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Abstract

We investigate the performance of exact algorithms for hard optimization problems under random in-
puts. In particular, we prove various structural properties that lead to two general average-case analyses
applicable to a large class of optimization problems.

In the first part we study the size of the Pareto curve for binary optimization problems with two ob-
jective functions. Pareto optimal solutions can be seen as trade-offs between multiple objectives. While
in the worst case, the cardinality of the Pareto curve is exponential in the number of variables, we prove
polynomial upper bounds for the expected number of Pareto points when at least one objective function
is linear and exhibits sufficient randomness. Our analysis covers general probability distributions with
finite mean and, in its most general form, can even handle different probability distributions for the co-
efficients of the objective function. We apply this result to the constrained shortest path problem and to
the knapsack problem. There are algorithms for both problems that can enumerate all Pareto optimal
solutions very efficiently, so that our polynomial upper bound on the size of the Pareto curve implies that
the expected running time of these algorithms is polynomial as well. For example, we obtain a bound of
O(n4) for uniformly random knapsack instances, where n denotes the number of available items.

In the second part we investigate the performance of knapsack core algorithms, the predominant
algorithmic concept in practice. The idea is to fix most variables to the values prescribed by the optimal
fractional solution. The reduced problem has only polylogarithmic size on average and is solved using
the Nemhauser/Ullmann algorithm. Applying the analysis of the first part, we can prove an upper bound
of O(npolylog n) on the expected running time. Furthermore, we extend our analysis to a harder class of
random input distributions. Finally, we present an experimental study of knapsack instances for various
random input distributions. We investigate structural properties including the size of the Pareto curve and
the integrality gap and compare the running time between different implementations of core algorithms.

The last part of the thesis introduces a semi-random input model for constrained binary optimization
problems, which enables us to perform a smoothed analysis for a large class of optimization problems
while at the same time taking care of the combinatorial structure of individual problems. Our analysis
is centered around structural properties, called winner, loser, and feasibility gap. These gaps describe
the sensitivity of the optimal solution to slight perturbations of the input and can be used to bound the
necessary accuracy as well as the complexity for solving an instance. We exploit the gaps in form of an
adaptive rounding scheme increasing the accuracy of calculation until the optimal solution is found. The
strength of our techniques is illustrated by applications to various NP-hard optimization problems for
which we obtain the first algorithms with polynomial average-case/smoothed complexity.





Kurzzusammenfassung

Wir untersuchen mit mathematischen Methoden die Effizienz von Algorithmen für schwierige
Optimierungsprobleme auf zufälligen Eingaben. Im Zentrum steht die Analyse struktureller
Eigenschaften zufälliger Probleminstanzen, die im Weiteren benutzt werden, um Laufzeit-
schranken für das Lösen verschiedener Probleme zu beweisen. Im ersten Teil der Arbeit be-
trachten wir binäre Optimierungsprobleme mit zwei Zielfunktionen. Wir können zeigen, dass
die erwartete Anzahl der Pareto-optimalen Lösungen polynomiell beschränkt ist, wenn min-
destens eine Zielfunktion linear ist und ihre Koeffizienten zufällig oder zufällig perturbiert
sind. Wir wenden dieses Ergebnis auf zwei Optimierungsprobleme an: das Kürzeste-Wege-
Problem mit Nebenbedingungen und das Rucksackproblem. Für beide Probleme können die
Pareto-optimalen Lösungen effizient aufgezählt werden, so dass die obere Schranke für die
Anzahl der Pareto-optimalen Lösungen eine polynomielle erwartete Laufzeit für diese Al-
gorithmen impliziert. Im zweiten Teil der Arbeit untersuchen wir Core-Algorithmen für das
Rucksackproblem, für die wir eine erwartete Laufzeit von O(npolylog n) für uniform zufällige
Rucksackinstanzen beweisen können. Im letzten Teil der Arbeit wird ein semi-zufälliges Ein-
gabemodell für binäre Optimierungsprobleme vorgestellt. Es ermöglicht eine probabilistische
Analyse für eine große Klasse von Optimierungsproblemen und berücksichtigt gleichzeitig
die zugrunde liegende kombinatorische Struktur der einzelnen Probleme. Wir definieren Poly-
nomial Smoothed-Complexity, angelehnt an Polynomial Average-Case Complexity, eine Klas-
sifizierung für die Komplexität von Problemen unter zufälligen Eingaben. Für die von uns be-
trachtete Klasse von Optimierungsproblemen können wir eine genaue Charakterisierung der
Probleme geben, die in diese Komplexitätsklasse fallen. Ein binäres Optimierungsproblem
hat Polynomial Smoothed-Complexity genau dann, wenn es einen Algorithmus für dieses Pro-
blem gibt, dessen Laufzeit im schlechtesten Fall pseudopolynomiell im stochastischen und
polynomiell im restlichen Teil der Eingabe ist.
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Introduction

A major objective in designing new algorithms is efficiency. The most common theoretical approach to
measure the performance of algorithms is the worst-case analysis, which takes into account only the worst
possible performance that an algorithm exhibits on any problem instance. On the one hand, this measure
provides a very strong guaranty desirable in many applications, as it makes a robust statement about
all problem instances, which clearly cannot be obtained by any experimental study. Besides, estimating
upper bounds for the running time, memory usage, number of I/O accesses etc. is usually an easy task.
On the other hand, a single upper bound cannot truly reflect the overall performance of an algorithm.
This becomes especially apparent when the performance of the algorithm differs significantly between
individual instances of a problem and the worst-case instances are rare. A quite extreme example in that
respect is the knapsack problem, which will be of more concern in this thesis. There exist algorithms
for the knapsack problem with a probably exponential worst-case running time, as one would expect
for an NP-complete problem. On random instances, however, these algorithms usually exhibit a linear
running time, a performance that could not be achieved even for many problems known to be solvable in
polynomial time in the worst-case. The reason for this apparent inconsistency is that almost all knapsack
instances are easy to solve such that a randomly chosen instance is most likely an easy one. This example
shows that the significance of the worst-case measure is very limited for a comprehensive evaluation of
algorithms, especially if one is interested in the typical performance on real world problems.

A quite natural approach to remedy this deficit is to take the average performance over all instances as
new measure, which is the underlying idea of average-case analysis. More precisely, given a probability
distribution on the set of instances, the performance of an algorithm becomes a random variable which
is subsequently investigated, for example, by bounding its expectation. Random instances are usually
easier to solve as shown for various problems like sorting, finding shortest paths or matching. Although
the average case analysis can reveal a lot about the performance of an algorithm or even the complexity
of the problem at hand, it is hard to draw sensible conclusions for the performance in practice. The reason
is that real world instances are not totally random but usually have some special structure and properties.
Notice, for example, that file names are no random strings, road networks are no random graphs and
the execution times of jobs are not uniformly distributed. One might argue that this is in principle no
problem of the model but just a matter of choosing the right distribution on the set of instances. The
underlying distributions, however, are usually not known, and even if so, and putting aside the technical
difficulties, it would be a tedious work to prove bounds for every such distribution.

A relatively new measure is provided by smoothed analysis, which combines elements of worst case
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2 INTRODUCTION

and average-case analysis. As in worst-case analysis, one takes the maximum over all instances. But
instead of directly measuring the performance of each individual instance, one uses the expected perfor-
mance under a small random perturbation of the original instance. The performance is then measured in
terms of the size of the instance and the magnitude of the perturbation. Let us explain the original idea in
more detail. Spielman and Teng [ST01] investigated the Simplex algorithm, the standard technique for
solving linear programs. The Simplex algorithm is a typical example of an algorithm that is known to
perform well in practice but exhibits an exponential running time in the worst case. Recall, that a linear
program is completely specified by the objective function, a constraint matrix, and the right hand side.
Assume we are given an arbitrary (worst-case) linear program where all row vectors of the constraint
matrix have norm at most 1. Perturbing the instance is done by adding a Gaussian random variable with
standard deviation σ and mean 0 to each entry in the constraint matrix. The “smoothed” performance
is the expected performance of the algorithm on the perturbed instance, where the expectation is over
the random perturbation. The parameter σ specifies the magnitude of the perturbations. For σ→ 0, we
do not perturb the original instance and consequently obtain the standard worst-case analysis. For very
large σ, the random perturbation swamps out the input values of the original instance and one obtains
average-case analysis. Using smoothed analysis we can describe the transition between these two ex-
tremes. Spielman and Teng proved that the Simplex algorithm with a certain pivot-rule has a “smoothed”
running time bound that is polynomial in 1/σ and the size of the problem instance.

Smoothed analysis describes the average performance on instances in a parameterized neighborhood
of the worst-case instances. For algorithms with equal performance on all problem instances with the
same size, worst-case, average-case and smoothed analysis should yield the same result. Assume the
worst-case and average-case measure differ significantly. If the worst-case instances are clustered to-
gether, then also the smoothed performance is bad. If, however, the worst-case instances are “isolated
events” in instance space one would expect a rapid improvement of the running time bound with an in-
creasing size of the neighborhood. In other words, if the smoothed measure is low, worst case instances
are not robust under small changes.

The underlying idea of smoothed analysis, that is, smoothening the worst-case by considering the
expected performance in the neighborhood of each instance, has been adapted to other problems like
shortest path and sorting [BBM03] as well as to other measures like the condition number [DST03] and
the competitive ratio for online problems [BLMS+03, SS04]. Obviously, the definition of the neighbor-
hood is crucial. It is supposed to capture the notion of similar instances. Ideally, we would expect the
neighborhood of a real-world instance to contain instances that have also some fair chance to be encoun-
tered in practice. For real valued input variables, the most natural neighborhood is the neighborhood on
the real line, which finds a reasonable justification, as data from the real world are usually inherently
noisy. However, if the instance space is a finite set of combinatorial objects, a sensible definition of
neighborhood, resp. perturbation scheme, is often less obvious.

Is is easy to argue that smoothed analysis cannot completely explain the performance of algorithms
in practice either. It provides, however, a mathematically rigorous theory that is not restricted to individ-
ual problems. Smoothed analysis makes the assumption that inputs are subject to noise, circumstance or
randomness. This is an assumption that is valid in many practical problem domains. While it is unrea-
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sonable to assume that one can develop a model of inputs subject to noise that precisely models practice,
one can try to come close and then reason by analogy.

Which problems allow fast algorithms under small perturbations? This question leads to a new
field of complexity theory. Recall that the worst-case measure is the basis for the standard complexity
theory, one of the most fundamental achievements in theoretical computer science. An integral part
of this theory is the classification of algorithmic problems according to their complexity, most relevant
the classes P and NP. Problems in class P, which allow a polynomial time algorithm, are considered
efficiently solvable, whereas NP-hard problems are considered intractable, as it is common believe that
they cannot be solved in subexponential time. All these statements rely on the worst-case measure.
In Chapter 3 we will define a class of efficiently solvable problems under small perturbations. These
are all problems which have polynomial smoothed complexity, an adaption of polynomial average-case
complexity with the additional requirement that the running time should be polynomially bounded not
only in the size of the problem instance but also in the magnitude of the perturbation. This complexity
measure is slightly weaker than expected polynomial running time, but is a more robust measure, as it is
independent of the used machine model. Notice the correspondence to ε-smoothed complexity, proposed
in [ST01].

At this points let us remark that the smoothed analysis result on the Simplex algorithm by Spiel-
man and Teng, although it is an outstanding result, hardly allows any conclusion with respect to the
complexity of problems. The fact that a problem can be formulated as a linear program and that the Sim-
plex algorithm solves perturbed linear programs in polynomial time says nothing about the smoothed
complexity of the problem at hand. The reason is that the linear program formulation of almost every
problem has a special structure. Since the analysis of Spielman and Teng assumes that every entry in
the constraint matrix is perturbed independently, this structure will be destroyed. Hence, the perturbed
instance is almost surely not an instance of the original problem any more. As an example, consider zero
entries, which are most likely perturbed to non-zero values. In other words, the expected running time
bounded in the analysis is over some larger probability space in which the set of instances of the original
problem usually have probability measure zero.

Smoothed Analysis Framework

We will extend the smoothed analysis model introduced by Spielman and Teng. In particular, we will
not necessarily perturb all input numbers but only those that are explicitly marked as stochastic. The
domain of those marked input numbers is restricted to [0,1] or [−1,1], depending on whether the domain
should be non-negative or also include negative numbers. Then a random perturbation slightly changes
the marked input numbers by adding an independent random number to each of them. These random
numbers are drawn according to a specified family of probability distributions satisfying the following
conditions. Let f :

� → �
≥0 be any piecewise continuous density function such that sups( f (s)) = 1

and E =
R |s| f (s)ds is finite, that is, the random variable described by f has a finite expected absolute

value. The function f is called the perturbation model. Observe that the smallest value for E is 1/4
attained by the uniform distribution in the interval [−1/2,1/2]. For φ 6= 1, we define fφ by scaling f ,
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that is, fφ(s) = φ f (sφ), for every s ∈ �
. This way, the density parameter of fφ is φ. The expected

absolute value of the density function fφ is E/φ. We obtain φ-perturbations according to the perturbation
model f by adding an independent random variable with density function fφ to each stochastic input
number. For example, one obtains the Gaussian perturbation model used by Spielman and Teng [ST01]
by choosing f to be the Gaussian density with standard deviation (2π)−1/2. The perturbation model
f is not restricted to density functions that are symmetric around 0. Such a requirement would not be
very meaningful as the adversarial choice of the input numbers allows arbitrary shifts of the distribution
in either case. Furthermore, if the domain of the input numbers is non-negative, then we can ensure
that also the perturbed numbers are non-negative by choosing a perturbation model f with non-negative
domain, e.g. the uniform distribution over [0,1]. In the seminal paper on smoothed analysis [ST01] the
running time is described in terms of the standard deviation σ. In contrast, we describe the running time
in terms of the density parameter φ. For the Gaussian and the uniform distribution these two parameters
are closely related; in both cases, φ is proportional to 1

σ .

Our Results

In this thesis we prove that various NP-hard binary optimization problems can be solved in polynomial
time under random perturbations. This includes the (multidimensional) knapsack problem, the con-
strained shortest path problem, general 0/1 integer programming with a constant number of constraints,
the general assignment problem with a constant number of constraints and the problem of scheduling to
minimize the weighted number of tardy jobs. Our probabilistic analysis is not restricted to the model
of smoothed analysis, but we use this framework to illustrate our results. The heart of our analyses are
certain structural properties, which appear in many problems, so that our analysis is applicable to a quite
general class of problems.

In Chapter 1 we investigate the size of the Pareto curve for binary optimization problems with two
objective functions. For most problems the number of Pareto points can be exponential in the number
of variables. We show that the expected number of Pareto points is polynomially bounded if at least
one objective function is linear and its coefficients exhibits sufficient randomness. The other function is
assumed to be adversarial. Our analysis covers general probability distributions for the coefficients of the
linear objective function. Each coefficient can follow its individual probability distribution. Hence, our
analysis covers the framework of smoothed analysis introduced above. Our bound is parameterized by
φ, which is the maximum over the density functions of the different probability distributions, and µ, the
maximum expected value of these distributions. We prove that the expected size of the Pareto curve is
O(n4φµ). Furthermore, better bounds for specific distributions are presented as well as a lower bound of
Ω(n2). Besides the fact that this is an interesting result in its own, we apply this bound to algorithms for
the knapsack problem and the constrained shortest path problem. These algorithms enumerate all Pareto
optimal solutions very efficiently. In particular, the influence of the number of enumerated solutions on
the running time is only linear. Hence, the generality of our bounds for the size of the Pareto curve
transfers directly to the running time bound of these algorithms.

The result for the knapsack problem is subsequently used in Chapter 2 to analyze knapsack core
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algorithms, the predominant algorithmic concept in practice. We present an average-case analysis prov-
ing an upper bound of O(n polylog n) for the expected running time of a core algorithm on uniformly
random knapsack instances, i.e., instances where the weights and profits are chosen independently uni-
formly at random from [0,1]. We exploit the fact that for these instances the expected integrality gap is
only O((logn)2/n), such that the core problem contains only O(log2 n) items on average. We extend this
result to δ-correlated instances, a harder class of input distributions for the knapsack problem, where we
obtain a similar bound.

An experimental study complements the knapsack chapter. We compare all our theoretical finding
to the results obtained in various experiments. We investigate structural properties that play an impor-
tant role for our analyses, like integrality gap and the average number of the Pareto optimal knapsack
fillings. Furthermore we compare the performance of different core algorithms on various random input
distributions.

In Chapter 3 we present a smoothed/average-case analysis for a large class of binary optimization
problems. The core of our analysis are three structural properties called winner, loser and feasibility gap.
The winner gap describes the difference in the objective value between the best and the second best so-
lution. We generalize the well-known Isolating Lemma and prove that for linear objective functions with
random or randomly perturbed coefficients, the winner gap is usually lower bounded by a polynomial
in 1/(nφ), where n and φ denote the number of variables and the density parameter of the probability
distributions. The loser and feasibility gap apply to linear constraints with random or randomly per-
turbed coefficients. Consider a single constraint wT x ≤ t. The feasibility gap is the slack of the optimal
solution with respect to that constraint. The losers are those solutions that have a better objective func-
tion value than the optimal solution, but they are infeasible because of the considered constraint. The
loser gap is defined to be the minimal amount by which a loser (except for the solution 0n) exceeds the
constraint threshold. We extend the loser and feasibility gap to multiple constraints and prove in the Sep-
arating Lemma that these gaps are usually lower bounded by a polynomial in 1/(nφk), where k denotes
the number of constraints, n and φ are defined as above. As a consequence of the large gaps, we can
round the coefficients in the random linear function and the random linear constraints to a logarithmic
number of bits without changing the optimal solution. These gap properties are applied in a smoothed
analysis for binary optimization problems. For this purpose, a semi-random input model is introduced
that allows to perturb only parts of the input while other parts are assumed to be adversarial. We allow
to perturb linear objective functions as well as linear constraints that define the set of feasible solutions.
This semi-random input model allows to take care for the combinatorial structure of individual problems
such that the perturbed input is still an instance of the considered problem. We extend the range of pos-
sible applications by allowing zero perturbations, that is, we allow to specify individual coefficients of
the perturbed objective function or constraint to be fixed to zero.

Well-behaved Random Variables

In several analyses in this thesis we will introduce auxiliary random variables and prove various “upper
bounds” on their density function. This term needs some clarification, as the density of a continuous
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variable is not uniquely defined. A continuous random variable X is defined by its distribution FX(t) =

Pr [X ≤ t]. In general, the density fX is any non-negative function satisfying FX(t) =
R t
−∞ fX(s)ds. Ob-

serve that the integrand is not uniquely determined. It might be redefined on any set of points of mea-
sure 0 without affecting the integral. We say that a continuous random variable X is well-behaved if its
distribution function FX is piecewise differentiable. In this case, X admits a piecewise continuous density
function fX , which at all of its continuous points corresponds to the derivative of FX . As usual, we ignore
the trifling indeterminacy in the definition of fX and refer to fX as the density of X . In particular, the
supremum of the density of X refers solely to the supremum over the points at which fX is continuous,
and we say that the density is bounded if there exists b ∈ �

, such that fX(s)≤ b, for every point s ∈ �
at

which fX is continuous. Throughout this thesis, [n] denotes {1, . . . ,n}.

Bibliographic Notes

Many parts of this thesis have been published before. The proof of the main theorem in Chapter 1
appeared as a specific version for the knapsack problem in [BV03, BV04c] together with the application
to the Nemhauser/Ullmann algorithm. In this thesis we generalized the theorem to arbitrary bicriteria
optimization problems with binary variables and added the application to the constrained shortest path
problem. The analysis of knapsack core algorithms in Chapter 2 has been published in [BV04b]. The
experimental study in the same chapter appeared as a short version in [BV04a]. Finally, the results of
Chapter 3 have been published in [BV04d].



Chapter 1

The Pareto Curve for Bicriteria Problems

When making decisions in the real world, people usually have to take many objectives into account.
Contributing to the difficulty of live, the different objectives are most likely conflicting and the final
decision is commonly called a trade-off. In theoretical computer science, optimization problems are
usually modeled with only one objective, which allows to compare the quality of solutions easily in a
mathematical exact way. This leads to a natural notion for the optimality of solutions. When dealing
with multiple objectives, solutions can be incomparable since they can dominate each other in different
objectives. The notion of Pareto optimality is based on a partial order among the solutions. A solution is
called Pareto optimal, if it is not dominated by any other solution, that is, if there is no other solution that
is better in at least one objective and not worse in any of the other objectives. Naturally, Pareto optimal
solutions are the candidates for a trade-off. For many common optimization problems the number of
Pareto optimal solutions can be exponential in the number of variables. We study this issue under a
probabilistic setting. We are able to prove that for binary optimization problems with two objective
functions the expected number of Pareto optimal solutions is only polynomial in the number of variables,
provided that one objective function is linear and its coefficients exhibit sufficient randomness.

1.1 Multiobjective Combinatorial Optimization

Optimization problems can be characterized in terms of instances, feasible solutions and objective func-
tions. An optimization problem (e.g. finding the shortest path in a graph) has a (usually infinite) set of
instances. Each instance can be described by a set of feasible solutions (in our example all s-t paths) and
an objective function (in our example the sum of the edge length). In general we call an optimization
problem combinatorial if solutions are described by variables that take only integer values.

We are interested in the class of problems with binary variables and linear objective function, that
is, the variables can take only value 0 or 1, and the objective is a linear function cT x, c ∈ � n, over the
vector x of binary variables. We call these problems binary optimization problems. Hence, an instance
of a binary optimization problem of size n is completely described by

1. a solution set S ⊆ {0,1}n, i.e., a set of 0/1 vectors, and

7
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2. an objective function f : S ⇒ �
, usually a linear function cT x.

At first, the restriction to binary variables might look as a strong limitation, but many well-known
problems fall into this category as the following list of examples demonstrates.

• Graph problems with a binary variable for each node: Shortest Path problem, Maximum Matching,
Minimum Spanning Tree, Minimum Cut, Traveling Salesperson problem, etc.

• Graph problems with a binary variable for each node: The (weighted) Independent Set Problem,
the (weighted) Clique Problem, the (weighted) Vertex Cover Problem, the (Weighted) Dominating
Set Problem, etc.

• The Facility location problem: A binary variable is introduced for each facility and for each pos-
sible facility-costumer pair.

• the Set Covering Problem, the General Assignment Problem, various Network Flow and Packing
problems and many more.

We will frequently use the following different view on this class of problems. Consider a problem
instance with n variables. Each solution is described by an assignment of the variables, i.e., a 0/1 vector
of length n, or, equivalently, by the subset of the variables that are set to 1. This way, the set of feasible
solutions correspond to a collection of subsets over an n-element ground set G. Each element in i ∈ G
is assigned a value f (i), which, in case this element becomes part of the solution, contributes to the
objective value. Hence, the objective value for a subset S ⊆ G is given by ∑i∈S f (i). As an example
consider the problem of computing the shortest s, t path in a graph G = (V,E). The ground set is the
set of edges E and feasible solutions are those subsets of edges that form elementary s, t paths. Given a
length function l : E→ �

>0, the objective value of a path P⊆ E is ∑e∈P l(e).
For some applications it is natural to define more than one objective function. As an example con-

sider the problem of vehicle routing modeled as a shortest path problem in a graph. Besides the length
of a route one might also be interested in the time it takes a vehicle to drive along this route. Other
interesting criteria might be fuel consumption, probability of traffic jam, etc. Formally, we have k > 1
objective functions f j : G→ �

, for 1≤ j≤ k and the j-th objective value of a solution S⊆G is given by

∑i∈S f j(i). There are several ways to deal with multiple objectives. A common approach, especially in
theoretical computer science, is to define bounds on all but one objective and to optimize the remaining
single objective. This way, solutions not satisfying the given bounds are rendered infeasible. A classical
example is the constrained shortest path problem [Zie01]. By imposing strict bounds on even a single
objective, the problems usually become NP-hard, although the single criterion version of the problem is
in P. The NP-hardness proof usually uses a reduction from the knapsack problem. A drawback of this
method is the arbitrariness in fixing the bounds on the different objectives. Even the smallest change in
the bounds can lead to a significant different objective value or even prohibit any feasible solution at all.
This way, one might miss interesting solutions by placing an unfortunate bound. Therefore, another idea
attracted more and more interest, the notion of Pareto optimality which is based on a domination concept
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usually attributed to Weingartner and Ness [WN67]. Informally, a solution dominates another solution
if it is better or equally good in all objectives. Clearly, dominated solutions are inferior and, therefore,
suboptimal in any sensible definition of optimality for multiple criteria. A solution that is not dominated
by any other solution is called Pareto optimal or undominated, that is, there is no other solution that is
better in all objectives. The concept of Pareto optimality captures the intuitive notion of a trade-off. Let
us define the domination concept more formally for binary optimization problems.

Definition 1.1. Given an instance of a binary optimization problem, let S ⊆ 2G denote the set of all
feasible solutions. Let f1, . . . , fk denote linear objective functions. For any two solutions S,T ∈ S we say
S dominates T if

1. fi(S)≤ fi(T ) for all objectives fi to be minimized, and

2. fi(S)≥ fi(T ) for all objectives fi to be maximized, and

3. there exists some fi with fi(S) 6= fi(T ).

We call a solution S ∈ S Pareto optimal or undominated over S , if there is no other solution T ∈ S , that
dominates S. The set of k-vectors {

(

f1(S), . . . , fk(S)
)

| S ∈ F is Pareto optimal} is called Pareto points
or Pareto curve of S .

There is a general agreement in the multiobjective optimization community that the Pareto curve
is the right solution concept when dealing with multiple criteria (see [Ehr00, EG02]). We distinguish
between the number of Pareto optimal solutions and the number of Pareto points, since the two quan-
tities can differ significantly when multiple solutions are mapped to a single Pareto point. We call two
solutions equivalent, if they map to the same Pareto point, i.e., if they agree in all objectives. Even if
there might be multiple equivalent optimal solutions, it usually suffices to compute any optimal solution.
(Computing all optimal solutions is even for single criterion problems much more complex.) Therefore,
we concentrate on the complexity of the Pareto curve rather than the set of Pareto optimal solutions.
In many publications on multiobjective optimization, however, this distinction is sometimes blurred for
the sake of a short presentation. Notice, that for random coefficients drawn according to a continuous
probability distribution, with probability 1, no two solutions have the same objective value. This is dif-
ferent for discrete probability distributions, where the finite domain (or expectation) is responsible for
the pseudo-polynomial upper bound on the number of Pareto points.

Before we turn to the size of the Pareto curve, let us mention another common approach to deal
with multiple objectives. The idea is to combine all objectives into a single objective function using a
linear combination. Each objective fi is assigned a weight λi, where λi is negative for objectives fi to be
maximized, and positive for objectives to be minimized. This way, minimizing {∑k

i=1 λi fi(S) | S ∈ F }
takes all objectives into account. Observe that every solution that is optimal w.r.t. to a linear combination
of the objectives is also Pareto optimal, provided all weights λi are non-zero. The converse statement is
not true, that is, there exist Pareto optimal solutions that are not optimal w.r.t. any linear combination of
objectives. In fact, this gives a criterion to categorize Pareto optimal solutions. We call a Pareto optimal
solution supported if there exist weights λ1, . . . ,λk such that S is optimal w.r.t. a linear combination with
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Supported Pareto optimal solutions

Dominated solutions

f1

f2 Non−supported Pareto optimal solutions

Figure 1.1: Example for a set of solutions and two objective functions f1 and f2, both to be minimized.
Points, dark and light squares represent dominated solutions, supported and unsupported Pareto optimal
solutions, respectively.

coefficients λ1, . . . ,λk. Otherwise, solutions are called non-supported. This definition is illustrated in
Figure 1.1. In the k-space of objectives, the supported Pareto optimal solutions lie on the boundary of
the convex hull CH {

(

f1(S), . . . , fk(S)
)

| S ∈ F }, whereas non-supported Pareto optimal solutions are
strictly inside the convex hull. The reason is that fixing coefficients λ1, . . . ,λk corresponds to fixing an
optimization direction in the k-space of objectives. Hence, optimal solutions are extreme points of the
convex hull.

We elaborate on this topic since the distinction between supported and non-supported solutions leads
to interesting insights and has important consequences in complexity theoretic terms. For a comprehen-
sive survey on available literature on this topic we refer to the book by Ehrgott and Gandibleux [EG02].
Computing supported Pareto points is usually much easier than computing non-supported ones. The defi-
nition of supported and non-supported Pareto points yields already a generic algorithm for computing the
corner points of the convex hull, e.g., all supported Pareto points for which there is a linear combination
of objectives such that the optimal Pareto point is unique. As a subroutine we only require an algorithm
that solves the single objective variant of the problem, which allows us to find extreme points on the
convex hull. Also the number of supported Pareto points is usually small compared with the number of
non-supported Pareto points. As an example, consider the bicriteria version of the knapsack problem.
The number of supported Pareto points is n+1, provided that the profit-to-weight ratios of all items are
distinct. In contrast, the number of non-supported Pareto points is considerably larger (see Section 2.5.2).

1.1.1 Cardinality and Approximations of the Pareto Curve

In the worst case, the number of Pareto optimal solution can be exponential, as shown for various op-
timization problems like spanning tree, shortest path, assignment and the traveling salesperson prob-
lem (see [Han80], [SP91], [EP92], [HR94]). As an example, consider the bicriteria minimal spanning
tree problem [GR96]. Each edge e ∈ E of a graph G = (V,E) is assigned a weight we and a cost ce.
By choosing we ∈ [0,1] and ce = 1− le, each spanning tree T has weight w(T ) = ∑e∈T we and cost
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c(T ) = (|V |− 1)−w(T), as all spanning trees have |V |− 1 edges. Hence, all spanning trees are Pareto
optimal and, furthermore, they are even supported Pareto optimal.

Hence, computing the Pareto curve is intractable for these problems under worst case inputs. When
a problem is computationally too complex to solve, the standard approach is to give up the requirement
of computing optimal solutions and instead aim at close-to-optimal solutions. Following this idea, Pa-
padimitriou and Yannakakis [PY00] investigate the complexity of an approximate Pareto curve Pε, that is,
a set of solutions such that for every other solution T ∈ S there is a solution S ∈ Pε such that S dominates
T or is within factor of ε in all objectives. This way, every solution is “almost” dominated by some solu-
tion in Pε. They show for a quite general class of multiobjective optimization problems that there always
exists an ε-Pareto curve of small size, i.e., polynomial in 1/ε and the problem size. Furthermore, they
can characterize the class of problems for which an ε-Pareto curve can be constructed in polynomial time
by proving equivalence to following the Gap-Problem: Given a vector of bounds b1, . . . ,bk (one bound
for each of the k objective functions), either return a solution that is in each objective better than the
corresponding bound bi, or state, that there is no solution that is better than the given bounds by a factor
1 + ε. Papadimitriou and Yannakakis show that there exists an FPTAS that computes an ε-Pareto curve
if the exact version of the single objective problem can be solved in pseudo-polynomial time. The exact
version of an optimization problem asks for a solution with objective value exactly b, for some given
b. The existence of a pseudo-polynomial algorithm for the exact version of an optimization problem is
in fact a condition we will use in Chapter 3 to prove polynomial smoothed complexity for constrained
binary optimization problems with stochastic constraints. Several binary optimization problems allow
such algorithms, e.g. minimum spanning tree, shortest path and matching.

Despite the large number of Pareto points in the worst case, it has been observed in practice that for
typical instances the number of Pareto points grows only moderate with the problem size. We will support
this observation by presenting a smoothed/average-case analysis for binary optimization problems with
two objective functions. In contrast to the work of Papadimitriou and Yannakakis we consider the exact
Pareto curve but rely on stochastic assumptions on the objective functions. Furthermore, we do not
provide general means to compute such a Pareto curve. This remains a problem specific task. For the
knapsack problem and the constrained shortest path problem we will describe algorithms that compute
the Pareto curve efficiently.

1.2 The Main Theorem

In this section we present our main theorem that bounds the expected number of Pareto points for binary
optimization problems with two objective functions. The random input model is quite general and not
restricted to a particular input distribution. We allow one of the objectives to be an arbitrary function
w : S → �

. The second objective p : S → �
is assumed to be a linear function p(S) = ∑i∈S pi over the

set of solutions S . For historical reasons (we first developed our analysis for the bicriteria version of the
knapsack problem) we will occasionally refer to w(·) and p(·) as the weight and profit functions and call
p1, . . . , pn the profits of elements. We now state our main theorem.
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Theorem 1.2. Let S ⊆ 2[n] be an arbitrary collection of subsets of [n]. Let w : S → �
be an arbitrary

function and p(S) = ∑i∈S pi a linear function over S to be optimized simultaneously. The direction of
optimization (minimization or maximization) can be specified arbitrarily for each of the two functions.
The coefficients p1, . . . , pn are assumed to be independent random variables. Let q denote the number of
Pareto points over S .

a) If p1, . . . , pn are chosen according to the uniform distribution over [0,1], then E[q] = O(n3).

b) For i ∈ [n], let pi be a random variable with tail function Ti :
�
≥0→ [0,1]. Define µi = E [pi] and

let αi be an appropriate positive real number satisfying slopeTi
(x)≤ αi for every x≥ 0, i ∈ [n]. Let

α = maxi∈[n] αi and µ = maxi∈[n] µi. Then

E [q]≤
(

∑
i∈[n]

µi

)

·
(

∑
i∈[n]

αi

)

+1≤ αµn2 +1.

c) For every i ∈ [n], let pi be a non-negative random variable with density function f i :
�
≥0→

�
≥0.

Suppose µ = maxi∈[n] (E [pi]) and φ = maxi∈[n]

(

supx∈ � ≥0
fi(x)

)

. Then E [q] = O(φµn4).

First observe that the theorem makes no assumptions on the first objective function w, i.e., it is valid
for any adversarial choice for w. In particular, it holds for any random choice for w, provided that w and
p are stochastically independent. The three parts of the theorem bound the expected number of Pareto
points for different classes of probability distributions for p. Each part is proven in a separate Lemma
(Lemma 1.5, 1.7 and 1.10, in this order). Part (c) of the Theorem is in fact the most general bound
that covers the probability distributions of part (a) and (b). It uses two parameters, the expectation µ of
the distribution and the density parameter φ. The product φµ is in fact a consistent measure to describe
the influence of the probability distribution on the number of Pareto points by the following argument.
Scaling the function p by some factor 1/c > 0 does not affect the set of Pareto points as the order of
subsets that is prescribed by the function p in unchanged. The corresponding probability distribution has
density function f ′(s) = c f (cφ), expectation µ′ = µ/c and density parameter φ′ = cφ. Hence, the product
φµ is unaffected too by scaling. The smallest value for φµ is 1/2 attained by the uniform distribution.

Let us normalize the specified distributions for the random variables p1, . . . , pn by multiplying all
variables with 1

µ . This way, the maximum expected value over all variables is 1 and the upper bound
on the expected number of Pareto points simplifies to E [q] = O(φn4), for appropriate φ. Under this
normalization, the maximum density φ can be seen as a parameter describing how much randomness
is available. For φ→ ∞, the randomness in the specification of the function p can go to zero and, in
this case, an adversary can specify an input for an appropriate problem such that the expected number
of Pareto points is exponential. In contrast, if φ is bounded from above by some constant term, then
the described instances inhabit a high degree of randomness and the expected number of Pareto points
is polynomial. In particular, the influence of the parameter φ on the complexity of the Pareto curve is
at most linear. Experimental results for the bicriteria version of the knapsack problem (Section 2.5.2)
suggest that the φ term is tight, i.e., the influence is indeed linear. Concerning the n4 term, we believe
that we lost a factor n2 in the analysis and the real bound should be O(φµn2).
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Figure 1.2: Points correspond to 8-element subsets over a ground set with 16 elements. These subsets
are plotted according to two linear objective functions, called weight and profit. Weight and profit of
each ground element have been chosen uniformly at random from [0,1]. The different markers indicate
Pareto optimality for points according to different directions of optimization. The density of points in
the “center” is exponentially larger than the density along the Pareto curve.

For the uniform distribution, φµ = 1/2. Hence, part (c) of the theorem gives an upper bound of
O(n4) for the uniform distribution, which is a factor n worse than the more specific bound in the first part
of the theorem. As the distribution can be scaled, the result in part (a) actually holds for any uniform
distribution with domain [0,a], a ∈ �

>0.

Part (b) of the theorem applies to the exponential and other long-tailed distributions. A distribution
has a long tail if its tail function, under appropriate normalization, can be bounded from below by the
tail of an exponential distribution. Only distributions with infinite domain can be long-tailed. For a more
detailed discussion as well as the definition of the slope of a tail function we refer to Section 1.2.2. Let
us only mention two examples for long-tailed distributions: the exponential distribution defined by tail
function T (x) = e−ax, and the Pareto distribution defined by tail function T (x) = (1 + x)−a, for some
parameter a > 0. By Corollary 1.8 and 1.9, if all pi follow the same distribution, then the corresponding
bounds on the expected number of Pareto points are n2 and a

a−1 n2, respectively. This is a factor n2

smaller than the bound that can be obtained by applying part (c) of the theorem for general distributions.
In fact, these results are tight. In Section 1.3 we provide a corresponding lower bound. Let us stress the
fact that the result for long-tailed distributions plays a much more important role than simply providing
better bounds. It is the basis for our analysis of general distributions.

Figure 1.2 illustrates the main theorem. It shows an example solution set and the corresponding
Pareto points for different directions of optimization. The bound for general distributions can immedi-
ately be applied to our smoothed analysis framework.
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Corollary 1.3. Let S ⊆ 2[n] be an arbitrary collection of subsets of [n]. Let w : S → �
be an arbitrary

function and p(S) = ∑i∈S pi a linear function over S to be optimized simultaneously. The direction of
optimization (minimization or maximization) can be specified arbitrarily for each of the two functions.
Assume we perturb only the coefficients p1, . . . , pn according to our smoothed analysis framework. For
any fixed perturbation model f with non-negative domain the expected number of Pareto points over S
is O(φn4 +n4).

Proof. Recall, that our smoothed analysis framework restricts the adversarial choice for the coefficients
pi to [0,1] since we assume a non-negative domain for those coefficients. The maximum expected value
of the distribution functions for the coefficients is 1+E/φ, where E =

R |s| f (s)ds is a constant depend-
ing on the perturbation model f . Hence, the expected number of Pareto points is upper bounded by
O(φµn4) = O(φ(1+E/φn4) = O(φn4 +n4).

Pareto Optimality Based on Explicit Subset Ordering

To prove Theorem 1.2 we use a slightly different definition of Pareto optimality. Instead of the domina-
tion concept based on two objective functions w(·) and p(·) we assume only one function p(·) together
with an explicit ordering of all solutions in S , i.e., a fixed sequence S1, . . . ,Sm. We adapt the domination
concept accordingly. Assume we want to maximize p(·). Then for all u ∈ [m],

Su is Pareto optimal⇔∀v ∈ [u−1] : p(Sv) < p(Su) .

The definition for minimization is analog. The explicit subset ordering S1, . . . ,Sm replaces the order that
is implicitly given by the function w(·). The main difference is that two solutions can have the same func-
tion value under w(·), whereas the rank of a solution in S1, . . . ,Sm is always unique. As a consequence,
the domination concept based on the explicit subset ordering might exhibit additional Pareto optimal
solutions. This happens, if two solutions that have the same value under w(·) but different values under
p(·) become both Pareto optimal under the explicit subset ordering, whereas only one of them would be
Pareto optimal according to the domination concept based on the two functions w(·) and p(·). However,
every Pareto optimal solution w.r.t. the functions w(·) and p(·) is also Pareto optimal w.r.t. function p(·)
and any explicit subset order S1, . . . ,Sm that complies with the order given by w(·), where ties can be
broken arbitrarily.

Minimization vs. Maximization

The direction of optimization has a great influence on the complexity of problems (e.g., finding shortest
or longest path in a graph). However, for our analysis of the number of Pareto points there exists a close
relation between maximization and minimization via complementary solution sets. For any set S ⊆ [n],
define the complementary set S̄ = [n]\S.
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Observation 1.4. Assuming a linear function p(S) = ∑i∈S pi, then for all u ∈ [m],

Su is Pareto optimal over S1, . . . ,Sm w.r.t. minimization of p(·) (1.1)

⇔ S̄u is Pareto optimal over S̄1, . . . , S̄m w.r.t. maximization of p(·) (1.2)

This can be seen as follows. Equation 1.1 is equivalent to

∀v ∈ [u−1] : ∑
i∈Sv

pi > ∑
i∈Su

pi

⇔∀v ∈ [u−1] : ∑
i∈[n]\S̄v

pi > ∑
i∈[n]\S̄u

pi

⇔∀v ∈ [u−1] : ∑
i∈S̄v

pi < ∑
i∈S̄u

pi ,

which is equivalent to Equation 1.2. Since we allow arbitrary solution sets and assume a linear function
p(·) it suffices to provide only a proof for maximization of p(·) as this implies the same bound for
minimization.

1.2.1 The Uniform Distribution

In this section we assume that the coefficients p1, . . . , pn are real numbers chosen uniformly at random
from [0,1]. We subsequently assume a maximization problem. By Observation 1.4, the following lemma
holds for the minimization problem as well.

Lemma 1.5. Let S1, . . . ,Sm be an arbitrary but fixed sequence of subsets of [n]. Suppose the coefficients
p1, . . . , pn are chosen according to the uniform distribution over [0,1]. Let q denote the number of Pareto
points over S1, . . . ,Sm. Then E[q] = O(n3).

Proof. First observe that, without loss of generality, we can assume for any i 6= j ∈ [m], S i ⊂ S j ⇒ i < j.
In other words, no subset of S j succeeds S j in the given order. Assume there is such a subset Si ⊂ S j with
i > j. Since the coefficients p1, . . . , pn are non-negative, p(Si) ≤ p(S j). As i > j, the set Si can never
become Pareto optimal, irrespectively of the random choice for the coefficients p1, . . . , pn. Therefore, we
could remove the set Si from the sequence S1, . . . ,Sm to be analyzed without effecting the result.

For any 2 ≤ u ≤ m, define ∆u = maxv∈[u] p(Sv)−maxv∈[u−1] p(Sv) ≥ 0. Observe that S1 is always
Pareto optimal. For all u≥ 2, Su is Pareto optimal if and only if ∆u > 0. These definitions are illustrated
in Figure 1.3. The following lemma shows that the expected increase in profit at Pareto optimal sets is
Ω(n−2).

Lemma 1.6. For every u ∈ {2, . . . ,m}, E [∆u |∆u > 0]≥ 1
32n2 .

Proof. Fix u ∈ {2, . . . ,m}. Observe that

E [∆u |∆u > 0]≥ Pr
[

∆u ≥ 1
16n2

∣

∣ ∆u > 0
]

· 1
16n2 .
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Figure 1.3: Sequence of subsets S1, . . . ,Sm. The random variable ∆u gives the increase in profit at subset
u compared with the most profitable subset left of u. If a subset v is dominated then ∆v = 0.

Hence, it suffices to show Pr
[

∆u ≥ 1
16n2

∣

∣ ∆u > 0
]

≥ 1
2 . For every v ∈ [u− 1], define Xv = Su \ Sv and

Yv = Sv \Su. It holds

Pr
[

∆u ≥ 1
16n2

∣

∣ ∆u > 0
]

= Pr
[

∀v : p(Su)≥ p(Sv)+ 1
16n2

∣

∣∀v : p(Su) > p(Sv)
]

= Pr
[

∀v : p(Xv)≥ p(Yv)+ 1
16n2

∣

∣∀v : p(Xv)≥ p(Yv)
]

, (1.3)

where the universal quantifier ranges over all elements v ∈ [u− 1]. Since we consider continuous prob-
ability distributions, the relaxation of the strict inequality in the conditioning part does not effect the
probability. Without loss of generality, Su = [k]. We distinguish two classes of random variables, namely
{p1, . . . , pk} and {pk+1, . . . , pn}. Observe that the Xv’s are subsets of the first class and the Yv’s are sub-
sets of the second class. For a moment, let us assume that the variables in the second class are fixed
arbitrarily. We investigate the variables in the first class under this assumption. Regardless of how the
variables in the second class are fixed, it is unlikely that one of the variables in the first class is much
smaller than n−1. In particular,

Pr
[

∃ j ∈ [k] : p j ≤ 1
4n | ∀v : p(Xv)≥ p(Yv)

]

≤ ∑
j∈[k]

Pr
[

p j ≤ 1
4n | ∀v : p(Xv)≥ p(Yv)

]

≤ ∑
j∈[k]

Pr
[

p j ≤ 1
4n

]

=
k

4n
≤ 1

4
.

From now on, we assume p j ≥ 1
4n , for every j ∈ [k]. Let Lv = p(Xv). Because of our assumption

Si ⊂ S j ⇒ i < j, for any i 6= j ∈ [m], each set Xv contains at least one element. Therefore, Lv ≥ 1
4n ,

for every v ∈ [u− 1]. In the following we will assume that the Lv’s are fixed in a way satisfying this
property but, otherwise, arbitrarily. (We will not consider the variables p1, . . . , pk anymore.) Under our
assumption on the Lv’s, we analyze Pr

[

∆u < 1
16n2 |∆u > 0

]

. In order to compensate for the case when
our assumption fails, we prove that this probability is at most 1

4 instead of 1
2 . In particular, using the

definition of the Lv’s to rewrite Equation 1.3, we prove

Pr
[

∀v : p(Yv)≤ Lv−
1

16n2

∣

∣

∣

∣

∀v : p(Yv)≤ Lv

]

≥ 3
4

,
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B

A

Bε

δ
δ

Figure 1.4: Two-dimensional example for polytopes A ,B and Bε with B = {(x,y)∈ [0,1]2 | x+y≤ 4/3}.

for arbitrarily fixed Lv ≥ 1
4n , where the probability refers solely to the random choices for the variables

pk+1, . . . , pn. Let us now switch to a geometric interpretation. Consider the following (n−k)-dimensional
polytopes.

A =
{

(pk+1× . . .× pn) ∈ [0,1]n−k ∣
∣ ∀v : p(Yv)≤ Lv− 1

16n2

}

,

B =
{

(pk+1× . . .× pn) ∈ [0,1]n−k | ∀v : p(Yv)≤ Lv

}

.

Figure 1.4 illustrates the definition of these two polytopes. Clearly, A ⊆B . As we investigate the uniform
distribution,

Pr
[

∆u ≥
1

16n2

∣

∣

∣

∣

∆u > 0
]

=
vol(A ∩B)

vol(B)
=

vol(A)

vol(B)
,

with vol(·) specifying the volume of the corresponding polytopes. In terms of these volumes, we have to
show vol(A) ≥ 3

4 vol(B).

At first view, it might seem that the ratio vol(A)/vol(B) depends on the number of facets of these
polytopes. This number, however, can be exponential, since facets correspond to subsets of [n]. Fortu-
nately, however, the following argument shows that the ratio between the two volumes can be estimated
in terms of the number of dimensions rather than the number of facets. The idea is to shrink the polytope
B uniformly over all dimensions until the shrunken polytope is contained in polytope A . For ε ∈ [0,1],
we define

Bε =
{

(pk+1× . . .× pn) ∈ [0,1− ε](n−k) | ∀v : p(Yv)≤ (1− ε)Lv

}

.

Obviously, B = B0 and, in general, Bε can be obtained by shrinking B in each dimension by a factor of
1− ε. As the number of dimensions is n− k, it holds vol(B ε) = (1− ε)n−k vol(B).

To ensure that Bε is contained in A , we have to choose ε satisfying (1− ε)Lv ≤ Lv− 1
16n2 for all

v ∈ [u− 1]. For ε ≥ 1
4n , the above equation is always satisfied, because Lv ≥ 1

4n . Thus setting ε = 1
4n
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implies Bε ⊆ A . As a consequence,

vol(A) ≥ vol(Bε) = (1− ε)(n−k) vol(B) ≥ (1− ε(n− k)) vol(B) ≥ 3
4 vol(B) ,

which completes the proof of Lemma 1.6.

The lemma above shows that at every Pareto optimal set the expected increase in profit is at east 1
32n2 .

On the other hand, the expected profit of the set [n] is n/2 as each individual element has expected profit
1/2. It might be intuitively clear that this implies that the expected number of Pareto optimal sets is at
most 16n3. The following calculation proves this statement in a formal way. It holds

max
u∈[m]

p(Su) = S1 +
m

∑
u=2

∆u ,

therefore, p([n]) ≥ ∑m
u=2 ∆u. As E [pi] = 1/2, for each i ∈ [n], we have

n/2 = E [p([n])] ≥
m

∑
u=2

E [∆u]

=
m

∑
u=2

Pr [∆u > 0] ·E [∆u | ∆u > 0]

≥
m

∑
u=2

Pr [∆u > 0] · 1
32n2 .

Consequently,

E [q] = 1+
m

∑
u=2

Pr [∆u > 0] ≤ 16n3 +1 .

The additional 1 is due to the set S1, which is always Pareto optimal. Thus Lemma 1.5 is shown.

1.2.2 Long-tailed Distributions

One can classify continuous probability distributions by comparing their tails with the tail of the expo-
nential distribution. In principle, if the tail function of a distribution can be lower-bounded by the tail
function of the exponential function, then we say the distribution has a “long tail”, and if the tail function
can be upper-bounded by the exponential tail function, then we talk about “short tails”. In this section,
we investigate the expected number of Pareto points under long-tailed distributions. In fact, we can prove
a slightly better bound for these distributions than for the short-tailed uniform distribution. Moreover,
our analysis can handle heterogeneous distributions. We want to point out that the results we prove
for the long-tailed distributions are important tools in the subsequent analysis for general probability
distributions.

We need to define the term “long-tailed distribution” more formally. Of special interest for us is the
behavior of the tail function under a logarithmic scale. Given any continuous probability distribution
with density function f :

�
≥0→

�
≥0, the tail function T :

�
≥0→ [0,1] is defined by T (t) =

R ∞
t f (x)dx.

We define the slope of tail function T at x ∈ �
≥0 to be the first derivative of the function − ln(T (·))
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at x, i.e., slopeT (x) = −[ln(T (x)]′. For example, the tail function of the exponential distribution with
parameter λ is T (x) = exp(−λx) so that the slope of this function is slopeT (x) = λ, for every x ≥ 0. In
general, slopeT (x) is a not necessarily continuous function with non-negative real values. The tail of a
continuous probability distribution is defined to be long if there exists α > 0 such that slopeT (x)≤ α, for
every x ∈ �

≥0.

According to this definition, the exponential distribution has long tails. However, the uniform dis-
tribution over [0,1] (or any other interval) does not have long tails because slopeT (x) = 1/(1− x),
which grows to ∞ for x→ 1. Observe that any distribution with a bounded domain cannot have long
tails. A typical example for a distribution with long tails is the Pareto distribution. The tail func-
tion of the Pareto distribution with parameter a > 0 is T (x) = (1 + x)−a. These tails are long because
slopeT (x) = [a ln(1+ x)]′ = a

1+x ≤ a, for every x≥ 0.

We assume that the coefficients p1, . . . , pn are chosen independently at random according to possibly
different long-tailed distributions with finite mean.

Lemma 1.7. For i ∈ [n], let coefficient pi be a random variable with tail function Ti :
�
≥0 → [0,1].

Define µi = E [pi] and let αi be an appropriate positive real number satisfying slopeTi
(x) ≤ αi for every

x ≥ 0, i ∈ [n]. Let α = maxi∈[n] αi and µ = maxi∈[n] µi. Let S1, . . . ,Sm be an arbitrary but fixed sequence
of subsets of [n] and let q denote the number of Pareto optimal set over S1, . . . ,Sm. Then

E [q]≤
(

∑
i∈[n]

µi

)

·
(

∑
i∈[n]

αi

)

+1≤ αµn2 +1.

Proof. We use an approach similar to the proof of Lemma 1.5. The bounds that we can prove, however,
are slightly better, as we can exploit the Markovian properties of the exponential distribution lower-
bounding the long tailed distributions under consideration.

As in the proof of Lemma 1.5 and for the same reasons, we assume, without loss of generality, that
for any i 6= j ∈ [m], Si ⊂ S j ⇒ i < j. Fix u ∈ [m], u ≥ 2. For every v ∈ [u− 1], define Xv = Su \ Sv and
Yv = Sv \Su. If Su is Pareto optimal, then the expected increase in profit is E [∆u |∆u > 0 ] corresponding
to

E
[

min
v∈[u−1]

(p(Xv)− p(Yv))

∣

∣

∣

∣

min
v∈[u−1]

(p(Xv)− p(Yv)) > 0
]

=
Z ∞

0
Pr [∀v : p(Xv)− p(Yv)≥ t | ∀v : p(Xv)≥ p(Yv) ]dt .

Let k = |Su| be the number of elements in Su. Without loss of generality, assume Su = [k]. Observe
that Xv ⊆ [k] and Yv ⊆ [n] \ [k], for every v ∈ [u− 1]. Our next goal is to isolate the random variables
p1, . . . , pk. For this purpose we partition the set [u− 1] into disjoint groups G1, . . . ,Gk satisfying the
following property: ∀ j ∈ [k] : v ∈ G j⇒ j ∈ Xv. There is always such a partitioning since none of the Xv,
v∈ [u−1], is the empty set which is a consequence of our assumption Si ⊂ S j⇒ i < j, for any i 6= j ∈ [m].
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Let E j(t) denote the event ∀v ∈ G j : p(Xv)≥ p(Yv)+ t. Then

E [∆u |∆u > 0 ] =
Z ∞

0
Pr





^

i∈[k]
Ei(t)

∣

∣

∣

∣

∣

^

i∈[k]
Ei(0)



dt

=

Z ∞

0

k

∏
j=1

Pr



 E j(t)

∣

∣

∣

∣

∣

j−1̂

i=1

Ei(t)∧
^

i∈[k]
Ei(0)



dt .

Now fix some j ∈ [k] and let us assume that the values of all random variables except for p j are fixed as
well. Define

A j = max
v∈G j

(

p(Yv)− p(Xv \{ j})
)

.

Notice that A j is independent of p j and, therefore, A j is also fixed. This way, the expression E j(t) is
equivalent to the expression p j ≥ A j + t. If there is some v ∈ [u− 1] with j ∈ Sv and p(Sv) > p(Su)+ t
then

V

i∈[k] Ei(t) = /0, because p j is the only variable not fixed. This case is not relevant for the integral
above. So assume that for all subsets Sv with v ∈ [u−1] and j ∈ Sv it holds p(Sv)≤ p(Su)+ t. Then the
expression

V j−1
i=1 Ei(t)∧

V

i∈[k] Ei(0) is equivalent to p j ≥ A′j, for some A′j ≥ A j, since E j(0) corresponds
to p j ≥ A j. Consequently,

Pr



 E j(t)

∣

∣

∣

∣

∣

j−1̂

i=1

Ei(t)∧
^

i∈[k]
Ei(0)



= Pr
[

p j ≥ A j + t | p j ≥ A′j
]

≥ Pr [ p j ≥ A j + t | p j ≥ A j ] .

Recall that Tj is the tail function for the random variable p j. Hence,

Pr [p j ≥ A j + t | p j ≥ A j] =
Tj(A j + t)

Tj(A j)
.

For the exponential distribution with parameter α, it holds Tj(A j+t)
Tj(A j)

= Tj(t) = e−αt . Here the first equality
corresponds to the so-called Markovian or memoryless property of the exponential distribution. For other
long-tailed distributions we need a slightly more complicated calculation. Recall, for all i ∈ [n], x ∈ �

≥0,
we assume slopeTi

(x) =−[ln(Ti(x)]′ ≤ αi. This yields

ln
(

Tj(x+ t)
Tj(x)

)

= ln(Tj(x+ t))− ln(Tj(x))

≥ (ln(Tj(x))−α jt)− ln(Tj(x)) =−α jt

so that Pr [p j ≥ A j + t | p j ≥ A j] =
Tj(A j+t)

Tj(A j)
≥ e−α j t , regardless of the outcome of A j. Putting all together,

E [∆u |∆u > 0] ≥
Z ∞

0
∏
j∈[k]

exp(−α j t)dt ≥
Z ∞

0
exp(∑ j∈[n]−α jt)dt =

1
∑ j∈[n] α j

,
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for every u ∈ {2, . . . ,m}. Moreover E [p([n])] = ∑i∈[n] µi. Thus, analogous to the proof of Lemma 1.5,
we are now able to bound the expected number of Pareto optimal sets by

E [q] ≤ 1+
E [p([n])]

minm
u=2(E [∆u | ∆u > 0])

≤ 1+

(

∑
i∈[n]

µi

)

·
(

∑
i∈[n]

αi

)

.

This completes the proof of Lemma 1.7.

Example distributions

Let us illustrate the power of Lemma 1.7 by investigating E [q], the expected number of Pareto points, for
some specific long-tailed probability distributions. In order to simplify the presentation of the results, let
us assume that all coefficients p1, . . . , pn follow the same distribution.

Corollary 1.8. If p1, . . . , pn are chosen according to the exponential distribution, then E [q] = O(n2).

This result is tight. In Section 1.3 we show a corresponding lower bound. Observe that the result
for the exponential distribution does not depend on the parameter of this distribution as the mean µ is
reciprocal of the slope α, regardless of the choice for the parameter of this distribution. This is slightly
different in the case of the Pareto distribution. For the Pareto distribution with parameter a > 1, we
choose α = a and µ = 1

a−1 . This gives the following upper bound on the running time.

Corollary 1.9. If p1, . . . , pn are chosen according to the Pareto distribution with parameter a > 1 then
E [q] = O( a

a−1 n2).

Observe that the expectation of the Pareto distribution is not well-defined for parameter a≤ 1 so that
our proof technique yields meaningful results only for a > 1.

1.2.3 General Distributions

In this section, we extend our result towards general, continuous distributions over
�
≥0 with finite mean

and bounded density functions. The following Lemma shows that the expected number of Pareto points
increases only linearly with the maximum expectation and the maximum density of the probability dis-
tributions over the coefficients p1, . . . , pn. In Section 1.4 we show how this result can be generalized
towards discrete probability distributions.

Lemma 1.10. For every i∈ [n], let coefficient pi be a non-negative random variable with density function
fi :

�
≥0→

�
≥0. Suppose µ = maxi∈[n] (E [pi]) and φ = maxi∈[n]

(

supx∈ � ≥0
fi(x)

)

. Let S1, . . . ,Sm be an
arbitrary but fixed sequence of subsets of [n] and let q denote the number of Pareto optimal set over
S1, . . . ,Sm. Then E [q] = O(φµn4).

Proof. Unfortunately, the analysis presented in the previous section fails for distributions with short tails.
In particular, the idea to lower-bound the increase in profit at every Pareto optimal set does not work for
short-tailed distributions. In fact, one can define a collection of short-tailed distributions for which the
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expected increase in profit at some sets, if they become Pareto optimal, is arbitrarily small. The point is,
however, that those sets are very unlikely to become Pareto optimal. This property needs to be exploited
in the following analysis.

Let Ti(a) =
R ∞

a fi(t)dt denote the tail function for the random variable pi, i ∈ [n]. For each pi we
define an auxiliary random variable xi = Ti(pi). Observe that the xi’s are uniformly distributed over
[0,1]. Furthermore, we introduce a cascade of events on which we will condition. For k ≥ 0, let Xk

denote the event ∀i ∈ [n] : xi ≥ 2−k/n. Observe that Xk−1 ⊆ Xk, for every k ≥ 1. By conditioning on this
cascade of events, we obtain the following upper bound on the expected number of Pareto optimal sets:

E [q] = Pr [X0] ·E [q | X0]+
∞

∑
k=1

Pr [Xk∧¬Xk−1] ·E [q | Xk∧¬Xk−1]

≤ Pr [X0] ·E [q | X0]+
∞

∑
k=1

E [q | Xk∧¬Xk−1]

2k , (1.4)

where the last inequality follows because

Pr [Xk∧¬Xk−1] < Pr
[

∃i ∈ [n] :
1

2kn
≤ xi <

1
2k−1/n

]

< n ·max
i∈[n]

{

Pr
[

1
2kn
≤ xi <

2
2kn

]}

=
n

2kn
= 2−k.

Unfortunately, placing conditions in such a direct way does not yield longer tails but shorter tails as
conditioning on Xk simply cuts the tail function at position T−1

i (2−k/n). The following trick avoids this
kind of unwanted effect by masking the short tails. We parameterize the random variable q with the
solution set S , that is, q(S) denotes the number of Pareto optimal sets over the subsets in S . For every
k ≥ 0 and every S ⊆ 2[n] we define an auxiliary random variable qk(S) as follows.

qk(S) =

{

q(S) if Xk ,

0 otherwise .

We also write qk for qk(S) if S is the solution set {S1, . . . ,Sm} to be analyzed. The variable qk(S) masks
Pareto optimal sets in case of ¬Xk. The following lemma shows that this masking technique enables us
to get rid of conditional probabilities so that our analysis for long tails can be applied to estimate the
unconditioned qk variables subsequently.

Lemma 1.11. For every k ≥ 0, E [q]≤ ∑∞
k=0 2−k+4 E [qk(Sk)], for some Sk ⊆ 2[n].

Proof. First we rewrite Equation 1.4 in terms of the qk variables, that is,

E [q] ≤ Pr [X0] ·E [q0 | X0]+
∞

∑
k=1

E [qk | Xk∧¬Xk−1]

2k . (1.5)

Since E [q0 | ¬X0] = 0 we have

Pr [X0] ·E [q0 | X0] = Pr [X0]
E [q0]

Pr [X0]
= E [q0] . (1.6)
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Next we upper bound E [qk | Xk∧¬Xk−1]. For this purpose we partition the event ¬Xk−1 into n disjoint
events Z1, . . . ,Zn with

Z j =

[

x1,x2, . . . ,x j−1 ≥
1

2k−1n
∧ x j <

1
2k−1n

]

.

Then, for k ≥ 1,

Pr [Xk |¬Xk−1] =
n

∑
j=1

Pr [Xk |Z j] ·Pr
[

Z j |
S

i∈[n] Zi

]

=
n

∑
j=1

1
2

(

1− 1
2kn

)n− j

Pr
[

Z j |
S

i∈[n] Zi

]

≥ 1
2

(

1− 1
2kn

)n−1 n

∑
j=1

Pr
[

Z j |
S

i∈[n] Zi

]

=
1
2

(

1− 1
2kn

)n−1

≥ 1
4

.

Thus, we get

E [qk |Xk∧¬Xk−1] ≤
E [qk |¬Xk−1]

Pr [Xk |¬Xk−1]
≤ 4E [qk |¬Xk−1] . (1.7)

Finally, we need to get rid of the conditioning on ¬Xk−1. This condition states that at least one of the
coefficients p1, . . . , pn has a very large value. Roughly speaking, only one variable will be affected by
this condition. The idea is now to make use of the fact that every individual coefficient p i can increase
the number of Pareto points only by a factor of two.

For all i ∈ [n], let Yi denote the event xi < 2−(k−1)/n. As ¬Xk−1 =
S

i∈[n]Yi,

E [qk |¬Xk−1] = E
[

qk

∣

∣

∣

S

i∈[n]Yi

]

≤ ∑
j∈[n]

E [qk |Yj] ·Pr
[

Yj

∣

∣

∣

S

i∈[n]Yi

]

.

Observe that the last estimation would hold with equality if the events Y1, . . . ,Yn were disjoint. As these
events overlap, however, the right hand term slightly overestimates the left hand term. Now Pr [Y j] =

2−k+1/n and Pr
[

S

i∈[n]Yi

]

= 1− (1−2−k+1/n)n ≥ 2−k, so that

Pr
[

Yj

∣

∣

∣

S

i∈[n]Yi

]

=
Pr [Yj]

Pr
[

S

i∈[n]Yi

] ≤ 2−k+1/n
2−k ≤ 2

n
.

As a consequence,

∑
j∈[n]

E [qk |Yj] ·Pr
[

Yj

∣

∣

∣

S

i∈[n]Yi

]

≤ max
j∈[n]

(E [qk |Yj]) ∑
j∈[n]

Pr
[

Yj

∣

∣

∣

S

i∈[n]Yi

]

≤ 2 max
j∈[n]

(E [qk |Yj]) .
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Let S = {S1, . . . ,Sm} be the solution set to be analyzed. For all j ∈ [n], define S ′j = {Si | i ∈ [m], j 6∈ Si},
and S ′′j = {Si \{ j} | i ∈ [m], j ∈ Si}. Observe that qk(S) ≤ qk(S ′j)+qk(S ′′j ) for all j ∈ [n]. As no subset

in S ′j and S ′j contains element j, E [qk |Yj]≤ E
[

qk(S ′j)+qk(S ′′j )
]

. Hence,

2 max
j∈[n]

(E [qk |Yj])≤ 2 max
j∈[n]

E
[

qk(S ′j)+qk(S ′′j )
]

.

Let j denote the index that maximizes the last expressions. Define S ′= argmax
{

E
[

qk(S ′j)
]

,E
[

qk(S ′′j )
]}

.
Then,

E [qk |¬Xk−1] ≤ 2(E [qk |Yj]) ≤ 4E
[

qk(S′)
]

. (1.8)

Using Equations (1.6), (1.7) and (1.8) to substitute Equation (1.5) yields the lemma.

Next we apply our analysis for the long tailed distributions to the qk variables.

Lemma 1.12. For every k ≥ 0 and S ⊆ 2[n], E [qk(S)]≤min{n32kφµ+n+1,2n}.

Proof. The bound E [qk(S)] ≤ 2n holds trivially because there are at most 2n different subsets over n
elements. The bound E [qk(S)] ≤ n32kφµ + n + 1 can be shown with the help of Lemma 1.7. Define
Bi,k = T−1

i (2−k/n). Remember that qk counts only Pareto points under Xk. Therefore, the behavior of the
tail function for values larger that Bi,k is irrelevant for qk and we can modify the tail function for values
larger than Bi,k without affecting qk. In fact, changing Ti(x), for x > Bi,k, enables us to bound the slope
of the tail function as needed for the application of Lemma 1.7.

Consider the following variants of our tail functions. We cut the tail functions Ti at position Bi,k and
replace the original, possibly short tails by long, exponential tails. For i ∈ [n] and k ≥ 0, define

Ti,k(t) =

{

Ti(t) if t ≤ Bi,k ,

exp(−φn(t−Bi,k))/(n2k) if t > Bi,k .

The slope of this tail function can be bounded as follows. For t ≤ Bi,k,

slopeTi,k
(t) = [− ln(Ti(t))]′ =

−[Ti(t)]′

Ti(t)
≤ φn2k

because −[Ti(t)]′ = fi(t) ≤ φ and Ti(t) ≥ 2−k/n since t ≤ Bi,k = T−1(2−k/n). The same upper bound
holds also for t > Bi,k since, in this case,

slopeTi,k
(t) =

[

− ln
(

exp(−φn(t−Bi,k))

n2k

)]′
= φn ≤ φn2k .

Furthermore, observe that the expected value of the coefficient pi under the tail function Ti,k is at
most µ +(φn22k)−1 because the added exponential tail increases the original mean value µ by at most
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(φn)−1(n2k)−1. Consequently, applying Lemma 1.7 with αk = φn2k and µk = µ + (φn22k)−1 yields
E [qk(S)]≤ αk µk n2 +1 = φµn32k +n+1.

Now we can complete our calculation for the upper bound on E [q]. Combining Lemma 1.11 and
1.12 yields

E [q] ≤
∞

∑
k=0

2−k+4 min{φµn32k +n+1,2n}

≤ 16
n

∑
k=0

(

φµn3 +2−k(n+1)
)

+16
∞

∑
k=n+1

2n−k

≤ 16(φµn4 +2n+3) .

Finally observe that φµ≥ 1
2 , for every non-negative continuous distribution. Thus E [q] = O(φµn4), which

completes the proof of Lemma 1.10.

1.3 A Lower Bound for Non-Increasing Density Functions

In this section we prove a lower bound for the number of Pareto points over the solution set S = 2 [n].
Notice, that 2[n] is the solution set for the bicriteria version of the knapsack problem. Our bound holds
for all continuous distributions with non-increasing density functions. Instead of the explicit subset
ordering that we used to prove the upper bounds, we assume two objective functions, the weight function
w(S) = ∑i∈S wi and the profit function p(S) = ∑i∈S pi, defined for all S ∈ S . Thus, this lower bound holds
for the more specific and very common case where the two objective functions are linear. However, the
theorem is restricted to min-max and max-min problems, that is, the directions of optimization for weight
and profit must be opposite. For a similar bound for min-min and max-max problems one would need
to resort to a different solution set, since the solution S = /0 (for the min-min case) and S = [n] (for the
max-max case) would dominate all other solutions, which would result in a single Pareto point.

Theorem 1.13. Suppose profits p1, . . . , pn are drawn independently at random according to a continuous
probability distribution with non-increasing density function f :

�
≥0→

�
≥0. Assume that the direction

of optimization for weight and profit is opposite. Let q denote the number of Pareto points over solution
set 2[n]. There is a vector of weights w1, . . . ,wn for which E [q] = Ω(n2).

Proof. First consider the min-max case, that is, the weight is to be minimized and the profit is to be
maximized. If the density function is non-increasing, then the distribution function F :

�
≥0 → [0,1]

is concave as F ′ = f . Furthermore, F(0) = 0. Observe that such a function is sub-additive, that is,
F(a + b) ≤ F(a)+ F(b), for every a,b ≥ 0. This is the crucial property that we need in the following
analysis.

Set wi = 2i for all i ∈ [n]. For every j ∈ [n], define Pj = ∑ j
i=1 pi. Let P ( j−1) denote the sequence of

Pareto optimal sets over the elements 1, . . . , j− 1, listed in increasing order of weights. Notice, that all
sets in P ( j− 1) have weight less than 2 j . All sets containing element j, however, have weight at least
2 j and, therefore, these sets cannot dominate the sets in P ( j− 1). Hence, P ( j) contains all sets from
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P ( j− 1). Furthermore, those sets S ∈ P ( j− 1) with profit p(S) ∈ (P j−1− p j,Pj−1] create new Pareto
optimal sets in P ( j) with profit p(S)+ p j > Pj−1.

For any given α > 0, let X j
α denote the number of Pareto optimal sets in P ( j) with profit at least

Pj−α, not counting the last set in this sequence, which is [ j]. By induction we show E
[

X j
α

]

≥ F(α) j.

Clearly, E
[

X1
α
]

= F(α). For j > 1, it holds

E
[

X j
α

]

= Pr [p j ≤ α]
(

E
[

X j−1
p j

]

+E
[

X j−1
α−p j

]

+1
)

+Pr [p j > α]E
[

X j−1
α

]

≥ Pr [p j ≤ α] (F(p j)( j−1)+F(α− p j)( j−1)+1)+Pr [p j > α]F(α)( j−1)

≥ Pr [p j ≤ α] (F(α)( j−1)+1)+Pr [p j > α]F(α)( j−1)

= F(α)( j−1)+F(α) = F(α) j ,

where the last inequality follows from F(a)+F(b)≥ F(a+b). Now let Y j = |P ( j)|− |P ( j−1)| denote
the number of new Pareto optimal sets in P ( j). Observe that Y j = X j−1

p j + 1. The additive 1 is due to
the fact that the set [ j− 1] is not counted in X j−1

p j but yields a new set in P ( j). Since p j and X j−1
α are

independent, we get E [Y j] = E
[

X j−1
p j +1

]

. Furthermore, the number of Pareto optimal sets in P (n) is
q = 1+ ∑n

j=1Yj. The additional 1 is due to the empty set which is always Pareto optimal. Therefore,

E [q] = 1+
n

∑
j=1

E [Yj] = 1+
n

∑
j=1

E
[

X j−1
p j

+1
]

≥ 1+
n

∑
j=1

E [F(p j)( j−1)+1]≥ 1+
n

∑
j=1

E [F(p j)] j .

In order to evaluate E [F(p j)], we need to examine the distribution function of the random variable F(p j).
Let F (·) denote this distribution function. Recall that p j is a random variable with distribution function
F . Hence,

F (x) = Pr [F(p j)≤ x] = Pr
[

p j ≤ F−1(x)
]

= F(F−1(x)) = x.

Thus F(p j) is uniformly distributed in [0,1] so that E [F(p j)] =
1
2 . Hence, E [q]≥ 1+ 1

2 ∑n
j=1 j = Ω(n2).

This concludes the proof for the min-max case.

Next we show that the number of Pareto points for the max-min and the max-min case are in fact
equal, irrespectively of the problem instance. For every S ∈ 2[n], let S̄ := [n] \ S be the complemental
subset of S. For simplicity, let us assume that no two subsets of [n] are equal in profit and weight
simultaneously. Then a subset S ⊆ [n] is Pareto optimal w.r.t. minimizing weight and maximizing profit
if and only of

@T ⊆ [n],T 6= S : w(T )≤ w(S) and p(T )≥ p(S)

⇐⇒ @T ⊆ [n],T 6= S : w([n])−w(T)≥ w([n])−w(S) and p([n])− p(T )≤ p([n])− p(S)

⇐⇒ @T ⊆ [n],T 6= S : w(T̄ )≥ w(S̄) and p(T̄ )≤ p(S̄)

⇐⇒ @T ⊆ [n],T 6= S̄ : p(T )≤ p(S̄) and w(T )≥ w(S̄).

The last line states that S̄ is Pareto optimal w.r.t. maximizing weight and minimizing profits. Therefore,
S is Pareto optimal for min-max optimization if and only if S̄ is Pareto optimal for max-min optimization.
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Figure 1.5: Each point represents a subset of 8 elements. Weight and profit of each element have been
chosen uniformly at random from the interval [0,1]. The point cloud is symmetric under rotation by 180
degree. The two step functions for min-max and max-min optimization exhibit the same number of steps.

The symmetry can also be shown graphically. The situation is illustrated in Figure 1.5. The step
function for the min-max case maps each weight value w to the maximum profit over all subsets with
weight at most w. Each step correspond to a Pareto point. Accordingly, the step function for the max-
min case maps each weight value w to the minimum profit over all subsets with weight at least w. The
two step functions are symmetric under a 180 degree rotation and, hence, cover the same number of
points.

The theorem shows that for the bicriteria version of the knapsack problem our analysis of the ex-
pected number of Pareto points under the exponential distribution is tight. The same is true for all
long-tailed distributions with finite mean and non-increasing density function. For the uniform distribu-
tion, however, lower and upper bound deviate by a factor Θ(n). Experimental results let us believe that
the lower bound is tight and the asymptotic behavior for this distribution is Θ(n2) as well.

1.4 Extending the Main Theorem to Discrete Distributions

In this section we generalize our main theorem towards discrete probability distributions, that is, we
assume that profits are randomly drawn non-negative integers. In this case, we can prove a tradeoff
ranging from polynomial to pseudo-polynomial running time, depending on the degree of randomness
of the specified instances.

Theorem 1.14. Let S ⊆ 2[n] be an arbitrary collection of subsets of [n]. Let w : S → �
be an arbitrary

function and p(S) = ∑i∈S pi a linear function over S to be optimized simultaneously. The direction of
optimization (minimization or maximization) can be specified arbitrarily for each function. Let q denote
the number of Pareto points over S .
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a) For i ∈ [n], let pi be a discrete random variable with tail function Ti : � 0 → [0,1]. Let α be
an appropriate positive term satisfying Ti(t +1)/Ti(t) ≥ e−α for all i ∈ [n] and t ∈ � 0. Suppose
µ = maxi∈[n] (E [pi]). Then E [q]≤ µn(1− e−αn)+1≤ µαn2 +1.

b) For every i ∈ [n], let pi be a discrete random variable with probability function f i : � → [0,1],
i.e., fi(t) = Pr [pi = t]. Suppose π = maxi∈[n] (supx∈ � ( fi(x))) and µ = maxi∈[n] (E [pi]). Then
E [q] = O(µn2(1− e−πn2

)) = O(µπn4).

Part (a) of the theorem is the discrete counterpart of the bound for long-tailed distributions. The
condition [ln(T (x)]′ ≥ −α is replaced by T (t+1)

T (t) ≥ e−α, or equivalently ln(T (t + 1))− ln(T (t)) ≥ −α,
which bounds the decrease of the tail function in the same manner. For the sake of comparison to
the continuous counterpart it makes sense to assume that the probability distributions “scale” with the
number of elements. For example, consider the following discrete variant of the exponential distribution.
Let Ti(t) = e−αt (t ≥ 0, i ∈ [n]) with α = α(n) being a function in n, e.g., α(n) = 1

n . The mean µ of this
distribution grows like 1

α(n) . Thus E [q] = O(n2) under the discrete exponential distribution, regardless of
the choice of α. In other words, we obtain the same bound as in the continuous case.

Part (b) of the theorem is the discrete counterpart of the bound for general distributions. The role
of φ, the supremum of the probability distributions, is taken up by π, the supremum of the probability
functions. In fact, the term 1−e−πn2

in the upper bound translates into a pseudo-polynomial bound if the
randomness in the specification goes to zero. For example, assume that for each element an adversary
specifies an interval from which the profit of this item is drawn uniformly at random. Let M denote the
maximum profit that can be drawn for any element and ` the minimum interval length over all elements.
Set µ = M and π = 1

` so that E [q] = O(Mn2(1− e−n2/`)). If ` = Θ(M) then this upper bound simplifies
to O(n4) because 1− e−x ≤ x, for all x ∈ �

. However, if ` = Θ(1), then we are left with the pseudo-
polynomial upper bound E [q] = O(Mn2).

The proofs rely on the same methods that we used for continuous distributions. So we will point out
only those parts of the proofs that need to be adapted. First, we consider long-tailed and then general
discrete distributions.

1.4.1 Long-tailed Discrete Distributions

Let us assume that profits are chosen independently at random according to possibly different long-
tailed distributions with finite mean. For i ∈ [n], let profit pi be a random variable with tail function
Ti : � 0→ [0,1], that is, for every t ∈ � 0, Pr [pi ≥ t] = Ti(t).

Lemma 1.15. Let α be an appropriate positive term satisfying Ti(t +1)/Ti(t) ≥ e−α, for all i ∈ [n] and
t ∈ � 0. Suppose µ = maxi∈[n] (E [pi]). Let S1, . . . ,Sm be an arbitrary but fixed sequence of subsets of [n].
Let q denote the number of Pareto optimal sets over S1, . . . ,Sm. Then E [q]≤ µn(1−e−αn)+1≤ µαn2 +1.
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Proof. We can adapt the proof of Lemma 1.7 towards discrete long tailed distributions.

E [∆u |∆u ≥ 1 ] = E
[

min
v∈[u−1]

(p(Xv)− p(Yv))

∣

∣

∣

∣

min
v∈[u−1]

(p(Xv)− p(Yv))≥ 1
]

=
∞

∑
t=1

Pr [∀v : p(Xv)≥ p(Yv)+ t | ∀v : p(Xv)≥ p(Yv)+1 ] .

We define the groups G1, . . . ,Gk as in the proof of Lemma 1.7. Let E j(t) denote the event ∀v ∈G j :
p(Xv)≥ p(Yv)+ t. Then

E [∆u |∆u ≥ 1] =
∞

∑
t=1

Pr





^

i∈[k]
Ei(t)

∣

∣

∣

∣

∣

^

i∈[k]
Ei(1)





=
∞

∑
t=1

k

∏
j=1

Pr



 E j(t)

∣

∣

∣

∣

∣

j−1̂

i=1

Ei(t)∧
^

i∈[k]
Ei(1)





≥
∞

∑
t=1

∏
j∈[k]

e−α(t−1) ≥
∞

∑
t=1

e−αn(t−1) =
1

1− e−αn .

We used the fact that Tj(A j + t)/Tj(A j + 1) ≥ e−α(t−1) for all j ∈ [k], t ≥ 1 where A j is defined as in
the proof of Lemma 1.7. Notice, that the expected increase in profit at Pareto optimal sets is lower
bounded by 1 which reflects the integrality of profits. Analogous to the proof of Lemma 1.5, it holds
p([n]) ≥ ∑m

u=2 ∆u and

E [p([n])] ≥
m

∑
u=2

E [∆u]

=
m

∑
u=2

Pr [∆u ≥ 1] ·E [∆u | ∆u ≥ 1]

≥
m

∑
u=2

Pr [∆u ≥ 1] · 1
1− e−αn .

Now we can bound the number of Pareto optimal sets by

E [q] = 1+
m

∑
u=2

Pr [∆u ≥ 1] ≤ 1+E [p([n])] · (1− e−αn) ≤ µn(1− e−αn)+1.

Applying the inequality 1− e−x ≤ x yields E [q]≤ µαn2 +1.

1.4.2 General Discrete Distributions

In this section, we analyze the number of Pareto optimal sets when profits are chosen according to
general discrete probability distributions over � with finite mean. For every i ∈ [n], we assume that p i is
a positive random variable with probability function f i : � → [0,1], i.e., fi(t) = Pr [pi = t].
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Bi,k

1
2kn

Ti,k

Ti

Figure 1.6: We cut the tail Ti at position Bi,k and replace this part by a long tail Ti,k .

Lemma 1.16. Suppose π = maxi∈[n] (supx∈ � ( fi(x))) and µ = maxi∈[n] (E [pi]). Let S1, . . . ,Sm be an ar-
bitrary but fixed sequence of subsets of [n]. Let q be the number of Pareto optimal sets over S1, . . . ,Sm.
Then E [q] = O(µn2(1− e−πn2

)) = O(µπn4).

Proof. We adapt the proof of Lemma 1.10. Let Ti : � → [0,1] be the tail function of pi. To simplify the
analysis, we introduce auxiliary random variables x1, . . . ,xn. These variables are drawn independently
and uniformly over the interval [0,1]. Now we assume that the pi’s are generated from the xi’s by
setting pi = max{ j ∈ � : Ti( j) ≥ xi}. In this way, Pr [pi ≥ t] = Ti(t), so that this is a proper way to
generate the profits in order to obtain the same distribution as described in the lemma. Define auxiliary
random variables qk(S) as before. Lemma 1.11 is valid for discrete probability distributions too. For the
convenience of the reader we state it here again.

Lemma 1.17. For every k ≥ 0, E [q]≤ ∑∞
k=0 2−k+4 E [qk(Sk)], for some Sk ⊆ 2[n].

Next we prove the discrete counterpart of Lemma 1.12.

Lemma 1.18. For k ≥ 0, E [qk]≤min{µn(1− e−π2kn2
)+n+1,2n}.

Proof. The bound E [qk] ≤ 2n holds trivially because there are at most 2n different subsets over n ele-
ments. The other bound can be shown with the help of Lemma 1.15. For this purpose we need to bound
the ratio of Ti,k(t +1)/Ti,k(t) for all t ∈ � . Define Bi,k = min{ j ∈ � : Ti( j) < 2−k/n}. Consider the fol-
lowing variants of our tail function. We cut the tail functions Ti at position Bi,k and replace the original,
possibly short tails by long, exponential tails. For i ∈ [n] and k ≥ 0, define

Ti,k(t) =

{

Ti(t) if t < Bi,k,

exp(−πn(t−Bi,k))/(n2k) if t ≥ Bi,k.

Figure 1.6 illustrates the situation. For all t ≤ Bi,k− 1, Ti,k(t + 1) ≥ 2−k/n and Ti,k(t)−Ti,k(t + 1) ≤ π.
In particular, Ti,k(Bi,k−1)−Ti,k(Bi,k)≤ π, because Ti,k(Bi,k)≥ Ti(Bi,k). Therefore Ti,k(t) ≤ Ti,k(t +1)+

2kn ·Ti,k(t +1) ·π and
Ti,k(t +1)

Ti,k(t)
≥ 1

1+2knπ
≥ e−2knπ .
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The same lower bound holds also for t ≥ Bi,k since, in this case,

Ti,k(t +1)

Ti,k(t)
= e−nπ ≥ e−2knπ .

Furthermore, observe that the expected maximum profit of an element under the tail function Ti,k is at
most µ+1/(2kn(1− e−πn)), because the added exponential tail increases the original mean value µ by at
most

max
i

∞

∑
t=Bi,k

1
2kn

e−πn(t−Bi,k) =
1

2kn
· 1
(1− e−πn)

.

Applying Lemma 1.15 with parameters µk = µ+1/(2kn (1− e−πn)) and αk = πn2k yields

E [qk] ≤ µkn(1− e−αkn)+1

= µn(1− e−πn22k
)+

1− e−πn22k

2k(1− e−πn)
+1

≤ µn(1− e−πn22k
)+n+1 .

Thus, Lemma 1.18 is shown.

Now we can complete our calculation for the upper bound on E [q]. Combining Lemma 1.18 and
1.17 yields

E [q] ≤
∞

∑
k=0

2−k+4 min
{

µn(1− e−πn22k
)+n+1,2n

}

≤ 16

(

n

∑
k=0

µn
(1− e−πn22k

)

2k +
n+1

2k

)

+16
∞

∑
k=n+1

2n−k

≤ 16(µn2(1− e−πn2
)+2n+3) .

Finally, we need to show 2n + 3 = O(µn2(1− e−πn2
)). As the domain of the considered distributions

are the positive integers, µ ≥ 1 and πµ ≥ 1
2 gives (1− e−πn2

) ≥ (1− e−n2/2µ). For all 0 ≤ x ≤ 0.5 and
n≥ 2 it holds x+ e−n3x/2 ≤ 1. Substituting x := 1/(µn) yields 1≤ µn(1− e−n2/2µ). Thus Lemma 1.16 is
shown.

1.5 Algorithmic Applications

Our main theorem shows that the number of Pareto points for bicriteria optimization problems is polyno-
mial on average, provided that one function is linear and exhibits sufficient randomness. However, even
if there are only few Pareto points it can be hard to compute them. As an example, consider the bicriteria
Traveling Salesperson problem where already the problem of finding any solution, i.e., the Hamiltonian
cycle problem, is NP-hard. The same argument applies to all problems for which the single criterion
version of the problem is hard to solve in the worst case. But even if the single criterion version of the
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problem is in P and well studied, computing the Pareto points can be non-trivial. As an example, con-
sider the minimum spanning tree problem with two linear objective functions to be minimized. To our
knowledge, there is no efficient algorithm enumerating all Pareto points for this problem even though
this problem has been treated in several publications. While Corley’s algorithm [Cor85] is flawed as
observed by others (e.g. [EG02]), Hamacher and Ruhe [HR94] give an approximation algorithm for the
Pareto curve which produces also solutions that are not Pareto optimal. Ramos et al. [RASG98] provide
an algorithm computing all Pareto optimal solutions, however, the running time is not polynomial in m
and q, denoting the number of edges and the number of Pareto points, respectively.

We apply our main theorem to two problems; the knapsack problem and the constrained shortest path
problem [Zie01]. For both problems exist efficient algorithms enumerating Pareto optimal solutions.
As a result we obtain the first average-case analysis for these NP-hard problems. Since Chapter 2 is
completely devoted to the knapsack problem we find it convenient to move the material concerning the
knapsack problem together with experimental results to this chapter. In the following section we only
address the constrained shortest path problem.

1.5.1 The Constrained Shortest Path Problem

Given a graph G = (V,E) with source node s, target node t and a length function l : E→ �
, the shortest

path problem ask for a shortest path in G from s to t. When we define an additional cost function
c : E → �

on the set of edges, we obtain a bicriteria optimization problem. Usually, both functions are
to be minimized. In the constrained shortest path problem we seek the shortest among all path with
cost at most a given threshold B. This problem is NP-hard [GJ79] but admits a pseudo-polynomial
time algorithm [Jok66, Law76] with running time O(|E|B). Using the standard technique of rounding
and scaling, this algorithm can be turned into an FPTAS [Has92]. For more recent literature on this
problem we refer to the PhD-theses of Ziegelmann [Zie01] and Dumitrescu [Dum02]. Starting with the
pioneering work of Hansen [Han80] the bicriteria shortest path problem has drawn much attention. A
comprehensive survey of available literature on this topic has been compiled by Ehrgott and Gandibleux
[EG02].

Next we describe a dynamic programming algorithm computing all Pareto points for the bicriteria
shortest path problem. A variation of this algorithm was introduced in [CM85]. The algorithm is an
extension of the Bellmann/Ford algorithm that solves the single criterion version of the shortest path
problem. As all labeling approaches, it maintains a distance label for each vertex corresponding to the
length of the shortest path found so far. For the bicriteria variant we maintain, for each vertex v ∈ V , a
list Lv of Pareto optimal s− v paths. The paths in each list are sorted according to the first objective. In
the initialization phase each vertex is assigned the empty list, except the source s, whose list contains
the zero length path. The operation relax(u,v) extends list Lv by new Pareto optimal s− v paths (with
last edge (u,v)) as follows. Each path in Lu is extended by edge (u,v) and inserted into Lv. Then paths
dominated by other paths in Lv are removed from the list.

In fact, we maintain only the Pareto points instead of the corresponding paths in the lists Lv. If the
optimal path needs to be extracted at the end of the computation, we can maintain additionally a link
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to the last vertex on the corresponding path. As the lists are sorted according to the first objective, the
operation relax(u,v) takes time that is linear in the length of the lists Lu and Lv. The sequence of relax
operations is implicitly given by the Bellmann/Ford algorithm.

Algorithm Bellman/Ford G = (V,E)

Initialize-Labels;

repeat |V |−1 times

forall (u,v) ∈ E do relax(u,v);

Let (R1, . . . ,Rk), with Ri ∈E for all i∈ [k], denote the ordered sequence of relax operations performed
by the (extended) Bellman/Ford algorithm. For any u ∈V and i ∈ [k], let Pi(u) be the set of s− u paths
induced by the first i relax operation, i.e., all s− u paths that appear as a subsequence in R1, . . . ,Ri. In
other words, Pi(u) contains exactly those s− u paths that can potentially be discovered after the first
i relax operations. Let L i

u denote the computed list of Pareto optimal paths for vertex u after the ith
iteration. The list L i

u contains exactly the Pareto optimal paths over Pi(u). The overall running time T of
the algorithm is

T =
k

∑
i=1
|L i−1

source(Ri)
|+ |L i−1

target(Ri)
|,

where source(R) and target(R) denote the source and target vertex of the relax operation R. Applying
Theorem 1.2 on solution set Pi(u), we can upper bound E

[

|L i
u|
]

for all i ∈ [k] and u ∈ V . Let U be
an appropriate term upper bounding E

[

|L i
u|
]

for all i ∈ [k] and u ∈ V . Then E [T ] = O(nmU). Hence,
Theorem 1.2 and 1.14 yield

Theorem 1.19. Let G = (V,E) be an arbitrary graph with m = |E| and n = |V | and two linear functions
l(·) and c(·) to be minimized. The coefficients c1, . . . ,cm of function c(·) are assumed to be adversarial,
whereas the coefficients l1, . . . , lm are assumed to be random variables. Let T denote the running time of
the Bellman/Ford algorithm with the extended relax operation.

a) If l1, . . . , ln are chosen according to the uniform distribution over [0,1], then E[T ] = O(nm4).

b) For i ∈ [n], let li be a random variable with tail function Ti :
�
≥0→ [0,1]. Define µi = E [li] and let

αi be an appropriate positive real number satisfying slopeTi
(x) ≤ αi for every x ≥ 0, i ∈ [m]. Let

α = maxi∈[m] αi and µ = maxi∈[m] µi. Then

E [T ]≤ nm

((

∑
i∈[m]

µi

)

·
(

∑
i∈[m]

αi

)

+1

)

≤ αµnm3 +mn.

c) For every i ∈ [m], let li be a non-negative random variable with density function f i :
�
≥0→

�
≥0.

Suppose µ = maxi∈[m] (E [li]) and φ = maxi∈[m]

(

supx∈ � ≥0
fi(x)

)

. Then E [q] = O(φµnm5).
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d) For i ∈ [m], let li be a discrete random variable with tail function Ti : � 0 → [0,1]. Let α be an
appropriate positive term satisfying Ti(t +1)/Ti(t) ≥ e−α for all i ∈ [m] and t ∈ � 0. Suppose
µ = maxi∈[m] (E [li]). Then E [T ]≤ nm(µm(1− e−αm)+1)≤ nm(µαm2 +1).

e) For every i ∈ [m], let li be a discrete random variable with probability function f i : � → [0,1], i.e.,
fi(t) = Pr [li = t]. Suppose π = maxi∈[m] (supx∈ � ( fi(x))) and µ = maxi∈[m] (E [li]). Then E [T ] =

O(µnm3(1− e−πm2
)) = O(µπnm5).

Remark 1.20. Part (a), (b) and (c) of the theorem apply to continuous distributions whereas part (d)
and (e) apply to discrete distributions. The theorem is valid as well for a deterministic length function
l(·) and random edge costs c1, . . . ,cm.

Corollary 1.3 immediately implies the following smoothed analysis result.

Corollary 1.21. Let G = (V,E) be an arbitrary graph with m = |E| and n = |V | and two linear func-
tions l(·) and c(·) to be minimized. Assume we either perturb the coefficients of the cost or of the
length function according to our smoothed analysis framework. For any fixed perturbation model f with
non-negative domain the expected running time of the Bellman/Ford algorithm with the extended relax
operation on the perturbed instance is O(nm5(1+φ)).

There are other labeling approaches for the shortest path problem that have been extended to compute
Pareto optimal paths. They are usually more efficient in practice. All these algorithms use the relax oper-
ation described above, but differ in the sequence of executed relax operations. In particular, the choice of
the next relax operation usually depends on the current labeling which results not only from the previous
relax operations but also from the length and cost functions. Therefore, the paths in P i(u) depend on the
random coefficients of the length function and we cannot apply our main theorem, as it requires a fixed
solution set. In contrast, the sequence of relax operations in the (extended) Bellmann/Ford algorithm is
fixed and so are the paths in Pi(u).



Chapter 2

Probabilistic Analysis of Algorithms for
the Knapsack Problem

In this chapter we apply our main theorem to the knapsack problem leading to the first average-case
analysis that proves a polynomial upper bound on the expected running time of an exact algorithm for the
standard 0/1 knapsack problem. In particular, we consider the bicriteria version of the knapsack problem
and describe a long-known algorithm by Nemhauser and Ullmann that can enumerate Pareto optimal
knapsack fillings very efficiently. This way, the generality of the random input model provided by our
main theorem transfers directly to the knapsack problem so that we obtain a smoothed complexity result
as well. Our analysis confirms and explains practical studies showing that so-called strongly correlated
instances are harder to solve than weakly correlated ones.

In the second part of this chapter, we study the average-case performance of knapsack core algo-
rithms, the predominant algorithmic concept used in practice. We present the first theoretical result on
the running time of a core algorithm that comes close to the results observed in experiments. In par-
ticular, we prove an upper bound of O(npolylog (n)) on the expected running time of a core algorithm
on instances with n items whose profits and weights are drawn independently, uniformly at random.
Furthermore we extend our result to harder instances, where weights and profits are correlated.

Finally we present an experimental study for random knapsack instances. At first we investigate the
number of Pareto points under various input distributions. Our experiments suggest that the theoretically
proven upper bound of O(n3) for uniform instances and O(n4φ) for general probability distributions
is not tight. Instead we conjecture an upper bound of O(n2φ) matching the lower bound from Sec-
tion 1.3. Furthermore, we investigate the performance of different knapsack implementations on random
instances. We combine four concepts (core, domination, loss and decomposition) that have been known
since at least 20 years, but apparently have not been used together. The result is a very competitive code
that outperforms the best known implementation Combo by orders of magnitude also for harder random
knapsack instances.

35
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2.1 Definition and Previous Work

The 0/1 knapsack problem is one of the most intensively studied combinatorial optimization problems
having a wide range of applications in industry and financial management, e.g., cargo loading, cutting
stock, budget control. For a comprehensive treatment we refer to the new book by Kellerer, Pferschy and
Pisinger [KPP04] which is entirely devoted to the knapsack problem and its variations. The problem is
defined as follows. A subset of n given items has to be packed in a knapsack of capacity b. Each item i
has a profit pi and a weight wi. The problem is to select a subset of the items whose total weight does not
exceed the capacity bound b and whose total profit is as large as possible. In terms of an integer linear
program (ILP), the problem is to

maximize ∑
i∈[n]

pixi

subject to ∑
i∈[n]

wixi ≤ b

and xi ∈ {0,1}, for i ∈ [n] .

This problem is of special interest not only from a practical point of view but also for theoretical reasons
as it can be seen as the simplest possible 0/1 linear program because the set of feasible solutions is
described by a single constraint only. Starting with the pioneering work of Dantzig [Dan57], the problem
has been studied extensively in practice (e.g. [MPT99, MPT00, Pis95, KPP04, MT90]) as well as in
theory (e.g. [BZ80, BB94, MT97, HS74, Lue82, Lue98a, GMS84, DF89, BV03, BV04b]).

The knapsack problem is one of those optimization problems for which NP-hardness theory con-
cludes that it is hard to solve in the worst case. In the book by Garey and Johnson [GJ79] the knapsack
problem is listed under number MP9. The knapsack problem is NP-hard in the weak sense. There exist
a pseudo-polynomial time algorithm with running time O(nb) (see e.g. [KPP04]). The first FPTAS for
the knapsack problem, published in 1975 by Ibarra and Kim [IK75], has subsequently been improved by
Lawler [Law79], Magazine and Oguz[MO81] and Kellerer and Pferschy [KP99].

Despite the exponential worst-case running times of all known knapsack algorithms, several large
scale instances can be solved to optimality very efficiently [MPT00, KPP04, Pis95]. In particular, ran-
domly generated instances seem to be quite easy to solve. A natural and also the most investigated
stochastic input model assumes that the weights and profits of all items are chosen independently uni-
formly at random from [0,1]. Although significant progress has been made in understanding the structure
and complexity of these random knapsack instances (see e.g. [GMS84, Lue82, Lue98a, BB94, DF89]1),
until now there has been no proof that the knapsack problem can be solved in expected polynomial time
under any reasonable stochastic input model. The best known result on the running time of an exact
algorithm for the knapsack problem was shown by Goldberg and Marchetti-Spaccamela [GMS84]. They
investigate core algorithms, an algorithmic concept suggested by Balas and Zemel [BZ80]. As a first
step towards analyzing core algorithms, Lueker proved an upper bound on the expected gap between

1Related work deals with the hardness of random instances for knapsack cryptosystems [DP82, Fri86, IN96]. These cryp-
tosystems, however, are based on the hardness of random subset sum problems which is not directly affected by our results.



2.2. THE NEMHAUSER/ULLMANN ALGORITHM 37

the optimal integral and the optimal fractional solution [Lue82]. Based on this result, Goldberg and
Marchetti-Spaccamela [GMS84] were able to prove structural properties of the core resulting in the fol-
lowing bound on the running time of a Las Vegas type core algorithm. For every fixed k > 0, with
probability at least 1−1/k, the running time of their algorithm does not exceed a specified upper bound
that is polynomial in the number of items. However, the degree of this polynomial is quite large, the
leading constant in the exponent is at least a large three digit number. Even more dramatically, the de-
gree of the polynomial grows with the reciprocal of the failure probability like

√
k log(k). Observe that

this kind of tail bounds does not allow to conclude any sub-exponential upper bound on the expected
running time. An extension of this work to the multidimensional knapsack problem has been presented
by Dyer and Frieze [DF89].

Our analysis is based on the Nemhauser/Ullmann algorithm which enumerates Pareto optimal knap-
sack fillings. By applying our main theorem from Chapter 1 we are able to prove a polynomial upper
bound on the expected running time of the Nemhauser/Ullmann algorithm for random knapsack in-
stances. We improve the result of Goldberg and Marchetti-Spaccamela in several other aspects as well.
In particular, our random input model is not restricted to the uniform distribution but allows arbitrary
probability distributions with bounded density and finite mean. Our analysis relies on the randomness
of only one objective function (weight or profit). Hence, the other objective function is assumed to be
adversarial. Furthermore, different coefficients of the weight function (or profit function) can follow
different probability distributions, which implies a smoothed analysis result. In contrast to the algorithm
analyzed by Goldberg and Marchetti-Spaccamela, the Nemhauser/Ullmann algorithm does not use the
core concept. In fact, Section 2.5.4 shows that the Nemhauser/Ullmann algorithm is significantly slower
in practice than the core algorithm by Goldberg and Marchetti-Spaccamela. However, the generality of
our analysis allows us to bound the running time of a different core algorithm which is based on the
technique of Nemhauser/Ullmann.

2.2 The Nemhauser/Ullmann Algorithm

In bicriteria version of the standard knapsack problem the weight is considered as a second objective
function which is to be minimized. The set of feasible solutions consists of all 2n subsets of n elements.
In 1969, Nemhauser and Ullmann [NU69] introduce an elegant algorithm enumerating all Pareto points
for this problem. Such an enumeration also solves the knapsack problem as an optimal solution for the
corresponding knapsack problem with weight threshold b can be obtained by choosing the most profitable
Pareto optimal knapsack filling with weight at most b. In the literature the Nemhauser/Ullmann algorithm
is sometimes referred as “Dynamic programming with lists”, e.g. in [KPP04].

The algorithm computes a list of all Pareto points in an iterative manner. For i ∈ [n], let L i be the
list of all Pareto points over the solution set Si = 2[i], i.e., the solution set Si consists of all subsets of
items 1, . . . , i. Each Pareto point is a (weight, profit) pair. The Pareto points in L i are assumed to be
listed in increasing order of their weights. Clearly, L1 = 〈(0,0),(w1, p1)〉. The list Li+1 can be computed
from Li as follows: Create a new ordered list L ′i by duplicating Li and adding (wi+1, pi+1) to each point.
Now we merge the two lists into Li+1 obeying the weight order of subsets. Finally, those subsets are
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Figure 2.1: (a) Points correspond to subsets of 12 items. Weight and profit of each item have been chosen
uniformly at random from [0,1]. Each step of function f corresponds to a Pareto point. (b) An iteration of the
Nemhauser/Ullmann algorithm: a copy of step function fi−1 is shifted by (wi, pi). (c) Upper envelope gives step
function fi.

removed from the list that are dominated by other subsets in the list. The correctness of the algorithm is
a consequence of the fact, that Li contains all Pareto points over Si and L ′i contains all Pareto points over
Si+1 \Si. This way, Li∪L ′i contains all Pareto points over Si+1. In order to extract the knapsack fillings
corresponding to the computed Pareto points, we maintain a bit for each Pareto point in L i indicating
whether or not item i is contained in the corresponding knapsack filling. The knapsack filling can then
reconstructed recursively using the standard technique from dynamic programming (see e.g. [KPP04]).

For the purpose of illustration and a better understanding, let us take a different view on this algo-
rithm. For i ∈ [n], let fi :

� → �
be a mapping from weights to profits such that f i(t) is the maximum

profit of a knapsack filling over items 1, . . . , i with weight at most t. Observe that f i is a non-decreasing
step function changing its value at those weights that correspond to Pareto optimal knapsack fillings. In
particular, the number of steps in fi equals the number of Pareto points over Si. Figure 2.1(a) shows
such a step function for a small instance, (b) shows a step function f i and the copy of this step function
which is generated in the algorithm described above, finally, (c) illustrates how the two step functions
are merged: the graph of the resulting step function f i+1 is simply the upper envelope of the graph fi−1

and its shifted copy.
As the lists are sorted, Li can be calculated from Li−1 in time that is linear in the length of Li−1, that

is, linear in the number of Pareto points over Si−1. This yields the following lemma:

Lemma 2.1. For every i ∈ [n], let q(i) denote an upper bound on the (expected) number of Pareto
points over Si, and assume q(i) is increasing. The Nemhauser/Ullmann algorithm computes an optimal
knapsack filling in (expected) time

O

(

n

∑
i=1

q(i−1)

)

= O(n ·q(n)).
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1. group i = 1, . . . , l wi = pi = 2i−1 |Li|= 2i

2. group i = 1, . . . ,k wl+i = i
2(k+1) , pl+i = 1

2 + i
2(k+1) |Ll+i|= (i+1)2l + i(i−1)

2

3. group wk+l+1 = pk+l+1 = 1
2 |Ll+k+1|= 2l+1 + k(k+1)

2

Table 2.1: Definition of knapsack instances I (l,k). Items are divided into three groups containing l,k
and one item respectively. Weight and profit of item i are denoted by wi and pi. The last column gives
the number of Pareto points after each iteration of the Nemhauser/Ullmann algorithm.

The assumption on the monotonicity of q(i) is required since the number of Pareto points can de-
crease when adding an item. In fact, there is a family of instances showing that |L i|/|Li−1| can be
arbitrarily small (see Section 2.2.1). We find it adequate to elaborate on this observation as the standard
literature (e.g. [KPP04]) does not mention this fact. All bounds we prove, however, are monotonically
increasing in n.

In the worst case, the number of Pareto points is 2n. This case occurs when profits and weights
are identical and no two subset have the same weight. In fact, this instance is also the worst case
for the core algorithm of Goldberg and Marchetti-Spaccamela. In general, the running time of the
Nemhauser/Ullmann algorithm can be bounded from above by O(∑n

i=1 2i−1) = O(2n). However, if
weights and profits are independent or only weakly correlated, experiments show that the number of
Pareto points and, hence, the running time, is much smaller (see Section 2.5). Furthermore, if the
input numbers are positive integers, then the running time of the algorithm can be bounded pseudo-
polynomially as, in this case, step function f i can have at most iP steps, with P denoting the maximum
profit of an individual item. Notice the close connection to dynamic programming. Instead of explicitly
evaluating the maximum profit of a knapsack filling at every integer weight, the Nemhauser/Ullmann
algorithm keeps track only of those weights at which the maximum profit increases. Thus, it can be seen
as a sparse dynamic programming approach.

2.2.1 Decreasing Number of Pareto Points

The following family of instances shows that the number of Pareto points can decrease when adding
an item. In particular, |Ln|/|Ln−1| can be arbitrary small when n goes to infinity. The instances are
parameterized by two integers l and k satisfying 2l ≥ k. Instance I (l,k) has n = l + k +1 items, divided
into groups, l items in the first group, k in the second group and one item in the last group. The weights
and profits of each item are specified in Table 2.2.1. The last column of the table gives the number of
Pareto points after each iteration of the Nemhauser/Ullman algorithm, provided that items are processed
in the given order. Instead of giving a mathematical proof for these formulas we rather explain the basic
idea of the construction. Items in the first group have a profit-to-weight ratio of 1 and their weight and
profit grows exponentially. Hence, all subsets of those items are Pareto optimal. After the items of
the first group have been processed by the Nemhauser/Ullmann algorithm, the set of Pareto points is
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Figure 2.2: Pareto points for knapsack instance I (2,3). The five pictures show L2, . . . ,L6 as step func-
tions. In the last iteration the k small steps in each shaded square are replaced by one larger step reducing
the number of Pareto points from 19 to 14 in our example.

{(m,m) | m = 0,1, . . . ,2l−1}. The corresponding step function exhibits 2l−1 equally sized steps which
we call large steps (shaded region in Figure 2.2). Each of the items in the second group will create a
small step on each large step. The last item destroys all these small steps. The k small steps on each
large step are replaced by a new Pareto point. Using the formulas from Table 2.2.1, in the last iteration
the number of Pareto points is reduced by factor

2l+1 + k(k+1)
2

(k +1)2l + k(k−1)
2

,

which can become arbitrary large for appropriate values for k and l.

2.2.2 Smoothed/Average-case Analysis

In this section we use our main theorem from Chapter 1 to bound the number of Pareto optimal knapsack
fillings enumerated by the Nemhauser/Ullmann algorithm. This way, we obtain a bound on the expected
running time of the algorithm as well. As for the constrained shortest path problem, the generality of
Theorem 1.2 transfers completely to the running time analysis of the Nemhauser/Ullmann algorithm.
In particular, we are able to bound the expected running time under our smoothed analysis framework.
Recall, that our main theorem requires only one linear objective function with random coefficients. For
simplicity, we will state the following theorem using adversarial weights and random profits even though
it hold for an opposite setting as well. Combining Lemma 2.1 and Theorems 1.2 and 1.14 we obtain

Theorem 2.2. Suppose the weights are arbitrary positive numbers and profits p1 . . . , pn are assumed to
be independent random variables. Let T denote the running time of the Nemhauser/Ullmann algorithm.

a) If p1, . . . , pn are chosen according to the uniform distribution over [0,1], then E[T ] = O(n4).

b) For i ∈ [n], let pi be a random variable with tail function Ti :
�
≥0→ [0,1]. Define µi = E [pi] and

let αi be an appropriate positive real number satisfying slopeTi
(x)≤ αi for every x≥ 0, i ∈ [n]. Let
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α = maxi∈[n] αi and µ = maxi∈[n] µi. Then

E [T ] = O

(

n

(

∑
i∈[n]

µi

)

·
(

∑
i∈[n]

αi

))

= O(αµn3).

c) For every i ∈ [n], let pi be a non-negative random variable with density function f i :
�
≥0→

�
≥0.

Suppose µ = maxi∈[n] (E [pi]) and φ = maxi∈[n]

(

supx∈ � ≥0
fi(x)

)

. Then E [T ] = O(φµn5).

d) For i ∈ [n], let pi be a discrete random variable with tail function Ti : � 0 → [0,1]. Let α be
an appropriate positive term satisfying Ti(t +1)/Ti(t) ≥ e−α for all i ∈ [n] and t ∈ � 0. Suppose
µ = maxi∈[n] (E [pi]). Then E [T ] = O(µn2(1− e−αn)) = O(µαn3).

e) For every i ∈ [n], let pi be a discrete random variable with probability function f i : � → [0,1],
i.e., fi(t) = Pr [pi = t]. Suppose π = maxi∈[n] (supx∈ � ( fi(x))) and µ = maxi∈[n] (E [pi]). Then
E [T ] = O(µn3(1− e−πn2

)) = O(µπn5).

All bound hold for adversarial profits and random weights as well.

Part (a), (b) and (c) of the theorem apply to continuous probability distributions. They are implied
by Theorem 1.2. Part (d) and (e) are the discrete counterparts of (b) and (c). They are a consequence
of Theorem 1.14. In Section 2.5.2 we present an experimental study of the number of Pareto points for
the random knapsack instances. The experiments indicate that the bound for the uniform distribution
(part (a) of the theorem) is not tight. Instead we conjecture that the expected number of Pareto points is
Θ(n2). This would imply that the expected running time of the Nemhauser/Ullmann algorithm is Θ(n3).
Experiments on correlated instances let us believe that the bounds for general continuous and discrete
probability distributions (part (c) and (e) of the theorem) can be improved by a factor of n2. We argued
already in Section 1.2 that µ and φ must have the same exponent in a consistent bound as scaling all
coefficients (resp. the corresponding distributions) does not change the (expected) number of Pareto
points but would change the product µaφb for a 6= b. So we conjecture that O(φµn3) is a tight bound for
part (c) of the theorem.

The following corollary is an immediate consequence of Lemma 2.1 and Corollary 1.3.

Corollary 2.3. Assume we either perturb profits or weights according to our smoothed analysis frame-
work. For any fixed perturbation model f with non-negative domain the expected running time of the
Nemhauser/Ullmann algorithm on the perturbed instance is O(n5(φ+1)).

These results enable us to study the effects of correlations between profits and weights. (This aspect
has also been considered in several recent practical studies [MPT00, KPP04, Pis95].) We observe that
if the adversary chooses profits equal to weights, then the unperturbed instance is completely correlated
and exhibits 2n Pareto points. Now perturbing the profits decreases the correlation. In particular, a small
correlation corresponds to a small φ value and this in turn implies a small upper bound on the expected
number of Pareto points. In other words, the complexity of the problem diminishes when decreasing the
correlation between profits and weights.



42 CHAPTER 2. THE KNAPSACK PROBLEM

2.3 Analysis of Knapsack Core Algorithms

Equipped with a very robust probabilistic analysis for the Nemhauser/Ullmann algorithm, we aim in this
section at analyzing more advanced algorithmic techniques for the knapsack problem. Our focus lies on
the analysis of core algorithms, the predominant algorithmic concept used in practice. Despite the well
known hardness of the knapsack problem on worst-case instances, practical studies show that knapsack
core algorithms can solve large scale instances very efficiently [Pis95, KPP04, MPT99]. For example,
there are algorithms that exhibit almost linear running time on purely random inputs. For comparison,
the running time of the Nemhauser/Ullmann algorithm for this class of instances is about cubic in the
number of items. Core algorithms make use of the fact that the optimal integral solution is usually very
similar to the optimal fractional solution in the sense that only a few items need to be exchanged in
order to transform one into the other. Obtaining an optimal fractional solution is computationally very
inexpensive. The idea of the core concept is to fix most variables to the values prescribed by the optimal
fractional solution and to work with only a small number of free variables, called the core (items). The
core problem itself is again a knapsack problem with a different capacity bound and a subset of the
original items. Intuitively, the core contains those items for which it is hard to decide whether or not they
are part of an optimal knapsack filling. We will apply the Nemhauser/Ullmann algorithm on the core
problem and exploit the remaining randomness of the core items to upper bound the expected number
of enumerated Pareto points. This leads to the first theoretical result on the expected running time of a
core algorithm that comes close to the results observed in experiments. In particular, we will prove an
upper bound of O(npolylog (n)) on the expected running time on instances with n items whose profits
and weights are drawn independently, uniformly at random. In addition, we investigate harder instances
in which profits and weights are pairwise correlated. For this kind of instances, we can prove a tradeoff
describing how the degree of correlation influences the running time.

2.3.1 Core Algorithms

Core algorithms start by computing an optimal solution for the relaxed or fractional knapsack problem.
In this problem, the constraints xi ∈{0,1} are replaced by 0≤ xi≤ 1. An optimal solution to the fractional
problem can be found by the following greedy algorithm [BZ80]. Starting with the empty knapsack, we
add items one by one in order of non-increasing profit-to-weight ratio2. The algorithm stops when it
encounters the first item that would exceed the capacity bound b. This item is called break item and
the computed knapsack filling not including the break item is called break solution. Finally, we fill the
remaining capacity with an appropriate fraction f < 1 of the break item. It has been shown that the break
solution, and hence also the fractional solution, can be found in linear time by solving a weighted median
problem [BZ80]. For a geometrical interpretation, let us map each item 〈w i, pi〉 to the point (wi, pi)∈

� 2.
Then the greedy algorithm described above can be pictured as rotating a ray clockwise around the origin
starting from the vertical axis. Items are added to the knapsack in the order they are swept by the ray.

2In previous studies, the profit-to-weight ratio of an item is also called its density. In this thesis, the term density solely
refers to the density function describing the probability distributions of the profits.
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Figure 2.3: a) Finding the optimal fractional solution: The ray rotates clockwise and swept items are
added to the knapsack. The break item is the first item that exceeds the capacity. It defines the Dantzig
ray. b) The core stripe has vertical width 2Γ where Γ denotes the integrality gap. The loss of an item is
the vertical distance to the Dantzig ray.

The first item exceeding the capacity bound is the break item. The ray defined by the break item is called
the Dantzig ray (see Figure 2.3).

Based on the computed break solution, an appropriate subset of items is fixed, called the core. The
core problem is to compute an optimal knapsack filling under the restrictions that items outside the core
are fixed to the value prescribed by the break solution. Clearly, if the chosen core contains all items
that need to be exchanged in order to transform the break solution to an optimal integer solution, then
an optimal solution for the core problem is also optimal for the original problem. Observe that the core
problem is again a knapsack problem defined on a subset of the items. Furthermore, the capacity is
reduced by the weight of the items outside the core that are included in the break solution.

The core concept leaves much space for variations and heuristics, most notably the selection of the
core items. A common approach selects items whose profit-to-weight ratio is closest to the profit-to-
weight ratio of the break item [KPP04]. We follow the definition of Goldberg and Marchetti-Spaccamela
[GMS84], who introduce the notion of the loss of items.

Let X̃ = (x̃1, . . . , x̃n) be the binary solution vector of the break solution. For any feasible integer
solution X = (x1, . . . ,xn), define ch(X) = {i ∈ [n] : x̃i 6= xi}, i.e., ch(X) is the set of items on which X̃
and X do not agree. When removing an item from the break solution, the freed capacity can be used to
include other items which have profit-to-weight ratio at most that of the break item. A different profit-
to-weight ratio of the exchanged items causes a loss in profit that can only be compensated by better
utilizing the knapsack capacity. This loss can be quantified as follows:

Definition 2.4. Let r denote the profit-to-weight ratio of the break item. Define the loss of item i to be
loss(i) = |pi− rwi|, or equivalently, the vertical distance of item i to the Dantzig ray.

Goldberg and Marchetti-Spaccamela[GMS84] proved that the difference in profit between any feasi-
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ble integer solution X = (x1, . . . ,xn) and the optimal fractional solution X̄ can be expressed as

p(X̄)− p(X) = r

(

c− ∑
i∈[n]

xiwi

)

+ ∑
i∈ch(X)

loss(i) .

The first term on the right hand side corresponds to an unused capacity of the integer solution X
whereas the second term is due to the accumulated loss of all items in ch(X). Let X ∗ denote an arbitrary
optimal integral solution. The integrality gap Γ = p(X̄)− p(X∗) gives an upper bound for the accumu-
lated loss of all items in ch(X ∗), and therefore, also for the loss of each individual item in ch(X ∗).

Fact 2.5. For any optimal integer solution X ∗ it holds ∑i∈ch(X∗) loss(i)≤ Γ.

Thus, items with loss larger than Γ must agree in X̃ and X∗. Consequently, we define the core to
consist of all elements with loss at most Γ. This ensures that the optimal solution of the core problem is
also an optimal solution for the original problem. Since we do not know Γ, we use a dynamic growing
core. Starting with the break item, which has loss 0, we add items in order of increasing loss to the core
and compute an optimal solution for each extended core. We stop when the next item has loss larger
than the current profit gap, i.e., the gap in profit between X̄ and the best integer solution found so far.
Figure 2.3 illustrates the definitions of the core.

2.3.2 The Probabilistic Model

Adapting the conventions in previous analyses [Lue82, GMS84, KPP04], we assume the following prob-
abilistic input model. We define a natural mapping of items to points in the plane, where an item with
weight w and profit p corresponds to the point (w, p) ∈ � 2. Given a region R ⊂ � 2, items resp. points
are sampled independently and uniformly at random from R . The number of sampled items n is a ran-
dom variable following a Poisson distribution with parameter N. The reason for these assumptions is to
simplify the analysis by avoiding disturbing but insignificant dependencies. In particular, the number of
points in two disjoint regions of R are independent random variables. More precisely, for any region
R⊆ R ,

Pr [ R contains exactly k points] =
e−λλk

k!
,with λ = N

area(R)

area(R )
. (2.1)

Except for Section 2.4, we assume that R is the unit square, that is, weights and profits are drawn
independently, uniformly at random from [0,1]. In fact, we will restrict ourself to distributions where the
weights are chosen uniformly at random from [0,1]. Thus, the expected accumulated weight of all items
is N/2. For the capacity of the knapsack we assume b = βN, for some constant β∈ (0, 1

2) to be specified.

2.3.3 Properties of the Core

Under the probabilistic model introduced, Lueker [Lue82] bounds the expected integrality gap for uni-
formly random instances. In particular, he shows E [Γ] = O( log2 N

N ). Goldberg and Marchetti-Spaccamela
[GMS84] observe that this analysis can easily be generalized to obtain exponential tail bounds on Γ.
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Lemma 2.6. There is a constant c0 such that for every α≤ log4 N, Pr
[

Γ≥ c0α log2 N
N

]

≤ 2−α.

In other words, the integrality gap does not exceed O( log2 N
N ), with high probability. Let us remark that

the value of c0 depends on β, the constant determining the knapsack capacity. The constraint α≤ log4 N
satisfies our requirements but, in general, the tail bound can be extended to hold for every α ≤ N κ, for
every fixed κ < 1

2 .

Beside the upper bound of O( log2 N
N ), Lueker also gave a lower bound of 1/n for the expected size of

the integrality gap. An improved lower bound of Ω( log2 N
N ) has been claimed by Goldberg and Marchetti-

Spaccamela ([GMS84]) but a complete proof was never published. They also show that the size of
ch(X∗) is roughly log(N). More precisely, they prove

lim
N→∞

Pr
[

log(N)

α log log(N)
≤ |ch(X∗)| ≤ f (N) log(N)

]

= 1 (2.2)

for every monotonically increasing unbounded function f (N) and every α > 2. They use, however, a
slightly different definition of ch(X). Goldberg and Marchetti-Spaccamela define ch(X) on basis of the
optimal fractional solution whereas our definition is based on the break solution. The deviation is at most
1 due to the fractional value of the core item.

Similar to Goldberg and Marchetti-Spaccamela [GMS84], will use Lemma 2.6 to obtain a tail bound
on the number of core items. Let us briefly sketch their analysis and explain why it fails to bound the
expected running time. It is the basis for our modifications to the core algorithm.

Let X denote the number of core items, i.e., the number of items with vertical distance at most Γ
from the Dantzig ray. Basically, the expected value of X corresponds to N times the area covered by
the Γ-region around the Dantzig ray, that is, E [X ]≈ 2ΓN. (There are some slight dependencies that we
neglect here. In fact, the Dantzig ray has some tendency to fall into dense regions.) If Γ is fixed then this
number is sharply concentrated. Furthermore, because of Lemma 2.6 the random variable Γ is sharply
concentrated around O( log2 N

N ). Combining these results, it follows X = O(log2 N), with high probability.
Consequently, the number of subsets that can be generated by the core items is 2X = NO(logN). Obviously,
enumerating all these sets cannot be done in polynomial time. Therefore, Goldberg and Marchetti-
Spaccamela use a filter mechanism that significantly reduces the number of subsets enumerated. This
mechanism generates only those subsets with loss at most Γ. Hence, we will call it loss filter. For every
fixed ε > 0, they show that with probability 1− ε the number of subsets generated is 2O(

√
X) = NO(1).

Unfortunately, the degree of this polynomial grows rapidly with the reciprocal of the failure probability
ε. Roughly speaking, this is because the random variable X has moved to the exponent so that small
deviations in X might cause large deviations in the running time. For this reason, the analysis of Goldberg
and Marchetti-Spaccamela fails to bound the expected running time. Moreover, constant factors lost in
the analysis of X and Γ go directly to the exponent of the polynomial running time bound.

Instead, we will replace the loss filter by the dominance filter used by the Nemhauser/Ullmann algo-
rithm reducing the number of enumerated subsets from 2O(

√
X) to NXO(1). This way, we will be able to

bound the expected running time by N polylog N.



46 CHAPTER 2. THE KNAPSACK PROBLEM

1

1weight0

pr
of

it

1/N
F

F

B
A

G

G

G

1−1/N
1

1weight0

pr
of

it

1/N

1−1/N

F

F

C

D

H

H

Figure 2.4: Left picture: The core regions A and B consist of all points with vertical distance at most d to
the Dantzig ray. The static core consists of all items falling into A∪B. Items in region G have insufficient
variation in profit. Right picture: We add all items in region H to the core to ensure that the profit of the
remaining items in C and D have sufficient variation in profit.

2.3.4 Algorithm FastCore 1: Filtering Dominated Solutions

The dynamically growing core described above introduces many dependencies which complicates the
analysis. Therefore, we resort to a static core. Our first algorithm, called FastCore 1, has almost linear
running time but fails in case the core size is too small. The core is chosen large enough to ensure that the
algorithm succeeds with high probability. In the next section we remove the remaining failure probability
without increasing the expected running significantly.

Let A and B denote the set of points above and below the Dantzig ray r with vertical distance at most
d = cdN−1 · log3 N (for a suitable constant cd) from r, respectively. The core consists of all items falling
into region A∪B, that is, an item belongs to the core if its loss is at most d. Figure 2.4 illustrates these
definitions. The algorithm proceeds as follows. First we compute an optimal fractional solution X̄ (and
thus the Dantzig ray) in linear time [BZ80]. Then we apply the Nemhauser/Ullmann algorithm to the
core problem. Let X denote the solution found. If p(X̄)− p(X) ≤ d, then we output X , otherwise we
output FAILURE.

Notice that Γ = p(X̄)− p(X∗) ≤ p(X̄)− p(X). If p(X̄)− p(X) ≤ d then Γ ≤ d. In this case, items
outside the core have loss strictly larger than Γ and, by Fact 2.5, cannot be contained ch(X ∗), for any
optimal solution X ∗. Hence, X must be optimal. The algorithm fails if and only if the chosen height of
the core stripes A and B is smaller than the integrality gap Γ, that is, if Γ > d. Notice, that in this case
the computed solution X might nevertheless be optimal, however, a proof of optimality is missing. From
Lemma 2.6 it follows that the failure probability is Pr [Γ > d]≤ 2−cd log N/c0 = N−cd/c0 .

In the following probabilistic analysis, we will show that the expected running time of our algorithm
is O(N polylog N). This analysis is quite tricky and complicated because of vast dependencies between
different random variables. The central ideas, however, are rather simple and elegant. Thus, before going
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into the details, let us try to give some intuition about the main ideas behind the analysis. As the area
covered by the core stripe A∪B is O(N−1 log3 N), the number of core items is only O(log3 N), with
high probability. The running time bound (Theorem 2.2) of the Nemhauser/Ullmann algorithm depends
polynomially on the number of core items and is linear in φ, i.e., the maximum density of the probability
distributions for the profits of the core items. When calculating φ, we have to condition on the fact
that these items have weights and profits that fall into the core stripe. The height of the core stripe is
Θ( log3 N

N ). Thus, intuitively, the profit of a “typical” core item follows a uniform distribution over an

interval of length Θ( log3 N
N ). More formally, we will show that the conditional probability distributions

for the profits of almost all core items have density at most N. Hence, φ ≤ N. By Theorem 2.2, the
running time can be upper-bounded by O(N polylog N). Interestingly, the linear term in the upper bound
on the running time is not due the number of core items but due to the density of their profit distributions.

Theorem 2.7. For uniformly random instances, algorithm FastCore 1 computes an optimal solution with
probability at least 1−N−cd/c0 . The expected running time of this algorithm is O(N polylog N).

Proof. The bound on the failure probability follows from previous discussions. It remains to prove the
upper bound on the expected running time. In the following, we identify the ray with its slope, i.e.,
r = pκ/wκ with κ denoting the index of the break item. Define

G ={(w, p) ∈ A |rw > 1− 1
N }∪

{(w, p) ∈ B |rw < 1
N }∪

{(w, p) ∈ B |rw−d > 1− 1
N } .

Define F = {(x,y) ∈ � 2 : x ∈ [0,1]∧ y ∈ [0, 1
N ]∪ [1− 1

N ,1]}. Figure 2.4 depicts these regions. The
motivation for these definitions will become clear soon.

For a moment, let us assume that r and the number of items in A and B as well as their individual
weights are fixed arbitrarily. Consider an item i with weight wi in region A. The profit of this item
corresponds to a point on the line segment Li = {p ∈ [0,1] : (p,wi) ∈ A}. Observe that the Dantzig ray
depends on the weight wi of this item but not on its profit. In particular, moving the point corresponding
to item i arbitrarily on the line segment Li does not affect the position of the Dantzig ray. Under these
assumptions, the random variable pi is chosen uniformly from the interval Li. The same holds for the
items in region B. Observe that the profit intervals for the items in (A∪B)\G have length at least 1/N,
except for the break item that will be handled separately. As a consequence, the density of the profit
distributions for these items is upper bounded by N. Hence, applying part (c) of Theorem 1.2 yields the
following bound on the expected number of Pareto points over the core items3. For any given region
R⊆ � 2, let XR and qR denote the number of items in R and the number of Pareto points over these items,
respectively.

Lemma 2.8. For sufficiently large N, there exists a constant c1 such that

E
[

q(A∪B)\G |X(A∪B)\G = k
]

≤ c1Nk4 +1 ,

3With “number of Pareto points over a set of items” we refer to the number of Pareto points over all subsets of those items.
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for any k ∈ � .

Every additional item can increase the number of Pareto points at most by a factor of two. For this
reason, we can assume that the break item is covered by the bound in Lemma 2.8 as well. Furthermore,
we can apply this fact to the items in G and obtain that the number of Pareto points over the core items is
qA∪B ≤ 2XG ·q(A∪B)\G. The running time of the Nemhauser/Ullmann algorithm is roughly E [qA∪B] times
the number of core items. In the following, we will (implicitly) show that E

[

q(A∪B)\G
]

= N polylog N
and E

[

2XG
]

= O(1). Unfortunately, however, the random variables XG and q(A∪B)\G are not completely
independent as both of them depend on the position of the Dantzig ray. The major difficulty in the
remaining analysis is to formally prove that this kind of dependence is insignificant.

We assume that the algorithm first computes all Pareto points over the items in region (A∪B) \G
adding the items in some order that is independent of the profits, e.g., in order of increasing weight. Af-
terwards, the items from region G are added. Let T denote the running time of this algorithm. Lemma 2.1
combined with Theorem 2.2 yields

E [T |XA∪B = k ∧ XG = g]≤ c2[(N(k−g)4 +1)(k−g)+((N(k−g)4 +1)2g)] ,

for every k ≥ g ≥ 0 and a suitable constant c2. Define f (k,g) = c2N(k− g + 7)52g. Notice that f is
defined in a way such that it is monotonically increasing in g, for every 0≤ g ≤ k. Rewriting the above
bound in terms of this function, we obtain the following slightly weaker bound.

E [T |XA∪B = k ∧ XG = g] ≤ f (k,g) .

Applying first G⊆ A∪B and then G⊆ (A∪B)∩F combined with the monotonicity property of f yields

E [T ] ≤
∞

∑
k=0

k

∑
g=0

Pr [XA∪B = k ∧ XG = g] f (k,g)

≤
∞

∑
k=0

k

∑
g=0

Pr
[

XA∪B = k ∧ X(A∪B)∩F = g
]

f (k,g) .

Next replacing f (k,g) by c2N(k−g+7)52g and rearranging the sums yields

E [T ] ≤ c2N
∞

∑
g=0

Pr
[

X(A∪B)∩F = g
]

2g
∞

∑
k=g

Pr
[

XA∪B = k |X(A∪B)∩F = g
]

(k−g+7)5

= c2N
∞

∑
g=0

Pr
[

X(A∪B)∩F = g
]

2g
∞

∑
k=0

Pr
[

X(A∪B)\F = k |X(A∪B)∩F = g
]

(k +7)5 .

Let us switch to a more compact notation and define X = X(A∪B)\F and Y = X(A∪B)∩F . This way,

E [T ]≤ c2N
∞

∑
g=0

Pr [Y = g]2g
∞

∑
k=0

Pr [X = k |Y = g] (k +7)5 . (2.3)
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Figure 2.5: Left: Overlapping regions (parallelograms) of height 2d cover right lower triangle of the unit
square. Right: Regions of width 2d cover left upper triangle of the unit square.

In the following, we upper-bound the two probability terms occurring in this bound one after the other.
We start by proving ∑∞

k=0 Pr [X = k |Y = g] (k+7)5 = O(polylog N), for any choice of g≥ 0. Afterwards,
we show that ∑∞

g=0 Pr [Y = g]2g = O(1). Hence, E [T ] = O(polylog N) so that the theorem follows.
First, let us study the term Pr [X = k |Y = g]. Observe, the variables X and Y describe numbers of

points in the disjoint regions (A∪B)\F and (A∪B)∩F, respectively. If these regions would be fixed, then
these two variables would be independent as points are generated by the Poisson process. Unfortunately,
however, both regions are defined by the Dantzig ray r and this ray somehow depends on the points found
in these regions. In fact, both of the considered regions are adjacent to r, and r has some tendency to
fall into a dense region. Therefore, we have to take into account the dependency of the variables X and
Y on the random variable r. We deal with this dependency by placing worst-case assumptions on r. In
particular, we assume an adversary knowing all points in the unit square chooses the ray r to be any ray
through the origin instead of assuming that r is the ray through the break item. The regions (A∪B) \F
and (A∪B)∩F are now defined with respect to this adversarial ray r. Let µ = 2dN. Observe that the
value of E [X ] is roughly equal to µ.

Lemma 2.9. The probability, that a random knapsack instance admits a ray r such that X ≥ 2αµ is at
most N

(

eα−1

αα

)µ
, for every α≥ 1.

Proof. The idea is to consider only a few essential positions of the ray r and to sum up the probability
over all these positions. For this purpose, we define a set of overlapping parallelograms R i with the
property that any given core stripe A∪B is completely covered by two of these parallelograms. The
first l = d1/(2d)e parallelograms cover the right lower triangle of the unit square U. Parallelogram R i

(i = 1, . . . , l) is a quadrangle with corner coordinates (0,d),(0,−d),(1, i · 2d − 2d) and (1, i · 2d). (See
left picture in Figure 2.5.) Another l parallelograms cover the upper left triangle of the unit square U.
Parallelogram Rl+i (i = 1, . . . , l) is a quadrangle with corner coordinates (−d,0),(d,0),(i · 2d,1) and
(i ·2d−2d,1). (See right picture in Figure 2.5.) Every parallelogram covers an area of size 2d. It is easy
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to verify that this set of regions has the required property. Let Xi denote the number of items in region
Ri. Then E [Xi] = area(U∩Ri) ·N < 2dN = µ. Using Chernoff bounds it holds for all α≥ 1 and i ∈ [2l]:

Pr [Xi ≥ αµ] ≤
(

eα−1

αα

)µ

.

Hence, the probability, that a random knapsack instance admits a ray r with X ≥ 2αµ is at most

Pr [∃i : Xi ≥ αµ]≤
2l

∑
i=1

Pr [Xi ≥ αµ]≤ 2l
(

eα−1

αα

)µ

≤ N
(

eα−1

αα

)µ

,

as l =
⌈

N
2cd log3 N

⌉

. This completes the proof of Lemma 2.9.

The above tail bound on X holds for any adversarial choice for the ray r that is made after the random
experiment. Consequently, it also holds for the random Dantzig ray. Furthermore, it holds for any choice
of the variable Y , too, as the dependence between the variables X and Y is only via the position of the
Dantzig ray. As a consequence, for every g≥ 0,

∞

∑
k=0

Pr [X = k |Y = g] (k +7)5

≤ Pr [X ≤ 4µ |Y = g] (4µ+7)5 +
∞

∑
α=2

Pr [X ≥ 2αµ |Y = g] (2(α+1)µ+7)5

≤ (4µ+7)5 +
∞

∑
α=2

N
(

eα−1

αα

)µ

(2(α+1)µ+7)5 .

Using µ = 2dN = 2cd log3 N yields

∞

∑
α=2

N
(

eα−1

αα

)µ

(2(α+1)µ+7)5 = µ5
∞

∑
α=2

N
(

eα−1

αα

)2cd log3 N (

2α+2+
7
µ

)5

.

For any fixed cd > 0, this term is bounded by O(µ5). Consequently, there exists a constant c3 > 0, such
that

∞

∑
k=0

Pr [X = k |Y = g] (k +7)5 ≤ c3 log15 N .

Applying this upper bound to Equation 2.3 gives

E [T ] ≤ c2c3N log15 N ·
∞

∑
g=0

Pr [Y = g]2g . (2.4)
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We further simplify.

∞

∑
g=0

Pr [Y = g]2g = E
[

2Y ] =E
[

2X(A∪B)∩F
]

≤ E
[

2XF
]

. (2.5)

The latter term can be bounded as follows.

Lemma 2.10. E
[

2XF
]

= e2.

Proof. The number of points in F follows the Poisson distribution with parameter 2, as area(F) = 2/N
(see Equation 2.1). Consequently,

E
[

2XF
]

= ∑
f≥0

Pr [X f = f ]2 f = ∑
f≥0

e−2 ·2 f

f !
·2 f = e−2 ∑

f≥0

4 f

f !
= e−2e4 = e2 .

Finally, combining Lemma 2.10 with the Equations 2.4 and 2.5 yields

E [T ] ≤ c2c3N log15 N · E
[

2XF
]

≤ c2c3e2N log15 N .

Thus Theorem 2.7 is shown.

2.3.5 Algorithm FastCore 2: Two Lists of Pareto Points

In order to obtain an algorithm that always computes an optimal solution, one can dynamically expand
the core item by item until algorithm FastCore 1 is successful. This, however introduces many new
dependencies. A somewhat extreme variant of this approach is to start with a core stripe that immediately
gives a high success probability, say 1−N−3, and to use a single backup routine that computes the
Pareto points over all items if the primary core algorithm fails. Theorem 2.2a shows that the expected
running time of the Nemhauser/Ullmann algorithm under the uniform distribution is only O(N 4). Thus,
neglecting dependencies, this approach promises an expected running time of N−3O(N4) = O(N) for
the backup routine. Let us have a closer look at this approach. The running time is mainly determined
by the number of enumerated Pareto points. Let qin, qout and qall denote the number of Pareto points
over the items in the core, over items outside the core and over all item, respectively. Let E denote
the event that the core computation is successful. Then the expected number of enumerated subsets is
E [qin] + E [qall|¬E ] ·Pr [¬E ]. The difficulty lies in estimating E [q all|¬E ]. Observe that the event ¬E ,
by definition, is very unlikely. Thus the value of q all might be extremely biased by ¬E , and, hence,
the running time of the Nemhauser/Ullmann algorithm conditioned on ¬E might be much larger than
O(N4).

In order to bypass the difficulties caused by dependencies, we use a different approach utilizing
two lists of Pareto points. First, we compute a list of Pareto points over the items in the core, just as
in algorithm FastCore 1. If the core computation fails, we compute a second list containing all Pareto
points over items outside the core. At this point, the key observation is that we do not need to compute the
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complete set of Pareto points over all item. Instead we only need to find the Pareto point that is maximal
with respect to the given capacity bound b. This, however, given the two sorted lists of Pareto points
can be done in time O(qin + qout) by scanning the two sorted lists as described by Horowitz and Sahni
in [HS74]. They use this technique to reduce the worst case running time of the Nemhauser/Ullmann
algorithm from O(2n) to O(2n/2). We use it to deal with the dependencies in our average-case analysis.
This way, the expected number of Pareto optimal knapsack fillings generated by our algorithm can be
estimated by E [qin]+E [qout|¬E ]. We have shown E [qin] = O(N polylog N) in the proof of Theorem 2.7.
The following analysis mainly deals with bounding E [qout|¬E ] and the time needed to compute the
second list.

Theorem 2.11. Algorithm FastCore 2 always computes an optimal solution. Its expected running time
is O(N polylog N).

Proof. We begin the proof by specifying some details of the algorithm that are missing in the description
above. The algorithm uses a fixed core stripe with d = 5c0(log N)3/N, where c0 is the constant given in
Lemma 2.6. Let us adopt the notation from the previous section for the regions defined by the core stripe
as depicted in Figure 2.4. Additionally, let C and D denote the regions above and below the core stripe,
respectively. For the purpose of a simple analysis, we add the region H (see Figure 2.4) to the core stripe.
The analysis of the running time of algorithm FastCore 1 for the items inside the core is not affected by
this change as we upper-bounded XG by XF and F ⊇G∪H . Including H into the core stripe ensures that
all items in C∪D follow a distribution with density at most N.

Let T , TA∪B∪H , and TC∪D denote the running time of algorithm FastCore 2, algorithm FastCore 1
applied to the items in A∪B∪H , and the Nemhauser/Ullmann algorithm applied to the items in C∪D,
respectively. Furthermore, let E be the event that the core computation is successful, i.e., the integrality
gap is at most d. We account the time for combining the two lists to the time needed for their computation.
This way,

E [T ] = E [TA∪B∪H ]+Pr [¬E ] ·E [TC∪D |¬E ]

The analysis of algorithm FastCore 1 yields E [TA∪B∪H ] = O(N polylog N). In the following, we will
show

E [TC∪D |¬E ] ≤ N polylog N
Pr [¬E ]

,

which yields the theorem.

First, let us verify that every item in C∪D follows a distribution with density at most N. For a
moment assume that the Dantzig ray is fixed. Suppose an adversary specifies the weight w i of an item i
in region C (or analogously in region D). Then the item can be moved up and down on the line segment
Li = {p ∈ [0,1] : (p,wi) ∈C} without affecting the event ¬E . The length of this line segment is at least
1
N as we added the region H to the core. Consequently, independent of the outcome of ¬E , the profit of
each item follows a uniform distribution with density at most N. By Theorem 1.2, for all k ∈ � ,

E [TC∪D |¬E ∧XC∪D = k] = O(k5N) .
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Let us switch to a more compact notation and define X = XC∪D. It remains to show

E
[

X5 |¬E
]

= O
(

polylog N
Pr [¬E ]

)

.

Observe that applying Lemma 2.6 with d = 5c0(log N)3/N yields Pr [¬E ] ≤ 2−5logN = N−5. Hence, it
suffices to show that E

[

X5 |¬E
]

= O(max{N5,Pr [¬E ]−1}).
We use the fact that the random variable X is very sharply concentrated around its mean E [X ] < N

so that conditioning on ¬E does not significantly change the expected value of X . For every τ≥ 1,

E
[

X5 | ¬E
]

=
∞

∑
i=1

Pr
[

X5 ≥ i | ¬E
]

≤ τ+
∞

∑
i=τ

Pr
[

X5 ≥ i | ¬E
]

≤ τ+
∞

∑
i=τ

Pr
[

X5 ≥ i
]

Pr [¬E ]
.

As X follows a Poisson distribution with mean at most N, Pr
[

X5 ≥ (2αN)5
]

≤ exp(− 1
2 αN), for every

α≥ 1. Hence, for i≥ (2N)5, Pr
[

X5 ≥ i
]

≤ exp
(

− 1
4 i1/5

)

. Now setting τ = (2N)5 gives

E
[

X5 |¬E
]

≤ (2N)5 +Pr [¬E ]−1
∞

∑
i=τ

exp
(

− 1
4 i1/5

)

= (2N)5 +Pr [¬E ]−1 O(1) .

This completes the proof of Theorem 2.11.

2.4 Harder Problems: δ-Correlated Instances

Several experimental studies [MPT00, MPT99, MT90, Pis95, PT98] do not only investigate uniformly
random instances but also some other, harder classes of random inputs, e.g., so-called weakly correlated
instances. We generalize this class and define δ-correlated instances, 0 < δ≤ 1, a parameterized version
of weakly correlated instances (the latter correspond to δ-correlated instances with δ = 0.1) as follows.
All weights are randomly drawn from [0,1]. Profits are set to a random perturbation of the corresponding
weight value, i.e., for all i ∈ [n], pi := wi + ri, where ri is a random variable uniformly distributed in
[−δ/2,δ/2]. In term of the probabilistic model introduced in Section 2.3.2, we choose points uniformly
from the quadrangle defined by the points (0,δ/2),(0,−δ/2),(1,1−δ/2),(1,1 +δ/2) (see Figure 2.6).
For the following analysis, we again assume that the value of n is chosen according to the Poisson
distribution with parameter N, and b = βN, for some constant β ∈ (0, 1

2).

2.4.1 Integrality Gap for δ-Correlated Instances

In this section we prove an upper bound on the integrality gap Γ for δ-correlated instances.
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Figure 2.6: For δ-correlated instances items are uniformly sampled from region Q. The right figure
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in region G⊆ F have insufficient randomness.

Lemma 2.12. There is a constant c0 such that for every 1≤ α≤ log4 N, Pr
[

Γ≥ c0α δ
N log2 N

δ

]

≤ 2−α.

Proof. We adapt the proof from Lueker [Lue82] for uniform instances. Please refer to [Lue82] for details.
In particular, we compare the solution of an approximation algorithm with the optimal fractional solution.
The difference of the objective values is an upper bound on the integrality gap. The approximation works
as follows. Define k := log4(N/δ) and ε = O(k4−k). Assume that items are ordered according to non-
decreasing profit-to-weight ratio. Starting with the empty knapsack we insert items in this order until the
remaining knapsack capacity is about vk, where v is the expected weight of the next item (the average
weight of points in a region swept by the density ray when slightly rotating it further). Let cap be the
remaining capacity of the knapsack. We then repeatedly consider successive sets S1,S2, . . . of about 2k
items trying to find a subset S ⊂ Si with weight in [cap− 2ε,cap]. The probability that we find such
a subset is at least 1

2 for every Si. This can be shown with the help of the following lemma, which
essentially shows that subsets of random numbers lay exponentially dense.

Lemma 2.13. ([Lue82]) Let f be a piecewise continuous density function with domain [−a,a]. Suppose
f is bounded and has mean 0 and variance 1. Let xk be a real sequence with xk = o(

√
k). Suppose we

draw 2k variables X1, . . . ,X2k according to f . Then, for large enough k, the probability that there exists
some k-item subset S⊂ [2k] with ∑i∈S Xi ∈ [xk− ε,xk + ε] is at least 1

2 , provided ε = 7k4−k.

The profit-gap between the approximate and the optimal fractional solution has two contributions:
residual capacity and cumulated loss of packed items. When the approximation algorithm find a suitable
subset S, the residual capacity of the knapsack is at most 2ε causing a loss in profit of at most r2ε =

O( rδ
N · log N

δ ), where r = pκ/wκ is the slope of the Dantzig ray. With high probability the slope r is
upper-bounded by a constant term depending on β. The cumulated loss can be estimated by cap(r−r l)≤
k(r0−rl) where l denotes the number of iterations performed by the algorithm and r0 and rl are the slopes
of the density ray before the first and after the last iteration, respectively. In each iteration the density ray
advances O(δk/N) with high probability. The accumulated loss of items in S⊂ S l is O(lδk2/N). In each
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iteration the success probability is at least 1
2 , therefore Pr [l > α]≤ 2−α, for all α ∈ � .

2.4.2 Expected Running Time of the Core-Algorithm

We adapt algorithm FastCore 2 to the new situation by using a smaller core stripe, that is, we set d =

cd
δ
N log3 N

δ instead of d = cdN−1 log3 N. This way, we obtain the following result.

Theorem 2.14. The expected running time of FastCore 2 on δ-correlated instances is O( N
δ polylog N

δ ).

Proof. Let Q be the region from where we sample the items (see Figure 2.6). The area of Q has size δ.
Compared to the uniform model, the concentration of items is larger by factor 1/δ. Choosing core height
d = cd

δ
N log3 N

δ we expect about 2cd log3 N
δ core items in contrast to 2cd log3 N for the uniform case. Let

A and B denote the core regions above and below the Dantzig ray, respectively. Consider the case when
the slope of the Dantzig ray is larger than 1 (the other case is similar). Define regions F and G with
G⊂ F (see Figure 2.6).

F ={(x,y) ∈ Q : y− x ∈ [d−δ/N,d]} ,

G ={(w, p) ∈ A |(w,rw) ∈ F}∪{(w, p) ∈ B |(w,rw−d) ∈ F}.

For items in (A∪B)\G the maximum density of the profit distribution is N/δ. Therefore, for any j ∈ � ,
E
[

q(A∪B)\G |X(A∪B)\G = j
]

≤ c1(N/δ) j4 +1. Items in G have larger densities, so we again pessimistically
assume that each of these items doubles the number of Pareto optimal sets. We have chosen the size of
F so that on average there is only one item in F . This way our analysis, which accounts also for items in
G, applies here as well.

2.5 Experiments

We implemented different algorithmic concepts for the knapsack problem, including the Nemhauser/Ull-
mann algorithm and different core algorithms. In this Section we present various experimental results.

In Section 2.5.2 we investigate the number of Pareto points for the knapsack problem under vari-
ous random input distributions. An interesting question concerns the tightness of the upper bounds in
Theorem 1.2. Recall that we proved a lower bound of n2/4 for non-decreasing density functions using
exponentially growing weights (Theorem 1.13). This leaves a gap of order n for the uniform distribu-
tion and order n2 for general distributions. Even though the generality of the upper bounds (adversarial
weights, arbitrary probability distributions, different distributions for different items) hardly allows a
qualitative confirmation of the bounds, we found some evidence that the lower bound is tight, which in
turn opens the chance of improving the upper bounds.

In Section 2.5.3 we study structural properties of random knapsack instances, e.g. the integrality gap
and the core size. Finally, we compare the efficiency of different algorithmic concepts under various
random input distributions. These results can be found in Section 2.5.4.
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scale each number by R and round to the next integer. a) Uniform instances b) δ-correlated Instances c)
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2.5.1 Experimental Setup

In order to avoid effects that are caused by the pseudo-polynomial complexity of the algorithms we used
a large integer domain of [0,230− 1] for the weights and profits of items. The implementation uses 64
bit integer arithmetic (c++ type long long). All programs have been compiled under SunOS 5.9 using
the GNU compiler g++, version 3.2.1 with option “-O4”. All experiments have been performed on a
Sunfire c© 15k with 176GB of main memory and 900MHz SparcIII+ CPUs (SPECint2000= 535 for one
processor, according to www.specbench.org).

Random input distributions Following the definition in [KPP04], X←U[l,r] means that the random
variable X is chosen independently uniformly at random from the interval [l,r]. We investigate the
following input distributions:

Uniform distribution: w←U[0,1] and p←U[0,1].

δ-correlated instances: w←U[0,1] and p← w+ r with r←U[−δ/2,δ/2] for a given 0 < δ≤ 1.

Instances with similar weight: wi←U[1− ε,1] and wi←U[0,1].

Instances with similar profit: wi←U[0,1] and wi←U[1− ε,1].

Notice that δ-correlated instances are a parameterized version of weakly correlated instances used in
former studies (e.g. [KPP04, MPT99, Pis95, MPT00]). The latter correspond to δ-correlated instances
with δ = 1/10. The corresponding density function of the profits is upper bounded by φ = 1/δ. In order
to obtain integer weights and profits that can be processed by our algorithm, we scale all values by R and
round to the next integer. In this study we used R = 230− 1 for all experiments. These definitions are
illustrated in Figure 2.7. Observe that for δ-correlated instances some items can have negative profits.
This affects a fraction δ/8 of all items on average. These items have no effects on the Pareto curve,
nevertheless, they are processed by the Nemhauser/Ullmann algorithm. We consider these instances
in our study as they are the basis of the analysis in Section 2.4. In contrast to the theoretical study, the
capacity b of the knapsack is set to β ·∑n

i=1 wi, with parameter β < 1 specified in each figure. Furthermore,
the number of items is not a random variable but fixed for each experiment. If not indicated otherwise,
each data point represents the average over T trials, where T is a parameter specified in each figure.
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Figure 2.8: Average number of Pareto points. a) Uniform instances and instances with similar weight
using ε = 1/n, T ≥ 2000: the ratio q(n)/n2 decreases in n indicating that q(n) = O(n2). b) Instances
with similar weights, T = 104: q(n,ε)/q(n,1) converges to c · log(n) for ε→ 0 c) δ-correlated instances,
T = 104: δq(n) decreases in 1/δ indicating that q(n) = O(n2/δ). d) Uniform instances: tail functions
for q(n), graph shows the fraction of experiments with q(n) > x, n=200. We run 5 identical experiments
to examine the random deviations.

2.5.2 Number of Pareto Points

In the following, q(n) denotes the (average) number of Pareto points over n items computed by the
Nemhauser/Ullmann algorithm. First we tested uniform knapsack instances (Figure 2.8a). We observe
that the ratio q(n)/n2 is decreasing in n suggesting that E [q(n)] = O(n2). As the decrease might be
caused by lower order terms, this bound might be tight. The next experiment for instances with similar
weight gives some evidence for the contrary. Notice that by choosing ε = 1, we obtain uniform instances.
Figure 2.8b shows the dependence of ε on average number of Pareto points for instances with similar
weight. When decreasing ε then q(n,ε) first increases about linearly but stays constant when ε falls
below some value that depends on n. At this value, subsets of different cardinality are well separated in
the Pareto curve, i.e., if Pi denote the set of Pareto optimal subsets with cardinality i then all knapsack
fillings in Pi have less weight (and less profit) than any solution in Pi+1. For ε = 1/n, subsets are
obviously separated, but the effect occurs already for larger values of ε. Notice that a similar separation
of subsets has been used in the proof for the lower bound of Ω(n2) in Section 1.3. The ratio q(n,ε)/q(n,1)
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apparently converges to c · log(n) for ε→ 0 and some c ∈ �
>0. In this case, the separation would cause

a logarithmic increase of q(n,ε) compared to uniform instances. As our data suggests that E [q(n,ε)] =

O(n2) for instances with similar weight using ε = 1/n (see Figure 2.8a), the asymptotic behavior of q(n)

for uniform instances should be smaller than n2 by at least a logarithmic factor, i.e., there is evidence that
E [q(n)] = O(n2/ logn). The experimental data, however, does not allow any conclusion whether or not
q(n,ε) = Θ(n2) for ε = 1/n. Notice that the results for instances with similar profit and instances with
similar weight are the same. This is due to the fact that, for any individual knapsack instance, exchanging
the weight and profit of each item has no influence on the Pareto curve of that instance, a fact which has
been shown implicitly in the proof of Theorem 1.13.

Next we consider δ-correlated instances. As the density parameter for the profit distributions is
φ = 1/δ, applying Theorem 2.2 yields a bound of O(n4/δ). Figure 2.8a shows that δ · q(n,δ) decreases
in φ = 1/δ. Since instances and δ-correlated instances are quite similar for large δ, the data proposes
an asymptotic behavior of q(n,δ) = O(n2/δ). We conjecture that a separation of subsets with different
cardinality would increase the average number of Pareto points by a logarithmic factor log(n/δ) and that
O(n2/δ) = O(φn2) is a tight bound for adversarial weights.

Finally we investigate the distribution of q(n) on uniform instances. Theorem 2.2 bounds the ex-
pected number of Pareto points. Applying the Markov inequality yields only a weak tail bound: for all
α ∈ �

>0, Pr [q(n) > αE [q(n)]]≤ 1/α. Figure 2.8d shows a much faster decay of the probability (notice
the log scale). For example, the probability that q(200) is larger than three times the average is about
10−5 instead of 1/3. The experiments suggest that the tail decreases faster than a polynomial 1/αc but
possibly slower than exponential 1/cα.

In all our experiments (which we could not present here all) we have not found a distribution where
q(n) was larger than n2φ on average, where φ denotes the maximum density over the profit distributions
of all items. This gives us some hope that the upper bound can be improved.

2.5.3 Properties of Random Knapsack Instances

Our probabilistic analysis of the core algorithms in Sections 2.3.4 and 2.3.5 is based (among other results)
on the upper bound for the integrality gap Γ. Lueker [Lue82] proved that E [Γ] = O( log2 n

n ), provided the
weights and profits are drawn uniformly at random from [0,1]. Lueker also gave a lower bound of 1

n

which was later improved to Ω( log2 n
n ) by Goldberg and Marchetti-Spaccamela [GMS84]. A complete

proof of the last result, however, was never published. Our experiments are not sufficient to strongly
support this lower bound. For an affirmative answer, the curve in Figure 2.9a would need to converge
to a constant c > 0 (notice the log-scale for the number of items). Our experiments suggest that in this
case the constant c would be at most 1/12. The small constants involved also account for the moderate
number of core items when using the core definition of Goldberg and Marchetti-Spaccamela. The average
number of core items in our experiments was 20.2 for uniformly random instances with 1000 item and
67.5 for instances with 106 items.

According to Lemma 2.6, Γ is sharply concentrated. More precisely, there is a constant c0 such that
for every α ≤ log4 N, Pr

[

Γ≥ αc0(log n)2/n
]

≤ 2−α. Our experiments (see Figure 2.9b) show an even
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Figure 2.9: a) Average integrality gap Γ for uniform instances b) Tail function of Γ for uniform instances
for n = 10000: graph f (x) gives the fraction of experiments with Γ > x. c) Average integrality gap Γ
for δ-correlated instances. d) Random instances with similar profit: average number of core items as a
function of ε. We used T = 10000, β = 0.4 for all experiments.

more rapid decay, also in terms of absolute values: We performed 106 experiments using 10000 items.
The average integrality gap was A = 1.695 · 10−3. The fraction of experiments in which Γ was larger
than 2A was 4.5 · 10−3. Only in three experiments Γ was larger than 3A and the largest Γ was about
3.16A. In Section 2.4.1 we showed a similar bound for the integrality gap of δ-correlated instances:
E [Γ] = O( δ

N log2 N
δ ). Figure 2.9c comply with the theorem and, as in the uniform case, give a weak

indication that the bound could be tight, as the curves show some tendency to converge to a constant
c > 0.

Next we consider instances with similar profit. Instead of the integrality gap we investigated the
number of core items. Recall that Goldberg and Marchetti-Spaccamela’s definition of the core closely
relate the two quantities. In particular, the core includes all items whose vertical distance to the Dantzig
ray is at most Γ. Figure 2.9d shows that the core contains more than half of all items when ε becomes
small. The reason is that items close to the Dantzig ray have a very similar weight. If the remaining
capacity of the knapsack is not close to the weight (or a multiple) of these items, it is difficult to fill the
knapsack close to its capacity. Therefore, items more distant to the Dantzig ray have to be used to fill the
knapsack, but they exhibit a larger loss. As a consequence, the integrality gap is much larger on average
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and so is the number of core items.

Figure 2.10 shows the average number of items in the optimal core ch(X ∗), that is, the number of vari-
ables, in which the break solution and the optimal solution differ. Goldberg and Marchetti-Spaccamela
prove that in the limit, |ch(X ∗)| is roughly between log(n)

2log log(n) and log(n) (see Equation 2.2). These bounds
give good estimates for the average size of ch(X ∗) also for small values of n. The slowly increasing stan-
dard deviation supports the claim of Goldberg and Marchetti-Spaccamela. Observe the small constants.
For random instances with 106 items, one only has to exchange about 6 items on average, to transform
the break solution to the optimal solution.

Finally we investigate the influence of the knapsack parameter β on the integrality gap and the core
size of uniform instances. Recall that in our experiments we used a knapsack capacity of c = β ∑n

i=1 wi.
Thus, for β = 1 all items fit into the knapsack. This is different in the probabilistic model introduced
in Section 2.3.2, where we assumed c = βN such that c does not depend on the random choice of the
weights. For uniform instances, the expected weight of an item is 1/2. Hence, for any β > 1/2, all
items fit into the knapsack with probability going to 1 as N → ∞ (see Lueker [Lue82]). We strongly
believe, however, that the results for both models are very similar except for the factor 2 in the range for
β. Observe, that for β = 1/3 the Dantzig ray has expected slope 1 when setting c = β ∑n

i=1 wi.

As already mentioned, the constant c0 in Lemma 2.6 and, hence, the hidden constant in the upper
bound E [Γ] = O((log n)2/n) depends on the choice for β. The top two curves in Figure 2.11 show the
average integrality gap and the average number of core items as a function of β for uniform instances
with n = 1000 items. As β becomes small, the integrality gap Γ increases rapidly. The number of core
items, however, decreases. This is different for large β. For β > 1/3, Γ as well as the number of core
items decreases.

Recall, that the difference in profit between any feasible integer solution X = (x1, . . . ,xn) and the
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Figure 2.11: Structural properties of uniformly random knapsack instances as a function of the threshold
parameter β: a) Integrality gap Γ b) Number of core items c) Residual capacity of the Break solution d)
Residual capacity of the optimal integral solution. We used n = 10000, T = 10000 for all experiments.

optimal fractional solution X̄ can be expressed as

p(X̄)− p(X) = r

(

c− ∑
i∈[n]

xiwi

)

+ ∑
i∈ch(X)

loss(i) .

Hence, the optimal solution is a tradeoff between minimizing the residual capacity and using, for this
purpose, items with small loss, i.e., items with small vertical distance to the Dantzig ray. The residual
capacity has a larger influence on the profit gap as r becomes large, that is, when β becomes small.
Furthermore, due to the steep Dantzig ray, one can expect only few items with small loss, as the area
of a fixed core region (intersected with the unit square) becomes smaller when increasing slope r of the
Dantzig ray. Therefore, decreasing β causes an increase of r as well as an increasing loss of items which
are needed to fill the knapsack close to its capacity. Both effects contribute to the increase of Γ. An
opposite effect has the small weight of core items and the small residual capacity of the break solution.
For small β (or large slope r) items in the core stripe have small weight. In particular, the break item has
small weight. As the residual capacity is upper bounded by the weight of the break item, it is small as
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well (see Figure 2.11c). Assume, the weight of core items as well as the residual capacity of the break
solution fall into interval [0,s], for some s < 1, instead of [0,1]. Then one expects that the subsets of
the core items lie denser by factor 1/s. In other words, filling the knapsack close to its capacity needs
less core items. This observation is consistent with Figure 2.11d. Even though the number of core items
decreases significantly as β becomes small, the residual capacity of the optimal integer solution decreases
only by factor 1.6 in the range β ∈ [10−4,1/3]. Despite the large integrality gap for small values of β,
the number of core items is small. The reason for this phenomenon is that a fixed core region of a steep
Dantzig ray usually contains only few items.

For β > 1/3, the expected slope of the Dantzig ray is less than 1 and the expected residual capacity
of the break solution is 3/8. The decrease of the number of core items for increasing β > 1/3 is mainly
due to the decreasing value of r. With smaller r, minimizing the residual capacity is less important and a
smaller core is sufficient. Figure 2.11c confirms this observation by showing a rapid increase of the resid-
ual capacity of the computed optimal solution for large β. The running time of the Nemhauser/Ullmann
algorithm is maximum for β = 1/3, which is consistent with the maximum for the number of core items.
For very small or very large values of β the running time is significantly smaller.

2.5.4 Efficiency of Different Implementations

Besides the Nemhauser/Ullmann algorithm and the core concept of Goldberg and Marchetti-Spaccamela,
we used two other ideas in our implementation, namely the loss filter, used in the theoretical study by
Goldberg and Marchetti-Spaccamela, and the Horowitz and Sahni decomposition. Both concepts are
known since at least 20 years. While the Horowitz and Sahni decomposition has found many practical
applications in algorithms especially for the subset sum problem, the loss filter apparently has not been
paid attention in the standard literature on the knapsack problem (e.g. [KPP04]). A quite natural com-
bination of those ideas yields a very competitive algorithm that even outperforms the Combo code, the
most successful implementation reported in scientific literature.

The Loss Filter

In Section 2.3.1 we already defined the loss of items to be the vertical distance to the Dantzig ray. Fact 2.5
states that the accumulated loss of all items that do not agree in the break solution X̃ and an arbitrary
optimal solution X ∗ is bounded by the integrality gap Γ. We used this fact to provide a bound on the
size of the core region that ensures a successful core computations. Goldberg and Marchetti-Spaccamela
further exploit Fact 2.5. Observe that solving the core problem is equivalent to finding the set ch(X ∗)
for some optimal solution X ∗. Let CA denote the set of core items included into the break solution. We
formulate the core problem relative to the break solution, that is, adding items from CA into the core
solution corresponds to removing them from the break solution. Hence, the weight and profit of items in
CA are negated for the core problem. The capacity of this core problem is bB = b−w(X̃), the residual
capacity of the break solution. The loss of a core solution X is simply the accumulated loss of items in X ,
that is, loss(X) = ∑i∈[n] loss(i)xi. Due to Fact 2.5, solutions with loss larger than the integrality gap Γ can
not be optimal and, furthermore, cannot be extended to an optimal solution by adding more core items
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Figure 2.12: Pareto curve of the core problem as a step function. Core items included in the break
solution are negated as adding them to the core solution corresponds to removing them from the break
solution. As a result, the Pareto curve moves |w(CA)| to the left and |p(CA)| down, where CA denotes
the set of negated items. The slope of line l is the profit-to-weight ratio of the break item. The loss of
a subset of core items is the vertical distance to l. Solutions in the shaded area (points whose vertical
distance to l is larger than the current integrality gap Γ) are filtered out by the loss filter. Observe, that if
a Pareto point (w, p) is filtered out then all solutions dominated by (w, p) are in the shaded area as well.
The optimal core solution is the rightmost Pareto point left of the dashed line that represents the capacity
bB of the core problem.

as the loss of items is non-negative. So these solutions can be filtered out in the enumeration process.
Instead of the integrality gap Γ which we do not know, we use upper bounds on Γ, e.g., the difference in
profit between the optimal fractional solution and the best integral solution found so far.

The Horowitz and Sahni Decomposition

Horowitz and Sahni [HS74] present a nice variation of the Nemhauser/Ullmann algorithm using two
lists. They exploit the observation that not all Pareto points need to be enumerated. Instead, one only has
to find the most profitable among the feasible ones. Let L and L ′ denote the sorted lists of Pareto points
over disjoint item sets I and I ′, respectively. Each Pareto point over item set I∪ I ′ can be constructed by
combining two points from L and L ′ (or unifying the corresponding Pareto optimal subsets of items).
For all p ∈ L , one has to find the most profitable q ∈ L ′ such that the combination of p and q is still
feasible,i.e., their combined weight is not larger than the capacity b. Since the lists are sorted, the p ∈ L
together with its most profitable combination can be found by a parallel scan of the two lists in opposite
directions (for details, see [HS74]).

Our Implementation

We tested different implementations, all core algorithms that use a subset of the discussed concepts
(domination concept, loss filter, Horowitz and Sahni decomposition). Furthermore, we added some
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heuristics, which further improve the efficiency of our code significantly. In the following we give a
more detailed description of our implementation.

First we compute the break solution X̃ in linear time. Then we use a dynamic core, adding items in
order if increasing loss. The capacity of the core problem is b−w(X̃) and items included in X̃ become
negative, that is, we negate the weight and profit of those items. The core problem is solved using
the Nemhauser/Ullmann algorithm, except for the variant that uses only the loss filter, as analyzed in
[GMS84]. The loss filter can easily be incorporated into the Nemhauser/Ullmann algorithm, as the loss
of a Pareto point is determined by its weight and profit (see Figure 2.12 ). Pareto points whose loss is
larger than the current integrality gap are deleted from the list. Observe that all solutions dominated
by such a filtered Pareto point have an even larger loss. Hence, domination concept and loss filter are
“compatible”. When using two lists (Horowitz and Sahni decomposition) we alternately extend the lists
with the next item and check for a new optimal solution in each such iteration.

Additional Heuristics

Instead of alternately extending the two lists we first extend only one list, which grows exponentially at
the beginning. Later we use the second list. The idea is that the first list is based on items with small loss
such that the loss filter has hardly an effect. The items used in the second list are expected to have larger
loss such that the loss filter keeps the list relatively small and the extension of the list with new items
is fast. We use lazy evaluation, i.e., we do not scan the two lists in each iteration to find new optimal
solutions as we expect the first list to be significantly larger than the second. Knowing the length of the
lists, we balance the work for extending a list and scanning both lists. Finally, we delete Pareto points
from the list that cannot be extended by forthcoming items as their loss is too large. If the next item has
loss l and the current integrality gap is Γ, then we delete Pareto points with loss larger that Γ− l. This
heuristic is especially efficient at the end of the computation when the loss of forthcoming items is close
to Γ.

Results

We investigate the influence of the different concepts (domination concept, loss filter, Horowitz and Sahni
decomposition and the additional heuristics) on the running time of our algorithm, under different ran-
dom input distributions. We compare our implementation to Combo, a knapsack solver due to Pisinger
[MPT99]. Combo combines various advanced algorithmic techniques that have been independently de-
veloped to cope with specifically designed difficult test instances. For instance, it applies cardinality
constraints generated from extended covers using Lagrangian relaxation, rudimentary divisibility tests
and pairs dynamic programming states with items outside the core. Our implementation, however, is
rather simple but proves to be very efficient in reducing the number of enumerated knapsack filling for a
given core. In particular, we add items strictly in order of increasing loss to the core. This can lead to a
very large core, as shown in Figure 2.9d. We observed that whenever Combo was superior to our imple-
mentation, the core size of Combo was usually significantly smaller. So we consider our implementation
not as a competing knapsack solver but rather as a study that points out possible improvements.
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Due to technical difficulties with measuring small amounts of processing time and huge differences
in the running times we employ, besides the running time, another measure, called work. Each basic step
takes a unit work. This way, an iteration of the Nemhauser/Ullmann algorithm with input list L costs
2|L | work units. Finding an optimal solution by scanning 2 lists L1 and L2 in parallel (Horowitz and
Sahni) costs |L1|+ |L2| work units.

Figure 2.13 shows the work and running time for different implementations. According to Theo-
rem 2.2, we expect the work as well as the running time to increase quasi-linear in n and 1/δ for uniform
and δ-correlated instances. For an easier comparison, we divided work and running time by n and 1/δ,
accordingly. Notice that almost all scales are logarithmic.

In contrast to the theoretical analyses of core algorithms in [GMS84] and Section 2.3 where the
domination concept leads to a better running time bound than the loss filter, the latter is superior in all
experiments. This remains true for large instances, even if the domination concept is complemented by
the Horowitz/Sahni decomposition (2 lists of Pareto points). The Combo code is superior to all three
variants. Interestingly, the combination of all three 3 concepts (PO+Loss+2) clearly outperform Combo
for uniform and δ-correlated instances. In fact, it exhibits a sublinear running time for uniform instances
(without linear time preprocessing). Using the described heuristics improves the running times further.
The average running time of Combo and our fastest implementation differs by a factor of 190 for uniform
instances with 1024000 items. For δ-correlated instances with δ = 1/1024, the factor is about 700.

The limitations of our implementation is illustrated in Figure 2.13e, which shows the running time
(with preprocessing) for instances with similar profit. Besides the disadvantage of having a large core
(Figure 2.9d), the large integrality gap makes the loss filter less efficient.
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(d) δ-correlated instances: running time
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Figure 2.13: Efficiency of different implementations. The upper two figures show, for uniform instances,
the dependence of the number of items on the work performed (left) and on the running time (right).
The two figures in the middle show, for δ-correlated instances with n = 10000 items, the dependence of
the parameter δ on the work performed (left) and the running time (right). The bottom figure shows the
efficiency for instances with similar profit (n = 10000). Each curve represents an implementation that
uses a subset of the features as indicated: PO = filtering dominated solutions, Loss = loss filter, 2 = two
lists, H = additional heuristics, Combo = Combo code. For all experiments we used T = 1000 and β =
0.4. The given running times for uniform and δ-correlated instances do not include the linear time
preprocessing (the generation of the random instance, finding the optimal fractional solution, partitioning
the set of items according to the loss of items) as it dominates the running time for the easy instances.



Chapter 3

A General Framework for Constrained
Binary Optimization Problems

Although our probabilistic analysis of the size of the Pareto curve is already quite general and has been
successfully applied to the average-case analysis of two well-studied optimization problems, it exhibits
two limiting factors that prevent an immediate application to an even broader class of problems. First,
enumerating all Pareto optimal solutions is for most problems a hard task in itself. In order to prove
a polynomial bound on the expected running time of such an enumeration algorithm, it has to be very
efficient, that is, the running time bound should depend quasi linearly on the number of enumerated solu-
tions. The second point concerns the restriction to only two objective functions, which might, however,
be overcome by a more general analysis.

In order to avoid the complications caused by handling more than one objective, the standard method
is to choose one criteria as the objective function and bounding the remaining criteria by appropriate
thresholds (see Chapter 1.1). If the criteria are linear functions to be minimized, then the resulting
constraints have the form cT x≤ t, for some vector c. Hence, a multicriteria problem of the form

optimize f (cT
1 x, . . . ,cT

k x)

subject to x ∈ S

is turned into a single criterion optimization problem of the form

minimize cT
1 x

subject to x ∈ S

and cT
i x≤ ti, for all i ∈ {2, . . . ,k} ,

where S denotes the set of solutions of the underlying optimization problem. The set S is, of course,
implicitly specified by an appropriate description of the problem instance. As before, we are interested
in binary optimization problems, so S is a set of 0/1-vectors of length n. We call the resulting problem
(constrained) binary optimization problem. In this chapter we aim at a general smoothed/average-case
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analysis for this class of problems. Our average-case analysis for the number of Pareto points in Chapter 1
is solely based on the randomness in the objective functions. The underlying set of solutions S is assumed
to be adversarial. Translated to constrained binary optimization problems, only the objective function
and the new constraints should be stochastic. We will follow this idea by introducing a semi-random
input model that allows to specify which constraints of the problem formulation are of stochastic nature
and which are assumed to be adversarial. This leads to a framework for a general smoothed/average-
case analysis for a large class of optimization problems which also takes into account the combinatorial
structure of each individual problem. We will see that this framework allows a meaningful analysis for
problems which are not constrained versions of a multicriteria optimization problem, like scheduling and
the general assignment problem.

Based on the concept of polynomial average-case complexity we define polynomial smoothed com-
plexity. We are able to characterize the smoothed complexity of (constraint) binary optimization prob-
lems in terms of their worst-case complexity. A constrained binary optimization problem has polynomial
smoothed complexity if and only if it has pseudo-polynomial complexity in the stochastic expressions
and polynomial complexity in the remaining input.

Our analysis is centered around structural properties of binary optimization problems, called win-
ner, loser, and feasibility gap. We show, when the coefficients of the objective function are stochastic,
then there usually exist a polynomial n−Ω(1) gap between the best and the second best solution. If the
coefficients of the constraints are stochastic, then the slack of the optimal solution with respect to this
constraint has usually polynomial size n−Ω(1) as well. Similar to the condition number for linear pro-
gramming, these gaps describe the sensitivity of the optimal solution to slight perturbations of the input
and can be used to bound the necessary accuracy as well as the complexity for solving an instance. We
exploit the properties of these gaps in form of an adaptive rounding scheme increasing the accuracy of
calculation until the optimal solution is found. The strength of our techniques is illustrated by applica-
tions to various NP-hard optimization problems from mathematical programming, network design, and
scheduling for which we obtain the first algorithms with polynomial smoothed/average-case complex-
ity. We can strengthen our results by allowing zero preserving perturbations that allow an application to
problems beyond constrained versions of multicriteria problems.

3.1 Optimality and Precision

Many combinatorial optimization problems have an objective function or constraints specified in terms
of real numbers representing natural quantities like time, weight, distance, or utility. This includes some
well-studied optimization problems like, e.g., traveling salesperson, shortest path, minimum spanning
tree as well as various scheduling and packing problems. When analyzing the complexity of algorithms
for such problems, we usually assume that these numbers are integers or rational numbers with a finite
length representation. The hope is that it suffices to measure and compute with some bounded precision
in order to identify an optimal or close to optimal solution. In fact, if real numbers occur only in the
objective function and if this objective function is well-behaved (e.g., a linear function) then calculating
with reasonable approximations of the input numbers yields a feasible solution whose objective value is
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at least close to the optimal objective value. More problematically, however, if the constraints are defined
by real numbers, then calculating with rounded input numbers might miss all interesting solutions or
might even produce infeasible solutions.

How can one solve optimization problems (efficiently) on a computer when not even the input num-
bers can be specified exactly? – In practice, optimization problems in which real numbers occur in the
input are solved by simply rounding the real numbers more or less carefully. Fortunately, this approach
seems to yield reasonable results. We seek for a theoretically founded explanation why this rounding
approach usually works. Studying this issue under worst case assumptions does not make very much
sense as, in the worst case, the smallest inaccuracy might lead to an infeasible or utterly sub-optimal
solution. This question needs to be studied in a stochastic model. In the following probabilistic analysis,
we will show that, under some reasonable and quite general stochastic assumptions, one can usually
round real-valued input numbers after only a logarithmic number of bits without changing the optimal
solution.

3.2 A Semi-Random Input Model for Discrete Optimization Problems

We consider optimization problems defined on a vector of n binary variables x = (x1, . . . ,xn). The set of
feasible solutions is described by the intersection of a ground set of solutions S ⊆ {0,1}n and solutions
that satisfy linear constraints of the form wT x ≤ t or wT x ≥ t. The ground set S of solutions can be
specified arbitrarily, for instance, by linear constraints. While the part that specifies S is adversarial, we
assume that the coefficients in the additional linear constraints are random or randomly perturbed real
numbers. The reason for distinguishing stochastic and adversarial part of the input is that we do not want
that the randomization destroys the combinatorial structure of the underlying optimization problem. In
principle, the objective function can be any function f : S → �

. Our model allows also a stochastic
objective function. In this case, the objective function must be linear, that is, the objective is of the
form minimize (or maximize) cT x, where c is a vector of random and randomly perturbed real valued
coefficients c1, . . . ,cn. In the following, we use the phrase expression as a generic term for the linear ex-
pressions cT x and wT x occurring in the objective function and the constraints, respectively. The number
of stochastic expressions is denoted by k ≥ 1 and the number of marked constraints by k ′ ∈ {k− 1,k},
depending on whether or not the objective function is stochastic. For k ′ ≥ 1 let B j denote the set of
solutions that satisfy the jth constraint, for all j ∈ [k ′]. The set of feasible solutions for a given problem
instance is then S ∩B1∩ . . .∩Bk′ The coefficients in the stochastic expressions are specified by indepen-
dent continuous probability distributions with domain

�
. Different coefficients might be drawn accord-

ing to different distributions. The only restriction on these distributions is that their density function is
piecewise continuous and bounded. Assuming bounded densities is necessary as otherwise worst-case
instances could be approximated arbitrarily well by specifying distributions with very high density. For
a given distribution, the supremum of its density function is called its density parameter. We will see
that the maximum density parameter over all distributions plays an important role in our analysis. This
parameter is denoted by φ. Intuitively, φ can be seen as a measure specifying of how close the instances
might be to the worst case. A worst-case instance can be interpreted as a stochastic instance in which the
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probability measure for each stochastic number is mapped to a single point. Thus, the larger φ, the closer
we are to a worst-case analysis.

In our probabilistic analysis, we assume that the objective function defines a unique ranking among
all solutions in {0,1}n according to the objective function. Observe, if the objective function is stochastic
then the coefficients are continuous random variables so that the probability that there exist solutions with
same objective value is 0. In other words, a unique ranking is given with probability 1. Recall that the
objective function does not have to be linear if it is adversarial, but if it is linear, i.e., of the form cT x,
c ∈ � n, then a unique ranking can always be enforced by encoding the lexicographical order among
the solutions into the less significant bits of the objective function without changing the computational
complexity of the underlying optimization problem by more than a polynomial factor. In fact, most of
the algorithmic problems that we will study have algorithms that implicitly realize a unique ranking. In
this case, one does not even need an explicit encoding. Given a unique ranking, we aim at finding the
winner, i.e., the highest ranked solution in S ∩B1 ∩ . . .∩Bk′ . In the following, optimization problems
satisfying all the conditions above are called binary optimization problems with stochastic expressions
or, for short, binary optimization problems.

Let us illustrate our semi-random input model by an example. In the minimum spanning tree problem
one seeks for a spanning tree in a given graph that has minimum weight. In the binary program formu-
lation of this problem there is a variable xe for each edge e ∈ E . Thus, n corresponds to the number of
edges. A 0/1 solution x is feasible if the edges in the set {e ∈ E |xe = 1} form a spanning tree. Let S de-
note the set of all solutions satisfying this condition. The combinatorial structure described by S should
not be touched by our randomization. It makes sense, however, to assume that the objective function is
stochastic as its coefficients describe measured quantities. So we may assume that these coefficients are
perturbed with uniform φ-perturbations, that is, each of these coefficients corresponds to the sum of an
adversarial number from [0,1] and an independent random number drawn uniformly from [0,φ−1]. In
the constrained minimum spanning tree problem (see, e.g., [GR96]), edges do not only have weights but
additionally each edge has a cost ce. Now one seeks for the minimum weight spanning tree satisfying an
additionally specified linear cost constraint ∑e cex≤ T . This additional constraint corresponds to a subset
B1 ⊆ {0,1}|E| so that now B1 ∩ S is the set of feasible solutions. Due to the additional constraint, the
problem becomes NP-hard. We will see, however, that there is an algorithm with “polynomial smoothed
complexity” if either the objective function or the additional latency constraint is stochastic.

3.3 How Accurately Do We Need to Calculate?

More precisely, we ask how many bits of each stochastic input number do we need to reveal in order to
determine the winner? – We say that the winner is determined after revealing some number of the bits,
when there is only one possible candidate for the winner, regardless of the outcomes of the unrevealed
bits. We will prove the following theorem.

Theorem 3.1. Consider any instance of a binary optimization problem Π. Let n≥ 1 denote the number
of binary variables and k ≥ 1 the number of stochastic expressions.
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a) Suppose the expected absolute value E [|w|] of every stochastic coefficient w is bounded from above
by µ > 0. Then the number of bits in front of the floating point of any stochastic coefficient w is
bounded by O(log(1+µnk)), whp1.

b) Let φ > 0 denote the maximum density parameter, that is, all density functions are upper-bounded
by φ. Then the winner is uniquely determined when revealing O(log(1+φnk)) bits after the binary
point of each stochastic coefficient, whp.

Remark 3.2. One can always decrease φ or µ without changing the problem by scaling the appropriate
stochastic expression (and the respective bound, where applicable) by some factor γ > 0. As the scaled
distribution has mean γµ and density parameter φ/γ, this kind of scaling does not change the overall
number of bits that need to be revealed since log(µnk) + log(φnk) = log(γµnk) + log( 1

γ φnk). It only
transfers significant bits from positions before the binary points to a position after the binary point. One
can eliminate one parameter by normalizing the distributions such that one parameter becomes 1.

Let us explain the concepts and ideas behind the analysis for Theorem 3.1. Part (a)) of the theorem
follows simply by applying the Markov inequality to the expected absolute values of the individual
coefficients. The interesting part of the theorem is stated in b). In order to identify the winner one needs
to isolate the winner from other feasible solutions having a worse objective value. Furthermore, one
needs to separate the winner from those infeasible solutions that have a better objective value than the
winner. Our analysis is based on a generalized Isolating Lemma – i.e., a generalization of the well-known
Isolating Lemma by Mulmuley, Vazirani and Vazirani [MVV87] – and a novel Separating Lemma.

The Isolating Lemma was originally presented in an article about RNC algorithms for perfect match-
ings [MVV87]. It is known, however, that the lemma does not only apply to the matching problem but
also to general binary optimization problems with a linear objective function. The lemma states that the
optimal solution of a binary optimization problem is unique with probability at least 1

2 when choosing
the coefficients of the objective function independently, uniformly at random from the set {1,2, . . . ,2n}.
This is a very surprising and counterintuitive result as there might be an exponential number of feasible
solutions whose objective values fall all into a polynomially large set, namely the set {1,2, . . . ,2n2}, so
that one can expect that an exponential number of solutions are mapped to the same objective value. The
reason why the winner nevertheless is isolated is that the objective values of different solutions are not
independent but the solutions represent subsets over a ground set of only n random numbers. We adapt
the Isolating Lemma towards our continuous setting and generalize it towards piecewise continuous
probability distributions. In particular, different coefficients may follow different continuous probability
distributions. Suppose only the objective function is stochastic, and the feasible region is fixed arbitrarily.
Let φ denote the maximum density parameter over all coefficients in the objective functions. Define the
winner gap to be the difference between the objective value of the winner and the second-best feasible
solution, provided there are at least two feasible solutions. The generalized Isolating Lemma states that
the winner gap is a continuous random variable whose density function is bounded from above by 2φn,
and this bound is tight. From this result one can immediately derive the following lower bound on the

1with high probability, with probability 1− (nk)−α , for every fixed α > 0
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size of the winner gap. For every ε ∈ [0,1], the winner gap is lower-bounded by ε
2φn with probability

at least 1− ε. As a consequence, it suffices to reveal only O(log(φn)) bits of each coefficient of the
objective function in order to identify the winner, whp.

We accompany the Isolating Lemma with a novel Separating Lemma, enabling us to separate the
winner from infeasible solutions with better objective value than the winner. For the time being, consider
any binary optimization problem in which a single constraint is stochastic. The difficulty in checking
the feasibility with respect to this constraint is that it might be likely that there are many solutions that
are exponentially close to the constraint hyperplane. Nevertheless, we will see that the optimal solution
can be identified by inspecting only a logarithmic number of bits per input number, whp. The reason is
that we do not need to check the feasibility of all solutions but only of some particular solutions. The
losers are those solutions that have a rank higher than the winner (i.e., they have a better objective value)
but they are infeasible because of the considered constraint. The loser gap is defined to be the minimal
amount by which a loser (except for the solution 0n) exceeds the constraint threshold. The Separating
Lemma shows that the supremum of the density function of the loser gap is at most φn2. Hence, for every
ε > 0, the loser gap is at least ε

φn2 with probability at least 1− ε. Let us try to give some intuition about
this result. If there are only a few losers then one can imagine that neither of them comes very close to
a random or randomly perturbed hyperplane. However, there might be an exponential number of losers.
In this case, however, the winner has a relatively low rank as there is an exponential number of solutions
better than the winner; but this is very unlikely if the constraint hyperplane is likely to come very close
to the good solutions which correspond to the losers. Seeing it the other way around, if there are many
losers then the hyperplane is likely to be relatively far away from the losers, which might intuitively
explain the phenomenon described by the Separating Lemma. Besides the loser gap, we study the so-
called feasibility gap corresponding to the slack of the optimal solution with respect to the stochastic
constraint. Essentially, we prove that the density functions of loser and feasibility gaps have the same
maximum supremum so that the density of the feasibility gap is lower-bounded by ε

φn2 as well. In fact,
our analysis for loser and feasibility gaps is heavily based on symmetry properties between them.

Let us remark that, when analyzing the winner gap, it is assumed a random objective function and
a fixed feasible region. In contrast, when analyzing loser and feasibility gaps, it is assumed a random
constraint or a set of random constraints instead of a random objective function. In other words, the
random expressions defining the objective function and the constraints are assumed to be stochastically
independent. In fact, if the feasible region and the objective function are correlated, then winner, loser,
and feasibility can not be lower-bounded by a polynomial. The optimization variant of the subset-sum
problem (i.e., knapsack with profits equal to weights) is a simple counterexample. Lueker [Lue98b]
proved that random instances of the subset-sum problem have usually exponentially small gaps.

3.4 Analysis of the Gap Properties

In this section we will formally define winner, loser, and feasibility gaps and prove upper bounds on the
density functions of these random variables. Recall that, for a well-behaved continuous random variable
X , fX denotes the corresponding density function. Before we turn to the winner, loser, and feasibility
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gaps let us prove the following lemma which we will frequently apply in our analysis.

Lemma 3.3. Let X1, . . . ,Xn and X denote well-behaved continuous random variables. Suppose X always
takes a value equal to one of the values of the variables X1, . . . ,Xn. Then for all t ∈ �

, fX(t)≤∑i∈[n] fXi(t).

Proof. Let X1, . . . ,Xn and X denote well-behaved continuous random variables. Suppose X always takes
a value equal to one of the values of the variables X1, . . . ,Xn. We have to prove, fX(t)≤ ∑i∈[n] fXi(t), for
all t ∈ �

. For every T ⊆ �
,

Pr [X ∈ T ] ≤ Pr [∃i ∈ [n] : Xi ∈ T ] ≤ ∑
i∈[n]

Pr [Xi ∈ T ] .

Hence, for every continuous point t ∈ �
,

fX(t) = lim
ε→0
ε>0

Pr [X ∈ [t, t + ε]]
ε

≤ lim
ε→0
ε>0

∑
i∈[n]

Pr [Xi ∈ [t, t + ε]]
ε

= ∑
i∈[n]

lim
ε→0
ε>0

Pr [Xi ∈ [t, t + ε]]
ε

= ∑
i∈[n]

fXi(t) .

This concludes the proof of Lemma 3.3.

3.4.1 The Winner Gap

We consider an instance of a discrete optimization problem whose solutions are described by n binary
variables x1, . . . ,xn. The set of feasible solutions (ground set intersected with the constraints) is now
denoted by S ⊆ {0,1}n . Fix some arbitrary set S with at least two solutions. The objective function is
denoted by cT x. The numbers ci ∈

�
, i = 1, . . . ,n, are assumed to be stochastic, that is, they are treated

as independent random variables following possibly different, well-behaved continuous probability dis-
tributions with bounded density. Without loss of generality, we consider a maximization problem. Let
x∗ = argmax{cT x |x ∈ S} denote the winner and x∗∗ = argmax{cT x |x ∈ S \ {x∗}} the second best solu-
tion. The winner gap ∆ is defined to be the difference between the objective values of a best and a second
best solution, that is,

∆ = cT x∗− cT x∗∗ .

The random variable ∆ is well-behaved, i.e., ∆ admits a piecewise continuous density function. This can
be seen as follows. The probability space of ∆ is (c1× . . .× cn) ⊆

� n. Each pair of solutions defines a
hyperplane in

� n, consisting of all points where the two solutions have the same objective function value.
These hyperplanes partition

� n into a finite number of polyhedral cells. Fix any cell C ⊆ � n. In this
cell, x∗ and x∗∗ are uniquely determined. In particular, (∆|C) = cT x∗− cT x∗∗. Thus, the random variable
∆|C is a linear functional of the well-behaved continuous variables c1, . . . ,cn. Thus the density of ∆|C
corresponds to the convolution of piecewise-continuous variables, and hence, it is piecewise continuous,
too. Consequently, f∆ = ∑C Pr [C] f∆|C is piecewise continuous as well, so that ∆ is well-behaved. The
same kind of argument applies to other gap variables that we will define later in this thesis.

Lemma 3.4 (Generalized Isolating Lemma). Let φi denote the density parameter of ci, 1≤ i≤ n, and
φ = maxi φi. For every choice of the feasible region S and every choice of the probability distributions of
c1, . . . ,cn, the density function of ∆ is bounded from above by 2 ∑i∈[n] φi ≤ 2φn.
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Proof. At first we observe, if there is a variable xi that takes the same value in all feasible solutions, then
this variable does not affect the winner gap and it can be ignored. Thus, without loss of generality, for
every i ∈ [n], there are at least two feasible solutions whose vectors differ in the i-th bit, i.e., with respect
to the i-th variable. Under this assumption, we can define the winner gap with respect to bit position
i ∈ [n] by

∆i = cT x∗− cT y | x∗ = argmax{cT x |x ∈ S}, y = argmax{cT x |x ∈ S , xi 6= x∗i } . (3.1)

In words, ∆i is the difference between the objective value of the winner x∗ and the value of a solution y that
is best among those solutions that differ in the i-th bit from x∗, i.e., the best solution in {x ∈ S |xi 6= x∗i }.

Clearly, the best solution, x∗ = (x∗1, . . . ,x
∗
n), and the second best solution, x∗∗ = (x∗∗1 , . . . ,x∗∗n ), differ

in at least one bit, that is, there exists i ∈ [n] such that x∗i 6= x∗∗i . If the best and the second best solution
differ in the i-th bit then ∆ = ∆i. Thus, ∆ is guaranteed to take a value also taken by at least one of the
variables ∆1, . . . ,∆n. Observe that the random variables ∆1, . . . ,∆n are well-behaved continuous, but there
might be various kinds of dependencies among these variables. In the following, we will prove an upper
bound of 2φi on the density function for the random variable ∆i, for every i ∈ [n]. Combining this bound
with Lemma 3.3 immediately yields an upper bound of 2 ∑i∈[n] φi for the density function of ∆, and the
lemma is shown.

Let us fix an index i ∈ [n]. It only remains to be shown that the density of ∆i is bounded from above
by 2φi. We partition S , the set of feasible solutions, into two disjoint subsets S0 = {x ∈ S |xi = 0} and
S1 = {x ∈ S |xi = 1}. Now suppose all random variables ck,k 6= i are fixed arbitrarily. Obviously, under
this assumption, the winner among the solutions in S0 and its objective value are fixed as the objective
values of the solutions in S0 do not depend on ci. (In fact, there can be many solutions with maximum
objective value.) Although the objective values of the solutions in S1 are not fixed, the winner of S1 is
determined as well because the unknown outcome of the random variable c i does not affect the order
among the solutions in S1. For j ∈ {0,1}, let x( j) denote a winner among the solutions in S j. We
observe ∆i = |cT x(1)− cT x(0)| because the solutions x∗ and y as defined in Equation (3.1) cannot be
contained in the same set S j , j ∈ {0,1}. Hence, ∆i takes either the value of cT x(1)− cT x(0) or the value
of cT x(0)− cT x(1). Observe that the random variable ci appears as a simple additive term in both of these
expressions, and the density of ci is at most φi. Therefore, both expressions describe random variables
with density at most φi as well. (Observe that this holds, regardless of whether we assume that the other
variables are fixed or random numbers.) Consequently, Lemma 3.3 yields that the density of ∆ i is at most
2φi. This completes the proof of the Generalized Isolating Lemma.

Next we show that the given bound in the Generalized Isolating Lemma is tight.

Lemma 3.5. Let φi denote the density parameter of ci, 1≤ i≤ n. For every choice of φ1, . . . ,φn, there is
a way to define S and the distributions of c1, . . . ,cn, such that the maximum of the density function of ∆
is at least 2∑i∈[n] φi.

Proof. For every choice of n and φ1, . . . ,φn, we have to present an example of an optimization problem
with a stochastic optimization function cT x, c ∈ � n, and a feasible region S such that φi is the supremum
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of the density function describing coefficient ci, and the supremum of the density function of ∆ is at least
2∑i∈[n] φi. Let us simply define S = {0,1}n . Then the optimal solution x∗ satisfies x∗i = 1⇔ ci > 0. Let
k = argmini(|ci|). The second best solution x∗∗ satisfies x∗∗i = x∗i , for all i 6= k, and x∗∗k = 1− x∗k . Thus,
∆ = mini(|ci|). Assume the density functions of c1, . . . ,cn are continuous around 0. Then

f∆(0) = lim
ε→0
ε>0

Pr [∆ ∈ [0,ε]]
ε

= lim
ε→0
ε>0

Pr [∃i ∈ [n] : |ci| ∈ [0,ε]]
ε

= ∑
i∈[n]

lim
ε→0
ε>0

Pr [|ci| ∈ [0,ε]]
ε

The last equality is due to the fact that for any S⊂ S with |S|> 1,

lim
ε→0
ε>0

Pr [
V

i∈S |ci| ∈ [0,ε]]
ε

= 0 .

Hence,

lim
ε→0
ε>0

Pr [|ci| ∈ [0,ε]]
ε

= lim
ε→0
ε>0

Pr [ci ∈ [0,ε]]
ε

+ lim
ε→0
ε>0

Pr [ci ∈ [−ε,0]]

ε
= 2 fci(0) .

Finally, if we assume that the density functions of the coefficients take their maximum at 0, then φ i =

fci(0) so that the maximum density is (at least) 2 f∆(0) = 2∑i∈[n] φi, which completes the proof.

3.4.2 Loser and Feasibility Gaps for a Single Constraint

We consider an instance of an optimization problem over n binary variables. The objective function can
be fixed arbitrarily; we rank all solutions (feasible and infeasible) according to their objective value in
non-increasing order. Solutions with the same objective values are ranked in an arbitrary but fixed fash-
ion. The feasible region is described by a subset S ⊆ {0,1}n intersected with the half-space B described
by an additional linear constraint. Without loss of generality, the constraint is of the form wT x≤ t. The
set S and the threshold t are assumed to be fixed. The coefficients w1, . . . ,wn correspond to independent
random variables following possibly different, well-behaved continuous probability distributions with
bounded density. The winner, denoted by x∗, is the solution in S ∩B with highest rank. The feasibility
gap is defined by

Γ =







t−wT x∗ if S ∩B 6= /0, and

⊥ otherwise.

In words, Γ corresponds to the slack of the winner with respect to the constraint wT x ≤ t. Observe
that x∗ might be undefined as there is no feasible solution. In this case, the random variable Γ takes
the value ⊥ (undefined). The domain of Γ is

�
≥0 ∪{⊥}. The density function fΓ over

�
≥0 is well-

behaved continuous. The function fΓ does not necessarily integrate to 1 but only to 1−Pr [Γ =⊥]. In
the following, when talking about the density of Γ, we solely refer to the function fΓ over

�
≥0, that is,

we ignore the probability of the event {Γ =⊥} as it is of no relevance to us.
A solution in S is called a loser if it has a higher rank than x∗, that is, the losers are those solutions

from S that have a better rank than the winner, but they are cut off by the constraint wT x≤ t. The set of
losers is denoted by L . If there is no winner, as there is no feasible solution, then we define L = S . The



76 CHAPTER 3. A GENERAL FRAMEWORK

t

weight

x

Λ Γ

winner
Losers

x(1) (2)

Figure 3.1: Loser and Feasibility gap: Solutions are listed according to the ranking. The height of the
bars correspond to the weight wT x. The winner is the first solution whose weight obeys the threshold t.
The feasibility gap is the difference between threshold t and the weight of the winner. All solutions left
of the winner are losers. The loser gap is the smallest amount by which any loser violates the threshold t.

loser gap is defined by

Λ =







min{wT x− t | x ∈ L} if L 6= /0, and

⊥ otherwise.

In case L 6= /0, the loser that determines Λ, i.e., argminx∈L{wT x}, is called minimal loser. As for the
feasibility gap, when talking about the density of the loser gap, we solely refer to the function fΛ over�
≥0 and ignore the probability of the event {Λ =⊥}.

Our goal is to upper-bound the densities of Γ and Λ. Observe that the solution 0n is different from
all other solutions in S as its feasibility does not depend on the outcome of the random coefficients
w1, . . . ,wn. Suppose 0n ∈ S and 0n has the highest rank among all solutions in S . Then one can enforce
Γ = 0 by setting t = 0. Similarly, one can enforce Λ→ 0 for t→ 0. For this reason, we need to exclude
the solution 0n from our analysis. Assuming 0n 6∈ S , the following theorem shows that both the loser and
the feasibility gap are likely to have polynomial size.

Lemma 3.6 (Separating Lemma). Let φi denote the density parameter of wi, for all i ∈ [n], and define
φ = maxi∈[n] φi. Suppose 0n 6∈ S . Then the densities of Γ and Λ are upper bounded by n ∑n

i=1 φi ≤ φn2.

Proof. We will heavily use symmetry properties between the two gaps. At first, we will prove an upper
bound of φn on the density of the loser gap under the assumption that the ranking satisfies a certain
monotonicity property. Next, we will show that the suprema of the density functions for the loser and
the feasibility gap are identical for worst-case choices of the threshold t. This way, the upper bound on
the density of the loser gap holds for the feasibility gap as well. Then we will show that monotonicity
assumption for the feasibility gap can be dropped at the cost of an extra factor n, thereby achieving an
upper bound of φn2 on the density of the feasibility gap. Finally, by applying the symmetry between
loser and feasibility gap again, we obtain the same result for the loser gap.

A ranking of the solutions is called monotone if all pairs of solutions x,y ∈ S , x having a higher rank
than y, satisfy that there exists i∈ [n] with xi > yi. When considering the binary solution vector as subsets
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of [n], a ranking is monotone if each subset S is ranked higher than all its proper subsets T ⊂ S. This
property is naturally satisfied for maximization problems having a linear objective function with positive
coefficients, but also if all solutions in S have the same number of ones.

Lemma 3.7. Suppose 0n 6∈ S and the ranking is monotone. Then fΛ is bounded from above by ∑i∈[n] φi.

Proof. Fix t ∈ �
arbitrarily. As in the proof for the winner gap, we define n random variables Λ1, . . . ,Λn

with maximum densities φ1, . . . ,φn such that at least one of them takes the value of Λ. For i ∈ [n],
define Si = {x ∈ S | xi = 1} and S̄i = S \ Si. Let x̄(i) denote the winner from S̄i, i.e., the solution
with highest rank in S̄i ∩B . Now let Li denote the set of losers from Si with respect to x̄(i), that is,
Li = {x ∈ Si |x has a higher rank than x̄(i)}. If x̄(i) does not exist then we set Li = Si. Now define the
minimal loser of Li, x(i)

min = argmin{wT x |x ∈ Li}, and

Λi =







wT x(i)
min− t if Li 6= /0, and

⊥ otherwise.

Observe that Li is not necessarily a subset of L as x̄(i) can have a lower rank than x∗. In fact, x(i)
min can

be feasible so that Λi can take negative values. The reason for this “wasteful” definition is that it yields
some kind of independence that we will exploit in the following arguments.

Claim A: The density of Λi is at most φi.
This claim can be seen as follows. The definitions above ensure Li ⊆ Si while x̄(i) ∈ S̄i. Suppose all
variables w j, j 6= i are fixed arbitrarily. We prove that the density of Λi is bounded by φi under this
assumption, and hence the same bound holds for randomly chosen w j, j 6= i as well. The winner x̄(i) can
be determined without knowing the outcome of wi as x̄(i) ∈ S̄i and for all solutions in S̄i the i-th entry is
zero. Observe that Li is fixed as soon as x̄(i) is fixed, and so is x(i)

min, as the i-th bit of all losers in Li is one.
Hence, wi is not affected by the determination of x(i)

min. As the i-th bit of x(i)
min is set to one, the random

variable Λi can be rewritten as Λi = wT x(i)
min− t = κ + wi, where κ denotes a fixed quantity and wi is a

random variable with density at most φi. Consequently, the density of Λi is bounded from above by φi.

Claim B: If Λ 6=⊥, then there exists i ∈ [n] such that Λ takes the value of Λi.
To show this claim, let us first assume that x∗ exists and L 6= /0. Let xmin ∈L denote the minimal loser, i.e.,
xmin = argmin{wT x |x ∈ L}. By definition, xmin has a higher rank than x∗. Because of the monotonicity
of the ranking, there exists i ∈ [n] such that x∗ ∈ S̄i and xmin ∈ Si. From x∗ ∈ S̄i, we conclude x∗ = x̄(i).
Consequently, xmin ∈ L ∩ Si = Li so that xmin = x(i)

min. Hence, Λ = Λi. Now suppose x∗ does not exist.
Then L = S and Li = Si, for all i ∈ [n]. Thus, there exists i ∈ [n] with xmin = x(i)

min because S =
S

i∈[n] Si

as 0n 6∈ S . Finally, if L = /0 then the claim follows immediately as Λ =⊥.

Now applying Lemma 3.3 to the Claims A and B immediately yields the lemma.

The following lemma shows that upper bounds on the density function of the loser gap also hold for
the feasibility gap and vice versa. For a given threshold t, let R(t) ⊆ �

≥0 denote the set of points at
which the distribution functions of Λ(t) and Γ(t) are differentiable. As Λ(t) and Γ(t) are well-behaved
continuous, the points in

� \R(t) have measure 0 and, hence, can be neglected.
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Lemma 3.8. Suppose 0n 6∈ S . Then supt∈ � sups∈R(t) fΓ(t)(s) = supt∈ � sups∈R(t) fΛ(t)(s).

Proof. We take an alternative view on the given optimization problem. We interpret the problem as a
bicriteria problem. The feasible region is then the whole set S . The first criteria is the rank which is to
be minimized (high ranks are small numbers). The second criteria is the weight, defined by the linear
function wT x, which is to be minimized as well. A solution x ∈ S is called Pareto-optimal if there is no
higher ranked solution y ∈ S with smaller (or equal) weight. For simplicity assume that no two solutions
have the same weight. This assumption is justified as the probability that there are two solutions with
same weight is 0.

Next we show that winners and minimal losers of the original optimization problem correspond to
Pareto-optimal solutions of the bicriteria problem. First, let us observe that the winner x∗ with respect
to any given weight threshold t is a Pareto-optimal solution for the bicriteria problem because there is
no other solution with a higher rank and weight at most t ≥ wT x∗. Moreover, for every Pareto-optimal
solution x there is also a threshold t such that x is a winner, i.e., t = wT x.

The same kind of characterization holds for minimal losers as well. Recall, for a given threshold t,
the minimal loser is defined to be xmin = argmin{wT x |x ∈ L}. We claim that there is no other solution
y that simultaneously achieves a higher rank and smaller weight than xmin. This can be seen as follows.
Suppose y is a solution with higher rank than xmin. If wT y≤ t then y ∈ B and, hence, xmin would not be
a loser. However, if wT y ∈ (t,wT xmin) then y and xmin would both be losers, but y instead of xmin would
be minimal. Furthermore, for every Pareto-optimal solution x there is also a threshold t such that x is a
loser. This threshold can be obtained by setting t→ wT x, t < wT x.

Now let us describe winner and loser gap in terms of Pareto-optimal solutions. Let P ⊆ S denote the
set of Pareto-optimal solutions with respect to the fixed ranking and the random weight function wT x.
Then feasibility and loser gaps are characterized by

Γ(t) = min{t−wT x | x ∈ P ,wT x≤ t} ,

Λ(t) = min{wT x− t | x ∈ P ,wT x > t} .

For a better intuition, we can imagine that all Pareto-optimal solutions are mapped onto a horizontal line
such that x ∈ P is mapped to the point wT x. Then Γ(t) is the distance from the point t on this line to the
closest Pareto point left of t (i.e., less than or equal to t), and Λ(t) is the distance from t to the closest
Pareto point strictly right of t (i.e., larger than t). Now let f be a measure over

�
describing the density

of the Pareto points on the line, that is, for every t ∈ �
,

f (t) = lim
ε→0

Pr
[

∃x ∈ P : wT x ∈ [t, t + ε]
]

ε

Let us remark that f is not a probability density function as it does not integrate to one. It is a mea-
sure for the expected number of Pareto-optimal solutions over the line, that is,

R t
−∞ f (r)dr describes

the expected number of Pareto-optimal solutions in the interval [−∞, t]. In the following, we will first
prove supt fΛ(t)(0) = f (t) = supt fΓ(t)(0), and afterwards we will show, for every s ∈ �

, supt fΛ(t)(s) ≤
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supt fΛ(t)(0) as well as sups fΓ(t)(s)≤ supt fΓ(t)(0). Combining these equations proves the theorem.

We start by showing fΛ(t)(0) = f (t) = fΓ(t)(0), for any t ∈ �
. The distribution function of the loser

gap Λ(t) is defined by

FΛ(t)(s) = Pr [Λ(t)≤ s] = Pr
[

∃x ∈ P : wT x ∈ (t, t + s]
]

= Pr
[

∃x ∈ P : wT x ∈ [t, t + s]
]

.

Let us assume, without loss of generality, that the density fΛ(t) is defined to be the right derivative of the
distribution FΛ(t). Then

fΛ(t)(0) = F ′Λ(t)(0) = lim
ε→0
ε>0

FΛ(t)(ε)−FΛ(t)(0)

ε
= lim

ε→0
ε>0

Pr
[

∃x ∈ P : wT x ∈ [t, t + ε]
]

ε
= f (t) ,

where the third equation follows because FΛ(t)(0) = 0. The feasibility gap behaves in a symmetric
fashion. As it describes the distance to the closest Pareto point on the left instead of the right of t, we
obtain

fΓ(t)(0) = lim
ε→0
ε>0

Pr
[

∃x ∈ P : wT x ∈ [t, t− ε]
]

ε
= f (t) .

Therefore, fΛ(t)(0) = f (t) = fΓ(t)(0), for every t ∈ �
. As a consequence, supt fΛ(t)(0) = supt f (t) =

supt fΓ(t)(0).

It remains to generalize this result towards other parameters of the density functions than 0. First,
let us consider the loser gap. Λ corresponds to the distance between a given threshold t and the closest
Pareto point that is (strictly) right of t. Consequently, the density of Λ at a given point on the line should
not decrease when the threshold is moved towards this point. Formally, for every s ∈ R(t),

fΛ(t)(s) = lim
ε→0
ε>0

FΛ(t)(s+ ε)−FΛ(t)(s)
ε

= lim
ε→0
ε>0

Pr
[

∃x ∈ P : wT x ∈ [t, t + s+ ε]
]

−Pr
[

∃x ∈ P : wT x ∈ [t, t + s]
]

ε

≤ lim
ε→0
ε>0

Pr
[

∃x ∈ P : wT x ∈ [t + s, t + s+ ε]
]

ε
= fΛ(t+s)(0) .

Analogously, fΓ(t)(s)≤ fΓ(t+s)(0). Thus, supt sups fΛ(t)(s)= supt fΛ(t)(0)supt fΓ(t)(0)= supt sups fΓ(t)(s).
This completes the proof of Lemma 3.8.

Combining the two lemmas, we observe that the density of the feasibility gap Γ(t) is at most ∑i∈[n] φi,
provided that the ranking is monotone and 0n 6∈ S . Next we extend this result towards general rankings
by breaking the original problem in subproblems. We partition S into the sets S (k) = {x ∈ S | ∑ixi = k},
for 1≤ k≤ n. Observe that each of these sets contains only solutions with the same number of ones, and
hence, satisfies the monotonicity condition. Let Γ(k)(t) denote the feasibility gap over the set S (k). By
Lemma 3.7, the density of Γ(k)(t) is at most ∑i∈[n] φi, for every t ∈ �

. Furthermore, Γ(t) takes the value
of one of the variables Γ(k)(t), 1 ≤ k ≤ n because the winner of one of the subproblems is the winner
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Figure 3.2: Loser and Feasibility gap for multiple constraints: Solutions are listed according to the
ranking. Blue, red and green bars give the weight of each solution according to three different weight
functions. The corresponding thresholds t1, t2 and t3 are colored accordingly. The winner is the first solu-
tion obeying all thresholds. The feasibility gap is the smallest slack over the different weight functions of
the winner. All solutions left of the winner are losers. The loser gap for an individual loser is the largest
amount by which this loser violates any threshold (given in black). The loser gap Λ is the minimum of
the individual loser gaps over all losers.

of the original problem. As a consequence of Lemma 3.3, the density of Γ(t) is at most n ∑i∈[n] φi, for
every continuous point t ∈ �

. Let us remark that such a kind of argument cannot directly be applied to
the loser gap. By applying Lemma 3.8, however, the bound for the feasibility gap holds for the loser gap
as well. Hence, Lemma 3.6 is shown.

3.4.3 Loser and Feasibility Gap for Multiple Constraints

Assume there are k≥ 2 stochastic constraints. Without loss of generality, these constraints are of the form
wT

j x≤ t j, for j ∈ [k], and the sets of solutions satisfying these constraints are B1, . . . ,Bk, respectively. We
generalize the definition of feasibility and loser gap as follows. Given a set of solutions S ⊆{0,1}n and a
ranking, the winner x∗ is the highest ranked solution in S ∩B1∩ . . .∩Bk. The feasibility gap for multiple
constraints is the minimal slack of x∗ over all stochastic constraints, that is, Γ = min j∈[k]{t j−wT

j x∗}, if
x∗ exists, and ∆ =⊥, otherwise.

The set of losers L consists of all solutions from S that have a rank higher than x∗. Observe that a
loser only needs to be infeasible with respect to one of the k constraints. In particular, it is not true that
the weight values of each loser are likely to be far away from the corresponding thresholds t j, j ∈ [k];
not even if we consider only those constraints for which the respective loser is infeasible. Fortunately,
however, we do not need such a property in the application of the loser gap. For every loser, one only
needs a single constraint that renders the loser infeasible. Therefore, we define the loser gap for k
constraints by

Λ =







minx∈L max j∈[k]{wT
j x− t j} if L 6= /0 ,and

⊥ otherwise.
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Figure 3.2 illustrates this definition.

Lemma 3.9. Let φ denote the maximum density parameter of all coefficients in the stochastic constraints.
Suppose 0n 6∈ S . Then Pr [Γ < ε]≤ εkφn2 and Pr [Λ < ε]≤ εkφn2, for all ε ∈ �

≥0.

Proof. First we show the bound for the feasibility gap. Let x∗ denote the winner and suppose Γ≤ ε, for
some ε ∈ �

≥0. Then there exists j ∈ [k] with t j−wT
j x∗ ≤ ε. Thus,

Pr [Γ≤ ε]≤ ∑
j∈[k]

Pr
[

t j−wT
j x∗ ≤ ε

]

.

For each individual j ∈ [k], we can apply the Separating Lemma assuming that the set of feasible solu-
tions with respect to all other constraints is fixed as the coefficients in this constraint are stochastically
independent from the other constraints. This way, we obtain Pr [Γ≤ ε]≤ k · εφn2.

Next, we turn our attention to the loser gap. Unfortunately, we cannot generalize the bound on
the loser gap from one to multiple constraints in the same way as we generalized the feasibility gap as
the loser gap for multiple constraints does not correspond to the minimal loser gap over the individual
constraints. Instead we will make use of the result for the feasibility gap established above. Assume
Λ≤ ε, for some ε ∈ �

≥0. Then there exists a loser x satisfying ∀ j ∈ [k] : wT
j x− t j ≤ ε. Let xL denote the

loser with this property that is ranked highest. Consider a relaxed variant Π ′ of the given optimization
problem Π where the thresholds of all stochastic constraints are increased by ε, i.e., we have constraints
wT

j x ≤ t j + ε, j ∈ [k]. Observe that xL is feasible in the relaxed problem Π′ and, by the definition of
xL, no higher ranked solution is feasible. Thus, xL is the winner of Π′. Since t j < wT

j xL ≤ t j + ε for
some j ∈ [k], the feasibility gap Γ′ of the relaxed problem is smaller than ε. Hence, Λ ≤ ε implies
Γ′ ≤ ε. Finally, applying the bound Pr [Γ′ ≤ ε] ≤ εkφn2 derived in the first part of the proof yields
Pr [Λ≤ ε]≤ εkφn2.

3.4.4 Proof of Theorem 3.1

First we prove part (a) of the theorem. The probability that the absolute value of any of the kn stochastic
numbers wi, j , (i ∈ [k], j ∈ [n]), is larger than µ(nk)1+α, for arbitrary α > 0, is

Pr
[

∃(i, j) : |wi, j|> µ(nk)1+α]≤∑
i, j

Pr
[

|wi, j|> µ(kn)1+α]≤∑
i, j

1
(kn)1+α = (nk)−α.

Next we prove part (b) of the theorem. First, suppose that the objective function is the only stochastic
expression. We reveal b bits after the binary point of each coefficient c i (1 ≤ i≤ n). Then we know the
value of each ci up to a absolute error of 2−b. We will deal with this lack of precise information in terms
of rounding, that is, we will think of rounding down all ci to the next multiple of 2−b causing a “rounding
error” of less than 2−b for each number.

Lemma 3.10. Let φ denote the maximum density parameter over the coefficients c1, . . . ,cn in the objec-
tive function. When revealing b bits after the binary point of each coefficient then the winner is uniquely
determined with probability at least 1−2n2φ/2b.
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Proof. Let bcc be the vector that is obtained by rounding each entry ci of vector c down to the next
multiple of 2−b. Consider any two solutions x,x′ ∈ S . We have

|(cT x− cT x′)− (bccT x−bccT x′)|= |(c−bcc)T (x− x′)|< n2−b ,

as ci−bcic < 2−b, for all i ∈ [n]. Hence, if the winner gap ∆ (with respect to the exact coefficients
c1, . . . ,cn) is at least n2−b then the rounding can not affect the optimality of the winner. In this case
the winner is uniquely determined after revealing only b bits of each coefficient c i. Let φ∆ denote the
supremum of the density of ∆. Since ∆ is non-negative, Pr [∆ < x] ≤ xφ∆, for all x ∈ �

≥0. Using the
generalized Isolating Lemma we obtain φ∆ ≤ 2φn. Setting x = n2−b yields Pr

[

∆ < n2−b
]

≤ 2n2φ
2b .

Next suppose only some of the constraints are stochastic and the objective function is adversarial. Let
k′ denote the number of stochastic constraints. Without loss of generality, the constraints are of the form
wT

j x≤ t j, j ∈ [k′]. Assume we reveal b bits after the binary point of each coefficient in the k ′ constraints.

Lemma 3.11. Let φ denote the maximum density parameter over all coefficients in the stochastic con-
straints. When revealing b bits after the binary point of each coefficient, then the winner is uniquely
determined with probability at least 1−2−bk′n3φ.

Proof. As we round down, infeasible solutions might become feasible whereas feasible solutions stay
feasible. (For constraints of the form wT

j x ≥ t j one would need to round up to the next multiple of 2−b.)
To ensure that the winner is uniquely determined it suffices to upper bound the maximum possible error
in each constraint caused by the rounding of the coefficients. If this error is smaller than the loser gap
then rounding cannot change the feasibility status of any loser, i.e., all infeasible solutions that have rank
higher than the winner stay infeasible.

In order to apply the bound on the loser gap given in Lemma 3.9, let us first assume 0n 6∈ S . The
rounding error in each expression is at most n2−b. The definition of the loser gap for multiple stochastic
constraints states that for every loser x there is a constraint j ∈ [k ′] such that wT

j x− t j ≥ Γ. Therefore, if
Γ≥ n2−b then every loser stays infeasible with respect to at least one constraint after rounding. Applying
Lemma 3.9, the probability for this event is at least 1− k ′φn3/2b.

The solution 0n can influence the loser gap in two ways. At first, 0n might belong to the set of losers
and thus decrease the loser gap. However, rounding the coefficients wi does not change the objective
value of this solution. Thus, 0n stays infeasible under rounding and the loser gap with respect to all other
solutions in unaffected. At second, 0n might be the winner, which would result in a different loser set
when including 0n to S . In this case, however, 0n has a higher rank than the previous winner so that the
set of losers can only shrink. Therefore, the solution 0n cannot decrease the loser gap and the probability
that any loser becomes feasible can be estimated with the Separating Lemma as before.

Now suppose some constraints and the objective function are stochastic. Let k = k ′+ 1 denote the
number of stochastic expressions. The probability that winner and loser gap are sufficiently large, as
described in the two lemmas above, is 1− k′φn3/2b− 2φn2/2b ≥ 1− kφn3/2b, for n ≥ 2. This implies
that the winner is uniquely determined when revealing b = O(log(kφn)) bits, whp. This completes the
proof of Theorem 3.1.
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3.5 Characterizing Polynomial Smoothed Complexity

Based on the gap properties, we aim at characterizing which discrete optimization problems have polyno-
mial time algorithms under random perturbations. We can apply Theorem 3.1 to our smoothed analysis
framework and bound the number of bits necessary to determine the winner. Taking into account that
the domain of the initial adversarial choices for the stochastic coefficients is [−1,1] or [0,1], we observe
that φ-perturbations yield coefficients with an expected absolute value of at most µ = O(1+ 1

φ). In order
to simplify the notation, we restrict the parameter for the perturbation to the interesting case φ≥ 1. This
leads to the following result on the overall number of bits that need to be revealed per stochastic input
number.

Corollary 3.12. For any fixed perturbation model f , the winner is uniquely determined when revealing
O(log(φnk)) bits of each stochastic coefficient, whp.

Based on our smoothed analysis framework we define polynomial smoothed complexity. Fix any
binary optimization problem Π and any perturbation model f . Let IN denote the set of all unperturbed
instances of length N that the adversary may specify. The definition of the input length N needs some
clarification as the coefficients in the stochastic expressions are assumed to be real numbers. We define
that each of these numbers has a virtual length of one. (This way, we ensure N ≥ kn.) The bits of the
stochastic numbers can be accessed by asking an oracle in time O(1) per bit. The bits after the binary
point of each coefficient are revealed one by one from left to right. The deterministic part of the input
does not contain real numbers and can be encoded in an arbitrary fashion. For an instance I ∈ IN , let
I + fφ denote the random instance that is obtained by a φ-perturbation of I. We say that Π has smoothed
polynomial complexity if and only if it admits an algorithm A whose running time T satisfies

∃α,β > 0 : ∀φ≥ 1 : ∀N ∈ � : max
I∈IN

E
[

(

T (I + fφ)
)α
]

≤ βφN .

This definition of polynomial smoothed complexity follows more or less the way how polynomial com-
plexity is defined in average-case complexity theory, adding the requirement that the running time should
be polynomially bounded not only in N but also in φ. It is not difficult to show that the assumption on
the running time of A is equivalent to requiring that there exists a polynomial P(N,φ, 1

ε ) such that for
every N ∈ � ,φ ≥ 1,ε ∈ [0,1], the probability that the running time of A exceeds P(N,φ, 1

ε ) is at most
ε. Observe that this does not imply that the expected running time is polynomially bounded. To enforce
expected polynomial running time, the exponent α in the definition of polynomial smoothed complexity
should have been placed outside instead of inside the expectation. The reason for not defining polyno-
mial smoothed complexity based on the expected running time is that this is not a sufficiently robust
notion. For example, an algorithm with expected polynomial running time on one machine model might
have expected exponential running time on another machine model. In contrast, the above definition
yields a notion of polynomial smoothed complexity that does not vary among classes of machines admit-
ting polynomial time simulations among each other. Although polynomial smoothed complexity does
not always imply polynomial bounds on the expected running time, we will show that several of our
algorithmic results yield expected polynomial running time on a RAM.
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We show that the smoothed complexity of a binary optimization problem Π can be characterized in
terms of the worst-case complexity of Π. Theorem 3.1 shows that one usually needs to reveal only a
logarithmic number of bits per real-valued input number. This suggests a connection between pseudo-
polynomial worst-case running time and polynomial average-case complexity. For a binary optimization
problem Π, let Πu denote the corresponding optimization problem in which all numbers in the stochastic
expression are assumed to be integers in unary representation instead of randomly chosen real-valued
numbers. The following theorem holds for any fixed perturbation model f .

Theorem 3.13. A binary optimization problem Π has polynomial smoothed complexity if and only if
Πu ∈ ZPP.

In other words, Π has polynomial smoothed complexity if it admits a (possibly randomized) algo-
rithm whose (expected) running time for all instances is pseudo-polynomial in the stochastic constraints
and polynomial in the remaining input. Notice that the expectation is over the randomization of the
algorithm, not over the instances. This characterization immediately shows that strongly NP-hard op-
timization problems do not have polynomial smoothed complexity, unless ZPP=NP. This observation
might not sound very surprising, as the hardness of strongly NP-hard problems does not rely on large
or precisely specified input numbers. Observe, however, that the strong NP-hardness of a problem does
not immediately rule out the possibility of a polynomial average-case complexity. For example, the TSP
problem (on a complete graph) with edge lengths drawn uniformly at random from [0,1] might have a
polynomial average-case complexity. Our theorem, however, shows that it does not have a polynomial
smoothed complexity, unless ZPP = NP. The more sophisticated part of the theorem is the other di-
rection stating that every binary optimization problem admitting a pseudo-polynomial time algorithm
has polynomial smoothed complexity. This result is based on the Generalized Isolating Lemma and the
Separating Lemma. The idea is as follows. We design efficient verifiers checking whether a solution
computed with a certain precision is actually the optimal solution of Π. The success probability of these
verifiers is analyzed with the help of the gap properties. Using an adaptive rounding procedure, we in-
crease the precision until we can certify that the computed solution is optimal. The overall running time
of this meta-algorithm is polynomial if the algorithm computing solutions with bounded precision has
pseudo-polynomial running time.

Proof. At first, we prove that the existence of a randomized pseudo-polynomial time algorithm for a
binary optimization problem Π implies polynomial smoothed complexity for Π. We design an algorithm
with polynomial smoothed complexity calling the pseudo-polynomial algorithm with higher and higher
precision until the solution found is certified to be optimal. We describe verifiers, that, based on the first
b bits after the binary point of each coefficient in the stochastic expressions, either certify optimality or
reports FAILURE, stating that it has not sufficient information to ensure optimality. So the algorithm has
access to the first b bits only, which corresponds to rounding down the numbers to the next multiple of
2−b. Again we will interpret the lack of precise information as a rounding error. In the following, bwc
denotes the value of w rounded down to the next multiple of 2−b.
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Certifying optimality For a moment assume that only the objective function is stochastic. Without
loss of generality, consider a maximization problem with objective function cT x. At first, we compute an
optimal solution x′ for the problem with the rounded coefficients bc1c, . . . ,bcnc. To check whether x′ is
optimal with respect to the original cost vector c, we generate another vector c̄ of rounded coefficients.
This time the rounding depends on the computed solution x′. For all i with x′i = 1, we set c̄i := bcic
and for all i with x′i = 0, we set c̄i := dcie = bcic+ 2−b. Observe that the function δ(x) = cT x− c̄T x is
maximal for x = x′. Next we compute an optimal solution x′′ for the problem with the vector c̄. If x′ = x′′

then x′ simultaneously maximizes δ(x) and c̄T x. Consequently, it maximizes c̄T x + δ(x) = cT x as well
and, hence, x′ corresponds to the true winner x∗. Thus, the algorithm outputs x′ as a certified winner if
x′ = x′′ and reports FAILURE otherwise. Observe, if the winner gap is large enough so that the winner
is uniquely determined in the sense of Lemma 3.10, then the algorithm will always compute a certified
winner. Hence, the probability that the algorithm is successful is at least 1− 2n2φ/2b, corresponding
to the bound given in Lemma 3.10. Observe that Γ ≥ n2−b is a sufficient but not a necessary condition
to certify the optimality of the winner with b revealed bits per coefficient. So the verifier might declare
optimality of the computed solution even if Γ < n2−b.

Certifying feasibility Now we show how to deal with stochastic constraints. Without loss of generality,
we assume that all stochastic constraints are of the form wT

j x≤ t j, 1≤ j≤ k′. For constraints of the form
wT x ≥ t, we would need to round up instead of rounding down. First we compute a certified winner,
denoted by x′, using the rounded coefficients in the stochastic constraints. If the objective function is not
stochastic, then there is no need to certify the winner. As we round down all coefficients in the stochastic
constraints we ensure that feasible solutions stay feasible. However, we have to detect infeasible solutions
that become feasible due to the rounding and displace the true winner. Hence, we need to check whether
x′ is indeed feasible with respect to the original constraints. This would be trivial if the exact values of
all constraint vectors w1, . . . ,wk were available. However, we want to check the feasibility using only the
knowledge of the first b bits after the binary point of each coefficient. Assume the solution x is infeasible
with respect to the j-th constraint and becomes feasible due to rounding. Then bw jcT x ≤ t j < wT

j x and
hence t j −bw jcT x < wT

j x−bw jcT x ≤ n2−b, i.e. the slack of x in the j-th constraint is less than n2−b

with respect to the rounded vector bw jc. Our verifier will use this property and classifies x′ as possibly
infeasible if it has slack less than n2−b for any of the k constraints with respect to the rounded coefficients.
This way, we have two failure sources. At first, there might be a loser that becomes feasible because of
rounding. As seen in the proof of Lemma 3.11, this can happen only if the loser gap is smaller than
n2−b. At second, the true winner can be rejected since its slack is less than n2−b. This happens only if
the feasibility gap is smaller than n2−b. Applying Lemma 3.9 yields that the probability that one of these
events happens is at most 2k′φn3/2b.

Adaptive rounding procedure. Consider a binary optimization problem Π with n binary variables
and k stochastic expressions. Assume there exists an algorithm A for the special variant of Π, where
the domain of the coefficients in the stochastic expressions is restricted to � . Furthermore, assume that
the worst case running time of A is bounded by some polynomial in W,n,k and N, where W denotes the
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largest absolute value of any coefficient in the stochastic expressions. Recall that N specifies the size of
the deterministic part of the input. We use the following adaptive rounding scheme. We start by revealing
b = log(kφn3) bits of each coefficient in the stochastic expressions. We obtain integer coefficients by
scaling these numbers by 2b. Now we use the algorithm A to obtain a solution and use the verifiers to
test for optimality. In case of FAILURE we increment b by one and iterate until the verifiers conclude
optimality of the computed solution.

To analyze the running time of A we need to estimate W , the largest absolute value of any integer in
the stochastic expressions. It is the product of two factors. The first factor, W1 = 2b, is due to the scaling
and depends on the number of revealed bits after the binary point of each coefficient. The second factor
W2 corresponds to the integer part of the largest absolute value of any coefficient. This way, W = W1W2.
We have to show that there exists a polynomial P(N,φ, 1

ε ) such that for every N ∈ � ,φ > 0,ε ∈ [0,1] :
Pr
[

T > P(N,φ, 1
ε )
]

≤ ε. The running time of A is polynomial in W,n,k and N. As n,k and N are
deterministic, it suffices to show such a polynomial bound for W . Let us first prove an upper bound on
W2. Let r j,i be the random variable that is added to the i-th coefficient in the j-th stochastic expression
when perturbing the instance. Recall that the mean of the absolute values of the probability distribution
that defines the perturbation model, is a constant, denoted E . It holds W2 ≤max j∈[k],i∈[n] |r j,i|+1. Hence,
for every α≥ 1,

Pr
[

max
j∈[k],i∈[n]

|r j,i|> αE
]

≤ ∑
j∈[k],i∈[n]

Pr [|r j,i|> αE]≤ nk
α

,

where the last inequality holds by an application of the Markov Inequality. Hence, Pr [W2 > αE +1] ≤
nk/α. Setting ε = 2nk/α, it holds W2 ≤ αE + 1 = 2nkE

ε + 1 with probability at least 1− ε/2. Next
consider the term W1 = 2b. There are two reasons why the checkers can declare the computed solutions
to be suboptimal or infeasible. First, the random instance happens to have a small winner gap or a small
loser gap such that the winner is not uniquely determined. Using Theorem 3.10 and 3.11, the probability
for this event is at most kφn3/2b. Secondly, the feasibility checker reports false negatives due to a small
feasibility gap. This happens with probability at most k ′φn3/2b. Allowing a failure probability of ε/4 for
each event, we obtain W1 = 2b = kφn34

ε . Therefore, with probability at least 1−ε, none of these bad events

occur and it holds W =W1W2 ≤
( 2nkE

ε +1
) kφn34

ε . As k and E are assumed to be constant and n≤N, there
exists a polynomial P(N,φ, 1

ε ) such that for all N ∈ � ,φ > 0,ε ∈ [0,1] : Pr
[

W > P(N,φ, 1
ε )
]

≤ ε.

From polynomial smoothed complexity to pseudo-polynomial running time Finally, we need to
show that polynomial smoothed complexity of a binary optimization problem Π implies the existence
of a randomized pseudo-polynomial algorithm for Π. Since we are aiming for a pseudo-polynomial
time algorithm, we can assume that all numbers in the stochastic expressions are integers. Let M denote
the largest absolute value of these numbers. The idea is to perturb all numbers only slightly such that
the perturbation changes the value of each expression by at most 1

2 . To ensure that the set of feasible
solutions is not changed by the perturbation, we relax all constraints by 1

2 , i.e., we replace wT x ≤ t
by wT x ≤ t + 1

2 for all stochastic constraints. We then use an algorithm with polynomial smoothed
complexity to compute an optimal solution x∗ for the perturbed problem. By bounding the error due to
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the random perturbation, x∗ can be shown to be optimal for the original problem as well.
Let us describe the proof idea in more detail. Our smoothed analysis framework assumes that all

numbers in the stochastic expressions fall into the interval [−1,1] (or [0,1]) before they are perturbed.
To adapt our problem to this framework, we first scale all input numbers in the stochastic expressions
by M−1. Consequently, we have to ensure that the perturbation changes the value of an expression by at
most 1/(2M). In particular, we will allow only perturbations that change each individual number by at
most 1/(2Mn). We call such a perturbation proper. For the uniform distribution, we could simply set
φ = 2Mn. However, we have to deal with arbitrary families of distributions, as defined in our smoothed
analysis framework, and they do not necessarily have a finite domain. The idea is to choose φ large
enough so that a random perturbation is proper with probability at least 1/2. Recall that the perturbation
model is described by the density function f with density parameter φ = 1. For other values of φ, we
scale f appropriately. By our assumptions on f , it holds

R

|t| fφ(t)dt = E/φ for some fixed E ∈ �
.

Let r be a random variable following fφ. Setting φ = 4n2kEM and applying the Markov inequality

yields Pr
[

|t|> 1
2nM

]

= Pr
[

|t|> 2nkE
φ

]

≤ 1
2nk . Our perturbation draws kn of these random variables. The

probability that the perturbation is proper, i.e., the probability that their absolute value is at most 1
2nM , is

1/2.
Consider any binary optimization problem Π with polynomial smoothed complexity. Polynomial

smoothed complexity implies that the problem admits an algorithm A whose running time can be
bounded polynomially in n and φ, with any constant probability. In particular, there exists a polyno-
mial P(n,φ) such that the probability that the running time exceeds P(n,φ) is at most 1

4 . We use A as
a subroutine in order to obtain a pseudo-polynomial algorithm. This algorithm works as follows. At
first, it generates a perturbation and checks whether it is proper, If it is proper, then it runs A for at
most P(n,φ) time steps. If A has not finished within this time bound, the algorithm returns FAILURE.
Let Q be the event that the perturbation is proper. Observe that for any two events A and B it holds
Pr [A∧B]≥ Pr [A]+Pr [B]−1. Therefore, the success probability of our algorithm is

Pr [Q∧ (T ≤ P(n,φ))] ≥ Pr [Q]−Pr [T > P(n,φ)] ≥ 1
4

.

The running time of this algorithm is pseudo-polynomial because φ = O(Mn2k). Hence, Πu ∈ ZPP. This
completes the proof of Theorem 3.13.

3.6 Algorithmic Applications

Let us illustrate the strength of Theorem 3.13 by giving some algorithmic applications to some well-
known optimization problems and comparing these results with previous work on the probabilistic anal-
ysis of optimization problems. To our knowledge and besides our results for the knapsack problem
(Chapter 2) and the constrained shortest path problem (Chapter 1), there are no NP-hard optimization
problems that are previously known to have polynomial smoothed complexity.

Due to its simple structure, the knapsack problem has been the subject of extensive research for a
long time. The multi-dimensional knapsack problem is a natural generalization with multiple packing
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constraints instead of only one.

maximize cT x

subject to Ax≤ b, A ∈ � k×n
≥0 ,b ∈ � k

x ∈ {0,1}n,c ∈ � n
≥0.

Dyer and Frieze [DF89] generalized Lueker’s result on the expected integrality gap to multiple con-
straints and extended the ideas of the core algorithm from Goldberg and Marchetti-Spaccamela [GMS84]
to prove the following result. For any fixed ε > 0, there is an algorithm for the multi-dimensional knap-
sack problem whose running time does not exceed a polynomial P(n) with probability at least 1− ε,
provided the number of constraints k is constant and the coefficients in the constraints as well as in the
objective function are chosen uniformly at random from [0,1]. Their analysis, however, does not yield
polynomial average-case complexity as the dependence of the failure probability on the running time
bound is not bounded by a polynomial. For a constant number of constraints, the multi-dimensional
knapsack problem admits an algorithm that is pseudo-polynomial in the largest weight, i.e., the largest
entry in the constraint matrix A [KPP04]. The algorithm is a straight-forward extension of the standard
dynamic programming algorithm for the knapsack problem with a single constraint and uses a dynamic
programming table of dimension 1+ k and size n(nC)k , where C denotes the largest weight occurring in
the instance. Hence, Theorem 3.13 implies

Corollary 3.14. The multi-dimensional knapsack problem with a constant number of constraints has
polynomial smoothed and, consequently, polynomial average-case complexity under random perturba-
tions of all constraints.

Observe that our result does not rely on a random objective function. By viewing the multi-dimensional
knapsack problem as a multiobjective optimization problem, one can easily see that our result holds if at
least k of the objectives are random, allowing one objective to be adversarial. If the number of constraints
is unbounded, then the problem is strongly NP-hard [KPP04], so that, in general, these problems have
no polynomial smoothed complexity.

Notice that the multi-dimensional knapsack problem is a special version of general 0/1-integer pro-
gramming, which allows only non-negative entries in the constraint matrix and, hence, belongs to the
class of packing problems. The dynamic programming algorithm for the multi-dimensional knapsack
problem can be applied to general 0/1-integer programming as well by extending the table to negative
weights. Let C denote the largest absolute value of any entry in the constraint matrix. Then the dynamic
programming table has size n(2nC+1)k , with indices running from−Wn to +Wn for the dimensions that
correspond to constraints. The running time is n(2nC +1)k , which is pseudo-polynomial for constant k.
In fact, any integer linear program with a constant number of constraints has a pseudo-polynomial time
algorithm [Sch86]. This yields the following corollary.

Corollary 3.15. General 0/1-integer programming with a constant number of constraints has polynomial
smoothed and, consequently, polynomial average-case complexity under random perturbations of all
constraints.
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It is important to interpret this corollary in the right way. It does not prove that all problems that
can be formulated as a 0/1-integer program have polynomial smoothed complexity. In the formulation
of these problems variables usually appear in more than one constraint. Furthermore, the constraint
matrix is usually sparse, containing many zero entries. Perturbing the constraints independently, as our
smoothed analysis framework assumes, destroys the structure of the problem. So instead of averaging
over “similar” instances of the problem, we would be averaging over instances of some other structure
that might be easier to solve on average. We will see in Section 3.9 how to strengthen our analysis by
allowing zero entries in the constraints that are not perturbed. This way we are able to extend our analysis
to problems with sparse constraint vectors.

Scheduling Problems

The problem of scheduling to minimize the weighted number of tardy jobs is defined by n jobs each of
which has a processing time pi, a due date di, and a penalty ci, which has to be paid if job i has not been
finished at due date di. The jobs shall be scheduled on a single machine such that the sum of the penalties
is minimized. In terms of n binary variables x1, . . . ,xn, the objective is to minimize cT x where xi = 1 if
job i is not finished in time. Observe that the problem is essentially solved once these binary variables are
determined as we can assume without loss of generality that an optimal schedule executes the selected
jobs in the order of non-decreasing due dates. (All tardy jobs are scheduled after all non-tardy jobs.
The non-tardy jobs can be rearranged into non-decreasing due-date order without making any of the jobs
tardy. This can be shown by observing that swapping two neighboring non-tardy jobs does not change
the tardiness of the jobs. By a repeated application of this swapping operation, any optimal schedule can
be transformed into an optimal schedule with non-decreasing due date order.) Notice that the feasible
region is completely specified by the processing times and the due dates. The objective, however, is a
linear function cT x.

Using dynamic programming, the problem can be solved in time O(n2C), where C denotes the largest
penalty for any job [Par95]. Hence, the problem has polynomial smoothed complexity for stochastic
penalties.

Corollary 3.16. The problem of scheduling to minimize the weighted number of tardy jobs has polyno-
mial smoothed and, consequently, polynomial average-case complexity under random perturbations of
the penalties.

3.7 Multi-Criteria Optimization Problems

We introduced the semi-random input model to avoid that the randomization destroys the underlying
combinatorial structure of the problem at hand. So it is quite natural to interpret the stochastic constraints
as different criteria (or objective functions) over the solution space of the underlying combinatorial struc-
ture. As already mentioned in Section 1.1, if there are multiple criteria to be optimized simultaneously
then usually one of them is declared to be the objective function, and the others are formulated in form of
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a constraint with an appropriate threshold. To show that such a problem has polynomial smoothed com-
plexity, Theorem 3.13 suggests to find an algorithm which is polynomial in the size of the deterministic
part and pseudo-polynomial in the coefficients of the stochastic expressions. By applying elementary
coding theory, this problem can be reduced to the problem of finding a pseudo-polynomial time algo-
rithm for the exact version of the single criterion problem, that is, for a given k, one seeks a solution with
objective value exactly k instead of the maximum (minimum) possible objective value. For example, the
exact version of the shortest path problems asks for a path of length exactly k.

The underlying idea of this reduction is as follows. Let W denote the size of the largest integer
domain over the stochastic expressions. The inequality of a single constraint can be reduced to the
disjunction of at most W equalities. Furthermore, the problem of finding a solution with minimum
(maximum) objective value can be reduced to at most W tests for the existence of a solution with objective
function value exactly i. Hence, we can solve the original problem by solving W k problems with linear
equations. Furthermore, every system of linear equations over binary variables with integer coefficients
can be transformed into a single linear equation with the same set of solutions [Sal75]. The encoding
of several equations into a single one increases the sizes of the coefficients, but the increase is bounded
by a polynomial if the number of equations is fixed. So we can use the pseudo-polynomial algorithm
for the exact version of the single criterion problem to solve the problem where all criteria are combined
into one. By the above arguments, such an algorithm has pseudo-polynomial running time as well.
Combining this observation with Theorem 3.13 yields the following result.

Corollary 3.17. Let Π be a (single objective) binary optimization problem. Suppose the exact version
of Π admits an algorithm with pseudo-polynomial running time. Assume we deal with multicriteria
variants of Π by choosing one criterion as the objective function and bounding the remaining criteria
by arbitrary thresholds. Then any multicriteria variant of Π with a constant number of criteria has
polynomial smoothed complexity, provided that all criteria are stochastic.

Examples for problems that allow pseudo-polynomial time algorithms for the exact version of the
single-criteria problem are shortest path, spanning tree, and matching [PY00, BP98, MVV87]. Hence,
their multicriteria variants have polynomial smoothed complexity. A similar approach was used in
[PY00] to derive approximation schemes for multiobjective optimizations problems. One does not al-
ways need to assume that all criteria are of stochastic nature. For example, the bicriteria variant of
the shortest path problem, i.e., the constrained shortest path problem, has an algorithm whose running
time is pseudo-polynomial with respect to the objective function and another algorithm that is pseudo-
polynomial with respect to the additional constraint. Applying Theorem 3.13 directly to these algorithms
yields polynomial smoothed complexity for the constrained shortest path problem even when either only
the objective function or the additional constraint is stochastic. This observation complies with our find-
ings in Section 1.5.1, which bound the complexity of computing the Pareto curve for the bicriteria version
of the shortest path problem. This result too relies on the randomness of only one of the criteria.
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3.8 Expected Polynomial Running Time

The main advantage of polynomial smoothed/average-case complexity is its robustness under different
machine models. Besides, it allows a nice characterization of binary optimization problems under ran-
dom inputs in terms of the problems’ worst-case complexity. However, the guaranty on the running
time provided by polynomial smoothed/average-case complexity is weaker than the guaranty that the ex-
pected running time is polynomial. Making additional assumptions, we can use our analysis to conclude
expected polynomial running time for certain binary optimization problems.

We use again our adaptive rounding scheme, which increases the precision of the stochastic input
numbers until the computed solution is certified to be optimal. We assume that the running time of the last
iteration of this meta-algorithm dominates the cumulative running time of all previous iterations. In fact,
it suffices if all previous iterations have cumulative running time at most a factor n l larger than the running
time of the last iteration, for some constant l ∈ �

. In order to obtain expected polynomial running time
under random perturbations, one needs an algorithm with “pseudo-linear” instead of pseudo-polynomial
running time. The only parameter in the running time that depends on the random perturbations is W ,
the largest absolute value of any (rounded and scaled) coefficient appearing in a stochastic expression.

We use the notation from the proof of Theorem 3.13. We divided W into two parts W = W1W2,
where W1 is due to the scaling by factor 2b = W1 and depends on b, the number of revealed bits after
the binary point of each coefficient. The second factor W2 corresponds to the integer part of the largest
absolute value of any coefficient. In the proof of Theorem 3.13 we have shown the following bounds on
the random variables W1 and W2.

Pr
[

W1 > 2b
]

≤ 2kφn3/2b, for any b ∈ � , and

Pr [W2 > αE +1] ≤ nk/α , for any α ∈ �
>0.

These bounds allow 2b as well as α to grow linearly with the reciprocal of the failure probability, thus,
W ≈ 2bαE can grow quadratically. Hence, these bounds do not allow to conclude a polynomial expected
running time. Therefore, we will restrict the choice for the perturbation model by allowing only probabil-
ity distributions whose tail function exhibits an exponential decay. More precisely, we assume that if X is
drawn according to perturbation model f then there exists some E ∈ �

≥0, such that Pr [|X |> αE]≤ 2−α,
for every α ≥ 2. For example, the Gaussian and the exponential distribution have this property as well
as all distributions with finite domain.

In the following analysis we exploit the fact that it is very unlikely that any of the coefficients in the
stochastic expressions is much larger that E . Define event E by (W2 ≤ n log(nk)E +1)∧ (W1 ≤ 2n). As
Pr [W2 > nlog(nk)E] ≤ knPr [X > n log(nk)E] ≤ 2−n and Pr [W1 > 2n] ≤ 2kφn3/2n it holds Pr [¬E ] ≤
O(kφn3/2n). Assume that we have a pseudo-linear running time bound of T ≤ N lW for some constant
l ∈ �

. In case of ¬E , we use a brute force enumeration of all 2n possible 0/1-vectors which takes time
2nP(N) for some polynomial P(N). Additionally, we contribute the time for the unsuccessful adaptive
rounding scheme, which is at most N l2n(n log(nk)E + 1), to the enumeration process. Hence, the total
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running time is O(2nP(N)) for some other polynomial P(N). Next define random variable

W ′1 =







W1 in case of E ,

0 otherwise .

The expectation of W ′1 is

E
[

W ′1
]

=
n

∑
i=0

Pr
[

W ′1 = 2i]2i ≤
n

∑
i=0

Pr
[

W1 ≥ 2i]2i ≤
n

∑
i=0

4φkn3

2i 2i = O(φkn4) .

Let T denote the running time of our algorithm. As E [W ′
1] = Pr [E ] E [W ′1 | E ],

E [T ] ≤ Pr [E ] ·E
[

N lW1W2 | E
]

+Pr [¬E ] ·2nP(N)

≤ N l(n log(nk)E +1) ·Pr [E ] E
[

W ′1 | E
]

+Pr [¬E ] ·2nP(N)

≤ N l(n log(nk)E +1)E
[

W ′1
]

+O(kφn3/2n) ·2nP(N)

= O(N l(n log(nk)E +1)4φkn4 + kφn3P(N)) .

Corollary 3.18. Assume, the perturbation model f satisfies Pr [|X |> αE]≤ 2−α, for some E ∈ �
≥0 and

all α≥ 2. If a binary optimization problem has pseudo-polynomial running time O(poly(N)W ), then this
problem allows an algorithm with expected polynomial running time.

Remark 3.19. The requirement of a pseudo-linear running time is a strong restriction for binary opti-
mization problems with k > 1 stochastic constraints, as the standard approaches, like dynamic program-
ming, usually exhibit a running time of poly(n)W k. For example, in case of dynamic programming, every
additional constraint will add another dimension to the dynamic programming table.

Such pseudo-linear algorithms exist on a uniform RAM, e.g., for the knapsack problem, the problem
of scheduling to minimize weighted tardiness or the constrained shortest path problem. Hence, assuming
the uniform RAM model, all these problems admit algorithms with expected polynomial running time
under random perturbations.

3.9 Zero-Preserving Perturbations

One criticism of the smoothed analysis of the Simplex algorithm is that the additive perturbations destroy
the zero-structure of an optimization problem, as it replaces zeros with small values. See also the discus-
sion in [ST01]. The same criticism applies to the zero-structure in binary programs. It turns out, however,
that our probabilistic analysis in Section 3.4 is robust enough to deal with zero-preserving perturbations.
In particular, we can extend our semi-random input model introduced in Section 3.2 by allowing the
coefficients in the stochastic expressions to be fixed to zero instead of being a random variable. In the
model of smoothed analysis, this corresponds to strengthen the adversary by avoiding the perturbation
of these zero-coefficients.



3.9. ZERO-PRESERVING PERTURBATIONS 93

For the expression wT x, let Z be the set of indices i with wi fixed to zero. Let S be the set of solutions.
We call two solutions x1,x2 ∈ S equivalent, if they differ only in variables from Z. This way, Z defines
equivalence classes on S with respect to the expression wT x. Obviously, wT x evaluates to the same value
for solutions in the same equivalence class.

In the following we show that the Separation Lemma is unaffected by zero preserving perturbations.
Assume we fix n− l coefficients to zero and, without loss of generality, these are the last coefficients,
i.e., Z = {l + 1, l + 2, . . . ,n}. Hence, w = (w1, . . . ,wl ,0, . . . ,0). Recall that solutions are 0/1 vectors of
length n. Solutions that agree in the first l positions are equivalent. Observe that only the highest ranked
solution in each equivalence class is relevant for the loser and feasibility gap. For the purpose of the
analysis, we virtually remove all other solutions. For convenience, let us call the resulting solution set
S . In order to apply the Separating Lemma, we define a reduced problem with l variables corresponding
to the first l variables of the original problem. The reduced solution set S ′ is obtained accordingly by
cutting the last n− l entries of each solution in S . Notice that x ∈ S and the corresponding x ′ ∈ S ′ have
the same weight wT x. The rank of a x′ ∈ S ′ is the rank of the corresponding solution x ∈ S . This way,
solution x is a loser (winner) if and only if the corresponding x′ is a loser (winner). Hence, the feasibility
gap as well as the loser gap are identical in the original and the reduced problem.

A similar argument can be used to show that the Generalized Isolating Lemma stays valid with respect
to equivalence classes, that is, the winner gap is defined to be the difference in profit between the best and
the second best equivalence class. However, it might be very likely that there are many optimal solutions,
as the winning equivalence class might have many solutions. Notice that this effects the procedure
that verifies optimality for stochastic objective functions, described in the proof of Theorem 3.13. In
particular, the two solutions x′ and x′′, which are optimal with respect to the rounded cost vectors bcc and
c̄, only have to be in the same equivalence class to certify optimality, which can be checked easily.

Algorithmic Application

Using zero-preserving perturbations, we can apply our analysis to the General Assignment Problem
(GAP), which is defined as follows.

maximize
k

∑
i=1

n

∑
j=1

pi jxi j

subject to
n

∑
j=1

wi jxi j ≤ ci, i = 1, . . . ,k

k

∑
i=1

xi j = 1, j = 1, . . . ,n

xi j ∈ {0,1}, for all i ∈ [k], j ∈ [n] .

Intuitively, the goal is to pack n items into k bins with capacities c1, . . . ,ck. Packing item j ∈ [n] into
bin i∈ [k] occupies wi j units of the capacity of bin i and yields a profit of pi j . Even for two bins, the GAP-
problem does not allow an FPTAS, unless P = NP [MT90]. In fact, the problem is strongly NP-hard for
an unbounded number of bins. If however, the number of bins is a constant, then GAP can be solved in
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pseudo-polynomial time using standard dynamic programming as follows. Let T ( j,W1, . . . ,Wk) denote
the maximum profit over solutions that have available items {1, . . . , j} and whose weight of all items in
bin i is exactly Wi, for all i ∈ [k]. All non-trivial entries can be computed by the following recursion.

T ( j,W1, . . . ,Wk) = max
i∈[k]
{T ( j−1,V1, . . . ,Vk)+ pi j | Vi = Wi−wi j,Vl = Wl , for all l 6= i}

Let W denote the largest weight, i.e., W = max j∈[n] maxi∈[k] wi j . Then the size of the dynamic program-
ming table is at most n(nW )k. Hence, the running time is at most kn(nW )k.

How does the GAP problem fit into our framework? We have a vector of kn binary variables
(x11,x12, . . . ,x1n,x21,x22, . . . ,x2n, . . . ,xk1,xk2, . . .xkn) and the corresponding vector of profits. The weight
constraint for bin l ∈ [k] uses the weight vector with all entries wi j, i 6= l, set to zero. These entries are
declared to be fixed to zero, so they are not touched by the perturbation. This way, each w i j appears
in just one constraint and a perturbation of the profit and the constraint vectors has the same effect as
perturbing each pi j and wi j individually. This yields

Corollary 3.20. The General Assignment Problem with a constant number of constraints/bins has poly-
nomial smoothed complexity if weights and profits are randomly perturbed.

The discussion above reveals a limitation of our analysis. For this purpose, consider the multiple
knapsack problem, a special case of the GAP problem, where the weight of an item is the same for all
bins, i.e., wi j = w j, for all i ∈ [k]. Using the program formulation of the GAP problem, the weights
w j reoccur in the different constraints for the different knapsacks. The perturbation of the constraints,
however, have to be independent such that the perturbed instance is, in general, no multiple knapsack
instance any more. We observe that for a sensible application of our analysis, each variable that describes
the problem instance, must appear at most once in the stochastic constraints of the linear program for-
mulation. Or, seeing it another way, the coefficients in the stochastic constraints must allow independent
perturbations without destroying the structure of the problem.

3.10 Other Aspects

Smoothed complexity and approximation schemes

If a binary optimization problem Π has polynomial smoothed complexity when perturbing only the
coefficients in the objective function, then Π also admits an absolute fully polynomial randomized ap-
proximation scheme. The idea is to perturb the instance only slightly, resulting in a very similar optimal
objective function value. The set of feasible solutions is not affected by the perturbation. In order to
bound the running time, we can exploit the positive influence of the added randomness. Let us give some
more details.

Given a (worst-case) instance of Π, the coefficients in the objective function are normalized such that
the largest absolute value is 1. Subsequently, the normalized coefficients are perturbed using the uniform
perturbation model with parameter φ. As each coefficient changes by at most 1/φ, the difference in the
objective values of any two solutions can change by at most n/φ by this perturbation. Hence, the optimal
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solution of the perturbed instance is, with respect to the unperturbed objective function, at most n/φ away
from the optimum. In order to obtain polynomial expected running time of our approximation scheme
we repeatedly generate perturbations until we find one that allows a small running time. In particular,
according to the definition of polynomial smoothed complexity, we can fix some polynomial bound B
such that the running time of the algorithm is smaller than B with probability at least 1/2. We run the
algorithm for at most B time steps. If the algorithm has not finished, we generate a new perturbation
and try again. As the perturbations are independent, one needs 2 iterations on average until a solution is
found. Hence, the expected running time is 2B.

The approximation scheme only allows to bound the absolute error. If however, the optimum of the
normalized instance can be lower bounded by some polynomial in 1/n, then we obtain a randomized
FPTAS.

The opposite direction works as well. Suppose Π is a binary optimization problem admitting a
fully polynomial approximation scheme. It is well known that such an approximation scheme can be
transformed into a pseudo-polynomial algorithm, cf. [GJ79]. The running time of this algorithm is
pseudo-polynomial only with respect to the coefficients in the objective function. Thus, Theorem 3.13
shows that Π has polynomial smoothed complexity when perturbing only the objective function.

This shows that for the considered class of problems, there exists a correlation between problems
that allow an FPTAS and problems with polynomial smoothed complexity for stochastic linear objective
functions.

Observe that these results rely solely on the analysis of the winner gap. The results based on the loser
and feasibility gaps yield polynomial smoothed complexity for problems for which no fully polynomial
approximation scheme is known like, e.g., constrained spanning tree, or even for problems that cannot be
approximated within any polynomial-time computable factor like, e.g., 0/1 programming with a constant
number of constraints. In fact, the problems to which these gaps apply are exactly those problems ad-
mitting a bicriteria approximation scheme. In other words, our results show that the impact of randomly
perturbing the objective function and/or the constraints on the computational complexity of a problem is
comparable with the impact of relaxing the same set of expressions. The advantage of smoothed analy-
sis against (bicriteria) approximation schemes, however, is that it yields optimal and feasible instead of
almost optimal and almost feasible solutions.

Euclidean optimization problems. On a first view, the Euclidean variants of TSP and Steiner tree
might look like interesting candidates for problems with polynomial smoothed complexity. Karp [Kar77]
in a seminal work on the probabilistic analysis of algorithms studied the TSP problem in a model in
which n points are drawn uniformly and independently from the unit square. A natural extension of this
model would be to assume that first an adversary chooses points in the unit cube or ball and then one
applies a multi-dimensional Gaussian perturbation. We claim, however, that neither Euclidean TSP nor
Steiner tree do have polynomial smoothed complexity, since the perturbation does not change the set of
feasible solutions. The change in the objective function due to the perturbation depends at most linearly
on the magnitude of the perturbation. Since the optimal objective value is Ω(1), we could obtain a fully
polynomial randomized approximation scheme for worst-case instances, which is widely believed not to
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exist. Thus, one needs to give up either the requirement that the running time is polynomial in 1/ε or
the requirement that the running time is polynomial in φ. Under the first relaxation the problem has been
solved by Arora [Aro96]. The question whether there exist polynomial time algorithms for Euclidean
TSP or Steiner tree under perturbations with a fixed density parameter φ or in the uniform input model
of Karp [Kar77] is open.

Relationship to condition numbers In order to obtain a finer analysis of algorithms than that pro-
vided by worst-case complexity, one should find a way of distinguishing hard problem instances from
easy ones. A natural approach is to find a quantity indicating the difficulty of solving a problem in-
stance. In Numerical Analysis and Operations Research it is common to bound the running time of an
algorithm in terms of a condition number of its input. The condition number is typically defined to be
the sensitivity of the solution for a problem instance to slight perturbations of the input. For example,
Renegar [Ren94, Ren95a, Ren95b] presents a variant of the primal interior point method and describes its
running time as a function of the condition number. Remarkably, his running time bound depends only
logarithmically on the condition number. Dunagan, Spielman, and Teng [DST03] study this condition
number in the smoothed analysis framework. Assuming Gaussian φ-perturbations, the condition number
can be bounded by a function that is polynomial in φ. Thus, the running time of Renegar’s algorithm
depends only logarithmically on the density parameter φ. In contrast, the running time bound of the
Simplex algorithm presented by Spielman and Teng in [ST01] is polynomial in φ.

In [ST03], Spielman and Teng propose to extend the condition number towards discrete optimization
problems in order to assist the smoothed analysis of such problems. As a natural definition for the
condition number of a discrete function they suggest the reciprocal of the minimum distance of an input
to one on which the function has a different value. In fact, the minimum of winner, loser, and feasibility
gap is a lower bound on the amount by which the coefficients of a binary optimization problem need
to be altered so that the winner, i.e., the solution taking the optimal value, changes. Let us define the
reciprocal of this minimum to be the condition number for binary optimization problems. This allows
us to summarize our analysis in an alternative way. Our probabilistic analysis in Section 3.4 shows that
the condition number is bounded polynomially in the density parameter φ. Furthermore, in Section 3.5,
we proved that a problem with pseudo-polynomial worst-case complexity admits an algorithm whose
running time is bounded polynomially in the condition number. Combining these results, we obtained
algorithms whose smoothed complexity depends in a polynomial fashion on the density parameter φ.
Let us remark that this kind of dependence is best possible for NP-hard optimization problems, unless
there is a subexponential time algorithm for NP-complete problems. In particular, a running time bound
logarithmic in φ would yield a randomized algorithm with polynomial worst-case complexity.



Conclusion and Open Problems

The Pareto Curve for Bicriteria Problems

In this thesis we presented polynomial upper bounds on the expected number of Pareto points for bi-
nary optimization problems with two objective functions. Our analysis applies to arbitrary solution sets
S ⊆ {0,1}n . We require one of the objectives to be a linear function with random coefficients. These co-
efficients are assumed to be stochastically independent, but can follow arbitrary continuous non-negative
probability distributions with finite mean and density. An extension to discrete probability distributions
proves a trade-off ranging from polynomial to pseudo-polynomial bounds, depending on the degree of
randomness in the coefficients of the linear objective function.

We applied this result to the knapsack problem and the constrained shortest path problem. Both
problems allow an efficient enumeration of all Pareto points such that the polynomial bound on the
expected number of Pareto points implies a polynomial bound on the running time of these algorithms.
We presented an experimental study for the knapsack problem, which suggests that the presented upper
bounds are not tight. We also presented a lower bound for knapsack instances with adversarial weights
and random profits.

There are various open questions that propose themselves.

• Can the upper bounds be improved? We believe that a tight bound for general distributions is a fac-
tor n2 smaller than the bound proven. Our analysis relies on the bound for long-tailed distributions,
Part (b) of Theorem 1.2, which is provably tight (Theorem 1.13). For long-tailed distributions we
exploited the Markovian property and showed that, for every solution, the expected increase of the
objective function value can be lower bounded by a polynomial in O(1/n), in case this solution
becomes Pareto optimal. This is not true for distributions with finite domain. So we had to rely
on a cascade of conditions and apply the result for long-tailed distributions, where we lost a factor
n2 in the analysis. For a significant improvement of the bound for general distributions one would
probably need a different approach.

• What happens to the bounds if we allow negative coefficients, that is, if we extend the domain of
the probability distributions to

�
(instead of

�
≥0)? Our proofs are based on the Pareto optimality

for explicit subset orderings. If such an ordering S1, . . . ,Sm is monotone, i.e., the subsets of a
solution Si ∈ S ⊆ 2[n] precede Si in this ordering, then the result for long-tailed distributions and
thus for general distributions stays valid. If the subset ordering is not monotone, then we can
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partition the set of solutions S into the sets S (k) = {S ∈ S | |S|= k}, for 1 ≤ k ≤ n. Each solution
set S (k) satisfies the monotonicity condition, as all subsets in S (k) have he same cardinality. Thus,
we can apply our main theorem for each solution set S (k). Let qk denote the number of Pareto
points over S (k). Then the number of Pareto points over S is at most ∑k∈[n] qk. Therefore, we
obtain bounds that are a factor n larger than the bounds proven for non-negative distributions. Can
this additional factor n be avoided?

• Can one prove a concentration result for the number q of Pareto points? Our analysis bounds
the expected number of Pareto points. By applying the Markov Inequality we obtain a weak tail
bound of Pr [q > αE [q]]≤ 1/α. Our experiments suggest that q is unlikely to deviate much from
its mean. The fraction of experiments where q was at least twice as large as the average was only
5 · 10−4, and in only 4 out of one million randomly generated instances, q was larger than three
times the average.

• Can the bound on the expected number of Pareto optimal solutions be generalized to problems with
more than two objectives? We conjecture that for problems with k objective functions the expected
number of Pareto points is upper bounded by O(n f (k)φµ), for some function f : � → �

>0, provided
that k− 1 objectives are linear functions with random or randomly perturbed coefficients. As in
our analysis, the parameters φ and µ describe the maximum density and the maximum expectation
over the different probability distributions of the coefficients.

Notice that there is a strong connection to the gap properties in Chapter 3, since the optimal solu-
tion and the minimal loser are Pareto optimal solutions. Our analysis of the loser and feasibility
gap covers multiple constraints, which corresponds to multiple objective functions in the multiob-
jective variant of the problem. However, a bound on the size of the loser and feasibility gap does
not directly imply a bound on the expected number of Pareto points for multiple objectives. The
reason is that the Pareto points might be concentrated on a very small region in the objective space
and the location of this region might be random. In this case no Pareto point from this region is
likely to come very close to any of the hyperplanes corresponding to the deterministic constraints,
which would comply to the proven gap properties. A first approach to tackle this problem might
be to prove that the Pareto points are well dispersed.

• Is the expected number of Pareto points still polynomially bounded when allowing integer vari-
ables with bounded domain instead of 0-1 variables? Possibly, a similar bound can be shown
assuming the following monotonicity property. The set of solutions is denoted by S ⊆ {0, . . . k}n.
A sequence x(1), . . . ,x(m) of solutions is called monotone, if ∀u,v∈ [m],v < u : ∃ i∈ [n] : x(v)

i < x(u)
i .

• For which binary optimization problems can we efficiently enumerate all Pareto points? We de-
scribed such enumeration algorithms for the knapsack problem and the constrained shortest path
problem. To our knowledge, this problem is unsolved for the constraint version of the minimum
spanning tree problem. An important property is the connectedness of Pareto optimal solutions.
Two solutions are connected if they can be transformed into each other by changing only two
variables. Thus, two spanning trees are connected if they can be transformed into each other by
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removing and subsequently adding one edge. If all Pareto optimal solutions are connected, then
this set of solutions can usually be determined without considering dominated solutions by a sim-
ple local search. For the constrained minimum spanning tree problem, Pareto optimal solutions
are not necessarily connected [EK97].

Knapsack Core Algorithms

The second chapter of this thesis we study advanced algorithmic concepts for the knapsack problem. We
investigated the expected running time a core algorithm on random knapsack instances, where weight
and profit of each item are chosen uniformly at random. We presented an upper bound of O(npolylog n)

on the expected running time, which comes close to the results observed in experimental studies. An ex-
tension of our analysis to δ-correlated instances yields a running time bound of O( n

δ polylog n
δ). Finally

we presented a new core algorithm which combines several ideas for reducing the number of enumer-
ated knapsack fillings. An experimental study shows that for uniform and δ-correlated instances, our
implementation clearly outperforms the Combo core, a knapsack solver due to Pisinger.

Constrained Binary Optimization Problems

We presented a probabilistic analysis for binary optimization problems, where the solutions are defined
by a deterministic ground set of solutions and a constant number of additional linear constraints with
random coefficients. Furthermore, our model allows a random objective function which is also assumed
to be linear. We proved that such a binary optimization problem has polynomial smoothed complexity
if and only if the problem allows an algorithm with running time that is pseudo-polynomial in the co-
efficients of the stochastic coefficients and polynomial in the size of the remaining input. This result is
based on a generalized version of the Isolating Lemma and a novel Separating Lemma. The Generalized
Isolating Lemma bounds the density of the winner gap, a random variable describing the difference in the
objective value between the best and the second best solution. It applies to a random objective function.
The Separating Lemma bounds the density of the loser and the feasibility gap, two random variables that
describe the slack of the optimal solution with respect to a linear stochastic constraint and the minimal
amount by which any loser violates the linear constraint, respectively. Losers are solutions from the
deterministic ground set that have a better objective function than the optimal solution but become infea-
sible due to the stochastic constraint. We defined corresponding gaps for multiple constraints and used
them in an adaptive rounding scheme which calls the pseudo-polynomial time algorithm with higher
and higher precision of the stochastic coefficients, until the optimality of the computed solution can be
certified. We extended our results to zero preserving perturbations and proved polynomial smoothed
complexity for various NP-hard optimization problems. There are some interesting open problems.

• Can the Generalized Isolating Lemma and the Separation Lemma be generalized to allow integer
variables with a bounded domain instead of {0,1}? First considerations show that the winner
gap allows such an extension, even if we allow different domains for different variables. The
individual domains can be chosen arbitrarily, the only important parameter is the size l of the
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domain, whose reciprocal 1/l has a linear influence on the expected size of the gap. This result
implies a polynomial smoothed complexity for problems with the following properties:

– The objective function is linear.

– There exists an algorithm with running time which is pseudo-polynomial with respect to the
coefficients of the objective function and polynomial with respect to the size of the remaining
input.

– The domain of the variables is bounded by a polynomial in n.

A generalization for the loser and feasibility gap seems to be much more challenging and is still
open.

• Are there problems with polynomial average case complexity but no polynomial smoothed com-
plexity? In this case the dependence of φ on the running time should be super-polynomial.

• For binary optimization problems we have shown equivalence between pseudo-polynomial run-
ning time and polynomial smoothed complexity. Is this statement true for other problems? We
believe that scheduling problems are promising candidates. We prove polynomial smoothed com-
plexity for the problem of minimizing the weighted number of tardy jobs on a single machine. For
this problem, however, the order of jobs in an optimal schedule is already determined when fixing
the set of tardy/non-tardy jobs and hence it can be described by a 0/1 program. This is different
for the problem of minimizing the total tardiness where our framework cannot be applied.

• Another challenging topic is how to prove that a problem has no polynomial smoothed complexity.
For problems where only the objective function is perturbed and the objective function is “well
behaved” we can resort to the approximation theory, which provides a rich knowledge for many
problems. However, if we also allow the perturbation to change the set of feasible solutions, then
we probably need new approaches.



Zusammenfassung

Wir untersuchen mit mathematischen Methoden die Effizienz verschiedener Algorithmen für schwierige
Optimierungsprobleme auf zufälligen Eingaben. Im Zentrum steht die Analyse struktureller Eigenschaf-
ten zufälliger Probleminstanzen, die im Weiteren benutzt werden, um Laufzeitschranken für verschie-
denste Optimierungsprobleme zu beweisen.

Im ersten Teil dieser Arbeit betrachten wir binäre Optimierungsprobleme mit zwei Zielfunktionen.
Die Variablen sind also beschränkt auf die Werte 0 und 1. Für Probleme mit mehreren Zielfunktionen
greift das Standardkonzept der Optimalität einer Lösung nicht mehr. Durch Ausnutzung der verbleiben-
den Dominanz zwischen den Lösungen erhält man das Konzept der Pareto-Optimalität. Eine Lösung
ist somit Pareto-optimal, wenn es keine andere Lösung gibt, die bezüglich mindestens einer Zielfunk-
tion besser und in keiner Zielfunktion schlechter ist. Im ungünstigsten Fall ist die Anzahl der Pareto-
optimalen Lösungen exponentiell in der Anzahl der Variablen. Wir können zeigen, dass die erwartete
Anzahl der Pareto-optimalen Lösungen polynomiell beschränkt ist, wenn mindestens eine Zielfunkti-
on linear ist und ihre Koeffizienten genügend Zufall enthalten. Es werden keinerlei Annahmen über
die zweite Zielfunktion gemacht. Unsere Analyse deckt allgemeine Wahrscheinlichkeitsverteilungen mit
endlichem Erwartungswert ab und ermöglicht sogar, dass die Koeffizienten der linearen Zielfunktion un-
terschiedlichen Wahrscheinlichkeitsverteilungen folgen. Wir zeigen beispielsweise eine obere Schranke
von O(n4µφ), wobei n die Anzahl der Variablen, µ den maximalen Erwartungswert der Zufallsverteilun-
gen für die verschiedenen Koeffizienten, und φ deren maximale Dichte bezeichnet.

Wir wenden dieses Ergebnis auf zwei Optimierungsprobleme an: das Kürzeste-Wege-Problem mit
Nebenbedingungen (constrained shortest path problem) und das Rucksackproblem (knapsack problem).
Beim Rucksackproblem betrachten wir das Gewicht und den Profit einer Rucksackfüllung als die beiden
Zielfunktionen. Für beide Probleme können die Pareto-optimalen Lösungen effizient aufgezählt werden,
so dass die obere Schranke für die Anzahl der Pareto-optimalen Lösungen eine polynomielle erwartete
Laufzeit für diese Algorithmen impliziert. Wir zeigen beispielsweise eine Laufzeitschranke O(n4) für
uniform zufällige Rucksackinstanzen, wobei n die Anzahl der Variablen bzw. der Gegenstände angibt.

Im zweiten Teil untersuchen wir die Laufzeit von Core-Algorithmen für das Rucksackproblem. Co-
re-Algorithmen profitieren von der Tatsache, dass sich die optimale Lösung nur in wenigen Variablen
von der optimalen Lösung des relaxierten Problems unterscheidet. Durch Fixieren eines Großteils der
Variablen erhält man ein kleineres Rucksackproblem, das Core-Problem, welches für uniform zufällige
Rucksackinstanzen üblicherweise lediglich polylogarithmische Größe hat. Das Core-Problem wird mit
den Methoden aus dem ersten Teil der Arbeit analysiert. Als Ergebnis zeigen wir eine erwartete Laufzeit
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von O(npolylog n) für uniform zufällige Rucksackinstanzen. Zusätzlich erweitern wir unsere Analyse
auf δ-korrelierte Instanzen, eine parametrisierte Klasse von Eingabeverteilungen, die mit kleiner wer-
dendem δ von bekannten Algorithmen immer schwieriger zu lösen ist.

Eine experimentelle Studie runded das Rucksackkapitel ab. Zum einen untersuchen wir strukturelle
Eigenschaften von zufälligen Rucksackinstanzen, die in unseren theoretischen Analysen eine wichtige
Rolle spielen, beispielsweise die Anzahl der Pareto-optimalen Rucksackfüllungen oder das Integrality-
gap. Die Experimente geben ein Indiz dafür, dass die oben genannte Schranke für die Anzahl der Pareto-
optimalen Lösungen nicht scharf ist. Stattdessen vermuten wir, dass O(n2µφ) eine scharfe obere Schran-
ke ist. Weiterhin vergleichen wir die Effizienz verschiedener Core-Algorithmen. Durch Kombination von
verschiedenen Konzepten, die u.a. in früheren theoretischen Analysen von stochastischen Rucksackpro-
blemen vorgestellt wurden, erhalten wir einen sehr effizienten Code. Als Referenz verwendeten wir den
Combo-Code, der in anderen experimentellen Studien das beste Laufzeitverhalten zeigte. Für unifor-
me und δ-korrelierte Instanzen dominiert unsere Implementierung den Combo-Code deutlich. Für die
schwierigste getestete Klasse von Instanzen zeigte sich unser Code im Durchschnitt 700 mal schneller.

Im letzten Teil der Arbeit wird ein semi-zufälliges Eingabemodell für binäre Optimierungsprobleme
vorgestellt. Es ermöglicht eine probabilistische Analyse für eine große Klasse von Optimierungsproble-
men und berücksichtigt gleichzeitig die zugrunde liegende kombinatorische Struktur der einzelnen Pro-
bleme. Die Menge der zulässigen Lösungen ist gegeben als Schnitt von einer beliebig spezifizierbaren
Grundmenge von Lösungen und den zulässigen Lösungen von linearen Ungleichungen mit stochasti-
schen Koeffizienten. Zudem erlaubt das Modell lineare Zielfunktionen mit zufälligen Koeffizienten. Un-
sere Analyse basiert auf strukturellen Eigenschaften, die wir Winner, Loser und Feasibility-Gap nennen.
Sie beschreiben die Sensitivität der optimalen Lösung bezüglich kleiner Veränderungen des stochasti-
schen Teils der Eingabe. Wir zeigen, dass diese Gaps normalerweise mindestens eine Größe aufweisen,
die polynomiell in 1/(nkφ) ist, wobei n die Anzahl der Variablen, k die Anzahl der stochastischen Un-
gleichungen und φ die maximale Dichte aller Wahrscheinlichkeitsverteilungen für die Koeffizienten der
Ungleichungen bzw. der Zielfunktion bezeichnet. Somit kann man die Koeffizienten des stochastischen
Teils der Eingabe auf logarithmisch viele Bits runden, ohne die optimale Lösung zu verändern. Diese Er-
kenntnisse werden in einem adaptiven Rundungsschema benutzt, welches die Genauigkeit der Koeffizi-
enten solange erhöht, bis die Optimalität der berechneten Lösung verifiziert werden kann. Wir definieren
Polynomial Smoothed-Complexity, angelehnt an Polynomial Average-Case Complexity, eine Klassifizie-
rung für die Komplexität von Problemen unter zufälligen Eingaben. Für die von uns betrachtete Klasse
von Optimierungsproblemen können wir eine genaue Charakterisierung der Probleme geben, die in die-
se Komplexitätsklasse fallen. Ein binäres Optimierungsproblem hat Polynomial Smoothed-Complexity
genau dann, wenn es einen Algorithmus für dieses Problem gibt, dessen Laufzeit im schlechtesten Fall
pseudopolynomiell im stochastischen Teil und polynomiell im restlichen Teil der Eingabe ist. Eine in-
teressante Erweiterung unserer Analyse sind Null-Perturbationen, die eine sinnvolle Anwendung unserer
Ergebnisse auf weitere Probleme ermöglichen.
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