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ABSTRACT

We describe three results in this thesis. We first present a heuristic improvement for a shortest
path problem, which we termedsingle-source many-targets shortest path problem. In this
problem, we need to compute a shortest path from a source nodeto a node that belongs to a
designated target set. Dijkstra’s algorithm can be used to solve this problem. We are interested
in the single-source many-targets shortest path problem since matching algorithms repeatedly
solve this problem so as to compute a maximum weighted matching in a bipartite graph. The
heuristic is easy to implement and, as our experiments show,considerably reduces the running
time of the matching algorithm. We provide an average case analysis which shows that a
substantial fraction of queue operations is saved by Dijkstra’s algorithm if the heuristic is
used.

The second and third result are about the extension of smoothed complexity to the area
of online algorithms. Smoothed complexity has been introduced by Spielman and Teng to
explain the behavior of algorithms performing well in practice while having a poor worst case
complexity. The idea is to add some noise to the initial inputinstances by perturbing the input
values slightly at random and to analyze the performance of the algorithm on these perturbed
instances. In this work, we apply this notion to two well-known online algorithms.

The first one is the multi-level feedback algorithm (MLF), minimizing the average flow
time on a sequence of jobs released over time, when the processing times of these jobs are
not known. MLF is known to work very well in practice, though it has a poor competitive
ratio. As it turns out, the smoothed competitive ratio of MLFimproves exponentially with the
amount of random noise that is added; on average, MLF even admits a constant competitive
ratio. We also prove that our bound is asymptotically tight.

The second algorithm that we consider is the work function algorithm (WFA) for metrical
task systems, a general framework to model online problems.It is known that WFA has a poor
competitive ratio. We believe that due to its generality it is interesting to analyze the smoothed
competitive ratio of WFA. Our analysis reveals that the smoothed competitive ratio of WFA
is much better than its worst case competitive ratio and thatit depends on certain topological
parameters of the underlying metric. We present asymptoticupper and matching lower bounds
on the smoothed competitive ratio of WFA.
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KURZZUSAMMENFASSUNG

In der vorliegenden Arbeit werden drei Resultate vorgestellt. Als erstes beschreiben wir eine
Heuristik für eine Variante des kürzesten Wege Problems, welches wir dasSingle-Source
Many-Targets Shortest Path Problemnennen. Gegeben sind ein ungerichteter Graph mit nicht-
negativen Kantenkosten, ein Quellknotens und eine MengeT von Zielknoten. Die Aufgabe
ist es, einen kürzesten Weg vom Quellknotens zu einem der Zielknoten inT zu berech-
nen. Dieses Problem wird wiederholt von Matching Algorithmen gelöst, um ein maximal
gewichtetes Matching in bipartiten Graphen zu berechnen. Der Algorithmus von Dijkstra
kann verwendet werden, um dasSingle-Source Many-Targets Shortest Path Problemzu lösen.
Unsere Heuristik lässt sich leicht implementieren und erzielt, wie unsere Experimente zeigen,
eine signifikante Laufzeitverbesserung des Matching Algorithmus. In den Experimenten auf
Zufallsgraphen konnten wir eine Laufzeitverbesserung vonbis zu einem Faktor 12 beobachten.
Wir präsentieren eineAverage CaseAnalyse, in der wir zeigen, dass die Heuristik auf Zufalls-
instanzen eine nicht unerhebliche Anzahl von Operationen in der Ausführung von Dijkstra’s
Algorithmus einspart.

Im zweiten Teil der Arbeit erweitern wir die kürzlich von Spielman und Teng eingeführte
Smoothed Complexityauf den Bereich der online Algorithmen. DieSmoothed Complexity
ist ein neues Komplexitätsmaß, mit dem man versucht, die Effizienz eines Algorithmus in
der Praxis in adäquater Weise zu repräsentieren. Die grundlegende Idee ist, die Eingabe-
instanzen mehr oder weniger stark zufällig zu perturbieren, d. h. zu stören, und die Effizienz
eines Algorithmus anhand seiner erwarteten Laufzeit auf diesen perturbierten Instanzen festzu-
machen. Im allgemeinen ist dieSmoothed Complexityeines Algorithmus sehr viel geringer als
seineWorst Case Complexity, wenn dieWorst CaseInstanzen künstlichen oder konstruierten
Instanzen entsprechen, die in der Praxis so gut wie nie auftreten. Spielman und Teng führten
die Smoothed Complexityim Zusammenhang mit der Laufzeit als Effizienzkriterium ein. Die
zugrunde liegende Idee lässt sich jedoch auch auf andere Kriterien erweitern.

In dieser Arbeit übertragen wir das Konzept derSmoothed Complexityauf online Algorith-
men. Generell wird die Effizienz eines online Algorithmus anhand seinesCompetitive Ratio
gemessen. Dieser gibt jedoch oftmals die tatsächliche Effizienz des Algorithmus in der Praxis
nicht akkurat wieder. Es liegt daher nahe, sich der Idee derSmoothed Complexityzu bedienen
und die Effizienz eines online Algorithmus anhand seinesSmoothed Competitive Ratiozu
messen. Wir verwenden diese neue Idee, um die Effizienz von zwei wohlbekannten online
Algorithmen zu analysieren.
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Der erste ist bekannt als derMulti-Level Feedback Algorithm(MLF) und wird zum
Schedulingvon Prozessen verwendet, deren Ausführungszeiten nicht bekannt sind. Hierbei
ist das Ziel, die durchschnittliche Flusszeit (average flow time) zu minimieren, d. h. die durch-
schnittliche Zeit, die die Prozesse im System verbringen. Sind die Ausführungszeiten aus dem
Bereich[1, 2K ], so hat MLF einenCompetitive RatiovonΘ(2K). Dennoch erweist sich dieser
Algorithmus in der Praxis als äußerst effizient; er wird u. a.in Windows NT und Unix ver-
wendet. Wir analysieren MLF unter der Verwendung desPartial Bit Randomization Models,
d. h. wir nehmen an, dass die Ausführungszeiten ganze Zahlenaus dem Bereich[1, 2K ] sind,
die perturbiert werden, indem man die letztenk Bits durch Zufallsbits ersetzt. Für dieses Mod-
ell zeigen wir, dass MLF im wesentlichen einenSmoothed Competitive Ratiovon O(2K−k)

hat. Insbesondere impliziert dies, dass der erwarteteCompetitive Ratiovon MLF konstant ist,
wenn die Ausführungszeiten zufällig aus dem Bereich[1, 2K ] gewählt werden. Desweiteren
beweisen wir untere Schranken, die zeigen, das unsere Analyse bis auf einen konstanten Faktor
scharf ist. Für eine Vielzahl andererSmoothing Modelszeigen wir, dass MLF einenSmoothed
Competitive RatiovonΩ(2K) hat.

Der zweite Algorithmus, den wir betrachten, ist derWork Function Algorithm(WFA)
für Metrical Task Systems. Gegeben ist ein ungerichteter GraphG mit nicht-negativen Kan-
tenkosten. Der online Algorithmus befindet sich zu Beginn ineinem Startknotens und muss
eine Folge von Aufträgen (tasks) bearbeiten. Hierbei spezifiziert ein Auftrag für jeden Knoten
des Graphen die Ausführungskosten (request cost), die entstehen, wenn der Algorithmus den
Auftrag in diesem Knoten bearbeitet. Der Algorithmus kann sich im GraphenG bewegen,
wodurch Reisekosten (travel cost) der zurückgelegten Distanz entstehen. Das Ziel ist es, die
Folge von Aufträgen zu bearbeiten und dabei die gesamten Ausführungskosten plus Reise-
kosten zu minimieren. Eine Vielzahl von online Problemen lassen sich alsMetrical Task
Systemsformulieren. Die Analyse desSmoothed Competitive Ratiovon WFA ist daher beson-
ders interessant. Es ist bekannt, dass WFA einenCompetitive Ratiovon Θ(n) hat, wobei
n die Anzahl der Knoten inG ist. In der Analyse verwenden wir einSymmetric Additive
Smoothing Model, um die Ausführungskosten zu perturbieren. In diesem Modell werden zu
den Ausführungskosten Zufallszahlen addiert, die bezüglich einer symmetrischen Distribution
mit Erwartungswert Null gewählt werden. Unsere Analyse zeigt, dass derSmoothed Com-
petitive Ratiovon WFA von bestimmten topologischen Parametern des Graphen G abhängt,
wie der minimalen KantenlängeUmin, dem maximalen GradD, dem Kantendurchmesser
diam , etc. Ist zum Beispiel das Verhältnis zwischen maximaler und minimaler Kantenlänge
in G durch eine Konstante beschränkt, erhalten wir einenSmoothed Competitive Ratiovon
O(diam(Umin/σ + log(D))) und vonO(

√

n(Umin/σ + log(D))), wobei σ die Standard-
abweichung der zugrundeliegenden Distribution bezeichnet. Insbesondere erhalten wir für
Perturbationen der Größenordnungσ = Θ(Umin) einen Smoothed Competitive Ratiovon
O(log(n)) auf vollständigen Graphen und vonO(

√
n) auf Liniengraphen. Wir zeigen auch,

dass unsere Analyse bis auf einen konstanten Faktor scharf ist.
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1. INTRODUCTION

One of the major objectives in the area of algorithmics is to design algorithms that have a
good performance, the performance of an algorithm representing the time needed to solve a
problem, the quality of a computed solution, etc. Often the overall performance of an algo-
rithm is subsumed under itsworst case complexity, a complexity measure which reflects the
performance of the algorithm on a most unfortunate input instance. As an example, consider
an algorithmALG that sorts a given sequencěI of n numbers and letT (Ǐ) denote the time
needed byALG to sortǏ. The worst case complexityϕ(n) of ALG is then defined as the maxi-
mum ofT (Ǐ) over all input sequencešI of n numbers. An obvious reason for characterizing
the performance of an algorithm by its worst case complexityis that it provides a very strong
notion of performance guarantee. In our example we are guaranteed thatALG sorts any given
sequence ofn numbers withinϕ(n) time. In many applications this guarantee is essential.
Another reason for the popularity of worst case complexity is that it can usually be estimated
easily.

On the other hand the worst case complexity of an algorithm might be an over-pessimistic
estimation of its actual performance in practice. In many applications we are interested in the
typical behavior of an algorithm rather than in its worst case behavior. For example, it might
very well be that instances that actually force the algorithm into its worst case behavior are
highly artificial or constructed and therefore almost certainly never occur in practice. As a
consequence, the worst case complexity of the algorithm does not accurately reflect its actual
performance and it therefore fails to explain the good behavior of an algorithm in practice.

An alternative complexity measure is theaverage case complexity. Here we assume that
input instances are chosen randomly according to a specific probability distribution. The av-
erage case complexity then measures the expected performance of an algorithm on these in-
stances. Although we might obtain deeper insights into the performance of an algorithm by
analyzing its average case complexity, for most applications it is not natural to assume that the
input is random.

We therefore seek a complexity measure that truly reflects the performance of an algo-
rithm. Recently, Spielman and Teng proposedsmoothed complexity, a complexity measure
that attempts to explain the success of algorithms that are known to work well in practice
while having a poor worst case performance. The basic idea issimple: Given an input in-
stance we perturb the input values slightly at random and analyze the expected performance of
the algorithm on these perturbed instances. Intuitively, one could regard smoothed complexity
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2 1. Introduction

as a measure of fragility of worst case instances. If the worst case instances of an algorithm
are highly artificial, the smoothed complexity of the algorithm is usually much smaller than
its worst case complexity. Spielman and Teng proved that thesimplex method, an algorithm
that solves linear programming problems, with a certain pivot rule has polynomial smoothed
complexity, while its worst case complexity was known to be exponential. Another argument
as to why it makes sense to analyze the performance of an algorithm on perturbed instances is
that often the input values themselves are estimates and therefore inherently noisy.

While Spielman and Teng introduced smoothed complexity having the running time of an
algorithm as performance criteria in mind, it also makes sense to apply smoothed complexity
to other criteria.

In this thesis, we present three results. The first one is a heuristic improvement for a vari-
ant of a shortest path problem, which we termed thesingle-source many-targets shortest path
problem. Given a directed graph with non-negative edge costs, a source nodes, and a desig-
nated subsetT of target nodes, the task is to compute a shortest path froms to a node inT .
Dijkstra’s algorithm can easily be adapted to solve this problem. Our interest in this problem
originates from the fact that matching algorithms repeatedly solve this problem so as to com-
pute a maximum weighted matching in a bipartite graph. The heuristic is easy to implement
and significantly reduces the running time of the matching algorithm. In our experiments on
random instances, we observed an improvement in running time by a factor of up to12. We
support this observation by providing a partial average case analysis on the number of queue
operations that are saved during the execution of Dijkstra’s algorithm if the heuristic is used.
More specifically, for random graphs with average degreec and uniform random edge costs
in [0, 1], we show that on expectation at least a fraction of1 − (2 + ln(c))/c of the queue
operations is saved.

The second and third result of this thesis are concerned withthe extension of smoothed
complexity to the area of online algorithms. Online problems have a notion of time associ-
ated with the input. That is, the input is revealed over time and an online algorithm has to
take decisions without knowing the whole input sequence. Incontrast, an offline algorithm
knows the entire input sequence in advance. So far, the performance of an online algorithm
was commonly measured by means of its(worst case) competitive ratio, which is defined as
the maximum over all input instances of the ratio between thecost of the online algorithm and
the cost of an optimal offline algorithm. Several online algorithms that are known to work
well in practice have a poor competitive ratio. We thereforepropose to characterize the perfor-
mance of an online algorithm by itssmoothed competitive ratiorather than by its worst case
competitive ratio. We apply this new notion to two well-known online algorithms, themulti-
level feedback algorithmfor the non-clairvoyant scheduling problem and thework function
algorithm for problems that can be formulated as metrical task systems. For both algorithms
it turns out that the smoothed competitive ratio is much better than the worst case competitive
ratio. Moreover, from the analyses we obtain new insights into the behavior of the algorithms.



1. Introduction 3

In a non-clairvoyant scheduling problem, jobs are releasedover time and have to be sched-
uled on a machine while the actual processing times of the jobs are not known. In this setting,
we also allow that jobs are preempted. The objective is to minimize theaverage flow time,
i.e., the average time spent by jobs in the system. This problem has several natural applica-
tions in practice. A very successful algorithm for the non-clairvoyant scheduling problem is
the multi-level feedback algorithm (MLF), which is also used in Windows NT and Unix. Al-
though MLF performs very well in practice, it has a poor worstcase performance guarantee.
More precisely, if the processing times are in[1, 2K ] for someK ≥ 0, MLF has a competitive
ratio of Ω(2K). In this work, we attempt to explain the success of MLF in practice using the
novel notion of smoothed competitiveness. We smoothen the initial integral processing times
in [1, 2K ] by changing thek least significant bits at random. Under this smoothing model,
we prove that MLF has a smoothed competitive ratio of essentially O(2K−k). That is, the
smoothed competitive ratio of MLF improves exponentially with the amount of random noise
that is added; on random processing times, MLF even admits a constant competitive ratio. We
also prove that this bound is asymptotically tight. Moreover, we establish a lower bound of
Ω(2K) for various other smoothing models, including symmetric smoothing models suggested
by Spielman and Teng.

Metrical task systems can be described as follows. An onlinealgorithm resides in a graph
G and may move in this graph at a cost equal to the distance. The algorithm has to service
a sequence of tasks, arriving one at a time. Each task specifies for each node a request cost
that is incurred if the algorithm services the task in this particular node. The objective is to
minimize the total request cost plus the total travel cost. Several important online problems
can be modeled as metrical task systems. A powerful algorithm for this whole class of online
problems is the work function algorithm (WFA). Here, too, itis known that the algorithm has
a poor competitive ratio ofΘ(n), wheren denotes the number of nodes in the underlying
graphG. However, very little is known about the performance of WFA in practice. We believe
that due to its generality it is interesting to analyze the smoothed competitive ratio of WFA.
We smoothen the request costs of the tasks by means of a symmetric additive smoothing
model; that is, to each request cost we add a random number that is chosen from a symmetric
distribution with mean zero and standard deviationσ. Our analysis reveals that the smoothed
competitive ratio of WFA depends on certain topological parameters of the underlying graph
G, such as the minimum edge lengthUmin, maximum degreeD, edge diameterdiam , etc. For
example, if the ratio between the maximum and the minimum edge length ofG is bounded
by a constant, we obtain a smoothed competitive ratio ofO(diam(Umin/σ + log(D))) and
of O(

√

n(Umin/σ + log(D))). In particular, for perturbations withσ = Θ(Umin), WFA has
smoothed competitive ratioO(log(n)) on a clique andO(

√
n) on a line. We also prove that

all our bounds are asymptotically tight.

Smoothed competitive analysis is a natural alternative to worst case competitive analysis,
and we strongly believe that this new notion will help to characterize the performance of online
algorithms accurately in the future.



4 1. Introduction

The thesis is structured as follows. In Chapter 2 we define different complexity measures
and introduce smoothed complexity. Moreover, we review some basic concepts, results, and
techniques from probability theory. The subject of Chapter3 is the heuristic improvement for
the single-source many-targets shortest path problem. In Chapter 4 we introduce smoothed
competitive analysis and investigate the smoothed competitiveness of the multi-level feed-
back algorithm. Then, in Chapter 5, we present a smoothed competitive analysis of the work
function algorithm for metrical task systems. Finally, we offer a short conclusion. A list of
notations and their definitions that are used throughout this work can be found in Appendix A.



2. PRELIMINARIES

We discuss different complexity measures, definesmoothed complexityand four different
smoothing models. After that, we review some basic conceptsand techniques from proba-
bility theory.

2.1 Worst Case and Average Case Complexity

The worst case complexity measures the performance of an algorithm under the assumption
that the algorithm is run on most unfortunate input instances. More precisely, for an algorithm
ALG and an input instancěI, let T (Ǐ) be a performance measure ofALG on input Ǐ, e.g., its
running time. LetI denote the set of all input instances toALG, and letI(n) refer to all input
instances of sizen. Subsequently, we assume that an input instance of sizen consists ofn real
values. Theworst case complexityϕ(n) of ALG on input instances of sizen is defined as the
maximum ofT (Ǐ) over all instancešI of sizen, i.e.,

ϕ(n) := max
Ǐ∈I(n)

T (Ǐ).

The worst case complexityϕ(n) of an algorithm provides a very strong notion of perfor-
mance guarantee: It states that on every input of sizen the algorithm is guaranteed to have a
performance of at mostϕ(n).

On the other hand, worst case complexity does often not reflect the typical behavior of an
algorithm in practice. Worst case instances might be pathological instances that rarely occur in
practice and therefore the performance on these instances is not representative for the overall
performance of the algorithm. Put differently, the worst case complexity of an algorithm might
be an over-pessimistic estimation of its true performance.Hence, this complexity measure may
fail to characterize the actual performance of an algorithmin practice.

Another complexity measure is the average case complexity.Here we assume that each
input instanceǏ is chosen from a probability distributionf over I(n). The average case
complexityϕ(n) measures the expected performance ofALG over all instancešI of sizen;
more formally,

ϕ(n) := E
Ǐ

f←I(n)
[T (Ǐ)].

In average case analyses we assume that the input is entirelychosen at random. Very
often this gives new insights into the algorithm. Real-world instances, however, are most

5
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likely not random. Consequently, also average case complexity does not adequately reflect the
performance of an algorithm in practice.

2.2 Smoothed Complexity

Recently, Spielman and Teng [ST01] proposedsmoothed complexity, a complexity measure
that attempts to explain the success of algorithms that are known to work well in practice
while having a poor worst case performance. Smoothed complexity can be seen as a hybrid
between worst case and average case complexity. The basic idea is to randomly perturb the
input instances of an algorithm and to analyze its performance on the perturbed instances. The
smoothed complexityof an algorithm is expressed in terms of the input size and themagnitude
of perturbation. More formally, the smoothed complexity ofan algorithmALG is defined as
follows. Let Ǐ = (x̌1, . . . , x̌n), x̌j ∈ IR for eachj ∈ [n], be an input instance fromI(n); we
call Ǐ theadversarial, original, or initial input instance. We perturb, orsmoothen, Ǐ by adding
some random noise to each input value. For eachx̌j, j ∈ [n], we choose some random number
εj from a probability distributionf and definexj := x̌j + εj . The magnitude of perturbation
depends on asmoothing parameterσ. We useI to refer to aperturbed, or smoothed, instance
with entries(x1, . . . , xn). The set of all smoothed instances that are obtainable fromǏ define a
neighborhoodN(Ǐ , σ) of Ǐ, whose size depends on the smoothing parameterσ. The smoothed
complexityϕ(n, σ) of ALG is defined as the maximum over all adversarial instancesǏ of size
n of the expected performance ofALG over all smoothed instancesI in N(Ǐ , σ):

ϕ(n, σ) := max
Ǐ∈I(n)

E
I

f←N(Ǐ ,σ)
[T (I)]. (2.1)

Intuitively, the smoothed complexity of an algorithm is much smaller than its worst case
complexity if worst case instances are isolated peaks in the(instance× performance) space;
see Figure 2.1. If we slightly perturb these instances, the performance on the perturbed in-
stances improves drastically. In some sense, in smoothed analysis we attempt to answer the
question of how fragile worst case instances are.

The striking result of Spielman and Teng [ST01] was to show that the the simplex method
with a certain pivot rule haspolynomialsmoothed complexity if the coefficients of the con-
straint matrix are perturbed by a normal distribution with mean zero and standard deviationσ.
In a series of successive papers [BD02, DST02, SST02, ST03, ST02] smoothed complexity
was successfully applied to characterize the performance of other algorithms.

Spielman and Teng introduced smoothed complexity having the running time of an algo-
rithm as performance measure in mind. However, the idea underlying smoothed analysis is
generic and, as will be seen in Chapter 4, naturally extends to other performance criteria.
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Figure 2.1: Left: Original (instance× performance) space. Worst case complexity measures the
height of the highest peak. Right: Smoothed (instance× performance) space. Smoothed complexity
measures the height of the highest peak in the smoothed space. Since worst case instances are isolated
and sharp peaks (on the left), the smoothed complexity is much smaller than the worst case complexity.
Very kindly, both figures were provided by Daniel Spielman; see also the Smoothed Analysis Home-
page [sah].

2.3 Smoothing Models

The adversarial input instance may be smoothed according todifferent smoothing models. We
discuss four different smoothing models below.

Assume that the adversarial input instance is given asǏ = (x̌1, . . . , x̌n). We refer to a
smoothed instance byI = (x1, . . . , xn). Let f be a symmetric distribution with mean zero
and standard deviationσ.

Additive Symmetric Smoothing Model.In the additive symmetric smoothing model eachx̌j,
j ∈ [n], is perturbed symmetrically around its initial value by adding some additive
noise. For eacȟxj, j ∈ [n], we choose anεj independently at random fromf and define

xj := x̌j + εj , whereεj ← f .

Observe that in this model the magnitude of perturbation is independent of the initial
valuex̌j.

Additive Relative Symmetric Smoothing Model.The additive relative symmetric smoothing
model is similar to the previous one except that the magnitude of distortion depends on
the initial instanceǏ. Let ϑ : I(n) → IR be a function on the set of all adversarial
instances of sizen. For eachx̌j, j ∈ [n], we choose anεj independently at random
from f and define

xj := x̌j + ϑ(Ǐ) · εj , whereεj ← f .

Spielman and Teng [ST01] definedϑ(Ǐ) := maxj∈[n] x̌j . However, also other functions
might be reasonable. We could even define a different function ϑj for eachj ∈ [n].
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Relative Smoothing Model.In the relative smoothing model the input is smoothed symmet-
rically around its initial value by adding some relative noise. For eacȟxj , j ∈ [n], we
independently choose someεj from f and define

xj := x̌j(1 + εj), whereεj ← f .

Spielman and Teng [ST01] introduced the above three models with f being a normal
distribution with mean zero and standard deviationσ. In their analysis, they use the additive
symmetric smoothing model.

We define a fourth model, thepartial bit randomization model(see also [BBM03, BCKV04]),
which is particularly useful if the input instance consistsof K-bit integers. In this model the
input values are not smoothed symmetrically.

Partial Bit Randomization Model.Assume that eacȟxj, j ∈ [n], is a K-bit integer. We
perturb eacȟxj by replacing thek least significant bits, for0 ≤ k ≤ K, with some
random number. More precisely, for eachx̌j , j ∈ [n], we independently choose some
random numberεj from a probability distributionf over [0, 2k − 1] and define

xj := 2k

⌊

x̌j

2k

⌋

+ εj , whereεj
f← [0, 2k − 1].

Fork = 0 the smoothed values are equal to the initial values. Fork = K the smoothed
values are randomly chosen from[0, 2K − 1].

2.4 Basic Concepts and Techniques from Probability Theory

2.4.1 Sample Space, Events, and Probability Distribution

A probability spaceis a mathematical description of a random experiment. It consists of a
sample spaceΩ, which is a discrete set of elementary events, and aprobability distribution
P, which assigns to eacheventA ⊆ Ω a number representing the “likelihood” that one of
the elementary events inA occurs. We useω to denote an elementary event. A probability
distributionP : 2Ω → [0, 1] is a function satisfying:

1. P[∅] = 0, andP[Ω] = 1.

2. If A1, . . . , An is a pairwise disjoint collection of subsets ofΩ, i.e.,Ai ∩ Aj = ∅ for all
pairsi, j, i 6= j, then

P





⋃

i∈[n]

Ai



 =
∑

i∈[n]

P[Aj ] .
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The following properties follow immediately from the definitions above.

Theorem 2.4.1.LetΩ be a sample space with probability distributionP, and letA andB be
two events. Then the following holds.

1. For the complement̄A := Ω \ A of an eventA, we haveP[Ā] = 1−P[A] .

2. If A ⊆ B thenP[B] = P[A] + P[B \ A] ≥ P[A] .

3. For any two eventsA,B ⊆ Ω,

P[A ∪B] = P[A] + P[B] −P[A ∩B] ≤ P[A] + P[B] .

2.4.2 Conditional Probability and Independence

If some a-priori knowledge of the outcome of an experiment isavailable, we may want to
calculate the probability of an eventA given that an eventB occurs. This is formalized in the
notion ofconditional probabilities.

Definition 2.4.1 (conditional probability). Let A and B be two events ofΩ. If P[B] > 0

then theconditional probability ofA given thatB occursis defined as

P[A |B] :=
P[A ∩ B]

P[B]
.

Having introduced the notion of conditional probabilitieswe can formulate thetotal prob-
ability theorem.

Theorem 2.4.2 (total probability theorem). Let B1, . . . , Bn be a partition ofΩ, and let
P[Bi] > 0 for eachi ∈ [n]. Then, for any eventA,

P[A] =
∑

i∈[n]

P[A ∩ Bi] =
∑

i∈[n]

P[A |Bi]P[Bi] .

In general, the occurrence of some eventB changes the probability of an eventA. That is, in
generalP[A |B] 6= P[A] . If however the occurrence ofB does not influence the probability
of A, i.e., P[A |B] = P[A] , we say thatA andB are independent. Equivalently,A and
B are independent ifP[A ∩ B] = P[A]P[B] . We generalize this concept in the following
definition.

Definition 2.4.2 (independence of events).A collectionA1, . . . , An of events isindependent
if

P

[

⋂

i∈S

Ai

]

=
∏

i∈S

P[Ai] for every subsetS ⊆ [n].
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Observe thatpairwiseindependence of the eventsA1, . . . , An, i.e., for eachi, j, i 6= j, Ai

andAj are independent, does not imply independence as defined above.
Moreover, we would like to point out that the independence oftwo eventsA andB does

not imply their conditional independence. More precisely,let C be an event withP[C] > 0.
Then

P[A ∩ B] = P[A]P[B] 6⇒ P[A ∩ B |C] = P[A |C]P[B |C] .

2.4.3 Random Variables, Expectation, and Variance

A random variableX is a real-valued functionX : Ω → IR. For a valuex of X, we define
the event(X ≤ x) := {ω ∈ Ω : X(ω) ≤ x}.

Definition 2.4.3 (distribution function). The distribution functionFX : IR → [0, 1] of a
random variableX is defined asFX(x) := P[X ≤ x] .

In general, we distinguish betweendiscreteandcontinuousrandom variables. A random
variableX is discrete if it only takes values from a finite or countably infinite subset ofIR,
while X is continuous if it has a distribution functionFX whose derivativeF ′X is a positive,
integrable function. Subsequently, we only consider discrete random variables.

For a discrete random variableX and somex ∈ IR we can define the event(X = x) :=

{ω ∈ Ω : X(ω) = x}.

Definition 2.4.4 (density function). The density functionfX : IR → [0, 1] of a random
variableX is defined asfX(x) := P[X = x] .

We call a random variableX binary if it only takes values0 and1. For an eventA, we
define theindicator variableXA : Ω→ {0, 1} of A asXA(ω) := 1 if ω ∈ A, andXA(ω) := 0

otherwise. Observe thatXA is a binary random variable taking value1 or 0 with probability
P[A] or 1−P[A] , respectively.

Two discrete random variablesX and Y are independent if the events(X = x) and
(Y = y) are independent for allx andy.

Definition 2.4.5 (independence of random variables).A collectionX1, . . . ,Xn of (discrete)
random variables isindependentif the events(Xi = xi), i ∈ [n], are independent for all
possible choices ofxi, i ∈ [n], of values ofXi.

We next introduce theexpectationof a random variable.

Definition 2.4.6 (expectation of random variable).Theexpectation, or mean, E[X] of a
discrete random variableX is defined as

E[X] :=
∑

ω∈Ω
X(ω)P[ω] or, equivalently, E[X] :=

∑

x∈IR
xP[X = x] ,

whenever the sum converges absolutely.
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(We slightly abuse notation in the second definition, where we actually sum over allx ∈ IR

with P[X = x] > 0.)

If X is a non-negative integer valued random variable then the above definitions are equiv-
alent toE[X] =

∑∞
x=0 P[X > x] .

The expectationE[·] can be treated as a linear operator. In particular, it has thefollowing
properties.

Theorem 2.4.3.LetX andY be two random variables.

1. If a, b ∈ IR thenE[aX + b] = aE[X] + b.

2. If f : IR → IR is a function thenE[f(X)] =
∑

x∈IR f(x)P[X = x] . Moreover, iff is
a linear function thenE[f(X)] = f(E[X]).

3. If X andY are independent thenE[XY ] = E[X]E[Y ].

The second part of 2 in the above theorem does not generalize to non-linear functions.
However, iff is convex, or concave, we can use Jensen’s inequality.

A function f : IR → IR is convexif for any x1, x2 ∈ IR and0 ≤ λ ≤ 1 the following
inequality holds:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

f is concaveif the opposite inequality holds.

Theorem 2.4.4 (Jensen’s inequality).LetX be a random variable and letf : IR→ IR be a
convex function. ThenE[f(X)] ≥ f(E[X]). If f is concave thenE[f(X)] ≤ f(E[X]).

We say that a random variableX stochastically dominatesa random variableY if P[X >

z] ≥ P[Y > z] for eachz ∈ IR.

Theorem 2.4.5. Let X and Y be random variables with finite expectations and assumeX

stochastically dominatesY . ThenE[X] ≥ E[Y ]. Equality holds if and only ifX andY are
identically distributed.

We extend the notion of conditional probabilities to the expectation.

Definition 2.4.7. Theconditional expectationof X given an eventA withP[A] > 0 is defined
as

E[X |A] :=
∑

x∈IR
xP[X = x |A] .

Analogously, for a random variableY and a fixed real numbery ∈ IR with P[Y = y] > 0,
we define

E[X |Y = y] :=
∑

x∈IR
xP[X = x |Y = y] .
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The following theorem is very helpful for computing the expectation of a random variable.

Theorem 2.4.6 (total expectation theorem).Let A1, . . . , An be a partition ofΩ, and let
P[Ai] > 0 for eachi ∈ [n]. Then, for any random variableX,

E[X] =
∑

i∈[n]

E[X |Ai]P[Ai] .

Thevarianceof a random variableX measures the deviation ofX from its expectationE[X].
It is defined asVar[X] := E[(X − E[X])2]. Thestandard deviationσ of X is defined as
σ :=

√

Var[X] .

Theorem 2.4.7.LetX andY be two random variables.

1. Var[X] = E[X2]−E[X]2.

2. For any real valuec ∈ IR, Var[cX] = c2Var[X] .

3. If X andY are independent,Var[X + Y ] = Var[X] + Var[Y ] .

2.4.4 Moment Inequalities and Concentration of Measure

We state some inequalities that will be used in subsequent chapters.

Theorem 2.4.8 (Markov’s inequality). LetX be a non-negative random variable. Then, for
everyt ∈ IR+,

P[X ≥ t] ≤ E[X]

t
.

Theorem 2.4.9 (Chebyshev’s inequality).LetX be a random variable with standard devia-
tion σ. Then, for everyt ∈ IR+,

P[|X −E[X]| ≥ tσ] ≤ 1

t2
.

Consider a sequenceX1, . . . ,Xn of n independent binary random variables withP[Xi =

1] := pi andP[Xi = 0] := 1 − pi for eachi ∈ [n]. In the following we are interested in the
question of how much the sumX :=

∑

i∈[n] Xi deviates from its expectationµ := E[X].

Theorem 2.4.10 (Chernoff bound).Let X1, . . . ,Xn be independent binary random vari-
ables. DefineX :=

∑

i∈[n] Xi andµ := E[X].

1. For any0 ≤ ε ≤ 1,
P[X ≤ (1− ε)µ] ≤ e−µε2/2. (2.2)
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2. For anyε > 0,

P[X ≥ (1 + ε)µ] ≤
(

eε

(1 + ε)1+ε

)µ

. (2.3)

We can further bound the right hand side of (2.3) as follows

(

eε

(1 + ε)1+ε

)µ

≤
(

e

1 + ε

)(1+ε)µ

.

If ε > 2e− 1, the latter term is at most2−(1+ε)µ.

We may use the following bounds if theXi’s are non-binary, independent random variables in
[0, 1].

Theorem 2.4.11 (Chernoff–Hoeffding bound).LetX1, . . . ,Xn be independent random vari-
ables withXi ∈ [0, 1] for eachi ∈ [n]. DefineX :=

∑

i∈[n] Xi andµ := E[X].

1. For anyt > 0,

P[X ≤ E[X]− t] ≤ e−2t2/n and P[X ≥ E[X] + t] ≤ e−2t2/n.

2. For any0 < ε < 1,

P[X ≤ (1− ε)µ] ≤ e−µε2/2 and P[X ≥ (1 + ε)µ] ≤ e−µε2/3.

Theorem 2.4.12 (Hoeffding Bound).LetX1, . . . ,Xn be independent random variables. De-
fineX :=

∑

i∈[n] Xi andµ := E[X].

1. If for eachi ∈ [n] and somek > 0, Xi ∈ [0, k], then, for anyt,

P[X ≥ t] ≤
[

(

t

eµ

)−t

e−µ

]1/k

.

2. If for eachi ∈ [n] and some constantsai andbi, Xi ∈ [ai, bi], then, for anyt > 0,

P[X ≤ E[X]− t] ≤ exp

(

−2t2
∑

i∈[n](bi − ai)2

)

and (2.4)

P[X ≥ E[X] + t] ≤ exp

(

−2t2
∑

i∈[n](bi − ai)2

)

. (2.5)

Theorem 2.4.13 (method of bounded differences).LetX1, . . . ,Xn be independent random
variables withXi ∈ Ii for eachi ∈ [n]. Suppose that the (measurable) functionf : I1× · · ·×
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In → IR satisfies
|f(~x)− f(~x′)| ≤ ci,

whenever the vectors~x and~x′ differ only in theith component. DefineY := f(X1, . . . ,Xn).
Then, for anyt > 0,

P[|Y −E[Y ]| ≥ t] ≤ 2exp

(

−2t2
∑

i∈[n] c
2
i

)

.

Theorem 2.4.14 (Kolmogorov’s inequality).Let X1, . . . ,Xn be independent random vari-
ables such thatE[Xj ] = 0 for eachj ∈ [n]. DefineS0 := 0 andSi :=

∑i
j=1 Xj . Then, for

anyε > 0,

P

[

max
0≤k≤n

|Sk| ≥ ε

]

≤ E[S2
n]

ε2
.

2.4.5 Common Discrete Random Variables

We list some commonly used random variables.

Discrete Uniform Distribution

A discrete uniformrandom variableX over [a, . . . , b] takes each valuek, a ≤ k ≤ b,
with equal probability, i.e.,P[X = k] := 1

b−a+1 . We haveE[X] = a+b
2 andVar[X] =

(b−a)(b−a+2)
12 .

Bernoulli Distribution

A binary random variableX with P[X = 1] := p andP[X = 0] := 1−p is called aBernoulli
random variable. We can think ofp and1 − p being thesuccessandfailure probability of a
trial. We haveE[X] = p andVar[X] = p(1− p).

Binomial Distribution

We performn independent Bernoulli trialsX1, . . . ,Xn (with success probabilityp) and define
X :=

∑

i∈[n] Xi as the number of successes. The variableX is called abinomialrandom vari-
able. We will also use the notationBin[n, p] to refer to a binomial distribution with parameters
n andp. The probability that the number of successes equalsk ∈ {0, . . . , n} is

P[X = k] :=

(

n

k

)

pk(1 − p)n−k.

We haveE[X] = np andVar[X] = np(1− p).
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Poisson Distribution

A PoissonvariableX with parameterλ > 0 is a random variable such that

P[X = k] := e−λ λk

k!
, k = 0, 1, 2, . . .

We haveE[X] = λ andVar[X] = λ. If λ = np for very largen and very smallp, Bin[n, p]

approximatesX, i.e.,

P[X = k] ≈
(

n

k

)

pk(1− p)n−k.

Geometric Distribution

We performn independent Bernoulli trials (with success probabilityp) and defineX as the
number of trials until asuccessoccurs for the first time.X is a geometricrandom variable
with parameterp and

P[X = k] := (1− p)k−1p, k = 1, 2, 3, . . .

We haveE[X] = 1
p andVar[X] = 1−p

p2 .

2.4.6 A Powerful Technique to Prove Correlations

Two eventsA andB arepositively correlatedif P[A |B] ≥ P[A] . A andB arenegatively
correlatedif P[A |B] ≤ P[A] .

Next, we review a technique to prove positive or negative correlation of two eventsA and
B. The technique will turn out to be extremely powerful in Chapters 3 and 4. Essentially, this
technique enables to prove that two variables are correlated if the following conditions hold:

1. The probability space forms adistributive lattice.

2. The probability distribution islog-supermodular.

3. The eventsA andB aremonotone increasingor monotone decreasing.

The technique is described in the book by Alon and Spencer [AS00].

Definition 2.4.8 (distributive lattice). A lattice(L,≤,∨,∧) is a partially1 ordered set(L,≤)

in which every two elementsx andy have a unique minimal upper bound,x ∨ y, called the
join of x andy, and a unique maximal lower bound,x∧y, called themeetof x andy. A lattice
(L,≤,∨,∧) is distributiveif for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

1 A relation≤ partially ordersL if it is (i) reflexive, i.e.,a ≤ a for all a ∈ L, (ii) transitive, i.e., if a ≤ b and
b ≤ c thena ≤ c for anya, b, c ∈ L, and (iii) antisymmetric, i.e., if a ≤ b andb ≤ a thena = b for anya, b ∈ L.



16 2. Preliminaries

Example 2.4.1. Let 2N denote the power set ofN := [n]. Every subsetL ⊆ 2N which is
closed under union and intersection forms a distributive lattice (L,⊆,∪,∩).

Example 2.4.2. Let L := {0, 1}n be the set of all binary vectors of lengthn. For any two
vectorsx, y ∈ L we write x ≤ y if x is componentwise less than or equal toy, i.e., if
xi ≤ yi for eachi ∈ [n]. Moreover, we definex ∨ y as the componentwiseor of x andy, i.e.,
(x ∨ y)i := xi ∨ yi for eachi ∈ [n], and analogouslyx ∧ y as the componentwiseandof x

andy. Observe thatx, y ≤ x ∨ y andx, y ≥ x ∧ y. It can easily be verified that(L,≤,∨,∧)

is a distributive lattice.

Definition 2.4.9 (log-supermodular function). Let (L,≤,∨,∧) be a distributive lattice. A
functionξ : L→ IR+ is log-supermodularif for all x, y ∈ L

ξ(x) · ξ(y) ≤ ξ(x ∨ y) · ξ(x ∧ y).

Example 2.4.3.Let (L,≤,∨,∧) be a distributive lattice as defined in Example 2.4.2. More-
over, letξ : L → IR+ be a function onL defined asξ(x) := p

P

i xi(1 − p)n−
P

i xi for each
x ∈ L and some0 ≤ p ≤ 1. Intuitively,ξ(x) is the probability ofx if each component ofx is
independently set to1 with probabilityp and to0 with probability1− p. Now,

ξ(x) · ξ(y) = ξ(x ∨ y) · ξ(x ∧ y),

which follows from the observation that for allx, y ∈ L

∑

i

(xi + yi) =
∑

i

(xi ∨ yi) + (xi ∧ yi).

Thus,ξ is log-supermodular.

A function f : L → IR+ is increasingif for all x ≤ y, f(x) ≤ f(y); f is decreasing
if for all x ≤ y, f(x) ≥ f(y). The following theorem is due to Fortuin, Kasteleyn, and
Ginibre [FKG71] and is known as the FKG inequality.

Theorem 2.4.15 (FKG inequality). Let (L,≤,∨,∧) be a finite distributive lattice, and let
ξ : L → IR+ be a log-supermodular function. Then, for any two increasing functionsf, g :

L→ IR+, we have
(

∑

x∈L

f(x)ξ(x)

)

·
(

∑

x∈L

g(x)ξ(x)

)

≤
(

∑

x∈L

f(x)g(x)ξ(x)

)

·
(

∑

x∈L

ξ(x)

)

.

The inequality holds also iff andg are both decreasing. Iff is increasing andg is decreasing
(or vice versa), the opposite inequality holds.
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Applying the FKG Inequality to Probabilities

Let Ω be a sample space, and letP : Ω → IR+ be a probability distribution onΩ. Assume
that(Ω,≤,∨,∧) is a distributive lattice and thatP is log-supermodular.

Definition 2.4.10 (monotone increasing/decreasing events). An eventA is monotone in-
creasingif ω ∈ A andω′ ≥ ω imply ω′ ∈ A. A is monotone decreasingif ω ∈ A andω′ ≤ ω

imply thatω′ ∈ A.

Let XA andXB be the indicator variables ofA andB, respectively. Observe thatXA

is increasing or decreasing ifA is monotone increasing or decreasing, respectively; the same
holds forB andXB . If both A andB are monotone increasing events then by applying the
FKG inequality toXA andXB we obtain

P[A] ·P[B] =

(

∑

ω∈Ω
XA(ω)P[ω]

)

·
(

∑

ω∈Ω
XB(ω)P[ω]

)

≤
(

∑

ω∈Ω
XA(ω)XB(ω)P[ω]

)

·
(

∑

ω∈Ω
P[ω]

)

= P[A ∩ B] .

We summarize the result in the following theorem.

Theorem 2.4.16. Let Ω be a sample space with probability distributionP such that
(Ω,≤,∨,∧) constitutes a distributive lattice andP is log-supermodular. LetA,B ⊆ Ω be
two events.A andB are positively correlated if bothA andB are monotone increasing, or
both are monotone decreasing.A andB are negatively correlated ifA is monotone increasing
andB is monotone decreasing, or vice versa.

2.5 Random Graph Models

We define two models of random graphs that are due to Erdős and Rényi [ER59]: theG(n, p)

model and theG(n,m) model. LetG(n) be the set of all undirected graphs (without self-
loops) onn vertices and defineM :=

(n
2

)

; M is the number of edges in a complete graph
on n vertices.G(n) has precisely2M elements. The sample spaces underlyingG(n, p) and
G(n,m) are both subsets ofG(n). However, these models differ in the way we define their
probability distributions onG(n).

We extend these two models also to bipartite graphs. LetG(n, n) denote the set of all
bipartite graphs withn nodes on each side. For bipartite graphs we defineM := n2. We refer
to the respective bipartite random graph models byG(n, n, p) andG(n, n,m).

G(n, p) Model

In theG(n, p) model each of theM potential edges is present with probabilityp, independently
of other edges. That is, the sample space ofG(n, p) is the entire setG(n), and the probability
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of a graphG ∈ G(n) with m edges ispm(1 − p)M−m. If p = 1
2 all graphs inG(n) are

equiprobable. We defineG(n, n, p) analogously.

G(n,m) Model

The sample space ofG(n,m) consists of all
(M

m

)

graphs fromG(n) that have exactlym edges
and each graph inG(n,m) is equiprobable. Put differently, a graphG from G(n,m) is chosen
independently uniformly at random with probability1/

(M
m

)

. We define theG(n, n,m) model
analogously.

A graph propertyP is a subset ofG(n) containing all graphs having propertyP . For example,
P := {G ∈ G(n) : G is Hamiltonian} is the graph property of being Hamiltonian. A graph
propertyP is monotone increasingif G1 ∈ P , G2 ∈ G(n) andG1 ⊂ G2 imply G2 ∈ P . For
example, the graph property of being Hamiltonian is monotone increasing.

Let Gp be a graph chosen fromG(n, p) with p = m/M . Then the expected number of
edges inGp is Mp = m. The following theorem, due to Angluin and Valiant [AV79], relates
the occurrence of a graph propertyP in Gp to its occurrence in a graphGm from G(n,m)

with p = m/M .

Theorem 2.5.1.Let P be some monotone graph property. Moreover, letGp ∈ G(n, p) with
p = m/M andGm ∈ G(n,m). Then

P[Gm ∈ P ] = O(nP[Gp ∈ P ] ).



3. A HEURISTIC FOR DIJKSTRA’S ALGORITHM
WITH MANY TARGETS

Abstract

We consider thesingle-source many-targets shortest path(SSMTSP) problem in directed graphs with
non-negative edge costs. We are given a source nodes and a target setT , and the objective is to compute
a shortest path froms to a node inT . Dijkstra’s algorithm can be used to solve the SSMTSP problem.
Our interest in the SSMTSP problem originates from its use inweighted bipartite matching algorithms.
A weighted bipartite matching in a graph withn nodes on each side reduces ton SSMTSP problems,
where the number of nodes in the target set varies betweenn and1.

In this chapter we describe a simple heuristic that is easy toimplement and significantly reduces the
number of queue operations performed by Dijkstra’s algorithm. In our experiments on random graphs
a speed-up by a factor of up to 12 was observed for the weightedmatching algorithm. We also present
a partial analysis that gives some theoretical support to our experimental findings.

Publication Notes. A preliminary version of this chapter was first published together with Kurt
Mehlhorn in the Conference Proceedings of the Nineth AnnualEuropean Symposium on Algorithms
(ESA 2001) [MS01]. A journal version appeared in Algorithmica in 2003 [BMST03] and is joint work
with Holger Bast, Kurt Mehlhorn, and Hisao Tamaki. Holger Bast and Hisao Tamaki helped us to
resolve an error in the preliminary version.

3.1 Introduction

In the single-source many-targets shortest path(SSMTSP) problem we are given a directed
graphG = (V,E), a non-negative cost functionc : E → IR+ on the edges ofG, and a source
nodes. Moreover, every node inV is designated as eitherfreeor non-free. We are interested
in finding a shortest path froms to a free node.

The SSMTSP problem is solved by Dijkstra’s algorithm. Dijkstra’s algorithm maintains
a tentative distance for each node and a partition of the nodes into settledandunsettled. At
the beginning all nodes are unsettled. The algorithm operates in phases. In each phase, an
unsettled node with smallest tentative distance is declared settled and its outgoing edges are
relaxed in order to improve tentative distances of other unsettled nodes. The unsettled nodes
are kept in a priority queue. The algorithm can be stopped once the first free node becomes
settled.

19
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We describe a heuristic improvement. The improvement maintains an upper bound on the
tentative distances of free nodes and only performs queue operations with values smaller than
the bound. All other queue operations are suppressed. The heuristic significantly reduces the
number of queue operations and therefore the running time ofthe algorithm.

We first used this heuristic in a jump-start routine to compute an initial matching for the
general weighted matching algorithm [Sch00, MS00, MS02]. The jump-start routine computes
a maximum weight matching if it is applied to bipartite graphs. When we compared the
running time of the jump-start routine with LEDA’s bipartite matching algorithms [MN99,
Sec. 7.8], we found that the jump-start routine is consistently faster. We traced the superiority
to the heuristic described in this chapter.

The experiments that we present in this chapter were performed with theTool Set for
Computational Experiments; see〈http://exptools.sourceforge.net〉. The tool provides a simple
way to set up, run, and analyze experiments. Moreover, it facilitates the documentation of
the environment in which the experiments were performed andalso enables to reproduce the
experiments at a later time.

This chapter is organized as follows. In Section 3.2 we discuss Dijkstra’s algorithm for
many targets and describe our heuristic. In Section 3.3 we give an analysis of the heuristic for
random graphs and report about experiments on random graphs. In Section 3.4 we discuss the
application to weighted bipartite matching algorithms andpresent our experimental findings
for the matching problem.

3.2 Dijkstra’s Algorithm with Many Targets

It is useful to introduce some more notation. For a nodev ∈ V , let d(v) be the shortest path
distance froms to v, and letd0 := min{d(v) : v is free}. If there is no free node reachable
from s, d0 = +∞. Our goal is to compute (i) a nodev0 with d(v0) = d0 (or an indication that
there is no such node), (ii) the subsetV ′ of nodes withd(v) < d0, more precisely,v ∈ V ′ if
d(v) < d0 andd(v) ≥ d0 if v 6∈ V ′, and (iii) the valued(v) for every nodev ∈ {v0} ∪ V ′,
i.e., a partial functiond̃ with d̃(v) = d(v) for any v ∈ {v0} ∪ V ′. (Observe that nodesv
with d(v) = d0 may or may not be inV ′.) We refer to the problem just described as the
single-source many-targets shortest path (SSMTSP) problem. It is easily solved by an adapted
version of Dijkstra’s algorithm as shown in Figure 3.1.

We maintain a priority queuePQ for the nodes ofG. The queue is empty initially. For
each nodeu ∈ V we compute a tentative distancedist(u) of a shortest path froms to u.
Initially, we setdist(s) to zero and insert the item〈s, 0〉 into the priority queue. For each
u ∈ V, u 6= s, we setdist(u) to +∞ (no path froms to u has been encountered yet). In the
main loop we delete a nodeu with minimaldist-value from the priority queue. Ifu is free, we
stop:v0 = u andV ′ is the set of nodes removed in preceding iterations. Otherwise, we relax
all edges out ofu. Consider an edgee = (u, v) and letδ = dist(u) + c(e). We check whether
δ is smaller than the current tentative distance ofv. If so, we distinguish two cases. (i) Ife is
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DIJKSTRA’ S ALGORITHM (ADAPTED VERSION):
dist(s) = 0 anddist(u) = +∞ for all u ∈ V, u 6= s
PQ.insert(s, 0) (insert〈s, 0〉 into PQ)
while not PQ.empty() do

u = PQ.del_min() (remove nodeu from PQ with minimal priority)
if u is freethen STOP fi
RELAX ALL OUTGOING EDGES OFu

od

RELAX ALL OUTGOING EDGES OFu:
for all e = (u, v) ∈ E do

δ = dist(u) + c(e)
if δ < dist(v) then

if dist(v) = +∞ (v is not contained inPQ)
then PQ.insert(v, δ) (insert〈v, δ〉 into PQ)
elsePQ.decrease_p(v, δ) (decrease priority ofv in PQ to δ)

fi
dist(v) = δ

fi
od

Figure 3.1: Dijkstra’s algorithm adapted for many targets. When the first free node is removed from
the queue, the algorithm is stopped:v0 is the node removed last andV ′ consists of all non-free nodes
removed from the queue.

the first edge intov that is relaxed (this is the case iffdist(v) equals+∞) we insert an item
〈v, δ〉 into PQ. (ii) Otherwise, we decrease the priority ofv in PQ to δ. If a queue operation
is performed, we also updatedist(v).

Observe that the single-source many-targets shortest pathproblem can alternatively be
solved by a single-source single-target shortest path computation froms to a target nodet,
where all target nodes inT are contracted to a single target nodet. The adapted version
essentially does the same but without performing these contractions explicitly.

We next describe a heuristic improvement of the algorithm above. LetB be the smallest
dist-value of a free node encountered by the algorithm;B := +∞ initially. We claim that
queue operationsPQ.op(·, δ) with δ ≥ B may be skipped without affecting correctness. This
is clear, since the algorithm stops when the first free node isremoved from the queue and since
thedist-value of this node is certainly no larger thanB. Thus alldist-values less thand(v0)

will be computed correctly. The modified algorithm may output a different nodev0 and a
different setV ′. However, if all distances are pairwise distinct the same nodev0 and the same
setV ′ as in the basic algorithm are computed. The pruning heuristic can conceivably save
on queue operations, since fewer insert and decrease priority operations may be performed.
Figure 3.2 shows the algorithm with the heuristic added.

Note that the changes which are necessary to incorporate ourheuristic into the adapted
version of Dijkstra’s algorithm are trivial and computationally negligible. Moreover, if the
underlying priority queue is stable, i.e., items with the same priority are removed from the
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DIJKSTRA’ S ALGORITHM WITH PRUNING HEURISTIC:
dist(s) = 0 anddist(u) = +∞ for all u ∈ V, u 6= s
B = +∞ (initialize upper bound to+∞)
PQ.insert(s, 0) (insert〈s, 0〉 into PQ)
while not PQ.empty() do

u = PQ.del_min() (remove nodeu from PQ with minimal priority)
if u is freethen STOP fi
RELAX ALL OUTGOING EDGES OFu

od

RELAX ALL OUTGOING EDGES OFu:
for all e = (u, v) ∈ E do

δ = dist(u) + c(e)
if δ ≥ B then continue fi (prune edge if bound is exceeded)
if v is freethen B = min(δ, B) fi (try to improve bound)
if δ < dist(v) then

if dist(v) = +∞ (v is not contained inPQ)
then PQ.insert(v, δ) (insert〈v, δ〉 into PQ)
elsePQ.decrease_p(v, δ) (decrease priority ofv in PQ to δ)

fi
dist(v) = δ

fi
od

Figure 3.2: Dijkstra’s algorithm for many targets with a pruning heuristic. An upper boundB for d(v0)
is maintained and queue operationsPQ.op(·, δ) with δ ≥ B are not performed.

queue in the order of their insertions, it is clear that the heuristic will never use more queue
operations than the adapted Dijkstra algorithm.

Subsequently, we refer to the adapted version of Dijkstra’salgorithm asstandard scheme,
while we refer to our heuristic asrefined scheme.

3.3 Analysis

We perform a partial analysis of the standard and the refined scheme on random graphs with
random real-valued edge costs. We usen for the number of nodes,m for the expected number
of edges, andf for the expected number of free nodes. Throughout the analysis we make the
following probability assumptions:

1. The underlying graphG is a directed random graph chosen from theG(n, p) model with
p := m/n2, i.e., each of then2 potential edges is picked independently at random with
probabilityp.

2. A node is free with probabilityq := f/n, independently of the other nodes.

3. The edge costs are random reals chosen independently and uniformly from [0, 1].
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Let c be the expected outdegree of a node, i.e.,c := pn = m/n. We are mainly interested
in the case wherep = c/n for a small constantc, say2 ≤ c ≤ 10, andq a constant, i.e.,
the expected number of free nodes is a fixed fraction of the nodes. Alternatively, we could
choose our random graph from theG(n,m) model and let free nodes form a random subset of
f nodes. The results would be similar.

Number of Deletions from the Queue

We first analyze the number of nodes removed from the queue. Ifour graph were infinite
and all nodes were reachable froms, the expected number would be1/q, namely the expected
number of trials until the first head occurs in a sequence of coin tosses with success probability
q. However, our graph is finite (not really a serious difference if n is large) and only a subset
of the nodes is reachable froms. Observe that the probability thats has no outgoing edge is
(1 − p)n ≈ e−c. This probability is not negligible. We proceed in two steps. We first analyze
the number of nodes removed from the queue given the numberR of nodes reachable froms,
and in a second step review results about the numberR of reachable nodes.

Lemma 3.3.1. LetR be the number of nodes reachable froms in G and letT be the number
of iterations, i.e., in iterationT the first free node is removed from the queue or there is no free
node reachable froms andT = R. Then,P[T = t |R = r] = q(1− q)t−1 for 1 ≤ t < r, and
P[T = t |R = r] = (1− q)t−1 for t = r. Moreover, for the expected number of iterations we
haveE[T |R = r] = 1/q − (1− q)r/q.

Proof. Since each node is free with probabilityq = f/n and since the property of being
free is independent from the order in which nodes are removedfrom the queue, we have
P[T = t |R = r] = q(1− q)t−1 andP[T ≥ t |R = r] = (1− q)t−1 for 1 ≤ t < r. If t = r,
P[T = t |R = r] = (1− q)t−1 = P[T ≥ t |R = r] .

The expected number of iterations is

E[T |R = r] =
∑

t≥1

P[T ≥ t |R = r] =
r−1
∑

t=1

(1− q)t−1 + (1− q)r−1

=
1− (1− q)r

1− (1− q)
=

1

q
− (1− q)r

q
.

The expected number of edges relaxed iscE[(T − 1) |R = r] sinceT − 1 non-free nodes
are removed from the queue and since the expected outdegree of every node isc = m/n. We
conclude that the number of edges relaxed is about((1/q) − 1)(m/n).

Now, how many nodes are reachable froms? This quantity is analyzed in the book by
Alon and Spencer [ASE92, Sec. 10.5]. Letα > 0 be such thatα = 1 − exp(−cα), and letR
be the number of nodes reachable froms. ThenR is bounded by a constant with probability
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c 2 5 8 8

α 0.7968 0.9930 0.9997 0.9997
MS 15 2 1 1
ML 714 981 996 1995

R 796.5 993 999.7 1999.3
F 7958 9931 9997 9995

Table 3.1: For all experiments (except the one in the last column) we used random graphs withn =
1000 nodes andm = cn edges. For the last column we chosen = 2000 in order to illustrate that the
dependency onn is weak. The following quantities are shown; for each value of c we performed104

trials.
α: the solution of the equationα = 1− exp(−cα).
MS : the maximal number of nodes reachable froms when few nodes are reachable.
ML: the minimal number of nodes reachable froms when many nodes are reachable.
R: the average number of nodes reachable froms when many nodes are reachable.
F : the number of times many nodes are reachable froms.

about1−α and is approximatelyαn with probability aboutα. More precisely, for everyǫ > 0

andδ > 0, there is at0 such that for all sufficiently largen, we have

1− α− ǫ ≤ P[R ≤ t0] ≤ 1− α + ǫ

and
α− ǫ ≤ P[(1 − δ)αn < R < (1 + δ)αn] ≤ α + ǫ.

Table 3.1 indicates that small values ofǫ andδ work even for moderaten. For c = 2,
we haveα ≈ 0.7968. We generated 10000 graphs withn = 1000 nodes and2000 edges
and determined the number of nodes reachable from a given source nodes. This number
was either smaller than 15 or larger than714. The latter case occurred in7958 ≈ α · 10000
trials. Moreover, the average number of nodes reachable from s in the latter case was796.5 ≈
α · 1000 = αn.

We are only interested in the case that many nodes are reachable from s. We fix δ rather
arbitrarily at0.01 and restrict attention to the set of graphs with more than(1 − δ)αn nodes
reachable froms. In this situation, the probability that all reachable nodes are removed from
the queue is

(1− q)αn ≤ exp(−αnq) = exp(−αf).

This is less than1/n2 if c ≥ 2 andf ≥ 4 ln n; observe thatc ≥ 2 impliesα > 1/2. We thus
require our parameters to satisfyc ≥ 2 andf ≥ 4 ln n and assume that more than(1 − δ)αn

nodes are reachable froms. We use the phrase “R is large” to refer to this assumption.

Number of Insertions into the Queue

We next analyze the number of insertions into the queue, firstfor the standard scheme.
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Figure 3.3: The probability of the bold edge is the probability of havingtwo successes inn − 3
Bernoulli trials with success probabilityp. We can view the process with and without the dashed edges.
The process with the dashed edges corresponds to the recursive definition of the variablesYt given in
(3.1), and the process without the dashed edges correspondsto graph exploration. In the latter case
the process dies as soon asYt = t (i.e., a box is hit). We are interested in the latter process.The
transition probabilities in the latter process differ in a non-trivial way from the transition probabilities
in the original process.

Lemma 3.3.2.LetIS be the number of insertions into the queue in the standard scheme. Then
E[IS |T = t andR is large] ≥ n− (n− 1)(1 − p)t−1 for t < (1− δ)αn and

E[IS |R is large] ≥ c(1 − q)

q + (1− q)c/n
− (1− q)c/n

q + (1− q)c/n
+ 1− o(1) ≈ c

q
− c + 1− o(1).

Proof. We need to review some more material from [ASE92, Sec. 10.5].Let Bin[k, p] denote
the binomial distribution withk trials and success probabilityp; see Section 2.4.5. Consider
the following sequence of random variables:

Y0 = 1 and Yt = Yt−1 + Bin[n− Yt−1, p] for 1 ≤ t ≤ n, (3.1)

and letR denote the leastt such thatYt = t. ThenR is the number of reachable nodes as
a simple induction shows: Observe that preciselys is reachable before the first removal and
that at the time thetth node is removed from the queue, each of then − Yt−1 remaining (i.e.,
non-reached) nodes is reached with probabilityp. Figure 3.3 illustrates the process.

An inductive argument (see [ASE92, Sec. 10.5]) showsYt = 1+Bin[n− 1, 1− (1− p)t]

and henceE[Yt] = n− (n−1)(1−p)t for 0 ≤ t ≤ n. We cannot directly use this result as we
are interested in the process without the dashed edges. LetEt = (Y0 ≥ 1 ∩ . . . ∩ Yt−1 ≥ t)

be the event that there are at leastt reachable nodes. ThenE(1−δ)αn is tantamount to “R is
large”. Also,E[Yt |R is large] is the expected value ofYt for the process without the dashed
edges. The following claim that the event “R is large” (i.e., the exclusion of the dashed edges)
biasesYt towards larger values is intuitively plausible, but not at all trivial to prove.

Proposition 3.3.1. For t ≤ (1− δ)αn we have

E[Yt |R is large] ≥ E[Yt] = n− (n− 1)(1 − p)t.



26 3. A Heuristic for Dijkstra’s Algorithm with Many Targets

Proof. Let N = (1 − δ)αn. Recall thatY0 = 1 andYt = Yt−1 + Bin[n − Yt−1, p] for
1 ≤ t ≤ n. It is convenient to view the underlying probability spaceΩ as{0, 1}n2

, where
entries are independently1 with probability p. An elementary event isω = (ω1, . . . , ωn),
whereωi ∈ {0, 1}n, andYt(ω)− Yt−1(ω) is the number of ones among the firstn− Yt−1(ω)

entries ofωt.

Let E be the event(Y0 ≥ 1 ∩ . . . ∩ YN−1 ≥ N) (i.e., the event “R is large”), and let
A be the eventYt ≥ a for some arbitraryt anda. We will prove thatA andE are positively
correlated using the technique described in Section 2.4.6.The reader may verify thatΩ forms
a distributive lattice and thatP is log-supermodular; see also Examples 2.4.2 and 2.4.3. Both
events are monotone increasing, i.e., ifω is componentwise less than or equal toω′ thenω ∈ E

impliesω′ ∈ E andω ∈ A impliesω′ ∈ A. Thus, by Theorem 2.4.16,

P[A ∩ E] ≥ P[A] ·P[E] or, equivalently, P[Yt ≥ a |R is large] ≥ P[Yt ≥ a] .

Thus
E[Yt |R is large] ≥ E[Yt].

We can now derive our bound on the number of insertions. LetT be the number of re-
movals from the queue. Then

E[IS |R is large] = E[IS |T ≤ (1− δ)αn andR is large]P[T ≤ (1− δ)αn |R is large]

+ E[IS |T > (1− δ)αn andR is large]P[T > (1− δ)αn |R is large] .

If R is large, the probability that we have more than(1 − δ)αn removals from the queue is
O(1/n2). Thus

E[IS |R is large] ≥ E[IS |T ≤ (1− δ)αn andR is large](1−O(n−2))

≥ E[IS |T ≤ (1− δ)αn andR is large]− o(1).

If R is large andT ≤ (1− δ)αn, the procedure stops when the first free node is reached (and
not because it runs out of edges). The number of insertions into the queue equals the number
of nodes which are reached until the first free node is removedfrom the queue. Thus, for
t ≤ (1 − δ)αn, we obtain (recall that the outgoing edges of the free node removed are not
relaxed)

E[IS |T = t andR is large] ≥ n− (n− 1)(1 − p)t−1.

Thus

E[IS |R is large] ≥
(1−δ)αn
∑

t=1

E[IS |T = t andR is large]P[T = t |R is large] − o(1)
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=
∑

t≥1

(

n− (n− 1)(1 − p)t−1
)

(1− q)t−1q − o(1)

= n− q(n− 1)
∑

t≥0

(1− q)t(1− p)t − o(1)

= n− q(n− 1)
1

1− (1− p)(1− q)
− o(1)

= n− 1− (n− 1)
q

p + q − pq
+ 1− o(1)

= (n − 1)
p− pq

p + q − pq
+ 1− o(1)

=
c(1− q)

q + (1− q)c/n
− (1− q)c/n

q + (1− q)c/n
+ 1− o(1)

≈ c

q
− c + 1− o(1).

The final approximation is valid ifc/n ≪ q. The approximation makes sense intuitively:
By Lemma 3.3.1, we relax the edges out of1/q − 1 nodes and hence relax aboutc times as
many edges. There is hardly any sharing of targets between these edges ifn is large (andc is
small). We conclude that the number of insertions into the queue isc

q − c + 1.

Observe that the standard scheme makes aboutc/q insertions into but only1/q removals
from the queue. This is where the refined scheme saves.

Number of Nodes Inserted but Never Removed.

Lemma 3.3.3. Let INRS be the number of nodes which are inserted into the queue but never
removed in the standard scheme. Then, by the above,

E[INRS |R is large] ≈ c

q
− c + 1− 1

q
≈ c− 1

q
.

The standard scheme also performs somedecrease_p operations on the nodes inserted but
never removed. This number is small since the expected number of incoming edges per node
is c, which we assumed to be a small constant. Observe that the expected number of insertions
is basically the same as the expected number of edge relaxations.

We turn to the refined scheme. We have three kinds of savings.

• Nodes that are removed from the queue may incur fewer queue operations because they
are inserted later or because some distance decreases do notlead to a queue operation.
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This saving is small since the number of distance decreases is small (recall that only few
incoming edges per node are scanned).

• Nodes that are never removed from the queue in the standard scheme are not inserted in
the refined scheme. This saving is significant and we will estimate it below.

• Nodes that are never removed from the queue in the standard scheme are inserted in the
refined scheme but fewer decreases of their distance labels lead to a queue operation.
This saving is small for the same reason as in the first item.

We concentrate on the set of nodes that are inserted into but never removed from the queue in
the standard scheme. How many of theseINRS insertions are also performed in the refined
scheme? We useINRR to denote their number.

Lemma 3.3.4. Let INRR denote the number of insertions which are also performed in the
refined scheme. Then

E[INRR |R is large] ≤ 1

q
· (1 + ln(c− 1)).

Proof. We first compute the expectation ofINRR conditional on an arbitrary fixing of the
edges of the graph and of the nodes removed from the queue by the standard scheme. More
precisely, what is fixed in this event is the edges of the graph, the sequence of nodes removed
from the queue, their distance labels, and whether they are free or not.

Then what is still random in this conditional probability space? It is the weights of the
edges going from a node removed from the queue to a node that is(thus inserted but) not
removed from the queue, and it is whether the nodes these edges are going to are free or not.
And still random are, of course, the weights of all edges withneither node looked at by the
standard scheme, and whether these nodes are free or not.

Let e1 = (u1, v1), . . . , el = (ul, vl) be the edges going from a node removed from the
queue to a node that is inserted but not removed from the queue, in the order in which they
are relaxed, that is,d(ui) ≤ d(ui+1), for i = 1, . . . , l − 1. Note that the sequenceu1, . . . , ul

may contain repetitions of the same node, corresponding to edges relaxed from the same node,
whereas thev1, . . . , vl are all different.

The key observation is that in the conditional probability space the edge costs
c(e1), . . . , c(el) are still independent, and the distance labeld(ui) + c(ei) with which vi is
inserted into the queue is uniformly from[d(ul), d(ui) + 1]. This is because the fixing of the
nodes removed from the queue by the standard scheme implies thatd(ui) + c(ei) ≥ d(ul) but
reveals nothing else about the value ofd(ui) + c(ei).

In the refined schemeei leads to an insertion only ifd(ui) + c(ei) is smaller thand(uj) +

c(ej) for every freevj with j < i. The probability for this event is at most1/(k + 1), wherek

is the number of freevj precedingvi. The probability would be exactly1/(k +1) if the values
d(uh) + c(eh), 1 ≤ h ≤ i, were all contained in the same interval. Since the upper bound of
the interval containingd(uh) + c(eh) increases withh, the probability is at most1/(k + 1).
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We thus obtain that, for any eventEl that fixes the edges of the graph and a sequence ofl

nodes removed by the standard scheme,

E[INRR |El] ≤
l
∑

i=1

i−1
∑

k=0

(

i− 1

k

)

qk(1− q)i−1−k 1

k + 1

=
l
∑

i=1

1

iq

i−1
∑

k=0

(

i

k + 1

)

qk+1(1− q)i−(k+1)

=

l
∑

i=1

1

iq

i
∑

k=1

(

i

k

)

qk(1− q)i−k

=

l
∑

i=1

1

iq

(

1− (1− q)i
)

,

where the first equality follows from
(i−1

k

)

1
k+1 = 1

i

( i
k+1

)

. The final formula can also be
interpreted intuitively. There are aboutiq free nodes precedingvi and hencevi is inserted with
probability about1/(iq).

In order to estimate the final sum we split the sum at a yet to be determined indexi0. For
i < i0 we estimate(1− (1− q)i) ≤ iq, and fori ≥ i0 we use(1− (1− q)i) ≤ 1. We obtain

E[INRR |El] ≤ i0 +
1

q

l
∑

i=i0

1

i
≈ i0 +

1

q
ln

(

l

i0

)

.

For i0 = 1/q (which minimizes the final expression1) we have

E[INRR |El] ≤
1

q
· (1 + ln(lq)).

Now of all the parameters that constituteEl, this upper bound depends solely onl, the
number of nodes that are inserted but not removed from the queue by the standard scheme, so
that we may conclude

E[INRR | INRS = l andR is large] ≤ 1

q
· (1 + ln(lq)).

Sinceln(lq) is a convex function ofl (its first derivative is positive and its second derivative
is negative), we obtain an upper bound on the expectation ofINRR conditioned onR being
large if we replaceINRS by its expectation; see Jensen’s inequality (Theorem 2.4.4). We
obtain

E[INRR |R is large] ≤ 1

q
· (1 + ln(qE[INRS |R is large]))

1 Take the derivative with respect toi0 . . .
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≈ 1

q
·
(

1 + ln

(

q · c− 1

q

))

=
1

q
· (1 + ln(c− 1)).

Number of Saved Queue Operations.

We can now finally lower bound the numberS of queue operations saved by the refined
scheme.

Theorem 3.3.1.Let S denote the number of queue operations saved by the refined scheme.
Then

E[S |R is large] ≥ c

q

(

1− 2 + ln(c− 1)

c

)

.

That is, if the refined scheme is used to solve the single-source many-targets shortest path
problem on random graphs drawn from theG(n, p) model, withp = c/n andc = m/n, then
we are guaranteed to save at least the fraction1− (2 + ln(c− 1))/c of the queue operations
performed by the standard scheme.

Proof. By the above the saving is at leastINRS − INRR. Thus

E[S |R is large] ≥ c− 1

q
− 1

q
(1 + ln(c− 1)) =

c

q

(

1− 2 + ln(c− 1)

c

)

.

For example, ifc = 8, we will save at least a fraction of1 − (2 + ln 7)/8 ≈ 0.51 of the
queue operations. The actual savings are higher, see Table 3.2. Also, there are substantial
savings even if the assumption ofR being large does not hold (e.g., forc = 2 andq = 0.02).

It is interesting to observe how our randomness assumptionswere used in the argument
above.G is a random graph and hence the number of nodes reachable froms is either bounded
or very large. The fact that a node is free with fixed probability gives us the distribution of the
number of deletions from the queue. In order to estimate the savings resulting from the refined
scheme we use that every node has the same chance of being freeand that edge weights are
random. For this part of the argument we do not need that our graph is random.

3.4 Bipartite Matching Problems

A matchingM in a graphG is a subset of the edges such that no two edges ofM share an
endpoint. In theweighted bipartite matching problemwe want to compute a matchingM of
maximum weight in a bipartite graphG = (A ∪ B,E,w), wherew : E → IR is a function
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c 2 2 2 5 5 5 8 8 8 8
q 0.02 0.06 0.18 0.02 0.06 0.18 0.02 0.06 0.18 0.18

D 49.60 16.40 5.51 49.33 16.72 5.50 50.22 16.79 5.61 5.53
D∗ 50.00 16.67 5.56 50.00 16.67 5.56 50.00 16.67 5.56 5.56
IS 90.01 31.40 10.41 195.20 73.71 22.98 281.30 112.90 36.45 36.52

IS
∗ 90.16 31.35 10.02 197.60 73.57 23.25 282.30 112.30 36.13 36.77

INRS 40.41 15.00 4.89 145.80 56.99 17.49 231.00 96.07 30.85 30.99
INRS

∗ 40.16 14.68 4.46 147.60 56.90 17.69 232.30 95.60 30.57 31.22
INRR 11.00 4.00 1.00 35.00 12.00 4.00 51.00 18.00 5.00 5.00

INRR
∗ 39.05 14.56 4.34 104.10 37.13 11.99 126.80 45.78 15.03 15.15

DPs 1.42 0.19 0.02 13.78 1.90 0.19 36.55 5.28 0.56 0.28
DPr 0.71 0.09 0.01 2.63 0.31 0.03 4.60 0.50 0.05 0.03

Qs 140.00 46.98 14.94 257.30 91.33 27.67 367.00 133.90 41.62 41.34
Qr 110.40 36.12 11.52 134.50 45.33 13.97 154.40 50.85 16.00 15.77
S 29.58 10.86 3.42 122.80 46.00 13.69 212.70 83.08 25.62 25.57

S∗ 1.12 0.13 0.12 43.47 19.77 5.70 105.50 49.82 15.54 16.07
P 21.12 23.11 22.87 47.74 50.37 49.50 57.94 62.03 61.55 61.85

Table 3.2: For all experiments (except the one in the last column) we used random graphs withn =
1000 nodes andm = cn edges. For the last column we chosen = 2000 in order to illustrate that the
dependency onn is weak. Nodes were free with probabilityq. The following quantities are shown;
for each value ofq andc we performed104 trials. Trials where only a small number of nodes were
reachable froms were ignored, i.e., about(1− α) · 104 trials were ignored.

D: the number of deletions from the queue.
D∗ = 1/q(1− (1 − q)αn): the predicted number of deletions from the queue.
IS : the number of insertions into the queue in the standard scheme.
IS

∗ = c(1−q)
q+(1−q)c/n −

(1−q)c/n
q+(1−q)c/n + 1: the predicted number of insertions into the queue.

INRS : the number of nodes inserted but never removed.
INRS

∗ = IS
∗ −D∗: the predicted number.

INRR: the number of extra nodes inserted by the refined scheme.
INRR

∗ = 1
q · (1 + ln(qINRS

∗)): the predicted number.
DPs: the number of decrease priority operations in the standardscheme.
DPr: the number of decrease priority operations in the refined scheme.
Qs: the total number of queue operations in the standard scheme.
Qr: the total number of queue operations in the refined scheme.
S = Qs −Qr: the number of saved queue operations.
S∗: the lower bound on the number of saved queue operations.
P = S/Qs: the percentage of queue operations saved.

that assigns a real weight to each edge. The weight of a matching M is simply the sum of the
weights of the edges in the matching, i.e.,w(M) :=

∑

e∈M w(e). One may either ask for a
perfect matching of maximum weight (known as the weightedperfectmatching problem or
theassignment problem) or simply for a matching of maximum weight. Both versions ofthe
problem can be reduced to solvingn, wheren = min(|A|, |B|), SSMTSP problems. In this
section we discuss the reduction for the assignment problem.

A popular algorithm for the assignment problem follows the primal dual paradigm [AMO93,
Sec. 12.4], [MN99, Sec. 7.8], [Gal86]. The algorithm constructs a perfect matching and a dual
solution simultaneously. A dual solution is simply a function π : V → IR that assigns a real
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Unit Weights
n

10000
20000
40000

c LEDA MS

2 0.60 0.47
2 1.32 1.03
2 2.94 2.33

c LEDA MS

5 42.51 10.80
5 152.82 39.31
5 550.54 138.88

c LEDA MS

8 93.07 8.21
8 336.24 28.20
8 1255.05 97.97

Random Weights[1, . . . , 1000]
n

10000
20000
40000

c LEDA MS

2 0.57 0.50
2 1.20 1.05
2 2.63 2.31

c LEDA MS

5 2.33 1.41
5 5.25 3.14
5 11.09 6.80

c LEDA MS

8 11.22 4.87
8 25.41 10.79
8 56.00 23.63

Random Weights[1000, . . . , 1005]
n

10000
20000
40000

c LEDA MS

2 0.66 0.57
2 1.39 1.22
2 3.07 2.71

c LEDA MS

5 11.42 7.02
5 36.56 22.69
5 112.05 68.29

c LEDA MS

8 20.13 11.00
8 59.36 31.59
8 181.85 99.17

Table 3.3: Effect of the pruning heuristic. LEDA stands for LEDA’s bipartite matching algorithm (up
to version LEDA-4.2) as described in [MN99, Sec. 7.8] and MS stands for a modified implementation
with the pruning heuristic. We created random graphs withn nodes on each side and each edge is
present with probabilityp = c/n. The running time is stated in CPU-seconds and is an average of 10
trials.

potential to every node. LetV := A ∪ B. The algorithm maintains a matchingM and a
potential functionπ with the property that

(a) w(e) ≤ π(a) + π(b) for every edgee = (a, b),

(b) w(e) = π(a) + π(b) for every edgee = (a, b) ∈M , and

(c) π(b) = 0 for everyfree2 nodeb ∈ B.

Initially, M := ∅, π(a) := maxe∈E w(e) for everya ∈ A, andπ(b) := 0 for everyb ∈ B. The
algorithm stops whenM is a perfect matching3 or when it discovers that there is no perfect
matching. The algorithm works in phases. In each phase the size of the matching is increased
by one (or it is determined that there is no perfect matching).

A phase consists of the search for an augmenting path of minimum reduced cost. An
augmenting path is a path starting at a free node inA, ending at a free node inB, and using
alternately edges not inM and inM . The reduced cost of an edgee = (a, b) is defined as

2 A node is free if no edge inM is incident to it.
3 It is easy to see thatM has maximum weight among all perfect matchings. Observe that if M ′ is any perfect

matching andπ is any potential function such that (a) holds thenw(M ′) ≤
P

v∈V π(v). If (b) also holds, we have
a pair(M ′, π) with equality and hence the matching has maximum weight (andthe node potential has minimal
weight among all potentials satisfying (a)).
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w̄(e) := π(a) + π(b) − w(e); observe that edges inM have reduced cost zero and that all
edges have non-negative reduced cost. The reduced cost of a path is simply the sum of the
reduced costs of the edges contained in it. There is no need tosearch for augmenting paths
from all free nodes inA; it suffices to search for augmenting paths from a single arbitrarily
chosen free nodea0 ∈ A.

If no augmenting path starting ina0 exists, there is no perfect matching inG and the
algorithm stops. Otherwise, for everyv ∈ V , let d(v) be the minimal reduced cost of an
alternating path froma0 to v. Let b0 ∈ B be a free node inB which minimizesd(b) among all
free nodesb in B. We update the potential function according to the rules (weuseπ′ to denote
the new potential function):

(d) π′(a) = π(a)−max(d(b0)− d(a), 0) for all a ∈ A,

(e) π′(b) = π(b) + max(d(b0)− d(b), 0) for all b ∈ B.

It is easy to see that this change maintains (a), (b), and (c) and that all edges on the least cost
alternating pathp from a0 to b0 become tight4. We complete the phase by switching the edges
on p: matching edges onp become non-matching and non-matching edges become matching
edges. This increases the size of the matching by one. The correctness of the algorithm
can be seen as follows. The algorithm maintains properties (a), (b), and (c) and hence the
current matchingM is optimal in the following sense. LetA(M) be the nodes inA that are
matched. ThenM is a maximum weight matching among the matchings that match the nodes
in A(M) and leave the nodes inA \ A(M) unmatched. Indeed ifM ′ is any such matching
thenw(M ′) ≤∑a∈A(M) π(a) +

∑

b∈B π(b) = w(M), where the inequality follows from (a)
and (c) and the equality follows from (b) and (c).

A phase is tantamount to a SSMTSP problem:a0 is the source and the free nodes are the
targets. We want to determine a target (i.e., free node)b0 with minimal distance froma0 and
the distance values of all nodesv with d(v) < d(b0). For nodesv with d(v) ≥ d(b0) there is
no need to know the exact distance. It suffices to know that thedistance is at leastd(b0).

Table 3.3 shows the effect of the pruning heuristic for the bipartite matching algorithm.
(The improved code is part of LEDA, Version 4.3 or higher.)

3.5 Concluding Remarks

We presented a simple heuristic for the single-source many-targets shortest path problem. The
incorporation of the heuristic into an existing implementation of Dijkstra’s algorithm is trivial.
In our experiments on random graphs, we observed a substantial improvement in running time
for the bipartite weighted matching algorithm. Our analysis supports this observation show-
ing that on random input a significant fraction of queue operations performed by Dijkstra’s
algorithm is saved.

4 An edge is called tight if its reduced cost is zero.
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At this point we would like to remark that the heuristic can also be used in a capacity
scaling implementation of the min-cost flow algorithm; see [AMO93, Sec. 10.2]. It would be
interesting to investigate the impact of the heuristic on real-world instances.



4. SMOOTHED COMPETITIVE ANALYSIS OF THE
MULTI-LEVEL FEEDBACK ALGORITHM

Abstract

We consider an online problem which is known as thenon-clairvoyant scheduling problem. Jobs are
released over time and have to be scheduled on a machine whilethe processing times of these jobs
are not known. The objective is to minimize theaverage flow time, i.e., the average time spent by
jobs in the system. An algorithm for this problem, which is successfully used in practice, is themulti-
level feedback algorithm(MLF). Although MLF performs very well in practice, its competitive ratio is
exponential; more specifically, if the processing times arein [1, 2K ] for someK ≥ 0, its competitive
ratio isΩ(2K).

In this chapter, we introduce the notion ofsmoothed competitive analysisof online algorithms and
apply it to the multi-level feedback algorithm. We use a partial bit randomization model, where the
initial processing times are perturbed by changing thek least significant bits under a quite general
class of probability distributions. We show that MLF has smoothed competitive ratioO((2k/σ)3 +

(2k/σ)22K−k), whereσ denotes the standard deviation of the distribution; in particular, we obtain a
competitive ratio ofO(2K−k) if σ = Θ(2k). We also prove anΩ(2K−k) lower bound for any deter-
ministic algorithm that is run on processing times smoothedaccording to the partial bit randomization
model. For various other smoothing models we establish a higher lower bound ofΩ(2K). A direct
consequence of our analysis is also the first average case analysis of MLF. We show that MLF has
constant expected competitive ratio under several distributions, including the uniform distribution.

Publication Notes. The results presented in this chapter are joint work with Luca Becchetti,
Stefano Leonardi, Alberto Marchetti-Spaccamela, and Tjark Vredeveld. An extended abstract appeared
in the Conference Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2003) [BLMS+03a]. A complete version of the paper was published as a MPII
research report [BLMS+03b]. The exposition in this chapter differs significantly from these articles; in
particular, we clearly identify the necessary properties of the underlying smoothing distribution for our
analysis to hold.

4.1 Introduction

One of the most successful online algorithms used in practice is themulti-level feedback algo-
rithm (MLF) for processor scheduling in a time sharing multitasking operating system. MLF

35



36 4. Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

is anon-clairvoyantscheduling algorithm, i.e., scheduling decisions are taken without knowl-
edge of the time a job needs to be executed. Windows NT [Nut99]and Unix [Tan92] have
MLF at the very basis of their scheduling policies. The objective is to provide a fast response
to users. A widely used measure for the responsiveness of a system is theaverage flow time
of the jobs, i.e., the average time spent by jobs in the systembetween release and completion.
Job preemption is also widely recognized as a key feature to improve the responsiveness of a
system.

The basic idea of MLF is to organize jobs into a hierarchy of queuesQ0, Q1, . . . . If
a job has been processed for a total of2i time units it is promoted to queueQi+1, if not
completed. At any time, MLF processes the job at the front of the lowest queue. For the single
machine case, if the processing times of the jobs are known, there exists a simple optimal
online algorithm, calledShortest Remaining Processing Time(SRPT), which always processes
a job having smallest remaining processing time. Roughly speaking, MLF tries to simulate
SRPT by guessing the processing times of the jobs, giving precedence to jobs that are assumed
to have small remaining processing time.

Competitive Analysis. Competitive analysis attempts to characterize the qualityof an online
algorithm by comparing the performance of the algorithm to that of an optimal offline algo-
rithm. Thecompetitive ratio[ST85] of an algorithm is defined as the maximum over all input
instances of the ratio between the cost of the online algorithm and the cost of an optimal offline
algorithm. While MLF performs very well in practice, it behaves poorly if its performance is
measured in terms of its competitive ratio. Assuming that processing times are in[1, 2K ],
Motwani, Phillips, and Torng [MPT94] proved a lower bound ofΩ(2K) on the competitive
ratio of any deterministic non-clairvoyant scheduling algorithm. MLF is therefore an exam-
ple of an algorithm, where the traditional notion of competitiveness fails to explain the good
performance of an algorithm in practice.

Smoothed Competitive Analysis.The analysis of online algorithms is a natural field for the
application of the idea of smoothed analysis. In this chapter, we propose a new kind of analysis
for online algorithms, namelysmoothed competitive analysis. Roughly speaking, in smoothed
competitive analysis we measure the quality of an algorithmby its competitive ratio on ran-
domly perturbed adversarial input instances. In this setting, we also define two different types
of adversaries: anoblivious adversary, which cannot react to the execution of the algorithm,
and a strongeradaptive adversary, which may make decisions based on the execution of the
algorithm.

We apply this new notion of competitiveness to analyze the multi-level feedback algorithm.
We smoothen the input by means of a partial bit randomizationmodel; see also Section 2.3.
We assume that the adversarial processing times areK-bit integers in[1, 2K ]. (For technical
reasons we do not allow zero processing times; we therefore let the all-zero bit string represent
2K .) For each job we perturb its processing time by replacing the k least significant bits by
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some random number in[1, 2k] drawn from a smoothing distributionf . We useσ to denote
the standard deviation off . Fork varying from0 to K we “smoothly” move from worst case
to average case analysis. Our analysis holds for a large class of smoothing distributions, to
which we refer to aswell-shaped distributions, including, for example, the uniform and the
normal distribution.

In detail, our contributions are the following:

1. We show that MLF has smoothed competitive ratioO((2k/σ)3 + (2k/σ)22K−k). The
competitive ratio therefore improves exponentially withk and as the distribution be-
comes less sharply concentrated around its mean. In particular, we obtain an expected
competitive ratio ofO(2K−k) for smoothing distributions withσ = Θ(2k), e.g., for the
uniform distribution. We remark that our analysis holds forboth the oblivious and the
adaptive adversary.

2. As a consequence of our analysis we also obtain an average case analysis of MLF.
By choosingk = K, our result implies that MLF has constant expected competitive
ratio for various distributions of processing times withσ = Θ(2k) and arbitrarily fixed
release dates. Very surprisingly, to the best of our knowledge, this is the first average
case analysis of MLF.

3. We prove a lower bound ofΩ(2K−k) against an adaptive adversary and a slightly weaker
bound ofΩ(2K/6−k/2), for everyk ≤ K/3, against an oblivious adversary for any
deterministic algorithm if the processing times are smoothed according to the partial bit
randomization model.

4. Spielman and Teng [ST01] proposed symmetric smoothing models (see also Section 2.3),
where each input value is smoothed symmetrically around itsinitial value. By using the
partial bit randomization model we do not smoothen the processing times symmetrically
around their initial values. Therefore, a natural questionis whether or not symmetric
smoothing models are more suitable to analyze MLF. We answerthis question in the
negative. In fact, we prove that MLF admits a poor competitive ratio ofΩ(2K) under
symmetric smoothing models.

Related Work. A randomized version of the multi-level feedback algorithm(RMLF) was
first proposed by Kalyanasundaram and Pruhs [KP97] for a single machine achieving an
O(log n log log n) competitive ratio against the adaptive adversary, wheren is the number
of jobs that are released. Becchetti and Leonardi [BL01] present a version of RMLF having
an O(log n log(n/m)) competitive ratio onm parallel machines and a tightO(log n) com-
petitive ratio on a single machine against the oblivious adversary, therefore matching for the
single machine case the randomized lower bound of Motwani etal. [MPT94].
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Recently, Scharbrodt, Schickinger, and Steger [SSS02] performed an analysis of the aver-
age competitive ratio of the Shortest Expected Processing Time First heuristic, minimizing the
average completion time, where the processing times of the jobs follow a gamma distribution.
Our result is stronger in the following aspects: (i) The analysis of Scharbrodt et al. applies
when the algorithm knows the distribution of the processingtimes, while in our analysis we
require no knowledge about the distribution of the processing times. (ii) Our result applies to
average flow time, a stronger quality measure than average completion time.

Concerning the average case competitiveness of MLF, Micheland Coffman considered
in an early work [MC74] only the problem of synthesizing a feedback queue system under
Poisson arrivals and a known discrete probability distribution on processing times so that pre-
specified mean flow time criteria are met.

Organization of this Chapter.In Section 4.2 we introduce smoothed competitive analysis.
Then, in Section 4.3, we define the non-clairvoyant scheduling problem, and in Section 4.4
present the smoothing model that we use. In Section 4.5 we describe the multi-level feedback
algorithm. In Section 4.6 we introduce some more notation that is used throughout the analysis
presented in Section 4.7. Finally, in Section 4.8, we present lower bounds on the smoothed
competitive ratio of MLF, and in Section 4.9 we give some concluding remarks.

4.2 Smoothed Competitive Analysis

Competitive analysis[ST85] measures the quality of an online algorithm by comparing its
performance to that of an optimal offline algorithm that has full knowledge of the input. The
(worst case) competitive ratioc of a deterministic online algorithmALG for a cost minimiza-
tion problem is defined as the maximum over all input instances Ǐ ∈ I of the ratio between
the cost of the algorithmALG and the cost of an optimal offline algorithmOPT, i.e.,

c := max
Ǐ∈I

ALG(Ǐ)

OPT(Ǐ)
.

Competitive analysis often provides an overly pessimisticestimation of the performance of an
algorithm, or fails to distinguish between algorithms thatperform differently in practice due
to the presence of pathological bad instances that rarely occur.

The analysis of online algorithms is a natural field for the application of the idea of
smoothed analysis. We therefore carry the notion of smoothed analysis over to the area of
online algorithms. Following definition (2.1) in Section 2.2, we define thesmoothed competi-
tive ratio c(σ) of an online algorithmALG as

c(σ) := max
Ǐ∈I

E
I

f←N(Ǐ ,σ)

[

ALG(I)

OPT(I)

]

. (4.1)
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Ǐ I
adversary smoothener:f ALG

adversary smoothener:f ALG
t : p̌j t : pj

t + ǫ

Figure 4.1: Interaction of adversary, smoothing process, and online algorithm. Top: Oblivious adver-
sary. Bottom: Adaptive adversary.

Observe that we might alternatively define the smoothed competitive ratio as the ratio of
the expectations, i.e.,

c(σ) := max
Ǐ∈I

E
I

f←N(Ǐ ,σ)
[ALG(I)]

E
I

f←N(Ǐ ,σ)
[OPT(I)]

. (4.2)

It is difficult to state, which of the two definitions is stronger or more meaningful. Some
prefer the definition in (4.1), others prefer (4.2). We believe that definition (4.1) gives a
stronger notion of smoothed competitiveness, since (i) theperformance is compared instance-
wise, and (ii) techniques from probability theory, such as second moment methods, etc., can
be used to obtain deviation results.

This kind of analysis results in having the algorithm and thesmoothing process together
play a game against an adversary, in a way similar to the game played by a randomized online
algorithm against its adversary. As for the analysis of randomized online algorithms [BEY98],
we define different types of adversaries; see Figure 4.1. Theoblivious adversaryconstructs the
input instance only based on the knowledge of the algorithm and of the smoothing functionf .
That is, the oblivious adversary specifies the entire input instance which is then smoothed and
presented to the online algorithm. We also define a stronger adversary, theadaptive adversary,
that reveals the input instance over time, thereby taking decisions made by the online algorithm
in the past into account. Said differently, the adaptive adversary constructs the input instance
revealed to the algorithm after timet also on the basis of the execution of the algorithm up to
time t. Both adversaries are charged with the optimal offline cost on the smoothed instance.
Considering the instance space, in the oblivious caseN(Ǐ , σ) is defined at the beginning, once
the adversary has fixeďI, while in the adaptive caseN(Ǐ , σ) is itself a random variable, since
it depends on the evolution of the algorithm.

Several other attempts were made in the past to refine the notion of competitiveness so as to
characterize the performance of an online algorithm more adequately than by its competitive
ratio. One idea was to enhance the capability of the online algorithm by allowing a limited
lookahead [Alb97, Alb98]. Another idea was to restrict the power of the adversary. A partial
list of these efforts includes the access graph model of Borodin et al. [BIRS95] to restrict the
input sequences in online paging problems to specific patterns, and the resource augmentation
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model of Kalyanasundaram and Pruhs [KP00] for analyzing online scheduling algorithms.

More related to our proposal of smoothed competitive analysis is thediffuse adversary
modelof Koutsoupias and Papadimitriou [KP94]. In this model, thedistribution of the input
is chosen by an adversary from a known class of possible distributions. However, smoothed
competitive analysis is substantially different from the diffuse adversary model. In the latter
model the probability distribution of the input instances is selected by a worst case adver-
sary, while in smoothed competitive analysis the input instance is determined by a worst case
adversary and then perturbed according to a specific distribution.

We strongly believe that smoothed competitive analysis is anatural alternative to compet-
itive analysis and that it will help to characterize the actual performance of online algorithms.

4.3 Problem Definition

The adversary releases a setJ = [n] of n jobs over time. For each jobj ∈ J the adversary
specifies itsrelease timerj and itsinitial processing timěpj . We consider the single machine
case. The machine can process at most one job at a time, and a job cannot be processed before
its release time. We allowpreemptionof jobs, i.e., a job that is being processed can be inter-
rupted and resumed later on the machine. A scheduling algorithm decides which uncompleted
job should be executed at each time. For a generic scheduleS, let CSj denote thecompletion
time of job j. The flow timeof job j is given byFSj := CSj − rj, i.e., the total time that
j is in the system. Thetotal flow timeof a scheduleS is defined asFS :=

∑

j∈J FSj and
theaverage flow timeis given by 1

nFS . A non-clairvoyantscheduling algorithm knows about
the existence of a job only at the release time of the job, and the processing time of a job is
only known when the job is completed. The objective is to find aschedule that minimizes the
average flow time.

4.4 Smoothing Model

We smoothen the processing times of the jobs. We remark that we could additionally smoothen
the release dates. However, for our analysis to hold it is sufficient to only smoothen the pro-
cessing times. Furthermore, from a practical point of view,each job is released at a certain
time, while processing times are estimates. Therefore, it is more natural to smoothen the
processing times and to leave the release dates intact.

We use a partial bit randomization model. We assume that the initial processing times are
K-bit integers in[1, 2K ]. For each jobj ∈ J we perturb the initial processing timešpj by
replacing thek least significant bits by some random numberεj that is chosen independently
according to a smoothing distributionf from [1, 2k]. More precisely, we define thesmoothed
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processing timepj of a jobj ∈ J as

pj := 2k

⌊

p̌j − 1

2k

⌋

+ εj , whereεj
f← [1, 2k].

Note thatεj is at least1 and therefore1 is subtracted from̌pj before applying the modification.
Fork = 0 the smoothed processing times are equal to the initial processing times; fork = K

the processing times are chosen entirely at random from[1, 2K ]. A similar model is used
by Banderier, Beier, and Mehlhorn [BBM03] and by Beier et al.[BCKV04]. However, in
[BBM03] and [BCKV04] only the uniform distribution was considered, while our analysis
holds for a large class of smoothing distributions. At first glance, it may seem odd to allow
distributions other than the uniform distribution. However, the advantage is that fork = K we
obtain processing times that are chosen entirely at random according tof .

4.4.1 Feasible Smoothing Distributions

Our analysis holds for any smoothing distributionf that satisfies properties (P1), (P2), and
(P3) below. Letε be a random variable that is chosen according to density function f from
[1, 2k].

(P1) P[ε ≥ (1 + γ)2k−1] ≥ α for some0 < α ≤ 1 and0 < γ ≤ 2k−K−1.

(P2)
∑k

i=0 P[ε ≤ 2i] ≤ β for some1 ≤ β ≤ k + 1.

(P3) E[ε] ≥ δ · 2k for some0 < δ ≤ 1.

We give some intuition; see also Figure 4.2. (P1) states thatthe upper tail probability off is
at leastα. Supposedβ is small, (P2) means thatf is slowly increasing from1. (P3) states that
the expectation off is not too close to1. We remark that our analysis holds for both discrete
and continuous distributions. Subsequently, however, we assume thatf is discrete. We useµ
andσ to denote the expectation and standard deviation off , respectively.

For distributions satisfying (P1)–(P3) we prove that MLF has smoothed competitive ratio

O

(

K − k + β

α
+

1

αγ
+

1

δ2

)

.

Ideally, if α, β, andδ are constants andγ = 2k−K−1, we obtain a smoothed competitive ratio
of O(2K−k). It is difficult to give a generic characterization for distributions that satisfy (P1)–
(P3) with reasonable valuesα, γ, β, andδ. We propose the following class of distributions
and refer the reader to Section 4.4.2 for further characterizations. We call a distributionf
well-shapedif the following conditions hold:

1. f is symmetric aroundµ,

2. µ ≥ 2k−1, and
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1 2kµ

α

(1 + γ)2k−1δ · 2k

µ1 2
k

µ1 2
k

Figure 4.2: Illustration of properties (P1)–(P3).

3. f is non-decreasing in[1, 2k−1].

For example, the uniform, the normal, and the double exponential distribution withµ = 2k−1+
1
2 are well-shaped distributions. In Section 4.4.2 we show that well-shaped distributions satisfy
(P1)–(P3) with

α =
( σ

2k

)2
, γ = min

(

1√
2

( σ

2k−1

)

, 2k−K−1

)

, β = 2, and δ =
1

2
.

Therefore, for a well-shaped distribution we obtain a smoothed competitive ratio of

O

(

(

2k

σ

)3

+

(

2k

σ

)2

2K−k

)

.

From the discussion in Section 4.4.2 it will also become apparent that we obtain the same
competitive ratio for any distribution withµ ≥ 2k−1 and which is non-decreasing in[1, 2k ],
e.g., for the exponential distribution.

4.4.2 Characterization of Feasible Smoothing Distributions

In the following we attempt to characterize distributions that satisfy properties (P1)–(P3). The
reader may prefer to proceed to subsequent sections first andcome back to these characteriza-
tions later.

We start with (P1). A trivial lower bound on the tail probability P[ε ≥ (1 + γ)2k−1] is given
by the following lemma, where we assume a uniform distribution over[1, (1 + γ)2k−1). We
remark that although Lemma 4.4.1 is straightforward, it might be indeed tight, e.g., for the
uniform distribution.
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Lemma 4.4.1. Let ε be a random variable chosen according to a distributionf over [1, 2k].
Moreover, letM be such thatP[ε = x] ≤ M for eachx ∈ [1, (1 + γ)2k−1). Then,P[ε ≥
(1 + γ)2k−1] ≥ 1−M(1 + γ)2k−1.

Proof.

P[ε ≥ (1 + γ)2k−1] = 1−P[ε < (1 + γ)2k−1] ≥ 1−M(1 + γ)2k−1.

We also obtain two other lower bounds on the tail probabilityof f . Both use an “inverse”
version of Chebyshev’s inequality. We first prove the following lemma; see also [GS01].

Lemma 4.4.2. Let ε be a random variable and leth(ε) be a non-negative function such that
h(ε) ≤M for eachε. Then

P[h(ε) > λ] ≥ E[h(ε)] − λ

M − λ
.

Proof. Let Xh(ε) be1 if (h(ε) > λ) and0 otherwise. We have

h(ε) ≤M ·Xh(ε) + λ · (1−Xh(ε)),

and by linearity of expectation

E[h(ε)] ≤M · E[Xh(ε)] + λ · (1−E[Xh(ε)]).

The proof now follows from the fact thatE[Xh(ε)] = P[h(ε) > λ] .

We are now in a position to obtain our first inverse Chebyshev inequality.

Lemma 4.4.3 (inverse Chebyshev inequality I).Letε be a random variable chosen accord-
ing to a distributionf over [1, 2k] with meanµ and standard deviationσ. Then, for each
0 < λ < 2k,

P[ε > λ] ≥ σ2 + µ2 − λ2

22k − λ2
.

Proof. Define h(ε) := ε2. Thenh(ε) ≤ 22k for eachε. The bound now follows from
Lemma 4.4.2, where we exploit thatσ2 = E[ε2]− µ2.

The following lemma shows that forγ := 2k−K−1 we obtainα = (σ/2k)2, if only the
expectation off is large enough. We remark that the requirement onδ is always satisfied if
µ ≥ 3

4 · 2k.

Lemma 4.4.4. Let ε be a random variable chosen according to a distributionf over [1, 2k]

with meanµ ≥ δ · 2k and standard deviationσ. Defineγ := 2k−K−1. If δ ≥ 1
2 (1 + γ) then

P[ε ≥ (1 + γ)2k−1] ≥ (σ/2k)2.
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Proof. The proof follows from Lemma 4.4.3 and sinceµ ≥ δ · 2k ≥ (1 + γ)2k−1.

We derive our second inverse Chebyshev inequality.

Lemma 4.4.5 (inverse Chebyshev inequality II).Let ε be a random variable chosen ac-
cording to a distributionf over [1, 2k] with meanµ and standard deviationσ. Then, for each
0 < λ < 2k − µ,

P[|ε − µ| ≥ λ] ≥ σ2 − λ2

(2k − µ)2 − λ2
.

Proof. Defineh(ε) := (ε − µ)2. Thenh(ε) ≤ (2k − µ)2 for eachε. The proof follows from
Lemma 4.4.2.

The next lemma applies if the underlying distributionf satisfiesP[ε ≥ µ+ σ√
2
] ≥ P[ε ≤

µ− σ√
2
] . For example, this condition holds iff is symmetric aroundµ or if f is non-decreasing

over[1, 2k ].

Lemma 4.4.6. Let ε be a random variable chosen according to a distributionf over [1, 2k]

with meanµ ≥ δ ·2k and standard deviationσ, and assumeP[ε ≥ µ+ σ√
2
] ≥ P[ε ≤ µ− σ√

2
] .

Define

γ := min

(

2δ − 1 +
1√
2

( σ

2k−1

)

, 2k−K−1

)

.

Then

P[ε ≥ (1 + γ)2k−1] ≥ 1

4

(

σ

(1− δ)2k

)2

.

Proof. If γ ≤ 2δ − 1 + 1√
2

(

σ
2k−1

)

, we obtain

P[ε ≥ (1 + γ)2k−1] ≥ P

[

ε ≥ µ +
σ√
2

]

≥ 1

2
·P
[

|ε − µ| ≥ σ√
2

]

,

where the last inequality holds becauseP[ε ≥ µ + σ√
2
] ≥ P[ε ≤ µ− σ√

2
] . Since2k − µ ≤

(1− δ)2k, we obtain from Lemma 4.4.5

P[ε ≥ (1 + γ)2k−1] ≥ 1

2
· σ2 − 1

2σ2

((1− δ)2k)2
=

1

4

(

σ

(1− δ)2k

)2

.

Note that we have to make sure thatγ > 0. Therefore, forδ < 1
2 the definition ofγ in

Lemma 4.4.6 makes sense only if we require(σ/2k−1) > (1− 2δ) ·
√

2.

Corollary 4.4.1. If f is a well-shaped distribution, we haveδ = 1
2 and thus

α =
( σ

2k

)2
, where γ = min

(

1√
2

( σ

2k−1

)

, 2k−K−1

)

.
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1

2λ

2−λ

G(x) F (x)

1 2k

Figure 4.3: F (x) := P[ε ≤ x] , G(x) := min(x ·
(

1
2

)λ
, 1), whereλ := k − l.

We come to property (P2). The next lemma characterizes distributions that satisfy (P2).

Lemma 4.4.7. Let ε be a random variable chosen according to a distributionf over [1, 2k].
Let l be some integer,0 ≤ l ≤ k, such that for eachi, 0 ≤ i ≤ k− l, P[ε ≤ 2i] ≤ 2i ·

(

1
2

)k−l
.

Then
∑k

i=0 P[ε ≤ 2i] ≤ 2 + l.

Proof.

k
∑

i=0

P[ε ≤ 2i] =

k−l
∑

i=0

P[ε ≤ 2i] +

k
∑

i=k−l+1

P[ε ≤ 2i] ≤
k−l
∑

i=0

(

1

2

)k−l−i

+

k
∑

i=k−l+1

1

=
k−l
∑

i=0

(

1

2

)i

+ l ≤ 2 + l.

Corollary 4.4.2. If f is a well-shaped distribution thenβ = 2.

Proof. Sincef is non-decreasing in[1, 2k−1], the distribution functionF (x) := P[ε ≤ x]

of f is strictly increasing onceF (x) > 0. Moreover, sincef is symmetric aroundµ and
µ ≥ 2k−1, F (2k−1) ≤ 1

2 . Thus,F (2i) ≤ 2i ·
(

1
2

)k
for eachi, 0 ≤ i ≤ k − 1. Clearly,

F (2k) ≤ 1.

Finally, consider property (P3). We remark thatP[ε ≥ (1 + γ)2k−1] ≥ α impliesE[ε] ≥
1
2(1 + γ)α2k. However, this bound onδ might be a too weak. In Lemma 4.4.7 we require
P[ε ≤ x] ≤ x · (1/2)k−l only for eachx = 2i, where0 ≤ i ≤ k − l. If we instead require
that this relation holds for everyx ∈ [1, 2k−l], we obtain a characterization for (P3).



46 4. Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

Lemma 4.4.8. Let ε be a random variable chosen according to a distributionf over [1, 2k ].
Let l be some integer,0 ≤ l ≤ k, such that for eachx ∈ [1, 2k−l], P[ε ≤ x] ≤ x ·

(

1
2

)k−l
.

ThenE[ε] ≥ 1
2l+1 · 2k.

Proof. Consider a uniform random variableU over [1, 2k−l]. We haveG(x) := P[U ≤ x] =

min(x ·
(

1
2

)k−l
, 1); see also Figure 4.3. By definition,P[ε > x] ≥ P[U > x] for each

x ∈ [1, 2k]. That is,ε stochastically dominatesU , and thereforeE[ε] ≥ E[U ] = 2k−l+1
2 .

For example, well-shaped distributions satisfy Lemma 4.4.8 with l = 1, which yields
E[ε] ≥ 1

4 · 2k.

4.4.3 Properties of Smoothed Processing Times

We state two crucial properties of smoothed processing times. Defineφj := 2k⌊(p̌j − 1)/2k⌋.
We havepj = φj + εj . Consider a jobj with initial processing timěpj ∈ [1, 2k ]. Then the
initial processing time ofj is entirely replaced by some random processing time in[1, 2k] that
is chosen according to the probability distributionf .

Fact 4.4.1. For each jobj with p̌j ∈ [1, 2k] we haveφj = 0 and thuspj ∈ [1, 2k]. Moreover,
P[pj ≤ x] = P[εj ≤ x] for eachx ∈ [1, 2k ].

Next, consider a jobj with initial processing timěpj ∈ (2i−1, 2i] for some integeri >

k. Then the smoothed processing timepj is randomly chosen from a subrange of(2i−1, 2i]

according to the probability distributionf .

Fact 4.4.2. For each jobj with p̌j ∈ (2i−1, 2i], for some integeri > k, we haveφj ∈
[2i−1, 2i − 2k] and thuspj ∈ (2i−1, 2i].

4.5 Multi-Level Feedback Algorithm

In this section we describe the multi-level feedback algorithm. We say that a job isalive or
activeat timet in a generic scheduleS, if it has been released but not completed at this time,
i.e.,rj ≤ t < CSj . Denote byxSj (t) the amount of time that has been spent on processing job
j in scheduleS up to timet. We defineySj (t) := pj − xSj (t) as theremaining processing time
of job j in scheduleS at timet. Subsequently, we denote byMLF the schedule produced by
the multi-level feedback algorithm.

The set of active jobs is partitioned into a set of priority queuesQ0, Q1, . . . . Within each
queue, the priority is determined by the release dates of thejobs: the job with smallest release
time has highest priority. For any two queuesQh andQi, we say thatQh is lower thanQi if
h < i. At any timet, MLF behaves as follows.

1. Jobj released at timet enters queueQ0.
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2. Schedule on the machine the alive job that has highest priority in the lowest non-empty
queue.

3. For a jobj in a queueQi at timet, if xMLF
j (t) = pj , assignCMLF

j = t and remove the
job from the queue.

4. For a jobj in a queueQi at timet, if xMLF
j (t) = 2i < pj, job j is moved fromQi to

Qi+1.

Observe that if the processing times are in[1, 2K ] then at mostK + 1 queuesQ0, . . . , QK

are used during the execution of MLF. Moreover, at any timet and for any queueQi at most
one job inQi has been executed. Put differently, if we consider all jobs that are in queueQi at
time t then at most one of these jobs satisfiesxMLF

j (t) > 2i−1, while for all other jobs we have
xMLF

j (t) = 2i−1.

Fact 4.5.1. At any timet and for any queueQi at most one job, alive at timet, has been
executed inQi but has not been promoted toQi+1.

Under which circumstances does MLF achieve a good performance guarantee? We of-
fer some intuition. As mentioned in the introduction, Shortest Remaining Processing Time
(SRPT) is an optimal algorithm for the single machine case. We can view MLF as trying to
simulate SRPT by using estimates for the processing times ofthe jobs in the system. When a
new job arrives its estimated processing time is1; if a job is enqueued into queueQi, for some
i > 0, MLF assumes that it has processing time2i. Put differently, whenever a job has been
executed for its estimated processing time and is not completed, MLF doubles its estimate.
Observe that if a jobj is enqueued into queueQi, i > 0, MLF assumes that it takes2i−1

additional time to completej. Therefore, MLF gives precedence to jobs in lower queues.
Consider a jobj with processing timepj ∈ (2i−1, 2i]. The final estimate ofj’s processing

time in MLF is 2i. Intuitively, if the actual processing time ofj is not too far from its final
estimate then the decisions made by MLF with respect toj are not too different from those
made by SRPT. However, if the final estimate is far off from theactual processing time then
MLF and SRPT may indeed perform very differently. For example, suppose that the actual
processing time ofj is 2i−1 + 1. Whenj enters queueQi, MLF defersj until all jobs of
processing time at most2i−1 are completed. On the other hand, SRPT completesj after one
additional time unit.

In fact, it can easily be seen that MLF may perform arbitrarily bad on jobs of the latter kind:
We release jobs in two phases. In the first phase, at timet = 0, we releaseN := 2K−1+1 jobs
with processing time2K−1 + 1. Let t̂ be the first time when a job, sayj∗, has been completed
by MLF. At time t̂, all remainingN−1 jobs have remaining processing time1. Now, consider
another algorithmALG that does not schedulej∗ and therefore can allocate2K−1 + 1 time
units on the other jobs.ALG will have completed all jobs exceptj∗ by time t̂. In the second
phase, starting at timêt, we release one after another a long sequence of jobs with processing
time1. If we choose this sequence sufficiently long then the total flow time will be dominated
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by the contribution of the second phase. Since during the second phase MLF has at leastN

jobs in the system whileALG has only two jobs in the system, we obtain a competitive ratioof
Ω(N) = Ω(2K).

4.6 Preliminaries

We useMLF andOPT to denote the schedules produced by the multi-level feedback algorithm
and by an optimal algorithm, respectively. We useS to refer to a generic schedule.

We partition jobs into classes: a jobj ∈ J is of classi, 0 ≤ i ≤ K, if pj ∈ (2i−1, 2i]. We
useClj to denote the class of a jobj. Note that ifp̌j ∈ (2i−1, 2i] for some integeri > k then
Clj is not a random variable; see Fact 4.4.2. Note that in MLF a job of classi is completed in
queueQi.

We denote byδS(t) the number of jobs that are active at timet in S. For each jobj and
any timet we define a binary random variableXSj (t) which is1 if job j is active at timet,
and0 otherwise. We haveδS(t) =

∑

j∈J XSj (t). Moreover, we useSS(t) to refer to the set
of active jobs at timet.

The total flow timeFS of a scheduleS is defined as the sum of the flow times of all jobs.
Equivalently, we can express the total flow time as the integral over time of the number of
active jobs. We state this as a fact; see also [LR97].

Fact 4.6.1. FS =
∑

j∈J FSj =
∫

t≥0 δS(t)dt.

The following obvious fact states that the sum of the processing times of all jobs is a lower
bound on the flow time of any scheduleS.

Fact 4.6.2. FS ≥∑j∈J pj.

An important notion in our analysis is the notion oflucky andunlucky jobs. It serves to
distinguish between jobs that are good and those which are bad for the performance of MLF.

Definition 4.6.1. A job j of classi is called lucky if pj ≥ (1 + γ)2i−1; otherwise, it is called
unlucky.

For each jobj we define a binary random variableX l
j which is 1 if j is lucky, and0

otherwise.
Note that for MLF a lucky job of classi is a job that still has a remaining processing time of

at leastγ2i−1 when it enters its queueQi of completion. We useδl(t) to denote the number of
lucky jobs that are active at timet in MLF. We also define a binary random variableX l

j(t) that
indicates whether or not a jobj is lucky and alive at timet in MLF, i.e.,X l

j(t) := X l
j ·XMLF

j (t).
We haveδl(t) =

∑

j∈J X l
j(t).

At time t, the job with highest priority among all jobs in queueQi (if any) is said to be the
headof Qi. A head job of queueQi is endingif it will be completed inQi. We denote byh(t)

the total number of ending head jobs at timet.
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Let X be a generic random variable. For an input instanceI, XI denotes the value ofX
for this particular instanceI. Note thatXI is uniquely determined by the execution of the
algorithm.

4.7 Smoothed Competitive Analysis of MLF

The intuition behind our analysis is as follows. We argued that MLF tries to simulate SRPT
by using estimates of the processing times and that the performance of MLF can be related to
the one of SRPT if the final estimates are not too far from the actual processing times of the
jobs. We make this relation explicit by proving that at any time t the number of lucky jobs is
at most the number of ending head jobs plus6/γ times the number of active jobs in an optimal
schedule. This argument is purely deterministic. We also prove an upper bound ofK − k + β

on the expected number of ending head jobs at any timet.
We write the total flow time as the integral over time of the number of active jobs. At

any timet, we distinguish between (i) the number of active jobs in MLF is at most2/α times
the number of lucky jobs, and (ii) where this is not the case. We prove that case (i) occurs
with high probability so that we can use the deterministic bound to relate MLF to the optimal
algorithm. The contribution of case (ii) is compensated by the exponentially small probability
of its occurrence.

The high probability argument is presented in Section 4.7.1. Our analysis holds both
for the oblivious adversary and for the adaptive adversary.For the sake of clarity, we first
concentrate on the oblivious adversary and discuss the differences for the adaptive adversary
in Section 4.7.2.

Lemma 4.7.1 provides a deterministic bound on the number of lucky jobs in the schedule
of MLF for a specific instanceI. The proof is similar to the one given by Becchetti and
Leonardi [BL01] and can be found in Appendix 4.A of this chapter.

Lemma 4.7.1. For any input instanceI, at any timet, δl
I(t) ≤ hI(t) + 6

γ δOPT
I (t).

Clearly, at any timet the number of ending head jobs is at mostK + 1. The following
lemma gives a better upper bound on the expected number of ending head jobs.

Lemma 4.7.2. At any timet, E[h(t)] ≤ K − k + β.

Proof. Let h′(t) denote the number of ending head jobs in the firstk + 1 queues. Clearly
E[h(t)] ≤ K − k + E[h′(t)], since the lastK − k queues can contribute at mostK − k to the
expected value ofh(t).

We next consider the expected value ofh′(t). Let H(t) denote the ordered sequence
(q0, . . . , qk) of jobs that are at timet at the head of the firstk + 1 queuesQ0, . . . , Qk, respec-
tively. We useqi = × to denote thatQi is empty at timet. Let Hi(t) be a binary random
variable indicating whether or not the head job of queueQi (if any) is ending, i.e.,Hi(t) = 1

if qi 6= × andqi is in its final queue, andHi(t) = 0 otherwise. LetH ∈ (J ∪ ×)k denote any
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possible configuration forH(t). Observe that by definitionP[Hi(t) = 1 |H(t) = H] = 0 if
qi = ×. Let qi 6= ×. We have

P[Hi(t) = 1 |H(t) = H] = P[pqi ≤ 2i |H(t) = H] .

In Appendix 4.B we show that the events(pqi ≤ 2i) and(H(t) = H) are negatively correlated.
Thus,P[Hi(t) = 1 |H(t) = H] ≤ P[pqi ≤ 2i] . We obtain

E[h′(t) |H(t) = H] =
k
∑

i=0

P[Hi(t) = 1 |H(t) = H] ≤
k
∑

i=0

P[pqi ≤ 2i] .

If a job qi is of class larger thank we haveP[pqi ≤ 2i] = 0. Therefore, the sum is maxi-
mized if we assume that eachqi is of class at mostk. Since the processing times are chosen
identically, independently, and (under the above assumption) entirely at random, we have

E[h′(t) |H(t) = H] ≤
k
∑

i=0

P[εqi ≤ 2i] ≤
k
∑

i=0

P[ε ≤ 2i] ≤ β,

whereε is a random variable chosen according tof from [1, 2k], and the last inequality follows
from property (P2) of our distribution. We conclude

E[h′(t)] =
∑

H∈(J∪×)k

E[h′(t) |H(t) = H]P[H(t) = H] ≤ β.

We define a random variableR as the sum of the random parts of all processing times, i.e.,
R :=

∑

j∈J εj . We need the following bound on the probability thatR is at least a constant
fraction of its expectation.

Lemma 4.7.3.P[R ≥ 1
2E[R]] ≥ 1− e−nδ2/2.

Proof. Observe thatE[R] = nµ, whereµ denotes the expectation off . We use Hoeffding’s
bound (see also Theorem 2.4.12 (2.4)) and property (P3) to obtain

P[R ≤ 1
2E[R]] ≤ exp

(

−
1
2E[R]2

n(2k − 1)2

)

≤ exp

(

−
1
2nµ2

22k

)

≤ exp
(

−nδ2/2
)

.

We are now in a position to prove Theorem 4.7.1. We introduce the following notation. For an
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instanceI, we define

DI := {t : δMLF
I (t) ≤ 2

αδl
I(t)} and D̄I := {t : δMLF

I (t) > 2
αδl

I(t)}.

Moreover, we define the eventE :=
(

R ≥ 1
2E[R]

)

and useĒ to refer to the complement ofE .

Theorem 4.7.1.For any instancěI and any smoothing distributionf that satisfies (P1), (P2),
and (P3),

E
I

f←N(Ǐ ,σ)

[

F MLF
I

F OPT
I

]

= O

(

K − k + β

α
+

1

αγ
+

1

δ2

)

.

Proof. Throughout the proof we omitI and that the expectation is taken according tof over
N(Ǐ , σ).

E

[

F MLF

F OPT

]

= E

[

F MLF

F OPT

∣

∣

∣

∣

E
]

P[E ] + E

[

F MLF

F OPT

∣

∣

∣

∣

Ē
]

P[Ē ] ≤ E

[

F MLF

F OPT

∣

∣

∣

∣

E
]

P[E ] + ne−nδ2/2,

where the inequality follows from Lemma 4.7.3 and the fact that n is an upper bound on the
competitive ratio of MLF. Definec := 2/δ2. Sincee−x < 1

x for x > 0, we havene−nδ2/2 < c.
We partition the flow timeF MLF =

∫

t δMLF(t)dt into the contribution of time instantst ∈ D
and t ∈ D̄, i.e., F MLF =

∫

t∈D δMLF(t)dt +
∫

t∈D̄ δMLF(t)dt, and bound these contributions
separately.

E

[
∫

t∈D δMLF(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ] ≤ E

[
∫

t∈D
2
αδl(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ]

≤ E

[∫

t∈D
2
αh(t)dt +

∫

t∈D
2
α · 6

γ δOPT(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ]

≤ E

[
∫

t∈D
2
αh(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ] +
12

αγ
,

where we use the deterministic bound of Lemma 4.7.1 onδl(t) and the fact thatF OPT ≥
∫

t∈D δOPT(t)dt. By Fact 4.6.2 and the definition of eventE we haveF OPT≥∑j pj ≥
∑

j φj +
1
2E[R]. Hence,

E

[
∫

t∈D δMLF(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ] ≤
E
[∫

t∈D
2
αh(t)dt | E

]

P[E ]
∑

j φj + 1
2E[R]

+
12

αγ

≤
2
α(K − k + β)E[

∑

j pj]
∑

j φj + 1
2E[R]

+
12

αγ
,

where we use Lemma 4.7.2 together with the fact that for any input instanceh(t) contributes
only in those time instants where at least one job is in the system, so at most

∑

j pj. Since
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E[
∑

j pj ] =
∑

j φj + E[R], we obtain

E

[
∫

t∈D δMLF(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ] ≤ 4(K − k + β)

α
+

12

αγ
.

Next, consider the contribution of time instantst ∈ D̄. GivenE , we haveF OPT≥∑j φj +
1
2E[R]. Exploiting Lemma 4.7.4, which is given below, we obtain

E

[
∫

t∈D̄ δMLF(t)dt

F OPT

∣

∣

∣

∣

E
]

P[E ] ≤
E[
∫

t∈D̄ δMLF(t)dt | E ]P[E ]
∑

j φj + 1
2E[R]

≤
8
α E[

∑

j pj ]
∑

j φj + 1
2E[R]

≤ 16

α
.

Putting everything together, we obtain

E

[

F MLF

F OPT

]

≤ 4(K − k + β)

α
+

12

αγ
+

16

α
+

2

δ2
.

Lemma 4.7.4.E
[∫

t∈D̄ δMLF(t)dt | E
]

P[E ] ≤ 8
α E[

∑

j pj ].

Proof. We use Lemma 4.7.5, the proof of which is subject of Section 4.7.1. We have

E

[∫

t∈D̄
δMLF(t)dt

∣

∣

∣

∣

E
]

P[E ] ≤ E

[∫

t∈D̄
δMLF(t)dt

]

=

∫

t≥0
E
[

δMLF(t) | t ∈ D̄
]

P[t ∈ D̄] dt

=

∫

t≥0

n
∑

s=1

sP[δMLF(t) = s | t ∈ D̄]P[t ∈ D̄] dt

=

∫

t≥0

n
∑

s=1

sP[t ∈ D̄ | δMLF(t) = s]P[δMLF(t) = s] dt

≤
∫

t≥0

n
∑

s=1

s e−αs/8 P[δMLF(t) = s] dt

≤ 8

α

∫

t≥0

n
∑

s=1

P[δMLF(t) = s] dt

=
8

α

∫

t≥0
P[δMLF(t) ≥ 1] dt

=
8

α
E[
∑

j pj],

where the fifth inequality is due to Lemma 4.7.5 and the sixth inequality follows sincee−x < 1
x

for x > 0.
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4.7.1 High Probability Bound

To complete the proof we are left to show that with high probability at any timet the number
of lucky jobs is a good fraction of the overall number of jobs in the system.

Lemma 4.7.5. For anys ∈ [n], at any timet, P[δl(t) < 1
2αδMLF(t) | δMLF(t) = s] ≤ e−αs/8.

Let S ⊆ J . We condition the probability space on the event that (i) theset of jobs that are
alive at timet in MLF is equal toS, i.e.,(SMLF(t) = S), and (ii) the processing times of all jobs
not inS are fixed to values that are specified by a vectorxS̄ , which we denote by(pS̄ = xS̄).
We define the eventF(t, S,xS̄) := ((SMLF(t) = S) ∩ (pS̄ = xS̄)).

Recall that we definedX l
j(t) = X l

j ·XMLF
j (t). Since we condition on(SMLF(t) = S), we

have for eachj ∈ J

X l
j(t) =

{

X l
j if j ∈ S, and

0 otherwise.

Thus,

E[δl(t) | F(t, S,xS̄)] =
∑

j∈J

P[X l
j(t) = 1 | F(t, S,xS̄ )] =

∑

j∈S

P[X l
j = 1 | F(t, S,xS̄)] .

In order to prove Lemma 4.7.5 we proceed as follows. We first prove that, conditioned on
F(t, S,xS̄), the random variables(X l

j | F(t, S,xS̄)), j ∈ S, are independent. After that, we
prove that the expected number of jobs that are lucky and alive at timet is at leastα times the
number jobs that are active at this time, i.e.,

E[δl(t) | F(t, S,xS̄)] ≥ α|S|.

We can then prove the above lemma simply by using a Chernoff bound argument.

Proof of Lemma 4.7.5.For eachj ∈ S we defineYj := (X l
j | F(t, S,xS̄)). Then theYj ’s are

independent. Moreover,E[
∑

j∈S Yj] = E[δl(t) | F(t, S,xS̄)] ≥ α|S|. Applying Chernoff’s
bound (see Theorem 2.4.10 (2.2)), we obtain

P[δl(t) < 1
2αδ(t) | F(t, S,xS̄ )] = P[

∑

j∈S Yj < 1
2α|S|]

≤ P[
∑

j∈S Yj < 1
2E[
∑

j∈S Yj]] ≤ e−α|S|/8.

Finally, summing over all possible subsetsS ⊆ J with |S| = s and all possible assignments
pS̄ = xS̄ , the lemma follows.

In the rest of this section we only consider properties of theschedule produced by MLF.
We therefore omit the superscriptMLF in the notation below.
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Independence of Being Lucky

We first investigate the probability space conditioned on the eventF(t, S,xS̄) = ((S(t) =

S)∩ (pS̄ = xS̄) more closely and then prove that the random variablesYj = (X l
j | F(t, S,xS̄)),

j ∈ S, are independent.

Lemma 4.7.6. AssumeS(t) = S andpS̄ = xS̄ . Then the schedule of MLF up to timet is
uniquely determined.

Proof. Assume otherwise. Then there exist two different schedulesS1 and S2 such that
SS1(t) = SS2(t) = S. Let I1 and I2 be the corresponding instances. Since the process-
ing times of jobs not inS are fixed,I1 andI2 differ in the processing times of some subset of
the jobs inS. Let t′ ≤ t be the first time whereS1 andS2 differ. MLF changes its scheduling
decision if either (i) a new job is released or (ii) an active job is completed. Since the release
dates are the same inI1 andI2, a jobj was completed at timet′ in one schedule, sayS1, but
not in the other. Sincej must belong toS and t′ ≤ t, this contradicts the hypothesis that
SS1(t) = S.

Corollary 4.7.1. AssumeS(t) = S andpS̄ = xS̄ . Then, for eachj ∈ S, xj(t) is a uniquely
determined constant.

Subsequently, given thatS(t) = S andpS̄ = xS̄ , we setπj := xj(t) for all j ∈ S. We state
the following important fact.

Fact 4.7.1. Let I be an instance such thatS(t) = S andpS̄ = xS̄ . Then every instanceI ′,
with pS̄ = xS̄ andpjI′ ≥ pjI for eachj ∈ S, satisfiesxjI′(t) = xjI(t) for eachj ∈ J .

In particular, we can generate all instances satisfyingS(t) = S andpS̄ = xS̄ as follows.
Let I0 be defined aspS̄ = xS̄ andpjI0 := πj for eachj ∈ S. Note thatI0 is not contained
in F(t, S,xS̄), sinceSI0(t) = ∅; but every instanceI with pS̄ = xS̄ andpjI > pjI0, for each
j ∈ S, is contained inF(t, S,xS̄).

Lemma 4.7.7. AssumeS(t) = S andpS̄ = xS̄ . Moreover, letπj = xj(t) for all j ∈ S. Then
the following events are equivalent:

(S(t) = S) ∩ (pS̄ = xS̄) ≡
⋂

j∈S

(pj > πj) ∩ (pS̄ = xS̄).

Proof. Let I be an instance such thatS(t) = S andpS̄ = xS̄ . By Lemma 4.7.6, the time spent
by MLF on j ∈ S up to timet is xj(t) = πj. Sincej is active at timet, pj > xj(t) = πj .

Next, letI be an instance such thatpjI > πj for eachj ∈ S andpS̄ = xS̄ . Let I0 be
defined aspS̄ = xS̄ andpjI0 := πj for eachj ∈ S. For eachj ∈ S we havepjI > πj = pjI0.
From the discussion above we conclude thatI ∈ F(t, S,xS̄).

Lemma 4.7.8. The variablesYj = (X l
j | F(t, S,xS̄)), j ∈ S, are independent.
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Proof. Let R ⊆ S. For eachj ∈ R let aj ∈ {0, 1} and letLj denote the set of processing
times such that(pj ∈ Lj) if and only if (X l

j = aj). From Lemma 4.7.7 we obtain

P





⋂

j∈R

X l
j = aj

∣

∣

∣

∣

F(t, S,xS̄)



 = P





⋂

j∈R

pj ∈ Lj

∣

∣

∣

∣

⋂

j∈S

(pj > πj) ∩ (pS̄ = xS̄)





=
P[
⋂

j∈R(pj ∈ Lj) ∩
⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)]

P[
⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)]

=
P[
⋂

j∈R(pj ∈ L′j) ∩
⋂

j∈S\R(pj > πj) ∩ (pS̄ = xS̄)]

P[
⋂

j∈S(pj > πj) ∩ (pS̄ = xS̄)]
,

whereL′j is defined as the intersection ofLj and(πj, 2
K ]. Using the fact that processing times

are perturbed independently, we obtain

P





⋂

j∈R

X l
j = aj

∣

∣

∣

∣

F(t, S,xS̄)



 =

∏

j∈R P[pj ∈ L′j]P[
⋂

j∈S\R(pj > πj) ∩ (pS̄ = xS̄)]
∏

j∈R P[pj > πj]P[
⋂

j∈S\R(pj > πj) ∩ (pS̄ = xS̄)]

=
∏

j∈R

P[pj ∈ L′j]

P[pj > πj]
=
∏

j∈R

P[X l
j = aj | pj > πj] . (4.3)

The above equality holds for any subsetR ⊆ S. In particular, for a singleton set{j} we obtain

P[X l
j = aj | F(t, S,xS̄)] = P[X l

j = aj | pj > πj] . (4.4)

Finally, combining (4.3) and (4.4), we obtain

P





⋂

j∈R

X l
j = aj

∣

∣

∣

∣

F(t, S,xS̄)



 =
∏

j∈R

P[X l
j = aj | F(t, S,xS̄)] .

Expected Number of Lucky and Alive Jobs

From Equation (4.4) in the proof of Lemma 4.7.8 we learn that if we concentrate on the
probability space conditioned on the eventF(t, S,xS̄) then

P[X l
j = aj | F(t, S,xS̄)] = P[X l

j = aj | pj > πj] for eachj ∈ S.

This relation is very useful in proving the following lemma.

Lemma 4.7.9. For everyj ∈ S, P[X l
j = 1 | F(t, S,xS̄)] ≥ α. Thus,E[δl(t) | F(t, S,xS̄)] ≥

α|S|.



56 4. Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

Proof. First, let p̌j ∈ (2i−1, 2i] for some integeri > k. Due to Fact 4.4.2 the processing time
pj is chosen randomly from a subrange of(2i−1, 2i]. Hence,

P[X l
j = 1 | F(t, S,xS̄)] = P[pj ≥ (1 + γ)2i−1 | pj > πj ] ≥ P[εj ≥ γ2i−1 | pj > πj] ,

where the second inequality is due to the fact thatφj ≥ 2i−1. In Appendix 4.B we show that
the events(εj ≥ γ2i−1) and(pj > πj) are positively correlated. We have

P[X l
j = 1 | F(t, S,xS̄ )] ≥ P[εj ≥ γ2i−1] ≥ P[εj ≥ (1 + γ)2k−1] ,

where the last inequality holds for everyi, k < i ≤ K, if we chooseγ ≤ 2k−K .

Next, let p̌j ∈ [1, 2k]. Due to Fact 4.4.1 the processing timepj is chosen completely at
random from[1, 2k]. Let Lj denote the set of all processing times such that(X l

j = 1) holds.
Then

P[X l
j = 1 | F(t, S,xS̄ )] = P[εj ∈ Lj | εj > πj] ≥ P[εj ≥ (1 + γ)2k−1] .

To prove that the last inequality holds, we distinguish two cases:

(a) Letπj < (1 + γ)2k−1. SinceP[εj > πj ] ≤ 1,

P[εj ∈ Lj | εj > πj] ≥ P[(εj ∈ Lj) ∩ (εj > πj)] ≥ P[εj ≥ (1 + γ)2k−1] .

(b) Letπj ≥ (1 + γ)2k−1. Then

P[εj ∈ Lj | εj > πj] = 1 ≥ P[εj ≥ (1 + γ)2k−1] .

Assuming that the smoothing distributionf satisfies (P1), the lemma follows.

4.7.2 Adaptive Adversary

Recall that the adaptive adversary may change the input instance on basis of the outcome of
the random process. This additional power may affect the correlation technique that we used
in Lemmas 4.7.2 and 4.7.9. However, as discussed in Appendix4.B these lemmas also hold
for an adaptive adversary. Thus, the upper bound on the smoothed competitive ratio given in
Theorem 4.7.1 also holds against an adaptive adversary.

4.8 Lower Bounds

4.8.1 Lower Bounds for the Partial Bit Randomization Model

The first bound is anΩ(2K/6−k/2) one on the smoothed competitive ratio for any deterministic
algorithm against an oblivious adversary. We advise the reader to first read the proof for the
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adaptive adversary since this bound is more intuitive. In the lower bound proofs, we assume
that the smoothing distribution is well-shaped withµ = 2k−1 + 1

2 .

Theorem 4.8.1.Any deterministic algorithmALG has smoothed competitive ratioΩ(2K/6−k/2)

for everyk ≤ K/3 against an oblivious adversary in the partial bit randomization model.

Proof. For notational convenience, we assume thatK is even. The input sequence for the
lower bound is divided into two phases.

Phase 1:At time t = 0, the adversary releasesN := 2K/2 +
⌊

(2K−k − 2)/3
⌋

jobs and
runsALG on these jobs up to the first timêt when one of the following two events occurs: (i)
2K/2 jobs, denoted byj∗1 , j∗2 , . . . , j∗

2K/2 , have been processed for at least2K/2 time units, or
(ii) one job, sayj∗, has been processed for2K − 2k+1 time units. Subsequently, we call jobs
released in the first phasephase-1 jobs.

Let xALG
j (t̂) denote the amount of time spent by algorithmALG on jobj up to timet̂. We

fix the initial processing time of each jobj to p̌j := xALG
j (t̂)+2k+1. Note that after smoothing

the p̌j ’s we havexALG
j (t̂) + 2k < pj < xALG

j (t̂) + 3 · 2k for eachj. That is, in the schedule
produced byALG, each job has a remaining processing time between2k and3 · 2k at time t̂.
Moreover,ALG has not completed any job at this time, i.e.,δALG(t̂) = N .

Instead of considering an optimal scheduling algorithm, weconsider a scheduling algo-
rithm S that schedules the jobs as described below. Clearly, the total flow time ofOPT is upper
bounded by the total flow time ofS.

Let t̂ be determined by case (i). ThenS does not process jobsj∗1 , j∗2 , . . . , j∗
2K/2 before

all other jobs are completed. Therefore, at least2K time units can be allocated on the other
jobs. Since each of theseN − 2K/2 jobs has remaining processing time at most3 · 2k, S has
completed at least

min

(

N − 2K/2,

⌊

2K

3 · 2k

⌋)

≥ N − 2K/2

jobs, i.e., all these jobs. In case (ii), by not processing job j∗, S completes at least

min

(

N − 1,

⌊

2K − 2k+1

3 · 2k

⌋)

≥ N − 2K/2

of the other jobs. Thus, we obtainδS(t̂) ≤ 2K/2.

Phase 2:Starting from timêt, the adversary releases a sequence ofL := 25K/3−k jobs,
denoted byN + 1, N + 2, . . . , N + L, for a period of̃t := µL, whereµ := 2k−1 + 1

2 . The
release time of jobj = N +i is rj := t̂+(i−1)µ, for i = 1, . . . , L. Each such jobj has initial
processing timěpj := 1 and its smoothed processing time satisfiespj ≤ 2k. Subsequently, we
call jobs released in the second phasephase-2 jobs.

To analyze the number of jobs in the system ofALG andS during the second phase,
we define the random variablesXj := pN+j − µ, for j = 1, . . . , L. Note that theXj ’s
are independently distributed random variables with zero mean. DefineS0 := 0 andSi :=
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∑i
j=1 Xj , for i = 1, . . . , L. Applying Kolmogorov’s inequality (see Theorem 2.4.14), we

obtain

P

[

max
0≤i≤L

|Si| ≥ µ
√

L

]

≤ E
[

S2
L

]

µ2L
≤ 1

3
(4.5)

The last inequality follows sinceE[S2
L] = Var[SL] and the variance of the random variable

SL for the uniform distribution isL(22k − 1)/12. The bound holds for any well-shaped distri-
bution, since among these distributions the variance is maximized by the uniform distribution.

Consider a scheduleQ only processing phase-2 jobs. The amount of idle time up to time
t̂ + iµ is given by

I0 := 0 and Ii := max



Ii−1, iµ−
i
∑

j=1

pN+j



 .

Hence, the total idle time up to timêt + iµ for this algorithm is

Ii = max
0≤j≤i

−Sj.

By (4.5) we know that with probability at least23 the total idle time at any timêt + iµ stays
belowµ

√
L.

We first derive a lower bound on the number of jobs that are in the system ofALG during
the second phase.

Lemma 4.8.1.With probability at least23 , at any timet ∈ [t̂, t̂ + t̃]: δALG(t) ≥ N − 1
2

√
L− 1.

Proof. ALG can do no better than the SRPT rule during the second phase. Each phase-1 job
has remaining processing time larger than2k. Therefore,ALG follows Q using the idle time
to schedule phase-1 jobs, unless a phase-1 job has received so much processing time that its
remaining processing time is less than the processing time of the newly released job. This
leads to at most an additional2k time spent on phase-1 jobs. Hence, with probability at least
2
3 , at most12

√
L + 1 phase-1 jobs are finished byALG during the second phase.

S also followsQ during the second phase using the idle time to schedule phase-1 jobs. We
next give an upper bound on the number of jobs in the system ofS during the second phase.

Lemma 4.8.2.With probability at least23 , at any timet ∈ [t̂, t̂+ t̃]: δS(t) ≤ 2K/2 +2
√

L+2.

Proof. Consider the amount of additional volume brought into the system. Just before time
t = t̂ + iµ this is

i
∑

j=1

pj − (iµ− Ii),
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i.e., the total processing time of phase-2 jobs released before timet minus the amount of time
processed on phase-2 jobs. Hence, the maximum amount of additional volume before the
release of a phase-2 job is given by

∆V = max
0≤i≤L

(Si + Ii) = max
0≤i≤L

(Si + max
0≤j≤i

−Sj) = max
0≤j≤i≤L

(Si − Sj).

The probability that this value exceeds some threshold value is bounded by

P[∆V > 2λ] ≤ P

[

max
0≤i,j≤L

(Si − Sj) > 2λ

]

≤ P

[

max
0≤i≤L

|Si| > λ

]

Settingλ to µ
√

L, by (4.5) this probability is at most13 .

To conclude the proof we need the following fact, which can easily be proven by induction
on the number of phase-2 jobs released.

Fact 4.8.1. Just before the release of a phase-2 job,S has no more than one phase-2 job with
remaining processing time less thanµ.

Assume∆V attains its maximum just before timet′ := t̂ + iµ. Due to Fact 4.8.1 no more
than one phase-2 job has remaining processing time less thanµ. At time t′ a new phase-2 job
is released. Therefore, with probability at least2

3 , the number of phase-2 jobs that are in the
system is bounded by

2µ
√

L

µ
+ 2 = 2

√
L + 2.

By the above two lemmas, with constant probability the totalflow time of the two sched-
ules is bounded by

F ALG ≥ (N −
√

L/2 − 1)t̃,

FS ≤ Nt̂ + (2K/2 + 2
√

L + 2)t̃ + (2K/2 + 2
√

L + 2)(3N2k + 2µ
√

L),

where the contribution of the period after timet̂ + t̃ for S is bounded by the number of jobs at
time t̂ + t̃ times the remaining processing time at the start of this phase.

To bound the ratio betweenF ALG andFS , we note that from the upper bounds onN and
t̂ it follows thatNt̂ ≤ 2(2K/2 + 2

√
L + 2)µL. Moreover, we know from the definition ofN

andµ that3N2k + 2µ
√

L ≤ 8µL. Hence, by restrictingk ≤ K/3, we have that

E

[

F ALG

F OPT

]

= Ω

(

N −
√

L/2− 1

2K/2 + 2
√

L + 2

)

= Ω

(

2K−k + 2K/2 − 25K/6−k/2

25K/6−k/2

)

= Ω
(

2K/6−k/2
)

.
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As mentioned before, the adaptive adversary is stronger than the oblivious one as it may con-
struct the input instance revealed to the algorithm after time t also on the basis of the execu-
tion of the algorithm up to timet. The next theorem gives anΩ(2K−k) lower bound on the
smoothed competitive ratio of any deterministic algorithmunder the partial bit randomization
model, thus showing that MLF achieves up to a constant factorthe best possible ratio in this
model. The lower bound is based on ideas similar to those usedby Motwani et al. [MPT94]
for anΩ(2K) non-clairvoyant deterministic lower bound.

Theorem 4.8.2.Any deterministic algorithmALG has smoothed competitive ratioΩ(2K−k)

against an adaptive adversary in the partial bit randomization model.

Proof. The input sequence for the lower bound is divided into two phases.

Phase 1:At time t = 0, the adversary releasesN :=
⌊

(2K−k − 2)/3
⌋

+ 1 jobs. We run
ALG on these jobs up to the first timêt when a job, sayj∗, has been processed for2K − 2k+1

time units,k ≤ K − 2. The adversary makes sure that none of theN jobs is completed up
to time t̂. Let xALG

j (t̂) denote the amount of time spent by algorithmALG on jobj up to time
t̂. We fix the initial processing time of each jobj to p̌j := xALG

j (t̂) + 2k+1. Note that after
smoothing thěpj ’s we havexALG

j (t̂)+ 2k < pj < xALG
j (t̂)+ 3 · 2k for eachj. That is, each job

has a remaining processing time between2k and3 · 2k. Therefore,ALG will not complete any
job at timet̂, i.e.,δALG(t̂) = N .

Consider the optimal algorithmOPT. If OPT does not processj∗ until time t̂, 2K − 2k+1

time units can be allocated on the other jobs. Thus, at least

2K − 2k+1

3 · 2k
≥
⌊

2K−k − 2

3

⌋

= N − 1

of these jobs are completed byOPT until time t̂, i.e.,δOPT(t̂) = 1.

Phase 2: The adaptive adversary releases a sequenceN + 1,N + 2, . . . of jobs. The
release time of jobj = N + i is rj := t̂ for i = 1 andrj := rj−1 + pj−1 for i > 1. Each such
job j has initial processing timěpj := 1 and therefore its smoothed processing time satisfies
pj ≤ 2k.

OPT will then complete every job released in the second phase before the next one is
released. The optimal strategy forALG is also to process the jobs released in the second phase
to completion as soon as they are released since every job left uncompleted from the first phase
has remaining processing time larger than2k.

The second phase goes on for a time interval larger than23K−2k which is an upper bound
on the contribution to the total flow time of any algorithm in the first phase of the input se-
quence. Therefore, in terms of total flow time, the second phase dominates the first phase for
both ALG andOPT. Since in the second phaseALG hasΩ(N) jobs andOPT hasO(1) jobs in
the system, we obtain a competitive ratio ofΩ(N) = Ω(2K−k).
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4.8.2 Lower Bounds for Symmetric Smoothing Models

Since we are using the partial bit randomization model we do not smoothen the processing
times symmetrically around their initial values. Therefore, a natural question is whether or
not symmetric smoothing models (see also Section 2.3) are more suitable to analyze MLF. We
answer this question in the negative by providing a lower bound ofΩ(2K) on the performance
of MLF under the following symmetric smoothing model.

Consider a functionϑ : IR+ → IR+ which is continuous and non-decreasing. In the sym-
metric smoothing model according toϑ we smoothen the initial processing times as follows:

pj := max(1, p̌j + εj), whereεj
f← [−ϑ(p̌j)/2, ϑ(p̌j)/2],

andf is the uniform distribution. As will be discussed below, thesymmetric smoothing model
according toϑ captures the additive smoothing model, a variant of the additive relative smooth-
ing model, and the relative smoothing model.

We prove the following lower bound for a symmetric smoothingmodel according toϑ.

Theorem 4.8.3.Let ϑ : IR+ → IR+ be function such that there exists ax∗ ∈ IR+ satisfying
x∗ − ϑ(x∗)/2 > 2K−2 and x∗ + ϑ(x∗)/2 = 2K−1 + a for some constanta ≥ 1. Then
there exists anΩ(2K/a) lower bound on the smoothed competitive ratio of MLF againstan
oblivious adversary in the symmetric smoothing model according toϑ.

The additive symmetric smoothing model over[−c, c] is equivalent to the above defined
model withϑ(x) := 2c. Since Theorem 4.8.3 requiresx∗ − c > 2K−2 andx∗ is defined
as x∗ = 2K−1 + a − c, we obtainc < 2K−3 + a/2. By fixing a := 1, Theorem 4.8.3
yields anΩ(2K) lower bound for the symmetric additive smoothing model against an oblivious
adversary.

We can use the symmetric smoothing model according toϑ to simulate a variant of the
additive relative symmetric smoothing model. We defineϑ(x) := 2xc for somec ≥ 0. The
processing times are then smoothed according to a symmetricsmoothing model over[−xc, xc].
Define c := c(y) = y/ log(x∗) as a function ofy ∈ IR+, and fix a := 1. Then,x∗ =

2K−1 + 1 − 2y. The conditionx∗ − (x∗)c > 2K−2 is satisfied ify ≤ K − 3. Sincec(y) is
monotone increasing, we obtain the restrictionc ≤ c(K − 3) = (K − 3)/ log(3 · 2K−3 + 1).
From Theorem 4.8.3, we obtain anΩ(2K) lower bound for this additive relative symmetric
smoothing model.

The relative smoothing model is equivalent to the symmetricsmoothing model according
to ϑ with ϑ(x) := 2ǫx. The conditions in Theorem 4.8.3 are fulfilled if0 ≤ ǫ ≤ (2K−2 +

a)/(3 · 2K−2 + a). Hence, fora := 1, we obtain anΩ(2K) lower bound for the relative
smoothing model.

Proof of Theorem 4.8.3.The input sequence of the adversary consists of two phases. LetS be
the algorithm that during the first phase schedules the jobs to completion in the order in which
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they are released, and during the second phase schedules thejobs that are released in this phase
to completion in the order in which they are released. After having completed all phase-2 jobs,
S finishes the remaining phase-1 jobs. We upper boundOPT by S. To prove the theorem, we
show that with constant probabilityF MLF/FS = Ω(2K/a). ThenE[F MLF/F OPT] = Ω(2K/a).
Without loss of generality, we assume thatK ≥ 3, and we defineL := ϑ(x∗).

Phase 1: At time t = 0, M := 8max(L3/2K , 1) jobs are released with initial processing
time p̌1 := x∗ and then every̌p1 time units one job with the same initial processing time is
released. The total number of jobs released in the first phaseis N := max(L4, 22K/L2). Note
that by definition ofx∗, the smoothed processing time of each phase-1 job is at least2K−2.

Let T1(i) be the total processing time of jobs released in phase 1 at or before timeip̌1, for
i = 0, 1, . . . , N −M . DefineS0 := 0 andSi := Si−1 + εi =

∑i
j=1 εj , for i = 1, . . . ,N . As

E[εj ] = 0 and allεj are drawn independently, we haveE[Si] = 0 andE[S2
i ] = iL2/12, for

all i = 0, . . . , N . Applying Kolmogorov’s inequality (see Theorem 2.4.14), we obtain

P

[

max
0≤k≤N

|Sk| > L
√

N

]

≤ 1

12
.

Hence, we have with probability at least11/12 that for alli = 0, . . . ,N −M

(i + M)p̌1 − L
√

N ≤ T1(i) ≤ (i + M)p̌1 + L
√

N. (4.6)

Subsequently, we assume that (4.6) holds.
Let t̂ := (N −M + 1)p̌1, and consider at ∈ [0, t̂). Then the remaining processing time

for S as well as MLF at timet is

T1(⌊t/p̌1⌋)− t ≥ (⌊t/p̌1⌋+ M)p̌1 − L
√

N − t

≥ t− 1 + Mp̌1 − L
√

N − t ≥ M2K−2 − L
√

N − 1

≥ 2max(L3, 2K)−max(L3, 2K)− 1 > 0. (4.7)

Hence,S and MLF do not have any idle time during the first phase. Moreover, the remaining
processing time for both algorithms is at mostMp̌1 + L

√
N .

Consider somet ∈ [0, t̂). There is at most one job that has been processed on byS but is
not yet completed. Hence,

δS(t) ≤ Mp̌1 + L
√

N

2K−2
+ 1 = O(M).

Consider the schedule produced by MLF up to timet̂. The probability that a job released
in phase 1 is of classK is at leasta/L. The expected number of phase-1 classK jobs is at least
aN/L. Applying Chernoff’s bound (see Theorem 2.4.10), we know that with probability at
least1−eaN/(8L) ≥ (e−1)/e there are at leastaN/(2L) classK phase-1 jobs. Subsequently,
we assume that this property holds. Note that the probability that both (4.6) and the bound on
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the number of classK jobs hold is at least(e− 1)/e − 1/12.

If MLF does not finish any classK job up to timet̂ then

δMLF(t̂) ≥ aN

2L
.

Otherwise, consider the last timet ∈ [0, t̂) that MLF was processing a job in queueQK . By
definition of MLF, we know that at this time all lower queues were empty. Moreover, we know
that the remaining processing time of each job in this queue is at mosta, and we also know
from (4.7) that the total remaining processing time is at least max(L3, 2K)− 1 = L

√
N − 1.

Hence, at this time the number of alive jobs in the schedule ofMLF is at least(L
√

N − 1)/a

and also

δMLF(t̂) ≥ L
√

N − 1

a
.

Phase 2: At time t̂, M jobs withp̌2 := 2K−2 are released and then everyp̌2 time units one
job with the saměp2 is released. The total number of jobs released in this phase is 2N . Note
that no job released in the second phase enters queueQK .

Let T2(i) be the total processing time of the phase-2 jobs released at or before timêt+ ip̌2.
Applying Kolmogorov’s inequality yields that with probability at least11/12 we have

(i + M)p̌2 − L
√

2N ≤ T2(i) ≤ (i + M)p̌2 + L
√

2N. (4.8)

Subsequently, we assume that also (4.8) holds. The probability that the bound on the number
of classK jobs and (4.6) and (4.8) hold is at least(e− 1)/e − 1/6 > 0.46.

Using the same arguments as before, we now show that MLF continuously processes
phase-2 jobs until timēt := t̂ + (2N − M + 1)p̌2. Namely, consider at ∈ [t̂, t̄). Then
the remaining processing time forS as well as MLF at timet is

T2(
⌊

(t− t̂)/p̌2

⌋

)− (t− t̂) ≥ (
⌊

(t− t̂)/p̌2

⌋

+ M)p̌2 − L
√

2N − (t− t̂)

≥Mp̌2 − L
√

2N − 1 ≥ M2K−2 − L
√

2N − 1

≥ 2max(L3, 2K)−
√

2 max(L3, 2K)− 1 > 0.

Thus, if MLF does not finish any phase-1 job of classK up to timet̂, we have

δMLF(t) ≥ aN

2L
, for t ∈ [t̂, t̄), and F MLF = Ω

(

aN

2L
(2N −M + 1)p̌2

)

.

Otherwise, we have

δMLF(t) ≥ L
√

N − 1

a
, for t ∈ [t̂, t̄), and F MLF = Ω

(

L
√

N

a
(2N −M + 1)p̌2

)

.
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Moreover, using the same argumentation as for phase 1, we know that during[t̂, t̄), S has
at most(Mp̌2 + L

√
2N )/2K−3 + 1 = (2 +

√
2)M + 1 phase-2 jobs in its system. Hence,

δS(t) = O(M) for t ∈ [t̂, t̄).

After time t̄, the time needed byS to finish all jobs is at most

Mp̌1+L
√

N +Mp̌2+L
√

2N ≤
(

9 +
√

2

2
+ 1

)

Mp̌2 ≤
(

9 +
√

2

2
+ 1

)

(2N−M +1)p̌2.

Hence,
FS = O(M(2N −M + 1)p̌2).

If N = L4 thenM = 8L3/2K and

F MLF/FS = Ω

(

aN

2LM

)

= Ω(a2K) or F MLF/FS = Ω

(

L
√

N

M

)

= Ω

(

2K

a

)

.

If N = 22K/L2 thenL3 ≤ 2K andM = 8. Moreover,

F MLF/FS = Ω

(

aN

2LM

)

= Ω(a2K) or F MLF/FS = Ω

(

L
√

N

M

)

= Ω

(

2K

a

)

.

Since the probability that (4.6), (4.8), and the bound on thenumber of classK jobs hold
is constant anda ≥ 1, we have

E

[

F MLF

F OPT

]

= Ω

(

2K

a

)

.

Obviously, Theorem 4.8.3 also holds for the adaptive adversary. Finally, we remark that
we can generalize the theorem to the case thatf is a well-shaped function.

4.9 Concluding Remarks

We analyzed the performance of the multi-level feedback algorithm using the novel approach
of smoothed analysis. Smoothed competitive analysis provides a unifying framework for worst
case and average case analysis of online algorithms. We considered several smoothing models,
including the additive symmetric smoothing model proposedby Spielman and Teng [ST01].
The partial bit randomization model yields the best upper bound. In particular, we proved
that the smoothed competitive ratio of MLF using this model isO((2k/σ)3 + (2k/σ)22K−k),
whereσ denotes the standard deviation of the smoothing distribution. The analysis holds for
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various distributions. For distributions withσ = Θ(2k), e.g., for the uniform distribution, we
obtain a smoothed competitive ratio ofO(2K−k). By choosingk = K, the result implies
a constant upper bound on the average competitive ratio of MLF. We also proved that any
deterministic algorithm has smoothed competitive ratioΩ(2K−k). Hence, under this model,
the smoothed competitive ratio of MLF is optimal up to a constant factor. For various other
symmetric smoothing models we have obtained lower bounds ofΩ(2K). Thus, these models
do not seem to capture the good performance of MLF in practice.

A natural question that arises is whether or not the smoothing of the release dates helps
to further reduce the smoothed competitive ratio of MLF. We provide a partial answer to this
question: If the initial processing times in[1, 2K ] are smoothed according to the partial bit
randomization model and the release dates of the jobs are smoothed by means of a smoothing
model that does not disrupt the initial release dates by morethan2K−1, i.e.,|řj − rj| ≤ 2K−1

for each jobj ∈ J , we can prove a lower bound ofΩ(2K−k) on the smoothed competitive
ratio of MLF.

As mentioned in the introduction, one could alternatively define the smoothed competitive
ratio as the ratio between the expected cost of the algorithmand the expected optimal cost;
see definition (4.2). We remark that from Lemmas 4.7.1, 4.7.2, and 4.7.9 we obtain the same
bound under this alternative definition, without the need for any high probability argument.

An interesting open problem is to improve the lower bound against the oblivious adversary
in the partial bit randomization model. It can also be of someinterest to extend our analysis
to the multiple machine case. Following the work of Becchetti and Leonardi [BL01], we
can extend Lemma 4.7.1 having an extra factor ofK, which will also be in the smoothed
competitive ratio. Finally, we hope that this framework of analysis will be extended to other
online problems.
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4.A Proof of Lemma 4.7.1

We introduce some additional notation. The volumeV S(t) is the sum of the remaining pro-
cessing times of the jobs that are active at timet. LS(t) denotes the total work done prior to
time t, i.e., the overall time the machine has been processing jobsuntil time t. For a generic
functionϑ (= δ, V , or L), we define∆ϑ(t) = ϑMLF(t) − ϑOPT(t). Forϑ (= δ, V , ∆V , L, or
∆L), the notationϑ=k(t) will denote the value ofϑ at timet when restricted to jobs of classk.
We useϑ≥h,≤k(t) to denote the value ofϑ at timet when restricted to jobs of classes between
h andk.

Lemma 4.7.1.For any input instanceI, at any timet, δl
I(t) ≤ hI(t) + 6

γ δOPT
I (t).

Proof. In the following we omitI when clear from the context. Denote byk1 andk2, respec-
tively, the lowest and highest class such that at least one job of that class is in the system at
time t. We bound the number of lucky jobs that are active at timet as follows:

δl(t) ≤ h(t) +
1

γ

k2
∑

i=k1

V MLF
=i (t)

2i−1
. (4.9)

The bound follows since every job that is lucky at timet is either an ending head job or not. An
ending head job might have been processed and therefore we cannot assume anything about
its remaining processing time. However, the number of ending head jobs ish(t). For all
other lucky jobs we can bound the remaining processing time from below: a job of classi has
remaining processing time at leastγ2i−1. We have

k2
∑

i=k1

V MLF
=i (t)

2i−1
=

k2
∑

i=k1

V OPT
=i (t) + ∆V=i(t)

2i−1

≤ 2δOPT
≥k1,≤k2

(t) +

k2
∑

i=k1

∆V=i(t)

2i−1

= 2δOPT
≥k1,≤k2

(t) + 2

k2
∑

i=k1

∆V≤i(t)−∆V≤i−1(t)

2i

= 2δOPT
≥k1,≤k2

(t) + 2
∆V≤k2

(t)

2k2
+ 2

k2−1
∑

i=k1

∆V≤i(t)

2i+1

≤ 2δOPT
≥k1,≤k2

(t) + δOPT
≤k1−1(t) + 4

k2
∑

i=k1

∆V≤i(t)

2i+1

≤ 2δOPT
≤k2

(t) + 4

k2
∑

i=k1

∆V≤i(t)

2i+1
, (4.10)
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where the second inequality follows since a job of classi has size at most2i, while the fourth
inequality follows since∆V≤k1−1(t) = 0 by definition.

We are left to study the sum in (4.10). For anyt1 ≤ t2 ≤ t and a generic functionϑ,
denote byϑ[t1,t2](t) the value ofϑ at timet when restricted to jobs released betweent1 and
t2, e.g.,L[t1,t2]

≤i (t) is the work done by timet on jobs of class at mosti released between time
t1 andt2. Denote byti < t the maximum between0 and the last time prior to timet in which
a job was processed in queueQi+1 or higher in this specific execution of MLF. Observe that,
for i = k1, . . . , k2, [ti+1, t) ⊇ [ti, t).

At time ti, either the algorithm was processing a job in queueQi+1 or higher, orti = 0.
Thus, at timeti no jobs were in queuesQ0, . . . , Qi. Therefore,

∆V≤i(t) ≤ ∆V
(ti,t]
≤i (t) ≤ L

MLF(ti,t]
>i (t)− L

OPT(ti,t]
>i (t) = ∆L

(ti,t]
>i (t).

In the following we adopt the conventiontk1−1 = t. From the above, we have

k2
∑

i=k1

∆L
(ti,t]
>i (t)

2i+1
=

k2
∑

i=k1

L
MLF(ti,t]
>i (t)− L

OPT(ti,t]
>i (t)

2i+1

=

k2
∑

i=k1

i−1
∑

j=k1−1

L
MLF(tj+1,tj ]
>i (t)− L

OPT(tj+1,tj ]
>i (t)

2i+1

=

k2−1
∑

j=k1−1

k2
∑

i=j+1

L
MLF(tj+1,tj ]
>i (t)− L

OPT(tj+1,tj ]
>i (t)

2i+1
,

where the second equality follows by partitioning the work done on the jobs released in the
interval (ti, t] into the work done on the jobs released in the intervals(tj+1, tj ], j = k1 −
1, . . . , i− 1.

Let ī(j) ∈ {j + 1, . . . , k2} be the index that maximizesL
MLF(tj+1,tj ]
>i −L

OPT(tj+1,tj ]
>i . Then

k2
∑

i=k1

∆L
(ti,t]
>i (t)

2i+1
≤

k2−1
∑

j=k1−1

k2
∑

i=j+1

L
MLF(tj+1,tj ]

>ī(j)
(t)− L

OPT(tj+1,tj ]

>ī(j)
(t)

2i+1

≤
k2−1
∑

j=k1−1

L
MLF(tj+1,tj ]

>ī(j)
(t)− L

OPT(tj+1,tj ]

>ī(j)
(t)

2j+1

≤
k2−1
∑

j=k1−1

δ
OPT(tj+1,tj ]

>ī(j)
(t) ≤ δ

OPT(tk2
,t]

≥k1
(t) ≤ δOPT

≥k1
(t).

To prove the third inequality observe that every job of classlarger than̄i(j) > j released
in the time interval(tj+1, tj ] is processed by MLF in the interval(tj+1, t] for at most2j+1

time units. Order the jobs of this specific set by increasingxMLF
j (t). Now, observe that each
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of these jobs has initial processing time at least2ī(j) ≥ 2j+1 at their release and we give
to the optimum the further advantage that it finishes every such job when processed for an
amountxMLF

j (t) ≤ 2j+1. To maximize the number of finished jobs the optimum places the

work L
OPT(tj+1,tj ]

>ī(j)
on the jobs with smallerxMLF

j (t). The optimum is then left at timet with a
number of jobs

δ
OPT(tj+1,tj ]

>ī(j)
(t) ≥

L
MLF(tj+1,tj ]

>ī(j)
(t)− L

OPT(tj+1,tj ]

>ī(j)
(t)

2j+1
.

Altogether, we obtain from (4.9), (4.10), and (4.11)

δl(t) ≤ h(t) +
2

γ
δOPT
≤k2

(t) +
4

γ
δOPT
≥k1

(t) ≤ h(t) +
6

γ
δOPT(t).

4.B Proving Positive and Negative Correlations

In Lemmas 4.7.2 and 4.7.9 we use the technique described in Section 2.4.6 to prove that two
events are negatively or positively correlated. We give some more details in this section.

In both Lemmas we need to prove that two eventsA′ andB′ are correlated; in Lemma 4.7.2,
A′ := (pqi ≤ 2i) andB′ := (H(t) = H), and in Lemma 4.7.9,A′ := (εj ≥ γ2i−1) and
B′ := (pj > πj). In both cases,A′ is an event that solely depends on the perturbation of
some jobj, e.g.,j := qi in Lemma 4.7.2 andj itself in Lemma 4.7.9. We condition the
probability space in order to make sure that only the processing time ofj is random. That is,
we fix the processing times of all jobs other thanj to xj̄, which we denote by(pj̄ = xj̄).
DefineA = (A′ |pj̄ = xj̄) andB = (B′ |pj̄ = xj̄). Let Ω denote the conditioned probability
space and letP denote the underlying conditioned probability distribution. The following two
statements are easy to verify.

1. Ω together with the partial order≤ and the standardmax andmin operations constitutes
a distributive lattice.

2. P is log-supermodular. The inequality holds even with equality and does not depend on
the underlying probability distribution.

We next argue that the eventsA andB are monotone increasing or decreasing.

Lemma 4.7.2. Let the processing timepjI of job j = qi in I be fixed such thatI ∈ A =

(pqi ≤ 2i |pj̄ = xj̄). Define an instanceI ′ with pjI′ ≤ pjI . ThenI ′ ∈ A. Hence,A is
monotone decreasing. On the other hand, if the processing timepjI in I is chosen such
that I ∈ B = (H(t) = H |pj̄ = xj̄), i.e., j is a head job at timet, thenj remains a
head job in any instanceI ′ with pjI′ ≥ pjI . Therefore,B is monotone increasing. By
Theorem 2.4.16,A andB are negatively correlated.
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Lemma 4.7.9. Let I be an instance with processing timepjI of j being such thatI ∈ A =

(εj ≥ γ2i−1 |pj̄ = xj̄). Consider an instanceI ′ with processing timepjI′ ≥ pjI .
Clearly,I ′ ∈ A and thusA is monotone increasing. Similarly, letpjI be fixed such that
I ∈ B = (pj > πj |pj̄ = xj̄). If we consider an instanceI ′ with pjI′ ≥ pjI then
j also satisfies(pjI′ > πj) and thusI ′ ∈ B. That is,B is monotone increasing. By
Theorem 2.4.16, we conclude thatA andB are positively correlated.

Since the processing times of all jobs are perturbed independently, A′ and (pj̄ = xj̄) are
independent, i.e.,P[A′ |pj̄ = xj̄] = P[A′] . We exploit this fact as follows in order to prove
that the eventsA′ andB′ are also correlated. (The second inequality is due to the correlation
of A andB.)

P[A′ ∩ B′] =
∑

xj̄

P[A′ ∩ B′ |pj̄ = xj̄ ]P[pj̄ = xj̄ ]

S
∑

xj̄

P[A′ |pj̄ = xj̄ ]P[B′ |pj̄ = xj̄ ]P[pj̄ = xj̄ ]

= P[A′]
∑

xj̄

P[B′ |pj̄ = xj̄ ]P[pj̄ = xj̄ ] = P[A′]P[B′] .

The above reasoning clearly holds for the oblivious adversary. Observe, however, that it also
holds in the adaptive case: The eventA′ only depends on the random outcomeεj of job j,
which the adaptive adversary cannot control. In principle,the eventB′ might be influenced by
a change in the processing time ofj. However, sincepj is increased in both cases, this change
is revealed to the adversary only after the completion ofj itself. So, up to timet, the behavior
of the adaptive adversary will be the same.





5. TOPOLOGY MATTERS: SMOOTHED
COMPETITIVENESS OF METRICAL TASK
SYSTEMS

Abstract

We considermetrical task systems, a general framework to model online problems. An online algorithm
resides in a graphG of n nodes and may move in this graph at a cost equal to the distance. The algorithm
has to service a sequence oftasksthat arrive online; each task specifies for each node arequest costthat
is incurred if the algorithm services the task in this particular node. The objective is to minimize the
total request cost plus the total travel cost. A deterministic online algorithm for metrical task systems
is thework function algorithm(WFA), which has an optimal competitive ratio of2n− 1.

In this chapter, we present a smoothed competitive analysisof WFA. Given an adversarial task
sequence, we smoothen the request costs by means of a symmetric additive smoothing model and
analyze the competitive ratio of WFA on the smoothed task sequence. Our analysis reveals that the
smoothed competitive ratio of WFA is much better thanO(n) and that it depends on several topo-
logical parameters of the underlying graphG, such as the minimum edge lengthUmin, the maximum
degreeD, and the edge diameterdiam . For example, supposed that the ratio between the maximum
and the minimum edge length ofG is bounded by a constant, WFA has smoothed competitive ratio
O(diam(Umin/σ + log(D))) andO(

√

n(Umin/σ + log(D))), whereσ denotes the standard deviation
of the smoothing distribution. That is, already for perturbations withσ = Θ(Umin) the competitive
ratio reduces toO(log(n)) on a clique and toO(

√
n) on a line. We also prove that for a large class

of graphs these bounds are asymptotically tight. Furthermore, we provide lower bounds for arbitrary
graphs. We obtain a better bound ofO(β(Umin/σ + log(D))) on the smoothed competitive ratio of
WFA if each adversarial task contains at mostβ non-zero entries. We also provide the first average case
analysis of WFA. We prove that WFA hasO(log(D)) expected competitive ratio if the request costs are
chosen randomly from an arbitrary non-increasing distribution with standard deviationσ = Θ(Umin).

Publication Notes. This chapter is joint work with Naveen Sivadasan. An extended abstract will
appear in the Conference Proceedings of the Twenty-First International Symposium on Theoretical
Aspects of Computer Science (STACS 2004) [SS04]. A completeversion of the paper was published
as a MPII research report [SS03].

Naveen Sivadasan is a Ph. D. student at the Max-Planck-Institut für Informatik at Saarbrücken. The
results presented in this chapter will also become part of his thesis. My own contribution to the contents
of this chapter is50%.
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5.1 Introduction

Borodin, Linial, and Saks [BLS92] introduced a general framework, which is commonly
known asmetrical task systems, to model online problems. Many online problems can be
formulated as metrical task systems; for example, the paging problem, the static list accessing
problem, and thek-server problem. Due to its generality, the competitive ratio of an algorithm
for metrical task systems is usually weak compared to the oneof an online algorithm that is
designed for a particular problem, such as thek-server problem. However, precisely because
of its generality we believe that it is interesting to analyze WFA.

Metrical task systems are formulated as follows. We are given an undirected and connected
graphG := (V,E) with node setV := {v1, . . . , vn} and edge setE, and a positive length
functionλ : E → IR+ on the edges ofG. We extendλ to a metricδ on G. Let δ : V × V →
IR+ be a distance function such thatδ(u, v) denotes the shortest path distance (with respect to
λ) between any two nodesu andv in G. A taskτ is ann-vector(r(v1), . . . , r(vn)) of request
costs. The cost to process taskτ in nodevi is r(vi) ∈ IR+ ∪ {∞}. The online algorithm
starts from a given initial positions0 ∈ V and has to service a sequenceS := 〈τ1, . . . , τr〉 of
tasks, arriving one at a time. If the online algorithm resides after taskτt−1 in nodeu, the cost
to service taskτt in nodev is δ(u, v) + rt(v); δ(u, v) is the transition costandrt(v) is the
processing cost. The objective is to minimize the total transition plus processing cost.

Borodin, Linial, and Saks [BLS92] gave a deterministic online algorithm, known as the
work function algorithm(WFA), for metrical task systems. WFA has a competitive ratio of
2n − 1, which is optimal. Borodin, Linial, and Saks [BLS92] and Manasse, McGeoch, and
Sleator [MMS88] proved thateverydeterministic online algorithm for metrical task systems
has competitive ratio at least2n− 1.

We use the notion of smoothed competitiveness to characterize the asymptotic perfor-
mance of WFA. We smoothen the request costs of each task according to an additive symmet-
ric smoothing model. Each cost entry is smoothed by adding a random number chosen from
a symmetric probability distributionf with mean zero. Our analysis holds for various prob-
ability distributions, including the uniform and the normal distribution. We useσ to refer to
the standard deviation off . Our analysis reveals that the smoothed competitive ratio of WFA
is much better than its worst case competitive ratio suggests and that it depends on certain
topological parametersof the underlying graph.

Definition of Topological Parameters: Throughout this chapter, we assume that the under-
lying graphG hasn nodes, minimum edge lengthUmin, maximum edge lengthUmax, and
maximum degreeD. Furthermore, we useDiam to refer to thediameterof G, i.e., the max-
imum length of a shortest path between any two nodes. Similarly, a graph hasedgediam-
eterdiam if any two nodes are connected by a path of at mostdiam edges. Observe that
diamUmin ≤ Diam ≤ diamUmax. We emphasize that these topological parameters are de-
fined with respect toG and its length functionλ—not with respect to the resulting metric.
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Upper Bounds

random tasks O
(

σ
Umin

(

Umin

σ + log(D)
))

arbitrary tasks O
(

Diam

Umin

(

Umin

σ + log(D)
))

and O

(

√

n · Umax

Umin

(

Umin

σ + log(D)
)

)

β-elementary tasks O
(

β · Umax

Umin

(

Umin

σ + log(D)
))

Table 5.1: Upper bounds on the smoothed competitive ratio of WFA.

We prove several upper bounds; see Table 5.1.

1. We show that if the request costs are chosen randomly from adistributionf , which is
non-increasing in[0,∞), the expected competitive ratio of WFA is

O
(

1 + σ
Umin

· log(D)
)

.

In particular, WFA has an expected competitive ratio ofO(log(D)) if σ = Θ(Umin).
For example, we obtain an expected competitive ratio ofO(log(n)) on a clique and of
O(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive ratio of WFA:

O

(

Diam

Umin

(

Umin

σ + log(D)
)

)

and O

(

√

n · Umax

Umin

(

Umin

σ + log(D)
)

)

.

For example, ifσ = Θ(Umin) andUmax/Umin = Θ(1), WFA has smoothed competitive
ratio O(log(D)) on any graph with constant edge diameter andO(

√
n) on any graph

with constant maximum degree. Note that we obtain anO(log(n)) bound on a complete
binary tree.

3. We obtain a better upper bound on the smoothed competitiveratio of WFA if the ad-
versarial task sequence only consists ofβ-elementary tasks. A task isβ-elementary if
it has at mostβ non-zero entries. (We will use the termelementary taskto refer to a
1-elementary task.) We prove a smoothed competitive ratio of

O
(

β · Umax

Umin

(

Umin

σ + log(D)
))

.

For example, ifσ = Θ(Umin) andUmax/Umin = Θ(1), WFA has smoothed competitive
ratio O(β log(D)) for β-elementary tasks.

We also present lower bounds; see Table 5.2. All our lower bounds hold foranydeterministic
online algorithm and if the request costs are smoothed according to the additive symmetric
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Lower Bounds

arbitrary tasks

– existential Ω
(

Diam

Umin

(

Umin

σ + log(D)
))

and Ω

(

√

n · Umax

Umin

(

Umin

σ + log(D)
)

)

– universal Ω
(

Umin

σ + Umin

Umax

log(D)
)

and Ω

(

√

diam · Umin

Umax

(

Umin

σ + 1
)

)

β-elementary tasks Ω
(

β ·
(

Umin

σ + 1
))

(existential)

Table 5.2: Lower bounds on the smoothed competitive ratio of any deterministic online algorithm.

smoothing model. We distinguish betweenexistentialanduniversal lower bounds. An ex-
istential lower bound, sayΩ(f(n)), means that thereexistsa class of graphs such thatevery
deterministic algorithm has smoothed competitive ratioΩ(f(n)) on these graphs. On the other
hand, a universal lower boundΩ(f(n)) states that forany arbitrarygraph,everydeterministic
algorithm has smoothed competitive ratioΩ(f(n)). Clearly, for metrical task systems, the best
lower bound we can hope to obtain isΩ(n). Therefore, if we state a lower bound ofΩ(f(n)),
we actually meanΩ(min(n, f(n))).

4. For a large range of values forDiam andD, we present existential lower bounds that
are asymptotically tight to the upper bounds stated in 2. This means (a) that the stated
smoothed competitive ratio of WFA is asymptotically tight,and (b) that WFA is asymp-
totically optimal under the additive smoothing model—no other deterministic algorithm
can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothed competitive ratio:

Ω
(

Umin

σ + Umin

Umax
log(D)

)

and Ω

(

min

(

diam ,
√

diam · Umin

Umax

(

Umin

σ + 1
)

))

.

Suppose thatUmax/Umin = Θ(1). Then the first bound matches the first upper bound
stated in 2 if the edge diameterdiam is constant, e.g., for a clique. The second bound
matches the second upper bound in 2 ifdiam = Ω(n) and the maximum degreeD is
constant, e.g., for a line.

6. Forβ-elementary tasks we prove an existential lower bound of

Ω
(

β ·
(

Umin

σ + 1
))

.

This implies that the bound in 3 is tight up to a factor of(Umax/Umin) log(D).

Constrained Balls into Bins Game.Our analysis crucially relies on a lower bound on the cost
of an optimal offline algorithm. We therefore study the growth of the work function values on
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a sequence of random requests. It turns out that the increasein the work function values can
be modeled by a version of a balls into bins game with dependencies between the heights of
the bins, which are specified by a constraint graph. We call this game theconstrained balls
into bins game. The dependencies between the heights of the bins make it difficult to analyze
this stochastic process. We believe that the constrained balls into bins game is also interesting
independently of the context of this work.

Organization of this Chapter.In Section 5.2 we first review the work function algorithm and
state some of its properties. In Section 5.3 we define the smoothing model that we use. The
lower bound on the cost of an optimal offline algorithm and therelated balls into bins game are
presented in Section 5.4. Then, in Section 5.5 and Section 5.6, we prove the upper bounds on
the smoothed competitive ratio of WFA. After that, in Section 5.7, we present upper bounds
for random andβ-elementary tasks. Finally, in Section 5.8, we prove existential and universal
lower bounds. We give some concluding remarks in Section 5.9.

5.2 Work Function Algorithm

Let S = 〈τ1, . . . , τℓ〉 be a request sequence, and lets0 ∈ V denote the initial position of
the online algorithm. LetSt denote the subsequence of the firstt tasks ofS. For eacht,
0 ≤ t ≤ ℓ, we define a functionwt : V → IR such that for each nodeu ∈ V , wt(u) is the
minimum offline cost to processSt starting ins0 and ending inu. The functionwt is called
thework functionat timet with respect toS ands0.

Let OPT denote an optimal offline algorithm. Clearly, the optimal offline costOPT[S] onS
is equal to the minimum work function value at timeℓ, i.e.,OPT[S] = minu∈V wℓ(u). We can
computewt(u) for eachu ∈ V by dynamic programming:

w0(u) := δ(s0, u) and wt(u) := min
v∈V

(wt−1(v) + rt(v) + δ(v, u)) for t ≥ 1. (5.1)

We next describe the online work function algorithm; see also [BLS92, BEY98]. Intu-
itively, a good strategy for an online algorithm to process taskτt is to move to a node where
OPT would reside ifτt would be the final task. However, the competitive ratio of an algo-
rithm that solely sticks to this policy can become arbitrarily bad. A slight modification gives
a 2n − 1 competitive algorithm: Instead of blindly (no matter at what cost) traveling to the
node of minimum work function value, we additionally take the transition cost into account.
Essentially, this is the idea underlying the work function algorithm.

Work Function Algorithm ( WFA ): Let s0, . . . , st−1 denote the sequence of nodes visited
by WFA to processSt−1. Then, to process taskτt, WFA moves to a nodest that minimizes
wt(v) + δ(st−1, v) for all v ∈ V . There is always a choice forst such that in addition
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wt−1(st−1)

≤ δ

r

δ

wt(st−1)

wt(st)

wt−1(st)

≥ r

wt−1(st−1)

wt(st−1)

δ

wt(st)

r

wt−1(st)

≤ δ

Figure 5.1: Illustration of facts. Letr := rt(st) andδ := δ(st−1, st).

wt(st) = wt−1(st) + rt(st). More formally,

st := arg min
v∈V

(wt(v) + δ(st−1, v)) such that wt(st) = wt−1(st) + rt(st). (5.2)

Subsequently, we useWFA andOPT, respectively, to denote the work function and the optimal
offline algorithm. For a given sequenceS = 〈τ1, . . . , τℓ〉 of tasks,WFA[S] andOPT[S] refer to
the cost incurred byWFA andOPT onS, respectively. Bys0, . . . , sℓ we denote the sequence
of nodes visited byWFA.

We continue by observing a few properties of work functions and of the online algorithm
WFA; see also Figure 5.1. The corresponding proofs are given in Appendix 5.A.

Fact 5.2.1. For any nodeu and any timet, wt(u) ≥ wt−1(u).

Fact 5.2.2. For any nodeu and any timet, wt(u) ≤ wt−1(u) + rt(u).

Fact 5.2.3. For any two nodesu andv and any timet, |wt(u)− wt(v)| ≤ δ(u, v).

Fact 5.2.4. At any timet, wt(st) = wt(st−1)− δ(st−1, st).

Fact 5.2.5. At any timet, rt(st) + δ(st−1, st) = wt(st−1)− wt−1(st).

5.3 Smoothing Model

Let theadversarial task sequencebe given byŠ := 〈τ̌1, . . . , τ̌r〉. We smoothen each task
vector τ̌t := (řt(v1), . . . , řt(vn)) by perturbing eachoriginal costentry řt(vj) according to
some probability distributionf as follows

rt(vj) := max(0, řt(vj) + ε(vj)), whereε(vj)←f.
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That is, to each original cost entry we add a random number which is chosen fromf . The
obtainedsmoothedtask is denoted byτt := (rt(v1), . . . , rt(vn)). We useµ andσ, respectively,
to denote the expectation and the standard deviation off . We assume thatf is symmetric
aroundµ := 0. We take the maximum of zero and the smoothing outcome in order to assure
that the smoothed costs are non-negative. Observe that the probability for an original zero cost
entry to remain zero is amplified to12 .

A major criticism to the additive model is that zero cost entries are destroyed. However,
as we will argue in the next subsection, one can easily verifythat the lower bound proof of
2n − 1 on the competitive ratio of any deterministic algorithm formetrical task systems goes
through for any smoothing model that does not destroy zeros.

Our analysis holds for a large class of probability distributions, which we callpermissible.
We sayf is permissible if (i)f is symmetric aroundµ = 0 and (ii) f is non-increasing in
[0,∞). For example, the uniform and the normal distribution are permissible. The concentra-
tion of f aroundµ is given by its standard deviationσ. Since the stated upper bounds on the
smoothed competitive ratio of WFA do not further improve by choosingσ much larger than
Umin, we assume thatσ ≤ 2Umin. Moreover, we usecf to denote a constant depending onf

such that for a randomε chosen fromf , P[ε ≥ σ/cf ] ≥ 1
4 .

All our results hold against anadaptive adversary. An adaptive adversary reveals the task
sequence over time, thereby taking decisions made by the online algorithm in the past into
account.

5.3.1 Lower Bound for Zero-Retaining Smoothing Models

The proof of the2n − 1 lower bound on the competitive ratio of any deterministic algorithm,
see [BLS92, MMS88, BEY98], is based only on the use of elementary tasks and the fact that
the cost of the online algorithm is monotone increasing withthe length of the input sequence.
Assume we consider a zero-retaining smoothing model, i.e.,a model in which zero cost entries
are invariant to the smoothing. In such a model, elementary tasks are smoothed to elementary
tasks. In particular this means that the above two properties still hold. Therefore, the lower
bound proof also goes through for sequences that are smoothed according to any zero-retaining
smoothing model.

Theorem 5.3.1. Every deterministic online algorithmALG for metrical task systems has a
smoothed competitive ratio of at least2n− 1 under a zero-retaining smoothing model.

5.4 A Lower Bound on the Optimal Offline Cost

In this section, we establish a lower bound on the cost incurred by an optimal offline algorithm
OPT when run on tasks smoothed according to the additive smoothing model. For the purpose
of proving the lower bound, we first investigate an interesting version of a balls into bins
experiment, which we call theconstrained balls into bins game.
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Figure 5.2: Illustration of the “unfolding” forQ = 1 andh = 5. Left: Constraint graphGc. Right:
Layered dependency graphDh.

5.4.1 Constrained Balls into Bins Game

We are givenn binsB1, . . . , Bn. In each round, we place a ball independently in each binBi

with probabilityp; with probability1− p no ball is placed inBi. We define theheightht(i) of
a binBi as the number of balls inBi after roundt. We have dependencies between the heights
of different bins that are specified by an (undirected)constraint graphGc := (Vc, Ec). The
node setVc of Gc containsn nodesu1, . . . , un, where each nodeui corresponds to a binBi.
All edges inEc have uniform edge lengths equal toQ. Let D be the maximum degree of a
vertex inGc. Throughout the experiment, we maintain the following invariant.

Invariant: The difference in height between two binsBi andBj is at most the shortest path
distance betweenui anduj in Gc.

If the placement of a ball into a binBi would violate this invariant, the ball isrejected; oth-
erwise we say that the ball isaccepted. Observe that if two binsBi andBj do not violate the
invariant in roundt then, in roundt + 1, Bi andBj might cause a violation only if one bin,
sayBi, receives a ball, and the other,Bj, does not receive a ball; if both receive a ball or both
do not receive a ball, the invariant remains true.

Theorem 5.4.1.Fix any binBz. Let Rz be the number of rounds needed until the height of
Bz becomesh ≥ log(n). Then,P[Rz > c3h (1 + log(D)/Q)] ≤ 1/n4.

We remark that constraint graphs withQ = 1 exist, e.g., a clique onn nodes, such that
the expected number of rounds needed for the height of a bin tobecomeh is Ω(h log(n)).
Moreover, for any given maximum degreeD one can create graph instances withQ = 1 such
that the expected number of rounds isΩ(h log(D)).

We next describe how one can model the growth of the height ofBz by an alternative game on a
layered dependency graph. A layered dependency graphDh consists ofh layers,V1, . . . , Vh,
and edges are present only between adjacent layers. The ideais to “unfold” the constraint
graphGc into a layered dependency graphDh.
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We first describe the construction forQ = 1: Each layer ofDh corresponds to a subset
of nodes inGc. Layer1 consists ofz only, the node corresponding to binBz. Assume we
have constructed layersV1, . . . , Vi, i < h. ThenVi+1 is constructed fromVi by adding all
nodes,ΓGc(Vi), that are adjacent toVi in Gc, i.e., Vi+1 := Vi ∪ ΓGc(Vi). For every pair
(u, v) ∈ Vi × Vi+1, we add an edge(u, v) toDh if (u, v) ∈ Ec, or u = v. See Figure 5.2 for
an example.

Now, we consider the following game onDh. Each node inDh is in one of three states,
namelyUNFINISHED, READY, or FINISHED. Initially, all nodes in layerh areREADY and all
other nodes areUNFINISHED. In each round, allREADY nodes independently toss a coin; each
coin turns upheadwith probabilityp andtail with probability1− p. A READY node changes
its state toFINISHED if the outcome of its coin toss ishead. At the end of each round, an
UNFINISHED node in layerj changes its state toREADY if all its neighbors in layerj + 1 are
FINISHED.

Note that the nodes in layerVj areFINISHED if the corresponding binsBi, i ∈ Vj, have
height at leastj. Consequently, the number of rounds needed until the root node z in Dh

becomesFINISHED dominates the number of rounds needed for the height ofBz to becomeh.

We use a similar construction ifQ > 1. For simplicity, leth be a multiple ofQ and define
h′ = h/Q. We construct a dependency graphDh′ with h′ layers as described above (replaceh

by h′ in the description above). Then we transformDh′ into a layered graphDh with h layers
as follows. Letv be a node in layerj of Dh′ . We replacev by a path(v1, . . . , vk), where
k = |Q|. Nodev1 is connected to all neighbors ofv in layer j − 1 and nodevk is connected
to all neighbors ofv in layer j + 1. This replacement makes sure that the number of rounds
needed until the root node becomesFINISHED in Dh dominates the number of rounds needed
for the height ofBz to becomeh.

Proof of Theorem 5.4.1 .Let Dh be a layered dependency graph constructed fromGc as de-
scribed above. As argued above, the event(Rz ≤ t) is stochastically dominated by the
event that the root node becomesFINISHED within t rounds inDh. Consider the event that
the root nodez does not becomeFINISHED after t rounds. Then there exists abad path
P := (v1, . . . , vh) from z = v1 to some nodevh in the bottom layerh such that no node
vi of P was delayed by nodes other thanvi+1, . . . , vh. Put differently,P was delayed inde-
pendently of any other path. Consider the outcome of the coinflips only for the nodes along
P . If P is bad then the number of coin flips, denoted byX, that turned upheadwithin t rounds
is at mosth − 1. Let α(t) denote the probability thatP is bad, i.e.,α(t) := P[X ≤ h − 1] .
Clearly,E[X] = tp.

Observe that inDh (i) at mosth′ layers contain nodes of degree larger than2 and (ii) these
nodes have at mostD + 1 neighbors in the next larger layer. That is, the number of possible
paths fromz to any nodev in layerh is bounded by(D + 1)h

′

.

Thus, P[Rz > t] ≤ α(t)(D + 1)h
′

. We want to chooset such that this probability
is at most1/n4. If we chooset ≥ (32/p)(h + h′ log(D)) and use Chernoff’s bound (see
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Theorem 2.4.10) onX, we obtain forh ≥ log(n)

α(t) = P[X ≤ h− 1] ≤ P[X ≤ pt/2] ≤ e−pt/8 ≤ 1

n4(D + 1)h′
.

5.4.2 Lower Bound

We are now in a position to prove that an optimal offline algorithm incurs with high probability
a cost of at leastnγUmin on a sequence ofΘ(nγ (Umin/σ + log(D))) tasks.

Lemma 5.4.1. Let Š be an adversarial sequence ofℓ := ⌈c2nγ(Umin/σ + log(D))⌉ tasks,
for a fixed constantc2 and someγ ≥ 1. Then,P[OPT[S] < nγUmin] ≤ 1/n3.

We will use Lemma 5.4.1 several times as follows.

Corollary 5.4.1. Let Š be an adversarial sequence ofℓ := ⌈c2nγ(Umin/σ + log(D))⌉ tasks
for a fixed constantc2 and an someγ ≥ 1. Then the smoothed competitive ratio ofWFA is at
mostE[WFA[S]]/(nγUmin) + o(1).

Proof. LetS be a random variable denoting a smoothed sequence obtained from Š. We define
E as the event thatOPT incurs a cost of at leastnγUmin onS. By Lemma 5.4.1,P[¬E ] ≤ 1/n3.
Thus

E

[

WFA[S]

OPT[S]

]

= E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

E
]

P[E ] + E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

¬E
]

P[¬E ]

≤ E[WFA[S] | E ]P[E ]
nγUmin

+
2n− 1

n3
≤ E[WFA[S]]

nγUmin
+ o(1),

where the second inequality follows from the definition ofE and the fact that the (worst case)
competitive ratio ofWFA is 2n− 1.

Proof of Lemma 5.4.1 .The cost ofOPT on a smoothed sequenceS of lengthℓ is OPT[S] =

minu∈V wℓ(u). Therefore, it suffices to prove that with probability at least1− 1/n3, wℓ(u) ≥
nγUmin for eachu ∈ V . Observe that we can assume that the initial work function values are
all set to zero, since this can only reduce the cost ofOPT.

We relate the growth of the work function values to the balls and bins experiment. For each
nodevi of G we have a corresponding binBi. The constraint graphGc is obtained fromG

by setting all edge lengths toQ := ⌊Umin/∆⌋, where∆ := min(Umin, σ/cf ). The placement
of a ball in Bi in round t corresponds to the event(rt(vi) ≥ σ/cf ). Since our smoothing
distribution satisfiesP[ε ≥ σ/cf ] ≥ 1

4 , we have that for anyvi and anyt the smoothed
request costrt(vi) is at leastσ/cf with probability at least14 , irrespectively of its original cost
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entry and independently of the other request costs. Therefore, in each roundt we place a ball
into each bin with probabilityp = 1

4 .
By Lemma 5.4.2 given below, the number of rounds needed untila bin Bi has height

h ≥ log(n) stochastically dominates the timet needed untilwt(vi) ≥ h∆. Applying Theo-
rem 5.4.1, we obtain that for any binBi, after ℓ ≥ c3h(1 + log(D)/Q) rounds,P[hℓ(i) <

h] ≤ 1/n4. Consequently, afterℓ rounds with probability at least1 − 1/n3 all bins have
height at leasth. By choosingh := 2nγQ, this implies that at timeℓ with probability at
least1 − 1/n3, wℓ(vi) ≥ 2nγQ∆ ≥ nγUmin for all vi of G. Finally, we make sure that
ℓ := ⌈c2nγ(Umin/σ + log(D))⌉ ≥ c3h(1 + log(D)/Q) by fixing c2 := 4c3 ⌈cf ⌉.

Lemma 5.4.2. Consider any nodevi and its corresponding binBi. Let ht(i) denote the
number of balls in binBi after t rounds. Then, for anyt ≥ 0, wt(vi) ≥ ht(i)∆.

Proof. We proof the lemma by induction on the number of roundst. For t = 0, the lemma
clearly holds. (We can assume that the initial work functionvalues are all zero.) Assume that
the induction hypothesis holds aftert rounds. In roundt + 1, if no ball is accepted in any bin
then clearly the hypothesis remains true. Consider the casewhere at least one ball is accepted
by some binBi. By the induction hypothesis, we havewt(vi) ≥ ht(i)∆. Let vk be the node
that determines the work function valuewt+1(vi), i.e.,

wt+1(vi) = wt(vk) + rt+1(vk) + δ(vi, vk).

Assume thatvk = vi. Then the work function value ofvi increases by the request cost
rt+1(vi), and since a ball was accepted inBi, rt+1(vi) ≥ ∆. Thus, we havewt+1(vi) ≥
wt(vi) + ∆ ≥ (ht(i) + 1)∆ = ht+1(i)∆, and we are done.

Next, assume thatvk 6= vi. Let d be the shortest path distance betweenvi andvk in the
constraint graph. Since in roundt + 1 a ball was accepted inBi, Bi andBk do not violate the
invariant. Therefore,

ht(i) − ht(k) ≤ d− 1 + [ball accepted inBk in roundt + 1],

where “[statement]” is 1 if statementis true, and0 otherwise. By multiplying both sides with
∆ and rearranging terms, we obtain

(ht(k) + d)∆ ≥ (ht(i) + 1− [ball accepted inBk in roundt + 1])∆.

Observe thatd∆ ≤ δ(vi, vk) by the definition ofd and the edge lengthsQ of the constraint
graph. Moreover,rt+1(vk) ≥ [ball accepted inBk in roundt + 1]∆. Thus,

wt+1(vi) = wt(vk) + rt+1(vk) + δ(vi, vk)

≥ ht(k)∆ + [ball accepted inBk in roundt + 1]∆ + d∆

≥ (ht(i) + 1)∆ = ht+1(i)∆.
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5.5 First Upper Bound

We can use the lower bound obtained in the last section to derive our first upper bound on the
smoothed competitive ratio ofWFA. We prove the following deterministic bound on the cost
of WFA.

Lemma 5.5.1. LetK be any task sequence of lengthℓ. Then,WFA[K] ≤ OPT[K] + Diam · ℓ.

Proof. Lets0, . . . , sℓ denote the sequence of nodes visited byWFA. For anyt, the cost incurred
by WFA to process taskt is C(t) := rt(st) + δ(st−1, st). By Fact 5.2.5, we haveC(t) =

wt(st−1)− wt−1(st). Hence,

WFA[K] =
ℓ
∑

t=1

C(t) = wℓ(sℓ−1)− w0(s1) +
ℓ−1
∑

t=1

wt(st−1)− wt(st+1)

≤ wℓ(sℓ−1) + (ℓ− 1) · Diam ≤ min
v∈V

wℓ(v) + ℓ ·Diam ,

where the last two inequalities follow from Fact 5.2.3. Since OPT[K] ≥ minv∈V wℓ(v), the
lemma follows.

Theorem 5.5.1.The smoothed competitive ratio ofWFA is

O

(

Diam

σ
+

Diam

Umin
· log(D)

)

.

Proof. Consider an adversarial task sequenceŠ of length ℓ := ⌈c2nγ (Umin/σ + log(D))⌉
for someγ ≥ 1. Let S be a random variable denoting a smoothed sequence obtained from
Š. Due to the proof of Corrollary 5.4.1 it suffices to boundE[WFA[S]/OPT[S] | E ], whereE is
the event(OPT[S] ≥ nγUmin). Using Lemma 5.5.1, we have for any sequenceK of ℓ tasks,
WFA[K] ≤ OPT[K] + Diam · ℓ. Thus,

E

[

WFA[S]

OPT[S]

∣

∣

∣

∣

E
]

≤ E

[

OPT[S] + Diam · ℓ
OPT[S]

∣

∣

∣

∣

E
]

≤ 1 +
Diam · ℓ
nγUmin

= O

(

Diam

Umin

(

Umin

σ
+ log(D)

))

,

where the last equality follows from the definition ofℓ.
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5.6 Second Upper Bound

We prove a second upper bound on the smoothed competitive ratio of WFA. The idea is as
follows. We derive two upper bounds on the smoothed competitive ratio ofWFA. The first one
is a deterministic bound, and the second one uses the probabilistic lower bound onOPT. We
then combine these two bounds using the following fact. The proof of Fact 5.6.1 can be found
in Appendix 5.A.

Fact 5.6.1. LetA, B, andXi, 1 ≤ i ≤ m, be positive quantities. We have

min

(

A
∑m

i=1 Xi
∑m

i=1 X2
i

,
B
∑m

i=1 Xi

m

)

≤
√

AB.

Consider any deterministic task sequenceK of length ℓ. Let s0, s1, . . . , sℓ denote the
sequence of nodes visited byWFA. DefineC(t) := rt(st)+ δ(st−1, st) as the service cost plus
the transition cost incurred byWFA in roundt.

With respect toK we defineT as the set of rounds, where the increase of the work function
value ofst−1 is at least one half of the transition cost, i.e.,t ∈ T if and only if wt(st−1) −
wt−1(st−1) ≥ δ(st−1, st)/2. Due to Fact 5.2.4 we havewt(st−1) = wt(st) + δ(st−1, st).
Therefore, the above definition is equivalent to

T :=

{

t : wt(st)− wt−1(st−1) ≥ −
1

2
δ(st−1, st)

}

. (5.3)

We useT̄ to denote the complement ofT .

We first prove that the total cost ofWFA onK is bounded by a constant times the total cost
contributed by rounds inT .

Lemma 5.6.1. LetK be a sufficiently long task sequence such thatWFA[K] ≥ 6Diam. Then,
WFA[K] ≤ 8

∑

t∈T C(t).

Proof. We havewℓ(sℓ) − w0(s0) ≥ −Diam, sincew0(s0) ≤ wℓ(s0) and due to Fact 5.2.3.
Thus,

ℓ
∑

t=1

(wt(st)− wt−1(st−1)) ≥ −Diam.

Let R− be the set of rounds wherewt(st)− wt−1(st−1) < 0, and letR+ be the set of rounds
wherewt(st)− wt−1(st−1) ≥ 0. The above inequality can be rewritten as

∑

t∈R−

(wt−1(st−1)− wt(st)) ≤ Diam +
∑

t∈R+

(wt(st)− wt−1(st−1)).
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SinceT̄ ⊆ R− and each term on the left hand side is non-negative, we have

∑

t∈T̄

(wt−1(st−1)− wt(st)) ≤ Diam +
∑

t∈R+

(wt(st)− wt−1(st−1)). (5.4)

For anyt ∈ T̄ we haveC(t) < 3 (wt−1(st−1)− wt(st)). This can be seen as follows. We
havewt−1(st) ≥ wt−1(st−1) − δ(st−1, st) (by Fact 5.2.3) andrt(st) = wt(st) − wt−1(st)

(by (5.2)). Therefore,rt(st) ≤ δ(st−1, st) − wt−1(st−1) + wt(st). Moreover, sincet ∈ T̄

and by the definition (5.3) ofT , δ(st−1, st) < 2(wt−1(st−1) − wt(st)). Hence,C(t) =

rt(st) + δ(st−1, st) < 3 (wt−1(st−1)− wt(st)).
Furthermore, for anyt we havewt(st)−wt−1(st−1) ≤ C(t). This follows fromwt(st) =

wt−1(st) + rt(st) (by (5.2)) andwt−1(st)− wt−1(st−1) ≤ δ(st−1, st) (by Fact 5.2.3). Since
R+ ⊆ T , we conclude

∑

t∈R+

(wt(st)− wt−1(st−1) ≤
∑

t∈R+

C(t) ≤
∑

t∈T

C(t).

Therefore, (5.4) implies

1

3

∑

t∈T̄

C(t) ≤ Diam +
∑

t∈T

C(t).

Exploiting the fact thatWFA[K] =
∑

t∈T̄ C(t)+
∑

t∈T C(t) andWFA[K] ≥ 6Diam , we obtain
WFA[K] ≤ 8

∑

t∈T C(t).

We partitionT intoT 1 andT 2, whereT 1 := {t ∈ T : wt(st)− wt−1(st) ≤ 4Umaxdiam} ,
andT 2 := T \ T 1. For any roundt, we defineWt :=

∑n
i=1 wt(vi) and∆Wt := Wt −Wt−1.

Lemma 5.6.2. Fix a round t and consider any nodeu such thatwt(u) − wt−1(u) ≥ H. If
H ≤ 4Umaxdiam then∆Wt ≥ H2/(10Umax); otherwise,∆Wt ≥ nH/2.

Proof. Let H ≤ 4Umaxdiam . Defined := ⌊H/(8Umax)⌋. Ford = 0 the claim clearly holds.
Assumed > 0. Consider a shortest pathP := (u0, u1, . . . , ud) of edge lengthd starting from
u0 := u. Sinced ≤ ⌊diam/2⌋, there always exists a shortest path of lengthd. (Consider a
breadth-first search tree rooted atu0; the depth of this tree is at least⌈diam/2⌉.) By Fact 5.2.3,
we have for eachi, 0 ≤ i ≤ d, wt(ui) ≥ wt(u0)− iUmax andwt−1(ui) ≤ wt−1(u0)+ iUmax.

Therefore,

d
∑

i=0

(wt(ui)− wt−1(ui)) ≥
d
∑

i=0

(wt(u0)− wt−1(u0))− 2Umax

d
∑

i=1

i

≥ (d + 1)H − (d + 1)dUmax ≥ (d + 1)(H − dUmax) ≥
H2

10Umax
,
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where the last inequality holds sinced ≤ H/(8Umax) ≤ d + 1.
Let H > 4Umaxdiam . Since for any nodevi, wt−1(vi) ≤ wt−1(u) + Umaxdiam and

wt(vi) ≥ wt(u)− Umaxdiam , we have

n
∑

i=1

(wt(vi)− wt−1(vi)) ≥ nH − 2nUmaxdiam ≥ nH/2.

Lemma 5.6.3. LetK be a sufficiently long task sequence such thatOPT[K] ≥ 2Diam . There
exists a constantb such that

OPT[K] ≥ 1

bn





1

Umax

∑

t∈T 1

C(t)2 + n
∑

t∈T 2

C(t)



 .

Proof. For every nodevi, wℓ(vi) ≤ minu∈V wℓ(u) + Diam (by Fact 5.2.3). Moreover,
OPT[K] ≥ minu∈V wℓ(u). We obtain

n
∑

i=1

wℓ(vi) ≤ nOPT[K]+nDiam or, equivalently, OPT[K] ≥ 1

n

(

n
∑

i=1

wℓ(vi)− nDiam

)

.

SinceOPT[K] ≥ 2Diam , the latter reduces to

OPT[K] ≥ 2

3n

n
∑

i=1

wℓ(vi). (5.5)

Claim 5.6.1. For anyt ∈ T 1, ∆Wt ≥ C(t)2/(160Umax).

Proof. By (5.2) we havert(st) = wt(st)− wt−1(st). Below, we will show that

∆Wt ≥
(

δ(st−1, st)
2 + rt(st)

2
)

/(80Umax). (5.6)

SinceC(t)2 = (δ(st−1, st) + rt(st))
2 ≤ 2(δ(st−1, st)

2 + rt(st)
2), we conclude that∆Wt ≥

C(t)2/(160Umax). Now, all that remains to be shown is (5.6). We distinguish two cases.
Let δ(st−1, st) ≥ rt(st). By the definition ofT , we havewt(st−1) − wt−1(st−1) ≥

δ(st−1, st)/2. Using Lemma 5.6.2 withH := δ(st−1, st)/2, we obtain

∆Wt ≥ δ(st−1, st)
2/(40Umax) ≥

(

δ(st−1, st)
2 + rt(st)

2
)

/(80Umax).

Let δ(st−1, st) < rt(st). Sincewt(st) − wt−1(st) = rt(st) andrt(st) ≤ 4Umaxdiam by
the definition ofT1, using Lemma 5.6.2 withH := rt(st), we obtain

∆Wt ≥ rt(st)
2/(10Umax) ≥ (δ(st−1, st)

2 + rt(st)
2)/(20Umax).
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Claim 5.6.2. For anyt ∈ T 2, ∆Wt ≥ 4nC(t)/10.

Proof. Sincet ∈ T 2 and by (5.2),rt(st)/4 > diamUmax ≥ δ(st−1, st). Thus,C(t) =

rt(st) + δ(st−1, st) < 5rt(st)/4. Furthermore, by (5.2) we havert(st) = wt(st)− wt−1(st).
Applying Lemma 5.6.2 withH := rt(st), we obtain∆Wt ≥ nrt(st)/2 ≥ 4nC(t)/10.

Claim 5.6.1 and Claim 5.6.2 together imply that

n
∑

i=1

wℓ(vi) ≥
ℓ
∑

t=1

∆Wt ≥
∑

t∈T

∆Wt ≥
1

160Umax

∑

t∈T 1

C(t)2 +
4n

10

∑

t∈T 2

C(t).

The proof now follows for an appropriate constantb from (5.5).

Theorem 5.6.1.The smoothed competitive ratio ofWFA is

O

(
√

n · Umax

Umin

(

Umin

σ
+ log(D)

)

)

.

Proof. Consider an adversarial task sequenceŠ of lengthℓ := ⌈c2nγ(Umin/σ+log(D))⌉, for
an appropriateγ, and letS be a random variable denoting a smoothed sequence obtained from
Š. Due to the proof of Corrollary 5.4.1 it suffices to boundE[WFA[S]/OPT[S] | E ], whereE is
the event(OPT[S] ≥ nγUmin). Consider a smoothing outcomeS such that the eventE holds.
We fix γ sufficiently large such thatOPT[S] ≥ 6Diam . Observe thatWFA[S] ≥ OPT[S] ≥
6Diam .

First, assume
∑

t∈T 1 C(t) <
∑

t∈T 2 C(t). Then, due to Lemma 5.6.1 and Lemma 5.6.3,

WFA[S] ≤ 16
∑

t∈T 2

C(t) and OPT[S] ≥ 1

b

∑

t∈T 2

C(t).

Hence,E[WFA[S]/OPT[S] | E ] = O(1).

Next, assume
∑

t∈T 1 C(t) ≥∑t∈T 2 C(t). By Lemma 5.6.1 and Lemma 5.6.3 we have

WFA[S] ≤ 16
∑

t∈T 1

C(t) and OPT[S] ≥ 1

bn

(

1

Umax

∑

t∈T 1

C(t)2
)

. (5.7)

Thus,
WFA[S]

OPT[S]
≤ 16bnUmax

(
∑

t∈T 1 C(t)
∑

t∈T 1 C(t)2

)

. (5.8)
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SinceE holds, we also have

WFA[S]

OPT[S]
≤ ℓ · 16∑t∈T 1 C(t)

ℓ · nγUmin
≤ c

Umin

(

Umin

σ
+ log(D)

)(
∑

t∈T 1 C(t)

|T 1|

)

, (5.9)

where the latter inequality holds for an appropriate constant c and sinceℓ ≥ |T 1|. Observe
that (5.9) is well-defined since

∑

t∈T 1 C(t) ≥ 1
16 WFA[S] (by (5.7)) andWFA[S] ≥ 6Diam

imply that |T 1| ≥ 1.

Applying Fact 5.6.1 to (5.8) and (5.9), these two bounds are combined to

WFA[S]

OPT[S]
≤
√

16bcn · Umax

Umin

(

Umin

σ
+ log(D)

)

= O

(
√

n · Umax

Umin

(

Umin

σ
+ log(D)

)

)

,

which concludes the proof.

5.7 Better Bounds for Random andβ-Elementary Tasks

We obtain better bounds for random andβ-elementary tasks. Both bounds exploit the follow-
ing potential function argument.

5.7.1 Potential Function

In this section we use a potential function argument to derive an upper bound on the expected
cost ofWFA.

Lemma 5.7.1. Let Š be an adversarial task sequence of lengthℓ, and letS = 〈τ1, . . . , τℓ〉 be
a smoothed sequence obtained fromŠ. For a given nodes and a timet, 1 ≤ t ≤ ℓ, define a
random variable∆t(s) := minu∈V (rt(u) + δ(u, s)). Let κ > 0. If E[∆t(s)] ≤ κ for each
s ∈ V and for eacht, 1 ≤ t ≤ ℓ, thenE[WFA[S]] ≤ 4κℓ + Diam.

Before we proceed to prove Lemma 5.7.1, we provide some intuition. Assume we con-
sider a simple greedy online algorithmALG that always moves to a node which minimizes
the transition plus request cost. That is,ALG services taskτt by moving from its current
position, says′t−1, to a nodes′t that minimizes the expressionminu∈V (rt(u) + δ(u, s′t−1)).
Clearly, if the requirement of Lemma 5.7.1 holds, the total expected cost ofALG on S is
∑ℓ

t=1 E[∆t(st−1)] ≤ ℓκ. The above lemma shows that the expected cost of the work function
algorithm WFA is at most4 times the expected cost of the greedy algorithmALG plus some
additive term. In the analysis, it will sometimes be convenient to considerALG instead ofWFA.

Proof of Lemma 5.7.1 .For 1 ≤ t ≤ ℓ, we denote byst the node in whichWFA resides after
taskτt has been processed; we uses0 to refer to the node in whichWFA resides initially.
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We define a potential functionΦ as

Φ(t) := wt(st) + tDiam/ℓ.

Observe that

Φ(ℓ)− Φ(0) = wℓ(sℓ)− w0(s0) + Diam ≥ wℓ(sℓ)− wℓ(s0) + Diam ≥ 0,

where the last inequality follows from Fact 5.2.3 and sinceδ(sℓ, s0) ≤ Diam .

We define theamortized costCa(t) incurred byWFA to process taskτt as

Ca(t) := rt(st) + δ(st−1, st) + Φ(t)− Φ(t− 1)

= rt(st) + δ(st−1, st) + wt(st)− wt−1(st−1) + Diam/ℓ

= wt(st)−wt−1(st) + wt(st−1)− wt−1(st−1) + Diam/ℓ, (5.10)

where the last equality follows from Fact 5.2.5. Using Fact 5.2.3 and (5.1) we obtain that for
eachu ∈ V

wt−1(st) ≥ wt−1(u)− δ(u, st) and wt(st) ≤ wt−1(u) + rt(u) + δ(u, st).

Combining these two inequalities, we obtain

wt(st)− wt−1(st) ≤ rt(u) + 2δ(u, st) for eachu ∈ V ,

and hence wt(st)− wt−1(st) ≤ 2min
u∈V

(rt(u) + δ(u, st)) = 2∆t(st).

A similar argument shows thatwt(st−1) − wt−1(st−1) ≤ 2∆t(st−1). Hence, we can rewrite
(5.10) as

Ca(t) ≤ 2∆t(st) + 2∆t(st−1) + Diam/ℓ.

SinceWFA[S] =
∑ℓ

t=1 Ca(t)− Φ(ℓ) + Φ(0) andΦ(ℓ)− Φ(0) ≥ 0, we obtain

E[WFA[S]] ≤ E

[

ℓ
∑

t=1

Ca(t)

]

≤ 2E

[

ℓ
∑

t=1

(∆t(st) + ∆t(st−1))

]

+ Diam ≤ 4κℓ + Diam.

If ℓ ≥ Diam then the above bound reduces toO(κℓ). Corrollary 5.4.1 together with the
upper bound of Lemma 5.7.1 yield the following corollary.

Corollary 5.7.1. Let Š be an adversarial sequence ofℓ := ⌈c2nγ(Umin/σ + log(D))⌉ tasks
for a fixed constantc2. If γ ≥ Umax, and thereforeℓ ≥ Diam, the smoothed competitive ratio
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of WFA is

O

(

κℓ

nγUmin

)

= O

(

κ

(

1

σ
+

log(D)

Umin

))

.

5.7.2 Random Tasks

We derive an upper bound on the expected competitive ratio ofWFA if each request cost is
chosen independently from a probability distributionf which is non-increasing in[0,∞).

We need the following fact; the proof is given in Appendix 5.A.

Fact 5.7.1. Let f be a continuous, non-increasing distribution over[0,∞) with meanµ and
standard deviationσ. Then,µ ≤

√
12σ.

Theorem 5.7.1.If each request cost is chosen independently from a non-increasing probability
distribution f over [0,∞) with standard deviationσ then the expected competitive ratio of
WFA is

O

(

1 +
σ

Umin
log(D)

)

.

Proof. Let S be a random task sequence of lengthℓ := ⌈c2nγ(Umin/σ) + log(D))⌉, for an
appropriateγ ≥ Umax, generated fromf . Observe that sinceγ ≥ Umax, we haveℓ ≥ Diam.
For anyt and any nodes, we have

∆t(s) = min
u∈V

(rt(u) + δ(u, s)) ≤ rt(s).

Sincert(s) is chosen fromf , Fact 5.7.1 implies thatE[∆t(s)] ≤ κ :=
√

12σ. Thus, by
Lemma 5.7.1, we haveE[WFA[S]] = 4

√
12σℓ + Diam = O(σℓ).

Note that we can use the lower bound established in Section 5.4 to bound the cost ofOPT:
The generation ofS is equivalent to smoothing (according tof ) an adversarial task sequence
consisting of all-zero request vectors only. Here, we do notneed that the distributionf is
symmetric around its mean. The theorem now follows from Corrollary 5.7.1.

5.7.3 β-Elementary Tasks

We can strengthen the upper bound on the smoothed competitive ratio ofWFA if the adversarial
task sequence only consists ofβ-elementary tasks. Recall that in aβ-elementary task the
number of non-zero request costs is at mostβ.

Theorem 5.7.2. If the adversarial task sequence only consists ofβ-elementary tasks then the
smoothed competitive ratio ofWFA is

O

(

β · Umax

Umin

(

Umin

σ
+ log(D)

))

.

We state the following fact; the proof is given in Appendix 5.A.
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Fact 5.7.2. Let f be a permissible probability distribution. Then,E[max(0, ε)] ≤ σ, whereε

is a random variable chosen fromf .

We first prove the following lemma.

Lemma 5.7.2. Let s be an arbitrary node ofG. Consider aβ-elementary adversarial task
τ̌t := (řt(v1), . . . , řt(vn)), whereβ < n. Then,E[∆t(s)] ≤ σ + βUmax.

Proof. Let V0 ⊆ V be the set of all nodes with original cost zero, i.e.,V0 := {u ∈ V : řt(u) =

0}. Then,|V0| ≥ n − β, andV0 is non-empty ifβ < n. Let v∗ be a node fromV0 which is
closest tos. We haveδ(v∗, s) ≤ βUmax. (Otherwise, there must exist at leastβ + 1 nodes
with non-zero original cost, a contradiction.) Thus,

E[∆t(s)] ≤ E[minu∈V0
(rt(u) + δ(u, s))] ≤ E[rt(v

∗) + δ(v∗, s)] ≤ σ + βUmax,

where the last inequality follows sincert(v
∗) = max(0, ε(v∗)), ε(v∗) is a random variable

chosen fromf , and Fact 5.7.2.

Proof of Theorem 5.7.2 .Consider an adversarial task sequencěS of length ℓ :=

⌈c2nγ(Umin/σ + log(D))⌉, for an appropriateγ ≥ Umax, and letS be a random variable de-
noting a smoothed sequence obtained fromŠ. By Lemma 5.7.2,E[∆t(s)] ≤ κ := σ+βUmax,
which, since we assume thatσ ≤ 2Umin, is O(βUmax). The theorem now follows from Cor-
rollary 5.7.1.

5.8 Lower Bounds

In this section we present existential and universal lower bounds. All our lower bounds hold
for any deterministic online algorithmALG and against an adaptive adversary.

5.8.1 Existential Lower Bound forβ-Elementary Tasks

We show an existential lower bound forβ-elementary tasks on a line. We prove that the upper
boundO(β(Umax/Umin)(Umin/σ + log(D))) established in Theorem 5.7.2 is tight up to a
factor of Umax/Umin if the underlying graph is a line. Later, we will use Theorem 5.8.1 to
obtain our first universal lower bound.

Theorem 5.8.1.Let G be a line graph. If the adversarial task sequence only consists ofβ-
elementary tasks then the smoothed competitive ratio of anydeterministic online algorithm
ALG is

Ω

(

min

(

β ·
(

Umin

σ
+ 1

)

,
n

β
· Umin

Umax

))

.
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Proof. We use an averaging technique (see [BLS92]). Divide the lineinto h := n/(2β)

contiguous segments of2β nodes. For simplicity assume thath is an integer. (This does not
affect the asymptotic lower bound.) We refer to these segments byS1, S2, . . . , Sh.

Let st be the node in whichALG resides after thetth task. In roundt, the adversary issues a
β-elementary task by placing∞ cost on each node that is within distance⌈β/2⌉−1 from st−1

and zero cost on all other nodes. Let the random variableS denote a smoothed task sequence.
We consider a setB of h offline algorithms, one for each segment. LetBj denote the

offline algorithm that resides in segmentSj ; Bj always stays inSj . In each roundt, each
Bj moves to a nodev in Sj minimizing the transition cost plus the request cost. Define
B[S] :=

∑h
j=1 Bj [S] as the total cost incurred by the offline algorithms onS; Bj [S] is a

random variable denoting the total cost incurred byBj onS. Clearly,B̃[S] := B[S]/h is an
upper bound onOPT[S].

Consider any roundt. At most two consecutive line segments can have∞ request costs.
Moreover, in each segment at mostβ of the 2β nodes may have∞ costs. LetCj(t) be the
cost incurred byBj in roundt. Consider a segmentSj that receives a∞ request cost. Then,
E[Cj(t)] ≤ βUmax + σ by Lemma 5.7.2. AssumeSj does not receive any∞ request cost.
Then,E[Cj(t)] ≤ σ by Fact 5.7.2.

Since in any round at most two segments may receive∞ costs, we conclude

E[B̃[S]] =
1

h
E





h
∑

j=1

Bj [S]



 =
1

h
E





h
∑

j=1

ℓ
∑

t=1

Cj(t)



 ≤ ℓ

(

2(βUmax + σ)

h
+ σ

)

.

By Markov’s inequality,P[B̃[S] < 2E[B̃[S]]] ≥ 1
2 . Since in each round,ALG is forced

to travel at least a distance of⌈β/2⌉, we haveALG[S] ≥ ℓβUmin/2.
We conclude

E

[

ALG[S]

OPT[S]

]

≥
(

1

2

)

ℓβUmin/2

2ℓ
(

2(βUmax+σ)
h + σ

) = Ω

(

βUmin

β2Umax/n + σ

)

.

That is, we obtain a lower bound ofΩ((n/β) · (Umin/Umax)) if β ≥
√

n/(Umax/σ) and of
Ω(β · (Umin/σ)) if β ≤

√

n/(Umax/σ). In the latter case, exploiting thatσ ≤ 2Umin, we
obtain anΩ(β · (Umin/σ + 1)) bound.

Observe that on a line theβ-elementary bound of Theorem 5.7.2 is stronger than the gen-
eral upper bound of Theorem 5.6.1 only if

β ≤
√

nUmin

Umax(Umin/σ + 1)
.

In this case, Theorem 5.8.1 provides a lower bound ofΩ(β · (Umin/σ + 1)). That is, for a line
graph these bounds differ by a factor of at mostUmax/Umin.
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5.8.2 Universal Lower Bounds

We derive two universal lower bounds on the smoothed competitive ratio of any deterministic
algorithm. The first universal bound uses the following corollary of Theorem 5.8.1.

Corollary 5.8.1. Let G be a line graph. Any deterministic algorithmALG has smoothed
competitive ratioΩ(min(n,

√

n(Umin/Umax)(Umin/σ + 1))) against an adaptive adversary.

Proof. Fix β :=
√

nUmin/(Umax(Umin/σ + 1)) and use the lower bound given in Theo-
rem 5.8.1.

Theorem 5.8.2.Any deterministic algorithmALG has a smoothed competitive ratio of

Ω

(

min

(

diam ,

√

diam · Umin

Umax
·
(

Umin

σ
+ 1

)

))

.

Proof. We extend Theorem 5.8.1 to arbitrary graphs in a straightforward way. Consider a path
in G of edge lengthdiam . The adversary enforces thatALG andOPT never leave this path by
specifying∞ cost for each node that is not part of the path. The desired lower bound now
follows from Corrollary 5.8.1.

Next, we prove the following universal lower bound.

Theorem 5.8.3.Any deterministic algorithmALG has a smoothed competitive ratio of

Ω

(

min

(

n,
Umin

σ
+

Umin

Umax
· log(D)

))

.

Proof. The adversary issues a sequence ofℓ tasks as described below. For eacht, 1 ≤ t ≤ ℓ,
let st denote the node at which the deterministic online algorithmALG resides after thetth
task; we uses0 to refer to the initial position ofALG.

We prove two different lower bounds. Combining these two lower bounds, we obtain the
bound stated above.

We first obtain a lower bound ofΩ(min(n,Umin/σ)) assuming thatUmin/σ ≥ 1. In roundt,
the adversary enforces a request cost ofUmin onst−1 and zero request cost on all other nodes.
Recall that the adversary is adaptive and therefore knows the position ofALG.

We use an averaging technique to relate the cost ofALG to the average cost of a collection
of offline algorithms. LetB be a collection ofn offline algorithms. We place one offline
algorithm at each node, and each offline algorithm remains atits node during the processing
of the task sequence. LetS be a random variable denoting a smoothing outcome ofŠ. We
defineB[S] as the total cost incurred by then algorithms to processS. Clearly, the average
cost B̃[S] := B[S]/n is an upper bound onOPT[S]. It suffices to prove that with constant
probability ALG[S]/B̃[S] = Ω(min(n,Umin/σ)).
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For the analysis, we view the smoothing process as being doneinto two stages.

Stage 1:Initially, we smoothenℓ zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequence beS ′ := 〈τ ′1, . . . , τ ′ℓ〉.

Stage 2:For eacht, 1 ≤ t ≤ ℓ, we replace the request cost ofst−1 in τ ′t by the outcome of
smoothingUmin. We useτt to refer to the obtained task.

Let R′(v) :=
∑ℓ

t=1 r′t(v) be the total request cost accumulated inv with respect toS ′.
Moreover, we defineℓ random variablesU1, . . . , Uℓ: Ut refers to the smoothed request cost
rt(st−1) of taskτt obtained in Stage 2. For each1 ≤ t ≤ ℓ, let Zt be a0/1 random variable
which is1 if and only if Ut ≥ Umin. We defineZ :=

∑ℓ
t=1 Zt. Subsequently, we condition

the smoothing outcomeS on the following three events: (i)E := (
∑

v∈V R′(v) ≤ 2nℓσ), (ii)
F := (

∑ℓ
t=1 Ut ≤ 4ℓUmin), and (iii)G := (Z ≥ ℓ/4).

We first argue that the event(E ∩ F ∩ G) occurs with at least constant probability. (i)
Due to Fact 5.7.2,E[R′(v)] ≤ ℓσ for eachv ∈ V . By Markov’s inequality, we thus have
P[E ] ≥ 1/2. (ii) By Fact 5.7.2 and sinceσ ≤ Umin, we also haveE[Ut] ≤ Umin +σ ≤ 2Umin

for each1 ≤ t ≤ ℓ. Hence by Markov’s inequality,P[
∑ℓ

t=1 Ut ≥ 4ℓUmin] ≤ 1/2. (iii)
Since the smoothing distributionf is a symmetric, we haveP[Ut ≥ Umin] ≥ 1/2 for each
1 ≤ t ≤ ℓ. Thus,E[Zt] ≥ 1/2. Moreover, theZt’s are independent. Applying Chernoff’s
bound (see Theorem 2.4.10), we obtainP[Z ≤ ℓ/4] ≤ e−ℓ/16.

Since eventE is defined with respect toS ′, it is independent of the event(F ∩ G). There-
fore,

P[E ∩ F ∩ G] ≥ 1

2
·
(

1−
(

1

2
+ e−ℓ/16

))

≥ 1

8
,

where the last inequality holds ifℓ ≥ 64.

Let S be any fixed outcome of the smoothing such that(E ∩ F ∩ G) holds. Assume that
to process sequenceS, ALG changes its position ink of theℓ rounds. LetTk refer to the set of
rounds whereALG changes its position. We bound the cost of the offline algorithms as follows.
In any roundt, the total cost incurred by the offline algorithms at nodes different fromst−1 is
at most

∑

v∈V r′t(v). If ALG does not move in roundt, bothALG andB incur a cost ofUt. If
ALG moves in roundt, B incurs an additional cost ofUt, since one algorithm resides inst−1.
Thus,

B[S] ≤ ALG[S] +
∑

t∈Tk

Ut +
∑

v∈V

R′(v) ≤ ALG[S] + 4ℓUmin + 2nℓσ,

where the last inequality follows fromF andE .

Since alsoG holds, we can conclude thatALG incurs a cost of at leastℓUmin/4: In each
of the at leastℓ/4 rounds, we havert(st−1) = Ut ≥ Umin. That is, no matter whetherALG

moves or stays in these rounds, it incurs a cost of at leastUmin.

Thus, conditioned on the event(E ∩ F ∩ G) we obtain for an appropriate constantc

ALG[S]

B̃[S]
≥ ALG[S]

17ALG [S]/n + 2ℓσ
≥ c ·min

(

n,
Umin

σ

)

.
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Next we obtain a lower bound ofΩ((Umin/Umax) log(D)). Consider a nodes of G with
degreeD. Let Vs be the set of nodes containings and all the neighbors ofs in G. DefineGs

as the subgraph ofG induced byVs. The adversary makes sure that every reasonable online
algorithm will always reside at a node inVs by specifying in each round a request cost of∞
for eachv /∈ Vs. In addition, in each roundt the adversary enforces the online algorithm to
move by placing a request cost of∞ atst−1. All other request cost are zero.

Let S be a smoothed task sequence obtained fromŠ. SinceGs is a star withD + 1 nodes
and the transition cost between any two nodes is at most2Umax, Lemma 5.8.1 implies that
there exists a deterministic offline algorithmB with E[B[S]] ≤ 2cℓUmax/ log(D). (Observe
that we can apply Lemma 5.8.1 here since with respect toGs the request sequence is elemen-
tary.) Applying Markov’s inequality, we obtainP[B[S] ≥ 4cℓUmax/ log(D)] ≤ 1/2. Since
ALG has to move in each round to avoid∞ cost, the cost ofALG for any smoothed sequence
is at leastℓUmin. Putting everything together, we obtain

E

[

ALG[S]

OPT[S]

]

≥ E

[

ALG[S]

B[S]

]

≥
(

1

2

)

· ℓUmin

4cℓUmax/ log(D)
= Ω

(

Umin

Umax
· log(D)

)

.

Lemma 5.8.1.LetG be a clique withm+1 nodes and maximum edge lengthUmax. Consider
an adversarial sequencěS of ℓ elementary tasks for a sufficiently largeℓ. Then there exists an
offline algorithmB such that form ≥ 16, E[B[S]] ≤ cℓUmax/ log(m) for a constantc.

Proof. We first consider an adversarial sequenceŠ = 〈τ̌1, . . . , τ̌k〉 of k := ⌊log(m)/2⌋ ele-
mentary tasks. We view the smoothing of the elementary tasksas being done in two stages.

Stage 1:Initially, we smoothenk zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequence beS ′ := 〈τ ′1, . . . , τ ′k〉.

Stage 2:For eacht, 1 ≤ t ≤ k, we obtain a taskτt from τ ′t as follows. Letv∗ be the node
with non-zero request costřt(v

∗) in τ̌t. We replace the request cost ofv∗ in τ ′t by the outcome
of smoothingřt(v

∗). LetS := 〈τ1, . . . , τk〉 be the resulting task sequence.
For any nodevi, we define a0/1 random variableXi which is1 if and only if the total

request cost accumulated invi with respect toS ′ is zero. Since for each nodevi the request
cost remains zero with probability at least1

2 , we haveP[Xi = 1] ≥ (1/2)k ≥ 1/
√

m. Note
that theXi’s are independent. LetX := X1 + · · · + Xm+1. We haveE[X] ≥ √m. Let E
denote the event(X >

√
m/2). Using Chernoff’s bound (see Theorem 2.4.10), we obtain

P[¬E ] = P[X ≤ √m/2] ≤ e−
√

m/8.

The offline algorithmB has two different strategies depending on whether eventE holds
or not.

Strategy 1:If eventE holds,B moves at the beginning to a nodevi whose total accumu-
lated request cost is zero and stays there. (Recall thatB is offline.) Note that sinceE holds
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there are more than
√

m/2− k such nodes; form ≥ 16 there exists at least one such node.

Strategy 2:If event E does not hold,B always moves to a node with minimum request
cost.

SinceB only incurs the initial travel cost of at mostUmax if E holds, we obtain

E[B[S]] = E[B[S] | E ] P[E ] + E[B[S] | ¬E ] P[¬E ] ≤ Umax + E[B[S] | ¬E ] · e−
√

m/8.

Next, we boundE[B[S] | ¬E ]. Clearly, the transition cost in each round is at mostUmax.
The expected request cost incurred byB in roundt is E[minu∈V rt(u) | ¬E ]. Consider a node
vi with řt(vi) = 0. The smoothed request cost ofvi is not affected by Stage 2. We have
E[minu∈V rt(u) | ¬E ] ≤ E[rt(vi) | ¬E ]. Let (X1 = x1, . . . ,Xm+1 = xm+1) be any outcome
such that¬E holds. Since the request costs are chosen independently, wehaveE[rt(vi) |X1 =

x1, . . . ,Xm+1 = xm+1] = E[rt(vi) |Xi = xi]. If xi = 1 thenE[rt(vi) |Xi = xi] = 0, since
all request costs atvi must be zero. Ifxi = 0 thenE[rt(vi) |Xi = xi] ≤ E[rt(vi) | rt(vi) >

0]. (For rt(vi) the event(Xi = 0) means that eitherrt(vi) = 0 andrt′(vi) > 0 for some
t′ 6= t, or rt(vi) > 0.) By Fact 5.7.2, the expected costE[rt(vi)] is at mostσ. Moreover,
P[rt(vi) > 0] ≥ P[rt(vi) ≥ σ/cf ] ≥ 1

4 . Hence,E[rt(vi) | rt(vi) > 0] ≤ 4E[rt(vi)] ≤ 4σ.
Putting everything together, we obtain

E[B[S] | ¬E ] ≤
k
∑

t=1

(E[minu∈V rt(u) | ¬E ] + Umax) ≤ k(4σ + Umax) ≤ 9kUmax,

where the last inequality holds since we assume thatσ ≤ 2Umin ≤ 2Umax.

Altogether, we obtain for a sequenceS of lengthk and form ≥ 16

E[B[S]] ≤ Umax + 9kUmax · e−
√

m/8 ≤ 13Umax.

We conclude the proof as follows. We split the entire adversarial sequencěS of lengthℓ

into j ≥ 1 subsequences of lengthk (the final one might have length less thank). On each
subsequence,B performs as described above. We therefore obtain for the entire sequenceS
and an appropriate constantc

E[B[S]] ≤ E

[

j
∑

t=1

13Umax

]

= 13jUmax ≤
cℓUmax

log(m)
,

where the last inequality follows from the relation betweenℓ andj and definition ofk.

5.8.3 Existential Lower Bounds

We provide two existential lower bounds showing that for a large range of parametersn, Umin,
Umax, D, andDiam there exists a class of graphs on whichanydeterministic algorithm has
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a smoothed competitive ratio that asymptotically matches the upper bounds stated in Theo-
rem 5.5.1 and Theorem 5.6.1. In order to prove these existential lower bounds, we first show
the following lemma.

Lemma 5.8.2. Given a number of nodesn, minimum edge costUmin, maximum edge cost
Umax, maximum degreeD ≥ 3, and diameterDiam such that

Diam ≥ 4Umin logD−1(n) and D := min (Diam/Umax,D) ≥ 17,

there exists a graph such that the smoothed competitive ratio of any deterministic algorithm
ALG is

Ω

(

min

(

nUmax

Diam
,
Diam

Umin
·
(

Umin

σ
+ log(D)

)))

.

Observe that in any graph ofn nodes and maximum degreeD, Diam/Umin ≥ logD−1(n),
i.e., the condition in Lemma 5.8.2 is slightly stronger.

Proof of Lemma 5.8.2 .We construct a graphG as depicted in Figure 5.3. The graph consists
of m := 1

2nUmax/Diam cliques. Each clique hasD nodes and the length of an edge between
any two nodes isUmin. We need to ensure that the maximum degree is at mostD. Therefore,
we connect each clique by a path to a(D− 1)-ary treeT . Each such path consists ofX edges
of lengthUmax. We assign a length ofUmin to each edge inT . Each clique is attached to a leaf
node ofT ; a leaf node may take up toD− 1 cliques. Sincem cliques need to be connected to
T and we can attach at most(D−1)h cliques to a tree of heighth−1, we fixh := logD−1(m).
The total number of nodes inT is therefore((D − 1)h − 1)/(D − 2) ≤ m, sinceD ≥ 3. It is
easy to verify thatm+m · (X−1)+m ·D ≤ n, i.e., the total number of nodes inG is at most
n. (If it is less thann, we let the remaining nodes become part ofT .) The graph should have
diameterDiam and thus we fixX such that2(Umin +X ·Umax +(h−1)Umin) = Diam , i.e.,
X := ⌈(Diam/2− hUmin)/Umax⌉. Moreover, we want that the minimum distance between
any two nodes in different cliques is at least1

4Diam, i.e.,X · Umax ≥ 1
8Diam . If Diam ≥

4Umin logD−1(n), this condition holds.

Consider the caseUmin/σ > log(D). We need to prove a lower bound of
Ω(min(nUmax/Diam ,Diam/σ)). In each round, the adversary imposes an∞ cost on all
nodes of the graph except on those nodes that join a clique with its path. That is, the adversary
restricts bothALG andOPT to stay in a “virtual” clique of sizem with Umin = 1

4Diam and
Umax = Diam. Applying the universal lower bound of Theorem 5.8.3 to thisclique we obtain
the desired lower bound ofΩ(min(m,Diam/σ)).

Consider the caseUmin/σ ≤ log(D). In each round, the adversary imposes an∞ cost on
all nodes inT and on all nodes that belong to a connecting path. Furthermore, in each round,
the adversary forces the online algorithmALG to leave its clique by specifying∞ costs on all
nodes of the clique in whichALG resides. All other request costs are zero.
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. . .C1 C2 Cm

T
heighth− 1

m cliques of sizeD

(D − 1)-ary tree

X

Figure 5.3: Structure of graph constructed in the proof of Lemma 5.8.2.

We use an averaging technique. We define a collection ofm − 1 offline algorithms and
compare the cost ofALG with the average cost of the offline algorithms. At most one algorithm
resides in each clique. An offline algorithmBi remains in its cliqueCi until ∞ costs are
imposed onCi; at this point,Bi moves to the free clique. Within each clique, the offline
algorithm follows the strategy as specified in the proof of Lemma 5.8.1. We may assume
without loss of generality that eachBi starts in a different clique (see Appendix 5.B).

Consider a smoothed sequenceS of lengthℓ. Let B[S] be the total cost incurred by the
offline algorithms and defineBi[S] as the total cost ofBi onS. The total cost of the offline
algorithms to travel away from cliques with∞ costs is at mostℓDiam. The expected cost of
each algorithm in a clique with zero adversarial request cost is, due to Lemma 5.8.1, at most
cℓUmin/ log(D − 1); recall that each clique is of sizeD ≥ 17 and the maximum edge length
in each clique isUmin. Thus,

E[B̃[S]] ≤ ℓDiam

m− 1
+

1

m− 1
E

[

m−1
∑

i=1

Bi[S]

]

≤ ℓDiam

m− 1
+

cℓUmin

log(D − 1)
.

By Markov’s inequality,P[B̃[S] < 2E[B̃[S]]] ≥ 1
2 . Clearly,ALG[S] ≥ 1

4ℓDiam. Therefore,

E

[

ALG[S]

OPT[S]

]

≥
(

1

2

) 1
4ℓDiam

2( ℓDiam

m−1 + cℓUmin

log(D−1))
= Ω

(

min

(

m,
Diam

Umin
· log(D)

))

.

The next bound shows that if Theorem 5.5.1 gives a better upper bound than Theorem 5.6.1
then this bound is tight up to a factor oflog(D)/ log(D) ≤ log(n) for a large class of graphs;
moreover, forD ≤ Diam/Umin this bound is tight up to a constant factor.
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Theorem 5.8.4.There exists a class of graphs such that the smoothed competitive ratio of any
deterministic algorithmALG is

Ω

(

min

(

n,
Diam

Umin

(

Umin

σ
+ log(D)

)))

,

whereD = min(Diam/Umin,D).

Proof. If Theorem 5.5.1 gives a better upper bound than Theorem 5.6.1, we have

Diam

Umin

(

Umin

σ
+ log(D)

)

≤
√

n · Umax

Umin

(

Umin

σ
+ log(D)

)

,

which is equivalent to
nUmax

Diam
≥ Diam

Umin

(

Umin

σ
+ log(D)

)

.

Sincelog(D) ≥ log(D), we obtain from Lemma 5.8.2 the desired lower bound.

Theorem 5.8.5.There exist a class of graphs such that the smoothed competitive ratio of any
deterministic algorithmALG is

Ω

(

min

(

n,

√

n
Umax

Umin

(

Umin

σ
+ log(D)

)

))

,

whereD = min(Diam/Umin,D).

Proof. Let Umin/σ > log(D). We fix Diam such thatnUmax/Diam = Diam/σ, i.e.,
Diam =

√
nσUmax. The lower bound of Lemma 5.8.2 then reduces toΩ(

√

nUmax/σ).
Assume Umin/σ ≤ log(D). We fix Diam such that nUmax/Diam =

(Diam/Umin) log(D), i.e., Diam =
√

nUmaxUmin/ log(D). The lower bound of
Lemma 5.8.2 then reduces toΩ(

√

n(Umax/Umin) log(D)).

5.9 Concluding Remarks

In this chapter, we investigated the asymptotic behavior ofWFA if the request costs of an
adversarial task sequence are perturbed by means of a symmetric additive smoothing model.
We showed that the smoothed competitive ratio of WFA is much better thanO(n) and that it
depends on certain topological parameters of the underlying graph. Moreover, all our bounds,
except the one forβ-elementary tasks, are tight up to constant factors. We believe that our
analysis gives a strong indication that the performance of WFA in practice is much better than
2n− 1.

It might be of some interest to analyze the smoothed competitiveness of WFA using dif-
ferent smoothing models. However, we already showed that zero-retaining smoothing models,
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such as the relative smoothing model, cannot yield a smoothed competitive ratio better than
2n − 1. An open problem would be to strengthen the universal lower bounds. Moreover, it
would be interesting to obtain exact bounds on the smoothed competitive ratio of WFA.
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5.A Proofs of Facts

Proof of Fact 5.2.3 .Assumex is the node that defineswt(v), i.e.,wt(v) = wt−1(x)+rt(x)+

δ(x, v). We havewt(u) ≤ wt−1(x)+rt(x)+δ(x, u) ≤ wt−1(x)+rt(x)+δ(x, v)+δ(v, u) =

wt(v) + δ(v, u).

Proof of Fact 5.2.4 .By (5.2), we have thatwt(st) + δ(st−1, st) ≤ wt(v) + δ(st−1, v) for all
v ∈ V . In particular, forv = st−1 this implieswt(st) ≤ wt(st−1)− δ(st−1, st). On the other
hand, due to Fact 5.2.3,wt(st) ≥ wt(st−1)− δ(st−1, st).

Proof of Fact 5.2.5 .Using (5.2) and Fact 5.2.4, we obtain

rt(st) + δ(st−1, st) = wt(st)−wt−1(st) + wt(st−1)− wt(st) = wt(st−1)− wt−1(st).

Proof of Fact 5.7.1.Let X be a random variable chosen fromf . DefineE as the event(|X −
µ| ≥ µ/2). Using Chebyshev’s inequality (see Theorem 2.4.9), we obtain

P[E ] = P
[

|X − µ| ≥ µ

2

]

≤ 4σ2

µ2
. (5.11)

Sincef is continuous and non-increasing in[0,∞),

P[E ] = P
[

|X − µ| ≥ µ

2

]

≥ P
[

X ≤ µ

2

]

≥ 1

2
P

[

µ

2
< X ≤ 3µ

2

]

≥ 1

2
P[¬E ] .

This implies thatP[E ] ≥ 1
3 . Hence, (5.11) givesµ2 ≤ 12σ2.

Proof of Fact 5.7.2 .DefineY := max(0,X). Sinceµ = 0, we haveσ2 = E[X2]. Let σY

denote the standard deviation of the distribution ofY . By the definition ofE[X2], E[Y 2] =
1
2E[X2]. Sinceσ2

Y = E[Y 2] − E[Y ]2 andσ2
Y ≥ 0, we haveE[Y ]2 ≤ E[Y 2]. This in turn

implies thatE[Y ] ≤ σ/
√

2.

Proof of Fact 5.6.1 .DefineX := min
(

A
Pm

i=1
Xi

Pm
i=1

X2
i

,
B

Pm
i=1

Xi

m

)

. First, note that

m(X2
1 + X2

2 + · · ·+ X2
m) ≥ (X1 + X2 + · · ·+ Xm)2, (5.12)

because
1

2

∑

i,j

(

X2
i + X2

j

)

≥
m
∑

i=1

X2
i +

∑

i,j,i6=j

XiXj .

Define Y :=
∑m

i=1 Xi/m. Note thatY is positive. Due to (5.12), we can writeX ≤
min (A/Y,BY ). The latter expression is maximized ifA/Y = BY , i.e., if Y =

√

A/B.
ThusX ≤

√
AB.
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5.B Constant Additive Cost of the Offline Algorithm

We would like to point out that in our lower bound proofs we canassume without loss of
generality thatOPT incurs an additional additive cost ofZ which is independent of the length
of the input sequence. This does not change the asymptotics of the lower bounds, which can
be seen as follows. We always prove a lower bound of sayΩ(Y/X) on a task sequence of
lengthℓ by showing that with constant probability the expected costof ALG is at leastY · ℓ
and the cost ofOPT is at mostX · ℓ. In order to make sure that the additive costZ does
not influence the competitive ratio, we only have to make surethat the task sequence under
consideration is sufficiently long. If we chooseℓ such thatX · ℓ ≥ Z, we obtain a lower bound
of Ω((Y · ℓ)/(X · ℓ + Z)) = Ω(Y/X).





CONCLUSION

We presented a heuristic improvement for the single-sourcemany-targets shortest path prob-
lem. This problem is repeatedly solved by matching algorithms to compute maximum weighted
bipartite matchings. Apparently, in the worst case the heuristic might have no effect. However,
intuitively, it is clear that the heuristic can only help to reduce the number of queue operations
performed by Dijkstra’s algorithm to solve this problem. Wesubstantiated this intuition by
providing a partial average case analysis showing that on random input a significant fraction
of queue operations is saved by the heuristic. Furthermore,in our experiments we observed
an improvement in running time for the matching algorithm. The heuristic is simple and can
easily be implemented.

A large part of this thesis was devoted tosmoothed competitive analysis. Based on the ideas
underlying smoothed complexity, we proposed to represent the competitiveness of an online
algorithm by itssmoothed competitive ratio. We have seen that smoothed competitive analysis
provides a unifying framework of worst case and average caseanalysis of online algorithms.

We applied this novel notion to the multi-level feedback algorithm (MLF) for the non-
clairvoyant scheduling problem and to the work function algorithm (WFA) for metrical task
systems. As mentioned in the introduction, smoothed complexity can be interpreted as a mea-
sure of fragility of worst case instances. So, one might posethe question:

“How fragile are the worst case instances of these two problems?”

For the multi-level feedback algorithm the answer to this question is subject to interpre-
tation. We proved that MLF has smoothed competitive ratio ofessentiallyO(2K−k), if the
k least significant bits of the processing times are set at random. One might say that this
indicates that worst case instances are rather stable to perturbations; even if we perturb a con-
stant fraction of theK bits, the competitive ratio of MLF remains exponential. However, we
would like to put it differently. The competitive ratio of MLF improves exponentially with
the amountk of perturbation; therefore perturbing a constant fractionof the bits results in an
exponential decrease in its competitive ratio. We also proved anΩ(2K−k) lower bound on the
smoothed competitive ratio ofanydeterministic online algorithm under the partial bit random-
ization model. Besides showing that our analysis is tight, this lower bound also indicates that
MLF is asymptotically optimal. For various other smoothingmodels, including the symmet-
ric additive and relative smoothing models as proposed by Spielman and Teng, we proved a
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higherΩ(2K) bound on the smoothed competitive ratio of MLF. Put differently, under these
smoothing models worst case instances are invariant to perturbations.

For the work function algorithm we can certainly state that worst case instances are fragile
if the request costs of the tasks are smoothed according to a symmetric additive smoothing
model. Depending on the topology of the underlying graph we have seen that the smoothed
competitive ratio of WFA improves significantly, even for moderate perturbations in the order
of the minimum edge length. For example, if the underlying graph is a clique of sizen, the
smoothed competitive ratio reduces fromO(n) to O(log(n)). We also provided lower bounds
for any deterministic online algorithm for metrical task systems.These bounds imply that
our analysis is tight up to constant factors and that WFA is asymptotically optimal under the
symmetric additive smoothing model. Furthermore, we argued that any deterministic online
algorithm has smoothed competitive ratioΩ(n) if a zero-retaining smoothing model, such as
the relative smoothing model, is used. We therefore conclude that under these models worst
case instances are invariant to perturbations.

In the introduction we also stated that from the analyses we obtain new insights into the
behavior of the algorithms.

“What have we learnt from the analyses?”

From both the smoothed competitive analysis of the multi-level feedback algorithm and
the work function algorithm we were able to infer a relation between the performance of the
algorithm and certain properties of the input. For instance, we have seen that the competitive
ratio of MLF is related to the accuracy of the final estimates of the processing times. Moreover,
in the analysis of WFA we clearly established a connection between the competitiveness of the
algorithm and the structure of the underlying graph.

Precisely because of the obtaining of these new insights we believe that it is worth to inves-
tigate the smoothed competitiveness of online algorithms,and we are confident that this new
performance measure will be used in the future to describe the quality of online algorithms.



A. NOTATIONS AND THEIR DEFINITIONS

Notation Definition

ALG generic algorithm
OPT optimal algorithm

{a, . . . , b} set{a, . . . , b}
[n] {1, . . . , n}
IN natural numbers
IR real numbers
IR+ non-negative reals
[a, b] continuous range{x ∈ IR : a ≤ x ≤ b}
(a, b] continuous range{x ∈ IR : a < x ≤ b}
[a, b) continuous range{x ∈ IR : a ≤ x < b}
(a, b) continuous range{x ∈ IR : a < x < b}
2S for some setS power set ofS

I set of all input instances
I(n) set of all input instances of sizen
Ǐ adversarial, original, or initial instance
I perturbed, or smoothed, instance
f (smoothing) distribution, density function
σ smoothing parameter, standard deviation (off )
µ expectation (off )
N(Ǐ , σ) neighborhood of̌I with smoothing parameterσ

ε
f← [a, b] ε chosen independently according tof over [a, b]

P[·] probability function
E[·] expectation
Var[·] variance
Ω probability space
ω elementary event
F (x) distribution functionP[ε ≤ x]

Bin[n, p] binomial distribution

G(n, p) random graph model,n nodes, edge probabilityp
G(n,m) random graph model,n nodes,m edges, equiprobable
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