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Abstract

Parallel disk systems provide opportunities for exploiting I/O parallelism in
two possible ways, namely via inter-request and intra-request parallelism. In
this paper we discuss the main issues in performance tuning of such systems,
namely striping and load balancing, and show their relationship to response
time and throughput. We outline the main components of an intelligent
file system that optimizes striping by taking into account the requirements
of the applications, and performs load balancing by judicious file allocation
and dynamic redistributions of the data when access patterns change. Our
system uses simple but effective heuristics that incur only little overhead. We
present, performance experiments based on synthetic workloads and real-life
traces.

Keywords: parallel disk systems, performance tuning, file striping, data
allocation, load balancing, disk cooling.

1 Introduction: Tuning Issues in Parallel Disk
Systems

Parallel disk systems are of great importance to massively parallel comput-
ers since they are scalable and they can ensure that I/O is not the limiting
factor in achieving high speedup [10, 55, 63]. However, to make effective use
of the commercially available architectures, it is necessary to develop intel-
ligent software tools that allow automatic tuning of the parallel disk system
to varying workloads. The choice of a striping unit and whether to choose a
file-specific striping unit versus a global striping unit are important param-
eters that affect the response time and throughput of the system. Equally
important is the decision of how to allocate the data on the actual disks
and how to perform redistribution of the data when access patterns change.
These tuning options need to be performed dynamically, using simple but
effective heuristics that incur only little overhead.

This paper presents a set of performance tuning techniques for parallel
disk systems. These techniques are orthogonal to the techniques for high
availability that are typically employed in parallel disk systems (e.g., RAID
levels), and can be applied to a wide spectrum of applications ranging from
conventional file systems and WWW servers to database systems. Through-
out the paper we assume that the underlying computer architecture is that
of a shared-memory multiprocessor; extensions to distributed-memory archi-
tectures are conceivable but are not considered in this paper.

In order to effectively exploit the potential for I/O parallelism in parallel
disk systems, data must be partitioned and distributed across disks. The
partitioning can be performed at two levels:



1. The physical (block or byte) level. The term striping is used for this
variant of partitioning schemes which divides a file into fixed-size runs
of logically consecutive data units that are assigned to disks in a round-
robin manner [43, 51, 65, 68]. The striping unit denotes the number of
consecutive data bytes or blocks stored per disk.

2. The application level. The term declustering has been employed in re-
lational database systems to denote partitioning schemes that perform
a horizontal division of a relation into fragments based on the values of
one or several attributes. Among the schemes employed for single at-
tribute partitioning are hashing and range partitioning [18, 27|, while
techniques based on Cartesian product files have been advocated for
multiple attribute declustering (e.g., [20, 21, 29, 44]).

Striping has an advantage over application-level methods in that it can be
applied as a generic low-level method for a wide spectrum of data types (all
of which are ultimately mapped into block-structured files). In this paper
we therefore restrict our attention to file striping for data partitioning. In
the following, a file may denote a tablespace or indexspace in a relational
database, a logical object cluster in an object-oriented database, a document,
such as WWW pages in a multimedia information system, or indeed simply
a Unix-like sequence-of-blocks file. We shall use the term striping width of
a file to denote the number of disks over which a file is spread. A logically
consecutive portion of the file that resides on one disk and whose size is a
striping unit is called a run. All runs of a file that are mapped to the same
disk are combined into a single allocation unit called an extent.

Striping provides opportunities for exploiting I/O parallelism in two pos-
sible ways. Intra-request (intra-operation) parallelism allows the parallel ex-
ecution of a single request by multiple disks. Inter-request (inter-operation)
parallelism can be achieved if independent requests are being served by the
disk system at the same time. The degree of parallelism in serving a single
data request is the number of different disks on which the requested data
resides.

1.1 Tuning Issues in Data Partitioning

The striping unit is an important parameter that must be chosen judiciously
in order to reduce the service time of a single request or to improve the
throughput of multiple requests [12, 13, 25, 33, 48, 80]. A large striping
unit tends to cluster a file on one disk, which does not allow any degree of
intra-request parallelism. In consequence, the service time of a request is
not improved, but the throughput is optimal if the requests are uniformly
spread across all disks. At the other end of the spectrum, a small striping



unit provides very good response time for light load, but severely limits the
throughput, as the total amount of device-busy time consumed in serving
a single request is increasing with decreasing striping unit. Consequently,
for small striping units the response time may deteriorate under heavy load
due to queueing delays. In practice, it is necessary to choose the striping
unit such that a certain objective function is minimized. One such objective
function aims at minimizing the response time subject to a constraint on the
achievable throughput.

In [11, 12, 48] heuristic methods are proposed to determine the strip-
ing unit of a disk array, based on the knowledge of the average request size
and the application’s expected multiprogramming level, under the assump-
tion of a closed queueing model. While these assumptions may be valid for
relatively small multiprogramming levels, they do not scale up to data man-
agement systems with large numbers of concurrent users, which translates to
high arrival rates with stochastic load fluctuation. It is most crucial for such
systems to guarantee a certain level of performance during these peak peri-
ods. Most heuristic methods also advocate choosing a global striping unit,
i.e., the same striping unit for all files in the system [11, 12, 48]. However,
many applications such as multimedia information systems (e.g., in digital
libraries or medical applications) exhibit highly diverse file characteristics
making it desirable to be able to tune the striping unit individually for each
file. Consider, for example, the case where a global striping unit may be
appropriate at some moment in time, but later on the load is shifting caus-
ing some crucial files to exhibit unusually high response time. File-specific
striping enables us to incrementally restripe only these crucial files, leaving
the other files with the (old) global striping unit.

After the striping unit has been determined (globally or on file-specific
basis) the file system must derive the striping width, i.e., the number of
disks across which the file(s) is (are) spread. In our model, a file is either
spread across all disks, or, if the file is relatively small, its width is obtained
as the quotient of the file size and the striping unit. Similar response-time
constraints to the ones discussed above, may justify, however, that some files
be stored on a “dedicated” subset of disks in order to avoid contention, and
hence their striping width would be limited by the number of disks in this
subset. This specific consideration of incorporating response-time constraints
is not pursued in this paper, however.

1.2 Tuning Issues in Data Allocation and Load Bal-
ancing

The striping unit(s) and striping width(s) are only some of the parameters
that affect the response time or throughput of a parallel disk system. The



decision of how to allocate or place the files on the actual disks is an equally
important one in order to obtain good load balancing. Load refers to the
amount of work done by each disk and it affects both the response time
and throughput. Balancing the load contributes towards minimizing the
average length of the queues associated with the disk (minimizing the service
time variance per disk would be another factor [49], which is not considered
in this paper, however). Very small striping units lead to very good load
balancing; in the extreme case each request involves all the disks in the
system so that the load is perfectly balanced. But throughput considerations
require for many applications that we choose large striping units (e.g., the
size of a cylinder) [11, 12, 13, 33, 48, 51, 80]. Thus, load balancing needs to
be performed even if striping is employed.

In order to perform disk load balancing it is necessary to take into account
the frequencies of the requests to the various files or data partitions as well
as the request sizes. To account for these parameters, the file system has to
keep track of the following related statistics:

e the heat of extents and disks, where the heat is defined as the sum
of the number of block accesses of an extent or disk per time unit, as
determined by statistical observation over a certain period of time,

e and the temperature of extents, which is defined as the ratio between
heat and size [14, 16, 42].

If the striping unit is a byte and all files are partitioned across all disks
in the system, then we obtain a well balanced I/O load. While this approach
may be adequate for supercomputer applications characterized by very large
request sizes [41] (i.e., a high data rate), it certainly limits the throughput
of transaction processing applications characterized by a high rate of read
and write requests to small amounts of random information [33] (i.e., a high
[/O rate). As soon as the striping unit is relatively large (e.g., a track or
cylinder), the need for load balancing reappears immediately, even if the files
are partitioned across all disks. This is due to the fact that the heat of
the various blocks or extents are often distributed in a highly non-uniform
manner.

1.3 Contribution and Outline of the Paper

This paper presents viable methods for several key issues in the automatic
tuning of parallel storage systems. Various aspects of earlier versions of
our approach have been published in [79, 80, 71, 72|, and [78, 84] give an
account of the more general project where this work has been embedded.
In this paper, we emphasize the system perspective and we describe more
advanced automatic tuning methods. We provide guidelines for potential



system architects of self-reliant storage systems and we give a comprehensive
experimental evidence of the viability and benefits of our approach.

We present a procedure for performing data partitioning that is a sig-
nificant extension to the algorithm outlined in [79]. In particular, our new
algorithm takes into account queueing delays explicitly, by providing a com-
putationally tractable analytical approximation for the fork-join queueing
model [62]. We describe in detail an effective method for heat bookeeping
and our demon-based dynamic migration procedure based on disk cooling.
Although the problems of data partitioning and load balancing are orthogo-
nal issues, they are not independent. The performance experiments reported
in this paper clearly illustrate this issue and show that the combined effects
of data partitioning and load balancing produce significant advantages over
conventional striping methods based on physical device units (e.g, block,
track).

The remainder of this paper is organized as follows. We will describe
in Sections 2 and 3 the main components of an intelligent file manager for
parallel disk systems that performs automatic data partitioning, data allo-
cation, and load balancing by incremental reorganization steps. In Section
4 we report on performance studies of our file system based on synthetic
workloads and real-life traces. We conclude with an outlook on additional
research avenues that we plan to explore in order to generalize our approach.

2 Data Partitioning

We have developed an analytic model to determine heuristically the optimal
striping unit and striping width on an individual file basis or on a global
basis. These parameters can be chosen for each file individually, based upon
the file’s estimated average request size R, or globally by using instead the
average request size over all files, denoted by R. In either case the optimiza-
tion can be carried out in one or two phases, A and B, depending upon the
anticipated arrival rate of requests. For low arrival rates of requests, where
we can assume that no queueing delays occur, Phase A chooses a degree of
parallelism that minimizes the service time of an average request of size R
(or R) which is equivalent to minimizing the response time if the system
operates in single user mode. Phase B chooses a degree of parallelism that
minimizes the (multi-user) response time subject to the constraint that the
achievable throughput is at least as high as the application’s average arrival
rate of requests to all files, denoted by A. The optimal degree of parallelism,
P, chosen for an average request is then adjusted by choosing the min-
imum (normalized as explained below) between the outcomes of Phases A
and B. The striping unit and width are then derived from the optimal degree
of parallelism, P,.



Our Phase B optimization uses an open queueing model in order to take
into account explicitly the throughput considerations and queueing delays.
As mentioned before, the striping method proposed by Chen et al. [12, 48] is
based on a closed queueing model. There, a heuristic formula is derived from
experiments as well as approximative analytical treatment, which suggests a
global striping unit of

SU:\/(LX(]\g—l)E 0

where L is the average latency (sum of seek and rotational delays) of a disk,
X is the transfer rate of a disk, M is the multiprogramming level of the
application, R is the average request size, and D is the number of disks. [11]
further extends this approach by considering the impact of parity writes in
a RAID level 5 system. Chen et al. [12, 48] also discuss the difficulty of
estimating the multiprogramming level. As we pointed out earlier, we con-
sider an open queueing model to be more appropriate for a data management
system with a large number of users (as opposed, for example, to a file server
in a LAN of workstations). In addition, an estimate of the average arrival
rate of requests to all files, )\, which is used in our model, is generally much
easier to obtain than an estimate of M, the multiprogramming level.

2.1 Phase A: Minimizing Service Time

Given a number of files to be allocated, Phase A determines the optimal
degree of partitioning on a file-specific (global) basis based on average request
request size R (R). This estimate can be derived in many cases from the file’s
type information. For example, in an OLTP system such as airline reservation
or phone call switching and accounting, one can typically expect an average
request size of a block. On the other hand, in a multimedia application such
as digital libraries or medical archiving, we can expect that all requests will
require access to an entire document (e.g., an image) and hence R would be
the file size.

Let P be the degree of parallelism involved in serving an average request
of size R, i.e., the number of disks involved in serving this request. In the
absence of queueing delays, the expected service time, to be denoted by
Tserv(R, P), is in fact equal to the expected response time, to be denoted by
Tresp(R, P). The expected service time is given by:

Tserv(Ra P) - mlax(tseek,i + trot,i) + ttrans (Ra P) (2)

where tseer; and t,41; (1 = 1, ..., P) denote the seek time and rotation time, re-
spectively, of disk 7 involved in serving the request. For tractability purposes,
we replace the right hand side by the following approximation:



Tserv(Ra P) = max(tseek,i) + max(trot,i) + ttrans(Ra P) (3)

Thus, we note that the solution to equation (3) provides in fact an upper
bound for T, (R, P).

In order to obtain approximate distributions for Tseer = max;(tseek,;) and
Trot = max;(tyo;) we make the standard assumption that the delays at each
disk, i.e., seek times and rotation times are independent and identically dis-
tributed random variables [8, 45]. In addition, we assume that the delay
probabilities are unconditional, i.e., the probability of a delay does not de-
pend upon the probabilities of previous delays. In reality, there may be a
certain degree of correlation among these variables, for example in the case
of a synchronized disk array where all disks heads move in tandem. Also,
in some applications, it is possible to have a sequence of requests to succes-
sive blocks on a disk; in other words the probability of a seek distance is
conditional upon the probabilities of previous seek distances.

Let us denote by dgeer,; and dyo; (i = 1,...P) the dual random variables
that give us the distances traveled on disk ¢ by the head or arm, respectively,
from the current location to the requested one. We shall compute first the
expected values of Dyeer = max;(dseer ;) and D, = max;(d,o ;) and use these
values to derive the expected values of Ty, and T;.,.

Under the assumptions given above, the cumulative distribution func-
tions for Dgeer and D, can be computed, respectively, as the product of P
cumulative distribution functions of the random variables, dseer,; and dyo,
corresponding to the P disks involved in serving the request.

We compute first the probability mass function of dgeepi:

Probdseer,; = 2] = % (4)
where C' denotes the number of cylinders on one disk. From here be obtain
the cumulative distribution function:

Probldseer; < 2] =1—(1— g)2 )

It was shown in [8] that the expected value F[Dge] is given by :

P9
B[Dseer) = C(1 =11 5; +1

=1

) (6)

The product in equation (6) can be approximated by the following ex-
pression, with constants a = 0.577 and b = —0.118:

E[Dyut] = C(1 = a — bIn(P)) (7)



From here the expected value of T, can be approximated by the follow-
ing linear equation with appropriate (disk-type-dependent) constants e and

f:

E[Tseek] = eE[Dseek] + f (8)

We note here that the equation which converts seek distance in cylinders
to seek time consists in fact of two components, a non-linear one and a linear
one [8, 67]. However, in our model we are interested only in the expected
value of the seek distance and the corresponding expected value of the seek
time, and the expected value of the seek distance lies in the linear part of
the distance-time equation.

The rotation distance on a given disk ¢, d,4;, gives the fraction of a full
rotation that is necessary in order to position the arm on the first block
of the current request. In order to compute E[D, ], we make the common
assumption that d,.; is a uniformly distributed variable in the range [0, 1],
thus:

Probldyo; <r]=r 9)

From here we obtain the cumulative distribution function of D,, =
max;(d,ot;) as :

P
Prob|D,, <r]= H Probld,e; <r]= rP (10)
i=1
and furthermore E[D,] = PLjA' It follows that the expected value of T},
is given by:
ElTo] = —-—ROT (11)
rot|] — P—|— 1

where ROT denotes the rotation time of a disk.

It can be seen from these equations that as the degree of parallelism, P,
increases, both the expected seek time, E[Tyeex], and the expected rotation
time, F[T,,], increase also. For small requests these two components of
service time are the dominant ones, hence the service time increases also.
The only component of the service time that decreases with an increased
degree of parallelism is the transfer time ¢;.4,s(R, P). Each disk transfers %
blocks (assuming, for simplicity, identical subrequest sizes on the disks)), and
if we ignore cylinder and head switches, the transfer time can be estimated

as BROT where B is the number of blocks in a track. However, in order

P B
to account for the fact that these % blocks span over track and cylinder

boundaries we add corresponding correction terms and obtain:

10



R
Eltirans (R, P)] = (nps — Nes)ths + Nestes + == ROT (12)

PB
where
nps  is the number of head switches (including cylinder switches),
Nes is the number of cylinder switches,
ths is the head switch delay, and
tes is the cylinder switch time (time for a seek of distance 1).

Using simple probability arguments we estimate

R/P B—(R/P— ([EE1 - 1)B) -1 B _q
o (RIPY B RP (S 0B -1 g1
B B B
P TB - (R/P— ([E21 - 1)B) -1 R _q
o fBP TBo(RP(E 0B 1 Eo1
TB TB TB
and we obtain:
E_1 R_4 E_1 R
_ (P P P
E[ttrans(RaP)] — ( B TB )th5+ TB tCS+PBROT (15)

where T is the number of tracks in a cylinder.
Combining the above results we obtain the following formula for the ex-
pected service time:

P
E[TSQTU(R, P)] = 60(1 —a — bln(P)) + f"‘ P——HROT (16)
E_1 £_ B _1 R
P P P
+( B e tns + 5 tcs+PBROT

The trade-offs between increased seek and rotation time on one hand and
reduced transfer time on the other hand for various degrees of parallelism
are illustrated also in Figure 1. This example considers a file that is being
striped across 4 disks with three different striping units and resulting degrees
of intra-request parallelism. The figure traces the execution of an I/O request
of size 4 blocks for the three configurations. In addition to the service time,
the figure also illustrates the device-busy time for the given request, which
is the sum of the times that the disks are involved in the request. For
illustration purposes the seek and rotation times are combined together into
latency time.

The optimal degree of parallelism, P,,;, can be determined by finding the
minimum of the function E[Ty.,(R, P)], i.e., by solving the following cubic
equation for P:

11



dE[Tyers(R, P)] ROT eCb PROT

— _ _ 1
dP P+1 P (P+1)? (17
+(R _R)t_ R RROT
pP2TB  p:B’'" prrgp'e T T p2p

= 0

2.2 Phase B: Minimizing Response Time by Consider-
ing Throughput and Queueing Delay

An increased degree of parallelism leads not only to trade-offs between seek
and rotation time on one hand and reduced transfer time on the other hand,
but also affects adversely the device-busy time of a request, i.e., the sum of
the times that the disks are involved in the request and hence are not available
for other requests. The relationship between the device-busy time and the
various components of the response time is illustrated in the execution of
requests in Figure 1. The throughput, measured as the number of requests
completed per time unit, is inversely proportional to the average device-busy
time of a request. Thus, higher degrees of parallelism lead to “unproductive”
positioning times and, hence, to lower throughput.

The Phase A model for service time minimization has assumed that there
are no interferences among the various requests and that no queueing delays
occur. This is obviously not the situation in a multiprogramming environ-
ment; especially under heavy load, i.e., a high arrival rate, queueing delays
play an important role. The scenario where each I/O request is served by a
single disk is well understood and can be modeled via an M/G/1 queueing
model [39]. We observe, however, that no general analytical model is known
for so called fork-join queueing model [62, 52], i.e., for the case when I/0O
requests are served by multiple disks and the number of disks involved varies
from request to request. An exception is the case when exactly two disks are
being involved in serving every request [23, 24].

We present in this section a simplified and computationally tractable
analytic approximation to a fork-join model, under the assumption of perfect
load balance. More specifically, we compute first the mean response time on
each disk, assuming the requests are equally distributed among the disks
and that each disk can be represented as an M/G/1 system. Then, we use
an approximation method outlined in [45] in order to compute the expected
response time for requests with degree of parallelism P (averaged over the
requests to all files) as the maximum among the response times of the P
participating disks.

Our analytic approximation to the queueing model requires that we pro-
vide an estimate of the average arrival rate to all files in the system, denoted

12



as A, in addition to the average request size, across all files, denoted as R.
Note that the value of R can be derived by sampling, or, alternatively, it can
be computed from the average request sizes R; to the individual files and the
access frequencies of the files. The objective of Phase B is to compute the
optimal value for P, the average degree of parallelism.

Given that requests in our system have an average arrival rate of X and
an average degree of parallelism of P, we obtain the overall arrival rate for
the constituent subrequests as A * P. Under the assumption of a perfectly
balanced system where the subrequests are equally distributed among the
disks, the subrequest arrival rate to a given disk i (i = 1, ..., D), to be denoted
as \;, can be computed as:

!

A

i = — 18
_ (19)
with D standing for the number of disks in the system.
The average subrequest size, to be denoted as S, can be derived as:
- R
S = 19
u (19)

The service time for an individual subrequest to disk 7, to be denoted by
tserv,i(S), can be computed by using the standard formulae for the service
time of a single disk. We can express the utilization of disk 7, p;, as:

Pi = >\z * tserv,i(g) (20)

Using our assumption that each disk can be viewed as an M/G/1 queue,

the expected value of ¢,.4,:(5), the response time of the subrequests served
at disk 4, is given as [39]:

1 + Ci2
2(1 - py)
where ¢ stands for the squared coefficient of variation of the service time of

subrequests at disk 7. ¢? is defined as the ratio of the corresponding variance
(VAR) and expected service time:

E[tresp,i (g)] = E[tserv,i (g)] + pi * E[tserv,i (g)] * (21)

o _ VAR[tyeri(S)
! E[tserv,i(S)P

(22)

Also from M/G/1 queueing theory we obtain the formula below which
relates the variance of the response time of individual subrequests on a disk
¢ to the first three moments of their service time:

<\ rad )\iE[tserv,i (?)3] )\?E[tserv,i (3)2]2
VARltre(5)) = VARlfarss (8] + =5 5722 5 i

(23)

13



The response time for requests of size R served by P disks, to be denoted
as Tresp(R, P), satisfies the equality:

E[Treqp(R, P)] = max(tres.i(S)) (24)

In order to derive an analytic expression for the above equation, we make
use of an approximation method presented in [45] which has been shown to
be quite accurate if the response times of the individual subrequests, i.e.,
tresp,i» obey a normal distribution. This approximation states that the ex-
pected response time for a request can be estimated as the response time of
an individual subrequest plus a ”correction” factor, which accounts for the
slowest subrequest:

E[tresp,z' (g)] + \/VAR[trespyi(§)] \/_I;%_l_l fO?” F < 3

Eltrespi(S)] + \/ VARItrespi(S)]y/210g P for P >3
(25)

We have conducted a series of experiments and these have shown that
the assumption of normally distributed response times for the individual
subrequests is a valid one.

We observe that with an increase in the variance of the response time
of individual subrequests, the correction factor increases correspondingly.
The impact of the degree of parallelism P on the different components of
the response time which we described informally in Figure 1 is taken into
account implicitly by the correction factor in equation (25).

In order to calculate E[T.s,] in equation (25) it is necessary to compute
the first three moments of the subrequests’ service time distribution, namely,
Eltseri(S)], Eltsersi(S)?], and Eltsery:(S)?]. For this calculation we need to
derive the probability density function of #s,;(S). The probability density
functions of the corresponding seek and rotation times, i.e., foeer; and fror,
can be derived from equations (5) and (9), respectively; the probability den-
sity function of the transfer time, i.e., fiuns; is @ constant whose value is
obtained by setting P = 1 in equation (12). Finally, the probability density
function for ts,;(S) can be obtained by convoluting the probability density
functions fseek,ir frot,i» and firansi. The full details of this derivation are given
in [84].

The value P which minimizes equation (25) can be found iteratively, by
going through the range of possible values for P (this is obviously bounded
by D, the number of disks in the system). We choose this approach since
equation (25) is not easily differentiable, unlike its counterpart in Phase A,
namely, equation (16).

E[Tyesp(R, P)] =

14



2.3 Putting It All Together: the Algorithm for Data
Partitioning

The complete algorithm for data partitioning is outlined in Figure 2 below. If
we anticipate a low arrival rate of requests and desire to perform optimization
only by using Phase A, then Steps 2 and 3 are omitted. For file-specific
partitioning Steps 1, 3, and 4 need to be iterated over the number of files in
the system. On the other hand, for global partitioning, the above steps need
to be executed only once, with one exception as explained below.

The effective degree of parallelism, P, s, is computed in Step 3 by choos-
ing the minimum between the the optimal degrees of parallelism computed
in Steps 1 and 2. The factor R;/R is used to normalize the outcome of Step
2. This is due to the fact that for requests larger than R, we want the degree
of parallelism of file ¢ to exceed P, and if R; is smaller than R, then P,y
should be smaller than P.

The optimal striping unit and striping width are then derived from P, ;
(or P.ss, respectively) in Step 4. If all I/O requests start at run boundaries
then the striping unit of a file, SU;, can be derived by using the formula
[P:;;i]. This is also the case when the requests are for individual blocks, i.e.,
R; = 1, or for the entire file, i.e., R; = L;, with L; being the file size. On the
other hand, if the requests can start at any block inside a run, the formula
above yields a striping unit which cannot support in most cases the degree
of parallelism Peys;; this in fact increases P.f¢; by one. In order to cover
this case, the striping unit is derived by the alternative formula [#]
which guarantees a degree of parallelism of FP.ss; in all cases. In the case
of Psr; = 1, the striping unit should be chosen as large as possible, i.e.,
SU; = L;, with L; being the file size. Finally, the striping width, denoted as
SW;, is chosen as high as possible in order to support inter-request parallelism
also, in addition to the intra-request parallelism optimized by the above steps.
Notice that the striping width SW; needs to be computed individually also in
the case of global partitioning since some files may be too small to be spread
over all the disks.

The algorithm outlined in Figure 2 accomplishes static partitioning, since
all the files are allocated at the same time. However, the algorithm can
be extended easily to perform dynamic partitioning. Dynamic partitioning
and the complementary procedure of incremental repartitioning need to be
performed when new files are added, old files are deleted, or when the access
characteristics of some files change substantially. Let us discuss here the case
when a new file needs to be added to the system. We need to recompute first
the access characteristics specified in the input to the partitioning algorithm,
i.e., toreadjust R, S, and X in order to account for the addition of the new file.
In order to perform these calculations we need to estimate R;, the average file
request size, as well as \;, the average arrival rate of requests to the new file.
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As discussed before, this information may be derived by sampling existing
files of the same type, or may be provided as an administrator hint (e.g.,
when we consider a large database application). We then invoke the static
partitioning algorithm given above on the new file in order to determine its
effective degree of parallelism, P, ;, and its striping unit and width.

A companion incremental repartitioning procedure is invoked periodi-
cally. This procedure checks first if a trigger condition is satisfied in order
to warrant incremental repartitioning. The trigger condition consists of two
parts:

(1) ?new %_ﬁold a_nd . .
(2) E[tresp(Rnewa Pnew)] > E[tresp(Rolda Pold)] + €,

with € being a system determined parameter. The new set of statistics is
computed by performing Steps 1 through 3 of the static partitioning algo-
rithm; the old set of statistics is the one computed at the last invocation of
this procedure. If the trigger condition is satisfied then we proceed to do
incremental repartitioning of £ files. The procedure considers candidate files
for reorganization by using a list in which the files are sorted in descending
order of heat. We use heat as an ordering criterium since this measures the
product of arrival rate and file size; an early repartitioning of the hottest files
will make the biggest contribution to the average degree of parallelism P,,.
Note that, although P, may be different from P4, a particular file i may
not need to be reorganized if the value of P,ss; does not change.

3 Load Balancing

The need for load balancing was mentioned already in Section 1 in the context
of data allocation. Recall that load balancing does not become obsolete when
striping is employed. Many applications require that we choose large striping
units in order to achieve a certain throughput with multi-block requests. For
example, Gray et al. have proposed the parity striping scheme [33], where the
distribution of data blocks is based on a very large (possibly infinite) striping
unit, and similar results on the throughput limits of fine-grained striping have
been stated in [12, 13, 48, 51, 59, 79, 80]. However, a coarser striping unit
increases the probability of load imbalance under a skewed workload [13, 51].
Addressing this tradeoff solely by tuning the striping unit is only a (bad)
compromise. Thus, additional methods for load balancing are called for,
regardless of whether data is partitioned or not.

Obviously, the load balance of a disk system depends on the placement
of data, regardless of whether the files are partitioned or not. The data
placement problem is similar to the file allocation problem in distributed
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systems [19] and falls in the class of NP-hard problems (the simplest case
is equivalent to the NP-complete problem of multiprocessor scheduling —see
problem [SS8] in [26]). Hence, viable solutions must be based on heuristics.
The worst-case performance of these heuristics methods can be measured in
terms of their competitive ratio, which is defined as the ratio between the
heat of the hottest disk under a given heuristic placement and the heat of the
hottest disk under an optimal placement. Good heuristics based on greedy
placement [32] or iterated bin-packing [17] are well understood for the static
file allocation problem with non-partitioned files, where the heat of each file
is known in advance. In the greedy algorithm,which was adopted in the
Bubba parallel database machine [14], the files are first sorted by descending
heat and then they are allocated in this order where in each step the disk
with the lowest accumulated heat is selected. Under this greedy heuristic,
the competitive ratio is bounded by % — 3Xnumbe; oF diks < 1.34, while
for the iterated bin-packing algorithm of [17] the corresponding competitive
ratio is approximately 1.22. We observe here that these results are derived
from specifically constructed “adversary” inputs, and there is experimental
evidence that these heuristic allocation algorithms perform better for most
realistic inputs.

In practice, realistic algorithms for static allocation of non-partitioned
files need to consider additional parameters and system constraints such
as controller contention and storage space limitation. A comprehensive,
heuristic optimization method which considers some of these constrained
is presented in [82], where a non-linear programming solution embedded in
a queueing network model is described. Moreover, in many application envi-
ronments,the files are not allocated all at the same time, but rather some files
are allocated dynamically. For this dynamic case, the following “canonical”
extension of the greedy heuristic mentioned above has been studied inten-
sively in the theory of online algorithms: a new file is placed on the disk with
the currently lowest accumulated heat, and the heat of the target disk is then
incremented by the heat of the new file. It has been shown that this online
greedy method guarantees a competitive ratio of r = 2 — m
[32]; This worst-case bound can be further improved, to a minor extent, by
more sophisticated allocation heuristics [5, 40]. However, it has also been
shown that no online algorithm can achieve a competitive ratio better than
1 + % ~ 1.7 [22]. When additional constraints on the set of eligible disks
are taken into account, the best possible competitive ratio is bounded (from
below) by 1 + [log,(number of disks)] [3]. The problem of data allocation
in parallel disk systems has an additional constraint that is not considered in
any of the works mentioned above. Namely, in order to support intra-request
parallelism it is necessary to allocate the extents of a file on different disks.

Not only are files to be created or deleted dynamically, but files can grow

17



or shrink. In addition, the access characteristics of files can change over
time, and what was originally a good allocation under a certain workload
may not be any longer the case later in time. In order to deal with all
these dynamics of change it is necessary to incorporate into a file manager
another tuning component that can redistribute the load by migrating data
from one disk to another at any time a certain imbalance in load is detected.
Migration of entire files has been considered in the context of replicated file
systems. On the other hand, migration of file portions has been considered for
scalable, distributed hashing schemes but with different objective functions
[2, 6, 9, 50, 75, 76, 83]. The only work that considers data migration in
the context of disk load balancing is [38]; however, this work is restricted to
off-line and monolithic (i.e., non-incremental) reorganization.

The load balancing component of our intelligent file system consists of two
independent modules: one that performs file allocation and a second one that
performs dynamic redistribution of data. These components are described in
Subsections 3.1 and 3.2. Subsection 3.3 explains how our system keeps track
of the heat and temperature of extents and disks.

3.1 Data Allocation

We have extended the greedy algorithm of [32] in order to deal with (dy-
namic) allocation of partitioned files [79]. In the static case where all files
are given in advance, the algorithm first sorts all extents by descending heat
and the extents are allocated in sort order. For each extent to be allocated
the algorithm selects the disk with the lowest accumulated heat among the
disks which have not yet been assigned another extent of the same file. This
method is illustrated in Figure 3 and is contrasted with a standard round-
robin scheme. The figure shows the placement of three files each consisting
of three extents with heat proportional to the height of the corresponding
boxes. We denote by i.j the extent j of file i. Observe that in Figure 3 ex-
tents 2.2, 1.2, and 3.1 are allocated in this order to the current disk with the
lowest accumulated disk; however, when extent 3.3 is to be allocated we do
not choose disk 3 since it holds already an extent of file 3, but instead of this
allocate it on disk 2.

In the dynamic case, the sorting step, is eliminated and the algorithm uses
only the information about the heat of the files which have been allocated
and for which statistics are collected already. Thus, as compared to the
canonical extension discussed in the previous section, the heat of the target
disk remains unchanged at the time of an extent allocation. The heat will
adjusted correspondingly only after enough accesses to the newly allocated
extent have been recorded.

The disk selection can be made in such a way as to consider also, if
so desired, the cost of additional I/Os necessary to perform partial disk
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reorganization. Partial disk reorganization may have to be performed if,
due to file additions and deletions, there is room to store an extent on a disk
but the space is not contiguous. Even more expensive is the situation when
disk ¢ has the lowest heat and may appear as the obvious choice to store a
new extent of a file, but this disk does not have enough free space. In order
to make room for the new extent we have to migrate one or more extents
to a different disk. In order to account for these reorganization costs we
associate with every disk a status variable with regard to the extent chosen
for allocation. The status variable can take the values FREE, FRAG, and FULL,
depending upon whether the disk (1) has enough free space for the extent,
(2) has enough space but the the space is fragmented, or (3) does not have
enough free space. Our file allocation algorithm has the option of selecting
disks in increasing heat order without regard to their status. Alternatively,
we may select the disks in multiple passes, where in the first pass we only
choose those that have status FREE. More details and experimental studies
on this combined free-space management and data allocation method are
given in [79]. In the current paper, we do not further consider the impact of
fragmented or full disks.

3.2 “Disk Cooling”

In order to perform dynamic heat redistribution we employ in our system a
dynamic load balancing step, called disk cooling. Basically, disk cooling is
a greedy procedure which tries to determine the best candidate, i.e., extent,
to remove from the hottest disk in order to minimize the amount of data
that is moved while obtaining the maximal gain. The temperature metric
is used as the criterion for selecting the extents to be reallocated, because
temperature reflects the benefit/cost ratio of the reallocation since benefit
is proportional to heat (i.e., reduction of heat) and cost is proportional to
size (of the reallocated extents). This approach is illustrated in Figure 4; the
basic disk cooling algorithm is given in Figure 5. The extent to be moved,
denoted by e, is reallocated on the coolest disk, denoted by ¢, such that ¢
does not hold already an extent of the corresponding file and ¢ has enough
contiguous free space.

In our system the disk cooling procedure is implemented as a background
demon which is invoked at fixed intervals in time. The procedure checks first
if the trigger condition is satisfied or not (Steps 1 and 2 in Figure 5). If
the trigger condition is false, the system is considered load balanced and no
cooling action is performed. In the basic disk cooling procedure the system
is not considered load balanced if the heat of the hottest disk exceeds the
average disk heat by a certain quantity . It is important to observe that
during each invocation of the procedure different disks can be selected as
candidates for cooling after each cooling step.
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Our procedure considers implicitly the cost/benefit ratio of a considered
cooling action and only schedules it for execution if is considered benefi-
cial. These cost considerations are reflected in Step 5 of the algorithm. The
hottest disk is likely to have already a heavy share of the load, which we can
“measure” by observing if its queue is non-empty. A cooling action would
most likely increase the load imbalance if a queue is present at the source
disk since it implies additional I/Os for the reorganization process. Hence,
we choose not to schedule the cooling action if this condition is satisfied. We
also consider the cooling move not to be cost-beneficial if, would it be exe-
cuted, the heat of the target disk would exceed the heat of the source disk.
Hence, although our background demon is invoked a fixed number of times,
only a fraction of these invocations result in data migration.

Our generic disk cooling procedure can be generalized in a number of
ways. In [72] we have shown how an explicit objective function based on disk
heat variance (DHV) can be used in a more general test for the cost/benefit of
a cooling action. Thus, the benefit is computed by comparing the DHV after
the potential cooling step with the DHV before the potential cooling step. In
addition, we can consider also explicitly the cost of performing the cooling.
Thus, a more accurate calculation of benefit and cost would consider not
only the reduction in heat on the origin disk and the increase in heat on the
target disk, but also the additional heat caused by the reorganization process
itself. The cooling process is executed during two intervals of time, the first
corresponding to the read phase of the action and the second corresponding
to the write phase of the action. The additional heat generated during these
phases can be computed by dividing the size of the extent to be moved by
the corresponding duration of the phase. The duration times of the read and
write phase of a cooling action can be estimated by using a queueing model,
as shown in [72].

Our disk cooling procedure can be fine-tuned so that the unit of reallo-
cation is chosen dynamically in order to increase the potential of a positive
cost/benefit ratio. In the basic procedure given in Figure 5 the unit of redis-
tribution is assumed to be an extent. However, in the case of large extents
that are very hot the cost of a redistribution may be prohibitive. In this case,
we can subdivide further an extent into a number of fixed-size fragments and
use a fragment as the unit of redistribution. Since all fragments of an extent
are of the same size we can now base the choice of the migration candidates
(see Step 3 in Figure 5) on the heat statistic instead of temperature.

In addition, the increase in the number of allocation units of a file also
requires that we remove the allocation constraint on the target disk, namely
we do not require anymore that the disk should hold only one fragment
of a file. Hence, we put here the objective of a balanced load above the
requirement that the file partitioning is optimal.
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3.3 Heat Tracking

The dynamic tracking of the heat of blocks is implemented based on a moving
average of the interarrival time of requests to the same block. Conceptually,
we keep track of the times when the last £ requests to each block occurred,
where £ is a fine-tuning parameter (in the range from 5 to 50). To illustrate
this bookkeeping procedure, assume that a block is accessed at the points in
time ty, ta,..., t, (n > k). Then the average interarrival time of the k last
requests is —m=k+L and the estimated heat of the block is the corresponding

reciprocal % Upon the next access to this block, say at time ¢,
k

the block heat is re-estimated as T

One may conceive an alternative method for heat tracking that keeps a
count of the number of requests to a block within the last 7" seconds, where
T would be a global tuning parameter. The problem with such a global ap-
proach is that it cannot track the heat of both hot and cold blocks in an
equally responsive manner. Hot blocks would need a relatively short value of
T to ensure that we become aware of heat variations quickly enough. Cold
blocks, on the other hand, would need a large value of T" to ensure that we see
a sufficient number of requests to smooth out stochastic fluctuations. The
moving-average method for the interarrival time does not have this problem
since a fixed value of k£ actually implies a short observation time window for
hot blocks and a long window for cold blocks. Moreover, extensive experi-
mentation with traces from real applications with evolving access patterns
has shown that our tracking method works well for a wide spectrum of &
values; the heat estimation is fairly insensitive to the exact choice of k [84].
Furthermore, under the assumption that requests to a block arrive according
to a Poisson process (i.e., with exponentially distributed interarrival time),
the heat estimate would be Erlang-k distributed and the minimum & for
achieving a desired statistical confidence in the heat estimate can be derived
analytically [46].

The adopted heat tracking method is very responsive to sudden increases
of a block’s heat; the new access frequency is fully reflected in the heat es-
timate after k£ requests, which would take only a short while for hot blocks
(and reasonable values of k). However, the method adapts the heat esti-
mate more slowly when a block exhibits a sudden drop of its heat. In the
extreme case, a hot block may suddenly cease to be accessed at all. In this
case, we would continue to keep the block’s old heat estimate as there are
no more new requests to the block. To counteract this form of erroneous
heat estimation, we employ an additional “aging” method for the heat esti-
mates. The aging is implemented by periodically invoking a demon process
that simulates “pseudo requests” to all blocks. Whenever such a pseudo re-
quest would lead to a heat reduction, the block’s heat estimate is updated;
otherwise the pseudo request is ignored. For example, assume that there is
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a pseudo request at time ¢’ and consider a block with heat H. We compute
tentatively the new heat of the block as H' = ﬁ, but we update the
heat bookkeeping only if H' < H. We notice that this selective aging method
is much more effective than the global one proposed in [69]. The complete
heat tracking method is illustrated in Figure 6.

The described heat tracking method requires a space overhead of (k + 1)
floating-point numbers per block. Since we want to keep this bookkeeping
information in memory for fast cooling decisions, it is usually unacceptable
to track the heat of each individual block. In order to reduce the overhead
involved in heat tracking, we actually apply the heat estimation procedure to
entire extents (or fragments of a specified size). We keep track of the times
tnye ooy th—ks1 of the last k requests that involve any blocks of the extent in
the manner described above, and also we keep the number of accessed blocks
within the extent for each of the last k requests. Assume that the average
number of accessed blocks is R. Then the heat of the extent is estimated by
= fnff e Finally, we estimate the heat of a fraction of an extent by assuming
that each block in the extent has the same heat (which is extent heat divided
by extent size). This extent-based heat tracking method reduces substantially
the space overhead of the block-based estimation procedure.! On the other
hand, our experimental studies (including studies with application traces)
have shown that the loss in accuracy versus block-based heat tracking is
minimal.

4 Experimental Results

In this section we present an experimental performance evaluation of the file
striping and allocation and load balancing algorithms presented above. The
testbed for these experiments was built on top of the file system prototype
FIVE [84]. FIVE runs on shared-memory multiprocessors under Solaris and
a few other Unix versions. It can manage either real data on real disks (i.e.,
raw partitions), or it can interact with a simulated disk system to estimate
the impact the virtual resources. The disk simulation keeps track of exact
arm positions as well as rotational positions of the disk head. Our simulator
considers head switch delays and incorporates a realistic estimation of the
seek time as a nonlinear function of the seek distance, as well as other details
of real disks [67]. In the simulation mode, FIVE makes use of the process-
oriented simulation library CSIM [73] which manages the bookkeeping for the
virtual disks (e.g., disk queues). For the experiments reported here we used

tAdditional approximation techniques to further decrease the space overhead are de-
scribed in [84]. When memory consumption is extremely critical, one can even employ
an approximation that requires only keeping the values of ¢, and t,, 41 and thus has
constant space overhead independently of k.
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a simulated parallel disk system whose parameters are described in Table 1.

FIVE allows for the striping of files on an individual or global basis and
incorporates heuristic algorithms for file striping, allocation, and dynamic
load balancing, as described in Sections 2 and 3. These algorithms can be
invoked on-line, i.e., concurrently with regular requests to existing files. We
have implemented a load generator that can generate synthetic workloads
according to specified parameter distributions, or analyze (and filter) exist-
ing traces and feed them as input to FIVE. For the performance studies
reported here we mostly relied on synthetic workloads, for which we could
control and systematically vary all relevant parameters. A representative
set of experiments with a synthetic workload is described in Subsection 4.1.
We also report on disk cooling studies using two trace-based experiments in
Subsection 4.2. Further trace-based performance studies with FIVE can be
found in [84].

# disks 32 capacity of one disk 539 MBytes
block size 1 KByte || capacity of the disk system | 17.2 GBytes
track size 35 blocks || revolutions per minute 4400 rpm

# tracks per cylinder | 11 average seek time 12 ms

# cylinders per disk | 1435 transfer rate per disk 2.44 MBytes/s

Table 1: Hardware characteristics of the simulated disk system

4.1 Experiments With Synthetic Workload

For these experiments we generated a set of 10000 files and two types of work-
loads, one with a uniform access pattern and the second with a skewed access
pattern, as we shall describe in more detail below. The files themselves were
identical for both workloads, and in both cases each (read or write) request
accessed an entire file. The file sizes were hyperexponentially distributed
such that each file belongs to one of three different classes with certain mean
values (and exponential distribution of file sizes within each class). Files of
class A had a mean size of 20 KBytes, files of class B had a mean size of
500 KBytes, and files of class C had a mean size of 1000 KBytes. Class C
files were not accessed in the generated workload; they represent “passive”
data that occupies disk space and thus influence seek times. Class A files
represent relatively small data objects, e.g., simple HTML documents on the
WWW. Class B files, on the other hand, represent relatively large multime-
dia data objects. The important point here is that the workload covered a
wide spectrum of request sizes, which we consider to be a particular challenge
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of advanced applications such as HT'TP servers, multimedia information sys-
tems, and object-oriented database systems. In both workloads, we assigned
the same probability of selection to files from the two classes A and B. Table
2 summarizes the common characteristics of both synthetic workloads.

# of files of class A 1000

# of files of class B 1000
fraction of files of class A 0.5

fraction of files of class B 0.5

average size of file class A 20 KBytes
average size of file class B 500 KBytes
overall average request size 260 KBytes
standard deviation of request size | 416 KBytes
read fraction 0.7

Table 2: Characteristics of the synthetic workload

4.1.1 Workload With Uniform Access Frequencies

In this subsection we consider a workload with uniform access frequencies:
read and write accesses are generated to file classes of type A or B, such that
each file within a class has the same probability of selection. We generated a
sequence of 1 million file requests with exponentially distributed interarrival
times.

We compared first the response time of five different striping strategies,
namely a file-specific one (Opt) and four global strategies (Gopt, Block,
Track, Cylinder) under light load (i.e., an arrival rate of 1 request/second),
so that queueing effects were negligible. These striping strategies are:

1. Opt: files are partitioned based on the first step of the heuristic ap-
proach described in Section 2 that minimizes response time in single-
user mode.

2. Gopt: the striping unit for each file is the global optimum of 8 KBytes,
which was determined by using the first step of the heuristic method
of Section 2 under the assumption that all files have the same average
request size R = 260 KBytes.

3. Block: the striping unit for each file is a block (i.e., 1 KByte).
4. Track: the striping unit for each file is a track (i.e., 35 KBytes).

5. Cyl: the striping unit for each file is a cylinder (i.e., 385 KBytes).
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Note that for this first set of experiments we assumed a light load, hence the
striping unit for Opt and Gopt was computed without regard to throughput
and queueing delay considerations. Table 3 shows the average response time
for the five different striping methods; these performance figures are further
broken down into different categories of request sizes in Table 4.

The Opt method outperforms all other methods for almost all request size
categories. However, the advantage over Block striping is marginal at best.
The improvement is significant only for request sizes up to 10 (or possibly
20) KBytes. For larger requests, the latency of the “slowest” disk rapidly
approaches the maximum latency under both Opt and Block, so that the
aggressive intra-request parallelism of the Block method does not incur an
additional penalty once the degree of parallelism exceeds a certain number.
As we will see below, the Block method exhibits severe drawbacks when the
request arrival rate is increased so that disk arm contention and the resulting
queueing delays become a factor, whereas the Opt method scales much better
with increasing load.

Compared to the Track and Cyl methods, Opt achieves significant im-
provements in the order of 30 percent (in the case of Track) for medium
to large requests between 50 and 500 KBytes. For very large requests, all
methods (except Cyl) spread a file across all 32 disk, so that the performance
differences eventually become negligible when the request size is further in-
creased beyond 1 MByte.

The global striping method Gopt turned out to be very competitive to
the file-specific striping method Opt; the advantage of Opt is more or less
negligible throughout the spectrum of request sizes. We also compared these
two methods with Gbest, the best possible global striping strategy whose
striping unit was found through exhaustive trials. For this particular work-
load the Gbest method has a striping unit of 5 KBytes and its performance
was almost identical to that of Opt and Gopt. So, although file-specific strip-
ing did not prove to be truly superior to global striping in these experiments,
the positive conclusion from these light-load experiments is that our heuristic
optimization method did indeed approximate the real optimum very well.

| Opt | Gopt (8 KB) | Block | Track | Cyl |
2454 2475 [ 24.54 | 28.86 | 81.84 |

Table 3: Average response time in milliseconds of the synthetic workload
under light load (A = 1)

In order to take into account throughput requirements and queueing de-
lays we performed a second set of experiments in which we varied the request
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request size [KB] | Opt | Gopt (8KB) | Block | Track | Cyl |

<10 16.97 17.06 19.18 | 16.84 | 17.63
11-50 22.04 21.26 21.22 | 2450 | 26.18
51-100 22.97 23.81 22.28 | 31.23 | 48.94

101-200 24.58 25.91 24.42 | 34.56 | 86.41
201-500 27.48 28.45 27.35 | 36.38 | 168.39
501-1000 33.83 34.66 33.79 | 38.46 | 200.38
> 1000 49.75 50.01 49.65 | 53.29 | 207.27

Table 4: Average response time in milliseconds for different request sizes of
the synthetic workload under light load (A = 1)

arrival rate. For this set of experiments, we also considered two additional
striping strategies, namely:

1. Opt-140: the optimal file-specific striping unit is computed with the
additional constraint that a request arrival rate of A = 140 must be
supported. Accordingly, files are partitioned subject to the constraint
that the average degree of intra-request parallelism is bounded by 3 (as
computed by the heuristics described in Section 2).

2. Gopt-140: the optimal global striping unit is computed for a request
arrival rate of A\ = 140. The corresponding striping unit size is [260/3]
= 87 KBytes.

Table 5 shows the average response times of the various striping methods
as a function of the request arrival rate, which was varied from 20 up to
140 requests per second. Note that although the figures show explicitly only
response time, a fast growing curve for response time implies that beyond a
relatively small value for the arrival rate the throughput reaches saturation.
This also explains the oo entries in Table 5: they denote those experiments
where the arrival rate exceeded the sustainable throughput and thus led to
excessive queueing and a continuously growing backlog of requests.

As Table 5 shows, the Opt method scales up with increasing arrival rate
much better than Block striping. However, for sufficiently high arrival rate,
Opt is clearly outperformed by Track and Cyl striping, the reason being that
the latter two methods employ lower degrees of intra-request parallelism and
can thus sustain higher load. The figures also show the trend that Cyl will
eventually pass Track, as it is even more conservative in terms of parallelism
and resource consumption.

The striping methods that are specifically tuned for a particular arrival
rate outperform both Track and Cyl by almost a factor of two (in the case
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of A=140). This demonstrates very nicely the need for application-specific
tuning of striping units. We also determined through exhaustive trials the
best possible striping units for the Gbest method under different arrival rates.
For A=140 the response time of Gbest was approximately 110 ms, and this
was obtained for a global striping unit of 70 KBytes. We note, however,
that such a tuning method that is based on exhaustive trials is completely
infeasible in practice. Thus, the fact that both the Opt and the Gopt methods
approached the real optima within approximately 10 to 15 percent is indeed
a successful result and demonstrates the viability of our tuning heuristics.

A Opt Gopt | Block | Track Cyl Opt140 | Gopt140
(8KB) (87KB)
20 || 29.62 | 29.71 | 31.84 | 32.42 | 90.36 42.08 44.66
40 || 38.13 | 37.79 | 48.76 | 37.15 | 100.53 | 47.31 50.04
60 || 55.17 | 53.35 | 126.20 | 43.66 | 112.76 | 53.83 56.81
80 | 112.48 | 97.02 00 53.16 | 128.00 | 62.31 65.59
100 00 1033.67 00 69.13 | 147.39 | 74.18 77.73
120 00 00 00 102.86 | 173.50 || 91.64 96.21
140 00 00 00 206.71 | 211.29 || 121.26 | 127.49

Table 5: Average response time in milliseconds for the synthetic workload as
a function of the request arrival rate A

In the above experiment, the Opt methods achieved only very small im-
provements over the corresponding Gopt methods. This almost negligible
advantage of Opt over Gopt does not seem to justify the increased software
complexity of file-specific striping. However, file-specific striping allows for
incremental restriping of individual files when changing workload character-
istics require higher I/O rates or data rates for some crucial files. A global
striping unit strategy does not support this type of reconfiguration. Thus, for
global striping, a change of the striping unit requires unloading all files, re-
initializing the disk system with the new striping unit and reloading the data.
This costly procedure leads to a significant downtime of the system. For this
reason, we still believe that file-specific striping is an essential requirement
for data management in parallel disk systems.

4.1.2 Workload With Skewed Access Frequencies

In order to study the influence of data access skew and the effectiveness of
our “disk cooling” procedure, we have modified the synthetic workload of the
previous subsection so that the distribution of file access frequencies followed
a Zipf-like curve (everything else was identical to the previous setup). Thus,
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if the files are numbered from 1 to N, the probability of accessing a file
numbered i, with i < N, is given by the formula: [47]:

Probli < s| = (%)ZOQ(X/NU)/ZOQ(Y/IOU) (26)

where X and Y are parameters that were set to 70 and 30, respectively. The
parameter N denotes the number of active files, i.e. files in classes A and B,
which is set to 2000 in our experiments. This probability distribution results
in a self-similar, skewed access pattern where a fraction X of the requests
refers to a fraction Y of the files, and this skew is recursively repeated within
the fraction X of “hot” files. Such skew patterns are common in many OLTP
and database applications, and they have been observed for WWW servers
as well [7].

In order to study the effects of load balancing in isolation we did not per-
form any caching of the data in these experiments. Note that load balancing
is still a crucial problem even if caching is used. Caching would keep the
hottest blocks in main memory, but the remaining blocks can still exhibit a
significant access skew.

Table 6 shows the average response time results for this experiment as a
function of the arrival rate \. We considered three different striping strate-
gies, namely, Gopt140, Track, and Cyl. We do not show explicitly the results
for the strategies Block and Opt140; the Block strategy could sustain only
a throughput of about 60 requests per second and started thrashing at this
point, while the performance of the Opt140 strategy was almost identical to
that of Gopt140. All files were pre-allocated based on a round-robin scheme,
and we compared the case without cooling against the case with cooling
switched on. The latter case is denoted by the “-C” suffix in Table 6. A
cooling step was attempted every 100/ seconds (i.e., equivalently, every
100 regular requests), the migration units were entire extents, and the load
imbalance threshold § was set to 5 percent (see Section 3.2).

The response time figures demonstrate that access skew does have a disas-
trous effect on performance, unless it is counteracted by load balancing. For
example, at an arrival rate of 120 requests per second, the average response
time of Track striping without cooling degrades by a factor of 2 compared to
the workload with uniform access frequencies. The underlying reason is that
under the skewed load the hottest disk had a much higher utilization (and
corresponding average queue length) than the overall disk system and thus
formed a premature bottleneck; at A=120 the hottest disk had a utilization
of 0.94 and an average queue length of 10.3 while the average disk utilization
and queue length (averaged over all disks) were 0.79 and 3.5, respectively
(under Track striping). In fact, all methods without cooling started thrash-
ing at an arrival rate of 130 requests per second or earlier. The cooling
procedure was able to reduce the utilization and the average queue length
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A || Gopt140 | Track Cyl Gopt140-C | Track-C | Cyl-C

(87KB)
20 | 4657 | 33.38 | 98.34 4723 3423 | 96.66
10 | 5330 | 3892 | 124.66 || 53.59 30.98 | 113.91
60 | 6281 | 47.05 | oo 64.02 48.09 | 157.58
80 | 77.93 | 6039 | oo 77.73 61.68 | oo
100 | 11187 | 8752 | oo 110.63 8720 | oo
110 | 176.13 | 117.80 | oo 11720 | 10972 |
120 o 20330 oo 152.74 | 16372 |
125 co | 43865 | oo 188.88 | 22142 | oo
130 00 0 00 199.63 | 429.76 | oo

Table 6: Average response time in milliseconds for the skewed synthetic
workload as a function of the request arrival rate A

of the hottest disk down to 0.89 and 5.5, respectively, at A=120 and could
thus improve the average response time significantly. When approaching
the thrashing region, the response times of any striping strategy with cool-
ing switched on are an order of magnitude lower compared with the same
strategy with cooling turned off. Note that cooling does incur a certain over-
head by migrating extents between disks. This leads to a small increase of
the overall disk utilization, and this is why the cooling methods exhibit a
slightly higher response time than the no-cooling methods under light load.
However, when the extra load due to cooling becomes a critical factor, cool-
ing is inactivated automatically, as described in Section 3.2. An analysis of
the invocation frequency distribution of cooling steps over the duration of
an experiment shows that the cooling frequency is high in the first tenth of
the experiment, and as soon as the load is sufficiently balanced (as estimated
by the heat bookkeeping) cooling is invoked only very infrequently due to
occasional load fluctuations that exceed the imbalance threshold.

Among the three cooling variants that are shown in Table 6 the Gopt-
A-C method showed significant advantages over Track-C striping under high
load, with response time improvements up to a factor of two. This demon-
strates that although load balancing and striping are orthogonal strategies
they are not independent; rather well tuned striping units and the cooling
procedure exhibit synergetic effects. Note that under the skewed load, the
Gopt-A method without cooling could not sustain a throughput of A, as all
our heuristic calculations for the derivation of striping units are based on
uniform access frequencies (i.e., overly optimistic assumptions). Track strip-
ing, on the other hand, achieves a better load balance because of its finer
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striping units, but is still much inferior to the case with both tuned striping
units and cooling.

In summary, application-specifically tuned striping in combination with
cooling shows significant performance advantages over conventional meth-
ods. Not surprisingly, load imbalance is only an issue under high load when
queueing delays start becoming a factor. One may argue that an easy cure
against load imbalance thus is to keep disk utilization low. However, for many
applications, this implies unnecessarily high costs as their performance re-
quirements could be met with fewer disks at higher utilization. Furthermore,
although system administration rules of thumb dictate that the disk utiliza-
tion should generally be kept below 50 percent, this is often impossible during
load peaks or when user demands grow faster than one can purchase addi-
tional disks. In fact, it is often exactly during load peaks, e.g., the Monday
morning rush hour for retail banking or the hours right after an important
sports event for a WWW server, when good response time matters most.

4.2 Experiments With Application Traces

To study the viability of the developed tuning procedures in a realistic appli-
cation setting, we also conducted extensive experiments based on block access
traces from a variety of applications including on-line transaction process-
ing, file systems, office document management, and WWW servers. Most of
these experiments confirmed the results of the previous subsection. However,
while such traces capture several essential characteristics of real-life applica-
tion workloads (e.g., workload evolution over time, including transient load
peaks), one has to be extremely careful about generalizing trace-based re-
sults. Traces constitute short-term snapshots with certain peculiarities that
are not necessarily of fundamental nature. For this reason, we preferred de-
riving our basic performance results from a precisely controllable synthetic
workload, as discussed in the previous subsection, and we restrict ourselves
in this subsection to two sample results that were obtained with a WWW
server trace and a trace from a bank’s on-line transaction processing system.

4.2.1 World-Wide-Web Server

This study is based on a trace that was recorded with the httpd logging
facility on the WWW server ucmpl.berkeley.edu of the UC Museum of Pale-
ontology at Berkeley over a time period of 120 hours. Note that the fact that
the requests were traced at the server site automatically factors out (client)
caching. The trace contains 181,914 read accesses to an entirety of 9126
HTML and other files with heavily skewed access frequencies. The average
request size was 14 KBytes, and the standard deviation of the requests size
distribution was 28 KBytes.
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We studied this trace under a spectrum of load levels. This was done by
“speeding up” the arrivals in the original trace in the following way. Con-
sider two requests r; and 7;,; in the original trace which have an interarrival
time of ;. Using a speed-up factor of « the interarrival time between the
requests becomes 0;/«. Thus, in more general terms, if the original trace has
an average interarrival time of 1/)\, a trace with speed-up factor o has an
average interarrival time of 1/(A«). Note that this method of “speeding up”
a trace, albeit somewhat speculative, preserves all access characteristics of
the original workload other than its arrival rate; particularly, the relative in-
terarrival times between requests are preserved which is essential to capture
load bursts. The only case where the “speed-up” transformation would se-
riously distort the workload is when a large number of consecutive requests
are correlated and must have a certain interarrival time. But this case is
rather unlikely given that a WWW server trace is typically based on a high
number of concurrent users.

Because of the small average request size and the moderate variance of
request sizes, tuning the striping unit was not really an issue for this work-
load. Rather the challenge in this trace was to cope well with the access skew
in combination with the dynamic load fluctuations. So we concentrated our-
selves on the impact of cooling, and compared a round-robin allocation for a
striping unit of one track (i.e., 35 KBytes) without cooling, labeled “Track”,
versus the case with cooling, labeled “Track-C”. Cooling was invoked every
100 seconds of the original time scale (or, equivalently, every 100/« seconds
of the accelerated trace), with entire extents as migration units and an im-
balance threshold of § = 0.05. Table 7 shows the average response time of
Track versus Track-C as a function of the acceleration factor a.

‘ « H Track H Track-C ‘

100 || 16.68 16.50
300 || 18.39 17.57
500 || 21.13 19.63
700 || 27.58 24.61
900 || 79.11 24.86
1000 || 203.36 28.57

Table 7: Average response time in milliseconds for the WWW workload as
a function of the request arrival rate A

Cooling exhibits noticeable performance even under medium load, and
dramatically improves response time by an order of magnitude for the highest
measured load. For a=1000, the average disk utilization was 24 percent and
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the utilization of the hottest disk was 67 percent without cooling. With
cooling, the average utilization increased slightly up to 25 percent because
of the additional load incurred by data migrations, but the utilization of
the hottest disk was reduced down to 39 percent, which accounted for the
dramatic performance gain. Note that an average utilization of 25 percent
appears to be a very light load; however, one has to take into account that the
load fluctuates heavily over time with very long disk queues built up during
the load peaks. In terms of average disk queue lengths the improvement
by cooling was even more impressive: without cooling, the average queue
length of the hottest disk (averaged over all points of time when a request
was enqueued) was 63, whereas with cooling, this measure was 1.6 (i.e., 1
request in service and an expected value of 0.6 for the number of requests
that wait in the queue). This effect is illustrated in Figure 7, which shows
the response time and the cooling frequency as they vary over the duration
of the experiment, for the case of a=1000. The improvement of response
time due to cooling even exceeds a factor of 20 during the load peak.

4.2.2 On-line Transaction Processing

A second study with real application workloads was based on an I/O trace
from the OLTP system of a large Swiss bank (Union Bank of Switzerland).
The database for this study consists of 166 files with a total size of 23 GBytes.
The I/O trace contains approximately 550,000 I/O requests to these files,
recorded during one hour. As in a typical OLTP application, most requests
read or write a single block (of size 8 KBytes in this application); the av-
erage request size is approximately 9 KBytes with low variance. Thus, this
workload does not warrant any specific tuning of the striping unit, so that
we chose Track striping as the partitioning method. All files were allocated
using a round-robin scheme. The workload exhibits heavily skewed access
frequencies both across files and within the hot files. In addition, the trace
contains significant fluctuations in the access frequencies and in the overall
arrival rate of requests.

We compared the performance of round-robin placement without cooling
to round-robin allocation augmented with the cooling procedure. The cooling
method improved the average response time of the requests by approximately
a factor of 2 under high load.

As with the WWW experiment we measured response time versus differ-
ent “speed-up” factors of the arrival rate. The results in Figure 8 are based
on an arrival rate “speed-up” factor of 10. As Figure 8 shows, the cool-
ing method could not improve response time in the initial light-load phase,
since the load imbalance of the vanilla method did not yet incur any severe
queueing. However, the cooling method did collect heat statistics during this
phase. This enabled the cooling method to rebalance the disk load by data
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migration. Then during the load peak (represented in Figure 8 by the sharp
increase of response time), the cooling method achieved a response time im-
provement by a factor of 5.3. Note that many OLTP applications have ”soft”
response time constraints such as ensuring a certain response time for 95 per-
cent of the transactions. Thus, it is crucial to guarantee acceptable response
time even during load peaks.

Figure 8 also shows the frequency of the data migration steps invoked by
our cooling method, varying over time. The figure shows that our algorithm
was careful enough so as not to initiate too many cooling steps during the
high-load phases; rather the data migrations were performed mostly during
the low-load phases, thus improving the load balance for the next high-load
phase at low cost. This robustness is achieved by explicitly trading off the
benefit of cooling versus its additional cost, as discussed in Section 3.

5 Conclusion

We have demonstrated the need for tuning the data placement in parallel
disk systems, and we have presented various tuning heuristics for data parti-
tioning, data allocation, and load balancing. The feasibility of the developed
methods has been shown in a number of performance experiments, including
simulations based on real-life traces.

We have developed an extended optimization procedure for file strip-
ing that takes into account explicitly throughput requirements and queueing
delays and in the process we have developed an analytical approximation
to the well known fork-join problem [62] in the specific setting of parallel
disk systems. We have shown that our procedure for tuning the striping
unit(s) of files is a very effective method for workloads with large variations
in request sizes. Such workloads arise, for example, in combined OLTP /deci-
sion-support applications, multimedia information systems, and many other
advanced database applications. Our extended optimization that considers
both steps of our heuristic outperforms all other striping methods for the
specified load value or higher, while being competitive also for lighter load.

While file-specific striping at best provides marginal performance gains
over a properly chosen global striping unit, we nevertheless believe that file-
specific striping is important as a prerequisite for incremental repartitioning
of files. Incremental repartitioning is crucial in order to cope with evolving
performance requirements and in order to support system scalability. For
example, when the throughput requirements of an application increase, we
can repartition merely the hottest files in order to meet the new throughput
goal, which is possible since our approach supports file-specific striping units.
Similarly, if more disks are added to a system, restriping of the most crucial
files allows us to take advantage of the additional resources.

33



The methods for data allocation and redistribution complement the data
partitioning objective of minimizing queueing delays at the disks under heavy
load, by distributing the load across the disks as evenly as possible and by
selectively redistributing the load dynamically by means of “disk cooling”
steps. Since our optimization procedure for data partitioning is based on
uniform access frequencies, the combination of appropriately tuned striping
and disk cooling is necessary to deal with skews in data access. By coupling
these two procedures our experiments have shown that, at high loads, we can
obtain substantial performance gains. The dynamic load redistribution pro-
cedure has been shown to be efficient and robust, i.e., it performs disk cooling
at a small cost and very selectively, i.e, only during periods of low activity.
We observe here that our procedures for data allocation and redistribution
can be integrated with techniques for clustering the hottest files (extents)
on each disk in its center [4, 69] and with disk scheduling algorithms that
reorder the requests in a queue (e.g., an “elevator” algorithm).

Our future work will be centered around the following two major issues:
combining the developed data placement methods with techniques for pro-
viding fault tolerance and high availability, and generalizing our approach
towards shared-nothing parallel database systems and systems based on net-
works of workstations.

Our placement methods are orthogonal to the proposed fault tolerance
techniques in that they can be combined, in a straightforward manner, with
arbitrary variants of either mirroring (e.g., mirrored disks, interleaved declus-
tering, or chained declustering [8, 15, 35, 64, 74]) or error-correcting codes
(e.g., parity groups of some type [30, 31, 36, 37, 53, 54, 60, 61, 57, 56, 58,
66, 70]) or simply conventional logging [34]. However, the placement of data
replicas or error-correcting information does itself provide additional degrees
of freedom that should be taken into account by an integrated approach in or-
der to ensure the best possible performance and availability for given system
costs [81].

In order to generalize our approach to a general shared-nothing parallel
database system we need to consider the impact of communication and CPU
costs, in addition to the disk I/O service time. For the partitioning problem,
the optimal partition size (e.g., the interval width in an interleaved range-
partitioning scheme for relational data [28]) would again be derived from the
optimal degree of parallelism, in analogy to our approach for striping. How-
ever, the operations under consideration are more complex (e.g., relational
operators such as selection or join), and the performance for a given degree
of parallelism depends also on communication overhead and startup costs
(thus requiring a generalization of our notion of latency) as well as on the
operations’ CPU time consumption (hence requiring a generalization of our
notion of transfer time).

In all these considerations an underlying assumption is that the system

34



consists of homogeneous processing nodes (e.g., the same disk type is used
in the entire system). A further, even more challenging step would be to
consider also heterogeneous systems where the processing nodes can differ in
their performance characteristics (processor speed, memory size, disk stor-
age and performance capacity). For example, networks of workstations, also
known as NOW [1], are evolving as a paradigm for high performance com-
puting. In order to make NOW a viable approach for large-scale data man-
agement it is crucial to develop appropriate self-tuning and self-reliant data
placement and storage techniques. A first approach along these lines, with
specific consideration to load balancing, is presented in [77].
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a) Striping Unit: 4 Blocks => Degree of Parallelism: 1

latency time

transfer time

response time device —busy time

Disk 1

Figure 1: Striping with different striping units
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number of disks

= average request size over all files

average request size of file i — for file-specific partitioning
average file size

size of file ¢ — for file-specific partitioning

= average arrival rate of requests

Input:

RIS
|

>~
1

Output: SU; = optimal striping unit of file i — for file-specific partitioning
SU = optimal global striping unit
SW; = optimal striping width of file 4

Step 1: Apply Phase A optimization with respect to service time
a. File specific partitioning:
determine P, ;, the optimal degree of parallelism for file i,
by setting R = R; in equation (16)
b.  Global partitioning:
determine P, the optimal average degree of parallelism,
by setting R = R in equation (16)

Step 2 :  Apply Phase B optimization to determine P, B
the optimal (average) degree of parallelism for the requested throughput, .

Step 3: Determine the effective degree of parallelism
a. File specific partitioning:
Peff,i = mini (Popt,i: PRZ/R)
b.  Global partitioning:
Pepr = min(Poz)t:?)

Step 4: Determine optimal striping unit and width

a. File specific partitioning:
SU; = ((Ri—l)/(Peffﬂ'—l)—l forl<R; < L;
[Ri/Pest,il otherwise

b.  Global partitioning:
Compute SU as in step 4a by replacing R; by R, L; by L, and P.ys; by Py
Compute SW; as in step 4a

Figure 2: Data partitioning algorithm
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Round-Robin Greedy heuristics for heat balancing

File 1 File 2 File3 File 1 File 2 File3
DDD:DD.-. DDD:DD.-.
1.1 1.2 132122233132 33 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3

L J
DD..DDD-:
221231331113 233221
_ J _ J

32
3.2
3.1 3.3 2.1 2.3
2.2 1.3 23
2.1 5 23 : 1.1
1.1 1.2 1.3 2.2 1.2 3.1

Figure 3: Illustration of static allocation heuristics

Figure 4: Tllustration of “disk cooling”
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Input: D - number of disks
H; - heat of extent j
HY - heat of disk ¢
H - average disk heat
E; - list of extents on disk 4 sorted in descending temperature order
D - list of disks sorted in ascending heat order
Step 0:  Initialization: target = not_found
Step 1: Select the hottest disk s
Step 2: Check trigger condition:
if Hy > H x (1 + §) then
Step 3: while (E; not exhausted) and (target == not_found) do
Select next extent e in Ej
Step 4: while (D not exhausted) and (target == not_found) do
Select next disk # in D in ascending heat order
if (¢ does not hold an extent of the file to which e belongs)
and STATUS(¢) == FREE then
target = found
fi
endwhile
endwhile
Step 5 : if s has no queue then
HY =Hr-H,
HY'=Hf+ H,
if H < H, then
reallocate extent e from disk s to disk ¢
update heat of disks s and :
Hf=HY
Hf = HY
fi
fi
fi
Figure 5: Basic disk cooling algorithm
requests pseudo requests
to block to all blocks
|
A st
|
B | L :
|
c | I st
time

Figure 6: Illustration of the heat tracking method for £ = 3. The relevant
interarrival times are shown by the double-ended arrows.
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Figure 7: Response time and cooling frequency
varying over time
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Figure 8: Average response time and cooling frequency for the OLTP work-
load varying over time
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