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ABSTRACT

We describe three results in this thesis. We first presentidgtie improvement for a shortest
path problem, which we termesingle-source many-targets shortest path probleim this
problem, we need to compute a shortest path from a sourceta@daode that belongs to a
designated target set. Dijkstra’s algorithm can be usedlt@ shis problem. We are interested
in the single-source many-targets shortest path probleoe shatching algorithms repeatedly
solve this problem so as to compute a maximum weighted nmagchia bipartite graph. The
heuristic is easy to implement and, as our experiments stmvgiderably reduces the running
time of the matching algorithm. We provide an average casdysis which shows that a
substantial fraction of queue operations is saved by Dékstalgorithm if the heuristic is
used.

The second and third result are about the extension of smdatbmplexity to the area
of online algorithms. Smoothed complexity has been intceduby Spielman and Teng to
explain the behavior of algorithms performing well in pieetwhile having a poor worst case
complexity. The idea is to add some noise to the initial inpstances by perturbing the input
values slightly at random and to analyze the performanckeoéigorithm on these perturbed
instances. In this work, we apply this notion to two well-lmoonline algorithms.

The first one is the multi-level feedback algorithm (MLF),nimizing the average flow
time on a sequence of jobs released over time, when the pingetimes of these jobs are
not known. MLF is known to work very well in practice, thoughhias a poor competitive
ratio. As it turns out, the smoothed competitive ratio of Mibiproves exponentially with the
amount of random noise that is added; on average, MLF eveitsadmonstant competitive
ratio. We also prove that our bound is asymptotically tight.

The second algorithm that we consider is the work functigo@thm (WFA) for metrical
task systems, a general framework to model online problérisknown that WFA has a poor
competitive ratio. We believe that due to its generalitg interesting to analyze the smoothed
competitive ratio of WFA. Our analysis reveals that the sthed competitive ratio of WFA
is much better than its worst case competitive ratio anditliBtpends on certain topological
parameters of the underlying metric. We present asympipper and matching lower bounds
on the smoothed competitive ratio of WFA.






KURZZUSAMMENFASSUNG

In der vorliegenden Arbeit werden drei Resultate vorglstals erstes beschreiben wir eine
Heuristik fur eine Variante des kirzesten Wege Problemdchee wir dasSingle-Source
Many-Targets Shortest Path Problemannen. Gegeben sind ein ungerichteter Graph mit nicht-
negativen Kantenkosten, ein Quellknotennd eine Mengd" von Zielknoten. Die Aufgabe
ist es, einen kirzesten Weg vom Quellknoteau einem der Zielknoten ifi’ zu berech-
nen. Dieses Problem wird wiederholt von Matching Algorigmgelést, um ein maximal
gewichtetes Matching in bipartiten Graphen zu berechnerr Algorithmus von Dijkstra
kann verwendet werden, um damgle-Source Many-Targets Shortest Path Protatertosen.
Unsere Heuristik lasst sich leicht implementieren undedf;zivie unsere Experimente zeigen,
eine signifikante Laufzeitverbesserung des Matching Aflgmius. In den Experimenten auf
Zufallsgraphen konnten wir eine Laufzeitverbesserungbiszu einem Faktor 12 beobachten.
Wir prasentieren ein@verage Casénalyse, in der wir zeigen, dass die Heuristik auf Zufalls-
instanzen eine nicht unerhebliche Anzahl von Operationafer Ausfilhrung von Dijkstra’s
Algorithmus einspart.

Im zweiten Teil der Arbeit erweitern wir die kirzlich von gpinan und Teng eingeflhrte
Smoothed Complexitguf den Bereich der online Algorithmen. D&moothed Complexity
ist ein neues Komplexitdtsmalf3, mit dem man versucht, digi&fiz eines Algorithmus in
der Praxis in adaquater Weise zu reprasentieren. Die grgadtie Idee ist, die Eingabe-
instanzen mehr oder weniger stark zufallig zu perturbiedem. zu stéren, und die Effizienz
eines Algorithmus anhand seiner erwarteten Laufzeit asa perturbierten Instanzen festzu-
machen. Im allgemeinen ist d@moothed Complexigines Algorithmus sehr viel geringer als
seineWorst Case Complexityvenn dieWorst Casdnstanzen kiinstlichen oder konstruierten
Instanzen entsprechen, die in der Praxis so gut wie nieeriir Spielman und Teng fuhrten
die Smoothed Complexityn Zusammenhang mit der Laufzeit als Effizienzkriterium. ddie
zugrunde liegende ldee lasst sich jedoch auch auf andeterikn erweitern.

In dieser Arbeit Gbertragen wir das Konzept &enoothed Complexiguf online Algorith-
men. Generell wird die Effizienz eines online Algorithmusaind seine€ompetitive Ratio
gemessen. Dieser gibt jedoch oftmals die tatsachlichei&ifizles Algorithmus in der Praxis
nicht akkurat wieder. Es liegt daher nahe, sich der Ideé&sdsrothed Complexigu bedienen
und die Effizienz eines online Algorithmus anhand seiSesoothed Competitive Ratiu
messen. Wir verwenden diese neue Idee, um die Effizienz vean wahlbekannten online
Algorithmen zu analysieren.



Der erste ist bekannt als dédulti-Level Feedback AlgorithnfMLF) und wird zum
Schedulingvon Prozessen verwendet, deren Ausfilhrungszeiten nitfainbe sind. Hierbei
ist das Ziel, die durchschnittliche Flusszeitérage flow timezu minimieren, d. h. die durch-
schnittliche Zeit, die die Prozesse im System verbringémd &ie Ausflihrungszeiten aus dem
Bereich[1, 2%], so hat MLF einer€ompetitive Ratiwon ©(2%). Dennoch erweist sich dieser
Algorithmus in der Praxis als auf3erst effizient; er wird uinawindows NT und Unix ver-
wendet. Wir analysieren MLF unter der Verwendung Bestial Bit Randomization Models
d. h. wir nehmen an, dass die Ausfiihrungszeiten ganze Zabkedem Bereichi, 2%] sind,
die perturbiert werden, indem man die letzteBits durch Zufallsbits ersetzt. Fir dieses Mod-
ell zeigen wir, dass MLF im wesentlichen einBmoothed Competitive Ration O(25*)
hat. Insbesondere impliziert dies, dass der erwa@etapetitive Ratiwon MLF konstant ist,
wenn die Ausfiihrungszeiten zufallig aus dem Beréicl2’] gewahlt werden. Desweiteren
beweisen wir untere Schranken, die zeigen, das unsere gy auf einen konstanten Faktor
scharf ist. Fur eine Vielzahl ander8moothing Modelzeigen wir, dass MLF eineBmoothed
Competitive Ratiovon (25) hat.

Der zweite Algorithmus, den wir betrachten, ist d&brk Function Algorithm(WFA)
fur Metrical Task SystemsGegeben ist ein ungerichteter Gra@hmit nicht-negativen Kan-
tenkosten. Der online Algorithmus befindet sich zu Begineiitem Startknoter und muss
eine Folge von Auftragertdskg bearbeiten. Hierbei spezifiziert ein Auftrag fur jeden kero
des Graphen die Ausflihrungskosteeqest codt die entstehen, wenn der Algorithmus den
Auftrag in diesem Knoten bearbeitet. Der Algorithmus kaiuh $m GraphenGG bewegen,
wodurch Reisekosterir@vel cos) der zurlickgelegten Distanz entstehen. Das Ziel ist es, die
Folge von Auftragen zu bearbeiten und dabei die gesamtefilhusgskosten plus Reise-
kosten zu minimieren. Eine Vielzahl von online Problemesséa sich aldVetrical Task
System$ormulieren. Die Analyse deSmoothed Competitive Ratron WFA ist daher beson-
ders interessant. Es ist bekannt, dass WFA ei@empetitive Ratioron ©(n) hat, wobei
n die Anzahl der Knoten irG ist. In der Analyse verwenden wir elsymmetric Additive
Smoothing Modelum die Ausfilhrungskosten zu perturbieren. In diesem Madeiden zu
den Ausfiihrungskosten Zufallszahlen addiert, die beekigliner symmetrischen Distribution
mit Erwartungswert Null gewéahlt werden. Unsere Analyseyzaiass deSmoothed Com-
petitive Ratiovon WFA von bestimmten topologischen Parametern des Grnaghabhangt,
wie der minimalen Kantenlang&,.in, dem maximalen Grad), dem Kantendurchmesser
diam, etc. Ist zum Beispiel das Verhaltnis zwischen maximalet oninimaler Kantenlange
in G durch eine Konstante beschrankt, erhalten wir eiBaroothed Competitive Ratimn
O(diam (Upin/o + log(D))) und von O(y/n(Unin/c + log(D))), wobei o die Standard-
abweichung der zugrundeliegenden Distribution bezeichisbesondere erhalten wir fir
Perturbationen der GroRenordnuag= O (U,,,) einen Smoothed Competitive Ratimn
O(log(n)) auf vollstandigen Graphen und vei/n) auf Liniengraphen. Wir zeigen auch,
dass unsere Analyse bis auf einen konstanten Faktor seharf i
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1. INTRODUCTION

One of the major objectives in the area of algorithmics isasigh algorithms that have a
good performance, the performance of an algorithm reptiegethe time needed to solve a
problem, the quality of a computed solution, etc. Often therall performance of an algo-
rithm is subsumed under itgorst case complexitya complexity measure which reflects the
performance of the algorithm on a most unfortunate inpuaimse. As an example, consider
an algorithmALG that sorts a given sequendeof n numbers and leT’(I) denote the time
needed byALG to sort/. The worst case complexity(n) of ALG is then defined as the maxi-
mum of 7(I) over all input sequencesof » numbers. An obvious reason for characterizing
the performance of an algorithm by its worst case compléasithat it provides a very strong
notion of performance guarantee. In our example we are gtesd thatLG sorts any given
sequence of: numbers withing(n) time. In many applications this guarantee is essential.
Another reason for the popularity of worst case complexstihat it can usually be estimated
easily.

On the other hand the worst case complexity of an algorithghbhiie an over-pessimistic
estimation of its actual performance in practice. In marngliaptions we are interested in the
typical behavior of an algorithm rather than in its worstecaghavior. For example, it might
very well be that instances that actually force the algaoriihto its worst case behavior are
highly artificial or constructed and therefore almost dalyanever occur in practice. As a
consequence, the worst case complexity of the algorithrs doeaccurately reflect its actual
performance and it therefore fails to explain the good biginaf an algorithm in practice.

An alternative complexity measure is theerage case complexityHere we assume that
input instances are chosen randomly according to a specdimpility distribution. The av-
erage case complexity then measures the expected perfenodian algorithm on these in-
stances. Although we might obtain deeper insights into #réopmance of an algorithm by
analyzing its average case complexity, for most appliaatibis not natural to assume that the
input is random.

We therefore seek a complexity measure that truly refleepdrformance of an algo-
rithm. Recently, Spielman and Teng propossdoothed complexitya complexity measure
that attempts to explain the success of algorithms that moevik to work well in practice
while having a poor worst case performance. The basic idsariple: Given an input in-
stance we perturb the input values slightly at random antyam#he expected performance of
the algorithm on these perturbed instances. Intuitivedg could regard smoothed complexity

1



2 1. Introduction

as a measure of fragility of worst case instances. If the ingarse instances of an algorithm
are highly artificial, the smoothed complexity of the alglom is usually much smaller than
its worst case complexity. Spielman and Teng proved thasithglex method, an algorithm
that solves linear programming problems, with a certaiotpiule has polynomial smoothed
complexity, while its worst case complexity was known to kpanential. Another argument
as to why it makes sense to analyze the performance of arithlgasn perturbed instances is
that often the input values themselves are estimates arefdhe inherently noisy.
While Spielman and Teng introduced smoothed complexityrigathe running time of an

algorithm as performance criteria in mind, it also makesedn apply smoothed complexity
to other criteria.

In this thesis, we present three results. The first one is adtieuimprovement for a vari-
ant of a shortest path problem, which we termeddingle-source many-targets shortest path
problem Given a directed graph with non-negative edge costs, a&smodes, and a desig-
nated subsel’ of target nodes, the task is to compute a shortest path frtora node inf".
Dijkstra’s algorithm can easily be adapted to solve thidpmm. Our interest in this problem
originates from the fact that matching algorithms repdgtedive this problem so as to com-
pute a maximum weighted matching in a bipartite graph. Theisic is easy to implement
and significantly reduces the running time of the matchigg@hm. In our experiments on
random instances, we observed an improvement in running biyra factor of up ta2. We
support this observation by providing a partial average eamlysis on the number of queue
operations that are saved during the execution of Dijkstgorithm if the heuristic is used.
More specifically, for random graphs with average degreed uniform random edge costs
in [0,1], we show that on expectation at least a fractionl of (2 + In(c))/c of the queue
operations is saved.

The second and third result of this thesis are concerned théttextension of smoothed
complexity to the area of online algorithms. Online probdéehave a notion of time associ-
ated with the input. That is, the input is revealed over timd an online algorithm has to
take decisions without knowing the whole input sequencecointrast, an offline algorithm
knows the entire input sequence in advance. So far, therpeafece of an online algorithm
was commonly measured by means of(it®rst case) competitive ratiavhich is defined as
the maximum over all input instances of the ratio betweerctst of the online algorithm and
the cost of an optimal offline algorithm. Several online aidons that are known to work
well in practice have a poor competitive ratio. We therefm@pose to characterize the perfor-
mance of an online algorithm by isnoothed competitive rati@ther than by its worst case
competitive ratio. We apply this new notion to two well-knownline algorithms, thenulti-
level feedback algorithrfor the non-clairvoyant scheduling problem and therk function
algorithmfor problems that can be formulated as metrical task systémsboth algorithms
it turns out that the smoothed competitive ratio is muchdvetian the worst case competitive
ratio. Moreover, from the analyses we obtain new insights time behavior of the algorithms.



1. Introduction 3

In a non-clairvoyant scheduling problem, jobs are releasedtime and have to be sched-
uled on a machine while the actual processing times of the gob not known. In this setting,
we also allow that jobs are preempted. The objective is tamike theaverage flow time
i.e., the average time spent by jobs in the system. This enolilas several natural applica-
tions in practice. A very successful algorithm for the ndairgoyant scheduling problem is
the multi-level feedback algorithm (MLF), which is also dga Windows NT and Unix. Al-
though MLF performs very well in practice, it has a poor warase performance guarantee.
More precisely, if the processing times ardin2”| for someK > 0, MLF has a competitive
ratio of (2). In this work, we attempt to explain the success of MLF in ficacusing the
novel notion of smoothed competitiveness. We smoothemikialiintegral processing times
in [1,2%] by changing thek least significant bits at random. Under this smoothing model
we prove that MLF has a smoothed competitive ratio of esaiyntD (25X ). That is, the
smoothed competitive ratio of MLF improves exponentiallgtvthe amount of random noise
that is added; on random processing times, MLF even admiastant competitive ratio. We
also prove that this bound is asymptotically tight. Morepwvee establish a lower bound of
Q(2%) for various other smoothing models, including symmetriosthing models suggested
by Spielman and Teng.

Metrical task systems can be described as follows. An omligerithm resides in a graph
G and may move in this graph at a cost equal to the distance. [§bdtam has to service
a sequence of tasks, arriving one at a time. Each task spefufi@ach node a request cost
that is incurred if the algorithm services the task in thigipalar node. The objective is to
minimize the total request cost plus the total travel costve®al important online problems
can be modeled as metrical task systems. A powerful algorithr this whole class of online
problems is the work function algorithm (WFA). Here, tooisiknown that the algorithm has
a poor competitive ratio 0®(n), wheren denotes the number of nodes in the underlying
graphG. However, very little is known about the performance of WR4ractice. We believe
that due to its generality it is interesting to analyze th@asthed competitive ratio of WFA.
We smoothen the request costs of the tasks by means of a syimaditive smoothing
model; that is, to each request cost we add a random numliés tteosen from a symmetric
distribution with mean zero and standard deviatiorOur analysis reveals that the smoothed
competitive ratio of WFA depends on certain topologicalapageters of the underlying graph
G, such as the minimum edge lendth,;,, maximum degred®, edge diametefiiam, etc. For
example, if the ratio between the maximum and the minimurreddggth ofG is bounded
by a constant, we obtain a smoothed competitive rati® fiam (Uyin /o + log(D))) and
of O(\/n(Umin/o + log(D))). In particular, for perturbations with = ©(Uyin), WFA has
smoothed competitive rati®(log(n)) on a cligue and)(,/n) on a line. We also prove that
all our bounds are asymptotically tight.

Smoothed competitive analysis is a natural alternativedrsticase competitive analysis,
and we strongly believe that this new notion will help to cuerize the performance of online
algorithms accurately in the future.




4 1. Introduction

The thesis is structured as follows. In Chapter 2 we definfergdifit complexity measures
and introduce smoothed complexity. Moreover, we reviewediasic concepts, results, and
techniques from probability theory. The subject of Chafter the heuristic improvement for
the single-source many-targets shortest path problem.haptér 4 we introduce smoothed
competitive analysis and investigate the smoothed cotiyagtess of the multi-level feed-
back algorithm. Then, in Chapter 5, we present a smoothegetitme analysis of the work
function algorithm for metrical task systems. Finally, wieeoa short conclusion. A list of
notations and their definitions that are used throughostviork can be found in Appendix A.



2. PRELIMINARIES

We discuss different complexity measures, defsneoothed complexitgnd four different
smoothing models. After that, we review some basic concaptstechniques from proba-
bility theory.

2.1 Worst Case and Average Case Complexity

The worst case complexity measures the performance of anitalg under the assumption
that the algorithm is run on most unfortunate input instanéore precisely, for an algorithm
ALG and an input instancg, let (1) be a performance measureAfc on input/, e.g., its
running time. LetZ denote the set of all input instancesatioG, and letZ (n) refer to all input
instances of siza. Subsequently, we assume that an input instance of.siomsists of: real
values. Theworst case complexity(n) of ALG on input instances of sizeis defined as the
maximum ofT'(1) over all instanceg of sizen, i.e.,

@(n) :== max T(I).
I€eZ(n)

The worst case complexity(n) of an algorithm provides a very strong notion of perfor-
mance guarantee: It states that on every input ofssitee algorithm is guaranteed to have a
performance of at most(n).

On the other hand, worst case complexity does often not tefledypical behavior of an
algorithm in practice. Worst case instances might be patfichl instances that rarely occur in
practice and therefore the performance on these instances representative for the overall
performance of the algorithm. Put differently, the worstecaomplexity of an algorithm might
be an over-pessimistic estimation of its true performantance, this complexity measure may
fail to characterize the actual performance of an algoritfnipractice.

Another complexity measure is the average case compleiigye we assume that each
input instancel is chosen from a probability distributiofi over Z(n). The average case
complexityp(n) measures the expected performancenof over all instanced of sizen;
more formally,

(1),

E_;

p(n) = P2y

In average case analyses we assume that the input is ertiteben at random. Very
often this gives new insights into the algorithm. Real-waristances, however, are most

5



6 2. Preliminaries

likely not random. Consequently, also average case coritplixes not adequately reflect the
performance of an algorithm in practice.

2.2 Smoothed Complexity

Recently, Spielman and Teng [STO1] proposadoothed complexitya complexity measure
that attempts to explain the success of algorithms that moevik to work well in practice
while having a poor worst case performance. Smoothed catifylean be seen as a hybrid
between worst case and average case complexity. The basidsido randomly perturb the
input instances of an algorithm and to analyze its perfowaam the perturbed instances. The
smoothed complexityf an algorithm is expressed in terms of the input size andhgnitude

of perturbation. More formally, the smoothed complexityaof algorithmALG is defined as
follows. Let] = (iy,...,#,), #; € IR for eachj € [n], be an input instance frof(n); we
call I theadversaria) original, orinitial input instance. We perturb, smoothenI by adding
some random noise to each input value. For egchi € [n], we choose some random number
¢; from a probability distributionf and definer; := &, + ;. The magnitude of perturbation
depends on amoothing parameter. We usel to refer to gperturbed or smoothedinstance
with entries(z1, . . . , z,,). The set of all smoothed instances that are obtainable frdefine a
neighborhoodV (1, o) of I, whose size depends on the smoothing parameet€he smoothed
complexityp(n, o) of ALG is defined as the maximum over all adversarial instafcefssize

n of the expected performance afG over all smoothed instancdsn N (1, 0):

(1), (2.2)

n,o) := max E .
SD( ) fez(n) ILN(I,O')

Intuitively, the smoothed complexity of an algorithm is rhusmaller than its worst case
complexity if worst case instances are isolated peaks irfitiséancex performance) space;
see Figure 2.1. If we slightly perturb these instances, #r@opmance on the perturbed in-
stances improves drastically. In some sense, in smoothagsiwe attempt to answer the
guestion of how fragile worst case instances are.

The striking result of Spielman and Teng [ST01] was to shat the the simplex method
with a certain pivot rule hapolynomialsmoothed complexity if the coefficients of the con-
straint matrix are perturbed by a normal distribution witban zero and standard deviatien
In a series of successive papers [BD02, DST02, SST02, STUR]Smoothed complexity
was successfully applied to characterize the performahother algorithms.

Spielman and Teng introduced smoothed complexity haviaguhning time of an algo-
rithm as performance measure in mind. However, the idearlymgg smoothed analysis is
generic and, as will be seen in Chapter 4, naturally extemdther performance criteria.
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Figure 2.1: Left: Original (instancex performance) space. Worst case complexity measures the
height of the highest peak. Right: Smoothed (instarngeerformance) space. Smoothed complexity
measures the height of the highest peak in the smoothed.spimoe worst case instances are isolated
and sharp peaks (on the left), the smoothed complexity iswamaller than the worst case complexity.
Very kindly, both figures were provided by Daniel Spielmage sso the Smoothed Analysis Home-
page [sah].

2.3 Smoothing Models

The adversarial input instance may be smoothed accordidifféoent smoothing models. We
discuss four different smoothing models below.

Assume that the adversarial input instance is givet as (iy,...,#,). We refer to a
smoothed instance by = (z1,...,z,). Let f be a symmetric distribution with mean zero
and standard deviation.

Additive Symmetric Smoothing Modelln the additive symmetric smoothing model eagh
j € [n], is perturbed symmetrically around its initial value by edsome additive
noise. For eaclt;, j € [n], we choose an; independently at random froghand define

Tj = I + &y, Wheregj — f.

Observe that in this model the magnitude of perturbatiomdgpendent of the initial
valuez;.

Additive Relative Symmetric Smoothing Modellhe additive relative symmetric smoothing
model is similar to the previous one except that the magaitfdistortion depends on
the initial instancel. Let? : Z(n) — IR be a function on the set of all adversarial
instances of size.. For eachi;, j € [n], we choose am; independently at random
from f and define

zj =2, +9(I) ¢, wheres; — f.

Spielman and Teng [STO01] defingdl) := max e[, Z;. However, also other functions
might be reasonable. We could even define a different fumetjdor eachj € [n].
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Relative Smoothing Model.In the relative smoothing model the input is smoothed symmet
rically around its initial value by adding some relative s@i For eaclt;, j € [n], we
independently choose soragfrom f and define

Tj = jj(l—FEj), Wheresj — f.

Spielman and Teng [STO01] introduced the above three moditts fvbeing a normal
distribution with mean zero and standard deviationin their analysis, they use the additive
symmetric smoothing model.

We define a fourth model, thgartial bit randomization moddkee also [BBM03, BCKV04]),
which is particularly useful if the input instance consisfs -bit integers. In this model the
input values are not smoothed symmetrically.

Partial Bit Randomization ModelAssume that eaclt;, j € [n], is a K-bit integer. We
perturb eacht; by replacing thek least significant bits, fob < k£ < K, with some
random number. More precisely, for each j € [n], we independently choose some
random numbet; from a probability distributionf over [0, 2% — 1] and define

;= 2" BE_’ZJ +e;,  wheres; £ [0,2% — 1],

For k = 0 the smoothed values are equal to the initial values.k~er K the smoothed
values are randomly chosen frdm 2% — 1].

2.4 Basic Concepts and Techniques from Probability Theory

2.4.1 Sample Space, Events, and Probability Distribution

A probability spaces a mathematical description of a random experiment. Issbs of a
sample spacé€l, which is a discrete set of elementary events, apdodability distribution
P, which assigns to eackventA C 2 a number representing the “likelihood” that one of
the elementary events iA occurs. We use to denote an elementary event. A probability
distributionP : 2© — [0, 1] is a function satisfying:

1. P[0] =0, andP[2] = 1.

2. If Ay,..., A, is a pairwise disjoint collection of subsets@fi.e., A; N A; = () for all
pairsi, j,7 # 7, then

P

U 4

1€[n]

= Pl4].

i€[n]
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The following properties follow immediately from the defions above.

Theorem 2.4.1.Let(2 be a sample space with probability distributiéh and letA and B be
two events. Then the following holds.

1. For the complement := Q \ A of an event4, we haveP[A4] =1 — P[A4].
2. If AC BthenP[B] = P[A] + P[B\ 4] > P[A].

3. Forany two eventsl, B C (2,

P[AUB] = P[A] + P[B] — P[An B < P[4] + P[B].

2.4.2 Conditional Probability and Independence

If some a-priori knowledge of the outcome of an experimeramailable, we may want to
calculate the probability of an evedtgiven that an evenB occurs. This is formalized in the
notion of conditional probabilities

Definition 2.4.1 (conditional probability). Let A and B be two events df2. If P[B] > 0
then theconditional probability ofA given thatB occursis defined as

P[A|B] ;:P[IAD[igz]B]

Having introduced the notion of conditional probabilitie can formulate th&otal prob-
ability theorem

Theorem 2.4.2 (total probability theorem). Let By, ..., B,, be a partition of(2, and let
P[B,] > 0 for eachi € [n]. Then, for any evert,

P[A] = Z P[A N B = Z P[A|B;|P[B].

1€[n] i€[n]

In general, the occurrence of some evBnthanges the probability of an evesit That is, in
generalP[A | B] # P[A]. If however the occurrence @ does not influence the probability
of 4, i.e., P[A|B] = P[A], we say thatd and B areindependent Equivalently, A and
B are independent iIP[A N B] = P[A]P[B]. We generalize this concept in the following
definition.

Definition 2.4.2 (independence of events)A collectionA,, . .., A, of events isndependent
if

P

N4

€S

= HP[AZ-] for every subse$ C [n].
€S
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Observe thapairwiseindependence of the evets, ..., A,, i.e., foreach, j,i # j, A;
andA; are independent, does not imply independence as defined.abov
Moreover, we would like to point out that the independencéenaf eventsA and B does
not imply their conditional independence. More precisiy(C' be an event witfP[C] > 0.
Then
P[AN B] =P[A]P[B] # P[An B|C]|=P[A|C|P[B|C].

2.4.3 Random Variables, Expectation, and Variance

A random variableX is a real-valued functiolX : 2 — IR. For a valuer of X, we define
the even(X < z) :={weQ: X(w) <z}

Definition 2.4.3 (distribution function). Thedistribution functionFy : IR — [0,1] of a
random variableX is defined ag'y (z) := P[X < z].

In general, we distinguish betweeliscreteand continuousrandom variables. A random
variable X is discrete if it only takes values from a finite or countabifiriite subset oiR,
while X is continuous if it has a distribution functiafiy whose derivative, is a positive,
integrable function. Subsequently, we only consider digcrandom variables.

For a discrete random variable and somer € IR we can define the eve(lX = ) :=
{we: X(w) =1z}

Definition 2.4.4 (density function). The density functionfy : IR — [0, 1] of a random
variable X is defined ag'x (z) := P[X = z].

We call a random variabl& binary if it only takes value®) and1. For an event4d, we
define thendicator variableX 4 : Q@ — {0,1} of AasX4(w) :=1ifw € A,andX4(w) :=0
otherwise. Observe théf 4 is a binary random variable taking valtieor 0 with probability
P[A] or1 — P[A], respectively.

Two discrete random variable¥ andY are independent if the eventX = z) and
(Y = y) are independent for all andy.

Definition 2.4.5 (independence of random variables)A collection X, ..., X, of (discrete)
random variables isndependentif the eventy X; = z;), i € [n], are independent for all
possible choices af;, i € [n], of values ofX;.

We next introduce thexpectatiorof a random variable.

Definition 2.4.6 (expectation of random variable). The expectation or mean E[X] of a
discrete random variabl& is defined as
E[X]:= ) X(w)Pl] or equivalently, B[X]:= ) zP[X =],
we zeR

whenever the sum converges absolutely.
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(We slightly abuse notation in the second definition, wheragtually sum over alt € IR
withP[X = 2| > 0.)

If X is a non-negative integer valued random variable then theeattefinitions are equiv-
alenttoE[X]| = "> [ P[X > z].

The expectatioE[-] can be treated as a linear operator. In particular, it hafotlmving
properties.

Theorem 2.4.3.Let X andY be two random variables.
1. Ifa,b € R thenE[aX + b] = aE[X] + b.

2. If f : IR — IR is a function therE[f(X)] = >°_ g f(z)P[X = z|. Moreover, iff is
alinear function therE[f (X)] = f(E[X]).

3. If X andY are independent theB[ X Y] = E[X|E[Y].

The second part of 2 in the above theorem does not generalirert-linear functions.
However, if f is convex, or concave, we can use Jensen’s inequality.
A function f : IR — IR is convexif for any z1,z5 € IR and0 < A < 1 the following
inequality holds:
fAzr+ (1= Nwz) < Af(21) + (1= A)f(22).

f is concavef the opposite inequality holds.

Theorem 2.4.4 (Jensen’s inequality)Let X be a random variable and let : IR — IR be a
convex function. TheR[f(X)] > f(E[X]). If fis concave thel[f(X)] < f(E[X]).

We say that a random variahl¢ stochastically dominates random variablé” if P[X >
z] > P[Y > 2| for eachz € IR.

Theorem 2.4.5.Let X and Y be random variables with finite expectations and assume
stochastically dominates. ThenE[X| > E[Y]. Equality holds if and only ifX andY are
identically distributed.

We extend the notion of conditional probabilities to the entation.

Definition 2.4.7. Theconditional expectationf X given an eventl with P[A] > 0 is defined
as
E[X|A]:= ) aP[X ==z[A].
zelR
Analogously, for a random variabl€ and a fixed real numbey € R with P[Y = y| > 0,
we define

EX|Y =y] = ZxP =z|Y =y|.
z€R
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The following theorem is very helpful for computing the egfsion of a random variable.

Theorem 2.4.6 (total expectation theorem).Let A4,..., A, be a partition ofQ2, and let
P[A;] > 0 for eachi € [n]. Then, for any random variabl&,

E[X] =) E[X|A]P[4].

i€[n]

Thevarianceof a random variablé& measures the deviation &f from its expectatiorE[ X].
It is defined asVar[X] := E[(X — E[X])?]. Thestandard deviationr of X is defined as

o i= \/Var[X].
Theorem 2.4.7.Let X andY be two random variables.
1. Var[X] = E[X?] - E[X]°.
2. For any real value: € IR, Var[cX] = ¢*Var[X].

3. If X andY are independentVar[X + Y] = Var[X] + Var[Y].

2.4.4 Moment Inequalities and Concentration of Measure

We state some inequalities that will be used in subsequetets.

Theorem 2.4.8 (Markov's inequality). Let X be a non-negative random variable. Then, for
everyt € R,
E|X
PX >t < [T]
Theorem 2.4.9 (Chebyshev’s inequality) Let X be a random variable with standard devia-

tion o. Then, for every € IR™,

1
P[|X — E[X]| > to] < ol
Consider a sequenc¥y, ..., X,, of n independent binary random variables WwRfiX; =

1] := p; andP[X; = 0] := 1 — p, for eachi € [n]. In the following we are interested in the
question of how much the suti := .., X; deviates from its expectatiqn:= E[X].

Theorem 2.4.10 (Chernoff bound).Let X1,..., X,, be independent binary random vari-
ables. DefineX := 3, X; andp := E[X].

1. Forany0 <e <1,
P[X < (1—e)y] <e /2, (2.2)
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2. For anye > 0, .
PX > (1+4¢)y < (Jw> . (2.3)

We can further bound the right hand side of (2.3) as follows

e 2] e (1+e)u
- < .
(1+e)tte l+e¢

If £ > 2¢ — 1, the latter term is at mogt (1 +e)x,

We may use the following bounds if th%€;’s are non-binary, independent random variables in
[0,1].

Theorem 2.4.11 (Chernoff-Hoeffding bound) Let X1, ..., X,, be independent random vari-
ables withX; € [0,1] for eachi € [n]. DefineX := 3., X; andp := E[X].

1. For anyt > 0,

P[X <E[X]—t] <e2’/" and P[X >E[X]+1{] <e 2°/m.
2. Forany0 < e < 1,

PX<(1—¢)u] <e /2 and P[X > (1+e)u] <er/3

Theorem 2.4.12 (Hoeffding Bound).Let X1, ..., X,, be independent random variables. De-
fine X := > cp, Xi andp := E[X].

1. If for eachi € [n] and some: > 0, X; € [0, k], then, for anyt,

PIX >1] < [(i)teﬂ]

2. If for eachi € [n] and some constants andb;, X; € [a;, b;], then, for anyt > 0,

1/k

—2t2
P[X <E[X]—t] <exp (Zie[n](bi — Gz‘)2> and (2.4)
—2t2
PX > E[X] +1t] <exp (Z [ ](b-—a-)2> . (2.5)
1€|n ? ?

Theorem 2.4.13 (method of bounded differences).et X1, ..., X,, be independent random
variables withX; € I, for eachi € [n]. Suppose that the (measurable) functjoni; x - - - x
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I, — IR satisfies
1f(Z) = f(@)] < e,

whenever the vectorgand 2’ differ only in theith component. DefinE := f(Xy,...,X,).
Then, for anyt > 0,

—2t2
P[[Y —E[Y]| > 1] <2xp | = | .
Theorem 2.4.14 (Kolmogorov's inequality).Let X, ..., X,, be independent random vari-

ables such thaE[X ;] = 0 for eachj € [n]. DefineS; := 0 and S; := Z;.:lXj. Then, for
anye > 0,

E 2
P[ max | S| > €:| < [gn]
0<k<n €

2.4.5 Common Discrete Random Variables

We list some commonly used random variables.

Discrete Uniform Distribution

A discrete uniformrandom variableX over [a,...,b] takes each valug¢, a < k < b,
with equal probability, i.e.P[X = k] := b7i+1. We haveE[X] = 2® and Var[X] =
(b—a)(b—a+2)

12 )

Bernoulli Distribution

A binary random variablél with P[X = 1] := pandP[X = 0] := 1—pis called aBernoulli
random variable. We can think pfand1 — p being thesuccessandfailure probability of a
trial. We haveE[X| = p andVar[X] = p(1 — p).

Binomial Distribution

We performn independent Bernoulli trialX, . . . , X,, (with success probability) and define
X =3¢, Xi as the number of successes. The variable called binomialrandom vari-
able. We will also use the notatidin|n, p] to refer to a binomial distribution with parameters
n andp. The probability that the number of successes equals(0, ..., n} is

PIX =k = (Z)p’“(l —p)" "

We haveE[X] = np andVar[X] = np(1 — p).
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Poisson Distribution

A Poissorvariable X with parameten > 0 is a random variable such that

_ N

PX =k] :=e R k=0,1,2,...

We haveE[X] = X andVar[X] = \. If A\ = np for very largen and very smalp, Bin|n, p]
approximatesx, i.e.,

PLY =i =~ () -

Geometric Distribution

We performn independent Bernoulli trials (with success probabifi)yand defineX as the
number of trials until asuccesccurs for the first time.X is ageometricrandom variable
with parametep and

PX =k :=1-pklp k=123,...

We haveE[X] = 1 andVar[X] = £,

2.4.6 A Powerful Technique to Prove Correlations

Two eventsA and B arepositively correlatedf P[A | B] > P[A]. A and B arenegatively
correlatedif P[A| B] < P[A].

Next, we review a technique to prove positive or negativeatation of two events! and
B. The technique will turn out to be extremely powerful in Cteap 3 and 4. Essentially, this
technique enables to prove that two variables are corckifitee following conditions hold:

1. The probability space formsdistributive lattice

2. The probability distribution i$og-supermodular

3. The eventsA and B aremonotone increasingr monotone decreasing
The technique is described in the book by Alon and Spenced(AS

Definition 2.4.8 (distributive lattice). Alattice (L, <, V, A) is a partially* ordered set L, <)

in which every two elementsand y have a unique minimal upper bound,v y, called the
join of x andy, and a unique maximal lower boune y, called themeetof 2 andy. A lattice
(L, <,V,A) is distributiveif for all x,y, z € L,

xA(yVz)=(xAy)V(zAz).

L A relation < partially ordersL if it is (i) reflexive i.e.,a < aforall a € L, (ii) transitive i.e., ifa < band
b < cthena < cforanya, b, ¢ € L, and (iii) antisymmetrici.e., ifa < b andb < a thena = bforanya,b € L.
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Example 2.4.1. Let 2"V denote the power set dof := [n]. Every subsef. C 2" which is
closed under union and intersection forms a distributivigide (L, C, U, N).

Example 2.4.2.Let L := {0, 1}" be the set of all binary vectors of length For any two
vectorsz,y € L we writex < y if z is componentwise less than or equalipi.e., if
x; < y; for eachi € [n]. Moreover, we define v y as the componentwis® of z andy, i.e.,
(x Vy); == x; Vy; for eachi € [n], and analogously: A y as the componentwisend of z
andy. Observe that,y <z Vyandz,y > = A y. It can easily be verified thatl, <, Vv, A)
is a distributive lattice.

Definition 2.4.9 (log-supermodular function). Let (L, <,V,A) be a distributive lattice. A
function¢ : L — IR is log-supermodulaif for all =,y € L

§(z) - &(y) <&z Vy) -z Ny).

Example 2.4.3.Let (L, <,V, A) be a distributive lattice as defined in Example 2.4.2. More-
over, let¢ : L — IRT be a function ol defined as(z) := p2i®i (1 — p)"~2:% for each

x € L and somé < p < 1. Intuitively, () is the probability ofx if each component af is
independently set tb with probability p and to0 with probability 1 — p. Now,

§(z) - &(y) =&(x Vy) -z Ny),

which follows from the observation that for ally € L

Z(l“z +yi) = Z(Cﬂz Vyi) + (i Ayi).

K3 K3

Thus is log-supermodular.

A function f : L — R isincreasingif for all z < y, f(x) < f(y); f is decreasing
if forall z <y, f(x) > f(y). The following theorem is due to Fortuin, Kasteleyn, and
Ginibre [FKG71] and is known as the FKG inequality.

Theorem 2.4.15 (FKG inequality). Let (L, <, V, A) be a finite distributive lattice, and let
¢ : L — IR" be alog-supermodular function. Then, for any two incregdimctionsf, g :
L — R*, we have

<Z f(w)é(w)> : (Z 9(@5(%)) < <Z f(w)g(w)ﬁ(w)> : <Z 5(56)) :

reL x€L el el

The inequality holds also if andg are both decreasing. If is increasing andg is decreasing
(or vice versa), the opposite inequality holds.
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Applying the FKG Inequality to Probabilities

Let © be a sample space, and Bt: O — IR be a probability distribution of2. Assume
that (2, <, V, A) is a distributive lattice and th& is log-supermodular.

Definition 2.4.10 (monotone increasing/decreasing eveftsAn eventA is monotone in-
creasingf w € A andw’ > w implyw’ € A. A is monotone decreasinfjw € A andw’ < w
imply thatw” € A.

Let X4 and X be the indicator variables ol and B, respectively. Observe tha 4
is increasing or decreasing 4f is monotone increasing or decreasing, respectively; thresa
holds forB and X g. If both A and B are monotone increasing events then by applying the
FKG inequality toX 4 andX g we obtain

PA] - P[B] = (Z XA(W)PM> : (Z XB(w)P[w]>

we weN
< (Z XA<w>XB<w>P[w1> : (Z P[w]> = P[AN B].
we weN

We summarize the result in the following theorem.

Theorem 2.4.16. Let 2 be a sample space with probability distributio® such that
(Q,<,V,A) constitutes a distributive lattice anB is log-supermodular. Letl, B C Q be
two events.A and B are positively correlated if bottd and B are monotone increasing, or
both are monotone decreasing.and B are negatively correlated ifl is monotone increasing
and B is monotone decreasing, or vice versa.

2.5 Random Graph Models

We define two models of random graphs that are due té&atd Rényi [ER59]: thé/(n, p)
model and the=(n, m) model. LetG(n) be the set of all undirected graphs (without self-
loops) onn vertices and defind/ := (}); M is the number of edges in a complete graph
onn vertices. G(n) has precisel2 elements. The sample spaces underlyi#(@, p) and
G(n,m) are both subsets @¥(n). However, these models differ in the way we define their
probability distributions orG(n).
We extend these two models also to bipartite graphs. d{(et, n) denote the set of all

bipartite graphs witl nodes on each side. For bipartite graphs we define= n2. We refer

to the respective bipartite random graph modelgy, n, p) andG(n, n, m).

G(n,p) Model

IntheG(n, p) model each of thd/ potential edges is present with probabilityindependently
of other edges. That is, the sample spac€&'0t, p) is the entire set(n), and the probability
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of a graphG € G(n) with m edges i™(1 — p) ™. If p = % all graphs inG(n) are
equiprobable. We defin€(n, n, p) analogously.

G(n,m) Model

The sample space 6f(n, m) consists of all(% ) graphs from&(n) that have exactlyn edges
and each graph i&'(n, m) is equiprobable. Put differently, a graphfrom G(n, m) is chosen
independently uniformly at random with probability (). We define the3(n, , m) model
analogously.

A graph propertyP is a subset of7(n) containing all graphs having proper: For example,
P :={G € G(n) : G is Hamiltoniar} is the graph property of being Hamiltonian. A graph
property P is monotone increasing G, € P, G2 € G(n) andG; C Gy imply G2 € P. For
example, the graph property of being Hamiltonian is monetocreasing.

Let G, be a graph chosen froi(n, p) with p = m/M. Then the expected number of
edges inG, is Mp = m. The following theorem, due to Angluin and Valiant [AV79lates
the occurrence of a graph propemyin G, to its occurrence in a grapfy,, from G(n,m)
with p = m/M.

Theorem 2.5.1. Let P be some monotone graph property. Moreoverdgte G(n,p) with
p=m/M andG,, € G(n,m). Then

P[G,, € P| = O(nP[G, € P]).



3. AHEURISTIC FOR DIJKSTRA'S ALGORITHM
WITH MANY TARGETS

Abstract

We consider thaingle-source many-targets shortest pé8SMTSP) problem in directed graphs with
non-negative edge costs. We are given a source fiadd a target séf, and the objective is to compute
a shortest path fromto a node irfl". Dijkstra’s algorithm can be used to solve the SSMTSP prable
Our interest in the SSMTSP problem originates from its usedighted bipartite matching algorithms.
A weighted bipartite matching in a graph withnodes on each side reducesit&SMTSP problems,
where the number of nodes in the target set varies betwesm 1.

In this chapter we describe a simple heuristic that is eaggpéement and significantly reduces the
number of queue operations performed by Dijkstra’s algaritin our experiments on random graphs
a speed-up by a factor of up to 12 was observed for the weighéadhing algorithm. We also present
a partial analysis that gives some theoretical support t@sperimental findings.

Publication Notes. A preliminary version of this chaptersviast published together with Kurt
Mehlhorn in the Conference Proceedings of the Nineth Angugbpean Symposium on Algorithms
(ESA 2001) [MSO01]. A journal version appeared in Algoritlanin 2003 [BMSTO03] and is joint work
with Holger Bast, Kurt Mehlhorn, and Hisao Tamaki. HolgersBand Hisao Tamaki helped us to
resolve an error in the preliminary version.

3.1 Introduction

In the single-source many-targets shortest p@8SMTSP) problem we are given a directed
graphG = (V, E), a non-negative cost functian. £ — IR on the edges of/, and a source
nodes. Moreover, every node il is designated as eith&ee or non-free We are interested
in finding a shortest path fromto a free node.

The SSMTSP problem is solved by Dijkstra’s algorithm. Dijks algorithm maintains
a tentative distance for each node and a partition of thesode settledand unsettled At
the beginning all nodes are unsettled. The algorithm opsriat phases. In each phase, an
unsettled node with smallest tentative distance is dettlsettled and its outgoing edges are
relaxed in order to improve tentative distances of otheetilesl nodes. The unsettled nodes
are kept in a priority queue. The algorithm can be stoppea dine first free node becomes
settled.

19
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We describe a heuristic improvement. The improvement ragistan upper bound on the
tentative distances of free nodes and only performs queeatipns with values smaller than
the bound. All other queue operations are suppressed. Thstie significantly reduces the
number of queue operations and therefore the running tinteecdigorithm.

We first used this heuristic in a jump-start routine to corapan initial matching for the
general weighted matching algorithm [Sch00, MS00, MSOZ2E jump-start routine computes
a maximum weight matching if it is applied to bipartite graphWhen we compared the
running time of the jump-start routine with LEDA's bipagimatching algorithms [MN99,
Sec. 7.8], we found that the jump-start routine is consiktdaster. We traced the superiority
to the heuristic described in this chapter.

The experiments that we present in this chapter were peeidrwith theTool Set for
Computational Experimentsee( http://exptools.sourceforge.nefThe tool provides a simple
way to set up, run, and analyze experiments. Moreover, ilittdes the documentation of
the environment in which the experiments were performedadsnl enables to reproduce the
experiments at a later time.

This chapter is organized as follows. In Section 3.2 we disdbijkstra’s algorithm for
many targets and describe our heuristic. In Section 3.3 weeai analysis of the heuristic for
random graphs and report about experiments on random grimp8ection 3.4 we discuss the
application to weighted bipartite matching algorithms g@nelsent our experimental findings
for the matching problem.

3.2 Dijkstra’s Algorithm with Many Targets

It is useful to introduce some more notation. For a nede V, let d(v) be the shortest path
distance froms to v, and letdy := min{d(v) : v is free}. If there is no free node reachable
from s, dy = +00. Our goal is to compute (i) a nodg with d(vy) = d (or an indication that
there is no such node), (ii) the sub3&tof nodes withd(v) < dy, more preciselyy € V' if
d(v) < dy andd(v) > dp if v & V', and (iii) the valued(v) for every nodev € {vy} UV,
i.e., a partial functiond with d(v) = d(v) for anyv € {vo} U V’. (Observe that nodes
with d(v) = dy may or may not be if/’.) We refer to the problem just described as the
single-source many-targets shortest path (SSMTSP) probites easily solved by an adapted
version of Dijkstra’s algorithm as shown in Figure 3.1.

We maintain a priority queu®( for the nodes of7. The queue is empty initially. For
each nodeu € V we compute a tentative distandést(u) of a shortest path from to w.
Initially, we setdist(s) to zero and insert the iter{s, 0) into the priority queue. For each
u € V,u # s, we setdist(u) to +oo (no path froms to u has been encountered yet). In the
main loop we delete a nodewith minimal dist-value from the priority queue. i is free, we
stop: vy = u andV’ is the set of nodes removed in preceding iterations. Otlserwve relax
all edges out ofi. Consider an edge= (u,v) and leto = dist(u) + c(e). We check whether
0 is smaller than the current tentative distance .off so, we distinguish two cases. (i) dfis
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DIJKSTRA' S ALGORITHM (ADAPTED VERSION):
dist(s) = 0 anddist(u) = oo forallu € V,u # s

PQ.insert(s,0) (insert(s, 0) into PQ)
while not PQ.empty() do
u = PQ.del_min() (remove node: from PQ with minimal priority)

if v is freethen STOP fi
RELAX ALL OUTGOING EDGES OFu
od

RELAX ALL OUTGOING EDGES OFu.
forall e = (u,v) € E do

0 = dist(u) + c(e)

if 0 < dist(v) then

if dist(v) =400 (v is not contained irPQ)
then PQ.insert(v, 9) (insert(v, 0) into PQ)
elsePQ.decrease_p(v, ) (decrease priority of in PQ to 9)

fi

dist(v) =6

fi
od

Figure 3.1: Dijkstra’s algorithm adapted for many targets. When the fiee node is removed from
the queue, the algorithm is stopped:is the node removed last aid consists of all non-free nodes
removed from the queue.

the first edge inta that is relaxed (this is the case iffst(v) equalstoo) we insert an item
(v,9) into PQ. (ii) Otherwise, we decrease the priorityofn PQ to ¢. If a queue operation
is performed, we also updat®st(v).

Observe that the single-source many-targets shortestgpatilem can alternatively be
solved by a single-source single-target shortest path otatipn froms to a target node,
where all target nodes ifi' are contracted to a single target nade The adapted version
essentially does the same but without performing theseactians explicitly.

We next describe a heuristic improvement of the algorithimvab LetB be the smallest
dist-value of a free node encountered by the algorittin;= +oc initially. We claim that
queue operation®Q.op(-, d) with 6 > B may be skipped without affecting correctness. This
is clear, since the algorithm stops when the first free nodeni®ved from the queue and since
the dist-value of this node is certainly no larger th&n Thus alldist-values less thati(v)
will be computed correctly. The modified algorithm may outpudifferent nodevy and a
different setl’”’. However, if all distances are pairwise distinct the saneng and the same
setV’ as in the basic algorithm are computed. The pruning hetiristh conceivably save
on queue operations, since fewer insert and decreasetprgérations may be performed.
Figure 3.2 shows the algorithm with the heuristic added.

Note that the changes which are necessary to incorporatbeauistic into the adapted
version of Dijkstra’s algorithm are trivial and computat@dly negligible. Moreover, if the
underlying priority queue is stable, i.e., items with thensapriority are removed from the
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DIJKSTRA' S ALGORITHM WITH PRUNING HEURISTIC:
dist(s) = 0 anddist(u) = +oc forallu € V,u # s

B =+ (initialize upper bound te-oc)
PQ.insert(s,0) (insert(s, 0) into PQ)
while not PQ.empty() do

u = PQ.del_min() (remove node; from PQ with minimal priority)

if v is freethen STOP fi
RELAX ALL OUTGOING EDGES OFu
od

RELAX ALL OUTGOING EDGES OFu.:
forall e = (u,v) € £ do
0 = dist(u) + c(e)

if 6 > B then continue fi (prune edge if bound is exceeded)
if v is freethen B = min(4, B) fi (try to improve bound)
if & < dist(v)then
if dist(v) =400 (v is not contained iPQ)
then PQ.insert(v,d) (insert(v, 0) into PQ)
elsePQ.decrease_p(v, ) (decrease priority of in P(Q to 4)
fi
dist(v) =0
fi
od

Figure 3.2: Dijkstra’s algorithm for many targets with a pruning hetidsAn upper bound for d(vy)
is maintained and queue operatidhg.op(-, J) with § > B are not performed.

gueue in the order of their insertions, it is clear that theriséic will never use more queue
operations than the adapted Dijkstra algorithm.

Subsequently, we refer to the adapted version of Dijkstagerithm asstandard scheme
while we refer to our heuristic asfined scheme

3.3 Analysis

We perform a partial analysis of the standard and the refiokense on random graphs with
random real-valued edge costs. We uder the number of nodesy for the expected number
of edges, and for the expected number of free nodes. Throughout the a@ealysmake the
following probability assumptions:

1. The underlying grapty is a directed random graph chosen fromd¥e, p) model with
p :=m/n?, i.e., each of thew? potential edges is picked independently at random with
probability p.

2. A node is free with probability := f/n, independently of the other nodes.

3. The edge costs are random reals chosen independentlynéoanly from [0, 1].
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Let ¢ be the expected outdegree of a node, i.e< pn = m/n. We are mainly interested
in the case where = ¢/n for a small constant, say2 < ¢ < 10, andq a constant, i.e.,
the expected number of free nodes is a fixed fraction of thesodlternatively, we could
choose our random graph from t6&n, m) model and let free nodes form a random subset of
f nodes. The results would be similar.

Number of Deletions from the Queue

We first analyze the number of nodes removed from the queueurlfyraph were infinite
and all nodes were reachable franthe expected number would bég, namely the expected
number of trials until the first head occurs in a sequence ioftosses with success probability
q. However, our graph is finite (not really a serious differifc is large) and only a subset
of the nodes is reachable frogn Observe that the probability thathas no outgoing edge is
(1 —p)™ = e “. This probability is not negligible. We proceed in two steyée first analyze
the number of nodes removed from the queue given the nuloénodes reachable from
and in a second step review results about the nurRbefrreachable nodes.

Lemma 3.3.1. Let R be the number of nodes reachable frenm GG and letT" be the number

of iterations, i.e., in iteratiorf" the first free node is removed from the queue or there is no free
node reachable fromand7 = R. ThenP[T =t|R =7] = q(1—¢q)""!for1 <t <r,and

P[T =t|R=r] = (1—q)! fort = r. Moreover, for the expected number of iterations we
haveE[T |R=r]=1/¢— (1 —q)"/q.

Proof. Since each node is free with probabiligy= f/n and since the property of being
free is independent from the order in which nodes are remdéned the queue, we have
PT =t|R=7r] =q(1—¢)" tandP[T >t|R=7r] = (1—¢q) tfor1 <t<r. Ift=r,
PT=tlR=r]=(1—-¢) '=P[T>t|R=r].

The expected number of iterations is

E[T|R=r] = Y P[T>t|R=r] =) (1-¢" ' +(1—-¢ "

t>1 t=1
I-(1-¢q" 1 (1-¢q)

1—(1-q) ¢ q

The expected number of edges relaxedE$(T — 1) | R = r] sinceT — 1 non-free nodes
are removed from the queue and since the expected outddgzeery node is: = m/n. We
conclude that the number of edges relaxed is abduty) — 1)(m/n).

Now, how many nodes are reachable frefh This quantity is analyzed in the book by
Alon and Spencer [ASE92, Sec. 10.5]. leet> 0 be such thatv = 1 — exp(—ca), and letR
be the number of nodes reachable fremThenR is bounded by a constant with probability
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L c | 2 | 5 | 8 | 8 |
o | 0.7968] 09930 0.9997| 0.9997

MS 15 2 1 1
ML 714 981 996 | 1995

R | 7965 993| 999.7| 1999.3

F 7958| 9931| 9997 9995

Table 3.1: For all experiments (except the one in the last column) wel uaedom graphs with, =
1000 nodes andn = cn edges. For the last column we chose= 2000 in order to illustrate that the
dependency on is weak. The following quantities are shown; for each valfie we performed 0*
trials.

o the solution of the equation = 1 — exp(—ca).

MS: the maximal number of nodes reachable fromhen few nodes are reachable.

ML: the minimal number of nodes reachable fremvhen many nodes are reachable.

R: the average number of nodes reachable fsominen many nodes are reachable.

F: the number of times many nodes are reachable from

aboutl — « and is approximatelyn with probability aboutv. More precisely, for every > 0
andé > 0, there is &g such that for all sufficiently large, we have

l—a—e < P[R<t)] < 1l—a+e

and
a—e < P[(1-dan<R<(1+dan] < a+e.

Table 3.1 indicates that small values«odnd§ work even for moderata. Forc = 2,
we havea ~ 0.7968. We generated 10000 graphs with= 1000 nodes and000 edges
and determined the number of nodes reachable from a givewesowdes. This number
was either smaller than 15 or larger thant. The latter case occurred 958 ~ « - 10000
trials. Moreover, the average number of nodes reachabie 4iia the latter case wd®6.5 ~
a - 1000 = an.

We are only interested in the case that many nodes are rdadhatin s. We fix § rather
arbitrarily at0.01 and restrict attention to the set of graphs with more tfiar §)an nodes
reachable frons. In this situation, the probability that all reachable ne@dee removed from
the queue is

(1= q)*" < exp(—ang) = exp(—af).

This is less thari /n? if ¢ > 2 andf > 41nn; observe that > 2 impliesa > 1/2. We thus
require our parameters to satisfy> 2 and f > 4Inn and assume that more thah— ¢)an
nodes are reachable framWe use the phrase?'is large” to refer to this assumption.

Number of Insertions into the Queue

We next analyze the number of insertions into the queue féiréhe standard scheme.
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Yy =1

Ys=n

Y1=n

Figure 3.3: The probability of the bold edge is the probability of havitwgp successes in — 3
Bernoulli trials with success probabilipy We can view the process with and without the dashed edges.
The process with the dashed edges corresponds to the wecdedinition of the variable¥; given in
(3.1), and the process without the dashed edges correspoiggdaph exploration. In the latter case
the process dies as soon ¥s= t (i.e., a box is hit). We are interested in the latter procedse
transition probabilities in the latter process differ in@rtrivial way from the transition probabilities

in the original process.

Lemma 3.3.2.Let IS be the number of insertions into the queue in the standardreeh Then
E[IS|T =tandRislargg >n — (n—1)(1 —p)!~!fort < (1 - d)an and

B{IS| R islarge > - dl-a) A=y 4y 0 oh— o).

+ (1 =qec/n g+ (1-q)c/n q

Proof. We need to review some more material from [ASE92, Sec. 108[Bin|k, p|] denote
the binomial distribution withk trials and success probabilipy see Section 2.4.5. Consider
the following sequence of random variables:

Yo=1 and Y; =Y, 1 +Bin[n—Y,_1,p] forl<t<n, (3.1)

and letR denote the least such thatY; = t. ThenR is the number of reachable nodes as
a simple induction shows: Observe that precisely reachable before the first removal and
that at the time théth node is removed from the queue, each ofithe Y; _; remaining (i.e.,
non-reached) nodes is reached with probabjlityFigure 3.3 illustrates the process.

An inductive argument (see [ASE92, Sec. 10.5]) shdws- 1+ Bin[n — 1,1 — (1 —p)!]
and henc&[Y;] = n— (n—1)(1—p)t for 0 <t < n. We cannot directly use this result as we
are interested in the process without the dashed edgedi;let(Yy > 1 N ... N Y, > ¢)
be the event that there are at leaseachable nodes. Thel;_s),, iS tantamount to R is
large”. Also,E[Y; | R is largg is the expected value &f; for the process without the dashed
edges. The following claim that the everR is large” (i.e., the exclusion of the dashed edges)
biasesy; towards larger values is intuitively plausible, but not latrévial to prove.

Proposition 3.3.1. For t < (1 — §)an we have

E[Y;| Ris largg > E[Y;] =7 — (n —1)(1 - p)".
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Proof. Let N = (1 — d)an. Recall thatYy, = 1 andY; = Y;_; + Bin[n — Y;_4,p] for
1 <t < n. Itis convenient to view the underlying probability spdeeas {0, 1}"2, where
entries are independently with probability p. An elementary event is = (wy,...,w,),
wherew; € {0,1}", andY;(w) — Y;_1(w) is the number of ones among the first- Y;_; (w)
entries ofw;.

Let £ be the eventYy > 1 N ... N Yy_1 > N) (i.e., the event R is large”), and let
A be the event; > a for some arbitrary anda. We will prove thatA and E are positively
correlated using the technique described in Section 2Ihé.reader may verify th&? forms
a distributive lattice and thad® is log-supermodular; see also Examples 2.4.2 and 2.4.31 Bot
events are monotone increasing, i.ey is componentwise less than or equalfdhenw € E
impliesw’ € F andw € A impliesw’ € A. Thus, by Theorem 2.4.16,

P[A N E] > P[A] -P[E] or equivalently, P[Y; > a|Rislargd > P[Y; > a].

Thus
E[Y, | Ris largd > E[Y,].

O

We can now derive our bound on the number of insertions.7L.be the number of re-
movals from the queue. Then

E[IS|Rislargg = E[IS|T < (1 — §)an andR is largdP [T < (1 — §)an| R is large
+ E[IS|T > (1—¢)anandRis largeP[T > (1 — §)an | Ris large .

If Ris large, the probability that we have more thdn— §)an removals from the queue is
O(1/n?). Thus
E[IS | Ris largg E[IS|T < (1 — §)an andRis largd(1 — O(n™?%))

>
> E[IS|T < (1-9d)anandRis large — o(1).

If Rislarge andl’ < (1 — §)an, the procedure stops when the first free node is reached (and
not because it runs out of edges). The number of insertidnghie queue equals the number
of nodes which are reached until the first free node is remdénad the queue. Thus, for
t < (1 — é)an, we obtain (recall that the outgoing edges of the free nodeved are not
relaxed)

E[IS|T =tandRislargg > n — (n —1)(1 — p)'~ 1.

Thus

(1-d)an
E[IS | Ris largg > Z E[IS|T =tandRislarggP[T" = t| Ris largg — o(1)
t=1
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=Y (n—m-1)1-p) ) 1-q)' g—0(1)

t>1

=n—qn—-1)) (1-9¢'(1-p)—o(l)

>0
1

= oa D=y oW

—n-1-(n-1)—2 -0

=01 (=) 1= o(1)
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= 1)p+q—pq+1 M
c(l—q) (1—g)e/n

:q+(1—q)0/n_q+(1—Q)C/n+1_O(1)

%

c
——c+1—o0(1).
. (1)

O

The final approximation is valid if/n < ¢. The approximation makes sense intuitively:
By Lemma 3.3.1, we relax the edges outlgfy — 1 nodes and hence relax abauimes as
many edges. There is hardly any sharing of targets betwese thdges if. is large (anc: is
small). We conclude that the number of insertions into theugus; — ¢ + 1.

Observe that the standard scheme makes abfguinsertions into but onlyl /¢q removals
from the queue. This is where the refined scheme saves.

Number of Nodes Inserted but Never Removed.

Lemma 3.3.3. Let INRS be the number of nodes which are inserted into the queue et ne
removed in the standard scheme. Then, by the above,

. 1
E[INRS|Rislargd ~ < —c+1— -~
q ¢ 4

]
The standard scheme also performs sdmecase_p operations on the nodes inserted but
never removed. This number is small since the expected nuofililecoming edges per node

is ¢, which we assumed to be a small constant. Observe that tleetexbnumber of insertions
is basically the same as the expected number of edge relagati

We turn to the refined scheme. We have three kinds of savings.

e Nodes that are removed from the queue may incur fewer quesratiyns because they
are inserted later or because some distance decreasesldadtd a queue operation.
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This saving is small since the number of distance decreasesdll (recall that only few
incoming edges per node are scanned).

¢ Nodes that are never removed from the queue in the standaethscare not inserted in
the refined scheme. This saving is significant and we wilhest it below.

e Nodes that are never removed from the queue in the standaedhscare inserted in the
refined scheme but fewer decreases of their distance ladmdstd a queue operation.
This saving is small for the same reason as in the first item.

We concentrate on the set of nodes that are inserted intcelvet removed from the queue in
the standard scheme. How many of théa&S insertions are also performed in the refined
scheme? We usBVRR to denote their number.

Lemma 3.3.4. Let INRR denote the number of insertions which are also performedhén t
refined scheme. Then

E[INRR | Ris largd < é (1 +1In(c — 1)),

Proof. We first compute the expectation 6NRR conditional on an arbitrary fixing of the
edges of the graph and of the nodes removed from the queue lsgahdard scheme. More
precisely, what is fixed in this event is the edges of the gréphsequence of nodes removed
from the queue, their distance labels, and whether theyreeeof not.

Then what is still random in this conditional probabilityage? It is the weights of the
edges going from a node removed from the queue to a node tfidiuis inserted but) not
removed from the queue, and it is whether the nodes these edgegoing to are free or not.
And still random are, of course, the weights of all edges wifther node looked at by the
standard scheme, and whether these nodes are free or not.

Lete; = (u1,v1),...,e; = (u,v;) be the edges going from a node removed from the
gueue to a node that is inserted but not removed from the gquetlee order in which they
are relaxed, that is{(u;) < d(u;41), fori =1,...,1 — 1. Note that the sequenea, ...,y
may contain repetitions of the same node, correspondindgesrelaxed from the same node,
whereas they, ..., v; are all different.

The key observation is that in the conditional probabilitpase the edge costs
c(er),...,c(e) are still independent, and the distance ladel;) + c(e;) with which v; is
inserted into the queue is uniformly frofd(v; ), d(u;) 4+ 1]. This is because the fixing of the
nodes removed from the queue by the standard scheme impdieg ;) + c(e;) > d(u;) but
reveals nothing else about the valueitf,;) + c(e;).

In the refined scheme leads to an insertion only if(u;) + c(e;) is smaller thani(u;) +
c(e;) for every freev; with j < i. The probability for this event is at most (£ + 1), wherek
is the number of free; precedingy;. The probability would be exactly/(k + 1) if the values
d(up) + c(en), 1 < h < i, were all contained in the same interval. Since the uppenthad
the interval containing(uy) + c(ey,) increases withh, the probability is at most/(k + 1).
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We thus obtain that, for any evenj that fixes the edges of the graph and a sequence of
nodes removed by the standard scheme,

=1 k=0 k+1
l 1 i—1 i
_ 4 k+1 i—(k+1)
=2 > (1 -q)
=1 Y k=0 <kj T 1>
l i .
_ 1 Yy ke i—k
=S ()t
=1 k=1
!
1 (2
=1
where the first equality follows fronf", ') = %(,,). The final formula can also be

interpreted intuitively. There are abaigtfree nodes preceding and hence; is inserted with
probability aboutl /(iq).

In order to estimate the final sum we split the sum at a yet toeberchined index,. For
i < ipwe estimatg1 — (1 — ¢)%) < iq, and fori > iy we use(1 — (1 — ¢)?) < 1. We obtain

1
UG e
E[INRR| B <io+ - _:gmwgm(%),
i=1ig

Foriy = 1/q (which minimizes the final expressibrwe have

% (1 + In(lg)).

E[INRR | E]| <

Now of all the parameters that constitutg, this upper bound depends solely Qrthe
number of nodes that are inserted but not removed from thaegong the standard scheme, so
that we may conclude

. 1
E[INRR|INRS =landR is largg < h (14 1In(lq)).

Sinceln(lq) is a convex function of (its first derivative is positive and its second derivative
is negative), we obtain an upper bound on the expectatiddV&fR conditioned onR being
large if we replacelNRS by its expectation; see Jensen’s inequality (Theorem R.4Me
obtain

E[INRR|Rislargé < — - (1 + In(¢E[INRS | R is largég))

Q| =

! Take the derivative with respecttg...
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1 c—1
(o)
q q

(14 In(c—1)).

Q| =

Number of Saved Queue Operations.

We can now finally lower bound the numbérof queue operations saved by the refined
scheme.

Theorem 3.3.1.Let S denote the number of queue operations saved by the refinethech

Then |
E[S| Ris largd > (1_2+n7<c—1>>'
q c

That is, if the refined scheme is used to solve the singleesamany-targets shortest path
problem on random graphs drawn from tb&n, p) model, withp = ¢/n andc = m/n, then
we are guaranteed to save at least the fractlon (2 4 In(c — 1))/c of the queue operations
performed by the standard scheme.

Proof. By the above the saving is at led®{RS — INRR. Thus

. c—1 1 nle—1) = € ~ 2+In(c—1)
E[S|Ris large > p q(1+1( 1)) q<1 — >

O

For example, ifc = 8, we will save at least a fraction daf— (2 + In7)/8 ~ 0.51 of the
gueue operations. The actual savings are higher, see TableABo, there are substantial
savings even if the assumption Bfbeing large does not hold (e.g., foe= 2 andq = 0.02).

It is interesting to observe how our randomness assumpti@ns used in the argument
above.G is a random graph and hence the number of nodes reachable fsaither bounded
or very large. The fact that a node is free with fixed probgbdives us the distribution of the
number of deletions from the queue. In order to estimatediiegs resulting from the refined
scheme we use that every node has the same chance of beirmgnéréieat edge weights are
random. For this part of the argument we do not need that @yihgis random.

3.4 Bipartite Matching Problems

A matching M in a graphG is a subset of the edges such that no two edge¥® athare an
endpoint. In theveighted bipartite matching probleme want to compute a matchinyg of
maximum weight in a bipartite grapfi = (AU B, E,w), wherew : E — TR is a function
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c 2 2 2 5 5 5 8 8 8 8
q 0.02 0.06 0.18 0.02 0.06 0.18 0.02 0.06 0.18 0.18

D 49.60 | 16.40 5.51 49.33 | 16.72 5.50 50.22 16.79 5.61 5.53

D 50.00 | 16.67 5.56 50.00 | 16.67 5.56 50.00 16.67 5.56 5.56

IS 90.01| 31.40| 10.41| 195.20| 73.71| 22.98 | 281.30| 112.90| 36.45| 36.52

IS* 90.16 | 31.35| 10.02| 197.60| 73.57 | 23.25| 282.30| 112.30| 36.13| 36.77
INRS 40.41| 15.00 489 | 145.80| 56.99| 17.49| 231.00 96.07 | 30.85| 30.99
INRS™* 40.16 | 14.68 446 | 147.60| 56.90| 17.69| 232.30 95.60 | 30.57| 31.22
INRR 11.00 4.00 1.00 35.00 | 12.00 4.00 51.00 18.00 5.00 5.00
INRR* 39.05| 14.56 434 | 104.10| 37.13| 11.99| 126.80 4578 | 15.03| 15.15
DP, 1.42 0.19 0.02 13.78 1.90 0.19 36.55 5.28 0.56 0.28
DP, 0.71 0.09 0.01 2.63 0.31 0.03 4.60 0.50 0.05 0.03
Qs | 140.00| 46.98 | 14.94| 257.30| 91.33| 27.67| 367.00| 133.90| 41.62| 41.34

Q- | 110.40| 36.12 | 11.52| 134.50| 45.33| 13.97| 154.40 50.85| 16.00| 15.77

S 29.58 | 10.86 3.42| 122.80| 46.00| 13.69| 212.70 83.08 | 25.62| 25.57

S* 1.12 0.13 0.12 43.47 | 19.77 570 | 105.50 49.82 | 1554 | 16.07

P 21.12| 23.11| 22.87 47.74 | 50.37 | 49.50 57.94 62.03 | 61.55| 61.85

Table 3.2: For all experiments (except the one in the last column) wel utardom graphs with, =
1000 nodes andn = cn edges. For the last column we chase= 2000 in order to illustrate that the
dependency om is weak. Nodes were free with probabiligy The following quantities are shown;
for each value of; andc we performedi0* trials. Trials where only a small number of nodes were
reachable frons were ignored, i.e., aboyt — «) - 10* trials were ignored.

D: the number of deletions from the queue.

D* =1/q(1 — (1 — ¢)*"): the predicted number of deletions from the queue.

1S the number of insertions into the queue in the standardsehe

IS* = +°§1 q‘ii/n — qfrl(lql;)/cjn + 1: the predicted number of insertions into the queue.
INRS: the number of nodes inserted but never removed.

INRS™ = IS* — D*: the predicted number.

INRR: the number of extra nodes inserted by the refined scheme.
INRR" = ¢ - (1 +In(¢INRS™)): the predicted number.

DP: the number of decrease priority operations in the stansizirdme.
DP,.: the number of decrease priority operations in the refinbemse.
Qs the total number of queue operations in the standard scheme
Q. the total number of queue operations in the refined scheme.

S = Qs — Q,: the number of saved queue operations.

S*: the lower bound on the number of saved queue operations.

P = 5/Q: the percentage of queue operations saved.

that assigns a real weight to each edge. The weight of a matdliiis simply the sum of the
weights of the edges in the matching, i@(M) := " ., w(e). One may either ask for a
perfect matching of maximum weight (known as the weighgedectmatching problem or
the assignment problejror simply for a matching of maximum weight. Both versionstod
problem can be reduced to solving wheren = min(|A|,|B|), SSMTSP problems. In this
section we discuss the reduction for the assignment problem

A popular algorithm for the assignment problem follows thieyal dual paradigm [AMO93,
Sec. 12.4], [MN99, Sec. 7.8], [Gal86]. The algorithm counsts a perfect matching and a dual
solution simultaneously. A dual solution is simply a fuoatir : V' — IR that assigns a real
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Unit Weights

[ n [ ¢] LEDA MS ][ ¢[ LEDA MS][ ¢[ LEDA  MS|
10000 2 0.60 0.47| 5 42.51 10.80|| 8 93.07 8.21
20000 2 1.32 1.03|| 5| 152.82 39.31| 8 336.24  28.20
40000 2 2.94 2.33|| 5| 550.54 138.88| 8| 1255.05 97.97

Random Weights][1, ..., 1000]

[ n [ ¢] LEDA MS ][ ¢][ LEDA MS ][ ¢[ LEDA MS |
10000 2 0.57 0.50|| 5 2.33 1.41|| 8 11.22 4.87
20000 2 1.20 1.05|| 5 5.25 3.14| 8 25.41 10.79
40000 2 2.63 2.31|| 5 11.09 6.80|| 8 56.00 23.63

Random Weights[1000, . . ., 1005]

[ n [ ¢] LEDA WMS ][ ¢| LEDA MS|[ ¢] LEDA MS |
10000 |[ 2 0.66 0.57]] 5 11.42 7.02|[ 8 20.13  11.00
20000 2 1.39 1.22|| 5 36.56 22.69|| 8 59.36  31.59
40000 2 3.07 2.71| 5 112.05 68.29|| 8 181.85 99.17

Table 3.3: Effect of the pruning heuristic. LEDA stands for LEDA's bigige matching algorithm (up

to version LEDA-4.2) as described in [MN99, Sec. 7.8] and N&hds for a modified implementation
with the pruning heuristic. We created random graphs withodes on each side and each edge is
present with probability = ¢/n. The running time is stated in CPU-seconds and is an averfade o
trials.

potential to every node. Lét := A U B. The algorithm maintains a matching and a
potential functionr with the property that

(@) w(e) < m(a)+ w(b) for every edge: = (a, b),
(b) w(e) = w(a) + = (b) for every edge: = (a,b) € M, and
(c) w(b) = 0 for everyfre€” nodeb € B.

Initially, M := 0, 7(a) := max.cp w(e) for everya € A, andr(b) := 0 for everyb € B. The
algorithm stops whei/ is a perfect matchingor when it discovers that there is no perfect
matching. The algorithm works in phases. In each phase tkeo$ithe matching is increased
by one (or it is determined that there is no perfect matching)

A phase consists of the search for an augmenting path of mmimeduced cost. An
augmenting path is a path starting at a free nodd,iending at a free node i, and using
alternately edges not in/ and in M. The reduced cost of an edge= (a, b) is defined as

2 A node is free if no edge i/ is incident to it.

3 Itis easy to see that/ has maximum weight among all perfect matchings. Obsenvdfttid’ is any perfect
matching andr is any potential function such that (a) holds thef\/’) < >~ _, m(v). If (b) also holds, we have
a pair (M’, 7) with equality and hence the matching has maximum weight {aachode potential has minimal
weight among all potentials satisfying (a)).
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w(e) := w(a) + 7(b) — w(e); observe that edges i/ have reduced cost zero and that all
edges have non-negative reduced cost. The reduced costabh éssimply the sum of the
reduced costs of the edges contained in it. There is no neselarch for augmenting paths
from all free nodes ird; it suffices to search for augmenting paths from a singletraridiy
chosen free node; € A.

If no augmenting path starting i@, exists, there is no perfect matching @ and the
algorithm stops. Otherwise, for every € V, let d(v) be the minimal reduced cost of an
alternating path frona, to v. Letd, € B be a free node i3 which minimizesd(b) among all
free nodes in B. We update the potential function according to the rulesy®eer’ to denote
the new potential function):

(d) ©'(a) = 7(a) — max(d(by) — d(a),0) forall a € A,
(e) 7' (b) = w(b) + max(d(by) — d(b),0) forall b € B.

It is easy to see that this change maintains (a), (b), andh@t}fzat all edges on the least cost
alternating pathp from ag to by become tigHt. We complete the phase by switching the edges
on p: matching edges op become non-matching and non-matching edges become nmatchin
edges. This increases the size of the matching by one. Thectwoess of the algorithm
can be seen as follows. The algorithm maintains properéigs(lf), and (c) and hence the
current matchingV/ is optimal in the following sense. Let(M) be the nodes i that are
matched. Thed/ is a maximum weight matching among the matchings that maehnaodes
in A(M) and leave the nodes iA \ A(M) unmatched. Indeed i#/’ is any such matching
thenw(M’) < 3~ c sy 7(@) + 2pep 7(b) = w(M), where the inequality follows from (a)
and (c) and the equality follows from (b) and (c).

A phase is tantamount to a SSMTSP problemis the source and the free nodes are the
targets. We want to determine a target (i.e., free négl&ith minimal distance fronu, and
the distance values of all nodeswith d(v) < d(by). For nodes with d(v) > d(by) there is
no need to know the exact distance. It suffices to know thatigtance is at leasi(b).

Table 3.3 shows the effect of the pruning heuristic for thgaliite matching algorithm.
(The improved code is part of LEDA, Version 4.3 or higher.)

3.5 Concluding Remarks

We presented a simple heuristic for the single-source namgyets shortest path problem. The
incorporation of the heuristic into an existing implemeiata of Dijkstra’s algorithm is trivial.

In our experiments on random graphs, we observed a sulatamtirovement in running time
for the bipartite weighted matching algorithm. Our anaysiipports this observation show-
ing that on random input a significant fraction of queue op@na performed by Dijkstra’s
algorithm is saved.

4 An edge is called tight if its reduced cost is zero.
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At this point we would like to remark that the heuristic casaabe used in a capacity
scaling implementation of the min-cost flow algorithm; sA#D93, Sec. 10.2]. It would be
interesting to investigate the impact of the heuristic ai-reorld instances.



4. SMOOTHED COMPETITIVE ANALYSIS OF THE
MULTI-LEVEL FEEDBACK ALGORITHM

Abstract

We consider an online problem which is known as tlo@-clairvoyant scheduling problendobs are
released over time and have to be scheduled on a machine thhilgrocessing times of these jobs
are not known. The objective is to minimize thgerage flow timei.e., the average time spent by
jobs in the system. An algorithm for this problem, which issessfully used in practice, is theulti-
level feedback algorithitMLF). Although MLF performs very well in practice, its corefitive ratio is
exponential; more specifically, if the processing timesiar, 2X] for someK > 0, its competitive
ratio isQ(25).

In this chapter, we introduce the notionsshoothed competitive analysionline algorithms and
apply it to the multi-level feedback algorithm. We use a jadutiit randomization model, where the
initial processing times are perturbed by changing Ahleast significant bits under a quite general
class of probability distributions. We show that MLF has sthed competitive rati®)((2* /o)? +
(2% /o)22K~k), whereo denotes the standard deviation of the distribution; inipaldr, we obtain a
competitive ratio ofO(2X%) if & = ©(2%). We also prove af (25 ~*) lower bound for any deter-
ministic algorithm that is run on processing times smoothetbrding to the partial bit randomization
model. For various other smoothing models we establish hehnitpwer bound of2(2%). A direct
consequence of our analysis is also the first average cabesianaf MLF. We show that MLF has
constant expected competitive ratio under several digtdbs, including the uniform distribution.

Publication Notes.  The results presented in this chaptejaint work with Luca Becchetti,
Stefano Leonardi, Alberto Marchetti-Spaccamela, andklyaedeveld. An extended abstract appeared
in the Conference Proceedings of the Forty-Fourth AnnuaHEymposium on Foundations of Com-
puter Science (FOCS 2003) [BLM®3a]. A complete version of the paper was published as a MPII
research report [BLMS03b]. The exposition in this chapter differs significantigrh these articles; in
particular, we clearly identify the necessary propertiggie underlying smoothing distribution for our
analysis to hold.

4.1 Introduction

One of the most successful online algorithms used in pedithemulti-level feedback algo-
rithm (MLF) for processor scheduling in a time sharing multitagkoperating system. MLF

35



36 4. Smoothed Competitive Analysis of the Multi-Level FeeclbAlgorithm

is anon-clairvoyantscheduling algorithm, i.e., scheduling decisions arertakithout knowl-
edge of the time a job needs to be executed. Windows NT [Nw@B8]Unix [Tan92] have
MLF at the very basis of their scheduling policies. The otdecis to provide a fast response
to users. A widely used measure for the responsiveness dftansyis theaverage flow time
of the jobs, i.e., the average time spent by jobs in the syb&tmeen release and completion.
Job preemption is also widely recognized as a key featunapodve the responsiveness of a
system.

The basic idea of MLF is to organize jobs into a hierarchy oéupsQq, Q1,.... If
a job has been processed for a total2bttime units it is promoted to queu®, ., if not
completed. At any time, MLF processes the job at the fronheflowest queue. For the single
machine case, if the processing times of the jobs are kndvane texists a simple optimal
online algorithm, calle&hortest Remaining Processing Ti(8&RPT), which always processes
a job having smallest remaining processing time. Roughbakimg, MLF tries to simulate
SRPT by guessing the processing times of the jobs, givingeplence to jobs that are assumed
to have small remaining processing time.

Competitive Analysis. Competitive analysis attempts to characterize the qualign online
algorithm by comparing the performance of the algorithmhiat of an optimal offline algo-
rithm. Thecompetitive ratigST85] of an algorithm is defined as the maximum over all input
instances of the ratio between the cost of the online algordnd the cost of an optimal offline
algorithm. While MLF performs very well in practice, it beles poorly if its performance is
measured in terms of its competitive ratio. Assuming thatcessing times are ifi, 2/,
Motwani, Phillips, and Torng [MPT94] proved a lower bound(af2/) on the competitive
ratio of any deterministic non-clairvoyant schedulingaaithm. MLF is therefore an exam-
ple of an algorithm, where the traditional notion of competness fails to explain the good
performance of an algorithm in practice.

Smoothed Competitive Analysis.The analysis of online algorithms is a natural field for the
application of the idea of smoothed analysis. In this chrapte propose a new kind of analysis
for online algorithms, namelgmoothed competitive analysiRoughly speaking, in smoothed
competitive analysis we measure the quality of an algoritlynits competitive ratio on ran-
domly perturbed adversarial input instances. In thisrsgtiive also define two different types
of adversaries: anblivious adversarywhich cannot react to the execution of the algorithm,
and a strongeadaptive adversarywhich may make decisions based on the execution of the
algorithm.

We apply this new notion of competitiveness to analyze thiidavel feedback algorithm.
We smoothen the input by means of a partial bit randomizatiodel; see also Section 2.3.
We assume that the adversarial processing timesabit integers in[1,2%]. (For technical
reasons we do not allow zero processing times; we therefbtkd all-zero bit string represent
2) For each job we perturb its processing time by replacimgitleast significant bits by
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some random number ifi, 2¥] drawn from a smoothing distributiofi. We useo to denote
the standard deviation gf. For &k varying from0 to K we “smoothly” move from worst case
to average case analysis. Our analysis holds for a large ofasmoothing distributions, to
which we refer to asvell-shaped distributionsincluding, for example, the uniform and the
normal distribution.

In detail, our contributions are the following:

1. We show that MLF has smoothed competitive radi@2* /o)3 + (2¥/0)22K=%). The
competitive ratio therefore improves exponentially wittand as the distribution be-
comes less sharply concentrated around its mean. In gartiete obtain an expected
competitive ratio of0(2X—*) for smoothing distributions witlr = ©(2%), e.qg., for the
uniform distribution. We remark that our analysis holds thoth the oblivious and the
adaptive adversary.

2. As a consequence of our analysis we also obtain an aveemgeanalysis of MLF.
By choosingk = K, our result implies that MLF has constant expected competit
ratio for various distributions of processing times with= ©(2%) and arbitrarily fixed
release dates. Very surprisingly, to the best of our knogdedhis is the first average
case analysis of MLF.

3. We prove alower bound 6f(2”—*) against an adaptive adversary and a slightly weaker
bound of (2K/6-%/2) for everyk < K/3, against an oblivious adversary for any
deterministic algorithm if the processing times are smedtaccording to the partial bit
randomization model.

4. Spielman and Teng [STO01] proposed symmetric smoothirdpedsee also Section 2.3),
where each input value is smoothed symmetrically arouridittal value. By using the
partial bit randomization model we do not smoothen the msiog times symmetrically
around their initial values. Therefore, a natural questowhether or not symmetric
smoothing models are more suitable to analyze MLF. We anglvigiquestion in the
negative. In fact, we prove that MLF admits a poor competitiatio of (2) under
symmetric smoothing models.

Related Work. A randomized version of the multi-level feedback algoritfRMLF) was
first proposed by Kalyanasundaram and Pruhs [KP97] for alesingachine achieving an
O(lognloglogn) competitive ratio against the adaptive adversary, where the number
of jobs that are released. Becchetti and Leonardi [BLO1$gmea version of RMLF having
an O(log nlog(n/m)) competitive ratio onm parallel machines and a tiglat(log n) com-
petitive ratio on a single machine against the obliviouseashry, therefore matching for the
single machine case the randomized lower bound of Motwaati §IPT94].
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Recently, Scharbrodt, Schickinger, and Steger [SSS0&)ipeed an analysis of the aver-
age competitive ratio of the Shortest Expected Processing First heuristic, minimizing the
average completion time, where the processing times obthefpllow a gamma distribution.
Our result is stronger in the following aspects: (i) The gsial of Scharbrodt et al. applies
when the algorithm knows the distribution of the procesginges, while in our analysis we
require no knowledge about the distribution of the processimes. (ii) Our result applies to
average flow time, a stronger quality measure than averageletion time.

Concerning the average case competitiveness of MLF, Miahdl Coffman considered
in an early work [MC74] only the problem of synthesizing adback queue system under
Poisson arrivals and a known discrete probability distidsuon processing times so that pre-
specified mean flow time criteria are met.

Organization of this Chapter.In Section 4.2 we introduce smoothed competitive analysis.
Then, in Section 4.3, we define the non-clairvoyant schaedytiroblem, and in Section 4.4
present the smoothing model that we use. In Section 4.5 weideghe multi-level feedback
algorithm. In Section 4.6 we introduce some more notatianithused throughout the analysis
presented in Section 4.7. Finally, in Section 4.8, we prekever bounds on the smoothed
competitive ratio of MLF, and in Section 4.9 we give some dodinig remarks.

4.2 Smoothed Competitive Analysis

Competitive analysi$§ST85] measures the quality of an online algorithm by corimgaits
performance to that of an optimal offline algorithm that haskKnowledge of the input. The
(worst case) competitive ratioof a deterministic online algorithmLG for a cost minimiza-
tion problem is defined as the maximum over all input instadce 7 of the ratio between
the cost of the algorithmaLG and the cost of an optimal offline algorithaprT, i.e.,

ALG ()

C = Imax > .
iez OPT(I)

Competitive analysis often provides an overly pessimisiimation of the performance of an
algorithm, or fails to distinguish between algorithms thatform differently in practice due
to the presence of pathological bad instances that rarelyroc

The analysis of online algorithms is a natural field for theleation of the idea of
smoothed analysis. We therefore carry the notion of smdo#imalysis over to the area of
online algorithms. Following definition (2.1) in Sectior22we define themoothed competi-
tive ratio ¢(o) of an online algorithmaLc as

c(o) :=maxE ; .
jer  1LN(i0)

ALG(I)
OPT(I)] ’ (4.1)
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t:p; ) t:p;
adversary smoothenef: ALG

t+e€

Figure 4.1: Interaction of adversary, smoothing process, and onligerdhm. Top: Oblivious adver-
sary. Bottom: Adaptive adversary.

Observe that we might alternatively define the smoothed etitiye ratio as the ratio of
the expectations, i.e.,

LN o) LG (1)
c(o) == max ’ 7 (4.2)
1eT 81 vt [OPT(I)]

It is difficult to state, which of the two definitions is stragrgor more meaningful. Some
prefer the definition in (4.1), others prefer (4.2). We badighat definition (4.1) gives a
stronger notion of smoothed competitiveness, since (ipdrrmance is compared instance-
wise, and (ii) techniques from probability theory, such esosid moment methods, etc., can
be used to obtain deviation results.

This kind of analysis results in having the algorithm and sheoothing process together
play a game against an adversary, in a way similar to the géagegby a randomized online
algorithm against its adversary. As for the analysis of canided online algorithms [BEY 98],
we define different types of adversaries; see Figure 4.1obligous adversargonstructs the
input instance only based on the knowledge of the algorithchad the smoothing functioff.
That is, the oblivious adversary specifies the entire inpstiince which is then smoothed and
presented to the online algorithm. We also define a strordyarsary, thedaptive adversary
that reveals the input instance over time, thereby takimistms made by the online algorithm
in the past into account. Said differently, the adaptiveeashlry constructs the input instance
revealed to the algorithm after tintealso on the basis of the execution of the algorithm up to
time t. Both adversaries are charged with the optimal offline casthe smoothed instance.
Considering the instance space, in the oblivious ¢é6E o) is defined at the beginning, once
the adversary has fixel while in the adaptive cas¥ (1, o) is itself a random variable, since
it depends on the evolution of the algorithm.

Several other attempts were made in the past to refine thennoticompetitiveness so as to
characterize the performance of an online algorithm moegjaately than by its competitive
ratio. One idea was to enhance the capability of the onligerthm by allowing a limited
lookahead [Alb97, Alb98]. Another idea was to restrict tlosvpr of the adversary. A partial
list of these efforts includes the access graph model of doret al. [BIRS95] to restrict the
input sequences in online paging problems to specific patt@and the resource augmentation
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model of Kalyanasundaram and Pruhs [KPOQ] for analyzingnerdcheduling algorithms.

More related to our proposal of smoothed competitive aimsligsthe diffuse adversary
modelof Koutsoupias and Papadimitriou [KP94]. In this model, di&tribution of the input
is chosen by an adversary from a known class of possiblaldiions. However, smoothed
competitive analysis is substantially different from th#ude adversary model. In the latter
model the probability distribution of the input instancesselected by a worst case adver-
sary, while in smoothed competitive analysis the inputainse is determined by a worst case
adversary and then perturbed according to a specific ditiiin

We strongly believe that smoothed competitive analysisnataral alternative to compet-
itive analysis and that it will help to characterize the atperformance of online algorithms.

4.3 Problem Definition

The adversary releases a det= [n| of n jobs over time. For each jop € J the adversary
specifies itgelease time-; and itsinitial processing time;. We consider the single machine
case. The machine can process at most one job at a time, andanjoot be processed before
its release time. We allowreemptionof jobs, i.e., a job that is being processed can be inter-
rupted and resumed later on the machine. A scheduling gigodecides which uncompleted
job should be executed at each time. For a generic schequés Cf denote thecompletion
time of job j. Theflow timeof job j is given by F® := C¥ — r;, i.e., the total time that
j is in the system. Theotal flow timeof a scheduleS is defined ag™ := >, ; F> and
theaverage flow timés given by%FS. A non-clairvoyantscheduling algorithm knows about
the existence of a job only at the release time of the job, hadgtocessing time of a job is
only known when the job is completed. The objective is to firmtledule that minimizes the

average flow time.

4.4 Smoothing Model

We smoothen the processing times of the jobs. We remark tabwld additionally smoothen
the release dates. However, for our analysis to hold it icserfit to only smoothen the pro-
cessing times. Furthermore, from a practical point of vieach job is released at a certain
time, while processing times are estimates. Therefores ihore natural to smoothen the
processing times and to leave the release dates intact.

We use a partial bit randomization model. We assume thanttialiprocessing times are
K-bit integers in[1,2K]. For each jobj € J we perturb the initial processing timgs by
replacing thekt least significant bits by some random numbgthat is chosen independently
according to a smoothing distributighfrom [1,2*]. More precisely, we define tr@noothed
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processing time; of ajobj € J as

5 1
pj = ok \‘p] J + €5, WhereEj <i [1,2k]

Note that; is at leasfl and thereford is subtracted frorp; before applying the modification.
For k = 0 the smoothed processing times are equal to the initial peicg times; folk = K
the processing times are chosen entirely at random figR¥*]. A similar model is used
by Banderier, Beier, and Mehlhorn [BBMO03] and by Beier et[BICKV04]. However, in
[BBMO3] and [BCKVO04] only the uniform distribution was coidered, while our analysis
holds for a large class of smoothing distributions. At firstnge, it may seem odd to allow
distributions other than the uniform distribution. Howeube advantage is that fér= K we
obtain processing times that are chosen entirely at randoor@ing tof.

4.4.1 Feasible Smoothing Distributions

Our analysis holds for any smoothing distributigrthat satisfies properties (P1), (P2), and
(P3) below. Lets be a random variable that is chosen according to densitytibumg from
1, 2F].

(P1) Ple > (1 +~)2F1] > aforsomed < a < 1and0 < y < 2k—K-1,
(P2) SF Ple < 2] < forsomel <3<k +1.
(P3) E[¢] > ¢ - 2F for some0 < § < 1.

We give some intuition; see also Figure 4.2. (P1) statesthlgatipper tail probability of is
at leastn. Supposed is small, (P2) means thdtis slowly increasing from. (P3) states that
the expectation of is not too close td. We remark that our analysis holds for both discrete
and continuous distributions. Subsequently, however, sgarae thaj is discrete. We usg
ando to denote the expectation and standard deviatiofy oéspectively.

For distributions satisfying (P1)—(P3) we prove that ML sanoothed competitive ratio

K-k 1 1
o(Ezkti, 1 1)
a ay 62

Ideally, if v, 3, andd are constants angd= 2*~5~1 we obtain a smoothed competitive ratio
of O(25=F). Itis difficult to give a generic characterization for distrtions that satisfy (P1)—
(P3) with reasonable values ~, 8, andé. We propose the following class of distributions
and refer the reader to Section 4.4.2 for further charamtttons. We call a distributiorf
well-shapedf the following conditions hold:

1. fis symmetric aroung,

2. 1 >21 and
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Figure 4.2: lllustration of properties (P1)—(P3).

3. fis non-decreasing ifi, 2¥71].

For example, the uniform, the normal, and the double expiialefistribution withy, = 28—14+
% are well-shaped distributions. In Section 4.4.2 we showiedi-shaped distributions satisfy
(P1)—(P3) with

a:<%>2, 'y:min<%(%>,2k_l<_l>, s=2, and 5:%.

Therefore, for a well-shaped distribution we obtain a sthedtcompetitive ratio of

2k 3 2k 2
O<<—> - (—) ok =k
g g
From the discussion in Section 4.4.2 it will also become epmathat we obtain the same

competitive ratio for any distribution witp > 2¢=! and which is non-decreasing fih, 2*],
e.g., for the exponential distribution.

4.4.2 Characterization of Feasible Smoothing Distributios

In the following we attempt to characterize distributiohattsatisfy properties (P1)—(P3). The
reader may prefer to proceed to subsequent sections firsiommel back to these characteriza-
tions later.

We start with (P1). A trivial lower bound on the tail probatyilP[e > (1 + ~)2%!] is given
by the following lemma, where we assume a uniform distritver|1, (1 + ~v)2F~1). We
remark that although Lemma 4.4.1 is straightforward, ithmige indeed tight, e.g., for the
uniform distribution.
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Lemma 4.4.1. Lete be a random variable chosen according to a distributipover [1, 2*].
Moreover, letM be such thaP[e = z] < M for eachz € [1,(1 + v)2¢~1). Then,Pe >
(14+~)251 >1 - M(1+~)2F 1.

Proof.
Ple > (1+7)2" 1 =1-Ple < (1+7)2" 1 >1— M(1 4 )2k
O

We also obtain two other lower bounds on the tail probabdityf. Both use an “inverse”
version of Chebyshev’s inequality. We first prove the folilogvlemma; see also [GS01].

Lemma 4.4.2. Lete be a random variable and lét(<) be a non-negative function such that
h(e) < M for eache. Then

Blh(e)] — A

Plh(e) > N = ==

Proof. Let Xj,.) belif (h(s) > \) and0 otherwise. We have
h(e) <M - Xpey + A (1= Xpey),
and by linearity of expectation
E[h(e)] < M -E[Xp)] + A+ (1 = E[Xp)]).

The proof now follows from the fact thd[ X, )] = P[h(e) > A]. O

We are now in a position to obtain our first inverse Chebyshequality.

Lemma 4.4.3 (inverse Chebyshev inequality I)Lete be a random variable chosen accord-
ing to a distribution f over [1,2*] with meanu and standard deviatiom. Then, for each
0< A< 2k,

o? + 2 — A2
Proof. Define h(c) := 2. Thenh(e) < 22! for eache. The bound now follows from
Lemma 4.4.2, where we exploit that = E[¢?] — p2. O

The following lemma shows that foy := 2*=5~1 we obtaina = (o/2%)2, if only the
expectation off is large enough. We remark that the requirement s always satisfied if
p=g-2k

Lemma 4.4.4. Let < be a random variable chosen according to a distributipover [1, 2]
with meany > ¢ - 2 and standard deviationr. Definey := 28=%-1If § > 1(1 + ) then
Ple > (1+7)281] > (0/2F)2
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Proof. The proof follows from Lemma 4.4.3 and singe> 6 - 28 > (1 + )2k 1. O

We derive our second inverse Chebyshev inequality.

Lemma 4.4.5 (inverse Chebyshev inequality Il).Let ¢ be a random variable chosen ac-
cording to a distributionf over[1, 2¥] with meanu and standard deviationr. Then, for each
0< A< 2F—yp,

o2 —\?
(28 — ) — A2
Proof. Defineh(e) := (¢ — u)2. Thenh(e) < (2F — p)? for eache. The proof follows from
Lemma 4.4.2. O

Plle — | > A >

The next lemma applies if the underlying distributipsatisfiesP (e > -+ %] >Ple <

n— %] . For example, this condition holdsffis symmetric aroung or if f is non-decreasing
over([1, 2¥].

Lemma 4.4.6. Lete be a random variable chosen according to a distributipover [1, 2¢]

with meary, > §-2* and standard deviation, and assum®|e > ;H—%] > Ple < ,u—%] .
Define
s B L g k—K—1
'y.—m1n<25 1+\/§(—2k—1)’2 >
Then
k—1 1 g ?
Proof. If v <26 — 1+ % (%), we obtain
1
Ple > (147)2"7} ZP[s Zu—i—%} > 3 -P[[s—m > %] ,
where the last inequality holds becal®g > p + %] > Ple < p— ]. Since2k — i <
(1 — 6)2%, we obtain from Lemma 4.4.5
1 o2 — 152 1 o 2
> At S S (N
Ple 2 (147277 2 3 (1—0)2F)2 ~ 1 <(1 — 5)2k>
O

Note that we have to make sure that- 0. Therefore, fory < % the definition ofy in
Lemma 4.4.6 makes sense only if we requirg2"—1) > (1 — 26) - /2.

Corollary 4.4.1. If f is a well-shaped distribution, we have= % and thus

o\? : 1 g k—K—-1
o = <2_k) s Where = min (ﬁ (F) s 2 .
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-
-

1 22 2k

Figure 4.3: F(z) := Ple < 2], G(z) := min(z - (%)A ,1), where) := k — [.

We come to property (P2). The next lemma characterizeslistins that satisfy (P2).

Lemma 4.4.7. Lete be a random variable chosen according to a distributjpover[1, 2 ]
Let! be some intege@ < [ < k, such that for each, 0 < i < k —1, P[e <2/ <2, (%)]C
ThenZiZOP[a <2 <2+1.
Proof.
k k-1 k =l g\ kel k
1 2 ? —
S Pl<2]=Y Pes2]+ Y Pes2] < (2) F Y
i=0 =0 i=k—I+1 i=0 i=k—I1+1
k—l 1 i
= <_> +1 < 241
, 2
1=0
O

Corollary 4.4.2. If f is a well-shaped distribution thef = 2.

Proof. Since f is non-decreasing ifil, 2°~1], the distribution function'(z) := Ple < z]
of f is strictly increasing oncé’(z) > 0. Moreover, sincef is symmetric around. and
po> 21 P2kl < L Thus, F(2%) < 2. (%)k for eachi, 0 < i < k — 1. Clearly,
F(2F) < 1. O

Finally, consider property (P3). We remark tlaf > (1 + 7)2"!] > « impliesE[e] >
%(1 + v)a2*. However, this bound o might be a too weak. In Lemma 4.4.7 we require
Ple < ] < z-(1/2)* ! only for eachz = 2!, where0 < i < k — [. If we instead require
that this relation holds for every  [1, 2"~!], we obtain a characterization for (P3).
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Lemma 4.4.8. Lete be a random variable chosen according to a distributipover [1, 2%].
Let! be some integef) < [ < k, such that for each: € [1,2°7!], Ple < 2] < = - (%)k_l.
ThenEfe] > i - 2",

Proof. Consider a uniform random variable over[1,2*~!]. We haveG(z) := P[U < 2] =

min(z - (%)'H,l); see also Figure 4.3. By definitiol?[c > z] > P[U > z] for each

x € [1,2"). That is,e stochastically dominateis, and therefor@[c] > E[U] = 2L O

For example, well-shaped distributions satisfy Lemma&wiith [ = 1, which yields
E[e] > 1.2k

4.4.3 Properties of Smoothed Processing Times

We state two crucial properties of smoothed processingstiefinep; := 2k L(p; — 1)/2F].

We havep; = ¢; + ;. Consider a joly with initial processing timey; € [1,2*]. Then the
initial processing time of is entirely replaced by some random processing tinjé,i2"] that
is chosen according to the probability distributin

Fact 4.4.1. For each jobj with p; € [1,2%] we havep; = 0 and thusp; € [1, 2*]. Moreover,
Plp; < z] = Ple; < =] for eachz € [1,2F].

Next, consider a joly with initial processing timey; € (2i~1, 2] for some integet >
k. Then the smoothed processing timeis randomly chosen from a subrange(ef—, 27|
according to the probability distributiofi.

Fact 4.4.2. For each jobj with p; € (2¢1,2¢], for some integeti > k, we havegp; €
[2i=1 27 — 2F] and thusp; € (2771, 21).

4.5 Multi-Level Feedback Algorithm

In this section we describe the multi-level feedback athani We say that a job ialive or
activeat timet in a generic schedul8, if it has been released but not completed at this time,
e,r; <t< Cf. Denote byxf(t) the amount of time that has been spent on processing job
j in scheduleS up to timet. We defineyf(t) =Dpj— mf(t) as theremaining processing time

of job j in scheduleS at timet. Subsequently, we denote by F the schedule produced by
the multi-level feedback algorithm.

The set of active jobs is partitioned into a set of prioriteqasQg, @1, . . . . Within each
gueue, the priority is determined by the release dates gbtige the job with smallest release
time has highest priority. For any two queug@s and(;, we say that);, is lower thanQ); if
h < i. Atany timet, MLF behaves as follows.

1. Jobj released at timéenters queué).
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2. Schedule on the machine the alive job that has highedgitgrio the lowest non-empty
queue.

3. For a jobj in a queueR); at timet, if 27 (t) = p;, assignC}'*" = t and remove the
job from the queue.

4. For a jobj in a queue); at timet, if 2" (t) = 2 < p;, job j is moved from@); to

Qit1-

Observe that if the processing times arélir2] then at mosK + 1 queues)o, ..., Qx
are used during the execution of MLF. Moreover, at any tiraad for any queué); at most
one job in@Q; has been executed. Put differently, if we consider all jblas &re in queué); at
time ¢ then at most one of these jobs satisfi¢/s™ (t) > 2¢=1, while for all other jobs we have
x;.“(t) =211

Fact 4.5.1. At any timet and for any queud); at most one job, alive at tim& has been
executed irQ); but has not been promoted €@ ;.

Under which circumstances does MLF achieve a good perfaengnarantee? We of-
fer some intuition. As mentioned in the introduction, ShettRemaining Processing Time
(SRPT) is an optimal algorithm for the single machine case.cah view MLF as trying to
simulate SRPT by using estimates for the processing timdsegbbs in the system. When a
new job arrives its estimated processing timg;ig a job is enqueued into queug;, for some
i > 0, MLF assumes that it has processing titfie Put differently, whenever a job has been
executed for its estimated processing time and is not caeghléMLF doubles its estimate.
Observe that if a joly is enqueued into queug;, i > 0, MLF assumes that it takex—!
additional time to completg. Therefore, MLF gives precedence to jobs in lower queues.

Consider a joly with processing time; € (2¢~1,2]. The final estimate of's processing
time in MLF is 2¢. Intuitively, if the actual processing time gfis not too far from its final
estimate then the decisions made by MLF with respegt @oe not too different from those
made by SRPT. However, if the final estimate is far off from dlctual processing time then
MLF and SRPT may indeed perform very differently. For examnguppose that the actual
processing time of is 2! 4+ 1. Whenj enters queu€);, MLF defers; until all jobs of
processing time at mo&t—! are completed. On the other hand, SRPT complgtaser one
additional time unit.

In fact, it can easily be seen that MLF may perform arbityesd on jobs of the latter kind:
We release jobs in two phases. In the first phase, attis®, we releaseV := 25— 11 jobs
with processing tim&%—! 4 1. Let{ be the first time when a job, say, has been completed
by MLF. Attime £, all remainingN — 1 jobs have remaining processing tiheNow, consider
another algorithmaLG that does not schedulg and therefore can allocaf—! + 1 time
units on the other jobsaLG will have completed all jobs except by time¢. In the second
phase, starting at timg we release one after another a long sequence of jobs witlegsing
time 1. If we choose this sequence sufficiently long then the toda flme will be dominated
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by the contribution of the second phase. Since during thensephase MLF has at lea3t
jobs in the system whilaLG has only two jobs in the system, we obtain a competitive w@tio
Q(N) = Q(2K).

4.6 Preliminaries

We usemLF andopPTto denote the schedules produced by the multi-level feédblgorithm
and by an optimal algorithm, respectively. We st refer to a generic schedule.

We partition jobs into classes: a jgbe J is of classi, 0 < i < K, if p; € (2071, 2%]. We
useCl; to denote the class of a jgb Note that ifp; € (2¢~1,2%] for some integef > k then
Cl; isnota random variable; see Fact 4.4.2. Note that in MLF a job afszlés completed in
queueq);.

We denote by'S(¢) the number of jobs that are active at timi S. For each jobj and
any timet we define a binary random variabféf(t) which is1 if job j is active at timet,
and0 otherwise. We havé® (t) = djed Xf(t). Moreover, we us&® (t) to refer to the set
of active jobs at time.

The total flow timeF'S of a schedules is defined as the sum of the flow times of all jobs.
Equivalently, we can express the total flow time as the imtegver time of the number of
active jobs. We state this as a fact; see also [LR97].

Fact4.6.1. FS =3, FF = [,.,0°(t)dt.

The following obvious fact states that the sum of the prdogstimes of all jobs is a lower
bound on the flow time of any schedufe

Fact4.6.2. F° > 3. pj.

An important notion in our analysis is the notion latky andunluckyjobs. It serves to
distinguish between jobs that are good and those which aréobdhe performance of MLF.

Definition 4.6.1. A job j of classi is calledlucky if p; > (1 + ~)2¢~1; otherwise, itis called
unlucky.

For each jobj we define a binary random variabeéJl. which is 1 if j is lucky, and0
otherwise.

Note that for MLF a lucky job of clasais a job that still has a remaining processing time of
at leasty2'~! when it enters its queug; of completion. We usé'(t) to denote the number of
lucky jobs that are active at tintén MLF. We also define a binary random variabi’é(t) that
indicates whether or not a jotis lucky and alive at timein MLF, i.e., X} () := X! X% (t).

We haved! (t) = 3, ; X4(t).

At time ¢, the job with highest priority among all jobs in quetie (if any) is said to be the
headof ;. A head job of queu€); is endingif it will be completed inQ;. We denote by(¢)
the total number of ending head jobs at tite



4.7. Smoothed Competitive Analysis of MLF 49

Let X be a generic random variable. For an input instahc&; denotes the value of
for this particular instancé. Note thatX; is uniquely determined by the execution of the
algorithm.

4.7 Smoothed Competitive Analysis of MLF

The intuition behind our analysis is as follows. We argueat WLF tries to simulate SRPT
by using estimates of the processing times and that therpeatface of MLF can be related to
the one of SRPT if the final estimates are not too far from theahgrocessing times of the
jobs. We make this relation explicit by proving that at amgdit the number of lucky jobs is
at most the number of ending head jobs s times the number of active jobs in an optimal
schedule. This argument is purely deterministic. We alsogoan upper bound df — k& + 3

on the expected number of ending head jobs at anytime

We write the total flow time as the integral over time of the t@mof active jobs. At
any timet, we distinguish between (i) the number of active jobs in M&Ri most/«a times
the number of lucky jobs, and (ii) where this is not the case phdve that case (i) occurs
with high probability so that we can use the deterministiarimbto relate MLF to the optimal
algorithm. The contribution of case (ii) is compensatedHhzydxponentially small probability
of its occurrence.

The high probability argument is presented in Section 4.7ur analysis holds both
for the oblivious adversary and for the adaptive advers&gyr the sake of clarity, we first
concentrate on the oblivious adversary and discuss thereliftes for the adaptive adversary
in Section 4.7.2.

Lemma 4.7.1 provides a deterministic bound on the numbarabdyl jobs in the schedule
of MLF for a specific instancd. The proof is similar to the one given by Becchetti and
Leonardi [BLO1] and can be found in Appendix 4.A of this crept

Lemma 4.7.1. For any input instancd, at any timet, 0} (t) < hy(t) + 562°7(t).

Clearly, at any time the number of ending head jobs is at mést+ 1. The following
lemma gives a better upper bound on the expected number iofgeinelad jobs.

Lemma4.7.2. Atany timef, E[h(t)] < K — k + .

Proof. Let #/(¢) denote the number of ending head jobs in the first 1 queues. Clearly
E[h(t)] < K — k+ E[l (t)], since the lasf{ — k queues can contribute at mdst— k to the
expected value ofi(t).

We next consider the expected value/dtt). Let H(¢) denote the ordered sequence
(qo, - - -, qr) Of jobs that are at timeat the head of the firgt + 1 queuesy, . .., Q, respec-
tively. We useg; = x to denote thaty; is empty at timet. Let H;(¢) be a binary random
variable indicating whether or not the head job of quéydif any) is ending, i.e.H;(t) = 1
if ¢; # x andg; is in its final queue, andl;(t) = 0 otherwise. Letd € (J U x)* denote any
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possible configuration fof (¢). Observe that by definitioR[H;(t) = 1| H(t) = H] = 0if
q; = X. Letq; # x. We have

P[H;(t) = 1| H(t) = H] = Plp,, <2'|H(t) = H].
In Appendix 4.B we show that the evertis, < 2¢) and(H (t) = H) are negatively correlated.
Thus,P[H;(t) = 1| H(t) = H] < Plp, <2']. We obtain

k

k
Bl (1) | H(t) = H = S PH(t) = 1| H(t) = H] < 3 Plp,, < 2.
=0

=0

If a job ¢; is of class larger thak we haveP[p,, < 2/ = 0. Therefore, the sum is maxi-
mized if we assume that eaghis of class at most. Since the processing times are chosen
identically, independently, and (under the above assumpéntirely at random, we have

wheres is a random variable chosen according toom [1, 2¥], and the last inequality follows
from property (P2) of our distribution. We conclude

EN(0)]= Y. EN()|H() = HPH{) = H] < 8.

He(Jux)k

O

We define a random variable as the sum of the random parts of all processing times, i.e.,
R := ZJ.GJ ;. We need the following bound on the probability thais at least a constant
fraction of its expectation.

Lemma 4.7.3.P[R > 1E[R]] > 1 — ¢ /2,

Proof. Observe thaE[R| = nu, whereu denotes the expectation ¢f We use Hoeffding’s
bound (see also Theorem 2.4.12 (2.4)) and property (P3)t&rob

1 2 1.2
P[R < %E[R]] < exp (—%) < exp (— 222'[: ) < exp (—n52/2) .

We are now in a position to prove Theorem 4.7.1. We introdbeddllowing notation. For an
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instancel, we define
D= {t: 6" (t) < 264(t)} and Dj:= {t:MF(t) > 254 (1)}.
Moreover, we define the evefit:= (R > $E[R]) and us€f to refer to the complement &F.

Theorem 4.7.1.For any instance and any smoothing distributiofi that satisfies (P1), (P2),
and (P3),
FY'tF K—-k+p 1
E[iN(f,o) [FIOPT] N O( a o + 62>

Proof. Throughout the proof we omit and that the expectation is taken according tover
N(I,0).

FMLF FMLF
E[W} = E[ﬁ

MLF

FOPT

FMLF
FOPT

5} P&] < E[

5] P[E] +E[

5} PE] + ne /2,

where the inequality follows from Lemma 4.7.3 and the faet this an upper bound on the
competitive ratio of MLF. Define := 2/6. Sincee™* < L for z > 0, we havene /2 < c.
We partition the flow timeF™™" = [, 6"-F(¢)dt into the contrlbutlon of time instantse D
andt € D, i.e., FVF = fteD SV () dt + fte@ SMF(t)dt, and bound these contributions
separately.

f 5MLF (t)dt f 25l
B — ‘ E| P[] <E t@FOPT '5 P[£]
:ftep 2p(t)dt + Jiep 2. S5OPT(1)dt
<E ToopT = '5 P[£]
[ [oep 2h(t)dt 12

where we use the deterministic bound of Lemma 4.7.15'¢t) and the fact tha#°FT >
Jyep 0°FT(t)dt. By Fact 4.6.2 and the definition of evefitve havel’"™ > 3= p; > 3. ¢; +
1E[R]. Hence,

fte,D SMYF(¢)dt

For ple] < Zhep 2hOUIZIPE] 12

< +—
> b5 + 5E[R] ay

LK kOB p) 12

B Zj b5 + %E[R] ay’

where we use Lemma 4.7.2 together with the fact that for apytimstance:(¢) contributes

only in those time instants where at least one job is in théegysso at mos}_; p;. Since

E

€
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E[>>;p;] =>_; ¢; + E[R], we obtain

fteD SMEF () dt

AK—k+p) 12
< — -+ —
E o P[£] < - o

e

Next, consider the contribution of time instants D. Given&, we haveF°PT > Zj ¢j+
%E[R]. Exploiting Lemma 4.7.4, which is given below, we obtain

fteﬁ SMEF () dt
FOPT

pie) < Blhep (0% EPE] GBS _ 16

E < < <
>, 6; + 3E[R] >, 6 + 3E[R]

€

Putting everything together, we obtain

FWF]  A(K—k+8) 12 16 2
E < 122 16 2
[FOPT]_ a +ory+a+52

Lemma 4.7.4. E[f,_5 0"\F (t)dt | €] P[€] < EE[Y. pj].

Proof. We use Lemma 4.7.5, the proof of which is subject of Secti@ril4 We have

E[/tGD M (t)dt ' 5} P[] < E[/tED 6MLF(t)dt]
= /t>OE[5MLF(t) |t € D] P[t € D]dt

:/ Zn:sP[(SMLF(t) =s|t e D|P[t € D]dt

20 s=1

— / Zn:sP[t € D|MF(t) = s] P[MF(t) = s]dt

20 s=1

n

< / Zse_o‘s/SP[éMLF(t) = s|dt
120 o=

8 / o
< - P[MF(t) = s]dt
@ Jt>0 ;

8

_ _/ PMF (1) > 1] dt
& Jt>0

= B[S,

where the fifth inequality is due to Lemma 4.7.5 and the sixéguality follows since ™ < %
for x > 0. O
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4.7.1 High Probability Bound

To complete the proof we are left to show that with high proligtat any timet the number
of lucky jobs is a good fraction of the overall number of jobghe system.

Lemma 4.7.5.For anys € [n], at any timet, P[6!(t) < Lad"tF () | SV (t) = s] < e /8.

LetS C J. We condition the probability space on the event that (i)sbeof jobs that are
alive at timet in MLF is equal taS, i.e.,(SM-F(¢) = S), and (ii) the processing times of all jobs
not in S are fixed to values that are specified by a vegtgrwhich we denote bypg = x3).
We define the evenst (¢, S, xg) := ((SYF(t) = S) N (pg = x3)).

Recall that we defined! (1) = X! - X}*F(t). Since we condition oiS"-"(¢) = ), we
have for each € J

Xl - {le if j € S and
0  otherwise.

Thus,

E['(t)| F(t,S,x5)] = > _PIXj(t) = 1| F(t,S,x5)] = Y _P[X}=1]F(t, 5 xg)].

jeJ JES

In order to prove Lemma 4.7.5 we proceed as follows. We fitstgthat, conditioned on
F(t,S,xg5), the random variable(sX]l- | F(t,S,xg)), j € S, are independent. After that, we
prove that the expected number of jobs that are lucky and ativimet is at leastv times the
number jobs that are active at this time, i.e.,

E[0'(t) | F(t,S,x5)] > a|S|.
We can then prove the above lemma simply by using a Chernafidbargument.
Proof of Lemma 4.7.5For eachy € S we defineY; := (X]l- | F(t,S,xg)). Then theY;'s are

independent. MoreoveE[Y", ¢ Y;] = E[6'(t)| F(t, S,x5)] > alS|. Applying Chernoff's
bound (see Theorem 2.4.10 (2.2)), we obtain

P[0'(t) < 5a6(t) | F(t,5,x5)] = P[L csY) < 3019]]
P[5 Y) < AE[Y sVl < oIS,

IN

Finally, summing over all possible subsétsC .J with |S| = s and all possible assignments
ps = Xg, the lemma follows. 0

In the rest of this section we only consider properties ofdtigedule produced by MLF.
We therefore omit the superscrigtF in the notation below.



54 4. Smoothed Competitive Analysis of the Multi-Level FeeclbAlgorithm

Independence of Being Lucky

We first investigate the probability space conditioned anekientF (¢, S,xg) = ((S(t) =
S)N(pg = xg) more closely and then prove that the random variables ( Xl | F(t,S,x3)),
j € S, are independent.

Lemma 4.7.6. AssumeS(t) = S andpg = xg. Then the schedule of MLF up to timés
uniquely determined.

Proof. Assume otherwise. Then there exist two different scheddlesnd S, such that
SSi(t) = S%2(t) = S. LetI; and I, be the corresponding instances. Since the process-
ing times of jobs not inS' are fixed,/; and, differ in the processing times of some subset of
the jobs inS. Lett’ < t be the first time wheré; andS; differ. MLF changes its scheduling
decision if either (i) a new job is released or (ii) an actiob js completed. Since the release
dates are the same i and I, a jobj was completed at tim€ in one schedule, say;, but

not in the other. Sincg must belong taS andt’ < ¢, this contradicts the hypothesis that
SSi(t) = 8. O

Corollary 4.7.1. AssumeS(t) = S andpg = xg. Then, for eacly € 5, :cj(t) is a uniquely
determined constant.

Subsequently, given thai(t) = S andpg = xg, we setr; := z,(¢) for all j € S. We state
the following important fact.

Fact 4.7.1. Let I be an instance such th&{(¢) = S andpgs = xg. Then every instancg,
with pg = xg andp;;» > p;r for eachj € S, satisfiest;,(t) = z;,(t) for eachj € J.

In particular, we can generate all instances satishfif = S andpg = xg as follows.
Let I be defined aps = xg andp;, := w; for eachj € S. Note that/, is not contained
in F(t,S,xg), sinceSy, (t) = 0; but every instancé with ps = x5 andp;; > p;1,, for each
j €S, is contained inF (¢, S, xg).

Lemma 4.7.7. AssumeS(t) = S andpg = xg. Moreover, letr; = z,(¢) forall j € S. Then
the following events are equivalent:

(S(t)=95) N (pg=x35) = ﬂ(pj > 1) N (pg = Xg).
JES

Proof. LetI be an instance such théift) = S andpg = x5. By Lemma 4.7.6, the time spent
by MLF onj € S up to timet is z,(t) = m;. Sincej is active attime, p; > z;(t) = ;.

Next, let] be an instance such thaf; > 7, for eachj € S andpg = xg. Let I, be
defined ap g = x5 andp,, := 7, for eachj € S. For eachy € S we havep;; > m; = pjr,.
From the discussion above we conclude that F (¢, S, x3). O

Lemma 4.7.8. The variablesy; = (le- | F(t,S,xg)), j € S, are independent.



4.7. Smoothed Competitive Analysis of MLF 55

Proof. Let R C S. For eachj € Rleta; € {0,1} and letL; denote the set of processing
times such thafp; € L;) if and only if (X]l- = a;). From Lemma 4.7.7 we obtain

=P

X =a

JER

F(t,S,x3) ﬂ pj € L;
JER

B P(Njcr(pj € L) N Njespi > ;) N (pg = x3)]
a P[Njes(pj > mj) N (pg = x3)]

_ PlNjerlps € L)) N Njes\r(pi > 75) N (Ps = x3)]

P[Njeslp; > m5) N (pg =xg)]

%
@

;> )N (ps =
jeSs

)

whereL;. is defined as the intersection bf and (7, 2K7. Using the fact that processing times
are perturbed independently, we obtain

[L;crPlp; € LI PINjes\r(ps > ) N (P5 = x3)]
I S xa)| = 3¢ j JES\
JDRX] |75 S)] HjERP[pj > mj] P[ijS\R(pj > 1) N (Pg = Xg)]
LI
—Hpijiﬂj [[PX)=ajlp;>m]. (43

JER

The above equality holds for any subget- S. In particular, for a singleton st} we obtain

PIX! =a; | F(t,S,xg)] =P[X}=a;|p; >mj]. (4.4)

Finally, combining (4.3) and (4.4), we obtain

X =q

JER

F(t, S, xs)} = [[PIX} =a; | 7(t, S, x5)] .

JER

Expected Number of Lucky and Alive Jobs

From Equation (4.4) in the proof of Lemma 4.7.8 we learn tliaté concentrate on the
probability space conditioned on the evéflt, S, xg) then

P[X! =a;|F(t,S,xg)] =P[X} =aj|p; >m;] foreachje S.
This relation is very useful in proving the following lemma.

Lemma 4.7.9. For everyj € S, P[X} = 1| F(t,S,x5)] > o. Thus,E['(t) | F(t, S, x5)] >
alS|.
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Proof. First, letp; € (21,2 for some integei > k. Due to Fact 4.4.2 the processing time
pj is chosen randomly from a subrange(®f!, 2¢]. Hence,

P[X! = 1|F(t,8,x5)] =Pp; > (1+7)2 " [p; > m;] > Ple; > 27 |p; > m)],

where the second inequality is due to the fact that> 2°~1. In Appendix 4.B we show that
the eventge; > v2'~!) and(p; > ;) are positively correlated. We have

PIX! = 1| F(t,S,x5)] > Ple; > 1271 > Plg; > (1+7)287],

where the last inequality holds for eveiyk < i < K, if we choosey < ok—K

Next, letp; € [1,2%]. Due to Fact 4.4.1 the processing timgis chosen completely at
random from([1, 2*]. Let L; denote the set of all processing times such (h@-’[ = 1) holds.
Then

PLX) =1|F(t,8,x5)] =Ple; € Lj|ej > m] > Ple > (1+7)2"71].

To prove that the last inequality holds, we distinguish taees:
(@) Letm; < (1+~)2%L. SincePle; > 7] <1,

Plej € Lj|ej > mj] > Pl(ej € Ly) N (5 > m))] > Ple; > (1+7)2"1].
(b) Letm; > (1 +)2F~L. Then
Plej € Lj|ej > m] =1>Pleg; > (1+7)2"1].

Assuming that the smoothing distributighsatisfies (P1), the lemma follows. O

4.7.2 Adaptive Adversary

Recall that the adaptive adversary may change the inputrioston basis of the outcome of
the random process. This additional power may affect theeladion technique that we used
in Lemmas 4.7.2 and 4.7.9. However, as discussed in AppehBithese lemmas also hold
for an adaptive adversary. Thus, the upper bound on the si®da@bmpetitive ratio given in
Theorem 4.7.1 also holds against an adaptive adversary.

4.8 Lower Bounds

4.8.1 Lower Bounds for the Partial Bit Randomization Model

The first bound is af2(2%/%-*/2) one on the smoothed competitive ratio for any deterministic
algorithm against an oblivious adversary. We advise thdeeto first read the proof for the
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adaptive adversary since this bound is more intuitive. énlthver bound proofs, we assume
that the smoothing distribution is well-shaped wjith= 28~ - 1.

Theorem 4.8.1.Any deterministic algorithmaLc has smoothed competitive rafig2%/6-%/2)
for everyk < K/3 against an oblivious adversary in the partial bit randoniaa model.

Proof. For notational convenience, we assume tRats even. The input sequence for the
lower bound is divided into two phases.

Phase L:Attime ¢ = 0, the adversary releas@é := 25/2 4 | (2K—* — 2)/3| jobs and
runsALG on these jobs up to the first tintevhen one of the following two events occurs: (i)
2K/2 jobs, denoted by;, j3, ..., i/, have been processed for at lea&t? time units, or
(i) one job, sayj*, has been processed ff — 25! time units. Subsequently, we call jobs
released in the first phagphase-1 jobs

Let x5-¢ (t) denote the amount of time spent by algorithns on job j up to timet. We
fix the initial processing time of each jgito jj; := «4"°(f) + 2¥*!. Note that after smoothing
the j;'s we haver-® () + 2% < p; < x}*¢(f) + 3 - 2" for eachj. Thatis, in the schedule
produced byaLG, each job has a remaining processing time betv#seand3 - 2% at timet.
Moreover,ALG has not completed any job at this time, i&5C(f) = N.

Instead of considering an optimal scheduling algorithm,ceasider a scheduling algo-
rithm S that schedules the jobs as described below. Clearly, thEftoiv time ofoPTis upper
bounded by the total flow time .

Let £ be determined by case (i). Thehdoes not process jobg, j3, ... s Jr/2 DEfOTE
all other jobs are completed. Therefore, at ledsttime units can be allocated on the other
jobs. Since each of thesé — 25/2 jobs has remaining processing time at mds2*, S has
completed at least

K
min <N —2K/2, L})QWD > N — 2K/2

jobs, i.e., all these jobs. In case (ii), by not processityjjo S completes at least

2K_2k+1
min ([N —1,|Z—= | ) > N —2K/2
3.2k

of the other jobs. Thus, we obtadf () < 2/K/2.

Phase 2:Starting from timef, the adversary releases a sequencé of 255/3-k jobs,
denoted byN + 1,N +2,...,N + L, for a period off := uL, wherep := 28~ 4+ 1. The
release time of jo = N +iisr; := t+(i—1)u, fori = 1,..., L. Each such jolj has initial
processing timg; := 1 and its smoothed processing time satisfies: 2*. Subsequently, we
call jobs released in the second phpkase-2 jobs

To analyze the number of jobs in the systemanlz and S during the second phase,
we define the random variables; := py,; — u, for j = 1,..., L. Note that theX;’s
are independently distributed random variables with zeeam DefineSy := 0 and S; :=
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22:1 X;, fori = 1,..., L. Applying Kolmogorov’s inequality (see Theorem 2.4.14% w
obtain

E[s7]
pAL

P Si| > uvL| < < 4.5
orél%)i’ il 2nVL| < - *.5)

1
3
The last inequality follows sincE[S?] = Var[S;] and the variance of the random variable
Sy, for the uniform distribution ig.(22% — 1)/12. The bound holds for any well-shaped distri-
bution, since among these distributions the variance ismia&d by the uniform distribution.

Consider a schedul@ only processing phase-2 jobs. The amount of idle time upte ti
t 4 i is given by

i
IQ =0 and Iz = max [i_l,iu — ZpN+j
j=1

Hence, the total idle time up to tinde+ 4y for this algorithm is

I, = Org?gi—Sj.
By (4.5) we know that with probability at Iea%tthe total idle time at any timé + iu stays
below ;iv/L.
We first derive a lower bound on the number of jobs that areersistem ofALG during
the second phase.

Lemma 4.8.1. With probability at least, at any timet € [t,+¢]: *-°(t) > N — 3L —1.

Proof. ALG can do no better than the SRPT rule during the second phasé. pghase-1 job
has remaining processing time larger tt24n Therefore ALG follows Q using the idle time

to schedule phase-1 jobs, unless a phase-1 job has receivadch processing time that its
remaining processing time is less than the processing tinteeonewly released job. This
leads to at most an additionaff time spent on phase-1 jobs. Hence, with probability at least
%, at most%\/f + 1 phase-1 jobs are finished by G during the second phase. O

S also followsQ during the second phase using the idle time to schedule fdhpdes. We
next give an upper bound on the number of jobs in the systefhchfring the second phase.

Lemma 4.8.2. With probability at leasg, at any timet € [£,#+1]: 65(t) < 25/24+-2V/L+2.

Proof. Consider the amount of additional volume brought into thetesy. Just before time
t =t 4+ i thisis

7
j=1
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i.e., the total processing time of phase-2 jobs releaseutd&met minus the amount of time
processed on phase-2 jobs. Hence, the maximum amount dfoaddlivolume before the
release of a phase-2 job is given by

AV = max (S; + ;) = max (S; + max —S5;) = max (S; — 5;).
0<i<L 0<i<L 0<j<i 0<j<i<L

The probability that this value exceeds some thresholdevialbounded by

0<i,j<L

PAV > 2)\] <P| max (5;—5;) > 2)\} <P [Orila<XL|S¢| > )\]

Setting\ to /L, by (4.5) this probability is at mo%t.
To conclude the proof we need the following fact, which cagilgde proven by induction
on the number of phase-2 jobs released.

Fact 4.8.1. Just before the release of a phase-2 jSthas no more than one phase-2 job with
remaining processing time less than

AssumeAV attains its maximum just before timé:= # 4 iy. Due to Fact 4.8.1 no more
than one phase-2 job has remaining processing time lessg.thantime ¢ a new phase-2 job
is released. Therefore, with probability at Ieésithe number of phase-2 jobs that are in the
system is bounded by

2uV'L

PV L 9=V +2.
o

O

By the above two lemmas, with constant probability the téial time of the two sched-
ules is bounded by

FAC > (N —VL/2 -1,
FS < Ni+ (52 42V +2)f + (252 + 2L +2)(3N2F + 24V D),

where the contribution of the period after tirhe- £ for S is bounded by the number of jobs at
time ¢ + ¢ times the remaining processing time at the start of thisgahas

To bound the ratio betweeR*'¢ and F'S, we note that from the upper bounds dhand
t it follows that Nt < 2(25/2 4 2y/L + 2)uL.. Moreover, we know from the definition df
andy that3N2F + Zu\/f < 8uL. Hence, by restricting < K/3, we have that

ALG _ _ K-k K/2 _ 95K /6—k/2
E[F ]:Q<N VL/2 1>:Q<2 +2K/2 9 )ZQ(zK/ﬁ_kﬁ).

FOPT 2K/2+2\/Z+2 25K /6—k/2

O
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As mentioned before, the adaptive adversary is strongerttteaoblivious one as it may con-
struct the input instance revealed to the algorithm afteeti also on the basis of the execu-
tion of the algorithm up to time¢. The next theorem gives &a(2%—*) lower bound on the
smoothed competitive ratio of any deterministic algorithntler the partial bit randomization
model, thus showing that MLF achieves up to a constant fabbest possible ratio in this
model. The lower bound is based on ideas similar to those lngddotwani et al. [MPT94]
for anQ(2X) non-clairvoyant deterministic lower bound.

Theorem 4.8.2. Any deterministic algorithnaLG has smoothed competitive ratig(2%—*)
against an adaptive adversary in the partial bit randomi@atmodel.

Proof. The input sequence for the lower bound is divided into twospka

Phase 1:Attime t = 0, the adversary releasésé := L(2K"C —2)/3] + 1 jobs. We run
ALG on these jobs up to the first tinlavhen a job, say*, has been processed fff — 241
time units,k < K — 2. The adversary makes sure that none of thgpbs is completed up
to timet. Let e (t) denote the amount of time spent by algoritams on jobj up to time
t. We fix the initial processing time of each jghto j5; := 24°(f) 4+ 2"*!. Note that after
smoothing they;'s we haver-®(#) + 2% < p; < 24"°(#) + 3- 2 for eachj. Thatis, each job
has a remaining processing time betwékrand3 - 2%, Therefore ALG will not complete any
job at timet, i.e., 0" (#) = N.

Consider the optimal algorithrapT. If oPT does not procesg' until time ¢, 2K — 2k+1
time units can be allocated on the other jobs. Thus, at least

2K_2k;+1 - \\2K—k_2

=N-1
3.2k 3 J

of these jobs are completed by T until time , i.e.,6°?7(f) = 1.

Phase 2: The adaptive adversary releases a sequévice 1, N + 2,... of jobs. The
release time of joj = N +iisr; :=tfori = 1andr; := r;_1 + p;_1 fori > 1. Each such
job j has initial processing timg; := 1 and therefore its smoothed processing time satisfies
pj S 2k.

oPT will then complete every job released in the second phaserdehe next one is
released. The optimal strategy farG is also to process the jobs released in the second phase
to completion as soon as they are released since every falmlampleted from the first phase
has remaining processing time larger ti?4n

The second phase goes on for a time interval larger 288n 2 which is an upper bound
on the contribution to the total flow time of any algorithm hetfirst phase of the input se-
guence. Therefore, in terms of total flow time, the secong@litominates the first phase for
bothALG andoPT. Since in the second phaseG hasQ(NV) jobs andopThasO(1) jobs in
the system, we obtain a competitive ratio@fN) = Q(25%). O
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4.8.2 Lower Bounds for Symmetric Smoothing Models

Since we are using the partial bit randomization model we alosmoothen the processing
times symmetrically around their initial values. Therefoa natural question is whether or
not symmetric smoothing models (see also Section 2.3) are suitable to analyze MLF. We
answer this question in the negative by providing a lowemidoof 2(27) on the performance
of MLF under the following symmetric smoothing model.

Consider a functiow : IRT — IR™ which is continuous and non-decreasing. In the sym-
metric smoothing model according #ove smoothen the initial processing times as follows:

pj = max(1,p; +¢;), whereg; L [=9(p;)/2,9(p;)/2],

andf is the uniform distribution. As will be discussed below, gyenmetric smoothing model
according ta? captures the additive smoothing model, a variant of thetaddielative smooth-
ing model, and the relative smoothing model.

We prove the following lower bound for a symmetric smoothingdel according t@.

Theorem 4.8.3.Lety : R™ — IR™ be function such that there existsca € IR™ satisfying
r* — 9(x*)/2 > 252 andz* + J(2*)/2 = 251 4+ q for some constant > 1. Then
there exists af2(2% /a) lower bound on the smoothed competitive ratio of MLF agaamst
oblivious adversary in the symmetric smoothing model atingrto).

The additive symmetric smoothing model oVerc, ] is equivalent to the above defined
model withd(z) := 2¢. Since Theorem 4.8.3 require$ — ¢ > 252 andx* is defined
asz* = 2K-1 4 a4 — ¢, we obtainc < 253 4 q/2. By fixing a := 1, Theorem 4.8.3
yields an2(2%) lower bound for the symmetric additive smoothing model agfaén oblivious
adversary.

We can use the symmetric smoothing model according to simulate a variant of the
additive relative symmetric smoothing model. We defitie) := 2z for somec > 0. The
processing times are then smoothed according to a symraetdothing model over-z¢, z¢].
Definec := c(y) = y/log(z*) as a function ofy € R*, and fixa := 1. Then,z* =
2K=1 1 1 —2¥, The conditionz* — (z*)¢ > 2K~2 is satisfied ify < K — 3. Sincec(y) is
monotone increasing, we obtain the restriction c(K — 3) = (K — 3)/log(3 - 2573 4+ 1).
From Theorem 4.8.3, we obtain &(2%) lower bound for this additive relative symmetric
smoothing model.

The relative smoothing model is equivalent to the symmaeaimoothing model according
to ¥ with ¥(x) := 2ex. The conditions in Theorem 4.8.3 are fuffilledoif< ¢ < (252 +
a)/(3 - 2572 + a). Hence, fora := 1, we obtain an2(2X) lower bound for the relative
smoothing model.

Proof of Theorem 4.8.3The input sequence of the adversary consists of two phases. lie
the algorithm that during the first phase schedules the bsrmpletion in the order in which
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they are released, and during the second phase schedujelsshieat are released in this phase
to completion in the order in which they are released. Aftaritng completed all phase-2 jobs,
S finishes the remaining phase-1 jobs. We upper bavridby S. To prove the theorem, we
show that with constant probabilityV' / FS = Q (2% /a). ThenE[FMF /FOPT = Q(2K /a).
Without loss of generality, we assume tliét> 3, and we defind. := ¥(z*).

Phase 1 Attimet = 0, M := 8max(L3/2% 1) jobs are released with initial processing
time p; := z* and then every; time units one job with the same initial processing time is
released. The total number of jobs released in the first gha@ée= max(L*, 22X /L?). Note
that by definition ofc*, the smoothed processing time of each phase-1 job is atiéast

Let 71 () be the total processing time of jobs released in phase 1 aforebtimeip,, for
i=0,1,...,N — M. DefineSy := 0ands; := S; 1 + & = > ;_y e, fori=1,...,N. As
Ele;] = 0 and alle; are drawn independently, we hals;] = 0 andE[S?] = iL?/12, for
alli =0,...,N. Applying Kolmogorov's inequality (see Theorem 2.4.14% @btain

1
P| max |Si| > LVN| < —.
0<k<N 12

Hence, we have with probability at least/12 that foralli = 0,...,N — M
(i + M)p, — LVN < Ty (i) < (i + M)py + LVN. (4.6)

Subsequently, we assume that (4.6) holds.
Let? := (N — M + 1)p;, and consider & € [0,). Then the remaining processing time
for S as well as MLF at time is

Ti([t/pr]) —t > ([t/pr] + M)py — LVN —t
>t—1+Mp—LVN—t > M2K2_ VN -1
> 2max(L3,25) — max(L3,25) —1 > 0. 4.7)

Hence,S and MLF do not have any idle time during the first phase. Moeeahe remaining
processing time for both algorithms is at masgp;, + Lv/N.

Consider some < [0,7). There is at most one job that has been processed ¢hiduy is
not yet completed. Hence,

< SR—3 +1=0(M).

Consider the schedule produced by MLF up to tim&he probability that a job released
in phase 1is of clask’ is at leastz/ L. The expected number of phase-1 claspbs is at least
aN/L. Applying Chernoff’s bound (see Theorem 2.4.10), we knoat thith probability at
leastl —e?N/(8L) > (e —1) /e there are at leastN/(2L) classK phase-1 jobs. Subsequently,
we assume that this property holds. Note that the probgaltfilét both (4.6) and the bound on
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the number of clas& jobs hold is at leaste — 1) /e — 1/12.
If MLF does not finish any clas& job up to timet then

alN
>

SMLF (§ av
() = 2L

Otherwise, consider the last timec [0, ) that MLF was processing a job in que@g,. By
definition of MLF, we know that at this time all lower queuesrezempty. Moreover, we know
that the remaining processing time of each job in this quswsd mostz, and we also know
from (4.7) that the total remaining processing time is astieaax(L>,25) — 1 = Lv/N — 1.
Hence, at this time the number of alive jobs in the scheduMIdF is at least Lv/N — 1)/a

and also
- LVN —1

6MLFtA
OEES

Phase 2 At time £, M jobs withp, := 25 ~2 are released and then evegrytime units one
job with the samej, is released. The total number of jobs released in this plsas¥.i Note
that no job released in the second phase enters qugue

Let 75 (4) be the total processing time of the phase-2 jobs releasadaftare timel +ips.
Applying Kolmogorov's inequality yields that with probdiby at least11/12 we have

(i 4+ M)ps — LV2N <Ts(i) < (i + M)p2 + LV2N. (4.8)
Subsequently, we assume that also (4.8) holds. The prilah#ét the bound on the number

of classK jobs and (4.6) and (4.8) hold is at le@st— 1) /e — 1/6 > 0.46.

Using the same arguments as before, we now show that MLFneamisly processes
phase-2 jobs until timé := ¢ + (2N — M + 1)p,. Namely, consider & € [{,). Then
the remaining processing time fSras well as MLF at time is

To(|(t —1)/p2]) — (t—1) > (|(t = £)/p2] + M)po — LV2N — (t — 1)

> Mpy— LV2N —1 > M252 _[vo2N -1
> 2max(L3,25) — vV2max(L3,25) -1 > 0.

Thus, if MLF does not finish any phase-1 job of cld§sup to timet, we have

N R N
M) > 9 forte [t,t), and F"F =Q (a—

=3 2L(2N—M—|—1)p2>

Otherwise, we have

5MLF(t) > L\/N —1
a

, forte[t,?), and FMF=0Q (LiN(QN - M+ 1)?2) :
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Moreover, using the same argumentation as for phase 1, we #rat during|, ), S has
at most(Mpy + Lv2N) /2573 41 = (2 + v/2)M + 1 phase-2 jobs in its system. Hence,

5%(t) = O(M) fort e [t,1).

After time ¢, the time needed b§ to finish all jobs is at most

9 2 9 2
Mpy+ LV N+ Mpy+ LV2N < ( +2\/_+1> Mps < ( +2\/—+1> (2N — M +1)ps.

Hence,
FS =O0(M@2N — M+ 1)py).

If N = L*thenM = 8L3/2% and

Q‘ZVW) — 0(a2) or FMF/FS = Q(%) = Q(?) :

If N =22K5/12thenL?® < 2K andM = 8. Moreover,

FMF /RS — Q( oy ) = Q(a2%) or FMF/FS = Q(%) = Q<£> .

FMLF/FS :Q<

2LM a

Since the probability that (4.6), (4.8), and the bound onntiln@ber of clas$< jobs hold

is constant and > 1, we have
JFMLF 2K
e[ ] -o(%)

Obviously, Theorem 4.8.3 also holds for the adaptive advegrg=inally, we remark that
we can generalize the theorem to the case thata well-shaped function.

O

4.9 Concluding Remarks

We analyzed the performance of the multi-level feedbackrélym using the novel approach
of smoothed analysis. Smoothed competitive analysis gesvé unifying framework for worst
case and average case analysis of online algorithms. Weleoed several smoothing models,
including the additive symmetric smoothing model proposgdspielman and Teng [STO1].
The partial bit randomization model yields the best upparmio In particular, we proved
that the smoothed competitive ratio of MLF using this mode{(2* /o) + (2F /o)22K-F),
whereo denotes the standard deviation of the smoothing distdbutihe analysis holds for
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various distributions. For distributions with= ©(2"), e.g., for the uniform distribution, we
obtain a smoothed competitive ratio 62 ~%). By choosingk = K, the result implies

a constant upper bound on the average competitive ratio df.M\e also proved that any
deterministic algorithm has smoothed competitive rﬂ(@K—k). Hence, under this model,
the smoothed competitive ratio of MLF is optimal up to a canstfactor. For various other
symmetric smoothing models we have obtained lower bound®f ). Thus, these models
do not seem to capture the good performance of MLF in practice

A natural question that arises is whether or not the smogtbfrthe release dates helps
to further reduce the smoothed competitive ratio of MLF. WWavpzle a partial answer to this
question: If the initial processing times fi, 2%] are smoothed according to the partial bit
randomization model and the release dates of the jobs aretlatbby means of a smoothing
model that does not disrupt the initial release dates by a2 1, i.e.,|; — r;| < 281
for each jobj € J, we can prove a lower bound 6f(2~%) on the smoothed competitive
ratio of MLF.

As mentioned in the introduction, one could alternativedfite the smoothed competitive
ratio as the ratio between the expected cost of the algorithchthe expected optimal cost;
see definition (4.2). We remark that from Lemmas 4.7.1, 4ah@ 4.7.9 we obtain the same
bound under this alternative definition, without the neadafoy high probability argument.

An interesting open problem is to improve the lower boundreiahe oblivious adversary
in the partial bit randomization model. It can also be of sonterest to extend our analysis
to the multiple machine case. Following the work of Becdhatid Leonardi [BLO1], we
can extend Lemma 4.7.1 having an extra factor#sqgf which will also be in the smoothed
competitive ratio. Finally, we hope that this framework ofbysis will be extended to other
online problems.
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4.A ProofofLemma4.7.1

We introduce some additional notation. The volul&(t) is the sum of the remaining pro-
cessing times of the jobs that are active at tim&< (¢) denotes the total work done prior to
timet, i.e., the overall time the machine has been processinguptilstime ¢. For a generic
functiond (= 4, V, or L), we defineAd(t) = 9"-F(t) — 9°PT(t). Forv (=0, V, AV, L, or
AL), the notation?_(¢) will denote the value off at timet when restricted to jobs of clags
We used>;, <1 (t) to denote the value of at timet when restricted to jobs of classes between
h andk.

Lemma 4.7.1.For any input instancd, at any timet, &7 (t) < hz(t) + S02°7(t).
Proof. In the following we omit/ when clear from the context. Denote byandks, respec-

tively, the lowest and highest class such that at least dnefjéhat class is in the system at
time ¢. We bound the number of lucky jobs that are active at tirag follows:

2 VMR (1)

(4.9)

The bound follows since every job that is lucky at tirrie either an ending head job or not. An
ending head job might have been processed and thereforenmetcassume anything about
its remaining processing time. However, the number of endliead jobs is(¢). For all
other lucky jobs we can bound the remaining processing tiora below: a job of classhas
remaining processing time at least’—!. We have

k k
A O i VOPT(t) + AVLi(t)
9i—1 - 2i—1
i=k1 i=k1
< 2097 <1, (1)

i=k1

k
209 _ (1) + 2 ZQ AVLi(t) — AVeia(t)
2

>k1,<

2@'
i=kq
AV. AV (1)
<k; <3
Y AU EE LIPS ST
i=kq
AV(t
< 20957 <y () + 0257 1 ( +4Z 2#1
i=k1
AV<Z
< 22; +4Z 21+1 ’ (4.10)

i=kq
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where the second inequality follows since a job of clalsas size at most’, while the fourth
inequality follows sinceAV<y, _;(t) = 0 by definition.

We are left to study the sum in (4.10). For aiy< ¢, < ¢ and a generic functiod,
denote byl (t) the value ofd at timet when restricted to jobs released betweeand
to, e.g.,L[ili’“](t) is the work done by time on jobs of class at mostreleased between time
t; andt,. Denote byt; < ¢ the maximum betweef and the last time prior to timein which
a job was processed in que@.; or higher in this specific execution of MLF. Observe that,
fori = k‘l, L ,]{32, [tiJrl,t) D) [ti,t).

At time t;, either the algorithm was processing a job in quéuye; or higher, ort; = 0.
Thus, at time; no jobs were in queudly, ..., Q;. Therefore,

>i

AVei(t) < AV 1y < POy — L2700 ) = AL ).

In the following we adopt the conventiap, —; = ¢. From the above, we have

ko AL(;;yt} (t) B ko LZ;F(ti,t] (t) _ Lg:T(ti,t} (t)
> it 1 = ) i1
i=k1 1=k

MLF(t;41,t5] (t) — I,OPT+1:5] (t)

ko 1—1 M ‘
- Z Z = 9it1 =

i=ky j=ki—1

ko—1 ko L!I;F(tj+1,tj} (t) _ LOPT(tj+1,tj} (t)

- Z Z - i+l = ’

j=k1—1i=j+1

where the second equality follows by partitioning the wodne on the jobs released in the
interval (¢;,] into the work done on the jobs released in the intervgls:,¢;], j = k1 —
1,...,i—1.

Leti(j) € {j +1,..., ko) be the index that maximize"-"“+15] _ p2PTi+1.b] Then

1 >1
k iy ko— k MLF(t,-+1,t,-} OPT(t.'+1,t/']
Al R BT - G
ZT = Z Z 9i+1
i=ky j=k1—1i=j+1
MLF(t41,t; OPT(tjt1,t;
ko—1 L>€(j()J+1 ‘7}(15)— >EZ§)J+1 J}(t)
= Z 2i+1
j=ki1—1
= ( ] OPT(tg, ,t]
OPT(tj41,t5 PT ,
< 20 o < 050 < e,
j=ki1—1

To prove the third inequality observe that every job of cl@sger thani(j) > j released
in the time interval(t;1,;] is processed by MLF in the intervét;,¢] for at most2/+1
time units. Order the jobs of this specific set by increasigfig‘(t). Now, observe that each
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of these jobs has initial processing time at le2iét > 2/+! at their release and we give
to the optimum the further advantage that it finishes evegh gab when processed for an
amountz 7 (¢) < 2J*1 To maximize the number of finished jobs the optimum places th
OPT(tj41,t]
work L>;(j).
number of jobs

on the jobs with smaller}f"(¢). The optimum is then left at timewith a

MLF(tj41,5] 7 OPT(tj41,t5]
50ET(tj+17tj}(t) > L>5(j)J () L>E(j)J @)
>i(4) = 95+1
Altogether, we obtain from (4.9), (4.10), and (4.11)

51t) < h(t) + %5;2;@) + %5;5’; () < h(t) + g&OPT(t).

4.B Proving Positive and Negative Correlations

In Lemmas 4.7.2 and 4.7.9 we use the technique describecttio8&.4.6 to prove that two
events are negatively or positively correlated. We giveesomore details in this section.

In both Lemmas we need to prove that two evefitand B’ are correlated; in Lemma4.7.2,
A = (pg, < 2Y)andB’ := (H(t) = H), and in Lemma 4.7.94’ := (¢; > 42""1) and
B’ := (p; > m;). In both casesA’ is an event that solely depends on the perturbation of
some jobj, e.g.,j := ¢; in Lemma 4.7.2 andg itself in Lemma 4.7.9. We condition the
probability space in order to make sure that only the praegdsme of j is random. That is,
we fix the processing times of all jobs other thato x;, which we denote byp; = x;).
DefineA = (A'|p; = x;) andB = (B’ | p; = x;). Let() denote the conditioned probability
space and |eP denote the underlying conditioned probability distributi The following two
statements are easy to verify.

1. Q) together with the partial ordet and the standarthax andmin operations constitutes
a distributive lattice.

2. Pislog-supermodular. The inequality holds even with edqualind does not depend on
the underlying probability distribution.

We next argue that the evenfisand B are monotone increasing or decreasing.

Lemma 4.7.2. Let the processing timg;; of job j = ¢; in I be fixed such thal € A =
(pg; < 2¢| p; = x;). Define an instancé’ with p;;» < p;;. Thenl’ € A. Hence,A is
monotone decreasing. On the other hand, if the processimepti; in I is chosen such
that/ € B = (H(t) = H|p; = x;), i.e.,j is a head job at time, then;j remains a
head job in any instancg with p;;» > p;;. Therefore,B is monotone increasing. By
Theorem 2.4.164A and B are negatively correlated.
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Lemma 4.7.9. Let I be an instance with processing timg of j being such thal € A =
(gj > 207! |p; = x;). Consider an instanc€ with processing time;;, > pji.
Clearly,I" € A and thusA is monotone increasing. Similarly, g, be fixed such that
I € B = (p; > mj|p; = x;5). If we consider an instanc€ with p;;» > p;; then
Jj also satisfiegp,;;» > m;) and thusl’ € B. That is, B is monotone increasing. By

Theorem 2.4.16, we conclude thatand B are positively correlated.

Since the processing times of all jobs are perturbed indipdly, A’ and (p; = x;) are
independent, i.eP[A"|p; = x;] = P[A’]. We exploit this fact as follows in order to prove
that the eventsl’ and B’ are also correlated. (The second inequality is due to theledion
of AandB.)

P[4’ n B =) P[A' n B'|p; = x| P[p; = x;]

X=

J
<
=) P[4 |p; = x| P[B'|p; = x;] Plp; = x;]

=P[A] ) P[B'|p; =x;]P[p; =x;] = P[A]P[B].

The above reasoning clearly holds for the oblivious advgrdabserve, however, that it also
holds in the adaptive case: The evetitonly depends on the random outcomeof job j,
which the adaptive adversary cannot control. In princitiie,eventB’ might be influenced by

a change in the processing timejofHowever, since; is increased in both cases, this change
is revealed to the adversary only after the completiopitdelf. So, up to time, the behavior

of the adaptive adversary will be the same.






5. TOPOLOGY MATTERS: SMOOTHED
COMPETITIVENESS OF METRICAL TASK
SYSTEMS

Abstract

We considemetrical task systema general framework to model online problems. An onlineatgm
resides in a grapfy of n nodes and may move in this graph at a cost equal to the dist@ihealgorithm
has to service a sequencaasgksthat arrive online; each task specifies for each noggaest costhat

is incurred if the algorithm services the task in this pafac node. The objective is to minimize the
total request cost plus the total travel cost. A deternmimitline algorithm for metrical task systems
is thework function algorithm{WFA), which has an optimal competitive ratio ®f — 1.

In this chapter, we present a smoothed competitive anabf3f8FA. Given an adversarial task
sequence, we smoothen the request costs by means of a syenadelitive smoothing model and
analyze the competitive ratio of WFA on the smoothed taskisege. Our analysis reveals that the
smoothed competitive ratio of WFA is much better th@a() and that it depends on several topo-
logical parameters of the underlying gra@h such as the minimum edge lendth,;,,, the maximum
degreeD, and the edge diametdiam. For example, supposed that the ratio between the maximum
and the minimum edge length 6f is bounded by a constant, WFA has smoothed competitive ratio
O(diam (Upin/o +log(D))) andO(y/n(Uwin/o + log(D))), wheres denotes the standard deviation
of the smoothing distribution. That is, already for pertibns witho = ©(Uy,in) the competitive
ratio reduces t@(log(n)) on a clique and t@(y/n) on a line. We also prove that for a large class
of graphs these bounds are asymptotically tight. Furtheemee provide lower bounds for arbitrary
graphs. We obtain a better bound@{3(Umin /o + log(D))) on the smoothed competitive ratio of
WFA if each adversarial task contains at m@ston-zero entries. We also provide the first average case
analysis of WFA. We prove that WFA ha¥log(D)) expected competitive ratio if the request costs are
chosen randomly from an arbitrary non-increasing distidouwith standard deviatiosi = O (Upyin )-

Publication Notes. This chapter is joint work with NaveevaBiasan. An extended abstract will
appear in the Conference Proceedings of the Twenty-Fitstriational Symposium on Theoretical
Aspects of Computer Science (STACS 2004) [SS04]. A complettsion of the paper was published
as a MPII research report [SS03].

Naveen Sivadasan is a Ph. D. student at the Max-Planchktini§ir Informatik at Saarbricken. The
results presented in this chapter will also become partsttasis. My own contribution to the contents
of this chapter i$0%.
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5.1 Introduction

Borodin, Linial, and Saks [BLS92] introduced a general fesvork, which is commonly
known asmetrical task system$o model online problems. Many online problems can be
formulated as metrical task systems; for example, the pagioblem, the static list accessing
problem, and thé&-server problem. Due to its generality, the competitiveorat an algorithm

for metrical task systems is usually weak compared to theoba@ online algorithm that is
designed for a particular problem, such as ftheerver problem. However, precisely because
of its generality we believe that it is interesting to analy¥FA.

Metrical task systems are formulated as follows. We areggreundirected and connected
graphG := (V, E) with node setV" := {vy,...,v,} and edge sek/, and a positive length
function\ : £ — IR™ on the edges of/. We extend\ to a metricd onG. Leté: V x V —
IR" be a distance function such th#t:, v) denotes the shortest path distance (with respect to
A) between any two nodesandv in G. A taskr is ann-vector(r(vy), ..., r(vy,)) of request
costs The cost to process taskin nodew; is r(v;) € IRT U {cc}. The online algorithm
starts from a given initial positiogy € V and has to service a sequer€e= (rq,...,7,) Of
tasks, arriving one at a time. If the online algorithm residéer task_ in nodeu, the cost
to service task; in nodew is d(u,v) + r+(v); d(u,v) is thetransition costandr;(v) is the
processing costThe objective is to minimize the total transition plus @ssing cost.

Borodin, Linial, and Saks [BLS92] gave a deterministic nalialgorithm, known as the
work function algorithm(WFA), for metrical task systems. WFA has a competitiveor @i
2n — 1, which is optimal. Borodin, Linial, and Saks [BLS92] and Mase, McGeoch, and
Sleator [MMS88] proved thatverydeterministic online algorithm for metrical task systems
has competitive ratio at lea3h — 1.

We use the notion of smoothed competitiveness to charaetéhie asymptotic perfor-
mance of WFA. We smoothen the request costs of each taskdiingdo an additive symmet-
ric smoothing model. Each cost entry is smoothed by addirapdam number chosen from
a symmetric probability distributiorf with mean zero. Our analysis holds for various prob-
ability distributions, including the uniform and the nornalistribution. We user to refer to
the standard deviation gf. Our analysis reveals that the smoothed competitive rditit/FA
is much better than its worst case competitive ratio suggastl that it depends on certain
topological parametersf the underlying graph.

Definition of Topological Parameters: Throughout this chapter, we assume that the under-
lying graphG hasn nodes, minimum edge length,,;,, maximum edge length/,,.., and
maximum degred. Furthermore, we us®iam to refer to thediameterof G, i.e., the max-
imum length of a shortest path between any two nodes. Similargraph hasdgediam-

eter diam if any two nodes are connected by a path of at mbstn edges. Observe that
diamUpnin < Diam < diamUpn,.x. We emphasize that these topological parameters are de-
fined with respect t@- and its length functioth—not with respect to the resulting metric.
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Upper Bounds
random tasks O(g% (Y=ix +1og(D)))
arbitrary tasks O(Biam (Yuin 4 1og(D))) and O<\/n L 1og(D)))

B-elementary tasks  O((3 - Gprax (Ymin 4 log(D)))

Table 5.1: Upper bounds on the smoothed competitive ratio of WFA.

We prove several upper bounds; see Table 5.1.

1. We show that if the request costs are chosen randomly frdistidbution f, which is
non-increasing ino, co), the expected competitive ratio of WFA is

o1+ T -log(D)).

In particular, WFA has an expected competitive ratialgfog(D)) if o = O(Upin)-
For example, we obtain an expected competitive rati®@bg(n)) on a clique and of
O(1) on a binary tree.

2. We prove two upper bounds on the smoothed competitive cdtVFA:

0(—@3’3:} (Yooin - log(D))> and O<\/n - Guax (Lin log(D))).
For example, it = O(Upin) andUnax/Umin = ©(1), WFA has smoothed competitive
ratio O(log(D)) on any graph with constant edge diameter é{d/n) on any graph

with constant maximum degree. Note that we obtai®@og(n)) bound on a complete
binary tree.

3. We obtain a better upper bound on the smoothed competitie of WFA if the ad-
versarial task sequence only consistssedlementary tasksA task is/3-elementary if
it has at most3 non-zero entries. (We will use the temtementary tasko refer to a
1-elementary task.) We prove a smoothed competitive ratio of
max Umin
O(8 - gees (Fi + log (D)) ).

min

For example, it = O(Upin) andUnax/Umin = ©(1), WFA has smoothed competitive
ratio O (5 log(D)) for p-elementary tasks.

We also present lower bounds; see Table 5.2. All our lowentstnold forany deterministic
online algorithm and if the request costs are smoothed dtapto the additive symmetric
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Lower Bounds

arbitrary tasks

— existential Q(Liam (Loin 4 Jog(D)))  and Q<\/n Yo (Uain 4 1og(D)))
— universal QL 4 foinlog(D))  and Q(\/dmm e (Loin 1))

B-elementary tasks  Q(3- (Yziz + 1)) (existential)

Table 5.2: Lower bounds on the smoothed competitive ratio of any detestic online algorithm.

smoothing model. We distinguish betweexistentialand universallower bounds. An ex-
istential lower bound, saf2(f(n)), means that therexistsa class of graphs such thewery
deterministic algorithm has smoothed competitive r&ig(n)) on these graphs. On the other
hand, a universal lower bouriel f (n)) states that foany arbitrary graph,everydeterministic
algorithm has smoothed competitive ratl¢f (n)). Clearly, for metrical task systems, the best
lower bound we can hope to obtain(¥n). Therefore, if we state a lower bound@f f(n)),

we actually meaf)(min(n, f(n))).

4. For a large range of values fériam and D, we present existential lower bounds that
are asymptotically tight to the upper bounds stated in 2s Tiltans (a) that the stated
smoothed competitive ratio of WFA is asymptotically tigld (b) that WFA is asymp-
totically optimal under the additive smoothing model—nbestdeterministic algorithm
can achieve a better smoothed competitive ratio.

5. We also prove two universal lower bounds on the smoothetpetitive ratio:

max

Q(% + % log(D)) and Q<min <diam, \/dmm . %(% + 1)>>

Suppose thal/y.x/Unin = ©(1). Then the first bound matches the first upper bound
stated in 2 if the edge diametéfam is constant, e.g., for a clique. The second bound
matches the second upper bound in Ziim = Q(n) and the maximum degrep is
constant, e.g., for aline.

6. Forg-elementary tasks we prove an existential lower bound of
Q8- (B2 +1)).

This implies that the bound in 3 is tight up to a factor ®f,,.x /Umin ) log(D).

Constrained Balls into Bins GameQur analysis crucially relies on a lower bound on the cost
of an optimal offline algorithm. We therefore study the growt the work function values on
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a sequence of random requests. It turns out that the inciredise work function values can
be modeled by a version of a balls into bins game with depeaiegretween the heights of
the bins, which are specified by a constraint graph. We callghme theconstrained balls
into bins game The dependencies between the heights of the bins maké&duttito analyze
this stochastic process. We believe that the constrainéslibe bins game is also interesting
independently of the context of this work.

Organization of this Chapter.In Section 5.2 we first review the work function algorithm and
state some of its properties. In Section 5.3 we define the #rimgomodel that we use. The
lower bound on the cost of an optimal offline algorithm andréiated balls into bins game are
presented in Section 5.4. Then, in Section 5.5 and Sect@m& prove the upper bounds on
the smoothed competitive ratio of WFA. After that, in Seotlm7, we present upper bounds
for random and3-elementary tasks. Finally, in Section 5.8, we prove erisibéand universal
lower bounds. We give some concluding remarks in Section 5.9

5.2 Work Function Algorithm

LetS = (m,...,7s) be a request sequence, anddgte V denote the initial position of
the online algorithm. LetS; denote the subsequence of the firdasks ofS. For eacht,
0 <t < ¢, we define a functionv; : V' — IR such that for each node € V, w;(u) is the
minimum offline cost to procesS; starting insy and ending inu. The functionw;, is called
thework functionat time¢ with respect taS ands;.

Let opT denote an optimal offline algorithm. Clearly, the optimdliné costopPT[S] onS
is equal to the minimum work function value at tirid.e., OPT[S| = min,cy we(u). We can
computew, (u) for eachu € V' by dynamic programming:

wo(u) :=d(sg,u) and wy(u) = {)Iéi‘sl(wt,l(v) +r(v) +(v,u)) fort>1. (5.1)

We next describe the online work function algorithm; se® §B_S92, BEY98]. Intu-
itively, a good strategy for an online algorithm to processkt; is to move to a node where
opPT would reside ifr; would be the final task. However, the competitive ratio of &goa
rithm that solely sticks to this policy can become arbityabiad. A slight modification gives
a2n — 1 competitive algorithm: Instead of blindly (no matter at wisast) traveling to the
node of minimum work function value, we additionally take tinansition cost into account.
Essentially, this is the idea underlying the work functidgoaithm.

Work Function Algorithm ( WFA): Let sg,...,s;,_1 denote the sequence of nodes visited
by WFA to processS;_;. Then, to process task, WFA moves to a node, that minimizes
wy(v) + 0(s¢—1,v) for all v € V. There is always a choice for; such that in addition
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Figure 5.1: lllustration of facts. Let := r¢(s;) andd := §(s¢—1, St).

wy(sy) = wi—1(s¢) + r¢(s¢). More formally,

S = arg rréi‘r/l(wt(v) +(s¢—1,v)) suchthat wy(sy) = wi—1(st) + re(se). (5.2)

Subsequently, we usgrA andoPT, respectively, to denote the work function and the optimal
offline algorithm. For a given sequenSe= (74, ..., ;) of tasks WFA[S] andopPT[S] refer to
the cost incurred bywFA andoPT on S, respectively. Bysg, ..., sy we denote the sequence
of nodes visited byvFA.

We continue by observing a few properties of work functiond af the online algorithm
WFA; see also Figure 5.1. The corresponding proofs are givermppeAdix 5.A.

Fact 5.2.1. For any nodeu and any time, w(u) > w;—1(u).

Fact 5.2.2. For any nodeu and any time, w;(u) < w—1(u) + r¢(u).

Fact 5.2.3. For any two nodes andv and any time, |w;(u) — w¢(v)| < 6(u,v).
Fact 5.2.4. At any timet, wy(s;) = wi(si—1) — 0(S¢—1, St)-

Fact 5.2.5. At any timet, Tt(St) + (5(St_1, St) = ’I,Ut(St_l) — U)t_l(St).

5.3 Smoothing Model

Let the adversarial task sequende given byS := (7,...,7.). We smoothen each task
vector7, = (74(v1),...,7¢(v,)) by perturbing eacloriginal costentry 7 (v;) according to
some probability distributiorf as follows

re(vj) := max(0, 7 (vj) +e(v;)), wheree(v;)—f.
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That is, to each original cost entry we add a random numbectwisi chosen frony. The
obtainedsmoothedask is denoted by, := (r4(v1),...,r(vy,)). We useu ando, respectively,
to denote the expectation and the standard deviatiofi ofVe assume thaf is symmetric
aroundy := 0. We take the maximum of zero and the smoothing outcome irr dodessure
that the smoothed costs are non-negative. Observe thatahakglity for an original zero cost
entry to remain zero is amplified t%)

A major criticism to the additive model is that zero cost Er#trare destroyed. However,
as we will argue in the next subsection, one can easily véhndy the lower bound proof of
2n — 1 on the competitive ratio of any deterministic algorithm foetrical task systems goes
through for any smoothing model that does not destroy zeros.

Our analysis holds for a large class of probability distiifmos, which we calpermissible
We sayf is permissible if (i) f is symmetric aroung: = 0 and (ii) f is non-increasing in
[0,00). For example, the uniform and the normal distribution amerp&sible. The concentra-
tion of f aroundy is given by its standard deviation Since the stated upper bounds on the
smoothed competitive ratio of WFA do not further improve taosingo much larger than
Umin, We assume that < 2U,,;,. Moreover, we use; to denote a constant depending jon
such that for a random chosen fromf, P[e > o/cs] > 1.

All our results hold against amdaptive adversaryAn adaptive adversary reveals the task
sequence over time, thereby taking decisions made by theeoalgorithm in the past into
account.

5.3.1 Lower Bound for Zero-Retaining Smoothing Models

The proof of the2n — 1 lower bound on the competitive ratio of any deterministigoaithm,
see [BLS92, MMS88, BEY99], is based only on the use of eleargriasks and the fact that
the cost of the online algorithm is monotone increasing Withlength of the input sequence.
Assume we consider a zero-retaining smoothing modelairgdel in which zero cost entries
are invariant to the smoothing. In such a model, elemengasiystare smoothed to elementary
tasks. In particular this means that the above two proestiél hold. Therefore, the lower
bound proof also goes through for sequences that are snabaxticerding to any zero-retaining
smoothing model.

Theorem 5.3.1. Every deterministic online algorithmLG for metrical task systems has a
smoothed competitive ratio of at least — 1 under a zero-retaining smoothing model.

5.4 A Lower Bound on the Optimal Offline Cost

In this section, we establish a lower bound on the cost iecly an optimal offline algorithm
opTwhen run on tasks smoothed according to the additive smapthbdel. For the purpose
of proving the lower bound, we first investigate an interestversion of a balls into bins
experiment, which we call theonstrained balls into bins game



78 5. Topology Matters: Smoothed Competitiveness of Metrleak Systems
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Figure 5.2: lllustration of the “unfolding” forQQ = 1 andh = 5. Left: Constraint grapld7.. Right:
Layered dependency grafh,.

5.4.1 Constrained Balls into Bins Game

We are givem bins By, ..., B,. In each round, we place a ball independently in eachiin
with probability p; with probability 1 — p no ball is placed inB;. We define théneighth, (i) of

a bin B; as the number of balls iB; after round:. We have dependencies between the heights
of different bins that are specified by an (undirectedhstraint graphG. := (V., E.). The
node sell/. of GG. containsn nodesuq, ..., u,, where each node; corresponds to a bir;.

All edges inE,. have uniform edge lengths equal@b Let D be the maximum degree of a
vertex inG.. Throughout the experiment, we maintain the following imaat.

Invariant: The difference in height between two bif% and B; is at most the shortest path
distance between; andu; in G..

If the placement of a ball into a biR; would violate this invariant, the ball i®jected oth-
erwise we say that the ball &cepted Observe that if two bing3; and B; do not violate the
invariant in roundt then, in roundt + 1, B; and B; might cause a violation only if one bin,
say B;, receives a ball, and the othd?,, does not receive a ball; if both receive a ball or both
do not receive a ball, the invariant remains true.

Theorem 5.4.1.Fix any bin B,. Let R, be the number of rounds needed until the height of
B, becomes > log(n). Then,P[R, > c3h (1 +log(D)/Q)] < 1/n*.

We remark that constraint graphs with = 1 exist, e.g., a clique on nodes, such that
the expected number of rounds needed for the height of a bired¢omer is Q(hlog(n)).
Moreover, for any given maximum degréeone can create graph instances with= 1 such
that the expected number of round$X&: log(D)).

We next describe how one can model the growth of the heigBt iy an alternative game on a
layered dependency graph layered dependency grafh, consists of layers, Vi, ..., Vy,
and edges are present only between adjacent layers. Thésitledunfold” the constraint
graphG. into a layered dependency graph.
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We first describe the construction f@ = 1: Each layer ofD,, corresponds to a subset
of nodes inG.. Layer1 consists ofz only, the node corresponding to biB,. Assume we
have constructed layefg,,...,V;, i < h. ThenV;,, is constructed fron¥; by adding all
nodes,I'¢.(V;), that are adjacent tb; in G, i.e., Vi1 = V; UT'¢.(V;). For every pair
(u,v) € V; x V;11, we add an edgéu, v) to Dy, if (u,v) € E,, oru = v. See Figure 5.2 for
an example.

Now, we consider the following game dp,. Each node irD,, is in one of three states,
namelyUNFINISHED, READY, Or FINISHED. Initially, all nodes in layem areREADY and all
other nodes areNFINISHED. In each round, alREADY nodes independently toss a coin; each
coin turns upheadwith probability p andtail with probability 1 — p. A READY node changes
its state toFINISHED if the outcome of its coin toss isead At the end of each round, an
UNFINISHED node in layerj changes its state ®EADY if all its neighbors in layey + 1 are
FINISHED.

Note that the nodes in layéf; are FINISHED if the corresponding bin&;, i € V;, have
height at leasy. Consequently, the number of rounds needed until the rodé ndn Dy,
becomesiINISHED dominates the number of rounds needed for the height.dd becomeéh.

We use a similar construction@ > 1. For simplicity, leth be a multiple of@) and define
R = h/Q. We construct a dependency graPly with 2’ layers as described above (replace
by 1/ in the description above). Then we transfafy into a layered grap®,, with & layers
as follows. Letv be a node in layej of Dy,. We replacev by a path(vy,...,v), where
k = |Q|. Nodew; is connected to all neighbors ofin layer j — 1 and nodeyy, is connected
to all neighbors ofy in layer j + 1. This replacement makes sure that the number of rounds
needed until the root node beconmsISHED in D;, dominates the number of rounds needed
for the height ofB, to becomeh.

Proof of Theorem 5.4.1 Let D;, be a layered dependency graph constructed ftgnas de-
scribed above. As argued above, the ev@®t < t¢) is stochastically dominated by the
event that the root node becommasliiSHED within ¢ rounds inD;,. Consider the event that
the root nodez does not becomeINISHED after ¢+ rounds. Then there existslmmd path
P := (v1,...,vp) from z = v; to some nodey, in the bottom layer such that no node
v; of P was delayed by nodes other than, ..., v,. Put differently, P was delayed inde-
pendently of any other path. Consider the outcome of the ftipim only for the nodes along
P. If Pisbad then the number of coin flips, denoted®ythat turned ufneadwithin ¢ rounds
is at mosth — 1. Let «(t) denote the probability tha? is bad, i.e.q(t) :== P[X < h —1].
Clearly,E[X] = tp.

Observe that ifD;, (i) at mosth’ layers contain nodes of degree larger thamd (ii) these
nodes have at mogd + 1 neighbors in the next larger layer. That is, the number oibdes
paths fromz to any nodev in layer i is bounded by D + 1)’“.

Thus, P[R. > t] < o(t)(D + 1)”. We want to choose such that this probability
is at mostl/n*. If we chooset > (32/p)(h + h'log(D)) and use Chernoff’s bound (see
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Theorem 2.4.10) oX, we obtain forh > log(n)

1

—PIX<h—-1 <P[X <pt/2] <e P/ < ___—
a(t) (X <h—-1] <P[X <pt/2] <e S F

5.4.2 Lower Bound

We are now in a position to prove that an optimal offline aldn incurs with high probability
a cost of at leastyUy,;, on a sequence @& (ny (Unin/o + log(D))) tasks.

Lemma 5.4.1. Let S be an adversarial sequence 6f:= [cony(Uwpin/o + log(D))] tasks,
for a fixed constant, and somey > 1. Then,P[OPT[S] < nyUpia] < 1/n3.

We will use Lemma 5.4.1 several times as follows.

Corollary 5.4.1. LetS be an adversarial sequence 6f= [cony(Upin/o + log(D))] tasks
for a fixed constant, and an some > 1. Then the smoothed competitive ratiovefA is at
MOStE[WFA[S]]/(nYUmin) + o(1).

Proof. LetS be a random variable denoting a smoothed sequence obtaimed f We define
£ as the event thaiPTincurs a cost of at leastyU,,;, onS. By Lemma5.4.1P[-&] < 1/n3.
Thus

WFA[S]
OPT[S]
- E[WFA[S] | €] P[€] REEE E[wFA[S]] .

WFA[S]
OPT[S]

WFA[S]
E OPT[S] ]

‘5] P& + E

‘ ﬁg] P[£]

o(1),

anmin n3 NYUmin

where the second inequality follows from the definitionfodnd the fact that the (worst case)
competitive ratio ofwFA is 2n — 1. O

Proof of Lemma 5.4.1 The cost ofoPT on a smoothed sequen&eof length/ is oPT[S| =
min, ey we(u). Therefore, it suffices to prove that with probability atdeb— 1/n3, wy(u) >
nyUnmin fOr eachu € V. Observe that we can assume that the initial work functiduesare
all set to zero, since this can only reduce the cosirf.

We relate the growth of the work function values to the baild bhins experiment. For each
nodewv; of G we have a corresponding bi;. The constraint graply. is obtained from
by setting all edge lengths @ := |Upin/A |, whereA := min(Unin, o/cy). The placement
of a ball in B; in roundt corresponds to the evefit;(v;) > o/cy). Since our smoothing
distribution satisfieP[c > o/cs| > % we have that for any; and anyt the smoothed
request cost,(v;) is at leastr/c; with probability at Ieas%, irrespectively of its original cost
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entry and independently of the other request costs. Theregfoeach round we place a ball
into each bin with probability =

By Lemma 5.4.2 given below, the number of rounds needed arin B; has height
h > log(n) stochastically dominates the timaeeded untikv;(v;) > hA. Applying Theo-
rem 5.4.1, we obtain that for any biB;, after? > c3h(1 + log(D)/Q) rounds,P[h(i) <
h] < 1/n*. Consequently, aftef rounds with probability at least — 1/»? all bins have
height at least. By choosingh := 2n~Q, this implies that at time with probability at
leastl — 1/n3, we(v;) > 2nyQA > nyUpni, for all v; of G. Finally, we make sure that

= [cany(Umin/0 4+ 1log(D))] > c3h(1 +1og(D)/Q) by fixing ¢z := 4c3 [cf]. O

Lemma 5.4.2. Consider any node; and its corresponding birB;. Let h.(i) denote the
number of balls in binB; after¢ rounds. Then, for any > 0, w;(v;) > hy(i) A.

Proof. We proof the lemma by induction on the number of round&or¢ = 0, the lemma
clearly holds. (We can assume that the initial work functiatues are all zero.) Assume that
the induction hypothesis holds afterounds. In round + 1, if no ball is accepted in any bin
then clearly the hypothesis remains true. Consider thewhsee at least one ball is accepted
by some binB;. By the induction hypothesis, we haug(v;) > h:(i)A. Letv; be the node
that determines the work function valug, ; (v;), i.e.,

Wit1(v;) = we(vg) + ree1(vg) + 0(vi, vk).

Assume that;,, = v;. Then the work function value af; increases by the request cost
re+1(v;), and since a ball was accepted i, r.41(v;) > A. Thus, we havev1(v;) >
we(v;) + A > (he(i) + 1)A = hyy1(i)A, and we are done.

Next, assume that, # v;. Letd be the shortest path distance betwegandw, in the
constraint graph. Since in round- 1 a ball was accepted iB;, B; and B, do not violate the
invariant. Therefore,

hi(i) — ht(k) < d — 1 + [ball accepted imBy, in round¢ + 1],

where ‘{statemerit is 1 if statements true, and) otherwise. By multiplying both sides with
A and rearranging terms, we obtain

(he(k) + d)A > (h(i) + 1 — [ball accepted iBy, in roundt + 1])A.

Observe thattA < §(v;, vx) by the definition ofd and the edge length@ of the constraint
graph. Moreovery; 1 (vi) > [ball accepted iBy in roundt + 1]A. Thus,

wi(vk) + reg1(ve) + 6(vi, vk)
hi(k)A + [ball accepted irBy, in roundt + 1]A + dA
(h

t() + 1A = by (D) A

W41 (Uz)

>
>
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O

5.5 First Upper Bound

We can use the lower bound obtained in the last section teedetir first upper bound on the
smoothed competitive ratio afFA. We prove the following deterministic bound on the cost
of WFA.

Lemma5.5.1. Let C be any task sequence of lengthThen wFA[K] < oPTIK] + Diam - £.

Proof. Letsg, ..., s, denote the sequence of nodes visiteduma. For anyt, the cost incurred
by WFA to process task is C(t) := ri(s¢) + 0(s¢—1,5¢). By Fact 5.2.5, we have'(t) =
’U)t(stfl) — wt,l(st). Hence,

)4 /-1
WFA[K] = Z C(t) = we(se—1) —wo(s1) + Zwt(stfl) — wi(St+1)
t=1 t=1
< wy(sp—1)+ (¢ —1) - Diam < minwy(v) + £ - Diam,

veV

where the last two inequalities follow from Fact 5.2.3. @i T[] > min,cy wy(v), the
lemma follows. O

Theorem 5.5.1. The smoothed competitive ratio\wfA is

O(Dz;zm + I;ZLZL -10g(D)> )

Proof. Consider an adversarial task sequescef length¢ := [con~y (Upin/o + log(D))]
for somevy > 1. LetS be a random variable denoting a smoothed sequence obtaorad f
S. Due to the proof of Corrollary 5.4.1 it suffices to bouBfwrA[S]/oPT[S] | £], where€ is
the event(oPT[S| > nyUnin). Using Lemma 5.5.1, we have for any sequeficef ¢ tasks,
WFA[K] < oPT[K] 4+ Diam - £. Thus,

IN

OPT[S| + Diam - £ < 14 Diam - ¢
OPT[S] 1nYUmin

Diam [ Upin
_ log(D
O(vmm ( | og >))

where the last equality follows from the definition ©of O
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5.6 Second Upper Bound

We prove a second upper bound on the smoothed competitieeofatvFA. The idea is as
follows. We derive two upper bounds on the smoothed coniytiaitio of wFA. The first one
is a deterministic bound, and the second one uses the plishabdower bound oropPT. We
then combine these two bounds using the following fact. Toefmof Fact 5.6.1 can be found
in Appendix 5.A.

Fact5.6.1.Let A, B, and X;, 1 < i < m, be positive quantities. We have

mo oy mo oy
min A;nizl)ﬁz, BZZZlXZ < VAB.
> X; m

Consider any deterministic task sequeriCeof length /. Let sg, s1, ..., s¢ denote the
sequence of nodes visited byrA. DefineC' (t) := r(s:) +0(s¢—1, s¢) as the service cost plus
the transition cost incurred byFA in roundt.

With respect tdC we defin€l” as the set of rounds, where the increase of the work function
value ofs;_; is at least one half of the transition cost, ie& T if and only if w;(s;—1) —
wi—1(8¢—1) > 6(s¢—1,51)/2. Due to Fact 5.2.4 we have;(s;—1) = wi(se) + 0(st—1, St)-
Therefore, the above definition is equivalent to

T := {t rwi(se) —wi—1(se-1) > —%5(5t71> St)} : (5.3)

We usel to denote the complement &t

We first prove that the total cost @fFa on K is bounded by a constant times the total cost
contributed by rounds iff".

Lemma 5.6.1. Let K be a sufficiently long task sequence such thea[X] > 6 Diam. Then,
WFAK] < 8% ,cr C(1).

Proof. We havew,(sy) — wo(sg) > —Diam, sincewy(so) < we(sp) and due to Fact 5.2.3.
Thus,

¢
Z(wt(st) — wi—1(8¢—1)) = —Diam.
t=1
Let R~ be the set of rounds whete (s;) — w;_1(s;_1) < 0, and letR* be the set of rounds
wherew(s;) — wy—1(s¢—1) > 0. The above inequality can be rewritten as

D (wia(si1) —wilsi)) < Diam+ > (wy(st) — wi—1(si-1))-

teER™ teRt
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SinceT C R~ and each term on the left hand side is non-negative, we have

D (wia(se1) — wilsy)) < Diam + Y (we(se) — wi1(si-1)). (5.4)

teT teR+

For anyt € T we haveC(t) < 3 (w;_1(s;—1) — w(s¢)). This can be seen as follows. We
havewt,l(st) > ’U)tfl(st,l) — 5(325,1,325) (by Fact 523) andt(st) = wt(st) — ’U)tfl(st)
(by (5.2)). Thereforer;(s;) < 0(s¢_1,5¢) — wi_1(s¢—1) + we(s¢). Moreover, since € T
and by the definition (5.3) of, 0(s;—1,s:) < 2(w—1(s¢—1) — we(se)). Hence,C(t) =
Tt(St) + (5(8,5_1, St) <3 (wt—l(st—l) — wt(st)).

Furthermore, for any we havew,(s;) —wi—1(si—1) < C(t). This follows fromw;(s;) =
wt,l(st) + T‘t(St) (by (5.2)) andwt,l(st) — wtfl(Stfl) < (5(St,1, St) (by Fact 5.2.3). Since
Rt C T, we conclude

D (wils) = wea(si1) < Y C) <D Cb).

teRt teRT teT

Therefore, (5.4) implies

% > C(t) < Diam + > C(1).

teT teT

Exploiting the fact thaWrA[K] = >, .7 C(t)+>_,cp C(t) andwFA[K] > 6 Diam, we obtain
WFA[K] < 8% ,cr C(t). O

We partitionT into 7! and7?, whereT! := {t € T : wy(s) — wi_1(s¢) < 4Upaxdiam},
and7? := T\ T*. For any round, we defineW; := > | w:(v;) andAW; := Wy — W;_1.

Lemma 5.6.2. Fix a roundt and consider any node such thatw;(u) — w;—1(u) > H. If
H < 4Upax diam then AW, > H? /(10U .y ); Otherwise, AW, > nH /2.

Proof. Let H < 4Upaxdiam. Defined := | H/(8Uyax)]. Ford = 0 the claim clearly holds.

Assumed > 0. Consider a shortest path := (ug, u1, ..., uq) of edge lengthi starting from

ug = u. Sinced < |diam/2], there always exists a shortest path of lengti{Consider a

breadth-first search tree rooted:gt the depth of this tree is at ledstiam /2]|.) By Fact5.2.3,

we have for each, 0 < i < d, wi(u;) > wi(ug) — iUmax @andwy 1 (u;) < wp—1(ug) + iUnax-
Therefore,

d d

d
> (wi(us) — weea(ui)) = > (wi(uo) — we-1 (1)) — 2Wnax Y _ i

=0 1=0 =1
2

Z (d+ 1)H - (d+ 1)dUmaX Z (d+ 1)(H - dUmaX) Z W7
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where the last inequality holds sinde< H/(8Upax) < d + 1.
Let H > 4Upaxdiam. Since for any node;, w;—1(v;) < wi—1(u) + Unaxdiam and
wi(v;) > we(u) — Unaxdiam, we have

Z (wi(v;) — w1 (v;)) = nH — 2nUpaxdiam > nH /2.
i=1

O

Lemma 5.6.3. Let K be a sufficiently long task sequence such twit[KC] > 2Diam. There
exists a constarit such that

OPTIK] > % (Ujlax Z Ct)?+n Z C(t)) .

teT? teT?
Proof. For every nodev;, wy(v;) < minyey we(u) + Diam (by Fact 5.2.3). Moreover,
OPTIK] > min,ecy wy(u). We obtain
n 1 n
ng(vi) < noOPTK]+nDiam or, equivalently, opT[K] > — <Z wy(v;) — nDz'am) .
n
i=1 i=1

SinceoPT[K]| > 2Diam, the latter reduces to
2 n
oPTIK] > o Z;wg(vi). (5.5)
=

Claim 5.6.1. For anyt € T", AW, > C(t)2/(160Uay)-
Proof. By (5.2) we have(s;) = wy(st) — wi—1(s¢). Below, we will show that
AW, > (8(si—1,5¢)* + 11(51)%) /(80Ummax)- (5.6)

SinceC(t)? = (8(s¢_1,5¢) +71(5¢))? < 2(6(5¢-1,5¢)% + r4(5¢)?), we conclude tha\W; >
C(t)?/(160Upay ). Now, all that remains to be shown is (5.6). We distinguish bases.
Let 0(s¢—1,8¢) > r(s¢). By the definition of 7", we havew;(s;—1) — wi—1(st—1) >

0(s¢—1,8¢)/2. Using Lemma 5.6.2 withll := 6(s¢—1, s¢)/2, we obtain
AWy > 6(s1-1,5)*/(40Umax) = (8(st-1,5t)" + 71(5¢)*) /(80Umax)-

Let 0(si—1,5:) < re(se). Sincewy(sy) — wi—1(s¢) = 1r(s¢) andry(sy) < 4Upax diam by
the definition of7y, using Lemma 5.6.2 witl#/ := r.(s;), we obtain

AWt Z Tt(St)z/(loUmaX) 2 (5(St_1, St)z + Tt(st)z)/(QOUmaX).
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[
Claim 5.6.2. For anyt € T2, AW; > 4nC(t)/10.

Proof. Sincet € T? and by (5.2),r(s)/4 > diamUmax > 6(s¢—1,8¢). Thus,C(t) =
re(se) + 0(st—1, s¢) < 5ri(s¢)/4. Furthermore, by (5.2) we have(s;) = wi(st) — we—1(s¢).
Applying Lemma 5.6.2 withH := r4(s;), we obtainAW; > nr.(s;)/2 > 4nC(t)/10. O

Claim 5.6.1 and Claim 5.6.2 together imply that

n )4
z;wg(vi) > ;AWt > Y AW, > ﬁ Z C()? + % S o).
= = teT

teT max

The proof now follows for an appropriate constéaritom (5.5). O

Theorem 5.6.1. The smoothed competitive ratio\wfA is

0 <\/n . gi: <Uf:“ 4 log(D)>> .

Proof. Consider an adversarial task sequeSa# length? := [cony(Unin /o +log(D))], for
an appropriatey, and letS be a random variable denoting a smoothed sequence obtaimad f
S. Due to the proof of Corrollary 5.4.1 it suffices to bouBfivFA[S]/oPT[S] | £], where€ is
the event{ OPT[S]| > nyUnin). Consider a smoothing outconsesuch that the everdt holds.
We fix v sufficiently large such thadPT[S] > 6Diam. Observe thatvFA[S] > OPT[S] >
6Diam.

First, assumé_, ;1 C(t) < >_,cp2 C(t). Then, due to Lemma 5.6.1 and Lemma 5.6.3,

1
WFA[S] <16 Y C(t) and OPTS] > . > ).
teT? teT?
Hence E[WFA[S]/oPT[S]| ] = O(1).
Next, assumé _, ;1 C(t) > >, .2 C(t). By Lemma5.6.1 and Lemma 5.6.3 we have

1 1
WFA[S] <16 Y C(t) and oOPTS] > — C(t)?). (5.7)
t;;l bn <Umax t;;l )
e S iers C (1)
WFA[S 1C(1
it < 1ot (S50 62
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Since& holds, we also have

WFA[S] 0-16%" T1 C(t) c Unin 3 - C(t)
OPT[S] < g_nfUmm < Umin< . +10g(D)> (%) (5.9)

where the latter inequality holds for an appropriate cortstaand since/ > |T!|. Observe
that (5.9) is well-defined sincg_, .1 C(t) > =WFA[S] (by (5.7)) andwFA[S] > 6Diam
imply that|T!| > 1.

Applying Fact 5.6.1 to (5.8) and (5.9), these two bounds arelined to

WFA [S ] U, max Umin Umax Umin
<41 . log(D) | = . log(D
OPT[S] - \/ Gben Umin < (o2 * Og( )> © (\/n Umin < g * Og( )> ) ’

which concludes the proof. O

5.7 Better Bounds for Random and3-Elementary Tasks

We obtain better bounds for random aftegtlementary tasks. Both bounds exploit the follow-
ing potential function argument.

5.7.1 Potential Function

In this section we use a potential function argument to @eaiv upper bound on the expected
cost of WFA.

Lemma 5.7.1. LetS be an adversarial task sequence of lengtand letS = (ry,..., ;) be
a smoothed sequence obtained frSmFor a given nodes and a timet, 1 < t < ¢, define a
random variableA;(s) := min,ey (r¢(u) + 6(u, s)). Letk > 0. If E[A.(s)] < & for each
s € V and for eacht, 1 <t </, thenE[WFA[S]] < 4k{ + Diam.

Before we proceed to prove Lemma 5.7.1, we provide sometiioriui Assume we con-
sider a simple greedy online algorithm.G that always moves to a node which minimizes
the transition plus request cost. That 48,G services task; by moving from its current
position, says;_;, to a nodes; that minimizes the expressianin,cy (r¢(u) + 6(u, s;_;)).
Clearly, if the requirement of Lemma 5.7.1 holds, the totgleted cost oRLG on S is
St E[As(s;_1)] < £x. The above lemma shows that the expected cost of the workidanc
algorithmweraA is at most4 times the expected cost of the greedy algorithne plus some
additive term. In the analysis, it will sometimes be coneahio considenLG instead ofwFA.

Proof of Lemma 5.7.1 For1 < ¢t < ¢, we denote by, the node in whichwFa resides after
taskr; has been processed; we ugdo refer to the node in whictvra resides initially.
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We define a potential functioi as
O (t) := wi(s¢) + tDiam /L.
Observe that
D(0) — ®(0) = we(se) — wo(so) + Diam > wy(sp) — wy(sg) + Diam > 0,

where the last inequality follows from Fact 5.2.3 and siti¢eg, sg) < Diam.
We define theamortized cosC,(t) incurred bywFA to process task; as

Ca(t) = Tt(St) + (5(8,5_1, St) + (I)(t) — (I)(t — 1)
=1(s¢) + 0(s¢—1, 8t) + we(st) — we—1(s¢—1) + Diam /¢
= wy(s) — wi—1(8e) + we(se—1) — wp—1(s4—1) + Diam /¢, (5.10)

where the last equality follows from Fact 5.2.5. Using Fa2t®and (5.1) we obtain that for
eachu € V

wi—1(8¢) > wi—q(u) — 6(u,s¢)  and  wy(sy) < weq(uw) + re(u) + 0(u, s¢).
Combining these two inequalities, we obtain

wi(sy) — we—1(s¢) < ry(u) + 20(u,s;) foreachu € V,
and hence wy(sy) — wi—1(s¢) < 2mi‘r/1(7"t(u) +0(u, 1)) = 204(s¢).
ue

A similar argument shows that;(s;—1) — w;—1(s¢—1) < 2A:(s;—1). Hence, we can rewrite
(5.10) as
Ca(t) S 2At(8t) + 2At(8t,1) + Dzam/f

SinceWFA[S] = Y, Cu(t) — ®(¢) + ®(0) and®(¢) — ®(0) > 0, we obtain

l

B2 G

=1

E[WFA[S < 2E

14
Z (At(st) + A(st—1)) | + Diam < 4kl + Diam.
t=1

O

If ¢ > Diam then the above bound reduces¢x¢). Corrollary 5.4.1 together with the
upper bound of Lemma 5.7.1 yield the following corollary.

Corollary 5.7.1. LetS be an adversarial sequence 6f= [cony(Unin/o + log(D))] tasks
for a fixed constants. If v > Uy,ax, and therefore > Diam, the smoothed competitive ratio
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(i) =l 500)

5.7.2 Random Tasks

of WFA is

We derive an upper bound on the expected competitive ratioref if each request cost is
chosen independently from a probability distributifrvhich is non-increasing ifo, co).
We need the following fact; the proof is given in Appendix 5.A

Fact 5.7.1. Let f be a continuous, non-increasing distribution oy@roo) with meanu and
standard deviatiow. Then,u < v/120.

Theorem 5.7.1.1f each request cost is chosen independently from a nomasimg probability
distribution f over [0, co) with standard deviatiorr then the expected competitive ratio of
WFA is

O(l + U:nn 10g(D)> .
Proof. Let S be a random task sequence of length= [cony(Upin/o) + log(D))], for an
appropriatey > Unax, generated fronf. Observe that since > Uy,.x, We havel > Diam.

For anyt and any node, we have
Ay(s) = Héi‘r/l(Tt(u) +0(u, s)) < re(s).
Sincery(s) is chosen fromf, Fact 5.7.1 implies thaE[A;(s)] < & := v/120. Thus, by
Lemma 5.7.1, we havE[WFA[S]] = 4120 + Diam = O(c¥).
Note that we can use the lower bound established in Sectbio Bound the cost abPT:
The generation af is equivalent to smoothing (according fp an adversarial task sequence

consisting of all-zero request vectors only. Here, we donesd that the distributiorf is
symmetric around its mean. The theorem now follows from Qlamry 5.7.1. O

5.7.3 [-Elementary Tasks

We can strengthen the upper bound on the smoothed comeeétio ofwFA if the adversarial
task sequence only consists @felementary tasks. Recall that infaelementary task the
number of non-zero request costs is at nibst

Theorem 5.7.2.1f the adversarial task sequence only consistg-elementary tasks then the
smoothed competitive ratio @fFA is

o(g : % (% + 1og(D)>> .

We state the following fact; the proof is given in AppendiA5.
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Fact 5.7.2. Let f be a permissible probability distribution. TheB[max(0, )] < o, wheres
is a random variable chosen froih

We first prove the following lemma.

Lemma 5.7.2. Let s be an arbitrary node ofy. Consider ag-elementary adversarial task
7= (F(v1), ..., 7 (v,)), wheref < n. ThenE[A(s)] < 0 + Upax.

Proof. LetVy C V be the set of all nodes with original cost zero, i1§.,= {u € V : 7(u) =
0}. Then,|Vy| > n — (3, andV, is non-empty if3 < n. Letv* be a node froni which is
closest tas. We haved(v*,s) < fUnax. (Otherwise, there must exist at least- 1 nodes
with non-zero original cost, a contradiction.) Thus,

E[A(s)] < E[minyev, (re(u) +6(u, 5))] < Elry(v*) + (0", 5)] < 0 + BUnax,

where the last inequality follows sineg(v*) = max(0,e(v*)), e(v*) is a random variable
chosen fromf, and Fact 5.7.2. O

Proof of Theorem 5.7.2 Consider an adversarial task sequenSe of length ¢ :=
[cony(Umin/o + log(D))], for an appropriatey > Uy,ax, and letS be a random variable de-
noting a smoothed sequence obtained f&nBy Lemma 5.7.2E[A¢(s)] < & := 0 + BUnax,
which, since we assume that< 2U,,,, iS O(8Unax). The theorem now follows from Cor-
rollary 5.7.1. O

5.8 Lower Bounds

In this section we present existential and universal loveemidls. All our lower bounds hold
for any deterministic online algorithmLG and against an adaptive adversary.

5.8.1 Existential Lower Bound for 3-Elementary Tasks

We show an existential lower bound f@relementary tasks on a line. We prove that the upper
bound O(8(Umax/Umin ) (Umin /o + log(D))) established in Theorem 5.7.2 is tight up to a
factor of Upax/Unin If the underlying graph is a line. Later, we will use Theorer8.5 to
obtain our first universal lower bound.

Theorem 5.8.1.Let G be a line graph. If the adversarial task sequence only ctssiEs3-
elementary tasks then the smoothed competitive ratio ofdatgrministic online algorithm

ALG is - .
mn (5 (P22 1) 5 722)).
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Proof. We use an averaging technique (see [BLS92]). Divide theilme ~ := n/(20)
contiguous segments @f3 nodes. For simplicity assume thats an integer. (This does not
affect the asymptotic lower bound.) We refer to these se¢gri®nsSy, So, ..., S.

Let s; be the node in whichLG resides after th&h task. In round, the adversary issues a
(-elementary task by placing cost on each node that is within distarj¢g’2] — 1 from s,
and zero cost on all other nodes. Let the random varidldenote a smoothed task sequence.

We consider a seB of h offline algorithms, one for each segment. [} denote the
offline algorithm that resides in segme$if; B; always stays inS;. In each round, each
B; moves to a node in S; minimizing the transition cost plus the request cost. Define
B[S] = Z?Zl B;[S] as the total cost incurred by the offline algorithms ®nB;[S] is a
random variable denoting the total cost incurredByon S. Clearly, B[S] := B[S]/h is an
upper bound oPTS].

Consider any round. At most two consecutive line segments can haveequest costs.
Moreover, in each segment at mgsof the 23 nodes may haveo costs. LetC)(t) be the
cost incurred byB; in roundt. Consider a segmesi; that receives ao request cost. Then,
E[C;(t)] < BUmax + o by Lemma 5.7.2. Assumg; does not receive any request cost.
Then,E[C;(t)] < o by Fact 5.7.2.

Since in any round at most two segments may receiveosts, we conclude

h
ZZCJ“)} §€<2(5Um—2"+0)+o>.

j=1t=1

E[B[S]] = %E

! 1
}:]3ﬂ5@ =B

=1

By Markov's inequality,P[B[S] < 2E[B[S]]] > 1. Since in each roundLG is forced
to travel at least a distance pf/2], we haveaLG[S] > ¢5Upin /2.

We conclude
E ALG [S] > l fﬂUmin/Q —Q ﬂUmin
OPT[S] - 2 26 (2(5Un;lax+o') + 0.) o ﬁQUmax/n + o ’

That is, we obtain a lower bound Of((n/3) - (Umin/Umax)) if 8 > /1/(Unax/o) and of

QB - (Unin/0)) if B < v/n/(Unax/o). In the latter case, exploiting that < 2U,,;,, we
obtain anQ(3 - (Umin/o + 1)) bound. O

Observe that on a line thg&-elementary bound of Theorem 5.7.2 is stronger than the gen-
eral upper bound of Theorem 5.6.1 only if

ﬁ < nUmin
o UmaX(Umin/U + 1) .

In this case, Theorem 5.8.1 provides a lower boun@(@f - (Unin/o + 1)). That s, for a line
graph these bounds differ by a factor of at MGt/ Upnin-
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5.8.2 Universal Lower Bounds

We derive two universal lower bounds on the smoothed cotigetatio of any deterministic
algorithm. The first universal bound uses the following daryg of Theorem 5.8.1.

Corollary 5.8.1. Let G be a line graph. Any deterministic algorithmLG has smoothed
competitive ratid2(min(n, \/ 1(Unin/Umax ) (Unmin /0 + 1))) against an adaptive adversary.

Proof. Fix g := \/nUmin/(Umax(Umin/U + 1)) and use the lower bound given in Theo-
rem 5.8.1. [l

Theorem 5.8.2. Any deterministic algorithmaLG has a smoothed competitive ratio of

Q(min (diam, \/diam- Unnin . <@ + 1>>> .
Umax o

Proof. We extend Theorem 5.8.1 to arbitrary graphs in a straightodt way. Consider a path
in G of edge lengthiiam. The adversary enforces thatG andopPT never leave this path by
specifyingoo cost for each node that is not part of the path. The desiredritaound now
follows from Corrollary 5.8.1. O

Next, we prove the following universal lower bound.

Theorem 5.8.3. Any deterministic algorithmLG has a smoothed competitive ratio of

Umin Umin
Q i -log(D .
(mm <n, . + i og( )>>

max

Proof. The adversary issues a sequencé tafsks as described below. For each < ¢ < ¢,
let s; denote the node at which the deterministic online algoritkus resides after theth
task; we use to refer to the initial position oALG.

We prove two different lower bounds. Combining these twodptlounds, we obtain the
bound stated above.

We first obtain a lower bound & (min(n, Uy /o)) assuming that/,;, /o > 1. In roundt,
the adversary enforces a request codtgf, ons; 1 and zero request cost on all other nodes.
Recall that the adversary is adaptive and therefore knogvpdhkition ofaLG.

We use an averaging technique to relate the coat gfto the average cost of a collection
of offline algorithms. LetB be a collection ofn offline algorithms. We place one offline
algorithm at each node, and each offline algorithm remailits abde during the processing
of the task sequence. Létbe a random variable denoting a smoothing outcoms.ofVe
defineB|S] as the total cost incurred by thealgorithms to procesS. Clearly, the average
costB[S] := BI[S]/n is an upper bound ooPT[S]. It suffices to prove that with constant
probability ALG [S]/B[S] = Q(min(n, Upin /7).
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For the analysis, we view the smoothing process as beingidamévo stages.

Stage 1:Initially, we smoother¥ zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequencs’be (7{,...,7)).

Stage 2:For eachr, 1 <t < ¢, we replace the request costsf ; in 7; by the outcome of
smoothingUin. We user; to refer to the obtained task.

Let R/ (v) := Zf:1 ri(v) be the total request cost accumulated iwith respect taS’.
Moreover, we defing random variableé/, ..., U,: U, refers to the smoothed request cost
r¢(s¢—1) of taskr, obtained in Stage 2. For eath< t < ¢, let Z, be a0/1 random variable
which is1 if and only if U; > Uy, We defineZ .= Zf:1 Z;. Subsequently, we condition
the smoothing outcoms on the following three events: (§ := (3°, . R'(v) < 2nlo), (i)

= (X4, Up < 4Upiyn), and (iii) G := (Z > £/4).

We first argue that the eveif N F N G) occurs with at least constant probability. (i)
Due to Fact 5.7.2E[R/(v)] < (o for eachv € V. By Markov’s inequality, we thus have
P[&] > 1/2. (ii) By Fact 5.7.2 and since < Uy, We also hav@E[U;] < Upin + 0 < 2Unin
for eachl < t < . Hence by Markov's inequalityP[S"_, U; > 40Up] < 1/2. (iii)
Since the smoothing distributiofi is a symmetric, we hav®[U; > U, > 1/2 for each
1 <t </{ Thus,E[Z;] > 1/2. Moreover, theZ,'s are independent. Applying Chernoff’s
bound (see Theorem 2.4.10), we obtRifZ < £/4] < /1,

Since event is defined with respect t§, it is independent of the eveiF N G). There-

fore,
P[Smfmg]>1- 1 (Lypeens)) sl
-2 2 -8’

where the last inequality holds4f> 64.

Let S be any fixed outcome of the smoothing such {gath 7 N G) holds. Assume that
to process sequend® ALG changes its position ik of the/ rounds. Leftl}, refer to the set of
rounds whereLG changes its position. We bound the cost of the offline algor as follows.
In any round, the total cost incurred by the offline algorithms at nodéfedint froms; 1 is
at mosty, .y ri(v). If ALG does not move in rount] bothALG andB incur a cost oU;. If
ALG moves in round, B incurs an additional cost @f;, since one algorithm resides ép_;.
Thus,

B[S] < ALG[S Z Uy + Z R/ (v) < ALG[S] + 40Upin + 2nlo,
teTy veV
where the last inequality follows froft and€.

Since alsag holds, we can conclude thatG incurs a cost of at leagtU,,;,,/4: In each
of the at least/4 rounds, we have,(s;—1) = U; > Upin. That is, no matter whethex.c
moves or stays in these rounds, it incurs a cost of at [éast.

Thus, conditioned on the evef® N F N G) we obtain for an appropriate constant

ALG[S] - ALG[S] > oo min [ Umin
B[S] ~ 17ALG[S]/n +2lo — o )




94 5. Topology Matters: Smoothed Competitiveness of Metrleak Systems

Next we obtain a lower bound &®((Upin/Umax)log(D)). Consider a node of G with
degreeD. Let V; be the set of nodes containirgand all the neighbors ofin G. DefineGy

as the subgraph d@F induced byV,. The adversary makes sure that every reasonable online
algorithm will always reside at a node In by specifying in each round a request costof

for eachv ¢ V5. In addition, in each roundthe adversary enforces the online algorithm to
move by placing a request cost®&f ats;_;. All other request cost are zero.

Let S be a smoothed task sequence obtained fforBinceG is a star withD + 1 nodes
and the transition cost between any two nodes is at ®2@st.., Lemma 5.8.1 implies that
there exists a deterministic offline algoritiBiwith E[B[S]] < 2cfUpax/ log(D). (Observe
that we can apply Lemma 5.8.1 here since with respe€l;tthe request sequence is elemen-
tary.) Applying Markov’s inequality, we obtaiR[B[S] > 4cfU,,ax/ log(D)] < 1/2. Since
ALG has to move in each round to avaid cost, the cost ohLG for any smoothed sequence
is at least’U.,;,. Putting everything together, we obtain

. /;ﬁ[g” S E{AEG[ES]] = (%) | 4c€Urfg7ilr;g(D) - 9(35;”

-log(D)> .
O

Lemma5.8.1. LetG be a cligue withn + 1 nodes and maximum edge length... Consider
an adversarial sequencg of ¢ elementary tasks for a sufficiently largeThen there exists an
offline algorithmB such that forn > 16, E[B[S]] < ¢/Upnax/ log(m) for a constant.

Proof. We first consider an adversarial sequesice- (71, ...,7) of k := [log(m)/2] ele-
mentary tasks. We view the smoothing of the elementary taskeing done in two stages.

Stage 1:Initially, we smoothent zero tasks (all request costs are zero) according to the
given smoothing distribution. Let the smoothed sequencg’be: (r{,...,7/).

Stage 2:For each, 1 <t < k, we obtain a task; from 7/ as follows. Letv* be the node
with non-zero request cogt(v*) in 7. We replace the request costfin 7/ by the outcome
of smoothingr(v*). LetS := (m,...,7,) be the resulting task sequence.

For any nodey;, we define &/1 random variableX; which is1 if and only if the total
request cost accumulated i with respect taS’ is zero. Since for each node the request
cost remains zero with probability at leastwe haveP[X; = 1] > (1/2)* > 1/,/m. Note
that the X;’s are independent. L& := X; + -+ + X,;,+1. We haveE[X] > /m. Let&
denote the ever(X > /m/2). Using Chernoff’s bound (see Theorem 2.4.10), we obtain

P[-&] = P[X < V/m/2] < e VM/5,

The offline algorithmB has two different strategies depending on whether egdrilds
or not.

Strategy 1:If event& holds, B moves at the beginning to a nodgwhose total accumu-
lated request cost is zero and stays there. (RecalBhatoffline.) Note that sinc€ holds
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there are more thagym/2 — k such nodes; fom > 16 there exists at least one such node.
Strategy 2:If event £ does not holdB always moves to a node with minimum request
cost.

SinceB only incurs the initial travel cost of at mo&l,,. if £ holds, we obtain
E[B[S]] = E[B[S]|£] P[] + E[B[S] | €] P[~€] < Unax + E[B[S]| €] - e V™5,

Next, we boundE[B[S]| —&]. Clearly, the transition cost in each round is at nMdgt,y.
The expected request cost incurredBbyn round? is E[min,cy 7:(u) | ~€]. Consider a node
v; with 7(v;) = 0. The smoothed request cost @fis not affected by Stage 2. We have
Emin,ey r¢(u) | €] < Elri(v;) | =€]. Let (X1 = z1, ..., Xmt1 = Tm+1) be any outcome
such that-& holds. Since the request costs are chosen independenthgwe&|r,(v;) | X1 =
T1yeooy X1 = Timp1] = E[re(v) | Xy = 23], If 2y = 1 thenE[r(v;) | X; = 2] = 0, since
all request costs at; must be zero. Ife; = 0 thenE[r.(v;) | X; = x;] < E[ri(vi) | re(vi) >
0]. (Forr(v;) the event(X; = 0) means that either;(v;) = 0 andry(v;) > 0 for some
t'" # t, orry(v;) > 0.) By Fact 5.7.2, the expected cdsfr,(v;)] is at mosto. Moreover,
Plri(v;) > 0] > Plr(v;) > o/cy] > L. Hence E[ri(v;) |m(v;) > 0] < 4E[ry(v;)] < 4o.
Putting everything together, we obtain

k
| —|5 é Z mlnue\/ Tt ) | —|5] + Umax) < k(40 + Umax) < 9kUmax>
t=1

where the last inequality holds since we assumedhat2U,,in < 2Unax-

Altogether, we obtain for a sequenSeof lengthk and form > 16
E[B[S]] < Umax + 9% Umax - € V™% < 130,50

We conclude the proof as follows. We split the entire adv@baequences of length/¢
into j > 1 subsequences of length(the final one might have length less thian On each
subsequencd3 performs as described above. We therefore obtain for theeesgquences
and an appropriate constant

J
CEUmaX
EB[S]| < E 13Umax | = 13jUpnax <
B[S]] Z g
where the last inequality follows from the relation betwéemd;j and definition of. O

5.8.3 Existential Lower Bounds

We provide two existential lower bounds showing that forrgéarange of parameters U,y
Unmax, D, and Diam there exists a class of graphs on wharty deterministic algorithm has
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a smoothed competitive ratio that asymptotically matchesupper bounds stated in Theo-
rem 5.5.1 and Theorem 5.6.1. In order to prove these exiatdémiver bounds, we first show
the following lemma.

Lemma 5.8.2. Given a number of nodes, minimum edge codt,,;,, maximum edge cost
Umax, Maximum degre® > 3, and diametetDiam such that

Diam > 4Upin logp_1(n) and D := min (Diam/Upax, D) > 17,

there exists a graph such that the smoothed competitive oditany deterministic algorithm

ALG is 0 D o
. NUmax ram min
Q<m1n ( Diam’ U < > +log(D)>>> .

Observe that in any graph afnodes and maximum degrég Diam /Uy, > logp_q(n),
i.e., the condition in Lemma 5.8.2 is slightly stronger.

Proof of Lemma 5.8.2 We construct a grapty’ as depicted in Figure 5.3. The graph consists
of m := %nUmaX/Dz'am cligues. Each cligue ha® nodes and the length of an edge between
any two nodes i$/,,;,. We need to ensure that the maximum degree is at modtherefore,
we connect each clique by a path t6/a — 1)-ary treeT". Each such path consists &fedges

of lengthU,,.x. We assign a length @f,,;,, to each edge iff’. Each clique is attached to a leaf
node ofT’; a leaf node may take up 0 — 1 cliques. Sincen cliques need to be connected to
T and we can attach at magb —1)" cliques to a tree of heightt— 1, we fix b := log,_;(m).

The total number of nodes ifi is therefore((D — 1) —1)/(D — 2) < m, sinceD > 3. Itis
easy to verify thatn +m- (X — 1) +m-D < n, i.e., the total number of nodesdnis at most

n. (If it is less thann, we let the remaining nodes become parfof The graph should have
diameterDiam and thus we fixX' such tha®(Uyin + X - Upax + (b — 1)Upin ) = Diam, i.e.,

X = [(Diam/2 — hUpin)/Unax|. Moreover, we want that the minimum distance between
any two nodes in different cliques is at ledsiam, i.e., X - Unax > % Diam. If Diam >

AU in log p_1(n), this condition holds.

Consider the casé/pin/oc > log(D). We need to prove a lower bound of
Q(min(nUpax/Diam, Diam/c)). In each round, the adversary imposescarcost on all
nodes of the graph except on those nodes that join a cliqieiteipath. That is, the adversary
restricts bothaLG andoPT to stay in a “virtual” clique of sizen with U, = %Dz’am and
Umax = Diam. Applying the universal lower bound of Theorem 5.8.3 to ttligue we obtain
the desired lower bound 6f(min(m, Diam/0)).

Consider the casEyin/o < log(D). In each round, the adversary imposes>arcost on
all nodes inI" and on all nodes that belong to a connecting path. Furthesnmoeach round,
the adversary forces the online algoritinnG to leave its clique by specifyingo costs on all
nodes of the clique in whichLG resides. All other request costs are zero.
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(D — 1)-ary tree
heighth — 1

Fomm - -

m cliques of sizeD

Figure 5.3: Structure of graph constructed in the proof of Lemma 5.8.2.

We use an averaging technique. We define a collectiom ef 1 offline algorithms and
compare the cost @fLG with the average cost of the offline algorithms. At most og@athm
resides in each clique. An offline algorith®; remains in its clique’; until co costs are
imposed onC;; at this point,B; moves to the free clique. Within each clique, the offline
algorithm follows the strategy as specified in the proof ofmea 5.8.1. We may assume
without loss of generality that eadBy starts in a different clique (see Appendix 5.B).

Consider a smoothed sequerg®f length/. Let B[S] be the total cost incurred by the
offline algorithms and definB;[S] as the total cost aB; on S. The total cost of the offline
algorithms to travel away from cliques witk costs is at mostDiam. The expected cost of
each algorithm in a clique with zero adversarial request ispslue to Lemma 5.8.1, at most
clUpmin/ log(D — 1); recall that each clique is of siZé > 17 and the maximum edge length
in each clique i9/,;,. Thus,

{Diam clUnin

- {Diam n 1 .
m—1 log(D—-1)

E[B[S]]

“m-—1 m—1

By Markov's inequality,P[B[S] < 2E[B[S]]] > L. Clearly,ALG[S] > 1/Diam. Therefore,
1eDi '
g|ALC [g]] > <l> gDmil MZLU —_— Q<min (m, Diam -log(D)>> .
OPT[S] 2) 251 + o) Umin

O

The next bound shows that if Theorem 5.5.1 gives a betteruymuand than Theorem 5.6.1
then this bound is tight up to a factor big(D)/ log(D) < log(n) for a large class of graphs;
moreover, forD < Diam /Uy, this bound is tight up to a constant factor.
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Theorem 5.8.4. There exists a class of graphs such that the smoothed cdivgeditio of any
deterministic algorithmaLG is

Diam [ Upin
Q i log(D
(mm (n, T~ ( > + log( )>>> ,

whereD = min(Diam/Upin, D).

Proof. If Theorem 5.5.1 gives a better upper bound than Theorernh, & have

Ds min max min
el (U— + log(D)> < \/n . Vmax (U— + 10g(D)>7
ag

Unin min a

which is equivalent to

g

nUmax Diam [ Upin
> log(D) | .
Diam = Upin < + log( )>

Sincelog(D) > log(D), we obtain from Lemma 5.8.2 the desired lower bound. O

Theorem 5.8.5. There exist a class of graphs such that the smoothed compettio of any
deterministic algorithmLG is

Q(min <n \/n(U;: (Uf;m + 1og<D>)>> ,

whereD = min(Diam/Upin, D).

Proof. Let Upin/o > log(D). We fix Diam such thatnU,.y/Diam = Diam/o, i.e.,
Diam = /noUnax. The lower bound of Lemma 5.8.2 then reduce€{q/nUmax /o).
Assume Upin/o < log(D). We fix Diam such that nUpy.x/Diam =
(Diam /Umin) log(D), i.e., Diam = +/nUnaxUmin/log(D). The lower bound of
Lemma 5.8.2 then reduces & /1 (Unmax/Umin) log(D)). O

5.9 Concluding Remarks

In this chapter, we investigated the asymptotic behavioWé# if the request costs of an
adversarial task sequence are perturbed by means of a sgimattitive smoothing model.
We showed that the smoothed competitive ratio of WFA is muetteb thanO(n) and that it
depends on certain topological parameters of the undegrlyiaph. Moreover, all our bounds,
except the one fop-elementary tasks, are tight up to constant factors. We\melihat our
analysis gives a strong indication that the performance BAWW practice is much better than
2n — 1.

It might be of some interest to analyze the smoothed connmatiéss of WFA using dif-
ferent smoothing models. However, we already showed thmatrataining smoothing models,
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such as the relative smoothing model, cannot yield a smdatbepetitive ratio better than
2n — 1. An open problem would be to strengthen the universal loveemds. Moreover, it
would be interesting to obtain exact bounds on the smootbetbetitive ratio of WFA.
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5.A Proofs of Facts

Proof of Fact 5.2.3 .Assumer is the node that defines,(v), i.e.,wy(v) = w1 () +7(z)+
d(z,v). We havew, (u) < wy—1(z)+ri(z)+0(x,u) < wii(x)+ri(x)+0(x,v)+d(v,u) =
wi(v) + §(v, u). O

Proof of Fact 5.2.4 .By (5.2), we have thai(s;) + d(s¢—1, st) < wi(v) + d(s¢—1,v) for all
v € V. In particular, forv = s;_1 this impliesw,(s;) < w¢(st—1) — d(s¢—1, s¢). On the other
hand, due to Fact 5.2.34;15(815) > ’U)t(Stfl) — 6(815,1, St). O

Proof of Fact 5.2.5 .Using (5.2) and Fact 5.2.4, we obtain

Te(st) + 0(si—1,5¢) = wi(se) —wi—1(s¢) + wi(si—1) — we(se) = we(Se—1) — we—1(5¢).

O
Proof of Fact 5.7.1.Let X be a random variable chosen frofnDefine& as the event|.X —
u| > 1/2). Using Chebyshev’s inequality (see Theorem 2.4.9), weiobta
0 40
= — > - < 5 - .
Ple] =P[IX — > 5] <5 (5.11)
Sincef is continuous and non-increasing[ih o),
Pls] =P||X - |>H] >P[X<B} Siplf o x <3 S lpg
Hl=3l= =92l =27 |2 =272 '
This implies thafP[€] > 1. Hence, (5.11) giveg? < 1202 O

Proof of Fact 5.7.2 .DefineY := max(0, X). Sinceu = 0, we haves? = E[X?]. Letoy
denote the standard deviation of the distributiort’ofBy the definition ofE[X?], E[Y?] =
LE[X?]. Sinces? = E[Y?] — E[Y]* ando? > 0, we haveE[Y]?> < E[Y?]. This in turn
implies thatE[Y] < o/v/2. O

Proof of Fact 5.6.1 .DefineX := min (A 2in X B Z%lXi). First, note that

X7
m(XE+ X34+ X2) > (X1 + Xo+ -+ X, (5.12)

because .
1
DICERIES D IR 2 4
0. i=1 0,J,i#]
DefineY := ", X;/m. Note thatY is positive. Due to (5.12), we can writ# <
min (A/Y, BY). The latter expression is maximized4f/Y = BY,ie., ifY = \/A/B.
ThusX < vV AB. [
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5.B Constant Additive Cost of the Offline Algorithm

We would like to point out that in our lower bound proofs we @asume without loss of
generality thabpTincurs an additional additive cost af which is independent of the length
of the input sequence. This does not change the asymptdtibe ébwer bounds, which can
be seen as follows. We always prove a lower bound of(3gly/ X) on a task sequence of
length ¢ by showing that with constant probability the expected obstLG is at leastY” - ¢
and the cost oDPT is at mostX - /. In order to make sure that the additive casidoes
not influence the competitive ratio, we only have to make shiat the task sequence under
consideration is sufficiently long. If we chooésuch thatX - ¢ > Z, we obtain a lower bound
of QUY - 0)/(X -+ 2)) =Q(Y/X).






CONCLUSION

We presented a heuristic improvement for the single-soorary-targets shortest path prob-
lem. This problem is repeatedly solved by matching algor&tio compute maximum weighted
bipartite matchings. Apparently, in the worst case theisgamight have no effect. However,
intuitively, it is clear that the heuristic can only help tmuce the number of queue operations
performed by Dijkstra’s algorithm to solve this problem. ‘Blhstantiated this intuition by
providing a partial average case analysis showing that dora input a significant fraction
of queue operations is saved by the heuristic. Furtherniomr experiments we observed
an improvement in running time for the matching algorithnmeTheuristic is simple and can
easily be implemented.

A large part of this thesis was devotedsmoothed competitive analysiBased on the ideas
underlying smoothed complexity, we proposed to representompetitiveness of an online
algorithm by itssmoothed competitive ratidVe have seen that smoothed competitive analysis
provides a unifying framework of worst case and average aaa#ysis of online algorithms.

We applied this novel notion to the multi-level feedbackoaitpm (MLF) for the non-
clairvoyant scheduling problem and to the work functionoallipm (WFA) for metrical task
systems. As mentioned in the introduction, smoothed caxitplean be interpreted as a mea-
sure of fragility of worst case instances. So, one might ploseuestion:

“How fragile are the worst case instances of these two pnolg@’

For the multi-level feedback algorithm the answer to thisgjion is subject to interpre-
tation. We proved that MLF has smoothed competitive ratiessfentiallyO (25 %), if the
k least significant bits of the processing times are set atorandOne might say that this
indicates that worst case instances are rather stabletiripaions; even if we perturb a con-
stant fraction of the¥ bits, the competitive ratio of MLF remains exponential. Hwer, we
would like to put it differently. The competitive ratio of MLimproves exponentially with
the amount of perturbation; therefore perturbing a constant fractibthe bits results in an
exponential decrease in its competitive ratio. We also guianQ (2 —*) lower bound on the
smoothed competitive ratio ahydeterministic online algorithm under the partial bit rando
ization model. Besides showing that our analysis is tidt lbbwer bound also indicates that
MLF is asymptotically optimal. For various other smoothimgdels, including the symmet-
ric additive and relative smoothing models as proposed bgli8pn and Teng, we proved a
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higher2(2%) bound on the smoothed competitive ratio of MLF. Put difféserunder these
smoothing models worst case instances are invariant tarpettons.

For the work function algorithm we can certainly state thatstcase instances are fragile
if the request costs of the tasks are smoothed according ymmstric additive smoothing
model. Depending on the topology of the underlying graph esetseen that the smoothed
competitive ratio of WFA improves significantly, even for devate perturbations in the order
of the minimum edge length. For example, if the underlyingpris a clique of size, the
smoothed competitive ratio reduces frénin) to O(log(n)). We also provided lower bounds
for any deterministic online algorithm for metrical task systen¥®&ese bounds imply that
our analysis is tight up to constant factors and that WFA ysrgotically optimal under the
symmetric additive smoothing model. Furthermore, we aighat any deterministic online
algorithm has smoothed competitive ra€ign) if a zero-retaining smoothing model, such as
the relative smoothing model, is used. We therefore corcthdt under these models worst
case instances are invariant to perturbations.

In the introduction we also stated that from the analyses btaio new insights into the
behavior of the algorithms.

“What have we learnt from the analyses?”

From both the smoothed competitive analysis of the mulglléeedback algorithm and
the work function algorithm we were able to infer a relatia@tvween the performance of the
algorithm and certain properties of the input. For instamee have seen that the competitive
ratio of MLF is related to the accuracy of the final estimatighe processing times. Moreover,
in the analysis of WFA we clearly established a connectidwéen the competitiveness of the
algorithm and the structure of the underlying graph.

Precisely because of the obtaining of these new insightselevie that it is worth to inves-
tigate the smoothed competitiveness of online algorithensg, we are confident that this new
performance measure will be used in the future to describguiality of online algorithms.



A. NOTATIONS AND THEIR DEFINITIONS

Notation Definition

ALG generic algorithm

OPT optimal algorithm

{a,...,b} set{a,...,b}

[n] {1,...,n}

IN natural numbers

R real numbers

R* non-negative reals

[a, b] continuous rangéz € R : a < = < b}
(a, b continuous rangéz € R : a < = < b}
[a,b) continuous rangézr € R : a < x < b}
(a,b) continuous rangézr € IR : a < x < b}

25 for some sefS

power set ofS

set of all input instances

Z(n) set of all input instances of size

I adversarial, original, or initial instance

I perturbed, or smoothed, instance

f (smoothing) distribution, density function

o smoothing parameter, standard deviation f(pf
7 expectation (off)

N(I,o0) neighborhood of with smoothing parameter
ed [a, b] e chosen independently accordingft@ver [a, b]
P[] probability function

E[] expectation

Var|] variance

Q probability space

w elementary event

F(z) distribution functionP[e < z]

Bin|n, p] binomial distribution

G(n,p) random graph modeh nodes, edge probability
G(n,m) random graph modeh nodes;n edges, equiprobable
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