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Abstract

In this thesis we study three problems that are adversarial in nature. Such problems can be
viewed as a game between an algorithm and an adversary, where the adversary always tries to
force the algorithm into worst-case scenarios during its execution. Many real world problems
with inherent uncertainty or lack of information fit into this model. For instance, it includes
the vast field of online problems where the input is only partially available and an adversary
reveals the complete input gradually over time (online fashion). The algorithm has to perform
efficiently under this uncertainty. In contrast to the online setting, in an offline setting, the
complete input is available in the beginning. The first problem that we investigate is a classical
online scheduling problem where a sequence of jobs that arrive online have to be assigned to
a set of identical machines with the objective of minimizing the maximum load. We study a
natural generalization of this problem where we allow migration of already scheduled jobs to
other machines upon the arrival of a new job, thus bridging the gap between online and offline
setting. Already for a small amount of migration, our result compares with the best results
to date in both online and offline settings. From the point of view of sensitivity analysis, our
results imply that, only small changes are to be made to the current schedule to accommodate
a new job, if we are satisfied with near optimal solution. The other online problem that we
study is the well-known metrical task systems problem. We present a probabilistic analysis of
the well-known text book algorithm called the work function algorithm. Besides average-case
analysis we also present smoothed analysis, which is a notion introduced recently as a hybrid
between worst-case and average-case analysis. Our analysis reveals that the performance of
this algorithm is much better than worst-case for a large class of inputs. This motivates us to
support smoothed analysis as an alternative model for evaluating the performance of online
algorithms. The third problem that we investigate is a pursuit-evasion game: an algorithm
(the pursuer) has to find/catch an adversary that is ‘hiding’ in a graph where both players can
travel in the graph. This problem belongs to the rich field of search games and it addresses
the question of how long it takes for the pursuer to find the evader in a given graph that, for
example, corresponds to a computer network or a geographic terrain. Such game models are
also used to design efficient communication protocols. We present improved results against
adversaries with varying power and also present tight lower bounds.






Kurzzusammenfassung

In der vorliegenden Arbeit besaftigen wir uns mit drei Problemen, welche als eine Art Spiel
zwischen einem Algorithmus und seinem Gegenspieler interpretiert weoteeR." In diesem
Spiel versucht der Gegenspieler, den Algorithmahrend seiner Ausfirung in sein Worst-
Case Verhalten zu zwingen. Eine Vielzahl von praxisrelevanten Problemen, in denen nicht von
Beginn an die volle Informationber die Eingabeinstanz zur Vagling steht, lassen sich als
derartige Spiele modellieren. Zu dieser Klasse von Problemerrgelz. B. auch online Prob-
leme, in denen der Gegenspieler die Eingabeinstanddii Algorithmusonline, d. h. wahrend
der Ausfihrung des Algorithmus, spezifiziert. Das Ziel des Algorithmus ist es, auf dieser so
spezifizierten Instanz aglichst effizient zu sein. Im Gegensatz zum online Szenario kennt der
Algorithmus im offline Szenario die gesamte Eingabeinstanz gleich von Beginn an. Im on-
line Szenario wird die Effizienz eines (online) Algorithmus anhand seoagpetitive Ratio
gemessen. Ein Algorithmus istcompetitive, wenn die Kosten, die der Algorithmus auf einer
beliebigen online Eingabe verursacht, maximal einen Fakion den Kosten eines optimalen
(offline) Algorithmus, der die gesamte Eingabe kennt, entfernt ist.

Das erste Problem, dass wir betrachten, ist ein klassisches Scheduling Problem, in dem
Jobs online eintreffen und auf identischen parallelen Maschinen verteilt wendesem 'Das
Ziel ist es, die maximale Maschinenlast zu minimieren. Wir erweitern dieses Problem, in-
dem wir erlauben, dass beim Eintreffen eines neuen Jobs die Zuweisungen von Jobs zu ihren
entsprechenden Maschinen naegtich geindert werden utfen (sog. Neuzuweisungen),
unter der Bedingung, dass die Gesam$ge der bewegten Jobs maxinsamal die Gosse
des neu eingetroffenen Jobs isturfB" = 0 erhalten wir das klassische online Problem, in
dem getroffene Entscheidungen nichtkgingig gemacht werderoknen. i 5 — oo er-
halten wir hingegen das entsprechende Problem in einem offline Szenario. Baréitsrie
Werte flir 3, lasst sich unser Scheduling Algorithmus mit den derzeit besten Resultaten ver-
gleichen. Schonuf' s = 4/3 erreicht er ein Competitive Ratio van5 und schéigt damit die
untere Schranke von88 (1.58) fur deterministische (randomisierte) Algorithmen des online
Problems. Bi das offline Problem piSentieren wir einen Linearzeit-Algorithmus, der €in
gegebenes > (0 ein Competitive Ratio volil +¢) erzielt und dabei nur einen konstanten Fak-
tor 5(e) von Neuzuweisungen betigt. Im Sinne einer Sensitiatsanalyse kann man unsere
Ergebnisse dahingehend interpretieren, dass man nur gegiggfVVeenderungen vornehmen
muss, um einen neuen Job in einem bereits vorhandenen Schedule einzupassen, wenn man
sich mit guten approximativendsungen zufrieden gibt.

Das zweite online Problem, dass wir betrachten, ist das Metrical Task System Problem.



iv Kurzzusammenfassung

Ein online Algorithmus befindet sich in einem Graph@mmit » Knoten und kann sich in
diesem Graphen bewegen, wobei er Kosten ah&lder zunckgelegten Distanz verursacht.

Der Algorithmus muss eine Sequenz von Tasks abarbeiten, welche online erscheinen. Jeder
Task spezifiziert i jeden Knoten Kosten, die entstehen, wenn der Algorithmus den Task
in diesem Knoten abarbeitet. Die Aufgabe ist es, die Gesamtkosten zu minimieren. Wir
prasentieren eine probabilistische Analyse des Work Function Algorithmus (WFA) von Borodin,
Linial und Saks, welcher ein optimales Competitive Ratio 2an— 1 hat. Das Competitive

Ratio eines Algorithmus stellt allerdings oftmals eine zu pessimistische Atmoiy seiner
tatsichlichen Effizienz dar. Wrzlich stellten Spielman und Teng ein neues Kompésgitiass

vor, dieSmoothed Complexity. Die Idee ist es, die Eingabeinstanz alliff zu perturbieren und

die Effizienz des Algorithmus auf den perturbierten Instanzen zu messen. &¥grgiEren

eine Smoothed Analysaif' WFA. Unsere Ergebnisse zeigen, dass das Smoothed Competi-
tive Ratio von WFA asymptotisch sehr viel besser@(s ) ist und dass er von verschiedenen
topologischen Parametern des zugrundeliegenden Graplabiengt. Als Beispiel erreicht
WFA schon fir geringfigige Perturbationen ein Smoothed Competitive Ratio &¥glvg n)

auf einer Clique oder einem voléstdigen biafen Baum und vo®(,/n) auf einem beliebi-

gen Graphen mit konstantem Grad. Desweiteren zeigen wir, dass unsere Schuardiae f*
grosse Klasse von Graphen bis auf einen konstanten Faktor scharf sind.

Als drittes Problem analysieren wir ein “Katz-und-Maus-Spiel”: eine Katze (der Algo-
rithmus) und eine Maus (der Gegenspieler) befinden sich in einem Graphen und die Katze
versucht, die Maus zu fangen. Das Spiel wird in Runden gespielt und in jeder Runde kann
sich sowohl die Katze als auch die Maus im Graphen bewegen. Die Katze und die Maus
sehen sich nicht, es sei denn, sie befinden sich im selben Knoten. Wir nehmen an, dass die
moglichen Bewegungen der Katze durch den Graphen vorgegeben sind, d. h. in jeder Runde
kann die Katze sich entlang einer Kante im Graphen bewegendie Maus betrachten wir
zwei verschiedene Modelle: im ersten Modell ist die Maus auf den Graphen bektlirid
im zweiten Modell kann sich die Maus unbesamhkt im Graphen bewegen, d. h. sie kann in
jeder Runde zu einem beliebigen Knoten springen. Beide Spieterdd’ sich randomisierter
Strategien bedienen. Wir betrachten daher die erwartete Anzahl von Runden @rgehtbis
sie sich in einem Knoten treffen als Zielfunktion, die von der Katze zu minimieren und von
der Maus zu maximieren versucht wird. Wirggentieren eine Strategierfdie Katze, die auf
allgemeinen Graphen eine Fludmilje von nuiO(n log(diam)) sowohl gegen eine auf den
Graphen beschrikte als auch unbesemkte Maus garantiert, wobéiam den Durchmesser
des Graphen bezeichnet. Diese Schranke ist beinahe schatf(ndaeine triviale untere
Schranke @i die Fluchtiinge in beiden Modellen ist. Ferner beweisen wir, dass unsere obere
Schranke dif den unbesclarkten Fall bis auf einen konstanten Faktor optimal ist. Desweit-
eren zeigen wir ragliche Strategienuf'die Katze, die eine Fluclatige vonO(n) garantieren,
wenn es sich bei dem zugrundeliegenden Graphen um einen Spezialfall handelt, wie z. B. um
einen vollséindig birdren Baum. Schliesslich gséntieren wirdi stark verbundene Graphen
Strategien it die Katze, die eine optimale Fluchtige vonO(r?) erzeugen.
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Chapter 1

| ntroduction

Problems that aradversarial in nature form an important part of the algorithmic problems. In
such problems, there are two parties involved, an algorithm and an adversary. Such problems
can be usually viewed asgame between the algorithm and the adversary, where the adversary
always tries to force the algorithm into worst-case scenarios during its execution. Many real
world problems can be represented more appropriately in such a framework. For example,
such a framework is suitable for modeling situations with uncertainty or lack of information,
which occur quite often in practice. In this thesis, we investigate three such problems.

Online Problems. Following Ben-David et al. [BDBK94], online problems can be defined

as arequest-answer game between an adversary and an algorithm. The adversary generates a
sequence of requesis= o(1),... ,o(m), where each request(i),: = 1,... ,m, belongs to

a set of possible requesks An online algorithmin response serves (answers) the requests one
at a time. While serving request{i), the online algorithm does not know the later requests.

In serving the request sequeneethe online algorithm incurs a non-negative cost and the
objective is to minimize this cost.

For example, consider the following scheduling problem on a set of identical machines. A
sequence of jobs, each with a possibly different size, arrive in an online fashion. Each job has
to be assigned to exactly one machine. The objective is to minimize the maximum total size
of jobs assigned to a machine. Once a job is assigned to a machine, the decision cannot be
revoked. The offline version of this problem is to come up with the best schedule if the set of
all jobs with respective sizes are known before-hand. In the online setting, the achievable per-
formance is not determined by limited computing power but mainly by the lack of information
about parts of the input that will only be revealed in the future. Many well-known problems
like paging, list update, metrical task systems, load balancing etc., can be formulated in this
framework. We refer to [AIb03] for a survey on online problems and algorithms.

To analyze the performance of the online algorithm in such a framework, Sleator and Tar-
jan [ST85], Karlin et al. [KMRS88] proposed a hew comparison measure ozolegetitive
analysis: compare the cost incurred by the online algorithm for serving the cost of an
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optimal offline algorithm, which knows the entire sequeneén advance. Formally, letlg(o)
andopt (o) respectively denote the cost incurred by an online algorithemd the offline op-
timum to procesg. The algorithmA is calledc—competitive, if there exists a constansuch
that

alg(o) < ¢ - opt(o) + a

for all request sequences Thecompetitive factor or thecompetitive ratio of A is simply the
minimum ¢ such that4 is c—competitive. Equivalently, if the algorithm is randomized then
A is c—competitive in thexpected sense if

Elalg(o)] < c¢-opt(o)+ a

Randomized strategies give rise to different adversarial notionsatikptive adversary
andoblivious adversary. An adaptive adversary generates the next request based on all the
random choices made by the algorithm so far. An oblivious (weak) adversary does not know
the random choices made by the algorithm, it only knows the specification of the algorithm.
In other words, the algorithm has a secure random source which is not visible to the adversary.

Search Games. Yet another adversarial framework that we consider in this thesis is the prob-
lem of searching/finding an evader (adversary) by a set of pursuers, also callad ghi¢-

evasion problem. Search games have along history in the fields of game theory and algorithms
[Isa65, Gal80]. There are many variants of such games studied, like a game played on a simple
polygon, both players having specified amount of visibility, players moving on a closed curve,
clearing an evader (like a poisonous gas) from a system of tunnels, etc. There are also basic
graph parameters likesarch number of a graph that is associated with the number of pursuers
needed to find an evader in a deterministic setting. We specifically focusampayer game

played on a graph betweerparsuer and anevader. The pursuer is trying to catch the evader,
while they both travel from node to node of a connected, undirected graph. Both players may
use a randomized strategy where each player has a secure source of randomness which can-
not be observed by the other player. That is, both players are oblivious. The objective of the
pursuer is to minimize the expected number of rounds until the evader is caught.

Outline of the thesis. In this thesis, we present results for three problems. In Chapters 2 and
3, we focus on two online problems. In the third chapter we investigate a pursuit-evasion game
on graphs. Each chapter is mostly self-contained.



Chapter 2: Online scheduling with bounded migratioin this chapter, we consider a clas-
sical online scheduling problem where jobs that arrive one by one are assigned to identical
parallel machines with the objective of minimizing the maximum machine load, also known
asmakespan. We generalize this problem by allowing the current assignment to be changed
whenever a new job arrives, subject to the constraint that the total size of moved jobs is
bounded by times the size of the arriving job. Observe thagif= 0 then it is the clas-

sical online setting, where decisions once made cannot be revoked, @and ito then it is

the offline setting.

For the classical online settings (= 0), a series of results [BFKV95, KPT96, Alb99]
improve the achievable competitive ratio frdminitially achieved by Graham [Gra66], to
1.9201, which is the best known result to date due to Fleischer and Wahl [FW00]. Already a
lower bound ofl.88 (1.58) on the achievable competitive ratio for deterministic (randomized)
algorithms is known. For the offline case, a linear tipok/nomial time approximation scheme
(PTAS), that is, a family of polynomial time approximation algorithms with performance guar-
antee within a factot + ¢ of the optimum for all fixed: > 0 is known.

Our main result is a linear time ‘online approximation scheme’, that is, a family of online
algorithms with competitive rati@ + ¢ and constant migration factgi(¢), for any fixede >
0. This result is of particular importance if considered in the context of sensitivity analysis:
While a newly arriving job may force a complete change of the entire structure of an optimal
schedule, only very limited ‘local’ changes suffice to preserve near-optimal solutions. We
believe that this concept will find wide application in its own right. We also present simple
deterministic online algorithms with migration factgts= 2 andg = 4/3, respectively. Their
competitive ratid3/2 beats the lower bound on the performance of any online algorithm in the
classical setting without migration. Furthermore, with migration fagter 4, the competitive
ratio further drops down td/3. For two machines we obtain tight competitive ratio7gh
already for migration factor 1. We also present improved algorithms and similar results for
closely related problems. In particular, we consider the objective of maximizing the minimum
load of a machine.

Chapter 3: Smoothed competitiveness of metrical task systelnghis chapter we present a
probabilistic analysis of a standard text book algorithm for a very well-known online problem
called metrical task systems. Metrical task systems can be described as follows. An online
algorithm resides in a grapfi of n nodes and may move in this graph at a cost equal to the
distance. The algorithm has to service a sequentaskd that arrive online; each task specifies
for each node aequest cost that is incurred if the algorithm services the task in this particular
node. The objective is to minimize the total request cost plus the total travel cost.

Borodin, Linial and Saks [BLS92] presented a deterministak function algorithm
(WFA) for metrical task systems havingtight competitive ratio o2n — 1. However, the
competitive ratio often is an over-pessimistic estimation of the true performance of an online
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algorithm. Several other attempts were made in the past to overcome this problem: by allowing
limited lookahead for the algorithm or by considering restricted adversarial models like access
graphs or diffuse adversary. Spielman and Teng [STO01] recently proposed a new complexity
measure, calledmoothed complexity, which is a hybrid between average-case and worst-case
complexity. Becchetti et al. [BLMS03] recently extended this idea to competitive analysis
and proposedmoothed competitive analysis as an alternative to worst-case competitive anal-
ysis of online algorithms. The idea is to randomly perturbsrooothen, an adversarial input
instance and to analyze the performance of the algorithm on the perturbed instances. Such a
process can be equivalently viewed as drawing an instance probabilistically from the neighbor-
hood of the adversarial input instance and estimating the average performance of the algorithm
in this neighborhood. An improved average performance in this neighborhood implies that the
worst-case instances are ‘sparse’, i.e., isolated peaks in the instance/performance space.

We present amoothed competitive analysis of WFA. We smoothen the adversarial re-
quest costs and analyze the performance of WFA. Our analysis reveals that the smoothed
competitive ratio of WFA is much better th&(n) and that it depends on several topological
parameters of the underlying graph such as the minimum edge lendth;,, the maximum
degreeD, and the edge diametéiam. Assuming that the ratio between the maximum and the
minimum edge length of7 is bounded by a constant, the smoothed competitive ratio of WFA
become®) (diam (Upin /o +log(D))) andO(y/n - (Umin/o + log(D))), whereos denotes the
standard deviation of the smoothing distribution. For example, already for perturbations with
o = O(Unin) the competitive ratio reduces @(logn) on a clique or a complete binary tree
and toO(y/n) on any constant degree graph. We also prove that for a large class of graphs
these bounds are asymptotically tight. Our analysis holds for various probability distributions,
including the uniform and the normal distribution. We also provide the first average-case anal-
ysis of WFA. We prove that WFA ha®(log(D)) expected competitive ratio if the request
costs are chosen randomly from an arbitrary non-increasing distribution with standard devia-
tion o = ©(Umin). Thus our analysis gives a strong indication that the asymptotic competitive
ratio of WFA is much better tha®(n) for a large class of inputs.

Chapter 4: Randomized pursuit-evasion game on graphsthis chapter, we analyze a ran-
domized pursuit-evasion game on graphs. This game is played by two plapersyer and
anevader (adversary). We also refer to themlasiter andrabbit respectively. Letz be any
connected, undirected graph withnodes. The game is played in rounds and in each round
both the hunter and the rabbit are located at a node of the graph. Between rounds both the
hunter and the rabbit can stay at the current node or move to another node. They do not ‘see’
each other unless they meet in the same node. The hunter is assumemtsivitied to the
graphG: in every round, the hunter can move using at most one edge. For the rabbit we inves-
tigate two models: in one model the rabbit is restricted to the same graph as the hunter, and in
the other model the rabbit isrestricted, i.e., it can jump to an arbitrary node in every round.



We say that the rabbit isaught as soon as hunter and rabbit are located at the same node in a
round. The goal of the hunter is to catch the rabbit in as few rounds as possible, whereas the
rabbit aims to maximize the number of rounds until it is caught. Given a randomized hunter
strategy forG, theescape length for that strategy is the worst-case expected number of rounds

it takes the hunter to catch the rabbit, where the worst-case is with regards to all (possibly
randomized) rabbit strategies.

The problem we address is motivated by the question of how long it takes a single pursuer
to find an evader on a given graph that, for example, corresponds to a computer network or
to a map of a terrain in which the evader is hiding. Such search games have a long history
in the field of game theory. Our problem is a discrete version ofittiecess-Monster game
introduced in 1965 [Isa65]. But the adversary that we consider is more powerful (can take
short-cuts). Considerable amount of research was also done on the geometric version of the
pursuit-evasion problenDeterministic pursuit-evasion games in graphs are also well-studied
[LaP93, KP86, MHG 88]. In the area of mobile ad-hoc networks, such pursuit-evasion mod-
els are used to design communication protocols [CNS01]. A hunter strategy based on random
walks was first studied in [AKE79]. It was shown that the hunter catches an unrestricted
rabbit within O(nm?) rounds, where, andm denote the number of nodes and edges, respec-
tively.

One of our main results is a hunter strategy for general graphs with an escape length of only
O(nlog(diam)) against restricted as well as unrestricted rabbits, whena is the diameter
of G. This bound is close to optimal sin€¥n) is a trivial lower bound on the escape length
in both models. Furthermore, we prove that our upper bound is optimal up to constant factors
against unrestricted rabbits. We show a non-standard random walk for the rabbit such that, for
any positive integers andd < n, there is a grapld’ with n nodes and diametef;, such that
the escape length {3(n log(d)) for any hunter strategy against this random-walk based rabbit.
Furthermore, we show using a different hunter strategy that on special graphs like complete
binary tree omm nodes, the escape length is orilyn). Finally, we also discuss the case of
strongly connected graphs and show a hunter strategy with tight escape leaif of

Discussions and open problems related to each of these problems can be found at the end
of the respective chapters. We assume that the reader is familiar with the basics of probability
theory and randomized algorithms, which can, for instance, be found in [MR95]. For an in-
troduction to online algorithms, we refer to the book by Borodin and El-Yaniv [BEY98], and
the survey articles by [AIb03, Sga98]. For a detailed account of linear and integer program-
ming theory we refer to the books [Sch86, NW88]. We refer to [Hoc96a] for an introduction to
approximation algorithms in combinatorial optimization problems, including scheduling prob-
lems. An introduction to the basic complexity theory can be found in the books [GJ79, Pap94].
Definitions of some of the basic concepts used in this thesis can be found at the end of this
thesis.






Chapter 2

Online Scheduling with Bounded Migration

2.1 Introduction

One of the most fundamental scheduling problems asks for an assignment of joldenti-

cal parallel machines so as to minimize the makespan. The makespan is the completion time
of the last job that finishes in the schedule; it also equals the maximum machine load. In
the standard classification scheme of Graham, Lawler, Lenstra and Rinnooy Kan [GLLR79],
this scheduling problem is denoted By |Gax and it is well-known to be strongly NP-

hard [GJ78], i.e., it is still NP-hard even if all numbers appearing in the input are bounded
by some polynomial in the length of the input.

The offline variant of this problem assumes that all jobs are known in advance whereas in
theonline variant the jobs are incrementally revealed by an adversary and the online algorithm
can only choose the machine for the new job without being allowed to move other jobs. Note
that dropping this radical constraint on the online algorithm yields the offline situation.

A new online scheduling paradigm. We study a natural generalization of both offline and
online problems. Jobs arrive incrementally but, upon arrival of a newj jotze are allowed

to migratesome previous jobs to other machines. The total size of the migrated jobs however
must be bounded bgp; wherep; is the size of the new job. Fanigration factor 3 = 0 we

get the online setting and fgr = oo we get the offline setting.

For a number of offline optimization problems, a PTAS, i.e., a family of polynomial time
approximation algorithms with performance guarantee e for all fixede > 0 is known.

In contrast to the offline approximation results, the achievable competitive ratios in online

settings are not determined by limited computing power but by the lack of information about

parts of the input that will only be revealed in the future. As a consequence, for all interesting

classical online problems it is rather easy to come up with lower bounds that create a gap
between the best possible competitive ratiand 1. In particular, it is usually impossible to

Publication Notes. A preliminary version of this joint work, together with Peter Sanders and
Martin Skutella, appeared in the proceedings of the 31st International Colloquium on Au-
tomata, Languages, and Programming (ICALP), 2004 [SSS04].



8 Chapter 2. Online Scheduling with Bounded Migration

construct a family of 1 + €)-competitive online algorithms for such problems.

2.2 Related Work

For the online machine scheduling problem, Grahalisisscheduling algorithm keeps the
makespan within a fact@ — 1/m of the offline optimum [Gra66]: Schedule a newly arriving

job on the least loaded machine. It can also easily be seen that this bound is tight: adversarial
sequence consists af(m — 1) jobs of size% followed by one job of sizd. The optimal
makespan in this case is

For the offline setting, Graham showed three years later that sorting the jobs in the order
of non-increasing size before feeding them to the list scheduling algorithm yields an approx-
imation algorithm with performance ratiy3 — 1/(3m) [Gra69]. Later, exploiting the re-
lationship between the machine scheduling problem under consideration and the binpacking
problem, algorithms with improved approximation ratios have been obtained in a series of
works [CGJ78, Fri84, Lan81].

Finally, polynomial time approximation schemes for a constant number of machines and
for an arbitrary number of machines are given in [Gra69, Sah76] and by Hochbaum and
Shmoys [HS87], respectively. The latter PTAS patrtitions jobs into large and small jobs. The
sizes of large jobs are rounded such that an optimum schedule for the rounded jobs can be
obtained via dynamic programming. The small jobs are then added greedily using Graham’s
list scheduling algorithm. This approach can be refined to an algorithm with linear running
time (see, e.g., [Hoc96b]): replace the dynamic program with an integer linear program on a
fixed number of variables and constraints which can be solved in constant time [Len83].

In a series of papers, increasingly complicated online algorithms with better and bet-
ter competitive ratios beating the Graham bo@nidave been developed [BFKV95, KPT96,
Alb99]. The best result known to date id #201-competitive algorithm due to Fleischer and
Wahl [FWO0Q]. The best lower bourid88 on the competitive ratio of any deterministic online
algorithm currently known is due to Rudin [Rud01]. For randomized online algorithms there is
alower bound ot/(e — 1) ~ 1.58 [CvWW94, Sga97]. For more results on online algorithms
for scheduling we refer to the recent survey articles by Albers [AlIb03] and Sgall [Sga98].

Strategies that reassign jobs were studied in the context of online load balancing, jobs
arrive in and depart from a systemsf machines online and the scheduler has to assign each
incoming job to one of the machines. Deviating from the usual approach of comparing against
the optimalpeak |oad seen so far, Westbrook [Wes00] introduced the notion of competitiveness
againstcurrent load: An algorithm isa—competitive if after every round the makespan is
within « factor of the optimal makespan for the current set of jobs. Each incoming j@s
sizep, and reassignment cog}. For a job, the reassignment cost has to be paid for its initial
assignment and then every time it is reassigned. Observe that the optimal strategy has to pay
this cost once for each job for its initial assignment. Thus the optimal (re)assignment cost
S is simply the sum of reassignment costs of all jobs scheduled till now. Westbrook showed
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a 6-competitive strategy for identical machines with reassignment £8gbr proportional
reassignments, i.erx, is proportional tq,, and2S for unit reassignments, i.e;, = 1 for all

jobs. Later Andrews et al. [AGZ99] improved it to 3.5981 with the same reassignment factors.
They also showed + ¢ and 2 + ¢ competitive strategies respectively for the proportional
and unit case, the reassignment factor depending onky &or arbitrary reassignment costs
they achieve 3.5981 competitiveness with 6.8285 reassignment factor. They also pf2sent a
competitive strategy with constant reassignment factor for related machines. Job deletions is
an aspect that we do not consider in our work, our focus is primarily on achieving competitive
ratios close td. Our results can also be interpreted in the framework of online load balancing
with proportional reassignments and without job deletions. We show strategies with better
competitive ratios, at the same time achieving reassignment factor strictly less than three. We
also show(1+¢)—competitive strategies, for amy> 0, with constant reassignment factfe).

Our results are also stronger in the sense that a strategy with reassignment tacsares that

when a jobu arrives, the total reassignment cost incurred (for scheduling it) is at fiagst

This is different from the more relaxed constraint that afteunds, the total reassignment cost
incurred is at moss$ > r,, (summing over all jobs seen till rourt)l Most of our strategies are
robust, they converany a—competitive schedule to an-competitive schedule after assigning

the newly arrived job, whereas in [Wes00, AGZ99] it is required that the schedule so far is
carefully constructed in order to ensure the competitiveness after assigning/deleting a job in
the next round.

2.3 Our Contribution

In Section 2.5 we describe a simple online algorithm which achieves approximatio fatio
using a moderate migration factgr = 2. Notice that already this result beats the lower
bound1.88 (1.58) on the competitive ratio of any classical (randomized) online algorithm
without migration. Using a more sophisticated analysis, the migration factor can be decreased
to 4/3 while maintaining competitive rati®/2. On the other hand we show that our approach
does not allow for migration factor and competitive rati@/2. Furthermore, an improved
competitive ratio4/3 can be achieved with migration factdr For two machines, we can
achieve competitive rati@/6 with a migration factor of one. This ratio is tight for migration
factor one.

In Section 2.8 we discuss an application of bounded migration to configuring storage
servers. This was the original motivation for our work. In this application, the objective is
to maximize the minimum load. It is well-known [AE98] that any online deterministic al-
gorithm for thismachine covering problem has competitive ratio at least (the number of
machines). There is also a lower boundif/m) for any randomized online algorithm. We
develop a simple deterministic online strategy whicl2-sompetitive already for migration
factorg = 1.

Our main result can be found in Section 2.6. We present a family of online algorithms with
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competitive ratiol + e and constant migration factgi(e), for any fixede > 0. On the negative
side, no constant migration factor suffices to maintain competitive ratio one, i.e., optimality.
We provide interpretations of these results in several different contexts:

Online algorithms. Online scheduling with bounded job migration is a relaxation of the
classical online paradigm. Obviously, there is a tradeoff between the desire for high
quality solutions and the requirement to compute them online, that is, to deal with a
lack of information. Our result can be interpreted in terms of the corresponding tradeoff
curve: Any desired quality can be guaranteed while relaxing the online paradigm only
moderately by allowing for a constant migration factor.

Sensitivity analysis. Given an optimum solution to an instance of an optimization problem
and a slightly modified instance, can the given solution be turned into an optimum so-
lution for the modified instance without changing the solution too much? This is the
impelling question in sensitivity analysis. As indicated above, for the scheduling prob-
lem under consideration one has to answer in the negative. Already one additional job
can change the entire structure of an optimum schedule. However, our result implies
that the answer is positive if we only require near-optimum solutions.

Approximation results. Our result yields a new PTAS for the scheduling problem under con-
sideration. Due to its online background, this PTAS constructs the solution incremen-
tally. That is, it reads the input little by little always maintainingla+ ¢)-approximate
solution. Indeed, it follows from the analysis of the algorithm that every update only
takes constant time. In particular, the overall running time is linear and thus matches the
previously best known approximation result.

We believe that each of these interpretations constitutes an interesting motivation for results
like the one we present here in its own right and can therefore lead to interesting results for
many other optimization problems.

The underlying details of the presented online approximation scheme have the same roots
as the original PTAS by Hochbaum and Shmoys [HS87] and its refinements [Hoc96b]. We
distinguish between small and large jobs; a job is called large if its size is of the same order
of magnitude as the optimum makespan. Since this optimum can change when a new job
arrives, the classification of jobs must be updated dynamically. The size of every large job is
rounded such that the problem of computing an optimum schedule for the subset of large jobs
can be formulated as an integer linear program of constant size. A newly arriving job causes
a small change in the right hand side of this program. This enables us to use results from
sensitivity analysis of integer programs in order to prove that the schedule of large jobs needs
to be changed only slightly. Our PTAS is very simple, it uses only this structural result and
does not use any algorithms from integer programming theory.
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24 Preiminaries

Let the set ofmachines be denoted by = {1,...,m}. The set ofobsis {1,...,n} where
job j arrives in round;. Letp; denote the positiverocessing time or thesize of job j. For a
subset of jobsV, thetotal processing time of jobs in NV is p(INV) ::Zjeij; let pmax (V) =

max;cy p;. For a schedule on the set of jobs let S(i) denote the set gbbs scheduled on
machine . For a subset of machinés C M, letS(Y') :=J,.y S(i). For a subset of jobd,

let opt(NN') denote theoptimal makespan. If the subset of jobsV and a newly arrived job
are clear from the context, we sometimes also use the shorter notatior= opt(/N) and
opt’ := opt(N U {j}). Itis easy to observe thdb(N) := max{p(N)/m,pmax(N)} is a
lower bound oropt (V) satisfying

Ib(N) < opt(N) < 2Ib(N) . (2.1)
The following well-known fact is used frequently in the subsequent sections.

Observation 1. For a set of jobs IV, consider an arbitrary schedule with makespan . As-
signing a new job ; to the least loaded machine yields a schedule with makespan at most

max{, 0pt (N U {5}) + (1 — 1/m)p;}.

Proof. We need to show that if the makespan changes after scheduling fben the new
makespan is at mosipt(N U {j}) + p;(1 — 1/m). Since jobj is scheduled on the least
loaded machine, the new makespan is at m@8t) /m+p;. This combined with the following
inequality yields the facippt(N U {j}) > p(N U{j})/m = p(N)/m + p;/m. O

2.5 Strategieswith Small Migration Factor

We consider the problem of scheduling jobs arriving one after another parallel machines
so as to minimize the makespan. We first show a very siififecompetitive algorithm with
migration factor2. The algorithm is as follows:

Procedure FiLL 1:
Upon arrival of a new jolg, choose one of the following two options minimizing the resulting
makespan.

Option 1: Assign jobj to the least loaded machine.

Option 2: Let s be the machine minimizing the maximum job size. Repeatedly remove jobs
from this machine; stop before the total size of removed jobs excgedassign job;
to machinei. Assign the removed jobs successively to the least loaded machine.

1
2m

Theorem 1. Procedure FiLL 1S (% — )-competitive with migration factor 2.
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Proof. From the description afiLL_1, it is clear that the migration factor is at m@stin order
to prove competitiveness, we consider an arbit@ry ﬁ)-approximate schedule for a set of
jobs N and show that incorporating a new jglaccording toFiLL 1 results in a new schedule

which is still (3 — 5.-)-approximate. In the following, a job is callexnall if its processing

2m
time is at mosbpt’/2, otherwise it is calledarge. If the new jobj is small, then the first
option yields makespan at mc(s} — ﬁ)opt’ by Observation 1. Thus we can assume from
now on thatj is large.

Since there can be at mastlarge jobs inV U {;}, all jobs on the machine chosen in the
second option are small. Thus, after removing jobs from this machine as described above, the
machine is either empty or the total size of removed jobs exceeds the size of the lajge job
In both cases, assigning jgbto this machine cannot increase its load at@ve ﬁ)opt'.

Thus, using the same argument as above, assigning the removed small jobs successively to the

least loaded machine yields agai(%a— ﬁ)-approximate schedule. O

Next we show that the migration factor can be decreasetf 3owithout increasing the
competitive ratio abova/2. This result is achieved by carefully modifyimg.L 1.

ProcedureFiLL 2:
Upon arrival ofj, choose the one of the following + 1 options that minimizes the resulting
makespan. (Break ties in favor of option

Option 0: Assign jobj to the least loaded machine.

Option i [for i € {1,...,m}]: Ignoring the largest job on machirgconsider the remaining
jobs in the order of non-increasing size and repeatedly remove them from the machine;
stop before the total size of removed jobs exc@@s Assign jobj to machines.
Assign the removed jobs successively to the least loaded machine.

Theorem 2. Procedure FiLL 2 iS %-competitive with migration factor %.

Proof. The migration factor is clear from the descriptionrofL_ 2. To show the competitive

ratio, we consider an arbitraé/—approximate schedule af, also denoted asput schedule,

that additionally satisfies the following property; the total load on any machine excluding its
largest job is at mosipt. We remark that this is not an unreasonable requirement on the input
schedule as even the list scheduling algorithm ensures this. We show that incorporating the
new jobj results in a%—approximate schedule. As shown by the following fact, the resulting
schedule also satisfies the above additional property.

Fact 1. After scheduling job j, the total load on any machine excluding its largest job is at
most opt’.

Proof. Let M’ be the subset of machines ‘touched’fayL_2 for scheduling joby. It suffices
to show that the total load in such a machine excluding its ‘last’ job (the job that entered last)
is at mostopt’. Fix any machine inM’ and consider its last job. If it is ngt then it was
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Fig. 2.1: Figure showing the differences between the optimal schedule and the input schedule of jobs
in N. The setsF, F, L and L capture these differences. The ‘common sets’ in both schedules
areF andL. On both schedules, exactly the machines4pcontain ondarge job each, and
such jobs belong td'.

assigned as part of the redistribution phase. Since redistribution is always performed on the
current least loaded machine, the load in this machine excluding this last job is atphoit

the last job igj then, as option 0 is always preferred, the total load of this machine can only be
smaller than the load in the least loaded machine of the input schedule together with the size
of job j. Thus the fact follows. O

We distinguish three cases dependingprif p; < opt’/2 then option 0 already yields a
schedule of makespan at méstpt’ by Observation 1.

Case opt'/2 <p; < %opt’: let
p; =opt'/2+6 where 0 < § < opt'/4 (2.2)

To handle this case, it suffices findkae {1,...,m} such that Optiort yields a%—
approximate schedule. We call it a ‘good’ option. Wef#ias follows. Denote a job darge if
its size is more thanpt’ — ¢ andsmall otherwise. With respect to the input schedule, partition
the set of machines/ as machines with only small jobs denotedids and the rest denoted
asM,. Thatis,

Mg =1{i € M| pmax(S(i)) < opt' =40} and M, = M — M; (2.3)

Observe that on angi—approximate schedule &f, a machine has at most one large job.
Hence there arg\/;| large jobs; one on each machinelfy. Consequently, we fix an optimal
schedule ofV such that large jobs are scheduledin We now compare the input schedule
with this optimal schedule in the following way. As shown in Figure 2.1, partitidoras
F,F. L, L. Inthe optimal schedule, the jobs scheduledMjrand M, are F U F andL U L
respectively and, the respective sets in the input schedulélafeand F U L. It follows that
in the input schedule there is a machinelify with total load at mosbpt with respect tal.
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We fix k as this machine. That is,
p(S(k) = F) = p(S(k)NL) < opt (2.4)
It remains to show that optiokis good.

By the choice of optimal schedule, every large job belongs to the ‘commaf.Sd&nce
each job in sef’ has size at most, as it is scheduled along with a large job (fréty in the
optimal schedule. As a consequence, the set of jobs in maghivith each having size at
mostJ includes the subset of jobs induced By That is, if we partition the sef (k) as K;
andK,, where

K = {All jobs in machinek with size at most}; K, = S(k) — K
then
p(Ky) < opt (asF C K, and p(S(k) — F) < opt by (2.4) (2.5)

This readily implies that there is at most one job with size greater ¢péy2 in machinek;

as such jobs belongs to s&t. Consequently, every job removed during optiohas size at
mostopt’/2; as the largest job is untouched. This ensures by Observation 1 that, reassignment
of the removed jobs still yieIds%—approximate schedule, if the schedule before reassignment

is %—approximate. Hence we are done with this case analysis if we show that the total load of
machinek before redistribution, i.e., after removal of jobs and assignment of jolis at most

3opt’. That s, it is enough to ensure that for machine

p(initial jobs) — p(removed jobs) +p; < ;Opt' (2.6)
The interesting case is when the set of removed jobs excludes more jobs in addition to the
largest job; the largest job has size at mgst — ¢ (recall that machiné: belongs toM;).
Even then, it is not a problem if an unremoved job belong&ita@s this readily implies that
the total size of removed jobs is at legs —d > p;, wheregp; is the total removal limit. The
remaining situation is that every unremoved job (apart from the largest job) is AforAn
unremoved job fronk,, by the greedy removal, immediately implies that there is a removed
job from K,.. This is because, (a) the removal limit, i.épj, is at leastopt’/2 and (b) all
jobs except the largest job have size at mgst/2 in machinek. Thusp(removed jobs) >
p(Ky)+4, which in turn satisfies (2.6). The additioehccounts for the removed job frof}.

Case p; > 2opt’: let

pj = Zoptl+5 where § < opt'/4 (2.7)
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Since there can be at maost jobs in N U {j} each with size greater thampt /2, there is a
machinek in the input schedule where all jobs have size at mpsy2. We show that option

k is good. Observe that the reassignment of removed jObS%ﬂ)@M makespan schedule by
Observation 1, if the schedule before l%a@t’ makespan. Recall that in the input schedule,
on any machine, the load excluding its largest job is at mpst Hence all jobs, except the
largest job, are removed and thus yielding a total load of at étqﬁf after assigning jol.
This concludes the proof. O

Robustness

Most of our scheduling strategies for minimizing the makespan discussed in this chapter are
robust in the following sense. The only invariant that we require in their analyses is that before
the arrival of a new job the current scheduleviapproximate. Job can then be incorporated
yielding again arv-approximate schedule. In other words, we do not require that the current
schedule is carefully constructed so far, to maintain the competitiveness in the next round.

25.1 Negative Results

Theorems 1 and 2 raise the question of which migration factor is really necessary to achieve
competitive ratio3/2. We can prove that any robust strategy needs migration factor greater
than1 in order to maintain competitive ratiyy2.

Lemmal. There exists a 3/2-approximate schedule such that, upon arrival of a particular
job, migration factor 1.114 is needed to achieve 3/2-competitiveness. Moreover, migration
factor 1 only allows for competitive ratio 1.52 in this situation.

Proof. The situation is depicted in Figure 2.2. There are 37 machines. Machines 1 to 8 are
identically packed. Each of them has one job of size 84 and three jobs of size 4. Machines 9 to
12 are also identical. Each of them has one job of size 68 and two jobs of size 16. Machine 13
contains four jobs of size 32. Machines 14 to 37 contain one job of size 96 each. The size of
the newly arriving job is 86.1. The optimal makespan is 100. To achieve a makespan of at most
150, it is necessary to migrate at least 3 jobs of size 32 from machine 13 to other machines.
Hence, the migration factor is at lea#t/86.1 > 1.114. To show the lower bound on the
competitiveness (the second part of the lemma), we set the size of the newly arriving job to 88
instead of 86.1. It is straightforward to check that the final optimal makespan is still 100 and
the best possible makespan achievable for any strategy with migration fastaris 152. O

An additional feature ofiLL.1 and FiLL.2 is that they ardocal in the sense that they
migrate jobs only from the machine where the newly arrived job is assigned to. There is a
class of optimal schedules for which, upon arrival of a new job, it is not possible to achieve
a better competitive ratio thady2 using only local migration. This holds even if an arbitrary
migration factor is allowed. The following optimal schedulerarmachines, upon the arrival
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Fig. 2.2: A %-approximate schedulen = 37). If a new job of size 86.1 arrives, jobs of total size at
least96 have to be moved in order to construct a schedule that is’saipproximate.

of a new job, enforces a competitive ratio of at lea&t2 +%) for any amount of migration.
This bound converges /2 for largem. The example looks as follows: Machines 1 and 2
each contain one job of sizZe/2 andm /2 jobs of sizel/m. All other machines contain a
single job of sizel. The newly arriving job has size The optimum makespan is+ 1/m
and the makespan achievable by any local strategy4gby scheduling the new job on say,
machine 1 and migrating all small jobs to other machines).

252 A 3-Competitive Strategy

In this section, we show that an improved competitive ratié oén be achieved by a more
sophisticated algorithngiLL_3, with migration factor.

Procedure FiLL 3:
Upon arrival of j, choose one of the following: + 1 options that minimizes the resulting
makespan.

Option 0: Assign jobj to the least loaded machine.

Optioni[for i € {1,... ,m}]: Skip phase one if either2p; < p(S(i)) or p; < pmax(S(7)).

Phase one: Let / denote the largest job in machifleRemove all jobs from machine
and schedule job there. Except jold, assign the removed jobs successively in the least
loaded machine.

Phase two: We assign the unassigned jon this phase. If phase one was skipped then
¢ is simply jobj. Considerm + 1 sub-options and choose the one that minimizes the
resulting makespan.

Sub-option 0: Assign job/ to the least loaded machine.
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Sub-option k [for k& € {1,... ,m}]: Ignoring the largest job in machirie consider the
remaining jobs in the order of non-increasing size and repeatedly remove them;
stop before the total size of removed jobs excexglsAssign job/ to machinek
and assign the removed jobs successively to the least loaded machine.

Theorem 3. FILL 3 iS %—competitivewith factor 4 migration.

Proof. The migration factor is clear from the descriptionrofL3. In both phases the migra-
tion factor is 2. To show the competitive ratio, we consider any arbiirgoyt schedule on the
set of jobsN that is%—approximate. We show thatLL_3 yields a%—approximate schedule on
N U {j}. We call a jobb as eithersmall, medium or large where

2 2
small : p, <opt'/3  medium: opt’/3 < p, < gopt' large : py > gopt'

If job j is small then option O yields?—approximate schedule by Observation 1.

Case p; > opt’/3: With respect to the input schedule, we partition the set of machines
M asMjy, and Mg, where

Mj, = {i € M | machine 7 contains a large job} and Mg = M — M,

Sincep; > opt’/3, the number of large jobs iV is at mostm — 1; otherwise the optimal
makespan ofV U {j} exceedspt'.

Observation 2. Consider the set of jobs A U {b} with optimal makespan opt’ on rn machines.
Let p, > opt’/3. If therearem' largejobs (m' < m)in A thenthereareat most 2(m—m/)—1
medium jobsin A.

Proof. Otherwise the optimal makespan 4fJU {b} exceedspt'. O

Clearly Observation 2 implies that there is a machingith at most one medium job and no
large jobs. Thus

Pmas(S(2)) < Zopt (2.8)
We show that option is good, i.e., it yields a%—approximate schedule fov U {;}.

By Observation 2, all jobs in maching except possibly the largest, are small jobs. Hence
reassigning them during phase one after scheduling jeliine by Observation 1. Thus after
phase one of option, the ‘intermediate schedule’ %&approximate.

We now show that the same holds after phase two of optioRecall that the job to be
assigned in this phase is denoted al§ phase one was skipped théis simply jobj. Second
phase is entered either
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2.8)
— skipping phase one becaugp; < p(S(z)) < Fopt o p; < Pmax(S(2)) < Zopt’.

Jobj is same ag for phase two.

(

2.8)
— or after phase one. Henge = pmax(S(z)) <

gopt’ and p; < p;.
In either case it follows that, < p; and job/ is either small or medium. If joBis small then
the sub-option O yieldé—approximate schedule by Observation 1.

We complete the proof by handling the case that jols medium. Asp > opt'/3,
by Observation 2, in the intermediate schedule after phase one there is a mawltheat
most one medium job and no large jobs. We show that sub-optigields a%—approximate
schedule. Let the largest job in machide?’. Since/’ is untouched in sub-optio#, all the
removed jobs are small. Hence by Observation 1, the makespan of schedule after reassignment
of removed jobs i%opt' if the schedule before h%@pt' makespan. Clearly this is true if all
jobs except’ were removed, as bothand# are non-large jobs. At least one unremoved
job in addition to# also ensures this as the total size of removed jobs in this case is at least
2p; —opt'/3, where2p; is the removal limit. Thus the total load in machid@fter assigning
job ¢is at most3opt’ as p; > p, and p; > opt’/3. O

Even better results are possible for two machines. In section 2.7, we discuss a specialized
algorithm with competitive rati(é and migration factor of one. We also show that this ratio is
tight for any deterministic strategy with migration factor one.

2.6 An Online Approximation Scheme with Constant Migration

The results presented in the last section raise the question how far the competitive ratio for on-
line algorithms with constant migration factor can be decreased. We first prove that optimality
(i.e., competitive ratid) cannot be achieved. However, for any fixegt 0 we can get down

to competitive ratial + e.

Lemma 2. Any online algorithm computing optimal solutions needs migration factor Q(m).

Proof. Consider a scheduling instance with machines an@m — 2 jobs, two of sizei/m
foralli=1,...,m — 1. Up to permutations of machines, any optimum schedule has the
structure depicted in the left part of Figure 2.3. The optimum makesp@n is 1) /m. When

a new job of sizel arrives, the optimum makespan increases$.tégain, the structure of an
optimum schedule for the enlarged instance is unique; see the right hand side of Figure 2.3.
From each machine if2,... ,m — 1}, at least one job from the pair has to move. Hence the
minimum total size of jobs that have to be migrated is at least

| m=2 | Lm=2)72]
EZmin{i,m—l—i} > — o,
=1

=1
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L new
job

123. .. m 123. . . m
Optimal initial schedule Optimal final schedule

Fig. 2.3:An instance where all machine configurations have to change to maintain optimality.
which isQ(m). O

In the following,e > 0is a fixed constant. We assume without loss of generalityctkat .
The following observation belongs by now to the folklore in the field of scheduling; see,
e.g., [ABC"99].

Observation 3. Rounding up each job’s processing time to the nearest integer power of 1+ ¢
increases the makespan of an arbitrary schedule at most by a factor 1 + €. In particular, in
specifying a (1 + O(e))-competitive algorithm we can assume that all processing times are
integer powersof 1 + e.

The current set of jobs is denoted By. A job in N is calledlarge if its processing time
is at leask Ib(IV); otherwise, it is calledmall. The subset of large and small jobs is denoted
by N;, andNg, respectively. We partitioV into classesV,, i € Z, with

N; == {jeN|pi=(1+¢'} .

Let] := {i € Z | elb(N) < (1 +€)" < pmax(IN)} such thatN;, = (J,c; Ni. Thus the
number of different job sizes for large jobs is bounded Hyand therefore constant:

Pmax(N) 1 2 1+e
1] < 1440%1-%% < 1+10g1+eg < Elog . . (2.9)

Given an assignment of jol;, to machines, we say that a particular machine oloepfig-
uration k£ : I — INy if, for all i € I, exactlyk(i) jobs from N; are assigned to this machine.
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The set of configurations that can occur in any scheduléVias
K :={k:I—Ngy|k(i) <|Ns|foralli eI} .

Up to permutations of machines, an arbitrary schedulé\focan be described by specifying,
for eachk € K, the numbeyy, of machines that obey configuratiénConversely, a vectay €
INo¥ specifies a feasible:-machine-schedule faw;, if and only if

> yp=m and (2.10)
keK
> k(i) yr = |Nil foralli e I. (2.11)

keK

We denote the set of vectogse INy¥ satisfying (2.10) and (2.11) b. Thus,S represents
the set of all schedules (up to permutations of machines and up to permutations of equal size
jobs) for N;,. For a configuratiork € K let

load(k) == Y (1 +€) k(i)
iel
denote the load of a machine obeying configurafiolThe makespan of a schedulec S is
equal tomax{load (k) | yx > 0}. Foru > 0, let
K(p) == {k e K|load(k) < pu} .

The set of all schedules with makespan at motst denoted by

S(p) == {y € S|y =0if load(k) > p} .

In the following, we usually interpret a schedule= S(y) as a vector iy ¥ by ignoring
all zero-entries corresponding to configurations not containé(jm).

The minimum makespan faW;, can be obtained by determining the minimum vajlue
with S(u) # (). Checking whethe8 (1) is empty and, otherwise, finding a scheduyle S(u)
can be done by finding a feasible solution to an integer linear program. We can write

S(u) = {y e NKW | A(u)y =},

where A(y) is a matrix inINy (' /D<K () andp is a vector inlNy '+ 7. The first row of the
linear systemA(u) y = b corresponds to constraint (2.10); the remainiflgrows correspond
to constraints (2.11).

Lemma3. Let N be a set of jobs and let j be a new job of size p; > elb(NN). Any schedule
for Nz with makespan 1 < (1 + €)opt(V) can be turned into a schedule for N, U {j} by
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touching only a constant number of machines such that the makespan of the resulting schedule
is at most max{u,opt(Nr, U{j})}.

Proof. We distinguish two cases. # > 2., then it is easy to observe thabt(N, U {j}) =
p; and an optimal schedule fay;, U {j} can be obtained by assigning jgdo an arbitrary
machine and moving all jobs that are currently on this machine to any other machine.
In the remainder of the proof we can assume that= (1 + )’ < 2u and there-
foreopt(Nz U {j}) < 2u. Lety € S(u) denote the given schedule fdf,. Theny satisfies

Ay =b, yelNKW (2.12)

Let I := T U {i'} and letK' denote the set of configuratiors: I' — IN, that can occur
in any schedule foiV;, U {j}. ThenK'(u), S'(n), A’(11), andb’ are defined analogously
to K(u), S(i), A(u), andb, respectively, witHK replaced byK’ and replaced byf’.

Letp' := max{u,opt(Nz U{j})} < 2u. We are looking for a schedut¢ € S'(n), that
is, ¥’ must satisfy

Ay =8, o eNKW (2.13)

Moreover,y' should be ‘similar’ toy. In order to compare the two vectors, we first ‘lift'to
a vector inIN¥'(*) as follows. A configuratiork € K (1) can be interpreted as an element
of K'(n') by definingk(i) := 0 forall i € I' \ 1. We then define

yr = 0 forallk €e K'(1) \ K(p) -
It follows from (2.12) that the extended vecipsatisfies
Ay =b, yeNSW (2.14)

The right hand sidé € IN,'*1”'l is defined as follows: If” = I, thenb = b; otherwise,l’ =
TU {i'} and we define the entry of vectibcorresponding td to be zero and all other entries
as in vectot.

Thusy andy’ are solutions to essentially the same integer linear program ((2.14) and (2.13),
respectively) with slightly different right hand sideand?’, respectively. More precisely, the
right hand sides are equal for all but one entry (the one correspondigvteere they differ
by 1.

Theorem 4 ([Sch86, Corollary 17.2a]). Let A be an integral m x n-matrix, such that each
sub-determinant of A is at most A in absolute value, let b and & be column 1m-VECLOors,
and let ¢ be a row n-vector. Suppose max{cz | Az < b; z integral} and max{cz | Az <
b'; = integral } are finite. Then for each optimum solution y of the first maximum there exists
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an optimum solution 7/ of the second maximum such that
ly = o'lloc < nA (b= bl +2).
By Theorem 4 (choosingto be zero vector), there exists a solutipto (2.13) satisfying
ly = 'l < 3K/ ()] A, (2.15)

whereA is an upper bound on the absolute value of any sub-determinant of the migirix
To complete the proof, we have to show that the right hand side of (2.15) is constant.
First we give an upper bound on the number of coluf$.')|, i.e., on the number of
machine configurations with load at mgét Since each job has size at least
(1) ¢ € € p

> - >
elb(N) > 2opt(N) 2 2ite

there are at mosf := [4(1 + €)/e| < & jobs in any configuratio: € K'(x). In particu-
lar, k(i) <~ foralli € I'. This yields

) I+ (2.9) 2 log(
K'(u)| < A" < 4T < (§> < (§>

€ €

1+

e 5 log(®)
< (1 +6> (2.16)

€

Finally, all entries in the first row of (11/) arel and the remaining entries are of the fokid) <

v. Hence we bound\ as follows. The maximum dimension of a square sub-matrix inside
A'(y") is at most the number of rows, i.& + |I| and, each entry in it has value at magst
Hence the value of its determinant is upper-bound (RBy+ |I|)7)2+|[|. Thus

(2.9) 8 2+ 8 2+|1] (2.9) 1+ %log(%)
A< (2+1)7)M < (—2> (—) < ( 6)

€ € €

Hence the number of machines touched is at most

18 8
+ log(2)

(2.15) (2.16) 1 .
K] -lly—leo 2 3K ()2 S 3( +6> (2.17)

€

and therefore is a constant. This concludes the proof. O

Theorem 5. Let N be a set of jobs and let j be a new job not contained in N. Any (1 + ¢)-
approximate schedule for N can be turned into a (1 + €)-approximate schedule for N U {j}
such that the total size of jobs that have to be moved is bounded by a constant () times .

Proof. We distinguish two cases. If the newly arrived job is small, pe<. €1b(NV), thenj
can simply be assigned to the least loaded machine by Observation 1 and na\dteis to
be moved.
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It remains to consider the cage> ¢1b(V). The given schedule fav induces a schedule
for Ny, with makespamn < (1 +€)opt(N) < (1 +¢€)opt(N U{j}). By Lemma 3, the latter
schedule can be turned into a scheduleNprJ {;} with makespan at most

max{u,opt(Nr U{j})} < (1+e€)opt(NU{j}) ,

by touching only a constant number of machines. In the following, this subset of machines of
constant size is denoted By’. We construct a schedule fof U {;} as follows:

i) Start with the schedule fav;, U {;} discussed above.

i) The jobs in Ng that were assigned, by the given scheduleNgrto one of the machines
in M \ M’ are assigned to the same machine again.

iif) The remaining jobs inVg are assigned one after another to the least loaded machine.

The makespan of the partial schedule constructed in steps i) and ii) is bounded by the maxi-
mum of the makespan of the given schedulefoand the optimal makespan of the schedule
for N U{j}. Itis thus bounded byl + ¢)opt(N U{j}). Assigning small jobs greedily to the
least loaded machine in step iii) therefore results (ih-ae)-approximate schedule fovy U {;}
by Observation 1.

Finally, notice that, in the whole process, only jobs that have initially been scheduled on
machines)’ are moved. The total size of these jobs is at most

@1 1
@ dopt S 2w an < 2 (1)

(2.17) (1 + e> O(IOLS/S))

€

This concludes the proof. O

Theorem 6. Thereexists a (1 + €)-competitive online algorithm with constant migration fac-
tor ((e) such that the running time for scheduling a newly arrived job is constant.

In particular, it follows from the last property mentioned in the theorem that the algorithm
has linear running time.

Proof. The result on the competitive ratio follows from Theorem 5. It remains to show that
upon arrival of a new job, the schedule can be updated in constant time. We consider only the
non-trivial case: < 1. We assume that for the current set of ja¥hghe following information

is given:

— The total size of jobg(V), the maximum job sizg,ax(/V), and the lower bountb(N).

— For each machine, its load rounded down to the nearest integer poverpf
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We argue that this information can be updated in constant time for the new set of jobg} .
Itis certainly easy to compute(NU{j}) := p(IN)4p;j, Pmax(NU{j}) := max{pmax(N),p;},
andIlb(N U {j}) := max{p(N U {j})/m, pmax (N U {j})}. Since only constant number of
machines are touched to incorporate the newjjapproximating the modified machine loads
can also be done in constant time.

From Lemma 3, we recall the notion of a machine configuratibn with respect to the
set of large jobs. In the following, we call a job small if its size is less §ia(V) and large
otherwise. This slightly modified definition is just a technicality and it only affects the bound
on I andy in Lemma 3, by a constant factor. Thus it only changes the bound (2.17), by a
constant factor.

Similar to the arguments in Lemma 3, we argue that the number of machine configurations
with each configuration having load at masb(N) is a constant. That iEK(41b(V))| is
a constant. Each large job (belonging ¥p) has size at leasjlb(/V). Hence a machine
configuration with total load at mogiib(N) has at mosg jobs from Ny,. Each such job
belongs to one of the job classes frdimSince the total number of large job clas$Bss also
a constant and the job classes are indexed friog , (51b(N))] =: 4 toi+ |I], we get:

Observation 4. There are at most a constant number (say c¢) of configurations with each con-
figuration having total load at most 41b(V), and we can enumerate themin constant time.

The given schedule oV is represented using the following simple data structure. We
assume that initially the schedule is given to us in this form. Later we show how to update
it in constant time while scheduling job The machine configurations are represented using
structures as shown in Figure 2.4. There is an arraZffig Heads of dimensionc, one
for each possible configuration, and ed@bnfig Head points to the list of machines (list of
Machine Nodes) obeying that configuration. Machine Node points to the list of jobs in it
grouped as batches. The small jobs (belongingydpin it are grouped into batches of size at
most5lb(/V) and the large jobs remain as a batch with single node. Clearly there are only a
constant number of such batches in any machine. Each batchBatishaHead that points to
the list of jobs Job Nodes) in it.

Sincelb(-) is monotonically increasing, the machines belonging to the same configuration
list still belong together in future, possibly in a different configuration list, as long as they are
untouched. Thus while incorporating jgbConfig Head array and its associated machine lists
can be updated in constant time if a constant number of machines are touched and the pointers
to their correspondingylachine Nodes are available.

To find a machine with load at mosét + $)lb(/N) in constant time, we use bucketing.

This is needed for assigning small jobs. The machines are partitioned into buckets based on the
exponent ofl + 5 to which machine loads are rounded. All machines with approximate load at
mostlb(/V) belong to bucke®. Each machine belonging to bucket 0 has its approximate

load ¢ such that?¥) « £ __ < Ib(N). Since the maximum load of a machine is at

“1+e/2 (1+€/2)"
most2opt(N) < 41b(N), the number of buckets is at most a constant. A machine from
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Config Head
Fof | Aol NN B NSV NS
Machines Array of Config Heads — each pointing to the set of machines :
with same configuration with respect ¢, .:
\* ...................................................................................... :
Machine Node
Machine Node Batch Head Job Node
prev —=Machine Node Total Size
next —sMachine Node Size next—» Job Node
next —=Batch Head

—»Batch Head

——=corresponding machine
node in the bucket

+—»Job Node

Fig. 2.4:The different structures used in representing the schedule.

bucket0 can be found in constant time (buckgts always non-empty). Observe that the
untouched machines in a bucket stay together even in future (possibly in a new bucket) as
Ib(-) is monotonically increasing. Thus the bucket structure can be updated in constant time
while assigning joly if only a constant number of machines are touched. We assume that the
bucket representation f@¥ is also available in the beginning.

If the new joby is small p; < §Ib(N)), then

i) Consider any machine from bucket Assigning jobj to it changes its load to at most
(1 + €)Ib(N) < (1 + €)opt(N U {j}), as any machine in buckéthas load at most

(1+ 5)Ib(N).

i) Assign j to a batch of small jobs such that the total load in it does not exgiéed).
If no such batch exists, create a new batch for jolJpdate the batches (merge small
batches) with respect & U {;}. There are only constant number of batches initially.

i) Update the bucket structure with respectoU {j}.
If the new jobyj is large then with respect to the input schedule

a) Generate feasible schedutes S'(41b(N U {j})) by enumerating all vectors with con-
stant distance|y—y/ ||~ (see (2.15) and (2.17) of Lemma 3), whefe S’ ((1+€) opt(NU
{j})). Observe tha®'((1 + €) opt(N U {j})) C S'(41b(N U {j})). There are only con-
stant number of such vectors and they can be generated in constant time by Observation 4.
For each feasible vector do the following and choose the one minimizing the makespan.

b) The component wise difference betwegand z specifies a subset of configurations and
non-zero number of machines from each such configuration that should be modified. For
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each such configuration, we remove the required number of machines from the front of the
machine list pointed to by the respecti@enfig Head.

Remove small job batches (with respeciMaJ {;}) from these machines.
— Reschedule the remaining jobs among these machines.

— Assign these machines to the appropriate configuration lists.

— Update the bucket structure with respect the new machine loads.

— Each of the small batches are reassigned as in the small job case discussed above.

It is straightforward to verify that all of the above steps take only constant time. Thus we
conclude the proof. O

2.7 TheTwo Machine Case

In this section we show a tight competitive ratio%oifor the two machine case. Consider the
following procedureriLL 4.

Procedure FiLL 4:

Upon arrival ofj, choose the option minimizing the makespan from the following options.

For each fixed machinec {1, 2}, we define multiple options in the following way. Let
L be the largest 3 jobs in machineSetL could possibly have less than three jobs. Let
the remaining jobs in machingbe B. ThatisB = S(i) \ L. Let £ C 2L be set of all
possible subsets (including of L such that for eachy, € £, p(L;) < p;. Eachset

L, € L gives rise to a new

Option (i.k): Migrate jobs inZ; to the other machine. Consider the jobsArin non-
increasing order order of size and repeatedly remove them; stop before the total size of
removed jobs exceeds — p(Ly). Let B, denote these removed jobs. Assign joto
machinei and assign the removed jobs successively to the least loaded machine.

Option 0: Assign joby to the least loaded machine.
Theorem 7. FiLL 4 S %—competitive with factor 1 migration.

Proof. The migration factor is clear from theLL_4 description. To show the competitive ratio,
we consider an arbitrarnyput schedule on the set of jobsV that is%—approximate. We show
thatFiLL 4 yields a%—approximate schedule fov U {j}.

If job j is such thaip; < opt’/3 then option 0 already yield é—competitive schedule
by Observation 1. It remains to handle ttese p; > opt’/3. From now on we assume that
Option0 does not suffice. As the largest three jobs are not included iR &t have,

Observation 5. For any machine 7 consider the set B as defined in FiLL4. Every jobinit has
size at most opt’/3.
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Observation 6. Migrating jobs of total size at most p; — opt’/3 from any fixed machine and
assigning job j thereyields a g—approxi mate schedule for N U {j}.

Proof. Let machine 2 be the higher loaded machine ang(i§t2)) = opt —p;/2+y. This
implies thatp(S(1)) < opt’' — p;/2 —y. Merely assigning joly to machine 1 fail only if
the final load difference exceedst'/3. For this it is necessary thagt< p;/2 — opt’/6 and
p; > opt’/3. The total migration amount needed is eithgf2 — opt’/6 (from machinel to
2) orp;/2 +y — opt’/6 (from 2 to 1), which is at mosp; — opt'/3. O

Though above observation is true, it is possible that every feasible set of jobs that needs to
be migrated have total size more than— opt’/3.

Fact 2. There is a subset of jobs of total size at most p; residing in a machine such that
scheduling job j here and migrating this subset to the other machine yields a%—approxi mate
schedule.

It might take exponential time in the worst case to identify the subset that needs to be
migrated. Using Observation 6 we show that our polynomial time strategy also work&. Let
denote theset with the smallest total size that needs to be migrated from machireccording
to Fact 2. Consider the sefsand B for machinei as defined irFiLL.4. Let X N L = L.
Observe thal, € £. We show that Optiorfi.k) yields a%—approximate schedule. The set
of jobs that are either migrated or removed from machitefore assigning is I, U By.
Observe thap(L;, U By,) is at leastp; — opt’/3 unlessB), = B as size of any job irB is at
mostopt’/3 by Observation 5. Thus in any caseX) < p(L U By) asp(X) < p; — opt’/3
by Observation 6. Thus by Observation 6 the total load in machéfier assigning job, i.e.,
p(S(i) \ (L U By)) + pj, is at mostLopt’. The reassignment of jobs B, (each have size at
mostopt’/3) is also fine by Observation 1. O

Proof. (Fact 2) It is clear that there is no need to migrate a total size morepgih@mply
assignp; on the destination machine instead). Fix any optimal schedul§ of {j}. We
capture the difference between this optimal schedule and the input schediNebgnsets
01,02, A1 andA,. As shown in Figure 2.5, the above four sets define a partitioN .ofhe
setd; is the set of all jobs assigned to machine 1 on both schedules. Similarly, sethe
set of all jobs assigned to machine 2 on both schedules. The remaining two sets capture the
differences between these two schedules except fof,jalhich is only present in the optimal
schedule.

We consider only the interesting case that assigribg any machine without migration
fails. From now, for convenience, we denote the size of anysas simplyX. For jobj we
denote its size ag. We also normalizept’ to 1. The optimal schedule (Figure 2.5) and the
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Fig. 2.5:Comparison of input schedule évi and optimal schedule aN U {;}, for two machines.

fact that assigning without migration fails implies

(1) 51+52+j§1 (3) 51+A1+j>7/6
(2) Ar+4Ay <1 (4) do+ Do +j>7/6

It is straightforward to verify that these four inequalities yield> 2/3 and henceg +
d2 < 1/3 (Inequalities 1 and 3 imply\; > 1/6 + d». Inequalities 2 and 4 imply, + j >
1/6 + Ay). W.l.o.g letd; < 1/6. Hence the migration strategy is; migrake to machine 1
and schedulg on machine 2. O

Tight Lower Bound

Theorem 8. Let A be any deterministic algorithm that is c—competitive on two machines with

migration factor at most one. Thenc¢ > 6(1—16) for any sufficiently small positive e € IR™.

Proof. The adversary initially issues four jobs with the following sizel6 + €/2,1/6 +
€/2,1/2 and1/2. Itis easy to verify that the onlg@—approximate way of scheduling
them is to assign in each machine one job of si#&+ ¢/2 and one job of sizé /2.

Assume that both machines contain one job of $jZ2and one job of sizé/6+¢/2. Now
adversary issues a new job of siz&. The optimal makespan is+ e. But if the migration

factor is restricted td, then the best possible makespanis 7/6. Hencec :6(1—16) .o

2.8 Maximizing the Minimum Machine L oad

An alternative, yet less frequently used objective for machine scheduling is to maximize the
minimum load. However, we have a concrete application using this objective function that was
the original motivation for our interest in bounded migration: Storage area networks (SAN)
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usually connect many disks of different capacity and grow over time. A convenient way to
hide the complexity of a SAN is to treat it as a single big, fault tolerant disk of huge capacity
and throughput [BSS02, San04]. A simple scheme with many nice properties implements
this idea if we manage to partition the SAN into several sub-servers [San04] of about equal
size. Mapping to our scheduling framework, the contents of disks correspond to jobs and
the sub-servers correspond to machines. Each sub-server stores the same amount of data. For
example, if we have two sub-servers, each of them stores all the data to achieve a fault tolerance
comparable to mirroring in ordinary RAID level 0 arrays [PGK88]. More sub-servers allow
for a more flexible tradeoff between fault tolerance, redundancy, and access granularity. In
any case, the capacity of the server is determined byrinanum capacity of a sub-server.
Moreover, it is not acceptable to completely reconfigure the system when a new disk is added
to the system or when a disk fails. Rather, the user expects a “proportionate response”, i.e., if
she adds a disk of GByte she will not be astonished if the system moves data of this order
of magnitude but she would complain if much more is moved. Our theoretical investigation
confirms that this ‘common sense’ expectation is indeed reasonable.

We concentrate on the case without job departures (disk failures). We show that the fol-
lowing simple strategy, which is very similar koLL_1, is 2—competitive already for migration
factorg = 1.

Procedure FiLL 5:

Upon arrival of a new joly, do the following. Repeatedly remove jobs from the least loaded
machinein;,; stop before the total size of removed jobs excegdsAssign job; to ma-
chineinin. Assign the removed jobs successively to the least loaded machine.

Theorem 9. FiLL 5 is2—competitive with migration factor 1.

Proof. The migration factor is clear from the descriptionrofL 5. In the input schedule on
N, consider thamaximum loaded machine among those containing multiple jobs. If there is
no such machine (i.e, every machine has at most one job) then the schedule after assigning job
j is 1—approximate (optimal). Hence the interesting case is that such machines exist. We call
such machines asulti-job machines.

We assume that the following property holds for the input schedule;

maximum load of a multi-job machine< 2 - minimum load (2.18)

Later we show that the above property is preserved on the output schedule. An output schedule
with above property is a 2—approximate schedule as the optimraimum load is at most

the maximum load of a multi-job machine. Thus it remains to show that property (2.18)
holds for the output schedule. gf < p(S(imin)) then this is straightforward. In cage >
p(S(imin)), initially all jobs from the least loaded machine are removed ansl assigned

there. This intermediate schedule (before reassigning the removed jobs) satisfies property
(2.18). Observe that each of the removed jobs has size at most the intermediate minimum
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load. Hence reassigning them still preserves the property as shown above. O

Negative Result

The following lemma shows that it is not possible to start with an arbit2aigpproximate
schedule onV and obtain &2—approximate schedule fa¥ U {;} with constant migration
factor.

Lemma4. Thereis a 2—approximate schedule on m machines such that upon the arrival of
anew job, itisnot possible for any strategy to obtain 2—approximate schedule with migration
factor lessthan m — 2.

Proof. In the initial schedule machine 1 has: jobs of size 1. All the remainingn — 1
machines have one job of size 1. In total there3are— 1 jobs. The optimal minimum load

is 2. Hence this is a 2—approximate schedule. A new job of size 1 arrives. The new optimal
minimum is 3. To achieve minimum load greater than 1, any strategy has to move at least
m — 2 jobs from machine 1. O

2.9 Summary and Open Problems

We presented strategies for online scheduling problem where we allow migration of already
assigned jobs. We show that already with migration fattlie competitive ratio becomes

1.5, which beats the lower bounds for the classical online scheduling problem. We bring down
the migration factor td/3 for 1.5—competitiveness and also obtain 4/3—competitiveness with
factor 4 migration. For the case of two machines we obtain a tight competitive rafigof

with migration factorl. We presented an online PTAS (yielding competitive ratid efe for

anye > 0 with constant migration factof(e)) with linear running time, which compares with

the PTAS for the offline version. We also discussed the setting of maximizing the minimum
load and gave a 2—competitive algorithm with unit migration factor.

One open problem is to bring down the migration factors while achieving same or better
competitive ratios. It is an interesting question to show better lower bounds on the migration
factors needed, possibly as a function of the desired competitive ratio. Another open problem
is to come up with better strategies for the maximizing minimum load objective. It would also
be interesting to investigate the cases of related parallel machines, i.e., the job size gets scaled
differently in different machines, and unrelated parallel machines, i.e., processing time for job
J on machine is given separately gs;.
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Smoothed Competitivenessof Metrical Task Systems

3.1 Introduction

Metrical Task Systems, introduced by Borodin, Linial and Saks [BLS92], is one of the very
well-known and well-studied problems in the field of online algorithms. Metrical task systems
is formulated as follows. We are given an undirected and connected graph(V, E), with
node sel’ and edge sel, and a positive length function: £ — IR" on the edges afi. We
extend) to a metricd onG. Leté : V x V — IR' be a distance function such thit:, v)
denotes the shortest path distance (with respeg} tietween any two nodesandv in G. A

task 7 is ann-vector(r(vy), ..., r(v,)) of request costs. The cost to process taskin nodey;
isr(v;) € IR U{oo}. The online algorithm starts from a given initial positigne V and has
to service a sequence:= (7, ..., 7,) of tasks, arriving one at a time. If the online algorithm

resides in node after serving task;_, the cost to service tagkin nodev is d(u, v) +r4(v);
d(u,v) is thetransition cost andr;(v) is theprocessing cost. The objective is to minimize the
total transition plus processing cost.

Borodin, Linial and Saks [BLS92] gave a deterministic online algorithm, known as the
work function algorithm (WFA), for metrical task systems. WFA has a competitive ratio of
2n — 1, which is optimal. Borodin, Linial and Saks [BLS92] and Manasse, McGeoch and
Sleator [MMS88] proved that on any given metric spacenamdesevery deterministic on-
line algorithm for metrical task systems has competitive ratio at Bast 1. On the other
hand, the competitive ratio often is an over-pessimistic estimation of the performance of an
online algorithm, since instances that force the online algorithm in its worst-case behavior are

Publication Notes. This is a joint work with Guido SdBi. A preliminary version of this work
appeared in the proceedings of the 21st International Symposium on Theoretical Aspects of
Computer Science (STACS), 2004 [SS04].

Guido Sclafer is a Ph.D. student at the Max-Planck-Institute Ififormatik, Saarhrcken.
The results presented in this chapter will also become a part of his thesis. My own contribution
to the contents of this chapter is 50%.
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highly artificial.

Smoothed Competitive Analysis.Spielman and Teng [STO1] proposed a new complexity
measure, calledmoothed complexity, which is a hybrid between average-case and worst-case
complexity. The basic idea admoothed analysis is to randomly perturb, or smoothen, the
input instances and to analyze the performance of the algorithm on the perturbed instances.
The smoothed complexity of an algorithm is defined as the supremum over all input instances
of the expected running time on the perturbed instances.

More formally, letZ, € IR" denote the set of all inputs of lengthfor a deterministic
algorithmA. Letl = (iy,... ,i,) € Z, be one such input. Let(I) denote the performance
of A on inputI. Consider the following random variable= (i, + e1,is + €2,... ,in + &5),
where eacly; is a random number chosen fromsanmetric distribution f with zero mean.
The process of drawing an instance from tiegghborhood of I in the above fashion is called
the perturbation or smoothing process. The extend of perturbation (‘size’ of the neighborhood)
depends on themoothing parameter o, which relates to the distributiofi in the sense that it
reflects how much the smoothed input deviate from the initial input values stochastically. The
worst-case complexity and the smoothed complexityl @an be written as,

Worst-case= sup A(I) ~ Smoothed Complexity= sup E , _[A(])].
ietz, ietz, 141

Intuitively, the smoothed performance of an algorithm on a given instance is its perfor-
mance ‘averaged’ over the instance ‘neighborhood’ (because of the random perturbation).
Hence the smoothed complexity of an algorithm is small if the worst case instances are isolated
peaks in the instance/performance space, which in a sense reflects the ‘sparse distribution’ of
worst-case instances.

Based on this idea underlyirgnoothed analysis, Becchetti et al. [BLMS03] recently
proposedsmoothed competitive analysis as an alternative to worst-case competitive analysis
of online algorithms. The idea is to randomly perturb,sooothen, an adversarial input
instanceS and to analyze the performance of the algorithm on the perturbed instances. Let
alg[S] andopt[S], respectively, be the cost of the online and the optimal offline algorithm on
a smoothed instancg obtained frons. Thesmoothed competitive ratio ¢ of alg with respect
to a smoothing distributiorf is defined as

e [5]

We use the notion of smoothed competitiveness to characterize the asymptotic perfor-
mance of WFA. We ignore the constants in the competitive ratio and also ignore short request
sequences. Each cost entry in the request vector is smoothed by adding a random number
chosen from a probability distributiofi, whose expectation coincides with the original cost
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entry. The underlying graph is unchanged. Our analysis reveals that the smoothed competi-
tive ratio of WFA is much better than its worst-case competitive ratio and it depends on certain
topological parameters of the underlying graph. Our analysis holds for various probability dis-
tributions, including the uniform and the normal distribution. We also show that our bounds
on smoothed competitiveness are tight for a large class of graphs, agayddter ministic
algorithm.

Relevant Topological Parameters: We assume that the underlying graghhasn nodes,
minimum edge lengtt,,;,, maximum edge lengtl/,,,x, and maximum degre®. Fur-
thermore, we us®iam(G) to refer to thediameter of G, i.e., the maximum length of a
shortest path between any two nodes. Similarly, a graphetigesdiameterdiam(G) if any
two nodes are connected by a path of at mtisin(G) edges. We use shorter notation
diam := diam(G) and Diam := Diam(G) when the graphG is clear from the context.
Observe thafliamU,;, < Diam < diamU,,,x. We emphasize that these topological parame-
ters are defined with respect@band its length functiork and not with respect to the resulting
metric, which is a complete graph.

3.1.1 The Smoothing M odel

Let the adversarial task sequence be given byS := (71,...,7.). We smoothen each task
vector7; = (7(v1),...,7:(vy,)) by perturbing eacloriginal cost entry7;(v;) according to
some probability distributiorf as follows

ri(vj) := max{0,7(vj) +(v;)}, wheree(v;)«f.

That is, to each original cost entry we add a random number which is chosenffrare
obtainedsmoothed task is denoted by := (r(v1),...,r(v,)). We useu ando, respectively,
to denote the expectation and the standard deviatiofi. dVe assume thaf is symmetric
aroundy := 0. We take the maximum of zero and the smoothing outcome in order to ensure
that the smoothed costs are non-negative. Thus, the probability for an original zero cost entry
to remain zero is amplified th.

Our analysis holds for a large class of probability distributions, which wepeathissible.
We sayf is permissible if (i)f is symmetric aroungh = 0, and (ii) f is non-increasing in
[0,00). For example, the uniform and the normal distribution are permissible. The concen-
tration of f aroundy is given by its standard deviation We remark that the general upper
bounds on the smoothed competitive ratio of WFA do not improve by choesmgch larger
thanU,,;,. There are input instances where lower bounds matching the stated upper bounds
can be shown even i = 22(V?)7, . (See Remark 3 in Section 3.7.2). Thus, throughout
this chapter, we restriet to the interesting range @6, cUj,,;,], for some constant, for both
upper and lower bounds. In particular, for all our analysis we assume tda2l],;,, though
the same analysis holds for any fixed constant. Moreover, weyugedenote a constant
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Upper Bounds

a

arbitrary tasks O (Pax (Z=ia 1 log(D))) and O <\/n - Gpox (Umin 4 log(D))>

random tasks O (g% (Y=i +1og(D)))

o

B-elementary tasks O (3 - f=2= (Yzi» 4+ Jog(D)))

Tab. 3.1:Upper bounds on the smoothed competitive ratio of WFA.

depending ory such that for a randomchosen fromf, Prie > o/¢f] > i

Random tasks are generated by smoothing zero tasks (all-zero entries). Here we take care
that we only allow distributions ove6, ).

All our results hold against aadaptive adversary. An adaptive adversary reveals the task
sequence over time, thereby taking into account the decisions made by the online algorithm
for the past smoothed inputs.

In the terminology of [STO1], our smoothing model falls into the categoryduiitive
symmetric smoothing models, where a random number chosen from a symmetric distribution
is added to the original input. We refer to [STO1] for a review of other smoothing models.

3.2 Our Contribution

We prove several upper bounds; see Table 3.1.

1. We show that if the request costs are chosen randomly from a distribfitiwhich is
non-increasing ind, co), the expected competitive ratio of WFA is

O(1 + 7% - log(D)).

min

In particular, WFA has an expected competitive ratiaqlog(D)) if o = O(Unin)-
For example, we obtain a competitive ratio @flog(n)) on a clique and of)(1) on
constant degree graphs like a line graph, 2-d grid, binary tree etc.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

min

o (e +10g(0) ) and 0y o (T +1osD) )

For example, it = ©(Umin) @ndUmax/Umin = ©(1), WFA has smoothed competitive
ratio O(log(n)) on any graph with constant edge diameter &1g/n) on any graph
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Lower Bounds — for any deterministic algorithm
arbitrary tasks
— existential QP (Lo 410g(D))) and O <\/n Ymes (Vonin log(D))>
— universal Q(Ymis 4 feinog(D))  and <\/diam~ fain. (Umin 4 1)>

B-elementary tasks  Q(3 - (Ymix +1)) (existential)

Tab. 3.2:Lower bounds on the smoothed competitive ratio of any deterministic online algorithm.

with constant maximum degree. Note that we obtai®élvg(n)) bound on a complete
binary tree and (log(n) loglog(n)) on ann-node hypercube.

3. We obtain a better upper bound on the smoothed competitive ratio of WFA if the adver-
sarial task sequence only consistgedl ementary tasks. A task isg-elementary if it has
at mostg non-zero entries. A-elementary task is also called eementary task. We
prove a smoothed competitive ratio of
O(p - o (V= + log(D)).

Umin

For example, it = O(Upin) andUnax/Umin = ©(1), WFA has smoothed competitive
ratio O(5 log(D)) for g-elementary tasks.

Remark 1. The upper bound expressions for arbitrary tasks given above hold even for the cases
of g-elementary tasks and random tasks. For example, the final upper boyhelEmentary

tasks is the minimum of the arbitrary tasks upper bo@ad-- 1 and thes-elementary upper
bound.

We also present lower bounds; see Table 3.2. All our lower bounds hos&hyateterministic

online algorithm and if the request costs are smoothed according to the additive symmetric
smoothing model as described in Section 3.1.1. We distinguish betexestential and uni-

versal lower bounds. An existential lower bound, Sayf(n)), means that therexists a class

of graphs such thavery deterministic algorithm has smoothed competitive r&tig'(n)) on

these graphs. On the other hand, a universal lower bO\iign)) states that foany arbitrary

graph, every deterministic algorithm has smoothed competitive r&ig (n)). Clearly, for
metrical task systems, the best lower bound we can hope to obt@irjs Therefore, if we

state a lower bound d®(f(n)), we actually meaf)(min{n, f(n)}).

4. For alarge range of values for the paramel&Eesn and D, we present existential lower
bounds that are asymptotically tight to the upper bounds stated in 2. This means (a) that
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the stated smoothed competitive ratio of WFA is asymptotically tight, and (b) that WFA
is asymptotically optimal under our additive smoothing model—no other deterministic
algorithm can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

max

Q(Ymin 4 Dmin Jog(D))  and Q(min{diam, \/dia,m- fpin. (Ymin 4 1)}).

Assume thalUy,,x/Umin = ©(1). Then, the first bound matches the first upper bound
for arbitrary tasks if the edge diametémm is constant, e.g., for a clique. The second
bound matches the second upper bound for arbitrary taskisiii = €2(n) and the
maximum degred is constant, e.g., for a line.

6. Forp-elementary tasks, we prove an existential lower bound of
03 (U +1),

This implies that the upper bound fgr-elementary tasks is tight up to a factor of
(UmaX/Umin) log(D)

Constrained Balls into BinsOur analysis crucially relies on a lower bound on the cost of

an optimal offline algorithm. We therefore study the growth of the work function values on a
sequence of random requests. It turns out that the increase in the work function values can be
modeled by a version of balls into bins experiment with dependencies between the heights of
the bins, which are specified by a constraint graph. We call ittinetrained balls into bins
experiment. We believe that the constrained balls into bins is also interesting independently of
the context of this work.

Lower Bound for Zero-Retaining Smoothing M odels

A major criticism to the additive smoothing model is that zero cost entries are destroyed.
However, one can easily verify that the lower bound prod®:of- 1 on the competitive ratio

of any deterministic algorithm for metrical task systems goes through for any smoothing model
that does not destroy zeros. The proof is based only on the use of elementary tasks and the
fact that the cost of the online algorithm is monotone increasing with the length of the input
sequence (see [BLS92, MMS88, BEY98]). Assume we consider a zero-retaining smoothing
model, i.e., a model in which zero cost entries are invariant to the smoothing. In such a model,
elementary tasks are smoothed to elementary tasks. In particular this means that the above two
properties still hold and hence the lower bound still holds.

Theorem 10. Every deterministic online algorithm for metrical task systems has a smoothed
competitive ratio of at least 2n — 1 under a zero-retaining smoothing model.
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3.3 Redated Work

Several other attempts were made in the past to overcome the over-pessimistic estimation of
the performance of an online algorithm by its competitive ratio. One idea was to enhance the
capability of the online algorithm by allowing a limited lookahead [AIb93, Alb98]. Another
idea was to restrict the power of the adversary. For example, Borodin et al. [BIRS95] used
an access graph model to restrict the input sequences in online paging problems to specific
patterns. The diffuse adversary model by Koutsoupias and Papadimitriou [KP94] is another
attempt to refine the notion of competitiveness. In this model, the actual distribution of the
input is chosen by an adversary from a known class of possible distributions. We strongly
believe that smoothed competitive analysis is a natural alternative to adequately characterize
the performance guarantee of an online algorithm.

Chapter Organization. In Section 3.4 we first define the commonly used notations and also
the work functions. In Section 3.4.2, we review the work function algorithm and state some
of its properties. The lower bound on the cost of an optimal offline algorithm and the related
balls into bins game are presented in Section 3.5. Then, in Section 3.6.1 and Section 3.6.2,
we prove the upper bounds on the smoothed competitive ratio of WFA. After that, in Sec-
tion 3.6.4 we present an upper bound on the competitive ratio of WFA against random tasks,
and in Section 3.6.5 we develop the boundfeelementary tasks. In Section 3.7.1 we prove
the existential lower bound fgs-elementary tasks. Then we proceed to show the two uni-
versal lower bounds in Section 3.7.2. This is followed by the existential lower bounds in
Section 3.7.3. We conclude this chapter with concluding remarks and open problems in Sec-
tion 3.8. Proofs of some of the simple facts and lemmas are moved to Appendices 3.A, 3.B
and 3.C, for better readability.

3.4 Preiminaries

Let the sequence of requests forounds be denoted &= (r,..., 7). Let wfa[S] and
opt[S] denote costs incurred by WFA and the optimal offline strategy respectively Bhe
smoothed outcome of the request sequence is denoted by the random \&riabig denote
the initial position. We denote by, . .., s, the sequence of nodes visited by WFA. For the
lower bound proofs we usglg[S] to denote the cost incurred @by the algorithm under
consideration.

3.4.1 Work Function

Let S; denote the subsequence of the firsasks ofS. For eacht, 0 < ¢ < ¢, we define a
functionw; : V' — IR such that for each node € V', w(u) is the minimum offline cost to
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processS; starting insy and ending in:. The functionu is called thework function at timet
with respect taS andsy.
Clearly, the optimal offline cost of is equal to the minimum work function value at

time/, i.e.,opt[S] = min,ey {we(u)}. We can computey,(u) for eachu € V' by dynamic
programming:

wo(u) 1= d(sp,u), and wy(u):= %i§{wt,1(v) +ri(v) +6(v,u)}. (3.2)

3.4.2 Work Function Algorithm

We next describe the online work function algorithm; see also [BLS92, BEY98]. Intuitively,
a good strategy for an online algorithm to process task to move to a node wherept
would reside if; would be the final task. However, the competitive ratio of an algorithm
that solely sticks to this policy can become arbitrarily bad. A slight modification gives a
2n — 1 competitive algorithm: Instead of blindly (no matter at what cost) traveling to the
node of minimum work function value, we additionally take the transition cost into account.
Essentially, this is the idea underlying the work function algorithm.

Work Function Algorithm (wfa): Let s,...,s; denote the sequence of nodes visited by
wfa to processS;. Then, to process task.;, wfa moves to a node,,; that minimizes
w1 (v) + d(sg,v) forall v € V. There is always a choice fo§,; such that in addition
Wit1(St41) = we(Se4+1) + Te41(Se41). More formally,

Spy1 1= arg géi‘rfl{wt+1('l)) + 0(s¢,v)} such that wyi(ser1) = wi(Se41) + ree1(Se+1)-
(3.2)

Lemma5 ([BEY98]). Let A be the set of all the states that satisfy both s, =
arg mingey{wi1(z) + 0(sg, )} and wyi1(si+1) = wi(se41) + ree1(se+1). Then Alis not
empty (i.e., wfa can always choose an appropriate state s.1).

We duplicate the proof of the above lemma in the Appendix 3.C for the sake of complete-
ness. We continue by observing a few properties of work functions and of the online algorithm
wia (see Appendix 3.A for the corresponding proofs).

Fact 3. For any node » and any time ¢, w;(u) > w1 (u).

Fact 4. For any node v and any time ¢, wy(u) < wy—1(u) + r¢(u).

Fact 5. For any two nodes v and v and any time ¢, |w;(u) — wy(v)| < d(u,v).
Fact 6. Atanytimet, wy(sy) = we(si—1) — d(S¢—1, St)-

Fact 7. Atanytimet, ry(sy) + 0(si—1,8¢) = wi(si—1) — wi—1(S¢)-
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3.4.3 Talil Inequalities

We used the following well-known tail bounds quite often in the analysis. We refer to [MR95,
HR90] for their proofs.

Lemma 6 (Markov Inequality). Let Y be a random variable assuming only non-negative
values, Thenfor all t € R, Pr[y > < EXI.

Lemma 7 (Chebyshev Inequality). Let X be a random variable with expectation E[X] and
standard deviation o. Then for any ¢ € R", Pr[| X — E[X]| > to] < 5.

Lemma 8 (Chernoff Bound). Let X4, ... , X} beindependent binary random variables. Let
X = ZleXj. Then for any § > 0,

Pr[X > (1+0)BE[X]] < e min{o%0bu/3
Furthermore, it holds that for all 0 < § < 1,

Pr[X < (1-§)E[X]] < e T2

3.5 A Lower Bound on the Optimal Offline Cost

In this section, we establish a lower bound on the cost incurred by an optimal offline algorithm
opt when run on tasks smoothed according to the additive smoothing model. For the purpose
of proving the lower bound, we first investigate an interesting version of a balls into bins
experiment, which we call theonstrained balls into bins experiment.

3.5.1 Constrained Ballsinto Bins

We are givem bins By, ..., B,. In each round, we place a ball independently in eachihin
with probability p; with probability 1 — p no ball is placed in3. We define théneight /(i) of

a bin B; as the number of balls if¥; after roundt. We have dependencies between the heights
of different bins that are specified by an (undirectedjstraint graph G. := (V, E.). The
node set/. of G, containsn nodesu, ..., u,, where each node; corresponds to a bi;.

All edges inE, have uniform edge lengths equal@ Let D be the maximum degree of a
node inG.. Throughout the experiment, we maintain the following invariant.

Invariant: The difference in height between two bifsand B; is at most the shortest path
distance between; andu; in G..
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Fig. 3.1: lllustration of the “unfolding” for@ = 1 andh = 5. Left: constraint grapltz .. Right:
layered dependency grafply,.

If the placement of a ball into a biR; would violate this invariant, the ball isgjected; oth-
erwise we say that the ball &ccepted. Observe that if two bing; and B; do not violate the
invariant in roundt, then, in roundt + 1, B; and B; might cause a violation only if one bin,
sayB;, receives a ball, and the othé?;, does not receive a ball; if both receive a ball, or both
do not receive a ball, the invariant remains true.

Theorem 11. Fix any bin B,. Let R, be the number of rounds needed until the height of B,
becomes i > log(n). Then, Pr[R, > c3h (1 + log(D)/Q)] < 1/n*.

We remark that constraint graphs with = 1 exist, e.g., a clique on nodes, such that
the expected number of rounds needed for the height of a bin to bekasn@ (hlog(n)).
Moreover, for any given maximum degrég one can create graph instances with= 1 such
that the expected number of round<$Xsh log(D)).

We next describe how one can model the growth of the heigli®, dfy an alternative, but
essentially equivalent, experiment orayered dependency graph. A layered dependency
graphD;, consists of, layers,Vi, ..., V},, and edges are present only between adjacent layers.
The idea is to “unfold” the constraint gragh into a layered dependency graph.

We first describe the construction f¢f = 1. Each layer ofD, corresponds to a subset
of nodes inG.. Layer1 consists ofz only, the node corresponding to bi. Assume we
have constructed layefg,...,V;, i < h. Then,V;,; is constructed fron¥; by adding all
nodes,I'¢;, (V;), that are adjacent t&; in G, i.e., Vi;1 := V; U g, (V;). For every pair
(u,v) € V; x V11, we add an edgéu, v) to Dy, if (u,v) € E,, oru = v. See Figure 3.1 for
an example.

Now, the following experiment o®;, is equivalent to the balls and bins experiment. Each
node inD;, is in one of three states, namealyWFINISHED, READY Or FINISHED. Initially, all
nodes in layerh areREADY and all other nodes areNFINISHED. In each round, alREADY
nodes independently toss a coin; each coin turn$iegol with probability p andtail with
probability 1 — p. A READY node changes its state RiNISHED if the outcome of its coin toss
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is head. At the end of each round, arNFINISHED node in layerj changes its state ®READY,
if all its neighbors in layey + 1 areFINISHED.

Note that the nodes in layés; are FINISHED if and only if the corresponding bin5;,
i € V}, have height at leagt Consequently, the number of rounds needed until the root node
z in Dy, becomesINISHED dominates the number of rounds needed for the heiglit ab
becomen.

We use a similar construction@ > 1. For simplicity, leth be a multiple of) and define
h' = h/Q. We construct a dependency graBh with 2’ layers as described above (repléce
by 1’ in the description above). Then, we transfafip into a layered grap®;, with h layers
as follows. Letv be a node in layey of Dy,,. We replacev by a path(v,...,v;), where
k = |Q|. Nodew; is connected to all neighbors ofin layer j — 1 and nodey, is connected
to all neighbors oy in layer j + 1. This replacement makes sure that the number of rounds
needed until the root node becon®sISHED in D, dominates the number of rounds needed
for the height ofB, to becomen.

Proof of Theorem11 . Let D, be a layered dependency graph constructed fégnas de-
scribed above. As argued abowg, is stochastically dominated by the random variable de-
noting the number of rounds needed till root node becoresHED. That is, the probability
that (R, < t) is at least the probability that root node becorreaSHED within ¢ rounds.
Consider the event that the root nogldoes not becomeINISHED aftert rounds. Then, there
exists abad path P := (vy,...,v;) from z = v; to some nodey, in the bottom layer
such that no node; of P was delayed by nodes other than,, ..., v,. Put differently, P

was delayed independently of any other path. Consider the outcome of the coin flips only for
the nodes alond’. If P is bad then the number of coin flips, denoted Xy that turned up
head within ¢ rounds is at mosk — 1. Let «(t) denote the probability thaP is bad, i.e.,
a(t) == Pr[X < h —1]. Clearly,E[X] = tp.

Observe that ifDy, (i) at mosth’ layers contain nodes of degree larger tBaand (ii) these
nodes have at mog? + 1 neighbors in the next larger layer. That is, the number of possible
paths from to any nodev in layerh is bounded byD + 1)

Thus,Pr[R, > t] < a(t)(D + 1)". We want to choose such that this probability is at
most1/n*. If we chooset > (32/p)(h + h'log(D)) and use Chernoff bound (Lemma 8) on
X, we obtain forh > log(n)

1
—Pr[X <h—1] <Pr[X <pt/2] <e P/ < ____~
a(t) =Pr[X <h—1] <Pr[X <pt/2] <e = 04D+ Y

3.5.2 Lower Bound

We are now in a position to prove that an optimal offline algorithm incurs with high probability
a cost of at leastyUni, 0n a sequence @& (ny (Unin/o + log(D))) tasks.
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Lemma9. Let the random variable S denote the smoothed outcome of an adversarial se-
quence of ¢ := [cany(Umin/o + log(D))] tasks, for a fixed constant ¢, and some y > 1.
Then, Priopt[S] < nyUpin] < 1/n3.

We will use Lemma 9 several times as follows.

Corollary 1. Let the random variable S denote the smoothed outcome of an adversarial se-
quence of ¢ := [cany(Umin/o + log(D))] tasks, for a fixed constant ¢, and an somey > 1.
Let £ denote the event that opt[S] > nyUpin. Then

E[Z;?EH < E[Zﬁ[{;] ‘5] +o(l) < % + o(1).

Proof. From Lemma 9 we know th&r[-€] < 1/n?. Thus,

]l ] e o] e

where the second inequality follows from the definitionfodind the fact that the (worst-case)
competitive ratio ofwfa is 2n — 1. O

Proof of Lemma 9. The cost ofopt on a smoothed sequence of length 2 is opt[S] =
min,ey{we(u)}. Therefore, it suffices to prove that with probability at least 1/7,
wy(u) > nyUnin for eachu € V. Observe that we can assume that the initial work func-
tion values are all set to zero, since this can only reduce the cost of

We relate the growth of the work function values to the balls and bins experiment. For each
nodew; of G we have a corresponding big;. The constraint grapli. is obtained from&
by setting all edge lengths @ := |Unin /&, Where¢ := min{Uyin, 0/cs}. The placement
of a ball in B; in roundt corresponds to the evef;(v;) > o/cy). Since our smoothing
distribution satisfie®r[e > o /cf] > 1, the smoothed request costy;) is at leastr /c; with
probability at Ieasﬁ, for anyv; and anyt. This holds irrespective of its original cost entry and
independently of the other request costs. Therefore, in each rowadglace a ball into each
bin with probabilityp = 1.

By Lemma 10 given below, the number of rounds needed until abihas heighth
stochastically dominates the tinteneeded untiky (v;) > h&. Applying Theorem 11, we
obtain that for any bing;, after? > c3h(1 + log(D)/Q) rounds,Pr[h(i) < h] < 1/n™.
Consequently, aftef rounds all bins have height at ledstvith probability at least — 1/47.
Choosingh := 2n7Q, this implies that afte¢ rounds, with probability at least — 1/1,
wy(v;) > 2nyQE > nyUnin for all v; of G. Finally, we make sure thdt:= eny(U/o +
log(D)) > e3h(1 4+ 1og(D)/Q) by fixing ¢ := 4c3 [¢f]. O
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Lemma 10. Consider any node v; and its corresponding bin B;. Let k(i) denote the number
of ballsin bin B; after ¢ rounds. Then for any ¢ > 0, wy(v;) > he(7) €.

Proof. We prove the lemma by induction on the number of roundBor¢ = 0, the lemma
clearly holds. We can assume that the initial work function values are all zero and correspond-
ingly all bins are empty initially. Assume that the induction hypothesis holdsaftemds. In
roundt + 1, if no ball is accepted in any bin then clearly the hypothesis remains true. Consider
the case where at least one ball is accepted by som8;bidy the induction hypothesis, we
havew;(v;) > h.(i)¢. Letvy be the node that determines the work function valug (v;),
i.e.,

w1 (vi) = wi(vg) 4+ rig1(vg) + 0(vs, vk).

Assume thaty, = v;. Then, the work function value af increases by the request cost
ri+1(v;), and since a ball was accepted i), r¢41(v;) > £ Thus, we havev,(v;) >
we(vi) + & > (he(i) + 1)€ = hey1(2)€, and we are done.

Next, assume that, # v;. Letd be the shortest path distance betweegandv;, in the
constraint graph. Since in rourid- 1 a ball was accepted iB;, B; and By, do not violate the
invariant. Therefore,

hi(7) — hy(k) < d — 1 + [ball accepted iy in roundt + 1],

where ‘{statement]” is 1 if statement is true, and) otherwise. By multiplying both sides with
¢ and rearranging terms, we obtain

(he(k) +d)¢ > (he(i) + 1 — [ball accepted By, in round? + 1])&.

Observe thatl < §(v;,v) by the definition ofd and the edge length@ of the constraint
graph. Moreover;,;1(vi) > [ball accepted irBy in roundt + 1)¢. Thus,

w1 (v;) = wi(vg) + rev1(ve) + 6(vi, vk)
hi(k)¢ + [ball accepted imBy in roundt + 1]¢ + d¢

> hy
> (he(i) + 1)§ = hyya (0)€.

Remark 2. We note that the above lower bound @st holds even against an adaptive adver-
sary. This is because the bound holds irrespective of the costs on the request vectors before
smoothing. Moreover, the bound holds even if the distribution is restricté 40), which is

the case while analyzing competitiveness if the inputs are random tasks.
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3.6 Upper Bounds

3.6.1 First Upper Bound

We can use the lower bound obtained in the last section to derive our first upper bound on the
smoothed competitive ratio e@ffa. We prove the following deterministic bound on the cost of
wia.

Lemma 11. Let K be any request sequence of length ¢. Then, wfa[K] < opt[K] + Diam - £.

Proof. Letsy, ..., s, denote the sequence of nodes visiteduy. For anyt, the cost incurred
by wfa to process task is C(t) := r(s;) + d(s¢—1,5¢). By Fact 7, we obtairC(t) =
wt(st,l) — ’wt,l(st). Hence,

L -1

wha[K] = > C(t) = we(se—1) —wols1) + > wilsi1) — wi(s141)

t=1 t=1
< wp(sp_1)+ (£ — 1) -Diam < mi‘r/l{wg(v)} + /- Diam,
veE

where the last two inequalities follow from Fact 5. Singe[/C] > min,cv wy(v), the lemma
follows. O

Theorem 12. The smoothed competitive ratio of wfa is

Diam [/ Unin
O(Umin ( . —i—log(D))).

Proof. Let the random variableS denote the smoothed sequence of length
0 := [con7y (Umin/o + log(D))] for somey > 1. By Lemma 11, we have for any sequence
K of ¢ tasks,wfa[K] < opt[K] + Diam - £. Thus by Corrollary 1, the upper bound follows
from the following bound

wia[S] opt[S] + Diam - £ Diam - £
E <E 1
[Opt[é’] H - [ opt[S] Ui
Di min
:(’)< iam <U +log(D)>>,
Unin o
where the last equality follows from the definition ©f O

3.6.2 Second Upper Bound

We prove a second upper bound on the smoothed competitive ratidaof The idea is as
follows. We derive two upper bounds on the smoothed competitive ratidznfThe first one
is a deterministic bound, and the second one uses the probabilistic lower bowpd. dve
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then combine these two bounds using the following fact. The proof of Fact 8 can be found in
Appendix 3.A.

Fact 8. Let A, B, and X;, 1 < i < m, be positive quantities. e have

AS™ X, BY™ X,
min{ szzé(;, Z;nl l} < VAB.
=1 “*1

Consider any deterministic task sequericeof length /. Let g, s1,..., s, denote the
sequence of nodes visited kyfa. DefineC' () := r(s¢) + d(s¢—1, s¢) as the processing cost
plus the transition cost incurred yfa in roundt.

With respect tdC we definel” as the set of rounds, where the increase of the work function
value ofs;_; is at least one half of the transition cost, i T if and only if u;(s;—1) —
wi—1(8¢-1) > 0(s¢-1, s¢)/2. Due to Fact 6 we havey(s; 1) = wi(s¢) + d(s¢—1,s¢). There-
fore, the above definition is equivalent to

T:= {t : wt(st) — wt_l(st_l) Z —%(5(8,5_1, St)} . (33)

We useT to denote the complement Bt
We first prove that the total cost effa on K is bounded by a constant times the total cost
contributed by rounds iff".

Lemma12. Let K be a sufficiently long task sequence such that wfa[fC] > 6Diam. Then,
wla[K] < 83,0 C(t).

Proof. We havewy(s;) — wo(sg) > —Diam, due to Fact 5 and sinegy(sg) < we(sg). Thus,

14

> (wi(st) = wi_1(s¢-1)) > —Diam.

t=1

Let R~ be the set of rounds whetg(s;) — w;—1(s;—1) < 0, and letR* be the set of rounds
wherew,(s;) — wy—1(s¢—1) > 0. The above inequality can be rewritten as

Z (we—1(st-1) — wi(sy)) < Diam + Z (wi(se) — wi—1(s1-1))-

teR™ teERT

SinceT C R~ and each term on the left hand side is non-negative, we have

> (w1 (si-1) — wi(s;)) < Diam + Y (wy(sy) — wy—1(s1-1)). (3.4)

teT tERT

For anyt € T, we haveC(t) < 3 (ws_1(si—1) — w(s)). This can be seen as follows.
We havewt_l(st) > wt_l(st_l) — 5(8t_1, St) by Fact 5 and"t(st) = wt(st) — wt_l(st) by
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(3.2). Thereforey;(s;) < 6(s¢1,5¢) — wy_1(s¢-1) + we(s¢). Moreover, sinceé € T and by
the definition (3.3) of", d(s;—1, s¢) < 2(w—1(s¢—1) — we(s¢)). Hence,

C(t) = r(se) +0(sp—1,8¢) < 3(w—1(84—1) —we(sy)) -

Furthermore, for any, we havew(s;) — w;—1(s;—1) < C(t). This follows because
wt(st) = wt_l(st) + ’f't(St) by (32) andwt_l(st) — wt_l(st_l) < (5(8,5_1,8,5) by Fact 5.
SinceR™ C T, we conclude

D (wilse) —wima(simn) < Y C1) <Y C(b).

tER* tER* teT
Therefore, (3.4) implies
1 .
3 Z C(t) < Diam + Z C(t).
teT teT

Exploiting the fact thatvfa[KC] = ", .+ C(t) + >_,cp C(t) andwfa[] > 6Diam, we obtain
wla[K] < 837,.4 C(t). O

We further partition” into 7" and7'?, where
T' :={t € T : wi(sy) — wy_1(s5¢) < 4Upaxdiam}, and T? =T\ T'.

For any round, we defineW; := " | w(v;) andAW,; := Wy — W;_;.

Lemma 13. Fix a round ¢ and consider any node « such that w(u) — wy—1(u) > H. If
H < 4Upaxdiam then AW, > H? /(10U ); otherwise AW, > nH /2.

Proof. Let H < 4Upaxdiam. Defined := | H/(8Umax)|. Ford = 0, the claim clearly holds.
Assumed > 0. Consider a shortest path:= (ugy, u1, ..., uq) of edge lengthl starting from
up = u. Sinced < |diam/2], there always exists a shortest path of lengti(Consider a
breadth-first search tree rootedwgt the depth of this tree is at leagliam/2].) By Fact 5,
we have for each, 0 < i < d,

wt(uz) > wt(UO) — 1Unax and wtfl(ui) < wtfl(UO)"i_iUmax-

Therefore,

d d d
S (wilus) — w1 () > S (i) = wp 1 (1)) = 2Winase S
=0 =0 =1

2

> 1inrr 0
~ 10Umax

Vv

(d+1)H — (d+ 1)dUpmax > (d + 1)(H — dUmax)
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where the last inequality holds sinde< H/(8Upax) < d + 1.
Let H > 4Uyaxdiam. Since for any node;, w; 1(v;) < w; 1(u) + Upaxdiam and
wi(v;) > wy(u) — Upaxdiam, we have

Z (wi(vi) — wi—1(vy)) > nH — 2nUpaxdiam > nH/2.
i=1

O

Lemma14. Let K be a sufficiently long task sequence such that opt[C] > 2Diam. There
exists a constant b such that

opt[K] > % (U;X S cw?+ny C(t)> .

teTt teT?

Proof. For every node;, wy(v;) < min,ey{w,(u)}+Diam (by Fact5). Moreovegrpt[K] >
min, ey {we(u)}. We obtain

n n
ng(vi) < n-opt[K]+nDiam, or, equivalently, opt[K] > 1 (Z wy(v;) — nDiam) .
n

Sinceopt[K] > 2Diam, the latter reduces to
2 n
opt[K] > 3n Zwé(vi)- (3.5)
i=1

Claim 1. Foranyt € T, AW; > C(t)?/(160Unax)-
Proof. By (3.2) we haver;(s;) = wy(s;) — wi—1(s¢). Below, we will show that
AW, > ((5(8,5_1, St)2 + ’f't(St)Q) /(80Umax)- (36)

SinceC(t)? = (6(sy_1,5¢) +re(s¢))? < 2(6(s¢-1,5¢)% + r1(s¢)?), we conclude that\ W, >
C(t)%/(160U,ax). We distinguish two cases.

Let 6(s¢—1,5¢) > ri(s¢). By the definition ofT, we havew(s;—1) — wi—1(s;—1) >
d(s¢—1,s¢)/2. Using Lemma 13 withH := §(s;—1, s¢)/2, we obtain

AWt Z (5(8t_1, St)2/(40Umax) Z ((5(8,5_1, St)2 + 'f't(St)Z) /(80Umax)-

Leto(s;—1,5:) < re(se). Sincewy(sy) — wy—1(st) = re(se) andry(sy) < 4Upaxdiam by
the definition ofT}, using Lemma 13 wittH := r,(s;), we obtain

AWt Z T‘t(st)2/(10Umax) Z (6(8t_1, 8t)2 + 'rt(st)2)/(20Umax)-
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]
Claim 2. For anyt € T?, AW, > 4nC(t)/10.

Proof. Sincet € T2, definition of 72 together with (3.2) imply thaty (s;) /4 > diamUyya, >
d(st=1,8¢). Thus,C(t) = ri(s¢) + d(s¢—1,8¢) < dre(s¢)/4. Furthermore, by (3.2) we have
ri(sy) = wy(sy) — wy—1(s¢). Applying Lemma 13 withH := r4(s;), we obtainAW, >
nri(sy)/2 > 4nC(t)/10. O

Claim 1 and Claim 2 together imply that

n l 1 4
;w(vi) > ;AWt >3 Aw, > mtg Oty + 15 > C(t).

terT teT?

The proof now follows for an appropriate constaritom (3.5). O

Theorem 13. The smoothed competitive ratio of wfa is

O(\/n g:l (Ul;i“ + log(D)>> .

Proof. Let the random variableS denote the smoothed sequence of length
0 := [eany(Umin/o +log(D))], for an appropriate. Due to Corrollary 1 it suffices to bound
E[wfa[S]/opt[S] | £], where€ is the even{opt[S] > nyUnin). Consider any smoothing out-
comeS such that the everff holds. We fixy sufficiently large such thaipt[S] > 6Diam.

Observe thatvfa[S] > opt[S] > 6Diam.

First, assume _, ;1 C(t) < >, C(t). Then, due to Lemma 12 and Lemma 14,
~ ~ 1
wia[S] < 16 Z C(t) and opt[S] > + Z C(t).
teT? teT?
Hence E[wfa[S]/opt[S] | €] = O(1).

Next, assume _, ;1 C(t) > >, C(t). By Lemma 12 and Lemma 14 we have

wial$] <16 3 C(t) and opt(S] > i( Ly C’(t)2>. 3.7)

teT! b\ Umax teT!
Thus,
S C(t
WEalS] 6hntr . (M) (3.8)
opt[S] ZteTl C(t)
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Since& holds, we also have

wha[S] L1630 C(t) ¢ (Unin S O)
Opt[é]S 0 - nyUnin < Umin( p +10g(D)>< 7] > (3.9

where the latter inequality holds for an appropriate constasihce/ > |T|. Observe that
(3.9) is well-defined sinc®”, ;1 C(t) > &wfa[S] (by (3.7)) andwfa[S] > 6Diam imply
that|7"| > 1.

Applying Fact 8 to (3.8) and (3.9), these two bounds are combined to

Wfa[b;] Umax Umin Umax Umin
— < 4/ 16bcn - log(D) ) = . log(D
Opt[S] - \/ Gben Umin ( g + Og( )> © (\/n Umin ( g + Og( )>> ’

which concludes the proof. O

3.6.3 Potential Function

In this section we use the standard potential method [CLR90] to derive an upper bound on the
expected cost of fa. This is useful for proving the upper bounds for the cases of random tasks
andp-elementary tasks.

Lemma 15. Let the random variable S denote the smoothed sequence of length ¢. For each ¢,
1 <t < ¢, and a given node s, define a random variable A (s) := min, ey {ry(u) + 0(u, s)}.
Let x > 0. If E[As(s)] < s foreachs € V and for each¢,1 < ¢ < /, then E[wfa[S]] <
4kl + Diam.

Before we proceed to prove the lemma, we provide some intuition. Assume we consider a
simple greedy online algorithaig that always moves to a node which minimizes the transition
plus request cost. That islg services task; by moving from its current position, say ,,
to a nodes; that minimizes the expressianin,cy {r;(u) + é(u, s, ,)}. Clearly, if the re-
quirement of Lemma 15 holds, the total expected cost®bn S ist:1 E[A¢(st—1)] < Ik.

The above lemma shows that the expected cost of the work function algoriffiis at most
4 times the expected cost alg plus some additive term.

Proof of Lemma 15. For1 < ¢t < /4, we denote by, the node in whichvfa resides after task
7, has been processed; we ugeo refer to the node in whiclfa resides initially.
We define a potential functio® as

O () := wy(s¢) + tDiam/2.
Observe that

D(L) — D(0) = we(sg) — wo(sg) + Diam > wy(sy) — we(sp) + Diam > 0,
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where the last inequality follows from Fact 5 and sin¢e, sy) < Diam.
We define theamortized cost C, (t) incurred bywfa to process task as
Ca(t) = ’f't(St) -+ 6(8t_1, St) + (I)(t) — (I)(t — 1)
= ’)"t(St) + (5(8t,1, St) + wt(st) — wt,l(stfl) + Dlam/é
= wy(sy) — wi—1(se) + we(s¢—1) — wy—1(s¢—1) + Diam/¢, (3.10)

where the last equality follows from Fact 7. Using Fact 5 and (3.1) we obtain that for each
u eV

wi—1(8¢) > wi—1(u) — 0(u,s¢) and  wy(sy) < wi—q(u) + re(u) + 0(u, s¢).
Combining these two inequalities, we obtain

wy(sy) —wi—1(s¢) < re(u) +20(u, sy) foreachu € V,
and hence wy(sy) — wi—1(s¢) < 2mi‘r/1{rt(u) +0(u,s1)} = 20(sy).
ue

A similar argument shows that; (s; 1) — w;—1(s¢—1) < 2A4(s;—1). Hence, we can rewrite
(3.10) as
Ca(t) S 2At(8t) + 2At(8t71) + Dlam/ﬁ

Sincewfa[S] = Zle Co(t) — ®(¢) + ©(0) and®(¢) — ¢(0) > 0, we obtain

14

> Calt)

t=1

14
Z (A¢(st) + Ag(si—1)) | + Diam < 4x¢ + Diam.
t=1

E[wfa[S]] <E < 2E

0

If £ > Diam then the above bound reducesQ¢x¢). Corrollary 1 together with the upper
bound of Lemma 15 yield the following corollary.

Corollary 2. Let the random variable S denote the smoothed sequence of
0 := [cony(Umin/o + log(D))] tasks for a fixed constant ¢,. If v > Umax, and therefore
¢ > Diam, the smoothed competitive ratio of wfa is

e[owial] =0 (air) =0 (G- 50))

3.6.4 Random Tasks

We derive an upper bound on the expected competitive ratiwfefif each request cost is
chosen independently from a probability distributipmvhich is non-increasing if0, co).
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We need the following fact; the proof is given in Appendix 3.A.

Fact 9. Let f be a continuous, non-increasing distribution over [0, co) with mean x and stan-
dard deviation . Then, p < v/120.

Theorem 14. If each request cost is chosen independently from a non-increasing probability
distribution f over [0, co) with standard deviation o then the expected competitive ratio of wfa

IS
g

Umin

o (1 + log(D)> .

Proof. Let S be a random task sequence of length= [ny(Unin/o) + log(D))], for an
appropriatey > Upax, generated fronf. Observe that since > Uy, We have/ > Diam.
For anyt and any node, we have

Ay(s) = {Lnei‘r/l{rt(u) +0(u, 5)} < ri(s).

Sincery(s) is chosen frony, Fact 9 implies thaE[A;(s)] < & := v/120. Thus, by Lemma 15,
we haveE[wfa[S]] = 4y/120¢ + Diam = O(c¥¢).

Note that we can use the lower bound established in Section 3.5 to bound the cost of
opt. The generation of is equivalent to smoothing (according {9 an adversarial task
sequence consisting of all-zero request vectors only. As we remarked earlier, the lower bound
onopt holds even for such distributions. Thus the theorem follows from Corrollary 21

3.6.5 [-Elementary Tasks

We can strengthen the upper bound on the smoothed competitive ratia iithe adversarial
task sequence only consists @felementary tasks. Recall that infaelementary task the
number of non-zero request costs is at mmst

Theorem 15. If the adversarial task sequence only consists of 5-elementary tasks then the
smoothed competitive ratio of wia is

O(ﬁ- % <%+log(D)>>.

We state the following fact. The proof is given in Appendix 3.A.

Fact 10. Let f be a permissible probability distribution. Then, E[max{0,¢}] < o, wherec is
a random variable chosen from f.

We first prove the following lemma.

Lemma 16. Let s be an arbitrary node of G. In round ¢ consider a S-elementary adversarial
task 7y := (7¢(v1), ..., 7¢(vy)), where 8 < n. Then, E[A(s)] < 0 4+ SUnax-
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Proof. LetVy C V be the set of all nodes with request cost zero, Vig:= {u € V : 7 (u) =

0}. Then,|Vu| > n — B, andVj is non-empty if3 < n. Letv* be a node froni} which is
closest tas. We haved(v*,s) < BUnax. (Otherwise, there must exist at legst- 1 nodes
with non-zero original cost, a contradiction.) Thus,

E[A(s)] < Emingey, {re(u) + 6(u, 5)}] < E[ry(v*) + §(v*, s)] < 0+ BUmax,

where the last inequality follows by Fact 10 and singe*) = max{0,s(v*)}, e(v*) is a
random variable chosen frogh O

Proof of Theorem 15. Let random variableS denote the smoothed sequence of lengtk-
[cony(Unin/o + log(D))], for an appropriatey > Upax. By Lemma 16 E[A4(s)] < & :=
0 + BUmax, Which isO(SUnax) sinceo < 2Up,, - The theorem now follows from Lemma 15
and Corrollary 2. O

3.7 Lower Bounds

In this section we present existential and universal lower bounds. All our lower bounds hold
for any deterministic online algorithmlg and against an adaptive adversary.

3.7.1 Existential Lower Bound for -Elementary Tasks

We show an existential lower bound f@relementary tasks on a line. We prove that the upper
boundO (8 (Umax/Umin) (Umin/o +1og(D))) established in Theorem 15 is tight up to a factor

Of Umax/Umin if the underlying graph is a line. For such a comparison toftedementary

upper bound (upper bound ghelementary tasks), it is necessary thatfhelementary upper

bound is stronger (lesser) than the general upper bounds of Theorem 12 and Theorem 13 for
arbitrary tasks. We use this to fix the minimum term in the following lower bound expression
of Theorem 16, which finally yields the necessary bound. Theorem 16 is also used later to
obtain the universal lower bound of Theorem 17.

Theorem 16. Let G be a line graph. If the adversarial task sequence only consists of /-
elementary tasks then the smoothed competitive ratio of any deterministic online algorithm

algis
Unin N Umin
Q(mindg. (Lmin ) 2. .
CC DR T )

Proof. We use the standard averaging technique (see [BLS92]). Divide the liné into
n/(2/) contiguous segments @f3 nodes. For simplicity assume thatis an integer. (This
does not affect the asymptotic lower bound.) We refer to these segmeftsdy. . ., S;.

Let s, be the node in whichlg resides after théth task. In round, the adversary issues a
p-elementary task by placing cost on each node that is within distarj¢gg/2] — 1 from g_1,
and zero cost on all other nodes. Let the random vari&ldenote a smoothed task sequence.
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We consider a seéB of h offline algorithms, one for each segment. [Btdenote the
offline algorithm that resides in segme$it B; always stays inS;. In each round, each
B; moves to a node in .S; minimizing the transition cost plus the request cost. Define
B[S] = Z?Zl B;[S] as the total cost incurred by the offline alggrithms@;nBj [S]is a
random variable denoting the total cost incurredB)yon S. Clearly,B[S] := B[S]/h is an
upper bound oppt[S].

Consider any round. At most two consecutive line segments can haveequest costs.
Moreover, in each segment at mgsof the 25 nodes may haveo costs. LetCj(t) be the
cost incurred byB; in roundt. Consider a segmeui; that receives ao request cost. Then,
E[C;(t)] < BUmax + 0 by Lemma 16. Assumg; does not receive amy request cost. Then,
E[C}(t)] < o by Fact 10.

Since in any round at most two segments may recsiveosts, we conclude

h ¢
ZZCj(t)] ge(%w).

j=1t=1

N 1| 1
EB[S] = E > Bj[S]| = B

i=1

By Markov inequality (Lemma 6)PrB[S] < 2E[B[S]]]
is forced to travel at least a distance[@f/2], we havealg[S]
We conclude

a,lg[S] 1 K/BUmin/Q o BUmin
B |:Opt[8]:| Z (5) 2 (2(ﬁU11;1ax+0') + 0.) =0 (BQUma,x/n + 0') '

That is, we obtain a lower bound Of((n/f3) - (Unin/Umax)) if B > \/1/(Umnax/o) and of
Q(B - (Unin/0)) if B < v/n/(Unax/o). In the latter case, exploiting that < 2U.,;,, we
obtain a2(S - (Umin/o + 1)) bound. O

Since in each roundilg

> 1
Z eﬁUmin/Q-

Observe that on a line the-elementary bound of Theorem 15 is stronger than the general
upper bound of Theorem 13 only if

B < NUmin
- Umax(Umin/U + 1) .

In this case, Theorem 16 provides a lower boun®@f - (Unin/o + 1)). That is, for a line
graph these bounds differ by a factor of at mdstx/Unin.

3.7.2 Universal Lower Bounds

We derive two universal lower bounds on the smoothed competitive ratio of any deterministic
algorithm. The first universal bound uses the following corollary of Theorem 16.
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Corollary 3. Let G be aline graph. Any deterministic algorithm alg has smoothed competi-
tive ratio Q(min{n, \/n(Umin/Umax) (Umin /0 + 1)}) against an adaptive adversary.

Proof. Fix 8 := \/NUmin/(Umax(Umin/o + 1)) and use the lower bound given in Theo-
rem 16. U

Theorem 17. Any deterministic algorithm alg has a smoothed competitive ratio of

Q (min {diam, \/diam- Unnin . (Umin + 1> }) .
Umax g

Proof. We extend Theorem 16 to arbitrary graphs in a straightforward way. Consider a path in
G of edge length at leasliam. The adversary enforces thdg andopt never leave this path

by specifyingoc cost for each node that is not part of the path. The desired lower bound now
follows from Corrollary 3. O

Next, we prove the following universal lower bound.

Theorem 18. Any deterministic algorithm alg has a smoothed competitive ratio of

Q (min{n, Ur;in + % . log(D)}) .

Proof. The adversary issues a sequencé tafsks as described below. For eadch < ¢ < /,
let s, denote the node at which the deterministic online algoritfgresides after theth task;
we uses to refer to the initial position odilg.
We prove two different lower bounds. Combining these two lower bounds, we obtain the
bound stated above.

We first obtain a lower bound d®(min{n, Uyin/0}) whenUpin/o > 1. In roundt, the
adversary enforces a request costpf, on s; 1 and zero request cost on all other nodes.
Recall that the adversary is adaptive and therefore knows the positidg. of

We use the averaging technique to relate the costgpfo the average cost of a collection
of offline algorithms. LetB be a collection ofn offline algorithms. We place one offline
algorithm at each node, and each offline algorithm remains at its node during the processing
of the task sequence. Létbe a random variable denoting a smoothing outcon®: diVe
defineBIS] as the total cost incurred by thealgorithms to procesS. Clearly, the average
costB[S] := B[S]/n is an upper bound onpt[S]. It suffices to prove that with constant
probability alg[S]/B[S] = Q(min{n, Unpi,/0}).

For the analysis, we view the smoothing process as being done in two stages.

Sage 1: Initially we smoother¥ zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequencg be (r{,... , 7).
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Stage 2: For eacht, 1 < ¢ < ¢, we replace the request costsf; in 7/ by the outcome of
smoothingUin. We user; to refer to the obtained task.

Let R'(v) := Zle r1(v) be the total request cost accumulated iwith respect taS.
Moreover, we defind random variableé/, ..., U,: U, refers to the smoothed request cost
r¢(s;—1) of taskr; obtained in Stage 2. For eath< ¢ < ¢, let Z; be a0/1 random variable
which is1 if and only if U; > Upin. We defineZ = Zle Z;. In the sequel, we condition
the smoothing outcom& on the conjunction of following three events:

E:=(X,ey R(v) <2nfo)  Fi= (0, Ui < MUnin) G :=(Z > 1/4)

We first argue that the evefd N F N G) occurs with at least constant probability. (i) Due
to Fact 10E[R/(v)] < /o for eachw € V. By Markov inequality, we thus har[€] > 1/2.
(i) By Fact 10 and sinc&@ < Upin, We also havéE[U;] < Upin + 0 < 2Unin for each
1 <t < 4. Hence by Markov inequality]?r[Zf:1 U > 4Upnin] < 1/2. (iii) Since the
smoothing distributiory is a symmetric, we havPr[U; > Ui, > 1/2 foreachl <t < 4.
Thus,E[Z;] > 1/2. Moreover, theZ;’s are independent. Applying Chernoff bound we obtain
Pr[Z < (/4] < e /16,

Since event is defined with respect t§, it is independent of the eve(fF N G). There-

fore,
_ _ _ > _
PréENFnNgG > 5 (1 (2+e oy

where the last inequality holds4f> 64.

Let S be any fixed outcome of the smoothing such fi#ath F N G) holds. Assume that
to process sequencg alg changes its position ik of the / rounds. LetZ; refer to the set of
rounds wherealg changes its position. We bound the cost of the offline algorithms as follows.
In any roundt, the total cost incurred by the offline algorithms at nodes different fyomis
atmosty_, i, ri(v). If alg does not move in round bothalg andB incur a cost ofj. If alg
moves in round, B incurs an additional cost @f;, since one algorithm residesdn ;. Thus,

B[S] < alg[S]+ > Ui+ Y R'(v) < alg[8] + 4€Upin + 2nlo,
teTy, veV

where the last inequality follows froft and€.

Since alsaj holds, we can conclude thalg incurs a cost of at leagl],,;,/4: In each of
the at least/4 rounds, we have,(s;—1) = U; > Unin. That is, no matter whetheatg moves
or stays in these rounds, it incurs a cost of at |éagt.

Thus, conditioned on the evef@ N F N G) we obtain for an appropriate constant

alg [8] alg [S] . Umin
&lo) > ¢ .
B[S] © 17alg[S]/n+2tc = " o

Next we obtain a lower bound 61((Umin/Umax) log(D)). Consider a node of G with
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degreeD. LetV; be the set of nodes containirgand all the neighbors of in G. DefineG;

as the subgraph a¥ induced byV;. The adversary makes sure that every reasonable online
algorithm will always reside at a node I§ by specifying in each round a request cosbof

for eachv ¢ V. In addition, in each roundthe adversary enforces the online algorithm to
move by placing a request cost®f ats,_;. All other request cost are zero.

Let S be a smoothed task sequence obtained So®inceG, is a star withD + 1 nodes
and the transition cost between any two nodes is at B1dgt,, Lemma 17 implies that there
exists a deterministic offline algorithB with E[B[S]] < 2cfUpax/ log(D). (Observe that
we can apply Lemma 17 here since with respediidhe request sequence is elementary.)
Applying Markov inequality, we obtaiiPr[B[S] > 4clUpax/ log(D)] < 1/2. Sincealg has
to move in each round to avoisb cost, the cost odlg for any smoothed sequence is at least
Uiy Putting everything together, we obtain

[255) =88] 1) s (5 ).

O

Lemmal7. Let G be a cligue with m + 1 nodes and maximum edge length U,,.,. Consider
an adversarial sequence S of ¢ elementary tasks for a sufficiently large £. Then, there exists
an offline algorithm B such that for m > 16, E[B[S]] < c/Upax/ log(m) for a constant c.

Proof. We first consider an adversarial sequefice (7,...,7) of k := |log(m)/2] ele-
mentary tasks. We view the smoothing of the elementary tasks as being done in two stages.

Sage 1. Initially we smoothenk zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequencg be (77,... , ;).

Stage 2: For eachy, 1 < ¢ < k, we obtain a task; from 7/ as follows. Letv* be the node
with non-zero request cogt(v*) in 7;. We replace the request costufin 7/ by the outcome
of smoothingi, (v*). LetS := (r,... , ) be the resulting task sequence.

For any nodey;, we define &/1 random variableX; which is1 if and only if the total
request cost accumulated inwith respect taS’ is zero. Since for each nodethe request
cost remains zero with probability at legstwe havePr[X; = 1] > (1/2)* > 1/\/m. Note
that theX,’s are independent. L& := X; + --- + X,,,11. We haveE[X] > /m. Let&
denote the ever(X > \/m/2). Using Chernoff bound we obtain

Pr[-€] = Pr[X < y/m/2] <e V™/5,

The offline algorithmB has two different strategies depending on whether egdrdlds
or not.

Srategy 1: If event& holds, B moves at the beginning to a nogevhose total accumu-
lated request cost is zero and stays there. (RecallRhatoffline.) Note that sinc€ holds
there are more thaym/2 — k such nodes; fom > 16 there exists at least one such node.
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Strategy 2: If event& does not holdB always moves to a node with minimum request
cost.

SinceB only incurs the initial travel cost of at mo&l, .y if £ holds, we obtain
E[B[S]] = E[B[S] | €] Pr€] + E[B[S] | +€] Pr[~€] < Unax + B[B[S]| ~€] - eV™/5.

Next, we boundE[B[S] | —£&]. Clearly, the transition cost in each round is at ngs,.
The expected request cost incurredByin roundt is E[min,cy {r:(u)} | =€]. Consider a
nodew; with 7 (v;) = 0. The smoothed request cost@fis not affected by Stage 2. We
haveE[min,cy{r:(u)} | -€] < E[ri(v;)|=€]. Let (X = z1,..., Ximt1 = Tmy1) be any
outcome such that€ holds. Since the request costs are chosen independently, we have

E[rt(vi) |X1 = T1y.-- ,Xm+1 = xm+1] = E[’I"t(?)i) |X1 = (IIZ]

If z; = 1thenE[r,(v;) | X; = z;] = 0, since all request costs gtmust be zero. If;; = 0
thenE[r.(v;) | Xi = zi] < E[ri(vi) |re(vi) > 0]. (Forr(v;) the event(X; = 0) means that
eitherr,(v;) = 0 andry (v;) > 0 for somet’ # ¢, or r4(v;) > 0.) By Fact 10, the expected
costE[r,(v;)] is at mosto. Moreover,Pr[r,(v;) > 0] > Pr[r,(v;) > o/cs] > 1. Hence,
Elri(v;) | re(v;) > 0] < 4E[r:(v;)] < 4o. Putting everything together, we obtain

k
| ﬁg S Z mlnuEV{Tt )} | ﬁg] + Uma.x) < k(40 + Umax) < 9kUnmaxs
t=1

where the last inequality holds since we assumedhat2Ui,in < 2Unax,
Altogether, we obtain for a sequen§eof lengthk and form > 16,

E[B[S]] < Unax + 9%Unax - € V™8 < 13U .

We conclude the proof as follows. We split the entire adversarial seqenickength /
into 5 > 1 subsequences of length(the final one might have length less than On each
subsequence3 performs as described above. We therefore obtain for the entire segfience
and an appropriate constant

clUmax

E[B[S]| < E og(m)”

= 13ija.x <

J
> 13Ummax

t=1

where the last inequality follows from the relation betwéeandj and definition ofk. O

Remark 3. The above proof goes through evewit= V™., yielding the same upper
bound onE[B[S]]. This implies that the existential lower bounds in the next section and the
universal lower bound of Theorem 18, where the above lemma is used, hold eves if
PWm) 1

max-
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Remark 4. The universal lower bound of Theorem 18 is established using only elementary
(1-elementary) tasks as the adversarial sequence. Hence this lower bound compares more
sharply against th@-elementary upper bound # = O(1), than the genergb-elementary

lower bound.

3.7.3 Existential L ower Bounds

We provide two existential lower bounds showing that for a large range of values for the
parameters, Unin, Umax, D andDiam, there exists a class of graphs on whécty determin-

istic algorithm has a smoothed competitive ratio that asymptotically matches the upper bounds
stated in Theorem 12 and Theorem 13. In order to prove these existential lower bounds, we
first show the following lemma.

Lemma 18. Given, number of nodes n, minimumedge cost Upyin, maximum edge cost Upax,
maximumdegree D > 3, and diameter Diam such that

Diam > 4Upinlogp_1(n), and D := min{Diam/Unayx, D} > 17,

there exists a graph such that the smoothed competitive ratio of any deterministic algorithm

algis
. nUmax Diam Umin
Q . log(D .
(mm{ Diam ’ Upin ( ;T logl )> })

Note. We would like to point out that in any graph ef nodes and maximum degrde,
Diam > Upnin logp_;(n). Hence the restriction obBiam in the above lemma is only slightly
stronger, i.e., by a constant factor.

Proof of Lemma 18 . We construct a grapty as depicted in Figure 3.2. The graph consists of
m = %nUmaX/Diam cliques. Each cligue ha® nodes and the length of an edge between
any two nodes i$/,in. We need to ensure that the maximum degree is at modtherefore,
we connect each clique by a path té/a— 1)-ary treel’. Each such path consists &fedges

of lengthU,.x. We assign a length @f,,,;,, to each edge ifi'. Each clique is attached to a leaf
node ofT’; a leaf node may take up 0 — 1 cliques. Sincen cliques need to be connected to
T and we can attach at mgdb — 1) cliques to a tree of heigltt— 1, we fix b := log;,_(m).

The total number of nodes ifi is therefore((D — 1Y* — 1)/(D — 2) < m, sinceD > 3.

It is easy to verify thain + m - (X — 1) + m - D < n, i.e., the total number of nodes @#

is at mostn. (If it is less thann, we let the remaining nodes become parflof The graph
should have diameté@biam and thus we fixX such tha®(Uyin + X - Umax + (b — 1) Upin) =
Diam, i.e.,X := [(Diam/2 — hUpin)/Umax |- Moreover, we want that the minimum distance
between any two nodes in different cliques is at l€d3tam, i.e., X - Unax > gDiam.

If Diam > 4Upin log_q(n), this condition holds. (Also observe that in any graphnof
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(D — 1)-ary tree
heighth — 1

Fomm - -

m cliques of sizeD

Fig. 3.2:The lower bound graph. Eacl; is aD-clique which is connected to the central ttEdy a
path havingX edges.

nodes and maximum degrég Diam/Up,i, > logp_(n), i.e., our condition is only slightly
stronger.)

Consider the casd/yin/oc > log(D). We need to prove a lower bound of
Q (min{nUmax/Diam, Diam/c}). In each round, the adversary imposescarcost on all
nodes of the graph except on those nodes that join a clique with its path. That is, the adversary
restricts bothalg andopt to stay in a “virtual” clique of sizen with Ui, = iDiam and
Umax = Diam. Applying the universal lower bound of Theorem 18 to this clique we obtain
the desired lower bound 6f(min{m, Diam/o}).

Consider the casé,i,/o < log(D). In each round, the adversary imposes>arost on
all nodes inT" and on all nodes that belong to a connecting path. Furthermore, in each round,
the adversary forces the online algorithilg to leave its clique by specifyingo costs on all
nodes of the clique in whichlg resides. All other request costs are zero.

We use the standard averaging technique. We define a collectior dbffline algorithms
and compare the cost alg with the average cost of the offline algorithms. At most one
algorithm resides in each cliqgue. An offline algorittigy remains in its clique’; until co
costs are imposed ofy;; at this point,B; moves to the free clique. Within each clique, the
offline algorithm follows the strategy as specified in the proof of Lemma 17. We may assume
without loss of generality that eadB} starts in a different clique (see Appendix 3.B).

Consider a smoothed sequerg®f length/. Let B[S] be the total cost incurred by the
offline algorithms and definB;[S] as the total cost aB; on S. The total cost of the offline
algorithms to travel away from cliques with costs is at mostDiam. The expected cost
of each algorithm in a clique with zero adversarial request cost is, due to Lemma 17, at most
clUmin/ log(D — 1); recall that each clique is of siZé > 17 and the maximum edge length
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in each clique i€/yi,. Thus,

E[B[S]] - /Diam n 1 B

—m-—1 m—1

< /Diam n AU min
“m-—1 log(D-1)

By Markov inequality,Pr[B[S] < 2E[B[S]]] > 3. Clearly,alg[S] > 1¢Diam. Therefore,

1/Di i
E[alg[i]] > (%) i laZIU — =9 (min{m, %ﬂ -log(D)}) :
opt[s] 20021 + ) min

O

The next bound shows that if Theorem 12 gives a better upper bound than Theorem 13
then this bound is tight up to a factor ig(D)/ log(D) < log(n) for a large class of graphs.

Theorem 19. There exists a class of graphs such that the smoothed competitive ratio of any
deterministic algorithm alg is

Di min
Q <min{n,ﬂ (U —i—log(D)) }) ,
Umin o

where D = min{Diam/Up;n, D}.

Proof. If Theorem 12 gives a better upper bound than Theorem 13, we have

Di Umin Um X Umin
- +log(D) ) <yfn- == +log(D) |,
Umin g Umin g

which is equivalent to

U max - Diam (Umin

log(D) ) .
Diam = Upin + log( )>

o

Sincelog(D) > log(D), we obtain from Lemma 18 the desired lower bound. O

Theorem 20. There exist a class of graphs such that the smoothed competitive ratio of any
deterministic algorithm alg is

0 (min {n \/n g‘::; (U‘;in + log(D)> }) ,

where D = min{Diam/Up;n, D}.

Proof. LetUpin/o > log(D). We fix Diam such thatUp,,y /Diam = Diam/o, i.e.,Diam =
VnoUmax. The lower bound of Lemma 18 then reduce$iQ/nUmax/0).
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Assumelp,in /o < log(D). We fixDiam such thatUy,ax /Diam = (Diam /Uy ) log(D),
i.e., Diam = \/nUmaxUmin/log(D). The lower bound of Lemma 18 then reduces to
Q(\/n(Uma,x/Umin) log(D))' O

3.8 Concluding Remarks

In this chapter, we focused on the asymptotic behavior of WFA if the request costs of an ad-
versarial task sequence are perturbed by means of a symmetric additive smoothing model. We
showed that already for = ©(Uni,), the smoothed competitive ratio of WFA is much better

than its worst-case competitive ratio suggests and that it depends on topological parameters of
the underlying graph. Moreover, all our bounds, except the ong-elementary tasks, are

tight up to constant factors on a large class of graphs whemges betwee® and© ({yiy ) -

We believe that our analysis gives a strong indication that the performance of WFA in practice
is much better thaBn — 1. An open problem is to strengthen the universal lower bounds.

3.A Proofsof Facts

Proof of Fact 5. Assumez: is the node that defines,(v), i.e.,ws(v) = wi—1(x) + r4(x) +
d(z,v). We havew, (u) < wy—1(z)+ri(z)+0(x,u) < wi—i(x)+ry(x)+0(x,v)+d(v,u) =
wi(v) + (v, u). O

Proof of Fact 6. By (3.2), we have thatv(s;) + 0(si—1,5¢) < w(v) + §(s¢—1,v) for all
v € V. In particular, forv = s, this implieswy(s;) < wi(si—1) — d(s¢—1, s¢). On the other
hand, due to Fact 5l}t(8t) > ’lUt(St,l) — 5(8t,1, St). Ol

Proof of Fact 7. Using (3.2) and Fact 6, we obtain

re(se) + 0(st—1,51) = wi(se) — wi—1(5¢) +wi(si—1) — wi(s¢) = we(s1-1) — wi—1(5¢).

O
Proof of Fact 8. DefineX := min{A Em%()f, B Z%lXi } First, note that
i=1 4
m(X{+ X5+ +X2) > (X1 + X+ + Xpn)?, (3.11)

because .
1
DIEEBIED LRI P oot
i i=1 i,
DefineY := "™, X;/m. Note thatY is positive. Due to (3.11), we can writ# <
min{A/Y, BY }. The latter expression is maximizedAf/Y = BY,i.e., ifY = /A/B.
ThusX < VAB. ]
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Proof of Fact 9. Let X be a random variable chosen frginDefine as the event| X — | >
1/2). Using Chebyshev inequality (Lemma 7), we obtain

Pr(f] = Pr[|X —ul > %] < ‘%2 (3.12)
Sincef is continuous and non-increasing|in co),
Pr§] = Pr[|X —ul > g] > Pr[X < g] > %Pr [% <X < 37“] > %Pr[—f].
This implies thaPr[] > 1. Hence, (3.12) gives? < 1202 O

Proof of Fact 10. DefineY := max{0, X}. Sinceu = 0, we haves®> = E[X?]. Letoy
denote the standard deviation of the distributiorofBy the definition ofE[X?], E[Y?] =
LE[X?]. Sinces? = E[Y?] - E[Y]* ando? > 0, we haveE[Y]?> < E[Y?]. This in turn
implies thatE[Y] < o/v/2. O

3.B Constant Additive Cost for the Offline Algorithm

We note that in our lower bound proofs we can assume without loss of generalitypthat
incurs an additional additive cost gfwhich is independent of the length of the input sequence.
This does not change the asymptotics of the lower bounds. This can be seen as follows. We
always prove a lower bound of s&/(Y/X) on a task sequence of lengtlby showing that

with constant probability the expected coshdf is at leasty” - £ and the cost obpt is at most

X -£. In order to make sure that the additive cdsloes not influence the competitive ratio, we

only have to make sure that the task sequence under consideration is sufficiently long. If we
choose/ such thatX - ¢ > Z, we obtain a lower bound &2((Y - ¢) /(X - £+ Z)) = Q(Y/ X).

3.C Proof that WFA iswell-defined

Proof of Lemma 5. [BEY98] Define the sett’ = {y: y € V and y = arg min, {w;41(z) +

§(st, )} }. Clearly, A" is not empty because the set of nodéss finite ad not empty. We will
prove that there is an element dfthat also satisfies the second condition in the lemma. This
will prove that the sefd is not empty.

Foreachr € V, w1 (z) < wi(x) + revi(x). This is because the optimal way to process
the sequencé,; ending in state: is surely no more costly than optimally processig
ending inz and then processing,; from xz. Adding d(z, s;) to both sides of this inequality,
we get,

w1 (z) + 6(x, s¢) < wi(x) + repr(x) + d(z, 8¢). (3.13)
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Let z be an element oft and letz* be the state for which the minimum in equation (3.1) with
v = z iS obtained. That is,

wit1(2) = we(z") + repa (%) +0(27, 2). (3.14)
Adding d(z*, s;) to above equation and rearranging terms, we obtain,
wi(x*) + r (7)) + 0(x%,80) = wep1(z) +0(x%, 8¢) — 0(z*, 2). (3.15)

Using the triangle inequality(z*, s;) — 0(z*,2) < d(z, s;), inequality (3.13), equation
(3.15), we get,

w1 () +0(2%,8¢) < wir1(2) + (2, s¢). (3.16)

Therefore, since = argming{w;y1(2z) + d(z,s;)}, it must be thatz* € A’. Moreover,
inequality (3.16) must be an equality. Therefore, whea «*, inequality (3.13) must also be
an equality. Hence* is an element ofd. O






Chapter 4

Randomized Pursuit-Evasion in Graphs

4.1 Introduction

In this chapter we study a pursuit-evasion game on graphs. In this round-based game, a pursuer
tries to catch an evader (the adversary) while they both travel from node to node of a connected,
undirected grapliz. We also refer to these players ldanter and Rabbit respectively. The

hunter catches the rabbit when in some round the hunter and the rabbit are both located on
the same node of the graph. We assume that both players know the graph in advance but they
cannot see each other until the rabbit gets caught. Both players may use a randomized (also
calledmixed) strategy, where each player is oblivious to the random choices made by the other
player. That is, each player has a secure source of randomness which cannot be observed by
the other player. In this setting we study upper bounds (i.e., good hunter strategies) as well as
lower bounds (i.e., good rabbit strategies) on the expected number of rounds until the hunter
catches the rabbit.

The problem we address is motivated by the question of how long it takes a single pursuer
to find an evader on a given graph that, for example, corresponds to a computer network or to
a map of a terrain in which the evader is hiding. A natural assumption is that both the pursuer
and the evader have to follow the edges of the graph. In some cases however it might be that
the evader has more advanced possibilities than the pursuer in the terrain where he is hiding.
Therefore we additionally consider a stronger adversarial model in which the evader is allowed
to jump arbitrarily between nodes of the graph. Such a jump between nodes corresponds to
a short-cut between two places which is only known to the evader (like a rabbit using rabbit
holes). Obviously, a strategy that is efficient against an evader that can jump is efficient as well
against an evader who may only move along the edges of the graph.

Publication Notes. A preliminary version of this joint work, together with Micah Adler, Har-
ald Racke, Christian Sohler and BertholabtKing, was published in the proceedings of the
29th International Colloquium on Automata, Languages, and Programming (ICALP), 2002
[ARST02]. A journal version of this work appeared in Combinatorics, Probability and Com-
puting [ARS 03].
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One approach to use for a hunter strategy would be to perform a random walk on the graph
G. Unfortunately, the hitting time of a random walk, i.e., the expected number of rounds
needed to reach another node, can be as largg&$ with » denoting the number of nodes
[MR95]. Thus it would require at least(n*) rounds to find a rabbit even if the rabbit does
not move at all. We show that one can do significantly better. In particular, we prove that for
any graphG with n nodes there is a hunter strategy such that the expected number of rounds
until a rabbit that is not necessarily restricted to the graph is caugb{rndogn) rounds.
Furthermore we show that this result cannot be improved in general as there is a graph with
nodes and an unrestricted rabbit strategy such that the expected number of rounds required to
catch this rabbit i$2(n log n) for any hunter strategy.

4.2 Related Work

Search games have a long history in the field of game theory: In 1965 Isaacs introduced the
so-calledPrincess-Monster game [Isa65]. In this game a (highly intelligent) monster tries to
capture a princess in a totally dark rodnwith arbitrary shape. Both the monster and the
princess are aware of the boundary of the room and the monster catches the princess if their
mutual distance becomes smaller than some threshold (which is small in comparison with
the extension o). The monster moves at a known speed using simple motion, that is, the
monster moves along continuous trajectories ingderhe princess moves along continuous
trajectories but at arbitrary speed.

Since the general game seemed to be hard to analyze Isaacs also introduced a simpler
Princess-Monster game where both the princess and the monster are moving on a closed curve
taken as a circle. This game has been analyzed several years later by Alpern [Alp74] and
Zelekin [Zel72]. Finally, Gal presented an analysis of the Princess-Monster game in a convex
multidimensional region [Gal79].

The Hunter vs. Rabbit game isdascrete variant of the Princess-Monster game that is
played in rounds. The most important difference between the two variants is that in our case
the rabbit (the princess) can use short-cuts not known to the hunter (the monster), that is, the
rabbit is allowed to ‘jump’ from a node to any other node of the graph. Further the rabbit is
only caught if at the end of a round it is on the same node as the hunter. During the motion the
rabbit cannot be caught.

A first study of the Hunter vs. Rabbit game can be found in [AK®]. The presented
hunter strategy is based on a random walk on the graph and it is shown that the hunter catches
an unrestricted rabbit withi) (nm?) rounds, where: andm denote the number of nodes
and edges, respectively. In fact, the authors place some additional restrictions on the space
requirements for the hunter strategy, which is an aspect that we do not consider.

In the area of mobile ad-hoc networks, related models are used to design communica-
tion protocols (see e.g. [CNP1, CNS01, BK87]). In this scenario, some mobile users (the
“hunters”) aid in transmitting messages to the receivers (the “rabbits”). The expected number
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of rounds needed to catch the rabbit in our model corresponds directly to the expected time
needed to deliver a message. We improve the deliver time of known protocols, which are based
on random walks.

Deterministic pursuit-evasion games in graphs are well-studied. In the early work by Par-
sons [Par76, Par78] the graph was considered to be a system of tunnels in which a fugitive is
hiding. Parsons introduced the concept of seach number of a graph which is, informally
speaking, the minimum number of guards needed to capture a fugitive who can move with
arbitrary speed. LaPaugh [LaP93] showed thdtgiuards are sufficient to capture the fugi-
tive then this can be done without re-contamination, i.e., if at any point of time the fugitive is
known not to be in edgethen there is no chance for him to enter edgeéthout being caught
in the remainder of the game. Meggido et al. [MH&SB] proved that the computation of the
search number of a graph is AtP-hard problem which implies it P-completeness because
of LaPaugh'’s result.

If an edge can be cleared without moving along it, but it suffices to ‘look into’ an edge
from a node, then the minimum number of guards needed to catch the fugitive is called the
node search number of a graph [KP86]. Connections between the search number and the
fundamental graph parameters like vertex separation were studied in [EST94].

Pursuit evasion problems in the plane were introduced by Suzuki and Yamashita [SY92].
They gave necessary and sufficient conditions for a simple polygon to be searchable by a single
pursuer. Later Guibas et al. [GI[99] presented a complete algorithm and showed that the
problem of determining the minimal number of pursuers needed to clear a polygonal region
with holes isNP-hard. Recently, Park et al. [PLCO1] gave three necessary and sufficient
conditions for a polygon to be searchable and showed that there(&s&ntime algorithm
for constructing a search path for arsided polygon.

Efrat et al. [EGHP 00] gave a polynomial time algorithm for the problem of clearing a
simple polygon with a chain of pursuers when the first and last pursuer have to move on the
boundary of the polygon.

In our setting the hunter and the rabbit have no visibility, they can see each other only if
they are in the same node. Hunter strategies in case of full-visibility have also been studied
(with restricted rabbit) [NW83, BW00]. The number of hunters needed to find the rabbit is
called the cop number. It is known that the cop number of planar graphs is at most 3 [AF84]
but the case of general graphs is still open [NN98, FNO1].

4.3 Our Contribution

We present a hunter strategy for general networks that improves significantly on the results
obtained by using random walks. Lét = (V, E) denote a connected graph withnodes

and diametexliam(G), which is the maximum over all pairwise shortest path distances in
G. Observe thaf2(n) is a lower bound on the escape length against restricted as well as
against unrestricted rabbit strategies on every graph aitbdes (the rabbit chooses its first
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node uniformly at random and does not move during the game). Our hunter strategy achieves
escape length close to this lower bound. In particular, we present a hunter strategy that has an
expected escape length of orl)(n log(diam(G))) against any unrestricted rabbit strategy.
Clearly, an upper bound on the escape length against unrestricted rabbit strategies implies the
same upper bound against restricted strategies.
Our general hunter strategy is based on a hunter strategy for cycles which is then simulated
on general graphs. Observe that if hunter and rabbit are restricted to a cycle, then there is a
simple, efficient hunter strategy with escape len@tn) - in every nth round, the hunter
chooses dalirection at random, either clockwise or counterclockwise, and then he follows the
cycle in this direction for the next rounds. Against unrestricted rabbits, however, the problem
of devising efficient hunter strategies becomes much more challenging. For example, for the
hunter strategy given above, the following simple rabbit strategy results in an escape length of
©(n+/n). In each phase of rounds, the rabbit first chooses a direction and a starting position
atrandom. Now it sweeps the cycle fgr rounds and then jump back by a lengti2gfn. and
then repeats this. For unrestricted rabbits on cycles of lemgthe present a hunter strategy
with escape lengtld(n log n). Furthermore, we prove that this result is optimal by devising
an unrestricted rabbit strategy with escape lerfgth log n) against any hunter strategy on
the cycle.
Generalizing the lower bound for cycles, we can show that our general hunter strategy is
optimal in the sense that for any positive integerd with d < n there exists a grap with
n nodes and diametef such that any hunter strategy 6hhas escape lengt(n - log(d)).
This gives rise to the question whether log(diam(G)) is a universal lower bound on the
escape length in any graph. We can answer this question negatively. In fact, we present a
hunter strategy with escape lengttn) for complete binary trees against unrestricted rabbits.
Finally, we investigate the Hunter vs. Rabbit game on strongly connected directed graphs.
We show that there exists a directed graph for which every hunter Segisrounds to catch
a restricted rabbit. Furthermore, for every strongly connected directed graph, there is a hunter
strategy with escape length(n?) against unrestricted rabbits.

44 Preliminaries

Definition of the game. The Hunter vs. Rabbit game is a round-based game that is played
on an undirected connected gragh= (V, E') without self loops and multiple edges. In this
game there are two players — the hunter and the rabbit — moving on the na@eSloé hunter

tries to catch the rabbit, i.e., he tries to move to the same node as the rabbit, and the rabbit tries
not to be caught.

During the game both players cannot “see” each other, i.e., a player has no information
about the movement decisions made by his opponent and thus does not know his position in
the graph. The only interaction between both players occurs when the game ends because
the hunter and the rabbit move to the same nodé& iand the rabbit is caught. Therefore
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the movement decisions of both players do not depend on each other. We want to find good
strategies for both hunter and rabbit. Strategies are defined as follows:

Definition 1. A pure strategy for a player in the Hunter vs. Rabbit game on a graph G =
(V,E)isasequence S = &, S1,Se, ..., where S; € V' denotes the position of the player in
round ¢ € IN, of the game. A mixed strategy & for a player is a probability distribution over
the set of pure strategies.

Note that both players may use mixed strategies, i.e., we assume that they both have a
secure source of random bits for randomizing their movements on the graph.

For two pure strategie®{ and R of hunter and rabbit, respectively, tlescape length
el(H,R) := min{t € Ny | H; = R;} is the number of rounds until the rabbit is caught.
Similarly, el($), 2?) denotes thexpected escape length for two mixed strategie$) and*R.

We analyze for both players the best expected escape length the player can guarantee for
himself, regardless of what the other player does. This means we give asymptotically tight
bounds onming maxgy el($), RR) for the hunter and omaxy ming el(9,R) for the rabbit,
where the maxima and minima are taken over all mixed hunter and rabbit strategies, respec-
tively.

As mentioned in the previous section we assume that the hunter cannot change his position
arbitrarily between two consecutive rounds but has to follow the edgés ® model this we
call a pure strategy restricted (to G) if either (§, S;.+1) € E or S; = S;41 holds for every
t € INy. A (mixed) strategy is called restricted if it is a probability distribution over the set
of restricted pure strategies. For the analysis we will consider only restricted strategies for the
hunter and both restricted and unrestricted strategies for the rabbit.

Notice that in our definition, the hunter may start his walk on the graph at an arbitrary
node. However, we want to point out that defining a fixed starting position for the hunter
would not asymptotically affect the results.

Basic Concepts

The strategies will be analyzed in phases. A phase consistsaufnsecutive rounds, where
m Will be defined depending on the context. Suppose that we are givesrraund hunter
strategy$) and anm-round rabbit strategik for a phase. We want to determine the probability
that the rabbit is caught during the phase. Therefore we introduce the indicator random vari-
ableshit(t),0 < ¢t < m for the eventH, = R, that the pure hunter strategy and the pure
rabbit strategyR chosen according t§ andfR, respectively, meet in roundof the phase.
Furthermore, we define indicator random variabes(¢),0 < ¢ < m describing first hits,
i.e., fhit(t) = 1iff hit(t) = 1 andhit(t') = 0 for everyt’ € {0,... ,t —1}. Finally we define
hits = Y7o " hit (t).

The goal of our analysis is to derive upper and lower bound®fohits > 1], the proba-
bility that the rabbit is caught in the phase. To analyze the quality ef-aound rabbit strategy
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we fix a pure hunter stratedgy and derive a lower bound on the probabilRy|hits > 1] using
the following proposition which follows trivially from the definitions.

Proposition 1. Let R be an m-round rabbit strategy and let # be a pure m-round hunter
strategy. Then

E [hits]
E [hits | hits > 1]

Pr [hits > 1] =

Similarly, to analyze the quality of am-round hunter strategy we fix a pure rabbit strategy
and apply the following proposition, which is known as the Second Moment method.

Proposition 2. Let $) be an m-round hunter strategy and let R be a pure m-round rabbit
strategy. Then

E [hits]?

Prhits > 1] > —= .
rlbits 2 1) 2 G

Proof. We consider the conditional expectatidBshits | hits # 0] andE [hits® | hits # 0].
For these we have

E [hits® | hits # 0] — E [hits | hits # 0]* = Var [hits | hits # 0] > 0 .

. te2
By usingE [hits | hits # 0] = % andE [hits” | hits # 0] = % we get
E [hits®] ._BE [hits]?
Pr [hits # 0] — Pr [hits # 0]*
which yields the lemma sin@r|[hits > 1] = Prlhits # 0]. O

Note that in both cases a bound aga@sétpure strategies of the other player implies the
same bound against mixed strategies, as well.

45 Efficient Hunter Strategies

In this section we prove that for a graghwith » nodes and diametefiam(G), there ex-

ists a hunter strategy such that for every rabbit strategy the expected escape leéngth is
log(diam(G))). For this general strategy we cow@rwith a set of small cycles and then use

a subroutine for searching these cycles. We first describe this subroutine: an efficient hunter
strategy for catching the rabbit on a cycle. The general strategy is described in section 4.5.2.
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45.1 Strategiesfor Cyclesand Circles

We prove that there is afi(n)-round hunter strategy on aninode cycle that has a probability

of catching the rabbit of at leagg— = Q(m), whereH,, is then'® harmonic number,

which is defined a§ """ , % Clearly, by repeating this strategy until the rabbit is caught we get

a hunter strategy such that for every rabbit strategy the expected escape léngthlig(n)).

In order to keep the description of the strategy as simple as possible, we introduce a continuous
version of the Hunter vs. Rabbit game for cycles. In this version the hunter tries to catch
the rabbit on the boundary of a circle with circumference The rules are as follows. In

every round the hunter and the rabbit reside at arbitrary, i.e., continuously chosen points on
the boundary of the circle. The rabbit is allowed to jump, i.e., it can change its position
arbitrarily between two consecutive rounds whereas the hunter can cover at most a distance
of one. For the notion ofatching, we partition the boundary of the circle intodistinct half

open intervals of length one. The hunter catches the rabbit if and only if there is a round
in which both the hunter and the rabbit reside in the same interval. Since each interval of the
boundary corresponds directly to a node of the cycle and vice versa we can make the following
observation.

Observation 7. Every hunter strategy for the Hunter vs. Rabbit game on the circle with
circumference n can be simulated on the n-node cycle, achieving the same expected escape
length.

TheO(n)-round hunter strategy for catching the rabbit on the circle consists of two phases
that work as follows. In annitialization phase that lasts for[n/2] rounds the hunter first
selects a random position on the boundary astérging position of the followingmain phase.

Then the hunter goes to this position. Note that2] rounds suffice for the hunter to reach

any position on the circle boundary. We will not care whether the rabbit gets caught during
the initialization phase. Therefore there is no need for specifying the exact route taken by the
hunter to get to the starting position.

After the first[n/2] rounds themain phase starts, which lasts fon rounds. The hunter
selects a velocity uniformly at random between 0 and 1 and proceeds in clockwise direction
according to this velocity. This means that a hunter with starting positian [0,n) and
velocity v € [0, 1] resides at positiofis + ¢ - v) mod n in the ¢th round of the main phase.

This strategy is called the AADOMSPEED-strategy. Clearly, it takes exact[gnl = O(n)
rounds. The following analysis shows that it achieves the desired probability of catching the
rabbit when simulated on the-node cycle.

Theorem 21. On an n-node cycle a hunter using the RANDOM SPEED-strategy catches the

rabbit with probability at least 7L = Q(=1—).

Proof. We prove that the bound holds for the Hunter vs. Rabbit game on the circle. The
theorem then follows from Observation 7.
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Since the rabbit strategy is oblivious in the sense that it does not know the random choices
made by the hunter we can assume that the rabbit strategy is fixed in the beginning before the
hunter starts. Consider an arbitrary pure rabbit straf@gy Ry, R1,--. ,Rn_1, .., R iS
the interval containing the rabbit in rounaf this phase.

For this rabbit strategy letits denote a random variable counting how often the hunter
catches the rabbit. This mealss is the number of rounds during the main phase in which the
hunter and the rabbit reside in the same interval. The theorem follows by showing that for any
rabbit strategyR the probabilityPr [hits > 1] = Pr [hunter catches rabbit] iS at Ieastmnﬁ.

For this purpose we estimai|[hits] andE [hitsz] and use Proposition 2 to derive a bound
for Pr [hits > 1]. LetQ = [0,n) x [0, 1] denote the sample space of the random experiment
performed by the hunter. Further Igt C 2 denote the subset of random choices such that the
hunter resides in the/ interval during the #, round of the main phase. The hunter catches
the rabbit in round iff his random choices € Q2 is in the setS; , which we denote by the
indicator functionSj, (w).

starting positions

O kB N W N O o N O

@) (b)

Fig. 4.1:(a) The sample spade of the RANDOM SPEED strategy can be viewed as the surface of a
cylinder. The set$! correspond to stripes on this surface. (b) The intersection between two
stripes of slope-s and—t, respectively.

The following interpretation of the set§ will help in deriving bounds foi [hits] and
E [hitsQ]. We represenf? as the surface of a cylinder as shown in Figure 4.1(a) {the
axis wraps around). The values correspond to the positions on the circle andrthialues
correspond to the different velocities. A sgtcorresponds to a stripe around the cylinder that
has slope‘di—j = —t and ared. To see this recall that a point = (s, v) belongs to the seff
iff the hunter positiorp, in roundt resulting from the random choieglies in theith interval
I;. Sincep; = (s + t - v) mod n according to the RNDOM SPEED-strategy we can writé!
as{(s,v) | s = (pr —t-v) modn A p; € I;} which corresponds to a stripe of slope.
For the area, observe that allstripesS! of a fixed slope together cover the whole area of
the cylinder which is:. Therefore each stripe has the same areh & pure strategy of the
rabbit thus corresponds to covering this surface withars, each with a different slope from
{0,—1,...,—(n—1)}. The hunter strategy corresponds to throwing a dart (choosing a point)
on this surface uniformly at random. We are interested in the probability that the dart hits the
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covered region. For this we first estim@idhits] as

E [hits] =

n—1
th ] > E[hit(t / — Sk, (w)dw = 1 (4.1)
t=0

Note thath St w) dw is the area of a stripe and trﬂgais the density of the uniform distribu-
tion over(.
We now provide an upper bound Gh[hitsZ]. By definition ofhits we have,

n—1ln—1
Z Z hit(s) - hit(t ]

s=0 t=0

n—1 2
E [hits’] = E (Z hz’t(t)) =E
n—1ln—1

—ZZ/ L3, (@) - Sk, (w) dw

s=0 t=0

(4.2)

Sk, (w ) Sk, (w) is the indicator function of the intersection betwe#n andS%,. Therefore
fQ Ss St ,(w) dw is the area of the intersection of two stripes and can be bounded using
the foIIowmg Iemma.

Lemma 19. Theareaof the intersection between two stripes S; and S;- withs,t € {0,... ,n—

1}, isat most = s|

Proof. W.l.o.g. we assumeé > s. Figure 4.1(b) illustrates the case where the intersection
between both stripes is maximal. Note that the limitation for the slope values together with the
size of the cylinder surface ensure that the intersection is contiguous. This means the stripes
only “meet” once on the surface of the cylinder.

By the definition ofS; ande- the length of the straight line in the Figure corresponds to
the length of an interval on the boundary of the circle. Thus 1. The length off, is ;%

and therefore the area of the intersection igy, = % = % This yields the lemma. O

Using this Lemma we get

s—1 n—1
1 s s 1
/SRS - Sk, (w) dw < Tt QSR (w) - S, (W) dw + Y T
t=0 t=s+1
] n—s—1

Plugging the above inequality into Equation 4.2 yielighits?] < 2H,, + 1 Combining this
with Proposition 2 and Equation 4.1 we @@t [hunter catches rabbit] > 2H -7 Which yields
the theorem. O
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45.2 Hunter Strategiesfor General Graphs

In this section we extend the upper bound of the previous section to general graphs.

Theorem 22. Let G = (V, F) denote a graph and let diam(G) denote the diameter of this
graph. Then there exists a hunter strategy on G that has expected escape length O(|V] -
log(diam(G))).

Proof. We cover the graph withr = O(n/d) cyclesCi,... ,C, of lengthd whered =
O©(diam(Q)), that is, each node is contained in at least one of these cycles. (In order to obtain
this covering, construct a tour of leng2hh — 2 along an arbitrary spanning tree, cut the tour
into subpaths of lengthd/2 and then form a cycle of lengt from each of these subpaths).
From now on, if hunter or rabbit resides at a nod&-oforresponding to several cycle nodes,
then we assume thegommit to one of these virtual nodes and the hunter catches the rabbit
only if they commit to the same node. This only slows down the hunter.

Now the hunter strategy is to choose one ofittogcles uniformly at random and simulate
the RANDOM SPEED-strategy on this cycle. Call thisghase. We observe that each phase takes
only ©(d) rounds. The hunter executes phase after phase, each time choosing a new random
cycle, until the rabbit is caught. In the following we will show that the success probability
within each phase i€(d/nH;), which implies the theorem.

Let us focus on a particular phase. For the purpose of analysis we assume that on every
cycle the nodes are enumerated consecutively framd. Instead of directly calculating the
probability that the hunter catches the rabbit we first analyze the probability that at some point
of time both of them are on a node with the same numberX_denote the indicator random
variable for this event. We observe that the probabilityXoe 1 is identical to the probability
that the hunter catches the rabbit on a cycle of lerdgtGonsequently,

Pr[X =1] = Q(1/H,) .

Now we use the fact that the hunter catches the rabbit if and only if they are on a node with
the same numbend they are on the same cycle. If during a phase hunter and rabbit are more
than one time on a node with the same number, we consider only the first time. At this time
the probability that hunter and rabbit are also on the same cy};]é/‘i/e obtain

1
Pr [hunter catches rabbit | X = 1] > — .
T
We conclude

Pr [hunter catches rabbit] > Pr [hunter catches rabbit | X = 1] - Pr[X = 1] = Q(d/nHy4) .
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4.6 Lower Boundsand Efficient Rabbit Strategies

We first prove that the hunter strategy for the cycle described in Section 4.5.1 is tight by giving
an efficient rabbit strategy for the cycle. Then we provide lower bounds that match the upper
bounds for general graphs given in Section 4.5.2.

4.6.1 An Optimal Rabbit Strategy for the Cycle

In this section we will prove a tight lower bound for any (mixed) hunter strategy on a cycle of
lengthn. In particular, we describe a rabbit strategy such that every hunter fgedsg(n))
expected time to catch the rabbit. We assume that the rabbit is unrestricted, i.e., can jump
between arbitrary nodes, whereas the hunter is restricted to follow the edges of the cycle.

Theorem 23. For the cycle of length n, there isa mixed, unrestricted rabbit strategy such that
for every restricted hunter strategy the escape length is Q(n log(n)).

The rabbit strategy is based on a non-standard random walk. Observe that a standard
random walk has the limitation that afterrounds, the rabbit is confined to a neighborhood
of about,/n nodes around the starting position. Hence the rabbit is easily caught by a hunter
that just sweeps across the ring (in one direction) isteps. Also, the other extreme where
the rabbit makes a jump to a node chosen uniformly at random in every round does not work,
since in each round the rabbit is caught with probability exattly, giving an escape length
of O(n). But the following strategy will prove to be good for the rabbit. The rabbit will
change to a randomly chosen position evempunds and then, for the next— 1 rounds, it
performs a “heavy-tailed random walk”. For thisround strategy and an arbitranround
hunter strategy, we will show that the hunter catches the rabbit with probability ). As
a consequence, the expected escape len@ridog n), which gives the theorem.

A heavy-tailed random walk. We define a random walk d# as follows. At time 0 a patrticle
starts at positionX, = 0. In astep ¢ > 1, the particle makes a random jump € Z from
position X; ; to position X; = X; 1 + x;, where the jump length is determined by the
following heavy-tailed probability distributiof®.

1

Prio=k] = Prln=-K = s 09

for everyk > 1 andPr [z, = 0] = 1. Observe thaPr [|z;| > k] = (k + 1), for every
k > 0. The following lemma gives a property of this random walk that will be crucial for the
proof of our lower bound.

Lemma 20. There is a constant ¢, > 0, such that, for every ¢ > 1 and ¢ € {—t,... ,t},
Pr (X, =/ > ¢/t
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Proof. We will prove the lemma using two claims. The first claim shows a simple mono-
tonicity property of the random walk and the second claim shows that, with at least constant
probability, the particle does not move more than distafi¢e) within 7 steps. (Observe

that this does not imply that the expected distance traveledsieps isO(7). In fact, it is
well-known that, under the heavy-tailed distributiByE|[|2|] = oo so that even the expected
distance traveled in only one step is undefined.)

Claim 3 (monotonicity). For every¢ > 0,4 > 0,Pr[X; =/¢] > Pr[X, =(+1].

Proof. We use induction on. Fort¢ = 0 the claim is obviously true a&, = 0. Assume by
inductive hypothesis that the claim holds fo+ r. Define

Pi(j) = PrX, =i—jAzrp =j] = PrX, =i—j]Pr[z,1 =J] ,
fori > 0,5 € Z. Then,

Pr(Xp =0 = Y P(j) = Y [P()+P=j-1)]

j€z 720
and
PriX, ;1 =L+1] = Y Pra(l) = > [Prra(=4) + PG+ )] -
j€z. j>0
As a consequence,
Pr(X,p =0 -Pr[X,p =£+1] = Y Y(j),

720

whereY (j) = Py(j)+ Pe(—j — 1) — Pry1(—j) — Prya1(j + 1). SinceP is symmetricY (j) =
(Pr(X,=¢—j] —Pr[X,=(+j+1])(Pr[z,11 =j] — Pr[z,41 =j+1]). Observe

that both factors are always positive by the induction hypothesis, symmetry, and some shifting.
Hence, the claim is shown. O

Claim 4. For every 7 > 0andt € {0,... ,7}, Pr{|X;| < 7] > 1/2¢%.

Proof. Observe that the variance Bfis unbounded. Nevertheless, one can use the Chebyshev
inequality for bounding the distance traveled by the particle as follows. Now we truncate the
random variables;. For this purpose let us fix. For simplicity in notation, assume that

is a multiple of four. For each random variahlg we define an auxiliary random variahje
taking integer values in the range7, 7] such thatPr [y; = k] = Pr[z; = k | |z;| < 7]

We observe that

(1/4+2)

Prly, = k] = G

Prz; =k] .
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Sincey; is bounded, it has a finite variance, which can be estimated as follows:
T/4
Var[y] = ZZQ Pr[|y:| = 1]
i=1
T/4
(/42 Z/: a1
(r/4+1) P (14+1)(i+2)

NS

Next defineY; = Z§:1 y;. Since the random variablgg are independentyar [Y;] =

Z;ZIVar [y] < T—; Furthermore, we observe thB{Y;] = 0, for all ¢ > 0. Hence ap-
plying the Chebyshev inequality (Lemma 7) gives

1
Pr[|V)|>r] < Pr [|Yt|2\/2-Var[Ytﬂ < 5

Finally, we apply this bound to the original random variahigsnd obtain

T T
PriX| <7l > Pr||IXi|<r|Vi|w| < 7] Pr|vi,foil <
1 t
= Prl||V}| < l——
(4171 (1= )
1(1)4
> | - .
- 2 \e
Thus Claim 4 is shown. O

Fix ¢ > 1. We will use Claim 4 in order to shoWr [t < |X;| < 4t] > o, for a suitable
constante. Afterwards, we will apply Claim 3 to this bound and obtain the lemma.

The probability that there exists € {1,... ,¢} with |z| > 2t and the first suctk, say
E*, fulfills |zx<| < 3t is at least

t
(1 _ (1 _ ;> ) (1 — w> > 1(1 — e/
2t + 2 3t + 2 )
since for everym € IN we havePr [|z;| > m] = (m + 1)~!. Given this event, we observe
that there exists € {1,... ,k*} with | X,| € {¢,... ,4t—1}. Let us denote by* the smallest
suchr. Applying Claim 4 givePr[|X; — X,«| < t] > 1/2¢* sinceX; — X,.- andX;_,- are
identically distributed. It further follows by symmetry tHat Pr[| X; — X,-| < t] = Pr[0 <
Xy — Xp- < t] = Pr[—t < X; — X;» < 0]. Now observe that it < |X,«| < 4¢ then
t <|X;» —t] <4torl <|X,-+t| < 4t. And so we obtain

Pr(t < |X| < 4]

>~ Pr(|X; — X,-

<t)|Ir<t:(t<|X,| <4b)]-PrFr<t:(t<]|X,| <4at)]

N | —
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1

> @-Pr[ﬂrgt:(t§|Xr|<4t)]
1

> (1—e Y4y,

> Sall—e )

If we now define !
def —1/4
=2 - (1=
Co 6064 ( € )

then applying Claim 3 givePr [| X;| = t] > ¢y/t. Finally, applying the same claim again, we
obtainPr [| X;| = ¢] > ¢y/t, for 0 < ¢ < t. This completes the proof of Lemma 20. O

The rabbit strategy. Our n-round rabbit strategy starts at a random position on the cycle.
Starting from this position, for the next— 1 rounds, the rabbit simulates the heavy-tailed ran-
dom walk in a wrap-around fashion on the cycle. The following lemma immediately implies
Theorem 23.

Lemma 21. The probability that the hunter catches the rabbit within » roundsis O(1/H,).

Proof. Fix anyn-round hunter strategyt = Ho, H1,... , H,—1. Because of Proposition 1 we

only need to estimat®|hits] andE[hits | hits > 1]. First, we observe th@[hits] = 1. This

is because the rabbit chooses its starting position uniformly at random sPtfiat () =

1] = 1/nfor 0 <t < n, and hencéE[hit(t)] = Pr[hit(t) = 1] = 1/n. By linearity of
expectation, we obtai[hits] = Y7, E[hit(t)] = 1. Thus, it remains only to show that

E [hits | hits > 1] > ¢1 H,, for some constant;. In fact, the idea behind the following proof

is that we have chosen the rabbit strategy in such a way that when the rabbit is hit by the hunter
in a round then it is likely that it will be hit additionally in several later rounds as well.

Claim 5. For every 7 € {0,... , 5 — 1}, E [hits | fhit(7) = 1] > ¢ H,, for a suitable con-
stant ¢y .

Proof. Assume hunter and rabbit meet at timéor the first time, i.e.fhit(7) = 1. Observe

that the hunter has to stay somewhere in intefi#al— (t — 7), H, + (¢t — 7)] in roundt > 7

as he is restricted to the cycle. The heavy-tailed random walk will also have some tendency to
stay in this interval. In particular, Lemma 20 implies, for evety 7, Pr[hit(t)] > @ /(t—71).
ConsequentlyE|hits | fhit(r) > 1] > 1 + Z?;TIH co/(t — 7), which isQ(H,,) sincer <

n/2. O

With this result at hand, we can now estimate the expected number of repeated hits as
follows.
n—1
E [hits | hits > 1] = ZE [hits | fhit(T) = 1] - Pr [fhit(7) = 1| hits > 1]
7=0
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n/2—1
> Y Elhits | fhit(r) = 1] - Pr[fhit(r) = 1| hits > 1]
7=0
n/2-1
> ¢\ Hy Y Prlfhit(t) =1 hits > 1]
7=0

for some suitable constadt = 2¢;. Finally, observe that

> Prifhit(t) = 1| hits > 1] + > Prfhit(r) = 1|hits > 1] = 1 .
7=0 T=n/2

Thus, one of the two sums must be greater than or eq@l tbthe first sum is at Ieas},

then we directly obtairE [hits | hits > 1] > ¢ H,. In the other case, one can prove the same
lower bound by going backward instead of forward in time, that is, by summing over the last
hits instead of the first hits. Hence Lemma 21 is shown. O

46.2 A Lower Bound In Terms of the Diameter

In this section, we show that the upper bound of Section 4.5.2 is asymptotically tight for the
parameters anddiam(G). We will use the efficient rabbit strategy for cycles as a subroutine
on graphs with arbitrary diameter.

Theorem 24. For every positive integers n, d with d < n there exists a graph G with n. nodes
and diameter d and a rabbit strategy such that for every hunter strategy on G the escape length
isQ(n - log(d)).

Proof. For simplicity, we assume thatis odd,d = 4d andN = (n—1)/2 is a multiple ofd'.

The graphG consists of aenter s € V andN/d subgraphs called loops. Ealdop consists

of a cycle of lengti2d + 1 and a simple path of + 1 nodes such that the first node of the
simple path is identified with one of the nodes on the cycle and the last node is identified with
s. Thus, all loop subgraphs share the centatherwise the node sets are disjoint.

Every d' rounds the rabbit chooses uniformly at random one ofXté loops and per-
forms the optimal-round cycle strategy from Section 4.6.1 on the cycle of this loop graph.
Observe that the hunter cannot visit nodes in different cycles during a phase of ength
Hence, the probability that the rabbit chooses a cycle visited by the hunter is atlfddst
Provided that the rabbit chooses the cycle visited by the hunter the probability that it is caught
during the next rounds isO(HL(y) by Lemma 21. Consequently, the probability of being

caught in one of the independedtround games i@(ngd,). Thus, the escape length is

Q(nHy) which isQ(n - log(d)). O
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4.7 Treesand Directed Graphs

In the previous sections, we have seen a restricted hunter strategy such that for every unre-
stricted rabbit strategy the expected escape lengf(is- log(diam(G)). Furthermore, we

have seen that this bound is optimal against unrestricted rabbits on cycles and several other
networks of smaller diameter. This gives rise to the question whether for every hunter strategy
there is a rabbit strategy such that the escape lengifris log(diam(G))). We can answer

this question negatively. In fact, in the following section we present a hunter strategy on a
complete binary tree such that for every unrestricted rabbit strategy the expected escape length
isO(n).

Subsequently, in Section 4.7.2 we investigate the Hunter vs. Rabbit game on strongly
connected directed graphs. We show that there exists a directed graph and a rabbit strategy
such that every restricted hunter ne€lis?) rounds to catch a restricted rabbit. Furthermore,
for every strongly connected directed graph, there is a hunter strategy such that for every
unrestricted rabbit strategy the expected escape lengviy.

4.7.1 A Linear TimeAlgorithm for Binary Trees

In this section, we investigate whether there exist graphs for which there is a hunter strategy
against unrestricted rabbits with escape length- log(diam(G))). The following theorem
answers this question positively. It gives an example ohamde network with diameter
©(logn) and escape lengt(n).

Theorem 25. For the complete binary tree T' of height » and m = 2" leaf nodes, thereis a
hunter strategy such that for every (unrestricted) rabbit strategy the expected escape length is
O(m).

Proof. For simplicity, we assume thatis a power oR. Furthermore, we initially assume that
the rabbit visits only leaf nodes. (Finally, we will remove this assumption.)

We define the level of a node of T' as the height of the subtrég rooted atv. The
hunter strategy is callegparse random DFSand is defined as follows. The hunter repeats the
following four times (starting at the root @f): he chooses a node with height2 at random,
visits it, and applies the same strategy recursively to the suljtr@éth respect to its height).
The recursion stops at subtrees of height 2, i.e., subtrees with 4 leaf nodes. Here for four times,
the hunter chooses a leaf node uniformly at random and checks whether the rabbit hides on
this leaf node.

The corresponding 4-ary recursion tree is called stsch tree 13. Let hg denote the
height ofT's and letL denote the number of leaf nodes®f. It is straightforward to see that
hs =logh = loglog m and L = 4"s = log? m. Observe that each leaf f corresponds to
a visited leaf ofl". Furthermore, each edgef corresponds to a path ifithat the hunter has
to follow in order to reach the root of the selected subtree on the next recursion level. Figure
4.2 shows a picture of the embedding of the recursionfteato the treeT’. Of course, the
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Fig. 4.2:Embedding of the recursion tr&&; into the tre€el".

hunter needs some number of rounds in order to follow the paths that simulate the edges of
Ts. We observe that the lengths of these paths decrease by a factor of two with every level
of recursion. However, the number of edgedinper recursion level increases by a factor of
four with each level. Hence, the leaf levelif dominates the execution time, which leads to

the following observation.

Observation 8. The hunter can perform the sparse random DFSin O(L) rounds, where L =
log? m is the number of visited leaf nodes of 7.

Next we investigate the probability that the hunter catches the rabbit within one pass of the
described search algorithm.

Lemma 22. The probability that sparse random DFSfinds the rabbit is Q(L/m).

Proof. For1l < ¢ < L, letr; denote the round in which th&h leaf node is visited. Let
hit(i) denote a 0/1 random variable which is one iff the hunter hits the rabbit in rgund
and fhit(i) = 1 if this is the first hit. Clearly, for every, E[hit(i)] = L. Using linear-
ity of expectation, we obtaid&[hits] = L/m. Now applying Proposition 1 yields that the
lemma can be shown by provir[hits | hits > 1] = O(1). As E[hits | hits > 1] <
maxi<;<r, {Blhits | fhit(i) = 1]}, we only need to shol[hits | fhit(i) = 1] = O(1), for
1<+ < L.

Fix an arbitraryi € {1,...,L}. We assume thghit (i) = 1, that is, the hunter meets the
rabbit at leafi of the search tre@s and this is the first hit. Let for a levél e {1,... ,hg}
of the search treels(¢) denote the completé-ary subtree of height that containg. If the
mapping of; to a leaf of T is fixed then so is the mapping of the root nodes of the subtrees
Ts(¢), ¢ € {1,...,hg}. This partially determines the search tfBeand hence the leaf nodes
visited in addition tai later in the search. We show that the search tree still contains “enough”
randomness such thBfhits | fhit(i) = 1] is not too large.

Consider a fixed subtreB; (¢) for some valu¢ € {1,... ,hs}. Letv(¢) denote the root
of Ts(¢) and letw(#) denote the corresponding nodeZimaccording to the embedding @f
in T'. We first bound the expected number of hits made by the hunter during the search on the
subtre€el’s (¢) not including the hits made ifis (¢ — 1). During this part of the search- 4!
leaf nodes ofl" are visited. These leaf nodes are all contained in the subtréerobted at
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w(¥). Altogether, this subtree contaif® leaf nodes sincev(¢) is on level2’ in T'. As each
of these nodes is visited with equal probability the expected number of hits is a?tﬁqﬁst

We get an upper bound df[hits | fhit(i) = 1] by summing this value for all subtrees
Ts(1),...,Ts(hs). Hence,

hs 3. 4€—1
Elhits | fhit(i) = 1] < 1+ZT < 3.
(=1
Hence, Lemma 22 is shown. O

Combining Observation 8 and Lemma 22 we conclude that the escape ler@fh)is
Finally, it remains to show how to deal with rabbit strategies that hide on internal nodes of
T'. To solve this problem we definevartual tree T which is a complete binary tree of height
h+1. We embed” into T' such that every node ifi hosts at least one leaf @f and adjacent
nodes inl” are hosted by adjacent nodeslin(The latter requirement means that thiation
of the embedding is one.) Then the hunter simulates the random DHESd(T". In this way
the rabbit cannot avoid the leaves®Bfand Theorem 25 follows.

It remains to describe the embeddingZdfinto T'. Let 7] and T}, denote the two disjoint
subtrees of height of 7. We map every node df] to its counterpart in the isomorphic tree
T'. Additionally, we map the root df” to the root ofT". If T' does not consist of a single node
we apply the same rule recursively with tréBsand 7™, whereT™ denotes the subtree @f
induced by its internal nodes, i.e., the subtree obtained by removing all leaf node§ from
In this way, every node df’ receives at least one leaf nodelf(and possibly several other
internal nodes). O

4.7.2 Directed Graphs

Now we want to consider the Hunter vs. Rabbit game on directed graphs. We slightly alter
the definition of restricted strategy for this purpose. In a directed gfaph(V, F) we call a
pure strategys restricted, if either [S;, Si11) € FE or §; = Si41 holds for everyt € IN.

Theorem 26. Let G denote an arbitrary directed strongly connected graph with n nodes.
Then thereisarestricted hunter strategy on G such that for every unrestricted rabbit strategy
the expected escape length is O(n?). Furthermore, there is a directed graph with n nodes,
where there exists a restricted rabbit strategy such that for every restricted hunter strategy the
expected escape length is (n?).

Proof. The hunter strategy is defined as follows. In everyounds, the hunter goes to a
node in the graph chosen uniformly at random (this is possibtesteps because the graph is
strongly connected) and the hunter meets the rabbit with probafii{ityn). This proves the
claim.
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4040 ,,,,,,,,,,

Fig. 4.3:A good graph for the rabbit

We now want to construct a graph and a rabbit strategy such that for every restricted
hunter strategy the expected escape lengt(i€). The graph has a directed pathof2
nodes starting with nod& and ending with nodé’. For each of the remaining nodes (let us
call them black nodes), there is an arc fréfrand an arc t&. Our construction is illustrated
in Figure 4.3. The rabbit initially chooses one of the black nodes at random and stays there
forever. Now, it is easy to see that, if the hunter fails to find the rabbit in a black node, he has
to spendn /2 rounds to check another black node. This shows a lower boufi{:éj even
against a stationary rabbit. Hence the theorem is shown. O

4.8 Summary and Open Problems

In this chapter we studied a pursuit-evasion game called the Rabbit vs. Hunter game. We
considered the stronger adversarial model where the rabbit is allowed to jump arbitrarily from
one node to the other whereas the hunter can only travel along the edges of the graph. We saw
efficient randomized hunter strategies that were based on random speed approach. We also
saw good rabbit strategies based on non-standard random walks, which show that the hunter
strategy is optimal on certain graphs. We then showed even better hunter strategies on specific
graphs (using a different approach) and also discussed the case of directed graphs.

Our results lead to several interesting open problems. One natural question to ask is, are
there better hunter strategies against a restricted adversary. That is, are there hunter strategies
with o(n log(diam)) escape length on general graphs if both hunter and rabbit can only move
along the edges of the graph. For example, on a cycle the trivial hunter strateg§ (xith
escape length is to start from no@land sweep the cycle either clockwise or counter-clockwise
with equal probability. Interestingly even the following Markovian hunter strategy (the random
decisions made in a round do not depend on the past like for e.g., the sweeping direction
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that was chosen in the beginning) works well on a cycle. On each node we assign transition
probabilities as follows. On any node e {1,... ,n — 1}, the probability to jump to the
successor i$ (i.e., probability to jump backwards or a self-loo)s In node0, the probability

to jump to nodel is% and1l — % for the self-loop. The hunter starts from a random node and
follows these edge probabilities. If the rabbit ever crosses Aafern steps then the hunter

is waiting at noded with constant probability. If the rabbit crosses ndilbeforen steps

(and never aften, steps) then with constant probability the hunter will go past the rabbit in
4n steps. This is because betweemnd3n steps, the hunter starts again from nddeith
constant probability that will then sweep the cycle in anotheteps and meet the rabbit in
between.

Another open problem is to study how much randomness does the hunter need. In other
words, it would be interesting to investigate the connection between the number of random bits
available to the hunter to the escape length achievable. Our hunter strategies need the com-
plete topological information about the underlying graph. It is also interesting to investigate
hunter/rabbit strategies if only limited topological information is available and the hunter is
provided with some pebbles to be placed in the graph nodes, thereby avoiding routes already
taken. In our setting, both hunter and rabbit have zero-visibility (they see each other only if
they are in the same node). A different line of research is to study hunter (possibly multiple)
and rabbit strategies with more visibility (in case of the restricted rabbit setting). Recently
Isler et al. [IKK04] showed that for limited visibility, i.e., both players can see the immedi-
ate neighborhood, two hunters suffice to catch the rabbit in general graphs. They also give
polynomial time strategies and also characterize graphs where only one hunter is enough.
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Definitions of Some Basic Concepts

Random Walks on Graphs. Consider a connected undirected gragh= (V, E). A
random walk on7 is defined as follows. Grap@ induces the following Markov chai;,
the states ofM; being the nodes af. Define transition probabilities for evefy,v) € V xV
as

1 .
Puv _ m |f (U,'U)I € E
0 otherwise;

whered(u) is the degree of node.

Hitting time. Also denoted a%,,, is the expected number of steps in a random walk that
starts at: and ends upon first reaching

Commute time. Defined ag’,,, for a pair of nodes andu, is the expected time for a random
walk starting at: to return tou after at least one visit te.

Covertime. LetC, denote the expected length of a walk that starisaxtd ends after visiting
every node ir¢ at least once. Then the cover tirgefor G is max, C,,.

Graph Isomorphism. GraphsG; and G, areisomorphic if there is a one-to-one corre-
spondence between the verticesHhfand G, with the property that two vertices are adjacent
in G4 iff their images inG, are adjacent.

Thel,-Norm. Forz € IR", thel,-norm ofz, denoted by|z||,, is defined as
- 2\ /P
lally = (D lwil?) ™
i=1
Thely-norm is theEuclidean norm. Thel,-norm is simplymax{|zi/|,... , |z,|}.

Classification Scheme for Scheduling. For describing a scheduling problem, the fol-
lowing terminology, introduced by Graham, Lawler, Lenstra and Rinnooy Kan [GLLR79], is
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usually used. Problems are described by three fields: the first represents the machine environ-
ment, the second denotes any special conditions or constraints in the model, and the third is
the objective function. Possible machine environmentd aiPe R: environment consisting of

a single machinedentical parallel machines, andnrelated machines. For identical parallel
machines the processing time for a jpis the same, denoted as For unrelated machines,
processing time for a job can be different in each machipelenoting the processing time

of job j in machinei. For example, P|p; = 1|Cmax” is the problem of scheduling unit-time

jobs on identical parallel machines to minimize the makespan.

Linear and Integer Linear Programs. A linear program, LP for short, is a problem of
minimizing or maximizing a linear function subject to a finite set of linear constraints. An LP
can be written as

max{cz : Az < b},

where4d € IR™*™ is a matrix of real numbers, withh rows andn columns, and € IR™

is am-dimensional column vector. The above LP hagriablesz, ... , x,, denoted by the
column vectorz. In the above LP;z is called anobjective function, wherec € TR" is ann-
dimensional row vector. Aeasible solution for the given LP is an assignmentxo. .. , z,,
such that the set of constraints, i.dg < b, is satisfied. A solution to the LP is a feasible
solution that maximizeax.

An integer linear program, ILP for short, is a linear program with the additional constraint
that the variables can only take integer values. That is, given a rational rdataixd rational
vectorsb ande¢, determinemax{cz : Az < b;x integrall. Many combinatorial optimization
problems can be formulated as ILPs.

Approximation Algorithms. Usually for problems that are computationally hard, there
is no polynomial time algorithm to solve it unless P=NP, polynomial time approximation al-
gorithms are designed. Am-approximation algorithm is a polynomial time algorithm that
computes a feasible solution whose value is always within a factdrthe optimum.

Amortized Analysisand Potential Method. In anamortized analysis, the cost involved
for a sequence of operations is averaged over all the steps. Even though in the worst-case, the
cost for one step may be very high, amortized analysis guaratiteeserage cost of each
step in the worst-case.
Thepotential method of amortized analysis represents the pre-paid work/cospateatial
energy or just “potential”, that can be released to pay for future operations. A potential is
defined using a potential functial(t) for round/operatiort, with ®(0) as the initial potential.
The amortized cost, () for roundt is defined as

Ca(t) = C(t) + B(t) — Bt — 1),
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where(C(t) is the actual cost for operatiagn Hence the total amortized cost feroperations
IS
n n

Y CE) = DY (CH + ) —B(t—1)) = > Ct) + 2(n) — 3(0).
t=1

t=1 t=1

If we ensure tha(n) — ©(0) is non-negative then the total amortized cost is an upper bound
on the total cost.
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