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Abstract

In this thesis we study three problems that are adversarial in nature. Such problems can be
viewed as a game between an algorithm and an adversary, where the adversary always tries to
force the algorithm into worst-case scenarios during its execution. Many real world problems
with inherent uncertainty or lack of information fit into this model. For instance, it includes
the vast field of online problems where the input is only partially available and an adversary
reveals the complete input gradually over time (online fashion). The algorithm has to perform
efficiently under this uncertainty. In contrast to the online setting, in an offline setting, the
complete input is available in the beginning. The first problem that we investigate is a classical
online scheduling problem where a sequence of jobs that arrive online have to be assigned to
a set of identical machines with the objective of minimizing the maximum load. We study a
natural generalization of this problem where we allow migration of already scheduled jobs to
other machines upon the arrival of a new job, thus bridging the gap between online and offline
setting. Already for a small amount of migration, our result compares with the best results
to date in both online and offline settings. From the point of view of sensitivity analysis, our
results imply that, only small changes are to be made to the current schedule to accommodate
a new job, if we are satisfied with near optimal solution. The other online problem that we
study is the well-known metrical task systems problem. We present a probabilistic analysis of
the well-known text book algorithm called the work function algorithm. Besides average-case
analysis we also present smoothed analysis, which is a notion introduced recently as a hybrid
between worst-case and average-case analysis. Our analysis reveals that the performance of
this algorithm is much better than worst-case for a large class of inputs. This motivates us to
support smoothed analysis as an alternative model for evaluating the performance of online
algorithms. The third problem that we investigate is a pursuit-evasion game: an algorithm
(the pursuer) has to find/catch an adversary that is ‘hiding’ in a graph where both players can
travel in the graph. This problem belongs to the rich field of search games and it addresses
the question of how long it takes for the pursuer to find the evader in a given graph that, for
example, corresponds to a computer network or a geographic terrain. Such game models are
also used to design efficient communication protocols. We present improved results against
adversaries with varying power and also present tight lower bounds.





Kurzzusammenfassung

In der vorliegenden Arbeit besch¨aftigen wir uns mit drei Problemen, welche als eine Art Spiel
zwischen einem Algorithmus und seinem Gegenspieler interpretiert werden k¨onnen. In diesem
Spiel versucht der Gegenspieler, den Algorithmus w¨ahrend seiner Ausf¨uhrung in sein Worst-
Case Verhalten zu zwingen. Eine Vielzahl von praxisrelevanten Problemen, in denen nicht von
Beginn an die volle Information ¨uber die Eingabeinstanz zur Verf¨ugung steht, lassen sich als
derartige Spiele modellieren. Zu dieser Klasse von Problemen geh¨oren z. B. auch online Prob-
leme, in denen der Gegenspieler die Eingabeinstanz f¨ur den Algorithmusonline, d. h. während
der Ausführung des Algorithmus, spezifiziert. Das Ziel des Algorithmus ist es, auf dieser so
spezifizierten Instanz m¨oglichst effizient zu sein. Im Gegensatz zum online Szenario kennt der
Algorithmus im offline Szenario die gesamte Eingabeinstanz gleich von Beginn an. Im on-
line Szenario wird die Effizienz eines (online) Algorithmus anhand seinesCompetitive Ratio
gemessen. Ein Algorithmus ist�-competitive, wenn die Kosten, die der Algorithmus auf einer
beliebigen online Eingabe verursacht, maximal einen Faktor� von den Kosten eines optimalen
(offline) Algorithmus, der die gesamte Eingabe kennt, entfernt ist.

Das erste Problem, dass wir betrachten, ist ein klassisches Scheduling Problem, in dem
Jobs online eintreffen und auf identischen parallelen Maschinen verteilt werden m¨ussen. Das
Ziel ist es, die maximale Maschinenlast zu minimieren. Wir erweitern dieses Problem, in-
dem wir erlauben, dass beim Eintreffen eines neuen Jobs die Zuweisungen von Jobs zu ihren
entsprechenden Maschinen nachtr¨aglich geändert werden d¨urfen (sog. Neuzuweisungen),
unter der Bedingung, dass die Gesamtgr¨osse der bewegten Jobs maximal� mal die Grösse
des neu eingetroffenen Jobs ist. F¨ur � � � erhalten wir das klassische online Problem, in
dem getroffene Entscheidungen nicht r¨uckgängig gemacht werden k¨onnen. F¨ur � � � er-
halten wir hingegen das entsprechende Problem in einem offline Szenario. Bereits f¨ur kleine
Werte für �, lässt sich unser Scheduling Algorithmus mit den derzeit besten Resultaten ver-
gleichen. Schon f¨ur � � ��� erreicht er ein Competitive Ratio von��� und schlägt damit die
untere Schranke von���� (����) für deterministische (randomisierte) Algorithmen des online
Problems. F¨ur das offline Problem pr¨asentieren wir einen Linearzeit-Algorithmus, der f¨ur ein
gegebenes� � � ein Competitive Ratio von����	 erzielt und dabei nur einen konstanten Fak-
tor ���	 von Neuzuweisungen ben¨otigt. Im Sinne einer Sensitivit¨atsanalyse kann man unsere
Ergebnisse dahingehend interpretieren, dass man nur geringf¨ugige Veränderungen vornehmen
muss, um einen neuen Job in einem bereits vorhandenen Schedule einzupassen, wenn man
sich mit guten approximativen L¨osungen zufrieden gibt.

Das zweite online Problem, dass wir betrachten, ist das Metrical Task System Problem.



iv Kurzzusammenfassung

Ein online Algorithmus befindet sich in einem Graphen� mit � Knoten und kann sich in
diesem Graphen bewegen, wobei er Kosten in H¨ohe der zur¨uckgelegten Distanz verursacht.
Der Algorithmus muss eine Sequenz von Tasks abarbeiten, welche online erscheinen. Jeder
Task spezifiziert f¨ur jeden Knoten Kosten, die entstehen, wenn der Algorithmus den Task
in diesem Knoten abarbeitet. Die Aufgabe ist es, die Gesamtkosten zu minimieren. Wir
präsentieren eine probabilistische Analyse des Work Function Algorithmus (WFA) von Borodin,
Linial und Saks, welcher ein optimales Competitive Ratio von
� � � hat. Das Competitive
Ratio eines Algorithmus stellt allerdings oftmals eine zu pessimistische Absch¨atzung seiner
tatsächlichen Effizienz dar. K¨urzlich stellten Spielman und Teng ein neues Komplexit¨atsmass
vor, dieSmoothed Complexity. Die Idee ist es, die Eingabeinstanz zuf¨allig zu perturbieren und
die Effizienz des Algorithmus auf den perturbierten Instanzen zu messen. Wir pr¨asentieren
eine Smoothed Analyse f¨ur WFA. Unsere Ergebnisse zeigen, dass das Smoothed Competi-
tive Ratio von WFA asymptotisch sehr viel besser als���	 ist und dass er von verschiedenen
topologischen Parametern des zugrundeliegenden Graphen� abhängt. Als Beispiel erreicht
WFA schon für geringfügige Perturbationen ein Smoothed Competitive Ratio von���� �	

auf einer Clique oder einem vollst¨andigen bin¨aren Baum und von��
�
�	 auf einem beliebi-

gen Graphen mit konstantem Grad. Desweiteren zeigen wir, dass unsere Schranken f¨ur eine
grosse Klasse von Graphen bis auf einen konstanten Faktor scharf sind.

Als drittes Problem analysieren wir ein “Katz-und-Maus-Spiel”: eine Katze (der Algo-
rithmus) und eine Maus (der Gegenspieler) befinden sich in einem Graphen und die Katze
versucht, die Maus zu fangen. Das Spiel wird in Runden gespielt und in jeder Runde kann
sich sowohl die Katze als auch die Maus im Graphen bewegen. Die Katze und die Maus
sehen sich nicht, es sei denn, sie befinden sich im selben Knoten. Wir nehmen an, dass die
möglichen Bewegungen der Katze durch den Graphen vorgegeben sind, d. h. in jeder Runde
kann die Katze sich entlang einer Kante im Graphen bewegen. F¨ur die Maus betrachten wir
zwei verschiedene Modelle: im ersten Modell ist die Maus auf den Graphen beschr¨ankt und
im zweiten Modell kann sich die Maus unbeschr¨ankt im Graphen bewegen, d. h. sie kann in
jeder Runde zu einem beliebigen Knoten springen. Beide Spieler k¨onnen sich randomisierter
Strategien bedienen. Wir betrachten daher die erwartete Anzahl von Runden (Fluchtl¨ange) bis
sie sich in einem Knoten treffen als Zielfunktion, die von der Katze zu minimieren und von
der Maus zu maximieren versucht wird. Wir pr¨asentieren eine Strategie f¨ur die Katze, die auf
allgemeinen Graphen eine Fluchtl¨ange von nur��� ���	
��		 sowohl gegen eine auf den
Graphen beschr¨ankte als auch unbeschr¨ankte Maus garantiert, wobei	
�� den Durchmesser
des Graphen bezeichnet. Diese Schranke ist beinahe scharf, da���	 eine triviale untere
Schranke f¨ur die Fluchtlänge in beiden Modellen ist. Ferner beweisen wir, dass unsere obere
Schranke f¨ur den unbeschr¨ankten Fall bis auf einen konstanten Faktor optimal ist. Desweit-
eren zeigen wir m¨ogliche Strategien f¨ur die Katze, die eine Fluchtl¨ange von���	 garantieren,
wenn es sich bei dem zugrundeliegenden Graphen um einen Spezialfall handelt, wie z. B. um
einen vollständig binären Baum. Schliesslich pr¨asentieren wir f¨ur stark verbundene Graphen
Strategien f¨ur die Katze, die eine optimale Fluchtl¨ange von����	 erzeugen.
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Chapter 1

Introduction

Problems that areadversarial in nature form an important part of the algorithmic problems. In
such problems, there are two parties involved, an algorithm and an adversary. Such problems
can be usually viewed as agame between the algorithm and the adversary, where the adversary
always tries to force the algorithm into worst-case scenarios during its execution. Many real
world problems can be represented more appropriately in such a framework. For example,
such a framework is suitable for modeling situations with uncertainty or lack of information,
which occur quite often in practice. In this thesis, we investigate three such problems.

Online Problems. Following Ben-David et al. [BDBK�94], online problems can be defined
as arequest-answer game between an adversary and an algorithm. The adversary generates a
sequence of requests � ��	� � � � � ��	, where each request�
	, 
 � �� � � � ��, belongs to
a set of possible requests�. An online algorithm in response serves (answers) the requests one
at a time. While serving request�
	, the online algorithm does not know the later requests.
In serving the request sequence, the online algorithm incurs a non-negative cost and the
objective is to minimize this cost.

For example, consider the following scheduling problem on a set of identical machines. A
sequence of jobs, each with a possibly different size, arrive in an online fashion. Each job has
to be assigned to exactly one machine. The objective is to minimize the maximum total size
of jobs assigned to a machine. Once a job is assigned to a machine, the decision cannot be
revoked. The offline version of this problem is to come up with the best schedule if the set of
all jobs with respective sizes are known before-hand. In the online setting, the achievable per-
formance is not determined by limited computing power but mainly by the lack of information
about parts of the input that will only be revealed in the future. Many well-known problems
like paging, list update, metrical task systems, load balancing etc., can be formulated in this
framework. We refer to [Alb03] for a survey on online problems and algorithms.

To analyze the performance of the online algorithm in such a framework, Sleator and Tar-
jan [ST85], Karlin et al. [KMRS88] proposed a new comparison measure calledcompetitive
analysis: compare the cost incurred by the online algorithm for serving to the cost of an
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optimal offline algorithm, which knows the entire sequence in advance. Formally, let���	

and����	 respectively denote the cost incurred by an online algorithm� and the offline op-
timum to process. The algorithm� is called�–competitive, if there exists a constant� such
that

���	 � � � ����	 � �

for all request sequences. Thecompetitive factor or thecompetitive ratio of � is simply the
minimum� such that� is �–competitive. Equivalently, if the algorithm� is randomized then
� is �–competitive in theexpected sense if

�
�
���	

� � � � ����	 � �

Randomized strategies give rise to different adversarial notions likeadaptive adversary
andoblivious adversary. An adaptive adversary generates the next request based on all the
random choices made by the algorithm so far. An oblivious (weak) adversary does not know
the random choices made by the algorithm, it only knows the specification of the algorithm.
In other words, the algorithm has a secure random source which is not visible to the adversary.

Search Games.Yet another adversarial framework that we consider in this thesis is the prob-
lem of searching/finding an evader (adversary) by a set of pursuers, also called thepursuit-
evasion problem. Search games have a long history in the fields of game theory and algorithms
[Isa65, Gal80]. There are many variants of such games studied, like a game played on a simple
polygon, both players having specified amount of visibility, players moving on a closed curve,
clearing an evader (like a poisonous gas) from a system of tunnels, etc. There are also basic
graph parameters likesearch number of a graph that is associated with the number of pursuers
needed to find an evader in a deterministic setting. We specifically focus on atwo-player game
played on a graph between apursuer and anevader. The pursuer is trying to catch the evader,
while they both travel from node to node of a connected, undirected graph. Both players may
use a randomized strategy where each player has a secure source of randomness which can-
not be observed by the other player. That is, both players are oblivious. The objective of the
pursuer is to minimize the expected number of rounds until the evader is caught.

Outline of the thesis. In this thesis, we present results for three problems. In Chapters 2 and
3, we focus on two online problems. In the third chapter we investigate a pursuit-evasion game
on graphs. Each chapter is mostly self-contained.
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Chapter 2: Online scheduling with bounded migration.In this chapter, we consider a clas-
sical online scheduling problem where jobs that arrive one by one are assigned to identical
parallel machines with the objective of minimizing the maximum machine load, also known
asmakespan. We generalize this problem by allowing the current assignment to be changed
whenever a new job arrives, subject to the constraint that the total size of moved jobs is
bounded by� times the size of the arriving job. Observe that if� � � then it is the clas-
sical online setting, where decisions once made cannot be revoked, and if� � � then it is
the offline setting.

For the classical online setting (� � �), a series of results [BFKV95, KPT96, Alb99]
improve the achievable competitive ratio from
, initially achieved by Graham [Gra66], to
���
��, which is the best known result to date due to Fleischer and Wahl [FW00]. Already a
lower bound of���� (����) on the achievable competitive ratio for deterministic (randomized)
algorithms is known. For the offline case, a linear timepolynomial time approximation scheme
(PTAS), that is, a family of polynomial time approximation algorithms with performance guar-
antee within a factor� � � of the optimum for all fixed� � � is known.

Our main result is a linear time ‘online approximation scheme’, that is, a family of online
algorithms with competitive ratio� � � and constant migration factor���	, for any fixed� �
�. This result is of particular importance if considered in the context of sensitivity analysis:
While a newly arriving job may force a complete change of the entire structure of an optimal
schedule, only very limited ‘local’ changes suffice to preserve near-optimal solutions. We
believe that this concept will find wide application in its own right. We also present simple
deterministic online algorithms with migration factors� � 
 and� � ���, respectively. Their
competitive ratio��
 beats the lower bound on the performance of any online algorithm in the
classical setting without migration. Furthermore, with migration factor� � �, the competitive
ratio further drops down to���. For two machines we obtain tight competitive ratio of���

already for migration factor 1. We also present improved algorithms and similar results for
closely related problems. In particular, we consider the objective of maximizing the minimum
load of a machine.

Chapter 3: Smoothed competitiveness of metrical task systems.In this chapter we present a
probabilistic analysis of a standard text book algorithm for a very well-known online problem
calledmetrical task systems. Metrical task systems can be described as follows. An online
algorithm resides in a graph� of � nodes and may move in this graph at a cost equal to the
distance. The algorithm has to service a sequence oftasks that arrive online; each task specifies
for each node arequest cost that is incurred if the algorithm services the task in this particular
node. The objective is to minimize the total request cost plus the total travel cost.

Borodin, Linial and Saks [BLS92] presented a deterministicwork function algorithm
(WFA) for metrical task systems having atight competitive ratio of
� � �. However, the
competitive ratio often is an over-pessimistic estimation of the true performance of an online
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algorithm. Several other attempts were made in the past to overcome this problem: by allowing
limited lookahead for the algorithm or by considering restricted adversarial models like access
graphs or diffuse adversary. Spielman and Teng [ST01] recently proposed a new complexity
measure, calledsmoothed complexity, which is a hybrid between average-case and worst-case
complexity. Becchetti et al. [BLMS�03] recently extended this idea to competitive analysis
and proposedsmoothed competitive analysis as an alternative to worst-case competitive anal-
ysis of online algorithms. The idea is to randomly perturb, orsmoothen, an adversarial input
instance and to analyze the performance of the algorithm on the perturbed instances. Such a
process can be equivalently viewed as drawing an instance probabilistically from the neighbor-
hood of the adversarial input instance and estimating the average performance of the algorithm
in this neighborhood. An improved average performance in this neighborhood implies that the
worst-case instances are ‘sparse’, i.e., isolated peaks in the instance/performance space.

We present asmoothed competitive analysis of WFA. We smoothen the adversarial re-
quest costs and analyze the performance of WFA. Our analysis reveals that the smoothed
competitive ratio of WFA is much better than���	 and that it depends on several topological
parameters of the underlying graph�, such as the minimum edge length����, the maximum
degree�, and the edge diameter����. Assuming that the ratio between the maximum and the
minimum edge length of� is bounded by a constant, the smoothed competitive ratio of WFA
becomes�����������������			 and��

�
� � ������ � ����			, where denotes the

standard deviation of the smoothing distribution. For example, already for perturbations with
 � ������	 the competitive ratio reduces to���� �	 on a clique or a complete binary tree
and to��

�
�	 on any constant degree graph. We also prove that for a large class of graphs

these bounds are asymptotically tight. Our analysis holds for various probability distributions,
including the uniform and the normal distribution. We also provide the first average-case anal-
ysis of WFA. We prove that WFA has������		 expected competitive ratio if the request
costs are chosen randomly from an arbitrary non-increasing distribution with standard devia-
tion  � ������	. Thus our analysis gives a strong indication that the asymptotic competitive
ratio of WFA is much better than���	 for a large class of inputs.

Chapter 4: Randomized pursuit-evasion game on graphs.In this chapter, we analyze a ran-
domized pursuit-evasion game on graphs. This game is played by two players, apursuer and
anevader (adversary). We also refer to them ashunter andrabbit respectively. Let� be any
connected, undirected graph with� nodes. The game is played in rounds and in each round
both the hunter and the rabbit are located at a node of the graph. Between rounds both the
hunter and the rabbit can stay at the current node or move to another node. They do not ‘see’
each other unless they meet in the same node. The hunter is assumed to berestricted to the
graph�: in every round, the hunter can move using at most one edge. For the rabbit we inves-
tigate two models: in one model the rabbit is restricted to the same graph as the hunter, and in
the other model the rabbit isunrestricted, i.e., it can jump to an arbitrary node in every round.
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We say that the rabbit iscaught as soon as hunter and rabbit are located at the same node in a
round. The goal of the hunter is to catch the rabbit in as few rounds as possible, whereas the
rabbit aims to maximize the number of rounds until it is caught. Given a randomized hunter
strategy for�, theescape length for that strategy is the worst-case expected number of rounds
it takes the hunter to catch the rabbit, where the worst-case is with regards to all (possibly
randomized) rabbit strategies.

The problem we address is motivated by the question of how long it takes a single pursuer
to find an evader on a given graph that, for example, corresponds to a computer network or
to a map of a terrain in which the evader is hiding. Such search games have a long history
in the field of game theory. Our problem is a discrete version of thePrincess-Monster game
introduced in 1965 [Isa65]. But the adversary that we consider is more powerful (can take
short-cuts). Considerable amount of research was also done on the geometric version of the
pursuit-evasion problem.Deterministic pursuit-evasion games in graphs are also well-studied
[LaP93, KP86, MHG�88]. In the area of mobile ad-hoc networks, such pursuit-evasion mod-
els are used to design communication protocols [CNS01]. A hunter strategy based on random
walks was first studied in [AKL�79]. It was shown that the hunter catches an unrestricted
rabbit within�����	 rounds, where� and� denote the number of nodes and edges, respec-
tively.

One of our main results is a hunter strategy for general graphs with an escape length of only
��� �������		 against restricted as well as unrestricted rabbits, where���� is the diameter
of �. This bound is close to optimal since���	 is a trivial lower bound on the escape length
in both models. Furthermore, we prove that our upper bound is optimal up to constant factors
against unrestricted rabbits. We show a non-standard random walk for the rabbit such that, for
any positive integers� and	 � �, there is a graph� with � nodes and diameter	, such that
the escape length is��� ���			 for any hunter strategy against this random-walk based rabbit.
Furthermore, we show using a different hunter strategy that on special graphs like complete
binary tree on� nodes, the escape length is only���	. Finally, we also discuss the case of
strongly connected graphs and show a hunter strategy with tight escape length of����	.

Discussions and open problems related to each of these problems can be found at the end
of the respective chapters. We assume that the reader is familiar with the basics of probability
theory and randomized algorithms, which can, for instance, be found in [MR95]. For an in-
troduction to online algorithms, we refer to the book by Borodin and El-Yaniv [BEY98], and
the survey articles by [Alb03, Sga98]. For a detailed account of linear and integer program-
ming theory we refer to the books [Sch86, NW88]. We refer to [Hoc96a] for an introduction to
approximation algorithms in combinatorial optimization problems, including scheduling prob-
lems. An introduction to the basic complexity theory can be found in the books [GJ79, Pap94].
Definitions of some of the basic concepts used in this thesis can be found at the end of this
thesis.





Chapter 2

Online Scheduling with Bounded Migration

2.1 Introduction

One of the most fundamental scheduling problems asks for an assignment of jobs to� identi-
cal parallel machines so as to minimize the makespan. The makespan is the completion time
of the last job that finishes in the schedule; it also equals the maximum machine load. In
the standard classification scheme of Graham, Lawler, Lenstra and Rinnooy Kan [GLLR79],
this scheduling problem is denoted by� � ����� and it is well-known to be strongly NP-
hard [GJ78], i.e., it is still NP-hard even if all numbers appearing in the input are bounded
by some polynomial in the length of the input.

Theoffline variant of this problem assumes that all jobs are known in advance whereas in
theonline variant the jobs are incrementally revealed by an adversary and the online algorithm
can only choose the machine for the new job without being allowed to move other jobs. Note
that dropping this radical constraint on the online algorithm yields the offline situation.

A new online scheduling paradigm. We study a natural generalization of both offline and
online problems. Jobs arrive incrementally but, upon arrival of a new job�, we are allowed
to migratesome previous jobs to other machines. The total size of the migrated jobs however
must be bounded by��� where�� is the size of the new job. Formigration factor � � � we
get the online setting and for� � � we get the offline setting.

For a number of offline optimization problems, a PTAS, i.e., a family of polynomial time
approximation algorithms with performance guarantee� � � for all fixed � � � is known.
In contrast to the offline approximation results, the achievable competitive ratios in online
settings are not determined by limited computing power but by the lack of information about
parts of the input that will only be revealed in the future. As a consequence, for all interesting
classical online problems it is rather easy to come up with lower bounds that create a gap
between the best possible competitive ratio� and�. In particular, it is usually impossible to

Publication Notes. A preliminary version of this joint work, together with Peter Sanders and
Martin Skutella, appeared in the proceedings of the 31st International Colloquium on Au-
tomata, Languages, and Programming (ICALP), 2004 [SSS04].
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construct a family of�� � �	-competitive online algorithms for such problems.

2.2 Related Work

For the online machine scheduling problem, Graham’slist scheduling algorithm keeps the
makespan within a factor
� ��� of the offline optimum [Gra66]: Schedule a newly arriving
job on the least loaded machine. It can also easily be seen that this bound is tight: adversarial
sequence consists of��� � �	 jobs of size	

� followed by one job of size�. The optimal
makespan in this case is�.

For the offline setting, Graham showed three years later that sorting the jobs in the order
of non-increasing size before feeding them to the list scheduling algorithm yields an approx-
imation algorithm with performance ratio��� � �����	 [Gra69]. Later, exploiting the re-
lationship between the machine scheduling problem under consideration and the binpacking
problem, algorithms with improved approximation ratios have been obtained in a series of
works [CGJ78, Fri84, Lan81].

Finally, polynomial time approximation schemes for a constant number of machines and
for an arbitrary number of machines are given in [Gra69, Sah76] and by Hochbaum and
Shmoys [HS87], respectively. The latter PTAS partitions jobs into large and small jobs. The
sizes of large jobs are rounded such that an optimum schedule for the rounded jobs can be
obtained via dynamic programming. The small jobs are then added greedily using Graham’s
list scheduling algorithm. This approach can be refined to an algorithm with linear running
time (see, e.g., [Hoc96b]): replace the dynamic program with an integer linear program on a
fixed number of variables and constraints which can be solved in constant time [Len83].

In a series of papers, increasingly complicated online algorithms with better and bet-
ter competitive ratios beating the Graham bound
 have been developed [BFKV95, KPT96,
Alb99]. The best result known to date is a���
��-competitive algorithm due to Fleischer and
Wahl [FW00]. The best lower bound���� on the competitive ratio of any deterministic online
algorithm currently known is due to Rudin [Rud01]. For randomized online algorithms there is
a lower bound of���� � �	 � ���� [CvVW94, Sga97]. For more results on online algorithms
for scheduling we refer to the recent survey articles by Albers [Alb03] and Sgall [Sga98].

Strategies that reassign jobs were studied in the context of online load balancing, jobs
arrive in and depart from a system of� machines online and the scheduler has to assign each
incoming job to one of the machines. Deviating from the usual approach of comparing against
the optimalpeak load seen so far, Westbrook [Wes00] introduced the notion of competitiveness
againstcurrent load: An algorithm is�–competitive if after every round the makespan is
within � factor of the optimal makespan for the current set of jobs. Each incoming job� has
size�� and reassignment cost��. For a job, the reassignment cost has to be paid for its initial
assignment and then every time it is reassigned. Observe that the optimal strategy has to pay
this cost once for each job for its initial assignment. Thus the optimal (re)assignment cost
� is simply the sum of reassignment costs of all jobs scheduled till now. Westbrook showed
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a �-competitive strategy for identical machines with reassignment cost�� for proportional
reassignments, i.e.,�� is proportional to��, and
� for unit reassignments, i.e.,�� � � for all
jobs. Later Andrews et al. [AGZ99] improved it to 3.5981 with the same reassignment factors.
They also showed� � � and 
 � � competitive strategies respectively for the proportional
and unit case, the reassignment factor depending only on�. For arbitrary reassignment costs
they achieve 3.5981 competitiveness with 6.8285 reassignment factor. They also present a�
–
competitive strategy with constant reassignment factor for related machines. Job deletions is
an aspect that we do not consider in our work, our focus is primarily on achieving competitive
ratios close to�. Our results can also be interpreted in the framework of online load balancing
with proportional reassignments and without job deletions. We show strategies with better
competitive ratios, at the same time achieving reassignment factor strictly less than three. We
also show����	–competitive strategies, for any� � �, with constant reassignment factor���	.
Our results are also stronger in the sense that a strategy with reassignment factor� ensures that
when a job� arrives, the total reassignment cost incurred (for scheduling it) is at most���.
This is different from the more relaxed constraint that after� rounds, the total reassignment cost
incurred is at most�

�
�� (summing over all jobs seen till round�). Most of our strategies are

robust, they convertany �–competitive schedule to an�–competitive schedule after assigning
the newly arrived job, whereas in [Wes00, AGZ99] it is required that the schedule so far is
carefully constructed in order to ensure the competitiveness after assigning/deleting a job in
the next round.

2.3 Our Contribution

In Section 2.5 we describe a simple online algorithm which achieves approximation ratio��


using a moderate migration factor� � 
. Notice that already this result beats the lower
bound���� (����) on the competitive ratio of any classical (randomized) online algorithm
without migration. Using a more sophisticated analysis, the migration factor can be decreased
to ��� while maintaining competitive ratio��
. On the other hand we show that our approach
does not allow for migration factor� and competitive ratio��
. Furthermore, an improved
competitive ratio��� can be achieved with migration factor�. For two machines, we can
achieve competitive ratio��� with a migration factor of one. This ratio is tight for migration
factor one.

In Section 2.8 we discuss an application of bounded migration to configuring storage
servers. This was the original motivation for our work. In this application, the objective is
to maximize the minimum load. It is well-known [AE98] that any online deterministic al-
gorithm for thismachine covering problem has competitive ratio at least� (the number of
machines). There is also a lower bound of��

�
�	 for any randomized online algorithm. We

develop a simple deterministic online strategy which is
-competitive already for migration
factor� � �.

Our main result can be found in Section 2.6. We present a family of online algorithms with
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competitive ratio��� and constant migration factor���	, for any fixed� � �. On the negative
side, no constant migration factor suffices to maintain competitive ratio one, i.e., optimality.
We provide interpretations of these results in several different contexts:

Online algorithms. Online scheduling with bounded job migration is a relaxation of the
classical online paradigm. Obviously, there is a tradeoff between the desire for high
quality solutions and the requirement to compute them online, that is, to deal with a
lack of information. Our result can be interpreted in terms of the corresponding tradeoff
curve: Any desired quality can be guaranteed while relaxing the online paradigm only
moderately by allowing for a constant migration factor.

Sensitivity analysis. Given an optimum solution to an instance of an optimization problem
and a slightly modified instance, can the given solution be turned into an optimum so-
lution for the modified instance without changing the solution too much? This is the
impelling question in sensitivity analysis. As indicated above, for the scheduling prob-
lem under consideration one has to answer in the negative. Already one additional job
can change the entire structure of an optimum schedule. However, our result implies
that the answer is positive if we only require near-optimum solutions.

Approximation results. Our result yields a new PTAS for the scheduling problem under con-
sideration. Due to its online background, this PTAS constructs the solution incremen-
tally. That is, it reads the input little by little always maintaining a�� � �	-approximate
solution. Indeed, it follows from the analysis of the algorithm that every update only
takes constant time. In particular, the overall running time is linear and thus matches the
previously best known approximation result.

We believe that each of these interpretations constitutes an interesting motivation for results
like the one we present here in its own right and can therefore lead to interesting results for
many other optimization problems.

The underlying details of the presented online approximation scheme have the same roots
as the original PTAS by Hochbaum and Shmoys [HS87] and its refinements [Hoc96b]. We
distinguish between small and large jobs; a job is called large if its size is of the same order
of magnitude as the optimum makespan. Since this optimum can change when a new job
arrives, the classification of jobs must be updated dynamically. The size of every large job is
rounded such that the problem of computing an optimum schedule for the subset of large jobs
can be formulated as an integer linear program of constant size. A newly arriving job causes
a small change in the right hand side of this program. This enables us to use results from
sensitivity analysis of integer programs in order to prove that the schedule of large jobs needs
to be changed only slightly. Our PTAS is very simple, it uses only this structural result and
does not use any algorithms from integer programming theory.
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2.4 Preliminaries

Let the set ofmachines be denoted by� � ��� � � � ��	. The set ofjobs is ��� � � � � �	 where
job � arrives in round�. Let �� denote the positiveprocessing time or thesize of job �. For a
subset of jobs , thetotal processing time of jobs in is �� 	 ��

�
��� �� ; let ����� 	 ��

������ ��. For a schedule on the set of jobs , let ��
	 denote the set ofjobs scheduled on
machine 
. For a subset of machines! 
� , let��! 	 ��

�
��� ��
	. For a subset of jobs ,

let ���� 	 denote theoptimal makespan. If the subset of jobs and a newly arrived job�
are clear from the context, we sometimes also use the shorter notation��� �� ���� 	 and
���� �� ���� � ��		. It is easy to observe that��� 	 �� ������ 	��� ����� 		 is a
lower bound on���� 	 satisfying

��� 	 � ���� 	 � 
��� 	 � (2.1)

The following well-known fact is used frequently in the subsequent sections.

Observation 1. For a set of jobs  , consider an arbitrary schedule with makespan ". As-
signing a new job � to the least loaded machine yields a schedule with makespan at most
����"� ���� � ��		 � ��� ���	��	.

Proof. We need to show that if the makespan changes after scheduling job�, then the new
makespan is at most���� � ��		 � ���� � ���	. Since job� is scheduled on the least
loaded machine, the new makespan is at most�� 	����� . This combined with the following
inequality yields the fact;���� � ��		 � �� � ��		�� � �� 	��� ����.

2.5 Strategies with Small Migration Factor

We consider the problem of scheduling jobs arriving one after another on� parallel machines
so as to minimize the makespan. We first show a very simple��
-competitive algorithm with
migration factor
. The algorithm is as follows:

Procedure FILL 1:
Upon arrival of a new job�, choose one of the following two options minimizing the resulting
makespan.

Option 1: Assign job� to the least loaded machine.

Option 2: Let 
 be the machine minimizing the maximum job size. Repeatedly remove jobs
from this machine; stop before the total size of removed jobs exceeds
��. Assign job�
to machine
. Assign the removed jobs successively to the least loaded machine.

Theorem 1. Procedure FILL 1 is
�
�
� � 	

��

�
-competitive with migration factor 
.
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Proof. From the description ofFILL 1, it is clear that the migration factor is at most
. In order
to prove competitiveness, we consider an arbitrary

�
�
�� 	

��

�
-approximate schedule for a set of

jobs and show that incorporating a new job� according toFILL 1 results in a new schedule
which is still

�
�
� � 	

��

�
-approximate. In the following, a job is calledsmall if its processing

time is at most�����
, otherwise it is calledlarge. If the new job� is small, then the first
option yields makespan at most

�
�
� � 	

��

�
���� by Observation 1. Thus we can assume from

now on that� is large.
Since there can be at most� large jobs in � ��	, all jobs on the machine chosen in the

second option are small. Thus, after removing jobs from this machine as described above, the
machine is either empty or the total size of removed jobs exceeds the size of the large job�.
In both cases, assigning job� to this machine cannot increase its load above

�
�
� � 	

��

�
����.

Thus, using the same argument as above, assigning the removed small jobs successively to the
least loaded machine yields again a

�
�
� � 	

��

�
-approximate schedule.

Next we show that the migration factor can be decreased to��� without increasing the
competitive ratio above��
. This result is achieved by carefully modifyingFILL 1.

Procedure FILL 2 :
Upon arrival of�, choose the one of the following�� � options that minimizes the resulting
makespan. (Break ties in favor of option�.)

Option �: Assign job� to the least loaded machine.

Option 
 [for 
  ��� � � � ��	]: Ignoring the largest job on machine
, consider the remaining
jobs in the order of non-increasing size and repeatedly remove them from the machine;
stop before the total size of removed jobs exceeds�

���. Assign job� to machine
.
Assign the removed jobs successively to the least loaded machine.

Theorem 2. Procedure FILL 2 is �
� -competitive with migration factor �

� .

Proof. The migration factor is clear from the description ofFILL 2 . To show the competitive
ratio, we consider an arbitrary��–approximate schedule of , also denoted asinput schedule,
that additionally satisfies the following property; the total load on any machine excluding its
largest job is at most���. We remark that this is not an unreasonable requirement on the input
schedule as even the list scheduling algorithm ensures this. We show that incorporating the
new job� results in a��–approximate schedule. As shown by the following fact, the resulting
schedule also satisfies the above additional property.

Fact 1. After scheduling job �, the total load on any machine excluding its largest job is at
most ����.

Proof. Let� � be the subset of machines ‘touched’ byFILL 2 for scheduling job�. It suffices
to show that the total load in such a machine excluding its ‘last’ job (the job that entered last)
is at most����. Fix any machine in� � and consider its last job. If it is not� then it was
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Optimal Schedule of jobs in� Input Schedule of jobs in�

��
�

Fig. 2.1: Figure showing the differences between the optimal schedule and the input schedule of jobs
in � . The sets�� �� �� and�� capture these differences. The ‘common sets’ in both schedules
are �� and�. On both schedules, exactly the machines in� � contain onelarge job each, and
such jobs belong to�� .

assigned as part of the redistribution phase. Since redistribution is always performed on the
current least loaded machine, the load in this machine excluding this last job is at most����. If
the last job is� then, as option 0 is always preferred, the total load of this machine can only be
smaller than the load in the least loaded machine of the input schedule together with the size
of job �. Thus the fact follows.

We distinguish three cases depending on�� . If �� � �����
 then option 0 already yields a
schedule of makespan at most�

����� by Observation 1.

Case �����
 � �� � �
����� : let

�� � �����
 � Æ where � � Æ � ������ (2.2)

To handle this case, it suffices find a#  ��� � � � ��	 such that Option# yields a�
�–

approximate schedule. We call it a ‘good’ option. We fix# as follows. Denote a job aslarge if
its size is more than����� Æ andsmall otherwise. With respect to the input schedule, partition
the set of machines� as machines with only small jobs denoted as��, and the rest denoted
as��. That is,

�� � �
 � � �������
		 � ���� � Æ	 and �� �� ��� (2.3)

Observe that on any��–approximate schedule of , a machine has at most one large job.
Hence there are���� large jobs; one on each machine in��. Consequently, we fix an optimal
schedule of such that large jobs are scheduled on��. We now compare the input schedule
with this optimal schedule in the following way. As shown in Figure 2.1, partition as
$� �$ �%� �%. In the optimal schedule, the jobs scheduled on�� and�� are$ � �$ and% � �%

respectively and, the respective sets in the input schedule are�$ � �% and$ �%. It follows that
in the input schedule there is a machine in�� with total load at most��� with respect to%.
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We fix # as this machine. That is,

����#	 � $ 	 � ����#	 � %	 � ��� (2.4)

It remains to show that option# is good.

By the choice of optimal schedule, every large job belongs to the ‘common set’�$ . Hence
each job in set$ has size at mostÆ; as it is scheduled along with a large job (from�$ ), in the
optimal schedule. As a consequence, the set of jobs in machine# with each having size at
mostÆ includes the subset of jobs induced by$ . That is, if we partition the set��#	 as&Æ
and&�, where

&Æ � �All jobs in machine# with size at mostÆ	� &� � ��#	�&Æ

then

��&�	 � ���
�
as $ 
 &Æ and ����#	� $ 	 � ��� by (2.4)

�
(2.5)

This readily implies that there is at most one job with size greater than�����
 in machine#;
as such jobs belongs to set&�. Consequently, every job removed during option# has size at
most�����
; as the largest job is untouched. This ensures by Observation 1 that, reassignment
of the removed jobs still yields a��–approximate schedule, if the schedule before reassignment
is �

�–approximate. Hence we are done with this case analysis if we show that the total load of
machine# before redistribution, i.e., after removal of jobs and assignment of job�, is at most
�
�����. That is, it is enough to ensure that for machine#,

���������  ��!	� ��"#��$#�  ��!	 � �� � �



���� (2.6)

The interesting case is when the set of removed jobs excludes more jobs in addition to the
largest job; the largest job has size at most���� � Æ (recall that machine# belongs to��).
Even then, it is not a problem if an unremoved job belongs to&Æ as this readily implies that
the total size of removed jobs is at least�

����Æ � ��, where���� is the total removal limit. The
remaining situation is that every unremoved job (apart from the largest job) is from&�. An
unremoved job from&�, by the greedy removal, immediately implies that there is a removed
job from&�. This is because, (a) the removal limit, i.e.����, is at least�����
 and (b) all
jobs except the largest job have size at most�����
 in machine#. Thus��"#��$#�  ��!	 �
��&Æ	�Æ, which in turn satisfies (2.6). The additionalÆ accounts for the removed job from&�.

Case �� �
�
����� : let

�� �
�

�
���� � Æ where Æ � ������ (2.7)
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Since there can be at most� jobs in � ��	 each with size greater than�����
, there is a
machine# in the input schedule where all jobs have size at most�����
. We show that option
# is good. Observe that the reassignment of removed jobs yield�

����� makespan schedule by
Observation 1, if the schedule before has�

����� makespan. Recall that in the input schedule,
on any machine, the load excluding its largest job is at most���. Hence all jobs, except the
largest job, are removed and thus yielding a total load of at most�

����� after assigning job�.
This concludes the proof.

Robustness

Most of our scheduling strategies for minimizing the makespan discussed in this chapter are
robust in the following sense. The only invariant that we require in their analyses is that before
the arrival of a new job the current schedule is�-approximate. Job� can then be incorporated
yielding again an�-approximate schedule. In other words, we do not require that the current
schedule is carefully constructed so far, to maintain the competitiveness in the next round.

2.5.1 Negative Results

Theorems 1 and 2 raise the question of which migration factor is really necessary to achieve
competitive ratio��
. We can prove that any robust strategy needs migration factor greater
than� in order to maintain competitive ratio��
.

Lemma 1. There exists a ��
-approximate schedule such that, upon arrival of a particular
job, migration factor ����� is needed to achieve ��
-competitiveness. Moreover, migration
factor � only allows for competitive ratio ���
 in this situation.

Proof. The situation is depicted in Figure 2.2. There are 37 machines. Machines 1 to 8 are
identically packed. Each of them has one job of size 84 and three jobs of size 4. Machines 9 to
12 are also identical. Each of them has one job of size 68 and two jobs of size 16. Machine 13
contains four jobs of size 32. Machines 14 to 37 contain one job of size 96 each. The size of
the newly arriving job is 86.1. The optimal makespan is 100. To achieve a makespan of at most
150, it is necessary to migrate at least 3 jobs of size 32 from machine 13 to other machines.
Hence, the migration factor is at least������� � �����. To show the lower bound on the
competitiveness (the second part of the lemma), we set the size of the newly arriving job to 88
instead of 86.1. It is straightforward to check that the final optimal makespan is still 100 and
the best possible makespan achievable for any strategy with migration factor� � � is 152.

An additional feature ofFILL 1 and FILL 2 is that they arelocal in the sense that they
migrate jobs only from the machine where the newly arrived job is assigned to. There is a
class of optimal schedules for which, upon arrival of a new job, it is not possible to achieve
a better competitive ratio than��
 using only local migration. This holds even if an arbitrary
migration factor is allowed. The following optimal schedule on� machines, upon the arrival
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Fig. 2.2: A �

�
-approximate schedule (� � ��). If a new job of size 86.1 arrives, jobs of total size at

least�� have to be moved in order to construct a schedule that is still�

�
-approximate.

of a new job, enforces a competitive ratio of at least���
 � �
�	 for any amount of migration.

This bound converges to��
 for large�. The example looks as follows: Machines 1 and 2
each contain one job of size��
 and��
 jobs of size���. All other machines contain a
single job of size�. The newly arriving job has size�. The optimum makespan is� � ���

and the makespan achievable by any local strategy is��
 (by scheduling the new job on say,
machine 1 and migrating all small jobs to other machines).

2.5.2 A �
�
–Competitive Strategy

In this section, we show that an improved competitive ratio of�
� can be achieved by a more

sophisticated algorithm,FILL 3, with migration factor�.

Procedure FILL 3:
Upon arrival of�, choose one of the following� � � options that minimizes the resulting
makespan.

Option �: Assign job� to the least loaded machine.

Option 
 [for 
  ��� � � � ��	]: Skip phase one if either
�� � ����
		 or �� � �������
		.

Phase one: Let ' denote the largest job in machine
. Remove all jobs from machine

and schedule job� there. Except job', assign the removed jobs successively in the least
loaded machine.

Phase two: We assign the unassigned job' in this phase. If phase one was skipped then
' is simply job�. Consider� � � sub-options and choose the one that minimizes the
resulting makespan.

Sub-option �: Assign job' to the least loaded machine.
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Sub-option # [for #  ��� � � � ��	]: Ignoring the largest job in machine#, consider the
remaining jobs in the order of non-increasing size and repeatedly remove them;
stop before the total size of removed jobs exceeds
�� . Assign job' to machine#
and assign the removed jobs successively to the least loaded machine.

Theorem 3. FILL 3 is �
�–competitive with factor � migration.

Proof. The migration factor is clear from the description ofFILL 3. In both phases the migra-
tion factor is 2. To show the competitive ratio, we consider any arbitraryinput schedule on the
set of jobs that is�

�–approximate. We show thatFILL 3 yields a��–approximate schedule on
 � ��	. We call a job( as eithersmall, medium or large where

!���� � �	 � ������ �#��%� � ������ � �	 � 


�
���� ��"# � �	 �




�
����

If job � is small then option 0 yields a��–approximate schedule by Observation 1.

Case �� � ������ : With respect to the input schedule, we partition the set of machines
� as�
 and�� , where

�
 � �
 � � ��&'��# 
 &������! � ��"#  ��	 and �� �� ��


Since�� � ������, the number of large jobs in is at most� � �; otherwise the optimal
makespan of � ��	 exceeds����.

Observation 2. Consider the set of jobs ���(	 with optimal makespan ���� on� machines.
Let �	 � ������. If there are�� large jobs (�� � �) in� then there are at most 
�����	��

medium jobs in �.

Proof. Otherwise the optimal makespan of� � �(	 exceeds����.

Clearly Observation 2 implies that there is a machine) with at most one medium job and no
large jobs. Thus

�������)		 � 


�
���� (2.8)

We show that option) is good, i.e., it yields a��–approximate schedule for � ��	.
By Observation 2, all jobs in machine), except possibly the largest, are small jobs. Hence

reassigning them during phase one after scheduling job� is fine by Observation 1. Thus after
phase one of option), the ‘intermediate schedule’ is��–approximate.

We now show that the same holds after phase two of option). Recall that the job to be
assigned in this phase is denoted as'. If phase one was skipped then' is simply job�. Second
phase is entered either
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– skipping phase one because
�� � ����)		 � �
���� or �� � �������)		

(2.8)
� �

�����.
Job� is same as' for phase two.

– or after phase one. Hence�� � �������)		
(2.8)
� �

����� and �� � ��.

In either case it follows that�� � �� and job' is either small or medium. If job' is small then
the sub-option 0 yields��–approximate schedule by Observation 1.

We complete the proof by handling the case that job' is medium. As�� � ������,
by Observation 2, in the intermediate schedule after phase one there is a machine)� with at
most one medium job and no large jobs. We show that sub-option)� yields a�

�–approximate
schedule. Let the largest job in machine)� be'�. Since'� is untouched in sub-option)�, all the
removed jobs are small. Hence by Observation 1, the makespan of schedule after reassignment
of removed jobs is������ if the schedule before has������ makespan. Clearly this is true if all
jobs except'� were removed, as both' and '� are non-large jobs. At least one unremoved
job in addition to'� also ensures this as the total size of removed jobs in this case is at least

�� � ������, where
�� is the removal limit. Thus the total load in machine)� after assigning
job ' is at most ������ as �� � �� and �� � ������.

Even better results are possible for two machines. In section 2.7, we discuss a specialized
algorithm with competitive ratio
� and migration factor of one. We also show that this ratio is
tight for any deterministic strategy with migration factor one.

2.6 An Online Approximation Scheme with Constant Migration

The results presented in the last section raise the question how far the competitive ratio for on-
line algorithms with constant migration factor can be decreased. We first prove that optimality
(i.e., competitive ratio�) cannot be achieved. However, for any fixed� � � we can get down
to competitive ratio� � �.

Lemma 2. Any online algorithm computing optimal solutions needs migration factor ���	.

Proof. Consider a scheduling instance with� machines and
� � 
 jobs, two of size
��
for all 
 � �� � � � ��� �. Up to permutations of machines, any optimum schedule has the
structure depicted in the left part of Figure 2.3. The optimum makespan is��� �	��. When
a new job of size� arrives, the optimum makespan increases to�. Again, the structure of an
optimum schedule for the enlarged instance is unique; see the right hand side of Figure 2.3.
From each machine in�
� � � � ��� �	, at least one job from the pair has to move. Hence the
minimum total size of jobs that have to be migrated is at least

�

�

����
��	

����
� �� �� 
	 � �

�

��������
��	


 �



2.6. An Online Approximation Scheme with Constant Migration 19

job
new

 1

m m 3 2 1 3 1  2  . . . . . .
Optimal initial schedule Optimal final schedule

Fig. 2.3:An instance where all machine configurations have to change to maintain optimality.

which is���	.

In the following,� � � is a fixed constant. We assume without loss of generality that� � �.
The following observation belongs by now to the folklore in the field of scheduling; see,
e.g., [ABC�99].

Observation 3. Rounding up each job’s processing time to the nearest integer power of �� �

increases the makespan of an arbitrary schedule at most by a factor � � �. In particular, in
specifying a �� � ���		-competitive algorithm we can assume that all processing times are
integer powers of � � �.

The current set of jobs is denoted by . A job in  is calledlarge if its processing time
is at least� ��� 	; otherwise, it is calledsmall. The subset of large and small jobs is denoted
by 
 and � , respectively. We partition into classes �, 
  �, with

 � �� ��   � �� � �� � �	�	 �

Let * �� �
  � � � ��� 	 � �� � �	� � ����� 		 such that 
 �
�

���  �. Thus the
number of different job sizes for large jobs is bounded by�*� and therefore constant:

�*� � � � ��	��
����� 	

� ��� 	
� � � ��	��

�

�
� 


�
��

�
� � �

�

	
� (2.9)

Given an assignment of jobs 
 to machines, we say that a particular machine obeysconfig-
uration # � * � ()� if, for all 
  *, exactly#�
	 jobs from � are assigned to this machine.
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The set of configurations that can occur in any schedule for 
 is

� �� �# � * � ()� � #�
	 � � �� for all 
  *	 �

Up to permutations of machines, an arbitrary schedule for 
 can be described by specifying,
for each#  �, the number+� of machines that obey configuration#. Conversely, a vector+ 
()�

� specifies a feasible�-machine-schedule for 
 if and only if

�
���

+� � � and (2.10)

�
���

#�
	 +� � � �� for all 
  *. (2.11)

We denote the set of vectors+  ()�
� satisfying (2.10) and (2.11) by�. Thus,� represents

the set of all schedules (up to permutations of machines and up to permutations of equal size
jobs) for 
. For a configuration#  � let

�����#	 ��
�
���

�� � �	� #�
	

denote the load of a machine obeying configuration#. The makespan of a schedule+  � is
equal to���������#	 � +� � �	. For, � �, let

��,	 �� �#  � � �����#	 � ,	 �

The set of all schedules with makespan at most, is denoted by

��,	 �� �+  � � +� � � if �����#	 � ,	 �

In the following, we usually interpret a schedule+  ��,	 as a vector in()���� by ignoring
all zero-entries corresponding to configurations not contained in��,	.

The minimum makespan for 
 can be obtained by determining the minimum value,
with ��,	 �� �. Checking whether��,	 is empty and, otherwise, finding a schedule+  ��,	

can be done by finding a feasible solution to an integer linear program. We can write

��,	 � �+  ()�
��� � ��,	 + � (	 �

where��,	 is a matrix in()�
	����������� and( is a vector in()�

	����. The first row of the
linear system��,	 + � ( corresponds to constraint (2.10); the remaining�*� rows correspond
to constraints (2.11).

Lemma 3. Let  be a set of jobs and let � be a new job of size �� � � ��� 	. Any schedule
for  
 with makespan , � �� � �	���� 	 can be turned into a schedule for  
 � ��	 by
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touching only a constant number of machines such that the makespan of the resulting schedule
is at most ����,� ���� 
 � ��			.

Proof. We distinguish two cases. If�� � 
,, then it is easy to observe that���� 
 � ��		 �

�� and an optimal schedule for 
 � ��	 can be obtained by assigning job� to an arbitrary
machine and moving all jobs that are currently on this machine to any other machine.

In the remainder of the proof we can assume that�� � �� � �	�
�

� 
, and there-
fore ���� 
 � ��		 � 
,. Let +  ��,	 denote the given schedule for 
. Then+ satisfies

��,	 + � ( � +  ()�
��� � (2.12)

Let * � �� * � �
�	 and let�� denote the set of configurations# � *� � ()� that can occur
in any schedule for 
 � ��	. Then���,	, ���,	, ���,	, and(� are defined analogously
to��,	, ��,	, ��,	, and(, respectively, with� replaced by�� and* replaced by*�.

Let ,� �� ����,� ���� 
 � ��			 � 
,. We are looking for a schedule+�  ���,�	, that
is, +� must satisfy

���,�	 +� � (� � +�  ()�
����� � (2.13)

Moreover,+� should be ‘similar’ to+. In order to compare the two vectors, we first ‘lift’+ to
a vector in()�

�
���� as follows. A configuration#  ��,	 can be interpreted as an element

of ���,�	 by defining#�
	 �� � for all 
  *� � *. We then define

+� �� � for all #  ���,�	 ���,	 �

It follows from (2.12) that the extended vector+ satisfies

���,�	 + � *( � +  ()�
����� � (2.14)

The right hand side*(  ()�
	����� is defined as follows: If*� � *, then*( � (; otherwise,*� �

* � �
�	 and we define the entry of vector*( corresponding to
� to be zero and all other entries
as in vector(.

Thus+ and+� are solutions to essentially the same integer linear program ((2.14) and (2.13),
respectively) with slightly different right hand sides*( and(�, respectively. More precisely, the
right hand sides are equal for all but one entry (the one corresponding to
�) where they differ
by �.

Theorem 4 ([Sch86, Corollary 17.2a]). Let � be an integral � � �-matrix, such that each
sub-determinant of � is at most + in absolute value, let *( and (� be column �-vectors,

and let � be a row �-vector. Suppose �����- ��- � *( � - integral	 and �����- ��- �
(�� - integral	 are finite. Then for each optimum solution + of the first maximum there exists
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an optimum solution +� of the second maximum such that

�+ � +��� � �+ ��*(� (��� � 
	�

By Theorem 4 (choosing� to be zero vector), there exists a solution+� to (2.13) satisfying

�+ � +��� � �


���,�	



+ � (2.15)

where+ is an upper bound on the absolute value of any sub-determinant of the matrix���,�	.
To complete the proof, we have to show that the right hand side of (2.15) is constant.

First we give an upper bound on the number of columns����,�	�, i.e., on the number of
machine configurations with load at most,�. Since each job has size at least

� ��� 	
(2.1)
� �



���� 	 � �


�� � �	
, � �

��� � �	
,� �

there are at most. �� ���� � �	��� � �
� jobs in any configuration#  ���,�	. In particu-

lar, #�
	 � . for all 
  *�. This yields



���,�	


 � .��

�� � .����	 �
�

�

�

	����	 (2.9)
�

�
�

�

	 �
�
��� ���

�
�

�
�

� � �

�

	 �
�
��� �

�
�

(2.16)

Finally, all entries in the first row of���,�	 are� and the remaining entries are of the form#�
	 �
.. Hence we bound+ as follows. The maximum dimension of a square sub-matrix inside
���,�	 is at most the number of rows, i.e.,
 � �*� and, each entry in it has value at most..
Hence the value of its determinant is upper-bound by��
 � �*�	.	�����. Thus

+ � �
�
 � �*�	 .������ (2.9)

�
�

�

��

	�����
�
�

�

�

	����� (2.9)
�

�
� � �

�

	 ��
�
��� �

�
�

Hence the number of machines touched is at most



���,�	


 � �+ � +��� (2.15)

� �


���,�	



� +
(2.16)
� �

�
� � �

�

	 ��
�
��� �

�
�

(2.17)

and therefore is a constant. This concludes the proof.

Theorem 5. Let  be a set of jobs and let � be a new job not contained in  . Any �� � �	-
approximate schedule for  can be turned into a �� � �	-approximate schedule for  � ��	
such that the total size of jobs that have to be moved is bounded by a constant ���	 times �� .

Proof. We distinguish two cases. If the newly arrived job is small, i.e.,�� � � ��� 	, then�
can simply be assigned to the least loaded machine by Observation 1 and no job in has to
be moved.
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It remains to consider the case�� � � ��� 	. The given schedule for induces a schedule
for  
 with makespan, � �� � �	 ���� 	 � �� � �	 ���� � ��		. By Lemma 3, the latter
schedule can be turned into a schedule for 
 � ��	 with makespan at most

����,� ���� 
 � ��			 � �� � �	 ���� � ��		 �

by touching only a constant number of machines. In the following, this subset of machines of
constant size is denoted by��. We construct a schedule for � ��	 as follows:

i) Start with the schedule for 
 � ��	 discussed above.

ii) The jobs in � that were assigned, by the given schedule for , to one of the machines
in� �� � are assigned to the same machine again.

iii) The remaining jobs in � are assigned one after another to the least loaded machine.

The makespan of the partial schedule constructed in steps i) and ii) is bounded by the maxi-
mum of the makespan of the given schedule for and the optimal makespan of the schedule
for  
���	. It is thus bounded by��� �	���� ���		. Assigning small jobs greedily to the
least loaded machine in step iii) therefore results in a����	-approximate schedule for ���	
by Observation 1.

Finally, notice that, in the whole process, only jobs that have initially been scheduled on
machines� � are moved. The total size of these jobs is at most

�� � �	���� 	 �� ��
(2.1)
� 
�� � �	 ��� 	 �� �� � 
��

�
� � �

�

	
�� ��

(2.17)
� ��

�
� � �

�

	�
�
��	
����

�

�

�

This concludes the proof.

Theorem 6. There exists a �� � �	-competitive online algorithm with constant migration fac-
tor ���	 such that the running time for scheduling a newly arrived job is constant.

In particular, it follows from the last property mentioned in the theorem that the algorithm
has linear running time.

Proof. The result on the competitive ratio follows from Theorem 5. It remains to show that
upon arrival of a new job�, the schedule can be updated in constant time. We consider only the
non-trivial case� � �. We assume that for the current set of jobs the following information
is given:

– The total size of jobs�� 	, the maximum job size����� 	, and the lower bound��� 	.

– For each machine, its load rounded down to the nearest integer power of� � �
� .
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We argue that this information can be updated in constant time for the new set of jobs ���	.
It is certainly easy to compute�� ���		 �� �� 	��� , ����� ���		 �� ��������� 	� ��	,
and��� � ��		 �� ������ � ��		��� ����� � ��			. Since only constant number of
machines are touched to incorporate the new job�, approximating the modified machine loads
can also be done in constant time.

From Lemma 3, we recall the notion of a machine configuration#��	 with respect to the
set of large jobs. In the following, we call a job small if its size is less than�

� ��� 	 and large
otherwise. This slightly modified definition is just a technicality and it only affects the bound
on * and. in Lemma 3, by a constant factor. Thus it only changes the bound (2.17), by a
constant factor.

Similar to the arguments in Lemma 3, we argue that the number of machine configurations
with each configuration having load at most���� 	 is a constant. That is������� 		� is
a constant. Each large job (belonging to 
) has size at least�� ��� 	. Hence a machine
configuration with total load at most���� 	 has at most�� jobs from 
. Each such job
belongs to one of the job classes from*. Since the total number of large job classes�*� is also
a constant and the job classes are indexed from���	���

�
� ��� 		� �� 
 to 
� �*�, we get:

Observation 4. There are at most a constant number (say �) of configurations with each con-
figuration having total load at most ���� 	, and we can enumerate them in constant time.

The given schedule on is represented using the following simple data structure. We
assume that initially the schedule is given to us in this form. Later we show how to update
it in constant time while scheduling job�. The machine configurations are represented using
structures as shown in Figure 2.4. There is an array ofConfig Heads of dimension�, one
for each possible configuration, and eachConfig Head points to the list of machines (list of
Machine Nodes) obeying that configuration. AMachine Node points to the list of jobs in it
grouped as batches. The small jobs (belonging to �) in it are grouped into batches of size at
most �� ��� 	 and the large jobs remain as a batch with single node. Clearly there are only a
constant number of such batches in any machine. Each batch has aBatch Head that points to
the list of jobs (Job Nodes) in it.

Since����	 is monotonically increasing, the machines belonging to the same configuration
list still belong together in future, possibly in a different configuration list, as long as they are
untouched. Thus while incorporating job�, Config Head array and its associated machine lists
can be updated in constant time if a constant number of machines are touched and the pointers
to their correspondingMachine Nodes are available.

To find a machine with load at most�� � �
�	��� 	 in constant time, we use bucketing.

This is needed for assigning small jobs. The machines are partitioned into buckets based on the
exponent of�� �

� to which machine loads are rounded. All machines with approximate load at
most��� 	 belong to bucket�. Each machine belonging to bucket
 � � has its approximate
load ' such that����

	��� �
�

	�����
� ��� 	. Since the maximum load of a machine is at

most 
���� 	 � ���� 	, the number of buckets is at most a constant. A machine from
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Fig. 2.4:The different structures used in representing the schedule.

bucket� can be found in constant time (bucket� is always non-empty). Observe that the
untouched machines in a bucket stay together even in future (possibly in a new bucket) as
����	 is monotonically increasing. Thus the bucket structure can be updated in constant time
while assigning job� if only a constant number of machines are touched. We assume that the
bucket representation for is also available in the beginning.

If the new job� is small (�� � �
� ��� 	), then

i) Consider any machine from bucket�. Assigning job� to it changes its load to at most
�� � �	��� 	 � �� � �	���� � ��		, as any machine in bucket� has load at most
�� � �

�	��� 	.

ii) Assign � to a batch of small jobs such that the total load in it does not exceed�
� ��� 	.

If no such batch exists, create a new batch for job�. Update the batches (merge small
batches) with respect to � ��	. There are only constant number of batches initially.

iii) Update the bucket structure with respect to � ��	.

If the new job� is large then with respect to the input schedule+

a) Generate feasible schedules)  ���� ��� � ��		� by enumerating all vectors with con-
stant distance�+�+��� (see (2.15) and (2.17) of Lemma 3), where+�  �������	 ���� �
��		�. Observe that��

�
�� � �	 ���� � ��		� 
 ���� ��� � ��		�. There are only con-

stant number of such vectors and they can be generated in constant time by Observation 4.
For each feasible vector do the following and choose the one minimizing the makespan.

b) The component wise difference between+ and) specifies a subset of configurations and
non-zero number of machines from each such configuration that should be modified. For
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each such configuration, we remove the required number of machines from the front of the
machine list pointed to by the respectiveConfig Head.

– Remove small job batches (with respect to � ��	) from these machines.

– Reschedule the remaining jobs among these machines.

– Assign these machines to the appropriate configuration lists.

– Update the bucket structure with respect the new machine loads.

– Each of the small batches are reassigned as in the small job case discussed above.

It is straightforward to verify that all of the above steps take only constant time. Thus we
conclude the proof.

2.7 The Two Machine Case

In this section we show a tight competitive ratio of

� for the two machine case. Consider the

following procedureFILL 4.
Procedure FILL 4:
Upon arrival of�, choose the option minimizing the makespan from the following options.

For each fixed machine
  ��� 
	, we define multiple options in the following way. Let
% be the largest 3 jobs in machine
. Set% could possibly have less than three jobs. Let
the remaining jobs in machine
 be/. That is/ � ��
	 � %� Let � 
 

 be set of all
possible subsets (including0) of % such that for each%�  �� ��%�	 � ��� Each set
%�  � gives rise to a new

Option �
�#	: Migrate jobs in%� to the other machine. Consider the jobs in/ in non-
increasing order order of size and repeatedly remove them; stop before the total size of
removed jobs exceeds�� � ��%�	. Let/� denote these removed jobs. Assign job� to
machine
 and assign the removed jobs successively to the least loaded machine.

Option �: Assign job� to the least loaded machine.

Theorem 7. FILL 4 is 

�–competitive with factor 1 migration.

Proof. The migration factor is clear from theFILL 4 description. To show the competitive ratio,
we consider an arbitraryinput schedule on the set of jobs that is
�–approximate. We show
thatFILL 4 yields a


�–approximate schedule for � ��	.
If job � is such that�� � ������ then option 0 already yield a
�–competitive schedule

by Observation 1. It remains to handle thecase �� � ������. From now on we assume that
Option� does not suffice. As the largest three jobs are not included in set/ we have,

Observation 5. For any machine 
 consider the set / as defined in FILL 4. Every job in it has
size at most ������.
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Observation 6. Migrating jobs of total size at most �� � ������ from any fixed machine and
assigning job � there yields a 


�–approximate schedule for  � ��	.

Proof. Let machine 2 be the higher loaded machine and let����
		 � ����� ���
 � +. This
implies that�����		 � ���� � ���
 � +. Merely assigning job� to machine 1 fail only if
the final load difference exceeds������. For this it is necessary that+ � ���
 � ������ and
�� � ������. The total migration amount needed is either���
 � ������ (from machine� to

) or ���
 � + � ������ (from 
 to �), which is at most�� � ������.

Though above observation is true, it is possible that every feasible set of jobs that needs to
be migrated have total size more than�� � ������.

Fact 2. There is a subset of jobs of total size at most �� residing in a machine such that
scheduling job � here and migrating this subset to the other machine yields a 


�–approximate
schedule.

It might take exponential time in the worst case to identify the subset that needs to be
migrated. Using Observation 6 we show that our polynomial time strategy also works. Let1

denote theset with the smallest total size that needs to be migrated from machine
 according
to Fact 2. Consider the sets% and/ for machine
 as defined inFILL 4. Let1 � % � %�.
Observe that%�  �. We show that Option�
�#	 yields a


�–approximate schedule. The set
of jobs that are either migrated or removed from machine
 before assigning� is %� � /�.
Observe that��%� � /�	 is at least�� � ������ unless/� � / as size of any job in/ is at
most������ by Observation 5. Thus in any case��1	 � ��%� �/�	 as��1	 � �� � ������
by Observation 6. Thus by Observation 6 the total load in machine
 after assigning job�, i.e.,
����
	 � �%� �/�		 � ��, is at most
�����. The reassignment of jobs in/� (each have size at
most������) is also fine by Observation 1.

Proof. (Fact 2) It is clear that there is no need to migrate a total size more than�� (simply
assign�� on the destination machine instead). Fix any optimal schedule of � ��	. We
capture the difference between this optimal schedule and the input schedule on by sets
Æ	� Æ��+	 and+�. As shown in Figure 2.5, the above four sets define a partition of . The
setÆ	 is the set of all jobs assigned to machine 1 on both schedules. Similarly, set+� is the
set of all jobs assigned to machine 2 on both schedules. The remaining two sets capture the
differences between these two schedules except for job�, which is only present in the optimal
schedule.

We consider only the interesting case that assigning� to any machine without migration
fails. From now, for convenience, we denote the size of any set1 as simply1. For job� we
denote its size as�. We also normalize���� to 1. The optimal schedule (Figure 2.5) and the
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+�

+	

Æ	

Æ�
�

Input Schdule on� Optimal Schedule on� � ���

1 2 1 2

Æ	

Æ�

+�

+	

Fig. 2.5:Comparison of input schedule on� and optimal schedule on� � ���, for two machines.

fact that assigning� without migration fails implies

��	 Æ	 � Æ� � � � �

�
	 +	 � +� � �

��	 Æ	 � +	 � � � ���

��	 Æ� � +� � � � ���

It is straightforward to verify that these four inequalities yield� � 
�� and henceÆ	 �

Æ� � ��� (Inequalities 1 and 3 imply+	 � ��� � Æ�. Inequalities 2 and 4 implyÆ� � � �

��� � +	). W.l.o.g letÆ	 � ���. Hence the migration strategy is; migrate+� to machine 1
and schedule� on machine 2.

Tight Lower Bound

Theorem 8. Let � be any deterministic algorithm that is �–competitive on two machines with
migration factor at most one. Then � � 


�	��� for any sufficiently small positive �  (,�.

Proof. The adversary initially issues four jobs with the following size:��� � ��
� ��� �

��
� ��
 and ��
. It is easy to verify that the only 

�	���–approximate way of scheduling

them is to assign in each machine one job of size��� � ��
 and one job of size��
.

Assume that both machines contain one job of size��
 and one job of size������
. Now
adversary issues a new job of size
��. The optimal makespan is� � �. But if the migration
factor is restricted to�, then the best possible makespan by� is ���. Hence� � 


�	��� .

2.8 Maximizing the Minimum Machine Load

An alternative, yet less frequently used objective for machine scheduling is to maximize the
minimum load. However, we have a concrete application using this objective function that was
the original motivation for our interest in bounded migration: Storage area networks (SAN)
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usually connect many disks of different capacity and grow over time. A convenient way to
hide the complexity of a SAN is to treat it as a single big, fault tolerant disk of huge capacity
and throughput [BSS02, San04]. A simple scheme with many nice properties implements
this idea if we manage to partition the SAN into several sub-servers [San04] of about equal
size. Mapping to our scheduling framework, the contents of disks correspond to jobs and
the sub-servers correspond to machines. Each sub-server stores the same amount of data. For
example, if we have two sub-servers, each of them stores all the data to achieve a fault tolerance
comparable to mirroring in ordinary RAID level 0 arrays [PGK88]. More sub-servers allow
for a more flexible tradeoff between fault tolerance, redundancy, and access granularity. In
any case, the capacity of the server is determined by theminimum capacity of a sub-server.
Moreover, it is not acceptable to completely reconfigure the system when a new disk is added
to the system or when a disk fails. Rather, the user expects a “proportionate response”, i.e., if
she adds a disk of- GByte she will not be astonished if the system moves data of this order
of magnitude but she would complain if much more is moved. Our theoretical investigation
confirms that this ‘common sense’ expectation is indeed reasonable.

We concentrate on the case without job departures (disk failures). We show that the fol-
lowing simple strategy, which is very similar toFILL 1, is 
–competitive already for migration
factor� � �.

Procedure FILL 5:
Upon arrival of a new job�, do the following. Repeatedly remove jobs from the least loaded
machine
���; stop before the total size of removed jobs exceeds��. Assign job� to ma-
chine
���. Assign the removed jobs successively to the least loaded machine.

Theorem 9. FILL 5 is 
–competitive with migration factor �.

Proof. The migration factor is clear from the description ofFILL 5. In the input schedule on
 , consider themaximum loaded machine among those containing multiple jobs. If there is
no such machine (i.e, every machine has at most one job) then the schedule after assigning job
� is �–approximate (optimal). Hence the interesting case is that such machines exist. We call
such machines asmulti-job machines.

We assume that the following property holds for the input schedule;

maximum load of a multi-job machine� 
 � minimum load (2.18)

Later we show that the above property is preserved on the output schedule. An output schedule
with above property is a 2–approximate schedule as the optimalminimum load is at most
the maximum load of a multi-job machine. Thus it remains to show that property (2.18)
holds for the output schedule. If�� � ����
���		 then this is straightforward. In case�� �
����
���		, initially all jobs from the least loaded machine are removed and� is assigned
there. This intermediate schedule (before reassigning the removed jobs) satisfies property
(2.18). Observe that each of the removed jobs has size at most the intermediate minimum
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load. Hence reassigning them still preserves the property as shown above.

Negative Result

The following lemma shows that it is not possible to start with an arbitrary
–approximate
schedule on and obtain a
–approximate schedule for � ��	 with constant migration
factor.

Lemma 4. There is a 
–approximate schedule on � machines such that upon the arrival of
a new job, it is not possible for any strategy to obtain 
–approximate schedule with migration
factor less than �� 
.

Proof. In the initial schedule machine 1 has
� jobs of size 1. All the remaining� � �

machines have one job of size 1. In total there are�� � � jobs. The optimal minimum load
is 2. Hence this is a 2–approximate schedule. A new job of size 1 arrives. The new optimal
minimum is 3. To achieve minimum load greater than 1, any strategy has to move at least
�� 
 jobs from machine 1.

2.9 Summary and Open Problems

We presented strategies for online scheduling problem where we allow migration of already
assigned jobs. We show that already with migration factor
 the competitive ratio becomes
1.5, which beats the lower bounds for the classical online scheduling problem. We bring down
the migration factor to��� for 1.5–competitiveness and also obtain 4/3–competitiveness with
factor 4 migration. For the case of two machines we obtain a tight competitive ratio of���

with migration factor�. We presented an online PTAS (yielding competitive ratio of� � � for
any� � � with constant migration factor���	) with linear running time, which compares with
the PTAS for the offline version. We also discussed the setting of maximizing the minimum
load and gave a 2–competitive algorithm with unit migration factor.

One open problem is to bring down the migration factors while achieving same or better
competitive ratios. It is an interesting question to show better lower bounds on the migration
factors needed, possibly as a function of the desired competitive ratio. Another open problem
is to come up with better strategies for the maximizing minimum load objective. It would also
be interesting to investigate the cases of related parallel machines, i.e., the job size gets scaled
differently in different machines, and unrelated parallel machines, i.e., processing time for job
� on machine
 is given separately as���.
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Smoothed Competitiveness of Metrical Task Systems

3.1 Introduction

Metrical Task Systems, introduced by Borodin, Linial and Saks [BLS92], is one of the very
well-known and well-studied problems in the field of online algorithms. Metrical task systems
is formulated as follows. We are given an undirected and connected graph� �� �2��	, with
node set2 and edge set�, and a positive length function3 � � � (,� on the edges of�. We
extend3 to a metricÆ on�. Let Æ � 2 � 2 � (,� be a distance function such thatÆ��� 4	
denotes the shortest path distance (with respect to3) between any two nodes� and4 in �. A
task 5 is an�-vector���4		� � � � � ��4�		 of request costs. The cost to process task5 in node4�
is ��4�	  (,����	. The online algorithm starts from a given initial position6�  2 and has
to service a sequence� �� �5	� � � � � 5�� of tasks, arriving one at a time. If the online algorithm
resides in node� after serving task5��	, the cost to service task5� in node4 is Æ��� 4	����4	;
Æ��� 4	 is thetransition cost and���4	 is theprocessing cost. The objective is to minimize the
total transition plus processing cost.

Borodin, Linial and Saks [BLS92] gave a deterministic online algorithm, known as the
work function algorithm (WFA), for metrical task systems. WFA has a competitive ratio of

� � �, which is optimal. Borodin, Linial and Saks [BLS92] and Manasse, McGeoch and
Sleator [MMS88] proved that on any given metric space on� nodesevery deterministic on-
line algorithm for metrical task systems has competitive ratio at least
� � �. On the other
hand, the competitive ratio often is an over-pessimistic estimation of the performance of an
online algorithm, since instances that force the online algorithm in its worst-case behavior are

Publication Notes. This is a joint work with Guido Sch¨afer. A preliminary version of this work
appeared in the proceedings of the 21st International Symposium on Theoretical Aspects of
Computer Science (STACS), 2004 [SS04].

Guido Schäfer is a Ph.D. student at the Max-Planck-Institute f¨ur Informatik, Saarbr¨ucken.
The results presented in this chapter will also become a part of his thesis. My own contribution
to the contents of this chapter is 50%.
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highly artificial.

Smoothed Competitive Analysis.Spielman and Teng [ST01] proposed a new complexity
measure, calledsmoothed complexity, which is a hybrid between average-case and worst-case
complexity. The basic idea ofsmoothed analysis is to randomly perturb, or smoothen, the
input instances and to analyze the performance of the algorithm on the perturbed instances.
The smoothed complexity of an algorithm is defined as the supremum over all input instances
of the expected running time on the perturbed instances.

More formally, let��  (,� denote the set of all inputs of length� for a deterministic
algorithm�. Let -* � �
	� � � � � 
�	  �� be one such input. Let��-*	 denote the performance
of � on input-*. Consider the following random variable* � �
	 � 7	� 
� � 7�� � � � � 
� � 7�	,
where each7� is a random number chosen from asymmetric distribution � with zero mean.
The process of drawing an instance from theneighborhood of -* in the above fashion is called
the perturbation or smoothing process. The extend of perturbation (‘size’ of the neighborhood)
depends on thesmoothing parameter , which relates to the distribution� in the sense that it
reflects how much the smoothed input deviate from the initial input values stochastically. The
worst-case complexity and the smoothed complexity of� can be written as,

Worst-case� !%�
�����

��-*	 Smoothed Complexity� !%�
�����

�
�
�	��

�
��-*	

�
�

Intuitively, the smoothed performance of an algorithm on a given instance is its perfor-
mance ‘averaged’ over the instance ‘neighborhood’ (because of the random perturbation).
Hence the smoothed complexity of an algorithm is small if the worst case instances are isolated
peaks in the instance/performance space, which in a sense reflects the ‘sparse distribution’ of
worst-case instances.

Based on this idea underlyingsmoothed analysis, Becchetti et al. [BLMS�03] recently
proposedsmoothed competitive analysis as an alternative to worst-case competitive analysis
of online algorithms. The idea is to randomly perturb, orsmoothen, an adversarial input
instance-� and to analyze the performance of the algorithm on the perturbed instances. Let
��.�/ and���.�/, respectively, be the cost of the online and the optimal offline algorithm on
a smoothed instance� obtained from-�. Thesmoothed competitive ratio � of �� with respect
to a smoothing distribution� is defined as

� �� !%�
�

�
 �	 �


�
��.�/

���.�/

�
�

We use the notion of smoothed competitiveness to characterize the asymptotic perfor-
mance of WFA. We ignore the constants in the competitive ratio and also ignore short request
sequences. Each cost entry in the request vector is smoothed by adding a random number
chosen from a probability distribution� , whose expectation coincides with the original cost
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entry. The underlying graph is unchanged. Our analysis reveals that the smoothed competi-
tive ratio of WFA is much better than its worst-case competitive ratio and it depends on certain
topological parameters of the underlying graph. Our analysis holds for various probability dis-
tributions, including the uniform and the normal distribution. We also show that our bounds
on smoothed competitiveness are tight for a large class of graphs, againstany deterministic
algorithm.

Relevant Topological Parameters: We assume that the underlying graph� has� nodes,
minimum edge length����, maximum edge length����, and maximum degree�. Fur-
thermore, we use0�����	 to refer to thediameter of �, i.e., the maximum length of a
shortest path between any two nodes. Similarly, a graph hasedge diameter������	 if any
two nodes are connected by a path of at most������	 edges. We use shorter notation
���� �� ������	 and 0��� �� 0�����	 when the graph� is clear from the context.
Observe that�������� � 0��� � ��������. We emphasize that these topological parame-
ters are defined with respect to� and its length function3 and not with respect to the resulting
metric, which is a complete graph.

3.1.1 The Smoothing Model

Let the adversarial task sequence be given by-� �� �-5	� � � � � -5��. We smoothen each task
vector -5� �� �-���4		� � � � � -���4�		 by perturbing eachoriginal cost entry -���4�	 according to
some probability distribution� as follows

���4�	 �� ������ -���4�	 � 7�4�		� where7�4�	���

That is, to each original cost entry we add a random number which is chosen from� . The
obtainedsmoothed task is denoted by5� �� ����4		� � � � � ���4�		. We use, and, respectively,
to denote the expectation and the standard deviation of� . We assume that� is symmetric
around, �� �. We take the maximum of zero and the smoothing outcome in order to ensure
that the smoothed costs are non-negative. Thus, the probability for an original zero cost entry
to remain zero is amplified to	� .

Our analysis holds for a large class of probability distributions, which we callpermissible.
We say� is permissible if (i)� is symmetric around, � �, and (ii) � is non-increasing in
.���	. For example, the uniform and the normal distribution are permissible. The concen-
tration of� around, is given by its standard deviation. We remark that the general upper
bounds on the smoothed competitive ratio of WFA do not improve by choosing much larger
than����. There are input instances where lower bounds matching the stated upper bounds
can be shown even if � 
�

�
������ (See Remark 3 in Section 3.7.2). Thus, throughout

this chapter, we restrict to the interesting range of��� �����/, for some constant�, for both
upper and lower bounds. In particular, for all our analysis we assume that � 
����, though
the same analysis holds for any fixed constant. Moreover, we use�� to denote a constant
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Upper Bounds

arbitrary tasks �
�
����

����

�
����

�
� ��	
��

��
and �

��
	 � ����

����

�
����

�
� ��	
��

��

random tasks �
�

�

����

�
����

�
� ��	
��

��


-elementary tasks �
�

 � ����

����

�
����

�
� ��	
��

��

Tab. 3.1:Upper bounds on the smoothed competitive ratio of WFA.

depending on� such that for a random7 chosen from� ,��.7 � ��� / � 	
� .

Random tasks are generated by smoothing zero tasks (all-zero entries). Here we take care
that we only allow distributions over.���	.

All our results hold against anadaptive adversary. An adaptive adversary reveals the task
sequence over time, thereby taking into account the decisions made by the online algorithm
for the past smoothed inputs.

In the terminology of [ST01], our smoothing model falls into the category ofadditive
symmetric smoothing models, where a random number chosen from a symmetric distribution
is added to the original input. We refer to [ST01] for a review of other smoothing models.

3.2 Our Contribution

We prove several upper bounds; see Table 3.1.

1. We show that if the request costs are chosen randomly from a distribution� , which is
non-increasing in.���	, the expected competitive ratio of WFA is

�
�
� � �

���
� ����	

�
�

In particular, WFA has an expected competitive ratio of������		 if  � ������	.
For example, we obtain a competitive ratio of������		 on a clique and of���	 on
constant degree graphs like a line graph, 2-d grid, binary tree etc.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

�

�
����
���

�
���
� � ����	

�	
and �

�
� � ����

���

�
���
� � ����	

�	
�

For example, if � ������	 and��������� � ���	, WFA has smoothed competitive
ratio ������		 on any graph with constant edge diameter and��

�
�	 on any graph
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Lower Bounds – for any deterministic algorithm

arbitrary tasks

– existential �
�
����

����

�
����

�
� ��	
��

��
and �

��
	 � ����

����

�
����

�
� ��	
��

��

– universal �
�
����

�
� ����

����
��	
��

�
and �

��
��� � ����

����

�
����

�
� �

��


-elementary tasks �
�

 �
�
����

�
� �

��
(existential)

Tab. 3.2:Lower bounds on the smoothed competitive ratio of any deterministic online algorithm.

with constant maximum degree. Note that we obtain an������		 bound on a complete
binary tree and������	 ������		 on an�-node hypercube.

3. We obtain a better upper bound on the smoothed competitive ratio of WFA if the adver-
sarial task sequence only consists of�-elementary tasks. A task is�-elementary if it has
at most� non-zero entries. A�-elementary task is also called anelementary task. We
prove a smoothed competitive ratio of

�
�
� � ����

���

�
���
� � ����	

��
�

For example, if � ������	 and��������� � ���	, WFA has smoothed competitive
ratio��� ����		 for �-elementary tasks.

Remark 1. The upper bound expressions for arbitrary tasks given above hold even for the cases
of �-elementary tasks and random tasks. For example, the final upper bound for�-elementary
tasks is the minimum of the arbitrary tasks upper bound,
� � � and the�-elementary upper
bound.

We also present lower bounds; see Table 3.2. All our lower bounds hold forany deterministic
online algorithm and if the request costs are smoothed according to the additive symmetric
smoothing model as described in Section 3.1.1. We distinguish betweenexistential anduni-
versal lower bounds. An existential lower bound, say�����		, means that thereexists a class
of graphs such thatevery deterministic algorithm has smoothed competitive ratio�����		 on
these graphs. On the other hand, a universal lower bound�����		 states that forany arbitrary
graph,every deterministic algorithm has smoothed competitive ratio�����		. Clearly, for
metrical task systems, the best lower bound we can hope to obtain is���	. Therefore, if we
state a lower bound of�����		, we actually mean�������� ���			.

4. For a large range of values for the parameters0��� and�, we present existential lower
bounds that are asymptotically tight to the upper bounds stated in 2. This means (a) that
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the stated smoothed competitive ratio of WFA is asymptotically tight, and (b) that WFA
is asymptotically optimal under our additive smoothing model—no other deterministic
algorithm can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

�
�
���
� � ���

����
����	

�
and �

�
���

�
�����


���� � ���

����

�
���
� � �

��	
�

Assume that��������� � ���	. Then, the first bound matches the first upper bound
for arbitrary tasks if the edge diameter���� is constant, e.g., for a clique. The second
bound matches the second upper bound for arbitrary tasks if���� � ���	 and the
maximum degree� is constant, e.g., for a line.

6. For�-elementary tasks, we prove an existential lower bound of

�
�
� � ����

� � �
��
�

This implies that the upper bound for�-elementary tasks is tight up to a factor of
����������	 ����	.

Constrained Balls into Bins Our analysis crucially relies on a lower bound on the cost of
an optimal offline algorithm. We therefore study the growth of the work function values on a
sequence of random requests. It turns out that the increase in the work function values can be
modeled by a version of balls into bins experiment with dependencies between the heights of
the bins, which are specified by a constraint graph. We call it theconstrained balls into bins
experiment. We believe that the constrained balls into bins is also interesting independently of
the context of this work.

Lower Bound for Zero-Retaining Smoothing Models

A major criticism to the additive smoothing model is that zero cost entries are destroyed.
However, one can easily verify that the lower bound proof of
� � � on the competitive ratio
of any deterministic algorithm for metrical task systems goes through for any smoothing model
that does not destroy zeros. The proof is based only on the use of elementary tasks and the
fact that the cost of the online algorithm is monotone increasing with the length of the input
sequence (see [BLS92, MMS88, BEY98]). Assume we consider a zero-retaining smoothing
model, i.e., a model in which zero cost entries are invariant to the smoothing. In such a model,
elementary tasks are smoothed to elementary tasks. In particular this means that the above two
properties still hold and hence the lower bound still holds.

Theorem 10. Every deterministic online algorithm for metrical task systems has a smoothed
competitive ratio of at least 
�� � under a zero-retaining smoothing model.
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3.3 Related Work

Several other attempts were made in the past to overcome the over-pessimistic estimation of
the performance of an online algorithm by its competitive ratio. One idea was to enhance the
capability of the online algorithm by allowing a limited lookahead [Alb93, Alb98]. Another
idea was to restrict the power of the adversary. For example, Borodin et al. [BIRS95] used
an access graph model to restrict the input sequences in online paging problems to specific
patterns. The diffuse adversary model by Koutsoupias and Papadimitriou [KP94] is another
attempt to refine the notion of competitiveness. In this model, the actual distribution of the
input is chosen by an adversary from a known class of possible distributions. We strongly
believe that smoothed competitive analysis is a natural alternative to adequately characterize
the performance guarantee of an online algorithm.

Chapter Organization. In Section 3.4 we first define the commonly used notations and also
the work functions. In Section 3.4.2, we review the work function algorithm and state some
of its properties. The lower bound on the cost of an optimal offline algorithm and the related
balls into bins game are presented in Section 3.5. Then, in Section 3.6.1 and Section 3.6.2,
we prove the upper bounds on the smoothed competitive ratio of WFA. After that, in Sec-
tion 3.6.4 we present an upper bound on the competitive ratio of WFA against random tasks,
and in Section 3.6.5 we develop the bound for�-elementary tasks. In Section 3.7.1 we prove
the existential lower bound for�-elementary tasks. Then we proceed to show the two uni-
versal lower bounds in Section 3.7.2. This is followed by the existential lower bounds in
Section 3.7.3. We conclude this chapter with concluding remarks and open problems in Sec-
tion 3.8. Proofs of some of the simple facts and lemmas are moved to Appendices 3.A, 3.B
and 3.C, for better readability.

3.4 Preliminaries

Let the sequence of requests for' rounds be denoted as-� � �5	� � � � � 5��. Let 12�. -�/ and
���. -�/ denote costs incurred by WFA and the optimal offline strategy respectively on-�. The
smoothed outcome of the request sequence is denoted by the random variable�. Let6� denote
the initial position. We denote by6�� � � � � 6� the sequence of nodes visited by WFA. For the
lower bound proofs we use��.�/ to denote the cost incurred on� by the algorithm under
consideration.

3.4.1 Work Function

Let -�� denote the subsequence of the first� tasks of-�. For each�, � � � � ', we define a
function8� � 2 � (, such that for each node�  2 , 8���	 is the minimum offline cost to
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process-�� starting in6� and ending in�. The function8� is called thework function at time�
with respect to-� and6�.

Clearly, the optimal offline cost on-� is equal to the minimum work function value at
time ', i.e.,���. -�/ � ������ �8���		. We can compute8���	 for each�  2 by dynamic
programming:

8���	 �� Æ�6�� �	� and 8���	 �� ���
���

�8��	�4	 � ���4	 � Æ�4� �		� (3.1)

3.4.2 Work Function Algorithm

We next describe the online work function algorithm; see also [BLS92, BEY98]. Intuitively,
a good strategy for an online algorithm to process task5� is to move to a node where���

would reside if5� would be the final task. However, the competitive ratio of an algorithm
that solely sticks to this policy can become arbitrarily bad. A slight modification gives a

� � � competitive algorithm: Instead of blindly (no matter at what cost) traveling to the
node of minimum work function value, we additionally take the transition cost into account.
Essentially, this is the idea underlying the work function algorithm.

Work Function Algorithm (12�): Let 6�� � � � � 6� denote the sequence of nodes visited by
12� to process-��. Then, to process task5��	, 12� moves to a node6��	 that minimizes
8��	�4	 � Æ�6�� 4	 for all 4  2 . There is always a choice for6��	 such that in addition
8��	�6��		 � 8��6��		 � ���	�6��		. More formally,

6��	 �� �" ���
���

�8��	�4	 � Æ�6�� 4		 such that 8��	�6��		 � 8��6��		 � ���	�6��		�

(3.2)

Lemma 5 ([BEY98]). Let A be the set of all the states that satisfy both 6��	 �

�" ������ �8��	�-	 � Æ�6�� -		 and 8��	�6��		 � 8��6��		 � ���	�6��		. Then A is not
empty (i.e., 12� can always choose an appropriate state 6��	).

We duplicate the proof of the above lemma in the Appendix 3.C for the sake of complete-
ness. We continue by observing a few properties of work functions and of the online algorithm
12� (see Appendix 3.A for the corresponding proofs).

Fact 3. For any node � and any time �, 8���	 � 8��	��	.

Fact 4. For any node � and any time �, 8���	 � 8��	��	 � ����	.

Fact 5. For any two nodes � and 4 and any time �, �8���	�8��4	� � Æ��� 4	.
Fact 6. At any time �, 8��6�	 � 8��6��		� Æ�6��	� 6�	.
Fact 7. At any time �, ���6�	 � Æ�6��	� 6�	 � 8��6��		� 8��	�6�	.
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3.4.3 Tail Inequalities

We used the following well-known tail bounds quite often in the analysis. We refer to [MR95,
HR90] for their proofs.

Lemma 6 (Markov Inequality). Let ! be a random variable assuming only non-negative
values, Then for all �  (,�, ��.! � �/ � ��� �

� .

Lemma 7 (Chebyshev Inequality). Let 1 be a random variable with expectation �.1/ and
standard deviation . Then for any �  (,�, ��.�1 ��.1/� � � / � 	

�� .

Lemma 8 (Chernoff Bound). Let1	� � � � �1� be independent binary random variables. Let
1 �

��
��	1� . Then for any Æ � �,

��.1 � �� � Æ	�.1// � ������Æ� � Æ��� �

Furthermore, it holds that for all � � Æ � �,

��.1 � ��� Æ	�.1// � ��Æ
��� �

3.5 A Lower Bound on the Optimal Offline Cost

In this section, we establish a lower bound on the cost incurred by an optimal offline algorithm
��� when run on tasks smoothed according to the additive smoothing model. For the purpose
of proving the lower bound, we first investigate an interesting version of a balls into bins
experiment, which we call theconstrained balls into bins experiment.

3.5.1 Constrained Balls into Bins

We are given� bins/	� � � � � /�. In each round, we place a ball independently in each bin/�
with probability�; with probability�� � no ball is placed in/�. We define theheight 9��
	 of
a bin/� as the number of balls in/� after round�. We have dependencies between the heights
of different bins that are specified by an (undirected)constraint graph �� �� �2�� ��	. The
node set2� of �� contains� nodes�	� � � � � ��, where each node�� corresponds to a bin/�.
All edges in�� have uniform edge lengths equal to:. Let� be the maximum degree of a
node in��. Throughout the experiment, we maintain the following invariant.

Invariant: The difference in height between two bins/� and/� is at most the shortest path
distance between�� and�� in ��.
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Fig. 3.1: Illustration of the “unfolding” for� � � and � �. Left: constraint graph� �. Right:
layered dependency graph��.

If the placement of a ball into a bin/� would violate this invariant, the ball isrejected; oth-
erwise we say that the ball isaccepted. Observe that if two bins/� and/� do not violate the
invariant in round�, then, in round� � �, /� and/� might cause a violation only if one bin,
say/�, receives a ball, and the other,/� , does not receive a ball; if both receive a ball, or both
do not receive a ball, the invariant remains true.

Theorem 11. Fix any bin /� . Let �� be the number of rounds needed until the height of /�
becomes 9 � ����	. Then, ��.�� � ��9 �� � ����	�:	/ � ����.

We remark that constraint graphs with: � � exist, e.g., a clique on� nodes, such that
the expected number of rounds needed for the height of a bin to become9 is � �9 ����		.
Moreover, for any given maximum degree�, one can create graph instances with: � � such
that the expected number of rounds is� �9 ����		.

We next describe how one can model the growth of the height of/� by an alternative, but
essentially equivalent, experiment on alayered dependency graph. A layered dependency
graph�� consists of9 layers,2	� � � � � 2�, and edges are present only between adjacent layers.
The idea is to “unfold” the constraint graph�� into a layered dependency graph��.

We first describe the construction for: � �: Each layer of�� corresponds to a subset
of nodes in��. Layer� consists of) only, the node corresponding to bin/�. Assume we
have constructed layers2	� � � � � 2�, 
 � 9. Then,2��	 is constructed from2� by adding all
nodes,3���2�	, that are adjacent to2� in ��, i.e., 2��	 �� 2� � 3���2�	. For every pair
��� 4	  2� � 2��	, we add an edge��� 4	 to�� if ��� 4	  ��, or � � 4. See Figure 3.1 for
an example.

Now, the following experiment on�� is equivalent to the balls and bins experiment. Each
node in�� is in one of three states, namelyUNFINISHED, READY or FINISHED. Initially, all
nodes in layer9 areREADY and all other nodes areUNFINISHED. In each round, allREADY

nodes independently toss a coin; each coin turns uphead with probability � and tail with
probability�� �. A READY node changes its state toFINISHED if the outcome of its coin toss
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is head. At the end of each round, anUNFINISHED node in layer� changes its state toREADY,
if all its neighbors in layer� � � areFINISHED.

Note that the nodes in layer2� are FINISHED if and only if the corresponding bins/�,

  2� , have height at least�. Consequently, the number of rounds needed until the root node
) in �� becomesFINISHED dominates the number of rounds needed for the height of/� to
become9.

We use a similar construction if: � �. For simplicity, let9 be a multiple of: and define
9� � 9�:. We construct a dependency graph��� with 9� layers as described above (replace9
by 9� in the description above). Then, we transform��� into a layered graph�� with 9 layers
as follows. Let4 be a node in layer� of ��� . We replace4 by a path�4	� � � � � 4�	, where
# � �:�. Node4	 is connected to all neighbors of4 in layer � � � and node4� is connected
to all neighbors of4 in layer � � �. This replacement makes sure that the number of rounds
needed until the root node becomesFINISHED in �� dominates the number of rounds needed
for the height of/� to become9.

Proof of Theorem 11 . Let �� be a layered dependency graph constructed from�� as de-
scribed above. As argued above,�� is stochastically dominated by the random variable de-
noting the number of rounds needed till root node becomesFINISHED. That is, the probability
that ��� � �	 is at least the probability that root node becomesFINISHED within � rounds.
Consider the event that the root node) does not becomeFINISHED after� rounds. Then, there
exists abad path; �� �4	� � � � � 4�	 from ) � 4	 to some node4� in the bottom layer9
such that no node4� of ; was delayed by nodes other than4��	� � � � � 4�. Put differently,;
was delayed independently of any other path. Consider the outcome of the coin flips only for
the nodes along; . If ; is bad then the number of coin flips, denoted by1, that turned up
head within � rounds is at most9 � �. Let ���	 denote the probability that; is bad, i.e.,
���	 �� ��.1 � 9� �/ . Clearly,�.1/ � ��.

Observe that in�� (i) at most9� layers contain nodes of degree larger than
, and (ii) these
nodes have at most� � � neighbors in the next larger layer. That is, the number of possible
paths from) to any node4 in layer9 is bounded by�� � �	�

�

.
Thus,��.�� � �/ � ���	�� � �	�

�

. We want to choose� such that this probability is at
most����. If we choose� � ��
��	�9 � 9� ����		 and use Chernoff bound (Lemma 8) on
1, we obtain for9 � ����	

���	 � ��.1 � 9� �/ � ��.1 � ���
/ � �� �� � �

���� � �	��
�

3.5.2 Lower Bound

We are now in a position to prove that an optimal offline algorithm incurs with high probability
a cost of at least�.���� on a sequence of���. ������ � ����			 tasks.
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Lemma 9. Let the random variable � denote the smoothed outcome of an adversarial se-
quence of ' �� ����.������ � ����		� tasks, for a fixed constant �� and some . � �.
Then, ��.���.�/ � �.����/ � ����.

We will use Lemma 9 several times as follows.

Corollary 1. Let the random variable � denote the smoothed outcome of an adversarial se-
quence of ' �� ����.������ � ����		� tasks, for a fixed constant �� and an some . � �.
Let � denote the event that ���.�/ � �.����. Then

�

�
12�.�/

���.�/

�
� �

�
12�.�/

���.�/





 �
�

� <��	 � �.12�.�//

�.����
� <��	�

Proof. From Lemma 9 we know that��. � / � ����. Thus,

�

�
12�.�/

���.�/

�
� �

�
12�.�/

���.�/





 �
�
��.� / � �

�
12�.�/

���.�/





 �
�
��. � /

� �.12�.�/ � � /��.� /

�.����
�


�� �

��
� �.12�.�//

�.����
� <��	�

where the second inequality follows from the definition of� and the fact that the (worst-case)
competitive ratio of12� is 
�� �.

Proof of Lemma 9 . The cost of��� on a smoothed sequence� of length ' is ���.�/ �

������ �8���		. Therefore, it suffices to prove that with probability at least� � ����,
8���	 � �.���� for each�  2 . Observe that we can assume that the initial work func-
tion values are all set to zero, since this can only reduce the cost of���.

We relate the growth of the work function values to the balls and bins experiment. For each
node4� of � we have a corresponding bin/�. The constraint graph�� is obtained from�
by setting all edge lengths to: �� ������=�, where= �� ��������� ���	. The placement
of a ball in/� in round � corresponds to the event����4�	 � ��� 	. Since our smoothing
distribution satisfies��.7 � ��� / � 	

� , the smoothed request cost���4�	 is at least��� with
probability at least	� , for any4� and any�. This holds irrespective of its original cost entry and
independently of the other request costs. Therefore, in each round� we place a ball into each
bin with probability� � 	

� .
By Lemma 10 given below, the number of rounds needed until a bin/� has height9

stochastically dominates the time� needed until8��4�	 � 9=. Applying Theorem 11, we
obtain that for any bin/�, after ' � ��9�� � ����	�:	 rounds,��.9��
	 � 9/ � ����.
Consequently, after' rounds all bins have height at least9 with probability at least�� ����.
Choosing9 �� 
�.:, this implies that after' rounds, with probability at least� � ����,
8��4�	 � 
�.:= � �.���� for all 4� of �. Finally, we make sure that' �� ���.��� �

����		 � ��9�� � ����	�:	 by fixing �� �� ��� ����.
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Lemma 10. Consider any node 4� and its corresponding bin /�. Let 9��
	 denote the number
of balls in bin /� after � rounds. Then for any � � �, 8��4�	 � 9��
	 =.

Proof. We prove the lemma by induction on the number of rounds�. For � � �, the lemma
clearly holds. We can assume that the initial work function values are all zero and correspond-
ingly all bins are empty initially. Assume that the induction hypothesis holds after� rounds. In
round���, if no ball is accepted in any bin then clearly the hypothesis remains true. Consider
the case where at least one ball is accepted by some bin/�. By the induction hypothesis, we
have8��4�	 � 9��
	=. Let 4� be the node that determines the work function value8��	�4�	,
i.e.,

8��	�4�	 � 8��4�	 � ���	�4�	 � Æ�4�� 4�	�

Assume that4� � 4�. Then, the work function value of4� increases by the request cost
���	�4�	, and since a ball was accepted in/�, ���	�4�	 � =. Thus, we have8��	�4�	 �
8��4�	 � = � �9��
	 � �	= � 9��	�
	=, and we are done.

Next, assume that4� �� 4�. Let 	 be the shortest path distance between4� and4� in the
constraint graph. Since in round�� � a ball was accepted in/�,/� and/� do not violate the
invariant. Therefore,

9��
	 � 9��#	 � 	� � � .ball accepted in/� in round�� �/�

where “.statement/” is � if statement is true, and� otherwise. By multiplying both sides with
= and rearranging terms, we obtain

�9��#	 � 		= � �9��
	 � �� .ball accepted in/� in round�� �/	=�

Observe that	= � Æ�4�� 4�	 by the definition of	 and the edge lengths: of the constraint
graph. Moreover,���	�4�	 � .ball accepted in/� in round�� �/=. Thus,

8��	�4�	 � 8��4�	 � ���	�4�	 � Æ�4�� 4�	

� 9��#	= � .ball accepted in/� in round�� �/= � 	=

� �9��
	 � �	= � 9��	�
	=�

Remark 2. We note that the above lower bound on��� holds even against an adaptive adver-
sary. This is because the bound holds irrespective of the costs on the request vectors before
smoothing. Moreover, the bound holds even if the distribution is restricted to.���	, which is
the case while analyzing competitiveness if the inputs are random tasks.
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3.6 Upper Bounds

3.6.1 First Upper Bound

We can use the lower bound obtained in the last section to derive our first upper bound on the
smoothed competitive ratio of12�. We prove the following deterministic bound on the cost of
12�.

Lemma 11. Let ! be any request sequence of length '. Then, 12�.!/ � ���.!/ ��
�� � '.

Proof. Let 6�� � � � � 6� denote the sequence of nodes visited by12�. For any�, the cost incurred
by 12� to process task� is ���	 �� ���6�	 � Æ�6��	� 6�	. By Fact 7, we obtain���	 �

8��6��		� 8��	�6�	. Hence,

12�.!/ �
��

��	

���	 � 8��6��		� 8��6		 �
��	�
��	

8��6��		� 8��6��		

� 8��6��		 � �'� �	 �0��� � ���
���

�8��4		 � ' �0����

where the last two inequalities follow from Fact 5. Since���.!/ � ������ 8��4	, the lemma
follows.

Theorem 12. The smoothed competitive ratio of 12� is

"
�

0���

����

�
����


� ����	

		
�

Proof. Let the random variable � denote the smoothed sequence of length
' �� ����. ������ � ����		� for some. � �. By Lemma 11, we have for any sequence
! of ' tasks,12�.!/ � ���.!/ � 0��� � '. Thus by Corrollary 1, the upper bound follows
from the following bound

�

�
12�.�/

���.�/





 �
�
� �

�
���.�/ � 0��� � '

���.�/





 �
�
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0��� � '
�.����

� "
�

0���

����

�
����


� ����	

		
�

where the last equality follows from the definition of'.

3.6.2 Second Upper Bound

We prove a second upper bound on the smoothed competitive ratio of12�. The idea is as
follows. We derive two upper bounds on the smoothed competitive ratio of12�. The first one
is a deterministic bound, and the second one uses the probabilistic lower bound on���. We
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then combine these two bounds using the following fact. The proof of Fact 8 can be found in
Appendix 3.A.

Fact 8. Let �, /, and 1�, � � 
 � �, be positive quantities. We have

���

�
�
��

��	1���
��	1

�
�

�
/
��

��	1�

�

�
�
�
�/�

Consider any deterministic task sequence! of length '. Let 6�� 6	� � � � � 6� denote the
sequence of nodes visited by12�. Define���	 �� ���6�	 � Æ�6��	� 6�	 as the processing cost
plus the transition cost incurred by12� in round�.

With respect to! we define> as the set of rounds, where the increase of the work function
value of6��	 is at least one half of the transition cost, i.e.,�  > if and only if 8��6��		 �
8��	�6��		 � Æ�6��	� 6�	�
. Due to Fact 6 we have8��6��		 � 8��6�	 � Æ�6��	� 6�	. There-
fore, the above definition is equivalent to

> ��

�
� � 8��6�	� 8��	�6��		 � ��



Æ�6��	� 6�	

�
� (3.3)

We use�> to denote the complement of> .

We first prove that the total cost of12� on! is bounded by a constant times the total cost
contributed by rounds in> .

Lemma 12. Let ! be a sufficiently long task sequence such that 12�.!/ � �0���. Then,
12�.!/ � �

�
��! ���	.

Proof. We have8��6�	�8��6�	 � �0���, due to Fact 5 and since8��6�	 � 8��6�	. Thus,

��
��	

�8��6�	�8��	�6��			 � �0����

Let�� be the set of rounds where8��6�	� 8��	�6��		 � �, and let�� be the set of rounds
where8��6�	� 8��	�6��		 � �. The above inequality can be rewritten as

�
��"�

�8��	�6��		� 8��6�		 � 0��� �
�
��"�

�8��6�	� 8��	�6��			�

Since �> 
 �� and each term on the left hand side is non-negative, we have

�
�� �!

�8��	�6��		�8��6�		 � 0��� �
�
��"�

�8��6�	� 8��	�6��			� (3.4)

For any�  �> , we have���	 � � �8��	�6��		� 8��6�		. This can be seen as follows.
We have8��	�6�	 � 8��	�6��		 � Æ�6��	� 6�	 by Fact 5 and���6�	 � 8��6�	 � 8��	�6�	 by
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(3.2). Therefore,���6�	 � Æ�6��	� 6�	� 8��	�6��		 � 8��6�	. Moreover, since�  �> and by
the definition (3.3) of> , Æ�6��	� 6�	 � 
�8��	�6��		� 8��6�		. Hence,

���	 � ���6�	 � Æ�6��	� 6�	 � � �8��	�6��		� 8��6�		 �

Furthermore, for any�, we have8��6�	 � 8��	�6��		 � ���	. This follows because
8��6�	 � 8��	�6�	 � ���6�	 by (3.2) and8��	�6�	 � 8��	�6��		 � Æ�6��	� 6�	 by Fact 5.
Since�� 
 > , we conclude

�
��"�

�8��6�	� 8��	�6��		 �
�
��"�

���	 �
�
��!
���	�

Therefore, (3.4) implies

�

�

�
�� �!

���	 � 0��� �
�
��!
���	�

Exploiting the fact that12�.!/ �
�

�� �! ���	 �
�

��! ���	 and12�.!/ � �0���, we obtain
12�.!/ � �

�
��! ���	.

We further partition> into >	 and> �, where

> 	 �� ��  > � 8��6�	� 8��	�6�	 � ���������	 � and > � � > � > 	�

For any round�, we define?� ��
��

��	8��4�	 and+?� ��?� �?��	.

Lemma 13. Fix a round � and consider any node � such that 8���	 � 8��	��	 � @ . If
@ � ��������� then +?� � @���������	; otherwise +?� � �@�
.

Proof. Let@ � ���������. Define	 �� �@�������	�. For	 � �, the claim clearly holds.
Assume	 � �. Consider a shortest path; �� ���� �	� � � � � �#	 of edge length	 starting from
�� �� �. Since	 � ������
�, there always exists a shortest path of length	. (Consider a
breadth-first search tree rooted at��; the depth of this tree is at least������
�.) By Fact 5,
we have for each
, � � 
 � 	,

8����	 � 8����	� 
���� and 8��	���	 � 8��	���	 � 
�����

Therefore,

#�
���

�8����	� 8��	���		 �
#�

���

�8����	� 8��	���		� 
����

#�
��	




� �	� �	@ � �	� �		���� � �	� �	�@ � 	����	 � @�

������
�
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where the last inequality holds since	 � @�������	 � 	� �.
Let @ � ���������. Since for any node4�, 8��	�4�	 � 8��	��	 � �������� and

8��4�	 � 8���	� ��������, we have

��
��	

�8��4�	� 8��	�4�		 � �@ � 
��������� � �@�
�

Lemma 14. Let ! be a sufficiently long task sequence such that ���.!/ � 
0���. There
exists a constant ( such that

���.!/ � �

(�

�
� �

����

�
��! �

���	� � �
�
��! �

���	

�
� �

Proof. For every node4�,8��4�	 � ������ �8���		�0��� (by Fact 5). Moreover,���.!/ �
������ �8���		. We obtain

��
��	

8��4�	 � �����.!/��0���� or, equivalently, ���.!/ � �

�

�
��

��	

8��4�	� �0���

�
�

Since���.!/ � 
0���, the latter reduces to

���.!/ � 


��

��
��	

8��4�	� (3.5)

Claim 1. For any �  > 	, +?� � ���	����������	.

Proof. By (3.2) we have���6�	 � 8��6�	� 8��	�6�	. Below, we will show that

+?� �
�
Æ�6��	� 6�	� � ���6�	

�
�
��������	� (3.6)

Since���	� � �Æ�6��	� 6�	 � ���6�		
� � 
�Æ�6��	� 6�	� � ���6�	

�	, we conclude that+?� �
���	����������	. We distinguish two cases.

Let Æ�6��	� 6�	 � ���6�	. By the definition of> , we have8��6��		 � 8��	�6��		 �
Æ�6��	� 6�	�
. Using Lemma 13 with@ �� Æ�6��	� 6�	�
, we obtain

+?� � Æ�6��	� 6�	���������	 �
�
Æ�6��	� 6�	� � ���6�	

�
�
��������	�

Let Æ�6��	� 6�	 � ���6�	. Since8��6�	 � 8��	�6�	 � ���6�	 and���6�	 � ��������� by
the definition of>	, using Lemma 13 with@ �� ���6�	, we obtain

+?� � ���6�	���������	 � �Æ�6��	� 6�	� � ���6�	
�	��
�����	�
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Claim 2. For any �  > �, +?� � �����	���.

Proof. Since�  > �, definition of>� together with (3.2) imply that���6�	�� � �������� �
Æ�6��	� 6�	. Thus,���	 � ���6�	 � Æ�6��	� 6�	 � ����6�	��. Furthermore, by (3.2) we have
���6�	 � 8��6�	 � 8��	�6�	. Applying Lemma 13 with@ �� ���6�	, we obtain+?� �
����6�	�
 � �����	���.

Claim 1 and Claim 2 together imply that

��
��	

8��4�	 �
��

��	

+?� �
�
��!

+?� � �

�������

�
��! �

���	� �
��

��

�
��! �

���	�

The proof now follows for an appropriate constant( from (3.5).

Theorem 13. The smoothed competitive ratio of 12� is

"
��

� � ����

����

�
����


� ����	

	�
�

Proof. Let the random variable � denote the smoothed sequence of length
' �� ����.�����������		�, for an appropriate.. Due to Corrollary 1 it suffices to bound
�.12�.�/����.�/ � � /, where� is the event����.�/ � �.����	. Consider any smoothing out-
come 4� such that the event� holds. We fix. sufficiently large such that���.4�/ � �0���.
Observe that12�. 4�/ � ���. 4�/ � �0���.

First, assume
�

��! � ���	 �
�

��! � ���	. Then, due to Lemma 12 and Lemma 14,

12�. 4�/ � ��
�
��! �

���	 and ���. 4� / � �

(

�
��! �

���	�

Hence,�.12�.�/����.�/ � � / � "��	.

Next, assume
�

��! � ���	 ����! � ���	. By Lemma 12 and Lemma 14 we have

12�. 4�/ � ��
�
��! �

���	 and ���. 4�/ � �

(�

�
�

����

�
��! �

���	�
	
� (3.7)

Thus,

12�. 4�/

���. 4�/
� ��(�����

� �
��! � ���	�
��! � ���	�

	
� (3.8)
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Since� holds, we also have

12�. 4�/

���. 4�/
� ' � ��

�
��! � ���	

' � �.����
� �

����

�
����


� ����	

	��
��! � ���	

�> 	�
	
� (3.9)

where the latter inequality holds for an appropriate constant� since' � �>	�. Observe that
(3.9) is well-defined since

�
��! � ���	 � 	

	�12�. 4�/ (by (3.7)) and12�. 4�/ � �0��� imply
that �> 	� � �.

Applying Fact 8 to (3.8) and (3.9), these two bounds are combined to

12�. 4�/

���. 4�/
�
�

��(�� � ����

����

�
����


� ����	

	
� "

��
� � ����

����

�
����


� ����	

	�
�

which concludes the proof.

3.6.3 Potential Function

In this section we use the standard potential method [CLR90] to derive an upper bound on the
expected cost of12�. This is useful for proving the upper bounds for the cases of random tasks
and�-elementary tasks.

Lemma 15. Let the random variable � denote the smoothed sequence of length '. For each �,
� � � � ', and a given node 6, define a random variable +��6	 �� ������ �����	 � Æ��� 6		.
Let " � �. If �.+��6	/ � " for each 6  2 and for each �, � � � � ', then �.12�.�// �
�"'� 0���.

Before we proceed to prove the lemma, we provide some intuition. Assume we consider a
simple greedy online algorithm�� that always moves to a node which minimizes the transition
plus request cost. That is,�� services task5� by moving from its current position, say6���	,
to a node6�� that minimizes the expression������ �����	 � Æ��� 6���			. Clearly, if the re-
quirement of Lemma 15 holds, the total expected cost of�� on� is

��
��	�.+��6��		/ � '".

The above lemma shows that the expected cost of the work function algorithm12� is at most
� times the expected cost of�� plus some additive term.

Proof of Lemma 15 . For� � � � ', we denote by6� the node in which12� resides after task
5� has been processed; we use6� to refer to the node in which12� resides initially.

We define a potential function5 as

5��	 �� 8��6�	 � �0����'�

Observe that

5�'	� 5��	 � 8��6�	� 8��6�	 � 0��� � 8��6�	� 8��6�	 � 0��� � ��
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where the last inequality follows from Fact 5 and sinceÆ�6�� 6�	 � 0���.
We define theamortized cost �$��	 incurred by12� to process task5� as

�$��	 �� ���6�	 � Æ�6��	� 6�	 � 5��	� 5��� �	

� ���6�	 � Æ�6��	� 6�	 � 8��6�	� 8��	�6��		 � 0����'

� 8��6�	� 8��	�6�	 � 8��6��		�8��	�6��		 � 0����'� (3.10)

where the last equality follows from Fact 7. Using Fact 5 and (3.1) we obtain that for each
�  2

8��	�6�	 � 8��	��	� Æ��� 6�	 and 8��6�	 � 8��	��	 � ����	 � Æ��� 6�	�

Combining these two inequalities, we obtain

8��6�	� 8��	�6�	 � ����	 � 
Æ��� 6�	 for each�  2 ,

and hence 8��6�	� 8��	�6�	 � 
 ���
���

�����	 � Æ��� 6�		 � 
+��6�	�

A similar argument shows that8��6��		 � 8��	�6��		 � 
+��6��		. Hence, we can rewrite
(3.10) as

�$��	 � 
+��6�	 � 
+��6��		 � 0����'�

Since12�.�/ �
��

��	 �$��	� 5�'	 � 5��	 and5�'	�5��	 � �, we obtain

�.12�.�// � �
�

��
��	

�$��	

�
� 
�

�
��

��	

�+��6�	 � +��6��			

�
� 0��� � �"'� 0����

If ' � 0��� then the above bound reduces to��"'	. Corrollary 1 together with the upper
bound of Lemma 15 yield the following corollary.

Corollary 2. Let the random variable � denote the smoothed sequence of
' �� ����.������ � ����		� tasks for a fixed constant ��. If . � ����, and therefore
' � 0���, the smoothed competitive ratio of 12� is

�

�
12�.�/

���.�/

�
� "

�
"'

�.����

	
� "

�
"

�
�


�

����	

����

		
�

3.6.4 Random Tasks

We derive an upper bound on the expected competitive ratio of12� if each request cost is
chosen independently from a probability distribution� which is non-increasing in.���	.
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We need the following fact; the proof is given in Appendix 3.A.

Fact 9. Let � be a continuous, non-increasing distribution over .���	 with mean , and stan-
dard deviation . Then, , ���
.

Theorem 14. If each request cost is chosen independently from a non-increasing probability
distribution � over .���	 with standard deviation  then the expected competitive ratio of 12�

is

"
�

� �


����
����	

	
�

Proof. Let � be a random task sequence of length' �� ����.������	 � ����		�, for an
appropriate. � ����, generated from� . Observe that since. � ����, we have' � 0���.
For any� and any node6, we have

+��6	 � ���
���

�����	 � Æ��� 6		 � ���6	�

Since���6	 is chosen from� , Fact 9 implies that�.+��6	/ � " ��
�

�
. Thus, by Lemma 15,
we have�.12�.�// � �

�
�
'� 0��� � ��'	.

Note that we can use the lower bound established in Section 3.5 to bound the cost of
���. The generation of� is equivalent to smoothing (according to� ) an adversarial task
sequence consisting of all-zero request vectors only. As we remarked earlier, the lower bound
on ��� holds even for such distributions. Thus the theorem follows from Corrollary 2.

3.6.5 �-Elementary Tasks

We can strengthen the upper bound on the smoothed competitive ratio of12� if the adversarial
task sequence only consists of�-elementary tasks. Recall that in a�-elementary task the
number of non-zero request costs is at most�.

Theorem 15. If the adversarial task sequence only consists of �-elementary tasks then the
smoothed competitive ratio of 12� is

"
�
� � ����

����

�
����


� ����	

		
�

We state the following fact. The proof is given in Appendix 3.A.

Fact 10. Let � be a permissible probability distribution. Then, �.������ 7	/ � , where 7 is
a random variable chosen from � .

We first prove the following lemma.

Lemma 16. Let 6 be an arbitrary node of �. In round � consider a �-elementary adversarial
task -5� �� �-���4		� � � � � -���4�		, where � � �. Then, �.+��6	/ �  � �����.
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Proof. Let2� 
 2 be the set of all nodes with request cost zero, i.e.,2� �� ��  2 � -����	 �

�	. Then,�2�� � � � �, and2� is non-empty if� � �. Let 4� be a node from2� which is
closest to6. We haveÆ�4�� 6	 � �����. (Otherwise, there must exist at least� � � nodes
with non-zero original cost, a contradiction.) Thus,

�.+��6	/ � �.������������	 � Æ��� 6		/ � �.���4
�	 � Æ�4�� 6	/ �  � ������

where the last inequality follows by Fact 10 and since���4�	 � ������ 7�4�		, 7�4�	 is a
random variable chosen from� .

Proof of Theorem 15 . Let random variable� denote the smoothed sequence of length' ��

����.������ � ����		�, for an appropriate. � ����. By Lemma 16,�.+��6	/ � " ��

������, which is�������	 since � 
���� . The theorem now follows from Lemma 15
and Corrollary 2.

3.7 Lower Bounds

In this section we present existential and universal lower bounds. All our lower bounds hold
for any deterministic online algorithm�� and against an adaptive adversary.

3.7.1 Existential Lower Bound for �-Elementary Tasks

We show an existential lower bound for�-elementary tasks on a line. We prove that the upper
bound�������������	�����������			 established in Theorem 15 is tight up to a factor
of ��������� if the underlying graph is a line. For such a comparison to the�-elementary
upper bound (upper bound on�-elementary tasks), it is necessary that the�-elementary upper
bound is stronger (lesser) than the general upper bounds of Theorem 12 and Theorem 13 for
arbitrary tasks. We use this to fix the minimum term in the following lower bound expression
of Theorem 16, which finally yields the necessary bound. Theorem 16 is also used later to
obtain the universal lower bound of Theorem 17.

Theorem 16. Let � be a line graph. If the adversarial task sequence only consists of �-
elementary tasks then the smoothed competitive ratio of any deterministic online algorithm
�� is

�

�
���

�
� �
�
����


� �

	
�
�

�
� ����

����

�	
�

Proof. We use the standard averaging technique (see [BLS92]). Divide the line into9 ��

���
�	 contiguous segments of
� nodes. For simplicity assume that9 is an integer. (This
does not affect the asymptotic lower bound.) We refer to these segments by�	� ��� � � � � ��.

Let 6� be the node in which�� resides after the�th task. In round�, the adversary issues a
�-elementary task by placing� cost on each node that is within distance���
��� from 6��	,
and zero cost on all other nodes. Let the random variable� denote a smoothed task sequence.
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We consider a set� of 9 offline algorithms, one for each segment. Let�� denote the
offline algorithm that resides in segment�� ; �� always stays in��. In each round�, each
�� moves to a node4 in �� minimizing the transition cost plus the request cost. Define
�.�/ ��

��
��	�� .�/ as the total cost incurred by the offline algorithms on�; �� .�/ is a

random variable denoting the total cost incurred by�� on�. Clearly, 4�.�/ �� �.�/�9 is an
upper bound on���.�/.

Consider any round�. At most two consecutive line segments can have� request costs.
Moreover, in each segment at most� of the 
� nodes may have� costs. Let����	 be the
cost incurred by�� in round�. Consider a segment�� that receives a� request cost. Then,
�.����	/ � ������ by Lemma 16. Assume�� does not receive any� request cost. Then,
�.����	/ �  by Fact 10.

Since in any round at most two segments may receive� costs, we conclude

�. 4�.�// �
�

9
�

�
� ��
��	

�� .�/

�
� �

�

9
�

�
� ��
��	

��
��	

����	

�
� � '�
������ � 	

9
� 

	
�

By Markov inequality (Lemma 6),��.4�.�/ � 
�. 4�.�/// � 	
� . Since in each round,��

is forced to travel at least a distance of���
�, we have��.�/ � '������
.

We conclude

�

�
��.�/

���.�/

�
�
�

�
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�����
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�

That is, we obtain a lower bound of������	 � ����������		 if � � ���������	 and of
��� � ������		 if � � �

��������	. In the latter case, exploiting that � 
����, we
obtain a��� � ������ � �		 bound.

Observe that on a line the�-elementary bound of Theorem 15 is stronger than the general
upper bound of Theorem 13 only if

� �
�

�����

���������� � �	
�

In this case, Theorem 16 provides a lower bound of��� � ������ � �		. That is, for a line
graph these bounds differ by a factor of at most���������.

3.7.2 Universal Lower Bounds

We derive two universal lower bounds on the smoothed competitive ratio of any deterministic
algorithm. The first universal bound uses the following corollary of Theorem 16.
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Corollary 3. Let � be a line graph. Any deterministic algorithm �� has smoothed competi-
tive ratio �

�
������������������	������ � �		� against an adaptive adversary.

Proof. Fix � ��
�
����������������� � �		 and use the lower bound given in Theo-

rem 16.

Theorem 17. Any deterministic algorithm �� has a smoothed competitive ratio of

�

�
���

�
�����

�
���� � ����

����
�
�
����


� �

	 �
�

Proof. We extend Theorem 16 to arbitrary graphs in a straightforward way. Consider a path in
� of edge length at least����. The adversary enforces that�� and��� never leave this path
by specifying� cost for each node that is not part of the path. The desired lower bound now
follows from Corrollary 3.

Next, we prove the following universal lower bound.

Theorem 18. Any deterministic algorithm �� has a smoothed competitive ratio of

�

�
���

�
��
����


�
����

����
� ����	

�	
�

Proof. The adversary issues a sequence of' tasks as described below. For each�, � � � � ',
let 6� denote the node at which the deterministic online algorithm�� resides after the�th task;
we use6� to refer to the initial position of��.

We prove two different lower bounds. Combining these two lower bounds, we obtain the
bound stated above.

We first obtain a lower bound of�������������		 when����� � �. In round �, the
adversary enforces a request cost of���� on 6��	 and zero request cost on all other nodes.
Recall that the adversary is adaptive and therefore knows the position of��.

We use the averaging technique to relate the cost of�� to the average cost of a collection
of offline algorithms. Let� be a collection of� offline algorithms. We place one offline
algorithm at each node, and each offline algorithm remains at its node during the processing
of the task sequence. Let� be a random variable denoting a smoothing outcome of-�. We
define�.�/ as the total cost incurred by the� algorithms to process�. Clearly, the average
cost 4�.�/ �� �.�/�� is an upper bound on���.�/. It suffices to prove that with constant
probability��.�/�4�.�/ � �������������		.

For the analysis, we view the smoothing process as being done in two stages.

Stage 1: Initially we smoothen' zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequence be�� �� �5 �	� � � � � 5 ���.
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Stage 2: For each�, � � � � ', we replace the request cost of6��	 in 5 �� by the outcome of
smoothing����. We use5� to refer to the obtained task.

Let ���4	 ��
��

��	 �
�
��4	 be the total request cost accumulated in4 with respect to��.

Moreover, we define' random variables�	� � � � � ��: �� refers to the smoothed request cost
���6��		 of task5� obtained in Stage 2. For each� � � � ', let A� be a��� random variable
which is� if and only if �� � ����. We defineA ��

��
��	 A�. In the sequel, we condition

the smoothing outcome� on the conjunction of following three events:

� �� �
�

��� �
��4	 � 
�'	 # �� �

��
��	 �� � �'����	 $ �� �A � '��	

We first argue that the event�� � # � $	 occurs with at least constant probability. (i) Due
to Fact 10,�.���4	/ � ' for each4  2 . By Markov inequality, we thus have��.� / � ��
.
(ii) By Fact 10 and since � ����, we also have�.��/ � ���� �  � 
���� for each
� � � � '. Hence by Markov inequality,��.

��
��	 �� � �'����/ � ��
. (iii) Since the

smoothing distribution� is a symmetric, we have��.�� � ����/ � ��
 for each� � � � '.
Thus,�.A�/ � ��
. Moreover, theA�’s are independent. Applying Chernoff bound we obtain
��.A � '��/ � ���	�.

Since event� is defined with respect to��, it is independent of the event�# � $	. There-
fore,

��.� � # � $/ � �
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�



� ���	�

		
� �

�
�

where the last inequality holds if' � ��.
Let � be any fixed outcome of the smoothing such that�� � # � $	 holds. Assume that

to process sequence�, �� changes its position in# of the' rounds. Let>� refer to the set of
rounds where�� changes its position. We bound the cost of the offline algorithms as follows.
In any round�, the total cost incurred by the offline algorithms at nodes different from6��	 is
at most

�
��� �

�
��4	. If �� does not move in round�, both�� and� incur a cost of��. If ��

moves in round�,� incurs an additional cost of��, since one algorithm resides in6��	. Thus,

�.�/ � ��.�/ �
�
��!�

�� �
�
���

�
��4	 � ��.�/ � �'���� � 
�'�

where the last inequality follows from# and� .
Since also$ holds, we can conclude that�� incurs a cost of at least'������: In each of

the at least'�� rounds, we have���6��		 � �� � ����. That is, no matter whether�� moves
or stays in these rounds, it incurs a cost of at least����.

Thus, conditioned on the event�� � # � $	 we obtain for an appropriate constant�

��.�/
4�.�/

� ��.�/

����.�/��� 
'
� � ����

�
��
����



�
�

Next we obtain a lower bound of������������	 ����		. Consider a node6 of � with
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degree�. Let 2� be the set of nodes containing6 and all the neighbors of6 in �. Define��
as the subgraph of� induced by2�. The adversary makes sure that every reasonable online
algorithm will always reside at a node in2� by specifying in each round a request cost of�
for each4 � 2�. In addition, in each round� the adversary enforces the online algorithm to
move by placing a request cost of� at 6��	. All other request cost are zero.

Let � be a smoothed task sequence obtained from-�. Since�� is a star with� � � nodes
and the transition cost between any two nodes is at most
����, Lemma 17 implies that there
exists a deterministic offline algorithm� with �.�.�// � 
�'����� ����	. (Observe that
we can apply Lemma 17 here since with respect to�� the request sequence is elementary.)
Applying Markov inequality, we obtain��.�.�/ � ��'����� ����	/ � ��
. Since�� has
to move in each round to avoid� cost, the cost of�� for any smoothed sequence is at least
'����. Putting everything together, we obtain

�

�
��.�/
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Lemma 17. Let � be a clique with �� � nodes and maximum edge length ����. Consider
an adversarial sequence -� of ' elementary tasks for a sufficiently large '. Then, there exists
an offline algorithm � such that for � � ��, �.�.�// � �'����� ����	 for a constant �.

Proof. We first consider an adversarial sequence-� � �-5	� � � � � -5�� of # �� �����	�
� ele-
mentary tasks. We view the smoothing of the elementary tasks as being done in two stages.

Stage 1: Initially we smoothen# zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequence be�� �� �5 �	� � � � � 5 ���.

Stage 2: For each�, � � � � #, we obtain a task5� from 5 �� as follows. Let4� be the node
with non-zero request cost-���4

�	 in -5�. We replace the request cost of4� in 5 �� by the outcome
of smoothing-���4

�	. Let� �� �5	� � � � � 5�� be the resulting task sequence.
For any node4�, we define a��� random variable1� which is � if and only if the total

request cost accumulated in4� with respect to�� is zero. Since for each node4� the request
cost remains zero with probability at least	

� , we have��.1� � �/ � ���
	� � ��
�
�. Note

that the1�’s are independent. Let� �� 1	 � � � � � 1��	. We have�.�/ � �
�. Let �

denote the event�� �
�
��
	. Using Chernoff bound we obtain

��. � / � ��.� � �
��
/ � ��

�
���

The offline algorithm� has two different strategies depending on whether event� holds
or not.

Strategy 1: If event� holds,� moves at the beginning to a node4� whose total accumu-
lated request cost is zero and stays there. (Recall that� is offline.) Note that since� holds
there are more than

�
��
 � # such nodes; for� � �� there exists at least one such node.
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Strategy 2: If event � does not hold,� always moves to a node with minimum request
cost.

Since� only incurs the initial travel cost of at most���� if � holds, we obtain

�.�.�// � �.�.�/ � � / ��.� / ��.�.�/ �  � / ��. � / � ���� ��.�.�/ �  � / � ��
�
���

Next, we bound�.�.�/ �  � /. Clearly, the transition cost in each round is at most����.
The expected request cost incurred by� in round � is �.������ �����		 �  � /. Consider a
node4� with -���4�	 � �. The smoothed request cost of4� is not affected by Stage 2. We
have�.������ �����		 �  � / � �.���4�	 �  � /. Let �1	 � -	� � � � �1��	 � -��		 be any
outcome such that � holds. Since the request costs are chosen independently, we have

�.���4�	 �1	 � -	� � � � � 1��	 � -��	/ � �.���4�	 �1� � -�/�

If -� � � then�.���4�	 �1� � -�/ � �, since all request costs at4� must be zero. If-� � �

then�.���4�	 �1� � -�/ � �.���4�	 � ���4�	 � �/. (For ���4�	 the event�1� � �	 means that
either���4�	 � � and����4�	 � � for some�� �� �, or ���4�	 � �.) By Fact 10, the expected
cost�.���4�	/ is at most. Moreover,��.���4�	 � �/ � ��.���4�	 � ��� / � 	

� . Hence,
�.���4�	 � ���4�	 � �/ � ��.���4�	/ � �. Putting everything together, we obtain

�.�.�/ �  � / �
��

��	

��.������ �����		 �  � / � ����	 � #�� � ����	 � �#�����

where the last inequality holds since we assume that � 
���� � 
����,
Altogether, we obtain for a sequence� of length# and for� � ��,

�.�.�// � ���� � �#���� � ��
�
�� � �������

We conclude the proof as follows. We split the entire adversarial sequence-� of length'
into � � � subsequences of length# (the final one might have length less than#). On each
subsequence,� performs as described above. We therefore obtain for the entire sequence�
and an appropriate constant�

�.�.�// � �
�

��
��	

������

�
� ������� � �'����

����	
�

where the last inequality follows from the relation between' and� and definition of#.

Remark 3. The above proof goes through even if � ��
�
������, yielding the same upper

bound on�.�.�//. This implies that the existential lower bounds in the next section and the
universal lower bound of Theorem 18, where the above lemma is used, hold even if �

��
�
������.
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Remark 4. The universal lower bound of Theorem 18 is established using only elementary
(�-elementary) tasks as the adversarial sequence. Hence this lower bound compares more
sharply against the�-elementary upper bound if� � ���	, than the general�-elementary
lower bound.

3.7.3 Existential Lower Bounds

We provide two existential lower bounds showing that for a large range of values for the
parameters�,����,����,� and0���, there exists a class of graphs on whichany determin-
istic algorithm has a smoothed competitive ratio that asymptotically matches the upper bounds
stated in Theorem 12 and Theorem 13. In order to prove these existential lower bounds, we
first show the following lemma.

Lemma 18. Given, number of nodes �, minimum edge cost ����, maximum edge cost ����,
maximum degree � � �, and diameter 0��� such that

0��� � ����� ��&�	��	� and � �� ����0����������	 � ���

there exists a graph such that the smoothed competitive ratio of any deterministic algorithm
�� is

�

�
���

�
�����

0���
�
0���

����
�
�
����


� ����	

	�	
�

Note. We would like to point out that in any graph of� nodes and maximum degree�,
0��� � ���� ��&�	��	. Hence the restriction on0��� in the above lemma is only slightly
stronger, i.e., by a constant factor.

Proof of Lemma 18 . We construct a graph� as depicted in Figure 3.2. The graph consists of
� �� 	

�������0��� cliques. Each clique has� nodes and the length of an edge between
any two nodes is����. We need to ensure that the maximum degree is at most�. Therefore,
we connect each clique by a path to a��� �	-ary tree> . Each such path consists of1 edges
of length����. We assign a length of���� to each edge in> . Each clique is attached to a leaf
node of> ; a leaf node may take up to�� � cliques. Since� cliques need to be connected to
> and we can attach at most����	� cliques to a tree of height9��, we fix9 �� ��&�	��	.
The total number of nodes in> is therefore��� � �	� � �	��� � 
	 � �, since� � �.
It is easy to verify that� �� � �1 � �	 �� � � � �, i.e., the total number of nodes in�
is at most�. (If it is less than�, we let the remaining nodes become part of> .) The graph
should have diameter0��� and thus we fix1 such that
������1 �������9��	����	 �

0���, i.e.,1 �� ��0����
� 9����	������. Moreover, we want that the minimum distance
between any two nodes in different cliques is at least	

�0���, i.e., 1 � ���� � 	
�0���.

If 0��� � ����� ��&�	��	, this condition holds. (Also observe that in any graph of�
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� � ��� �� ��

�
height� �

� cliques of size�


� � ��-ary tree

�

Fig. 3.2:The lower bound graph. Each� � is a�-clique which is connected to the central tree� by a
path having� edges.

nodes and maximum degree�, 0�������� � ��&�	��	, i.e., our condition is only slightly
stronger.)

Consider the case����� � ����	. We need to prove a lower bound of
� �����������0����0����		. In each round, the adversary imposes an� cost on all
nodes of the graph except on those nodes that join a clique with its path. That is, the adversary
restricts both�� and��� to stay in a “virtual” clique of size� with ���� � 	

�0��� and
���� � 0���. Applying the universal lower bound of Theorem 18 to this clique we obtain
the desired lower bound of��������0����		.

Consider the case����� � ����	. In each round, the adversary imposes an� cost on
all nodes in> and on all nodes that belong to a connecting path. Furthermore, in each round,
the adversary forces the online algorithm�� to leave its clique by specifying� costs on all
nodes of the clique in which�� resides. All other request costs are zero.

We use the standard averaging technique. We define a collection of��� offline algorithms
and compare the cost of�� with the average cost of the offline algorithms. At most one
algorithm resides in each clique. An offline algorithm�� remains in its clique�� until �
costs are imposed on��; at this point,�� moves to the free clique. Within each clique, the
offline algorithm follows the strategy as specified in the proof of Lemma 17. We may assume
without loss of generality that each�� starts in a different clique (see Appendix 3.B).

Consider a smoothed sequence� of length'. Let�.�/ be the total cost incurred by the
offline algorithms and define��.�/ as the total cost of�� on �. The total cost of the offline
algorithms to travel away from cliques with� costs is at most'0���. The expected cost
of each algorithm in a clique with zero adversarial request cost is, due to Lemma 17, at most
�'����� ���� � �	; recall that each clique is of size� � �� and the maximum edge length
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in each clique is����. Thus,

�. 4�.�// � '0���

�� �
�

�

�� �
�

�
��	�
��	

��.�/

�
� '0���

�� �
�

�'����

���� � �	
�

By Markov inequality,��.4�.�/ � 
�. 4�.�/// � 	
� . Clearly,��.�/ � 	

�'0���. Therefore,

�

�
��.�/

���.�/

�
�
�

�




	 	
�'0���


� �������	 � �����
�����	�	

� �

�
���

�
��

0���

����
� ����	

�	
�

The next bound shows that if Theorem 12 gives a better upper bound than Theorem 13
then this bound is tight up to a factor of����	� ����	 � ����	 for a large class of graphs.

Theorem 19. There exists a class of graphs such that the smoothed competitive ratio of any
deterministic algorithm �� is

�

�
���

�
��

0���

����

�
����


� ����	

	�	
�

where � � ����0����������	.

Proof. If Theorem 12 gives a better upper bound than Theorem 13, we have

0���

����

�
����


� ����	

	
�
�
� � ����

����

�
����


� ����	

	
�

which is equivalent to
�����

0���
� 0���

����

�
����


� ����	

	
�

Since����	 � ����	, we obtain from Lemma 18 the desired lower bound.

Theorem 20. There exist a class of graphs such that the smoothed competitive ratio of any
deterministic algorithm �� is

�

�
���

�
��

�
�
����

����

�
����


� ����	

	 �
�

where � � ����0����������	.

Proof. Let����� � ����	. We fix0��� such that������0��� � 0����, i.e.,0��� ��
�����. The lower bound of Lemma 18 then reduces to��

�
������	.
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Assume����� � ����	. We fix0��� such that������0��� � �0��������	 ����	,
i.e., 0��� �

�
���������� ����	. The lower bound of Lemma 18 then reduces to

�
��
�����������	 ����	

�
.

3.8 Concluding Remarks

In this chapter, we focused on the asymptotic behavior of WFA if the request costs of an ad-
versarial task sequence are perturbed by means of a symmetric additive smoothing model. We
showed that already for � ������	, the smoothed competitive ratio of WFA is much better
than its worst-case competitive ratio suggests and that it depends on topological parameters of
the underlying graph. Moreover, all our bounds, except the one for�-elementary tasks, are
tight up to constant factors on a large class of graphs when ranges between� and������	.
We believe that our analysis gives a strong indication that the performance of WFA in practice
is much better than
�� �. An open problem is to strengthen the universal lower bounds.

3.A Proofs of Facts

Proof of Fact 5 . Assume- is the node that defines8��4	, i.e.,8��4	 � 8��	�-	 � ���-	 �

Æ�-� 4	. We have8���	 � 8��	�-	����-	�Æ�-� �	 � 8��	�-	����-	�Æ�-� 4	�Æ�4� �	 �

8��4	 � Æ�4� �	.

Proof of Fact 6 . By (3.2), we have that8��6�	 � Æ�6��	� 6�	 � 8��4	 � Æ�6��	� 4	 for all
4  2 . In particular, for4 � 6��	 this implies8��6�	 � 8��6��		� Æ�6��	� 6�	. On the other
hand, due to Fact 5,8��6�	 � 8��6��		� Æ�6��	� 6�	.

Proof of Fact 7 . Using (3.2) and Fact 6, we obtain

���6�	 � Æ�6��	� 6�	 � 8��6�	� 8��	�6�	 � 8��6��		� 8��6�	 � 8��6��		�8��	�6�	�

Proof of Fact 8 . Define% �� ���
!
'
�	

���(��	
���(

�
�
�
)
�	

���(�

�

"
. First, note that

��1�
	 �1�

� � � � � �1�
�	 � �1	 �1� � � � � �1�	�� (3.11)

because
�




�
���

�
1�

� �1�
�

� � ��
��	

1�
� �

�
��������

1�1� �

Define ! ��
��

��	1���. Note that! is positive. Due to (3.11), we can write% �
��� ���!�/! 	. The latter expression is maximized if��! � /! , i.e., if ! �

�
��/.

Thus% � �
�/.
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Proof of Fact 9. Let1 be a random variable chosen from� . Define� as the event��1�,� �
,�
	. Using Chebyshev inequality (Lemma 7), we obtain

��.� / � ��

#
�1 � ,� � ,




$
� ��

,�
� (3.12)

Since� is continuous and non-increasing in.���	,

��.� / � ��

#
�1 � ,� � ,




$
� ��

#
1 � ,




$
� �



��

�
,



� 1 � �,




�
� �



��. � / �

This implies that��.� / � 	
� . Hence, (3.12) gives,� � �
�.

Proof of Fact 10 . Define! �� ������1	. Since, � �, we have� � �.1�/. Let �
denote the standard deviation of the distribution of! . By the definition of�.1�/, �.! �/ �
	
��.1�/. Since�� � �.! �/ � �.! /� and�� � �, we have�.! /� � �.! �/. This in turn
implies that�.! / � ��
.

3.B Constant Additive Cost for the Offline Algorithm

We note that in our lower bound proofs we can assume without loss of generality that���

incurs an additional additive cost ofA which is independent of the length of the input sequence.
This does not change the asymptotics of the lower bounds. This can be seen as follows. We
always prove a lower bound of say��!�1	 on a task sequence of length' by showing that
with constant probability the expected cost of�� is at least! � ' and the cost of��� is at most
1 �'. In order to make sure that the additive costA does not influence the competitive ratio, we
only have to make sure that the task sequence under consideration is sufficiently long. If we
choose' such that1 � ' � A, we obtain a lower bound of���! � '	��1 � '�A		 � ��!�1	.

3.C Proof that WFA is well-defined

Proof of Lemma 5. [BEY98] Define the set�� �
%
+ � +  2 and + � �" �����8��	�-	 �

Æ�6�� -		
&
� Clearly,�� is not empty because the set of nodes2 is finite ad not empty. We will

prove that there is an element of�� that also satisfies the second condition in the lemma. This
will prove that the set� is not empty.

For each-  2 ,8��	�-	 � 8��-	 � ���	�-	. This is because the optimal way to process
the sequence-���	 ending in state- is surely no more costly than optimally processing-��
ending in- and then processing���	 from -. Adding Æ�-� 6�	 to both sides of this inequality,
we get,

8��	�-	 � Æ�-� 6�	 � 8��-	 � ���	�-	 � Æ�-� 6�	� (3.13)
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Let ) be an element of� and let-� be the state for which the minimum in equation (3.1) with
4 � ) is obtained. That is,

8��	�)	 � 8��-
�	 � ���	�-

�	 � Æ�-�� )	� (3.14)

Adding Æ�-�� 6�	 to above equation and rearranging terms, we obtain,

8��-
�	 � ���	�-

�	 � Æ�-�� 6�	 � 8��	�)	 � Æ�-�� 6�	� Æ�-�� )	� (3.15)

Using the triangle inequalityÆ�-�� 6�	 � Æ�-�� )	 � Æ�)� 6�	, inequality (3.13), equation
(3.15), we get,

8��	�-
�	 � Æ�-�� 6�	 � 8��	�)	 � Æ�)� 6�	� (3.16)

Therefore, since) � �" �����8��	�)	 � Æ�-� 6�		, it must be that-�  ��. Moreover,
inequality (3.16) must be an equality. Therefore, when- � -�, inequality (3.13) must also be
an equality. Hence-� is an element of�.





Chapter 4

Randomized Pursuit-Evasion in Graphs

4.1 Introduction

In this chapter we study a pursuit-evasion game on graphs. In this round-based game, a pursuer
tries to catch an evader (the adversary) while they both travel from node to node of a connected,
undirected graph�. We also refer to these players asHunter andRabbit respectively. The
hunter catches the rabbit when in some round the hunter and the rabbit are both located on
the same node of the graph. We assume that both players know the graph in advance but they
cannot see each other until the rabbit gets caught. Both players may use a randomized (also
calledmixed) strategy, where each player is oblivious to the random choices made by the other
player. That is, each player has a secure source of randomness which cannot be observed by
the other player. In this setting we study upper bounds (i.e., good hunter strategies) as well as
lower bounds (i.e., good rabbit strategies) on the expected number of rounds until the hunter
catches the rabbit.

The problem we address is motivated by the question of how long it takes a single pursuer
to find an evader on a given graph that, for example, corresponds to a computer network or to
a map of a terrain in which the evader is hiding. A natural assumption is that both the pursuer
and the evader have to follow the edges of the graph. In some cases however it might be that
the evader has more advanced possibilities than the pursuer in the terrain where he is hiding.
Therefore we additionally consider a stronger adversarial model in which the evader is allowed
to jump arbitrarily between nodes of the graph. Such a jump between nodes corresponds to
a short-cut between two places which is only known to the evader (like a rabbit using rabbit
holes). Obviously, a strategy that is efficient against an evader that can jump is efficient as well
against an evader who may only move along the edges of the graph.

Publication Notes. A preliminary version of this joint work, together with Micah Adler, Har-
ald Räcke, Christian Sohler and Berthold V¨ocking, was published in the proceedings of the
29th International Colloquium on Automata, Languages, and Programming (ICALP), 2002
[ARS�02]. A journal version of this work appeared in Combinatorics, Probability and Com-
puting [ARS�03].
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One approach to use for a hunter strategy would be to perform a random walk on the graph
�. Unfortunately, the hitting time of a random walk, i.e., the expected number of rounds
needed to reach another node, can be as large as����	 with � denoting the number of nodes
[MR95]. Thus it would require at least����	 rounds to find a rabbit even if the rabbit does
not move at all. We show that one can do significantly better. In particular, we prove that for
any graph� with � nodes there is a hunter strategy such that the expected number of rounds
until a rabbit that is not necessarily restricted to the graph is caught is��� �� �	 rounds.
Furthermore we show that this result cannot be improved in general as there is a graph with�

nodes and an unrestricted rabbit strategy such that the expected number of rounds required to
catch this rabbit is��� ���	 for any hunter strategy.

4.2 Related Work

Search games have a long history in the field of game theory: In 1965 Isaacs introduced the
so-calledPrincess-Monster game [Isa65]. In this game a (highly intelligent) monster tries to
capture a princess in a totally dark room� with arbitrary shape. Both the monster and the
princess are aware of the boundary of the room and the monster catches the princess if their
mutual distance becomes smaller than some threshold (which is small in comparison with
the extension of�). The monster moves at a known speed using simple motion, that is, the
monster moves along continuous trajectories inside�. The princess moves along continuous
trajectories but at arbitrary speed.

Since the general game seemed to be hard to analyze Isaacs also introduced a simpler
Princess-Monster game where both the princess and the monster are moving on a closed curve
taken as a circle. This game has been analyzed several years later by Alpern [Alp74] and
Zelekin [Zel72]. Finally, Gal presented an analysis of the Princess-Monster game in a convex
multidimensional region [Gal79].

The Hunter vs. Rabbit game is adiscrete variant of the Princess-Monster game that is
played in rounds. The most important difference between the two variants is that in our case
the rabbit (the princess) can use short-cuts not known to the hunter (the monster), that is, the
rabbit is allowed to ‘jump’ from a node to any other node of the graph. Further the rabbit is
only caught if at the end of a round it is on the same node as the hunter. During the motion the
rabbit cannot be caught.

A first study of the Hunter vs. Rabbit game can be found in [AKL�79]. The presented
hunter strategy is based on a random walk on the graph and it is shown that the hunter catches
an unrestricted rabbit within�����	 rounds, where� and� denote the number of nodes
and edges, respectively. In fact, the authors place some additional restrictions on the space
requirements for the hunter strategy, which is an aspect that we do not consider.

In the area of mobile ad-hoc networks, related models are used to design communica-
tion protocols (see e.g. [CNP�01, CNS01, BK87]). In this scenario, some mobile users (the
“hunters”) aid in transmitting messages to the receivers (the “rabbits”). The expected number
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of rounds needed to catch the rabbit in our model corresponds directly to the expected time
needed to deliver a message. We improve the deliver time of known protocols, which are based
on random walks.

Deterministic pursuit-evasion games in graphs are well-studied. In the early work by Par-
sons [Par76, Par78] the graph was considered to be a system of tunnels in which a fugitive is
hiding. Parsons introduced the concept of thesearch number of a graph which is, informally
speaking, the minimum number of guards needed to capture a fugitive who can move with
arbitrary speed. LaPaugh [LaP93] showed that if' guards are sufficient to capture the fugi-
tive then this can be done without re-contamination, i.e., if at any point of time the fugitive is
known not to be in edge� then there is no chance for him to enter edge� without being caught
in the remainder of the game. Meggido et al. [MHG�88] proved that the computation of the
search number of a graph is an��-hard problem which implies its��-completeness because
of LaPaugh’s result.

If an edge can be cleared without moving along it, but it suffices to ‘look into’ an edge
from a node, then the minimum number of guards needed to catch the fugitive is called the
node search number of a graph [KP86]. Connections between the search number and the
fundamental graph parameters like vertex separation were studied in [EST94].

Pursuit evasion problems in the plane were introduced by Suzuki and Yamashita [SY92].
They gave necessary and sufficient conditions for a simple polygon to be searchable by a single
pursuer. Later Guibas et al. [GLL�99] presented a complete algorithm and showed that the
problem of determining the minimal number of pursuers needed to clear a polygonal region
with holes is��-hard. Recently, Park et al. [PLC01] gave three necessary and sufficient
conditions for a polygon to be searchable and showed that there is an����	 time algorithm
for constructing a search path for an�-sided polygon.

Efrat et al. [EGHP�00] gave a polynomial time algorithm for the problem of clearing a
simple polygon with a chain of# pursuers when the first and last pursuer have to move on the
boundary of the polygon.

In our setting the hunter and the rabbit have no visibility, they can see each other only if
they are in the same node. Hunter strategies in case of full-visibility have also been studied
(with restricted rabbit) [NW83, BW00]. The number of hunters needed to find the rabbit is
called the cop number. It is known that the cop number of planar graphs is at most 3 [AF84]
but the case of general graphs is still open [NN98, FN01].

4.3 Our Contribution

We present a hunter strategy for general networks that improves significantly on the results
obtained by using random walks. Let� � �2��	 denote a connected graph with� nodes
and diameter������	, which is the maximum over all pairwise shortest path distances in
�. Observe that���	 is a lower bound on the escape length against restricted as well as
against unrestricted rabbit strategies on every graph with� nodes (the rabbit chooses its first
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node uniformly at random and does not move during the game). Our hunter strategy achieves
escape length close to this lower bound. In particular, we present a hunter strategy that has an
expected escape length of only��� ���������			 against any unrestricted rabbit strategy.
Clearly, an upper bound on the escape length against unrestricted rabbit strategies implies the
same upper bound against restricted strategies.

Our general hunter strategy is based on a hunter strategy for cycles which is then simulated
on general graphs. Observe that if hunter and rabbit are restricted to a cycle, then there is a
simple, efficient hunter strategy with escape length���	 - in every�th round, the hunter
chooses adirection at random, either clockwise or counterclockwise, and then he follows the
cycle in this direction for the next� rounds. Against unrestricted rabbits, however, the problem
of devising efficient hunter strategies becomes much more challenging. For example, for the
hunter strategy given above, the following simple rabbit strategy results in an escape length of
���

�
�	. In each phase of� rounds, the rabbit first chooses a direction and a starting position

at random. Now it sweeps the cycle for
�
� rounds and then jump back by a length of


�
� and

then repeats this. For unrestricted rabbits on cycles of length�, we present a hunter strategy
with escape length��� �� �	. Furthermore, we prove that this result is optimal by devising
an unrestricted rabbit strategy with escape length��� ���	 against any hunter strategy on
the cycle.

Generalizing the lower bound for cycles, we can show that our general hunter strategy is
optimal in the sense that for any positive integers�� 	 with 	 � � there exists a graph� with
� nodes and diameter	 such that any hunter strategy on� has escape length��� � ���			.
This gives rise to the question whether� � ���������		 is a universal lower bound on the
escape length in any graph. We can answer this question negatively. In fact, we present a
hunter strategy with escape length���	 for complete binary trees against unrestricted rabbits.

Finally, we investigate the Hunter vs. Rabbit game on strongly connected directed graphs.
We show that there exists a directed graph for which every hunter needs����	 rounds to catch
a restricted rabbit. Furthermore, for every strongly connected directed graph, there is a hunter
strategy with escape length����	 against unrestricted rabbits.

4.4 Preliminaries

Definition of the game. The Hunter vs. Rabbit game is a round-based game that is played
on an undirected connected graph� � �2��	 without self loops and multiple edges. In this
game there are two players – the hunter and the rabbit – moving on the nodes of�. The hunter
tries to catch the rabbit, i.e., he tries to move to the same node as the rabbit, and the rabbit tries
not to be caught.

During the game both players cannot “see” each other, i.e., a player has no information
about the movement decisions made by his opponent and thus does not know his position in
the graph. The only interaction between both players occurs when the game ends because
the hunter and the rabbit move to the same node in� and the rabbit is caught. Therefore
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the movement decisions of both players do not depend on each other. We want to find good
strategies for both hunter and rabbit. Strategies are defined as follows:

Definition 1. A pure strategy for a player in the Hunter vs. Rabbit game on a graph � �

�2��	 is a sequence � � ����	���� � � � , where ��  2 denotes the position of the player in
round �  �� of the game. A mixed strategy � for a player is a probability distribution over
the set of pure strategies.

Note that both players may use mixed strategies, i.e., we assume that they both have a
secure source of random bits for randomizing their movements on the graph.

For two pure strategies& and' of hunter and rabbit, respectively, theescape length
#��&�'	 �� �����  �� � &� � '�	 is the number of rounds until the rabbit is caught.
Similarly, #�����	 denotes theexpected escape length for two mixed strategies� and�.

We analyze for both players the best expected escape length the player can guarantee for
himself, regardless of what the other player does. This means we give asymptotically tight
bounds on�������� #�����	 for the hunter and on�������� #�����	 for the rabbit,
where the maxima and minima are taken over all mixed hunter and rabbit strategies, respec-
tively.

As mentioned in the previous section we assume that the hunter cannot change his position
arbitrarily between two consecutive rounds but has to follow the edges of�. To model this we
call a pure strategy� restricted (to �) if either �������		  � or �� � ���	 holds for every
�  ��. A (mixed) strategy is called restricted if it is a probability distribution over the set
of restricted pure strategies. For the analysis we will consider only restricted strategies for the
hunter and both restricted and unrestricted strategies for the rabbit.

Notice that in our definition, the hunter may start his walk on the graph at an arbitrary
node. However, we want to point out that defining a fixed starting position for the hunter
would not asymptotically affect the results.

Basic Concepts

The strategies will be analyzed in phases. A phase consists of� consecutive rounds, where
� will be defined depending on the context. Suppose that we are given an�-round hunter
strategy� and an�-round rabbit strategy� for a phase. We want to determine the probability
that the rabbit is caught during the phase. Therefore we introduce the indicator random vari-
ables�����	� � � � � � for the event&� � '� that the pure hunter strategy& and the pure
rabbit strategy' chosen according to� and�, respectively, meet in round� of the phase.
Furthermore, we define indicator random variables������	� � � � � � describing first hits,
i.e., ������	 � � iff �����	 � � and������	 � � for every��  ��� � � � � �� �	. Finally we define
���� �

���	
��� �����	.

The goal of our analysis is to derive upper and lower bounds for��.���� � �/, the proba-
bility that the rabbit is caught in the phase. To analyze the quality of an�-round rabbit strategy
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we fix a pure hunter strategy& and derive a lower bound on the probability��.���� � �/ using
the following proposition which follows trivially from the definitions.

Proposition 1. Let � be an �-round rabbit strategy and let & be a pure �-round hunter
strategy. Then

�� .���� � �/ �
� .���� /

� .���� � ���� � �/
�

Similarly, to analyze the quality of an�-round hunter strategy we fix a pure rabbit strategy
and apply the following proposition, which is known as the Second Moment method.

Proposition 2. Let � be an �-round hunter strategy and let ' be a pure �-round rabbit
strategy. Then

�� .���� � �/ � � .���� /�

�
�
�����

� �
Proof. We consider the conditional expectations� .���� � ���� �� �/ and�

�
����� � ���� �� �

�
.

For these we have

�
�
����� � ���� �� �

��� .���� � ���� �� �/� � �	� .���� � ���� �� �/ � � �

By using� .���� � ���� �� �/ � �������
������� ���� and�

�
����� � 9
�6 �� �

�
�

�.�����/
������� ���� we get

�
�
�����

�
�� .���� �� �/

� � .���� /�

�� .���� �� �/�

which yields the lemma since��.���� � �/ � ��.���� �� �/.

Note that in both cases a bound againstall pure strategies of the other player implies the
same bound against mixed strategies, as well.

4.5 Efficient Hunter Strategies

In this section we prove that for a graph� with � nodes and diameter������	, there ex-
ists a hunter strategy such that for every rabbit strategy the expected escape length is��� �
���������			. For this general strategy we cover� with a set of small cycles and then use
a subroutine for searching these cycles. We first describe this subroutine: an efficient hunter
strategy for catching the rabbit on a cycle. The general strategy is described in section 4.5.2.
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4.5.1 Strategies for Cycles and Circles

We prove that there is an���	-round hunter strategy on an�-node cycle that has a probability
of catching the rabbit of at least 	�*��	 � �� 	

����� 	, where@� is the��� harmonic number,

which is defined as
��

��	
	
� . Clearly, by repeating this strategy until the rabbit is caught we get

a hunter strategy such that for every rabbit strategy the expected escape length is��� � ����		.
In order to keep the description of the strategy as simple as possible, we introduce a continuous
version of the Hunter vs. Rabbit game for cycles. In this version the hunter tries to catch
the rabbit on the boundary of a circle with circumference�. The rules are as follows. In
every round the hunter and the rabbit reside at arbitrary, i.e., continuously chosen points on
the boundary of the circle. The rabbit is allowed to jump, i.e., it can change its position
arbitrarily between two consecutive rounds whereas the hunter can cover at most a distance
of one. For the notion ofcatching, we partition the boundary of the circle into� distinct half
open intervals of length one. The hunter catches the rabbit if and only if there is a round
in which both the hunter and the rabbit reside in the same interval. Since each interval of the
boundary corresponds directly to a node of the cycle and vice versa we can make the following
observation.

Observation 7. Every hunter strategy for the Hunter vs. Rabbit game on the circle with
circumference � can be simulated on the �-node cycle, achieving the same expected escape
length.

The���	-round hunter strategy for catching the rabbit on the circle consists of two phases
that work as follows. In aninitialization phase that lasts for���
� rounds the hunter first
selects a random position on the boundary as thestarting position of the followingmain phase.
Then the hunter goes to this position. Note that���
� rounds suffice for the hunter to reach
any position on the circle boundary. We will not care whether the rabbit gets caught during
the initialization phase. Therefore there is no need for specifying the exact route taken by the
hunter to get to the starting position.

After the first���
� rounds themain phase starts, which lasts for� rounds. The hunter
selects a velocity uniformly at random between 0 and 1 and proceeds in clockwise direction
according to this velocity. This means that a hunter with starting position6  .�� �	 and
velocity 4  .�� �/ resides at position�6 � � � 4	 ��� � in the ��' round of the main phase.
This strategy is called the RANDOMSPEED-strategy. Clearly, it takes exactly����� � ���	

rounds. The following analysis shows that it achieves the desired probability of catching the
rabbit when simulated on the�-node cycle.

Theorem 21. On an �-node cycle a hunter using the RANDOMSPEED-strategy catches the
rabbit with probability at least 	

�*��	 � �� 	
����� 	.

Proof. We prove that the bound holds for the Hunter vs. Rabbit game on the circle. The
theorem then follows from Observation 7.
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Since the rabbit strategy is oblivious in the sense that it does not know the random choices
made by the hunter we can assume that the rabbit strategy is fixed in the beginning before the
hunter starts. Consider an arbitrary pure rabbit strategy' � '��'	� � � � �'��	, i.e.,'� is
the interval containing the rabbit in round� of this phase.

For this rabbit strategy let���� denote a random variable counting how often the hunter
catches the rabbit. This means���� is the number of rounds during the main phase in which the
hunter and the rabbit reside in the same interval. The theorem follows by showing that for any
rabbit strategy' the probability�� .���� � �/ � �� .hunter catches rabbit/ is at least 	

�*��	 .
For this purpose we estimate� .���� / and�

�
�����

�
and use Proposition 2 to derive a bound

for �� .���� � �/. Let � � .�� �	 � .�� �/ denote the sample space of the random experiment
performed by the hunter. Further let��� ( � denote the subset of random choices such that the
hunter resides in the i�� interval during the t�� round of the main phase. The hunter catches
the rabbit in round� iff his random choiceB  � is in the set���


, which we denote by the
indicator function���


�B	.
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Fig. 4.1:(a) The sample space� of the RANDOMSPEED strategy can be viewed as the surface of a
cylinder. The sets� �

�
correspond to stripes on this surface. (b) The intersection between two

stripes of slope�� and��, respectively.

The following interpretation of the sets��� will help in deriving bounds for� .���� / and
�
�
�����

�
. We represent� as the surface of a cylinder as shown in Figure 4.1(a) (the+-

axis wraps around). The+ values correspond to the positions on the circle and the- values
correspond to the different velocities. A set��� corresponds to a stripe around the cylinder that
has slope���� � �� and area�. To see this recall that a pointB � �6� 4	 belongs to the set���
iff the hunter position�� in round� resulting from the random choiceB lies in the
�' interval
*�. Since�� � �6 � � � 4	 ��� � according to the RANDOMSPEED-strategy we can write���
as��6� 4	 � 6 � ��� � � � 4	 ��� � ) ��  *�	 which corresponds to a stripe of slope��.
For the area, observe that all� stripes��� of a fixed slope� together cover the whole area of
the cylinder which is�. Therefore each stripe has the same area of�. A pure strategy of the
rabbit thus corresponds to covering this surface with� bars, each with a different slope from
������ � � � ������		. The hunter strategy corresponds to throwing a dart (choosing a point)
on this surface uniformly at random. We are interested in the probability that the dart hits the
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covered region. For this we first estimate� .���� / as

� .���� / � �

�
��	�
���

�����	

�
�

��	�
���

� .�����	/ �

��	�
���

'
�

�

�
���


�B	 	B � � (4.1)

Note that
(
� �

�
�


�B	 	B is the area of a stripe and that	
� is the density of the uniform distribu-

tion over�.

We now provide an upper bound on�
�
�����

�
. By definition of���� we have,

�
�
�����

�
� �

�
����	�

���

�����	

�� �� � �

�
��	�
���

��	�
���

����6	 � �����	
�

�

��	�
���

��	�
���

'
�

�

�
���

�B	 � ���

�B	 	B �

(4.2)

���
�B	 ����


�B	 is the indicator function of the intersection between���
and���


. Therefore(
� �

�
�

�B	 � ���

�B	 	B is the area of the intersection of two stripes and can be bounded using

the following lemma.

Lemma 19. The area of the intersection between two stripes ��� and ��� with 6� �  ��� � � � � ��
�	, is at most 	

����� .

Proof. W.l.o.g. we assume� � 6. Figure 4.1(b) illustrates the case where the intersection
between both stripes is maximal. Note that the limitation for the slope values together with the
size of the cylinder surface ensure that the intersection is contiguous. This means the stripes
only “meet” once on the surface of the cylinder.

By the definition of��� and��� the length of the straight line� in the Figure corresponds to
the length of an interval on the boundary of the circle. Thus� � �. The length of9$ is $

���
and therefore the area of the intersection is� � 9$ � $�

��� � 	
��� . This yields the lemma.

Using this Lemma we get

��	�
���

'
�
���

�B	 � ���

�B	 	B �

��	�
���

�

��� 6� �

'
�
���

�B	 � ���
�B	 	B �

��	�
����	

�

��� 6�

�

��
��	

�

�
�

'
�
���

�B	 	B �

����	�
��	

�

�
� 
@� � � �

Plugging the above inequality into Equation 4.2 yields�
�
�����

� � 
@� � �. Combining this
with Proposition 2 and Equation 4.1 we get�� .hunter catches rabbit/ � 	

�*��	 which yields
the theorem.
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4.5.2 Hunter Strategies for General Graphs

In this section we extend the upper bound of the previous section to general graphs.

Theorem 22. Let � � �2��	 denote a graph and let ������	 denote the diameter of this
graph. Then there exists a hunter strategy on � that has expected escape length ���2 � �
���������			.

Proof. We cover the graph with� � ����		 cycles�	� � � � � �� of length 	 where	 �

��������		, that is, each node is contained in at least one of these cycles. (In order to obtain
this covering, construct a tour of length
� � 
 along an arbitrary spanning tree, cut the tour
into subpaths of length	�
 and then form a cycle of length	 from each of these subpaths).
From now on, if hunter or rabbit resides at a node of� corresponding to several cycle nodes,
then we assume theycommit to one of these virtual nodes and the hunter catches the rabbit
only if they commit to the same node. This only slows down the hunter.

Now the hunter strategy is to choose one of the� cycles uniformly at random and simulate
the RANDOMSPEED-strategy on this cycle. Call this aphase. We observe that each phase takes
only ��		 rounds. The hunter executes phase after phase, each time choosing a new random
cycle, until the rabbit is caught. In the following we will show that the success probability
within each phase is��	��@#	, which implies the theorem.

Let us focus on a particular phase. For the purpose of analysis we assume that on every
cycle the nodes are enumerated consecutively from� to 	. Instead of directly calculating the
probability that the hunter catches the rabbit we first analyze the probability that at some point
of time both of them are on a node with the same number. Let1 denote the indicator random
variable for this event. We observe that the probability for1 � � is identical to the probability
that the hunter catches the rabbit on a cycle of length	. Consequently,

�� .1 � �/ � ����@#	 �

Now we use the fact that the hunter catches the rabbit if and only if they are on a node with
the same numberand they are on the same cycle. If during a phase hunter and rabbit are more
than one time on a node with the same number, we consider only the first time. At this time
the probability that hunter and rabbit are also on the same cycle is	

� . We obtain

�� .hunter catches rabbit �1 � �/ � �

�
�

We conclude

�� .hunter catches rabbit/ � �� .hunter catches rabbit �1 � �/ ��� .1 � �/ � ��	��@#	 �
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4.6 Lower Bounds and Efficient Rabbit Strategies

We first prove that the hunter strategy for the cycle described in Section 4.5.1 is tight by giving
an efficient rabbit strategy for the cycle. Then we provide lower bounds that match the upper
bounds for general graphs given in Section 4.5.2.

4.6.1 An Optimal Rabbit Strategy for the Cycle

In this section we will prove a tight lower bound for any (mixed) hunter strategy on a cycle of
length�. In particular, we describe a rabbit strategy such that every hunter needs��� ����		

expected time to catch the rabbit. We assume that the rabbit is unrestricted, i.e., can jump
between arbitrary nodes, whereas the hunter is restricted to follow the edges of the cycle.

Theorem 23. For the cycle of length �, there is a mixed, unrestricted rabbit strategy such that
for every restricted hunter strategy the escape length is ��� ����		.

The rabbit strategy is based on a non-standard random walk. Observe that a standard
random walk has the limitation that after� rounds, the rabbit is confined to a neighborhood
of about

�
� nodes around the starting position. Hence the rabbit is easily caught by a hunter

that just sweeps across the ring (in one direction) in� steps. Also, the other extreme where
the rabbit makes a jump to a node chosen uniformly at random in every round does not work,
since in each round the rabbit is caught with probability exactly���, giving an escape length
of ���	. But the following strategy will prove to be good for the rabbit. The rabbit will
change to a randomly chosen position every� rounds and then, for the next� � � rounds, it
performs a “heavy-tailed random walk”. For this�-round strategy and an arbitrary�-round
hunter strategy, we will show that the hunter catches the rabbit with probability����@�	. As
a consequence, the expected escape length is��� ���	, which gives the theorem.

A heavy-tailed random walk. We define a random walk on� as follows. At time 0 a particle
starts at position1� � �. In a step � � �, the particle makes a random jump-�  � from
position1��	 to position1� � 1��	 � -�, where the jump length is determined by the
following heavy-tailed probability distribution*.

�� .-� � #/ � �� .-� � �#/ �
�


�# � �	�# � 
	
�

for every# � � and�� .-� � �/ � 	
� . Observe that�� .�-�� � #/ � �# � �	�	, for every

# � �. The following lemma gives a property of this random walk that will be crucial for the
proof of our lower bound.

Lemma 20. There is a constant �� � �, such that, for every � � � and '  ���� � � � � �	,
�� .1� � '/ � ����.
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Proof. We will prove the lemma using two claims. The first claim shows a simple mono-
tonicity property of the random walk and the second claim shows that, with at least constant
probability, the particle does not move more than distance��5	 within 5 steps. (Observe
that this does not imply that the expected distance traveled in5 steps is��5	. In fact, it is
well-known that, under the heavy-tailed distribution*,�.�-��/ � � so that even the expected
distance traveled in only one step is undefined.)

Claim 3 (monotonicity). For every � � �� ' � ���� .1� � '/ � �� .1� � '� �/ �

Proof. We use induction on�. For � � � the claim is obviously true as1� � �. Assume by
inductive hypothesis that the claim holds for� � �. Define

;���	 � �� .1� � 
� � ) -��	 � �/ � �� .1� � 
� �/�� .-��	 � �/ �

for 
 � �� �  �. Then,

�� .1��	 � '/ �
�
���

;���	 �
�
���

.;���	 � ;���� � �	/ �

and

�� .1��	 � '� �/ �
�
���

;��	��	 �
�
���

.;��	���	 � ;��	�� � �	/ �

As a consequence,

�� .1��	 � '/��� .1��	 � '� �/ �
�
���
! ��	�

where! ��	 � ;���	�;������	�;��	���	�;��	����	. Since* is symmetric,! ��	 ��
�� .1� � '� �/ � �� .1� � '� � � �/

��
�� .-��	 � �/ � �� .-��	 � � � �/

�
. Observe

that both factors are always positive by the induction hypothesis, symmetry, and some shifting.
Hence, the claim is shown.

Claim 4. For every 5 � � and �  ��� � � � � 5	, �� .�1�� � 5 / � ��
��.

Proof. Observe that the variance of* is unbounded. Nevertheless, one can use the Chebyshev
inequality for bounding the distance traveled by the particle as follows. Now we truncate the
random variables-�. For this purpose let us fix5 . For simplicity in notation, assume that5
is a multiple of four. For each random variable-�, we define an auxiliary random variable+�
taking integer values in the range.�+

� �
+
� / such that�� .+� � #/ � ��.-� � # � �-�� � +

� /.
We observe that

�� .+� � #/ �
�5�� � 
	

�5�� � �	
�� .-� � #/ �
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Since+� is bounded, it has a finite variance, which can be estimated as follows:

�	� .+�/ �

+��
��	


��� .�+�� � 
/

�
�5�� � 
	

�5�� � �	

+��
��	


�
�

�
� �	�
� 
	
� 5



�

Next define!� �
��

��	 +�. Since the random variables+� are independent,�	� .!�/ ���
��	�	� .+�/ � +�

� . Furthermore, we observe that�.!�/ � �, for all � � �. Hence ap-
plying the Chebyshev inequality (Lemma 7) gives

�� .�!�� � 5 / � ��

#
�!�� �

�

 ��	� .!�/

$
� �



�

Finally, we apply this bound to the original random variables1� and obtain

�� .�1�� � 5 / � ��

#
�1�� � 5




 +���	 �-�� �
5

�

$
��

#
+���	 �-�� �

5

�

$

� �� .�!�� � 5 /
�

�� �

�5�� � 
	

	�

� �




�
�

�

	�

�

Thus Claim 4 is shown.

Fix � � �. We will use Claim 4 in order to show�� .� � �1�� � ��/ � ��, for a suitable
constant��. Afterwards, we will apply Claim 3 to this bound and obtain the lemma.

The probability that there exists#  ��� � � � � �	 with �-�� � 
� and the first such#, say
#�, fulfills �-�� � � �� is at least�

��
�

�� �


�� 


	�
��

�� 
�� 


��� 


	
� �

�
��� ��	�	

since for every�  � we have�� .�-�� � �/ � �� � �	�	. Given this event, we observe
that there exists�  ��� � � � � #�	 with �1��  ��� � � � � ����	. Let us denote by�� the smallest
such�. Applying Claim 4 gives��.�1� �1�� � � �/ � ��
�� since1� �1�� and1���� are
identically distributed. It further follows by symmetry that	

� ���.�1� �1�� � � �/ � ��.� �
1� � 1�� � �/ � ��.�� � 1� � 1�� � �/. Now observe that if� � �1�� � � �� then
� � �1�� � �� � �� or � � �1�� � �� � ��. And so we obtain

�� .� � �1�� � ��/

� �



��� .��1� �1�� � � �	 � ,� � � � �� � �1�� � ��	/ ��� .,� � � � �� � �1�� � ��	/
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� �

���
��� .,� � � � �� � �1�� � ��	/

� �


���
��� ��	�	 �

If we now define
��

���
�

�

����
��� ��	�	

then applying Claim 3 gives�� .�1�� � �/ � ����. Finally, applying the same claim again, we
obtain�� .�1�� � '/ � ����, for � � ' � �. This completes the proof of Lemma 20.

The rabbit strategy. Our �-round rabbit strategy starts at a random position on the cycle.
Starting from this position, for the next��� rounds, the rabbit simulates the heavy-tailed ran-
dom walk in a wrap-around fashion on the cycle. The following lemma immediately implies
Theorem 23.

Lemma 21. The probability that the hunter catches the rabbit within � rounds is ����@�	.

Proof. Fix any�-round hunter strategy& � &��&	� � � � �&��	. Because of Proposition 1 we
only need to estimate�.���� / and�.���� � ���� � �/. First, we observe that�.���� / � �. This
is because the rabbit chooses its starting position uniformly at random so that��.�����	 �

�/ � ��� for � � � � �, and hence�.�����	/ � ��.�����	 � �/ � ���. By linearity of
expectation, we obtain�.���� / �

���	
��� �.�����	/ � �. Thus, it remains only to show that

� .���� � ���� � �/ � �	@� for some constant�	. In fact, the idea behind the following proof
is that we have chosen the rabbit strategy in such a way that when the rabbit is hit by the hunter
in a round then it is likely that it will be hit additionally in several later rounds as well.

Claim 5. For every 5  ��� � � � � �� � �	, � .���� � �����5	 � �/ � �	@�, for a suitable con-
stant �	.

Proof. Assume hunter and rabbit meet at time5 for the first time, i.e.,�����5	 � �. Observe
that the hunter has to stay somewhere in interval.&+ � ��� 5	�&+ � ��� 5	/ in round� � 5
as he is restricted to the cycle. The heavy-tailed random walk will also have some tendency to
stay in this interval. In particular, Lemma 20 implies, for every� � 5 ,��.�����	/ � ������5	.
Consequently,�.���� � �����5	 � �/ � � �

���	
��+�	 ����� � 5	, which is��@�	 since5 �

��
.

With this result at hand, we can now estimate the expected number of repeated hits as
follows.

� .���� � ���� � �/ �
��	�
+��

� .���� � �����5	 � �/ ��� .�����5	 � � � ���� � �/
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�
���	�
+��

� .���� � �����5	 � �/ ��� .�����5	 � � � ���� � �/

� ��	@�

���	�
+��

�� .�����5	 � � � ���� � �/

for some suitable constant��	 � 
�	. Finally, observe that

���	�
+��

�� .�����5	 � � � ���� � �/ �

��	�
+���

�� .�����5	 � � � ���� � �/ � � �

Thus, one of the two sums must be greater than or equal to	
� . If the first sum is at least	� ,

then we directly obtain� .���� � ���� � �/ � �	@�. In the other case, one can prove the same
lower bound by going backward instead of forward in time, that is, by summing over the last
hits instead of the first hits. Hence Lemma 21 is shown.

4.6.2 A Lower Bound In Terms of the Diameter

In this section, we show that the upper bound of Section 4.5.2 is asymptotically tight for the
parameters� and������	. We will use the efficient rabbit strategy for cycles as a subroutine
on graphs with arbitrary diameter.

Theorem 24. For every positive integers �� 	 with 	 � � there exists a graph � with � nodes
and diameter 	 and a rabbit strategy such that for every hunter strategy on� the escape length
is ��� � ���			.

Proof. For simplicity, we assume that� is odd,	 � �	� and � ����	�
 is a multiple of	�.
The graph� consists of acenter 6  2 and �	� subgraphs called loops. Eachloop consists
of a cycle of length
	� � � and a simple path of	� � � nodes such that the first node of the
simple path is identified with one of the nodes on the cycle and the last node is identified with
6. Thus, all loop subgraphs share the center6, otherwise the node sets are disjoint.

Every	� rounds the rabbit chooses uniformly at random one of the �	� loops and per-
forms the optimal	�-round cycle strategy from Section 4.6.1 on the cycle of this loop graph.
Observe that the hunter cannot visit nodes in different cycles during a phase of length	�.
Hence, the probability that the rabbit chooses a cycle visited by the hunter is at most	�� .
Provided that the rabbit chooses the cycle visited by the hunter the probability that it is caught
during the next	� rounds is�� 	

*��
	 by Lemma 21. Consequently, the probability of being

caught in one of the independent	�-round games is�� #�

�*��
	. Thus, the escape length is

���@#�	 which is��� � ���			.
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4.7 Trees and Directed Graphs

In the previous sections, we have seen a restricted hunter strategy such that for every unre-
stricted rabbit strategy the expected escape length is��� � ���������		. Furthermore, we
have seen that this bound is optimal against unrestricted rabbits on cycles and several other
networks of smaller diameter. This gives rise to the question whether for every hunter strategy
there is a rabbit strategy such that the escape length is��� � ���������			. We can answer
this question negatively. In fact, in the following section we present a hunter strategy on a
complete binary tree such that for every unrestricted rabbit strategy the expected escape length
is���	.

Subsequently, in Section 4.7.2 we investigate the Hunter vs. Rabbit game on strongly
connected directed graphs. We show that there exists a directed graph and a rabbit strategy
such that every restricted hunter needs����	 rounds to catch a restricted rabbit. Furthermore,
for every strongly connected directed graph, there is a hunter strategy such that for every
unrestricted rabbit strategy the expected escape length is����	.

4.7.1 A Linear Time Algorithm for Binary Trees

In this section, we investigate whether there exist graphs for which there is a hunter strategy
against unrestricted rabbits with escape length<�� � ���������			. The following theorem
answers this question positively. It gives an example of an�-node network with diameter
�����	 and escape length���	.

Theorem 25. For the complete binary tree > of height 9 and � � 
� leaf nodes, there is a
hunter strategy such that for every (unrestricted) rabbit strategy the expected escape length is
���	.

Proof. For simplicity, we assume that9 is a power of
. Furthermore, we initially assume that
the rabbit visits only leaf nodes. (Finally, we will remove this assumption.)

We define the level of a node4 of > as the height of the subtree>� rooted at4. The
hunter strategy is calledsparse random DFS and is defined as follows. The hunter repeats the
following four times (starting at the root of> ): he chooses a node with height9�
 at random,
visits it, and applies the same strategy recursively to the subtree>� (with respect to its height).
The recursion stops at subtrees of height 2, i.e., subtrees with 4 leaf nodes. Here for four times,
the hunter chooses a leaf node uniformly at random and checks whether the rabbit hides on
this leaf node.

The corresponding 4-ary recursion tree is called thesearch tree >� . Let 9� denote the
height of>� and let% denote the number of leaf nodes of>� . It is straightforward to see that
9� � �� 9 � �� ��� and% � ��� � ����. Observe that each leaf of>� corresponds to
a visited leaf of> . Furthermore, each edge of>� corresponds to a path in> that the hunter has
to follow in order to reach the root of the selected subtree on the next recursion level. Figure
4.2 shows a picture of the embedding of the recursion tree>� into the tree> . Of course, the
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Leaf nodes

 h/2

 h/4

Fig. 4.2:Embedding of the recursion tree�� into the tree� .

hunter needs some number of rounds in order to follow the paths that simulate the edges of
>� . We observe that the lengths of these paths decrease by a factor of two with every level
of recursion. However, the number of edges in>� per recursion level increases by a factor of
four with each level. Hence, the leaf level of>� dominates the execution time, which leads to
the following observation.

Observation 8. The hunter can perform the sparse random DFS in ��%	 rounds, where % �

���� is the number of visited leaf nodes of > .

Next we investigate the probability that the hunter catches the rabbit within one pass of the
described search algorithm.

Lemma 22. The probability that sparse random DFS finds the rabbit is ��%��	.

Proof. For � � 
 � %, let �� denote the round in which the
th leaf node is visited. Let
����
	 denote a 0/1 random variable which is one iff the hunter hits the rabbit in round��,
and �����
	 � � if this is the first hit. Clearly, for every
, �.����
	/ � 	

� . Using linear-
ity of expectation, we obtain�.9
�6/ � %��. Now applying Proposition 1 yields that the
lemma can be shown by proving�.���� � ���� � �/ � ���	. As �.���� � ���� � �/ �
���	���
 ��.���� � �����
	 � �/	, we only need to show�.9
�6 � �����
	 � �/ � ���	, for
� � 
 � %.

Fix an arbitrary
  ��� � � � � %	. We assume that�����
	 � �, that is, the hunter meets the
rabbit at leaf
 of the search tree>� and this is the first hit. Let for a level'  ��� � � � � 9�	
of the search tree,>��'	 denote the complete�-ary subtree of height' that contains
. If the
mapping of
 to a leaf of> is fixed then so is the mapping of the root nodes of the subtrees
>��'	, '  ��� � � � � 9�	. This partially determines the search tree>� and hence the leaf nodes
visited in addition to
 later in the search. We show that the search tree still contains “enough”
randomness such that�.9
�6 � �����
	 � �/ is not too large.

Consider a fixed subtree>��'	 for some value'  ��� � � � � 9�	. Let 4�'	 denote the root
of >��'	 and let8�'	 denote the corresponding node in> according to the embedding of>�
in > . We first bound the expected number of hits made by the hunter during the search on the
subtree>��'	 not including the hits made in>��'� �	. During this part of the search� � ���	
leaf nodes of> are visited. These leaf nodes are all contained in the subtree of> rooted at
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8�'	. Altogether, this subtree contains
�
�

leaf nodes since8�'	 is on level
� in > . As each
of these nodes is visited with equal probability the expected number of hits is at most������

���
.

We get an upper bound on�.9
�6 � �����
	 � �/ by summing this value for all subtrees
>���	� � � � � >��9�	. Hence,

�.���� � �����
	 � �/ � � �

���
��	

� � ���	

��

� � �

Hence, Lemma 22 is shown.

Combining Observation 8 and Lemma 22 we conclude that the escape length is���	.
Finally, it remains to show how to deal with rabbit strategies that hide on internal nodes of
> . To solve this problem we define avirtual tree >� which is a complete binary tree of height
9� �. We embed> � into > such that every node in> hosts at least one leaf of>� and adjacent
nodes in> � are hosted by adjacent nodes in> . (The latter requirement means that thedilation
of the embedding is one.) Then the hunter simulates the random DFS for>� on> . In this way
the rabbit cannot avoid the leaves of>� and Theorem 25 follows.

It remains to describe the embedding of>� into > . Let > �	 and> �� denote the two disjoint
subtrees of height9 of > �. We map every node of> �	 to its counterpart in the isomorphic tree
> . Additionally, we map the root of> � to the root of> . If > does not consist of a single node
we apply the same rule recursively with trees>�� and> �, where> � denotes the subtree of>
induced by its internal nodes, i.e., the subtree obtained by removing all leaf nodes from> .
In this way, every node of> receives at least one leaf node of>� (and possibly several other
internal nodes).

4.7.2 Directed Graphs

Now we want to consider the Hunter vs. Rabbit game on directed graphs. We slightly alter
the definition of restricted strategy for this purpose. In a directed graph� � �2��	 we call a
pure strategy� restricted, if either .������	�  � or �� � ���	 holds for every�  ��.

Theorem 26. Let � denote an arbitrary directed strongly connected graph with � nodes.

Then there is a restricted hunter strategy on � such that for every unrestricted rabbit strategy
the expected escape length is ����	. Furthermore, there is a directed graph with � nodes,
where there exists a restricted rabbit strategy such that for every restricted hunter strategy the
expected escape length is ����	.

Proof. The hunter strategy is defined as follows. In every� rounds, the hunter goes to a
node in the graph chosen uniformly at random (this is possible in� steps because the graph is
strongly connected) and the hunter meets the rabbit with probability�����	. This proves the
claim.
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n/2 nodes
S E

Fig. 4.3:A good graph for the rabbit

We now want to construct a graph and a rabbit strategy such that for every restricted
hunter strategy the expected escape length is����	. The graph has a directed path of��

nodes starting with node� and ending with node�. For each of the remaining nodes (let us
call them black nodes), there is an arc from� and an arc to�. Our construction is illustrated
in Figure 4.3. The rabbit initially chooses one of the black nodes at random and stays there
forever. Now, it is easy to see that, if the hunter fails to find the rabbit in a black node, he has
to spend��
 rounds to check another black node. This shows a lower bound of����	 even
against a stationary rabbit. Hence the theorem is shown.

4.8 Summary and Open Problems

In this chapter we studied a pursuit-evasion game called the Rabbit vs. Hunter game. We
considered the stronger adversarial model where the rabbit is allowed to jump arbitrarily from
one node to the other whereas the hunter can only travel along the edges of the graph. We saw
efficient randomized hunter strategies that were based on random speed approach. We also
saw good rabbit strategies based on non-standard random walks, which show that the hunter
strategy is optimal on certain graphs. We then showed even better hunter strategies on specific
graphs (using a different approach) and also discussed the case of directed graphs.

Our results lead to several interesting open problems. One natural question to ask is, are
there better hunter strategies against a restricted adversary. That is, are there hunter strategies
with <�� �������		 escape length on general graphs if both hunter and rabbit can only move
along the edges of the graph. For example, on a cycle the trivial hunter strategy with���	

escape length is to start from node� and sweep the cycle either clockwise or counter-clockwise
with equal probability. Interestingly even the following Markovian hunter strategy (the random
decisions made in a round do not depend on the past like for e.g., the sweeping direction
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that was chosen in the beginning) works well on a cycle. On each node we assign transition
probabilities as follows. On any node4  ��� � � � � � � �	, the probability to jump to the
successor is� (i.e., probability to jump backwards or a self-loop is�). In node�, the probability
to jump to node� is 	

� and�� 	
� for the self-loop. The hunter starts from a random node and

follows these edge probabilities. If the rabbit ever crosses node� after� steps then the hunter
is waiting at node� with constant probability. If the rabbit crosses node� before� steps
(and never after� steps) then with constant probability the hunter will go past the rabbit in
�� steps. This is because between� and�� steps, the hunter starts again from node� with
constant probability that will then sweep the cycle in another� steps and meet the rabbit in
between.

Another open problem is to study how much randomness does the hunter need. In other
words, it would be interesting to investigate the connection between the number of random bits
available to the hunter to the escape length achievable. Our hunter strategies need the com-
plete topological information about the underlying graph. It is also interesting to investigate
hunter/rabbit strategies if only limited topological information is available and the hunter is
provided with some pebbles to be placed in the graph nodes, thereby avoiding routes already
taken. In our setting, both hunter and rabbit have zero-visibility (they see each other only if
they are in the same node). A different line of research is to study hunter (possibly multiple)
and rabbit strategies with more visibility (in case of the restricted rabbit setting). Recently
Isler et al. [IKK04] showed that for limited visibility, i.e., both players can see the immedi-
ate neighborhood, two hunters suffice to catch the rabbit in general graphs. They also give
polynomial time strategies and also characterize graphs where only one hunter is enough.
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Definitions of Some Basic Concepts

Random Walks on Graphs. Consider a connected undirected graph� � �2��	. A
random walk on� is defined as follows. Graph� induces the following Markov chain��,
the states of�� being the nodes of�. Define transition probabilities for every��� 4	  2 �2
as

;�� �

�
	

#�� if ��� 4	  �
� otherwise;

where	��	 is the degree of node�.

Hitting time. Also denoted as9��, is the expected number of steps in a random walk that
starts at� and ends upon first reaching4.

Commute time. Defined as��� for a pair of nodes� and4, is the expected time for a random
walk starting at� to return to� after at least one visit to4.

Cover time. Let-� denote the expected length of a walk that starts at� and ends after visiting
every node in� at least once. Then the cover time� for � is ���� -�.

Graph Isomorphism. Graphs�	 and�� are isomorphic if there is a one-to-one corre-
spondence between the vertices of�	 and�� with the property that two vertices are adjacent
in �	 iff their images in�� are adjacent.

The � -Norm. For-  (,�, theC -norm of-, denoted by��-�� , is defined as

��-�� �
� ��

��	

�-�� 
�	 

�

TheC�-norm is theEuclidean norm. TheC�-norm is simply�����-	�� � � � � �-��	.

Classification Scheme for Scheduling. For describing a scheduling problem, the fol-
lowing terminology, introduced by Graham, Lawler, Lenstra and Rinnooy Kan [GLLR79], is
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usually used. Problems are described by three fields: the first represents the machine environ-
ment, the second denotes any special conditions or constraints in the model, and the third is
the objective function. Possible machine environments are���� �: environment consisting of
a single machine,identical parallel machines, andunrelated machines. For identical parallel
machines the processing time for a job� is the same, denoted as��. For unrelated machines,
processing time for a job can be different in each machine,��� denoting the processing time
of job � in machine
. For example, “���� � ������” is the problem of scheduling unit-time
jobs on identical parallel machines to minimize the makespan.

Linear and Integer Linear Programs. A linear program, LP for short, is a problem of
minimizing or maximizing a linear function subject to a finite set of linear constraints. An LP
can be written as

�����- � �- � (	�
where�  (,��� is a matrix of real numbers, with� rows and� columns, and(  (,�

is a�-dimensional column vector. The above LP has� variables-	� � � � � -�, denoted by the
column vector-. In the above LP,�- is called anobjective function, where�  (,� is an�-
dimensional row vector. Afeasible solution for the given LP is an assignment to-	� � � � � -�,
such that the set of constraints, i.e.,�- � (, is satisfied. A solution to the LP is a feasible
solution that maximizes�-.

An integer linear program, ILP for short, is a linear program with the additional constraint
that the variables can only take integer values. That is, given a rational matrix�, and rational
vectors( and�, determine�����- � �- � (�- integral	� Many combinatorial optimization
problems can be formulated as ILPs.

Approximation Algorithms. Usually for problems that are computationally hard, there
is no polynomial time algorithm to solve it unless P=NP, polynomial time approximation al-
gorithms are designed. An�-approximation algorithm is a polynomial time algorithm that
computes a feasible solution whose value is always within a factor� of the optimum.

Amortized Analysis and Potential Method. In anamortized analysis, the cost involved
for a sequence of operations is averaged over all the steps. Even though in the worst-case, the
cost for one step may be very high, amortized analysis guaranteesthe average cost of each
step in the worst-case.

Thepotential method of amortized analysis represents the pre-paid work/cost as apotential
energy or just “potential”, that can be released to pay for future operations. A potential is
defined using a potential function5��	 for round/operation�, with 5��	 as the initial potential.
The amortized cost-$��	 for round� is defined as

-$��	 � ���	 � 5��	�5��� �	�
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where���	 is the actual cost for operation�. Hence the total amortized cost for� operations
is

��
��	

-$�
	 �

��
��	

�
���	 � 5��	� 5��� �	

�
�

��
��	

���	 � 5��	� 5��	�

If we ensure that5��	�5��	 is non-negative then the total amortized cost is an upper bound
on the total cost.
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