown that our procedure for tuning the striping
unit�s� of �les is a very e�ective method for workloads with large variations
in request sizes� Such workloads arise� for example� in combined OLTP�deci�
sion�support applications� multimedia information systems� and many other
advanced database applications� Our extended optimization that considers
both steps of our heuristic outperforms all other striping methods for the
speci�ed load value or higher� while being competitive also for lighter load�

While �le�speci�c striping at best provides marginal performance gains
over a properly chosen global striping unit� we nevertheless believe that �le�
speci�c striping is important as a prerequisite for incremental repartitioning
of �les� Incremental repartitioning is crucial in order to cope with evolving
performance requirements and in order to support system scalability� For
example� when the throughput requirements of an application increase� we
can repartition merely the hottest �les in order to meet the new throughput
goal� which is possible since our approach supports �le�speci�c striping units�
Similarly� if more disks are added to a system� restriping of the most crucial
�les allows us to take advantage of the additional resources�
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The methods for data allocation and redistribution complement the data
partitioning objective of minimizing queueing delays at the disks under heavy
load� by distributing the load across the disks as evenly as possible and by
selectively redistributing the load dynamically by means of �disk cooling�
steps� Since our optimization procedure for data partitioning is based on
uniform access frequencies� the combination of appropriately tuned striping
and disk cooling is necessary to deal with skews in data access� By coupling
these two procedures our experiments have shown that� at high loads� we can
obtain substantial performance gains� The dynamic load redistribution pro�
cedure has been shown to be e�cient and robust� i�e�� it performs disk cooling
at a small cost and very selectively� i�e� only during periods of low activity�
We observe here that our procedures for data allocation and redistribution
can be integrated with techniques for clustering the hottest �les �extents�
on each disk in its center �	� ��� and with disk scheduling algorithms that
reorder the requests in a queue �e�g�� an �elevator� algorithm��

Our future work will be centered around the following two major issues�
combining the developed data placement methods with techniques for pro�
viding fault tolerance and high availability� and generalizing our approach
towards shared�nothing parallel database systems and systems based on net�
works of workstations�

Our placement methods are orthogonal to the proposed fault tolerance
techniques in that they can be combined� in a straightforward manner� with
arbitrary variants of either mirroring �e�g�� mirrored disks� interleaved declus�
tering� or chained declustering �
� �
� �
� �	� �	�� or error�correcting codes
�e�g�� parity groups of some type ���� ��� ��� ��� 
�� 
	� ��� ��� 
�� 
�� 

�
��� ���� or simply conventional logging ��	�� However� the placement of data
replicas or error�correcting information does itself provide additional degrees
of freedom that should be taken into account by an integrated approach in or�
der to ensure the best possible performance and availability for given system
costs �
���

In order to generalize our approach to a general shared�nothing parallel
database system we need to consider the impact of communication and CPU
costs� in addition to the disk I�O service time� For the partitioning problem�
the optimal partition size �e�g�� the interval width in an interleaved range�
partitioning scheme for relational data ��
�� would again be derived from the
optimal degree of parallelism� in analogy to our approach for striping� How�
ever� the operations under consideration are more complex �e�g�� relational
operators such as selection or join�� and the performance for a given degree
of parallelism depends also on communication overhead and startup costs
�thus requiring a generalization of our notion of latency� as well as on the
operations� CPU time consumption �hence requiring a generalization of our
notion of transfer time��

In all these considerations an underlying assumption is that the system
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consists of homogeneous processing nodes �e�g�� the same disk type is used
in the entire system�� A further� even more challenging step would be to
consider also heterogeneous systems where the processing nodes can di�er in
their performance characteristics �processor speed� memory size� disk stor�
age and performance capacity�� For example� networks of workstations� also
known as NOW ���� are evolving as a paradigm for high performance com�
puting� In order to make NOW a viable approach for large�scale data man�
agement it is crucial to develop appropriate self�tuning and self�reliant data
placement and storage techniques� A �rst approach along these lines� with
speci�c consideration to load balancing� is presented in �����
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Figure �� Striping with di�erent striping units
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Input� D � number of disks
R � average request size over all �les
Ri � average request size of �le i � for �le�speci�c partitioning
L � average �le size
Li � size of �le i � for �le�speci�c partitioning

� � average arrival rate of requests

Output� SUi � optimal striping unit of �le i � for �le�speci�c partitioning
SU � optimal global striping unit
SWi � optimal striping width of �le i

Step �� Apply Phase A optimization with respect to service time
a� File speci�c partitioning�

determine Popt�i� the optimal degree of parallelism for �le i�
by setting R � Ri in equation ���


b� Global partitioning�
determine Popt� the optimal average degree of parallelism�
by setting R � R in equation ���


Step � � Apply Phase B optimization to determine P �

the optimal �average
 degree of parallelism for the requested throughput� ��

Step �� Determine the e�ective degree of parallelism
a� File speci�c partitioning�

Peff�i � mini�Popt�i� PRi�R

b� Global partitioning�

Peff � min�Popt� P 


Step �� Determine optimal striping unit and width
a� File speci�c partitioning�

SUi � d�Ri � �
��Peff�i � �
e for � � Ri � Li

dRi�Peff�ie otherwise
SWi � mini�D� dLi�SUie


b� Global partitioning�

Compute SU as in step �a by replacing Ri by R� Li by L� and Peff�i by Peff

Compute SWi as in step �a

Figure �� Data partitioning algorithm
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disk cooling

Figure 	� Illustration of �disk cooling�

	




Input� D � number of disks
Hj � heat of extent j
H�

i � heat of disk i
H � average disk heat
Ei � list of extents on disk i sorted in descending temperature order
D � list of disks sorted in ascending heat order

Step 	� Initialization� target � not found
Step �� Select the hottest disk s
Step �� Check trigger condition�

if Hs � H � �� � �
 then
Step �� while �Es not exhausted
 and �target �� not found
 do

Select next extent e in Es

Step �� while �D not exhausted
 and �target �� not found
 do

Select next disk t in D in ascending heat order
if �t does not hold an extent of the �le to which e belongs


and STATUS�t
 �� FREE then

target � found
fi

endwhile

endwhile

Step 
 � if s has no queue then
H��

s � H�
s �He

H��
t � H�

t �He

if H��
t � He then

reallocate extent e from disk s to disk t
update heat of disks s and t�
H�

s � H��
s

H�
t � H��

t

fi

fi

fi

Figure 
� Basic disk cooling algorithm
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Figure �� Illustration of the heat tracking method for k � �� The relevant
interarrival times are shown by the double�ended arrows�
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Figure �� Response time and cooling frequency for the WWW workload
varying over time
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Figure 
� Average response time and cooling frequency for the OLTP work�
load varying over time

	



