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Kurzzusammenfassung

In dieser Doktorarbeit stellen wir Verfahren vor, mit deren Hilfe man Kollisionen
zwischen sich bewegenden starren Korpern erkennen kann, deren Oberflichen sich aus
gekriimmten Flachen- und Kurvenstiicken zusammensetzen. Als Flichentypen betrach-
ten wir dabei algebraische Fldchen der Ordnungen eins und zwei (Quadriken) sowie
den Torus. Als Kurven erlauben wir Kegelschnittkurven und Schnittkurven zwischen
Quadriken. Wir unterscheiden zwei verschiedene Arten der Kollisionserkennung. Die
statische Kollisionserkennung entscheidet, ob sich zwei stationidre Objekte iiberlappen,
wahrend die dynamische Kollisionserkennung fiir sich bewegende Objekte feststellt, ob
diese wihrend eines gegebenen Zeitintervalls kollidieren. Um die Anwendbarkeit dieser
Verfahren bei interaktiven Dynamiksimulationen zu gewihrleisten, spielen sowohl die
Effizienz als auch die numerische Robustheit der Algorithmen eine entscheidende Rolle.
Um dem Rechnung zu tragen, filhren wir alle Berechnungen darauf zuriick, die Null-
stellen von Polynomen in einer Variablen zu bestimmen. Fiir dieses Problem sind ef-
fiziente und robuste Algorithmen bekannt. Da deren Laufzeitverhalten und numerische
Stabilitat stark von den Graden der betrachteten Polynome abhingt, halten wir diese so
gering wie moglich. So zeigen wir zum Beispiel fiir zwei spezielle Klassen von Objekten,
dass das Problem der statischen Kollisionserkennung darauf zuriickgefiihrt werden kann,
die Nullstellen von Polynomen zu berechnen, deren Grade hichstens vier sind. Ein wei-
terer Aspekt den wir in dieser Arbeit behandeln ist die Simulation der Dynamik starrer
Korper. In diesem Zusammenhang leiten wir ein Verfahren her, mit dem der Vorgang
des Rollens eines Korpers auf einer beliebigen Oberfliche simuliert werden kann.

Abstract

In this thesis we present methods for detecting collisions between moving rigid bodies
whose boundaries are composed of segments of curved surfaces and curves. The sur-
face types that we consider are algebraic surfaces of degree one and two (quadrics) as
well as the torus. The curves that we allow are conic sections and intersection curves
between quadrics. We distinguish two different kinds of collision detection. The static
collision detection decides whether two stationary objects overlap whereas the dynamic
collision detection checks for two moving objects whether they collide during a given
time interval. To make these methods applicable for interactive dynamics simulations,
both the efficiency and the robustness of the algorithms play a decisive role. In order
to meet these requirements we reduce all computations to the problem of finding the
roots of polynomials in one variable. There are efficient and robust algorithms for this
task. Since their running time and numerical stability depend heavily on the degrees
of the polynomials, we keep these as low as possible. For instance, we show for two
special types of objects that the problem of static collision detection can be reduced to
determining the roots of polynomials whose degrees are at most four. This thesis also
addresses the simulation of the dynamic behaviour of rigid bodies. In this context we
develop an approach to simulate the rolling motion of an object on an arbitrary surface.



Ausfiihrliche Zusammenfassung

In der vorliegenden Arbeit behandeln wir das Problem, fiir zwei sich bewegende starre
Korper festzustellen, ob diese miteinander kollidieren oder nicht. Entgegen herkoémm-
lichen Kollisionserkennungsverfahren ist unser Ansatz nicht auf polyederférmige Ob-
jekte beschrinkt, sondern erlaubt die Verwendung von Kérpern, deren Oberflichen sich
aus gekriimmten Flichen- und Kurvenstiicken zusammensetzen. Die Flichen, die wir
dabei zulassen, sind Ebenen, Quadriken (algebraische Flichen der Ordnung zwei) und
der Torus. Als Kurven erlauben wir Kegelschnittkurven sowie Schnittkurven zwischen
Quadriken. Wir betrachten verschiedene Klassen von Objekten, die sich darin unter-
scheiden, welche dieser Flachen- und Kurventypen bei der Beschreibung ihrer Oberfliche
zugelassen sind. Wir unterscheiden zwei verschiedene Arten der Kollisionserkennung.

e Die statische Kollisionserkennung entscheidet, ob sich zwei stationire Objekte
iiberlappen.

e Die dynamische Kollisionserkennung testet, ob zwei sich bewegende Objekte in
einem gegebenen Zeitintervall miteinander kollidieren.

Die statische Kollisionserkennung kann in einem dynamischen Szenario benutzt werden,
indem man sie zu kurz aufeinander folgenden Zeitpunkten aufruft. Jedoch kann es
dabei passieren, dass Kollisionen zwischen sich sehr schnell bewegenden Objekten nicht
erkannt werden. Die dynamische Kollisionserkennung vermeidet dies, indem sie nicht nur
die Lagen und Orientierungen der Objekte zu festen Zeitpunkten betrachtet, sondern
auch deren Bewegungen mit in Betracht zieht.

Kollisionserkennungsalgorithmen kommen in allen Anwendungen zum Einsatz, in de-
nen Objekte sich in einer virtuellen Umgebung bewegen, wobei die Invariante der
Durchdringungsfreiheit erhalten bleiben muss. Als Beispiele hierfiir lassen sich 3D-
Computerspiele nennen, aber auch Anwendungen zur Simulation des dynamischen Ver-
haltens von Korpern in einem dreidimensionalen virtuellen Szenario. Beispiele fiir letz-
teres sind interaktive Montagesimulationen, in denen der Anwender den Zusammen-
bau mechanischer Teile in einer Virtual-Reality Umgebung simulieren kann. Solche
Anwendungen erfordern hiufig eine hohe Genauigkeit bei der Représentation der Ob-
jekte. Werden zur Kollisionserkennung Verfahren verwendet, die mit Polyedern arbeiten,
bedeutet dies, dass gekriimmte Oberflichen mittels sehr vieler Polygone approximiert
werden miissen. Da die Laufzeit einer Kollisionserkennung stark von der Komplexitéat
der Oberflichenbeschreibung der Objekte abhingt, ist dies insbesondere bei interak-
tiven Anwendungen problematisch. Daher liegt es nahe, Algorithmen zu entwickeln,
die direkt mit den gekriimmten Oberflichen arbeiten konnen ohne diese polygonal zu
approximieren.

Beim Einsatz in Echtzeitanwendungen ist die Effizienz der Kollisionserkennung sehr
wichtig. Dariiber hinaus kommt es in interaktiven Anwendungen wie der Montage-
simulation héufig zu degenerierten Kontaktsituationen. Aus diesem Grund ist auch
die numerische Robustheit der Algorithmen von grofser Bedeutung. Daher ist es unser



Ansatz, alle notigen Berechnungen darauf zuriickzufiihren, die Nullstellen von Poly-
nomen in einer Variablen zu bestimmen. Fiir dieses Problem kennt man effiziente und
robuste Algorithmen. Da deren Laufzeit und numerische Stabilitdt stark von den Graden
der betrachteten Polynome abhingt, halten wir diese moglichst gering. So zeigen wir
beispielsweise fiir zwei der betrachteten Objektklassen, dass das Problem der statischen
Kollisionserkennung darauf zuriickgefiihrt werden kann, die Nullstellen von Polynomen
hoéchstens vierten Grades zu bestimmen. Diese konnen sehr effizient und robust mit
Hilfe der Formeln von Cardano und Ferrari bestimmt werden.

Eine prototypische Implementierung unserer statischen Kollisionserkennung fiir eine
der betrachteten Objektklassen und ein Vergleich dieser mit einem Kollisionserken-
nungssystem fiir Polyeder zeigt, dass es moglich ist, unsere Verfahren derart zu imple-
mentieren, dass die Laufzeiten mit denen herkémmlicher Methoden konkurrieren kon-
nen. Dariiber hinaus zeigt sich bei der Verwendung genauerer Approximationen fiir den
polyederbasierten Algorithmus, dass das Arbeiten mit gekriimmten Oberflichen wie er-
wartet zu besseren Laufzeiten filhren kann.

Ein weiteres Thema, das wir in dieser Arbeit aufgreifen, ist die Simulation des dy-
namischen Verhaltens starrer Kérper. Darunter versteht man das Bewegungsverhalten
unter dem Einfluss von Kriften und gegenseitigen Kontakten. Wir beschreiben zwei
bekannte Ansitze, dieses Verhalten zu simulieren. Beim impulsbasierten Ansatz werden
die Bewegungsidnderungen, die durch Kollisionen hervorgerufen werden, durch Anwen-
dung der Stofigesetze in den Kontaktpunkten ermittelt. Dieser Ansatz ermoglicht die
Simulation sowohl plastischer als auch elastischer Stofe unter Einbeziehung von Reibung.
Ein Nachteil dieses Verfahrens ist, dass nur infinitesimal kurze Kontakte mit nur einem
Kontaktpunkt simuliert werden kénnen. Mehrfachkontakte sowie permanente Kontakte
miissen durch so genannte Mikrokollisionen modelliert werden. Beim zwangsbasierten
Ansatz werden Zwangsbedingungen formuliert, die zusammen mit den Newton-Euler
Bewegungsgleichungen das Verhalten der Objekte beschreiben. Beispiele fiir solche Be-
dingungen sind die Forderung nach Durchdringungsfreiheit in den Kontaktpunkten oder
das Verbot von Gleitbewegungen im Falle einer Rollsimulation. Eine bekannte Anwen-
dung des zwangsbasierten Ansatzes ist die Simulation durch Kontaktkrafte. Dort werden
die Krifte ermittelt, die in den Kontaktpunkten wirken, um Durchdringungen zu ver-
hindern. Diese Methode erlaubt das Einbeziehen von Reibung sowie die Simulation von
Mehrfach- und Permanentkontakten. Jedoch kann man damit lediglich plastische St&fse
simulieren.

Wir entwickeln eine zwangsbasierte Methode zur Simulation des Rollens eines Ob-
jektes auf einer beliebigen Oberfliche. Die Zwangsbedingungen, die wir formulieren,
fordern, dass in den Kontaktpunkten keine Gleitbewegungen stattfinden diirfen. Zusam-
men mit den Bewegungsgleichungen leiten wir daraus ein Differentialgleichungssystem
her, das die Rollbewegung beschreibt. Wir beweisen, dass dieses System bei gegebenen
intitialen Geschwindigkeiten eine eindeutige Losung hat. Mit dieser Methode waren wir
in der Lage, das Hinabrollen eines "Oloid" genannten Objektes auf einer schiefen Ebene
in Echtzeit zu simulieren.
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1 Introduction

1.1 Problem Definition

In this thesis we present methods to solve the collision detection problem for objects
with curved surfaces in the context of dynamics simulations for rigid bodies. We describe
known approaches to simulate the dynamic behaviour of rigid objects and derive a new
method for the simulation of rolling motions.

Collision Detection

The collision detection problem that we will solve can be formulated as follows. Given
a scene with moving rigid objects whose boundaries consist of curved surface patches,
detect the collisions between them. These methods are intended to be used in interactive
virtual reality applications and should be applicable for the simulation of the dynamic
behaviour of rigid objects. Therefore they must be

e cfficient, since interactive applications require real-time performance and

e robust, since in many interactive dynamics simulations (e.g. assembly simulations)
it is very likely that situations are geometrically degenerate.

We consider different classes of objects. These differ in the curve and surface types the
boundaries of the objects consist of. The surface types that we use are quadrics (with
the plane as a special case) and the torus. As curve types we allow conics (with the
straight line as a special case) and intersection curves between quadrics. We present two
different kinds of collision detection algorithms.

e The static collision detection decides for two stationary objects whether they over-
lap or not.

e The dynamic collision detection decides whether two moving objects will interpen-
etrate during a given time interval.

The static collision detection algorithm can be used in a scene with moving objects by
applying it at discrete points in time. But in order to ensure that no collisions are missed
one has to take care that the time steps between these discrete points are sufficiently
small. The dynamic collision detection is a possibility to avoid this difficulty.
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In order to meet the requirements for efficiency and robustness, we reduce all compu-
tations to the problem of finding the roots of univariate polynomials. For this problem
there are well known algorithms that are efficient and robust. In addition to detailed
derivations of these polynomials we give careful analyses of their degrees. Since the
running time as well as the accuracy of the root finding algorithms depend highly on
these degrees we will keep them as low as possible.

Dynamics Simulation

Simulating the dynamics of rigid objects means simulating their motions under the
influence of forces and mutual contacts. We describe two classical simulation methods,
namely the impulse based and the constraint based method. The former one computes
the reactions to the collisions by applying the laws of impact in the contact points and
the latter one by formulating geometric and dynamic constraints in addition to the
equations of motion. We derive a new constraint based approach for the simulation of
an object with curved boundary that rolls on an arbitrary surface. This means we are
able to simulate the motion of an object that is in contact with a surface under the
assumption that the sticking friction in the contact points forbids sliding.

1.2 Motivation

In a variety of areas simulation techniques are used to create virtual environments that
behave in some sense realistic. The film industry and the computer game industry, for
instance, make use of these computer simulated environments. Movie scenes that are
too difficult or even impossible to shoot in the classical way are produced using such
methods. In 3D computer games the players navigate through a virtual world and in-
teract with each other and with their environment. But not only the entertainment
industry benefits from these methods. Also the manufacturing industry uses simulation
techniques to reduce the costs during the development phase of a product. Simulation
software can be applied to test mechanical parts both for assemblability and function-
ality. The automotive industry also uses such techniques to perform virtual crash tests.
With this virtual prototyping, errors in the product design can be detected in an early
stage of the development phase before real prototypes are constructed. In this way the
duration as well as the expenses of this phase can be drastically reduced.

In all applications where virtual objects are moved and the invariant that no objects
overlap has to be maintained, collision detection algorithms are necessary. Such appli-
cations include 3D computer games as well as the just mentioned simulations for virtual
prototyping. In many cases the objects in the virtual environment are manipulated
interactively. Hence, the collision detection must be capable of performing in real-time.

In most simulation applications it does not suffice to just detect collisions between
objects. Imagine a scenario as shown in figure 1.1. These images show screenshots from
two simulations that were performed in the Virtual Reality Competence Center of the
DaimlerChrysler corporation. The left image shows the changing of a light bulb in the



1.2 Motiwation

Figure 1.1: Changing a light bulb (left) and mounting a car radio (right) in a virtual
environment.

head-light of a car and the right image shows the mounting of a car radio. In both
scenarios it was possible for an engineer to move a virtual object, namely a light bulb
and a radio, interactively in a virtual world. Collisions between the moving object and its
environment were recognized by the software. But if the movement of the objects would
have just stopped whenever a collision occurred it would have been a very difficult task
to move the light bulb out of its socket or to insert the radio into the slot. However, in a
real environment these tasks are not that difficult since due to the collisions the motions
of the objects change and thus they slip into the right direction. Hence, a simulation
software must also be able to compute physically correct reactions to the collisions. This
is the subject of chapter 4 of this thesis.

Currently used collision detection algorithms are based on the assumption that the
involved objects are polyhedra. This assumption can be justified by the fact that any
curved object can be approximated arbitrarily well by a polyhedron. The basic tests that
are performed by a collision detection algorithm are collision tests between single faces.
Since the faces of polyhedra are polygons, the basic tests can be performed very efficiently
for these objects. However, there are applications that require a very high accuracy.
This means that the objects have to be approximated very well, i.e. by a large number
of polygons. Since the running time of a collision detection algorithm between two
objects depends highly on the number of boundary elements (faces, edges and vertices),
higher accuracy implies a longer response time. This is particularly problematic if real-
time performance is required, e.g. in a scenario where the objects are manipulated
interactively. Hence, it is desirable to work with the curved objects directly instead of
approximating them. Therefore, we present methods for detecting collisions between
objects with curved surfaces.
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1.3 Previous Work

1.3.1 Static Collision Detection for Polyhedra

There are many publications dealing with the problem of static collision detection for
polyhedra. Since the basic tests are rather simple for polygonal faces, these publica-
tions mainly concentrate on acceleration techniques. These techniques either reduce the
number of pairs of faces for the basic tests or the number of pairs of objects that have
to be tested in a large scale scene. The number of pairs of faces is usually reduced us-
ing bounding volume hierarchies. Different types of bounding volumes are used. These
include spheres (|Qui94, Hub95, Hub96, PG95|), oriented boxes (|GLM96|) and fixed
direction hulls ([HKM™*96]) with the special case of axis-oriented boxes ([ZF95, Zac97]).
Most of these techniques can also be used for objects with curved surfaces. In fact, we
will describe methods published in [Rei01| to compute smallest bounding volumes for
sets of curved surface patches. In [ELO1| a hierarchical convex decomposition of the
boundaries is used to compute a hierarchy of bounding volumes. This is not possible for
curved objects, since their boundaries do not necessarily have a convex decomposition.
For the reduction of the number of objects to be tested in a scene, [Mir97] describes a
hierarchical space partitioning approach which is based on [Ove92]. We will see that this
approach can be used for curved objects, as well. In [CLMP95|, an approach based on
projecting axis aligned bounding boxes onto the coordinate axes and sorting the result-
ing intervals is used to find the pairs of objects that possibly collide. A disadvantage of
this approach is that the axis aligned boxes have to be recomputed whenever an object
rotates. For curved objects, this computation is rather expensive in general. An algo-
rithm for static collision detection (as well as various other queries) between polyhedra
using graphics hardware acceleration can be found in [HZLMO02|. Their method is to
use first a bounding volume hierarchy to localize the potential collision regions. These
regions are then point-sampled uniformly. The graphics hardware pixel framebuffer is
used as a 2D slice of this sample and the tests are performed slice-wise. In this way all
queries become pixel operations that can be performed very efficiently by the graphics
hardware.

1.3.2 Dynamic Collision Detection for Polyhedra

Publications on dynamic collision detection for polyhedral objects include [Eck99] and
[ES99]. They approximate the volume swept by the bounding volumes in order to use
the hierarchy in a dynamic scenario. For the basic tests, a simple interpolation scheme
is used to find the roots of signed distance functions between vertices and faces or
between edges. For curved objects it is not clear how to define these signed distances.
In [RKCO1] it is proposed to use an interval arithmetic based approach to check the
bounding volumes for collision. In that publication, also the basic tests are performed
using interval arithmetic.

There are also theoretical results for the dynamic collision detection problem for two
triangulated polyhedra with a total of n triangles. In [Sch94] it is shown that the collision
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test can be performed in time O(log” n) if both polyhedra are convex and their motions
are translations. If only one polyhedron is convex it is shown that a running time of
O(nlogn) is possible. In [ST95a| it was proven that for two non-convex polyhedra
a running time of O(n'®*¢) in the case of translational motions and O(n'®*¢) in the
case of rotational motions is possible. For the case that the motion is described by
polynomial trajectories it was shown in [ST96] that still a sub-quadratic running time of
o(n?) can be obtained. In [SSW95] the bit complexity of the collision detection problem
for polyhedra was analyzed. This is important if one wants to use exact arithmetic. It
was shown that for the case that all input data are given by L-bit numbers the collision
test can be performed using at most 14L + 22 bits.

1.3.3 Collision Detection for Curved Surfaces

There is also previous work dealing with the static collision detection problem for curved
objects or the computation of intersections between such objects. For parametric sur-
faces there are publications about subdivision methods (e.g. [Sny92, Dok97]). These
work by recursively subdividing the parameter domains of two surface patches. These
methods are intrinsically approximate and if they are used for high precision they suffer
from data proliferation and are therefore time consuming. There are also subdivision
methods for the dynamic collision detection between time dependent parametric sur-
faces ([vHBZ90, SWF*93]). In [MC91]| and [KM97| a method based on computations
with bivariate matrix polynomials has been published for the intersection between two
general parametric surfaces. An implicit form of one of these surfaces is represented as
the determinant of a matrix. The parameterization of the other surface is inserted into
this matrix. In our case we know parametric as well as implicit representations of the
surfaces. Hence, we do not have to perform these time consuming matrix computations.
In [LMO95] algebraic surfaces are tested for intersection by looking for real roots of a sys-
tem of three equations in four unknowns. A configuration space approach to compute
the intersections between a torus and natural quadrics has been published in [Kim98|.
We also use this approach in our static collision detection algorithm.

1.3.4 Dynamics Simulation

In the field of dynamics simulations there are two fundamental approaches, namely
the impulse based approach and the constraint based approach. The impulse based
method computes the collision reactions by applying the laws of impact in the contact
points. Publications dealing with this approach include [MC95]|, [Mir96b| and [Len00].
An example for the constraint based method is the computation of so-called contact
forces. These are the forces that act in the collision points and prevent the objects
from interpenetrating. In [SKL98| these are modelled as spring forces. A different way
to compute them is by formulating geometric constraints in the contact points. This
method goes back to [Bar94| and was refined by later works including [BS98] and [War99].
The publications [ST95b], [SS98] and [Sau03] extend the approach by including friction.
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1.3.5 Software

Finally, we want to mention software packages that have been developed in the field
of collision detection and dynamics simulation for polyhedral objects. Pure collision
detection packages include I-COLLIDE, which is presented in [CLMP95] and RAPID,
which is based on the results presented in [GLM96|. The package SWIFT++ which is
based on [ELO01] is also able to compute closest features, approximate and exact distances
and can perform tolerance verifications, i.e. decide whether two objects are closer than
a given tolerance. The IGOR system (see [Sch94]) is a system for assembly planning and
simulation. It can assist an engineer to develop a scheme for the chronological and spacial
coordination of an assembly process. Based on this, the practicability of a (robot aided)
assembly process can be proven by a simulation. Whereas this system considers only
the geometry and kinematics, the main focus of the SILVIA library (see [HKL*99|) is
the real-time simulation of the dynamic behaviour of colliding rigid objects. Finally, we
mention the virtual reality platform of the DaimlerChrysler corporation which is called
DBVIEW. It contains a real-time collision detection (see [Eck99|) and a module for the
computation of contact forces (see [Buc99|) and was used to perform the simulations
shown in figure 1.1.

1.4 Our Contributions

e We present a generic algorithm for the static collision detection problem for rigid
objects with curved boundaries. We describe specializations of this algorithm for
certain classes of objects. We reduce all computations to the problem of finding
the roots of polynomials in one variable and prove upper bounds for the degrees
of these polynomials. In particular we prove that these degrees are at most four
in the cases that the boundaries of the objects consist of

— patches of quadrics and segments of conics and

— patches of planes, spheres circular cones, circular cylinders and tori and seg-
ments of straight lines and circles.

This means that there exist closed form solutions for the roots and hence, they
can be computed very efficiently and accurately. We implemented our approach
prototypically for the so called natural quadratic complexes. These are objects
whose faces are embedded on planes, spheres, circular cones and circular cylinders
and whose edges are embedded on circles and straight lines. By comparison of
our implementation with the collision detection system SWIFT++ that works on
polyhedra we could verify that it indeed makes sense to work with curved objects
instead of approximating them.

e We present a generic algorithm for the dynamic collision detection problem for
curved rigid objects and describe specializations for certain classes of objects. To
our knowledge, this is the first time that a dynamic collision detection algorithm
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for complex classes of objects with curved surfaces is published. We reduce all
our computations to root finding problems for univariate polynomials. We prove
upper bounds for the degrees of these polynomials in the cases of pure translational
motions, pure rotational motions and superpositions of translations and rotations.
We give a thorough case distinction on the types of curves and surfaces involved
in the collision test in order to keep the degrees as low as possible.

e A subproblem that has to be solved in both the static and the dynamic collision
test is to decide whether a given point on a surface lies inside or outside a face that
is embedded on that surface. Typically, this test is performed in the parameter
space of the surface. A disadvantage of this approach is that the edges that bound
the face have to be mapped to the parameter space. But simple algebraic curves
in 3-space are usually much more complicated in the parameter space of a surface.
We present a method to perform this test directly in 3-space. The crucial operation
that our method uses is computing the points of intersection between the edges
bounding the face and a plane. In this way we exploit the low algebraic degrees of
the curves containing these edges.

e A subproblem of the dynamic collision test is the following. Given two objects that
are in touch at a point p, decide whether there is a penetration locally at p in the
immediate future. We show that this penetration test can be formulated as the
problem to decide whether a point belongs to the boundary of a full-dimensional
cell in a semi-algebraic set in R*. It is an open question how this problem can be
solved efficiently in all cases. For non-degenerate situations, however, we present
a simple and efficient way to perform this test.

e If an object is in contact with a surface and a sliding motion is not possible, e.g.
because of high sticking friction, then it will perform a rolling motion. We present
a method to simulate this behaviour for arbitrary objects in contact with arbitrary
surfaces. We derive a system of ordinary differential equations that describes the
motion of the object and prove that this system is non-singular. Thus, the motion
is uniquely determined by the initial velocities and the external forces such as
gravity. With this approach we were able to simulate an object called the oloid!
(see figure 1.2) rolling down an inclined plane in real-time.

!The oloid is the convex hull of two circles lying in perpendicular planes such that each of them
contains the center of the other.
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Figure 1.2: The oloid

1.5 QOutline

This thesis is structured as follows.

e In chapter 2 we introduce the basic concepts that are used throughout the thesis.
We begin with giving a short overview over the notation used in the following.
Then, we give a rather general definition of the notion of rigid objects and in-
troduce the special object classes that are used in the following. We define the
curve and surface types that the boundaries of these objects consist of and present
some mathematical background including a new result concerning the existence of
tangential intersection points between quadrics and between conics. Finally, we
describe how physical properties such as mass or moments of inertia can be com-
puted for a rigid object. We present a method to perform these computations on
the curved objects rather than on approximations in order to achieve the highest
possible precision.

e Chapter 3 is the main part of the thesis. It starts with a section about heuristics
for fast feature culling. We describe two such heuristics, namely the bounding
volume hierarchies and the space partitioning. In the next section we present a
static collision test. We first describe a generic algorithm that works for all rigid
objects corresponding to our general definition. Then, we specialize the generic
algorithm for our special objects classes. Finally, we present a dynamic collision
test. Again, we first describe a generic algorithm that works for general rigid
objects. We specialize the generic algorithm for two of our special object classes.

e In chapter 4 we describe two approaches to simulate the dynamic behaviour of rigid
objects subject to mutual contacts. These are the impulse based and the constraint
based simulation method. In the context of the latter method, we present a new
approach for the simulation of rolling motions.

e We close the thesis with chapter 5 where we give a conclusion and say a few words
about possible further research.
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In this chapter we present some basic definitions and concepts that are used throughout
the thesis. We start by introducing some conventions of notation that we will abide
by in the following. These conventions mainly concern the typesets used for vectors,
matrices etc. Next, we introduce the concept of rigid objects. We first give a definition
and then describe how a data structure can be organized to represent rigid objects. We
decided to use the so called boundary representation which represents a rigid object by
describing its boundary. We will also define the classes of rigid objects that we will
deal with in the following chapters. The curve and surface types that the boundaries of
the objects in these classes consist of will then be described in the next section. After
that, we will present some mathematical preliminaries. That section contains — amongst
other things — a new necessary condition for two general quadrics or conics to have a
real tangential intersection point. This result is a generalization of a condition given
in [WWKO1]. The chapter will be closed by a section about the physical properties that
we assign to each object. These properties will be important in chapter 4 where we talk
about the dynamic behaviour of rigid objects.

2.1 Notation

In this section we briefly want to introduce some notations that will be used in the
following.

e Matrices will usually be denoted by bold-face upper-case letters. Examples in-
clude M, R, I. We write E for the (nxn)-identity matrix and 0 for the zero-matrix.
The transposed of A will be denoted as AT.

e Vectors and vector-valued functions will be written as bold-face sans-serif letters,
as for example a, f,F, w. A vector a € R is usually viewed as a column vector

aq

(6813

Row vectors are written as transposed column vectors, such as a'. We write O for
the zero vector. The scalar product of two vectors a and b is written as matrix
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product a'b. For a vector a = [a;, az, az]’ € R? we write

0 —das az
a* = as 0 —aq
—Aaz ay 0

for the skew-symmetric matrix associated with a. With this definition we have
the equality a x b = a* - b for vectors a,b € R3.

e Sets are denoted by upper-case script letters, such as A, O, K.

e Quaternions will be written as bold-face lower-case gothic letters, such as p and
q. The components of a quaternion q are denoted as qo,...,qs. We sometimes

write
| 9o
q_{ q }

with g = [q1, q2, q3]". The adjoint quaternion of q is

15

The length of a quaternion q is |q] = \/qq*. For a vector a and a quaternion q
we sometimes write aq for the quaternion product

iE
2.2 Rigid Objects

In this section we will define what we mean in the following by rigid objects. We start
with a very general definition of this term and continue with a subsection about the
representation of these objects. At the end of the section we will define the object
classes that will be considered in the remainder of this thesis.

2.2.1 General Definition

Throughout this thesis, rigid objects will be non-deformable three-dimensional objects.
To make this more precise we start with a very general definition of the term object,
that is similar to the definition of multishell manifold solid in [Hof89]. Before we state
this definition, recall that the boundary of an n-manifold with boundary is always an
(n — 1)-manifold without boundary (cf. [GH81]). We say that a compact 2-manifold
in R3 is of bounded variation if every line and every plane intersects it in finitely many
connected components.

Definition 2.1. A point-set © C R3 is called object, if it is a compact, connected 3-
manifold with boundary 00. We also require 00 to be of bounded variation.
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Figure 2.1: Examples for point-sets that are not 3-manifolds with boundary.

The main difference between this definition and the one given in [Hof89] is the require-
ment for compactness. The reason for this demand is that for dynamics simulations only
bounded objects are of interest, whereas in solid modeling it might be convenient to allow
unbounded objects, as well. We define objects as 3-manifolds with boundary to avoid
point-sets like those shown in figure 2.1. We require 00 to be of bounded variation in
order to avoid "ruffled" or fractal boundaries. The reason for this is that we want to
be able to decide whether a given point lies inside or outside an object by counting the
intersections between a ray starting in that point and the boundary of the object. If
the boundary is of bounded variation we can be sure to find a ray that intersects it in
finitely many points. The objects that we consider in the following chapters will always
have boundaries consisting of finitely many subsets of algebraic surfaces. It is easy to
show with Bezout’s theorem that algebraic surfaces are always of bounded variation.

A moving object is called rigid if its shape does not change during the motion. We
want to state more formally what this means. A moving object is a function O(t) such
that for each t > 0 the set O(t) is an object according to definition 2.1.

Definition 2.2. A moving object O(t) is called rigid if there is an object O, a continuous
rotation matriz R(t) and a continuous vector c(t) such that

Oft) ={R(t)p+c(t) [ pcO).

This means that a rigid object is only allowed to change its position and orientation
during the motion.

2.2.2 Boundary Representation

Now that we have defined what rigid objects are, we want to describe how to represent
their geometry. One of the most common representations for solids is the boundary
representation. As the name suggests, an object is represented only by its boundary. As
already mentioned before, we only consider objects whose boundaries consist of finitely
many subsets of algebraic surfaces. An algebraic surface S is defined as

S={xeR|f(x)=0),
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where f is a polynomial in R[xq,x;,x3]. The equation f(x) = 0 is called the implicit
form of S. We call the region containing all points x with f(x) < 0 the interior region
with respect to S, and the region consisting of those points x with f(x) > 0 the exterior
region with respect to S. In this way the surface S is oriented. Note that the orientation
of § can be flipped by multiplying the polynomial f by —1. We call a point x € S a
singular point of S if Vf(x) = 0. The normal of a non-singular point x € S is the vector

~ Vf(x)
V(X))

11%% .
The normal n, of x always points from the interior to the exterior region w.r.t. S. This
can be seen as follows. Define the function g(t) = f(x + tny). Then the derivation of g
w.r.t. tis g’(t) = nlVf(x + tny). Obviously, g’(0) = nZ - [Vf(x)| > 0. So, if we start
in the point x and then follow a straight line in the direction of n,, then the value of f
initially increases, i.e. we enter the exterior region w.r.t. S.

Definition 2.3. A subset F C S is called a face (embedded in S), if it is a compact,
connected 2-manifold with boundary 0F, and if F contains no singular points of S.

The orientation of F is given by the orientation of S. In the following, the boundary
of a face will always consist of finitely many subsets of intersection curves between
algebraic surfaces. Note that 0F might be empty (choose S as a sphere and F = S).
We will represent the boundary of an object O as the union of finitely many faces. A
face F C 00 is called a face of O.

Let C be an intersection curve between two algebraic surfaces and let ¢(t) be a param-
eterization of C. The tangent vectors ¢(t) define the orientation of C. This orientation
can be flipped by replacing the parameterization by ¢(t) := c(—t). We call a point
x = ¢(tp) a singular point of C if the tangent ¢(ty) does not exist.

Definition 2.4. A subset £ C C is called an edge (embedded on C), if it is a compact,
connected 1-manifold with boundary 0E, and if £ contains no singular points of C.

The orientation of £ is given by the orientation of C. Note that 0& either is empty
or consists of exactly two points, the endpoints of £. Endpoints of edges are also called
the vertices of £. We call the first vertex of £ with respect to the orientation of £ the
start-verter and the second one the end-vertex. We will represent the boundary of a face
F as the union of finitely many edges. An edge £ C 0.F is called an edge of F and the
vertices of £ are vertices of F. If F is a face of an object O then £ is also called an edge
of O and the vertices of £ are vertices of O. If £ is an edge of a face F, then F is said
to be adjacent to £ and £ is said to be incident to F. If £ is incident to two faces F;
and JF, then F; is adjacent to F;.

Definition 2.5. Let £ be an edge of a face F. We say that the orientation of £ is
induced by the orientation of F if the following holds for each point p € €. If one looks

at p in the opposite direction of the normal n of F in p, then the interior of F lies to
the left of the oriented edge .
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Definition 2.6. Let F; and F, be two adjacent faces. We say that they are coherently
oriented if for each of their common edges € the orientations of £ induced by Fy and F>
are opposite.

Coherent orientation of 77 and F, implies that along common edges both faces agree
on how to divide the space into an interior and an exterior region.

We call the connected components of the boundary of an object O the shells of O.
The connected components of the boundary of a face F are called the loops of F. Now
we are able to give a first description of the boundary representation of an object O.

1. An object is represented by a singly linked list of its shells.
2. A shell is represented by a singly linked list of its faces.

3. A face is represented by the surface that it is embedded in and by a singly linked
list of its loops.

4. A loop is represented by a singly linked list of its edges.

5. An edge is represented by the curve that it is embedded on and by its start- and
end-vertex.

6. A vertex is represented by a point.

We call the components shell, face, loop, edge and vertex the topologic components of the
representation, whereas the components surface, curve and point are called its geometric
components. We will describe later how to represent the geometric components. The
above representation is not sufficient, yet. It still allows to represent structures that are
not objects according to our definition. It is possible to represent objects like those in
figure 2.1, point sets that do not contain any volume, surfaces that are not orientable, etc.
Moreover, it would be convenient to have the possibility to easily enumerate all edges
or vertices of a face in the order of the orientation that is induced by the orientation of
the face.

As a first improvement, we add a test to the representation that checks whether the
two vertices of an edge lie on the same connected component of the curve that contains
the edge. Next, we make sure that the start-vertex is a predecessor of the end-vertex
with respect to the orientation of the curve. Now, we must check that the edge does not
contain self intersections as sketched in figure 2.2.

As another improvement of the representation described above we demand that each
vertex of a face is a vertex of exactly two edges of that face (of course it may also be
a vertex of an edge of another face). This implies that loops always represent compact
1-manifolds without boundary. This avoids the situation shown in the rightmost picture
of figure 2.1.

As two adjacent faces induce opposite orientations on common edges it is convenient
to introduce one more topological component to the representation, namely the coedge.
We change the representation described above as follows.
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Figure 2.2: An oriented curve with start-vertex a and end-vertex b with self-intersection.

e A loop is represented by a cyclic doubly linked list of coedges.

e A coedge is represented by a pointer to an edge £ plus a direction flag.
The direction flag indicates whether the coedge is equally or opposite oriented as

£.

We use the terms start-vertex and end-vertex in the context of coedges with respect
to the direction flag. We demand that the loops are oriented, i.e. the end-vertex of a
coedge in a loop must be the start-vertex of the next coedge of that loop. In this way we
can easily enumerate all edges and all vertices of a face in the order of their orientation.

Another improvement of our representation is a test that ensures that all loops of a
face are located on the same connected component of the surface that contains the face.
Regarding definition 2.5, an oriented loop on a surface S defines an interior region and
an exterior region on S. Let L4,..., Ly be all loops of the face F and let the interior
region on S defined by £; be denoted by Z;. Then F is defined by

k

(Liuz).

i=1

It holds that F is connected and 9.F is the union of all its loops if and only if £; C Z; for
all 1 #j. This is a similar statement as that of lemma 2.7 below and its proof is similar
to the proof of that lemma, as well. So, another improvement of our representation is a
test that checks this property for all pairs of loops of a face.

In order to ensure that a face F is bounded we need one more test. If the connected
component S of the surface that contains F is bounded, then nothing has to be checked.
Otherwise, let the loops of F be enclosed by a cube that is given by planes Py, ..., Ps.
Then each connected component of the intersection curve between one of the P; and S
lies completely in the interior or completely in the exterior of 7. We compute one point
on each such connected component. If one of these points lies in the interior of F, then
JF is unbounded, otherwise it is bounded.

Next, we require each edge to be adjacent to exactly two faces. More precisely, this
means that each edge belongs to exactly two coedges, each coedge to exactly one loop
and each loop to exactly one face. In this way we ensure that shells always represent
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compact 2-manifolds without boundary. This avoids the situation shown in the leftmost
and in the middle picture of figure 2.1.

We require the faces of a shell to be pairwise coherently oriented. This ensures that
each shell defines an interior and an exterior region in R3. Let Sj,..., Sk be all shells
and let the interior region defined by S; be denoted by Z;. Then, the object O is defined
by

k

(S uTy).

i=1
Lemma 2.7. O is connected and 00 = U]f:] S & 8§ CI foralli#j.

Proof. Let O be connected and i # j. Let furthermore p be a point on S; and g be a
point on S;. Every neighbourhood of g contains a point r € O NZ;. As O is connected,
there is a path from 1 to p within O. Therefore, p € Z;.

Conversely, let S; C Z; for all i # j. We first prove that 90 is the union of all shells.
First, we notice that O can be expressed as

k k
U‘Si U ﬂL.
i=1 i=1

Let p € 00. If p is in none of the S;, then it must be in ﬂfﬂ Z;, which is an open subset
of O. But then p ¢ 00 and we have a contradiction. If on the other hand p € &;,
then every neighbourhood of p contains a point that is not contained in S; UZ; D O.
Therefore p € 00. To prove that O is connected, we pick two points p,q € O. We
construct a path P from p to q in O as follows. We follow the straight line from p to
g until we reach the first point ry where this line leaves a set S; UZ;. Let 1, be the last
point where the line re-enters this set. We follow a path from r; to r; on S;. Such a
path exists because S; is connected. In this way we proceed until we finally reach q. O

According to this lemma we add a test that checks this property for all pairs of shells.

What is missing is a test whether O is bounded or not.

Lemma 2.8. Let O be a closed 3-manifold with boundary and let 9O be bounded and of
bounded variation. Let B be a ball that encloses 00 and let p & B be a point.

O is bounded & p ¢ O.

Proof. We prove "O bounded = p ¢ O" and "O unbounded = p € O" at the same
time. Let O be bounded (unbounded) and suppose that p € O (p € O). Then there is
apoint q € Bwith q ¢ O (q € O) and a path P from p to g with PN B = (), and thus
P NoO = . So, P connects a point inside O with a point outside O without crossing
the boundary. This is a contradiction. O
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Based on this lemma, we add a test to our representation to check whether O is
bounded. This test looks as follows. Pick any point p € R® and consider a ray from
P to infinity that intersects the boundary of O. Compute the points of intersection
between this ray and 90. Let g be the last such point (with respect to the direction of
the ray). Depending on the sign of the dotproduct between the direction of the ray and
the normal of 00 in g we can decide whether the ray enters or leaves O at that point.
Lemma 2.8 tells us that O is bounded if and only if the ray leaves O at (.

Finally, we notice that sometimes it is necessary to answer questions like "Do these two
vertices belong to the same loop/shell/face?" This means we should be able to "navigate"
through the topologic structure of an object efficiently. To this end, we add backward
pointers to the representation.

e A vertex points to one of the edges that has it as start- or end-vertex.

An edge has a pointer to one of its two coedges.

A coedge has a pointer to its adjacent coedge, i.e. the other coedge that belongs
to the same edge. Moreover, it has a pointer to the loop it belongs to.

A loop points to its face.

Finally, a face has a pointer to its shell.

We close this section with a brief description of how to represent the geometric compo-
nents curve and surface. Curves are represented by a parameterization. In section 2.3 we
will present parameterizations of conics and of general quadric intersection curves. The
representation of a conic also contains the plane in which the conic lies along with the
implicit form of the conic in that plane. In the case of general quadric intersection curves
the representation also contains the two quadrics that intersect in that curve. If an edge
£ is represented by a curve with parameterization c(t) and by vertices a and b, then we
always assume that we know a parameter interval [u,v] such that a = c(u),b = c(v)
and £ ={c(t)|t € [u,v] .

An algebraic surface is represented by its implicit form. In section 2.3 we will present
implicit forms of the algebraic surfaces used in this thesis, namely the quadrics and the
torus.

2.2.3 Definition of Special Object Classes

In this subsection we will define the classes of objects that will be considered in the
following chapters. We will distinguish these classes by the surface and curve types that
their boundaries will consist of. These surfaces and curves will be described in more
detail in 2.3
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Quadratic Complexes (QC) The boundaries of quadratic complexes (QC) consist of
patches of quadrics as faces and segments of conics as edges. Note, that we consider
planes as special cases of quadrics and straight lines as special cases of conics. This is the
natural extension of polyhedra, since the algebraic degree of the boundary is increased
by one.

Natural Quadratic Complexes plus Torus (NQC+T) An object is a NQC+T if its
faces are embedded on natural quadrics and the torus and its edges are straight line
segments and circle segments. Natural quadrics are planes, spheres, circular cones and
circular cylinders.

Quadratic Complexes plus QIC (QC+QIC) This class is the boolean closure of
the class of QC. The boundary of a QC+QIC consists of faces that are embedded on
quadrics and of edges that are embedded on quadric intersection curves (QIC). Conics
are a special case of QIC.

2.3 Curves and Surfaces

In this section we will describe the curves and surfaces that the boundaries of the objects
in this thesis consist of. The surfaces that we will introduce are the quadrics and the
torus. The curves that we will deal with are the conics and quadric intersection curves.

2.3.1 Quadrics

A quadric is a surface whose implicit form is a quadratic form, i.e. an equation of the

form
x"Ax +2x"a+ ap =0, (2.1)

where A € R3*3 is symmetric and a € R3. Often, we write this equation in homogeneous
coordinates as

x"Apx = 0, where
A a
AH N |: (IT ap :| ’
(2.2)
A € R** symmetric,
a € R

We will always use the index H to indicate homogeneous matrices. If we have a homo-
geneous matrix My, then M always denotes the upper-left (3 x 3)-submatrix.

The coordinate system can be rotated and translated in such a way that A is a diagonal
matrix and Aa = 0. This is done by first applying a principle axis transformation to
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Normal form Name of the quadric
(a>0,b>0,c>0)

ax} +bx3 +cx3 =1 | Ellipsoid

ax} +bx3 —cx3 =1 | One-sheet hyperboloid

ax} +bx3 —cx3 =0 | Double cone

—ax? —bx3 + cx = 1 | Two-sheet hyperboloid

ax? + bxZ — 2cx3 = 0 | Elliptic paraboloid

ax? —bxZ — 2cx3 =0 | Hyperbolic paraboloid

ax? +bx3 =1 Elliptic cylinder

ax? —bxg =1 Hyperbolic cylinder
ax? —bx3 =0 Two intersecting planes
bx3 —2x; =0 Parabolic cylinder

ax? =1 Two parallel planes

x3 =0 Double plane

Table 2.1: Normal forms of quadrics

A, which yields the rotation matrix. In this way, A is replaced by a diagonal matrix
A = diag(A1,A2,A3). Then we translate the coordinate system by replacing x by x + ¢,

where c is defined as
. {—A—; if Ay #£0,
0

otherwise.

This does not change A but the vector a is replaced by @ = Ac+ a. It is easy to verify
that Aa = 0. In the case of central surfaces, i.e. det A %0, we obtain a =0. If ayg #0
we multiply the quadratic form by —1/ay. In this way we can assume that ag is either
zero or minus one. By further rotations around the coordinate axes, if necessary, we
obtain the normal forms shown in table 2.1. During our computations we will always
keep a transformation matrix Ty € R** such that T[,AyTy is in normal form. The
implicit forms of the intersecting planes, the parallel planes and the double plane are
only given for the sake of completeness. We will always use the linear implicit form

n'x —ny=0

in order to define a plane, where n is the normal vector. We usually assume that [n| = 1.
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Parameterization x(u,v) Name of the quadric
a>0,b>0c>0)

T ..
COS1LCOSV, —= cosusin v sinu Ellipsoid
) \/_ ) \/_ p

(cosu+vsinu), \/E (sinu —vcosu), \kv] "] One-sheet hyperboloid
1 } T
veosu, \/—v sinu, —=v

Double cone

sinh ucosv, \/_ sinhusinv, +£-1- 7 cosh u} ! Two-sheet-hyperboloid

B R R B

(
[
[
[
[
[
[
[
[
[

Vcos, \r" sinu, 5-v?] T Elliptic paraboloid
(uw+v) \/B (w—v), 2uv] T Hyperbolic paraboloid
cos U, f sin u V}T Elliptic cylinder
% coshu, f sinhu v} ! Hyperbolic cylinder
Ju?, %bu }T Parabolic cylinder

Table 2.2: Parameterizations of non-planar quadrics

In the following, a quadric Q will often be called a natural quadric if it is a plane (as
a special case), a sphere, a circular cone or a circular cylinder.

We will also need parameterizations of quadrics. Table 2.2 shows parametric forms
for the non-planar quadrics, where the coefficients a,b and c¢ correspond to those in
table 2.1. Except for the two-sheet hyperboloid and the hyperbolic cylinder, these
parameterizations are one-to-one and onto if one restricts the parameter range as follows.

ellipsoid uel[-3,5),ve[-mmn
1-sheet hyperboloid, cone,
elliptic paraboloid, elliptic cylinder

uel[-mmn,veR

2-sheet hyperboloid ueRve[—mmn)

hyperbolic paraboloid,
hyperbolic cylinder, parabolic cylinder

u,veR

If we choose only the plus sign or only the minus sign in the parameterization of the
two-sheet hyperboloid and the hyperbolic cylinder, then with these restrictions, the
parameterization is one-to-one and onto for one connected component of the surface.
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2.3.2 Torus

The implicit form of a torus is a polynomial of degree four. Let r and R be the minor
and major radii of the torus, respectively, and let the unit vector n be the normal of
its main plane. Furthermore, let ¢ be the center of the main circle. Then the torus is
defined by the implicit form

((x—c)2+R2—r2)2—4R2((x—c) xn)zzo. (2.3)

We do not consider tori with self-intersections. Therefore, we always assume v < R.
For any point p on a torus 7 there are four circles passing through p. These are the
cross-sectional circle CSC(7,p), the profile circle PFC(7,p) and the two Villarceau
circles. Cross-sectional circles, profile circles and Villarceau circles are the only conics
that can be embedded on a torus. Let p, = p —n'(p — ¢) - n be the projection of p
onto the main plane of 7. Then the cross-sectional circle through p is defined by the
normal (p — ¢) x n of the plane containing it, its center R(p, — ¢)/+/(Py — €)? and its
radius r. The normal of the plane containing the profile circle through p is n, its center
is ¢ +n'(p —¢) -n and the radius is given by /(p, — ¢)2. Villarceau circles on 7 are
obtained by intersecting 7 with a plane P through ¢ with unit normal vector np, where
Np is chosen in such a way that n"np = v/R2 — 1r2/R. Each such intersection consists of
two Villarceau circles. We do not describe how to find the two Villarceau circles through
a given point p since we will not use these circles in this thesis, although they may occur
as edges of faces on tori.

As in the case of quadrics, we give a parameterization of the torus. Therefore, we
assume that the main plane is the (x,x;)-plane and the center is the origin. It is easy
to verify that the torus can be parameterized by

(R+ rcosu)cosv
x(u,v) = | (R+rcosu)sinv | . (2.4)
rsinu

If we restrict the parameter range by u,v € [—m, ), then this mapping is one-to-one
and onto.

2.3.3 Conics

A conic is an intersection curve between a quadric and a plane. Let a quadric in general
position and orientation be defined by equation (2.1). We rewrite this equation in the

LN R ESEE

where A € R?*2 and all vectors with tildes are two-dimensional. If we intersect this
quadric with the plane defined by x3 = 0, then we obtain the following quadratic form
in the (x1,x2)-plane (we omit the tildes):

x"Ax +2x"a+ ap =0, (2.5)
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Normal form Name of the conic
(a>0,b>0)

4 4% =T Ellipse

z—i — ;—% =1 Hyperbola

ax? —bx3 =0 | Two intersecting lines
ax? —x; =0 Parabola

x3 =0 Double line

axf =1 Two parallel lines

Table 2.3: Normal forms of conics

where x, a € R? and A € R?*? symmetric. As in the case of quadrics, we can rotate
and translate the coordinate system and multiply the quadratic form with a scalar such
that the matrix A is diagonal, Aa =0 and ap = —1. In this way we obtain the normal
forms shown in table 2.3. We mentioned the intersecting, parallel and double lines only
for the sake of completeness. We will always consider lines that can be implicitly defined
by a linear equation of the form n'x —ny = 0, where n is perpendicular to the line in
the (x1,x2)-plane. Obviously, we can parameterize the ellipse, the hyperbola and the
parabola in the (x1, x2)-plane as follows.

ellipse : x(@) = [acos(@ +A), bsin(p +A),0]"
hyperbola : x(A) = [f+acoshA, bsinhA,0]" (2.6)
parabola : x(A) = [A, aA? 0]".

The reason why we introduced the pase shift A in the parameterization of the ellipse
will become clear below, when we show how to find a rational parameterization. The
straight line can be parameterized as x(A) = [A,0,0]". From a parameterization x(A) =
[x1(A),x2(A), 0]T of a curve in the (x1, x2)-plane we can obtain a parameterization x(A) =
¢ + x1(A)u + x2(A)v in 3-space by choosing vectors ¢,u and v with [u| = [v| = 1 and
u'v = 0. In order to represent a conic, we store the vectors ¢,u and v as well as the
functions x; and x;. We also store the implicit form (2.5) of the conic in the plane
defined by (u xv)T(x —¢) =0.

By substituting ¢ = 2arctant we can parameterize the cos and sin functions ratio-
nally. We have
1—1t2 , 2t
17 and sin@ = e

cos @ = (2.7)
Using this and the identities

cos(@ +A) = cos@cosA—sin@sinA and
sin(p +A) = sin @ cosA 4+ cos @ sin A
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and by substituting y = cos A and & = sin A, the parameterization of the ellipse in (2.6)

becomes
T

ol . (2.8)

1—t2) =26t . &(1 —12) + 2yt
av( ) b( )+ 2y

x(t) = T+t 1+ 12

Hence, we can assume that ellipses are always given by rational parameterizations. Now
we can see why we introduced the phase shift A. If an ellipse C is parameterized rationally
by (2.8), then there is always a point p € C for which there is no value for t such that
p = x(t). This point has the coordinates p = lim¢_,1 X(t) = [—ay,—bs,0]" and
corresponds to the angle ¢ = 7t in (2.6). If an edge £ that is embedded on C is not the
whole ellipse, then we can choose A in such a way that p £ £.

By substituting A = 2 arctanh t we can also parameterize the cosh and sinh functions
rationally. We obtain

1+t . 2t
cosh?\:@, and s1nh7\:1_t2

(2.9)

for —1 < t < 1. Hence, we can assume that hyperbolas are also given by rational
parameterizations.

2.3.4 Quadric Intersection Curves (QIC)

Now we want to derive a parameterization for the intersection curve between two
quadrics A and B defined by the quadratic forms xTApyx = 0 and x"Byx = 0. We
will use the notation introduced in (2.2).

Definition 2.9. We call a quadric A defined by the homogeneous matriz Ay an L-
quadric, if one of the eigenvalues of A is zero and the product of the remaining two
eigenvalues is < 0.

Remark: We use the term L-quadric because the following theorem is due to J. Levin
(see |Lev76]). From table 2.1 we see that the L-quadrics are the following quadrics:
double, parallel and intersecting planes, hyperbolic and parabolic cylinder, hyperbolic
paraboloid.

A nice property of L-quadrics is that they are ruled, i.e. they have a parameterization
x(t,A) that is linear in the parameter A. Hence the intersection curve between an
L-quadric and an arbitrary quadric can be parameterized as follows. We insert the
parameterization of the L-quadric into the quadratic form of the other quadric. This
leads to a polynomial f(t,A) that is quadratic in A. We can solve f(t,A) = 0 for A and
insert the resulting expression into the parameterization of the L-quadric. The resulting
function x(t) is a parameterization for the intersection curve.

Theorem 2.10. The intersection curve between two arbitrary quadrics lies on an L-
quadric.
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Figure 2.3: L-quadric that intersects an ellipsoid and a sphere in the same curve

So, if we are interested in the intersection curve between A and B this theorem en-
sures that there is an L-quadric C that contains this curve. If we knew C we could
replace A or B by C and then we could use the above stated approach to determine a
parameterization of the intersection curve. Figure 2.3 shows a sphere intersecting an
ellipsoid, and a hyperbolic cylinder that intersects both of them in the same curve. In
the following, we will prove theorem 2.10 and then describe how to effectively determine
a parameterization of the intersection curve between A and B. Alternatively, we could
use the results presented in [DLLP03]. The approach presented there is in some sense
similar to the one described here, but they make some improvements that reduce the
number of nested radicals in the coefficients of the parameterization to near optimality.
This is particularly important if one wants to use exact arithmetic.

Before we prove theorem 2.10 we need to make some observations and state some
lemmas.

First, we give another characterization of L-quadrics. Therefore, we make the following
observation. The characteristic polynomial of a matrix M € R3*3 is given by

Xag (W) = = + 2 - tr (M) — p - tr (adj M) + det M. (2.10)

Lemma 2.11. A quadric C defined by the homogeneous matriz Cy s an L-quadric iff
det C =0 and tr (adj C) < 0.

Proof. Let wy, uz and ps be the eigenvalues of C. Without loss of generality we assume
that wp, < 0 and pz = 0. By equation (2.10) this means that det C = 0 and

Xe() = —p(p? —p-tr(C) +tr (adj C))
= —p(p — (w4 p2)u+ i)

and thus tr (adj C) = puz. The other direction works analogously. O
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We make one more observation. Let Cy define a quadric and let Ty € R*** be a
regular matrix. Then, by Sylvester’s Law of Inertia,

Ch defines an L-quadric & Cj, = T[,CyTy defines an L-quadric.
In particular this means that if det C = 0, then sign(tr (adj C’)) = sign(tr (adj C)).

Definition 2.12. Let two quadrics A and B be defined by the homogeneous matrices
Ay and By. We call the set of quadrics Qa s defined by the matrices

QarH(A)=Axu+ABy, A€R

the pencil generated by A and B, or briefly the pencil of A and B.

Clearly, all quadrics in the pencil of A and B intersect in the same curve. The following
lemma shows what the determinant of Qa g(A) looks like.

Lemma 2.13. Let A, B € R3>*3 be arbitrary matrices. Then
det(A +AB) =A% -det B4+ A2 -tr (A-adjB)+A-tr(B-adjA) + det A.
Proof.

det(A +AB) = det ((—AB™'—AE) - (—B))
= —det(—AB " —AE)-detB
= —X_,p(A)-detB
= (MP+A-tr(AB") +A-tr (adj (AB™")) + det(AB ")) - det B
= A .detB+ AN -tr(A-adjB)+A-tr (B-adjA) + det A.

This computation requires that B is regular. To overcome this, we assume that

A= (Ay) B = (By;);

Li=D Lj=1

€ R(A11,...,A33,B11,...,B33)*

are symbolic matrices. Over this field, B is a regular matrix. At the end of the compu-
tation we replace the variables by real values. As this is a homomorphism into R, and as
both sides of the final equation can be computed using only addition and multiplication,
this equation still holds after replacing the variables. O

Proof of theorem 2.10. If A or B already is an L-quadric, then there is nothing to show.
So, we assume that neither A nor B is an L-quadric. We show that QA g contains an
L-quadric. First we consider the case that det(Qa g(A)) is constantly zero. Let Ty be a
rotation matrix such that T{BT; = diag(w, p2,0), and set

T, = diag (

1 1
—>—>1 .
Viml Vlu2| )
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We define T = T T, and set B = 0-TTBT and A = o-TTAT with o = sign(yt;). Then,
B = diag(1,1,0) and f(A) := tr (adj (Qa s(A))) has the same sign as tr (adj (Qa B(A))).
Writing f(A) in components of A and B we get

f(A) = (As3(An +A) — A%) + (Ass(An +A) — AL) + ((An +A)(An +A) — Ad),

where the addends in parentheses are the diagonal elements of adj (Qz g(A)). From this
we compute the discriminant of f(A) as

%(An —Apn)?+ AL+ AL+ AL+ AL >0,
so that we can find a root A of f. By lemma 2.11 we know that Qa s n(Ao) is an
L-quadric.

Now let us assume that det(Qa g(A)) is not constantly zero. Then we can find a value
A = 0 such that det(QA,B(f\)) # 0. Let By = Ay + ABy. If we now can find a value for
A such that Ay +ABy defines an L-quadric, then A # —1 because this would imply that

By already defines an L-quadric. But in this case Ay + ABy defines the same quadric

AA
QA,B,H (m)

and we are done. Since det(B) # 0, the polynomial det(Q, 5(Ao)) has degree three and

as

thus has a real root Ag. Let 1, pp and O be the eigenvalues of Q4 5(Ao). If pipz <0,
then we are done. Otherwise let Py = QA,B,H(AO) and let Ty be a regular matrix such
that

P, = TP T, = diag(u1, uz,0).

We set Ty = diag(Ty,1) and P,y = T]T‘HPLHT],H. By setting o = sign(p) and

1 1
P3y =0T}, PyuTon, where Typ = diag <— —, 1,1) ,

Viml" Vil

we achieve P3 = diag(1,1,0). Let Qy = T{HT{HBTLHT;H. If Qi3 = 0 we set
T3 = E. Otherwise we define the transformation

. 1 Q2 Qi3
Ty = diag —{ 1,1,
VQ%4 4+ Q35 L —Qiz Qus
We set Py = T;HP3,HT3‘H and Ry = T;HQHT&H. We see that P4 = P3 and verify
that

Ri1 Rz O
R= | Rz Rp Rz
0 Ry Rs3

We now distinguish the cases R33 = 0 and R33 # 0.
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1. R33 =0: We set P51y = Ry — Ry1P4 1. Then we have

Ps =

o o o
o o a
o 0o o

and claim that Psy defines an L-quadric. But as det(Ps) = 0, this follows imme-
diately from lemma 2.11 if one observes that tr (adj P5) = —c? — a? < 0. If we set
TH = T1‘HT2)HT3’H, we obtain

Psy = —0RiuTHQy 544(A1)TH, where
1
M = A— —.
oRy;
We know that Ry; # 0 because otherwise the matrix Ry would already define an

L-quadric, and thus By would define an L-quadric, as well.

. R33 # 0: In this case we set Sy = RLSSRH. We determine a value « € R such that

det(S — aP4) = 0. This value is the solution of a quadratic equation:

B = Sy»—S3,
v = /(50— )2 +45h,
1
x = E(Sn—kﬁiy). (2.11)

Since the discriminant (Sy7 — 3)% +4S3, > 0, such an « can always be found. We
know that o # 0 because otherwise the determinant of B would be zero, which is
a contradiction to our choice of B. Now we define P51 = Sy — aP4 . If we can
show that this matrix defines an L-quadric, we have

P5,H = —OCO'TI{QA)B,H(A])TH, where
1

A= Ao—
1 0 O(O—R33’

and we are done. In order to show that Psj defines an L-quadric, we use
lemma 2.11.

tr(adj (Ps)) = Si14+ S —S% —S33 — 20+ (S11— o) (S22 — &)
= Si1+S2 — S35+ S33S11 — 200 — S3;cx.
The last equality holds because det(Ps) = (Sy13—ot)(S22—a)—S35(S11—a)—S3, = 0.
Using equation (2.11) we obtain

. 1 1
tr (adj (Ps)) = 5553(353 +S11—=S»)F (1 + 2553)1/-
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By further transformations we show

1 e ’
((1 + 2553)}/) — (ES%3(S%3 + S — Szz)) = Y2(1 +533) + 57,833 > 0.

This ensures that tr (adj (Ps)) < 0 holds, provided that we choose the plus-sign in
equation (2.11).

O

In fact we have proven the following stronger version of theorem 2.10. If f(A) =
det(Qa B(A)) is not constantly zero, then there is a real root Ag of f such that Qa g 1(Ao)
defines an L-quadric. If f is constantly zero, then for each real root Ay of g(A) =
tr (adj (Qa,B(A))) the matrix Qa Bn(Ao) defines an L-quadric. This gives us a method
to effectively compute an L-quadric containing the intersection curve between A and
B. First compute the at most cubic polynomial f. If at least one of its coefficients
is non-zero, then there is at least one real root. For all these roots Ag check whether
tr (adj (Qa,B(Ao))) < 0. If so, then we have found an L-quadric. If all coeflicients of f
are zero, then compute the quadratic polynomial g. There is a real root Ay of g, and
this root leads us to an L-quadric.

In the following, we will describe in detail how to determine a parameterization of the
intersection curve between an arbitrary quadric A and an L-quadric B. First, we check
whether B = 0. In this case B has the equation b'x + by = 0. If b = 0, then there are
two possibilities. If by = 0, then the intersection between A and B is the whole quadric
A. If by # 0, then A and B do not intersect at all. If b £ 0, then B is a plane and the
intersection curve is a conic. In this case we set n = b/|b| and choose vectors u and v
with [u| = [v| =1 and u'™v = 0. By setting T 1 = diag([u,v,n],1) we obtain

00 0 O
00 0 O

Ch=T{BuTin= 00 0 ¢ |
0 0 c3 ¢

which defines a plane parallel to the (x,y)-plane. With the translation matrix

0
E v
Ton = v = 0 ,
2,H |: OT 1 :| ) e
2(:3

T] 1 ,ChT2 i is equal to the (x,y)-plane and can be parameterized by x(A, u) = [A, u, 0]".
We define the transformation Ty = Ty T2 n and transform the quadric A by setting
Qu = TEAHTH. If we have a parameterization x() of the intersection curve between
the quadric defined by Qu and the (x,y)-plane, then c(un) = Ty (x(n) +v) is a parame-
terization of the intersection curve between A and B. We obtain x(u) as follows. First,
we insert the parameterization of the (x,y)-plane into the quadratic form defining the
other quadric and obtain

Qu Q2 A ds _
(8 822 nng e
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We have already seen in the paragraph about conics how to parameterize a conic given
in this form.

Now we consider the situation when B # 0. In that case we determine a transfor-
mation matrix Ty such that T{;ByTy is of a form that allows us to find a simple
parameterization x(t,A) in homogeneous coordinates of the L-quadric defined by that
matrix. This parameterization will have the form

x(t,A) = p(t) + Ar(t),
where p and r are polynomial vectors satisfying the condition
deg(p) + deg(r) < 2. (2.12)

Then we transform the quadric A with the transformation Ty by defining Qy =
T AyTy. Now we determine a parameterization c¢(t) in homogeneous coordinates
of the intersection curve between the transformed quadrics. The intersection curve of
the original quadrics A and B can then be parameterized by Tyc(t). In order to find
the parameterization c(t), we insert x(t,A) into the quadratic form Q and obtain a
polynomial

f(t,A) = a(t)A>+ B()A+vy(t) = 0, where
«(t) = r(t)"Qur(t),
B(t) = 2p(t)'Qur(t) and
y(t) p(t)"Qup(t).

If the polynomials « and 3 are not both constantly zero, then we can solve this for A
and obtain a function A(t). Then we have c(t) = x(t,A(t)). If « is not constantly zero,
then this function has the form

_ —B(t) £ v/DI(t)
Alt) = PR (2.13)

where D(t) = B(t)?2 — 4 (t)y(t) is the discriminant of f with respect to A. Because of
condition (2.12), we have deg(D) < 4. In the case « = 0 and 3 # 0, we have

A) = Y (2.14)

B(t)
If « = =0, then f does not depend on A. In this case there are three possibilities.
1. f =0: Then the quadric A and B are identical.
2. f(t) # 0 for all t: Then A and B do not intersect.

3. Otherwise, for each of root t; of f(t) = 0 we have a straight line c(A) = x(t;, A).
The intersection curve is the union of these lines.
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Now we describe how to determine the transformation matrix Ty and what the pa-
rameterizations x(t, A) of the quadric defined by T},By Ty look like. During our further
computations we will always keep the matrix Ty as well as its inverse up to date.

First, we perform a principle axis transformation of B. We determine a matrix U
such that U'TBU = diag(u, 1u2,0) and |[wq] > |ual. If uy < O then we multiply By
by —1. This does not change the L-quadric and we can assume in the following that
> 0. We set Uy = diag(U, 1) and Py = U! BLUy. We distinguish the two cases
ny >0,u2 =0 and py >0,y < 0.

Casel: pu; >0,u,=0
Then P;y defines the empty set, a double plane, two parallel planes or a parabolic
cylinder. Py has the form

w 0 0 py
0 0 0 p2
0 0 0 p3
P1 P2 P3 Po

We distinguish two cases.

1. p2 = p3 = 0: In this case P 1y defines the empty set, a double plane or two parallel
planes. We define a translation by

E v P1 T
Tin= , v=|——7,0,0
b {OT 1} { m

which yields P,y = T1T,HP1,HT1,H = diag(u, 0,0, o). We make one more trans-

formation by setting Ty = diag(—=,1,1,s) and P3y = T} 1 P2uTon with

Vi
1 if 0
s — /_Iqol 1T qo 7é )
1 otherwise.

Then we have P3y = diag(1,0,0,t) with t € {£1,0}. The transformation matrix
is given by Ty = UyT1wTon. If t =1, then P53y defines the empty set and the
two quadrics do not intersect. In the case t = 0 we have a double plane that can
be parameterized with x(A, nu) = [0,A, u, 1]7. If t = —1, then we have two parallel
planes x(A, p) = [&1,A, u, 1]T.

2. p2 #0 or p3 #0: W.Lo.g. we assume that p, # 0 and define the transformation

matrix
1 0 O Vi
TLH[% ‘]’] T,=|0 R Ry |, v=|v, | with
0 —R, R 0
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R R P2

VP35 + 13 V3 + 13

P _ Pf— ok

vy =——, v, = LT
0 2pop

With this definition the matrix Py = T1T,HP1,HT1,H has the form

. 01
P,y = diag (1,0, [] 0 })

We finally scale with the matrix

1 1
T = diag (1,1, —, — and obtain
o g( V2 ﬁ)

1
T3)H = TZHPZ,HTZ,H = dlag (],1, |: 0 (2) :|) .

1
2
This defines a parabolic cylinder with the parameterization x(t,A) = [t, A, —t2, 1]T.
Ty =UuTiuTonT3H.

Case2: >0, <0
In this case

w0 0 py

1 0 m 0 p2
Pin=1"09 0 o P3
P1 P2 P3 Po

defines a hyperbolic paraboloid, a hyperbolic cylinder or two intersecting planes. We
distinguish two cases.

1. p3 # 0: First we define a translation

E v .
T],H - |: OT 1 :| y V= [v1)v2)v3]T with
_ P P2 _ P1vi +P2v2 + Po
Vvi=——, V2=—"", V3=— .
i 2 2p3

We set Py = _p]_sTlT,HPLHTLH and obtain

. 0 0 -1
romie([7 1[4 )

with vi < 0 and v, > 0. Scaling with the matrix

Ton = leads to

diag LI 1,1
\/|V1|)\/|Vz|) ,

_ -1 0 0 1
Psy = T;,HPZ,HTLH:dlag({ 0 1}’{—] 0 ])
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We finally define the rotation

I R
Tsy = diag([ f ]\/Z ] ,1,1) and obtain

V2 V2

. 0 1 0 -1
Py = Ti,P3uTsn = diag <[ 10 } ) [ 1 0 }) -

This defines a hyperbolic paraboloid with the parameterization x(t,A) =
[t,A, tA, 1]T. The transformation matrix is given by Ty = UyTy yTo T3 1.

2. p3 = 0: We define the translation

T])H = |:(];-]|- Y:| with v = |:—p—1,—2,0:|

and obtain P,y = T]T)HPLHT],H = diag(wy, u2,0,do). We distinguish two sub-
cases.

a) do # 0: If dp < 0, then we set T,y = E. Otherwise define

TZ)H:diag({? (1)},1,1).

We set P33H = _dloT;,HPZyHTZ,H = diag(m, p2,0,—1) with p; > 0 and p> <
0. Finally, we scale with the matrix

Tz = diag (\/]ﬁ, \/%pz’ 1, 1) and obtain

Py = T3 P3nTspn =diag(1,-1,0,—1),

which defines a hyperbolic cylinder with the parameterization
x(t,A) = [£(1T +t2),2t, A, 1 — 4",

The transformation matrix is Ty = UyT1 yTo T3 -

b) do = 0: Then scaling and rotating with

1
V2

1 1
T = diag ( —,—=,1,1 - dia
= g (e A1) g([—%

. 01
P3’H = T;HPZ,HTZ,H = dlag <|: 10 :| ,0,0) .

] ,1,1) leads to

This defines two intersecting planes with the parameterizations

Sl

x1(t,A) = [t,0,A,1]T and
x(t,A) = [0,t,A1]T,

and the transformation matrix is Ty = UyTy 4T 1.
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2.4 Mathematical Preliminaries

In this section we will give some mathematical background that will be used in the
following chapters. We start by giving a brief introduction to interval arithmetic. This
will be used later in this section when we describe methods for finding roots of poly-
nomials, as well as in 3.1.1 where it will be applied in the dynamic collision detection
for bounding volumes. Next, we will introduce the notion of resultants, which we will
use for the elimination of variables in systems of polynomial equations. Then, we will
derive necessary conditions for the existence of tangential intersection points between
two quadrics or two conics. After that, we will describe two concepts for representing
rotations, namely the rotation matrices and the quaternions. We close this section by
presenting some methods for finding the roots of polynomials.

2.4.1 Interval Arithmetic

In this section we give a very brief introduction to interval arithmetic. A good introduc-
tion to this field can be found in [Sny92]|.

The general idea is to calculate with intervals of real numbers instead of the real
numbers themselves. To make this more precise, let IR = {[a,b] C R|a < b} denote
the set of non-empty intervals. Then, for any function f : R — R an inclusion function
IR >R is associated, such that for an interval I € IR it holds that

x € I = f(x) € f(I).

This definition is generalized componentwise to functions f : R™ — R¥. Usually, it is
clear from the context whether the argument is a real number or an interval. Thus, we
use the same symbol for both the real function and the inclusion function. Ideally, the
inclusion function bounds exactly the function range for every interval. But often, these
are too difficult to compute. We now present inclusion functions for the field operations,
the absolute value function, the square root, the sine and cosine functions and the power
functions with natural exponents. Let a,b,c,d € R with a < b and ¢ < d. Then we
define

[a,b]l +[c,d] = [a+c,b+dl,
[a,b]—[c,d] = [a—d,b—c],
[a,b]-[c,d] = [min{ac,ad,bc,bd}, max{ac, ad,bc,bd},
1/la,b] = [1/b 1/a] fora>0orb <0,
[a,b]/[c, d] [a,b]-(1/[c,d]) forc>0ord<0,

lab] = [O,max{|a|, b} if 0 € [a, b]
' | [min{|al, |b|}, max{|al, [b]}]  otherwise.

[a,b] = [Va,Vb] fora>0.
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For the sine function on the interval [a, b] with a < b we first define the values @ = 2a/7
and b =2b /7. Then we can define

sinla,b] = [c,d] with

. — -1 if In € Z such that 4n + 3 € [a, b],
min{sin a,sin b} otherwise,

il if In € Z such that 4n + 1 € [a, ],
| max{sina,sinb} otherwise.

The cosine can be defined as
T T
cosla, b :sin(a,b [—,—D.
[a, b] la, b] + 73
For the power functions x™ with natural exponent we observe that for odd values of n
they are increasing for all x and for even values of n they are decreasing for x < 0 and
increasing for x > 0. Hence, we define

[a™, b"] if 0 < aorn odd,
[a, b]™ = < [0, max{|a],|b]}"] if O € [a,b] and n even,
[b™, a™] if b < 0 and n even.

The following simple example shows that it makes sense to define the inclusion functions
for the power functions in this way rather than expressing them as successive multipli-
cations. We want to compute the square of the interval [—1,2]. If we use the inclusion
function for the multiplication, we obtain [—1,2] - [-1,2] = [-2,4]. Using the above
definition for the power function, we get [—1,2]> = [0,4], which is obviously a much
tighter range.

2.4.2 Resultants

Resultants are a strong tool to eliminate variables from a system of polynomial equations.
They will be extensively used in the following chapters. We will first define them for the
case of a single variable and then extend the notion to multivariate polynomials. More
details about this subject can be found in [CLO97].

In the univariate case, the resultant between two polynomials f, g € C[x] is an integer
polynomial in the coefficients of f and g. Since these coefficients are complex numbers,
the resultant is a complex number, as well. It will be zero if and only if f and g have a
common root. Hence, resultants can be used to decide whether two polynomials have a
common factor without computing their greatest common divisor. The basic observation
is the following lemma.

Lemma 2.14. Let k be a field and let f,g € Kk[x] be polynomials of positive degrees 1
and m, respectively. Then f and g have a common factor of positive degree in K[x] if
and only if there are polynomials A, B € k[x] such that
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1. A and B are not both zero.
2. deg(A) <m—1, deg(B) <1—1.
3. Af+Bg=0.

Proof. Let us first assume that f and g have a common factor h of positive degree.
Thus, we can write f = hf; and g = hgy, where deg(f;) < 1—1 and deg(g;) < m—1.
Obviously, gif = f1g and hence, the polynomials A = g; and B = —f; have the desired
properties.

Conversely, let us assume that polynomials A and B with above three properties exist.
By the first property, we may assume without loss of generality that B # 0. Suppose
that the claim does not hold, i.e. ged(f,g) = 1. Then there are polynomials A and B
such that Af + Bg = 1. If we multiply this by B and use the fact that Bg = —Af we
obtain (AB — AB)f = B. Since B is non-zero, the degree of B must be at least 1, which
is a contradiction to the second property. O

In the sequel, we choose k = C. Then two polynomials f,g € C[x] have a common
factor if and only if they have a common root. Hence, lemma 2.14 gives a necessary
condition for two univariate polynomials to have a common complex root. We use linear
algebra to decide the existence of the polynomials A and B. Therefore we write

1 m
f(x) =) ax, g(x) =) b, (2.15)
i=0 =0
m—1 1-1
A(x) = Z cixt, B(x) = Z dixt.
i=0 i=0
Moreover, we write
H+m—1
A(x)f(x) +B(x)g(x) = Z eix’
i=0
We define the vectors e = [ej4m_1,...,€0l" and ¢ = [cyp_1,...,C0,d1 1,...,dol". These

two vectors are linearly related by e = Sc, where the (1+ m) x (1 + m)-matrix S has
the form

- A b }
a1 ay bm71 bm
ap» a1 - bmo2 bm
: ap - bm
S = a1 b
ao bo
(a1) bo
L ao bo
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The empty spaces are filled by zeros. By lemma 2.14, the polynomials f and g have a
common factor if and only if there is a non-zero vector ¢ such that Sc = 0. This is
equivalent to det S = 0. We make the following definition.

Definition 2.15. Let the non-constant polynomials f,g € Cx] be written in the
form (2.15) and let the matriz S be defined as above. We call the matriz Syl (f,g) = ST
the Sylvester matrix of f and g with respect to x. The resultant of f and g with respect
to x is the determinant of the Sylvester matriz. Thus,

resy (f, g) = det(Syl, (f, g)).

The above argumentation and the definition of the determinant of a matrix prove the
following lemma.

Lemma 2.16. Let f, g € Clx] have positive degrees. The resultant res,(f, g) is an integer
polynomial in the coefficients of f and g. Moreover, f and g have a common complex
root if and only if resy(f, g) = 0.

With the resultants we have a tool to decide whether two polynomials have a common
root without computing their GCD. We want to extend this notion to polynomials of
multiple variables.

Let now f, g € Clxq,...,x,] be multivariate polynomials with positive degrees in x;.
We write f and g in the form (2.15) with x; instead of x, where now the coefficients
a; and bj are polynomials in C[xa,...,x,]. We define the Sylvester matrix and the
resultant of f and g with respect to x; in the same way as in the univariate case. By
lemma 2.16, the resultant is now a polynomial in C[x;,,...,x,]. The following lemma
shows that in the resultant of two polynomials f and g with respect to x; the variable
x1 is eliminated in the sense that the projections of the common roots of f and g into
the (xz,...,X%,)-subspace are also roots of the resultant.

Lemma 2.17. Let f, g € C[xq,...,xn]) be polynomials with positive degrees in x; and let
(c1y...,cn) € CM Iff(ct,...,cn) = glC1,...,Ccn) =0, then resy, (f,g)(ca,...,cn) =0.

Proof. To make the proof easier we introduce some notation. We write ¢ = (cz,...,cn)
and f and g as in (2.15). Moreover we define f(x1) = f(x;, ¢) and §(x1) = g(x1,¢). We
first notice that resy, (f, g)(c) = det (Sylx1 (f, g)(c)), i.e. it does not matter whether we
first take the determinant of Syl (f, g) and then evaluate this at c or first evaluate the
matrix and then compute the determinant. If a;(c) = b,,(c) = 0, then the first row of
Syl,, (f,g)(c) is zero. Hence, the resultant is zero, as well. In the case that a;(c) and
bm(c) are both non-zero, it is obviously true that Syl (f, g)(c) = Syl,, (f,g). Since
f(c1) = g(cq) = 0, the claim follows by lemma 2.16.

So, let us assume that a;(c) =0 and b (c) # 0. If a;_1(c) # 0, then expanding the

determinant of Syl (f, g)(¢) by cofactors of the first column yields

resy, (f, g)(c) = £bm(c) - det (Syl,, (f, §)) = £bm(c) - resy, (, §),
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and the claim follows again by lemma (2.16). If a;_; is also zero and a;_, # 0, then the
same argument yields

resy, (f,g)(c) = b (c)? - resy, (f, §) = 0.

In this way, we obtain res,, (f, g)(c) = b (c)* - res,, (f,g) for some k if there is an
1> 1 such that a;(c) # 0. Otherwise, from f(cy) = 0 it follows that ao(c) must be zero,
as well. Thus, the first row of Syl (f, g)(c) is zero, which completes the proof. O

The next lemma shows that each root of the resultant of f and g either causes both
coefficients a; and b,, to vanish or can be extended to a common root of f and g.

Lemma 2.18. Let f,g € Clxq,...,xn] be polynomials with positive degrees in x1 given
in the form (2.15), and let (cz,...cn) € CV 1. Ifres, (f, g)(cz,...cn) =0, then either

1. ai(ca,...,cn) =bm(ca,...ch) =0 or
2. there is a ¢ € C such that f(cq,...cn) =g(cy,...cn) =0.

Proof. We use the notation introduced in lemma 2.17. Let b, (c) # 0. We must show
that there is a ¢y € C such that f(cy) = g(cy) = 0. As in the proof of lemma 2.17, one
shows that if there is an i1 > 1 with ai(c) # 0 then there is some k such that

res, (f, g)(¢) = £bym(c)* - det (Syl,, (f, §))

and the claim follows by lemma 2.16. In the case that a;(¢) = ... = ai(c) = 0 we find by
successive expansion by cofactors of the first row that resy, (f, g)(c) = £ap(c)™ - bm(c)t.
Since b, (c) # 0 by assumption, we conclude that ag(c) = 0 and thus, f = 0. But since

g is not constant, the claim follows. O

The following lemma gives an upper bound on the degree of the resultant of two
polynomials.

Lemma 2.19. Let f, g € Clxq,...%xn] be polynomials. Let 1 > 0 be the degree of f in x4
and let m > 0 be the degree of g in xq. Let d denote the total degree of f and e the total
degree of g. Then, the total degree of resy, (f, g) is at most el + dm — lm.

Proof. Asusual, we write f and g in the form (2.15). First, we notice that the total degree
of a; is at most d —1 and the total degree of b; is at most e —1i. Let (s;;) = Syl (f,g)
be the Sylvester matrix. We observe that

A1+i—j ifi <m
Sij =

bifj ifi>m



2.4 Mathematical Preliminaries

41

and thus, for the total degree it holds

d—14+j—1 ifi<m
e+j—1 if i >m.

deg(si;) < {

The resultant is the determinant of the matrix (s;;) and can therefore be written as the
sum of products of the form

Hm

PO':j:HCO'(i) =4 H Co(i) H Co(i)
i=1

where o is a permutation of the set {1,...,14+ m}. In order to bound the degree we can
assume that o is chosen in such a way that none of the cg() ; is zero. Then, for the total
degree of P it holds

deg(Ps) = Z deg(co)i) + Z deg(con)

>TTL
< Z d—l+i-o(i)+ ) e+i—o(i)
o(i)<m o(i)>m
+m +m

= md-U+le+) i—) ofi)
i=1 i=1

= el+dm—1lm.

O

In the important special case that the total degrees of f and g are equal to the
individual degrees in x;, this bound simplifies to lm.

Often, one obtains a better bound on the degree of the resultant by considering the
degree matrix of the Sylvester matrix, which we define as follows.

Definition 2.20. Let (si;) = Syl,, (f,g) be the Sylvester matriz of two polynomials
and g with respect to x1. We call the matriz (deg(si;)) the degree matriz of (si;). We
define the degree of the zero-polynomial as —oo

Let D = (d;;) be the degree matrix of the Sylvester matrix of f and g. Let Dj; denote
the submatrix of D that is obtained by deleting the ith row and the jth column. Then
we define the value dp recursively as follows. For a (1 x T)-matrix (d) we set dq) = d.
Otherwise, we choose any index i =1,...,14+ m and define

6D = max{di,j + 5Dﬁ ’ 1 < ] <l+4+ m}

This definition is similar to the expansion of the determinant by cofactors of the ith
row. The difference is that multiplication is replaced by summation and summation is
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replaced by taking the maximum. Hence, two things are obvious. Firstly, from this
definition it is clear that deg(resy, (f,g)) < 0p. Secondly, dp is well defined, i.e. it does
neither depend on the choice of the index i nor on the fact that we iterate along a row
of D instead of a column.

It is often the case that the resultant of two polynomials is a product of two poly-
nomials of smaller degrees. With the following lemma we identify such a situation in
which the resultant can be factorized. However, it does not provide a method to find
the non-trivial one of the two factors.

Lemma 2.21. Let f1,f, € Clx1,...,%Xn,yl be polynomials that can be written in the
form
1
fi(x,y) = (x1 — J+] [ — ) - silx,v) (2.16)
j=1

fori=12withk,1e N & G € C,ri,s0 € Clxy,...,xn,yl and x = (x1,...,%n). Then
there exists a polynomial h € R[xq,...,xn] such that

resy (1, f2)(x) = (x1 — &) - h(x).

Proof. First, we assume that the (; are pairwise different and prove the claim by in-
duction on k. Let k = 1. We shear the coordinate system in such a way that the
xj-coordinates of the roots (&, (;) of f; and f, become pairwise different. Formally this
means that we define the polynomials f;.(x,y) = fi(x1 — ey, x2,...,xn,y) for € € R.
If we set & = & + €(j, then because the (; are pairwise different, for ¢ ## 0 we have
&ie # & for 1 # j and moreover fi (&, %2,...,%n,G) =0 forall j =1,...,1. Thus,
it also holds that resy(f1 ¢, f2.)(&;e,X2,...,xn) =0 for all j. So, for € # O there exists a
polynomial h, such that res,(fi ¢, f2.)(x) = (x1 —&1¢) -+ (x1 — &e) - he(x). Thus, we
have

resy (f1 y fZ) (X) = hmo resy (fl €y fZ,e) (X)

= (x1— &' h(x)

with h = hy. Now assume that the claim is true for k € N. In order to prove the claim
for k + 1 we define

1
filx,y) = (x— &) (x— &) -rilx,v) + [ [ — &) - si(x,v)
j=1

for i =1,2. Then, there are polynomials hy and h; such that

TeSy(ﬂ,?z)(X) = (%1 — &)* - hy(x) by induction hypothesis
= (x1—&)' hy(x) by the case k = 1.
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If & # &, then ged ((x1 — &)Y, (x1 — &)%) =1, and thus there is a polynomial h such that
hi(x) = (x1 — &) - h(x). Therefore, we have

resy (f] , fz) (X) = ~11II1 resy (f] , fz) (X)
E—¢&

= (a—&" M hx),

Now, we consider the case that the (; are not pairwise different. Let vj, @; € R be
chosen in such a way that {; = 1je'®. We use the capital letter [ = v/—1 to avoid
confusion with the index i. W.l.o.g. we assume that r; < ... < 1. For ¢ > 0 we define
(e = Tj.e€' with 15, = 1; + je. In this way we get

Tie < Tjp1 +ie < T + 0+ 1)e =T1j41,

and hence the ;. are pairwise different. We define the polynomials f; . by replacing the
(5 in equation (2.16) by ;.. Then, by the above argumentation there exists a polynomial
h, for each ¢ > 0 such that res,(f1.,f2¢)(x) = (x; — &) - h(x). Finally, we have

resy (fl y fZ) (X) - hmO resy (f1,£> fZ,s) (X)

= (xa—&" h(x)

with h = hy. O

2.4.3 Tangential Intersections Between Quadrics or Conics

The following two theorems provide a necessary condition for two quadrics to have a
tangential intersection point. At the end of the section we formulate a similar theorem
that provides a necessary condition for two conics to intersect tangentially.

We first define the notion of the characteristic polynomial of two quadrics.

Definition 2.22. Let two quadrics A and B be given by the (4 x 4)—matrices Ay and
By, respectively. We define the characteristic polynomial of A and B as the determinant
of the pencil of A and B, i.e. X, 5(A) = det Qa B H(A).

The first theorem is proven in [WWKO1]|. It gives necessary and sufficient conditions
for two ellipsoids to be separate or touching.

Theorem 2.23. Let two ellipsoids be given by the matrices Ay and By, such that for
their centers ay and by it holds that aLAHaH < 0 and bLBHbH < 0. The ellipsoids
do not intersect (and neither one contains the other) if and only if their characteristic
polynomial has two positive roots. Moreover,

1. they are separate if and only if the two positive roots are distinct, and
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2. they externally touch each other if and only if the two positive roots are a double
T00%.

In [FNO89| it is stated that any two quadrics have a degenerate intersection in
projective space over the complex numbers if and only if their characteristic polynomial
has a double (real or complex) root. We want to prove a necessary condition for two
quadrics to have a real tangential intersection. As we do not consider faces containing
singular points, we can exclude the case of such points being involved in the intersection.

Theorem 2.24. Let two quadrics be given by the matrices Ay and By such that X, 5 #
0. If there is a real point Py and Ao € R such that p};Anpy = P Bupy = 0 and
Anpy = —AoBupy # 0, then Ao is a multiple root of X, -

The exclusion of the singular points is achieved by demanding that the gradients in
Py are non-zero. In order to prove this theorem we recall a well known result from linear
algebra, namely the Jordan normal form for real square matrices.

Definition 2.25. Let A and B be two square matrices of the same dimension. We say
that A is similar to B over the real numbers if there is a reqular real matriz S such that

B =S 'AS. We say that A is congruent to B over the real numbers if there is a reqular
real matriz S such that B = STAS.

Definition 2.26. A matriz M € R*** for k > 1 is called a Jordan block of type A if it
has the form

JAK) = - fork > 2 and

JAT) = [A]

for A € R. It is called a Jordan block of type B if it has the form

J(a,b,2) E; 0
J(a,b,k) = - fork >4 and
. E,
i 0 J(a,b,2) |
a —b
b,2) =
J(a,b,2) {b o }

for a,b € R where E;, is the (2 x 2)—identity matriz.
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A proof for the following well known theorem from linear algebra can e.g. be found
in [Kow79|.

Theorem 2.27 (Jordan normal form). Every real square matriz A is similar over
the real numbers to a matriz J = diag(Jy,...,Js), where each J; is either of the form

1. J(A,K) for a real eigenvalue N of A or
2. J(a,b,k) for a pair of conjugate complex eigenvalues a £1ib of A.

J s called the real Jordan normal form of A. It is uniquely determined by A except for
the order of the Jordan blocks.

Now, we state a theorem proven in [Uhl76] which finally enables us to prove theo-
rem 2.24.

Theorem 2.28. Let A and B be two real symmetric matrices with det B # 0. Let
B~'A have the real Jordan normal form diag(Jy,..., 3y, Jri1,Js), where Jq,...J, are
Jordan blocks of type A and J,y1,...,Js are Jordan blocks of type B. Then A and B are
simultaneously congruent over the real numbers to

diag(£1D1J1, N STDTJT, Dr-HJr—i—h Ce ,DSJS),

and
diag(S]Dly SR} STDT) DT‘—H) KR DS)

respectively, where ¢, = £1 and Dy denotes the matrix

0 1

of the same size as J; fori=1...s.

Proof of theorem 2.24. It is clear that Aq is a root of X, ; because there is a point py
in homogeneous coordinates (in particular, at least one coordinate is non-zero) with
(An + AoBu)py = 0. We distinguish three cases.

1. By is regular,
2. Ay is regular and By is singular and

3. both Ay and By are singular.
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First, we suppose we have already proven the claim for the first case and use this to
prove it for the second and third case.

Let Ay be regular and By singular. Because of Ag # 0 we can define uy = 1/Ag and
have Bypy = —moAnppy. Thus, by the first case we know that g is a multiple root of
Xs.a (1) = det(Bg + pAy). For all u # 0 we have the identity X, , (1) = u'x, 5 (1/1).
As po is a multiple root of this polynomial it is a root of its derivative which is given
by 417X, 5 (1/1) — w2, 5 (1/1). From po # 0 and X, 5 (1/ko) = Xa 5 (Ao) = O it follows
that X;,B()\O) = 0. This proves the claim for the second case.

Now, let both Ay and By be singular. Since X, ; # O there is an « € R such
that x, 5 (o) = det(Ay + aBy) # 0. Clearly, & # Ao. Let Ajy = Ay + aBy. We have
Xar 5 7# 0and pjiA{;py = 0. Moreover, A{;py = Appy+oBupy = (x—Ao)Bupy # 0.
Hence, by case two we know that Ay — « is a multiple root of x,, .. By the identity
XA/,B(p') = X (0t + 1) it follows that Ao is a multiple root of XA‘B.V

It remains to prove the claim for the first case. Let therefore By be regular. By
theorem 2.28, Ay and By are simultaneously congruent over the real numbers to block
matrices Cy and Dy, respectively. Let S be the transformation matrix such that Cy =
STAnS and Dy = S™ByS. Then, X, = (detS)*x, , # 0. We define q, = S~ 'py,.
We have ¢},Cndy = q/,Dndy = 0 and Cxqy = —AoDnqy # 0. If we show that Ay is
a multiple root of X, , we are done. We do this by contradiction. So, let Ag be a single
root of X ,- Then, there are two cases.

1. There are three more single real roots Ay, A; and Az. In this case we have Cy =
diag(—eoAo, . . ., —€3A3) and Dy = diag(eo, ..., €3). Then, from (Cy+AoDn)qy =
0 it follows that the last three coordinates of qy are zero. But this together with
d},Dngy = 0 implies that also the first coordinate of ¢y is zero, which is a
contradiction.

2. There is one more single real root A; and a pair of conjugate complex roots a +1ib.
In that case we have

Cy = diag (—eo)\o,—eﬂ\],{_z _aD and

Dy = diag(eo,eh[? ;})

. —-b Ao —
(Ch + AoDn)dy = diag| 0, e1(Ao — A1), o4 dy =0
7\0 —a b

~~

=M

The condition

implies that the last three coordinates of gy are zero. This is because Ay # Aq
and det M = —b? — (A¢ — a)? < 0. As in the first case, this implies together
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with q{;Dndy = O that the first coordinate of ¢y is zero, as well. This is again a
contradiction. O

Since the normals in the points of a quadric define an interior and an exterior region,
we say that two quadrics touch externally if their normals in the touching point are
directed towards each other.

Corollary 2.29. Let Ay and By define two quadrics such that X, 5, # 0. If these
quadrics touch externally in a real point which is not a singular point of either of them,
then their characteristic polynomial has a positive multiple root.

Proof. Theorem 2.24 says that Ay is a multiple root of the characteristic polynomial,
where —A is the factor with which the normal of the second quadric has to be multiplied
to obtain the normal of the first quadric. If these normals are opposite directed, then
Ao must be positive. O

We state another theorem which gives a necessary condition for two conics in the same
plane to have a tangential intersection. This theorem is similar to theorem 2.24, which
also holds for its proof, which we omit for this reason.

Theorem 2.30. Let two conics be given by the (3 x 3)-matrices Ay and By such that
Xar Z 0. If there is a real point py and Ao € R such that PrLAWPH = PLBuPy =0
and Apypy = —AoBupy # 0, then Ao is a multiple root of X, -

The definition of x, , for (3 x 3)-matrices is analogous to the definition in the case of
(4 x 4)-matrices.

2.4.4 Rotation Matrices and Quaternions

Rotation matrices are a very common way to describe rotations by a certain angle about
a certain axis. Alternatively, one can use the so-called quaternions. Since we will use
quaternions in chapter 4 and in section 2.5, we will define them here and show how they
are related to rotation matrices.

Rotation matrices can be defined as follows.

Definition 2.31. We call a matriz R € R3*3 a rotation matriz, if
1. RR" =E and

2. detR =1.

This means that the rows as well as the columns are pairwise orthogonal unit vectors
that form a right-handed system. A point p € R? is rotated with the rotation matrix
R by multiplication from the left, i.e. the rotated point has coordinates Rp. It is
well known from algebra that transformations with a rotation matrix preserve lengths,
orientations and angles. Let A be a real eigenvalue of the rotation matrix R and let
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Figure 2.4: Rotation of a point a about an axis u by the angle .

u be a unit eigenvector with respect to A. By the definition of R it holds that 1 =
u? = (Ru)? = A\? and hence, |A| = 1. The characteristic polynomial of R has the form
Xg(A) = =A% 4+ ...+ 1. Obviously, x,(0) = 1 and limy e X (A) = —o0. Therefore,
A = 1 must be an eigenvalue of R. The unit eigenvector u with respect to the eigenvalue
1 is the axis of rotation. Because of the preservation of angles, every vector which
is perpendicular to u is rotated by R about u by the same angle @. One way to
determine ¢ is the following. Choose an arbitrary unit vector v perpendicular to u.
Then, cos @ = v'Rv and sin @ =u'(v x (Rv)).

Clearly, the matrix that describes a rotation about u by the angle ¢ is uniquely
determined by u and ¢. Therefore, we denote this matrix by Ry, ,. We will now show
how Ry, , can be computed if u and ¢ are given. Let therefore a be an arbitrary point.
With a’ we denote the point that is obtained by rotating a about u by the angle ¢. As
sketched in figure 2.4, a and a’ lie on a circular cone whose axis is given by the vector
u. The vectors v and w are defined as v =u x a and w = u x v. We observe that
a’'=a+ (1—cos@)w+sin v. We write this in the form

a’ = a+(1—cose)(ux (uxa))+sine(uxa)
= (E+(1—cos¢)(uu’ —E) +sin pu”)a.
Since a was chosen arbitrarily, we conclude that

Ry o = cos E + (1 — cos @)uu’ + sin pu*.

This equation is known as Rodrigues’ formula. Starting with this formula, we show how
the axis u and the angle ¢ can be computed if R, , is given. We immediately verify
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that
tr (R) —1

2

Furthermore, we observe that R — RT = 2sin @u*, which we write as r*. We make
a case distinction whether r is the zero vector. If r # 0, then we set u = r/|r| which
implies sin @ = |r|/2. If r =0, then sin @ = 0. If cos @ = 1, then the angle of rotation
is zero and we can choose u arbitrarily. If cos@ = —1, then uu' = %(R + E). This
determines u up to the sign. But since ¢ = 7, the sign of u does not matter.

cos @ =

Now, we introduce the quaternions and show how they can be used to describe rota-
tions.

Definition 2.32. Letpy, qo € R and p, q € R3 and set p = [po, p")" and q = [qo, q"]".
We call the operation defined on R* by

Podo—P'q

Pra= Pod +doP +P X (

the quaternion product. The set R* together with the component-wise sum and the quater-
nion product is called the set of quaternions. The quaternion q* = [do, —q"]" is called
the conjugate of q. The length of a quaternion is its length as a vector in R*.

It is not hard to verify that the quaternions form a division ring with the one-element
(1,0,0,0]". The multiplicative inverse of q is q*/|q|. We call a quaternion of length one
a unit quaternion. For a vector a € R3 we write a = [0, a"]". The following lemma
shows how quaternions can be used to describe rotations.

Lemma 2.33. Let a € R3 be a point and let u € R3 be a unit vector. Further, let @ € R
be an angle. Define the unit quaternion q by qo = cos § and q = sin $u. Then,

| oy
900" = g oal”

Proof. Let a’ = qaq*. By applying the definition of the quaternion product twice, we
find ay =0 and

a’ = (g—a*)a+2qq"a+2qo(q x a)
_ 29 28) in2 2w’ in 2 cos L
= (cos 5 —sin® S a+ 2sin 5 uu a + 2sin > cos 2(u>< a)
~- d —
cos @ T—cos @ sin ¢
= Ruea
by Rodrigues’ formula. O

In this way, every rotation can be expressed by a unit quaternion. Conversely, each
unit quaternion defines a rotation, which we also state as a lemma.
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Lemma 2.34. Let q be a unit quaternion. Then there is an axis W and an angle @ such
that for each point a it holds that

|y
9= | goal

Proof. Set @ = 2arccos o and

u:{% if [q] # 0

0 otherwise.

Obviously, go = cos % and q = sin $u. Hence, the claim follows by lemma 2.33. O

2.4.5 Solving Polynomial Equations

In chapter 3 we will reduce a number of problems arising in the static as well as the
dynamic collision detection to polynomial equations. These equations will always be
given in one of the following two forms.

1. In the power representation, the coefficients of the polynomial are given explicitly,
i.e. the equation has the form

d
p(x) = Z apxt = 0. (2.17)

2. In the matrix representation, the polynomial is given as the determinant of a
matrix polynomial, i.e. there is a matrix M(x) € R[x]™™ such that the equation
has the form

p(x) = det M(x) = 0.

Equivalently, this can be expressed in the form

d
det (Z Mp&) =0, (2.18)
i=0

where M; € R™™ fori =0,...,d.

The second form often arises if the coefficients of the resultant of two bivariate polyno-
mials are too complex to be computed symbolically. Then, the matrix polynomial M (x)
is just the Sylvester matrix of the two polynomials with respect to one variable. In this
section, we will describe methods to solve suchlike equations efficiently.
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Figure 2.5: The Newton-Raphson method finds the next estimate of the root by inter-
secting the local tangent line with the x-axis.

Polynomials in power representation

Let the polynomial p(x) be given as in (2.17). If the degree d is less than or equal
to four, then the roots can be computed in closed form. For d = 1 and d = 2 this
is obvious and for d = 3 and d = 4 we use Cardano’s and Ferrari’s formulae. Since
it is a well-known result from algebra that there is no general formula for the roots of
polynomials of degree greater than four, we are forced to use numerical methods. We
describe local methods such as the Newton-Raphson method and Laguerre’s method and
how they can be used to find all roots of p(x) using deflation (see also [PTVF94]). For
the Newton-Raphson method we additionally describe how interval arithmetic can be
used to achieve global convergence. Moreover, we describe the eigenvalue method which
is a globally convergent approach to find all roots and can also be found in [PTVF94].

The Newton-Raphson Method This method works as follows. Given a guess x; for
a root of p, the tangent line in the point [x;,p(x;)]T is intersected with the x-axis. The
next guess Xi;1 is this intersection value. This is illustrated in figure 2.5. To be a bit
more formal, we consider the Taylor series expansion in the neighbourhood of the point
Xi, which we write as
1
X.
p(xi +8) =p(xi) +op'(x4) + 62¥ +....

For very small values of §, the terms involving &% for k > 2 are unimportant. Hence,
p(xi+ 6) = 0 implies 6 = —p(x;)/p’(x;). Thus, the point x;,; is defined as

p(xi)

T (2.19)

Xi+1 = X{ —



52

2 Basics

Figure 2.6: Two situations where the Newton-Raphson method runs into problems.

The method starts with an initial guess xo and improves this value in each iteration by
taking the Newton step (2.19). This is repeated until the value |x; — xi41| falls below a
given threshold. Then the value x;; is returned.

One nice fact about this method is that it converges quadratically, provided the initial
guess is sufficiently close to a root. Quadratic convergence means that the distance €41
between the estimate x; 11 and the desired root X is a constant times ¢Z. That the Newton-
Raphson method has this property can be seen as follows. We define ¢; = x; — x. If ¢
is very small, p(x;) and p’(x;) are approximately

neg
() + 2P,

p'(%) +ep”(%).

p(x+e&) =~
p'(X+e) =
From (2.19) follows that
p(xi)
p’(x1)
Inserting the above two expressions for p(x;) and p’(x;), we obtain

Eiv1 = & —

T2 P'(® ~ 2P ()
27 p/(%) Fep”(x)  2p/(X)
This means that the number of significant digits approximately doubles in each iteration.
A fact which is not so nice is that one can run into problems if the initial guess is not
sufficiently close to a root. Figure 2.6 shows two such situations. In the left-hand picture,
the iteration reaches an extremal point. Since the tangent line in this point does not
intersect the x-axis, the method will fail in this situation. In the right-hand picture, the
method will run into an infinite loop, since x;,2 = X;.

The Newton-Raphson method is very good if one knows good approximations of the
roots in advance. Therefore, it can be used to "polish up" the results given by other
methods.

~

Eit1 =~
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Laguerre’s Method This method behaves very well in practice, although not much
is theoretically proved about its convergence for polynomials that have real as well as
complex roots. For polynomials with only real roots it is guaranteed to converge to one
of them from any starting point. But even in the presence of complex roots experiments
suggest that it is extremely unusual that the method does not converge. If it converges
to a single complex root it is known that its convergence is third order, which means that
the number of significant digits approximately triples in each iteration. In the following
we want to motivate how this method works. This motivation is taken from [PTVF94]
and is not to be taken as a derivation of the approach.
If we denote the d roots of our polynomial p by &;,...&q4, then we can write

d
p(x) = ag H(x— &;) and hence

i=1

d
Infp(x)| = Injag/+ ) Infx—&l.
i=1

If we derivate the second of these equations twice with respect to x we get

dln fp(x) : _ ')
Glx) = — ;X AT and (2.20)
_ Php)| ¢ p'(x)\* (%)
Ho) = =g Z] TR (p(X)) T @

Now, a set of very rigorous assumptions is made. We assume that the root &; that we
are looking for is located at distance a from our estimate x;, i.e. x; — & = a and all
other roots &;,...&q are located at distance b from x;, i.e. x; —& =bforj=2,... d.
Then G(x;) and H(x;) are

d—1

G(Xi) = I: T and
1 d—1
Hoa) = 45

If we solve the first equation for b, insert the result into the second equation and solve
this for a, then we obtain after some transformations

d

* T G £ /[d_D(dH) - 60D (2.22)

The method works as follows. For a guess x;, compute G(x;) and H(x;) using the right-
most expressions in (2.20) and (2.21). Then compute a by formula (2.22). For stability
reasons, the sign in this formula should be chosen such that the absolute value of the
denominator is maximized. The next estimate is computed as x;;1 = x; — a. This is
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repeated until the distance between two successive estimates falls below a given thresh-
old. Since the term inside the square root can be negative, this method requires complex
arithmetic even when converging towards a real root.

Both the Newton-Raphson method and Laguerre’s method find only one root of the
polynomial p. But generally, we are interested in all roots. Therefore, we deflate the
polynomial whenever we have computed a root &. This means we factor out the linear
factor x — & in the case that & is real and (x — &)(x — &) if & is complex. After the
deflation we compute the next root. We stop as soon as the result of the deflation is
constant. If we use the Newton-Raphson method we must not choose the initial guesses
on the real axis, since the method would never get off of that axis.

If we use this strategy with floating point arithmetic, we must be careful. Since each
root is computed only finitely accurate, errors accumulate in the deflation processes.
Thus, at the end of the computation, the roots must be "polished". This means we
consider the values that we have computed only as good guesses for the roots and use
them as starting values for the Newton-Raphson or Laguerre’s method with the original,

non-deflated polynomial.

Newton-Raphson with Interval Arithmetic Now we show how interval arithmetic

can be used to enable the Newton-Raphson method to find all real roots of a polynomial.

In fact, it can find all real roots of any continuously differentiable function f(x) in a given

interval if the derivative of f is known. This method can e.g. be found in [HHKR95].
The crucial idea is the following lemma.

Lemma 2.35. Let f : R — R be continously differentiable and let T = [a,b] C R be an
interval. Moreover, assume that O &€ f'(Z). Let m = (a + b)/2 be the midpoint of T.
Then, if there is a value x* € I such that f(x*) =0, then x* € N(Z), where

f(m)

N(Z) =m— g

(2.23)

Proof. If x* = m, then N(Z) = [m, m] and we are done. Hence, we assume that x* # m.
Then, by the mean value theorem, there is a value & between x* and m such that

f(m) — f(x*) = f'(&)(m —x").

Since x* is a root of f this is can be transformed into

A simple corollary of this is the following.

Corollary 2.36. If N(Z)NZ =0, then f has no root in I.
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Figure 2.7: An iteration step in the Newton-Raphson method with interval arithmetic,
if 0 ¢ f'(Z). T =[a,b] and N(Z) = [c, d].

Given an interval Z in which we want to find the roots, the method works as follows.
If 0 & f'(Z) we define Z =N(Z)NZ. f 7 C 7, then the next iteration step is applied to
7. This is illustrated in figure 2.7. If either 0 € f'(Z) or Z = Z, we perform a bisection
step: Let m be the midpoint of Z = [a, b]. Then the next iteration step must be applied
to the two intervals [a, m] and [m,b]. If the width of an interval falls below a given
threshold then its midpoint is returned as a root. If during the iteration an interval J
occurs, such that 0 ¢ f'(7), then by [HHKR95| the method is guaranteed to converge
quadratically on this interval. But if there exist multiple roots it can degenerate to a
bisection method.

At the beginning of this paragraph we stated that for a polynomial this method can
be used to find all real roots. We have only seen so far that it is able to compute all real
roots in a given interval Z. This is sufficient in some cases. In section 3.3 we are often
only interested in the roots lying in the interval [0, 1]. If we want to determine all real
roots, then we can use the following lemma, which is proven in [Mig92| (theorem 4.2).

Lemma 2.37 (Root bounds). Let the polynomial p be given as in (2.17). The coeffi-
cients a; may be complex numbers. Let & be any (real or complex) root of p. Then, the
following inequalities hold.

d-1
< — .
g < max{h - ;m},

1
< . .
& < 1+ o 012%{ lail },

1 d
€ < — [laol+ ) laig—ail ]
jagl \"° ; 1
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Let v be one of the root bounds given by this lemma. Then we can be sure that all
real roots of p lie in the interval Z = [—r, r]. Hence, starting the interval method on Z,
it will find all real roots of the polynomial.

The Eigenvalue Method This method is able to find all roots of a polynomial si-
multaneously. The problem is reduced to finding the eigenvalues of a matrix. Let the
polynomial p be given in the form (2.17). We define the companion matriz of p as

Cp =

0
0

0

90

aqd

1 0

0 1

0 0
a1 __ 42

aq aq

0
0
1
d—1
ad

The key observation of the method is the following lemma.

Lemma 2.38. The characteristic polynomial of C,, is
(=1

(e%]

|Cp _XE‘ = p(x)

Proof. We prove this by induction on the degree d of p. For d = 1 the claim is trivial.
So let us assume that the lemma holds for polynomials of degree d — 1 and let p be a

polynomial of degree d. We can write

d—1
p(x) =xa(x) + a0 with q(x) = Y_ aiix’,
i=0

Since the degree of q is d — 1 we know by induction hypothesis that
(_] )dfl

’Cq —xE| = q(x).
aq
The companion matrix of p has the form
0 1T ... 0
C, = ;
P 0 Cq
—0p/aq

We expand the determinant |C,, — xE| by cofactors of the first column and obtain

a %o

C,—xE| =
|ICp, — xE| ”

—X|Cq —xE[+ (1)
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By this lemma, the roots of p are exactly the eigenvalues of C,,. Therefore, we can
apply a numerical method such as the QR algorithm to the matrix C,. The QR method
can exploit the upper Hessenberg form of C,,, which reduces its running time to O(d?)
per iteration as opposed to O(d?) for a general matrix.

Polynomials in Matrix Representation

Now, let the polynomial p(x) be given in the form (2.18). We describe two methods to
find the roots of p. The first method that we present is a reduction to a (generalized)
eigenvalue problem and the second one is an interpolation approach.

Reduction to a Generalized Eigenvalue Problem The idea is similar to the eigen-
value approach for polynomials in power representation and can be found in [MK96|.

The basic observation is that if p(x) = 0 then there must be a non-zero vector y such
that M(x)y = 0. We write this in the form

d da—1
Y Mxt-y=0 & —) Mty = Max y = xMax*" - y.
i=0

i=0
If we define u; =x*-y for i=0,...,d — 1 we can rewrite this in the form
a1
=Y M = x-Maug 1. (2.24)
i=0

We define the generalized companion matriz of a matrix polynomial M(x) of degree d
as

[0 E 0 ... 0o |
0 0 E ... 0
Cm = : : : .. :
0 0 0 ... E

| M, -M; —M, ... —Ma |

If det Mg # 0 we set My = M3 'M; for i = 0,...,d — 1 and define M(x) = xE +
Zf:(; M;x". Then we have the following theorem

Theorem 2.39. The solutions of p(x) = 0 are exactly the eigenvalues of the matriz

Cyr-
Proof. 1f x is a root of p then, by the above argument we can construct a non-zero vector
u=[ug,...,ul ;7 such that equation (2.24) holds, which is equivalent to
a1
—ZMiui =X - Ug_1. (2.25)

i=0
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The vector u is an eigenvector of Cy; with respect to the eigenvalue x. This can be seen
as follows. The first d — 1 components of Cyyu are [u],...,ul ;1T =x-[ug,...,uq 2l
This equality holds because of the construction of the vector u. The last component of
Cyu is equal to x - ug_1 by equation (2.25).

Conversely, let x be an eigenvalue of Cy;. Then there is a non-zero vector u such that
Cyxt = x - u. We write this vector as u = [uf,...,ul ;]7. By the first d — 1 of these
equalities it holds for i =1,...,d — 1 that u; = x - u;_; and hence u; = x* - uy. Thus,
the vector up cannot be zero and we set y = uy. The last equality in Cyu = x - u is
just equation (2.25) which, with this definition of y is equivalent to

d
Z Mixi Yy = 0.
i=0
Since y # 0 it holds that det M(x) = 0. O

If the determinant of Mg is zero but det M # 0, then we can also reduce the problem
to an eigenvalue problem by defining the polynomial q(x) = det N(x) with N; = Mg_;
for i =0,...,d. Obviously, q(x) = det (xd . M(x’1)). Hence, for x # 0 it holds that
q(x) = 0 if and only if p(x™') = 0. We can find the roots of q by computing the
eigenvalues of Cg using e.g. the QR-algorithm.

If both det My and det My are zero, then we define the (nd x nd)-matrix Dy =
diag(E, ..., E,My). Then, the following theorem holds.

Theorem 2.40. The solutions of p(x) = 0 are exactly the solutions of the generalized
etgenvalue problem Cyu = x - Dyyu.

The proof of this theorem works analogously to the proof of theorem 2.39.

We briefly describe an approach from [Man94| that uses inverse power iterations to
find all real solutions of such a generalized eigenvalue problem. First, we notice that x is a
solution of the problem stated in theorem 2.40 if and only if f(x) = det(Cy—xDyg) = 0.
The approach that we describe is able to find all real solutions in a given interval [a, b].
In order to find all real solutions the problem is decomposed into two parts. First, by
substituting x = X/(1 — x) we reduce the problem of finding all solutions x € [0, co)
to finding all solutions x € [0,1) of gq(x) = det (Cv — X(Cn + Dm)) = 0. Then, by
substituting x = x/(1 + x) we reduce the problem of finding all solutions x € (—o0, 0]
to finding all solutions x € (—1,0] of g,(x) = det (CM —x(Dym — CM)) =0.

Let C,D € R™. In order to find all solutions of g(x) = det(C — xD) = 0 in the
interval [a, b], the procedure produces a sequence of vectors u; € C™ and a sequence
of complex numbers x; in the following way. Given an initial guess x* and a random
vector uy € C™ we set

zy < solution of (C — x*D)zy = Duy_g, (2.26)
Zx

Ug = —,
|z
u!Cu

Xk = k K

u] Duy
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for k =1,2,.... If uyx converges towards a vector u, then z, converges towards a vector
z = Au for some value of A. By (2.26) we have

AMC—x"D)u = Du

AX + 1
o (C—X+D)u:0.

A

Hence, x; converges towards to the solution x = x* + (1/A) of g(x) = 0. The linear
system (2.26) can be efficiently solved using e.g. LU-decomposition.

According to [Man94] this iteration converges towards the complex solution x; of
g(x) = 0 that has smallest distance from the initial guess x*. Hence, there is no further
solution in the open disc centered at x* with radius R = [x* — x;|. Thus, the following
recursive procedure is proposed. Choose x* = (a + b)/2. If x4 lies in [a, b], then add
this value to the list of the solutions. Recursively apply the procedure to

e [a,x*—R],if x* —R > aand
e [x*+R,b],if x*+ R <b.

In this way, all real solutions in the interval [a, b] can be computed.

Interpolation A different way to attack the problem of finding the roots of a polynomial
in matrix representation is to determine its power representation using interpolation.
Let 1 be an upper bound for the degree of p(x). Further, let (x;,y;) fori=0,...,1 be
sample points fulfilling p(x;) = yi. Then, the coefficients of the power representation
of p(x) are uniquely determined by these points. If 1 is exactly the degree of p(x),
then methods such as Lagrange’s formula or Neville’s algorithm can be used to find the
coefficients (see [PTVF94]). However, higher accuracy can be expected if the polynomial
is "oversampled", i.e. 1is much greater than the degree of p(x). A very common method
to compute the coefficients is fitting by linear least squares, which we will describe in the
following. This approach can also be found in [PTVF94].

We assume that we know the degree m of p(x) and that 1 > m. Further we assume
that we have computed the sample points (x;,y;). We define a penalty function f that
depends on the coefficients a; of p(x) by

1 m ) 2
flag,..., am) ZZ <yj—Zaix}> i
=0 -0

Our goal is to minimize this function. We do so by setting the partial derivatives of f
with respect to a; equal to zero, which yields for k =0,...,m

of(ao, ..., am) - = i) o«
da =0 & Z y,-—;aixj x; = 0.

j=0
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Changing the order of summation we find that this is equivalent to

m 1 1
Z Z X;<+iai = Zij}c, k=0,...,m. (2.27)
i=0 j=0 j=0

We write @ = [ao, ..., am]", b =[bp,...,bn]" and A = (xu){_, with

by = Zy]-x}‘ and

Xk = E X}c—ﬂ .

With this, (2.27) can be rewritten as Aa = b. This is a system of linear equations in
aop, ..., am and can e.g. be solved with LU-decomposition.

2.5 Physical Properties of Rigid Objects

In the following chapters we are dealing with moving rigid objects and the simulation of
their dynamic behaviour. Thus, we must associate physical properties with each object
such as a mass, a center of mass and moments of inertia. In this section we will define
these properties for general rigid objects and give the equations that describe the motion
of a rigid object in the presence of forces. Additionally, we will describe how the above
mentioned physical characteristica can be computed for the kinds of objects that we
consider in this thesis.

We always assume that the density function of any object O is a constant p. Hence,
the mass of O is equal to m = pV, where V is the volume of O. The volume is defined

) V=] o 028)

The center of mass of a finite number of particles with coordinates x; and masses m; is
the weighted average > mix;/ Y m,. For a continuous object O this generalizes to

c= % ”J(Qxdm = % ”Jo xdx. (2.29)

In order to describe rotational movements we need a relation between the angular mo-
mentum L and the angular velocity w. The angular momentum 1; of a single particle
with mass m; located at x; that rotates around a center cis |; = r; X p;, where r; =x;—c¢
is the vector pointing from the center of rotation to the particle and p; = myw x 13
is the linear momentum of the particle. The angular momentum of a finite set of such
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particles rotating around the same center with the same angular velocity is the sum
> 1. For a continuous object O rotating around its center of mass this generalizes to

L= ”Lr X (wxr)dm=p ”JO(rZE —rrh)dr- w = Iw. (2.30)

The matrix I is called the inertia matrix of O. It is symmetric, since the integrand
function is symmetric. Moreover, I is positive definite, since for any non-zero vector a
it holds that

a'la = Jﬂo(rzaz — (r"a)?)dm = JHO(T x a)?dm > 0.

The inequality is strict, since O is a 3-manifold and hence, there is at least one point
x € O such that (x —c) x a # 0. Since I is symmetric and positive definite, it has three
positive eigenvalues. These are called the principle moments of inertia of O. If we rotate
the object O with inertia matrix I around its center of mass with the rotation matrix
R, then it is easy to see from the definition of I that the inertia matrix of the rotated
object is given by RIR'.

Before we describe how the integrals (2.28), (2.29) and (2.30) can be computed for an
object of one of the classes defined earlier, we give the equations of motion. We assume
that the coordinates of each point p associated with a moving object O at time t are
given by

p(t) =R(t)(p —¢) + c(t), (2.31)
where p = p(0) and ¢ = ¢(0) is the center of mass. Then we can formulate the following
theorem.

Theorem 2.41. Let a moving object O be given by equation (2.31) and let fy,..., Ty be
the forces acting on O. Let vy fori=1,...,k be the vector pointing from the center of

mass c(t) to the point to which fy is applied. Then the following equations of motion
hold.

c=v,

. (2.32)

R =w*R,

and
k
mv = Z fi,
i=1
. (2.33)
I(Jv—i—waw:Zrixfi.

i=1

The equations (2.33) are also known as the Newton-Euler dynamics equations.

Proof. The upper equation of (2.32) is just the definition of the linear velocity and the
upper equation of (2.33) is Newton’s second axiom.
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In order to prove the lower equation of (2.32) we choose an arbitrary vector T and
define r(t) = R(t)r. This vector rotates with the same angular velocity as O and thus,
it holds 7(t) = w x r(t) = w x R(t)r. On the other hand, derivating with respect to
time yields 7(t) = R(t)¥. The claim follows from the arbitrary choice of 7.

In order to prove the last equation, we consider the angular momentum L. From (2.30)
we know that L = Iw. Derivating this with respect to the time parameter we obtain
I +Iw =L. The right-hand side of this is just the torque which is given by ) 1; x f;.
Thus, we have

k
I(.U—f—I(.U :ZTini.
i=1

We complete the proof by computing I. Let I = I(0). Then we have seen that I(t) =
R(t)IR(t)". Derivating and using the lower equation of (2.32) yields

I=wRIR" + RI[w*R)" = w*I — Iw*.
O

If we use a quaternion q(t) instead of the rotation matrix R(t) to describe the rotation,
then the lower equation of (2.32) is replaced according to the following lemma.

Lemma 2.42. Let q(t) be a unit quaternion defining a rotation with angular velocity

w. Then,
) 1
q=-wgq. (2.34)
2
Proof. We choose an arbitrary vector ¥ and define v(t) = q(t)rq*(t). Then, the vector

T rotates with angular velocity w and it holds r = w x r. Using quaternions, this can

be written as v = %(wt —tw) = %(wqfq* — qtq*w). On the other hand, we obtain
t = qrq* + qtq". Because of w* = —w and v* = —t it follows that
(4 ywa)a’ = g€ (@ — 39°w’)
—= =qt — = :
q 3 q)rq qr (q Zq

The quaternion on the right-hand side is the conjugate of the left-hand side, whose vector
part must therefore be zero, i.e. this quaternion is a scalar o«. Multiplying with q* from
the left and with q from the right and using qq* = 1 we obtain q*(q — %wq)f = We
write this as pt = «, which is equivalent to

et pe] [0

(PoE +p*)7 0]

Since T was chosen arbitrarily, it follows that po = 0 and p = 0. But this implies that
q—lwg=o. O
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Computation of the integrals (2.28), (2.29) and (2.30)

The following method to compute the volume integrals mentioned above can be found
in [ImmO01]. In the version that we present here we made some improvements that we
will mention at the appropriate moment. The method is a generalization of [Mir96a],
where these computations are performed for polyhedra.

The basic idea is to use Gauss’ theorem (also known as the divergence theorem) to
transfer the volume integrals into surface integrals, and then use Green’s theorem to
transform these into path integrals. These well known theorems can e.g. be found
in [BSMM93].

Theorem 2.43 (Gauss’ theorem). Let K be a region in space with piecewise smooth
boundary 0K, and let V = [P,Q,RIT be a vector field which is C'-continuous on K.
Then,

JJJ le(V) dx = JJ PddeXg, + QngdX] + RdX] dXz. (235)
K oK

Our objects fulfill the preconditions of this theorem and the boundary of such an
object O consists of finitely many smooth faces F;. Hence, the right-hand side of (2.35)
becomes for L = O

Z ” Pdx,dx3 + Qdxszdx; + Rdx;dx,.
i A
Let the surface S; containing F; be parameterized by ri(u,v) and let the parameter
range of F be given by U C R?. If we substitute x by 1;(u,v) then we have
0 (riv T]')
o(u,v)

dXide = )

dudv,

where 0(r;,15)/0(u,Vv) is the Jacobian matrix. Using this, the ith addend in the above
summation can be written as

I v (e < Sy ) duay,

We denote the cross-product in this equation by n;(u,v), since it is normal to F; in the
point 1;(u,v). We have to take care that the parameterization is chosen in such a way
that these normals are outward-pointing. With this, (2.35) becomes

”Jo div(V)dx = Z ”ui Vi dudv. (2.36)

In order to apply this to the integrals (2.28), (2.29) and (2.30) we need to find for each
(component of the) integrand a vector field whose divergence is that function.
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Figure 2.8: A face F; embedded on a cylinder and its parameter range U; with respect
to the parameterization in table 2.2.

e The integrand in (2.28) is the constant 1. We can choose for instance the vector
field V(x) = x or V(x) = [x1,0,0]".

e Each component of the integrand in (2.29) is one of the x; for i = 1,2,3. One
possibility to choose the vector fields is V(x) = [V;(x), Va(x), V3(x)]" with V;(x) =
Ix2 and V; =0 for j # 1.

e Each component of the integrand in (2.30) can either be written as x7 + x; for
1 # j or as —x;%; for i # j. In the former case we can choose the vector field as
V(x) = [Vi(x), Va(x), V3(x)]T with Vi(x) = 3x3 for k = 1,j and Vi = 0 for the
remaining entry. In the latter case we may choose V;(x) = —%xij and Vi = 0 for
k #£1i.

Now, we show how these surface integrals can be transferred into path integrals using
Green’s theorem.

Theorem 2.44 (Green’s theorem). Let B be a region in the plane with piecewise
smooth boundary 0B, and let W =[S, T|T be a vector field which is C'-continuous on B.

Then,
” (ﬂ _ a_s> dudv — J Sdu + Tdv. (2.37)
g \ou ov 3B

If we use the parameterizations in table 2.2 and equation (2.4) for the surfaces S;, it
is obvious that the planar regions U; in (2.36) fulfill the preconditions of this theorem.
The boundary of U4; consists of finitely many smooth edges &;;. Note that the &; do not
necessarily correspond to the edges of F;. This is illustrated in figure 2.8 that shows a
face F; embedded on a cylinder. The parameterization of this cylinder is taken from
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table 2.2 where the parameter ranges are u € [—7, 7] and v € R. The face is bounded
by two linear and two circular edges. The right-hand image shows the parameter range
U; which consists of two rectangular areas. The boundaries of these areas correspond to
the linear edges of F;, pieces of the circular edges of F; and pieces of the boundary of
the parameter space of the cylinder.

In order to have an easier notation when we apply Green’s theorem to the surface
integrals in (2.36) we define fi(u,v) = V(ri(u,v))™ni(u,v). We can write the right-
hand side of (2.37) with B = U; as

Z J Sldu + Tid\),

j e

where W; = [S;, T;]" is chosen in such a way that f; = %L — aas\j. Let the edge &; be
parameterized by py;(t) and let 7;; C R be the parameter interval of &;. If we substitute
[u, v]T by py;(t) then we have [du, dv]T = p;;dt. With this, the jth addend in the above
summation can be written as

J W] p;;dt.

1

With this, (2.37) becomes

” fidudv = ZJ Wip,dt. (2.38)
Z/{.

j Ty

We have to take care to follow the boundary of I/; in mathematically positive direction
during the integration. We choose the vector field W; = [S;, T;]T in the following way.
We set T; = 0 and choose —S; to be any antiderivative of f; with respect to v, i.e.

Si(u,v) = —Jv fi(u,v)dv

Vo

for an arbitrarily chosen value vo. With this, the condition f; = aaLl — % is obviously

fulfilled. The function S;(u,v) can always be written in closed form, which can be seen as
follows. From the definition of f; and from the fact that we use surface parameterizations
of the form shown in table 2.2 and equation (2.4) if follows that fi(u,v) viewed as a
function of the variable v is either rational, a sum of powers of sine and cosine functions
or a sum of powers of hyperbolic functions. Using the substitutions (2.7) or (2.9) the
integral over f; can always be transformed into an integral over a rational function. But
such an integral can be solved in closed form by means of decomposition into partial
fractions.

In order to use (2.38) we have to determine the boundary of each U and integrate
along it in mathematically positive direction, i.e. the interior of U; must always lie to
the left of the integration path. We describe briefly how this can be done. First, we see
that in order to compute the integral (2.38) we need for each edge &; of the boundary of
U; a parameterization p;;. Moreover, we must be able to compute the derivative p;(t)
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for any t € 7;;. Each & is either a part of the boundary of the parameter space of the
surface S; containing the face F; or corresponds to a part of an edge of F;. If we use the
parameterizations given by table 2.2 and equation (2.4), the parameter space is either R?
or an area in R? that is bounded by straight lines or segments of straight lines. Hence,
it is easy to determine a parameterization py of an edge &; corresponding to a part
of that boundary as well as the derivative p;;. This parameterization must be chosen
in such a way that &; is oriented such that the interior of the parameter range lies to
its left. If &; corresponds to an edge of F;, then let q(t) be a parameterization of the
curve containing that edge in R3. We have seen in the section about curves and surfaces
that the surface parameterization r; is one-to-one and onto if the parameter range is
restricted appropriately. Hence, we can parameterize &; in the parameter space of the
face by defining py;(t) = 1 '(q(t)). The derivative P;; can be computed as follows. By
applying T to p;;(t) we obtain ri(p;;(t)) = q(t) and derivating this yields

ari ari . .
(1)), = (e () | - P (1) = q(t).
o ), G o) - by = at
This is a system of linear equations for p;;(t). The rank of this system is two since we
do not allow faces with singularities. Thus, there is a unique solution that we can find
using Cramer’s rule, which gives

) 1 or; or; )
py(t) = W : {E (pij(t)) X m(pij(t))» ni(pij(t)) X E(pi]’(t)) q(t).

This is an improvement of the approach described in [ImmO1]| where this derivative
is computed numerically. Now we are able to evaluate the integrand functions in the
summation on the right-hand side of (2.38) for each value of t. We can solve these
integrals using numerical methods such as Romberg integration which can be found
in [PTVF94].

In order to perform the integration along the whole boundary of ¢/ and in mathe-
matically positive direction we proceed as follows. We use figure 2.9 to illustrate the
different steps. The dashed horizontal lines symbolize the boundary of the parameter
space of the surface containing the face. We can assume that F; has edges. This is
because the only cases where a face can have no edges is if it is a complete ellipsoid or
torus. But then, the object O consists only of this face. But there are closed formulae
for the volume, center of mass and moments of inertia of the ellipsoid and the torus.

e First, we compute the intersection points ay,..., ax between those &; that cor-
respond to edges of F; and the boundary of the parameter space of the surface
S;. In figure 2.9 there are five such points. The boundary of the parameter space
corresponds to conics in R3. Therefore, the computation of the intersection points
can be performed in the same way as described for the ray shooting approach in
the point-in-face test in section 3.2. This is an improvement of [ImmO01] where
these intersection points are determined numerically. Let us call an edge of F;
crossing if its counterpart in the parameter space of S; intersects the boundary of



2.5 Physical Properties of Rigid Objects

67

Figure 2.9: Sketch of a parameter range of a face.

this parameter space, and non-crossing otherwise. Let us furthermore call a loop
of F; crossing if one of its edges is crossing, and non-crossing otherwise.

Next, we integrate along the non-crossing loops of F;. More precisely, this means
we iterate through the edges of the non-crossing loops and integrate along their
counterparts in the parameter space. The direction of the integration is implicitly
given by the orientation of the edges. In figure 2.9 this means we integrate along
the edge denoted by &.

Now, we integrate along those components of f; that involve the boundary of the
parameter space. Therefore, we choose one of the intersection points, say a;,. Let
u be the direction of the boundary of the parameter space in that point and let
t be the tangent of the & intersecting the boundary in that point. If &; leaves
the parameter space at a;,, then the integration path follows the boundary of the
parameter space. Otherwise, we follow &;;. The edge leaves the parameter space
iff tyuy; — touy > 0. Let us choose the point a; in figure 2.9. Since &; leaves the
parameter space at that point we follow the boundary along &. If we reach a
point a; with 1 # 1y, then we ’turn left’ with respect to our current direction. In
the figure, the next point we reach is a, and our current direction is the tangent
of £ in a,. The leftmost direction that we can follow from that point is that of
&1. We omit the details of how to choose the 'leftmost’ direction which is a rather
simple task. We repeat this until we reach again the starting point a;,. If there
are still unvisited intersection points, then we choose one of them, say a;, and
proceed similarly. This is repeated until all a;’s have been visited.

In the case that the parameter space is a finite area in R?, i.e. S is an ellipsoid or
a torus, we have to decide whether the boundary of the parameter space belongs
to U; or not. Figure 2.10 illustrates the two cases. In order to make this decision,
we randomly choose a point a on the boundary of the parameter space that does
not lie on one of the &; along which we have already integrated. We construct a
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Figure 2.10: If the parameter space of &; is a finite area, its boundary might or might
not belong to the boundary of ;.

path £ in the interior of the parameter space of S; starting at a to an & that
corresponds to an edge of F;. We compose this path of horizontal and vertical line
segments. We determine the first point where £ intersects one of the &;;. Since the
segments that £ consists of correspond to segments of conics in R3, this can easily
be done. Let b be this point. Let t denote the tangent of &; in b and let u be
the direction of the segment of £ that passes through b. Then L leaves the range
U; at the point b iff ust; —uyty > 0. In this case, a belongs to U; and otherwise
it does not.



3 Collision Detection

In the context of dynamics simulations the objects in a virtual environment are not
stationary. They rather move around caused by user interaction or interactions with
each other. An important invariant that has to be maintained is that there is no in-
terpenetration between two objects. This means that two objects are either disjoint or
their boundaries intersect, but their interiors are disjoint. A collision detection algo-
rithm is designed to decide whether there are interpenetrations between two objects. In
this chapter we present two different kinds of collision detection algorithms for objects
with curved surfaces. The static collision detection decides for two stationary objects
whether they interpenetrate or not. The algorithm that we present also reports a colli-
sion if only the boundaries of the objects intersect. Starting with a valid configuration,
i.e. a collision-free configuration, such an algorithm can be used at discrete points in
time to decide whether the configuration is still valid. If it decides that it is not, then
the last motion step is rejected. The dynamic collision test decides whether two moving
objects will interpenetrate during a given time interval. It also computes the point in
time in this interval when the collision occurs.

Before we start describing these algorithms, we present heuristics for fast feature
culling. One of these heuristics is the space partitioning which is used to quickly reduce
the number of object pairs that have to be checked for collision. This heuristic exploits
the fact that two objects that have a large distance compared to their relative velocity
cannot collide. The second heuristic that we present is the bounding volume hierarchy
which reduces the number of object parts that have to be considered during the collision
test.

3.1 Heuristics for Fast Feature Culling

3.1.1 Bounding Volume Hierarchies

A bounding volume hierarchy is a data structure that is used to quickly reduce the
number of faces of the objects that have to be considered during a collision test. Let &
and §, be two sets of faces, and let By and B, be two volumes containing &; and &,
respectively. The basic idea is that if By and B, do not intersect, then neither do &;
and §>.

A bounding volume hierarchy for an object O is a tree structure. A node of this tree
is a pair (§, B), where § is a subset of O’s faces and B is a bounding volume of §. The
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set of faces in the root node is the set of all faces of O. The sets of faces of the children
of a node (F, B) form a partition of F. In this way, each level of the tree represents a
partition of all faces of O. In the following we concentrate on binary hierarchies, i.e.
each inner node has exactly two children.

A collision test for two objects O; and O, using bounding volume hierarchies works
as follows. First, the bounding volumes in the root nodes p; and p, of the objects are
tested for collision. If they do not collide, then neither do O; and O,. Otherwise, the
volumes in the children of p; are tested pairwise against the volumes in the children of
p2. This is recursively repeated. If p; is an inner node and p; is a leaf, then only p; is
expanded. If they are both leaves, then the faces in p; are tested pairwise against the
faces in p, using the basic collision tests described in the sections 3.2 and 3.3.

There are different types of bounding volumes that can be used in such a hierarchy.
The most important ones are

e spheres [Qui94, Hub95, PG95],
e oriented boxes [GLMO96],

e k-DOPS [HKM+96],
special case: iso-boxes [ZF95, Zac97].

The k-DOPS are convex polyhedra with fixed directions. They are described by the
minimal and maximal extent in k/2 directions. If k = 6 and the three directions are
the coordinate axes one obtains the axis aligned boxes or iso-boxes as an important
special case. Two such k-DOPS can be tested for collision very efficiently but since
the directions are fixed, they have to be recomputed whenever the orientation of the
object changes. This means a great computational effort especially if the boundary of
the object is curved. Therefore we concentrate on spheres and oriented boxes in the
following.

A hierarchy of bounding volumes can be uniform or hybrid. In a uniform hierarchy
the same bounding volume type is used in each node whereas in the hybrid case different
nodes may have bounding volumes of different types. We only consider uniform hierar-
chies here and moreover, we assume that for all objects in the scene the same bounding
volume type is used.

In the following we describe how a hierarchy of bounding volumes can be constructed
for an object of one of the classes defined in 2.2.3. This construction consists of two
steps, namely the computation of a bounding volume for a given set of faces and the
partitioning of a set of faces into two subsets. Finally, we describe both a static and a
dynamic collision test for two bounding volumes of the same type.

Computing a bounding volume for a given set of faces

Let & denote the set of faces, € the set of all edges in § and 2 the set of all vertices
in §. First, we give a general description how to compute a smallest bounding sphere
or a smallest bounding box for §. Afterwards we describe how the basic computations
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can be performed for our classes of objects. The methods we present here are in more
detail described in |Rei01] and were published in [LRSW02].

Smallest bounding sphere Our aim is to compute an enclosing sphere for the set &
with minimal volume. Since the volume of a sphere is a monotone function in its radius
this is equivalent to computing an enclosing sphere with minimal radius. We define the
function d(p), which computes for a point p the maximal distance between p and any
point of the faces. This function is given by

d(p) = max|p — x|, (3.1)

XEF

where we wrote x € § instead of x € F| F € § for the sake of simplicity. Obviously, the
radius of a smallest sphere enclosing § with center ¢ is given by d(c). Thus, in order
to compute an enclosing sphere with minimal radius we must find a center ¢ such that
d(c) is minimal.

Lemma 3.1. The mazximal distance d(p) is a convex function of p.

Proof. First, we prove that the function [p — x| is convex in p.

tp+(1—tlg—x| = [tp+(1—-t)q —tx— (1 —t)x|
= tlp—x)+ (1 —t)(g—x]|
< tlp—x|+(1—t)l]g—x| fortel0,1]

by the triangle inequality. In the following we omit the subscript x € § for better
readability. For t € [0, 1] we have

ditp+ (1 —1t)q) max [tp + (1T —t)q — x|
max (t|p — x|+ (1—1t)|q —x|)
max (t|p —x\) + max ((1 —t)|q —x|)

td(p) + (1 —t)d(q).

IA A

O

Provided that we can evaluate the function d(p), this lemma ensures that we can
find the optimal solution using local optimization methods such as the downhill simplex
method according to Nelder and Mead or Powell’s method, both described in [PTVF94].
We will see later that the maximal distance function can be evaluated by solving uni-
variate polynomial equations.

Smallest bounding box Now we want to find a box of minimal volume that encloses
the set §. We define a box by a corner ¢, an orientation and the three lengths 61, &>
and &3 of the axes. Assume the orientation is given by three orthogonal unit vectors
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Figure 3.1: Extent of an octagon.

dq,d; and ds. Then all corners of the box are given by ¢+ > . _-&:di, Z C {1,2,3}.

ieZ
If we know the vectors d;, then we can compute the corner ¢ and the lengths 6; of the
smallest enclosing box with that orientation in the following way. We define the extent

of & in direction d for |d| =1 as

e(d) = emax(d) - emin(d)» where

_ T
emax(d) = r)rcleasx d'x, (3.2)
. — 3 T
emin(d) = I’Elelél d'x. (3.3)

The corner ¢ of the enclosing box is given by the solution of the system diTx =
emin(di),1 = 1,2,3. The lengths can be computed as &; = e(d;),i = 1,2,3. We
need to find an orientation (d;, d;, d3) such that the resulting volume 616,03 is mini-
mal. But in contrast to the sphere case, this objective function is not convex in general,
as the following example shows.

Example 3.2. For the sake of simplicity we present a two dimensional example. But
this can immediately be generalized to three dimensions.

We consider a reqular octagon, whose opposite edges have distance a. Figure 3.1 shows
the extent e(dy) of the octagon for two different angles . By the left-hand picture, for
o« = 0 we have e(dy) = a. Obviously, the same holds for o« = %. In the right-hand
picture we chose « = 3 which gives the extent

a

e(dy) = ~ 1.082a > a.

e
COS 3

Because of the symmetry of the octagon it holds for all values of « that e(dy) = e(d;).
Thus, the volume of the enclosing box has two local minima and hence is not convex. In
this example both local minima have the same value. But it is easy to create a situation
where this is not the case, e.g. by considering an octagon with different edge lengths.
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A consequence of the fact that the volume of the enclosing box is not a convex function
in the orientation parameters is that local optimization methods such as the downhill
simplex method or Powell’s method might end up in local minima. In [Rei01] it is shown
that a good heuristic to overcome this problem is to run a local optimization method
for many different starting values.

Another problem in optimizing the volume of the bounding box is the high redun-
dancy in our way to represent orientations. In order to uniquely describe the orientation
of an object in three dimensions only three parameters are needed. A well known rep-
resentation for orientations by three parameters uses the so-called Z-Y-X Euler angles
(x,B,v) € [=m, 7] x [-5, 5] x [-m,7]. For a detailed description of this representation
including the computation of the axes (dy, d;, d3) from the Euler angles and vice versa
we refer to [Cra89).

In the following we describe how to evaluate the functions (3.1), (3.2) and (3.3).
Obviously, we can write the function d(p) as

d — IMax; max max — X max max — X[, max — X! .
(p) {f@ na p —x|, nax may p—x|, max p—x|}

This suggests the following procedure. For each face F € § compute all local maxima
of the function |p — x| for x € S, where S is the surface containing F. For each
such maximum check whether the corresponding point x is contained in F. If it is
not we neglect that maximum. This point-in-face test will be described in detail in
section 3.2. Then, for each edge £ € & compute all local maxima of the function |p — x|
for x € C, where C is the curve containing £. Again, for each such maximum check
whether the corresponding point x is contained in £. If this is not the case we neglect
that maximum. This point-on-edge test will also be described in section 3.2. Finally
compute the maximal distance [p — x| for x € 2. The value of d(p) is the maximum of
all these extrema.
Similarly, we observe that we can write the functions e . (d) and e ;. (d) as

emax(d) = max{maxmaxd'x, maxmaxd'x, maxd'x},
FeF xeF Ee& xe& xey

emin(d) = min{minmind'x, minmind'x, mind'x .
FeF xeF Eec€ xef xe0

This suggests an analogous procedure as in the case of the maximal distance. The only
two differences are that we do not only compute local maxima but all local extrema and
that the objective function is now d'x.

We give now brief descriptions how to compute the local extrema of the distance
function and the extent function. With respect to the object classes that we consider in
this thesis, the surfaces that we look at in the following are quadrics and tori and the
curves are conics and quadric intersection curves.

Local maxima of the distance between a point and a curve Let C be the curve
in question. If C is a conic section, then let x(t) be a rational parameterization. We



74

8 Collision Detection

compute the local maxima of the squared distance between p and x(t) by solving

d 2
—(p—x(t))" =0.
S —x(1)
We notice that this can be written as
d f(t) _ f(t)g(t) — 2f(t)g(t)
dt g(t)? g(t)3

:O)

where f(t) and g(t) are polynomials of degree at most four and at most two, respectively.
In order to get an upper bound for the degree of the numerator of this equation we assume
that the degree of f is four and the degree of g is two. Thus, five is clearly an upper
bound. Let the highest coefficients of f and g be denoted by f4; and g,, respectively.
Then the coefficient of t° in the numerator is 4f4 - g» —2f4-2g> = 0. Hence, the resulting
degree is at most four.

If C is a quadric intersection curve then we assume that it is the intersection between
an L-quadric defined by the matrix Ay and an arbitrary quadric defined by By. We
assume further that the coordinate system has been transformed in such a way that
A4 has normal form as shown in table 2.1. Since C is not a conic we know that the
L-quadric is not planar. Hence, it must be a hyperbolic or parabolic cylinder or a hyper-
bolic paraboloid. Let x(s,t) be a parameterization of the L-quadric. In order for x(s, t)
to have a nice form we rewrite the implicit form of the L-quadric in the following way.

X3 X3
hyperbolic cylinder: a_]z — b—g =1,
2
parabolic cylinder: b—i —x7 =0,
2 2
X pe
hyperbolic paraboloid: —12 — 2 _x3=0.
a? b?

With this we get the following parameterizations.

T
[:i:a}fg, b; ﬁl’ s} (hyperbolic cylinder),
x(s,t) = (2, bt, S}T (parabolic cylinder), (34)

[a(s +1), b(s—1), 4st]” (hyperbolic paraboloid).

In order to find the maximal distance between a point on C and p we maximize the
function (x(s,t) — p)? under the constraint x(s,t)"Bx(s,t) + 2x(s,t)"b + by = 0. This
can be done using the Lagrange formalism (see [Ber96]). We introduce the Lagrange
multiplier A and define the function

L(s,t,A) = (x(s,t) — p)” + A(x(s, ) Bx(s, t) + 2x(s,t)Tb + by).

The system of equations that we have to solve is

oL oL oL
a_S(S)t’A) - a(s)tv)\) - ﬁ(svtyx) - O
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which we write as Lg(s,t,A) = L¢(s, t,A) = Ly(s,t,A) = 0. We observe that L, and L
are both linear in A and L, does not depend on A at all. Thus, we eliminate A from L
and L; by computing the resultant w.r.t. A. Using some vector algebra we find that the
resulting equation can be written in the from

f(s,t) = (x(s,t) — p)T((xs(t) x xe(s,1)) x (Bx(s, t) + b)) —0.

This equation can be interpreted geometrically. The cross-product between the two
partial derivatives of x is for all values of s and t parallel to the normal of the L-quadric
in the point x(s,t). Thus, if x(s, t) lies on the intersection curve C, then the right-hand
side of the dot-product of the above equation is parallel to the cross-product of the two
normals of the intersecting surfaces in that point. But this cross-product is parallel to
the tangent of C in x(s,t). Hence, this equation is satisfied for a point x(s,t) on C if
and only if the vector pointing from p to x(s,t) is perpendicular to the tangent of C in
x(s,t).

In order to find the parameters of the points on C with extremal distance we compute
the resultant of f(s,t) and g(s,t) = x(s,t)"Bx(s,t) + 2x(s,t)"b + by with respect
to s. Although in the case that x(s,t) parameterizes a hyperbolic cylinder there is a
denominator, this involves only the parameter t. The functions f and g are always
polynomials in s of degree three and two, respectively. Let r(t) = ress(f, g)(t). In the
case of x(s,t) parameterizing a parabolic cylinder we can compute r(s,t) symbolically
using Maple®. The resulting degree in t is ten. If x(s,t) parameterizes a hyperbolic
cylinder Maple®is also able to compute the resultant symbolically and the degree of the
numerator of the result is twelve. In the case of a hyperbolic paraboloid we are not able
to compute the resultant symbolically. But the degree of g in t is two and the degree of
f in t is three. Thus, the Sylvester matrix of f and g with respect to s has three rows of
degree two in t and two rows of degree three in t. Hence, the degree of r(t) is at most
twelve in t.

Local maxima of the distance between a point and a surface Let S be the surface
in question. First we assume that S is a quadric. If S is ruled, then there are no local
maxima between S and a point p. This can be justified as follows. Let Ay be the
matrix defining the quadratic form of S. A point x on S has extremal distance from the
point p if the vector pointing from x to p is parallel to the normal of § in X, i.e. there
is a real value for A such that

Ax+a=A(p—x). (3.5)

If S is ruled there is a straight line £ on S that passes through x. Equation (3.5) implies
that the vector p—x is perpendicular to £. This means that x is also a point of extremal
distance between £ and p. But the only local extremum of the distance between a point
and a straight line is a minimum. Hence, x cannot be a point of maximal distance
between p and S.
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Figure 3.2: Point ¢ on the torus with maximal distance from p.

Now we consider the case that S is not ruled. Equation (3.5) is equivalent to (AE +
A)x = Ap — a. We multiply this by adj (AE + A) and obtain

AE + Alx = AE + A(Ap — a), (3.6)

where we wrote M| for the determinant of M and M for the adjoint of M. Multiplying
the quadratic form of S by det(AE + A) and inserting (3.6) we obtain a polynomial
equation of degree at most six in A. In order to compute the points on S with extremal
distance to p we compute the solutions of these equations and use (3.5) to compute the
corresponding point X.

Let now S be a torus with center ¢, normal n with n| = 1, and radii R and r with
R>r1. IfnT(p—c) =0,ie p lies in the main plane of the torus, then the maximal
distance can be computed as follows. If p = ¢, then the desired distance is simply R+ .
Otherwise, the point on S with maximal distance to p lies on the line through p and
c. In this case the desired distance is given by R 4 r plus the distance between p and
¢, which gives R+ 1+ |[p — ¢|. Now assume that p does not lie in the main plane of S.
With the notation as in figure 3.2 the maximal distance |p — (| is equal to r + [p — m|.
The distance between p and m can be computed as

p—m|= \/(nT(p —e))’+ (R+p'—¢l)”.

Finally, we have [p’ — ¢/ =|p —c—n"(p — ¢)n|.

Local extrema of the extent of a curve Let C be the curve in question and let d be
a unit vector defining the direction in which the extent of C is to be computed. First,
we assume that C is a conic. We do not need to consider straight lines since in that
case the extrema are attained at the vertices of the edge embedded on C. Let x(t) be a
parameterization of C. We compute the local extrema of the extent by solving

d
—d"x(t) = 0.
o x(t)
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We observe that we can write this as

df(t)  f(glt) —f()a(t)

dtg(t) g(t)? ’

where f and g are polynomials of degree at most two. In order to get an upper bound for
the degree of the numerator of this equation we assume that the degree of both of them
is two. Obviously, three is an upper bound for this degree. Let the highest coefficients of
f and g be denoted by f, and g,, respectively. Then the coefficient of t* in the numerator
is 2f; - g2 — f2 - 2g2 = 0. Hence, the resulting degree is at most two.

Next, we consider the case that C is a quadric intersection curve. We assume that
C is the intersection between an L-quadric and an arbitrary quadric. Furthermore, we
suppose that the coordinate system has been transformed in such a way that the L-
quadric is given by one of the parameterizations in (3.4). Let By be the matrix defining
the implicit form of the other quadric. We have to compute the local extrema of the
function d"x(s, t) subject to the constraint g(s, t) = x(s, t)TBx(s, t)+2x(s,t)Tb+by =
0. We introduce the Lagrange multiplier A and define the function

L(s,t,A) = d"x(s,t) + Ag(s, t).

We have to solve the system Lg(s,t,A) = L(s,t,A) = La(s,t,A) = 0, where Lg, L, and
L, denote the partial derivatives of L. We notice that both L and L; are linear in A and
that Ly(s,t) = g(s,t) does not depend on A at all. We eliminate A from Lg and L; by
computing the resultant. Using some vector algebra, we see that the resulting equation
can be written as

f(s,1) = 27 ((xs(t) x xu(5, 1)) x (Bx(s,t) + b)) = 0.

As in the paragraph about the computation of the maximal distance between a point
and a quadric intersection curve, this equation has a nice geometric interpretation. The
right-hand side of the dot-product is again parallel to the tangent of C in the point
x(s,t), provided that this point lies on C. Hence, this equation is satisfied for a point on
the curve if and only if the tangent in this point is perpendicular to the direction vector
d.

In order to find the parameters of the points on C where the extent attains a local
extremum we compute the resultant r(t) = res,(f, g)(t). This can be done symbolically
using Maple® . The resulting degree is six in the case of a parabolic cylinder and eight
in the case of a hyperbolic paraboloid. If the L-quadric is a hyperbolic cylinder, then
r(t) is a rational function whose numerator has degree eight.

Local extrema of the extent of a surface Let S be the surface in question. First, we
assume that S is a quadric. If § is ruled we do not have to compute the local extrema
of its extent. This can be explained as follows. Let x be a point on S where the extent
with respect to d is locally maximal. This implies that d is parallel to the normal of
S in x. Hence, d is perpendicular to the straight line £ on S through x. We assume
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that x lies inside the face F that we are considering, because otherwise this point will
be neglected. Thus, if we follow the line £ starting in x we will eventually reach a point
p on an edge £ of F. Since d is perpendicular to £, it holds that d'p = d"x. This
means we know that the extent of & is at least d'x and thus, this value is not a better
lower bound for the maximal extent of the face set than the extent of the edge £. The
same argument holds if x is a point on & where the extent is locally minimal.

Let the quadratic form of S be given by the matrix Ay. If § attains an extremal
extent in a point x € &, then the normal in x must be parallel to the direction d, i.e.
there is a real value for A such that Ax = Ad — a. Multiplying this by adj A we get

det A -x =adjA - (Ad— a). (3.7)
If we multiply the quadratic form of S by det A and insert (3.7) we obtain
(Ad —a)"A(Ad—a) +2(Ad—a)"Aa + |Alao = 0.

This is a quadratic equation in A. In order to determine the points of extremal extent
we solve this equation for A and use Ax = Ad to compute the corresponding point x.
Now, let § be a torus with center c. Let the unit vector n be the normal of the main
plane and let the radii be R and r with R > r. If d is parallel to n, then the local
extrema of the extent are d" ¢+ 1. Otherwise, the local extrema of d'x for x € S can be
computed by first determining the extremal points on the main circle and then adding
the vector £rd. In order to compute the extremal points on the main circle we first
project the direction d into the main plane, which gives d’ = d — (d"n)n. The squared
length of this projection is |d']?> = 1 — (d"n)2. The extremal points on the main circle
are given by ¢+ R(d’/|d’|). Thus, the extrema of the extent function on the torus are
the four points
d—(d'm)n

1—(d™n)?

c+R + rd.

Partitioning a set of faces

Let § denote the set of faces again. Our aim is to partition § into two subsets &; and
&2 such that the sum of the volumina of their bounding volumes is minimal. If the
bounding volumes are spheres, then this problem is closely related to the problem of
covering a set of points in R¢ by k minimal spheres. This is called the euclidian k-center
problem and is known to be NP-complete for all dimensions d > 2 (|[MS81]). In [Eck99]
a branch-and-bound algorithm is described to solve the partitioning problem optimally.
This algorithm maintains a set of variable faces which still have to be assigned to one
of the subsets §; or §,. Initially, all faces in § are variable. A branching step consists
of choosing one of the variable faces and assigning it to one of the subsets. In this way
each node in the decision tree represents a partial covering of &§. A lower bound in such
a node is computed by taking the sum of the volumina of the bounding volumes of the
current subsets. An upper bound is obtained by assigning the remaining variable faces
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to the subsets using some heuristic. This algorithm computes the optimal solution to
our problem, however the author of the above mentioned thesis states that the running
time is very high even for small instances of polygonal faces.

In the case of oriented boxed as bounding volumes, [GLM96| describes a simple heuris-
tic that produces quite good results and is very efficient. Let the set § be bounded by
the box B. Let for each face F € § the point cr be a reference point associated with
that face. The set § is partitioned by defining a cutting plane P that splits the longest
edge of B. All faces whose reference points lie on the same side of P are assigned to the
same subset. If the longest axis of B cannot be subdivided, the second longest axis is
chosen. If this also fails, the shortest one is used. According to our experience it makes
sense to try each axis of B to subdivide & and finally use the one for which the volume of
the resulting bounding volumes is minimal. In addition to the axis of B we must choose
a point p for the definition of the plane P. The above mentioned publication suggests
to take the mean of the reference points

1
p=®ch,

FeF

which leads to good results. It remains to describe how to obtain the reference points.
In [GLM96]|, all faces are triangles and it is suggested to take the mean of the vertices of
a triangle as its reference point. We experienced that also in the case of general polygons
this is a good choice. If a face F is curved, we compute a smallest bounding sphere for
F and take the center of this sphere as the reference point.

In the case of spheres as bounding volumes we simply compute a smallest bounding
box for S and use the techniques that we just described to partition the set of faces.

Static collision test for bounding volumes

In order to use a bounding volume hierarchy to speed up a static collision detection
algorithm we must be able to test whether the two bounding volumes intersect. In the
case of spheres this is considerably easy. Two spheres intersect if the distance of their
centers is smaller than the sum of their radii.

For the case of boxes as bounding volumes we briefly describe the approach presented
in [GLM96]. Let A and B be two boxes. If we project both boxes onto an axis in space,
then each of them forms an interval on that axis. If these intervals are disjoint, then so
are the boxes. In this case, the axis is called a separating azxis. If the intervals overlap
then the boxes may or may not be disjoint. The separating axis theorem which is proven
in [Got96| states that two convex polytopes are disjoint iff there exists a separating axis
that is orthogonal to

e a face of one of the two polytopes or
e an edge from each of the two polytopes.

Each box has three unique face orientations and three unique axis directions. It follows
that there are 15 potential separating axes, namely three face normals from box A, three
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A
Figure 3.3: Projecting a box onto an axis.

face normals from box B and nine cross-products of an edge from A and an edge from B.
For each of these 15 axes we check whether it is separating or not. If 4 and B intersect
then obviously no separating axis exists. Otherwise, the theorem states that one of these
axes is separating. To perform the test for a given axis we project the centers of the
boxes onto it, which gives us the centers of the intervals. Then we compute the radii of
the intervals. The intervals are disjoint iff the distance between their centers is greater
than the sum of their radii.

Let c4 and cgz be the centers of A and B, respectively. Moreover, let the unit vectors
a; and b; for i = 1,2,3 be the axis directions of A and B, respectively. Let the half-
dimension of A in the direction a; be ;. Similarly, let the half-dimensions of B be s;.
We denote the direction of the axis onto which the boxes are to be projected by the
unit vector r. Figure 3.3 illustrates in two dimensions that the radius of the interval
produced by box A is given by

3
Ra=) [ralrl.
-

The respective expression for B is similar. The distance of the centers of the intervals is
given by |(cz — c4)'r|. Hence, the intervals are disjoint iff

3 3
(es—c)Trl> > [malrl+ ) [sibirl. (3.8)

i=1 i=1

The summations simplify if the vector r is a box axis or a cross-product of box axes. For
instance, if r = q;, then in the first summation all terms with i # j are zero. In [GLM96]
a detailed analysis of the number of arithmetic operations can be found that are required
to evaluate the above expression.
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Dynamic collision test for bounding volumes

In order to speed up a dynamic collision detection algorithm using a bounding volume
hierarchy we need to be able to perform a dynamic collision test between the bounding
volumes themselves. This means, given linear and angular velocities, we must be able
to decide whether two bounding volumes will intersect during a given time interval. In
section 3.3 we will show how this can be done for quadratic complexes and for natural
quadratic complexes. Since our bounding volumes fall in the class of natural quadratic
complexes, we could simply use the results presented there. However, the idea of a
bounding volume hierarchy is to have a filtering technique that allows to quickly exclude
those parts of the objects that definitely cannot be involved in a collision. Thus, the
collision test for the bounding volumes should be as simple and efficient as possible and
we do not mind there being some false positive tests, i.e. tests where the algorithm
decides that the bounding volumes collide even though they do not. In [Eck99] it is
suggested to approximate the swept volume of the bounding spheres or boxes. This is
done by computing a bounding volume of the same type that contains the moving
volume during the whole time interval. Then, a static collision test between these
approximations is performed.

We want to describe a different approach here which is based on interval arithmetic.
As we will do in section 3.3, we assume that object O is fixed in time and object O,
moves with linear velocity v and angular velocity w. Thus, for every point p(t) € O,(t)
we have

p(t) =R(t)(p—c¢)+ ¢+ vt, (3.9)

where ¢ and p are the coordinates of ¢ and p at time t = 0. The rotation matrix is
given by Rodrigues’ formula

R(t) = cos(|wlt) - E + (1 — cos(!w!t)) -ww! +sin(Jwlt) - wX,

with w = w/|w| if w # 0 and w = 0 otherwise. We assume that the time interval
that is to be checked for collision is normalized to [0, 1].

Let us first assume that we use spheres as bounding volumes. Let &7 and S» be the
bounding spheres that are currently to be tested for collision. We denote the centers of
S7 and S; by ¢7 and c», respectively. The radii are denoted by r; and r,. With this
notation, the spheres collide iff there is a t € [0, 1] such that

f(t) =|ca(t) — eyl — 11 — 12 < 0.

Since S, moves synchronously to O, we use the relation (3.9) for c2(t). Now, we use
interval arithmetic to evaluate [a,b] = ([0, 1]). In the case a > 0 we know that the
spheres do not collide. Otherwise, we recursively subdivide the time interval until either
we decide that there is no collision or the length of the time interval is smaller than a
given threshold.

Now, suppose that we use boxes as bounding volumes. The method that we present
now is described in [RKCO02]. Let A and B be the boxes associated with the objects
O, and O,, respectively. We use the same notations as in the paragraph about static
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collision detection for bounding boxes. For the 15 potential separating axes we perform
the separating axis test (3.8) using interval arithmetic. Since box B moves synchronously
to object O,, we use relation (3.9) for cz and replace the vectors b; by R(t)b;. Let
the left-hand side of (3.8) be denoted by 1(t) and the right-hand side by r(t). We
start by evaluating both sides for the time interval [0, 1] to obtain [a, b] = 1([0, 1]) and
[c,d] = r([0,1]). If for one of the 15 axes we find that a — d > 0, then this axis is
separating over the whole interval and we know that the boxes do not collide. If all 15
tests fail, then we have one of the following situations.

e The boxes collide.
e The boxes do not collide, but the separating axis changes over time.

e The boxes do not collide, but the bounds computed by the interval arithmetic are
not tight enough.

Again, we recursively subdivide the time interval until its length falls below a given
threshold or we find a separating axis.

3.1.2 Space Partitioning

In order to check a scene consisting of n objects for collision, one basically has to test
all O(n?) pairs of objects. Space partitioning is a heuristic that helps to quickly reduce
the number of pairs that have to be considered. We will briefly describe an approach
published in [Mir97] and [Len00].

Suppose we are given n iso-boxes By, ..., B, in 3-space and want to find all overlapping
pairs (B, B;j). An iso-box is a box parallel to the coordinate axes. The box B; is given
by three intervals Iix = [ay, bix] for k = 1,2,3 and consists of all points x € R3 with
xx € Ly for k = 1,2, 3. We define the vectors a; = [ais, ai2, aiz]" and b; = [byy, by, bis]".
These are the corners of B; with minimal and maximal coordinates, respectively. It is a
simple observation that B; and B; overlap if and only if for each k = 1,2, 3 the intervals
Lix and L overlap. This gives us a simple static collision test for two iso-boxes. However,
in order to find all pairs of overlapping boxes we have to perform O(n?) such tests. In
order to alleviate this all-pairs-weakness, we partition the space into cubical tiles. This
is done by a tiling map T : R* — Z3 with resolution p which is defined as

[x1/p]
T(x) =w=| [x2/p]
[x3/p]

We identify a tile T—'(w) with the vector w. In order to identify all tiles that intersect
an iso-box B defined by the vectors a and b we make the following observation. Let
u = 1(a) and v = 1(b) be the tiles containing the vertices of 5 with minimal and
maximal coordinates, respectively. Then the set of tiles that are intersected by B is
given by

W(B) ={w € Z |u; < wy < vy}
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Clearly, if for two boxes B; and B; the sets W(B;) and W(B;) are disjoint, then B; and
B; are disjoint, as well. We can now use a hash table to efficiently identify those pairs of
iso-boxes that share at least one tile. In this table we represent all tiles that are occupied
by at least one box. We use the vector w as key for the hashing. Let us denote the hash
function by h. For each tile w € W([3;) we represent a pointer to 3; in the hash bucket
h(w). For any given box B; we can now find all boxes B; that share a tile with B; by
inspecting the hash buckets h(w) for all w € W(B;).

The quality of this method depends on the choice of the resolution p. If p is chosen
to small, then most non-overlapping pairs of boxes are excluded. However, each box is
stored in many hash buckets, which extremely slows down the algorithm. On the other
hand, if p is chosen to large, then the approach is not very successful in reducing the
number of pairs. To solve this problem, we introduce the concept of the hierarchical
space partitioning. We define the size of an iso-box B; as the length of its diagonal, i.e.
s; = |b;y — a;|. We want to assign a resolution p to each box in such a way that the ratio
si/p is bounded from below and above by « and [3, respectively, where 0 < oc < 1 < f3.
More precisely, for given values of o and 3 we are looking for resolutions p; > ... > px
such that for each box B; there is an index j; with

So
x < — < B.
Pi;

Let the minimal and maximal size be denoted by S;in and Sy, respectively. Then
we define the minimal resolution as p; = spin/x. We define the resolution pi.; by
multiplying p; by 3/x, such that we get

~ B = Smin
= (B) e

By considering the largest box, we find that for the number k of resolutions the relation

STTL(lX STTL(lX

logs <k<T1+logs

* Smin * Smin

must hold. Thus, we choose

k = ’VIOgE Smax—‘ .

® Smin
In order to have the resolutions in ascending order we set p; = px_i+1- We define the
box-resolution res(i) of the iso-box B; to be the smallest index j such that

The idea of the hierarchical space partitioning is to store each box B; only in the hash
table with resolution pres(i), since the ratio between this resolution and the size of the
box is appropriate. We can identify the potentially intersecting pairs of iso-boxes as
follows. The k hash tables are initially empty. Now we insert the boxes into the data
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structure in the order of non-decreasing box-resolutions. Insertion means to store a
pointer to the box B; in the hash table with resolution p,es(i) in all buckets with keys w
for w € W(B;). If we insert box B;, then we locate it in all hash tables with resolution
pr with 1 < res(i). If there is a pointer to a box B; in any visited bucket, then we report
the pair (B, B;) as potentially overlapping.

We want to bound the number of buckets that we visit if we insert a box B;. Since
$i < PPres(i), the box B; can intersect at most (B +1)° tiles with edge length pes(;). For
box-resolutions 1 < res(i) this number cannot be larger, since the tiles with resolution
p1 have longer edges. We have to locate B; in at most k hash tables, hence the number
of visited buckets is at most

(B+1)3 {mgﬁ S‘L"‘W . (3.10)

* Smin

Since 3 is a constant, we have proven the following lemma.

Lemma 3.3. Given a scene with n iso-boxes. With hierarchical space partitioning and
using perfect hashing we can identify the pairs of potentially overlapping bozxes in time
O(nlogR+c), where R is the ratio of the largest to the smallest box and c is the number
of potentially overlapping pairs.

Two boxes B; and B; with res(i) < res(j) are reported as potentially overlapping if
they share a tile at resolution presi). The maximal distance between any two points in
such a tile is \/gpresm. Hence, for the distance d between B; and B; we have

5 < \/gpres(i)

1
$; < — \/gsi.
Si x

Conversely, this means that if the distance between two boxes is larger than this value,
they will not be reported as potentially overlapping. We can now describe the tradeoffs
involved in choosing the constants « and 3. By (3.10), the smaller we choose 3, the
fewer buckets have to be visited when we store a box. The larger we choose «, the
smaller is the distance that two non-intersecting boxes must have to not be reported
as potentially overlapping. The larger the ratio 3/«, the smaller is the number k of
resolutions required to store all boxes.

Apparently, the idea of space partitioning makes sense if the number ¢ of potentially
overlapping boxes is expected to be small.

In the following we describe how the hierarchical space partitioning can be applied to
our collision detection problems.

Application to the collision detection problem

In order to make the above results applicable to the static collision detection problem
we must bound each object O by an iso-box B. We want to make this box large enough
such that it does not change its shape if the object rotates. To this end, we compute a
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bounding sphere for O with minimal radius that is centered at the center of mass ¢ of
0. We have seen in section 3.1.1 how this can be done. We choose B to be the smallest
iso-box containing this sphere. The corners of B with minimal and maximal coordinates,
respectively, are ¢ &= r[1,1,1]". Since the radius of a bounding sphere does not change
if O rotates, this is also true for the shape of B. Now, the space partitioning approach
described above can be applied directly to the set of these boxes. Since the ratio of the
largest to the smallest box is a constant, lemma 3.3 says that we can find all pairs of
potentially overlapping boxes in time O(n + c).

Now suppose that we want to perform a dynamic collision test. Each object has con-
stant linear and angular velocities and we want to know which pairs of objects potentially
collide in the time interval [0, 1]. Again, we assume that we know a bounding sphere
centered at the center of mass for each object. Moreover, we assume that each point p
of an object O moves according to equation (3.9). For the center of mass ¢ this means
that it moves along a straight line, namely c(t) = ¢ 4+ vt. Hence, the sphere containing
O moves along a straight trajectory. We bound the volume swept by this sphere by an
iso-box. Let the radius of the sphere bounding O be r. Then, we can choose the box
whose corners with minimal and maximal coordinates are

min{cy(0),cy(1)}—r max{c1(0),ce(1)}+7
a= | min{cy(0),c2(1)} —r and b= | max{cy(0),co(1)}+7 |,
min{c3(0),c3(1)} -1 max{c3(0),c3(1)} + 7

respectively. We apply the hierarchical space partitioning method to the set of so defined
boxes. The size of the smallest box is at least as large as in the static case. It is quite
obvious that the size of the largest box is bounded by a linear function of the maximal
velocity [Vinaxl- Thus, lemma 3.3 says that we can find all pairs of potentially colliding
objects in time O(nlog([vimax| + 1) + ¢).

3.2 Static Collision Test

A static collision detection algorithm tests whether two stationary objects Oy and O,
intersect, i.e. whether O7 N O, # (). Therefore we call such a test an intersection test.
We first present a generic algorithm and then describe precisely how this algorithm can
be specialized for the classes of objects defined in section 2.2.3.

3.2.1 A Generic Algorithm

Now we describe a generic algorithm for the intersection test between two objects.
Therefore, we first test whether the boundaries of the objects intersect. If this is the
case, then we report a collision. Otherwise, we know that the objects are either disjoint
or one of them is contained in the other one. In order to decide in which case we are, we
choose a point on the first solid and test whether it is inside or outside the other one, and
vice versa. This point-in-solid-test can be done by sending a ray from the query point
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Algorithm 1 FACETEST(Fy, )
1: for all edges £ of F; do

2 if £ intersects F, then
3 return INTERSECTION
4: end if

5: end for
6
7
8
9

: for all edges £ of F, do
if € intersects F; then
return INTERSECTION
end if
10: end for
11: for all loops £ of SN S, do
12:  determine a point p on £
13:  if (F; contains p) and (F; contains p) then

14: return INTERSECTION
15:  end if
16: end for

17: return NO_INTERSECTION

to infinity and counting the number of intersections with the object. If this number is
odd, then the point is inside, otherwise it is outside.

In order to check whether the boundaries of two objects intersect we proceed as follows.
For each face F7 of object 1 and each face F, of object 2 we check whether F; and F,
intersect. If we find a pair of intersecting faces then the objects intersect, otherwise they
do not. In order to reduce the number of pairs of faces to be checked for intersection we
use the techniques described in section 3.1. Algorithm 1 is a generic algorithm for the
intersection test between two faces F; and F, that are embedded on surfaces S; and S»,
respectively. First, all edges of the boundary of F; are tested for intersection with F;
and vice versa (lines 1 to 10). If one of these tests is positive we have obviously found
an intersection. Otherwise we know that in the case that F; and F, intersect there is a
loop of the intersection curve between the surfaces S; and S, that lies completely inside
both F; and F,. Thus, it suffices to determine one point on each loop and test whether
it is contained in both F; and F, (lines 11 to 16). If we find one such point, we have
found an intersection, otherwise we can decide that ;7 and F, do not intersect.

The test in the lines 2 and 7 of algorithm 1 consists of two steps. First the curve on
which the edge is embedded is intersected with the surface containing the face. Then
for each intersection point (if any) one has to check whether it is contained in both the
edge and the face. So altogether the following four tasks have to be performed.

1. Test whether a point on a curve is contained in an edge embedded on that curve
(point-on-edge-test).
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Figure 3.4: Point-In-Face-Test

2. Test whether a point on a surface is contained in a face embedded on that surface
(point-in-face-test).

3. Compute the points of intersection between a curve and a surface (curve-surface-
intersection).

4. Compute (at least) one point on each loop of the intersection curve between two
surfaces (surface-surface-intersection).

We will now briefly describe generically how to solve the first two of these tasks. More
details as well as descriptions of the remaining two tasks will be given in the next section,
where we will have a closer look at special classes of objects.

Point-on-Edge-Test Let the edge £ be embedded on a curve C. Additionally we are
given a point p on C. Since we know a parameterization of C and since edges are given
by a parameter interval [a,b] it is easy to decide whether £ contains p provided that
we know the parameter t of p on C. We simply have to check the condition a <t <b.

Point-in-Face-Test Let the face F be embedded on the surface S and let p be a point
on S. We know that the orientation of the boundary of F is induced by the orientation
of F (definition 2.5). So, we can use the following approach in order to check whether p
lies inside of outside of F. We send a ray within S from p to the boundary of F (Note
that we use the term ray even for curved paths). If F has no boundary, which means
that S is bounded and F = S, then p is obviously inside F. Otherwise, we compute
the tangent u to the ray, the tangent t to the boundary of F and the normal n of §
in the point where the ray first hits a bounding edge. Because of the orientation of the
boundary the point p lies inside F iff det(u,t,n) > 0. Figure 3.4 illustrates the two
cases. The normal in the figure is supposed to point out of the drawing plane. The face
sketched there has two loops. The point p; lies in the interior, p, in the exterior of F.
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For unbounded surfaces S there is another approach. We can define a ray within S
from p to infinity. We count the intersection points between this ray and the boundary
of F. If none of these points is a tangential intersection point, then p lies inside F,
iff this number is odd. In both approaches we have to perform a point-on-edge-test
whenever we intersect a ray with the boundary of F.

We perform the point-in-face-test in 3-space rather than in the parameter space of the
particular surface. The reason for this is that the curves that we allow as boundaries of
the faces have a relatively easy representation in 3-space. If we change to the parameter
space then it is not guaranteed that this is still true. A conic section in 3-space for
instance is in general not a conic section in the parameter space of the surface.

In the next section we will describe how the generic algorithm for static collision de-
tection can be specialized for the classes of objects that we defined in section 2.2.3. This
means that we have to describe how the four tasks mentioned above can be performed
for these specific object classes. For a subclass of the quadratic complexes, namely the
natural quadratic complexes, we describe two evaluation examples.

3.2.2 Specialization for Quadratic Complexes

We will now prove the following theorem.

Theorem 3.4. The static collision detection problem for Q)Cs can be reduced to solving
polynomial equations of degree at most four.

We will show that for QCs, the tasks described in the previous section can be per-
formed by solving only polynomial equations of degree at most four. This means that
there are closed form solutions for all occurring equations. Hence, we can use Cardano’s
and Ferrari’s formulae to solve them. Experiments showed that the accuracy of the solu-
tions found by these formulae is sufficient. Moreover, we experienced that the numerical
methods we used for comparison were at least by a factor of ten slower.

Point-on-Edge-Test

We have seen that this task is trivial, provided that we know the curve parameter of
the query point. We show now how to compute this parameter for a point p on a conic
C. If C is a straight line (as a special case of a conic), then we have a parameterization
x(t) = a+ tu and the parameter of p is simply

(P—a)’u

to =
uz

Otherwise, C is given by a parameterization of the form
x(t) = ¢+ uxq(t) + vxa(t),

where u and v are orthogonal unit vectors and with x;(t) and x,(t) as in (2.6). The
normal of the plane containing C is n = u x v. We define the rotation matrix R =
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[u,v,n]. If we set

Kt) = [X‘(t)} and

x2(t)
]3 ﬁ] uT(p_C)
{O} — || =Rp-o=|vip-o |,
0 0

then we have x(ty) = p iff X(to) = p.

Case 1: C is an ellipse. If the edge consists of the whole ellipse, then we do not have
to compute the parameter of p, since it certainly lies on the edge. By the parameteri-
zation (2.8) we have

v(1 —1%) — 26t

x1(t) =a T and x(t) =D

§(1 —12) + 2yt
1+ t2

If p =[—ay,—bd,0]T, then it does not lie on the edge, since the parameterization of C
was chosen in that way. We have

X1(to) =P1 & al—yt§—28to+v) =pi(1 + 1)

—ad & /a2 —p?

Here we used the fact that for the values y and 6 the relation y?+8% = 1 holds. Similarly,

we obtain
by &+ /bZ — ]5%

X2(to) =P2 & to = %5 1 5,

1+t2

Wand Xzzb% for o = +£1.

Case 2: C is a hyperbola. Then, x;(t) = ca

X(to) =P & oca(l+t)=p(1—13) A 2bto=p,(1—1)
p1—oa
p1+oa

& ty=+ A 2bty =Pa(1 —13).

Case 3: C is a parabola. Then x;(t) = t and x»(t) = at?. In this case we have X(ty) = p
iff to = p;. In all cases we can compute the parameter of p by solving only linear and
quadratic equations.

Before we continue with the point-in-face-test, we show how the points of intersection
between a straight line and a conic C can be computed by solving only linear and
quadratic equations. Let the straight line be given by the parameterization L(A) = p+Ar.
If C is also a straight line given by x(t) = a + tu, then we assume, that r x u # 0, i.e.
the lines are not parallel. We have an intersection point 1(Ag) between the two lines iff

P+Ar=a+tu+v(rxu)
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has a solution with v = 0. This is a linear system of equations with the unknowns Ag, t
and v and by Cramer’s rule we find
v=0 & r'(ux(a—p)) =0,
(a—p)T(ux(rxu))
(r x u)?

A =

If C is not a straight line, then it is given by a parameterization of the form x(t) =
cH+ux; (t)+vxa(t). Weset n =uxvand R = [u,v,n]. We also know A € R>*? a € R?
and ap € R such that

[x1,%2]A [ 2 } + 2[x1,x2la 4+ ap = 0.

Case 1: n'r =0 and n"(p — ¢) # 0. Then the line does not intersect C because it lies
in a plane that is parallel but not equal to the plane containing C.

Case 2: n'r =n'(p — ¢) = 0. Then the line lies in the same plane as C. We express
this line in coordinates of that plane by defining

i) u'(p—c)+au'r
{ 5 } =R'1A)—c)=| viip—c)+MW'r
0
Then, 1(Ao) is an intersection point between the straight line and C, iff A¢ is a solution
of the quadratic equation L(A)TALA) +2L(A)Ta + ap = 0.

Case 3: n'r # 0. Then, the line intersects the plane containing C in exactly one point
q = 1{Ao): ;
M) —c) =0 & A= LT_").

n'lr
We express q in coordinates of the plane containing C by setting [q',0]T = RT(q — c).
Then, q lies on C iff "Aq+2G"a+ ap = 0.

Point-in-Face-Test

Let F be a face that lies on a quadric S defined by the matrix Ay and let p be a point
on §. We show, that we can decide whether p lies in F by solving only linear and
quadratic equations. We make a case distinction according to the type of S.

Case 1: S is an ellipsoid or an elliptic cylinder. By 2.3.1 we may assume that S is given
in the form x" Ax = o for 0 = 1 (The sign depends on the orientation of S). If S is an
ellipsoid and F has no boundary, then obviously p € F. Otherwise we choose a point g
on the boundary of F and show that we can find a ray in S from p to . We compute
the first point where this ray intersects the boundary of F and use the determinant
criterion described in 3.2.1 to decide whether p lies in F or not. The following lemma
is useful to determine such a ray.
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Lemma 3.5. Let the quadratic form x"Ax — 1 = 0 define an ellipsoid or an elliptic
cylinder and let p and q be points with p'Ap = q"'Aq = 1. Then it holds that
[pTAg| < 1.

Proof. First, let A define an ellipsoid. Then, det A > 0 and A is positive definite. If
P = £(, then the claim is obviously true. Thus, we assume that p # +q. Then we know
that p and g are linearly independent because otherwise the line through p, —p, q and
—q would intersect the ellipsoid in four points. We define the vector n = A~'(p x q)
and the matrix T = [p, ,n]. The determinant (p x q)TA~'(p x q) of T is positive
because A~ is positive definite. Clearly, det(TTAT) > 0.

1 p'Aq 0
det(TTAT) = det | pTAq 1 0
0 0 nTAn

= n'An- (1—(p'Aq)?).

Hence, det(TTAT) > 0 is equivalent to [pTAq| < 1 and the lemma follows. Next, let
A define an elliptic cylinder. Then, two eigenvalues of A are positive and the third one
is zero. Let w be a unit eigenvector of A associated with the eigenvalue zero. If we
define A = A +wwT and the vectors p=p —p'w-wand G = q — q"w - w, then
A is positive definite and we easily verify that p'Ap = G'Aq = 1. Thus, we are in the
ellipsoid case and we already know that p'Ag < 1. But it is also easy to verify that
P'AG=pTAq. O

Obviously, this lemma is still true if we change the orientation of the ellipsoid or
elliptic cylinder.

By looking more closely at this proof we see that [pTAq| = 1 means in the case of S
being an ellipsoid that p = ¢ and if S is an elliptic cylinder that p and ¢ lie on the
same straight line or on opposite straight lines on S. We choose the point  randomly in
such a way, that this is not the case. Now we are ready to compute a ray in S from p to
g. Therefore, we define a plane P containing the points p and ¢ by the parameterization
Xx(s,t) =p+s(q—p)+t(q+p). As p and g are linearly independent, the vectors
q — p and g + p are linearly independent, as well. Inserting x(s,t) into the quadratic
form of S we obtain the quadratic equation

(0+p"Aq)t? + (0 +p'Aq)t+s(s —1)(c—p'Aq) =0.

The discriminant of this equation w.r.t. tis D(s) = (c+p'Aq)?+4s(s—1) ((pTAq)Z—
1). Since (pTAq)?> —1 < 0 we have D(s) > 0 for 0 < s < 1. Thus, for all values of s in
the interval [0, 1] we find values t that satisfy the quadratic equation. One solution is

Hs) __1 o+/D(s)

2 2o+ pTAq)
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Since sign(1 + pTAq) = o, we have t(0) = t(1) = 0 and hence x(0,t(0)) = p and
x(1,t(1)) = g. So we define the ray £ from p to q by l(s) = x(s, t(s)) for s € [0, 1].
Since we chose q randomly, we can assume that £ does not intersect any bounding edge
of F tangentially.

Now, we have to find the intersection point 1(sg) between £ and the boundary of
F with minimal value sy € (0,1]. This is equivalent to finding the intersection point
X(Sp, to) between the plane P and the boundary of F with minimal value so € (0, 1] and
to > —%. Let £ be an edge of F that is embedded on a conic C with parameterization
c(A). In order to find the intersection points between C and P we solve the system of
equations

p+su+tv+rnp = c(A),

whereu=q —p,v=q+p and np = u x v is the normal of P. We are interested in
solutions of this system with = 0. Thus we have to solve the equation nj,(c(A)—p) = 0.
Because of the parameterizations (2.6) and the substitutions (2.7) and (2.9) this is a
quadratic equation in A. For each solution of this equation we obtain a point x = c(A),
for which we perform a point-on-edge-test to check whether x € £. By Cramer’s rule,
for each such point our system of equations has the solution

(x—p)T(vxnp) Lo (x— p)'(np x u)
n2 N n2 '
P P

)

If s € (0,1] and t > —%, then x lies on £ between p and g (or is equal to q). We
iterate over all edges of F to determine that point x with minimal s-parameter. Then
we use the determinant criterion described in 3.2.1 to decide whether p € F or not.
Therefore we need the tangent t, of the ray in x, the tangent tg of the edge £ of F
on which x lies and the normal nz of F in x. The tangent tc can simply be com-
puted as the derivation of the parameterization of the curve containing £ and by taking
care of the orientation of the coedge of £ that belongs to a loop of F. The normal of
F is given by ny = Ax. Finally, the tangent of Linxist; = U'(s) = q—p+t/(s)(q+p).

In each of the following cases we compute a ray in S from p to infinity and count the
number of intersections between the ray and the boundary of F. The ray will always
been chosen randomly, so that we can assume that it will not intersect any bounding
edge of F tangentially.

Case 2: S is a one- or two-sheet hyperboloid or a cone. By 2.3.1 we can assume that
S is given by x"Ax + ap = 0 and that we know the eigenvalues &;, &, and &3 of A as
well as unit eigenvectors u, v and w associated with &;, &, and &3, respectively. W.l.o.g.
we assume that &;,&; > 0 and &3 < 0. We want do define a random ray £ in § from
p to infinity and count the number of intersections between £ and the boundary of F.
Therefore, we choose random values A, i (not both zero) and define r = Au + pv. The
ray £ will be a part of the intersection curve between S and the plane P parameterized
as x(s,t) = p + sw + tr. Inserting this parameterization into the quadratic form of S
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we obtain the quadratic equation
rTATt? + 2pTArt + s(WTAws + 2pTAw) = 0.
The discriminant of this equation w.r.t. t is
D(s) =4((p"Ar)* — stTAr(w'Aws + 2pTAw)).

We observe that D(0) = 4(p"TAr)? > 0 and that because of —rTAr - wTAw > 0 there
is a minimum of D(s) at Spmin = —(PTAW)/(WTAw). Since W Aw < 0, the sign of
Smin is equal to the sign of pTAw. We set o = —sign(p"Aw) if this value is non-zero
and 0 = 1 otherwise. Then, for each value of s > 0 it holds that D(os) > 0 and hence,
there are values of t such that t and os solve the quadratic equation. One solution is

1
—pTAr+1,/7D(0s)

tlos) = rTAr '

(3.11)

where we set T = sign(p'Ar) if that value is non-zero and T = 1 otherwise. With this
choice of T we ensure that t(0) = 0 and hence x(0,t(0)) = p. We define the ray £ from
p to infinity by 1(s) = x(os, t(os)) for s > 0.

Now we must determine the intersection points l(s) between £ and the boundary of
F with s > 0. This is equivalent to finding the intersection points x(os,t) between the
plane P and the boundary of F with s > 0 and

e t>—(plAr)/(rTAr)ift=1 and

o t < —(pfAr)/(rvTAT)if T =—1.
If the number of these points is odd, then p lies on F and otherwise it does not. The
computation of the intersection points works analogously to case 1.

Case 3: S is an elliptic or hyperbolic paraboloid. We can assume that S is given by
xTAx +x"Ta =0, where Aa = 0. As in the previous case we can assume that we know
that A has eigenvalues &7, &, and 0 with associated unit eigenvectors u,v and w. Thus,
the vectors w and a are parallel. Again, we define a random ray £ from p to infinity
and count the number of intersections between £ and the boundary of F. Like before,
the ray is a part of the intersection curve between a plane P and §. The plane is defined
as in the previous case, namely by the parameterization x(s,t) = p + sw + tr, where
T = Au+ pv for randomly chosen values A and p. Inserting this into the quadratic form
of S we obtain the quadratic equation

rTArt? + 2pTArt + 2sw'a = 0.

The value TTAr is zero iff A2&; + p2&, = 0. But the set of (A, u) fulfilling this equation
forms two intersecting lines in the plane, hence the probability of randomly chosen real
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values to belong to this set is zero. We notice that the above equation is linear in the
parameter s and w'a # 0. Thus, we solve for s in this case and obtain

rTATt? + 2pTArt
s(t) = 2wTa '
Since s(0) = 0, it holds that x(s(0),0) = p. We define the ray £ from p to infinity by

L(t) =x(s(t),t) for t > 0. Finding the intersection points between £ and the boundary
of F works analogously to the previous case.

Case 4: § is a hyperbolic or parabolic cylinder. Again, we assume that S is given by
the quadratic form xTAx +xTa 4+ ay = 0, where Aa = 0. As before, we also assume
that we know the eigenvalues &;, &, and 0 of A with associated unit eigenvectors u,v
and w, respectively. W.l.o.g., we assume &; > 0 and &; < 0. We define aray £ in S
from p to infinity as a part of the intersection curve between S and the plane P defined
by the parameterization x(s,t) = p + su + tr. The vector r is defined as Av + pw
for random values A and u. With this definition of r we have rTAr < 0. Inserting the
parameterization of P into the quadratic form of S we obtain the quadratic equation

rTATt? + 2(p"Ar +rTa)t + s(su’Au+2p"Au+ 2u'a) =0.

1. & > 0, i.e. S is a hyperbolic cylinder. Then, by 2.3.1 we can assume
that a = 0. The discriminant of the quadratic equation w.r.t. t is D(s) =
4((pTA1‘)2 — srTAr(suTAu—l—2pTAu)). Since rTAr-u"Au < 0, the discriminant
has a minimum at Sy, = —(p'Au)/(u'Au). The sign of s, is equal to the
sign of —pTAu. We set o = sign(p'Au). Then, for each value of s > 0 it holds
that D(os) > 0 and hence, there are values of t such that t and os solve the
quadratic equation. Equation (3.11) is again a solution of that equation, where
T = sign(p' Ar) ensures that t(0) = 0 and hence x(0,t(0)) = p. As before, we
define the ray £ by l(s) = x(os,t(os)) for s > 0. Finding the intersection points
between £ and the boundary of F works analogously to the previous cases.

2. & =0, 1i.e. Sis a parabolic cylinder. By 2.3.1 we can assume that a is a multiple
of u and thus u'a # 0 and r"a = 0. The discriminant of the quadratic equation
w.rt. tis D(s) = 4((pTAr)> — srTAr-u'a). The discriminant has a root at
so = (pTAT)?/(2rTAr -u'a). If we set o = sign(u'a), then for each value of
s > 0 it holds that D(os) > 0 and hence there are values of t such that t and os
solve the quadratic equation. One solution is again given by (3.11) with T being
defined exactly as in the case of a hyperbolic cylinder. The ray £ is again given
by 1(s) = x(os, t(os)).

Case 5: S is a plane defined by the implicit form n'x = ny. Then we choose T to be
any random vector satisfying n'r = 0. We define a ray £ in S from p to infinity by
L(t) = p+trfor t > 0. The points of intersection between £ and the boundary of F can
be determined as the points of intersection between the boundary of F and the plane
defined by (n x r)™x = (n x r)"p. This is done analogously to the previous cases.
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Curve-Surface-Intersection

Let C be a conic and S be a quadric. We show that the points of intersection between
C and S can be computed by solving only polynomial equations of degree at most four.
We assume that C is given by one of the parameterizations (2.6), with the trigonometric
and hyperbolic functions substituted by their rational parameterizations (2.7) and (2.9).
Let c(t) be this parameterization. We observe that this can be written as

where the components of ¢(t) as well as p(t) are at most quadratic polynomials in t.
Let S be given by the quadratic form (2.1). If we insert c(t) into this form we obtain

e(t)TAG(L) + 2p(t)eTa + p(t)2ay = 0,

which is a polynomial equation of degree at most four. The points c(tgy) for to being a
solution of this equation are the points of intersection between C and S.

Surface-Surface-Intersection

In this paragraph we will show that we can determine at least one point on each loop of
the intersection curve between two quadrics by solving polynomial equations of degree
at most four. Let A and B be two quadrics. We have shown in section 2.3.4 that the
intersection curve between two quadrics always lies on an L-quadric. We have also seen
that such an L-quadric can be computed by solving polynomial equations of degree at
most three. Thus, we can replace one of the two quadrics, say B, by an L-quadric. We
have described how to determine a transformation matrix Ty and a parameterization in
homogeneous coordinates x(t,A) of the transformed L-quadric such that x(t,A) is linear
in A and the intersection curve is given by

e c(t) = Tyx(t,A(t)), where A(t) is obtained by solving a quadratic equation
f(t,A) = a(t)A2 + B(t)A +y(t) =0

for A. The polynomials «, 3 and vy are of degree at most four. In the case o« # 0
the function A(t) is given by equation (2.13). We write A, (t) if we choose the
plus-sign in that equation, and A_(t) otherwise. We use ¢, (t) and c_(t) for the
corresponding parts of the intersection curve. We have seen that the degree of the
discriminant D(t) is at most four. We can determine the intervals Z; on which
D(t) > 0 by computing the roots of D(t). We divide each such interval into
subintervals Z; for which o(t) # 0. Clearly, all points c(t) with t € Z;; lie on the
same loop of the intersection curve, and so do all points ¢_(t). On the other hand,
for each point p on the intersection curve there is a value t such that p = c,(t)
or p = c_(t). Hence, we choose a value t;; from each interval Z;; and compute
points p;;, = ¢ (ty;) and py;_ = ¢ (ty). In this way we obtain at least one point
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from each loop. If & = 0, then A(t) is given by equation (2.14). Then we choose
a value t from each interval where 3(t) # 0 and compute the corresponding point
c(t). In this way we also get at least one point on each loop.

e the union of the up to four straight lines ¢;(A) = Tyx(t;,A), where the t; are the
roots of the polynomial y(t), which has degree at most four. For each t; we choose
a value A and compute the corresponding point c;(A). This gives us one point on
each loop of the intersection curve.

Two Evaluation Examples

We implemented the collision test prototypically for a subclass of the quadratic com-
plexes, namely the natural quadratic complexes. In order to test this implementation
we constructed two scenes consisting of toy objects. In both scenes we performed a
sequence of motions. We stored these sequences to files in order to make them repro-
ducible. Then, we performed two tests for each scene. First, we performed the stored
sequence of motions on the curved objects and measured the overall time spent in the
collision detection module. Then, we replaced the curved objects by polyhedral approx-
imations and our collision detection module by the package SWIFT++ (see [ELO1]| for
details). We performed the same sequence of motions and again measured the time
consumed by the collision test. Figure 3.5 shows snapshots from both scenes. These
tests are not to be taken as fair comparisons between our method and SWIFT++. We
can always approximate the objects such fine that our method is faster. But neverthe-
less, the tests show that it is possible to implement our method in such a way that the
performance is good compared to algorithms that work on polyhedral objects. The tests
also justify that it makes sense to work with the curved objects directly instead of using
approximations.

The first scene (the upper images in figure 3.5) consisted of twice the same object. The
boundary of this object consisted of 32 faces (eight cylindrical/conical, five spherical, 19
planar), 59 edges (26 circular, 33 straight) and 86 vertices. The approximated object
consisted of 11914 triangles, 17871 edges and 5959 vertices. We used a 850MHz machine
with 256MB ram for the test. In the curved scene, the overall time spent in the collision
detection module was 0.33s, and in the approximated scene it was 28.67s.

The moving object in the second scene (the lower images in figure 3.5) was the boolean
union of nine cylindrical objects. The second object was the boolean difference between
a cylindrical object and an enlarged version of the first object. The boundary of the first
object consisted of 18 faces (16 cylindrical and two planar), 48 edges (32 circular, 16
straight) and 32 vertices. The boundary of the second object had 19 faces (17 cylindrical,
two planar), 50 edges (34 circular, 16 straight) and 34 vertices. We approximated the
first object with 1372 triangles, 2058 edges and 688 vertices and the second object with
1632 triangles, 2448 edges and 816 vertices. The overall time consumed by the collision
detection was 6.58s in the curved scene and 8.34s in the approximated scene.
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Figure 3.5: Two snapshots from both evaluation scenes.

3.2.3 Specialization for Natural Quadratic Complexes plus Torus

In the following, we will prove a similar result as in the case of QCs.

Theorem 3.6. The static collision detection problem for the class NQC+T can be re-
duced to solving polynomial equations of degree at most four.

We prove this by showing that also for objects from the class NQC+T the four com-
putational tasks of our static collision detection algorithm can be performed by solving
only polynomial equations of degree at most four. Since the edges of these objects
are straight line segments and circle segments, we already know how to perform the
point-on-edge-test.

Point-in-Face-Test

For faces that are embedded on quadrics we have already described that this test can
be performed by solving only linear and quadratic equations. So, let the face F be
embedded on a torus 7, and let p be a point on 7. If F has no boundary, then clearly
p lies inside F. Otherwise, we choose a point q randomly on the boundary of F.
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Figure 3.6: Construction of a ray from the query point p to a boundary point q of a
face F embedded on a torus 7.

We construct a ray £ on 7 from p to g and use the determinant criterion described
in 3.2.1 to decide whether p lies inside or outside F. This ray will be composed of three
parts L, £, and L3 which are segments of cross-sectional circles and profile circles. If
the edge containing q lies on a profile circle, i.e. the normal of the plane containing
that edge is parallel to the normal of the main plane of 7, then we proceed as follows
(see figure 3.6). We follow the cross-sectional circle CSC(7,p) starting at p. If that
circle contains vertices of F, then let v be the first one that we reach, and let r; be a
random point on CSC(7, p) between p and v. Otherwise, let r; be any random point on
CSC(T,p). The first part Lq of the ray starts at p, follows CSC(7,p) and ends at 1y.
Because of the choice of 11 we know that £; does not hit any vertex. Moreover, because
11 was randomly chosen we may assume that the profile circle PFC(7, 1) also contains
no vertices. Since q was randomly chosen, as well, the same holds for CSC (7, q). Let
T, be the intersection point of PFC(7,ry) and CSC(7,q). The second part £, of the
ray starts at r; and follows PFC(7,71;) to the point ;. Finally, £3 starts at r, and
follows CSC(7, q) through q.

If the edge containing ¢ does not lie on a profile circle, then it must lie on a cross-
sectional circle or a Villarceau circle. In that case we proceed similarly: The part £; of
the ray follows the profile circle through p to a point that is randomly chosen in such
a way that no vertices are hit. Then, £, follows the cross-sectional circle through that
point until it intersects the profile circle through q. Finally £3 follows that profile circle
until it reaches .

Let C be a cross-sectional or profile circle such that a part £; of the ray starts at point
a and follows C. Then we parameterize C in the following way. By section 2.3.2 we know
the center cc, the normal ne and the radius p of C. Since a € C it holds that [cc—a| = p
and we define the unit vectors u = (¢ — a)/p and v = n¢ x u. As parameterization of
C we choose
1—1t2
1+ t2 1+ tzv'

With this definition we have lim;_,1, X(t) = a. Thus, finding the first point on C
starting at a with a certain property is equivalent to finding the smallest value ty € R
such that x(ty) has that property. In order to construct the ray as well as to intersect the

x(t)=cc+p u-+op



3.2 Static Collision Test

99

ray with the boundary of F we must be able to find the points of intersection between
C and a given circle as well as to check whether a given point lies on C and if it does,
compute the parameter ty of that point with respect to the above parameterization. But
these tasks work analogously to the point-on-edge-test and the curve-surface-intersection
for quadratic complexes that we described earlier in this section.

Curve-Surface-Intersection

We have already described how to find the intersection points between conics and
quadrics. Thus, we only have to show that the points of intersection between straight
lines and circles and the torus can be computed by solving only quartic equations. For
the straight line this is obvious, since we can simply insert its parameterization of the
form x(t) = a + tu into the implicit form (2.3) of the torus. This leads to a polyno-
mial equation of degree four in the parameter t. The solutions of this equation are the
parameters of the intersection points between the line and the torus.

Now, let C be a circle with center ¢, normal n and radius p. By applying a coordinate
transformation we can assume that the center of the torus 7 lies in the origin and that
the normal of its main plane is [0,0,1]T. Let the major and minor radius be given by
R and v, respectively. In this situation, the implicit form (2.3) of 7 can be rewritten in
the form

(X2 4+ %3 +x3 + R —12)2 — 4R} (x3 +x3) = 0. (3.12)

As shown in [Kim98]|, the points of intersection between C and 7 can be computed
as follows. We determine unit vectors u and v such that u x v = n. Then we can
parameterize the plane containing C in the form x(s,t) = ¢ + su + tv. Inserting this
into equation (3.12) leads to

(s +t* +2sc’u+ 2tc™v 4+ R* — 1%)? — 4R2((c1 + sug + tvi)?3(ca + sup + tvz)z) =0.

In parameters of the plane the circle C is given by s? 42— p? = 0. Thus, we can replace
all occurrences of s? + t2 in the above equation by p? and then replace all remaining
occurrences of t> by p? — s. This results in an equation of the form

ous? 4 ost + aps + ot + g = 0

with constant values xq, ..., ®4. Together with the condition s? + t> — p? = 0 this is a
system of equations the solutions of which are the parameters of the intersection points
between C and 7. This system can be reduced to

(03 + 0d)s? + 2(cuoy + oz01)s® + (2000 — 03p? + o + of)s?

+ 2(opoz — azxqp?)s — p?od = 0 and

0482 4 s + Xo
o3s +op

t =

In this way, we have reduced the problem of finding the points of intersection between
a circle and a torus to solving a quartic equation.
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Figure 3.7: The torus is shrunk to a circle and the cylinder is 'blown up’ to its C-space
obstacle

Surface-Surface-Intersection

We already know that points on the loops of the intersection curve between two quadrics
can be computed by solving polynomial equations of degree at most four. We must show
that this is also true for the case of two tori and the case of a torus and a natural quadric.

Let the two surfaces to be tested for intersection be &7 and S;, and let S7 be a torus
in the position and orientation given by equation (3.12). In the case of S, being a
sphere we can proceed as follows. If c is the center of the sphere and p is its radius,
then its implicit form can be written as (x — ¢)> — p? = 0. Solving this for x? yields
x? = p2 +2xTc — ¢2. If we insert this into (3.12) and define L = p? — ¢? + R? — 12, then
we obtain the quadratic form

x'"Ax+2x"a4+ay = 0 with
A = 4(cc" —diag(R* R?0))
a = 2Lc and
a = L2

We replace the torus by the quadric defined by this form. Now we are in the surface-
surface case for two quadrics.

Now let S, be a circular cylinder, a circular cone or a torus. We will briefly describe the
approach used in [Kim98| which indeed only requires solving at most quartic equations.
For a detailed description of the algorithms we refer the reader to that work. The general
idea is the following. If one of the two surfaces under consideration is the envelope surface
of a moving ball with radius r, then this surface is replaced by the trajectory of that
ball’s center. The second surface is replaced by its so-called configuration space obstacle
(C-space obstacle) which is bounded by the £r-offsets of the original surface. Figure 3.7
illustrates this for the case of a torus and a circular cylinder. The idea is now to reduce
the surface-surface intersection problem to a curve-surface intersection problem.

We illustrate this in the case of &> being a circular cylinder with radius p and axis
through the point a with direction u. We consider the case when r < p. In this case we
perform the construction shown in figure 3.7. The torus is considered as the envelope
surface of a moving ball and the cylinder as an obstacle. We replace the moving ball
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by its center and every point on the cylinder by a sphere of radius r. This means that
the torus is shrunk to its main circle C whereas the cylinder is blown up to its C-space
obstacle which is bounded by the £r-offsets of the original cylinder. These offsets are
the two coaxial cylinders with radii p + r and p — 1, respectively, and with axis through
a with direction u. Figures 3.8 and 3.9 sketch different relative positions of the C-
space obstacle and C. The hatched region sketches the interior of the C-space obstacle.
Figure 3.8 shows situations where the intersection between C and the obstacle is not
the entire circle, whereas in figure 3.9 it is. The black dots show points of intersection
between C and the boundary of the C-space obstacle. They result from tangential
intersection points between the moving ball and S;. The points on C that lie in the
interior of the obstacle result from positions where the moving ball properly intersects
S2. Let S be a segment of the intersection between C and the C-space obstacle of the
cylinder S,. Then in [Kim98| the following is shown.

e If S is not the entire main circle and not a single point then S results from a closed
loop of the intersection curve. This is the case for the two segments sketched
in figure 3.8(a). If S moreover touches the boundary of the C-space obstacle
tangentially in k points then the loop has k singular points. This is sketched in
figure 3.8(b).

e If S is a single point then it results from an isolated point of the intersection curve.
This is sketched in figure 3.8(c).

e If S is the entire main circle and does not touch the boundary of the C-space
obstacle then the intersection curve consists of two closed loops (figure 3.9(a)).

e If S is the entire main circle and touches the boundary of the C-space obstacle in
k > 0 points then the intersection curve consists of one closed loop with k singular
points (figure 3.9(b)).

Computing the intersection of C with the C-space obstacle means computing the inter-
sections of C with the two coaxial cylinders. We know that this can be done by solving
at most quartic equations. Once we have computed this intersection we must construct
one point on each loop of the intersection curve.

e In the cases shown in figure 3.8 and figure 3.9(b) we first choose one of the inter-
section points between C and the C-space obstacle for each loop. If for any loop
there is a tangential intersection point, then we choose that point. Let ¢ be such
a point. We know that g results from a situation where the moving ball touches
the cylinder surface. We compute this contact point q’. This can be done by
dropping a perpendicular from ¢ to the axis of the cylinder and computing its
intersections with the cylinder surface, which involves only polynomials of degree
at most two. Then we determine the intersection points between the line through
q’ with direction u and the torus. This requires solving an equation of degree
four. As a point on the loop we can choose that intersection point which is closest
to q’.
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Figure 3.8: Intersection of the main circle of a torus and the C-space obstacle of a cylin-
der. The intersection is not the entire main circle.

e In the case shown in figure 3.9(a) we may choose any point on the main circle.
Let g be such a point. We compute the two intersection points between the cross-
sectional circle centered at q and the cylinder surface. These points lie on the
two loops of the intersection curve. The computations of these intersection points
requires solving an equation of degree four.

If the radius p of the cylinder is equal to r, then the inner cylinder of the C-space obstacle
degenerates to a straight line. In this case one has to be more careful but the general
idea still works. If r > p, then we consider the torus as the obstacle and the cylinder
as the envelope surface of a moving ball. We shrink the cylinder to a straight line and
replace the torus by its C-space obstacle which is bounded by the +p-offset-surfaces of
the torus. Then we proceed similar to the case r < p.

Since the +r-offsets of natural quadrics are always composed of natural quadrics, this
approach always leads to polynomials of degree at most four.

Remarks on extending the class NQC+T by arbitrary quadrics and conics

We want to discuss briefly how complex the equations become if we do not only consider
natural quadrics and linear or circular edges but arbitrary quadrics and conics. The
point-on-edge-test and point-in-face-test can still be performed by solving only quartic
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Figure 3.9: Intersection of the main circle of a torus and the C-space obstacle of a cylin-
der. The intersection is the entire main circle.

equations. But the curve-surface intersection and the surface-surface intersection are
more difficult. If we insert the rational parameterization of an arbitrary conic into
the implicit form of the torus and multiply with the denominator, then we obtain a
polynomial equation of degree eight. Since there can be eight points of intersection
between an ellipse and a torus, this degree is optimal.

We have seen that the surface-surface intersection can be reduced to polynomials of
degree four in the case that both surfaces are quadrics. For the intersection of a torus and
a quadric we want to derive the degrees that occur if we generalize the offset-approach
described above. Afterwards, we present a sweep-line approach.

The offset-approach In order to generalize the approach described above, we consider
the torus as the envelope surface of a moving ball and the quadric Q as an obstacle.
As before, we shrink the torus to its main circle and replace the quadric to its C-space
obstacle which is bounded by the £r-offset of the quadric. We want to derive an implicit
form of this offset surface which can be written as the set

[(x+m(x)|xe€ Ql,
where n(x) is the normal of Q in x and n(x)| = 1. We assume that Q is given in
the form (2.1) such that A = diag(ays, az, as3), Aa = 0 and ag € {0,—1}. We write
a = [ay, az, a3]’. Let the normal in x be given by n(x) = (Ax + a)/A with

M —(Ax+a)?> =0 (3.13)

We obtain any point y on the offset surface of Q by

(14 anp)xs + a1p
y=x+m(x) = | (14 anu)xz + apn
(1+ assp)xs + azp
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with © = r/A for x fulfilling the quadratic form defining Q. If we solve this for the
components of x, then we obtain

X = L(Dy—uDa) with
o(p)

d(n) = (T+anu)(1+axpu)(l+azp) and
D = diag((1+ anp)(1+asp), (1+anw)(1+azp), (1+ anp)(1+ anp)).

We insert this into the quadratic form of Q and into equation (3.13) and multiply the
results with the denominator and obtain the two polynomials

fi(y,u) = y'AD?*y +25(n)y'Da—2ud(p)a'Da+8(u)?ay =0, (3.14)
foy,n) = v28(w)?— a?u?s(n)? — py'A’D?y = 0. (3.15)

If we compute the resultant of f; and f, w.r.t. u, then we obtain an implicit from of the
offset surface. This polynomial can be simplified by removing trivial factors. In order
to determine the degree of the result, we make the following case distinction. We omit
the cases where Q is a plane or a pair of planes. Let v(y) = res,(f1, f2)(y).

Case 1: rank(A) = 3,ap = —1. Because we assume that Aa = 0 we have a = 0.
We observe that both polynomials f; and f, have degree six in the variable pu. The
coefficients of the powers of pu are polynomials of degree two in y. Thus, the Sylvester
matrix w.r.t. n has dimension 12 x 12 and its entries are of degree two. Therefore, the
degree of r(y) is 24. Furthermore, we see that for i = 1,2 and j = 1,2,3 we can find
polynomials 1i; and si; such that we can write

1 2

)

Then, by applying lemma 2.21 three times we conclude, that there is a degree 12 poly-
nomial h such that r(y) = (y1yoy3)* - h(y).

Case 2: rank(A) = 3, ao = 0. In this case, the degree of f1 in w is only four. Thus, the
degree of 1 is only 20. As in the previous case we find a decomposition of the form (3.16).
Therefore, the non-trivial factor h of the resultant has degree eight in this case.

Case 3: rank(A) = 2,a # 0. W.lo.g. we assume that az3 = 0. Because of Aa =0
we have a = [0,0, a3]". Now, the polynomials f; and f, have degree five and six in p,
respectively. The coefficients of the powers of pu are polynomials of degree at most two
in y. Thus, the Sylvester matrix is of dimension 11 x 11 with entries of degree at most
two. If we write

flyw) = 3 cosly) (3.17)
j=0
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with ny =5 and n, = 6, then we observe that c; 4 has degree one and cq5,¢25 and cy6
have degree zero in y. The transpose of the Sylvester matrix has the form

C1m 0 0 -+ 0 con, 0 o --- 0
Cini—1 Cinmy 0 --- 0 C2n,—1 Con, 0 --- 0

Consequently, only nine columns of the Sylvester matrix have degree two and thus, the
degree of the resultant r is only 18. We observe that for i = 1,2 and j = 1,2 we can
find a decomposition of the form (3.16), such that we can write v(y) = (y1y2)* - h(y),
where h has degree ten in y.

Case 4: rank(A) = 2,a = 0,ap = —1. In this case, both f; and f, have degree four
in p and the coefficients are of degree two in y. Thus, the degree of the resultant r is
16. Since we can find a decomposition of the form (3.16), the degree of the non-trivial
factor is eight in this case.

Case 5: rank(A) = 1,a # 0. W.l.o.g. we assume that a,, = azz = 0. Because of
Aa = 0 we have a = [0,a,,a3]". The degrees of f; and f, in w are three and four,
respectively. If we write these polynomials in the form (3.17), then we observe that
the degrees of the coefficients cq2,¢13,¢23,C24 in Yy are less than two. With the same
argument as in case 3 we conclude that the resultant has degree ten in y. Fori =1,2
and j = 1 we can again find a decomposition of the form (3.16), such that we can write

r(y) = y7 - h(y), where the degree of h is six.

For special cases the degree of the implicit form of the offset surface can be smaller.
For instance, if in case 1 two entries of A are equal, say a;; = a2, then we can factor out
the term (1+ a;;u)? from both equations (3.14) and (3.15). Then, the Sylvester matrix
is a 8 x 8-matrix with entries of degree two in y, such that the degree of the resultant
is only 16. Again, we can find decompositions that allow us to apply lemma 2.21 and
we find out that the degree of the non-trivial factor h of the resultant is eight. So, the
degrees derived above are only valid in the general cases.

The implicit form h that we obtain by the above computation describes both the inner
and the outer offset of Q. One could hope to find a factorization h = h; - h, such that
h; is the implicit form of the inner offset and h; of the outer offset. But in [SS00] it is
shown that the offset of a quadric is reducible if and only if the quadric is natural. If
Q is a non-natural quadric, then its offset O is irreducible, which means that the ideal
I[(O) C RIlxy,xz,x3] of all polynomials vanishing on O is a prime ideal. This means
whenever f- g € I(O) for two polynomials f and g, then f € I(O) or g € I(O). But
then, such a factorization of h cannot exist because either hy or h, would lie in I(O)
and would therefore vanish on O.

If we insert the rational parameterization of the main circle of the torus into the
implicit form h(x) = 0 of the offset surface of a general quadric, then we obtain a degree
24 polynomial in the worst case. The polynomial h is given by the determinant of a
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12 x 12 matrix divided by a trivial factor. Computing the power series representation
of h would be too costly. Therefore, it is more clever to insert the parameterization
into the matrix and then use the methods described in 2.4.5 to find the roots of the
determinant.

A sweep-line approach Let the quadric be given in general form by the matrix Ay.
We assume that the coordinate system has been transformed such that the main plane
of the torus is the (x1,x2)-plane and its center is the origin. Then we can parameterize
the torus rationally by

(Re-miss) 15
x(s,t) = | (R+715):2; (3.18)
T S

1+s2

The set of points generated by this parameterization is the torus without two circles.
These are the profile circle C; centered at the origin with radius R — r and the cross-
sectional circle C, centered at [—R, 0, 0] with radius r. If we insert this parameterization
into the quadratic form defining the quadric and multiply with the denominator, then
we obtain an implicit form f(s,t) = O of the intersection curve between the torus and
the quadric in the (s,t)-parameter space. Let C C R? be that curve. Since the torus is
compact, we know that all loops of the intersection curve are closed. Thus, we have the
following correspondence.

e Loops of the intersection curve that do not intersect one of the circles C; or C;
correspond to closed loops of C.

e Loops of the intersection curve that intersect C; or C, correspond to unbounded
loops of C.

e If a loop of the intersection curve is equal to C; or Cy, then it does not have a
corresponding part in C.

We can compute points on the loops of the second and the third type by intersecting the
circles C; and C, with the quadric. We have seen that this leads to equations of degree
at most four.

It remains to compute at least one point on each closed loop of the curve C. This can
be done by a sweep-line approach as described in [Gei02]. The idea of this approach is
to move a straight line over the parameter space. The line stops whenever it reaches
a so-called event point. Figure 3.10 illustrates this approach. The curve in the figure
consists of two closed loops. The sweep line is parallel to the t-axis. The event points
are the s-extremal points of the curve. Obviously, in this way we find at least one point
on each closed loop. The s-extremal points of our curve C given by the implicit form
f(s,t) = 0 form a subset of those points in which the normal Vf(s,t) is parallel to the
s-axis. Thus, the sweep-line has to stop in every position s for which there is a value t
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$1 S2 $3 S4 S

Figure 3.10: A sweep-line approach to find at least one point on each closed loop of a
planar curve.

such that

f(s,t) = 0 and

of

3s (s,t) = 0.
Computing the resultant of these two polynomials with respect to t leads to a polynomial
whose roots are the values of s where the sweep-line has to stop. Figure 3.10 illustrates
this approach. The corresponding values of t can then be computed by inserting s into
the system of equations and then solving for t. Since the degree of both f and 9f/0s
in t is four, the Sylvester matrix with respect to t has dimension eight. But it is also
possible to eliminate the variable s first by computing the resultant with respect to s.
Since the degree of f in s is four and the degree of 0f/0s in s is three, the Sylvester
matrix has dimension seven in that case. Moreover, the only two non-zero entries in the
first column of that matrix are the leading coefficients of f and 9f/0s, which differ only
by a factor of 4. Hence, by applying a row transformation we obtain a matrix with only
one non-zero entry in its first column. In this way we can reduce the dimension of the
matrix whose determinant has to be computed to six. We can compute this determinant
symbolically using Maple® . After dividing by a trivial factor, the resulting degree in t
is Te.

3.2.4 Specialization for Quadratic Complexes plus QIC

As in the two previous cases, we state a theorem that bounds the polynomial degrees of
the equations occurring in the static collision test.

Theorem 3.7. The static collision detection problem for the class QC+QIC can be
reduced to solving polynomial equations of degree at most eight.
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Again, we show that for objects of the class QC+QIC the four computational tasks of
our static collision detection algorithm can be performed by solving polynomial equations
of degree at most eight. We have already discussed the point-in-face- test for quadric
patches as well as the surface-surface-intersection for quadrics. Thus, we can concentrate
on the point-on-edge-test and the curve-surface-intersection.

Point-on-Edge-Test

We know that this task is trivial provided that we know the curve parameter of the
query point. Thus, we have to show how to compute this parameter ty for a point
p lying on the curve C. We already have described how this can be done if C is a
conic. So we assume that C is a quadric intersection curve. As we have stated in
section 2.3.4, we assume that we know a homogeneous matrix Ty, a parameterization
x(t,A) in homogeneous coordinates and a function A(t) such that the parameterization
of C is given by c(t) = Tyx(t,A(t)). If we compute the point

p’zT.J[H,

then we have to compute t such that x(t,A(t)) = p’. Since Ty is a product of rotation,
translation and scaling matrices, we can be sure that p; # 0. Thus, we can assume that
p’ is homogenized, i.e. p; = 1. We have seen in 2.3.4 that

0 +1 t t t +(1 +t2)

t A A A 0 2t
X(t,A) € 7\ ) t ) _t2 ) t)\ ) )\ ) )\

1 1 1 1 1 1—t2

In the cases where the fourth component of x(t,A) is one, we can determine to and Ay
from p’ by just looking at the right component. Then we check whether Ay = A(to). If
this is the case, then ty is the parameter that we wanted to compute. Otherwise the
connected component of C containing p is different from the one containing the edge
and thus, p does not lie on the edge. In the case where the fourth component of x(t, A)
is not constantly one, we use the second components of p’ and x(t,A) to compute t:

2t JEVIRE e 0,

S t= P2
11—t 0 otherwise.

By the third components we have Ay = (1 —t3)p}. Again, we check whether Ao = A(to).

Curve-Surface-Intersection

We have already seen that the curve-surface-intersection problem for a conic and a
quadric leads to a polynomial equation of degree four. So let C be a QIC and let Q
be a quadric. In order to compute the points of intersection between C and Q we
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could insert the parameterization of C into the quadratic form of Q. If we look at
the parameterization that we derived in section 2.3.4, we see that this can lead to a
polynomial of degree 12 in the worst case. The following example shows that this degree
can actually be reached.

Example 3.8. Let C be a part of the intersection curve between the hyperbolic paraboloid
parameterized by x(t,A) = [t,A,tA, 1]T and the ellipsoid defined by the homogeneous
matrix

110 0
120 0
AR=14501 o
00 0 —T

By inserting x(t,A) into the quadratic form defining the ellipsoid we find that the inter-
section curve can be parameterized by c(t) = [t,A(t), tA(t), 1] with

—t+v2—t4
+t

Let C be the part of the curve that is parameterized if we take the plus sign in this equation.
Now let Q be the sphere defined by the homogeneous matriz By = diag(1,1,1,—2). If
we insert c(t) into the quadratic form defining Q and clear the denominators, then we
obtain the condition

(2 =) (£ +2) + (E+ 1) — ' +2) = 2t(F + 1)V2 14,

In order to obtain a polynomial we square this equation. The degree of the resulting
polynomial is 12.

The intersection points between C and Q are a subset of the intersection points between
three quadrics, namely between Q and the two quadrics defining C. But these points
are the common roots of the three quadratic forms defining these quadrics. Bezout’s
theorem tells us that there are only eight such common roots. So the question is whether
this problem can be reduced to a polynomial equation of degree eight. In [CGM91] it
is shown by means of multivariate resultants that this is indeed the case. They use
a result from [Mac02] that expresses the resultant of k homogeneous polynomials in
k variables as the quotient of two determinants det N/ det D, where the denominator
is a factor of the numerator and D is a submatrix of N. In order to apply this to
three arbitrary polynomials f;,f, and f; in three variables x,y and z one considers
the f; as polynomials in only two variables x and y with coefficients being polynomials
in z. Then one introduces a new variable, say w, to homogenize the f;. Then, the
resultant det N/ det D is a polynomial of degree eight in z the roots of which are the
z-coordinates of the common roots of the fi. In [CGMO1] it is shown how to make this
resultant expression division-free by means of appropriate matrix transformations. For
each root zy of this polynomial the corresponding x and y coordinates are computed
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by substituting z, for z in the f; and then solving three equations of degree two in two
variables. This can be done using the Sylvester resultant which leads to equations of
degree at most four.

In [ES03] a method is presented to express this multivariate resultant directly as the
determinant of a matrix rather than the quotient of two determinants. Let fori=1,2,3
the homogeneous polynomials f;(x,y,z) be given in the form

fi(x,Y,2) = otiox” + auxy + Xz + ouzy® + oiayz + szt

These are the implicit forms of three conics in the projective plane. By the above
mentioned publication, these curves have a common point iff the determinant of the
matrix M(fy, f2, f3) is zero. This matrix is given by

[ X10 20 30 [O, 1 y 5] 0 [O, ],2]
X171 21 (X371 [0,3, 5] [O, 3,4] [O, ],4] — [0, 2,3]
X12 K22 (32 [0,4, 5] — [1 , 2,5] [O, 3, 5] [0, 1,5]
o3 g3 033 0 [1,3,4] [0,3,4] ’
X114 &4 34 [2,3,5] [2,3,4] + [],3,5] [0,3,5]

| X15 K25 (X35 [2,4,5] [2,3,5] 0 ]

where [i,j, k] denotes the Pliicker coordinate

X111 K2 (X3i
[, kI =det | o5 a5 o3
X1k Kok K3k

Now let gi(x,y,z) =0 for i = 1,2,3 be the three quadrics to be intersected. We write
these polynomials in the form hi(x,y) = 0 with h; € R[z][x,y], i.e. the coefficients of
h are polynomials in z. We introduce a new variable w to homogenize the polynomials
h; and obtain H;. Then, the determinant of M(H;, H,, H3) is a polynomial in z whose
roots are the z-coordinates of the intersection points between the three quadrics. The
degree matrix of M(H;, Hz, H3) is

000 2 —oo 1
000 2 1 1
111 3 2 2
000 0 1 1
111 3 2 2
(220 4 3 —oo|

With the method described in 2.4.2 we can determine an upper bound for the degree of
M(H;, Hz, H3) using this degree matrix. We find that this bound is indeed 8.

We now describe two alternative methods to find the intersection points between
three quadrics. The first one uses a Groebner basis approach to derive the degree eight
polynomial in z directly, i.e. without generating a quotient of determinants that has to
be made division-free. The second approach uses the parameterization of the L-quadric
in the pencil of two of the quadrics in order to derive a polynomial of degree eight in
the curve parameter of the QIC.
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A Groebner basis approach Let fi(x,y,z) =0 for i = 1,2,3 be the three quadratic
forms to be solved. This system of equations can be written in the form

[MvN] ' [xz,xy,yz,x,y, HT =0

with M € R3*3 and N € R[z]**3. Multiplying this equation from the left with a regular
3 x 3-matrix preserves the set of solutions. We know from linear algebra that each matrix
A can be transformed into reduced row echelon form by a sequence of invertible row
transformations, and that this form is uniquely determined by A. Each invertible row
transformation can be expressed as a multiplication from the left with a regular matrix.
Thus, there exists a regular matrix R € R3*3 such that RM is in reduced row echelon
form. Therefore we may assume that M is already in that form. We see that M must
have one of the following eight forms.

rankM =3: E
(1 0 « 1 o 0] [0 1 0]
rankM = 2: o1 B, o011, 0 01
_OO 0 _O 0 O_ _OOO_
[ 1 x P [0 1 o] [0 0 1]
rankM =1 0o 0 01, o0 01, 00
_O 0 0 _OO O_ _OOO_

rankM =0: O

with «, 3 € R. Let the entries of the matrix N be denoted as ai;. Now we treat o
and (3 as well as the ay; as indetermined coefficients and compute for each of the eight
cases a Groebner basis G = [g1, ..., gx] using lex order with x < y < ay for all i,j
and some arbitrary order among the ai;. Fortunately, the fact that M is in this special
form has the effect that G can be computed within few minutes using some computer
algebra system such as Maple®. The polynomial g, does not contain the variables x
and y and by substituting the symbols a;; by the polynomials in z we obtain the desired
polynomial of degree eight. The Groebner basis G also contains polynomials that are
linear in x and y. They can be used to determine the corresponding values for x and y
for each root of g.

An L-quadric approach Let the two quadrics containing the QIC C be denoted as
A and B. We know a parameterization xy(t,A), a matrix Ty and a function A(t)
such that C is parameterized by cy(t) = Taxp(t,A(t)). We saw in section 2.3.4 that
Thxn(t, A) parameterizes an L-quadric £ in the pencil of A and B, and that we can write
xn(t,A) = py(t) + Ary(t) such that the degree condition 2.12 is fulfilled. W.l.o.g. we
assume that £ # A. Let the quadrics A and Q be given by the homogeneous matrices
Ay and Qy, respectively. The intersection between £ and A and between £ and Q in
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Figure 3.11: The objects do not intersect at t = 0 and t = 1. Thus, the static collision
detection does not report a collision.

the parameters t and A are given by the solutions of

f](t,7\) = XH(t,}\)TT-}[IAHTHXH(t,A) = 0 and
fZ(t))\) - xH(t)}\)TT-}[—-IQHTHxH(t)A) = 0.

We define the polynomial g(t) = resy(fy,f2)(t). If for a real solution ty of g(t) = 0
and for Ag = A(to) the condition fq(to,Ag) = f2(to,Ao) = O is fulfilled, then the point
ch(to) is an intersection point between C and Q. In order to see that the degree of g(t)
is at most eight we define AH = TLAHTH and QH = TLQHTH and write down the
Sylvester matrix of f; and f; w.r.t. A.

rTAr 2pTAr pTAp 0
0 rTAr 2pTAr pTAp

r’'Qr 2p'Qr p'Qp 0
0 r'Qr 2p'Qr p'Qp

We omitted the parameter t as well as the subscript H for the sake of readability. If
we expand the determinant of S, e.g. by cofactors of the first column, then we see
that each addend has degree four in p as well as in r. Thus, the degree of g in t is
4(degp + degr) < 8 by condition 2.12. If the degree of f; and/or f, in A is less than
two, then the degree of g is obviously even smaller.

3.3 Dynamic Collision Test

The biggest problem of a static collision detection algorithm is the fact that one can
easily miss collisions due to the discretization of the time. Figure 3.11 illustrates this
problem. At time t = 0, the objects do not intersect. Object O, moves with velocity
v. At time t = 1, the situation is again intersection-free. Thus, the static collision
detection does not report a collision although this motion cannot be performed without
intersection. The dynamic collision detection is a possibility to avoid this problem.
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In this section we describe a dynamic collision test for quadratic complexes and natural
quadratic complexes. To make things easier, we assume that the object Oy is stationary
and O;(t) is moving during the time interval [0, 1]. We also assume that at time t = 0 we
are in a valid situation, i.e. int(O7)Nint(O,(0)) = @, where int(O) denotes the interior of
the set O. The problem that we want to solve is the following. First, we want to decide
whether there are values t € (0, 1) such that int(O;) Nint(O,(t)) # 0. If this is the case,
we want to compute the point in time te, € [0,1) such that int(O;) Nint(O,(t)) = 0
for all t € [0,t.] and there is an € > 0 such that int(O7) Nint(O,(t)) # O for all
t € (teol, teol + €). In addition to the collision time t.,; we want to compute a point
Peo € 00, that witnesses the penetration. We define what this means.

Definition 3.9. Let p be a point on the boundary of O1. We say that p witnesses a
penetration at time tc, if there is an ¢ > 0 such that for each neighbourhood N of p the
intersection N Nint(O7) Nint(O2(t)) # 0 for all t € (te,tc +¢).

Now, in addition to the collision time t.,,; we compute a point p., that witnesses a
penetration at time tq.

We assume that the linear velocity v and the angular velocity w of O, are constant
over the time interval. Together with the assumption that only one object moves whereas
the other one is fixed this makes it necessary to sequentialize the motions of the objects.
The reason for this is that if two objects O; and O, rotate simultaneously, then the
angular velocity of O, seen from the local coordinate system of (O; is not constant in
general, even if both angular velocities are constant in global coordinates. We propose
two ways two sequentialize the motions. The first is to fix an ordering on the objects
and then move object 1 first whereas the others are fixed, then move object 2, etc. At
each step, the moving object performs a superposition of a translational and a rotational
motion. We will see later that the degrees of the polynomial equations that have to be
solved are much less for pure translations or pure rotations. Therefore, we propose a
second way of sequentializing. First, we perform the translations of all objects at once.
For the collision detection this means that it considers all pairs of objects (O;, O;) and
looks at the motion from the local coordinate system of O;. Next, we proceed as in the
first approach and rotate the objects one at a time whereas the others are fixed.

A naive way to perform a dynamic collision test between two objects would be to
use the velocities v and w and the diameter d of O, and the distance 0 between O,
and O,(0) to compute a lower bound T for the duration of the collision-free motion as
shown in [Mir96b]. If T > 1, then we know that there is no collision in the interval [0, 1].
Otherwise, we consider the interval [T, 1] and compute a new lower bound, etc. We stop,
if the difference of two successive values of T is smaller than a given bound. But this
would be an extremely time consuming approach, since the computation of the distance
between two quadratic complexes is anything but a trivial task and requires finding the
roots of polynomials of high degrees (see [Len04] for details).

In the following we will present a different approach to solve the dynamic collision
detection problem. We will start with giving a generic algorithm and then continue with
concrete descriptions of the parts of the algorithm.
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3.3.1 A Generic Algorithm

Depending on the parts of the boundaries of the objects that contain the witness point
P., We can define four types of collision:

vertex-face: p., is a vertex of Oy or Oy(teo1)-

edge-edge: P, lies both on an edge of O and an edge of O;(te) and is not a vertex.
edge-face: p., lies either on an edge of O; or an edge of O,(t) but not both.
face-face: Otherwise.

Definition 3.10.

e If a is a vertex of Oy and F is a face of Oy embedded in the surface S, then
to € [0, 1) is a potential collision time between a and F if a € S(ty). If additionally
a € F(ty) and a witnesses a penetration at time to we say that a collides with F
at time to. The definition for the case that a is a vertex of O, and F is a face of
O1 18 similar.

o If & and & are edges on O1 and O, lying on the curves C; and Cy, respectively,
then to € [0,1) is a potential collision time between & and &, if C1 and Cy(to)
intersect in a point p. If additionally p lies on both & and E3(ty) and p witnesses
a penetration at time ty we say that &1 collides with &, in the point p at time to.

o If £ is an edge of O and F is a face of Oy, and £ is embedded on the curve
C and F is embedded on the surface S, then ty € [0,1) is a potential collision
time between £ and F if C and S(to) have a tangential intersection point p. If
additionally p lies on both £ and F(ty) and p witnesses a collision at time to we
say that &£ collides with F in the point p at time ty. The definition for the case
that £ belongs to Oy and F s a face of Oy is similar.

o If F1 and F; are faces on O and Oy lying on the surfaces Sy and S,, respectively,
then we say that ty € [0,1) is a potential collision time between Fy and F> if S
and S;(to) have a tangential intersection point p. If additionally p lies on both F;
and F>(to) and p witnesses a penetration at time to we say that Fy collides with
F> in the point p at time to.

With these definitions we can formulate a generic algorithm for the collision detection
between two objects. For each pair (F7, F2) of O7 and O, we perform the following four
types of tests according to the above described collision types.

1. Vertex-Face Test: For each vertex of F; we check whether it collides with F, and
vice versa. We set t., to the minimum of all the respective collision times.
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2. Edge-Edge Test: For each edge of F; we check whether it collides with an edge
of F>. We set t., to the minimum of the earliest among the respective collision
times and the previously computed minimum.

3. Edge-Face Test: For each edge of F; we check whether it collides with F, and vice
versa. Again, we set t., to the minimum of its previous value and the earliest such
collision time.

4. Face-Face Test: Finally, we check whether F; collides with F,. As before, we set
teo1 appropriately.

Whenever a new collision time is computed, a corresponding point p., is determined,
as well. If none of the above tests detects a collision, then O; and O, do not collide.
Instead of considering all pairs of faces, we use the techniques described in section 3.1 to
exclude parts of the objects from the test. According to definition 3.10 we can split each
of the four tests into three parts. If G; and G, are the features of the objects O; and O,
to be checked for collision, then first compute the potential collision times between G,
and G, and the corresponding intersection points. Then check for each such time ty and
corresponding point p, whether p, lies on both features at time t;. This second test
means performing point-on-edge tests and/or point-in-face tests. Finally, check whether
Po Witnesses a collision at time to. We call this the penetration test.

In the following, we examine how these tests can be performed in the case of quadratic
complexes and natural quadratic complexes. We assume that object Oy is fixed in time
and that O, moves with linear velocity v and angular velocity w. Thus, for every point
p(t) € O,(t) we have

p(t) =R(t)(p—c¢) + ¢+ s(t),

where € is the center of mass of 0,(0). The rotation matrix is given by Rodrigues’
formula

R(t) = cos(|wlt) - E + (1 — cos(!w!t)) ~ww! +sin(Jwlt) - wX,

with w = w/|w| if w # 0 and w = 0 otherwise. The translation vector is defined as
s(t)=v-t.

In order to obtain polynomial equations, we use a similar substitution as in (2.7)
to transform the trigonometric functions in rational ones. We substitute |w[t =
2 arctan(wt) and obtain

1— (wt)? 2wt

COS(‘(.U“:) = m, and Sln(|w|t) = m

This substitution is equivalent to

2 1 t
lw| = " arctan(wt) & w= T tan (%) ~ % for small values of |wlt.
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Thus, we set w = |w|/2 and assume that w is constant over the time interval. As we
always normalize this interval to [0, 1], it can easily be shown that the relative deviation
of the replacement of |w| from the original value is bounded by

B 2 arctan(|wl/2)
|| '

If we want this deviation to be less than one percent, |w| must be less than 0.35s7'. In
a real-time simulation with twenty frames per second this corresponds to approximately
400 degrees per second!.

If a quadric associated with O,(0) is defined by the quadratic form

So(x) =x"TAx +2x"a+ ay =0,

then with the above definitions the quadratic form of the quadric at time t can be derived
by considering the equivalence S¢(p(t)) =0 & So(p) = 0 which leads to

Se(x) = x"A(t)x+2x"a(t) + ap(t) with

Alt) = (1+ w2 RARML)T,

alt) = (1+ wt)d)?-R(t)(Ao(t) + a), (3.19)
alt) = (1+wt))?-Slo(t)),

o(t) = ¢—RH)T(C+s(t)).

The degree of S¢(x) in the parameter t is two in the case of a pure translation, four in
the case of a pure rotation and six in the case of a superposition of a translation and a
rotation. Similarly, if a plane associated with 0,(0) is given by n'x = ng, then at time
t this equation has the form

n(t)"x = ne(t) with
nt) = (1+wt)?) -R(t)n, (3.20)
no(t) = (14 wt)?): (no—nlo(t)),

where o(t) is defined as in the case of a quadric. The degree of this implicit form in t
is one in the case of a translational motion, two in the case of a rotational motion and
three in the case of a superposition. Table 3.1 shows the degrees of the coefficients of
the implicit forms for the three types of motion.

3.3.2 Specialization for Quadratic Complexes

We show that in the case of quadratic complexes the task of computing the potential
collision times can be reduced to polynomial equations. We analyze the degrees of
these equations for the case of pure translational motions, pure rotational motions and

'If the time interval [0, 1/20] is normalized to [0, 1], then the velocities are multiplied by 20.
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| nino[Afa]a]
T o1 |0|1]2
R |22 |4|4]4
T+R|2|3|4]|5]|6

Table 3.1: The degrees of the coefficients of the implicit forms (3.19) and (3.20). The
abbreviations T, R and T+R denote a pure translation, a pure rotation and
a superposition of both, respectively.

superpositions of translations and rotations. The point-on-edge tests and point-in-face
tests that occur in the generic algorithm are performed in the same way as shown in 3.2.2.
At the end, we show how the penetration test can be performed in non-degenerate
situations. However, we are not able to perform this test efficiently in all cases. We
show that the penetration test can be formulated as a system of polynomial inequalities
in four variables for which the solvability in the neighbourhood of the origin has to be
decided. It is an open problem how this decision can be made efficiently in all cases.

In the following paragraphs we derive polynomial equations for the potential collision
times in the vertex-face test, the edge-edge test, the edge-face test and the face-face
test. The maximum degrees of these equations are summarized in table 3.2. In most
cases we are not able to compute these polynomials symbolically, not even with the
help of a computer algebra system on a machine with 256 MB ram. This is because
they are defined as determinants of matrices whose entries are polynomials with very
complicated coefficients. Thus, we propose to use the methods presented in 2.4.5 to
find the roots of the polynomials in matrix representation. But nevertheless, we will
determine the degrees of the polynomials and, in some cases, prove that they can be
factorized. Besides the fact that these degree bounds are of theoretical interest, they
can be very useful if one wants to determine the coefficients of the polynomials using
interpolation techniques. Hence, it is our aim to keep these degrees as low as possible
and therefore, we will make case distinctions on the specific curve and surface types as
can be seen in table 3.2. We try to discuss these cases as thoroughly as possible.

Whereas the vertex-face test is straightforward, the remaining tests are far more com-
plex. In the discussion of the edge-edge test we spend a lot of effort on showing that
the resulting polynomial can be factored. In the edge-face test and the face-face test we
make use of our results presented in 2.4.3

Vertex-Face Test

We describe how to compute the potential collision times between a vertex p of O; and
a face F of O, and vice versa. First, let p be a vertex of Oy. Let F be embedded in
the quadric ©. We apply a translation to the scene in such a way that p = 0. Let
the quadratic form defining Q after this transformation be given in the form (2.1). A
necessary condition for p € F is obviously p € Q which in the case of p lying in the
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Translation | Rotation | Superposition

Vertex-Face Test

vertex vs. plane 1 2 3

vertex vs. general quadric 2 4 6

Edge-Edge Test

straight line vs. straight line 1 4 5
straight line vs. general conic 2 4 6
general conic vs. general conic 4 8 12

Edge-Face Test

parabola vs. plane 1 4 5
ellipse/hyperbola vs. plane 2 4 6
straight line vs. general quadric 2 4 6
general conic vs. general quadric 8 16 24
Face-Face Test

plane vs. central quadric 2 4 6
plane vs. non-central quadric 1 4 5
general quadric vs. general quadric 12 24 36

Table 3.2: The maximum degrees of the polynomial equations for the potential collision
times.

origin is equivalent to ap = 0. We use the equations (3.19) to obtain an equation in
the parameter t for the points in time when the vertex lies on Q. If we have a pure
translation, i.e. w = 0, then ay(t) = So(—V-t), which is a polynomial of degree two in t.
In the case of a pure rotation, i.e. v =0, we have ao(t) = (1+ (wt)?)?-So(c—R(t)T¢),
which is a polynomial of degree four. If the motion consists of a superposition of a
translation and a rotation, then the resulting degree is six.

Now we consider p to be a vertex of O, and F a face of O;. Again, we denote the

quadric containing F as Q. The position of the vertex at time t can be expressed as
p(t) =R(t)(p—c) + c+s(t).

We insert this into the quadratic form of Q. In the case w = O this leads to a quadratic
equation. Otherwise, we multiply with the degree four denominator to obtain a poly-
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nomial of degree four in the case of a pure rotation and degree six in the case of a
superposition.

If we assume that F is embedded on a plane rather than on a quadric, then we proceed
analogously. In that case we obtain a linear equation in the case of a pure translation,
a quadratic equation in the case of a pure rotation and a cubic one in the case of a
superposition. To summarize all this we state the following theorem.

Theorem 3.11. Finding the potential collision times between a vertexr and a quadric can
be reduced to finding the roots of polynomials of degree at most two in the case of a pure
translation, four in the case of a pure rotation and siz in the case of a superposition. In
the case of a vertex and a plane, the degrees are one, two and three, respectively.

Edge-Edge Test

Let & and &, be edges of O; and O,, respectively. With C; and C, we denote the two
conics containing these edges. First, we compute a superset 7 of the potential collision
times. Then, we check for each time t. € 7 whether it is a potential collision time, i.e.
whether C; and C,(t.) intersect. If this is the case we compute the respective intersection
points. We start with the computation of the superset of the potential collision times.
We make a case distinction whether the curves are straight lines or not.

Case 1: Both C; and C, are straight lines. Let C; be given by a vertex a; and a
direction u;. Obviously, the two lines can only intersect if the point a, lies in the plane
containing a; and spanned by the vectors u; and u,. This means that u;, u,; and a,—a,
are linearly dependent, i.e.

det[u1,u2(t), az(t) — a1] =0. (3.21)
The direction vector u,(t) and the vertex a,(t) are given by

'le(t) = R(t)ﬁz and
a(t) = R(t)(a—c¢)+c+vt.

In the case of w = 0 equation (3.21) is linear in t. If w # O, then we multiply the
second and third row on the left hand side of (3.21) by 1 + (wt)? and obtain a degree
four polynomial in the case of v = 0 and a degree five polynomial in the case of a
superposition.

Case 2: Neither Cy nor C; is a straight line. We assume that both curves are given
by the intersection between a quadric and a plane. Let the quadric Q; containing Cy
be given by the matrix Ay and let the plane containing that curve have the equation
m'x = my. With Q,, By, n and ny we denote the respective quantities for C,. In order
to keep the equations easier we additionally assume the following.

e m=1[0,0,1T and my =0, i.e. C; lies in the (x1, x2)-plane.
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e A has diagonal form, a;; # 0 and a; = 0.

This can always be achieved by applying an appropriate translation and a rotation. If
there is an intersection point x between C; and C,, then this point is a solution of the
following system:
x"Ax +2x"a+ ay =0,
x"Bx + 2x"b + by = 0,
- (3.22)
xm—my=0,
x'm—ny=0.

As Cy lies in the (x1,x2)-plane, the third of these equations simplifies to x3 = 0. Sub-
stituting this into the remaining equations and using the above assumptions we obtain
three equations in two variables, namely

f] (X] , Xz) = CL]]X% + CL22X% + 2(12X2 + Qap = 0,
fa(x1,%x2) = b1xd + bpxs + 2b1axixz + 2byxg +2byxa + by = 0,
fa(x1,%2) = muxq +mn2xa — o = 0.

We eliminate the variable x; and reduce this system to two equations in one variable by
setting

g1(x1) = resy,(f1,f3)(x1) and

g2(x1) = resy,(f2,f3)(x1).

Both these polynomials have degree two in x;. We eliminate x; from this system by
defining the function D(Cy,C;) = resy, (g1, 92). This function has the value zero when-
ever the two curves have a common point. In order to get a polynomial equation in the
time parameter we replace ng and the entries of n and By using the relationships (3.19)
and (3.20). Expanding the algebraic expression for the resultant D(Cq,C;), we get a
sum of 106 terms each of which is a product of six time dependent quantities. Replacing
these quantities leads to a huge polynomial. In the case of w # 0 it was not possible
to compute this polynomial symbolically with the computer algebra system Maple® on
a machine with 256 MB ram. In the case w = 0 we immediately verify that the total
degree of f; and f, in the variables x;, %, and t is two and the total degree of f3 is these
variables is one. Thus, g7 and g, define conic sections in the (x1,t)-plane and therefore
the degree of their resultant has degree four in t. If a rotation is involved, we replace
the time dependent quantities in the 4 x 4 Sylvester matrix of g; and g; rather than in
the resultant. This is the same as replacing them in the polynomials g; and g;. The
polynomial f; is always constant in t. In the case of v = 0 the degrees of the polynomials
f, and f3 in t are four and two, respectively. The matrices of the degrees in t of the
entries of Syl, (f, f3) and Syl,, (f2, f3) are

0O 0 O 4 4 4
2 2 — and 2 2 — |,
—00 2 2 —oc0 2 2
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respectively. Thus, the degrees of g; and g, in t are four and eight, respectively. Using
Maple® we find that (1 + (wt)?)? is a factor of each coefficient of g, as a polynomial in
x1. Therefore, we can divide the last two rows of Syl,. (g1, g2) by this factor and obtain
a matrix polynomial M(t) of degree four in t. The potential collision times are roots
of the determinant det(IM(t)). We compute all roots using the techniques introduced
in 2.4.5. The reason why these roots form a proper superset of the potential collision
times in general is that some of them might only be extended to a solution of 3.22 by
points x with complex coordinates.

In the case of a superposition of a rotation and a translation the degrees of the poly-
nomials f, and f3 in t are six and three, respectively. The degree matrices are

O 0 0 4 5 6
2 3 —o© and 2 3 —
—00 2 3 -0 2 3

Hence, the degrees of g7 and g; in t are six and ten, respectively. Again we find that each
coefficient of g, as a polynomial in x; is divisible by (1 + (wt)?)2. Thus, we can again
divide the last two rows of Syl (g1, g2) by this factor and obtain a matrix polynomial
M(t) of degree six. Again, we use the techniques described in 2.4.5 to find the roots of
det(M(t)), which form a superset of the potential collision times.

With the help of Maple® we find that the resultant of g; and g, can be written in
the form D(C;,C;) = nj - h. This means that in the case that n, is constantly zero
this resultant is constantly zero, as well. In this case we reverse the order of eliminating
the variables in the above approach. We first eliminate x; from f;,f, and f3. Then
we eliminate x, from the resulting polynomials g; and g,. Let us denote the resultant
of these two polynomials w.r.t. x, by D(Cy,Ca). Again, with the help of Maple® we
observe that this polynomial can be written in the form D(C;,C,)(t) = nj - h with the
same factor h. If n; is also constantly zero, then D(C;,C,) is constantly zero, as well.
But this means that n = [0,0,£1]", which means that either w = 0 or w is parallel
to n(0) which is again parallel to the x3-axis. In this case we have to look for the roots
of ny(t), which is linear in the case of a translation, quadratic in the case of a rotation
and cubic in the case of a superposition. If ng is also constantly zero, then v lies in
the (x7,x2)-plane and we have to find the collision times of two conics in the plane.
This problem also arises as a subproblem in the edge-face test and therefore we will not
discuss it here.

Now we assume that n is not constantly parallel to the x3-axis. Then the candidates for
the potential collision times are either roots of nq(t), n,(t) or h(t). Therefore, we want to
analyze the degree of the polynomial h. Since we cannot factor n; out of Syl,, (g1, g2)
and we are not able to compute D(Cy,C;)(t) symbolically, we cannot compute h(t)
symbolically, as well. But if we know its degree, then we can use interpolation methods
as described in 2.4.5 to find its roots. If we compute the degree matrix of the Sylvester
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matrix of g; and g, we get

4 5 6 —
—o00 4 5 6

8§ 9 10 —
—00 8 92 10

From this we can conclude that the degree of D(Cq,C;)(t) is 28 in the case of a superpo-
sition. Similarly, we get degree 24 in the case of a pure rotation. Since n has degree two
in t and D(Cy1,C;) = nj - h, we conclude that h has degree 16 in the case of a rotation
and 20 in the case of a superposition. We saw that we can divide the last two rows of
the Sylvester matrix by (1 +w?t?)? and obtained the matrix polynomial M(t). Thus,
the degree of det(M(t)) is 16 in the rotational case and 20 in the case of a superposi-
tion. The question is, whether the determinant of M(t) still can be divided by n,(t)* or
— putting it the other way round — whether h can be written as h(t) = (1+ (wW?t?)*-1(t).
The answer to this question is yes, which we prove in the following.

Lemma 3.12. If w x n(0) # O, then at most one component of n(t) is divisible by
1+ (wt)2

Proof. Suppose that 1+ (wt)? divides two components of n(t). Because of the rela-
tionship (3.20) we have n(i/w) = 2(w x (n x w) + i(w x n)), where we wrote n for
n(0). Since two components of this vector must be zero, it follows that the real part
wx (nxw) as well as the imaginary part w xn must be parallel to one of the coordinate
axes. In particular, these two vectors must be parallel to each other, i.e.

(wxn)x (wx(fxw) =0 &
(A xwPw = 0.
This means that w x n = 0 which is a contradiction. O

Therefore, not both n(t) and n,(t) are divisible by 1 + (wt)?. Since (1 + (wt)?)*
is a factor of both D(Cy,C)(t) = na(t)? - h(t) and D(Cy,C2)(t) = n(t)* - h(t), this
lemma implies that there is a polynomial  such that h(t) = (14 (wt)?)*-r(t) whenever
w x n(0) # 0. In order to show that h(t) can also be factorized in this way if w and
n(0) are parallel, we need the following lemma.

Lemma 3.13. Let f, g € Clxq,...,xn] be polynomials and let g # 0. Iff(&1,...,&) =0
for all (&,...,&x) € C™ satisfying g(&1,...,&n) #£0, then f =0.

Proof. For a polynomial p and an ideal I we write V(p) and V(I) for the varieties
defined by p and I, respectively. Further, we write (p) for the ideal defined by p. If
P is a pointset, then we write P for the Zariski closure of P. First, we notice, that
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C™\ V(g) C V(f). Next, by theorem 7 from [CLO97| we have
Cr\V(g) = V(0))\ V({g))
V({h € Clx1,..., %] |hq € (0) for all q € (g)})
= V({0))
= C-
Hence, V(f) = C™ and therefore f = 0. O

This statement is intuitively obvious. If f takes for all but a zero-set of points the value
zero, then it should be the zero polynomial. Now we can show that we can factorize the
polynomial h. The following corollary states the more general result that the resultant
of g1 and g can be factorized.

Corollary 3.14. D(C;,C)(t) = no(t)*- (1 + (wt)2)* - r(t) for all conics C; and C, and
all velocities v and angular velocities .

Proof. We already know that D(Cy,Ca)(t) = na(t)* - h(t). For situations where n(t) is
constantly parallel to the x3-axis we know that n,(t) is constantly zero and thus, the
claim is trivial. Otherwise, define the polynomial g(&) = (w x n(0))?, where & is the
vector of all generic coefficients defining C;,C,, w and v including t. Obviously, g is not
the zero polynomial. With lemma 3.12 we have seen that f(&) = h(t)—(1+(wt)?)*r(t) =
0 for all & satisfying g(&) # 0. Hence, lemma 3.13 implies that f is the zero polynomial
which completes the proof of the corollary. O

Together with our considerations concerning the degree of D(Cy,C,)(t) this corollary
shows that we can find a superset of the potential collision times between two conics by
finding the roots of polynomials of degree at most four in the case of a pure translation,
eight in the case of a pure rotation and twelve in the case of a superposition.

Case 3: (; is a straight line and C; is a conic. We assume that C; is the xj-axis. This
can be achieved by applying an appropriate translation and a rotation. As in the case
of two conics we start with the equations (3.22). Since C; is the x;-axis, we replace the
first of these equations by x, = 0 and — as before — the third by x3 = 0. Substituting
this in the remaining two equations, we get the system

gi1(x1) = buxd+2bixg +by and
g2(x1) = myx; —mno.

As before, we define D(Cy,Cz) = resy, (g1, g2) and obtain
D(Cy,C2) = ngbyy +niby + 2noniby.

By table 3.1 we find that the degree of D(Cy,C,)(t) is two in the case of a translation,
eight in the case of a rotation and ten in the case of a superposition. If we evaluate
this polynomial with randomly chosen coefficients using Maple® , then we see that it
factorizes as (1 4+ (wt)2)? - r(t). We want to prove that this is always possible.
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Lemma 3.15. D(Cy,Co)(t) = (1 4+ (wt)?)? - r(t) for all straight lines C1 and conics Ca
and all velocities v and angular velocities .

Proof. We define two polynomials D(Cy,C;) and D(Cq, C2) as follows. Let f1(x1,x2) = X2
be the first one of the four polynomials in (3.22). Then we substitute x3 = 0 into
the second and the fourth of these polynomials which yields f2(x1,%2) and f3(x1,%2),
respectively. We have the system of equations

f:1 (XDXZ) = X2 = 0?
]iz(X],Xz) = b]]X‘% +b22X%+2b12X1X2 +2b1X1 +2b2X2 +bo = 0,
f3(x1,%2) = mMxq +nax2 — Mo = 0.

For i = 1,2 we define gi(x1) = resxl(ﬂ,f})(m). This means, g;(x1) = nyx; — ng and
d2(x7) is the same polynomial as g»(x;) in the case of two conics. Then we set D(Cy,Ca) =
resy, (01, g2). If we evaluate this resultant, we realize that D(Cy,C) = n3-D(G,C).
D(Cy,C,) is defined similarly. Let fq(x7,%3) be the third one of the polynomials
n (3.22). Then we substitute x, = 0 into the remaining two equations and obtain

the system
f1 (x1,%x3) = X3 = 0,
fz(X],X3) = b]]X% + b33X§ + 2b13X1X3 + 2b1X1 + 2b3X3 + bo = 0,
f3(x1,%x3) = mix; +nzxz —no = 0.

For i = 1,2 we define g;(x1) = res,, (fi, f3)(x1). In particular, g;(x;) = gi1(x1). Now,
we set D(Cy,C2) = resy, (G, 9»). Evaluating this resultant, we observe that D(Cy,C,) =
2.D(Cy,Ca).

Since g, is equal to the polynomial g, in the case of two general conics, we already
know that this polynomial is divisible by (1 + (wt)?)%. Using Maple® we find that this
is also true for g,. The polynomials g; and g, are linear in x; and hence, (1 + (wt)?)?
is a factor of one row of both Syl (g1,d2) and Syl,, (gy,9;). Since D= n3 - D and
D =nZ-D, it follows from lemma 3.12 that D(C1,C2)(t) = (1 + (wt)?)2 - 7(t) whenever
w x n(0) # 0. As in the proof of corollary 3.14, lemma 3.13 implies that this is true in
all cases. O

This lemma together with our considerations concerning the degree of D(Cy,C;) im-
plies that the degree of the polynomial r(t) is two in the case of a translation, four in
the case of a rotation and six in the case of a superposition.

Case 4: (5 is a conic and C; is a straight line. As in case 2, we start with the equa-
tions (3.22) and assume again that m = [0, 0, 11" and that A is a diagonal matrix and
a1 # 0 and a; = 0. Since C; is a straight line we replace the second equation in (3.22)
by
T _
X b— bo =0.
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After inserting x3 = O into the first, second and fourth equation we get the system

f] (X] , Xz) = Cl]]X% + (1227(% + 2(127(2 +ay = 0,
fa(x1,x2) = bixg +byx, — by = 0,
fa(x1,%x2) = myx; +nyx2 — g = 0.

We define gi(x7) = resy, (fi, f3)(x;) and then D(Cy,C;) = resy, (g1,92). In the case
w = 0 we observe that the total degree of f; in xq,x; and t is two and the total degrees
of f, and f3 in these variables are one. Hence, g; defines a conic section and g; a
straight line in the (xq,t)-plane. Thus, the degree of D(C;y,C;) in t is two in that case.
If the motion is a pure rotation, then the matrices of the degrees in t of the entries of
Syl,, (f, f3) are

0O 0 O

2 2 — and [ié],
—o00 2 2

respectively. Thus, the degrees of both g; and g, in t are four. With the help of
Maple® we see that each coefficient of g, as polynomial in x; can be divided by 1+ (wt)?.
Hence, we can divide the last two rows of Syl,. (g1, g2) by this factor and obtain a (3 x3)-
matrix polynomial of degree four in t, that has the degree matrix

4 4 4
2 2 —x
—00 2 2
This implies that D(Cy,C,)(t) factorizes as (1+(wt)?)2-h(t) where h(t) has degree eight

in t. In the case of a superposition of a translation and a rotation the degree matrices

are
0 0 0

2 3 — and[
—00 2 3

from where we conclude that the degrees of g; and g, in t are six and five, respectively.
Again, we can divide the last two rows of Syl (g1,92) by 1+ (wt)? and we obtain a
(3 x 3)-matrix polynomial of degree six in t that has the degree matrix

2 3
2 3

4 5 6
2 3 —
-0 2 3

Thus, we conclude that D(C;,C2)(t) can be factorized in the form (1 + (wt)?)? - h(t)
where h(t) has degree ten in t.

If we evaluate D(Cy,C,) symbolically before we replace the coefficients of C, by time
dependent functions we observe that we can also factorize this determinant in the form
D(C;,C2) = n3 - r(t). Similar to case 2 we can define a function D(C1,C>) by chang-
ing the order of variable elimination. We find that this function can be written in the
form n? - r(t) with the same polynomial r. With the same argument as in the case
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of two conics we can prove that there is a polynomial p(t) such that we can write
D(C1,C2)(t) = na(t)? - (1 + (Wt)?)? - p(t), where p(t) has degree four in the case of a
pure rotation and six in the case of a superposition.

Now we describe how to check whether a given point t. in time is a potential collision
time. This means we check whether C; and C»(t.) intersect and if this is the case we
compute the intersection points. For the sake of simplicity we omit the time parameter
now and write C, instead of C;(t.). Again we make a case distinction whether the curves
are straight lines or not.

First, let both C; and C; be straight lines. In this case we know that equation (3.21)
holds for t = t.. Hence, the lines intersect if and only if the equation

a; +Auy = a; + puy

has a real solution (A, u). If u; x u; = 0, then the lines are either parallel or identical.
If additionally uy x (a; — a;) = O they are identical and we may choose any point on
them as an intersection point. Otherwise, the lines are parallel. So let u; x u, # 0.
Then, by Cramer’s rule we have an intersection with

det[a; — ay, uz, uy x uy]

A = d
(uy x uy)? o
~detlaz — ar,uy, w7 X Uyl
e (uy x uy)?

Thus, we have solved only linear equations in order to perform this intersection test.

Now, we consider the case that not both curves are straight lines. W.l.o.g. we assume
that C, is not straight. In this case we first determine the intersection points between
C; and the plane P that contains C, by inserting the parameterization of C; into the
implicit form of P and solving the resulting equation. This equation is linear in the
case that C; is a straight line and quadratic otherwise. If such an intersection point
does not exist, i.e. the equation has no real solution, we know that t. is not a potential
intersection point. Otherwise, there are either finitely or infinitely many intersection
points, depending on whether C; lies in P or not. If C; intersects P in finitely many
points, let p be such an intersection point. We must check whether p lies on the curve
C,. As stated in section 2.3.3 we know a point ¢ on the plane P as well as two orthogonal
unit vectors u and v forming the coordinate system of that plane such that C, is given
by the implicit form (2.5). The coordinates of the point p in that coordinate system are
Al =[p—c)™u, (p—c)™]. The curve C, contains p if and only if the coordinates
A, u] satisfy the form (2.5).

In the case of C; lying in the plane P we express the parameterization x(s) of C; in the
coordinate system of P formed by the vectors u and v and the origin ¢. The coordinates
A(s), u(s)] of x(s) in this system are [(x(s)—c))Tu, (x(s)—c)"™v]. We insert this into the
implicit form (2.5). In the case of C; being a straight line we get a quadratic equation,
and if C; is a conic we multiply with the denominators to get a polynomial equation of
degree four. The solutions of this equation in s give us the desired intersection points
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x(s). Thus, the degree of the polynomial equations is at most two if exactly one of the
curves is a straight line and at most four if both curves are conic sections.

We summarize the results in the following theorem.

Theorem 3.16. Finding the potential collision times between two conics C1 and Cy can
be reduced to finding the roots of polynomials whose degrees are upper-bounded by the
following table.

translation | rotation | superposition

Both Cy and C; are

4
straight lines 1 >
C; 'or Cz s a ) 4 ¢
straight line
Neither Cy nor C; is 4 3 1

a straight line

Edge-Face Test

Now we describe how to compute the potential collision times between an edge £ of Oy
and a face F of O, and vice versa. As usual, we denote the curve containing £ by C and
the surface containing F by S.

Case 1: Let us first consider the case that £ belongs to O;. We distinguish the cases
whether C is a straight line or not and whether § is a plane or not. We do not have
to consider the line-plane case because whenever a straight line segment collides with
a planar face there must be a collision between this segment and the boundary of that
face or between the endpoints of the segment and the face. Thus, this case is covered
by the edge-edge collision detection and the vertex-face collision detection.

Let C be a straight line and let S not be a plane. By applying an appropriate rotation
and translation to the scene we can assume that C is the xj-axis. The quadric S is
defined by the (4 x 4)-matrix Ay. Inserting the parameterization x(A) = [A,0,0,1]7
of the xy-axis into the quadratic form of § we get a quadratic polynomial in A whose
roots correspond to the intersection points between C and S. If there is a tangential
intersection point then the discriminant of this polynomial is zero. This discriminant is

A(C,S) = a? — arrap.

We replace a1, a7 and ag in this function by the respective time dependent functions
which are given by the relationships (3.19). With the help of Maple® we find that after
this substitution the resulting polynomial is divisible by (1 4+ (wt)?)2. The resulting

degree is six in the case of a superposition of a translation and a rotation, four in the
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case of a pure rotation and two in the case of a pure translation.

Now, let C be not a straight line and let S be a plane. By applying an appropriate
rotation and translation to the scene we can assume that C lies in the (x1, x2)-plane and
its quadratic form in the variables x; and x; is given by the matrix

an 0 ay
AH = 0 azy Qap
a a ap

The plane S is defined by the implicit form x'™n —ny = 0.

Lemma 3.17. Let C be a curve in the plane P and let S be a surface. Then, p is a
tangential intersection point of C and S if and only if p is a tangential intersection point
of C and the intersection curve between S and P.

Proof. Let c(t) be a parameterization of C and let c(ty) = p. Let the plane P be given
by the equation x™n = ny. As C lies in P, we have ¢(t)™n = ng for all t which implies
that ¢(t)'n = 0 for all t. Let m denote the normal of S in p. The tangent of the
intersection curve between S and P in the point p is parallel to the vector u = m x n.
To prove the lemma, we must show that ¢(ty)"m = 0 if and only if ¢(t,) is parallel to
u, ie. ¢(tg) x u=0. It holds

c(to) xu = m-¢(to) m—n-e(ty)'m

= —n-¢(ty)'m.

Since n # 0, this proves the lemma. O

By this lemma, the tangential intersection points between C and S are exactly the
tangential intersection points between C and the intersection line D between S and the
(x1, x2)-plane. The "quadratic" form defined by the matrix

0 0 nq
B = 0 0 ny
n My —Mp

defines the line D. By theorem 2.30, a necessary condition for C and D to have a non-
singular tangential intersection is that X, , has a multiple root. Thus, we define A(C, S)
to be the discriminant of x, ,. Using Maple® we see that A(C,S) = ajjanA’(C,S)
for a polynomial A’ in the coefficients of C and S. Hence, A(C,S) is zero if C is a
parabola. Therefore, we first assume that C is not a parabola, i.e. it is an ellipse
or a hyperbola. If we replace the components of n as well as ng in A’(C,S) by the
corresponding time dependent functions (3.20) we obtain a polynomial in t whose roots
are the candidates for the potential collision times. The degree of this polynomial is
two in the case of a translation, four in the case of a rotation and six in the case of
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a superposition. If C is a parabola, then we can assume that it can be parameterized
in the form x(A) = [A, aA?,0,1]. Inserting this into the implicit form of S we obtain a
quadratic polynomial

f(A) = anaA? + amA — ng

whose roots correspond to the intersection points between C and S. If there is a tan-
gential intersection point then the discriminant n? +4an,n, is zero. Inserting the time
dependent functions (3.20) into this discriminant, we get a polynomial whose roots are
the candidates for the potential collision times. The degree of this polynomial is one in
the case of a translation, four in the case of a rotation and five in the case of a superpo-
sition.

Finally, we consider the case that C not a straight line and S is not a plane. By
applying an appropriate transformation to the coordinate system we can assume that C
lies in the (x1,xz)-plane and that its quadratic form in the variables x; and x; is given
by the matrix

ann 0 aj
Ay = 0 axn a
a; az Qo

The quadric S is defined by the (4 x 4)-matrix By. By lemma 3.17, the tangential inter-
section points between C and S are exactly the tangential intersection points between C
and the intersection curve D between S and the (x1,x;)-plane. We obtain a quadratic
form for D by letting x3 = 0 in the quadratic form of S. This form is given by the
matrix Cy which is obtained from By by removing the third row and the third column.
Because of theorem 2.30, a necessary condition for C and D to have a non-singular tan-
gential intersection point p is that X, . either has a multiple real root or is identically
zero. A tangential intersection point of C and D might be a singular point of D even
though it is not a singular point of §. Thus, in order to have a necessary condition for C
and S to have a non-singular tangential intersection point we need the following lemma
in addition to theorem 2.30.

Lemma 3.18. Let two conics be given by the (3 x 3)-matrices Ay and By. If there is
a point py such that pl,Aupy = 0 and Bupy = O, then the degree of Xap 5 al most
one.

Proof. By lemma 2.13, the coefficients of A3 and A? in Xagp(A) are det By and
tr (A - adj By), respectively. From Bypy = 0 it follows that det By = 0. Hence,
it remains to show that tr (Ay-adjBy) = 0, as well. By applying an appropriate
transformation we can assume that py = [0,0,1]7. Then, the matrix By must have
the form By = diag(B,0). It follows that adjBy = diag(0,0,det B) and therefore
Ay - adj By = diag(0,0, ap - det B). Since pJ;Aupy = 0 we must have ap = 0 and we
are done. O
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We define the function A(C,S) as the discriminant of ¥, ., which can be written in
the following way:

1 d
A(C,S) = mres;\ (XA,cv )éx;\,c)
_ dXa.c
- |CH| ’Syl)\ (XA,C) d)\ )’
|CH’_ tr (AHEE) tr (CHKH) |AH|
_ | —tr (AWCn) —2tr (ChAn)  —3|Ay| 0 (3.23)
3|CH| 2tr (AHCH) tr (CHAH) 0 ’ ’
0 3|CH’ 2tr (AHEH) tr (CHKH)

where we used the notation A = adj A and |A| = det A. We denote the matrix (3.23)
by M.

Lemma 3.19. If C and S have a non-singular tangential intersection point, then
A(C,S) =0.

Proof. By lemma 3.17, a point p is a tangential intersection point of C and § if and
only if p is a tangential intersection point of C and D. If p is a non-singular point of D,
then by theorem 2.30 the polynomial x, . has a multiple root or vanishes identically.
Hence, the discriminant A(C,S) = 0. If p is a singular point of D, then by lemma 3.18
the coefficients |Cy| and tr (AHGH) of A3 and A% in Xa.c(A) are zero. But then, the first
column of the matrix (3.23) is zero. O

Thus, we have a necessary polynomial condition for C and § to have a tangential
intersection. If we replace the entries of By by the respective time dependent functions
and multiply with the denominator, we get a polynomial whose roots are the candidates
for the potential collision times. Similarly to the edge-edge case, we do not make this
substitution in the coefficients of the polynomial A(C, S) but in the matrix M and obtain
a matrix polynomial M(t). The time dependent functions that we use are of a similar
form as those listed in (3.19) but without the factor (1 + (wt)?)?. Using Maple® we
find that the greatest common denominator of the entries of the resulting matrix is
(1 + (wt)?)?2. We multiply with this denominator and obtain M(t). The degrees of the
entries of this matrix polynomial in the case of a superposition of a translation and a
rotation are given by the matrix

6 6 6 4

6 6 4 —x

6 6 6 —oo (3.24)
-0 6 6 6

Hence, the degree of det(M(t)) is 24. In the case of a pure rotation the degrees of the
non-zero entries of M(t) are four. Thus, in this case the degree of the determinant is
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16. If we have a pure translation, the degrees are given by the matrix

2 22 0

2 20 —o0

7 2 2 oo | (3.25)
—o0 2 2 2

and hence the degree of the determinant is eight.

Case 2: Now, we show how the candidates for the potential collision times can be
computed if the surface S belongs to the stationary object O; whereas C belongs to O,.
Again, we distinguish the cases whether C is a straight line or not and whether S is a
plane or not.

First, let C be a straight line and let S be not a plane. We apply a rotation and a
translation to the scene such that S is given by the quadratic form defined by

an 0 0 aq
0 azr 0 az
0 0 azsz as
ajq ar as Qo

A =

Let the parameterization of C be x(A) = p+Ar. We insert this parameterization into the
quadratic form defining S and obtain a quadratic equation in A whose roots correspond
to the intersection points between C and S. If there is a tangential intersection point
then the discriminant A(S,C) of this polynomial is zero. In order to obtain a polynomial
in the time parameter we replace p and r by the respective time dependent functions

p(t) = R(t)
r(t) = R(t)

(p—c)+ c+s(t),
T

and multiply with the denominator (1 + (wt)?)2. With the help of Maple® we see that
the degree of the resulting polynomial is two in the case of a pure translation, four in
the case of a pure rotation and six in the case of a superposition.

Now, let C be not a straight line and let S be a plane. By applying an appropriate
rotation and translation to the scene we can assume that S is the (xq,x2)-plane. Let C
lie in the plane P with the parameterization x(x, ) = r+ ap + fg. The implicit form
of C in («, )-coordinates is given by

an 0 aq
AH = 0 az Qp
ay a Qp

By lemma 3.17, the tangential intersection points between C and S are exactly the
tangential intersection points between C and the intersection line D between S and P.
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This line is implicitly given by the equation 13 + ap3 + 393 = 0. We write this as a
"quadratic" form defined by the matrix

0 0 ps
Byu=| 0 0 gs3
P3 3 213

By theorem 2.30, a necessary condition for C and D to have a non-singular intersection
is that X, 5 has a multiple root. Thus, we define A(S,C) as the discriminant of x, ;. As
in the case of a stationary conic and a moving plane, we see with the help of Maple® that
A(S,C) = ajranA’(S,C) for a polynomial A’ in the coefficients of S and C. Hence, the
discriminant is zero if C is a parabola. So, let us first assume that C is not a parabola. We
replace all occurrences of r,p and ¢ in A’(S,C) by the corresponding time dependent
functions

r(t) =R(t)(r—c) + c+ s(t),
p(t) = R()P, (3.26)
q(t) = R(t)d,

where R(t) and s(t) are the rotation matrix and the translation vector as defined be-
fore and c is the center of rotation. By multiplying with the denominator of the result
we get a polynomial whose roots are the candidates for the potential collision times.
With Maple® we find out that the degree of this polynomial is two in the case of a
pure translation, four in the case of a pure rotation and six in the case of a superpo-
sition. If C is a parabola then we can assume that it is given by the parameterization
x(A) = v+ Ap + ar?q. The parabola intersects the (x;,x2)-plane if and only if there is a
A such that the third component x3(A) = T3 +Ap3+ aA?qs is zero. If there is a tangential
intersection point, then the discriminant A(S,C) = p3 — 4ar3qs of this polynomial is
zero. Again, we use (3.26) and multiply with the denominator to get a polynomial in
t whose roots are the candidates for the potential collision times. This polynomial has
degree one in the case of a pure translation, four in the case of a pure rotation and five
in the case of a superposition.

Finally, we consider the case that C is not a straight line and S is not a plane. Let
S be given by the (4 x 4)-matrix Ay and let C lie in the plane P parameterized as
x(x, B) =71+ ap+ pg. Let the implicit form of C in («, f)-coordinates be given by the
(3 x 3)-matrix

bin 0 by
0 by b
b1 by by

Inserting the parameterization of P into the quadratic form of S we obtain an implicit
equation for the intersection curve D between P and S in («, 3)-coordinates. Let Cy
be the (3 x 3)-matrix corresponding to this quadratic form. We define A(S,C) as the
discriminant of X, . If we replace all occurrences of Ay in (3.23) by By and call the
resulting matrix M, then A(S,C) = det M. By lemma 3.19, a necessary polynomial
condition for S and C to have a tangential intersection is A(S,C) = 0. In order to get a
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matrix polynomial in the time parameter we must consider the plane P to be time depen-
dent. The point r and the vectors p and q at time t are given by the equations (3.26).
We replace all occurrences of the components of r,p and ¢ in M using these relation-
ships. The entries of the resulting matrix are too complicated for Maple® to express
them symbolically. Thus, we assume that at the beginning of the time interval the plane
P is the (x1,x2)-plane. This can be achieved by applying an appropriate translation
and rotation to the scene in advance. This is the reason why we did not assume the
surface S to be in standard form. With this assumption we have ¥ = 0,p = [1,0,0]" and
q = [0,1,0]". Now we find with the help of Maple® that the greatest common denomi-
nator of the entries of the resulting matrix after the substitution is again (1 + (wt)?)2.
We multiply with this denominator and denote the result by M(t). In the case of a
superposition of a rotation and a translation the degrees of the entries of M(t) are given
by the matrix (3.24). Thus, the degree of det(M(t)) is again 24 in this case. In the case
of a pure rotation the degrees are given by the matrix (3.25) and hence, the degree of
the determinant is eight. If we have a pure rotation, then all non-zero entries of M(t)
have degree four. Thus, the degree of the determinant is 16 in this case.

Now, that we have shown how to formulate the problem of finding candidates for the
potential collision times as a polynomial equation in t, we must check for each such
candidate ty whether there actually are tangential intersection points at that time. If
this is the case we have to compute these points. Thus, let C = C(ty) and S = S(to) for
such a candidate, and let x(A) be a parameterization of C. Inserting x(A) into the implicit
form defining S, we get a polynomial f(A) whose roots correspond to the intersection
points between C and S. Since we are interested in tangential intersection points, we
have to look for multiple roots of f. Thus, we determine the roots Ay of the derivative f’
of f with respect to A and check whether f(Ag) = 0. In this way we obtain all tangential
intersection points. The degree of the polynomial f’ is one in the case of C being a
straight line or S being a plane and three in the case of C and S being both non-linear.
Hence, the maximal degree of the polynomial equations that have to be solved to find
the potential collision times and the witness points is always dominated by the degree
of the polynomial whose roots are the candidates for the potential collision times. We
summarize the results of this section in the following theorem.

Theorem 3.20. Finding the potential collision times between a conic C and a quadric
S can be reduced to finding the roots of polynomials whose degrees are upper-bounded by
the following table.
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translation | rotation | superposition

C i bol dS i

s a parabola and S is a 1 4 5
plane
C is an ellipse or a hyperbola

. 2 4 6

and S is a plane
C is a straight line and S is ) 4 6
a general quadric
Ci t a straight li d

7,'3 not a straig z.ne an 3 16 24
S is a general quadric

Face-Face Test

Now, we show how to compute the potential collision times for two faces F; and F, of
07 and O,. We denote the surfaces containing these faces by Sy and S;, respectively.
We distinguish the cases whether one of the surfaces is a plane or not.

Case 1: Sj or S, is a plane. Let this plane be given by the implicit form x™n = ny. We
write this as a quadratic form defined by the matrix

0 0 0 mn
o0 0 m
Nn = 0 0 0 mng

n; n; n3 —2ng

Let the quadric be given by the quadratic form defined by the matrix Ay. We can
assume that this quadric is not ruled. The reason for this is the following. If a plane
touches a ruled quadric in a point p , then it contains the whole generating straight
line £ through that point. If £ is a tangential intersection line and there is a collision
between F; and F, in p, then also the boundaries of these faces are involved in the
collision. Hence, this case is covered by the before mentioned collision tests. If £ is not
a tangential intersection line and the point p lies in both F; and J5, then there must
be a penetration between these faces. Thus, the interiors of the objects intersect and we
know that there must have been a collision at some earlier point in time.

If there is a tangential intersection point between the plane and the quadric, then
by theorem 2.24, the polynomial X,  has either a multiple root or is identically zero.
By expanding X, (A) = det(Ay + ANy) by cofactors of the last column, we see that
the degree of this polynomial in A is two. Since we are looking for the earliest point in
time when the objects get in touch, we are only interested in points, where the surfaces
touch externally. By corollary 2.29, a necessary condition for this is that x, , has
either a positive multiple root or is identically zero. We define the function A(Sy,S,)
as the discriminant of x, . Using Maple®, we find that it holds A(S;,S,) = det(A) -
A'(81,S;) for a polynomial A’ in the coefficients defining the surfaces. Hence, the
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discriminant vanishes if Ay defines a non-central surface. Let us first assume that
Ay, defines a central surface. Since we did not make any assumptions on the position
and orientation of the surfaces, we may assume that the coordinate system has been
transformed in such a way that the angular velocity w is parallel to the x;-axis and the
center of mass € of the moving object equals the origin. We replace all occurrences of the
coefficients defining the moving surface in A’ by the respective time depending functions
using the relationships (3.19) or (3.20), respectively, but without the multiplication
with the denominator. Instead, we multiply with the denominator (1+ (wt)?)? after the
substitution and obtain a polynomial whose roots are the candidates for the potential
collision times. The degree of this polynomial is two in the case of a pure translation,
four in the case of a pure rotation and six in the case of a superposition.

Now, let Ay define a non-central surface. Since we do not have to consider ruled
surfaces, we can assume that Ay defines an elliptic paraboloid. We first look at the case
that &, is the plane, i.e. the plane is the moving surface. We rotate and translate the
coordinate system in such a way that Ay has the form shown in table 2.1. We replace
the symbols a,b and c in the implicit form given in that table by 1/a?, 1/b? and c?,
respectively. Then, the paraboloid can be parameterized as

Aac(1 — p?)
2Abcu
(1+u?)A?/2
T+ u?

X(A, p) =

We insert this into the implicit form of the plane and obtain a quadratic polynomial
f(A, u) whose roots correspond to the intersection points between Sy and S,. If there
is a tangential intersection point, then there are values Ay and o for which the partial
derivatives 0f /0A and 0f/0u vanish, as well. Hence, we need a necessary condition for
these three polynomials to vanish simultaneously. We do this by computing a Groebner
basis using graded lexicographic order with the computer algebra system Singular®.
This basis consists of the only element

A(S1,S:) = cng(a®n? +b%n3)-A'(S51,S;) with
A'(8,S:) = a’c*nd —2ngns + b2c’nl.

If there is a tangential intersection point between the plane and the paraboloid and
ng = 0, then this point must be the apex of the paraboloid. The normal in this apex
is parallel to the x3-axis and hence ny = n, = 0. But then, A’(S7,S;) = 0. Similarly,
if there is a tangential intersection point and a?n? + b?n3 = 0, then the normal in this
point must be parallel to the x3-axis. The only point on the paraboloid for which this
is the case is the apex, and hence ny = 0, which again implies A’(S;,S,) = 0. This
means, whenever there is a tangential intersection between the two surfaces, then the
polynomial A’ vanishes. In order to get a polynomial whose roots are the candidates for
the potential collision times, we replace n and ng in A’(Sy, S,) by the corresponding time
dependent functions and multiply with the denominator (1 + (wt)?)2. This polynomial
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has degree one in the case of a pure translation, four in the case of a pure rotation and
five in the case of a superposition.

Let us now assume that the plane belongs to object O and is therefore stationary.
Then we apply a rotation and a translation to the scene such that n = [0,0,1]" and
ny = 0, i.e. Sy is the (x1,x;)-plane. The elliptic paraboloid can be parameterized as

1—u? 2u
X(}\) u) =1+ }\QCWP + AbC] T },Lz

7\2
q—ipxq

for a point T and unit vectors p and q with p'q = 0. The point 1 is the apex of the
paraboloid and p x ¢ is parallel to the normal in r. We insert this parameterization
into the implicit form of the (xq,x;)-plane which yields x3(A, u) = 0. Multiplying this
with 14 p? we obtain a quadratic polynomial in A and p whose roots correspond to the
intersection points between &7 and S;. Again, we need to find a criterion for this poly-
nomial and its partial derivatives to have a common root. As before, we use Singular® to
compute a Groebner basis for these three polynomials. The only element of this basis is

A(S1,S:) = cr3(a?ps +b2q3) - A(S5,S,) with

A'(81,8;) = a’c®p3+2r3(prdz — p2dr) + bc’as.
If there is a tangential intersection point between &7 and S, and r3 = 0, then this in-
tersection point must be the apex. In this case, the normal p x q must be parallel
to [0,0,1]7. Hence, p3 = q3 = 0, which implies A’(S;,S;) = 0. Similarly, if there is
a tangential intersection point and a’p3 + b*q3 = 0, then p3 = g3 = 0 and hence,
p x ( is parallel to [0,0,1]". The only point of the paraboloid whose normal points
in this direction is the apex. Thus, r must be the tangential intersection point which
implies 13 = 0. But then, A’(S7,S,) = 0. Thus, a necessary condition for S; and S,
to intersect tangentially is A’(S7,S2) = 0. In order to obtain a polynomial whose roots
are the candidates for the potential intersection points we replace r,p and q by the
corresponding time dependent function which have the form (3.26). After multiplying
with the denominator (1 + (wt)?)? we get a polynomial of degree one in the case of a
pure translation, four in the case of a pure rotation and five in the case of a superposition.

Case 2: Neither &7 nor S is a plane. Let the quadratic forms of these surfaces be
defined by the matrices Ay and By, respectively. Again, we are interested in the points
where S; and S, touch externally. Because of corollary 2.29, a necessary condition
for this is that x, ;(A) has either a positive multiple root or is identically zero. This
polynomial has degree four in A. We define A(S1,Sz) as the discriminant of x, ,. The
discriminant of a polynomial f(A) of degree k with leading coefficient L is defined as

1 df 1 df

ires;\ <f, a) = t ’S}’l;\ (f, a) ’ .
This Sylvester matrix has dimension 2k — 1. Its first column has L as first entry, kL as
kth entry and has zeros in all remaining places. Hence, we can eliminate the kL in the
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first column with a row operation. If we define M as the (1, 1)-cofactor of the resulting
matrix, then the discriminant of f(A) is given by the determinant of M. The dimension
of M is 2(k—1). Thus, the discriminant A(S;,S;) can be computed as the determinant
of a (6 x 6)-matrix. We call this matrix M(S;, S).

We did not make any assumption on the position and orientation of the surfaces.
Hence, we may assume that the coordinate system has been transformed in such a way
that the angular velocity w is parallel to the x;-axis and the center of mass ¢ of O,
equals the origin. In order to get a polynomial whose roots are the candidates for the
potential collision times, we replace all occurrences of the coefficients defining the mov-
ing surface S in the matrix M(S7, S>) by the corresponding time dependent functions.
For this substitution we use the relationships (3.19) but without the multiplication with
the denominator. Instead, we multiply each column of the matrix after the substitution
with the least common denominator of its entries. Due to our assumption on the an-
gular velocity and the center of mass, this computation can be done symbolically using
Maple®. If we have a superposition of a translation and a rotation, the degrees of the
entries of the resulting matrix are given by

[ 4 6 6 6 4 —oc0]
-0 4 6 6 6 4
6 6 6 4 —0c0 —©
6 6 6 —c0 —oo | (3.27)
-0 4 6 6 6 —
| —00 —o0 4 6 6 6 ]

Thus, the degree of the polynomial whose roots are the candidates for the potential
collision times is at most 36. Similarly, we find that in the case of a pure rotation this
degree is 24 and for a pure translation we get a degree of at most twelve.

Now we must decide for each candidate ty for a potential collision time whether there
are tangential intersection points at that time and if so, we must compute these points.
Thus Let S; = S1(to) and S; = S2(to). We distinguish the cases that one of the surfaces
is a plane or not.

Case 1: Let one of the surfaces be a plane. W.l.o.g. we assume that this is ;. Let
X(A, ) = r+Ap + 1g be a parameterization of S;. By applying an appropriate rotation
and translation to the scene we can assume that the matrix Ay that defines S, is of the
form

an 0 0 ay

0 azo 0 aj

0 0 aszs as

ay ar az Qo

We insert x(A, 1) into this quadratic form and obtain an implicit quadratic form for the
intersection curve C between S; and S; in (A, pu)-coordinates. We write this implicit
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form as
A
A wB [ \ } 4+ 20, Wb + b

The tangential intersection points between &7 and S, are exactly the singular points on
this curve. We distinguish the cases that S, is a central or a non-central surface. If it is
a non-central surface, then we have seen that it must be an elliptic paraboloid. Then,
w.lo.g. az3 = a; = a; = 0 and ay1,0a2,a3 # 0. In this case, the determinant of B
evaluates to det B = ayya2(p2q1 — p19z2). If this determinant is non-zero and C has a
singular point, then this point has the coordinates [Ao, po]" = —B~'b. We insert these
coordinates into the implicit form of C to check whether the point lies on the curve.
If this is the case then ty is a potential collision time and x(Ag, 1o) is the tangential
intersection point. If det B = 0, then the normal n = p x q of S; lies in the (x1,%;)-
plane. But as all normals of the paraboloid are of the form Ax 4+ a = [a;1x1, azxz, az]’
and a3 # 0, there can not be any tangential intersections in this case.

If S; is a central surface, then it must be an ellipsoid or a two-sheet hyperboloid.
Then, a; = a; = a3 = 0 and we have

_ | p"Ap p'Agq

det B = ’pTAq qTAq'
= p'Ap-q"Aq—(p'Aq)’
= nladj(A)n

with n = p x g being the normal of §;. The last equality can easily be verified
component-wise. If this determinant is non-zero and if C contains a singular point,
then the coordinates of this point must again be [Ag, uo]" = —B~'b. By inserting these
coordinates into the implicit form of C we check whether this point lies on both &; and
S,. If this is the case, then t; is a potential collision time and x(Ag, Wo) is the tangential
intersection point. If det B = 0, then &, must be a two-sheet hyperboloid. W.l.o.g. we
assume that a;; = 1/a?, a2 = —1/pB% azz3 = —1/y? and ap = —1. A parameterization

of this surface is
occosh u cosh v

y(u,v) = | PBsinhucoshv
v sinhv

The normal of S, in the point y(u,v) can be computed as

[3y coshucoshv
oy oy
m(u,v) = [ =—=(u,v) x =—=(u,v) | /coshv = | —aysinhucoshv
ou ov .
—af3 sinhv
We easily verify that m(u,v)Tadj (A)m(u,v) = 1 for all u,v. Thus, in the case

det B = 0 there is no tangential intersection between &7 and S,.

Case 2: Neither S; nor S; is a plane. As usual, we denote the matrices defining S; and
82 by Ay and By, respectively. By our choice of to, the discriminant of x, (A) is zero.
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Thus, this polynomial either has a multiple root or is constantly zero. We first consider
the case that x, ; is not constantly zero. In this case we compute all positive multiple
roots. If there is no such root, then by corollary 2.29 there is no tangential intersection
point. Otherwise, let Ag > 0 be a multiple root of X, ;. Then, by theorem 2.24 we have
to look for points py; with pJ;Aupy = 0 and Cypy = 0, where we set Cy = Ay +ABh.
If the determinant det C of the upper left (3 x 3)-submatrix of Cy is non-zero, then the
only possibility for such a point is p = —C~'¢. We check whether this point lies on both
Sy and S,. If this is the case, then tg is a potential collision time and p is the tangential
intersection point. If det C = 0, then we must check what surface is defined by the
matrix Cy. If this surface is a cylinder or two parallel planes, then it does not contain
any singular points, i.e. points fulfilling Cypy = 0. Hence, to is not a potential collision
time in that case. If Cpy defines a double plane, then we determine a linear implicit
form n'x = ny of this plane and intersect it with S;. If this intersection is not empty,
then ty is a potential collision time and the intersection points are tangential intersection
points. If Cy defines two intersecting planes, then we determine a parameterization of
their intersection line and intersect this line with S;. In this way we obtain the tangential
intersection points. Finally, if Cy defines a straight line, then we intersect this line with
S; in order to find the tangential intersection points.

Now, let X, , be constantly zero. By [FNO89| this means, that all quadrics in the
pencil Qa p are (projective) cones and that the intersection between S; and S consists
of a conic C and a double line £. We do not have to consider the tangential intersection
points forming £ because if some of them lie in F; and F, there must be a collision
involving the boundaries of these faces. Hence, this case is covered by the other collision
detection tests. All non-singular points on C are intersection points between S; and S;
which are not tangential. If C is a double line, we can ignore it by the same argument
we used to ignore L. So let us assume that C has a singular point p and is not a double
line. Then it must be a pair of lines intersecting in p. This means that p is the apex of
both (projective) cones Sy and S,. If p is not a point at infinity, S; and S, must be two
cones with common apex. Since we do not consider faces containing singular points, we
can ignore this case, as well. Thus, ty is not a potential collision time in the case that
Xa.p vanishes identically.

We have seen that the degrees of the polynomials that have to be solved to find the
potential collision times and the witness points are always dominated by the degrees of
the polynomials whose roots are the candidates for the potential collision times. We
summarize the results of this section in the following theorem.

Theorem 3.21. Finding the potential collision times between two quadrics S; and S,
can be reduced to finding the roots of polynomials whose degrees are upper-bounded by
the following table.
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translation | rotation | superposition

plane vs. central quadric 2 4 6
plane vs. elliptic paraboloid 1 4 5
none of the quadrics is a plane 12 24 36

The Penetration Test

The penetration test checks whether a point p that lies on both 00; and 00;(to)
witnesses a collision at the potential collision time ty. Unfortunately, we are not able
to present an efficient method to solve this problem in all cases. Therefore, we show
for the different collision types how to perform this task in non-degenerate situations.
For the case that there are degeneracies, i.e. if the approaches that we present are not
applicable, we show afterwards exemplarily for a potential collision between two edges
that the penetration test can be formulated as the problem to decide whether a cell in
a semi-algebraic set is full-dimensional.

Vertex-Face We only consider the case that the vertex p belongs to the moving object
O;(t). The converse case works analogously. We write the time dependent vertex as

p(t)=R(t)(p—c)+ ¢+ s(t),

At time tp, there is a potential collision between p and a face F of object O;. Let
F be embedded in the surface with implicit form S(x) = 0. We define the function

o(t) = (1 + (wt)z)kS(p(t)), where k = 1 in the case that S is linear and k = 2 if S is

quadratic. The reason for the multiplication with ((1 + (wt)z))k is just to ensure that
d(t) is a polynomial. Since this factor is positive for all real values of t this multiplication
has no influence on the sign of 6(t). Obviously, 6(ty) = 0. If 6(t) is constantly zero,
then we set A = 0. Otherwise, we define A as the first non-zero derivative of 0 at t,.
We observe, that the following holds.

e If A > 0, then p does not witness a collision at time t;.

e If A < 0 and p(ty) does not lie on an edge of F, then p witnesses a collision at
time tg.

In the remaining cases, i.e. if A =0 or A < 0 and p(to) lies on an edge of F, we cannot
make a decision. The reason why we cannot make a decision if p hits an edge of F is
illustrated in figure 3.12. In both pictures the vertex hits an edge of the face, and in
both cases it penetrates the surface containing the face. But on the left-hand side, the
vertex does not witness a collision, whereas on the right-hand side it does. However,
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O] O]

Figure 3.12: Special case in the penetration test for a vertex and a face. The vertex hits
an edge of the face. The arrows show the current directions of motion of
the vertex. In the left-hand picture, there is no penetration, whereas in the
right-hand picture there is.

in many cases we can decide whether or not there is a collision in such a situation by
using the approach which we will describe in the edge-edge penetration test in the next
paragraph. We will come back to this at the end of that paragraph.

Figure 3.13 illustrates why we cannot make a decision when A = 0. In both pictures
the vertex stays on the surface containing the face. But on the left-hand side, there
is no penetration. On the right-hand side however, every neighbourhood of the vertex
contains a point of O; that penetrates F as t increases.

Edge-Edge Let & and &; be the two edges that are in contact at time ty, and let C;
and C, be the two curves containing them. If there is a collision between &; and &,, then
&> must penetrate one of the two faces that are adjacent to £ immediately after the
collision time ty. We check this for one of these faces and if we do not find a penetration,
we repeat the test for the other face. Let F be one of these faces and let the surface S
containing F be given by the implicit form S(x) = 0. We denote the parameterizations
of C; and C, by x71(«) and x(f3,t), respectively. Let the potential collision point be p.
We associate p with the object O, and define &g and (3¢ to be the curve parameters
such that p(tg) = x1(x0) = x2(Bo, to). Suppose we have a parameterization f(,y) of
S locally around the curve C; such that f(«,0) = x7(x) and such that for increasing
(decreasing) values of y we move towards the interior (exterior) of . Moreover, suppose
that in a neighbourhood Z of t the curve C; intersects the surface S in x,(3(t),t). Then,
there are functions «(t) and y(t) such that for t € 7 it holds that

x2(B(t),t) = fa(t), y(t)).

Obviously, «(ty) = xo, B(to) = Po and y(ty) = 0. If we furthermore could compute the
derivation of y(t) at to, we could make the following decision.

e If y(ty) > 0, then p(ty) witnesses a collision at time to.

e If y(ty) < 0, then p(ty) does not witness a collision at time to.
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A

O] 01

Figure 3.13: Another degenerate case in the vertex-face penetration test. The arrows
indicate the motions of O,. On the left-hand side, O, makes a translation
such that the vertex does not penetrate the face. On the right-hand side
O, rotates around the vertex.

In the case y(ty) = 0 we could not make a decision and therefore, we would consider
this case as degenerate.

Let us define the tangents u = d%xﬂoco) and w = %Xz(ﬁo,to). We set @(t) =
XZ(B(t), t) —f(oc(t),”y(t)) = 0. Then, also for the derivative it holds @(t) = 0. Denoting
the partial derivatives of f with respect to « and y by f, and f,, respectively, we get

@ (to) = Blto)w + Plto) — &l(to)fx(oo, 0) —V(to)fy(cto,0) = O. (3.28)

This is a system of linear equations in the unknowns &(ty), B(to) and y(to). If this
system is regular we can use Cramer’s rule to compute y(to).

In order to apply this idea we need the function f(,y) or at least its partial derivatives
in the point (¢, 0). Let n(x) = VS(x) be the normal of the surface S in the point x.
For the normal n(p(to)) in the potential collision point we just write n. We construct
f as follows. For each value of o« we consider the plane P, through x;(«) with normal
t(a) = Lx1(x). We define the vector m(o) = n(x1(«)) x t(«). In the point X1 («) this
vector points locally towards the interior of 7. We define f(«x,7y) in such a way that
for each fixed value of &« we have a parameterization of the intersection curve between
Py and S. The plane P, is spanned by the vectors n(x1 (oc)) and m(a). We construct
the point f(c,y) by starting at x;(«), then adding 7y times the vector m(«) and then
adding some multiple of the vector n(x1 (oc)) to reach the surface S again. Hence, we
have

flo,v) =x1(a) +ym(e) + h(a, yIn(x;(e)).

Obviously, h(x«,0) = 0 for all «. In this way, the desired condition (o, 0) = x7(«x) is
fulfilled. Furthermore, our choice of m(«) ensures that for increasing (decreasing) values
of v we move towards the interior (exterior) of F. For the above described idea we need
the partial derivatives of f(x,y) in the point (o, 0). Derivating, we obtain

falogy) = e +ym(a) + hloyin(a(al) + hio,y) - nala),

fy(o,y) = m(a) +hy (o, yIn(xi(a)).
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Substituting &« = &y and y = 0 and using t(op) = u and h(x,0) =0 we get

fa(®o,0) = u+hy(x,0)n and (3.29)
fy(x0,0) = nxu+h,(u,0)n. (3.30)

Thus, we need the partial derivatives of h(«,7y) in the point (&g, 0). We compute these
by looking at the function S(f(oc,y)) = 0. The partial derivatives of this functions are
identically zero, as well. Derivating with respect to o yields

n(f(oc,y))Tfoc(oc,y) = 0 and
n(f(oc,y))Tfy(oc,y) = 0.
Substituting & = & and 'y = 0 and using (3.29) and (3.30) and n"u = 0 we obtain
ho(0to, 0N =0 and hy(ao, 0)n? = 0. (3.31)

Since we do not consider faces with singularities, we can assume that n # 0 and hence it
follows hy (oo, 0) = h, (9, 0) = 0. With this, the derivatives (3.29) and (3.30) become

folx,0) =u and f,(x,0) =7 xu.
Inserting this into (3.28) and reordering we obtain
Y(to)(n x u) + &(to)u — Bto)w = P(to). (3.32)
We use Cramer’s rule to solve this system of equations for y(ty), which yields

P(to)"(w x u)

e (3.33)

Y(to) =

In the linear case, i.e. if both edges are straight, all faces involved are planar, and the
motion is a pure translation, 'y corresponds to the signed euclidian distance between &;
and the intersection point between & and one of the faces adjacent to &;. It is not hard
to show that this distance is given by

(P(t) = P(to) (W x u)
n'w . u? '

Derivating this with respect to t results in equation (3.33). Hence, our approach is
equivalent to replacing the curved parts involved by linear ones and assuming a pure
translation.

What are the degenerate cases in this approach? We cannot decide whether p wit-
nesses a collision if y(to) = 0. This happens, whenever the tangents of & and &;(to)
in p and the current direction of motion p(ty) are linearly dependent. Moreover, we
cannot evaluate (3.33) if the denominator equals zero, i.e. the tangent of £ (ty) in p is
perpendicular to the normal of F in p. We used one more precondition in the devel-
opment of this approach, namely that there is a neighbourhood Z of ty such that C;(t)
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intersects S for all t € Z. But if the denominator of (3.33) is non-zero, i.e. the tangent
of C5(to) is not perpendicular to m, this precondition is fulfilled. Hence, these are all
degenerate cases.

As already stated in the previous paragraph, we can use this approach in many cases
to decide whether there is a vertex-face collision if the vertex p(t) hits an edge &; of the
face F. If p witnesses a collision at time ty in this case, then there is an edge £ which
is adjacent to p, that penetrates F immediately after the collision time. Hence, we can
use the above approach for the edges £ and &, and the face F to compute the sign of
Y(to). If this value is positive, then we know that immediately after the collision time
the curve containing &, penetrates F in a neighbourhood of p. Since p is an endpoint
of &, we must additionally check whether the intersection point will lie inside or outside
&,. This edge is given by the parameterization x,(f) and a parameter interval [a, b].
Since p is a vertex of &, we know that (3¢ is one of the endpoints of this interval. Let us
assume that po = a. Using Cramer’s rule, we determine B (to) from (3.32), which yields

: plto)'n
B(to) = ﬁ-

If this value is positive, then there is a penetration, if it is negative, there is not. If

B(to) =0, we cannot make a decision. In the case o = b the interpretation of the sign
is the other way around.

Edge-Face and Face-Face In the case of a potential collision between a face F of
O and an edge or a face of O,(t) we proceed similarly to the vertex-face case. Let
p(t) be the potential collision point associated with object O,(t) and let the surface
containing F be given by the implicit form S(x) = 0. As in the vertex-face case, we

define 8(t) = (1 + (Wt)z)kS (p(t)). Again, we define A as the first non-zero derivative
of 8(t) at time t¢ in the case that d(t) Z 0, and A = 0, otherwise. If A > 0, we conclude
that p witnesses a collision at time ty, and if A < 0 we conclude that it does not. In the
case A = 0, we cannot make a decision and therefore consider this case as degenerate.

Degenerate Situations Now, we show exemplarily for the case of a potential collision
between two edges £ and &, which lie on conics C; and C; that the penetration test can
be formulated as the problem to decide whether the origin belongs to the boundary of
a full-dimensional cell in a semi-algebraic set in R*. Let for i = 1,2 the quadrics S;;
and S;, be the surfaces containing the two faces that are adjacent to &. We denote the
quadratic form defining S;; at time t by Sij(x,t) = 0. By an appropriate translation
we achieve that the potential collision point p equals the origin. W.l.o.g. we can also
assume that the potential collision time to equals zero. Thus, we have S;;(0,0) = 0 for
i,j = 1,2. Let ny; be the normal of S;; at the origin. Further, let u; be the tangent of
&; at the origin with respect to the face embedded in i1, i.e. the interior of that face
lies to the left of & with respect to the tangent u;. For the sake of simplicity, we assume
that both edges & and &, are locally convex, i.e. (u; x ny1)™ny, > 0. In this case, the
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penetration test must check whether there is an ¢ > 0 such that for each neighbourhood
N of the origin in R? there is a point x € A such that S;;(x,t) < O for all t € (0, €).
This is equivalent to the question whether for each neighbourhood M of the origin in
R* there is a vector [x',t]T € M such that

Si)]-(x,t) < 0 fori,j=1,2,

t > 0.

In this way we have formulated the penetration test as the question whether the semi-
algebraic set in R* defined by the above inequalities contains a full-dimensional cell whose
boundary contains the origin. Unfortunately, this problem turns out to be extremely dif-
ficult, and it is an open problem how to solve it efficiently. In principle this problem can
be attacked algebraically with the so called cylindrical algebraic decomposition (CAD)
algorithm (see e.g. [ACM84]| for a detailed description). But this approach is impractical
for our purposes because it constructs a huge number of univariate polynomials of high
degree. The idea of the CAD algorithm is the following. In order to compute the cells of
an arrangement of surfaces in R one performs a projection step and obtains an arrange-
ment of surfaces in R4'. Each cell in this lower dimensional arrangement corresponds
to a finite number of sign-invariant regions in the original arrangement. By choosing a
point from each cell in the (d — 1)-dimensional arrangement and shooting a ray in the
direction of the projection one reaches all sign-invariant regions in the d-dimensional
arrangement. In this way one successively reduces the dimension of the problem until
one finally has a set of univariate polynomials. By choosing a point from each sign-
invariant interval defined by the roots of these polynomials one constructs points in
the sign-invariant regions of the original arrangement by successive ray-shooting. The
projection step from R4 to R4~ comprises the computation of all pairwise resultants
of the polynomials defining the d-dimensional arrangement and the resultant of each
polynomial and its derivative with respect to the projection direction. If one starts with
n polynomials in d variables, then after d projection steps one has Q(n(zd)) univariate
polynomials in the worst case. Moreover, the degrees of the polynomials raise in each
projection step.

3.3.3 Specialization for Natural Quadratic Complexes

We show, that also for the class of natural quadratic complexes the task of computing
the potential collision times can be reduced to solving polynomial equations. As in the
case of quadratic complexes, we analyze the degrees of these equations. Since most of
the computations that are done in this section are specializations of those done in the
previous section, we will keep the discussions of them relatively brief.

Vertex-Face Test

Since we have already analyzed the collision test for a vertex and a plane in section 3.3.2,
we assume that the surface is a sphere, a circular cone or a circular cylinder. By verifying
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o

Figure 3.14: A rotating straight line colliding with two points in the plane.

the calculations in the vertex-face case in section 3.3.2, we see that the assumption that
the surface is a circular cone or a circular cylinder does not lead to lower degrees.
Intuitively, it is clear that the degree of a polynomial equation that has to be solved
to determine the potential collision times in the case of a pure rotation has to be four
in the cylinder and cone case. This is because a circular trajectory hits the surface in
four points, in general. Similarly, it is also clear, that the degree in the case of a pure
translation must be two. Inspecting the calculations, we observe that in the case of a
superposition these two degrees sum up to six.

If the surface is a sphere, then we find that the degree in the case of a pure rotation
drops to two. This is because any circular trajectory hits a sphere in at most two points.
In the case of a pure translation, the degree is still two. If we have a superposition of
a translation and a rotation, then we find that the degree is four. Thus, we have the
following theorem.

Theorem 3.22. Finding the potential collision times between a verter and a sphere can
be reduced to finding the roots of polynomials of degree at most two in the case of a pure
translation or pure rotation and four in the case of a superposition. If the surface is a
circular cone or cylinder, then the degrees are two, four and siz, respectively.

Edge-Edge Test

We have already analyzed the case of both curves being straight lines. If one curve is
a straight line and one is a circle, then obviously, the degree of a polynomial equation
whose roots are the potential collision times must be at least two in the case of a pure
translation. The case of a pure rotation is illustrated in figure 3.14. Let the circle
intersect the drawing plane in the points p and (. The line lies in the drawing plane
and passes through the point c. Let the axis of rotation be normal to the drawing plane
and let ¢ be the center of rotation. The direction of the rotation is indicated by the arc.
The leftmost picture shows the situation at time 0. The situation after a rotation about
180 degrees is shown in the rightmost picture. In between, the line hits the circle first
in p and then in . As the line rotates on until 360 degrees, it hits the circle once more
in p and q. Thus, it is clear that the degree of the polynomial equation yielding the
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potential collision times must be at least four. Hence, the degree bounds are the same
as in the line-conic case in section 3.3.2.

Let us now consider the case that both curves are circles. As in the previous section,
let these curves be given by two quadrics and two planes. Thus, we have a system
of equations of the form (3.22). By applying an appropriate translation and rotation
we achieve that the stationary circle lies in the (x1,xz)-plane. This means that A has
diagonal form with ay; = az; and that a; = a; = 0. Moreover we have m = [0,0, 1]7
and myp = 0. W.lo.g. we assume that the quadratic form given by By has the form
(x — p)? — p? = 0, which defines a sphere with center p and radius p. Furthermore, we
assume that the plane defined by n and n, passes through p, and hence no = n'p. The
further calculations are analogous to the previous section. Because of m = [0,0,1]T and
mp = 0 we can replace x3 = 0 in (3.22). We eliminate x; and x, by means of resultants
and replace all occurrences of p, n and no in the Sylvester matrix Syl,. (g1, g2) by the
corresponding time dependent functions. A slight difference to the previous section is
that the first row of this Sylvester matrix is divisible by n;(t)? + n,(t)?, which is a
polynomial of degree four in t if w # 0. Hence, the degree of the polynomial r(t) in
corollary 3.14 is four in the case of a pure translation or rotation and eight in the case
of a superposition. Thus, we have the following result.

Theorem 3.23. Finding the potential collision times between two circles can be reduced
to finding the roots of polynomials of degree at most four in the case of a pure translation
or rotation and eight in the case of a superposition. In case that at least one of the curves
1S a straight line the bounds given in theorem 3.16 hold.

Edge-Face-Test

If C is a straight line, then by a similar argument as in the edge-edge case we see that
the degrees of the polynomial whose roots are the candidates for the potential collision
times cannot be less than those derived in the line-quadric case in section 3.3.2. Thus,
we assume that C is a circle. The same holds for the case that S is a plane. If S is a
circular cone or a cylinder, then by reviewing the calculations in section 3.3.2 we find
that we do not achieve better degree bounds than in the conic-quadric case. Hence, we
assume that S is a sphere. We first consider the case that C belongs to the stationary
object O;. By applying an appropriate transformation to the scene we assume that C lies
in the (x1,x2)-plane with its center at the origin. Let the radius of C be 0. Furthermore,
let T be the center of S and let p be its radius. As in the previous section, we have to
look for tangential intersection points between C and the intersection curve D between
S and the (x1,x2)-plane. The quadratic forms of C and D are given by the matrices
Ay = diag(1,1,—0?) and

1 0 —T
CH = 0 1 —T2 )
—r; —1; 12—p?
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respectively. As in the previous section, we define A(C,S) as the discriminant of the
polynomial x, .(A). Again, by lemma 3.19 we have to look for the points in time
when this discriminant vanishes. We compute A(C,S) symbolically with the help of
Maple® and find a polynomial A’(C,S) such that A(C,S) = (r3+713)2A(C, S). Thus, the
discriminant vanishes whenever r lies on the x3-axis. If we set 11 =1, = 0 in A’(C, S)
we get (p? — o2 —13)%. This expression is zero if and only if 3 is chosen such that C and
S touch. Hence, we can omit the factor (r 4 13)2 and look for the roots of A’(C,S). In
contrast to the case of a general conic and a general quadric, it is possible to replace m
by the corresponding time dependent function m(t) in the symbolic representation of
A'(S,C) using Maple® . After multiplying with the denominator we obtain a polynomial
of degree four in the case of a pure translation or rotation and eight in the case of a
superposition.

Now, we consider the case that S belongs to the stationary object O;. Let Ay =
diag(1,1,1, —p?) be the matrix defining S and let C lie in the plane P with the param-
eterization x(«, 3) = r + ap + Bq where p and q are orthogonal unit vectors. Let
By = diag(1,1,—0?) be the matrix defining C in («, 3)-coordinates. We obtain an
implicit form in («, 3)-coordinates of the intersection circle D between S and P by in-
serting X(, B) into the implicit form of S. Let Cy be the (3 x 3)-matrix corresponding
to this quadratic form. Using Maple®we observe that x, o(A) = —(A + 1) - f(A) for a
polynomial f(A). Suppose that Ao = —1 is a multiple root of X, ,(A). Then Ay must
be a root of f(A). With Maple® we easily verify that f(—1) = (r"p)? + (r"q)?, which is
zero if and only if the vector r pointing from the center of S to the center of C is parallel
to the normal p x q of P. But in this case there is a tangential intersection between C
and S if and only if 12 + 0% — p? = 0. Using Maple® again, we observe that in that case
Ao is also a root of the derivative of f with respect to A and hence, it is a multiple root
of f(A). Thus, we define A(S,C) as the discriminant of the polynomial f(A). We replace
all occurrences of r,p and q in A(S,C) by the corresponding time dependent function
and multiply with the denominator. The result is a polynomial in t whose roots are the
candidates for the potential collision times. The degree of this polynomial is four in the
case of a pure translation or rotation and eight in the case of a superposition. We record
this result in the following theorem.

Theorem 3.24. If C and S in theorem 3.20 are a circle and a sphere, respectively,
then their potential collision times can be found by solving polynomials of degree at most
four in the case of a pure translation or rotation and at most eight in the case of a
superposition.

Face-Face Test

If one of the faces is embedded on a sphere or a circular cylinder, then we can use a
configuration space approach to detect the collisions between them. This is because of
the observation that the offset of a natural quadric consists of two natural quadrics.
Based on this observation, we distinguish three cases.
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Case 1: One of the surfaces is a sphere. We denote this sphere by &, and the other
surface by Q. Let r be the radius and c the center of S. Obviously, S and O touch
tangentially if and only if ¢ lies on the £r-offset of Q. Thus, we have to determine the
potential collision times between a point and two natural quadrics. If Q is a plane, then
by theorem 3.11, the degrees of the polynomial equations that have to be solved are one
in the case of a pure translation, two in the case of a pure rotation and three in the case
of a superposition. If Q is a sphere, then by theorem 3.22 the degrees are two, two and
four respectively. This theorem also states that in the case of Q being a circular cone or
cylinder the degrees are two, four and six.

Case 2: One of the surfaces is a circular cylinder which we denote by S. Let Q denote
the second surface. As S is ruled we do not have to consider the case that Q is a plane.
We can also assume that Q is not a sphere, because this is covered by case 1. Hence,
Q is a circular cone or cylinder. Let r be the radius and £ the symmetry axis of S.
Obviously, § and Q have a tangential intersection if and only if £ intersects the +r-offset
of @ tangentially. This offset consists of two circular cylinders or two circular cones. By
theorem 3.20, the degrees of the polynomial equations that have to be solved to compute
the potential collision times between £ and the offset of Q are at most two in the case of a
pure translation, four in the case of a pure rotation and six in the case of a superposition.

Case 3: Both surfaces are circular cones. Let Ay and By be the matrices defining the
quadratic forms of S; and S, respectively. By corollary 2.29, the polynomial x, ;(A)
has a positive multiple root if S; and &> touch externally. Hence, we are looking for
the points in time when the discriminant of x, ,(A) is zero. By inspecting the entries
of the degree matrix (3.27) we see that the degrees of the coefficients k; of x, 5(A)
after multiplying with their least common denominator is upper-bounded by six. Since
the determinants of both Ay and By are zero, the degree of x, ;(A) is three and the
coefficient ko is zero. Hence, X, 5(A) = A(k3A?+kA+Kk;). Since we are only interested in
positive multiple roots of X, ,(A), we compute the discriminant of the quadratic factor,
which is k3 — 4k k3. Multiplying this with the denominator, we obtain a polynomial of
degree at most twelve. Similarly, we find that the degree is eight in the case of a pure
rotation and four in the case of a pure translation.

We summarize the results of the face-face case in the following theorem.

Theorem 3.25. The potential collision times between two natural quadrics can be deter-
mined by solving polynomial equations whose degrees are upper-bounded by the following
table.
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translation | rotation | superposition

sphere vs. plane 1 2 3
sphere vs. sphere 2 2 4
one surface is a circular cylinder 2 4 6

circular cone vs. circular cone 4 8 12




4 Dynamics Simulation

In this chapter we give an overview over the different techniques to simulate the dynam-
ics of a system of rigid bodies. These simulation techniques play an important role in a
variety of interactive VR-applications such as virtual prototyping or ergonomy studies.
For instance, in order to interactively simulate an assembly of mechanical parts in a
virtual environment the simulation software must be able to react realistically on colli-
sions between the involved objects, as demonstrated in figure 4.1. This figure shows the
manual insertion of a bolt into a countersunk nut. This is a difficult task in a virtual
environment if the motion is simply stopped as soon as a collision occurs. In reality the
bolt automatically slides into the right direction when it comes into contact with the
boundary of the hole. It is desirable to simulate this effect in order to perform virtual
fitting operations in a more intuitive manner.

We describe two different approaches to calculate physically correct reactions to col-
lisions. These are the impulse based simulation and the constraint based simulation. In
the context of the latter we derive a new method to simulate the rolling motion of rigid
objects on arbitrary surfaces.

4.1 Impulse Based Dynamics Simulation

In the impulse based approach the motion of the objects is partitioned into collision
free time intervals and collision times. In the collision free intervals the objects move on
ballistic trajectories. This means that there is no interaction between any two objects
but there may be external forces. These external forces might be gravitational forces,
magnetic forces, etc. At the collision times, the impulse responses at the contact points
are computed. These responses depend on the coefficients of restitution and friction.
This approach is described in detail in [MC95|, [Mir96b| and |Len00]. The collision
detection used in these publications is based on distance computations. Using the linear
and angular velocities, the radii of the objects and their pairwise distances, lower bounds
for the duration of the collision free interval are computed and the motions of the objects
during this tentative interval are simulated. After that, new lower bounds are computed
and the simulation over the collision free interval is continued. This is repeated until
the distance between two objects falls below a given threshold. Then, the closest points
between the pair of objects that have the smallest distance from each other are declared
as collision points and the impulse response in these points is computed. This response
causes the objects to move on ballistic trajectories again immediately after the collision.
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Figure 4.1: The insertion of a bolt into a conical nut

The duration of the collision itself is considered as infinitesimally short. Moreover, this
approach only considers one contact point at a time. Permanent and multiple contacts
are modelled as a series of so-called micro contacts.

We will briefly describe the simulation of the ballistic motion in the collision free
intervals as well as the computation of the impulse response in the absence of friction.

The ballistic motion

If there is no interaction between any two objects, the motions are described by the
motion equations (2.32) and (2.33). Let us assume that the only external force is the
gravitational force fg. Since the objects do not interact, this is the only force and hence,
the right-hand side of the upper equation in (2.33) is just fg and the right-hand side of
the lower one is 0. This is because the gravitation acts on the center of mass and thus
causes no torque. The equations (2.32) and (2.33) form a system of first order ODEs
that can be integrated by any standard numerical method, such as the Runge-Kutta
method which can be found in [PTVF94].

Computation of the impulse response

As already mentioned, each collision is considered to be of duration zero. But in order
to compute the impulses after a collision such an event is mathematically modelled as
two phases, namely the compression phase and the restitution phase. In the compression
phase, the kinetic energy of the colliding objects is transformed to potential energy. In
the restitution phase, a part of this energy is transformed back to kinetic energy. The
amount of the energy which is given back to the objects depends on the coefficients
of friction and restitution. Since we neglect friction here for the sake of simplicity, we
only have to consider the coefficient of restitution denoted by e. This coefficient lies in
the interval [0, 1] and relates the work after the collision to the work done during the
compression phase. The coefficient of restitution is a material property of the object.

Let n be the contact normal. In case that the interior of a face is involved in the
contact, n is the normal of that face. In the case of a contact between two edges, n is
parallel to the cross-product of the tangents of the edges in the contact point.
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Stronge’s hypothesis Let W, be the work done in the direction of n. Then
Wz(tf) = (1 - ez)wz(tm)»

where W, (t;) denotes the work after the collision and W,(t,,) the work at the
point of maximal compression.

The impulse of the system changes during both phases of the collision. Let Ap be this
change. Because of the conservation of momentum, we must apply Ap to both objects
but in opposite directions. Let n point locally away from object O,. Then Ap is applied
to 07 and —Ap to O,. With Au; we denote the change of the velocity of the contact
point of object O;. Since impulse changes are only applied to the contact point, the
changes of the total linear and angular momenta are equal to the changes of the linear
and angular momenta in the contact point. The changes of these momenta are

Ap = mAv and
Al = rx Ap =1Aw,

where 1 is the vector from the center of mass to the contact point. For the changes of
velocity it holds

Au; = Avi+Awq X 14
1
= HAp + If‘ (r1 x Ap) x r1, and similarly
1

1
Au; = ——Ap —I,' (12 x Ap) x 13.
mp
The relative contact velocity is given by u = u; —u,. The change of the contact velocity
is linearly related to the change of the impulse by

Au =KAp

with K = ( + m%)E -1 I I . This so-called collision matriz is positive

definite and therefore regular because for X 7é 0 it holds

xTKx = (i - L)x + (11 x %)L (1 x %) + (12 x %)L (12 x %) > 0.
my Mz
Hence, if we know the change of the relative velocity we can compute the change of the
impulse as Ap = K 'Au. Since a collision has no duration, we may assume that the
vectors T; and the matrices I; are constant and hence, K is constant, as well.

For the following computations we assume that we have applied an appropriate ro-
tation and translation to the coordinate system such that the contact point lies in the
origin and the contact normal n coincides with the x3-axis. Figure 4.2 sketches the
curves of the work done during the collision and the component of the contact velocity
in the direction of n. Since n points from O, to O; and by our definition of u, the value
u, is non-positive at the beginning of the collision and non-negative at the end. Hence,
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Figure 4.2: The component of the contact velocity and the work done during the collision
in the direction of the contact normal.

the work measured during the collision in the direction of n is always non-positive. At
the end of the compression phase the value of u, is zero.

Since we model the collision as two phases, let these be parameterized by y. At
first glance it seems natural to choose the time parameter as y. But as the collision
has no duration, t would be inappropriate as the collision parameter. We require y
to be monotonic in t, and we demand that all parameterized quantities are continuous
in y. In [Mir96b| it is shown that the third component u, of the relative contact
velocity u as well as the work W, done in the direction of the contact normal fulfill
these requirements. The idea how to compute the change of the impulse during the
collision is the following. For each parameterized quantity q we write q(ts) for the value
immediately before the collision, q(t,,) for the value at maximum compression and q(ty)
for the value immediately after the collision.

1. Compression integration. At the end of the compression phase, the component u,
of the relative contact velocity u must be zero, i.e. 1u,(t,,) = 0. We choose y = u,
as the collision parameter for this phase and compute the work W,(t,,) and the
velocity u(t,,) as

0 du
u(ty,) = u(ty) + —(u,)du, and (4.1)
uz(ts) du,
0
dw,
Wz tm = U, duz- 4.2
) = | ) (4.2

Then, we compute the work done at the end of the collision using Stronge’s hy-
pothesis, namely W, (t;) = (1 — e2)W,(tm).

2. Restitution integration. Since we now know the amount of work done in the
direction of the contact normal at the end of the collision, we choose y = W, as
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the collision parameter for this phase and compute the relative contact velocity at
the end of the collision as

Wo(ts) du

ulty) = ultm) + J (W,)dW.. (4.3)

Wz (tm) dWZ

The change of the relative contact velocity is Au = u(ts) —u(ts). Now, the change
of the impulse can be computed as Ap = K~'Au.

We compute the integrands in these three equations. Since K is constant, we observe
that

du_dp_dpdt . dt

dy dy dt dy dy
where f, denotes the reaction force causing the impulse change. If there is no friction,
f, =fn =1[0,0,f.]". Therefore we have

du dt
— = Knf,—. 4.4
dy " dy (44)
Similarly, we obtain
du
— = Knf,. 4.5
dt nity ( )
With this, we get
du @4 dt (45 Kn
= Knf,— = —, 4.6
dLLZ n duz K33 ( )
dw, dW, dt @s) 1 u,
= = f = d 4.7
du, dt du, UK Kg O (47)
du  du du, 4eu7 Kn (4.8)
dw, dw,dW, = u,’ '
If we insert (4.6) into (4.1) and (4.7) into (4.2) we obtain u(t,,) = u(ts) — %uz(ts) and
W, (tm) = — g5 uz(ts)?. By (4.7) and W, (t) = 0 we find W, (1) = 57— (uf —u.(t0)?).

We conclude that u,(W,) = j:\/ 2K33W, + u,(ts)2. In the compression phase, we have

to choose the minus sign, and in the restitution phase the plus sign. Using this and
2

W, (t) = ;K;] u,(ts)?, we obtain from (4.3)

ulte) = ulty) — (1 + e)f—;uz(ts),

and hence
U, (ts)
K33

In the presence of friction it is not so easy to solve the above integrals symbolically.
In that case one uses numerical integration methods such as the Runge-Kutta method.
But then, the division by w, in (4.8) causes a problem in the integration of (4.3). Since

Ap =—(1+e)

n.
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Figure 4.3: The integrations during the collision phases.

U, (tyn) = 0, one gets a division by zero at the beginning of the restitution phase. To avoid
this, one extends the compression integration until a parameter value ur, > u,(t,,), where
U, is chosen in such a way that the work done up to that value does not exceed W, (t¢).
Then, the restitution integration starts at that point. We call the integration from
u, = u,(ty) to u, = U, the extension integration. In the above mentioned publications
it is shown how u, can be chosen. Figure 4.3 illustrates the phases of the collision and
the required integrations.

Although the publications mentioned before only consider polyhedral objects it is clear
that the just described approach also works fine for curved objects, provided one can
compute good upper bounds for the collision free intervals as well as the points where
the objects get in touch. The dynamic collision test that we described in section 3.3
can be used for this purpose. Instead of determining the earliest collision time in the
interval [0, 1] one extends this interval to [0, c0). Our algorithm does not only compute
the earliest collision time but also the points on the objects that get in touch at that
time.

4.2 Constraint Based Dynamics Simulation

In the constraint based approach the motions of the objects are described by the motion
equations (2.32) and (2.33) plus additional constraints. These constraints are equali-
ties and inequalities involving the position and orientation parameters of the objects,
their linear and angular velocities, the reaction forces occurring at contact points, etc.
Examples for constraints include

e inequalities stating that the local distances at the contact points are non-negative.
This ensures that there are no interpenetrations.

e inequalities describing the frictional forces at the contact points.
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e equalities saying that there should be a rolling motion at certain contact points by
demanding that the relative contact velocities in these points are zero.

A well studied constraint based method is the simulation by so-called contact forces.
In 4.2.1 we will briefly describe this method for the case that the objects are polyhedra
which goes back to |Bar94] and was refined by several later works including [BS98|
and [War99|. The publications [ST95b| and [SS98| extend the approach by including
friction. In 4.2.2 we will describe a new constraint based method to simulate the rolling
motions of curved objects. We published this method in [WS01].

4.2.1 Simulation by Contact Forces

Contact forces are the forces that occur in the contact points and prevent the objects
from interpenetrating by pushing them apart. We describe a generic algorithm for a
simulation with contact forces and how these forces can be computed in the case of
polyhedral objects. We start with the computation of the contact forces. For the sake
of simplicity we neglect friction.

Computation of contact forces

Suppose we have a scene with n objects Oy, ..., O,. At each point in time during the
simulation there is a number of mutual contacts between these objects. Suppose we are
in a situation with k such contacts. We introduce for each such contact a contact force
fi, 1 =1,... k. Since we do not consider friction, the force f; is parallel to the contact
normal ny. Therefore, we write f; = fin. Let O; and O;, be the objects involved in
the lth contact. We assume that the contact normal ny locally points away from O,
and towards O;,. According to Newton’s third axiom, each contact force acts upon both
objects involved but in opposite direction. We assume that f; acts upon O; and —f;
acts upon O;,. We define the vectors r; = p; — ¢; pointing from the center of mass
of O; to the point of the lth contact. Figure 4.4 illustrates a two-dimensional example
with four contacts. Now we can rewrite the Newton-Euler dynamics equations (2.33)
for object O; in the following way.

Vi = mil (Zflm—Zﬂm) +9,

W= =i

- -1

wy = L <Z firy x ) — ) filry x ) — W x Ii“%) :
L= =i

We use the symbol g for the gravitational acceleration. We describe the rotations of
the objects using quaternions. Therefore we use (2.34) instead of the second equation
in (2.32)

The motion equations form a system of differential equations whose solution describes
the motion of the objects exactly, provided we know the functions F(t) = ) f; and
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Figure 4.4: Example for a situation with four contacts.

D(t) = > 1y x fi. But in the following we assume that we do not know these functions.
This makes sense because we want to allow interactive manipulations of the objects and
we cannot make predictions on the user’s behaviour. Therefore, we assume that we know
F and D only at discrete times t,t + At,... and that these functions are constant over
each interval [t,t + At). Moreover, we assume that the number k of mutual contacts is
constant over each such interval. In order to approximate the positions and orientations
of the objects at time t+ At, we discretize the motion equations using Euler-scheme and

obtain A A
CLAt = ¢t 4 AtvEAY

qi = (ql + ;Atwﬁmqi)o : .
where q° means q/|q| and
VAt =i+ — (Z fing — Z fimy + ng)
i=i i=j1
WA = !+ AT~ (Z fi(ry x ny) (4.10)
ry

— Z fi(ry x ) — wi x I§w{> )
i=j1
We used forward differentiation to obtain the equations (4.9) and backward differenti-
ation to obtain (4.10). This enables us to insert (4.10) into (4.9). In this way we can
approximate the positions and orientations of the objects at time t + At provided we
know the contact forces at time t.

In order to compute the contact forces we introduce the notion of contact distances.
Let py; be the point on object O; that is involved in the lth contact. The contact
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distance in the lth contact is defined as 6; = n{(puL — Py, )- The §;’s can be viewed as
functions taking the position and orientation parameters of O; and Oj and computing
the local signed distance in the contact point. The contact distance is zero if the objects
are actually in contact in that point. It increases if the objects move locally apart from
each other and it decreases if they locally approach. Now we are ready to formulate the
constraints that together with the motion equations describe the dynamic behaviour of
the objects:

f1 >0, 8t >0 and fi-8™ =0

for all 1 =1,...,k. The meaning of these constraints is that the contact forces should
not be attractive, the contact distances should be non-negative and there should only
be a force pushing the objects apart in a contact if they actually touch.

We have argued that the positions and orientations at time t + At can be viewed as
functions of the contact forces. Since the contact distances depend on these parameters,
they can be viewed as functions of these forces, as well. We define the vectors F =
[f1,...,fiJT and & = [81, ..., 8x]T. We can reformulate the constraints in the form

F>0, §F) >0 and F'§(F)=0.

This is a non-linear complementarity problem (NCP) with the contact forces as variables.
In [Kan96| we find an approach to solve such an NCP. Therefore we look at the so-called
Fischer function defined as ¢ : R> — R with ¢(a,b) = Va2 + b2 — a —b. Obviously,
the Fischer function has the property

¢(a,b)=0 <= a>0, b>0 and ab=0.
We use this function to define G : R? — R?¥ as

8(F)—&
6(F.21= | ‘pirey |
where F, & € R* and ®(F, &) = [@(f1,&1), ..., @(fy, &)]T. Let now F € R*. We observe
that there is a vector & € R* with G(F, &) = 0 if and only if F solves the above NCP. In
this way we have reduced the NCP to a non-linear equation system which can be solved
using numerical techniques, e.g. the Newton-Raphson method.

There are other methods to compute the contact forces. One of them is to use the
constraints 8™ (F) = 0, which leads directly to a system of non-linear equations. This
approach allows negative, i.e. attractive contact forces. In the next time step, all those
contacts where a negative force occurred are released. The drawback of this approach is
that some objects kind of stick together for one simulation step.

Another method, which we will not describe here, is to derive a series of linear com-
plementarity problems (LCPs) that are solved iteratively. The solutions of these LCPs
converge towards the solution of the above derived NCP. A detailed description of this
approach can e.g. be found in [SS98] or in [War99|.
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Input -
— new values for v*, w* - Release contacts
A
Y
Update of the contact points Set the values ct, q*, I, v, w*"
and the contact normals for the next
for all contacts simulation step
A
Y
Computation of the contact forces =< Add a contact
to the list
Y
Computation of the resulting A
velocities Collision No|collision
vt+At wt+At
and tile resulting > Collision detection
positions and orientations
ct—l—At’ qt+At

Figure 4.5: Schematic chart of a generic algorithm for a constraint based simulation with
contact forces.

A generic algorithm for a simulation with contact forces

In this paragraph we will describe a generic algorithm for a constraint based simulation
using contact forces. This algorithm maintains a list of contacts between the objects.
The data that is stored in a contact includes the type of the contact (vertex-face, edge-
face, etc), the contact point, and the contact normal. The list of contacts is empty at the
beginning of the simulation. The input of the algorithm consists of the user’s input (e.g.
via mouse) that can either be interpreted as new velocities or as forces, and the external
forces such as gravitational forces. Figure 4.5 illustrates the algorithm. The first step
after the input has been taken and the velocities have been set according do this input
is to update the contacts in the list by computing the coordinates of the contact points
and the contact normals. Then, the contact forces are computed for the current contact
situation. Now, the resulting velocities, positions and orientations can be determined
using the equations (4.9) and (4.10). Then, we start the collision detection algorithm to
check whether this resulting motion causes a collision. If this is the case we add a new
contact to the list. This contact stores those parts of the objects that will collide, the
collision point as well as the contact normal in that point. Then, the contact forces are
computed for this new contact situation. This is repeated until there is no new collision
between any two objects. Then, the position, orientation and dynamics parameters of



4.2 Constraint Based Dynamics Simulation

161

the objects are set for the next simulation step. The last step before the simulation loop
is repeated is to release some contacts. A contact is released if geometrically it does not
exist any more. This is the case if the corresponding contact distance 8 is positive or if
the contact point has left one of the faces or edges that were involved.

4.2.2 Simulation of Rolling Motions

In this section we describe the simulation of an object O rolling on an arbitrary surface
S, which has been published in [WS01]. Let p be an arbitrary contact point between O
and S. As usual, we denote the center of mass of O by c, its mass and inertia matrix
by m and I, respectively, and its linear and angular velocity by v and w. The relative
contact velocity in p is the velocity of p as a point on O relative to the coordinate system
associated with the local coordinate system of S. Here, we assume that S is stationary.
Therefore, the relative contact velocity is given by v + w x r, where r = p — ¢. The
object rolls on the surface if in each contact point the condition

v+wxr=0 (4.11)

is fulfilled. We call this equation the rolling condition in p. This condition states that the
particles on O that are currently in contact with S do not slide along S, i.e. their relative
velocity with respect to S is zero. The rolling conditions are constraints that — together
with the motion equations — describe the motion of O. If r; and 1, are the vectors
pointing from ¢ to two distinct contact points, then by subtracting the two corresponding
rolling conditions from one another we obtain the equation w x (r; — 1) = 0. Thus,
in order to satisfy all rolling conditions, all contact points must be collinear. Hence,
the general case can be reduced to the case of two contact points. Note that the rolling
conditions also imply that the contacts are bilateral, i.e. O is neither allowed to approach
nor to move away from S in any contact point. But we will see that the situations where
an attractive force would be necessary to maintain a contact are easy to detect. We
start by describing the case of one single contact point.

One Contact Point

The ideas used here are similar to those in [Mac60], where the rolling motion of a sphere
on a given surface is studied. Let f be the sum of all external forces (such as gravity)
acting on 0. We assume that f acts on the center of mass, hence it does not cause a
torque. Let f, denote the reaction force of the surface acting in the contact point. Then
the Newton-Euler dynamics equations have the form

mv = f+f, and (4.12)
Iw+wxIw = rxf,. 4.13)

Derivating the rolling condition with respect to time yields

V=TrXxXw+rxa. (4.14)
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We can easily eliminate the reaction force f, by multiplying (4.12) by r* and subtracting
the result from (4.13). We obtain

mrxv—Iw—wxIw=rxf. (4.15)

Together with (4.14) we get a system of differential equations

mr*  —I v rxf+wxIw
l E —rx}[cb}_{ T X W (4.16)
The right-hand side of this system contains the derivation of the vector r with respect
to time. By the definition of r, this derivation is r = p, — v, where p.(t) is the contact
point at time t (in contrast to p(t), which is fixed in the local coordinate system of O).
The point p. is always a vertex or a locally closest point on an edge or a surface to
the surface S. In [ACP95] differential geometry techniques are used to compute p, as
functions of the velocities v and w. Hence, together with (2.32), the equations (4.16)
form a system of ODEs which describes the rolling motion of O.

Lemma 4.1. The matriz on the left-hand side of (4.16) is regular.
Proof. Let A be the matrix in question. It suffices to show that the zero vector is the
only solution of the system A[x" y']" = 0. We write this system in the form
mr*.x—I.y = 0
x—1°-y = 0.
If we multiply the lower equation with mr* and subtract the upper one we obtain
(I—mr*r*)y =0.

If we can show that the matrix I — mr*r* is regular, it follows that y = 0. Then the

lower one of the above equations implies that x = 0, as well, and we are done. Let
u # 0. Then,

u(I—mrr)u = u'Tu—mu'(r x (r x u))
u'Tu 4+ m(r*u? — (r"u)?)
= u'Tu+m(r xu)?
> 0,

since I is positive definite. Thus, the matrix I —mr*r* is positive definite and therefore
regular. 0

Consequently, the system of ODEs is always non-singular. This means that the motion
of the object is uniquely determined.

As already mentioned, we want to identify the situations in which an attractive force
would be necessary to maintain the contact. If n is the normal of S in the contact point,
then these situations are characterized by n'f, < 0. Thus, we only have to compute the
reaction force f,. This can be done by using equation (4.12) after we have computed v
and  as solutions of the system (4.16).
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Two Contact Points

Now suppose that O touches the surface in two distinct contact points p; and p,. In
order to obtain more readable equations we define the vector 11, = 11 — 12, # 0. As
before, f is the sum of all external forces and we assume that f does not cause a torque.
We denote the reaction forces of the surface in the two contact points by f,, and f,,.
The Newton-Euler dynamics equations then have the form

mv = f+f, +f, and (4.17)
Iw+wxIw = 1y xf, +12xTf,. (4.18)

From the rolling conditions for the two contact points follows that the angular velocity
is always parallel to the line between the two contact points, i.e.

w x 112 =0. (4.19)
Also from the rolling conditions we obtain by differentiation w.r.t. t the two equations

V=1 XW-+1r; Xxd and
] e (4.20)
V=1 X W+Ty X W.

As in the case of one contact point we want to eliminate the reaction forces. Therefore,
we first multiply equation (4.18) by 7], and obtain

Ll = r(r x fp, + 12 x f, — w x Tw)
= fI1 (riz X 1) + frT2 (r12 X 12)  since Ty2fjw
= (fr, +1,) (1 x 1),

Now we can use equation (4.17) to replace f,, +f,, by mv—f. We use the upper equation
of (4.20) to eliminate v from the result and obtain

LIl = (m(f x w+717 X d) — f)T(n X T5)
& (Irp—m(ry x1r2) x r])Td) = (m(i x w) —f)T(r] X T3).

If we use the lower equation of (4.20) to eliminate v we obtain a similar result. We add
both results to obtain an equation which is symmetric in the vectors ry and 1,:

(2Iry; — m(ry x 12) X (19 —i—rz))Td) = (m(i +12) x w —Zf)T(T] X T3).
We write this equation in the form
u'w =c. (4.21)
Subtracting the two equations (4.20) from one another yields

Ti2 X w=w X i’]z. (422)
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We combine (4.22) and (4.21) to obtain a system of equations for the vector . This
system has the form

T2 X w=>b (4 23)
u'w =c, '

where we denoted the right-hand side of (4.22) by b for the sake of convenience. Since
w and 1y, are parallel, it holds that b'ry; = 0.

Lemma 4.2. u'r; # 0 and the vector

) criz +bxu
W=—"3 """
ur

solves the system (4.283). Moreover, this system has full rank which implies that the
solution s uniquely determined.

Proof. Suppose we have already shown that u'ry, # 0. Then, we can define W as stated
in the lemma. By inserting this into (4.23) and using b'r;; = 0 we immediately verify
that this vector indeed solves the system. In order to prove that the rank of the system
is maximal it suffices to show that y = 0 is the only solution of

T2 XYy

u'y = o.

The solution of this system is the intersection of the line through the origin with direction
r12 and the plane through the origin with normal u. Since u'ry, # 0, this intersection
consists of exactly one point, namely the origin. It remains to show that u'ry; # 0. We
have

u'ry; = 2riIrp —m((r x 1) x (1 —I—rz))Tru
21‘-1'—211'12 — m(h X rz)T((r1 + Tz) X T]z)

= 2(ri;Irz + miry x 12)7).

This expression is greater than zero, since I is positive definite and 112 # 0. O

Thus, the vector  given in the lemma and the equation (4.20) and (2.32) form a
non-singular system of ODEs that uniquely describe the rolling motion of the object O.

Similarly to the case of one contact point, we want to determine the situations in which
a contact has to be released because an attractive reaction force would be necessary to
maintain it. Let therefore m; and n, be the normals of § in the contact points. A
reaction force f,, is attractive if n/f,, < 0. Thus, we want to compute these forces
from the equations (4.17) and (4.18) after we have determined v and . But these two
equations form a system of linear equations for the reaction forces whose rank is five.
Hence, f,, and f,, are not uniquely determined. But the following lemma shows that
these forces are unique up to their components in the direction of ;.
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Lemma 4.3. Let the forces f,, and f., fulfill the equations (4.17) and (4.18). The forces
fr, and f,, also satisfy these equations if and only if there is a A which is parallel to 112
such that f,, =f,, + A and f,, =f,, — A.

Proof. We define A; = :{:Ti —f,, for i=1,2. Then from (4.17) we get

MY = ffe o fey = 4 A A
S A =—-A, = A,

Moreover, (4.18) yields
Iw+wxIw = ryxf, +rxf, =1 x(f;, +A)+12x(f,, —A)
S rizxA=0.
0

Thus, if we choose a A parallel to 1, add it to f,, and subtract it from f,,, we do
not change the dynamic behaviour of the object. We choose

1
A= T%zr‘Tz(f” —f,) T2

With this definition, we easily verify that v{,(f,, — f.,) = 0. This means that the
components of the reaction forces f,, and f,, in the direction of 1y, are equal. We add
the requirement for this equality to the Newton-Euler equations to obtain a system of
linear equations that uniquely determines the reaction forces. We write this system in
the form

f,+f, = a (4.24)
r Xf,+r2xf, = b (4.25)
ri,(f,, —fr,) = 0. (4.26)

We show how to solve this system for f,,. Computing the second reaction force works
analogously. First, we multiply (4.24) from the left-hand side by r; and subtract the
result from (4.25). This gives us

i xf, =b—12xa. (4.27)
Next, we multiply (4.24) from the left-hand side by 1], and add the result to (4.26).
This yields

1

If we multiply (4.27) from the left-hand side by r{, we obtain
r—1]-2fﬁ -T2 — 1"%2 . fﬁ =Ti2 X (b — Ty X (1).
We insert (4.28) into this and solve for f,,. The result is

. 1‘_{2(1'1"]2—21"]2 X (b—rz X (1)

f,
1 2
2ry,




166 4 Dynamics Simulation

Figure 4.6: The left image shows a transparent Oloid with the two circles defining it
inscribed. The right image shows the solid shaded Oloid.

An example

As an evaluation example we simulated the rolling of an Oloid' on an inclined plane.
The Oloid is the convex hull of two circles that lie in perpendicular planes such that
each of them contains the center of the other. Figure 4.6 shows the two circles defining
the Oloid and the Oloid itself. In figure 4.7 you see a sequence of snapshots of the
rolling motion. The blue curves are the curves of the endpoints of the line segment that
touches the plane. In [DS97| the development of the bounding torse of the Oloid has
been computed, so we could verify that our result coincides with the curves given there.
This simulation could be done in real time on a Sun workstation with a 440 MHz
processor.

Figure 4.7: An Oloid rolling down an inclined plane and the contact curves.

IThe Oloid was invented by Paul Schatz (1898-1979) who took a patent on it in 1933 (Deutsches
Reichspatent Nr. 589 452).
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5.1 Conclusion

We presented a new algorithm for the static collision detection problem for curved rigid
objects. We described this algorithm generically and then specialized it for the special
classes

e quadratic complexes,
e natural quadratic complexes plus torus and
e quadratic complexes plus quadric intersection curves.

We showed that all computations can be reduced to finding the roots of polynomials
in one variable. In particular, we saw that for the first two classes the degrees of these
polynomials are at most four. Hence, their roots can be computed very efficiently and
accurately using Cardano’s and Ferrari’s formulae. For the third class of objects we
showed that the degrees of the occurring polynomials are at most eight. Since one
subproblem of our algorithm is the computation of the points of intersection between
an edge and a face, this bound is tight. This is because a quadric intersection curve
generally intersects a quadric in eight points. With our prototypical implementation
of the algorithm for the class of quadratic complexes we showed by comparison with
the collision detection software SWIFT++ which works on polyhedra that it is pos-
sible to implement our method in such a way that its performance is good compared
to algorithms for polyhedral objects. Moreover, this comparison showed that it actu-
ally makes sense to work with the curved objects directly instead of approximating them.

We also presented a new algorithm for the dynamic collision detection problem for
rigid objects with curved boundaries. We made the assumption that one object moves
whereas the other one is stationary. After a generic description of the algorithm we gave
specializations for the object classes

e quadratic complexes and

e natural quadratic complexes.
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Again, we reduced the computational tasks to the root finding problem for univariate
polynomials. We proved upper bounds for the degrees of these polynomials. In order to
keep these as low as possible we made case distinctions on the specific types of curves
and surfaces involved in the collision tests as well as on the types of motion. We saw
that the degrees in the case of pure translations were always lower than those in the
case of pure rotations which were again lower than in the case of superpositions. The
case distinctions on the curve and surface types showed that it makes sense to treat the
cases separately where straight lines or planes are involved.

We identified a subproblem of the dynamic collision detection which we could not
solve efficiently in all cases. We called this problem the penetration test. The problem
was the following. Given a moving object that is at time t in touch with a stationary
object at point p. Decide whether there is a penetration locally at p in the immediate
future. We showed that the penetration test can be formulated as the problem to decide
whether a point belongs to the boundary of a full-dimensional cell in a semi-algebraic set
in R*. It is an open question how this problem can be solved efficiently in all cases. For
non-degenerate situations, however, we presented a simple and efficient way to perform
this test.

We derived an approach to simulate the rolling motion of an object on a surface. We
distinguished the cases whether the object is in contact with the surface in one point
or several points. In the case of several contact points we showed that rolling is only
possible if all these points are collinear. Hence, we could assume that there are only
two contact points. For both situations we derived a system of ordinary differential
equations for which we proved non-singularity. This means that the behaviour of the
object is uniquely determined by its initial velocities. We implemented this approach to
simulate an oloid rolling down an inclined plane. We were able to perform this simulation
in real-time.

5.2 Further Research

Since the performance of our prototypical implementation of our static collision test
for the class of natural quadratic complexes compared to the software SWIFT-++ was
very promising, one area for future work would be an elaborate implementation of our
method for all classes of objects considered in this thesis. In this context also research on
more sophisticated methods for fast feature culling would be interesting. For instance,
temporal and spacial coherence between two successive motion steps could be exploited
as was done in [ELO01] for polyhedral models. Moreover, it would be a challenging task to
implement and test our dynamic collision detection algorithm. To this end it would be
important to do research on how to perform the penetration test in degenerate situations,
since in applications such as interactive dynamics simulations these are very likely to
occur.

Moreover, it would be interesting to extend our algorithms to larger object classes.
For example, in our static collision test the class of natural quadratic complexes could
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be extended by the torus without raising the degrees of the occurring polynomials. This
was due to the fact that we could exploit that the torus is the offset surface of a simple
curve, namely a circle. Hence, it is a natural question how the degrees change if our
object classes are extended by offset surfaces of general conics.
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