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Abstract

This thesis consists of two parts. In the first part we present propagation al-
gorithms, which are used for solving constraint satisfaction problems (CSP).
One approach to solve a CSP is based on interleaving constraint propagation
and search. The task of a propagation algorithm is to prune portions of the
search space which do not contain a solution so that the search does not
have to explore them. We present propagation algorithms for the following
constraints: Sortedness, Alldiff, WeightedPartialAlldiff and NonQuerlapping
(of two convex polygons).

The second part deals with a tree processing problem, which is repre-
sented as a dominance graph. The task is to assemble a collection of tree
fragments into a tree 7' such that the ancestor relation of 7" satisfies some
given constraints. We discuss efficient algorithms for deciding whether a
dominance graph D has a solved form and for enumerating all (minimal)
solved forms of D.

Zusammenfassung

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil behandeln wir Propagier-
ungsalgorithmen zum Losen von Constraint-Problemen. Ein Losungsansatz
basiert darauf, Constraint-Propagierung und Suche abzuwechseln. Durch
die Propagierung werden Teile des Suchraumes eliminiert, die keine Losung
enthalten. Dadurch verringert sich der Raum, der von der Suche exploriert
werden muf, und die Losung(en) werden oftmals schneller gefunden als durch
Suche alleine. Wir beschreiben Propagierungsalgorithmen fiir folgende Con-
straints: Sortedness, Alldiff, WeightedPartial Alldiff und NonQuerlapping.

Der zweite Teil behandelt ein Baumverarbeitungsproblem, das durch einen
Dominanzgraphen beschrieben wird. Das Problem besteht darin, Baumfrag-
mente so zu einem Baum zusammen zu setzen, dafl bestimmte Anforderun-
gen an die Vorfahr-Relation des Baumes erfiillt sind. Wir entwickeln einen
Linearzeit Losbarkeitstest und effiziente Algorithmen zum Aufzdhlen aller
(minimalen) gelosten Formen eines Dominanzgraphen.
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Chapter 1

Road map

The purpose of this chapter is to give the reader an overview of the organisa-
tion of this thesis. The thesis is divided in two parts: The first part discusses
propagation algorithms for some constraints. The second part deals with
dominance graphs, these graphs can be used to represent and solve some
tree processing problems arising in computational linguistics.

The first part has the following structure: In Chapter 2, we discuss some
prerequisites. Then we present propagation algorithms for the following con-
straints:

e Sortedness and Alldiff in Chapter 3:
The constraint Sortedness(X, ..., Xn;Y1,...,Y,) holds iff sorting the
sequence [Xi,...,X,| (in non-descending order) yields the sequence
[Y1,...,Y,]. The constraint Alldiff(X;,...,X,) holds iff Xy,..., X,
are pairwise different. The two constraints are discussed in one chapter
because the corresponding propagation algorithms are closely related.

e WeightedPartialAlldiff (abbreviated as WPA) in Chapter 4:

The constraint WPA(Xj, ..., X,; undef;T; W) is a generalization of
Alldiff. Not all assignment variables X1, ..., X, have to take different
values; the special value undef may be assigned to several variables.
Only those assignment variables which are not equal to undef have to
take pairwise distinct values. Moreover, with every value different from
undef that occurs in one of the domains Dom(X}), ..., Dom(X,) we
associate a weight that is determined by the value-weight table 7". The
constraint states that Y., weight(X;) = W, where W is the weight
variable.

e NonQvwerlapping in Chapter 5:
This constraint states that two objects in the two-dimensional plane
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R? should not overlap. The shape of each object is determined by a
convex polygon Shp and the position of each object is specified by two
variables X and Y. The actual object is obtained by applying the
translation vector (X,Y’) to Shp.

Each of these chapters is roughly organized as follows: First we describe
the constraint in an informal way, then we define it formally. After that we
present and analyse a propagation algorithm. We conclude with a discussion
of related work. The fact that we talk about related work at the end of each
presentation does not mean that we consider this work as unimportant. It
just turns out that it easier to compare this work with our work after we
have presented our algorithms.

The second part deals with dominance graphs. Informally, such a graph
consists of a collection of tree fragments which have to be assembled into a
tree 7" such that some given constraints are satisfied. These constraints have
the form “node u should dominate node v”, which means that u should be
an ancestor of v in 7.

The second part has the following structure: In Chapter 6 we briefly
discuss a problem from computational linguistics (called scope underspecifi-
cation) as a motivation for the subsequent work. We proceed with some basic
definitions: We define (among other notions) dominance graphs and solved
forms. In Chapter 7 we describe a linear time algorithm that can decide
whether a given dominance graph is solvable or not. In Chapter 8 we show
how the (minimal) solved forms of a dominance graph can enumerated effi-
ciently. Chapter 9 concludes the second part of the thesis with a discussion
of related work.



Chapter 2

Prerequisites

In this chapter we introduce some fundamental concepts that are used in the
first part of this thesis, which presents propagation algorithms for several
constraints.

In the first section of this chapter we introduce constraint programming
briefly. We discuss what a constraint satisfaction problem (CSP) is and how
it can be solved. The presentation is focused on the properties of propaga-
tion algorithms and how these algorithms participate in solving a CSP. The
second section gives an overview of basic notions related to graphs and multi-
graphs. (This section is also relevant for the second part this thesis.) Finally,
the third section describes some fundamental concepts from (computational)
geometry.

2.1 Constraint Programming

We give a short introduction to the field of constraint programming which is
based on a textbook by Apt [Apt03]. Before we formally introduce the basic
notions, we give a brief historical overview on the development of the field
and name some application areas.

The notion of a constraint was already used by Sutherland in 1963 in
his work on an interactive drawing system called SKETCHPAD. The con-
cept of a constraint satisfaction problem was studied by researchers in the
artificial intelligence (AI) community in the seventies. From their work the
constraint programming paradigm emerged: The basic idea is to combine ex-
isting search methods like backtracking or branch-and-bound with constraint
propagation techniques (methods to prune the search space). As the applica-
tion areas for constraint programming grew in the course of time, new types
of constraints were identified and new propagation algorithms for them were
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developed. Often, progress was made by using and combining techniques
from different fields like AI, operations research, combinatorial optimization
or computer algebra. This made constraint programming an attractive area
for researchers outside the Al community.
In the field of constraint programming, practice and theory are closely re-
lated. The constraints arising in practical applications often drive the theo-
retical work, and in turn the applications benefit from the theoretical results.
We enumerate some examples where constraint programming has been
successfully used:

e operations research problems (various optimization problems, in par-
ticular scheduling)

e molecular biology (DNA sequencing, construction of 3D models of pro-
teins)

e business applications (option trading)

e clectrical engineering (location of faults in circuits, computing the cir-
cuit layouts, testing and verification of design)

e numerical computation (solving polynomial constraints with guaran-
teed precision)

e natural language processing (construction of efficient parsers)

e computer algebra (solving and/or simplifying equations of various al-
gebraic structures)

In the sequel we formally define the notion of a constraint satisfaction
problem and related concepts. A wariable X is an object that is associated
with a set Dom(X), called the domain of X. The domain consists of all values
that can be assigned to X. Suppose we have a finite sequence of variables
X = [Xy,..., Xy (with £ > 1). (The order of the variables is important,
and we allow that a variable appears more than once.) A constraint C on X
is a tuple (X, R) such that R C Dom(X;) X ... x Dom(X}). We call X the
variable sequence of C' and denote it by Vars(C), and R is called the relation
of C and denoted by Rel(C'). We say that a tuple (di, ..., dx) satisfies C if
(dy,...,dx) € Rel(C).

Now we are ready to define what a constraint satisfaction problem is:

Definition 2.1 (CSP) A constraint satisfaction problem (CSP) P is a tu-
ple (V,C) such that V = {X1,..., X} is a finite set of variables, C is a finite
set of constraints and each constraint C in C is a constraint on a sequence
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of variables in V. We write P as (X1 € Dom(X4),..., X, € Dom(X,); C).

A variable assignment for P is a mapping o : V — (J;—, Dom(X;) such that
a(X;) € Dom(X;) fori =1,...,n. For a sequence X = [X,,,...,X;,] of
variables of V we define a|X] = (a(X;,), ..., a(X;,)). We say that « satis-
fies a constraint C in C if o[Vars(C)] € Rel(C). « is a solution of P if it
satisfies all constraints in C. We write o as [ X1 = a(X1), ..., X, = a(X,)]-
P is called consistent if it has a solution and inconsistent otherwise.

The search space of P is defined as the set of all variable assignments for P
and denoted by S(P).

In many applications a constraint is not specified as a tuple (X, R) but
rather in a symbolic way. E.g., “X < Y” denotes the constraint ([X,Y],R)
with R = {(z,y) |z € Dom(X) Ay € Dom(Y) Az < y}. Thus the interpre-
tation of a symbolic constraint depends on the domains of its variables and
on the semantics associated with the constraint.

Example. [t is now time to give an example for a constraint satisfaction
problem. We consider the famous puzzle
S E N D

+ M O R E

M O N E Y

The task is to replace each letter by a different digit such that the summation
above becomes correct. As we shall see, the puzzle has a unique solution
which is depicted below:

9 56 7
+ 1 0 8 5
1 06 5 2

We will now model this puzzle as a CSP. We use the variables S, E, N,
D, M, O, R and Y. Since S and M represent leading digits, we choose
the integer interval [1..9] as their domains. The domain of each remaining
variable is [0..9]. The puzzle can be formulated as follows:

1000-S + 100-E 4+ 10-N + D
+ 1000-M + 100-O + 10-R + E
=10000-M + 1000-O + 100-N + 10-FE + Y

This condition can be modelled by the linear equality constraint Crr where
Vars(Crg) = [S,E,N,D,M,0,R,Y]| and Rel(Cyg) consists of all tuples
(s,e,n,d,m,o0,7,y) € Dom(S) X ... x Dom(Y) that satisfy

9000-m+900-0+90-n+y—1000-5s—-91-e—10-r —d =0
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We still have to express the requirement that the 8 digits are pairwise
different. We could do this with an inequality constraint of the form “A # B”
for each pair of variables, this would yield (g) = 28 inequality constraints
in total. But we can also use a single constraint which expresses all these
inequalities at once:

Cyx = Alldiff(S, E,N,D,M,O,R,Y)

We have Vars(Cy) = Vars(Crg), and Rel(Ca) consists of all the tuples in
Dom(S) x ... x Dom(Y) where the components are pairwise different.

This may look a little bit like cheating and the reader may wonder why we do
not express the whole problem as a single constraint, which is of course also
possible. The answer is that many constraint programming systems offer
the Alldiff-constraint to the user and can handle it efficiently. In fact, in
Chapter 3 we will discuss this constraint in more detail.

In the sequel we describe a generic procedure! which can compute all
solutions of a constraint satisfaction problem (see Algorithm 2.1). The algo-
rithm uses two main ingredients: constraint propagation, which prunes parts
of the search space that do not contain a solution, and search, which explores
the remaining parts.

The procedure SolveCSP(P) starts by applying constraint propagation
to P. This step transforms P into an equivalent and (hopefully) simpler CSP
P'. By equivalent we mean that P and P’ have exactly the same variables and
the same solutions, only the domains of the variables and the constraints may
be different. We require that the domains in P’ are subsets of the domains
in P, i.e. constraint propagation can only shrink the search space.

Let us call a variable determined if its domain is a singleton. A CSP is
called ground if all its variables are determined. For many CSPs it is hard
to decide whether they are consistent or not. As long as the function call
PropagateConstraints (P) returns a CSP P’ which is not ground, we only
require that P’ and P are equivalent. But if P’ is ground, then it must be
consistent, i.e. the only assignment « for P’ must be a solution. Hence, while
the input P is not ground, the function PropagateConstraints may return
P itself. But if P is ground, constraint propagation must check whether P
is consistent, and if not reduce a variable domain to the empty set.

In many cases, constraint propagation can simplify P even if it is not ground,
we will discuss this in detail later.

Now we continue with the description of Algorithm 2.1. The algorithm
distinguishes three cases for P':

!There are approaches which are more generic than ours (see [Apt03]), but this is
beyond the scope of this short introduction.
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e P'is ground:

Then there is only one possible assignment o for P’. Since our as-
sumptions about the function PropagateConstraints imply that P is
consistent, we conclude that « is the unique solution of P’. We report «
and terminate. As P’ and P are equivalent, « is also the only solution
of P.

At least one domain of P’ is empty:

Then there is no possible assignment, i.e. P’ is inconsistent and we
terminate. Observe that constraint propagation can reduce a variable
domain to the empty set, if the input CSP P is inconsistent.

There is no empty domain, and at least one domain contains more than
one element:

Then we call the procedure SplitOneDomain. This procedure chooses
a variable X with |Dom(X)| > 2 and splits it into two non-empty dis-
joint sets Dy and D,. Suppose P’ = (X € Dom(X),D; C), where D
describes the domains of the variables different from X. Then the pro-
cedure generates the CSP P; = (X € D;,D; C;) for i = 1,2. C; consists
of the constraints of C where the relations are restricted according to
the new domain of X. So SplitOneDomain also splits the search space:
S(P") = S(P1)US(P2). (In particular, every solution of P’ is a solution
of either P; or Ps, and vice versa.) Thus this function determines how
the search space of P’ is explored. The CSPs P; and P, are solved
recursively.

From the discussion above it should be clear that the algorithm is correct,
if the constraint propagation and the domain splitting satisfy the conditions
mentioned above. If all domains of P are finite, then termination is guaran-

teed.

Algorithm 2.1 Solving a constraint satisfaction problem

Procedure: SolveCSP(P)

1
2
3
4
5:
6
7
8

: P' «+ PropagateConstraints(P)
: case 1: P’ is ground (i.e. every variable domain is a singleton)

report the unique variable assignment for P’ as solution

: case 2: some variable domain of P’ is empty

terminate // P’ and P are inconsistent

: otherwise

(P, P3) < SplitOneDomain(P’) // implements the search strategy
SolveCSP(P;); SolveCSP(P»)
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One can easily imagine some variations of this algorithm. If the domains
of the variables are intervals of real numbers, one might stop as soon as the
following holds: the size of all intervals is smaller than a certain threshold
€ > 0 and all assignments for P are solutions. (Clearly, the latter condition
is in general not easy to check, but in some cases it is possible.) If only one
solution of P is needed, one can terminate all recursive calls as soon as the
first solution is found.

To put it in a nutshell, in order to solve a CSP we interleave constraint
propagation and search (i.e. domain splitting) until we find a solution or
we have generated an inconsistent instance. The two main ingredients for
SolveCSP, namely PropagateConstraints and SplitOneDomain, will be dis-
cussed in the next two sections.

2.1.1 Constraint propagation

This section explains some details about constraint propagation and lays the
foundation for the remaining chapters of the first part of this thesis. Recall
that we are given a CSP P and we want to transform it into an equivalent
but simpler CSP P’. The term “simpler” means that the variable domains
and the relations of the constraints become smaller. An important goal of
constraint propagation is to increase the overall performance of a constraint
solver: Narrowing domains shrinks the search space that has to be explored
by domain splitting. Thus constraint propagation usually saves more time
than it costs.
Let us examine a small example that demonstrates what domain narrow-
ing (also called pruning) is all about: P = (X € [3..7],Y € [2..6]; X < Y).
Since Y can be at most 6, we conclude that X is at most 5, hence we can
shrink its domain to [3..5]. As X is at least 3, Y must be at least 4 and
we can narrow the domain of Y to [4..6]. Thus we obtain the program
P = (X € [3.5],Y € [4..6]; X < Y). This program cannot be simplified
further, because [X =3, Y =4|, [X =4, Y =5] and [X =5, ¥ = 6] are
solutions of the two CSPs.
Observe that this reduction also works if the CSP contains additional
constraints different from “X < Y” like in the following example:
Q=(Xe€[3.7,Ye€2.6,Z€[3.6]; X <Y, Y <2Z)

By the arguments above we can narrow the domains of X and Y as follows:
Q =(Xe[3.5,Ye[46],Z€[3.6]; X<Y, Y <Z)

Now we do an analogous narrowing step for “Y < Z7:
Q"=(X€[3.5,Ye€[4.5,Z€5..6]; X<Y, Y <Z)

This enables us to prune the domain of X once more:
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Q"=(X€[3.4],Ye€[4.5,Z€[5.6]; X<Y, Y <Z)
After that no further simplification is possible. We invite the reader to
check that three steps would also have been necessary if we had started
the propagation with the constraint “Y < Z”.
From the examples above we can learn two important facts about con-
straint propagation:

e FEach constraint can be propagated independently from all other con-
straints.

e In order to achieve the maximum amount of pruning, it may be neces-
sary to propagate the same constraint more than once.

Therefore many constraint solvers (like e.g. Oz [SS03]) have the following
architecture (see Figure 2.1): There is a domain store, which contains the
variables of the CSP and their respective domains. For every constraint? C' of
the CSP there is a propagator attached to the store. Whenever the domain
of a variable in Vars(C) has changed (because a propagator has narrowed
it or due to SplitOneDomain), the constraint solver invokes the propagator
corresponding to C. The propagator reads the current domains of Vars(C)
from the store and runs an appropriate propagation algorithm which tries to
prune the domains. When the propagation algorithm returns, the narrowed
variable domains are written to the domain store.

Propagators: X <Y Y<Z

Domainstore: ( X € [3..7], Y € [2..6], Z € [3..6]

Figure 2.1: The domain store and the attached propagators for Q.

The constraint solver invokes the propagators for the different constraints
until one variable domain becomes empty or the domain store becomes stable,
which means that no propagator is able to reduce a domain anymore. In some
cases the propagator for a constraint C' can discover that the domain store
entails C, which means that any possible assignment satisfies C'. Consider

2In the Oz model the terminology is slightly different: a domain requirement of the
form X € Dom(X) is called a basic constraint, and what we call a “constraint” is called a
complex constraint, because it requires a propagator.
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eg. R =(X € [3.5,Y € [8.9]; X <Y). Any assignment for R satisfies
“X < Y7, thus this constraint can be removed.

We want to point out that the relations of the constraints are usually not
stored explicitly because the constraints are given to the constraint solver in
a symbolic (i.e. implicit) way. The user would write for instance “X < Y”
instead of entering every tuple in the corresponding relation. Thus the prop-
agator “knows” the semantics of its constraint and it can call a propagation
algorithm which enforces this particular semantics. We will clarify this in
the next section.

Propagation algorithm

We will now discuss the concept of a propagation algorithm. The propa-
gation algorithms that will be considered in this thesis do not apply to an
arbitrary constraint, but rather to a class of constraints like the class of
Alldiff-constraints.®>  The actual constraint is determined by the variables
(with their respective domains) and the semantics of the constraint class.
E.g., the relation of the constraint A := Alldiff(X;, X», X3) is uniquely de-
termined by the variable domains and the semantics of Alldiff:

R@l(A) = {(dl, dQ, d3) |d1 S Dom(Xl) ANdy € DOTTL(XQ) N d3 € Dom(Xg)
Ndy #dy # ds # di}

A formal definition of the notion “constraint class” follows:

Definition 2.2 (constraint class) A set K of constraints is called a con-
straint class of it satisfies the following properties:

e For every sequence Dy,..., Dy of domains there is exactly one con-
straint C € K of arity k, i.e. Vars(C) = [Xy,...,Xk], such that
Dom(X;) = D; fori=1,... k.

o Let Dy,...,Dy and Di,..., D} be two sequences of domains and let
C and C' denote the corresponding constraints in K. If D; O D; for
i € [1..k], then Rel(C") = Rel(C)N (D} x ... x Dy).

The input of a propagation algorithm that applies to a particular class
K of constraints does not contain the constraint itself. The input consists
only of the variable domains D, ..., Dy. This determines a constraint C
with Rel(C) C Dy X ... x Dy in K. In the following definition we define the
requirements for a propagation algorithm:

3However, it is common practice to talk about a “propagation algorithm for the Alldiff-
constraint” when one actually refers to an algorithm for the Alldiff-class. We adopt this
practice later, too.
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Definition 2.3 (propagation algorithm) A propagation algorithm A for
a class IC of constraints takes as input a sequence D1, ..., Dy of domains and
computes a sequence D1, ..., D} of domains and a status value. Let C be the
constraint in K determined by Dy, ..., Dy (that is Vars(C) = [Xq,..., Xk
and Dom(X;) = D; fori=1,...,k).
We require that the following holds:

1. Rel(C) C D} x ...x Dy, (i.e. no solution of C is pruned).

2. DI C D, fori=1,...,k (i.e. domains can only shrink).

3. status € {failure, entailment, success} and if status equals
e failure, then D} =0 for some i.

e entailment, then D} x ... x D}, C Rel(C), and D} # 0 for all i.
e success, then |Dj| > 2 for some i, and D) # 0 for all j.

We call A idempotent if applying A to its output domains always yields the
same output domains again.

We want to make some comments. Assume that C is a constraint in a
CSP P and that A is a propagation algorithm that applies to the class of C.
Let Vars(C) = [X1,..., X| and suppose that P has the form

P:<X1€D1,...,XkEDk,D; {C}UC>

where D describes the domains of the variables in P that are not in Vars(C)
and C is a set of constraints. Let D},...,D; be the domains obtained by
invoking A on D1, ..., Dy. Property 1 from the definition above ensures that
P is equivalent to the CSP P’ with the narrowed domains:

P = <X1 EDll,...,XkED;C,D; {C’}UC’)

where C' is obtained by restricting the relations of the constraints in C to the
narrowed domains. Hence, the pruning done for C does not affect Rel(C)
but possibly the relations of other constraints in P.

If A returns failure, then Rel(C) = ) (see Property 1) and P is inconsistent.
If entailment is returned, then we have Rel(C) = D} x ... x D;. In that case
P is equivalent to

P" = (X1 €D,...,X; € D}, D; ')

i.e. C can be removed.



12 CHAPTER 2. PREREQUISITES

Observe that our requirements for a propagation algorithm are not very
demanding. As long as there is an undetermined variable, the algorithm
may return the input domains and report success. Only if all domains are
singletons, the algorithm has to check whether the corresponding tuple is a
solution of C' and return failure or entailment.

The function PropagateConstraints

We consider now a CSP P = (X; € Dy,..., X, € D,; C), where the domains
D+,..., D, are finite. We discuss a possible implementation of the function
PropagateConstraints (P) from above. It uses propagation algorithms to
propagate all the constraints of P. Our algorithm is based on an algorithm
called Arc by Apt [Apt03, page 273]. We assume that for each constraint
C of P we have a propagation algorithm propagate, for the class of C.
Our algorithm computes a sequence Dj,..., D; of domains such that P’ =
(X1 € Di,..., X, € D; (') is equivalent to P. Every constraint C' € C'
corresponds to a constraint C' € C for which entailment has not been detected.
We have Vars(C') = Vars(C) = [X;,, ..., X;,] and Rel(C") = Rel(C)N (D}, x
X Dy ).

Suppose that all propagation algorithms are deterministic. Thus each of
them can be interpreted (mathematically) as a function that maps a tuple of
domains to a tuple of domains (if we ignore the status value for the moment).
Unless P is inconsistent, the algorithm finds a common fizpoint of these
functions, which is defined as follows: Let C be a constraint with Vars(C) =
[(Xit,s ..., Xi, ). We say that D x ... x D], is a fizpoint of propagate if
propagate, maps (Dj ,...,D; ) to (D;,...,D; ) itself.

Algorithm 2.2 is straightforward: It applies the propagation algorithms
exhaustively until failure is reported or a fixpoint is reached. The algorithm
maintains two sets of constraints Sy and S. Sy consists of all constraints of
‘P for which entailment has not been detected. An invariant of the algorithm
will be that the set S contains (at least) all the constraints for which the
current variable domains are not a fixpoint. At the beginning both Sy and
S contain all constraints of P and the invariant holds.

Now we describe the main loop of the algorithm. As long as S is not
empty, the algorithm chooses a constraint C' in S. Let X;,,...,X;, be the

variables of C' with their respective current domains FE4, ..., Ex. The prop-
agation algorithm propagate, is applied to E, ..., Ej; it returns narrowed
domains EY,..., E} and a status value. For j =1,... &k we replace the cur-

rent domain Dom(X;;) by Dom(X;;) N Ej. (We do not replace the domain
simply by E} because X;; might occur more than once in Vars(C).)

Now we distinguish three cases: If failure has occurred (i.e. one variable do-
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main has become empty), we terminate and return a CSP where at least one
variable domain is empty, namely a domain of a variable in Vars(C). If the
returned status is entailment, we remove C from both Sy and S. (Observe
that the variable domains will always be a fixpoint of propagate, from now
on, because the domains can only shrink.) If the propagation algorithm re-
turns success and the output domains are the same as the input domains,
then these domains are a fixpoint of C' and we remove C from S. (Note
that we do not require that propagate is idempotent; otherwise we could
remove it, even if the domains have changed.)

If no failure has occurred, we update S: We insert every constraint C' € Sy
such that Vars(C') contains a variable X;; whose domain has changed during
this iteration, for the new domains may not be a fixpoint of these constraints
anymore. This establishes the invariant again: All constraints of P for which
the current domains are not a fixpoint are contained in S.

Algorithm 2.2 Constraint propagation

Function: PropagateConstraints(P)
1: Sy < {C | C is a constraint of P}
2: S« S()

3: while S # () do

4:  choose C € S; suppose Vars(C) = [X;,,..., X, ]

5 Ej < Dom(X;,) for j=1,...,k

6: (E1,...,E},status) < propagate,(Ey, ..., Ey)

7. Dom(Xj;) < Dom(X;;) N E} for j=1,...k

8: case 1: Dom(X;;) = () for some j € [1.k] // failure
9: break from while-loop

10:  case 2: status = entailment

11: remove C from Sy and from S

12:  case 3: stalus = success

13: if £E{ = E1 A ...\ E}, = Ej then remove C from S

14:  for all j in [1..k] s.th. E} # E; do

15: S+ SuU{C €S | Xi; € Vars(C")}

16: end while

17: return the CSP P’ containing the current variable domains and the con-
straints in Sp (restricted to those domains)

When the main loop of the algorithm terminates because S has become
empty, the invariant implies that a fixpoint has been found. We return the
CSP P’ that reflects the current variable domains. The constraints of P’ are
the constraints in Sy (restricted to the current domains).
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Theorem 2.1 Let P be a finite domain CSP. If we apply Algorithm 2.2 to
P, then the algorithm terminates and returns a CSP P’ equivalent to P. If P’
s ground, then P' and hence P are consistent. Moreover, if all propagation
algorithms are deterministic and no failure occurs, then the domains in P’
are a common fixpoint of all propagation algorithms.

Proof. We show that the algorithm terminates. Let d be the sum of the
cardinalities of all domains in P, and let ¢ denote the number of constraints
in P. Clearly, we always have |S| < |Sy| < ¢. Let us assume that no failure
occurs, otherwise the algorithm terminates and there is nothing to show.
Then in each iteration of the main loop the cardinality of S or the cardinality
of a variable domain decreases. Between two reductions of a variable domain
there can be at most ¢ iterations (otherwise S would become empty), and
hence there can be at most c- d iterations in total.

We come to the equivalence of P and P’. An easy induction shows that
the following holds, whenever line 3 is executed: The CSP induced by the
current variable domains and the constraints in Sy is equivalent to P.

Suppose now that P’ is ground. Let Xi,..., X, be the variables of P’
and let D} = {d:},...,D! = {d,} be their respective domains. Consider
a constraint C’ of P’. It corresponds to a constraint C' which belonged to

So upon termination of the algorithm. Assume Vars(C) = [X;,,..., X;,].
We show that there has been a call to propagate,({d, },...,{d; }). If the
initial domains of X;,, ..., X; were already singletons, this claim is obvious,

because C' belongs to the initial set S. Otherwise, C is inserted into S after
the last domain of a variable in Vars(C') has become a singleton. Since
propagate has not reported failure when applied to the singleton domains,
we conclude that (d;,,...,d;,) satisfies C' and hence C’. Thus the variable
assignment [X; = dy,..., X, = d,] is a solution of P’ and of P.

The last statement about the fixpoint follows immediately from the dis-
cussion above. |

We want to make a comment that relates our presentation to the work
of Apt [Apt03, Chapter 7]. Apt requires that the propagation algorithms
satisfy a property called monotonicity. This means the following. Suppose
we have a propagation algorithm which takes as input k£ domains. Assume
that applied to F, ..., Ey it returns EY, ..., E}. Suppose we choose domains
Fy,... F; such that F; C Ey,...,F, C E, run the algorithm on these
domains and obtain FY, ..., F{. If the algorithm is monotonic, then we have
F| CE,...,F, CE;.

Apt shows that the fixpoint D] x ... x D! computed by the algorithm above
does not depend on how the constraint C € S is chosen in line 4, if all
invoked propagation algorithms are monotonic (see Lemma 7.5 in [Apt03]).
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It will turn out that all propagation algorithms presented in this thesis are
monotonic.

Global constraints and local consistency

In the approach that we have described above, the propagators for the con-
straints are independent. They communicate with each other through the
domains of the variables, which are held in the domain store. This ap-
proach makes it easy to integrate new propagation algorithms into a con-
straint solver because the old propagation algorithms do not have to be
changed. But the fact that a propagator for a constraint C' is not aware of
the constraints different from C' also has some drawbacks. Consider e.g. the
CSP P = (X € {1,2},)Y € {1,2},Z € {1,2}; X # VY # Z, 7 # X),
which is clearly inconsistent. But since the relation of each of the inequality
constraints is {(1,2),(2,1)}, a propagation algorithm that only takes into
account one of these constraints cannot reduce any variable domain.

In order to overcome this limitation, so-called global constraints were in-
troduced. There is no formal definition for this notion, but a global constraint
is usually a “high-level” constraint that combines a set of “low-level” con-
straints (that are somehow related to each other) into a single constraint. In
our example above we could replace the three constraints by a single Alldiff-
constraint and obtain an equivalent CSP P’ = (X € {1,2},Y € {1,2},Z €
{1,2}; Alldif( X, Y, Z)).

Using global constraints has the following advantages: A propagation
algorithm for the global constraint can usually do more pruning than the
algorithms for the low-level constraints together. (In our example, the prop-
agation algorithm for Alldiff could recognize that there are 3 variables but
only 2 values. Hence, it could immediately report failure.) Moreover, it of-
ten requires less space to store the global constraint. (An Alldiff-constraint
with n variables replaces (g) inequality constraints.) Finally, it is easier and
less error-prone for the user of the constraint solver to state a single global
constraint than to enter all the corresponding low-level constraints.

When we talk about a propagation algorithm we often want to charac-
terize the amount of pruning that it achieves. (Recall that a propagation
algorithm is not required to do any pruning unless all the domains are sin-
gletons.) In order to do so we discuss some types of “local consistency”.
Local consistency means that some “parts” of a CSP have a desired form. In
this presentation we only describe local consistency notions which are rele-
vant for this thesis, these are notions which apply to a single constraint of a

CSP.
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We begin with a discussion of arc-consistency. Informally, a constraint
C is arc-consistent* if every value in the domain of each variable in Vars(C)
participates in at least one solution of C.

Definition 2.4 (arc-consistency) Let C' be a constraint on the variable
sequence [X1, ..., Xy] with respective domains D1, ..., Dy. We say that C is
arc-consistent if Rel(C) # 0 and the following holds: For all i € [1..k] and
every value d € D; there is a tuple (di,...,d;) € Rel(C) with d = d.

Let A be a propagation algorithm for (the class of) C. Let D', ..., Dj be
the domains that are obtained by running A on D+, ..., Dy. We say that A
achieves arc-consistency for C if

e cither Rel(C) # 0 and the constraint C' with Rel(C") = Rel(C) and the
domains DY, ..., Dj is arc-consistent

e or Rel(C) =0 and A returns failure.

We call A an arc-consistency algorithm if it achieves arc-consistency on all
admissible inputs.

Since we require that Rel(C) C D} x ... x Dj (cf. Property 1 in Defi-
nition 2.3), there can be no propagation algorithm that does more pruning.
Thus arc-consistency characterizes the maximum amount of pruning that
can be achieved for a single constraint. However, a CSP does not have to
be consistent even if all its constraints are arc-consistent, as the example P
with the three inequalities shows.

Sometimes we consider only domains that are (closed) intervals contained
in a linearly ordered set (U, <). For two elements ¢ and b in U we define the
interval [a;b] as {u € U|a < u < b}. We call a the lower and b the upper
endpoint of the interval I = [a;b], and we use I to denote a and I to denote
b. One reason for using intervals is that they can be stored more efficiently
than arbitrary sets, in particular if U = R. The local consistency notion that
is usually used with respect to interval domains is bound-consistency.
Informally, a constraint C over interval domains is called bound-consistent
if every endpoint of the domain of each variable in Vars(C') participates in a
solution of C'. A formal definition follows:

Definition 2.5 (bound-consistency) Let C' be a constraint on the vari-
able sequence [X1, ..., Xg| with respective domains [l1;hq], ..., [lg; hg]. We
say that C is bound-consistent if Rel(C) # 0 and the following holds: For

4Some people use the term “arc-consistency” only for binary constraints, they call our
notion of arc-consistency “generalized arc-consistency” or “hyper-arc-consistency”.
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all i € [1..k] there is a tuple (di,...,dy) € Rel(C) with l; = d; and a tuple
(d,,...,d,) € Rel(C) with h; = d..

The definition of a bound-consistency algorithm is analogous to the defini-
tion of an arc-consistency algorithm (cf. Definition 2.4). Under the restriction
that all domains must be intervals, bound-consistency is the strongest possi-
ble local consistency for a single constraint. (One cannot narrow the intervals
any further without pruning solutions of the constraint.)

We will show now that an arc-consistency or bound-consistency algorithm
is always monotonic and idempotent. To do so we study an equivalent for-
mulation for arc- and for bound-consistency. For a set S C 57 x ... Xx Sy and
i € [1..k] we define the projection m; of S onto its i-th component as follows:

mi(S) :=={s € S;|A(s1,---,8,) € S with s = s;}

Let C be a constraint with Vars(C') = [Xi,...,Xy] and Rel(C) # 0. Then
C' is arc-consistent iff Dom(X;) = m;(Rel(C)) for i = 1,...,k. Thus an arc-
consistency algorithm computes the projection of Rel(C) onto all its compo-
nents.

C' is bound-consistent iff I, = minm;(Rel(C)) and h; = maxm;(Rel(C)) ex-
ist and Dom(X;) = [l;; h;] for ¢ = 1,...,k. Hence, a bound-consistency
algorithm computes the minimum and the maximum element in all the pro-
jections of Rel(C).

Therefore, the output of an arc-consistency or bound-consistency algo-
rithm A is uniquely determined by the relation of the constraint. Since A is
not allowed to change this relation (see Properties 1 and 2 of Definition 2.3),
it is idempotent. Monotonicity follows immediately from the fact that the
projections are monotonic. This proves the following lemma:

Lemma 2.1 FEwvery arc-consistency and every bound-consistency algorithm
18 monotonic and idempotent.

We conclude this section with the discussion of range-consistency. To the
best of our knowledge this local consistency notion has only been used for the
Alldiff -constraint. We introduce it here, because we need it in Section 3.2.3.

Definition 2.6 (range-consistency) Let C be a constraint in a class K of
constraints with Vars(C) = [ X1, ..., Xx| and respective domains D1, . .., Dy.
Assume that D; is contained in some linearly ordered set U; and that I; =
min D; and h; = max D; exist fori = 1,...,k. Let C' denote the constraint
in IC determined by the domains [l1; h1], - .., [lg; hi-

We say that C' is range-consistent if Rel(C") # () and the following holds: For
all i € [1..k] and every value d € D; there is a tuple (di,...,dy) € Rel(C")
with d = d;.
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Let us look at the example A := Alldiff(X1, Xo, X3) with Dom(X;) =
Dom(Xsy) = Dom(X3) = {1,3} C Z. In order to check whether A is range-
consistent we consider the constraint A" := Alldiff( X}, X}, X}) where all do-
mains are the interval [1..3]. For 7 = 1,2,3 we have m;(Rel(A’)) = [1..3] D
Dom(X;). Hence, A is range-consistent, but it is not arc-consistent, because
Rel(A) = (0. So range-consistency is strictly weaker than arc-consistency.

We discuss an example with integer interval domains: Alldif(X,Y, Z)
with Dom(X) = [1..4], Dom(Y') = Dom(Z) = [2..3]. The constraint is bound-
consistent, but a range-consistency algorithm narrows the domain of X to

{1,4}.

Example. SEND + MORE = MONEY

To conclude this section on constraint propagation, we pick up the puzzle
from the beginning (page 5). Recall that we modelled it by the following two
constraints:

e a linear equality constraint:
9000- M +900-O+90-N+Y —1000-S—-91-F—-10-R—D =0

e an Alldiff -constraint: Alldiff(S, E,N,D,M,O,R,Y)

For each of the two constraint classes we will discuss a simple propaga-
tion algorithm (which does not achieve any of the local consistency notions
mentioned above). After that we will apply these algorithms to the puzzle.
We begin with an algorithm for Alldiff, because it is the simpler one. If
some variable domain is a singleton {d}, the algorithm iterates over all other
domains and removes the value d from those domains. If one of the domains
becomes empty, it returns failure. If all output domains are singletons, it
reports entailment, otherwise it returns success.

Now we sketch a propagation algorithm for linear equality constraints
of the form Zle a;X; = b with a; # 0 for i = 1,..., k. We assume that
the input domains are integer intervals, i.e. D; = [l;..h;] for i = 1,... k.
For ¢ € [1..k] we compute the output domain D) as follows: We rewrite the
constraint as X; = a% + ey — o - Xj. We partition the indices in the
summation above into two sets depending on the sign of o := —Z—i:

Jt:={jel.k]\{i} | o >0} and J :={j € [1..k] \ {7} | o < O}
For j € J*, we have ol; < a;X; < ajhj; and for j € J~, we have ajh; <
a; X; < ajl;. Using the fact that X; is an integer, we obtain

aﬁi—FZajlj—i-Zajhj SXZS a%-i—Zajh]‘-i-ZO!jlj

jeJt jeJ~ jeJt jeJ~
-~ >4 N ~~ >

=: 1 =: h}

a;
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Thus the narrowed domain D) becomes D; N [Ii..hl]. As above we report
failure, if one domain becomes empty, and entailment, if all output domains
are singletons. In all other cases we return success.

Recall that the initial domains of the leading digits S and M are [1..9]
and the other domains are [0..9]. Applying the propagation algorithm for
linear equality constraints narrows the domains to

S=9,E€][0.9],N €0..9],D €[0..9],

M=1,0€[0.1],R€[0..9],Y € [0..9]
After three iterations of the Alldiff algorithm the domains look as follows:

S=9,Ec2.8],Nec[2.8,D€c[2.8],M=1,0=0,R € [2.8],Y € [2..8]

Five successive applications of the algorithm for the linear equality reduce
the domain of E to [4..7] and the domain of N to [5..8]. After that the
domain store becomes stable and the constraint propagation ends.

2.1.2 Search

Recall that the search space S(P) of a CSP P is the set of all possible variable
assignments for P. Note that we do not require that the variable assignments
in S(P) are solutions of P. As the example above shows, constraint propa-
gation often yields a CSP P’ with a considerably smaller search space, but
in general it is not able to produce a ground CSP (i.e. a solution) or to prove
inconsistency. In that case the search space of P’ has to be explored.

The function SplitOneDomain (used in Algorithm 2.1) controls how this
exploration is carried out. Recall that this function chooses a variable X in
P’ with |Dom(X)| > 2 and partitions Dom(X) it into two non-empty disjoint
domains D; and D,. These domains give rise to two CSPs P; and P, (see
page 7) which are solved recursively.

There are several strategies how to select the variable for splitting and
how to split its domain. The search strategy often has a great influence on
the overall performance of a constraint solver, but a deep discussion of this
topic is beyond the scope of this chapter (more information can be found for
instance in [Apt03, Chapter 8|). A selection strategy that often yields good
results in practice is the so-called first fail strategy, which always chooses an
undetermined variable with a domain of minimum cardinality. A common

technique for splitting a domain D is to chose an element d € D (for instance
d = min D) and to set D; = {d} and Dy = D\ d. If D is an integer interval
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[[..h], one often uses bisection, i.e. D; = [l..m| and Dy = [m..h], where
_ | l4+m

Example. SEND+ MORE = MONFEY

We show how constraint propagation and search solve the puzzle. We use
a fairly naive search strategy: We select the first undetermined variable in
the sequence [S, E, N, D, M, O, R,Y]; and we split its domain D into D; =
{min D} and Dy = D \ D;. Recall that applying constraint propagation to
the original CSP P produces the following domains:

S=9,Ec[4.7,Ne5.8,De2.8,M=1,0=0,Re€[2.8],Y € [2.§]

Eliminating the determined variables S, M and O from the linear equality
constraint yields

NV-N+Y-91-E—-10-R—-D=0

According to our search strategy we split the domain of E into {4} and
[6..7]. Let us consider first the CSP P; induced by E = 4. Applying the
propagation algorithm for linear equality exhaustively, we obtain N = 5,
R =28, D =8 and Y = 2, which causes the Alldiff-propagator to report
failure.

So we come to the second CSP P,, which is induced by E € [5..7]. Con-
straint propagation reduces the domain of N to [6..8]. Hence, we split the
domain of E once more, namely into {5} and [6..7]. Propagation for the
program Py; induced by E =5 yields the following solution

S=9,E=5N=6D=7M=1,0=0,R=8,Y =2

The program Psy induced by the domain [6..7] for E has no solutions, which
is detected after one more split.

Observe how much constraint propagation contributes to solving this ex-
ample. The search space of the original CSP P has 92-10° elements. By using
constraint propagation we could prune it considerably. Thus we were able
to find the solution of P and prove its uniqueness after only three domain
splittings.

2.2 Multigraphs and graphs

In this section we introduce some basic notions and results from graph theory
which are needed in the sequel of the thesis. A multigraph is a fundamental
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concept which can model binary relationships between objects. Each object
corresponds to a node in the multigraph and the relationships are modelled
by edges, which can be directed or undirected. The formal definition is as
follows:

Definition 2.7 (multigraph) An undirected multigraph M is defined as a
triple (V, E,inc) such that V and E are two finite sets and inc is a mapping
from E to (‘2/)5 The elements of V' are called the nodes of M, and the
elements of E are the edges of M. We call inc the incidence mapping of
M. Let e € E be an edge with inc(e) = {u,v}. Then we say that u and v
are incident to e, and u and v are adjacent via e. The degree of v is the
number of edges incident to v. The set of all nodes that are adjacent to v is
called the neighbours of v.

A directed multigraph M is a triple (V, E,inc) such that V and E are two
finite sets and inc is a mapping from E toV x V. As before, V and E are
the nodes and the edges of M and inc is called the incidence mapping of
M. Let e € E be an edge with inc(e) = (u,v). Then u is called the source
node and v is the target node of e. We say that e is directed from u to v,
and we call e an outgoing edge of u and an incoming edge of v. Both nodes
are said to be incident to e and they are adjacent via e.

We continue with some more definitions. A (directed or undirected)
multigraph M' = (V', E',inc') is called a subgraph of a multigraph M =
(V,E,inc) if V! C V, E' C E and inc'(e) = inc(e) for all e € E'. A set of
nodes V' C V' induces the subgraph M = (V,E, inc) where E consists of all
edges incident to two nodes in V and inc = mc|E A set of edges E C E
induces a subgraph M (V, E, inc), where V is the set of all nodes incident
to an edge in F and inc = mc|E

When we visualize a multigraph like in Figure 2.2, we draw a node as
a circle or a box and an edge as a line connecting its incident nodes. We
introduce an important notion to talk about multigraphs: paths. A path

p of length £ (with & > 0) from a node vy to a node vy is a sequence

[vo, €1, V1, ..., Vk—_1, €k, U] such that wvp,..., v are nodes and ej,..., e, are
edges of the multigraph, and the following holds: If the multigraph is undi-
rected, we require inc(e;) = {v;_1,v;} for i = 1,... k. And if it is directed,

then inc(e;) = (vi_1,v;) must hold for all 7. (Observe that we allow paths of
length 0, these are called empty.) We say that p visits the nodes vy, ..., vy
and uses the edges e,...,ex. We call vy the start node and vy the end
node of p, the nodes vy,...,v,_1 are called inner nodes of p. Very often p is

5(Y) = {{u,v}|u,v € V Au # v}, ie. (¥) consists of all subsets of V with two
elements.
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uniquely determined by the sequence of its nodes or by the sequence of its
edges®. Then we also write p = [vg, vy,...,V] OT p=e; 0...0 e to simplify
notation.

p is called a simple path if v; # v; for 0 <7 < 7 < k and e; # e; for
1 <1 < j < k. Informally, this means that p visits no node twice and uses
each of its edges only once.
In an undirected multigraph the reversed sequence [v, ex, Vg—1, ..., V1, €1, Vo]
is a path from v, to vy, we call it the reversal of p and denote it by p*".

If the end node of a path p is equal to the start node of a path ¢, we
can concatenate them to a single path which we denote by p o q. More

pre(jselya if p = [UO: €1,V1,. .., €, Ulc] and q = [Uka €k Vk+1; - - - €1, Ul]: then
POG=[V,€1,V1,..., €k Uk, €hs1,Uktl,-- €L U
A cycle is a path C' = [vg, €1, V1, ..., Vg 1, €k, V] sSuch that vg = vg, & > 0

and e; #e;4q forie=1,...,k—1,ie. C is a non-empty path where the start
and the end node are identical and any two consecutive edges are distinct.
Observe that C' cannot be a simple path, but we can make an analogous
definition: We say that C is a simple cycle if v; # v; for 0 <17 < j < k and
ei#ejforl <i<j<k.

Figure 2.2: An undirected and a directed multigraph.

Example. Observe that the multigraph M in on the left-hand side of
Figure 2.2 contains two edges, namely b and ¢, that are incident to same
nodes, this explains the prefix “multi” in the word “multigraph”. Observe
that the directed multigraph M on the right-hand side contains two edges
(a and b) with identical source and target nodes.

M contains the path p; = [u,e,v,d,y,b,z,c¢,y, f, z] from u to z. This path is
not simple because y is visited twice. p, = [u,e,v,d,y, f, 2| is a simple path

6Every path of length at least two in an undirected multigraph is determined by the
sequence of its edges. The same holds for every non-empty path in a directed multigraph.
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from u to z. Cy = [z,b,y,c, ] is a cycle, but [u, a, z, a, u] is not, because the
edge a is used twice consecutively. The cycles C; and Cy = [u, a,x, ¢, y,d, v, €]
are simple.

= [r,a,s,c,t] is a simple path in M, but [t,c,s,a,r] is not a path because
the edges are traversed in the wrong direction. The path ¢ = p'od is a simple
cycle.

Closely related to paths and cycles is the notion of reachability. We say
that a node u can reach a node v if there is a (possibly empty) path from u
to v. The reachability relation of a (directed or undirected) multigraph M
is defined as follows:

Reach(M) := {(u,v) € V x V|3 a non-empty path from v to v in M}
The reader may wonder why we exclude empty paths in the definition above.
The answer is that we want Reach(M) to contain a tuple (u, u) only if there
is cycle in M which visits u.

Another basic notion that is also related to paths is connectivity. Consider
an undirected multigraph M. A subgraph M’ is called connected if any
node u in M’ can reach any node v in M'. We say that M’ is a connected
component of M if M’ is a maximal connected subgraph of M. Observe
that every node and every edge of M belongs to exactly one of its connected
components.

For a directed multigraph M we have a similar notion: A subgraph M
is called strongly connected if any node u in M’ can reach any node v in
M’ (by a directed path). A strongly connected component (SCC) of M is
a maximal strongly connected subgraph. Every node belongs to exactly one
SCC, but there may be edges which do not belong to any SCC. Hence, the
SCCS partition the node set of M. Since every set in this partition P induces
an SCC of ./\/l we can identify the SCCs of M with the node sets in P. It
is easy to see that two nodes u and v belong to the same SCC iff there is a
cycle which visits both of them.

In order to define the connected components of a directed multigraph
M = (V,E, inc), we define its underlying undirected multigraph U(M) :=
(V, E, inc), where inc(e) := {u, v} iff inc(e) = (u,v). Informally, we obtain
U (./\;l) by removing the arrowheads of all edges. A subgraph M' is a con-
nected component of M if U(M') is a connected component of U(M). We
say that a (directed or undirected) multigraph is connected if it has only one
connected component.

Example. The multigraph M in Figure 2.2 has two connected components
M and M, where M, is the subgraph induced by the nodes {u, v, z,y, z}
and M, is the subgraph induced by the edge g. M has two SCCs which
are induced by {r,s,t} and {u,v,w,z}, but only one connected component.
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Observe that e and f do not belong to any SCC of M.

We conclude this section with some remarks about the representation of
multigraphs in memory. We assume that adding and removing a node or
an edge can be done in time O(1). Moreover, iterating over all incident,
outgoing or incoming edges of a given node should take linear time in the
number of these edges. The size of a representation of a multigraph with n
nodes and m edges should be O(n + m). These assumptions are fulfilled by
a so-called adjacency list representation (see for example [MN99]).

2.2.1 Graphs, DAGs, trees and forests

One could define a graph as a multigraph where the incidence mapping is
injective. In order to simplify notation we choose the following definition:

Definition 2.8 (graph) An undirected graph G is a tuple (V, E) such that
V' is a finite set and E C (‘2/) A directed graph G is a tuple (V, E) such
that V is a finite set and E C 'V x V. In both cases V and E contain the

nodes and the edges of G, respectively.

It is easy to see that a (directed or undirected) graph (V, E) corresponds
to the multigraph (V, E, idg), where idg(e) = e for all e € E. Thus all
definitions from above carry over to graphs.

A directed graph G which does not contain a cycle is called a directed
acyclic graph (DAG). If w and v are two nodes in a DAG G such that there
is a path p from u to v, then u is called an ancestor of v and v is called a
descendant of u. If p is not empty, then the relation is called proper. If p
consists of the single edge (u,v), then we say that u is a father of v, and
v is a child of u. Observe that a node x cannot be proper ancestor and a
descendant of a node y, because G is acyclic.

Figure 2.3: Two DAGs G and T. T is a tree, G is not.

A DAG T is called a rooted tree, if it contains one node r without incoming
edges and every node different from r has exactly one incoming edge. We say
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that 7 is the root of T. A node in T which has no outgoing edges is called a
leaf. Observe that a tree is always connected.

Two nodes v and v in T always have a common ancestor, namely the root
r. We say that a node w is the lowest common ancestor of u and v if w is
a common ancestor of v and v and there is no proper descendant w’ of w
which is also a common ancestor of 4 and v. The node w is the node where
the two paths p, from r to u and p, from r to v separate, i.e. the longest
common prefix of p, and p, ends in w.

An undirected graph T is called a tree if any two nodes of T are connected
by a unique path. A (directed or undirected) graph is said to be a forest if
each of its connected components is a tree.

Example. The proper ancestors of the node y in the graph G in Figure 2.3
are its fathers v and v. The descendants of y are y itself and its child z.
G is not a tree because y has two incoming edges (and there are two nodes
without incoming edges). The graph T in the figure is a tree with the root r
and the leaves z, y and z. The lowest common ancestor of y and z is . The
lowest common ancestor of z and z is the root r.

2.2.2 Matchings and bipartite graphs

As an introductory example consider the following problem: You are given
an even-sized set of football teams and you are supposed to devise a schedule
such that each team plays exactly one match. Let us assume that not any
choice of two teams is an admissible pairing, but you are provided with a set
of admissible pairings. This problem can be modelled as a graph problem:
For each team there is a node, and two nodes are adjacent iff the respective
teams may be paired. The problem is to find a set of edges M such that each
node is incident to exactly one edge. (M is called a perfect matching.) Then
M encodes a feasible schedule.

This motivates the following definition:

Definition 2.9 (matching) Let G = (V, E) be a graph. A set M C E is
called a matching in G if every node v € V s incident to at most one edge
in M. A nodev €V is called matched in M if it is incident to an edge in
M ; otherwise v is said to be free with respect to M. M is called perfect if
all nodes in'V are matched. Let V' be a subset of V', we call M a V'-perfect
matching (or V'-matching for short) if all nodes in V' are matched.

Very often the objects that have to be paired can be partitioned in two
sets A and B, and in all admissible pairings one object belongs to A and
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the other belongs to B. Consider e.g. the problem of assigning students to
universities. Such a problem corresponds to a bipartite graph:

Definition 2.10 (bipartite graph) A graph G = (V, E) is called a bipar-
tite graph with partition (A, B) if V. = AUB and every edge e € E is incident
to a node in A and a node in B.

From now on we consider only undirected bipartite graphs. Most of the
following theory also applies to arbitrary graphs, but in this thesis we will
only deal with matchings in bipartite graphs. Let M and M’ be two match-
ings in a graph G = (V, E). In matching theory one often studies the sym-
metric difference M @ M' := (M \ M') U (M’ \ M). So M & M' consists of
the edges that belong to exactly one of the two matchings. Informally, one
could say that M @ M’ is the set of edges on which M and M’ “disagree”; all
other edges in E either belong to both matchings or to neither one of them.
Consider the example in Figure 2.4. The graph G induced by M & M’, which
is shown on the right-hand side, contains a cycle ¢ = [a, u, b, v, a] and a path
p=|d,x,e,y, f, z]. Since both ¢ and p alternately use an edge in M and an
edge in M', we call them alternating paths. The precise definition follows:

Definition 2.11 (alternating path) Let M be a matching in a graph G =
(V,E). A path p = [vg,e1,v1,...,Vk_1,€ 0| in G is called an alternating
path with respect to M if the following holds:

e p alternately uses an edge in M and an edge that is not in M.
o Ifwvy # vy, then p is a simple path and

— if vy is matched in M, then ey € M and
— if vy, is matched in M, then e, € M.

If vg = vy, then p is a simple cycle, k is even and exactly one of the
edges e, and ey, belongs to M. In this case, p is called an alternating
cycle.

Figure 2.4: The symmetric difference of two matchings.

We can prove the following basic lemma about alternating paths:
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Lemma 2.2 Let M and M' be two matchings in a graph G = (V, E) and let
p be a an alternating path with respect to M. Then the following holds:

1. Every connected component of the graph induced by M & M' consists
of an alternating path (with respect to either matching).

2. M @ p is a matching in G (see Figure 2.5). Here M @ p denotes the
symmetric difference of M and the set of edges used by p.

Proof. Every node v in the graph G induced by M & M’ is incident to at
most one edge of M and at most one edge of M'. Hence, its degree is either
one or two. So each connected component is either a simple cycle or a simple
path.

Consider a cycle ¢ in G. Each of its nodes is incident to exactly one edge in
M \ M' and exactly one edge in M'\ M. So its an alternating cycle with
respect to both matchings.

Let ¢ be a path in G that corresponds to an acyclic component. Each of its
inner nodes is incident to exactly one edge in M \ M’ and exactly one edge
in M'\ M. Therefore, ¢ alternately uses edges in M and edges not in M.
Let u denote the start node of ¢q. If u is incident to an edge e € M, then ¢
starts with e because u and e belong to the same connected component of
G. An analogous argument can be made for the end node of q. So ¢ is an
alternating path wrt. M. The argument for M’ is symmetric.

We come to the second statement. Let V denote the set of nodes visited
by p. By the definition of an alternating path M \ p is a matching where all
nodes in V are free. Moreover, every node in V is incident to at most one
edgeinp\ M. So M @&p= (M \p)U (p\ M) is a matching. O

Figure 2.5: The symmetric difference of a matching and an alternating path.

The acyclic alternating path p = [d, z,e,y, f, z] in Figure 2.5 starts and
ends in a free node wrt. M. We call such a path an augmenting path because
the cardinality of M & p is greater than that of M. If the cardinality of M is
not maximal, then we can always find an augmenting path, as the following
lemma shows:
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Lemma 2.3 If M is a matching in a graph G which does not have mazximum
cardinality, then there is an augmenting path p with respect to M.

Proof. Let M' be a maximum cardinality matching in G. We consider an
alternating path ¢ from v to v in M @ M’ and distinguish four cases:

1. ¢ is an alternating cycle. Then M and M & ¢ match exactly the same
nodes. Hence, the two matchings have the same cardinality.

2. ¢ is acyclic and exactly one of the nodes u and v is matched in M.
Then |M @ q| = |M|.

3. gisacyclic and both v and v are matched in M. Then |M&q| = |M|-1.

4. ¢ is acyclic and both u and v are free in M, i.e. ¢ is augmenting. Then
M & q| = |M|+1.

Let ¢1,...,q; denote the alternating paths in M @& M'. Since M' = M &
G DG®d...Hq and |[M'| > |M|, we conclude that at least one of the paths
qi,--.,qr is augmenting. a

Suppose we have a matching M in a bipartite graph G = (V, F) with
partition (A, B) and we want to search for an augmenting path wrt. M.
Then it is often useful to construct the directed graph Gy = (v, E) as
follows (cf. Figure 2.6):

e We direct the edges in F from A to B:
For every edge {a,b} € E with a € A and b € B, we put the edge (a,b)
into E.

o We add the reversal for every edge in M:
For every edge {a,b} € M with a € A and b € B, we insert the edge

(b,a) into E.

Figure 2.6: Constructing the directed graph G from G and a matching M.

Observe how the augmenting path p = [d, z, e, y, f, z] in G translates to
the directed simple path p'in Gj; from a free node d to a free node z, and
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vice versa. So in order to find an augmenting path in G we can look for a
simple path in G o that starts in a free node in A and ends in a free node in
B.

Assume now that we have an A-perfect matching M in G, which implies
that M has maximum cardinality. We can use G u to decide whether a given
edge e in G can belong to some A-perfect matching in G. We will need the
criterion below in Chapter 3:

Lemma 2.4 Let G be a bipartite graph with partition (A, B) and M be an
A-perfect matching in G. Let e = {a,b} be an edge in G with a € A and
b € B. Then the following holds

1. If|A| = |B|, then e can belong to some perfect matching in G iff a and
b belong to the same SCC of Gy.

2. If |A| < |B|, then e can belong to some A-perfect matching in G iff a
and b are in the same SCC of G or there is a simple path in G that
starts with (a,b) and ends in a free node.

Proof. The first statement follows immediately from the second statement,
because there are no free nodes if |A| = |B|. So we only have to prove the
second one.

Suppose that e belongs to some A-perfect matching M’ in G. If e € M,

then we have the cycle (a,b) o (b,a) in Gy So assume that e ¢ M. Then e
belongs to some alternating path p in M @ M'. If p is an alternating cycle,
then it translates to a simple directed cycle in G M, Which implies that a and
b belong to the same SCC.
Suppose now that p is acyclic. Since M and M @ p match all nodes in A,
we conclude that both the start node and the end node of p are in B and
exactly one of them is matched. Translating p to Gur yields a directed simple
path that ends in a free node in B, because a free node in B has no outgoing
edges.

Now we prove the converse. If ¢ and b belong to the same SCC of éM,
then there is a simple cycle ¢ which uses the edge (a,b). Since G is bipartite,
we conclude that the length &k of ¢ is even. If k = 2, then ¢ = (a,b) o (b,a),
which implies e € M. Otherwise ¢ corresponds to an alternating cycle ¢ in
G. Thus M & c is an A-perfect matching containing e.

Assume now that there is a simple path 7' = (a,b) 0§~ in G that ends
in a free node in B. Let e, denote the matching edge in M incident to a.
Moreover, let p’ denote the undirected path in G that corresponds to 7 .
Then p = e, o p’ is an alternating path wrt. M and M & p is an A-perfect
matching containing e. d
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2.3 Geometry

We discuss some geometrical notions that are used in the presentation of the
NonOQwerlapping-constraint in Chapter 5.

Convexity and Topology

In this section we deal with the vector space R? for some fixed dimension
d and discuss convexity and some fundamental notions from topology. For
two points p and ¢ in R? the straight line segment between p and g is the
set p¢ = {p+ Ag—p)|X € [0,1]}. A set S € R? is called convez if for
any two points p,q € S, the straight line segment pg is also contained in
S. Geometrically, this means that S has no recess and no protuberance (see
Figure 2.7).

Figure 2.7: A convex and a non-convex set

The convex hull of a set S of points is denoted by CH(S) and defined as
the intersection of all convex sets that contain S. Since the intersection of
convex sets is convex, CH(S) is the smallest convex set which contains S.
A visual way to obtain the convex hull is as follows: Place a nail into every
point of S, put an elastic rubber band around all the nails, and let it snap
around the nails. The convex hull of S is the area enclosed by the rubber
band.

Now we discuss some notions from topology. For a point p = (p1,...,pq) €
R? the (Euclidean) norm of pis ||p|| := v/p?+ ...+ p2. Fore > 0 and p € R
we define B.(p) := {q € R*|||q — p|| < €}, i.e. B.(p) is the ball with radius ¢
centred at p. For every € > 0 we call B.(p) a neighbourhood of p.

Consider a set S C R? and a point p € RY. We say that p is an interior
point of S if there is a neighbourhood of p which is completely contained in
S. The set of all interior points of S is called the interior of S and denoted
by int(S). We call S open if S = int(S), and we say that S is closed if its
complement R? \ S is open. The point p lies on the boundary of S (denoted
by 0S) if any neighbourhood of p contains both a point in S and a point
in R4\ S. (Note that p does not have to belong to S.) The closure of S is
defined as S = SUJS; it is easy to see that S is the smallest closed set that
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contains S. Finally, we say that S is bounded if S is contained in some ball
with finite radius.

Minkowski sums

Minkowski sums will become an important tool in Chapter 5. The formal
definition is as follows:

Definition 2.12 (Minkowski Sum) Let P,Q € R? be two sets of points.
The Minkowski sum P & @ is the point set {p+q|p € PAq € Q}.

In the sequel we discuss some properties of Minkowski sums. We begin
with a statement about the interior points of a Minkowski sum of two convex
point sets:

Lemma 2.5 Let P and Q be two convex sets in R? with non-empty interior.
Then int(P) @ int(Q) = int(P & Q).

In order to prove this lemma, we need a claim, which we will show first:

Claim 2.1 Let P be a conver set in R?, p € P and p; € int(P), and let S
be the line segment pp;. Then S\ {p} C int(P).

Proof. Since p; € int(P), there is € > 0 with B.(p;) C P. Let L be the
line through p; which is perpendicular to p; — p. Denote by ¢ and r the
intersection of L with 0B,(p;), and let A be the triangle spanned by p, q,r
(see left-hand side of Figure 2.8). By convexity we have A C P. The claim
follows from S\ {p,p;} C int(A). O

Figure 2.8: Visualization of the situations in the proofs of the Claim 2.1 and
Lemma 2.5. All points in the shaded regions belong to int(P).
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Now we are ready to give the proof of the lemma:

Proof of Lemma 2.5. First we show int(P) @ int(Q) C int(P & Q). Fix
p € int(P),q € int(Q). Then there is € > 0 such that B.(p) C P. Thus
P®Q 2 Bp) ®q=Bcp+9q)

Now we prove int(P) @ int(Q) 2D int(P & Q). Fix a point s =p+q €
int(P & Q) with p € P and ¢ € Q. Observe that p and ¢ could lie on the
boundary of P and () respectively. Our goal is to find a direction 7 with the
following property: If we walk from p in direction 7, then we immediately hit
interior points of P. And if we walk from ¢ in the direction —7, then we do
not leave () immediately. Thus there is some A > 0 such that p+ A7 € int(P)
and ¢ — \¥ € Q.

Let p; € int(P) and d; = p; — p. By Claim 2.1, d; points from p to the
interior of P, however —d might point from ¢ to the outside of (). Since
p+q € int(P®Q), we can find € €]0, 1], p € P and ¢’ € Q with p+q—ed; =
p'+¢'. And hence, ¢ —q = —(p —p—i—eci;) =: —7. The convexity of ) implies
that g— A\re @ for 0 < A < 1.

What remains to show is that 7 leads from p to the interior of P. By convexity
of P, p. :=p+ ed; € P. Thus the whole triangle A spanned by p, p; and p, is
contained in P (see right-hand side of Figure 2.8). We distinguish two cases:

e If A is non-degenerate, i.e. its vertices are not collinear, then we are in
the situation shown on the right-hand side of Figure 2.8. So 7 is one
diagonal of the parallelogram induced by the vertices of A, and hence
it leads from p to the interior of A.

e In the case that A is degenerate, the vectors CZ; and d := p' — p are
linearly dependent, i.e. d = aci;- for some a € R. If @ < 0, then p # p’
and p lies on the segment p’p;. Claim 2.1 implies that p € int(P). So
assume o > 0. Since 7@ = p' — p + ed; = (o + e)d;, 7 has the same
direction as cZ;, which has been chosen to point from p into the interior
of P.

In any case we can find A €]0,1] with p” = p 4+ A" € int(P). We have

¢"=qg—Afre and p"+¢" = s.

We choose ¢; € int(Q), and let €; = ¢; — ¢". By Claim 2.1, we have ¢" +~¢; €

int(Q) for 0 < v < 1. Since p € int(P), we conclude that p := p" — dé; €

int(P) for some ¢ with 0 < § < 1. Thus G := ¢” + §¢; € int(Q), and we have

p+q=s. O
We want to point out that both conditions of Lemma 2.5 are necessary.

The Minkowski sum of a line segment S and box B is a box again, see left-
hand side of Figure 2.9. So int(S & B) # ), but int(S) = @, which implies
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int(S) @ int(B) = 0.

The right-hand side of the figure shows a non-convex polygon P, a convex
polygon @ and their sum P & @, which contains the interior point s (see
marker). We observe that s cannot be represented as the sum of two interior
points of P and @ (only as sum of two points on the boundaries of P and

@). And hence, int(P) @ int(Q) # int(P & Q).

S

Figure 2.9: Examples showing that both conditions of Lemma 2.5 are neces-
sary.

We conclude this section with a statement about convex combinations
and Minkowski sums:

Lemma 2.6 Let Q C R? be conver and p € R? be a convex combination of
Py, 0n ERZ de. p=3"" Nips with Ay,..., A\, €[0,1] and Y1, N\ = 1.
Then the following holds:

r®Q=EPrpoQ)
=1

Proof.

CFixqgeQ. Asd) P Ni=1,wehavep+qg=> 1 Api+ (> Ni)g=
dici dilpi + ) € D, Milps @ Q).

D Fix s € @;_; \i(pi @ Q). By the definition of a Minkowski sum, we
have s = Y XNi(pi + @) with ¢1,...,¢, € Q. As Q is convex, ¢ =
Y1 Aigi € Q. And hence, s =31 \i(pi+¢) =p+qEpDQ.

Polygons and polytopes

A polygonal chain is a sequence C' = (p1,...,p,) of points in the plane
R? such that segments s; = PPz, 52 = DaP3s---s50-1 = Dn—1PnsSn = PnP1
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are disjoint except for common endpoints of consecutive segments. We call
D1,y ---,Pp the vertices and s1,...,s, the edges of the chain. We use |C| to
denote the number of vertices of C'. C describes a set of points, namely the
union of all its edges. In order to simplify notation, we denote this point
set also by C. R? \ C consists of two (connected) open sets, one of which
is bounded. Thus C splits the plane in a bounded region B(C) and an
unbounded region U(C).

We can model C as a cyclic directed graph: The nodes of this graph
are the vertices of C, and for ¢+ = 1,...,n the edge s; = p;p; 11 of the chain
corresponds to an edge e; = (p;, pir1) in the graph, where p,1 := p;. Thus
we obtain an orientation for the edges of C. It is easy to see that B(C) is
either locally to the left of each edge or locally to the right of each edge. In
the former case we say that C has a positive orientation, and in the latter
case C has a negative orientation. An example is depicted in Figure 2.10,
we see that a chain has positive orientation if the vertices in the sequence

(p1,- .., pn) are in counter-clockwise order.
p1
c
U(c) or
p2 D5
p3 yZ Pe

Figure 2.10: A positively oriented polygonal chain.

A positively oriented polygonal chain C' defines a polygon P: P is the
point set C'U B(C). Hence, 0P = C and int(P) = B(C). Sometimes we
identify P and its defining polygonal chain. In particular, we use |P| to
denote the number of vertices of P.

Now we restrict our attention to convex polygons. A convex polygon P is
uniquely defined by the (unordered) set V' of its vertices, we have P = CH(V).
P can also be written as the intersection of |P| half-planes: Every edge pg of
P corresponds to one half-plane H,,,, namely all points which lie to the left of
the oriented line through p and ¢. In order to determine H,,, we consider the
outer normal vector 7i(p, q) of the edge. This vector is perpendicular to pg
and points to the outside of P, thus 7i(p, ¢) = (¢y — Py, Ps — Gz)- Hpq is the set
of all points (z,y) that satisfy the inequality (7(p, q), (z,v)) — (7i(p, q), p) < 0.
Here (-, -) denotes the scalar product, which is defined as {(x1,y1), (2, y2)) :=
T1- T2+ Y1 Yo-

Consider for example the triangle with the corner points a = (1,1), b =
(5,1), ¢ = (1,4). The corresponding normal vectors are 7i(a,b) = (0, —4),
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ni(b,c) = (3,4) and 7i(c,a) = (—3,0), which give rise to the half-planes
Hy:y>1, Hy:3x+4y<19and H., : x > 1.

Polygons are point sets in the two-dimensional plane. There exists a gen-
eralization for higher dimensions called polytopes. We restrict our attention
to convex polytopes: A d-dimensional convex polytope P is the convex hull
of a finite set of points S C R? which contains at least three non-collinear
points”. In the sequel we only talk about three-dimensional convex polytopes,
i.e. we fix d = 3. The boundary of such a polytope P can be decomposed in
(non-disjoint) features of lower dimension (see left-hand side of Figure 2.11):
A facet of P is a maximal subset of coplanar points on 0P. Thus a facet of
P is a convex polygon (embedded into R®). An edge of P is an edge of one
of its facets, and a wvertexr of P is a vertex of one of its facets. It is easy to
see that P is the convex hull of its vertices.

d
p

facet

Figure 2.11: A polytope and a combinatorial representation as planar graph.

There are several ways to represent a polytope P. The choice depends on
the computation which one wants to perform on P.

e pure vertex representation:
As we have seen above, P is uniquely determined by the (unordered)
set of its vertices.

e intersection of half-spaces:
Suppose first that P is not planar, i.e. P is not contained in a plane.
Each facet f of P gives rise to one half-space H; (similar to the two-
dimensional case, where every edge gave rise to a half-plane). Hy is
uniquely characterized by the following properties: P C Hy, and the
boundary of Hy is the plane containing f. Let fi,..., fi denote the

"The requirement that S contains at least three non-collinear points is non-standard,
but convenient for us.
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facets of P. Then P = J*  H.

If P is planar, then P can be written as the intersection of n + 2 half-
spaces where n is the number of edges of P: The plane p containing P
is the intersection of two half-spaces, and every edge e of P gives rise
to a half-space H, such that P C H, and 0H, is perpendicular to p
and contains e.

e combinatorial representation:

We represent P as a planar graph® G: Each vertex/edge of P gives rise
to a node/edge in G (like in the two dimensional case). Each facet of
P corresponds to a face in the planar embedding of P. We will not
define the notion of a face formally (for details see [MN99, Chapter 8]).
In our example in Figure 2.11, the planar drawing of G splits the plane
into four regions — three bounded ones and one unbounded one. The
nodes and edges that bound a face of G' correspond to the vertices and
edges on the boundary of a facet of P, and vice versa.

We show now that the size of these representations is linear in the number
of vertices of P. Here we assume that a point in R® can be represented in
constant size. (We want to point out that this result does not for higher
dimensions, even if we need only constant size for a point.) We follow the
presentation of de Berg et al. (see Theorem 11.1 in [dBvKOS00]).

Lemma 2.7 Let P be a three-dimensional convex polytope with n vertices.
The number ne of edges of P is at most 3n — 6 and the number ny of faces
of P is at most 2n — 4. If P is not planar, then ny > %n + 2. Hence, any of
the three representations above for P has size O(n).

Proof. We use Euler’s formula which states:
n—"ne—np=2

Since every facet has at least three edges and every edge bounds exactly two
facets, we have 3ny < 2n.. Plugging this into Euler’s formula we obtain
n+mng—2> gnf, which implies ny < 2n —4. Applying Euler’s formula once
more we get n, < 3n — 6.

If P not planar, then every vertex is incident to at least three edges. Thus
3n < 2n,, which implies (by Euler’s formula) ny > 2+32n—n = in+2. (For
the example in Figure 2.11 our bounds are tight.)

The claim on the size of the representations of P follows immediately
from the discussion above. (Observe that ny = ©(n), if P is non-planar, and
that n, = n, if P is planar). O

8 A graph is called planar if it can be drawn in the plane without edge crossings.
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The three representations of a polytope P can be converted into each
other in time O(|P|log|P|): From the combinatorial representation we can
obtain the other representations in linear time. In order to convert the purely
vertex representation into a combinatorial representation we can use an al-
gorithm for computing the convex hull of a point set S, which runs in time
O(|S]|log|S]) (see [dBvKOSO00, Chapter 11]). Moreover, the intersection of n
half-spaces in R® can be computed in time O(nlogn) (cf. again [dBvKOS00,
Chapter 11]).
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Chapter 3
Sortedness and Alldiff

In this chapter we study two constraints: Sortedness and Alldiff. The con-
straint Sortedness(X, ..., X,; Y1, ...,Y,) takes as input two sequences of n
variables and states that the second sequence Y7, ... Y, is obtained by sort-
ing the elements of the first sequence Xi,..., X, in non-decreasing order.
The constraint Alldiff( X1, ..., X,,) takes as input n variables and holds if the
elements in the sequence X1, ..., X,, are pairwise different.

Let us look at some variable assignments for which the two constraints
hold and some which violate the constraint.

Sortedness
Sortedness(1,3,1;1,1,3) holds
Sortedness(2,1,3;1,2,4) | violated
Sortedness(5,2,3;3,2,5) | violated

Alldiff
Alldiff (3,4,2) holds
Alldiff (2,1,2) | violated

In the first example on the left-hand side Sortedness holds because sorting the
sequence 1,3,1 yields 1,1, 3; note that the same element may occur several
times in a sequence. In the second example the constraint is violated because
the second sequence is not a permutation of the first one. And in the last
example the second sequence is not sorted.

Now we consider the examples for the Alldiff on the right-hand side. While
in the first example the constraint clearly holds, we have a violation in the
second one because the element 2 appears twice in the sequence.

For each of the two constraints we will develop a propagation algorithm
that achieves bound-consistency, i.e. we assume that all variable domains are
intervals and we show how to narrow them to the smallest possible inter-
vals. For both constraints the best previous result was O(nlogn). For the
Sortedness-constraint it was obtained by Bleuzen-Guernalec and Colmerauer
[BGCO0], the algorithm for the Alldiff-constraint was given by Puget [Pug98].
The running time of our algorithms [MT00] will be O(n) plus the time for

39
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sorting the interval endpoints of the variable domains. For the Sortedness-
constraint we can show that this is optimal. Let us compare our results to
the previous results. Of course, we are never worse because we can always
sort the interval endpoints in time O(nlogn) (see for example [Meh84, Chap-
ter I1.1]), assuming that two endpoints can be compared in constant time.
But we improve upon the previous results whenever we can sort the interval
endpoints in linear time. This is for example the case when the interval end-
points are “small” integer numbers, i.e. when they are drawn from the range
[0..n*F — 1] for some fixed k (see [Meh84, Chapter I1.2]).

Although the two constraints have quite different semantics we treat
them in a single chapter because our propagation algorithms for them are
very similar. In both cases we have to deal with a matching problem in
a bipartite graph. A connection between the two constraints was already
pointed out in [BGCO00]. If the Alldiff-constraint encodes a permutation,
which means Dom(X;) C [l..n], then Alldif(X;,...,X,) is equivalent to
Sortedness(X, ..., Xn, {1},{2}, ..., {n}).

The work which we present in this chapter is based on the paper [MT00],
which is joint work with Kurt Mehlhorn. We will be able to give simpler al-
gorithms for the Alldiff-constraint and the presentation of both propagation
algorithms should be clearer than in the paper. The chapter is divided in
two parts, one for each constraint. We start with the Sortedness-constraint,
for the matching problem that occurs here is easier to solve than the one for
the Alldiff-constraint.

3.1 The Sortedness-Constraint

In this section we discuss the Sortedness-constraint. After giving an example
which demonstrates the usefulness of this constraint, we provide a formal def-
inition. Then we develop the propagation algorithm. The section concludes
with a discussion of related work.

3.1.1 Motivation

We describe an application of the Sortedness-constraint to a job-shop schedul-
ing problem. This application was found by Older et al. [OSvE95]. We have
to schedule n jobs on k identical machines. Each machine can execute any of
the jobs, but only one at a time. Each job has a positive duration and may
not be interrupted. For every machine m with m € [1..k] we may specify

'We take the n-nary representation of every number and interpret it as a string of
length k over the alphabet 0,1,...,n — 1. The strings can be sorted in linear time.
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an availability time A,,, every job on this machine must start after A,,. A
schedule assigns to every job a starting time and the machine on which it is
executed. It is called feasible if no two jobs that overlap in time are sched-
uled on the same machine and no job starts before its respective machine is
available. In the sequel we will show how the Sortedness-constraint can be
used to model this problem such that the solutions of the constraint program
correspond one-to-one to the feasible schedules of the problem. In order to
make the following presentation easier, we will neglect additional constraints
like precedence constraints.

For modelling the problem it will turn out useful to introduce for m €
[1..k] a dummy job j,, which is scheduled to be the first job on machine
m and has its completion time set to A,,. Thus j, occupies this machine
until the first real job can be executed. The n real jobs are denoted by
Jk+1s - - > Jkan- We consider a schedule for the k + n jobs and discuss how to
decide whether it is feasible or not. Older et al. gave a very elegant answer
to this question which involves sorting the starting and completion times of

the jobs. Let 011, ...,0k+n denote the start times of the real jobs sorted in
ascending order, i.e. oxy1 < ... < 0g1y,. Note that ogy; is in general not the
start time of job ji.;. Denote by 71, ..., 7k, the sorted completion times of
all jobs.

The crucial observation is that all completion times can be treated as machine
availabilities: Whenever a job completes at time 7; on some machine m, then
this machine is available again until the next job begins which is scheduled
for machine m.

Let us examine a schedule that is feasible. Consider the point in time oy,
(for some i in [1..n]). At this time k + i jobs have been started (including
dummy jobs). Since there are only & machines, at least ¢ out of these k + ¢
jobs must have been completed at this time. And hence, we have 7; < oy;-

We will show that the converse is also true: If 7; < oy, for all i € [1..n],
then the schedule is feasible. Let ¢ and v denote sorting permutations of the
jobs according to the start and completion times. To be more precise, ¢ is
a permutation of [k 4+ 1.k + n] such that o4 is the starting time of job
Jk+i, for i =1,...,n. And % is a permutation of [1..k + n] such that job j is
completed at time 7y for [ =1,...,k +n. We describe how to construct a
feasible schedule. Since the dummy jobs are scheduled to be the first job on
their machine, the schedule is uniquely determined if we know for each job j
its successor jgucc() (in case there is one). For [ € [1..k + n] we define succ(1)
as follows:

suce(l) = { oLk + o), () € [Lon]

none, otherwise
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If succ(l) # none, then jseq is a real job and Ty < Og(suceqr)), i-€- Ji
ends before jsec) starts. (The latter follows immediately from the condition
T; < 0k44.) Since every real job has a positive duration, the starting times
of the jobs in the sequence jsucc(1), Jsucc?()s - - - Strictly increase, hence the
sequence contains no repetitions. Moreover, as ¢ and ) are permutations,
we see that every real job is the successor of exactly one job.

For m =1,...,k we schedule the jobs ji, Jsuce(m)s Jsucc?(m), - - - 00 machine m
in that order. Thus the jobs on machine m do not overlap. Since every real
job is placed on exactly one machine, we obtain a feasible schedule.

We finish this section with the constraint program which encodes the
feasible schedules for the problem. We use the following variables:

e For every real job jx.; we have a variable S; for the start time, a variable
T; for the completion time, and the duration is stored in a variable D;.

e We have variables o1, ..., 01, for the sorted start times of the real
jobs and variables 7, ..., Tx1, for the completion times of all jobs.
e For m =1,..., k the availability times of machine m is given by A,,.

The program looks as follows:

Sortedness(S1, - - -, Sn; Oki1s- -y Okin)
Sortedness(A1, ..., Ak, Thy. oo i Ty e ooy Thotn)
T; = S;+ D; for all i € [1..n]

T; < opy for all ¢ € [1..n]

3.1.2 Definition

Consider a Sortedness-constraint on the variables X1,..., X,,,Y;,...,Y,. For
i=1,...,nlet D; denote Dom(X;) and F; denote Dom(Y;). As we have said
above, we require that all domains are intervals, but we restrict ourselves
neither to finite nor to integer intervals. We only assume that all domains
are drawn from a linearly ordered universe (U, <) such that |U| > 2 and two
elements of U can be compared in constant time. For two elements a,b in U
we define the interval I = [a;b] to be the set {u € U | a < u < b}. Note that
I may be empty. We denote by I the lower endpoint a and by I the upper
endpoint b.

Before we define the relation of the constraint, we introduce the map-
ping sort which maps every n-tuple over U to its sorted version, i.e. for
(di,...,d,) € U™ we have sort(dy,...,d,) = (e1,...,e,) withe; < ... <e,
and there is a permutation 7 of [1..n] s.th. d; = e, fori =1,...,n. Now we
are ready to define the relation S := Rel(Sortedness(X1, ..., Xn; Y1,...,Yy)).
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It consists of all 2n-tuples (di,...,dy, e1,...,e,) such that (er,...,e,) =
sort(dy,...,d,) and d; € D;, e; € E; for all 5. Our task is to decide whether
S is non-empty and, if so, to compute the minimal and maximal elements in
the projection of S on each of its 2n components.

3.1.3 Propagation Algorithm

Since the last n components of any 2n-tuple in S are sorted in non-decreasing
order, we may assume from now on that £, < E, ; and E;, < Eiﬂ for
1 =1,...,n—1. If this holds, we say that the domains of the Y-variables are
normalized. Normalization can be achieved algorithmically by setting £, to
max(E; ,,E;) for i from 2 to n and E; to min(E;, E;,,) for i from n —1 to
1.

Example. We use the following running example:

Sortedness(X1,...,Xs5;Y1,...,Ys)

with the respective variable domains:

Dy =[7;10] Dy =[1;13] Dy =[13;15] D =[3;17] Ds = [5;6]
Ey =[24 FE,=[47 E;=[213] E,=[1219] E; = [14;18]

We observe that the domains of the Y—vaiiables are not normalized. Nor-
malization changes E; to the value 4 and E, to 18.

Our algorithm works on a bipartite graph G' which we call the intersection
graph. For every variable of the constraint we have a corresponding node in
G, so the nodes are {z; |1 <i <n} and {y;|1 < j < n}. There is an edge
{zi,y;} iff D;NE; # 0. Given a tuple (di,...,dn,e€1,...,€,) € S, one can
always construct a perfect matching in G as follows. If 7 denotes a permuta-
tion such that d; = e for i = 1,...,n, then the set {{z;, yru}[1<i<n}
is a perfect matching. A partial converse also holds, a perfect matching
in G implies the existence of certain tuples in S, as we shall see below in
Lemma 3.1. But let us revisit our running example first.

Example.

On the right-hand side we show the in- 21 %2 I3 T4 I3
tersection graph for our running example.

The bold edges indicate a perfect matching

that corresponds to the following tuple in S:
(8,3 14156 3 6 8§ 14 15

X317 X2? X337 Xy’ X5?YV17Y2? Y37 Yy Y5 1 Yo Y3 Y4 Ys

As one can see in the example, the graph G tends to be dense, in fact it

may have n? edges. So our algorithm will not create G explicitly.
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We now come back to the correspondence between perfect matchings in
G and tuples in S. The lemma below shows how to construct tuples in § if
one has a perfect matching. It will allow us to determine the projection of &
onto its first n components.

Lemma 3.1 Fiz a perfect matching {{z;, y=u)} |1 < i < n} in the intersec-
tion graph. For each i let d; be an arbitrary element in D; N Er;y. Then
(diy...,dp,e1,...,6,) €S, where (eq,...,e,) = sort(dy,...,d,).

Proof. Let ¢ = n ! and consider the sequence d(1), - - - dg(n)- If this se-
quence is sorted, then e; = dy;) for all 7, and we are done, because dy(;) € Ej,
by the choice of the d’s. So assume the sequence is not sorted, then there is a
smallest index k& with dgg) > dgr+1). We get the following chain of inequal-

ities B, é E, . % dpk+1) < dg(k) % E, % Ek+1- Here the inequalities 1 and
4 follow from the assumption that the E’s are normalized. The inequalities 2
and 3 are implied by dgx+1) € Exq1 and dgp) € Ej respectively. And hence,
we have dg) € Ejy1 and dgx41) € Ey so that we can swap the two elements.
We construct a new permutation ¢’ with ¢'(k) = ¢p(k+ 1), ¢'(k+1) = ¢(k),
and ¢'(j) = ¢(j) for all j ¢ {k,k + 1}. Again we have dy ;) € E; for all j.
And dy 1), < ... < dg-1)Sdgry < dgwsn)- After at most () of such swaps
we obtain a sorting permutation of the d’s, which proves the claim. |

Before we explain how to narrow the domains of X, ..., X,, in the corol-
lary below, we introduce the reduced intersection graph: This graph is ob-
tained by removing all edges from the intersection graph which cannot belong
to any perfect matching.

Corollary 3.1 (Narrowing of X-domains) Fiz i € [1..n] and let S; be
the projection of S onto the i-th component. Let H denote the reduced
intersection graph. Then S; = D; N U{wi,yj}eH E;. In particular, we get
S; = max(D;, E;) and S; = min(D;, E}) where y; and yy, are the y-nodes
adjacent to x; in H with minimal and mazimal index respectively.

Proof. It suffices to show that S; = D; N Uy, .1em Ei-

C: For any element d; € S; we find a tuple in & whose i-th component
equals d;. This tuple corresponds to a perfect matching M in H. Let
{zi,y;} € M denote the matching edge incident to z;. Then d; €

U

: Consider an edge e = {z;,y;} in H. Then there is a perfect matching in
the intersection graph containing e. By Lemma 3.1 we have D; N E; C
S;.
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We want to point out that we cannot use a similar strategy for narrowing
the Y-domains?. We will show this with the aid of our running example. If
one exchanges the mates of r; and x5, one obtains a perfect matching M
that contains the edge {x1,y2}. But there is no solution of the constraint
where Y5 is assigned the value 7, although this value is in Dy N E,. This
can be seen as follows. Consider a tuple (di, . ..,ds, e1,. .., e5) which satisfies
the example constraint. By inspecting the domains of the variables, we find
e; < ds < dy < eq4 < es. (The last inequality follows from the fact that the
e’s are sorted.) Since the e’s are a permutation of the d’s, we obtain ey = ds.
This means that in any solution Y5 can only take a value in Ds.

In the sequel we will show how to find the edges that can belong to some
perfect matching in the intersection graph. First we compute a certain perfect
matching, and then we can determine for any edge whether it can belong to
any perfect matching or not. In order to do this efficiently we exploit a crucial
property of the intersection graph. Let us look at our running example. In
the table below we list for any z-node its neighbours (i.e. its adjacent nodes)
on the y-side:

| 2 | ws | w5 | T4 | 25 |
| y2,ys | Y1, Y2, Uss Vs | U3 Ve Us | Y1, V2o Uss Y Us | Y2, s |

We see that the neighbours of an z-node form an “interval” in the y-nodes.
Or more formally, if y; and y; are two neighbours of a node x; with [ < A,
then for all j € [I..h] the node y; is adjacent to z;. This property of the
intersection graph follows directly from the normality of the domains of the
Y-variables. (We have E, <E, < D, and D, < E, < Ej, and hence
D,NE; #0.)

Glover called bipartite graphs with this property conver and gave a simple
matching algorithm for them (see [Glo67] and [Law76, Section 6.6.6]): For
a node v let N(v) denote the set of its neighbours. For j = 1,...,n we
determine for every node y; its matching mate z4(;). Assume that yy,...,y;_1
are already matched. Then the candidates for y; are all its free neighbours,
i.e. the nodes in N(y;) \ {z40),--.,Zg;j—1)}. From the set of candidates
we choose the node z; such that D; is minimal, and define ¢(j) := i. In
Figure 3.1, we give an intuitive explanation for this choice of z;. Consider
another candidate z., i.e D; < D,. Since the interval of z, on the y-side
ends later than that of z;, we see the following: All currently free nodes on
the y-side that can be matched by z; can also be matched by z., but z. can
(possibly) match some nodes which x; cannot match. So it is reasonable to
use z; now and save z. for later.

2 Actual reason: Not every perfect matching corresponds to a “sorting permutation”.
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. e o o . : . . o o o
Y1 yj—l: Y Yj+1 U Yn Yn

matched nodes . free nodes

Figure 3.1: The nodes y;,...,y can be matched with both x; and z., the
nodes Y11, . . ., Yy only with z.. So we match y; with z; keeping z. for later.

Example. Let us look how Glover’s algorithm constructs a perfect match-
ing in our running example. We give a table which shows for y; the set of
candidates (sorted according to D) and the choice of ¢(j).

yi | Nwi) \{zs), - - - 2o} | ()

Y1 | T2,T4 2
Y2 | Ts,T1, T4 5
Ys | T1,T3,T4 1
Ya | 3,74 3
Ys | T4 4

So we obtain exactly the matching shown in the drawing of the intersection
graph on page 43.

Lemma 3.2 (Glover) If the intersection graph has a perfect matching, the
algorithm above constructs one.

Proof. Assume that the intersection graph has a perfect matching M. We
use induction on j to show that there is a perfect matching M; which matches
yr with zgy) for £ =1,...,7. The claim holds for j = 0 with My = M. So
assume j > 0. If M;_; matches y; with x4, we set M; = M;_; and are
done. Otherwise M;_; matches y; with some other node z. and z4;) with
some node ¥,. From the definition of ¢(j) we conclude Dy < D,. Since the
nodes yi,...,y;-1 are matched with zg1),...,Z¢-1), we have r > j. As y,
lies to the right of y; and the interval of z. ends later than that of x4, we
get y, € N(z.). Thus we can exchange the mates of y; and y, to construct
M; from M;_y, i.e. we match y; with z4(;) and y, with .. 0

We discuss how to implement Glover’s algorithm efficiently. An im-
portant observation is the following. Suppose that the intersection graph
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contains a perfect matching, and consider the iteration j of the algorithm.
All free neighbours of the nodes ¥,...,y; 1 are also neighbours of y;. In
other words, as soon as an z-node becomes a candidate, it remains one
until it is matched. Formally this means that all nodes in the set S; =
Ny, - yi—1)\{sq), - - -, Zg(j—1) } are contained in N(y;). This can be seen
as follows. Assume the observation is false, i.e. there is a node z; € S;\ N(y;).
Since z; is a neighbour of some y;, with k£ < j but not of y;, its interval in the
y-nodes ends before the interval of y;, i.e. D; < E;. So z; is not a neighbour
of y;, ..., yn. After Glover’s algorithm has matched yi,...,y;_1, there are at
most n — 7 candidates for the remaining n — 7 + 1 nodes on the y-side, and
hence it will get stuck. By Lemma 3.2 this cannot happen if the intersection
graph has a perfect matching.

The implementation of Glover’s algorithm which is probably most sug-
gesting maintains a priority queue P. After iteration 57 — 1, the queue P
contains the set S;_; sorted according to the upper interval endpoint D of
the corresponding domains. In iteration j we insert into P those neighbours
of y; which are not neighbours of y;,...,y;_1, these are the nodes z; with
Fj,l <D, < Ej. Now, P contains all candidates for y;, and — if G' has no
perfect matching — maybe some z-nodes which are not neighbours of y;. If
P is not empty, we extract a node z; from P with smallest D;. If P is empty
or D; < E;, we detect that the intersection graph has no perfect matching,
which implies that S is empty. Otherwise we set ¢(j) = ¢ and continue.
Since every operation on P takes time O(logn), this implementation, which
is shown in Algorithm 3.1, has complexity O(nlogn).

Now we show how the algorithm can be implemented in linear time, if
one knows the sorting of the X-variables according to both the lower and the
upper endpoints of their domains. Let o, 7 denote permutations of [1..n] with
Qg(l) <...< Qg(n) and ET(D <...< ET(H). We replace the priority queue
by an instance of the offline-min problem [AHU74, Chapter 4.8], which can be
solved in linear time using the union-find data structure by Gabow and Tarjan
[GT85]. The offline-min problem can be described as follows: one is given a
sequence of the priority queue operations insert and extractmin, and one has
a sorting permutation of the elements inserted by the insert operations. The
goal is to check whether the sequence is valid, i.e. no eztractmin is performed
on an empty queue, and — if so — to compute the pairs of corresponding
extractmin and insert operations in the sequence.

Since in Algorithm 3.1 the sequence does not depend on the outcome of
the extractmin operations (if it runs to completion), we can easily construct
the whole sequence offline. If we simply delete lines 8 — 10 and 12 — 15 in
Algorithm 3.1, we obtain an algorithm which computes the desired sequence
in linear time. Of course, we have to check that the sequence is valid and
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Algorithm 3.1 Finding a perfect matching in the intersection graph G

Procedure: GloverWithPQ(Dy,...,D,, Ei,...,E,, o)
Require: o is a permutation of [1.n] s.th. D) < ... < Dy,
1: P+ []// PQ stores z-indices [i1,...,%] s.th. D;; <...< D,
2: s+ 1
3: for j =1tondo
4:  while s < n and QU(S) < Fj do
insert o(s) into P
s+—s+1
end while
if P is empty then
report “no perfect matching in G” and terminate
10: end if
11:  extract the first element ¢ from P, i.e. one with smallest D;
12 if D; < E; then
13: report “no perfect matching in G” and terminate
14: end if
15: ¢(j) <1
16: end for
17: return ¢

that for j = 1,...,n the j-th extractmin corresponds to an insert(i) with
D; > E;, otherwise no perfect matching exists. Altogether, we get a linear
time algorithm that can decide the existence of a perfect matching in the
intersection graph and if possible compute one.

We have computed a distinguished perfect matching in G. In order to
compute the reduced intersection graph H, we have to find all edges of G that
can belong to some perfect matching. These edges are easy to find, we use
the same characterization that was employed by Régin in his arc-consistency
algorithm for the Alldiff-constraint. It is based upon the strongly connected
components of a directed graph. Let u,v be two nodes in a directed graph,
we say that u can reach v if there is a directed path from u to v. A set C of
nodes is called strongly connected if any two nodes u,v € C can reach each
other. And C is a strongly connected component (SCC) if it is a maximal
strongly connected set of nodes. Now we can formulate the characterization:

Lemma 3.3 Assume that M is a perfect matching in G. Let us construct
the oriented intersection graph G by directing all edges in G from their x-
endpoint to their y-endpoint and adding the reverse edge for all edges in M.
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An edge {x;,y;} belongs to some perfect matching of G iff z; and y; lie in
the same strongly connected component of G.

Proof. See Lemma 2.4. O

Example. We revisit our running example:
On the right-hand side we have drawn the
oriented intersection graph. The z-nodes
have been sorted such that every node is
located above its matching mate on the
y-side. Every bold edge corresponds to a
matching edge, it has two arrow heads be- Y1 Y2 c1 Ys Y Ys
cause it represents two directed edges in G. lez L=l |
The edges in dashed style connect nodes in different SCCs, and hence they
do not belong to any perfect matching. Or in other words, these are exactly
the edges that have to be deleted in order to obtain the reduced intersection
graph.

As we have indicated, there are two SCCs C; = [ys,T5,¥s3,21] and Cy =
(Y1, T2, Y, T3,Ys5, T4]. We see that Cy is “nested” in Cy, this shows that the
y-nodes of an SCC do not have to form an interval.

We develop an algorithm that computes the strongly connected compo-
nents of G in time O(n), which is not trivial since G’ may have up to (n2)
edges. We use the algorithm of Cheriyan and Mehlhorn [CM96] as a basis
and adapt it to the special structure of our graph.

We observe that a node y; and its matching mate z4;) always belong

to the same SCC because of the edges (y;, o)) and (z4(),9;) in G. We
represent a component C as a list [y;,, Za(j1)s - - - > Yji> Lo(s)] SUCh that ji <

. < jr. We use left_y(C) to denote j; and right_y(C) for j,. Moreover, we
say that a component C; can reach a component C5 if some node in C; can
reach some node in Cy. (This implies that every node in C; can reach every
node in Cy.)

Algorithm 3.2 explores the graph G from left to right® and maintains the
SCCs of the current]y explored graph. To be more precise, it computes the
SCCs of the graphs Go, .. G where GJ is the subgraph of G induced by
the nodes yi,...,y; and thelr matching mates on the z-side. Note that Go
is empty and én = G. The components are stored in two data structures:
a stack CS and a list SCCs. In CS we store tentative components which
are strongly connected but may grow as the exploration of G goes on. In
contrast to this, the components in SCCs are completed, i.e. they are SCCs
of the final graph G.

3This means the nodes are scanned in the order y;, T(1)> Y2, Tp(2)s - - - »Yns Top(n) -
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Algorithm 3.2 Computing the SCCs of the oriented intersection graph G

Function: ComputeSCCs(D;, ..., Dy, E1,...,Ey,, ¢)

1:
2:
3:
4:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

SCCs < empty list
CS + empty stack
for j=1 to n do
while CS not empty and E¢(m-ght_y(top(cg))) < E; do
// i.e. top(CS) cannot reach y; or a node to the right of it
pop C' from CS
append C’ to SCCs
end while
i+ ¢(j)
C« [yj’ .T,] _
while CS not empty and D; < Eigni_y(t0p(cs)) do
// i.e. C can reach top(CS)
pop C' from CS
C + C"oC // merge components
end while
push C onto CS
end for
while CS not empty do
pop C' from CS
append C' to SCCs
end while
return SCCs

We will now explain the details of the algorithm and prove its correctness
based on the invariants below. When line 15 is executed the following holds:

In

12:

13:

14:

: Every component C' in the list SCCs is a strongly connected component
of G. In particular, C' cannot reach y;, ..., yn.

The union SCCs U CS consists of the SCCs of the currently explored
graph Gj.

Let CS = (C4,Cs,...,C;) (where Cy is the top element). If [ < h then
C; can reach Cj, but not vice versa and right_y(C);) < left_y(Cy).

Let C' denote a component in SCCs U CS and let i, be ¢(right_y(C)),
i.e. z;, is the mate of the rightmost y-node of C. Then for all z; € C
we have D; < D, .
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When Algorithm 3.2 enters the for-loop (line 3) for the first time the
invariants clearly hold with j = 0. So let us now consider an iteration j
with j > 0 and assume that the invariants hold for 7 — 1 at the beginning.
First we identify some components on CS that can be declared completed
and move them to SCCs (lines 4-7). When is the topmost component C’
of CS not completed? We will see that this can only be the case if y; is a
neighbour of z;,, where i, = o(right_y(C")). We know by invariant I2 that C’
is an SCC of G,_;. So if it is not an SCC of G, then it must be able to reach

one of the nodes yj, ..., y,. By invariant I3, C' cannot reach nodes in other
components on CS; and by invariant I1, the components in SCCs cannot
reach any of the nodes y;,...,y,. And hence, there must be a node z; in C’

itself such that z; is a neighbour of some y; with j < k < n. Recalling that
the neighbours of x; form an interval and the mate of x; lies to the left of y;,
we can conclude that z; is adjacent to y;. By invariant I4 this implies that
x;, is also a neighbour of y;. So after the while-loop in line 4 has finished,
invariant I1 holds.

When the algorithm reaches line 8, CS is either empty or its topmost

component can reach y;. By invariant I3, this implies that all components
on CS can reach C = [y;,z;], where z; is the mate of y;. So the SCC of
y; in ij is the union of C' with all components on CS that C' can reach.
From invariant I3 we infer that C' can reach a component C’ on CS iff x;
is a neighbour of some y-node in C’. Since the neighbours of x; form an
interval, this is equivalent to D, < Em-ght_y(cf). Invariant I3 implies that the
components with this property are a suffix of C'S. After merging them with
C' and pushing C' on CS, invariant 13 holds again. Clearly, the final C' is the
SCC of y; in éj. Invariant I2 follows from the fact that every other SCC of
éj is also an SCC of G’j,l.
We have to show that invariant 14 holds for C after merging it with C’ in
line 12. Let j" = right_y(C") and i = ¢(j'). Then what we have to prove
is Dy < D;. Observe that z; is a neighbour of y; because C' and C' are
merged. Consider the point in time when Glover’s algorithm matched the
node y; with zy. Since z; is a neighbour of y; and was free at that time,
our claim follows.

After the termination of the for-loop, all remaining components on C§
are SCCs of the final graph because of invariant 12 and G, = G. Thus, these
components can be moved to SCCs.

We want to say a few words about the implementation of the algorithm.
First it is clear that we only have to store the indices of the y-nodes in
a component C', for the xz-nodes are the matching mates of the y-nodes.
If we keep the indices in a list in ascending order, then we can determine
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right_y(C) and merge components in constant time. Moreover, the number
of push operations as well as the number of pop operations is bounded by n.
And hence, the whole algorithm runs in time O(n).

Example. We show how the algorithm computes the SCCs of our running
example. In Table 3.1 we give a trace of its computation. The first two
columns contain the value of the loop variable j and the line of the pseudo-
code. The next two columns give the state of the data structures CS and C'
after the algorithm has executed the respective line. We do not list the state
of SCCs, but we indicate the completion of a component by a comment in
the last column.

j line | CS C comment

L3 0 [y1, 7] new component
2 3 | [y, 7)) -

2 9 ([y1, 2]) [y2, T5] new component
3 3 <[y1’$2]’ [y25$5]> -

39 <[y15 $2], [yz, $5]> [y3, 961] new component
3 12 | ([y1, 72]) (Y2, 5, Y3, T1] merge

4 3 <[y1’$2]’ [y27:r5ay3ax1]> -

4 6 ([y1, z2]) - SCC [y2, 5, Y3, 71]
4 9 ([y1, z2]) [Ya, T3] new component
5 3 <[y17$2]7 [y4,.1‘3]) -

5 9 <[y1, 252], [y4, xs]) [ys, 904] new component
5 12 | ([y1, z2]) (Y4, T3, Y5, 4] merge

5 12 <> [yh T2,Y4,T3,Ys, 304] merge

5 15 ([y1, 22, Ya, 23, Y5, T4)) -

5o 19 |- - SCC [y1, - .., x4]

Table 3.1: Computation of the SCCs of the running example

Now we discuss the task of narrowing the domains of the X-variables.
Let us consider a variable X; and let S; denote the projection of & onto the
i-th component. Suppose we want to determine S,. By Corollary 3.1 and
Lemma 3.3, we have to do the following. Let C' = [4(;,), Yjrs - - - » To(ji)s Vi) D€
the SCC of z; in G such that j; < ... < js. Welook at 71, . .., j in that order
until we find the first node y;, which is a neighbour of z; in G. So j, is the
first index in the sequence with D; < E;,. And we get S; = max(D;, E;, ).

Assume now that we have an ordering z;,,...,z;, of the z-nodes in C
such that D; <...< Qik. Then we can determine S for all the z-nodes in
C in time O(k). All we have to do is to merge the sequence D, ... D, with
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Ej, ... Ej,. Note that the latter sequence is also non-decreasing due to the
normalization of the Y-domains.
The question is now how we can find the sorting of the z-nodes of C'. We
may assume that we have a global sorting of all z-nodes of G such that
D,qy < ... < Dyyy . So we can compute the order for each component with
bucket sort First we generate a bucket (i.e. a list) for every SCC, then we
label every x-node with the respective bucket. Finally we consider the nodes
in the order z,(1), ..., %) and append every node at the end of its bucket.
We show now that the ordered sequence of z-nodes does not have to be
generated explicitly for each SCC: Suppose that every component is rep-
resented by the sequence of the indices of the y-nodes sorted in increasing
order, i.e. C = (ji,...,jk). For every component we maintain an iterator
iter. This is a data structure which is similar to a pointer. It references an
item of the sequence and supports two operations: iter.YIdx returns the ref-
erenced item, and iter.advance makes iter reference the next element in the
sequence. With this data structure we can compute S;,...,S, as shown in
Algorithm 3.3. A symmetric procedure can be used to determine S, ..., S,.

Algorithm 3.3 Narrowing of the X-domains (lower endpoints)

Procedure: NarrowXDomsLE(D;, ..., D,, E,.. En, o, ¢, SCCs)
Require: o is a permutation of [1..n] s.th. D, ;) <... < D, (.
1: for all C = (jy,...,Jx) € SCCs do
2:  generate iterator iter and make it reference the first element of C
3: fork=1tokdo
4 label x4,y with iter
5:  end for
6: end for
7: fori=1ton do
8 iter < iterator of x,;
9: while F. viax < Qo‘(i) do
10: iter.advance
11: end while
12:  // Yiter.y1ax is leftmost neighbour of z,;) in its SCC
13: S, ¢ max(D, g, Eiyer yrax)
14: end for
15: return Sy,..., S,

T

Example. We illustrate the computation of the S-values for the running
example. The table below is self-explanatory, we only want to point out that
the position of the iterator for the respective SCC is marked by underlining
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the corresponding j-index:

i | Ty | relevant SCC | D, Eviax | So)
1] 1,4,5) | [1;13] |[2:4] 2
2| x4 1,4,5) | [3;17] | [24] 3
3| =z (2,3) [5:6] | [47] 5
41 x; (2,3) [7;10] | [4;7] 7
5| a3 (1,4,5) | [13;15] | [12;19] | 13

As we can see there is not much narrowing, only the lower endpoint of the
domain of X, increases. One can check that the upper endpoints are not
changed at all. So the narrowed X-domains of our running example are

S = [7;10], S, = [2;13], S5 = [13;15], 54 = [3;17], 55 = [5; 6].

We describe how to narrow the domains of the Y-variables. In the fol-
lowing lemma we show that the upper endpoints of the narrowed domains
can be easily read off given the matching computed by Glover’s algorithm:

Lemma 3.4 (Narrowing of Y-domains) Let Ty,...,T, denote the pro-
jections of S onto the last n components. And let ¢ be the bijection computed
by Algorithm 3.1 (Glover). Then T; = min(E}, Dy(;)) for j=1,...,n.

Proof. By the choice of ¢, we have E; N Dyiy # 0 for all j. So let
7; := max(E; N Dy(;)) = min(E;, Dg(;)) for j = 1,...,n. We will prove that
S contains the tuple (74-1(1),--.,7Tg-1(n)s 1, - -, Tn). Clearly, 741 € D; for
all 7, and 7; € E; for all j. So what remains to show is 7y < ... < 7,. Suppose
otherwise, i.e. 7; < 7;_; for some j. Since E; > F; ; by the assumption of
normalization, this implies E¢(j) =7;<Tji—1 < ﬁ¢(j_1). And hence, if x4
had been a candidate for y;_; in Glover’s algorithm, it would have been
preferred to x4(;_1). So it was not a candidate, although it was free, which
implies £;_; < Q¢(j). Thus we get E;_; < Q¢(j) < Dy <151 < Ej 1, a
contradiction.

Consider now a tuple t = (di,...,d,,e1,...,€e,) € S. What remains to
show is that e; < 7; for all j. Assume this is wrong, i.e. there is an index
k with e, > E¢(k)- For j = k,...,n we replace the lower endpoint of E; by
max(E;, e;), which gives us a new set of normalized Y-domains and induces
an intersection graph G'. Clearly, t is a solution of the new constraint, and
hence G’ contains a perfect matching.

Suppose we run Glover’s algorithm on the new domains. As Ey, ..., Ex_; and
the upper endpoint of Ej are the same as before, the algorithm will perform
exactly the same computation until it extracts ¢(k) from the priority queue
in iteration k. Then it cannot match y; with z44) again, and it will report
that no perfect matching exists in G', a contradiction. |
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In order to determine T',...,T,, we have to compute a new matching
¢', which is obtained as follows. We match ,,...,y; in that order. When
we match y;, we choose among all candidates in N(y;) \ {Z¢/n),- -, Tgm-1)}
the node z; such that D, is maximal and set ¢'(j) = i. Then we get T, =
max(ﬁj,Q¢,(j)) forj=1,...,n.

Example. We complete our running example by computing the narrowed
Y-domains. The following table shows the function ¢' obtained with the
“reverse Glover” algorithm:

j_[1]2]3]4]5]
d()[2[5[1[4]3]

(The endpoints which have been adjusted are typeset in bold.)

We give a summary of the full algorithm:

1. Sort the domains of the X-variables according to their lower and upper
endpoints.

2. Normalize the domains of the Y-variables.
3. Compute the matchings ¢ and ¢’ with Glover’s algorithm.

4. Compute the strongly connected components of the oriented intersec-
tion graph.

5. Narrow the domains of the variables.

Except for the first step, all steps take linear time. Thus the complexity of
the whole propagation algorithm is asymptotically the same as for sorting the
lower and upper endpoints of the X-domains. This is O(nlogn) in general,
but is O(n) if interval endpoints are integers drawn from a range of size O(n*)
for some fixed k.

Our algorithm is optimal in all models of sorting: Bleuzen-Guernalec and
Colmerauer [BGCO00] observed that a propagation algorithm A for the Sort-
edness-constraint which achieves bound-consistency can be used for sorting
n elements dy, ..., d, of the universe U in time O(n) plus the running time
of A. This can be done as follows. We compute the minimum value d and
the maximum value d of the n elements. Then we call A with the domains
D; = [d;;d;] and E; = [d;d] for i = 1,...,n. The algorithm will shrink the
E-domains to singletons such that the element of E; equals the i-th element
of sort(dy,...,d,).
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3.1.4 Comparison with related work

The Sortedness-constraint was introduced by Older et al. in [OSvE95], where
they gave the application to the job-shop scheduling problem that we have
discussed in Section 3.1.1. But they do not introduce Sortedness as a global
constraint. They use a general Prolog sorting algorithm (namely quicksort)
where they plug in constraint variables instead of ground terms. Thus the
constraint is broken down into elementary constraints of the form X <Y.

Later Zhou [Zho97] used a variant of the Sortedness-constraint to solve
some hard job-shop scheduling problems that had been open before. Zhou
extended the argument list of the constraint by n extra variables that encode
the sorting permutation. The constraint

SortednessPerm(Xy, ..., Xu; Y1, ..., Y0 P1, ..., Py)
is semantically equivalent to the following constraints:

The advantage of this formulation is that Zhou can use a global propagation
algorithm for the Alldiff constraint, the constraints of the form “X; = Yp”
are still transformed into elementary constraints. Moreover, he can use the
P-variables to guide the search process.

We have thought about dealing with the P-variables in our algorithm.

Although the straightforward approach does not yield a bound-consistency
algorithm, we have decided to discuss it briefly, for it achieves at least the
same pruning as the formulation by Zhou. Denote the domains of the vari-
ables by Dy,...,D,, Ey,..., E, and Fi,..., F,. We change the definition of
the intersection graph G slightly in order to take into account the permuta-
tion variables: An edge {z;,y;} isin G iff D;NY; # (0 and j € F;. In order
to narrow the domains of the X- and the Y-variables, we would do the same
as before. Recall that we compute for every node z; the leftmost node ¥; and
the rightmost node y, that can be matched with x;. The narrowed domain
of P; is simply [l..r]. It is clear that this still yields a narrowing algorithm
for the SortednessPerm-constraint, because every tuple in the relation of the
constraint corresponds to a perfect matching.
Moreover, one can observe that Lemma 3.4 still holds, which means that
our approach achieves bound-consistency on the Y-domains. But for the do-
mains of the X- and the P-variables this is not the case, one can see that
Lemma 3.1 breaks down. (In the proof we start with an initial matching and
transform until it corresponds to a sorting permutation. This construction
does not work anymore.)
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We make another observation: A perfect matching {{z;,y., }|i € [1..n]} in
G corresponds to the tuple (7, ..., m,) in the relation of Alldif(Pi, ..., P,).
Thus applying a bound-consistency propagation algorithm for the Alldiff-
constraint to the domains of Py,..., P, would not give more propagation
than our algorithm.

Let us look at an example where our algorithm does not achieve bound-
consistency on the domains of the permutation variables. We consider a
SortednessPerm-constraint of arity 3 -4 with the following variable domains:

Dy =[1;2] D, =[1;1] Dy =[22] Ds=[1;2]
By =[1;1] E, =[1;2] E; =[L2] Ey=[22]
Fo=[12] F =153 F =24 F =[3;4]

One can verify that the domains D, ..., D, of the X-variables and the do-
mains Fjy,..., Ey of the Y-variables are bound-consistent. But there is no
solution to the constraint where Pj is assigned the value 2: Assume other-
wise. If P; equals 2, then P, must be set to 1. And hence, P, must take the
value 3. This cannot be, because we have Xy < X3 and Yp, =Y3 > Yy = Yp,.
But it is easy to see that all edges in the intersection graph can belong to a
perfect matching.

Finally, we want to talk about the work of Bleuzen-Guernalec and Colmer-
auer [BGCO00]. They describe the first propagation algorithm for the Sort-
edness-constraint as a single global constraint. In the previous work the
constraint was always decomposed into elementary constraints. Although
Bleuzen-Guernalec and Colmerauer do not use the language of graph theory
at all in their paper, one can identify some similarities with our work. Their
central objects are bijections between the indices of the input variables and
the output variables. Clearly, there is a one-to-one correspondence between
these bijections and the perfect matchings in the bipartite graphs, which we
consider. (In fact, in our implementation of Glover’s algorithm we encode
the computed matching as a bijection.) In the sequel we will summarize
their approach and express it in the language of graph theory which makes
it — as we feel — easier to understand and facilitates the comparison with our
approach. They achieve a running time of O(nlogn), which is in some cases
slightly worse than our result.

We consider the constraint Sortedness(Xi, ..., Xn;Y1,...,Y,) and the do-
mains Dy,..., D, and Ey,..., E,. Let G denote the corresponding intersec-
tion graph. Let us first discuss the narrowing of the upper endpoints of the
Y-domains. Our way to do this is as follows (cf. Lemma 3.4): With Glover’s
algorithm we compute a certain matching {{z4¢;),y;} : 1 < j < n} and
then the narrowed endpoint of Dom(Y}) is simply min(E;, Dy(;)). Bleuzen-
Guernalec and Colmerauer compute the bijection ¢~! (see Complexity 3 in
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[BGCO00])*. But in the remaining algorithm they use ¢. For the narrowing
step they apply the same rule as we do (see Theorem 2 in [BGCO00]).

Now we deal with narrowing the lower endpoints of the X-domains. Our
approach is based on identifying the edges of G that can belong to some per-
fect matching (see Corollary 3.1). Property 4 of [BGCO00] expresses the same
statement but with different words. In order to find the matchable edges, we
decompose the oriented intersection graph G into strongly connected com-
ponents as it is done in standard matching theory. Bleuzen-Guernalec and
Colmerauer do something different. They decompose G in what we will call
“zig-zag” components (they call them blocks of type I). A zig-zag component
is a bipartite graph which contains the skeleton shown on the left-hand side
in Figure 3.2. Formally, a zig-zag graph Z is a bipartite graph which has 2n
nodes z1,...,z, and y1,...,¥y, and contains (at least) the edges {x;, y;} for
i=1,...,nand {z;,y;11} for i = 1,...,n — 1. The crucial property of Z is
that any edge {z;, y;} with j < i can belong to a perfect matching of Z (see
Figure 3.2).

Z1 T2 T3 T4 Ts 2 4

1 T5
M ]\\\ %\\\ ]
LN ! \
A 1 \
3 Ys

I3 T
1
1
1
y Y2 Y3 Ya Ys Y2 R Y4

Figure 3.2: The left-hand side shows a zig-zag graph, which consists of the
skeleton (bold edges) and one additional edge e = {z4,¥y2}. The bold edges
on the right-hand side form a perfect matching containing e.

Let us consider the intersection graph G again. Assume that the layout
of G is as follows: at the bottom we have the nodes yi,...,¥y, and above
every node y; we draw its mate xg;). With this sorting of the z-nodes,
G is in general not a zig-zag graph. But Bleuzen-Guernalec and Colmer-
auer were able to show that G' can be decomposed into zig-zag components
Zy, ..., 7 such that the following holds: If there is an edge which connects
an z-node in a component Z; with a y-node in a different component 7,
then [ < h (see Figure 3.3).5 The meaning of this property becomes clear
when we look at the oriented intersection graph G and its decomposition:
The property ensures that edges between different zig-zag components are
directed from top-left to bottom-right. So there can be no directed cycle that

4The bijection which is denoted by “¢” in [BGC00] corresponds to ¢~
5Their algorithm for computing this decomposition exploits certain properties of ¢.
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visits more than one component, which implies that nodes lying in different
zig-zag components also belong to different strongly connected components
of G. Therefore an edge between different zig-zag components cannot belong
to a perfect matching of G. And hence, it can be ignored in the narrowing
process.

i) x5 1 z3 T4

Y Y2 Ys Ya Ys

Figure 3.3: On the left-hand side we show the intersection graph G for the
running example from the previous section. On the right-hand side G is
decomposed into two zig-zag components.

We want to mention that the zig-zag components of G and the SCCs of
G do not have to coincide as they do in the example in Figure 3.3, but in
general a zig-zag component may span several SCCs.

With the zig-zag decomposition at hand, narrowing the lower endpoints

of the X-domains is easy. For every node x; its leftmost neighbour 7; in its
zig-zag component is computed, and then we have S, = max(D,, E,).
We want to point out that the decomposition into zig-zag components which
is based on ¢ can only be used to narrow the lower endpoints of the X-
domains. For the upper endpoints one has to compute a second decompo-
sition that is based on the bijection ¢’ (see page 55). In contrast to this,
decomposing G into strongly connected components can be used to narrow
both endpoints of the X-domains, which is an advantage of our approach.

3.2 The Alldiff-Constraint

The following section deals with the Alldiff-constraint. It arises in many
applications, and several propagation algorithms have been developed for it,
which achieve different degrees of consistency, see [vH01a] for a survey. After
giving a formal definition of the constraint, we will describe our propagation
algorithm. At the end of this section we will discuss related work.
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3.2.1 Definition

We consider an Alldiff -constraint on the variables X1, ..., X, with respective
domains Dy, ..., D,. For this constraint we allow only finite integer intervals
as variable domains®. The Alldiff-relation A := Rel(Alldif( X1, ...,X,)) is
defined as the set of all tuples (ds, . .., d,) such that for 4, j € [1..n] with ¢ # j
we have d; # d; and d; € D,. Our task is to decide whether A is not empty,
and, if so, to compute the smallest and the largest element in the projection
of A on each of its n components.

3.2.2 Propagation algorithm

Our approach is based on the same ideas as Régin’s arc-consistency algorithm
[Rég94| for the Alldiff-constraint. He considers the value graph G which is
an undirected bipartite graph defined as follows: For every variable X; we
have a node x;, and for every value j that occurs in some domain D; we have
a node y;. There is an edge {z;,y,} iff j € D;. Let m denote the number
of edges of G. Clearly, m is the sum of the cardinalities of the domains,
and hence it does not depend on n. Since Régin’s algorithm has running
time O(y/nm) and we want to achieve a running time which only depends
on n, we cannot use his algorithm directly. We will adapt his ideas and take
advantage of the special structure of our graph. From the definition of the
value graph, we can see that the neighbours of an z-node form an interval in
the y-nodes. So it has the same nice property as the intersection graph from
the previous section.

But in general, there are more values than variables, which means that
there are more y-nodes than z-nodes. (If there are less values than vari-
ables, the constraint has no solution.) And hence, there is usually no per-
fect matching in the value graph. So we are interested in matchings which
cover all z-nodes, but may leave some y-nodes free, we call them x-perfect
matchings. There is a one-to-one correspondence between the solutions of
the constraint and the x-perfect matchings of G. An z-perfect matching
{{zi,y;;} | ¢ € [1..n]} corresponds to the tuple (ji,...,j,) in A and vice
versa.

Example. We use the following running example:

AUdiff(X, ..., Xs)

with the respective variable domains:

6What we actually need is a linearly ordered universe such that all intervals contain
finitely many elements. And for an element v we must be able to compute its predecessor
u — 1 and its successor v + 1 in constant time.
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On the right-hand side we show 5, 2, 23 2, 25 1
the value graph for our example.
The bold edges indicate an x-perfect
matching that corresponds to the tu-

6 2 4 3 1 5y
Ple (X5 x,0 x50 x47 x57 %) 10 A, the

node yy is free. Yyi Y2 Y3 Y+ Ys  Ye Y7

In order to narrow the variable domains, we have to find all edges of GG
that can belong to some z-perfect matching. The characterization of the
matchable edges is slightly more complicated than in the previous section,
because we have to take into account the free nodes. The characterization
given in the lemma below was already used by Régin [Rég94, Proposition
1]:

Lemma 3.5 Let M be an x-perfect matching in G. Construct the oriented
value graph G by directing all edges in G from the x-nodes to the y-nodes
and adding the reverse edge for all edges in M. An edge {x;,y;} belongs to
some x-perfect matching of G iff one of the following holds:

1. z; and y; lie in the same strongly connected component of G.
2. There is a path in G that starts with (zi,y;) and ends in a free y-node.

Proof. See Lemma 2.4. O

So our first task is to compute an arbitrary z-perfect matching in G.
Glover’s algorithm, which was presented in the previous section, can be used
to compute perfect matchings in convex bipartite graphs. Since G is also
convex, we can modify the algorithm such that it computes z-perfect match-
ings. Let us recall the basic idea of the algorithm. We scan the y-nodes
from left to right. In order to match y; we look at all candidates, i.e. all
free neighbours on the z-side, and choose the one where the corresponding
domain ends earliest. When there is no candidate, we report failure and
terminate. This is exactly the point which we have to change: When we
have no candidate for y;, then y; remains free and we go to the next y-node.
(Failure can only occur when we discover a free z-node where all neighbours
on the y-side are matched.)

Before we develop an efficient implementation of the algorithm, we show
its correctness:

Lemma 3.6 If the value graph G contains an x-perfect matching, the mod-
ified Glover algorithm will construct one.
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Proof. The idea of the proof is as follows. First we present an algorithm
whose correctness is obvious and then we argue that our modified algorithm
above does the same computations.
Consider the following algorithm A:

1. Construct a new graph G’ from G as follows. Let n' denote the number
of y-nodes in GG, and denote by h the greatest value that occurs in
some variable domain. (We may assume n' > n, otherwise there is no
x-perfect matching.) Add new nodes z,1,...,Z;1 on the z-side and
Yn+1 on the y-side. Connect each of the nodes z,,11, ..., 2, with every
y-node by an edge, and add an edge between x,,,1 and yp41.

2. Run Glover’s original algorithm on G’ and obtain (if possible) a perfect
matching M.

3. Construct M from M’ by deleting all edges that are incident to a new
node.

It is clear that G’ contains a perfect matching iff G has an z-perfect one.
And hence, the correctness of algorithm A follows directly from Lemma 3.2.
Now we observe that for every added z-node the interval of y-neighbours
ends strictly later than the interval of every original node, because every
new z-node is connected to y,41 but all old ones are not. Thus, A matches
a node y; with one of the new nodes only if there is no candidate among
the original nodes. This is exactly the situation when the modified Glover
algorithm (applied to G) declares y; as free. So we conclude, that A and the
modified Glover algorithm compute the same z-perfect matching M. O

Now we discuss the implementation of the modified algorithm (see Algo-
rithm 3.4). We represent an z-perfect matching {{z;,,v;,} | ¥ € [1.n]} by
two arrays XMate and YMate such that XMate|k] = i, and YMatelk] = jy
for all k. Thus free y-nodes are not stored explicitly. In the next paragraph
we describe an O(nlogn) implementation that uses a priority queue P. As it
was the case for Algorithm 3.1, the queue can be replaced by an offline-min
data structure. This yields a running time of O(n), if one has a sorting of
the variables according to upper and lower endpoints of their domains.

The algorithm scans the y-nodes from left to right and maintains a priority
queue P which stores the indices of the possible matching candidates on the
z-side. We assume that we have a sorting permutation o such that Qg(l) <

. < D,(,)- The indices are inserted into P in the order o(1),...,0(n).
Suppose that the algorithm is scanning y;. After y; ; has been processed,
P contains the indices of all free nodes z; with D, < j — 1. Let o(s) be the
next index that is to be inserted into P, i.e. we have D) < ... < D, 1) <
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J < Dyy)- It Pis empty and j < Dy, then all the nodes y;, .. YD, -1
cannot be matched, because there is no candidate for them. Thus we can
skip these nodes by assigning D, to j, and we continue the scan with the
corresponding y-node. This is important for achieving the desired running
time of O(nlogn).

The rest of the algorithm remains basically the same as in Algorithm 3.1. We
add all indices 7 to P where D, = j. Then we extract the element ¢ such that
D, is minimal. If D; < j, this means that all neighbours of z; are matched
and no z-perfect matching exists; we report this and terminate. Otherwise
we match z; and y; and continue our scan.

Note that we have to verify after the scan that P is empty to make sure that
every z-node has been matched (see line 18).

Algorithm 3.4 Finding a perfect matching in the value graph G

Function: GloverAlldiff(D;, ..., D,, o)

Require: o is a permutation of [1..n] s.th. D, ;) < ... < D,(.
1: P« []// PQ stores z-indices [iy,...,i] s.th. D;, <...< D;
2: s 1
3: for k=1 tondo
4: if P is empty then

insert o(s) into P

ss+1

10: end while

11:  extract the first element i from P, i.e. one with smallest D;
12:  if D; < j then

13: report “no x-perfect matching in G” and terminate
14: end if

15:  XMatelk] < i; YMate[k] < j

16: j<+7+1

17: end for

18: if P is empty then

19:  return XMate, YMate

20: else

21:  report “no z-perfect matching in G” and terminate
22: end if

5: J < Dy // (possibly) skip free nodes
6: end if

7. while s <n and D, = j do

&:

9:
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We want to make some observations about Algorithm 3.4. If P is empty
in line 4, then s < n, which means that the assignment to j in the next line
is valid. This can be seen as follows. The number of insertions into P is
s — 1 and the number of extractions equals £ — 1. So if P is empty, we have
s = k < n. Thus whenever P is empty in line 4, there will be an insertion in
line 8, and hence P can never be empty in line 11.

Example. For our running example the algorithm computes the following
x-perfect matching:

k_|1]2]3]4]5]6]
XMate | 512|413 |6|1
YMate |1 1234|516

Assume that we have an z-perfect matching M in G. By Lemma 3.5, an
edge {z;,y;} can belong to some z-perfect matching iff ; and y; belong to
the same SCC or y; can reach a free y-node in G. We will show that we can
solve the problem with a single SCC computation if we extend G slightly. The
idea is based on Régin’s arc-consistency algorithm for the global cardinality
constraint [Rég96], and it differs from the algorithm in the paper [MT00].”
The extended oriented value graph G* is constructed by adding a special node
s to G, for every y-node we have an edge (s,y) and for every free y-node we
also have the opposite edge (y,s). Before we prove in Lemma 3.7 that the
SCC of s in G* consists exactly of those nodes that can reach a free y-node
in G , let us visualize the construction with the aid of our running example.

Example.

On the right-hand side we show the
extended oriented value graph G*
that corresponds to the previously
computed matching. We have rear-
ranged the z-nodes such that every
z-node is located directly above its
y-mate. The SCCs are indicated by
the three dashed boxes.

The dashed zy-edges cannot belong to any xz-perfect matching, because they
cross components. Observe that all nodes in the SCC of s can reach the free
node y7.

Now we prove that G* has indeed the desired properties:

"This idea can also be used to simplify Régin’s arc-consistency algorithm for the Alldiff-
constraint [Rég94].
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Lemma 3.7 An edge {z;,y;} can belong to some x-perfect matching in the
value graph G iff ; and y; lie in the same SCC of the extended oriented value

graph G*.

Proof. Suppose first that {z;,y,} can belong to some z-perfect matching.
By Lemma 3.5, this implies that z; and y; lie in the same SCC of G (case
1), or there is a path p in G that starts with (%i,y;) and ends in a free
node y; (case 2). For case 1 there is nothing to show, so assume that case 2
holds. Let y,, denote the matching mate of z;. Then G* contains the cycle
(S, Ym) © (Ym, @) 0 p o (ys,5). So z; and y; are in the same SCC in G*.

For the other direction, suppose that z; and y; lie in the same SCC in
G*. Thus there is a simple cycle ¢ in G* with (z;,y,) as its first edge. If ¢
does not visit s, then z; and y; are in the same SCC of é, and we are done.
Otherwise, we decompose ¢ as ¢ = po (yy, s) oq, where p is a path from z; to
a free node y; and p starts with the edge (z;,y;). Since p is a path in é, this
proves that {z;,y;} can belong to some z-perfect matching by Lemma 3.5. O

In the sequel we discuss how to compute the SCCs of G* in linear time. It
will turn out that we can use a slightly modified version of the algorithm that
computes the SCCs of G (see Algorithm 3.2), which we have developed for the
Sortedness-constraint. Both algorithms maintain a list SCCs of completed
components and a stack CS of tentative components. In its k-th iteration
Algorithm 3.5 computes the components of the graph G";, which is a subgraph
of G* and defined as follows. Let YMate[n+1] := max{D,, ..., D,}+1. For
k € [0..n], G% is the subgraph induced by s, all nodes y; with j < YMate[k+1]
and the matching mates of these y-nodes on the xz-side. We want to point out
that Cj,’z = G* and that ég consists only of the node s, because the leftmost
y-node is always matched. So [s] is the only SCC of ég, which explains the
initialization steps in the algorithm.

The first part of the for-loop (lines 5 — 11) is the same as in the algorithm
for Sortedness. It computes the SCCs of the subgraph of G* that is induced
by the nodes of G5_, and the two nodes z;, yj, where i = XMate[k] and
j = YMatelk]. By right_z(C) and right_y(C) we denote the indices of the
rightmost z- and y-node of the component C, where right_y([s]) is defined as
—o00. Observe that s can reach any y-node in é*, and hence, its component
cannot be completed and popped from CS until the for-loop is finished. So
it will remain the bottom-most component on CS all the time.

In the second part of the for-loop (lines 12 — 20) the algorithm deals with
the free nodes between y; and the next matched y-node, which has the index
YMatelk + 1]. This part was not necessary for the Sortedness-constraint,
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Algorithm 3.5 Computing the SCCs of G*

Function: ComputeSCCs(Dy, ..., D,, XMate, YMate)

1: SCCs < empty list

2: OS « [S]

3: YMate[n + 1] + max{D1,..., D} + 1

4: for k=1 to n do
i < XMatelk|; j «+ YMate[k]
while |CS| > 1 and Eright_:c(top(CS)) < jdo

pop C' from CS; append C’ to SCCs
C < yj, =]
while CS not empty and D, < right_y(top(CS)) do
10: pop C' from CS; C + C'o C
11:  push C onto CS
12 // deal with free nodes btw. y; and the next matched y (if any)
13:  if j+1 < YMate[k + 1] then

14: C«+ [yj+1a SRR yYMatﬂchl]—l] // (store only Yj+1 and yYMate[k+1}—1)
15: while |CS| > 1 and D righi_z(top(cs)) < 7 do

16: pop C' from CS; append C' to SCCs

17: while CS not empty do

18: pop C' from CS; C + C'oC

19: push C onto CS

20: end if

21: end for

22: while CS not empty do
23:  pop C' from CS; append C’ to SCCs
24: return SCCs

because there were no free nodes. If free nodes exist, i.e. j+1 < YMate[k+1],
we put them in a tentative component C. Clearly, C' will eventually be
merged with the component of s, but before we come to the merging step,
we can complete any component on CS that is not able to reach y;,;. When
the algorithm reaches line 17, the topmost component on CS can reach y;;.
The bottom-most component contains s, and hence there is a path from s to
y;j+1 that visits at least one node in every component on CS (cf. invariant I3
below). By construction of G* there is an edge from the free node y;; to s.
Thus C and all components on CS are merged into a single SCC of G}

It is clear that the algorithm runs in time O(n). Concerning correctness
we have essentially the same invariants as for the previous algorithm (see
page 50). Whenever the algorithm reaches line 21 the following holds:
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I1: Every component C' in SCCs is an SCC of G. In particular, C' cannot
reach any y;, with [ > YMate[k].

12: SCCs U CS contains the SCCs of the G?.

I3: Let CS = (Cy,Cy,...) (ordered from bottom to top). If I < h then C;
can reach C}, but not vice versa and right_y(C;) < left_y(Ch).

I4: Let C' denote a component in SCCs U CS and let i, = right_z(C).
Then for all z; € C' we have D; < D;_.

These invariants can be proven in the same way as for the Sortedness-
constraint.

Narrowing the variable domains is now easy. Suppose we want to compute
the narrowed domain S; of a variable X;. Then we determine the leftmost
neighbour ¥; and the rightmost neighbour ¥, of z; such that y; and ¥, belong
to same SCC as z;. By Lemma 3.7, we have S; = [[..r]. The narrowing step
can be done in time O(n) with a similar algorithm as for the Sortedness-
constraint (cf. Algorithm 3.3).

Example. We give the narrowed domains S, ..., S for our running exam-
ple: 51 = [57], 52 = [23], 53 = [46], 54 = [23], 55 = [11], SG = [56]

We conclude this section with a summary of the full narrowing algorithm:

1. Sort the variable domains according to their lower and upper interval
endpoints.

2. Compute an z-perfect matching with a modified version of Glover’s
algorithm.

3. Compute the strongly connected components of the extended oriented
value graph.

4. Narrow the domains of the variables.

Except for the first step, all steps run in linear time. Thus the complexity
of the whole algorithm is asymptotically the same as for the sorting step. This
is O(nlogn) in general, but it can go down to O(n) if the endpoints of the
domains are integers drawn from a range of size O(n*). We want to point
an interesting special case: When we have n variables and all domains are
contained in [1..n], i.e. the variables encode a permutation of [1..n], then the
whole algorithm runs in linear time.
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3.2.3 Comparison with related work

We conclude this section by comparing our algorithms with related work.
Of course, one can decompose the constraint Alldiff(Xi,...,X,) into (’2‘)
binary constraints of the form X; # X;. As Puget [Pug98] points out this
is suitable for simple problems, but leads to very poor propagation. This

becomes obvious in the following example:
X1, X0, Xz €[1.2] A Xy #Xo AN Xo# X3 N X3# X,

The decomposition into inequality constraints does not detect infeasibility.

Régin [Rég94| used exactly the same graph theoretic approach as we
did in order to develop an arc-consistency algorithm for the case where the
variable domains are not intervals but can be arbitrary sets of values. The
algorithm works as follows. First it builds the variable-value graph G. Note
that G is in general not convex, but it can be any bipartite graph. Then
the matchable edges of G are identified, which requires the same steps as
in our algorithm: Determine some z-perfect matching in G and orient G.
Compute the SCCs of G and the edges that lie on a path to a free node. Let
m denote the number of edges of G. The computation of the matching takes
time O(y/n - m), and the other steps can be done in O(n + m). We want to
point out that m = "7, [Dom(X;)|. Thus m cannot be bounded above by
a function in n. If all domains are for example the interval [1..n], then we
have m = n?. This shows that Régin’s algorithm, which is good for general
domains, is not suitable for interval domains.

Leconte [Lec96] proposed an O(nm) algorithm which achieves range-
consistency (see Definition 2.6). It is a stronger notion of consistency than
bound-consistency but weaker than arc-consistency. Leconte’s algorithm is
based on the Hall interval approach that we will sketch later.

In their paper about the Sortedness-constraint, Bleuzen-Guernalec and
Colmerauer [BGCO00] make an interesting observation. In order to encode a
permutation on the variables Xi,..., X, one can write the following con-
straint: Sortedness(Xi,...,Xp;1,...,n). And hence, their algorithm can
be used to achieve bound-consistency for permutation constraints in time
O(nlogn). But their algorithm cannot be applied to the general Alldiff-
constraint.

Puget [Pug98| was able to give a bound-consistency algorithm with a
running time of O(nlogn) for the general Alldiff-constraint. His approach
is also based on matching theory but it is very different from ours, it does
not rely on graphs or alternating paths at all. His reasoning is based directly
on intervals. Consider the constraint Alldiff(X;,...,X,). For an interval
I let Vars(I) denote the set of all variables such that Dom(X;) C I. We
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can make some observations: If | Vars(I)| > |I|, then the constraint has no
solution, because every variable in Vars(I) has to be assigned a different
value in I, but we have more variables than values. We call such an interval
over-constrained. Puget states as a corollary of Hall’s Theorem [Hal35] that
the constraint is solvable if and only if there is no over-constrained interval.

In order to derive his narrowing algorithm, Puget considers an interval
H with |Vars(H)| = H, which he calls a Hall interval. In any solution of
the constraint, every value in H is taken by exactly one variable in Vars(H)
and vice versa. Now let X; denote a variable that is not in Vars(H) and let
D, = Dom(X;). If D; € H, then the constraint cannot be bound-consistent,
for there can be no solution where X; takes the value D,. In fact, one can
move the lower endpoint of the domain of X; to H + 1 without loosing any
solution to the constraint. A similar argument holds for the upper end-
point. Puget observed that this actually is a bound-consistency narrowing
algorithm:

while there is an interval I with |Vars(I)| > |I| do
if | Vars(I)| > |I| then
report failure
else
for all X; ¢ Vars(I) with D, € I do
increase D, to I + 1
for all X; ¢ Vars(I) with D; € I do
decrease D; to [ — 1
In order to make this algorithm run in time O(nlogn), Puget made some
more observations. For example, it suffices to examine only intervals of the
form [D,..D,], where D; and D; are variable domains.

Example. Let us examine how the algorithm processes our running exam-
ple with 6 variables and the domains

Dy = [5..7] Dy = [2..3] D3 = [2..6] Dy = [2..3] D5 = [1..3] Dg = [5..6]

We observe that H = [2..3] is a hall interval, because its size is two and it
contains the domains Dy and D,. So we can move the upper endpoint of
X5 from 3 to 1, and the lower endpoint of X3 to 4. And we obtain the nar-
rowed domains. We want to point out that there is not much correspondence
between Hall intervals and the strongly connected components of G. In the
example above H' = [1..3] is also a Hall interval, but the nodes corresponding
to Vars(H') = { X5, X2, X4} belong to different SCCs.

Recently, Lépez-Ortiz et al. [LOQTvB03] described an algorithm that is
also based on the Hall interval approach and achieves bound-consistency in
the same asymptotic running time as our algorithm.
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Finally, we discuss briefly the global cardinality constraint (GCC'), which
was introduced by Régin [Rég96]. This constraint is a generalization of
Alldiff. In addition to the n assignment variables X1, ..., X,,, its input con-
tains for each value v a lower and an upper capacity bound [/, and u,. The
constraint holds, if each value v is assigned to at least [, and at most u,
variables. (If all lower bounds are zero and all upper bounds are one, we
obtain the Alldiff-constraint.) Régin gave an arc-consistency algorithm for
this constraint, which runs in time O(n*? - d), where d is the number of
distinct values in the variable domains.

For the case, where all the variable domains are intervals Katriel and
Thiel [KT03] were able to generalize the ideas of this chapter. They ob-
tained a bound-consistency algorithm which runs in time O(n + d) plus the
time for sorting the interval endpoints. Interestingly, applying the Hall inter-
val approach to this problem yields an algorithm with the same asymptotic
running time (see [QvBLOT03]).



Chapter 4
Weighted Partial Alldiff

In this chapter we discuss a constraint called WeightedPartialAlldiff (abbre-
viated as WPA). The constraint WPA(Xy, ..., X,;undef;T; W) encodes a
partial assignment to the variables Xi,...,X,,, where undefined variables
are represented by assigning the value undef to them. All variables which
are defined must have pairwise distinct values. With every value v that oc-
curs in the domain of some variable we associate a weight which is defined
by the value-weight table 7. The constraint states that W must be equal to
the sum of the weights of the values that are assigned to the variables. We
assume that the weight of the value undef is always equal to zero.

We give some examples, which will use the following value-weight table 7"

value: 0|1|2]4]5 16
weight: 02 [-1[7]-8]2

The constraint WPA(4,0,1,2,0;0;7;8) holds, because no value except for
undef = 0 is used more than once, and weight(4)+ weight(1)+weight (2) = 8.
But WPA(5,2,5,0;0;7T;2) does not hold, for the value 5, which is differ-
ent from the undef-value, is assigned twice. And WPA(1,6,2;0;7T;5) does
not hold either, because of the weight condition: weight(1) + weight(6) +
weight(2) = 3 # 5.

We discuss some possible scenarios where the constraint can be applied:

1. In the first scenario the weights are costs which one has to pay if a
certain resource (i.e. a value) is used. Every resource can be used at
most once. And the cost of a resource is independent from the consumer
(i.e. the variable) to which it is assigned. In this case the constraint
will probably be employed together with additional constraints that
impose an upper bound on the weight variable W, because one wants
to minimize the costs.

71
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2. In the second scenario the weights describe profits which can be made
by accepting certain offers. The offer can be accepted at most once and
the profit does not depend on the acceptor. In these circumstances one
is interested in maximizing the total profit. So it is likely that WPA
is used with additional constraints that impose lower bounds on the
weight variable.

3. In the previous two scenarios the constraint was used for optimization
purposes. We will now deal with an application to an over-constraint
problem. Suppose the constraint model of a problem uses — among
other constraints — an Alldiff-constraint. And assume further that
there is no solution where all variables take pairwise different values. So
one may want to relax the problem a little bit, allowing some variables
to be “undefined”. By setting the weights of all values different from
undef equal to 1, the number of defined variables can be controlled via
the weight variable W.

The work presented in this chapter is partly based on joint work with
Nicolas Beldiceanu and Mats Carlsson [BCT02]. The chapter is organized as
follows. First we give a formal definition of the constraint, then we derive a
propagation algorithm, and finally we discuss some related work.

4.1 Definition

We consider the constraint WPA(Xq, ..., X,; undef; T;W). The domains
of the assignment variables Xi,..., X,, can be arbitrary finite sets. Let D
denote the union of all variable domains. We require that 7" is a set of pairs
which contains for every value v € D exactly one pair in which the first
component is equal to v. The second component must be a number, which
we will denote by weight(v). The parameter W is a number variable. Its
domain must be an interval, and we assume that the number type matches
the type of the weights. Moreover, we suppose that the arithmetic operations
“+” and “—” as well as comparisons can be done in constant time.

Now we can define Rel( WPA(X.,...,X,;undef;T;W)) to be the set of
all (n + 1)-tuples (vy, ..., v,, w) with the following properties: We have w €
Dom(W) and v; € Dom(Xj;), for i = 1,...,n. Moreover, for 1 <i < j <mn,
we have v; # v; or v; = v; = undef. And finally, w = )" | weight(v;).
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4.2 Propagation algorithm

In this section we develop a propagation algorithm for the WPA-constraint.
The worst-case running time will be O((n + p)m), where m is the sum of
the cardinalities of the domains of X4, ..., X, and p is the number of pruned
variable-value pairs. But for the three scenarios given in the introduction,
we will be able to upper bound the running time by O(nm), and we will
show that we achieve arc-consistency for the assignment variables. In the
third scenario, where all weights are equal to 1, we will also have bound-
consistency for the weight variable W. The algorithm integrates well into
frameworks where incrementality is important, and its best case running
time is ©(m).
Our propagation algorithm computes the following quantities:

e We determine the minimum and the maximum weight that can be
achieved. These values can be used to detect failure and to narrow the
bounds of the weight variable W.

e We compute for every variable X; and every value v € Dom/(X;) the
minimum and the maximum weight (Wmin and wWmay) which can be
achieved, if X; is fixed to v and all other domains remain the same. This
can be used for pruning the domain of X;: If wy, > W Or Wmax < W,
we can remove v from the domain of Xj.

We want to point out that it suffices to restrict our attention to maximum
weights, because the respective minima can be obtained as follows: Multiply
all weights by —1, compute the maxima, and multiply these by —1.

4.2.1 A connection to matching theory

In Section 3.2.2 about the Alldiff-constraint we have seen that variable as-
signments, where every variable takes a different value, correspond in a nat-
ural way to perfect matchings in the value graph G. Since our new problem
deals with weighted assignments, we consider the weighted value graph G.
It is an undirected bipartite graph. On one side we have a node for each
assignment variable and on the other side we have a node for each value that
occurs in the domain of some assignment variable. Thus we can identify
variables and values with the corresponding nodes in GG. In the sequel we
will denote a variable node by Var and a value node by val. There is an edge
{Var,val} in G iff val € Dom(Var). We assign a weight to every node as
follows: Every variable node Var gets weight zero, and the weight of a value
node val is given by the value-weight table T'.
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The weight of a matching M in G is defined as the sum of the weights of
all matched nodes. Note that this differs from standard matching theory
where one assigns weights to the edges, but not to the nodes. As usual M
is called a mazimum weight matching if there is no matching M’ in G with
weight(M') > weight(M). Since there may be non-positive weights, a maxi-
mum weight matching is in general not a maximum cardinality matching.

In order to find the connection between the solutions of the constraint and
weighted matchings in G, we make one observation. We can partition the
variables in the constraint in two sets depending on whether the respective
variable domain contains the value undef. If undef ¢ Dom(Var), then we
should require that Var must be matched in G, otherwise it can be matched,
but it does not have to be. This motivates the following definition: Let S
denote a set of nodes and M a matching in G, we call M an S-matching if
all nodes in S are matched in M.

Now we can make the connection between solutions and matchings:

Lemma 4.1 Consider the constraint WPA(X;, ..., X,; undef; T; W), and
let G be its weighted value graph. Let R denote {X;|undef ¢ Dom(X;)}.
Any solution (vq,...,v,,w) of the constraint corresponds to an R-matching
in G of weight w. And for any R-matching M of weight w with w € Dom(W),
we can construct a solution of weight w.

Proof. Let (vy,...,v,, w) be a solution. We construct an R-matching M
of weight w as follows: For i = 1,...,n, we put the edge {X;, v;} into M, if
v; # undef. Since all values different from undef are pairwise distinct, M is
a matching, and it covers all nodes in R. As weight(undef) = 0, the weight
of M is equal to w.

For the other direction we consider an R-matching M in G. Let w denote
the weight of M, and for 2 = 1,...,n define v; as follows: If X; is matched in
M, then v; is the matching mate of X;, otherwise set v; = undef. It is easy
to verify that (vy,...,v,, w) is a solution. 0

So we have transformed our problem into a matching problem. We want
to compute a maximum weight R-matching in G efficiently. There are well
known algorithms that compute a maximum weight matching in a bipartite
network where the edges have weights, but the nodes do not. These algo-
rithms run in time O(n(m + klogk)) (see [AMO93]), where n is the number
of variable nodes, k is the number of nodes and m is the number of edges in
G. We could easily transform our weighted value graph into such a network
— we would only have to assign to every edge the weight of its incident value
node — but we develop a new algorithm, which takes advantage of the spe-
cial properties of our weights to be more efficient. The new algorithm has a
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slightly better asymptotic running time of O(nm), and it uses only simple
data structures like arrays and lists, while the algorithms for networks with
edge weights employ elaborate data structures like Fibonacci heaps.

A very important property of our algorithm is that we can run it without
constructing G explicitly. In addition, it is incremental, which means that
one can start with an arbitrary matching M;,;;. If M;,; has nearly optimal
weight the running time may be much better: It can go down to ©(m).

4.2.2 Constructing an R-matching

This section deals with the following problem: We have an arbitrary matching
M in the weighted value graph G. Let R denote the set of all variables which
are not adjacent to the value undef. How can we construct an R-matching,
i.e. a matching which covers all variables in R? We will not care about
weights in this section, we defer this problem to the next section. We need
two important facts from standard matching theory (see Lemma 2.2):

e If M’ is another matching in G, then M @ M’ is a collection of node-
disjoint alternating paths and cycles.

e If p is an alternating path or cycle with respect to M, then M @ p is a
matching again.

Suppose M’ is an R-matching, but M is not. So there is a node z € R
which is free in M, but matched in M’. And hence, M & M' contains an
(acyclic) alternating path p that starts in = and ends in some node y. As
we can see in Figure 4.1, there are two possibilities for y. Either y is a value
which is free in M; or y is a variable that is matched in M and free in M’,
which implies y ¢ R.

X
o]

Figure 4.1: The two possibilities for the alternating path starting in z € R.
(Variables are drawn as squares and values are drawn as circles. The dot in
the square of x indicates that the variable is in R, and the cross in the square
of y means that y is not in R.)

Without loss of generality we may assume that the value undef is free in
M, and in this case we say that M is an undef-free matching. So if y is a
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variable not in R, then we can replace p by p’ = p o {y, undef}, and obtain
an alternating path wrt. M which starts in x and ends in a free value.
This motivates the following definition:

Definition 4.1 Let M denote an undef-free matching in G. An alternating
path p wrt. M is called R-augmenting if one end node of p is a free variable
i R and the other end node is a free value.

By the discussion above we can construct an R-matching from an arbi-
trary matching M as follows. As long as M is not an R-matching, we ensure
that the value undef is free, look for an R-augmenting path p wrt. M and
replace M by M & p.

4.2.3 Weight-augmenting paths

In this section, we assume that we have an R-matching M, and we solve the
problem of maximizing its weight. Suppose there is an R-matching M’ with
weight(M') > weight(M). Then M & M' is a set of alternating paths and
cycles. Since any node Var € R is matched in both M and M’, the degree
of Var in M @ M’ is either 0 or 2. And hence, any (acyclic) alternating path
in this set can neither start nor end in Var.

Let us consider an alternating path or cycle p in M @& M’ and compare
the weights of M and M @ p. If p is a cycle, then M and M & p match
exactly the same nodes, and hence they have the same weight (see case 1 of
Figure 4.2).

Otherwise, denote by z and y the first and the last node of the (acyclic) path
p. If both = and y are variable nodes, M and M & p match the same value
nodes, and then they also have the same weight, because variable nodes have
weight zero (cf. case 2 of Figure 4.2).

Now we come to the case that both x and y are value nodes. Then one of
the two nodes (let us say x) is matched and the other one (in our case y) is
free. And we have weight(M @ p) = weight( M) — weight(x) + weight(y) (see
case 3 of Figure 4.2).

Finally, we have the case that x is a variable node and y is a value node. Ei-
ther both nodes are matched in M and we have weight(M ®p) = weight(M)—
weight(y), because weight(x) = 0. Or both nodes are free, and we get
weight(M & p) = weight(M) + weight(y) (cf. case 4 in Figure 4.2).

So we have three possible constellations for p such that weight(M & p) >
weight(M):

1. One end node is a matched value z and the other one is a free value y
with weight(y) > weight(z).
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Case 1
—

M= X
Iy = Ny

Figure 4.2: Comparing the weights of the matchings M and M @p. (Variables
are drawn as squares and values are drawn as circles.)

2. One end node is a free variable z (not in R) and the other one is a free
value y with weight(y) > 0 = weight(x).

3. One end node is a matched variable z (not in R) and the other end
node is a matched value y with weight(y) < 0 = weight(z).

We can simplify things and eliminate the third case by a similar obser-
vation as in the previous section: Let us suppose that M is an undef-free
matching. So if x is a matched variable which does not belong to R and y
is a matched value, then we can replace p by p' = {undef,z} o p. And we
obtain an alternating path such that weight(M & p') = weight(M & p). We
observe that the first case applies to p'.

Now we can state the definition of a weight-augmenting path:

Definition 4.2 Let M be an undef-free R-matching in G. An alternating
path p wrt. M is said to be weight-augmenting if one of the first two cases
from above holds for p.

So if we want to build a maximum weight R-matching from an arbitrary
R-matching M, we proceed as follows: We ensure that M is undef-free, we
search a weight-augmenting path p wrt. M, and replace M by M & p. We
repeat this process until there is no weight-augmenting path anymore.

4.2.4 The oriented value graph

Constructing a maximum weight R-matching requires to search repeatedly
for R-augmenting and weight-augmenting paths in the value graph G =
(V, E') with respect to the current matching M. In order to make this search
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easier, we introduce the oriented value graph Gy = (V, E). The definition is
the same as in the propagation algorithm for the Sortedness- and the Alldiff -
constraint. We direct all the edges in E from the variable nodes to the value
nodes, and for every edge { Var, val} in M we add the edge (val, Var) which
is directed in the opposite direction. An example is shown in Figure 4.3.

X Y z X Y Z

Figure 4.3: The left-hand side shows a value graph G and a matching M
(bold edges). On the right-hand side the corresponding graph G is drawn.

Every simple path p'in G u from a node x to a different node y corresponds
to a path p in G from z to y which alternately uses edges in M and in E'\ M.
Of course, there is also a correspondence in the opposite direction, so we can
identify the alternating paths in G with certain simple directed paths in Gu.
In the figure above, the alternating path p = [Y,a, Z,b] in G corresponds to
the path 7 = [b, Z,a,Y] in Gu. Thus the directed path visits exactly the
same nodes as the undirected one, but maybe in reverse order.

We are interested now, how R-augmenting and weight-augmenting paths
translate to G . We begin with an R-augmenting path p (see left-hand side
of Figure 4.4). The start node = of p'is a free variable z € R, which will
become matched by the augmentation. And the end node y of § is a free
value.

If p is the translation of a weight-augmenting path, then the start node
x is either a free variable or a matched value, and the end node y is a free
value with weight(y) > weight(x). So there are two possibilities, which are
shown on the right-hand side of Figure 4.4.

R-augmenting paths: weight-augmenting paths:
weight(end) arbitrary condition: weight(start) < weight(end)

Figure 4.4: Possible directed augmenting paths.

We observe that R-augmenting and weight-augmenting paths are very
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similar, in particular the possible end nodes are always free values. Moreover,
for both kinds of augmenting paths we have weight(M & p) = weight(M) —
weight(x) + weight(y). So if we look for an augmenting path that starts
in a certain node x, we should choose a path p’ where the end node y has
maximum weight, for this gives us the maximum weight increase (or the
minimum weight decrease if we are searching an R-augmenting path and all
possible end nodes have negative weight). We call 7 an optimal augmenting
path for x. And we define weight(y) to be the potential of z. The formal
definition is as follows:

Definition 4.3 (potential 7) Let M be a matching and x be a node in the
value graph G. Denote by Ry (x) the set of all nodes y such that there is a
path from x to y in Gar. Then the potential of x with respect to M is defined
as mar(x) == sup{weight (y) |y € Ry (z) Ay is free wrt. M }.2

We want to make some remarks. If we have my(u) = —oo for a node
u, then there can be no R-augmenting path that starts in u. If mp(u) <
weight (u), then u cannot be the source of a weight-augmenting path. In the
lemma below we state another reason for using optimal paths to augment
a matching: This guarantees that the potential of all nodes in the graph
can only decrease. In other words, this cannot introduce new sources for
augmenting paths, but it can remove existing ones.

Lemma 4.2 Let p be an R-augmenting or weight-augmenting path in éM,
and let x and y be the start and the end node, respectively. If p is optimal for
z (i.e. mpr(z) = weight(y)), then we have Tarey(u) < mar(u) for every node

uof G.

Proof. Let M' = M & p, and consider a node u with myy(u) > —oc.
Thus there is a path ¢ in G from u to a node v such that v is a free value
wrt. M' and weight(v) = mpp(u). If p and ¢ are node disjoint, then ¢ is a
path in G u, and the claim clearly holds.

Otherwise the two paths have a common node. Let w be the first node
on ¢ that also lies on p. The prefix of ¢ from u to w is a path in éM, and
hence there is a path from u to y in G,. This implies 7y, () > weight(y).

In order to prove the claim we will show weight(v) < weight(y). First
we convince ourselves that v € Ry (z). Since w is visited by 7, we have
w € Ry (z). As all nodes on § are in Ry (), there is no edge in Gy that is
directed from a node in Rys(z) to a node outside of Rys(z). Thus there is no

!Here “sup S” denotes the supremum of S, which is equal to max(S U {—oo}) if S is
finite.
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path in G which leads from w to a node outside of Ry (z). In particular,
v € Ry(x).

If £ # v # y, then v is free with respect to both matchings, and hence
weight(y) = mp(x) > weight(v). For v = y, there is nothing to show. So
the only remaining case is v = z. Since v ¢ R and the start node of an
R-augmenting path is always a variable in R, we conclude that p'is weight-
augmenting. This implies weight(v) = weight(z) < weight(y). a

4.2.5 Computation of a maximum weight matching

In this section we discuss an algorithm for computing a maximum weight
R-matching in the value graph G. It takes as input an arbitrary matching
Mipis, which may be empty. The algorithm works as sketched above: It sets
M = M., and as long as there is an augmenting path wrt. M, it selects
an optimal augmenting path p and replaces M by M & p. The algorithm
operates in two phases. In the first phase it searches for R-augmenting
paths and turns M into an R-matching. In the second phase it constructs a
maximum weight R-matching with the aid of weight-augmenting paths.

Recalling the similarity of R-augmenting and weight-augmenting paths
in Gy (see Figure 4.4), it is no surprise that we can use a single function for
finding both types of paths. We use breadth-first-search as strategy, because
it finds shortest augmenting paths. The function BFS(x,w,M ,mark) (see
Algorithm 4.1) takes as input four parameters: a start node z, a weight
threshold w, a matching M and a node array mark. The function searches
for an optimal augmenting path p for x and returns a boolean value indicating
whether such a path exists. If so, it replaces M by M & p. An alternating
path p is only accepted to be augmenting if the weight of its end node is
greater than the threshold w. So when we look for an R-augmenting path,
we set w = —oo; and for finding weight-augmenting paths we choose w =
weight(x). The array mark stores for every value a flag which can be reached
or unreached. More details will be given later, but for now we may assume
that if a node u is marked reached, then its potential 7,/ (u) is not greater
than w, and hence it does not have to be explored.

BFS grows a tree of alternating paths with x at the root, for every other
node v in the tree we store its father in an array father, and we set father|[x] =
none. Moreover, we maintain a list tree_values that contains all values in the
tree. We use a first-in, first-out queue @) to store every variable that has been
discovered but not explored yet. At the beginning, we initialize () with x.
Since we are looking for an optimal augmenting path, we maintain a variable
opt_end. As long as we have not found an augmenting path, its value is
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none. Afterwards it stores the end node of the best augmenting path that
we have discovered so far.

We describe the main loop of the function (starting in line 8). As long
as () is not empty, we extract the first variable node Var from () and scan
its outgoing edges, i.e. we enumerate the domain of Var. We explore every
value val € Dom(Var) which is not marked reached. After marking val as
reached, we add it to the BF'S tree by updating the data structures father
and tree_values. If val is matched, we append its mate Mval] to @ and add
it to the tree. (As we have visited val for the first time, the same holds for
M{wval], which explains why we do not store marks for the variables.) If val
is free in M, then we may have found an augmenting path from z to val.
This is the case iff weight(val) > w. Whenever we find a new augmenting
path, we update opt_end, if necessary. If the main loop terminates with
opt_end # none, we have an optimal augmenting path p from x to opt_end
and we replace M by M & p.

It is now time to discuss the maintenance of the mark-array in more
detail. We will see that it is not always necessary to reset the marks of
the values in tree_values when a BFS-call terminates. Before the first call
to BFS all marks are initialized to unreached, and we will make sure in the
main algorithm that the weight threshold can only increase from call to call.
Under these circumstances we can maintain the following invariant: Consider
a BFS call with threshold w and let M’ denote the matching after the call,
then 7y (u) < w for all nodes u which are marked reached after the call. In
order to establish the invariant when the function terminates we distinguish
three cases:

e num_augmenting_paths = 0:
Thus 7 (u) < w for all nodes in the tree, and we do not have to reset
any marks.

e num_augmenting_paths = 1:
So before the augmentation, y is the only free value in Ry (x) with
weight greater than w. And hence, after the augmentation all free val-
ues in Rys(x) have weight at most w (see also the proof of Lemma 4.2).
Thus we do not have to reset the marks in this case either.

e num_augmenting_paths > 1:
In this case we reset the marks of all variables in the tree (see line 25).
Afterwards the invariant clearly holds again.

The implementation of the matching algorithm (see Algorithm 4.2) is
now straightforward. It takes as input a matching Mj,;; and the set R of
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Algorithm 4.1 Searching an optimal augmenting path starting in z
Function: BFS(z,w,M mark,R)
1: Q <« [|; opt_end < none; num_augmenting_paths < 0
2: if x is a variable then
Q <« [z]; father[z] +— none; tree_values < ()
else if mark[z] = unreached then
mark[z] < reached; father[x] < none; tree_values < {x}
Q + [M][x]]; father[M|[z]] < x
end if
while () not empty do
extract first node Var from @)
10:  for all values val € Dom(Var) with mark|[val] = unreached do

11: mark[val] < reached; father|val| «— Var;
tree_values < tree_values U {val}
12: if M[val] # none then
13: append M [val] to Q; father[M]val]] < val
14: else if weight(val) > w then
15: num_augmenting_paths <— num_augmenting _paths + 1
16: if opt_end = none or weight(val) > weight(opt_end) then
17: opt_end < val
18: end if

19: end for

20: end while

21: if opt_end # none then

22:  augment M with path from z to opt_end (with the aid of father)
23:  Mundef] < none

24:  if num_augmenting_paths > 1 then

25: for all val € tree_values reset mark[val] to unreached
26:  return true
27: else

28:  return false
29: end if
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variables that are required to be matched. It starts with M = M;,;;, and
in the first phase it tries to turn M into an R-matching. We observe that
once a variable from R is matched in the current matching M, it will remain
matched till the end of the algorithm. So the source for an R-augmenting
path can only be a variable that is free in My,;. If the algorithm cannot find
an R-augmenting path for a free variable in R, then it reports failure and
terminates.

If the first phase succeeds, M is an R-matching, and it will remain one
till the end. In the second phase we maximize the weight of M. It will turn
out that we only have to consider the values which are matched in M,,; and
the variables which are free in M;,; and not in R. Note that an end node
of an augmenting path is always a free value. And hence, every value that
is matched in Mj,;; will remain matched until it is considered in the second
phase, but the matching mate may change. A similar argument shows that
variables which are free in M;,; remain free until they are processed.

Since we have to make sure that the weight threshold does not decrease
from one BFS call to the next, we split the second phase into three steps.
First we consider all values with negative weights in weight increasing order.
Then we process the variables, which all have weight zero. And finally, we
deal with the values with non-negative weights in increasing order.

Algorithm 4.2 Computation of a maximum weight R-matching in G
Function: ComputeMaxWeightRMatching(M;n;;,R)
Require: M;,;[val] stores for every value val its matching mate or the value
none if val is free.
M < M;ni; Mundef] < none
for all values val set mark[val] to unreached
// phase 1: turn M into an R-matching
for all variables Var € R which are free in Mj;,;; do
found « BFS(Var, —oco, M, mark)
if not found then report failure and terminate
// phase 2: maximize the weight of M
for all values val matched in M,;,; with weight < 0 in incr. order do
BFS(val, weight(val), M, mark)
for all variables Var ¢ R which are free in M,; do
BFS(Var, 0, M, mark)
: for all values val matched in Mj,;; with weight > 0 in incr. order do
BFS(val, weight(val), M, mark)
: return M

[ T v S o S = St
Ll

We will prove the correctness of the algorithm. We have already explained
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why BFS will always find an optimal augmenting path if one exists. Moreover,
it is easy to see that the algorithm constructs an R-matching if G contains
one. What remains to show is that there is no weight-augmenting path when
the algorithm terminates. This will be done in the proof of the following
theorem.

Theorem 4.1 When Algorithm 4.2 is applied to an arbitrary matching M,
and a set R of variables, it computes a mazimum weight R-matching M in
the value graph G, if one exists. If no R-matching exists, it reports failure.

Proof. Suppose the statement is false, i.e. the algorithm terminates with
an R-matching M that does not have maximum weight. Then there exists a
weight-augmenting path p'in Gur. Let z and y denote the start and the end
node of p, respectively. We have my(x) > weight(y) > weight(z), we will
derive a contradiction by showing 7y (z) < weight(z).

Assume first that x is a value. Then it is matched in M (see right-

hand side of Figure 4.4). We show that z is also matched in M,; and stays
matched till the end of the algorithm. Suppose otherwise, i.e. at some point in
time z is free in the current matching M’. As x has no outgoing edge in G,
we have 7y () = weight(x). By Lemma 4.2 this implies 7/ (z) < weight(z),
a contradiction.
Since z is matched in M;,;, it is considered as a start node for an augmenting
path in the second phase (see lines 8 and 12), but none is found. (Otherwise
x would be free after the augmentation.) Thus we can conclude my(z) <
weight(x), again a contradiction.

So x must be a variable not in R, and z is free in M. This can only be the
case if x is free in M;,;; and stays free till the end: Suppose otherwise, i.e. at
some point in time z is matched in the current matching M’ and becomes
free as M’ is augmented with a path ¢. If we view ¢ as a directed path ¢
in Gur, then (x, undef) is the last edge of ¢; let z denote the start node.
Since ¢ is chosen optimal for z, we have 7y (z) = 0 = weight(x). From x €
Ry (z) we conclude 7y (z) < mar(z). So we can infer my(x) < weight(x), a
contradiction.

Thus x is free in My,;, and hence it has been the start node of a BFS during
the second phase (see line 10). As it has not become matched then, we can
conclude again that my(z) < 0 = weight(z), a contradiction. O

Example. It isnow time to give an example which illustrates the algorithm.
We have 5 variables X, ..., X5 with the following domains: Dom(X;) = {2},
Dom(X,) = {0,2,3}, Dom(X3) = {0,1,5,6}, Dom(X,) = {0,4,5,6} and
Dom(X5) = {—1,4}. In order to make the descriptions easier, we define
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the weight of each value to be equal to the value itself. And we assume
undef = 0. Thus the variables X; and X5 cannot be undefined, and hence
R = {X1,X5}. Let us suppose that we apply the algorithm to the initial
matching My, = {{X2,2},{X4,5},{X5, —1}}. The corresponding oriented
value graph is shown in Figure 4.5.

Figure 4.5: The oriented value graph G Mm,,, for the example.

We see that R contains only one variable (namely X;) which is free in
M i so that the first phase consists of a single BFS call. We grow a tree with
root X; (see Figure 4.6), and we discover two R-augmenting paths, one ends
in the value 3 and the other one in the value 0. Since the first path yields
the bigger weight increase, we use this path to augment the matching and
obtain the graph shown on the right-hand side of the figure. After that our
current matching M is an R-matching.

BFS tree:

Graph after augmentation:

Figure 4.6: On the left-hand side the BFS tree with root X; is depicted. The
right-hand side shows the oriented value graph after the augmentation.

Now we come to the second phase of the algorithm. First we build a BFS
tree with the value —1 at the root (see Figure 4.7), because this value is
matched in M;,;. We find one weight-augmenting path ending in the value
4, and update the current matching M accordingly.

Finally, we have to process the variable X3, for it is free in M,;,; and
not contained in R. The function BFS constructs the tree which is shown
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BFS tree: .
@ Graph after augmentation:

Figure 4.7: The BFS tree for the value —1, and the graph after the augmen-
tation.

in Figure 4.8. Observe that the value 4 does not belong to the tree, al-
though it is adjacent to X,4. This is because the previous BFS found only
one augmenting path, and hence the marks were not reset. After the aug-
mentation with the path ending in the value 6, we are done. Our match-
ing M = {{Xy,2},{Xo,3},{X3,6},{X4,5},{X5,4}} is a maximum weight
R-matching.

BFS tree:

Graph after augmentation:

Figure 4.8: The BFS tree for X3 and the final oriented value graph.

We conclude this section with an analysis of the running time of the
algorithm. Let us recall some notation. We denote by m the sum of the
cardinalities of all variable domains, i.e. m = Y"1 | |Dom(X;)|. Observe that
m is equal to the number of edges in the value graph G. Furthermore, let
D = (., Dom(X;) and d = |D| be the number of distinct values in the
domains.

For our analysis we need to set up some assumptions on the environment
in which the algorithm is embedded. The constraint programming system
must allow the algorithm to scan the domain of a given variable. We suppose
that the time needed to enumerate all values in a domain is linear in the size
of the domain. Observe that we did not impose any restrictions on the types
of the values in the domains. However, we must be able to associate some
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constant size information with every value in D (like the current matching
mate for example). We assume that accessing such an information takes
constant time. One possibility to meet these requirements is to restrict the
domains to sets of integers drawn from the range [1..d]. If one wants to allow
arbitrary integers, one may consider perfect hashing [FKS84].

In the second phase of the algorithm, we process the matched values of
M i in increasing weight order. We assume that the algorithm is given a list
L;ni that contains these values in sorted order. Provided that two weights can
be compared in constant time, we can build L, in time O(| M| -10g | Minit|)-
We will discuss later how L;,; can be maintained in an incremental setting
such that this sorting step can be avoided.

We will show now that the total running time of the algorithm is bounded
by O(nm) (apart from the sorting step). The time for a single BFS is at most
O(m), because the domain of every variable is scanned at most once. Now
we have to bound the total number of BFS calls. We make exactly one call
for every value that is matched in M, (in steps one and three of phase two),
and one call for every variable that is free in M;,; (in phase one and step
two of phase two). As the number of matched values is equal to the number
of matched variables, the total number of BFS calls is equal to the number
of variables. This proves the following theorem:

Theorem 4.2 Let G be the weighted value graph which is constructed from
the domains of the assignment variables X1,..., X, and the value-weight
table. Set m =" | |[Dom(X;)| and d = ||J;_;, Dom(X;)|. Then a mazimum
weight matching M in G can be computed in time O(nm). And the space
requirement is O(n + d) (plus the space for storing the variable domains).

Proof. Run the algorithm with M;,; = (, thus no sorting is necessary. [0

The analysis above is quite pessimistic. We can observe that the mark of
a value node can only be reset from reached to unreached when an augmen-
tation occurs. So the time between two successive augmentations is bounded
by O(m), no matter how many unsuccessful BFS calls we make in between.
Thus if a denotes the total number of augmentations, the total running time
is O((a+ 1)m).

This observation will play an important role in the next section, where
we deal with some aspects of integrating the algorithm in a constraint pro-
gramming framework. We can record the following: If our initial matching
My, is nearly optimal, i.e. if there are not many augmentations necessary,
then the algorithm is quite fast. In particular, if M,,; is already a maximum
weight R-matching, the running time of the algorithm is ©(m).
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4.2.6 Integration of the algorithm into a CP frame-
work

We discuss some issues concerning the integration of the algorithm into a
constraint programming system. The situation is the following. Suppose a
new WPA-constraint is posted, then the propagation computes a maximum
weight R-matching in the corresponding initial weighted value graph. Dur-
ing search and upon backtracking the domains of the variables involved in
the constraint may be updated, which implicitly changes the weighted value
graph as well. Because of the domain change the CP system wakes up the
constraint again and reruns the propagation algorithm, which computes a
matching in the current weighted value graph G. In most cases, G does not
change much between two successive invocations of the matching algorithm.
And hence, we expect that the corresponding matchings should be similar.
Thus using the old matching as a starting point for the new matching should
be more efficient than computing the new matching from scratch.

So the propagation algorithm proceeds as follows: When it is called for the
first time, it computes R and invokes the matching algorithm with M;,; =
to obtain a maximum weight R-matching M*, which is stored for future
use. When the propagation algorithm is called again later, it recomputes R
and uses M* to construct a new initial matching M;,; for Algorithm 4.2:
For every edge { Var, val} in M*, we check whether val is still contained in
the current domain of Var. If so, we put the edge into M;,;. The time
for constructing My, is O(m).2 Since we assume that the domains of the
variables do not change too much between two successive invocations of the
propagation algorithm, this should yield a good initial matching.

Incremental maintenance of L;,;

In the second phase of Algorithm 4.2 we process the values matched in M;,;
in increasing weight order. We show how we can maintain these values in a
sorted list L;,; without increasing the asymptotic running time of O((a +
1) - m), where a is the number of augmentations. For the first run there is
no problem, because M;,; and hence L;,; are empty. So let us assume that
we have M;,; and L;,;. We show how to modify the algorithm such that it
does not only compute a maximum weight matching M* but also a list L*
that contains the matched values of M* in increasing weight order.

As before, the algorithm maintains a current matching M which is aug-
mented until it is optimal. In addition, we have a list L in which we store

2We still suppose that the time for enumerating a variable domain is linear in its
cardinality.
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all values that are matched in M but free in M;,;. At the beginning L is
empty. Whenever an augmentations occurs (see line 22 in Algorithm 4.1)
such that opt_end is a (free) value different from undef, we append opt_end
to L. And if the root = of the BFS tree is a (matched) value, then z is also
matched in M;,; but is free after the augmentation, and hence we remove?
x from L;,;. Thus at any time L;,; U L contains exactly the matched values
of M. When phase two terminates with the matching M*, we construct L*
as follows. First we sort the values in L according to their weight, and then
we merge the two sorted lists L;,;; and L.

Let us analyse the running time for this computation. Maintaining L and
Liniy requires only constant time per augmentation. Sorting L takes time
O(|L|log|L]), and merging can be done in time O(|L| 4 |Lini|). Since the
cardinality of L is bounded by a and by m, the modified algorithm still runs
in time O((a + 1)m).

Tailoring the algorithm for edge deletions

When the CP system searches a solution for a constraint program, it tries
to narrow the variable domains until some propagation algorithm reports a
failure or all domains have become singletons. Only if a failure occurs, which
forces the system to backtrack, the domains can grow again. But in most of
the cases the variable domains shrink between successive invocations of the
matching algorithms. This means that edges are deleted from the weighted
value graph, but no new edges are inserted.

So we study the following problem: Suppose that we have computed an
undef-free maximum weight R*-matching M* in the weighted value graph
G*. Then we prune a set P of edges from G* and obtain a new graph G
and possibly a new set R. Our goal is to determine a maximum weight
R-matching in G. We show that we can modify Algorithm 4.2 such that its
running time is O(m min(|P|,n)) when it is applied to the initial matching
Minis = M*\ P. (The modified algorithm still works for arbitrary initial
matchings in arbitrary weighted value graphs in the same asymptotic running
time as the original algorithm.)

Let us consider an R-augmenting or weight-augmenting path p' from a
node z to a node y in Gy, . Since 7 is also a path in G%,., but not an
augmenting one, we conclude that some properties of z or y have changed
due to the deletion. To be more precise, at least one of the following three
statements holds:

3 Linit and L are doubly linked lists, and for every matched value we store the address
of the corresponding list-item, so we can delete an item in constant time.
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1. z is in R but not in R*, which is the case iff {z, undef} € P.
2. x is a variable and free in M,,;, but matched in M™*.
3. The value y is free in Mj,;, but matched in M*.

So we say that a node z has been affected by the pruning iff z is in R\ R* or
z is matched in M* and free in Mj,;;. In the sequel we modify the matching
algorithm to make sure that the following holds: Whenever we augment
the current matching with a path p, then at least one end node of p has
been affected by the pruning. This will allow us to bound the number of
augmentations and obtain the claimed running time.

Let us make an important observation. If we look at the proof of Theo-
rem 4.1, we see that the order of the BFS calls is not essential for the correct-
ness of the algorithm. We could use another order as long as we make sure
to reset the marks of all values if the weight threshold decreases between two
successive calls. What matters for correctness is that BFS is called for the set
S that contains every free variable and every matched value wrt. M;,;. It
will turn out useful to partition S in two sets A and A such that A contains
those nodes in S which have been affected by the pruning. The modified
algorithm processes S in two phases:

e Phase I: Process A:
A contains every value that is matched in M;,; and every variable that
is not R and free in both M,;,;; and M*. We consider these nodes in
weight increasing order, and hence, we have to reset the marks of the
values only once at the beginning of the phase. Note that this phase is
very similar to phase 2 of the original algorithm.

e Phase II: Process A:
A can be decomposed in two sets again. In A;, we have all variables
in R which are free in Mj,;;. Into A, we put all variables that are not
in R and that are free in M;,; and matched in M*. Observe that we
must match the nodes in A; in order to turn M,,; into an R-matching,
so that the weight threshold for the corresponding BFS calls is —oo.
For the nodes in A, the threshold is 0, because we are not required to
match them. So if we process the nodes in A; before those in A,, it
suffices to reset the marks of the values at the beginning of the phase.

The following lemma analyses the running time of the modified algorithm:

Lemma 4.3 Let P be a set of edges in a weighted value graph G*. If we have
a maximum weight matching M* in G*, then we can compute a mazrimum
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weight matching M in the graph G = G*\ P in time O(m min(|P|,n)), where
n s the number of variables and m is the number of edges in G.

Proof. It suffices to show that the number of augmentations in each phase
of the modified algorithm is at most |P|. The number of augmentations in
phase II is bounded by |A|, because every augmenting path considered in
this phase starts in a different node in A. Since every node in A has been
affected by the pruning and each edge in P can affect at most one variable,
we have |A| < |P|.

We may assume that M™* is undef-free, so undef is not affected by the

pruning. For any matching M that is computed in phase I, we will prove the
following invariant by induction: If ¢ is a weight-augmenting path wrt. M
in G, then at least one end node of ¢ has been affected by the pruning. The
base case M = M;,;; has already been discussed.
So let us suppose that M' = M @&p, where p is an augmenting path computed
in phase I, and M is a matching for which the invariant holds. Consider a
weight-augmenting path ¢ wrt. M'. If p and ¢ are node-disjoint there is
nothing to show. Otherwise we translate p to a directed path p from x to y
in Gy and g to a path ¢’ in G from u to v. If u has been affected by the
pruning there is nothing to show. So let us assume it is not, which implies
u € A (by similar arguments as in the proof of Lemma 4.1). Since q is
weight-augmenting, we have my(u) > weight(v) > weight(u), and hence u
has not been processed yet. Thus weight(z) < weight(u), and we conclude
weight(z) < weight(v). The same argument as in the proof of Lemma 4.2
shows v € Ry/(x). So there exists a weight-augmenting path ¢’ wrt. M from
x to v. Observing z € A and applying the induction hypothesis, we conclude
that v is affected by the pruning.

So every augmentation in phase I is made with the aid of a path p that
ends in a free value y which is matched in M* and free in My,,;;. Asy # undef,
y is matched again after the augmentation and remains matched till the end
of the algorithm. Therefore the number of augmentations in this phase is
bounded by |P N M*|. 0

We conclude these considerations with an example which demonstrates
that the original algorithm may introduce augmenting paths where both end
nodes have not been affected by pruning. This shows that the arguments
above only hold for the modified algorithm. On the left-hand side of Fig-
ure 4.9 we have depicted a graph éj/f* for a maximum weight matching M*.
Suppose we prune the edges e and f and obtain the graph G and a match-
ing M;,;. Then the optimal augmenting path p for the variable X; ends in
the (now) free value 5. After the augmentation M = M;,; & p, we have
the situation shown on the right-hand side of the figure. There are three
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weight-augmenting paths, where both end nodes have not been affected by
the pruning: from 2 to 3, from X, to 3 and from X, to 1.

D
Figure 4.9: Example showing why Algorithm 4.2 is modified.
4.2.7 Computation of the upper regret
If we are given some variables X,..., X,, with their respective domains and

a value-weight table 7', we know how to compute the maximum weight w of
a variable assignment. Suppose now, we pick one variable Var and a value
val € Dom(Var), and we allow only assignments where Var is assigned the
value val. We want to determine the maximum weight w’ of such a restricted
assignment. (If no such assignment exists, we set w' = —o00.) We define the
upper regret for the variable-value pair (Var, val) to be the difference w — w'
and denote it by regret(Var,val). So the upper regret tells us by which
amount the maximum weight decreases, if we force the assignment of val to
Var. This number is interesting because it allows us to prune the domain of
Var with respect to the weight variable W: If w — regret(Var, val) < W, we
can remove val from Dom( Var).

We translate the problem to a matching problem in the value graph G.
By Lemma 4.1, w is the weight of a maximum weight R-matching M in G.
And w' is the weight of a matching M’ that has maximum weight among
all R-matchings containing the edge e = {Var,val}. It will turn out that
we do not have to compute M’ explicitly, but we are able to determine the
upper regret with the aid of G m- We have to distinguish whether Var and
val belong to the same SCCs of G or not.

Assume first that Var and wval are in the same component, which implies
that there is a simple cycle @ in Gy that uses the edge (Var,val). If €
consists only of two edges, then ¢ = (Var, val) o (val, Var), which implies
e € M and regret(Var,val) = 0. Otherwise ¢ translates to an alternating
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cycle ¢ in G wrt. M. Since M and M & c match the same nodes, we conclude
regret( Var, val) = 0.

We come to the second case: Var and val belong to different SCCs of Gu.
This implies that e ¢ M and that M & M' contains an acyclic alternating
path p which uses e. The path p translates to a path p’in Gy from a node
x to a node y. Each of the two nodes is free in exactly one of the two
R-matchings M and M’', and hence z,y ¢ R. With respect to M, x is a
free variable or a matched value, and y is a matched variable or a free value
(cf. Figure 4.10). Recalling that the weight of a variable is zero, we obtain
weight(M &p) = weight(M ) — weight(z)+weight (y). An analogous argument
shows weight(M') = weight(M' ® p) — weight(z) + weight(y). (Observe that
7 is also a path in G mep-) Since M is a maximum weight R-matching, we
have weight(M' & p) < weight(M) and we can infer

weight(M') weight(M' & p) — weight(x) + weight(y)
weight(M) — weight(x) + weight(y)
weight(M & p) < weight(M')

Al

Thus weight(M') = weight(M @ p), which means that we can assume M' =
M & p from now on. In addition, we see regret(Var,val) = weight(M) —
weight (M &p) = weight(x) — weight(y), i.e. the upper regret depends only on
the start and the end node of p. We can decompose ' = pyaro( Var, val) oy,
where py,, is a (possibly empty) path from z to Var and pyy is a (possibly
empty) path from val to y.

Pvar Poval

Figure 4.10: Possible start and end nodes for the path p.

Let us assume that M is undef-free . We show that weight(y) = mas(val).
Assume otherwise. If 7y (val) > weight(y), then there is a path ¢ in Gy
from wval to a free node § with weight(§) = mar(val) (see Definition 4.3).
Translating the path gy, o(Var, val) o§ back to G, we obtain a path . M @&p
is a matching containing e with weight(M & p) = weight(M) — weight(z) +
weight (g) > weight(M'), which is a contradiction.

So mar(val) < weight(y). If y is a value node, we have 7y, (val) > weight(y) by
the definition of 7,;. Otherwise y is a variable and ¥ is not in R, which means
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that y is incident to the free value undef. Hence, mys(val) > weight(undef) =
0 = weight(y).

We will now define a function pys such that pp(Var) = weight(z). We
say that a node u is a possible start node wrt. M if u is a free variable or a
matched value wrt. M. Note that this implies v ¢ R. For a node v we set
par(v) := inf{weight(u) | v € Ry (u) A u is a possible start node wrt. M}.4
We show that pa(Var) is indeed equal to weight(x). From this definition
we conclude ppr(Var) < weight(x). Assume ppr(Var) < weight(z). Then
there is a path 7 in Gy from a node & to Var with weight(2) = pa(Var) <
weight(x). The path 7o (Var,val) o p,q translates to an alternating path
pin G. M & p contains e and weight(M & p) = weight(M) — weight (%) +
weight(y) > weight(M'), a contradiction.

The results from above can be summarized as follows: If Var and wval
belong to different SCCs of Gy, then regret(Var, val) = pyr(Var) — mpr(val).
If they belong to the same SCC, we have regret( Var, val) = 0.

Now we are ready to outline an algorithm for computing the upper regret for
any variable-value pair:

1. Compute the strongly connected components of G M:
We assign a component number to every node such that two nodes
receive the same number iff they belong to the same SCC.

2. Label every variable node Var with [[Var| = py(Var).
3. Label every value node val with l[val] = mp( Var).

4. Compute the upper regret:
For every pair (Var, val) with val € Dom(Var) we compute the upper
regret as follows:
regret(Var, val) = { 0, if Var, val belong to same SCC

I[[Var] — l[val], otherwise

We will now discuss how to implement the algorithm in time O(m), where
m is the sum of the cardinalities of the variable domains as in the previous
section. We assume that we have a sorting of the matched values accord-
ing to their weights; recall that our extended maximum matching algorithm
provides such a sorting. Computing the strongly connected components of
a directed graph can be done in linear time. Some of these algorithms only
scan the outgoing edges of a node, but not the incoming ones (see for example
[CM96]).

“Here “inf §” denotes the infimum of S, which is equal to min(S U {oco}) if S is finite.
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So the critical steps are the node labellings. We begin with the compu-

tation of the variable labels. Looking at the definition of py;, we recognize
the following: If u is a possible start node with minimum weight, then for all
nodes v € Rys(u) we have ppr(v) = weight(u). This observation leads to the
following algorithm. First we label all variables with co. Then we consider
all possible start nodes v in weight increasing order. We start a depth-first
search (DFS) at each u and assign the label weight(u) to all variables that u
can reach and have not been reached before.
The pseudo-code for this approach is given in Algorithm 4.3. We observe
that every variable domain is scanned exactly once, and hence the running
time is O(m). The correctness of the algorithm is implied by the following
observation: After a node u has been processed in one of the for-loops in
lines 2, 4 or 6, we have ([ Var| = pa(Var) for every variable Var € Ry (u).

Algorithm 4.3 Computation of the variable labels

Procedure: ComputeVarLabels(M)

initialize the labels of all variable nodes to oo

: for all values val matched in M with weight < 0 in incr. order do
VarDFS(M|val], weight(val))

: for all variables Var free in M do

VarDFS(Var, 0)

: for all values val matched in M with weight > 0 in incr. order do
VarDFS (M [val], weight(val))

I AN S ol

Procedure: VarDFS(Var, w)
8: if I[Var] = oo then
9:  I[Var] + w
10:  for all values val' € Dom(Var) do

11: if val’ has a matching mate Var’ then
12: VarDFS(Var', w)

13: end if

14: end if

Now we discuss the labelling of the value nodes. One is tempted to use
a similar approach as above: Process all free values in decreasing weight
order, for each such node v label every unlabelled value that can reach v
with weight(v). The problem with this approach lies in the term “can reach
v”, i.e. the approach requires to scan the incoming edges of the nodes in G M-
Since we do not want to build the graph explicitly, we would have to ask
the constraint programming system questions of the following form: Given a
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value val, tell us every variable Var such that val € Dom(Var). To the best
of our knowledge there is no system that supports such a query efficiently.

So we take a different approach. It will turn out that we can use DFS
again, but we have to apply it to an acyclic graph. We observe that two values
that belong to the same strongly connected component can reach exactly the
same nodes, which implies that their potentials are equal. And hence, we
can use a well-known technique to make Gu acyclic: We shrink its SCCs.
The shrunken graph C_j]sv[ contains a node for each component C' of G M, and
there is an edge (Cy, Cs) in G§, iff there is an edge (z,y) in Gy with z € C;
and y € Cj.

Let us consider what this means for our running example. On the left-
hand side of Figure 4.11 we have marked the SCCs of G a with dashed boxes.
Observe that every free node forms a trivial component of its own, whereas
the component of every matched node contains at least the mate. Note that
shrinking the components collapses the edges (X3,0) and (X4, 0) into the
single edge (Cs, C3).

Now we can state a recursive algorithm for computing the value labels of a
component C': Assume first that C' has no outgoing edges, then there are two
possible cases for the label [[C]. If C consists of a single free value val, then
[[C] = weight(val). Otherwise C' contains no free value, and hence, {[C] =
—o0. So if C has no outgoing edges, the recursion terminates immediately.
Suppose now that C' has outgoing edges, which implies that there are no free
values in C. We initialize {[C] with —oo. For any edge (C,C") in G§; we
compute [[C'] recursively and set [[C] to the maximum of its current value
and /[C"]. Note that this algorithm always terminates because the graph is
acyclic.

The algorithm can be implemented with DFS. On the right-hand side of
Figure 4.11, we have depicted the shrunken graph and for each component we
indicate the time when the corresponding DF'S call completes: for example,
Cs : 3 means that (5 is the third component that gets completed. One can
see that the source of an edge is always completed after the target. This
holds for every DF'S in an acyclic graph. And hence, whenever a component
is completed by DFS, we can assign the correct label to it.

It is not necessary to construct é?w explicitly. We can perform a DFS
in the graph G (see Algorithm 4.4). The shrinking of the SCCs is done
implicitly: We determine a single label for all values in an SCC. To prove
the correctness of the algorithm, we introduce some terminology. We define
the root of an SCC C to be the first value r in C' that is discovered by the
algorithm, where discovery means that the status changes from unreached to
active. Since all nodes of C' become DFS descendants of r, the root is the last



4.2. PROPAGATION ALGORITHM 97

Algorithm 4.4 Computation of the value node labels
Procedure: ComputeValLabels(M,R,SCC)
Require: SCClval] stores the SCC number for each value val and M is
undef-free

1: initialize the labels of all SCCs with —oo

2: initialize mark of all values as unreached
3: for all values val do
4
5

if mark[val] = unreached then
ValDFS(val)

Procedure: ValDFS(val)
6: mark[val] < active
7: if val is free then
[[SCC|val]] <+ weight(val)
9: else
10: let Var denote the matching mate of val
11:  for all values val' € Dom(Var) do

%

12: if mark[val] = unreached then

13: ValDFS(val')

14: end if

15: [[SCCwval]] + max(I[SCC[val]],I[SCCval']])
16: end if

17: mark[val] < completed
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Figure 4.11: The strongly connected components of G and the completion
times of a DFS in G7};.

node in C' which is marked completed. We say that an edge (Var, val') in Gu
is finished, when line 15 has been executed for val’ during the enumeration
of the domain of Var in line 11. The correctness of the algorithm follows
immediately from the second statement of the following lemma:

Lemma 4.4 During the execution of Algorithm 4.4 the following holds:

1. If an edge (Var,val') is finished and Var and val belong to different
SCCs, then all nodes in the component of val' are marked completed.

2. If the root of a component C is marked completed, then label of C s
equal to the potential of all values in C.

Proof. Suppose that the first claim is false. This means that an edge
e = (Var, val') which connects nodes in different SCCs gets finished, before
all nodes in the component of val’ are completed. In particular, the root r’ of
this component is not completed. Since ValDFS(val’) is called immediately
before e is finished, we can conclude that 7’ is active when e gets finished.
And hence, Var is a descendant of r’ in the DFS tree, which implies that r’
can reach Var. As Var can reach val' and val’ can reach r', we have that
Var is in the same SCC as r’ and val’, a contradiction.

We prove the second statement. It is easy to see that the labels assigned
by the algorithm can never be higher than the correct labels. So we can ignore
components with potential —oo. Let r denote the root of a component with
mar(r) > —oo. Thus there is a path §in Gy from 7 to a free value y with
weight(y) = mp(r). We prove the statement by an induction on the number
of components that are visited by p. The base case for our induction is that
r and y lie in the same SCC. Since y is a free value, its component is labelled
correctly after the completion of the call DFS(y) (see line 8).
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Now we come to the induction step. Assume that r and y reside in
different SCCs, and let e = (Var, val’) be the first edge on p’ that connects a
node in the SCC of r with a node outside. Consider the point in time when
e is finished, this is clearly before the completion of r. By the first statement
of the lemma, the root 7’ of the component of val’ is marked completed at
that time. So by the induction hypothesis (applied to the suffix of p from
val' to y), the component of 7’ has the correct label weight(y). Thus the
component of  also receives the correct label (see line 15). O

Example. In Figure 4.12 we show all the node labels for our running
example. Observe that the label of the value 2 is —oo, which means that
this value must be matched with X; in any R-matching, because X is
the only variable in the SCC of 2. Moreover, we can see for example that
regret(Xs,4) = 5 — (—1) = 6. And indeed, if we want to construct a maxi-
mum weight R-matching containing the edge { X4, 4}, we have to set value 5
free and match X5 with —1. The latter is necessary because we are required
to match Xj.

Figure 4.12: Example showing the computation of the upper regret.

4.2.8 Putting it all together

In this section we describe how to assemble the algorithms developed above
to a propagation algorithm for the WPA-constraint. We will also prove some
statements regarding consistency and the overall running time.

Before we describe Algorithm 4.5, we introduce the notion lower regret. It
is defined in an analogous way as the upper regret: Let wp;, denote the
weight of a minimum weight R-matching in the weighted value graph G.
Consider an edge e = {Var,val} and let w be the minimum weight of any
R-matching containing e. (If no such R-matching exists set w = oo.) We
define regret( Var,val) = w — Wy, i.e. the lower regret tells us by which
amount the minimum weight increases if we force the assignment of val to
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Var. If wpe, is the maximum weight of an R-matching in G, then the
weights of all R-matchings containing e lie in the interval I(e) := [Wym +
regret( Var, val); Wy — regret(Var, val)].  We call I(e) the weight interval
of e, and we will make sure that the following holds when our algorithm
terminates: For any edge e that is not pruned we have I(e) N Dom(W) # ().

The algorithm works as follows. First we compute the set R. Then
we enter the main loop, which repeats the following steps: We determine
a minimum weight matching M,,;, in the weighted value graph G and the
corresponding lower regrets®. If M, does not exist, or if weight(M,) is
greater than the upper endpoint of Dom(W), the constraint has no solution
and we report failure. With the lower regrets we can prune the domains
of Xj,..., X, according to the upper endpoint of Dom(W). After that we
compute a maximum weight matching M,,,, and the upper regrets, which
allows us to perform similar pruning steps as before.

Unfortunately, it is not guaranteed that we reach a fixpoint after one
iteration of the main loop. Hence, we repeat these steps until no edge deletion
occurs anymore. Of course, we only recompute the matching M,,;, or M,q,
if this is necessary. We do not start from scratch, but rather use the old
matching (minus the removed edges) as input for our matching algorithm.
A recomputation becomes necessary, if an edge in the matching is deleted,
or if a free variable enters R. We observe that the lower regret of all edges
in M, is zero, and for every variable X ¢ R which is free in M,,; we have
regret(X, undef) = 0. And hence, the pruning according to the lower regrets
can never invalidate M,,;,, but only M,,,,. A similar observation can be
made for M,,,, and the upper regrets. Moreover, if the pruning according to
the upper regrets deletes some edges, we do not have to recompute the upper
regrets unless there are also edge removals due to the lower regrets. We will
prove this in the following lemma.

Lemma 4.5 Let M be a marimum weight R-matching in the weighted value
graph G. Suppose the upper regret of an edge e increases as we delete an
edge d from G with regret(d) > 0. Then regret(e) > regret(d) holds before
the deletion. An analogous statement can be made for the lower regrets.
Hence, if Algorithm 4.5 removes d because its regret is too high, then it also
removes e.

Proof. We only have to prove the claim for the upper regrets. Let d =
{Vary, valy} and e = { Vare, val.}. In the sequel we will use the subscript “1”
if we refer to the graph G; = G and the subscript “2” for Gy = G/\d. Since

5As we stated before, these quantities can be determined by multiplying all weights by
—1 and computing a maximum weight matching and the upper regrets.
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Algorithm 4.5 Propagation algorithm for WeightedPartial Alldiff

Procedure: PropagateWPA (X, ..., X, ;undef;T;W)
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: compute R = {X; | undef ¢ Dom(X;)}
initialize M., and M,,,, // maybe empty
recompute_min < true; recompute_lregret < true
recompute_max $— true; recompute_uregret <— true
while recompute_lregret or recompute_uregret do
if recompute_min then
compute min weight undef-free R-matching M,
if M, does not exist or weight(M,,;,) > W then
report, failure and terminate
W« max(W, weight (M)
recompute_min < false
end if
if recompute_lregret then
compute the lower regrets (wrt. M)
for all variables X; and all values v € Dom(X;) do
if weight(Mpin) + regret(X;,v) > W then
remove v from Dom(X;); recompute_uregret < true
if v = undef then add X; to R
if {X;,v} € Myyaq or (X; free in My, and v = undef) then
recompute_mazx <— true
end if
recompute_lregret < false
end if
if recompute_mazr then
compute max weight undef-free R-matching M4,
if weight(Mp,,) < W then report failure and terminate
W+ min(W, weight (M)
recompute_maz < false
end if
if recompute_uregret then
compute the upper regrets (wrt. M)
for all variables X; and all values v € Dom(X;) do
if weight(Mpq,) — regret(X;,v) < W then
remove v from Dom(X;); recompute_lregret < true
if v = undef then add X; to R
if {X;,v} € My or (X; free in My, and v = undef) then
recompute_min <— true
end if
recompute_uregret < false
end if
end while




102 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF

regret,(d) > 0, we have d ¢ M, and M is a maximum weight Ro-matching
in Gy (even if valy = undef). Moreover, Vary and valy lie in different SCCs
of Gi. Hence, the SCCs of G, and G, are identical. As the upper regret
of e increases by the deletion, Var, and wval. also belong to different SCCs.
Thus regret,(d) = p1(Vary) — m1(valy) and regret,(e) = p1(Vare) — m (val).
(We assume w.l.o.g. that M is undef-free.) By definition, there is a path
7 in G, from a possible start node z to Var, with weight(z) = pi(Var,)
(see page 94); and there is a path ¢ in G; from val, to a free node y with
weight(y) = w1 (val,) (cf. Definition 4.3).

The deletion of d either increases the p-value of Var. (if d lies on p) or
decreases the m-value of val, (if d lies on §). In any case = can reach Var,.
Thus p;(Vary) < weight(x) = p1(Var,). Moreover, valy can reach y so that
m1(valy) > weight(y) = m1(vale).

So regret,(d) = p1(valy) — 71 (valy) < p1(vale) — w1 (vale) = regret,(e). QO

Before we analyse the running time of the algorithm, we give an example

which shows that it may be necessary to have several iterations of the main
loop even if both matchings remain unchanged in one iteration. (This can
happen because deleting an edge due to its upper regret may increase the
lower regret of another edge.)
Example. We consider the graph G shown on the left-hand side of Fig-
ure 4.13, and we assume that Dom(W') = [4; 5]. We suppose that every value
is equal to its weight. All variables must be matched, i.e. R = {X;, X»}. We
shall see that the algorithm must make 3 iterations, until it has reached a
fixpoint. In the table on the right-hand side of the figure we depict the state
of the algorithm after the execution of line 14 and line 31 in the respective
iteration. An “x” in a column indicates that the respective edge has been
pruned by the algorithm.

In the first iteration, g is deleted because of its upper regret. In the
second row of the table we see that weight (M., ) = 14 and regret(g) = 13.
So every R-matching containing g has weight at most 1, which is less than
W. Observe that g neither belongs to M,,;, nor to M,,,,, but the pruning
of g affects the lower regrets. This causes the deletion of j in the second
iteration. As j was in M,,,;, we have to recompute M,,,, and the upper
regrets. At the end of this iteration we prune f, because its upper regret
is now too high. Since f was a member of M,,;,, we have to recompute a
minimum weight matching in the next iteration. As weight(Mp;,) increases
to 5, we set W to 5. Moreover, we remove 7 due to its lower regret. Finally,
we recompute M,,,, and terminate.

In the sequel we analyse the running time of Algorithm 4.5 and make
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weight el fl g |h|i]j
1{|{mn=-3| Ir 8|0 1 |0|1|4
mar =14 ur |0 |8 |13 |9 |40
21lmin=-3| 1Ir| 80| x |0|6]9
mar =11 |lur |0 | 8| x |6 |0 |x

3 min =95 Ir/0|x| x |0]6|x
mar =5 |lur|0|x| x |0 | x|x

Figure 4.13: An example computation of the pruning algorithm

some statements about the consistency it achieves. By Lemma 4.3, the total
time for the computations of the matchings is bounded by O((n+p)m), where
p denotes the number of pruned variable-value pairs and m denotes the total
size of the initial domains. A single iteration takes time O(nm) in the worst
case, but if we do not count the time for the matching computations, we
obtain O(m) per iteration. Since in all iterations, except for the last one,
at least one value is pruned from some domain, Algorithm 4.5 runs in time
O((n + p)m). So when the algorithm runs for a very long time, this is
compensated by a large amount of pruning.

With respect to consistency, we observe that upon termination of the
algorithm we have I(e) N Dom(W) # () for any edge e which has not been
removed from G. This follows directly from the fact that both matchings
and the corresponding regrets are valid upon termination. We summarize
our observations in the following theorem:

Theorem 4.3 Consider the constraint WPA(Xq, ..., Xy; undef; T; W) and
suppose we apply Algorithm 4.5 to it. Then its worst case running time is
O((n + p)m), where p is the number of pruned variable-value pairs. If it
terminates without reporting failure, we have I({X;,v}) N Dom(W) # 0 for
any value v that occurs in the domain of some variable X;.

Observe that this does not imply that every value v € Dom(X;) is con-
sistent. We know that weight(M) € I({X;,v}) for any R-matching M con-
taining { X;, v}. But the converse is not true in general, there may be a value
w € I({X;,v}) such that there is no R-matching M which has weight w and
contains { X, v}.

This is shown by the following example: Suppose we have a WPA-
constraint on three assignment variables X, Y, Z with domains Dom(X) =
{—4,-2}, Dom(Y') = {0,2} and Dom(Z) = {4,6} and a weight variable W
with Dom(W) = {3}. Assume that the weight of every value is equal to the
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value itself. Then it is easy to verify that the minimum weight of an assign-
ment is 0, the maximum weight is 6, and the lower or upper regret of any
variable-value pair is at most 2. Thus the weight interval of any edge e in the
weighted value graph satisfies I(e) D [2;4] DO Dom(W). Hence, the algorithm
does not prune anything. But since every value has an even weight, there
can be no solution to the constraint.

In the next lemma, we show that deciding solvability of a WPA-constraint
is hard (if the weights appearing in its arguments have large absolute value):

Lemma 4.6 Deciding whether the constraint WPA(Xq, ..., Xp; undef; T; W)
has a solution is NP-complete (in the weak sense).

Proof. It is easy to see that the problem is in NP, because we can verify
in polynomial time that a given variable assignment satisfies the constraint.
To prove NP-completeness, we will give a reduction of an NP-complete set
partitioning problem called “Subset Sum” (see [GJ79]):

Subset Sum
We have a finite set A, each element a € A has a weight w(a) € Z7,

and we have an integer B € Z'. The problem is to decide whether
there is a subset A’ C A such that ) ., w(a) = B.

In order to encode an instance of the Subset Sum problem with A =
{ai,...,a,} we use n assignment variables Xi,..., X,,. We set undef := 0.
For : = 1,...,n we choose Dom(X;) := {0, a;} and weight(a;) := w(a;). Fi-
nally, we set Dom(W) := [B; B|. A solution (v1,...,v,, B) of the constraint
WPA(X,...,X,; undef; T; W) corresponds to the subset A" = {v;|v; #
undef} C A of weight B and vice versa. (Observe that this reduction only
uses the “weight”-part of the WPA-constraint, the “partial alldifferent”-part
is satisfied automatically by construction.) 0

We conclude the general analysis of the algorithm by showing that it is
idempotent and monotonic (cf. page 14):

Lemma 4.7 Algorithm 4.5 is idempotent and monotonic.

Proof. It is obvious that the algorithm is idempotent, because the match-
ings and the regrets are valid upon termination.

To show monotonicity, we consider two applications of the algorithm that do
not report failure. We assume that the weight table and the value undef are
the same in both applications. In the sequel we will use the subscripts “1”
and “2” to refer to the respective application. We use the superscript “0” to
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denote the input domains and the superscript “x” when we refer to the out-
put domains. Suppose that the input domains satisfy Dom? (W) C Dom3(W)
and Dom{(X;) C Dom3(X;) fori=1,...,n.

We show by induction that at any point in time during the second applica-
tion the following holds: Domi (W) C Domy (W) and Dom;(X;) C Domy(X;)
for + = 1,...,n. Clearly, the claim holds at the beginning of the second
application.

There are four lines where Algorithm 4.5 updates a domain: 10, 17, 27

and 34. For the induction step we assume that the claim holds before such
a domain update and prove that it still holds afterwards. So before the
update step, the final weighted value graph G7 of the first application is a
subgraph of the current weighted value graph G5 of the second application,
and R*¥ O R». Hence, a minimum/maximum weight R}-matching in G7 has
at least/most the weight of a minimum/maximum weight R,-matching in
(G5. Therefore the claim holds after an update in lines 10 and 27.
We come to the updates in lines 17 and 34. Consider an edge e = {X;,v} in
G%. By Theorem 4.3, the following holds: I7(e) N Domi(W) # (. So when
line 16 or line 33 is executed for e, we have I,({X;,v}) N Domy(W) # 0,
because Io({X;,v}) 2 If(e) and Domg(W) O Domi(W). This implies that e
is not pruned from Gy, i.e. v remains in Domy(X;).

Hence, when the second call terminates, we have Domi (W) C Domi (W)
and Domj(X;) C Doms(X;) fori=1,...,n. O

Scenarios one and two

We can derive better results with respect to both consistency and running
time, if we consider again the three scenarios from the beginning of this
chapter (see page 71). Let us assume first that we are in the first scenario,
where the constraint is used in a minimization problem, i.e. we impose only
an upper bound on the weight variable W. Thus W is never greater than the
weight of a minimum weight matching. By the lemma which we will prove
below, this implies that our algorithm terminates after one iteration and that
it achieves arc-consistency for the assignment variables:

Lemma 4.8 Consider the constraint WPA(Xq, ..., Xp; undef; T; W) such
that W 1is not greater than the minimum weight of an R-matching in the
corresponding weighted value graph. If we apply Algorithm 4.5, then it termi-
nates after one iteration, and hence the running time is O(nm). It achieves
arc-consistency for the variables X1,...,X,, i.e. for every variable X; and
every value v € Dom(X;) there is a solution (vy,..., vy, w) of the constraint



106 CHAPTER 4. WEIGHTED PARTIAL ALLDIFF

with v; = v. (The lower endpoint of Dom(W) is made consistent, the upper
endpoint may not be consistent.)

Proof. In order to show that the algorithm makes only one iteration, it
suffices to prove that the condition of the “if”-statement in line 33 will never
be true. Consider the execution of line 33 for a variable-value pair (X;,v).
By Lemma 4.5, we have regret(X;,v) < oo, which implies regret(X;,v) <
oo. Thus there is an R-matching M containing the edge e = {X;,v}. We
infer weight (M nas) — regret(X;, v) > weight(M) > weight( M), As W =
weight(My,,) holds after the execution of line 10, the “then”-part of the
“if”-statement in line 33 is not executed.

Now we show that there is a solution where v is assigned to X;. Let GG
be the weighted value graph at the end of the first iteration. GG contains e =
{X;, v}, and the minimum weight matching and the lower regrets computed
by the algorithm are valid for G. So we can find an R-matching M’ in G
with e € M" and weight(M') = weight( M) + regret(X;, v). Since v has
not been pruned from Dom(X;), we have weight(M') < W (see line 16).
Together with W = weight(M i) this implies weight(M') € Dom(W). By
Lemma 4.1, M’ corresponds to a solution where v is assigned to X;. d

As a corollary from the previous proof, we observe that we can skip the
pruning related to the upper regrets (lines 30-40) if W = weight( M),
because then the condition of the “if”-statement in line 33 will always be
false. An analogous observation can be made for the lower regrets (lines 13—
23) if W = weight(M ., ). However, these lines must not be skipped in the
first iteration, because we have to prune the edges with regret oco.

The situation of the second scenario is very similar to the case above.
Recall that we assume in this scenario that the weight variable W is only
bounded from below. In this case, we should compute M,,,, and the upper
regrets before we compute M,,;, and the lower regrets. Otherwise we might
need two iterations until we achieve arc-consistency for the assignment vari-
ables.

Scenario three

Now we come to the last scenario where all values (except for undef) have
weight 1, and we make no assumptions about the lower or the upper endpoint
of the domain of the weight variable W. This scenario is analysed in the
following lemma:

Lemma 4.9 Consider a constraint WPA(X, ..., Xp; undef; T; W) such that
all values different from undef have weight 1. Then Algorithm 4.5 achieves
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arc-consistency for all variables (including W ). It makes at most two itera-
tions, hence its running time is bounded by O(nm).

Proof. We consider the first iteration and denote by t* the point in time
immediately after the execution of line 31 in the first iteration. Let R*
be equal to the contents of the variable R and let G* denote the weighted
value graph at that time. M, and M, are minimum/maximum weight
undef-free R*-matchings in G*, and the lower and upper regrets computed
by the algorithm are valid with respect to G*.

We show that any value w in Dom(W) is consistent at time ¢*. We have
Dom(W) C [weight( M pin); weight(Mpqs)]- The set Mypin @ Mipaq consists of
node-disjoint alternating paths and cycles p1,...,px. Let My = M,,;, and
M; =M; 1&®p; fori=1,..., k. Each of these matchings is an R*-matching,
and My = My, As all value weights are 1 or 0 (for undef), we infer
weight (M;) — weight(M; 1) € {—1,0,1} (cf. Figure 4.2 on page 77). Hence,
for every w € Dom(W), there is a matching M; in the sequence My, ..., My
with weight(M;) = w. By Lemma 4.1, M; corresponds to a solution of the
constraint where w is assigned to W.

Let v be a value in the domain of an assignment variable X; and assume
that v is not pruned during the first iteration. Since I(e) = [weight (M) +
regret(e); weight (M., ) — regret(e)], this implies that there is some weight
w in I(e) N Dom(W) (see lines 16 and 33). By the definition of the lower
and the upper regret, there are two R*-matchings M; and M} in G* such
that both contain e and I(e) = [weight(M,); weight(My)]. As every path
in M; & Mj avoids e, an analogous argument as above proves that there
is an R*-matching M in G* with e € M and weight(M) = w. Hence, M
corresponds to a solution where v is assigned to X;.

As the domains of all variables are consistent after the first iteration,
there can be no pruning in the second iteration. Only the matchings may
change. Therefore the algorithm stops after the second iteration. d

4.3 Comparison with related work

To the best of our knowledge the WPA-constraint itself has not been treated
before. In this section we will discuss some global constraints which are
related with our work and summarize the results which have been obtained
for them. As the name suggests, our constraint is strongly related with
the classical Alldiff-constraint, which we discussed in Chapter 3. Of course,
WPA is a generalization of Alldiff: If we choose for undef a value that
is not contained in any variable domain, set W and all weights to zero,
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then WPA becomes equivalent to an Alldiff-constraint on the assignment
variables. There are several propagation algorithms which achieve different
degrees of consistency (see [vHO01la] for an overview). We compare our work
with the results of Régin who proposed an arc-consistency algorithm [Rég94].
As before we denote by n the number of assignment variables and by m the
sum of the cardinalities of their domains. Régin’s algorithm, which is also
based on matchings in bipartite graphs, has a worst case running time of
O(y/nm). It is also incremental and has a best case running time of ©(m).
By Lemma 4.8, our propagation algorithm achieves the same consistency,
however the worst case running time is O(nm).

WPA is a generalization of a constraint called alldiff _except_0. The argu-
ments of the constraint are n assignment variables and the constraint states
that all variables must take pairwise distinct values except for those vari-
ables which are assigned the value 0. This constraint has been mentioned in
[Bel00], there it was considered for applications like the ones we described
in scenario three (on page 72). But as far as we know, no propagation al-
gorithm has been proposed before. This constraint can be expressed by a
WPA-constraint where undef is set to 0, and all weights are set to 1 (except
for the value undef) and the initial domain of W is [0;n]. Using this trans-
lation, the user has the possibility to control the number of variables which
are set to 0, by imposing constraints on W. By Lemma 4.9, we can achieve
arc-consistency for the assignment variables in a worst-case running time of

O(nm).

Petit et al. [PRBO01] also consider relaxations of the Alldiff-constraint.
Their constraint involves n assignment variables X, ..., X, and a cost vari-
able C. They discuss two different cost models. In the first model the cost of
an assignment is defined to be n minus the number of distinct values. So if all
values are pairwise distinct, the cost is 0. And the assignments (1,1, 2,2) and
(2,1,2,2) have both cost 2. The second model is based on a reformulation
of the Alldiff-constraint as (Z) binary constraints of the form X; # X for
t # j. And the cost in this model is simply the number of binary constraints
which are violated by the assignment. If all variables take pairwise distinct
values, the cost is 0 as before. The assignment (1,1, 2,2) has cost 2, whereas
the cost of (2,1,2,2) is now 3.

For both models they propose algorithms which prune the domains of the
assignment, variables according to a maximum cost. The algorithm for the
first model is based on the computation of maximum cardinality matchings
in the value graph. Its worst case running time is O(y/nm) and it achieves
arc-consistency. The second model seems to be more difficult to handle. The
algorithm for this model is based on flows. Its complexity is O(n?\/nms),
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where s is the maximum cardinality of a variable domain. And it cannot
guarantee arc-consistency.

We want to point out that we cannot emulate any of the two models with
our constraint because we do not allow that any value different from undef
is taken more than once in an assignment.

The next constraint that we discuss is called SumOfWeightsOfDistinct-
Values (abbreviated as SWDV). Beldiceanu et al. [BCT02] introduced this
constraint. It takes as input n assignment variables Xi,...,X,, a value-
weight table 7" and a weight variable WW. In contrast to WPA, any value may
be used several times in an assignment, but the weights may not be negative.
The SWDV -constraint states that W =3 v,  ; weight(v), i.e. W must
be equal to the total weight of the variable assignment, but every value v
contributes at most once to total weight, even if it is assigned to many X'’s.

It is easy to see that the maximum weight of a variable assignment is
equal to the weight of a maximum weight matching in the corresponding
weighted value graph. So the “upper side” of this constraint is very similar
to WPA. In fact, the matching algorithm and the computation of the upper
regrets that we have presented in the previous section have been derived
from algorithms developed in [BCT02]. The “lower side” of SWDV is quite
different from WPA and seems to be more difficult to handle (see [BCT02]
for details).

In the sequel we compare with the constraint Min WeightAllDiff intro-
duced by Caseau and Laburthe [CL97]. This constraint augments the classi-
cal Alldiff-constraints with costs. In addition to the n assignment variables,
the constraint takes as input a cost table 7" and a cost bound . The table
T states for every variable X and every value v € Dom(X) the cost cx,, for
assigning v to X. So in contrast to our constraint the cost of a value may
depend on the variable to which it is assigned. The cost of an assignment
(vi,...,v,) is defined as Y | cx,0,. MinWeightAllDiff holds if all assign-
ment variables take pairwise distinct values and the cost of the assignment
does not exceed 3. So this constraint models a similar situation as in scenario
one (see page 71). But it is not capable of modelling an undef value that
may be used several times.5

Sellmann [Sel02] gave an arc-consistency algorithm for this constraint. It
works on a weighted variable-value graph G, where the weights are associ-
ated with the edges. Checking feasibility of the constraint can be done by
computing a minimum weight variable-perfect matching in G. And the prun-
ing amounts to n single source shortest paths computations in an oriented

6As a work-around, one might introduce n distinct values undef,, ..., undef,, with
weight 0 and add undef; to the domain of X;.
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variable-value graph. Thus the algorithm runs in time O(n(m + klogk)),
where k = n+ ||J;_, Dom(X;)|, i.e. k equals the number of nodes in G. The
author mentions that it is not known how this algorithm can be implemented
to run incrementally faster. So in a setting where the costs of the values are
independent of the variables to which they are assigned, it is better to use
the algorithms for the WPA-constraint, because they can achieve bound con-
sistency in time O(nm) (see Lemma 4.8), and they are incremental.

Finally, we want to mention the constraint CostGCC which has been
described by Régin [Rég99]. It allows to state a cost bound for the global
cardinality constraint (GCC'), which we discussed in Section 3.2.3. Similar
to MinWeightAllDiff, the input of the constraint consists of n assignment
variables X1,...,X,, a cost table T and a cost bound . In addition, we
have for every value v a lower and an upper capacity bound [, and u,. The
constraint states each value v must be used at least [, and at most wu, times
in the assignment and that the cost of the assignment must not be more
than 3. Clearly, in the special case where all lower capacities are zero and
all upper capacities are one, CostGCC' is equivalent to MinWeightAllDiff .

Régin [Rég99] describes an arc-consistency algorithm for CostGCC. His
algorithm is based on min-cost-flow (for feasibility checking) and single source
shortest paths computations in a so-called residual graph (for pruning). It
can be implemented to run in time O(n(m + klogk)).”

The constraint CostGCC can model scenario one as follows: we set all
lower capacity bounds to zero, the upper capacity bound for the value undef
is n and the upper bound for all other values is one. Régin’s algorithm
achieves the same pruning as our algorithms for the WPA-constraint, but
the complexity is higher. There are cases where CostGCC is more general
than WPA. But when this additional power is not needed, our algorithms
give a better worst case complexity.

So for the special case MinWeightAllDiff , Régin’s algorithm has the same asymptotic
complexity as the algorithm by Sellmann [Sel02].



Chapter 5

A non-overlapping constraint
between convex polygons

This chapter discusses a non-overlapping constraint between two convex poly-
gons!. We restrict our attention to the two-dimensional plane R?, but many
statements can be generalized for higher dimensions. First, we want to ex-
plain what we mean by non-overlapping. Let P and ) be two sets of points
(e.g. two polygons). If P and @ do not intersect at all (see left-hand side of
Figure 5.1) or only their boundaries intersect (as in the middle of the figure),
then P and @) are called non-overlapping. Only if P and ) have a com-
mon interior point (i.e. int(P) N int(Q) # 0), we say that P and @ overlap
(cf. right-hand side of the figure).

QQQ@C@X

) no intersection ) touching c) overlapping

Figure 5.1: Examples illustrating the definition of overlapping.

Determining whether two convex polygons intersect is a well-studied prob-
lem in computational geometry (see [dBvKOSO00] for example). However, we
want to deal with problems where the position of one or both polygons is
not completely determined. We illustrate this with the example shown in
Figure 5.2: We have two rectangles R; and R,. The shape and the position
of R, are fixed, the shape of R, is fixed too, but its position is not. The

1This and other relevant geometrical notions are formally defined in Section 2.3.

111
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reference point of Ry, which is indicated by a dot in the figure, can be moved
within a certain region. The coordinates of the reference point are given by
two real-number? variables X, and Y, with domains Dom(X,) = [2,5] and
Dom(Ys3) = [1,3]. Thus the reference point may be moved to any position
in the rectangle Oy = Dom(X3) x Dom(Y2). Our goal is to find out that it
must not be placed in the interior of the shaded region of O, because this
would cause R and Ry to overlap, i.e. we want to narrow the domain of X,
to [3, 5].

Figure 5.2: Example for a situation where one object is not fixed.

In general, the positions of both objects appearing in a NonQuverlapping-
constraint may be variable. Each object is modelled by a fixed shape polygon
Shp and a (possibly) variable translation vector ¢t = (z,y) € R?. The actual
object is obtained by applying the translation ¢ to Shp, which we will denote
by t @ Shp. For convenience, we assume that Shp contains the point (0, 0),
i.e. the origin of the coordinate system. In a translated copy P = (z,y)® Shp,
we call the point (z,y) the origin of P. So the relative position of the origin
with respect to Shp is fixed. In our drawings we will mark this point by a
dot (cf. Ry in Figure 5.2). Geometrically, (z,y) @ Shp is obtained by moving
the dot into the point (z,y).

Our non-overlapping constraint has the following syntax:

NonOverlapping(Shp,, (X1, Y1), OrgBnd,; Shp,, (Xa, Ys), OrgBndy)

Each object is characterized by 4 parameters which have the following mean-
ing:

e Shp, is a convex polygon that describes the shape of the i-th object.

e (X;,Y;) is the translation vector for Shp,, i.e. the position of its origin.
Both X, and Y; are variables whose domains are closed intervals in R.

In the paper [BGT01] we considered finite domain integer variables. But since the
coming theory is more easily formulated for real numbers, we chose domains of real num-
bers. Other domains will be discussed in Section 5.5.
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e The origin boundary OrgBnd; is a convex polygon that (further) re-
stricts the placement of the origin of the i-th object. We require that
(X5, Y;) must be a point in OrgBnd,.

Thus the origin of the i-th object must be a point in the domain poly-
gon Domain; = (Dom(X;) x Dom(Y;)) N OrgBnd,;, which is convex again.
The reader may wonder why we have introduced OrgBnd,. The reason is
that Dom(X;) x Dom(Y;) is always an axis-parallel rectangle, and hence, of-
fering the origin boundary as additional restriction increases the modelling
capabilities of the constraint.

The constraint holds if (X7, Y7) ® Shp, and (X3, Ys) @ Shp, do not overlap
and the origins are contained in the respective domain polygons. The relation
S of the above mentioned constrained contains all tuples (z1, y1, z2, y2) with
the following properties:

o int((z1,y1) ® Shp,) Nint((z2,y2) & Shpy) = 0

o (z;,9;) € Domain; for i € {1,2}.

This constraint can be applied to all kinds of two-dimensional placement
problems, e.g. designing a pattern for cutting cloth, or laying out parts on
a sheet of metal [CF94]. The reader may wonder if these problems can be
modelled well without allowing rotations of the shape polygon. Concerning
the first example, we observe that cloth may be decorated with a pattern,
thus the shapes that are to be cut out are often not allowed to be rotated, only
to be translated. In the second example it may be possible in some cases
to reduce the waste if rotations are possible. However, this may increase
the time to solve the problem considerably. So in applications with limited
computation time, a restricted model (without rotations) that yields good
solutions quickly may be preferable. This might be the reason why rotations
have not been taken into account in [CF94].

The work discussed in this chapter is based on the paper [BGT01], which
is joint work with Nicolas Beldiceanu and Qi Guo. The chapter is organized
as follows. We start with a rough overview of the propagation algorithm.
Then we introduce the overlapping polygon, which will play a key role in the
algorithm. We describe its main properties and discuss how to compute it.
After that we present a narrowing algorithm for the variable domains, and
we analyse its running time. Then we sketch some possible extensions of the
constraint. Finally, we conclude with the discussion of related work.
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5.1 Overview of the algorithm

In the sequel we develop a propagation algorithm that can narrow the do-
mains of the origin variables to bound-consistency. Throughout this chapter
we will use R as number type. But the results will also be valid for rational
numbers. It will turn out that our algorithm needs to perform the following
operations on numbers: the arithmetic operations “4, —, -, /” and compar-
isons. In order to make the analysis easier, we assume that each of these
basic number operations can be done in constant time. (We know that these
assumptions are not realistic for exact computations with real or rational
numbers, some of the issues will be discussed later in Section 5.5.) Given
these assumptions we will show that the running time of the algorithm is
linear in the total number of vertices of the input polygons.

As mentioned above, our algorithm does not deal with two fixed polygons
but rather with two families F; and F; of polygons:

Fi=A{(z,y) & Shp,; | (z,y) € Domain;}

Suppose we want to place the origin of the shape polygon of F;. Our algo-
rithm can be outlined as follows:

e Compute Domain; and Domain,:

In order to determine Domain;, we have to compute the intersection of
the origin boundary OrgBnd, with the axis parallel rectangle spanned
by (X,,Y,) and (X;,Y;). This problem is well-known in computer
graphics as “polygon clipping”, an efficient algorithm for convex poly-
gons was given by Sutherland and Hodgman [SH74]. (A very readable
presentation of this algorithm together with other clipping algorithms
can be found in [FvDFH90].)

e Compute the overlapping polygon Overlap(Shp,, Fs):
The overlapping polygon will be discussed in detail in Section 5.2. The
crucial property of this polygon is that its interior points are exactly
the forbidden placements of Shp, with respect to F,. A placement
(x1,41) is forbidden if (x1,y1) @ Shp, overlaps every member of 7.

e Examine Pl; = Domain, \ int(Overlap(Shp,, F2)):
The set Pl; contains all admissible placements for the origin of Shp;.
With a sweepline algorithm (see Section 5.3) we can narrow the domains
of X; and Y7 to bound consistency.

In the sequel we will give some details of the algorithm. We will use the
following example to illustrate it:
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Example. The two objects that we want to place are described by the
following parameters:

* Shp, = ((4,-4),(=2,-2),(0,2)),
Dom(X1) = [5,9], Dom(Y3) = [1, 6],

OrgBnd, = {(5,4), (9,0), (11,4), (8,7))

e Shp, = ((0,0),(5,0),(7,2),(6,5), (0,3)),
Dom(Xs) = [—2,5], Dom(Y3) = [—1,4],
OrgBnd, = ((9,2), (1,4), (-1, -1), (1, —4))

The shape polygons are depicted in Figure 5.3. The algorithm starts with
clipping origin boundaries against the rectangles which are induced by the
variable domains (see Figure 5.4). Clipping OrgBnd, against the rectangle
with the corners (5,1) and (9, 6) yields Domain,; = {((5,4), (8,1), (9,1), (9, 6),
(7,6)). For the second family we obtain Domainy, = ((5,3), (1,4), (—1,—1),
(5,-1)).

345

=N W O

Figure 5.4: Clipping of the origin boundaries for our running example.
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5.2 The overlapping polygon

In this section we tackle the problem of finding the forbidden placements for
the origin of Shp, with respect to F,. We start with a slightly easier problem.
We consider a fixed instance P, € F5, and ask ourselves which placements are
forbidden with respect to P,. This problem is a subproblem in robot motion
planning where one has to move a polygonal-shaped robot such that it avoids
polygonal-shaped obstacles (see [dBvKOS00, Chapter 13]). Our “robot” is
Shp, and our “obstacle” is P». But there is a subtle difference between the
two problems: In robot motion planning the robot is not allowed to touch
the obstacle, whereas Shp, may touch P, but not overlap. However, we shall
see that the results from motion planning carry over to our problem with
minor modifications.

Let F = {(z,vy)]|((z,y) & Shp,) N P, # 0}, i.e. F corresponds to all
placements where Shp, and P, touch or overlap. Geometrically the boundary
of F' can be obtained by sliding Shp, along the boundary of P, and tracing
the origin of Shp, (see Figure 5.5). Moreover, we see that the boundary
of F' (denoted by OF) consists of the placements where Shp, and P, just
touch, and the interior of F' (i.e. int(F’)) contains the placements where they
overlap.

Figure 5.5: The forbidden placements for Shp,; wrt. a fixed instance Ps.

In order to describe F' in a way which will facilitate its computation, we
use the notion of a Minkowski sum: The Minkowski sum of two sets P, Q) C
R? is denoted by P®Q and defined as follows: P&Q = {p+q|p € P,q € Q}.
(Observe that {(x,y)}® Shp, = (z,y)® Shp,.) Moreover, for A € R we define
A-P:={\-p|p e P}. It will turn out that F' = P, & —Shp,, but before we
show this, we list some fundamental properties of Minkowski sums and their
interior points, which will be used to prove the subsequent lemmas.

Lemma 5.1 For two sets P,Q C R? the following holds:
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e int(p® P) =p@int(P), Vp € R?.
o int(A- P) = A-int(P), VA € R\ {0}.

e int(P & Q) = int(P) & int(Q), if P and Q are convexr with non-empty
interior.

For a conver set Q@ C R%, pi,...,p, € R and \y,...,\, € [0,1] with
i A =1 the following holds:

(Z Aipi) ®Q = @)‘i(pi ®Q)

Proof. The proof of the first two statements is straightforward. The last
two statements are shown in Section 2.3 (cf. Lemmas 2.5 and 2.6). O

The following lemma characterizes the forbidden placements of a shape
polygon with respect to a fixed polygon, i.e. we show F' = int(P, & —Shp,).

Lemma 5.2 A member t @ Shp of a family F of convex polygons overlaps a
convez polygon P iff t € int(P & —Shp).

Proof.

int(t @ Shp) Nint(P) #0 <= 3Is € int(Shp),Ipe€int(P):t+s=p
< dse€int(Shp),Ip€int(P):t=p—s

L 5.1

<& te€int(P @ —Shp)
a

Now we pick up our original problem. Recall that a placement ¢ is for-
bidden with respect to a family F, iff ¢t & Shp, overlaps every member of the
family. By the Lemma above this is the case iff t € (), z, int(P, @ —Shp,).
The problem with this characterization is that F, may have infinitely many
members, which makes it hard to compute this intersection. In the sequel
we will show that it suffices to consider only a finite number of members of
Fo. Every member of F, can be written as v @ Shp, with v € Domains. Let
(v1,...,v,) be the vertices of Domainy. We call vy & Shp,, . .., v, @& Shp, the
extreme members of F» and denote them by Eztr(F,). Using the convexity
of the shape polygons and the fact that every point in Domains can be writ-
ten as a convex combination of its vertices, we will prove the lemma below.
It states that t @ Shp, overlaps all members of F, iff it overlaps all of its
extreme members.?

3The lemma also holds for families with a non-convex domain polygon, but the shape
polygon has to be convex.
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Lemma 5.3 A convex polygon Si overlaps all members of a family Fo of
convex polygons iff S1 overlaps all extreme members of F.

Proof. Suppose that S; overlaps all polygons in Eztr(F,), we will show
that it overlaps every member v & Shp, of F,. (The other direction of the
statement is trivial.)

We can find extreme members vy & Shp,, ..., vy & Shp, of F5 such that
v = Zle Aiv; with Ap, ..., A, €]0,1] and Zle Ai = 1. Since S overlaps all
extreme instances, there exists s; € int(S; Nwv; & Shp,) fori=1,... k. It is
easy to see that s = Zle Ais;i is in int(S;), because s is a convex combination
of interior points and S; is convex. Applying Lemma 5.1, we obtain s €
P, Ai-int(v,® Shp,) = int(BL, Ai- (i@ Shp,)) = int((X5, Aivy)® Shp,) =
int(v @ Shp,). Thus S; and v & Shp, overlap. |

Now we can define the overlapping polygon as a finite intersection of
Minkowski sums: OUerlap(Sf%pl,]j"z) = .ﬂPZEEm(B)(PQ & —A_S'hpl). The the-
orem below states that the interior points of the overlapping polygon are
exactly the forbidden placements of Shp, with respect to F.

Theorem 5.1 A convex polygon t & Shp, overlaps all instances of a family
Fy of convex polygons iff t € int(Overlap(Shp,, F2)).

Proof.

t € int(Overlap(Shp,, F2))

=t €nt(p,epur(r) P2 ® —Shpy)

= 1 €Np,crurm) nt(P2 & —Shp,)

2 g Shp, overlaps all extreme members of F,
2 o Shp, overlaps all members of F5

|

As an immediate consequence of the theorem above, we obtain the corol-
lary below. We will use it to show that our narrowing algorithm achieves
bound-consistency:

Corollary 5.1 Let Ply = Domain; \ int(Overlap(Shp,, F2)) and let S de-
note the set of all solutions of the non-overlapping constraint (cf. page 113).

Define 1y, 4, (S) := {(z1,31) | I (%1, y1, 2, ¥2) € S}, i.e. my, 4, (S) is the pro-
jection of S onto its first two components. Then Ply =, ,, (S).
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Computation of the overlapping polygon

We discuss how to compute Querlap(Shp,, F>) efficiently for a convex shape
polygon Shp, and a family F; of convex polygons. If v; @ Shp,, ..., v, ® Shp,
are the extreme members of F;, then the overlapping polygon looks as follows:

n n

Overlap(Shpy, F2) = [ ((vi © Shp,) & —Shp,) = [ |(vi @ (Shps & —Shp,))
— ———

i=1 i=1 "

The computation proceeds in two steps: First we compute the Minkowski
sum S := Shp, @& —Shp,, and then we intersect v1 & S, ..., v, & S. Observe
that we deal with an intersection of translated copies of the same polygon,
which — as we will see — is easier to compute than the intersection of n
arbitrary polygons.

Computing the Minkowski sum of two convex polygons

In the sequel we will present an algorithm that can compute the Minkowski
sum of two convex polygons P = (p1,...,pn) and @ = {(q1,-..,qx) in time
O(h+k). Our presentation follows [dBvKOS00, Chapter 13.3], we include it
here for the sake of completeness and to introduce some notions needed in the
next section. Looking at Figure 5.6 we can make an important observation:

An extreme point in direction don P& @ is the sum of extreme
points in direction d on P and (), and vice versa.

As we can also see in the figure, there are two cases for the extreme points
on a convex polygon in a direction d: Either there is a single point, which is
a vertex, or there is a whole edge, which happens if the outer normal of the
edge has the same direction as d. Thus adding the extreme points of P and
(@ in direction d either yields a vertex or an edge of P & (). And a vertex of
the Minkowski sum is obtained iff both P and @) have a single extreme point
in direction d.

So in order to compute the vertices of P & () we use a polar sweep algo-
rithm. This means the following: We start with d pointing in the direction
of the positive z-axis and then we rotate it counter-clockwise until we reach
the positive z-axis again.

During the sweep we store the vertices of P and () which

are currently extreme in direction d. As we can see on the 7t
right-hand side, a vertex is extreme for any direction in the v o
. . e . d
interior of the cone spanned by the outer normals of its inci-

dent edges. And hence, the current extreme vertex changes ﬁl

whenever we sweep “over” an outer normal.
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Now
\\//

Figure 5.6: Minkowski sum of two convex polygons P and Q).

For two vertices u = (ug, uy) and v = (vg,v,) the outer
normal vector 7i(u,v) of the directed edge from u to v is v
(vy — uy,uy — v,). For a vector d we define Zd to be the
counter-clockwise angle between the positive z-axis and J;

and we require 2 d €10, 2. (It may seem odd to exclude 0, a

but this is convenient for the algorithms we describe below.)

If we visit the vertices of a convex polygon in counter-clockwise order and
start with the lexicographically largest vertex, then the angles of the cor-
responding normals increase monotonously in the interval ]0,27]. Algo-
rithm 5.1, which computes the sum of two convex polygons is an immediate
consequence of the ideas discussed above.

Algorithm 5.1 Minkowski sum P & @) of two convex polygons

Procedure: MinkowskiSum(P = (p1,...,pn), @ = {q1,---, )
Require: P,(Q are convex, the vertices in both lists are in counter-clockwise
order with p; and ¢; having lexicographically largest coordinates
Pht1 £ P15 Qr+1 < 1
i« 1; j < 1 // we swept over the positive z-axis
repeat
add p; + ¢; as vertex of P @ Q)
case 1: / T_I:(pi,pi+1) </ ﬁ(qj, q]-+1)
i< 141 // we swept over 7i(p;, Pit1)
case 2: Zi(p;, pit1) > £7(q;,¢j+1)
Jj < j+1// we swept over 7i(gj, ¢j+1)
case 3: Z1i(pi, pit1) = £7(q;,qj+1) // parallel edges
i 1i+1;j< j+1// weswept over 7i(p;, pit1) and 7(gj, ¢j+1)
cuntili =h+1land j=k+1

= =
—_ O
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We want to point out that the algorithm does not have to compute the
angles of the two directions d = (dg,dy) and € = (eq, €,) explicitly in order
to compare them. In most cases it suffices to check the sign of e,d, — e,d,,
which is the third component of the cross product € x d4 If the sign is
positive (negative) then / d is greater (smaller) than Zé. Only if the sign is
zero, which means the vectors point in the same or in opposite directions, we
have to be careful. But then we test whether the two directions point into
the same quadrant of the coordinate system.

Assuming that a basic numerical operation takes only constant time, we
obtain a running time of O(h + k) for the computation of the Minkowski
sum.

Example. We give an example illustrating the computation of the Minkowski
sum. We consider the two shape polygons from our running example:

P = Shp, = <(7a 2)}(655)’(053):(050)’(550»
Q = _Shpl = <(2,2),(—4,4),(0,—2)>

On the left-hand side of Figure 5.7, the two polygons and the outer normal
vectors of their edges are depicted. In the middle we see a sphere that repre-
sents all possible two-dimensional directions. Our algorithm (conceptually)
sweeps over all these directions in counter-clockwise order (starting with the
direction of the positive z-axis) and looks at vertices of P and @) that are
extreme in the current direction. The normal vectors divide the sphere into
several sectors of directions. Within each sector the extreme vertices of both
P and () do not change, but when the sweep bypasses the border of a sector
the extreme vertex of at least one of the two changes. Thus each sector cor-
responds to one vertex of the sum, and vice versa. (This correspondence is
also shown in the middle part of the figure.) On the right-hand side of the
figure, we see the resulting polygon S = P @ Q:

S = <(9’ 4)’ (87 7)’ (2’ 9)’ (_4’ 7)’ (_47 4)’ (0’ _2)7 (5’ _2)’ (7’ 0))

Computing the intersection

Now we know how to compute the vertices si,..., s, of S = Shp, & —Shp,
in linear time. In the sequel we complete the computation of the overlapping
polygon Overlap(Shp,,F2) = (\;_,(v; ® S). Since S is convex, it can be
written as the intersection of half-planes H,,..., H,. H; lies to the left
of the oriented line {s; + A(sj+1 — s;) : A € R} (with s,41 := s1). And

“Here we see d and € as three-dimensional vectors with zero z-component.
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D2, q2
—> 83
/,1 P3,q2 D2, ¢ 53
D2 ¢ ! — 82 g 82
P3 ] — S4
Qn Prq1 g P s
P //\ Pas @2 — 8 ®Q '
2 ~3 — s
Py | D5 X 5 P1,G3
a3 P4,43 — Sg 58
— Sg Ds5,43 S g
— 87

Figure 5.7: Example illustrating the computation of a Minkowski sum.

hence, S = (", H;, which implies Overlap(Shp,, F») = (;-, M=, (vi ® Hj).
Suppose we fix some j, then vi ® Hj, . .., v, ® H; is a sequence of parallel half-
planes. Thus there is some half-plane ve, & H; which is contained in all half-
planes in the sequence, i.e. (_,(v; ® H;) = v.; ® H;. We call R; = v,; ® H,
a relevant half-plane. How do we determine v,,? Looking at Figure 5.8, we
see that ve; can be found by sliding H; in direction —7i(sy, s;;1), which is
the inner normal of the edge 5;5;;1. The last vertex of the domain polygon
Domaingy that we hit during the slide is the desired vertex v,;. This means
ve; is an extreme vertex in direction —7i(s;, sj11) = 7(sj41, 55)-

IT\ 1}2+H]‘

\ /\ ' 7i(8j+1,55)
\ NS

7(8541,55)

Figure 5.8: Finding the relevant half-planes of the intersection.

Algorithm 5.2, which computes the relevant half-planes, performs a polar
sweep that is very similar to the computation of the Minkowski sum. We
have to take care of the fact that we are looking at inner normal vectors
of the edges of S, thus we have to start with the lexicographically smallest
vertex of S. It is easy to see that the running time is O(n+m), if we assume
again that a basic number operation takes time O(1).

Now we have reduced the intersection of n-m half-planes to an intersection
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Algorithm 5.2 Computing the relevant half-planes

Procedure: RelevantHalfPlanes(Dy = (v1,...,v,), S = (S1,...,5m))
Require: D,,S are convex, the vertices in both lists are in counter-clockwise
order with v; and s; having lexicographically largest coordinates
Up+1 € V15 Smt1 € S1
11
: for all vertices s; of S (in ccw-order starting with the lex. smallest) do
while 2 7i(v;, vi41) < £7(Sj11,5) do
1< 1+1
Ve; < Vis Rj < ve; © Hj
end for

AN S e

of m relevant half-planes: Overlap(Shp,, F2) = ﬂ;”zl R;. It is well known that
this can be computed in time O(m logm) (cf. [dBvKOS00, Chapter 4.2]). But
we can take advantage of the fact that the half-planes Ry, ..., R, are ordered,
because the angles of their outer normal vectors (which coincide with normal
vectors of Hy,...,Hy,) increase (strictly) monotonously. We will compute
the intersection iteratively, i.e. for £k = 2,...,m we consider I, = ﬂ;?:l R;
and determine its boundary I (if int(I;) # 0). The boundary of the half-
plane R; = v, + Hj is the line L; = {ve; + s; + A(sjz1 — s5) | A € R}
Each half-plane R; can contribute at most one boundary element (i.e. a line
segment or a ray) to the boundary of the intersection, and this contribution
lies on L;.

We represent 0I; by a list B = [By, ..., By] of boundary elements. Let
us define the normal vector 7i(B) of a boundary element B to be the (outer)
normal vector of the half-plane from which it originates. We will maintain
the invariant that Z7(B;) < ... < Z7i(By) and that successive boundary
elements share a common endpoint. Moreover, if I} is unbounded, then B;
and By, are (non-intersecting) rays and B, ..., B; ; are line segments; and
if I is bounded, then it is a polygon and the elements in B are its edges.

The boundary of I, consists of two rays tailed at the intersection point
of Ly and L,. Suppose that we want to compute the boundary of I, and
that the boundary of Ij_; is represented by B = [By,..., By]. In order to
determine the position of a boundary element B in B relative to the half-
plane Ry, we orient the line L (i.e. ORy) such that int(Ry) lies to the left
and the complement of Ry lies to the right. We direct Lj from p = v, + s
towards ¢ = v, + Sg+1- The orientation of a point r with respect to Ly is
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computed as follows:

De Dy 1 +1 : r lies to the left
sgn | gz qy 1 |= 0 : rlieson L
Ty Ty 1 —1 : 7 lies to the right

It suffices to look at the relative position of Ly and B (cf. Figure 5.9):

1. B (except for one endpoint possibly) lies to the right of Lj:
Then B N Ry is either empty, or it contains one endpoint of B that is
also an endpoint of another boundary element B’ in B. Thus we can
discard B. (Observe that if B’ also lies to the right of Ly, then all
boundary elements do and [ is just a single point, which means that
its interior is empty.)

2. B (except for one endpoint possibly) lies to the left of Ly:
Then B C Ry, and hence B is contained in 0I, and we keep it un-
changed.

3. B lies on Ly:
Since 7i(B) and 7i(Ry) cannot point in the same direction, they must
be anti-parallel, thus I, = B, i.e. int(I}) is empty.

4. B and Lj intersect properly, i.e. in a single point, which is not an
endpoint of B: Then we replace B with the part of B to the left of L.

Figure 5.9: The possible cases when computing the boundary of I};_; N Ry.
(Next to each boundary element we indicate the case that applies.)

In order to update B we do not have to test all its elements against Ly,
but we can proceed as follows: As long as the first or the last element of B
lies to the right of Ly, we discard it. If B becomes empty or we encounter an
element lying on L, we report that the interior of the overlapping polygon
is empty and terminate. Let [By,..., B,] be the sequence of the remaining
elements. For both B; and B, we have that at least one endpoint lies to the
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left of Ly. Observing that the angles of the normals of the elements increase
monotonously and that 7(Ry) is contained in the cone spanned by 7i(B,) and
fi(B;), we can conclude that B1,..., B, 1 lie to the left of Ly. So we do
not have to test them. For B, and B, we distinguish three cases:

e Both B; and B, lie to the left of L;, which can only happen if I;_; is
bounded, then we are done.

e If B, and B, are distinct and L, intersects both of them properly in p;
and p,, we update B; and B,. Moreover, we append to B the segment
Prpi, Which is the contribution of Ry to the boundary of Ii.

e If I, is unbounded, we may have only one proper intersection p. Con-
sidering the arrangements of the normal vectors, it is easy to see that
L, must intersect B, in that case. We update B,, and append to B a
ray that starts in p and has the same direction as Ly.

What remains to show is that the algorithm runs in time O(m). With a
constant number of arithmetic operations “+, —, -, /” we can determine the
relative position of a boundary element and an oriented line, and we can
compute the intersection of an element and a line. The algorithm makes
m — 1 iterations. In every iteration it tests and discards some elements, it
tests and possibly modifies at most two elements, which are not discarded,
and at most one new element is added. So except for the time spent for
removing elements each iteration takes constant time. As there can be at
most m removals in total, the time bound of O(m) follows.

Example. We take up our running example again and discuss the com-
putation of the overlapping polygon Overlap(Shp,, F3). The different steps
are illustrated in Figure 5.10. The boundary of I5 consists of two rays that
are tailed in the same point, the second ray is intersected by L3 (see part
1). Thus the boundary of I3 is obtained by updating the second boundary
element and adding a ray that corresponds to the contribution of L3. The
computation for I, proceeds in analogous way, because L, properly intersects
the last element of 0I5 (see part 2).

In part 3, we see that the last element of the boundary of I, lies to right of
L5, and hence it is discarded. Its predecessor element intersects Ls, so that
it must be updated. Moreover, the first boundary element, which is a ray,
also intersects Ls, which implies that I5 is bounded (cf. part 4).

Lg intersects the first and the last element of 0I5, and hence it contributes a
line segment to the boundary of I5 (see part 5). The same can be said about
L7 and the boundary of Is. The last part of the figure shows I; and Lg. As
can be verified by an easy computation, I7 lies (slightly) to the left of Lsg.
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Therefore Iy = I7 and no boundary element needs to be updated.
So we obtain the following overlapping polygon:

Owverlap(Shp,, F») = {(7,6), (4,7), (1.54,6.18), (4.3,2), (6, 2), (7.75, 3.75))
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Figure 5.10: Computation of Overlap(Shp,, F2).

5.3 Narrowing the bounds of the origin vari-
ables

In this section we describe how to narrow the bounds of the origin variables
of Fi. In fact, we focus on the lower endpoint of X;, but the procedures
for the upper endpoint and for the endpoints of Y; are similar. So far we
have determined Domain,, it contains all placements of the origin of Shp,
which are possible in principle, i.e. without regarding F,. Moreover, we
have computed Overlap(Shp,, F»), whose interior consists of all placements
that are forbidden because Shp,; would overlap every member of F,. Thus
Pl; = Domain, \ int(OQverlap(Shp,, F»2)) contains exactly the placements of
Shp, which fulfil the constraint. In other words, Pl; is the projection of the
solutions of the constraint on the first two components (see Corollary 5.1).
Our task is to check that Pl; is non-empty, and if so, we narrow the lower
endpoint of the domain of X, i.e. we determine z,,;, = min{z | (z,y) € Pl;}.
(Observe that we do not want to compute all the vertices of Pl;.)
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We use a plane sweep algorithm: Conceptually we move a vertical sweepline
continuously from X, to X; until it hits a point p in PI; for the first time.
(As p is a leftmost admissible placement, z,;, is equal to the z-coordinate of
p.) We denote the sweepline at position z by L,. During the sweep we main-
tain the edges of Domain; and Querlap(Shp,, F>) that intersect the current
sweepline L,. Let us assume first that there are no vertical edges, we will
later discuss how to handle them. Since each of the two polygons is convex,
L, intersects each boundary in at most two points. Thus we can represent
the status of the sweep with four edge pointers: D_lower, D_upper, O-lower,
O_upper. We suppose that every (non-vertical) edge is half-open: its left ver-
tex belongs to it, but the right one does not (it belongs to the other incident
edge unless the right vertex is a rightmost vertex of the polygon).

L,
O_upper

0

Overlap(Shp, F2) D-upper

\_ D_lower |
—

O_lower

To T1 T2

Figure 5.11: Status after moving the sweepline past z, (edge change event).
(The next two events x; and zo are also indicated, where the latter is an
intersection event.)

The initialization of our algorithm looks as follows: We determine z ¢,
which is the minimum z-coordinate of a vertex of Domain; (and may be
larger than X ), and the two (non-vertical) edges D_lower and D_upper of
Domain, that intersect L, ,. Then we compute the edges O-lower and
O_upper of the overlapping polygon intersecting L, .. If they do not exist
or the overlapping polygon has a vertical edge at =4, then L, , does not
intersect the interior of Ouerlap(Shp,, F2). Hence, we can stop immediately
and report that T, = Tge. Otherwise, we consider the intersections of
L,.,... with the four edges and compare their y-coordinates: We can terminate
the sweep if D_lower|,,,,, < O-lower or D_upper > O_upper If
this is not the case, then all points of Domain; with z-coordinate x4 are

Tstart Tstart Tstart *
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contained in the interior of the overlapping polygon.

So we have to start the sweep in order to find the first position where
the domain polygon leaves the interior of the overlapping polygon. This can
only be a position where the two boundaries intersect. Thus our algorithm
considers two types of events:

e intersection event:
This event occurs when the sweepline L, hits an intersection between
D_lower and O-lower or between D_upper and O-upper. (Observe that
we do not have to check for an intersection between a lower and an
upper edge.) When this event occurs, we stop immediately and report
Tmin = T.

e edge change event:
Whenever we sweep over a common vertex of two edges, we have to
update the corresponding edge pointer: We let it point to the other
incident edge of the vertex. Then we check whether this edge lies to
the right of the sweepline. If not, we have reached the maximum zx-
coordinate of the polygon and we can terminate the sweep (see below).

With the four edge pointers we are able to determine easily the position z of
the next event and to handle all the events that occur there. As long as no
intersection occurs, we go on with the sweep until we reach a rightmost vertex
of one of the two polygons. Let x.,q denote the current position of the sweep
line when this happens. First we consider the case that Overlap(Shp,, F2)
ends at Z.,q. This means that O_lower and O_upper have a common vertex
lying on L,_, or a vertical edge connecting O_lower and O_upper lies on the
line. So in any case there is no interior point of the overlapping polygon on
L., .. As Domain; does not end before x,q, we know that Ply "L, . # ()
and we report T, = ZTenq- The other case is that the domain polygon
ends strictly before the overlapping polygon, which implies that Domain is
contained in the interior of the overlapping polygon. Therefore, Pl; is empty
and we report failure.

This suggests to handle the events at position x in the following order:
first intersection events, then edge changes of the overlapping polygon, and
finally edge changes of the domain polygon. So when we recognize the end
of the domain polygon, we know that the overlapping polygon ends strictly
later without checking this explicitly. Moreover, we want to point out that
due to convexity a vertical edge is always extreme to the left or to the right.
So we do not have to consider vertical edges after the initialization phase.

We want to analyse the running time of this sweepline algorithm. In the
initialization phase we scan the vertex list of Domain, for the leftmost vertex
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(or vertices if there is a parallel edge on the left-hand side), which allows us
to set up D_lower and D_upper. This can be done in time O(|Domain, |). The
initialization of O-lower and O-upper requires (in the worst case) to compute
the intersection of L, , , with every edge of the overlapping polygon. This
requires O(|Overlap(Shp,, F3)|) time. For the actual sweep we observe that
handling an event and determining the next one can be done in constant
time. Moreover, each vertex of either polygon gives rise to at most one edge
change event; and there can be only one intersection event in total. Thus the
overall running time of the sweep is O(| Domain, | + | Qverlap(Shp,, F2)|).

Example. We return to our running example and discuss how the sweep
algorithm computes the narrowed lower endpoint for the variable X;. The
leftmost vertex of Domain, is (5,4), so we start the sweep at position z qm =
5. And the edges D_lower and D_upper are initialized to be the two edges
incident to that vertex (see Figure 5.12). Then we scan the edge list of
Overlap(Shp,, F>), and find out that L, , intersects two of its edges, which
provides us initial values for O_lower and O_upper. Moreover, the vertex
(5,4) is nested between the intersections of L, , with O_lower and O_upper,
and it does not lie on a vertical edge of the overlapping polygon. Thus the
vertex is contained in int( Querlap(Shp,, F2)).

So we have to move the sweepline in order to determine z,,,. The first
event occurs at x;1 = 6. It is an edge change event, we have to update
O_lower. The next event occurs because O-lower and D_lower intersect in
the point p = (6.5,2.5) (see position xs in the Figure). Observe that p lies
on the boundary of both polygons, and hence it is not an interior point of
the overlapping polygon. Thus p is an admissible placement for the origin of
Shp,, and we can report x,, = 6.5.

On the right-hand side of Figure 5.12 we show that the placement p for
the origin of Shp, is indeed admissible, i.e. there is a placement ¢ € Domains
such that ¢ ® Shp, and p @ Shp, do not overlap. (In the example they just
touch.)

5.4 Summary and total running time

In this section we briefly summarize the steps of the full propagation al-
gorithm in order to analyse its total running time. In order to simplify
notation let n; = |Shp,;| and m; = |OrgBnd,|. We will show now that the
domain endpoints of X; and Y; can be narrowed to bound consistency in
time O(n; + ng + my + my). By symmetry, the same result holds for X5, and
Y,. We now consider the different steps of the algorithm:
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Overlap(Shp,, F2)

A A Shoy
8 + ' 11 Domain, 8 - \ Domain,
0 i
4 - :
Shp,
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<""272"6, 8
Domains m2

Figure 5.12: The left-hand side shows the events in the sweep that computes
Tmin; and the right-hand side demonstrates that an admissible placement is
obtained at T, = 2.

e Computation of Domain,;:
Since OrgBnd, is a convex polygon, it can be clipped against a rectangle
in time m; (see [SH74]). We observe that there can be at most two
intersections between OrigBnd; and an edge of the clipping rectangle.
It is easy to see that |Domain;| < m; + 4.

e Computation of Quverlap(Shp,, Fs):

— Minkowski sum S = Shp, & —Shp;:
As we have seen, S can be computed in time O(n; + ny), and we
have [S| < ny + no.

— Extremal vertices of Domainy wrt. the edges of S:
These vertices (and hence the relevant half-planes for the overlap-
ping polygon) can be determined in time O(n; + ny + my)

— Intersection of the relevant half-planes:
The computation takes time O(n; + ng).

So the total time needed to calculate the overlapping polygon is O(n; +
ns + my), and this polygon has at most n; + ny vertices.

e Determining the narrowed endpoints (by sweeping over Domaing \
int( Overlap(Shp,, F2)):
We make four sweeps, each of them has a worst case running time of
O(m1 + ny + no).

Putting everything together yields an overall running time for the propaga-
tion algorithm of O(n; + ny + my + my).
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5.5 Extensions

Non-convex polygons

We begin with the case that both Shp, and Shp, are still convex, but at least
one origin boundary polygon is not. As before we start with clipping the ori-
gin boundary, i.e. we compute Domain; = OrgBnd, N Rect(X,,Y,, X;,Y;).
Since OrgBnd,; is not convex, this is not so simple anymore, but it can
still be done in time O(m;logm;) (see [dBvKOS00, Chapter 2.4]), where
m; = |OrgBnd,;|. Observe that the result of clipping is not necessarily single
polygon, but may consist of several polygonal chains (see Figure 5.13). As
every edge of OrgBnd, can intersect the clipping rectangle at most twice, we
have O(m;) vertices after clipping.

ClipRect
Domain;

(X

EL w8}

Y;)

Figure 5.13: Clipping a non-convex polygon against a rectangle.

It will turn out that for computing Overlap(Shp,, F2) it suffices to adapt
the definition of the extreme members of a family for non-convex domain
polygons: We consider the convex hull of Domain, and define Eztr(F;) to
be the members which are obtained by placing Shp, into the vertices of
CH(Domains). The crucial observation is that with this definition Lemma 5.3
carries over literally. The proof is also the same too, because every point in
Domaing is a convex combination of vertices of CH(Domains). So we deter-
mine CH(Domains) in time O(mgylogms) (cf. [dBvKOS00, Chapter 1.1]), it
is a polygon with O(ms) vertices. After that we can compute the overlapping
polygon in the same way as described above.

What remains is the final step. We discuss how to examine the set of
admissible placements for Shp, with a sweepline algorithm. Recall that Pl; =
Domain, \ Overlap(Shp,, F»). The idea is basically the same as before, but
the problem is now that a sweepline L, may intersect more than two edges
of Domainy, because this polygon is in general not convex. So we cannot
represent the status of the sweepline with four edge pointers any longer, but
we have to use a more complicated data structure: We use a balanced binary
tree that stores all edges that currently intersect L, ordered according to the
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y-coordinate of the intersection point. Since there are O(m;) such edges, we
can perform an update on the tree in time O(logm,).

Moreover, finding the next event is not as easy as before. The edge change
events that are caused by the edges of the overlapping polygon can be found
as before, because this polygon is still convex. In order to keep track of the
edge change events that arise from edges of Domain,, we sort the vertices
of this polygon lexicographically. We will not go into detail how intersection
events are determined, this is described for example in [dBvKOS00, Chapter
2.1]. What is important for us is that future intersection events are generated
on-the-fly during the sweep. But since we can stop the sweep when the
sweepline hits an intersection for the first time, we only have to keep the
nearest intersection event even if several such events are discovered during
the sweep. As |Overlap(Shp, F2)| = n1 +ng, the whole sweep can be done in
time O((my 4+ ny + ng) logm,). And hence, the overall running time for the
propagation algorithm is O((m1+ma—+n1+ns) log(mi+ms)). So we only have
to pay a logarithmic factor if the origin boundary polygons are not convex.
Moreover, it is clear that for this case we also achieve bound-consistency.

The situation becomes more difficult when we consider non-convex shape
polygons. We can observe that many of our statements do not hold any more
in that case. What we can do is the following: We divide each shape poly-
gon into convex polygons (for example by triangulating them), i.e. Shp, =
Ufi:l Shp,;. For each pair (Shpy;, Shp,;) we have a non-overlapping con-
straint. Moreover, we need constraints stating that for each ¢ the origins of
Shp;1, Shp, ... are equal. We want to point out that this approach may
lead to poor propagation and bound-consistency cannot be guaranteed.

A note on the variable domains

In the discussion above we have assumed that the domains of the variables are
closed intervals of real numbers. Moreover, we have supposed that our algo-
rithms can perform the basic arithmetic operations “+, —, -, /” and compar-
isons on these numbers in constant time. If the hardware-supported floating
point numbers are used for the computations, then these time assumptions
hold. Clearly, floating point numbers cannot represent all reals and due to
rounding errors the computations are not exact. Thus the algorithm may
prune the variable domains too much, i.e. it can remove solutions of the
constraint.

The accuracy problem can be solved by using rational numbers: Each
number is represented by a numerator and a denominator, which are integers
of arbitrary length. Then we can perform exact computations (as long as
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all results fit into memory), but a single operation cannot be performed in
constant time. The running time of an operation depends on the size of
its arguments, i.e. the number of bits that are required to represent the
arguments. Observe that applying an arithmetic operation to two rational
numbers of size s; and so respectively may yield a result of size O(s; + $3).
And hence, rational numbers can slow down the computation considerably.

A constraint programming system might offer the user two implemen-
tations of the propagation algorithm, one with floating point and one with
rational numbers. Thus the user can choose between speed and accuracy.
(Holzbaur has chosen this approach for his clp(Q,R) library [Hol95], which
provides — among other things — support for linear equations over real and
rational valued variables in Prolog.)

Finally, we address some issues related to finite integer domains, i.e. each
domain is a finite set of integers. A possible way to deal with these domains is
to treat them as if they were continuous, which means every discrete domain
D = {dy,...,dy} is replaced by the interval D' = [min D, max D]. Then we
apply our propagation algorithm to the interval domains, which may narrow
D' to the interval D" = [a,b]. We can prune every value d in the original
D that violates [a] < d < |b]. This is the basic approach suggested in
[BGTO1]. Clearly, no solution is lost this way, but no consistency can be
guaranteed.

We discuss how to achieve better pruning. Assume that each domain
D is a range of integers, i.e. D = [a..b] = {a,a + 1,...,b} with a,b € Z.
Observe that Domain = (Dom(X) x Dom(Y')) N OrgBnd is not a polygon as
in the continuous case, but a finite set of points. In order to compute the
overlapping polygon we look for the extreme points in Domain.

We give an example®. Assume OrgBnd = ((0,0), (19,0), (19,12)), Dom(X) =
[1..20] and Dom(Y) = [0..15]. The example is depicted on the left-hand side
of Figure 5.14. Domain consists of all points on the integer grid that lie in
OrgBnd to the right of the line x = 1. The extreme points of Domain are
marked by circles: (19,0),(19,12),(8,5),(5,3),(2,1),(1,0). (Observe that
(11,7) does not lie in OrgBnd because it lies above the line —12x 419y = 0.)
The extreme points in Domain are the vertices of the so-called integer hull
(see [Har99]) of S = OrgBnd N{(x,y) € R? |z > 1}, which is the convex hull
of all the integer points in S.

Assume that OrgBnd has m vertices with rational coordinates and that the
absolute value of the numerator and the denominator of each coordinate is
bounded by A,,.;- Then the extreme vertices of Domain can be computed
in time O(mlog Ayas) (cf. [Har99]).

This example stems from Figure 4.1 in [Har99].
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Suppose now we have computed the overlapping polygon. Observe that
its vertices may have rational coordinates even if the coordinates of all shape
polygons are integers. The next critical step in the pruning algorithm is the
plane sweep which examines Pl; = Domain; \ Overlap(Shp,, F2) and narrows
the variable domains. Suppose the situation is as shown in Figure 5.14 and
we want to prune the lower endpoint of the domain of X;. Observe that not
all points in Pl; are admissible, only those points which lie on the integer
grid are allowed. In the example in the figure, the leftmost point in Pl is
p = (2.75,4.25), but every leftmost point with integer coordinates has 4 as
its z-coordinate. Clearly, computing the leftmost (rightmost) point in Ply
and rounding up (down) its z-coordinate yields a narrowing algorithm for
X;. But — as the example shows — this algorithm does not achieve bound-
consistency.

In [BGTO1], the authors suggest a modification of the sweep algorithm
which can increase the pruning power in some cases. The idea is to generate
a check event for every integer z; in Dom(X), which makes the sweep pause
at position z;. Thus it is possible to test whether Pl; contains a point (z,¥)
with z = x;. But one has to pay a price for the better pruning: The total
running time increases by a linear term in the size of the variable domains.
(An asymptotically better running time can be achieved by using results from
integer linear programming in two dimensions [EL03].)
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Figure 5.14: Examples depicting problems with integer domains.
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More than two objects

Suppose we have a non-overlapping constraint on n objects, whose placement
is in general not fixed. So with the ith object we associate a family F; of con-
vex polygons, which is described by a shape polygon Shp,, origin variables X,
Y;, and an origin boundary polygon OrgBnd,. Suppose we want to prune the
origin variables of the first object. A straight-forward extension of the algo-
rithm for two objects works as follows: We compute O, ; = Overlap(Shp,, F;)
for i = 2,...,n. Then we examine Pl;, = Domain, \ (UL, int(O:;)) with
a sweepline algorithm. Observe that the union of the overlapping polygons
does not have to be computed explicitly, this can be done on-the-fly during
the sweep. Of course, this makes the sweep more complicated as before, and
one has to pay a logarithmic factor in running time.

Let us compare this global approach with a setting where we have n — 1
independent binary non-overlapping constraints between the first object and
the remaining objects. In general, we achieve a better running time because
we perform only one sweep instead of n — 1 sweeps. Sometimes we also
achieve better pruning, as the following example shows: We want to place
three objects, the shape of each object is a 3 x 3 square (with its lower left
corner at (0,0)). The placement of the first object is not fixed, suppose
Dom(X,) = Dom(Yy) = [0,5] and OrgBnd, = [0,5] x [0,5]. The other two
objects are fixed with (X, Ys) = (0,0) and (X3, Y3) = (0,3). The situation
is depicted on the left-hand side of Figure 5.15.

Let us assume first that we have three binary non-overlapping constraints,
one for each pair of objects. Since the constraint between the first and the
second object is not aware of the third object, it will “think” that the first
object could be placed on top of the second one. Thus it will not narrow the
domain of X;. A similar argument shows that the constraint between the
first and the third object also leaves the domain of X; unchanged.
However, it is clear that if we want to place the first object such that there is
no overlapping, then X; must be at least 3. Consider now the case that there
is only one global non-overlapping constraint between all the three objects.
Suppose that the pruning algorithm overlays the overlapping polygons O; o
and Oy 3 (as described above). Then it detects that the first object cannot
be placed at a point with z-coordinate less than 3 (cf. right-hand side of
Figure 5.15).

In the example above, the approach worked well. But if we change the
example slightly, we obtain an instance with three objects, where our al-
gorithm does not detect failure, although there is no solution. In our next
example each object has identical parameters: For i = 1,2,3 Shp, is the 3 x 3
square (with lower left corner at (0,0)), Dom(X;) = [1,5], Dom(Y;) = {2}
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Domainy e Domain

5'—05." " O1,3 St----fF- !
41%%3 L P4 !
3 0bj, hroeee B !
2+ ; P24 !
1140%:2 |4 i 11 i
12345 P 12345

O1,2 i :

Figure 5.15: An example where bound-consistency is achieved for a ternary
non-overlapping constraint.

and OrgBnd; = [0,5] x [0,5]. Looking at Figure 5.16 it is easy to see that
a ternary non-overlapping constraint on the three objects has no solution.
Since all three objects have identical parameters, all overlapping polygons
are identical, too. The common overlapping polygon O is also depicted in
the figure. As all z-coordinates of the points in O are between 2 and 4, we
see that the algorithm does not narrow the domains of X-variables and it
also does not detect failure.

In general we can make the following observation: If we have n identical
objects, then the algorithm sketched above does not achieve more pruning
than the algorithm for the binary case, because all overlapping polygons will
be identical.

Ove‘rlap

Ll LN

Figure 5.16: Two squares can be placed without overlapping, but there is no
room for a third one.

The last example makes our algorithm look bad, but we will show be-
low that there is no efficient algorithm which can decide solvability of non-
overlapping constraints of arbitrary arity (unless P=NP). (For this we restrict
the domain endpoints of the variables and the coordinates of the vertices to
be rational numbers.) We show that deciding solvability is NP-complete in
the strong sense (cf. [GJ79, Chapter 4.2]). This means that the problem is
even hard, when we only consider instances with “small” numbers as denom-
inators and numerators.
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Theorem 5.2 Deciding satisfiability for non-overlapping constraints (of ar-
bitrary arity) is NP-complete in the strong sense.

Proof. It is easy to see that the problem is in NP, because we can ver-
ify in polynomial time that a given variable assignment satisfies the con-
straint. To prove NP-completeness in the strong sense, we will give a (pseudo-
polynomial) reduction from a scheduling problem called “Sequencing with
release times and deadlines”® (see [GJ79, problem SS1, pg. 236]), which is
known to be NP-complete in the strong sense:

Sequencing with release times and deadlines

An instance of the problem consists of a set 7" of tasks and, for each
task t € T, a length [(t) € Z™, a release time r(t) € Z¢, and a deadline
d(t) € Z". The question is, if there is a one-processor schedule for T
that satisfies all release time constraints and meets all the deadlines,
i.e. an injective function o : T+ Z¢, with o(t) > o(#') implying o(t) >
o(t') 4+ 1(t'), such that, for all t € T, o(t) > r(t) and o(t) + 1(t) < d(t).

Let T = {t1,...,t,} be a set of tasks. For each task ¢; we introduce a
rectangular object. The shape of this object is the axis-parallel rectangle
with width [(¢;) and height 1, i.e. Shp;, = [0,1(¢;)] x [0,1]. The domains of
the origin variables are defined as follows: Dom(X;) = [r(t;), d(t;) —((¢;)] and
Dom(Y;) = {0}. The origin boundary is chosen such that it does not impose
further restrictions: OrgBnd;, = Dom(X;) x [0,1]. Clearly, the X-variables
correspond to the starting times of the tasks. It easy to see that a schedule
o for the instance of the sequencing problem corresponds to a solution of the
constraint, we simply assign to X; the value o(¢;) for i = 1,...,n. On the
other hand a solution to the constraint allows us to construct a schedule, we
set o(t;) = | Xi]. The other properties of a pseudo-polynomial reduction (as
defined at [GJ79, Section 4.2.2]) are also fulfilled. O

Three-dimensional convex polytopes

We extend our result to two convex polytopes in the three-dimensional space
R3. Thus each object that we place is described by a convex shape polytope,
a convex origin boundary polytope and the origin of the shape polytope is
determined by three variables X, Y and Z. It is easy to see that all arguments
from above also hold in higher dimensions than two. And hence, the outline
of the algorithm to narrow the bounds of the variables stays the same as

6This problem can be viewed as a one-dimensional non-overlapping constraint.
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in Section 5.1. However, the computations involved in the different steps
become more demanding as the dimension increases.

Now we examine the different steps of the algorithm. As before let n; =
|Shp,| and m; = |OrgBnd,|.

e Find combinatorial representations of Shp,, Shp,, OrgBnd,, OrgBnd,:
Computing a combinatorial representation from a pure vertex repre-
sentation of a polytope P can be done in time O(|P|log|P|) (see Sec-
tion 2.3).

e Determine Domain; and Domains:
We compute the intersection of OrgBnd,; with the three-dimensional
box Dom(X;) x Dom(Y;) x Dom(Z;). This takes time O(m;logm;) (see
[HMMN84]). There is also a linear time algorithm ([Cha92]), but it is
rather complicated. Observe that |Domain;| = O(m;).

e Compute the overlapping polygon Ouerlap(Shp,, Fs):
As before we start by computing the Minkowski sum S = Shp,®&—Shp,.
We use the algorithm by Guibas and Seidel [GS87] with running time
O(ny + ny + |S|). We will not give the details of their algorithm but
we sketch some basic ideas. In the two-dimensional case we map each
polygon onto the unit circle (cf. Figure 5.7) such that every vertex
corresponds to an arc on the circle (which consists of all directions
where the vertex is extreme) and every edge corresponds to a point
on the circle (the outer normal vector of unit length). Computing the
Minkowski sum basically amounts to overlaying the mappings of the
two involved polygons. In the three-dimensional case each polytope is
mapped to the unit sphere (Guibas and Seidel call this a direction map):
every vertex corresponds to a surface patch (consisting of the directions
where it is extreme), every edge is mapped to a great arc of the circle,
and every facet corresponds to a point on the sphere (the outer normal
vector of unit length). In order to determine the Minkowski sum, one
can compute the overlay of the two maps.
The problem is that S may be very complex: As Guibas and Seidel
point out, |S| can vary from ©(n; + ng) to O(n; - ng).

After that we determine for each facet f of S a vertex of Domains, that
is extreme in the direction of the inner normal of f (denoted by 7, (f)).
This means we want to maximize 7;,(f)?p subject to p € Domain,.
Observing that Domain, can be written as the intersection of half-
spaces where each half-space corresponds to a facet, we see that we have
to solve a linear program for each facet f. However, the constraints of
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the program are always the same, only the objective function varies.
Therefore we can use an algorithm by Guibas et al. [GSC87] that finds
the extreme vertices for all facets of S in time O((mo+|S|) logms). This
algorithm builds the direction map of Domain, (see again Figure 5.17)
and constructs a data structure for locating points in this map. This
solves the problem because a vertex of Domain, is extreme for all points
(i.e. directions) in its corresponding surface patch.

Finally, we compute Ouerlap(Shp,, F») as the intersection of |S| half-
spaces. (Each half-space corresponds to a facet translated by an ex-
treme vertex of Domains, as in the two-dimensional case). This com-
putation can be done in time O(|S|log|S|) (see [GO97, Chapter 19]
or [PM79]). Thus the total time needed for the computation of the
overlapping polygon is O(n +ng + (|S|+m2) log(|S|+my)). Moreover,
we observe that |OQverlap(Shp,, F2)| = O(|S]).

e Examine Pl; = Domain, \ int( OQverlap(Shp,, F2)):

In the two-dimensional case we used an algorithm that moves a sweep-
line across the plane in order to examine Pl;. Hertel et al. [HMMN84]
show that in the three-dimensional case boolean operations on convex
polytopes can be computed by moving a sweepplane through the space.
Their algorithm is quite elaborated and not just a straight-forward
generalization of the two-dimensional sweep, so we omit the details
here. They achieved a running time of O(tlogt) where t is the total
number of vertices of both polygons. So in our case t = O(my + |S|).
In order to determine the lower and upper endpoints of the variable
domains we simply scan all vertices of Pl;.

Figure 5.17: Mapping a 3D polytope onto the unit sphere (reproduced from
[GSC87]).

To summarize, we obtain an algorithm for the three-dimensional case
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which achieves bound-consistency. The overall running time is O(slogs)
with s = ny +ny +my +my+|S|. And hence, the total running time heavily
depends on the complexity of S = Shp, & —Shp,. This can be as small as
©(n; + ng) and then we pay only a logarithmic factor compared to the two-
dimensional case. But it can also be ©(n; - ns), which makes the algorithm
impractical for large values of n; and ns, because it computes S completely.

One might ask what happens if we consider d-dimensional objects with
d > 3. The lemmas and theorems that we discussed in this chapter hold in
higher dimensions. So one might try to apply basically the same algorithm as
before. But we do not think that this is practical. One can show for example
that a d-dimensional polytope with & vertices may have up to ©(k!%/2) facets
(see [GO97, Chapter 19]). Therefore, we do not pursue this issue any further.

5.6 Comparison with related work

In constraint programming non-overlapping constraints have been studied
for a long time. Lahrichi and Gondran [LG84] introduced the notion of
compulsory part for a family (of rectangles), which is the intersection of all
members of that family. The overlapping polygon that has been defined in
our work can be seen as a generalization. However, it is easy to see that
Overlap(Shp,, F2) may be non-empty although the compulsory part of F is
empty. And hence, an approach that is based on compulsory parts does not
yield a bound-consistency algorithm.

Beldiceanu and Contejean [BC94| provided a global constraint called diffn.
It allows to state a non-overlapping constraint between several d-dimensional
axis-parallel boxes.

To the best of our knowledge, all shapes that have been considered so far
are axis-parallel rectangles” (and axis-parallel boxes in higher dimensions).
More complex shapes are approximated by sets of rectangles (cf. [CF94]),
the origin of every rectangle is linked explicitly to the origin of its shape, and
there is a non-overlapping constraint for any pair of rectangles that belong to
different shapes. This approach suffers from poor propagation. Our approach

"Remark: After the submission of this thesis the author became aware of the work of
Ribeiro and Carravilla [RC04] who can handle non-convex polygons directly. They call
the forbidden placements of a shape polygon Shp, with respect to a fixed polygon P
the nofit polygon N. They point out a reference [Mah84] which describes how N can
be computed in time O(m?n) for non-convex polygons, where m = max(|Shp,|,|P»|) and
n = min(|Shp,|,|Pz|). Based on the nofit polygon they develop a propagation algorithm
for the non-overlapping constraint. However, there algorithm can only prune anything if
three out of the four variables X7, Y7, X5 and Y> are fixed.
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allows for the first time to model complex convex shapes directly. But non-
convex shapes still have to be decomposed into convex shapes.
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Chapter 6

Dominance graphs

The second part of this thesis deals with a problem from the field of com-
putational linguistics. Roughly speaking, the problem is to assemble some
given tree fragments into a tree 7" such that some given constraints are sat-
isfied. These constraints have the form “node u should dominate node v”,
where dominate means that v is a (not necessarily proper) ancestor of v.
The problem is given to us as a so-called dominance graph D, which will be
formally defined later. Such a graph represents both the tree fragments and
the dominance requirements for 7.

Dominance based tree descriptions have been investigated in different ar-
eas for a long time. They were used in automata theory in the sixties [TW67],
rediscovered in computational linguistics in the early eighties [MHF83], and
investigated from a logical point of view in the early nineties [BRVS95]. Since
then, there have been several applications in computational linguistics: They
have been used for grammar formalisms [VS92, RVSW95, DT99, Per00], in
natural language semantics [Mus95, ENRX98], and for discourse analysis
[GW9S].

The details of the tree descriptions vary over the different applications,
but there is a framework called dominance constraints [KNTO01], which is
general enough to be applied to a variety of problems. However, Koller et
al. [KNTO01] showed that deciding solvability of dominance constraints is an
NP-complete problem. From a practical point of view, there were doubts
whether these constraints are a useful tool. In fact, the solvers that existed
at that time were not efficient enough.

The doubts were removed by the work of Althaus et al. [ADK*01, ADK*03].
They identify the subclass of normal dominance constraints. This subclass
is sufficiently large for many practical applications and solvability can be
decided in polynomial time. The algorithms developed by Althaus et al. ac-
tually work on dominance graphs. They describe a back-and-forth trans-
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lation between dominance graphs and normal dominance constraints, which
makes their graph algorithms applicable to the logical language of dominance
constraints.

The work in the following chapters is based on the papers [ADK*01,
ADKT03|, which are joint work with Ernst Althaus, Denys Duchier, Alexan-
der Koller, Kurt Mehlhorn and Joachim Niehren. But we also present some
results which improve upon this work and have not been published yet. In
particular, the solvability test is by a factor of n faster and the enumeration
algorithm outperforms our old algorithm by a factor of n?, where n is the
number of nodes of the graph.

The second part of the thesis is organized as follows: In the remain-
der of this chapter we discuss an example from computational linguistics to
motivate the subsequent work and we introduce some basic definitions. In
Chapter 7 we develop a linear time algorithm which can check if a given
dominance graph D has a solved form. We show in Chapter 8 how to enu-
merate all N minimal solved forms of D in time O(m + N - nm), where n
is the number of nodes and m is the number of edges of D. Finally, we
discuss related work in Chapter 9. In particular, we describe the relationship
between dominance graphs and normal dominance constraints.

6.1 Motivation

As an example for an application of dominance graphs in computational lin-
guistics we will give a brief introduction to scope underspecification [EKNO1,
AC92, Rey93, Bos96]. This application examines ambiguous sentences with
respect to the scope of quantifiers. Here is an example:

Every scientist speaks a language.

This sentence has two possible readings which can be determined by the
following continuations:

1. ...But not all of them speak the same one.
2. ...This world language of science is English.

In the first reading, no two scientists (necessarily) speak the same language.
But in the second one, there is one certain language that is common to all
scientists. The difference between the two readings and also the term scope
ambiguity become clear when one looks at the representations of the two
readings as logic formulas.
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1. Va:(scientist(xz) — Jy:(lang(y) A speak(z,y)))
2. Jy:(lang(y) A Vz:(scientist(z) — speak(z,y)))

In the first formula, the existential quantifier is in the scope of the universal
quantifier, whereas in the second formula it is vice versa. The two readings
of the sentence also correspond to two different parse trees 77 and 715 shown
in Figure 6.1. In 77 the node ny labelled with the universal quantifier is
an ancestor of the node ns labelled with the existential quantifier, i.e. ny
dominates n3. In T, the dominance relation between the two quantifiers is
opposite.

Ti: Vz Ts: dy
_)
scientist Jy lang
T A Y
lang speak scientist speak
y z Y 7 Y

Figure 6.1: Trees corresponding to the readings of “Every scientist speaks a
language”.

Let us now focus on the similarities of the two readings and how they
are reflected in the two formulas and trees respectively. We begin with the
logic formulas. Both of them are composed of the following three parts which
correspond to the representations of the “semantic material” like “every sci-
entist”, “a language” and “speak”:

o Vz:(scientist(z) — ...)

o Jdy:(lang(y) A...)

e speak(z,y)

11 »

The ellipses in a part are place-holders where another part has to be
plugged in. Furthermore, we know that in any reading the part for “speak”
is within the scope of both quantifiers.

We can decompose the parse trees in an analogous way and obtain the
tree fragments that are shown in Figure 6.2 (ignoring the dashed edges for the
moment). The fragment of each quantifier contains an unlabelled leaf node,
which is a place-holder where the root of another fragment can be plugged
in. Such a leaf is called a hole. The graph in the figure contains two dashed
edges which are directed from the holes to the root of the “speak”-fragment.
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They indicate that the respective hole dominates the “speak”-fragment in
any possible parse tree for the sentence. We say that the dashed edges are
dominance edges and the solid edges are tree edges.

Vx

_)
scientist lang

z \
7
\ 7

ke

T Ny

Figure 6.2: A graph representation of “Every scientist speaks a language”.

Graphs like the one in Figure 6.2 are useful to model the semantics of an
ambiguous sentence. Instead of committing to a particular reading (which is
the case if we use a parse tree), we can maintain all possible readings in one
model. For such a model two questions arise naturally:

1. Can we assemble the fragments to a parse tree that fulfils all the dom-
inance requirements?

2. Can we enumerate all the trees that are a solution for the model?

Ambiguity is an important problem in language processing, because the
number of readings of a sentence grows quickly with the number of quantifiers
and scope ambiguity may interact with other sources of ambiguity. In the
remainder of this section we give some examples which illustrate this.

The following example has already 56 readings, its corresponding graph
is shown in Figure 6.3.

John says that some representative of every department in a com-
pany saw a sample of each product.

There are even more striking examples. The following sentence is due to
Hobbs [Hob83| and has about 200 readings:

Many people feel that most sentences exhibit too few quantifier
scope ambiguities for much effort to be devoted to this problem,
but a casual inspection of several sentences from any text should
convince almost everyone otherwise.
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v/ w v T Viy \\ 7
‘iyy\. of X % ﬁ/\'
w u T w z Y Yy z

Figure 6.3: A graph representation of a sentence with 56 readings.

6.2 Definitions

In this section we will give the definition of a dominance graph and define
some related notions. Informally, a dominance graph is a collection of rooted
tree fragments and some dominance requirements between them. A domi-
nance requirement is given as a directed edge from a leaf of one fragment
to the root of another fragment. So if one deletes all the node labels in
Figure 6.3, one obtains a dominance graph. In the formal definition below
we allow w.l.o.g. only tree fragments of height one, because this simplifies
the succeeding arguments. (On page 196, we discuss how to eliminate this
restriction.)

Definition 6.1 (dominance graph) A dominance graph D is a directed
graph (V, E) with two partitions V = V,UV; and E = E,UFE,. V is partitioned
into root nodes V,. and leaf nodes Vj; E is partitioned into tree edges F; and
dominance edges Ey. The following must be satisfied: E, C V, x V; and
E; C Vi xV,, i.e tree edges are directed from roots to leaves, and dominance
edges point from leaves to roots. Moreover, (V.UV}, E;) is a forest where each
tree has height one.

We write D = (V, UV}, E, U Ey) to denote the dominance graph.

In Figure 6.4 we depict three example dominance graphs. We draw roots
as squares, leaves as circles, tree edges as solid darts and dominance edges as
dashed darts; the different tree fragments are indicated by dotted silhouettes.

Let us compare the graphs D; and D, in Figure 6.4: Both graphs have the
same tree fragments, only their dominance edges are different. We observe
that all dominance requirements of D; are also encoded in D,. E.g., the fact
that the node b should be an ancestor of f is expressed explicitly in D; by
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Figure 6.4: Examples to illustrate the definitions of a dominance graph and
related notions.

a dominance edge, in D, this is encoded implicitly because there is a path
from b to f. We see that D, is more restricted than Dy, for D, fixes f to be a
descendant of ¢, whereas D; leaves the relation between these two nodes open.
We say that Dy is a (strict) amplification of D;. In order to describe this
notion formally, we define the reachability relation Reach(D) of a directed
graph D = (V, E): Reach(D) is the transitive closure of E (interpreted as
binary relation over V), i.e. a tuple (u,v) of nodes is contained in Reach(D)
iff there is a non-empty path from u to v in D.

Definition 6.2 (amplification) Let D = (V, UV,,E; U E;) and D' =
(V! UV/,E; U E) be two dominance graphs. We say that D is an am-
plification of D’ if the following holds: V, = V!, Vi = V!, E, = E] and
Reach(D) D Reach(D'). If we have Reach(D) D Reach(D'), then D is a
strict amplification of D'.

Let us look at the examples in Figure 6.4 again. We see that Dj is a strict
amplification of Dy, and hence also of D;. Recall that our goal is to assemble
the tree fragments to a tree such that its ancestor-descendant relation fulfils
all dominance requirements imposed by the respective dominance graph. Any
tree which is a solution for Dj is also a solution for D; and Ds, because Ds
is an amplification. We observe that D3 has a nice property: Every node is
incident to at most one dominance edge, i.e. the dominance edges match some
leaves and roots. Thus the dominance edges tell us how to assemble the tree
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fragments: We plug c into b, 7 into d, f into e and [ into g. (One can imagine
the plugging process as contracting each dominance edge and identifying its
two incident nodes.) We call D3 a configuration, which is defined formally
below:

Definition 6.3 (configuration) A dominance graph D = (V,UV;, E;UE})
is called a configuration if D is a forest and E4 is a matching, i.e. each node
s incident to at most one dominance edge. A configuration D which is an
amplification of a dominance graph D' is called a configuration of D’'.

We can now formalize the problems from Section 6.1:
1. Decide whether a given dominance graph D has a configuration.
2. Enumerate all configurations of a dominance graph D.

Let us reconsider the dominance graph D, in Figure 6.4. D is a tree, but it
is not a configuration, because the leaf b has two outgoing dominance edges.
As D5 is an amplification of Dy which in turn is an amplification of D, we
can see D, as an “intermediate stage” between the original problem encoded

in D; and the solution represented by Ds. This stage is called solved form
and defined below.

Definition 6.4 (solved form) A dominance graph D = (V, UV}, E, U Ey)
is in solved form if D is a forest. A solved form D which is an amplification
of a dominance graph D' is called a solved form of D'. We say that D

is a minimal solved form of D’ if there is no solved form D" of D' with
Reach(D") C Reach(D).

By definition, every configuration is also a solved form, but in general not
a minimal solved form. In our example, Dy and D3 are solved forms of D;.
Since Djs is a strict amplification of D, it is not a minimal solved form of D;.
Dy, however, is a minimal solved form of D;. This can be seen as follows:
Consider a solved form D with Reach(D;) C Reach(D) C Reach(D,). Since
Reach(Dy) = Reach(D;) U {(e, f), (e, h), (e, g)}, Reach(D) contains at least
one of the three tuples (e, -). As f, h, and g belong to the same tree fragment,
Reach(D) must contain all of them.

In the sequel we will show that the term “solved form” is justified, i.e. ev-
ery dominance graph in solved form has a configuration. In the proof in
the lemma below we describe how a configuration can be constructed from a
solved form.

Lemma 6.1 A dominance graph D in solved form has a configuration.
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Figure 6.5: Application of Transformation Rule 1: The dominance edge from
I" into s is shifted down to I.

Proof. By the definition of solved form, D is a forest. If it is not a
configuration, then there exists a leaf with more than one outgoing dominance
edge. So we can apply the following transformation to D and obtain a new
graph D":

Transformation Rule 1 Let I’ be a leaf with at least two outgoing domi-
nance edges (I',r) and (I';s). Choose an arbitrary leaf | in the fragment with
root v and replace (I',s) by (I,s), see Figure 6.5.

Clearly, D' is in solved form. Moreover, it is an amplification of D because
the edge (I, s) in D is replaced by a path from I’ to s in D'. As D is a forest,
we have (I,s) ¢ Reach(D) (cf. left-hand side of Figure 6.5). Thus D' is a
strict amplification. This means the following: By applying the rule above
repeatedly, we can generate a series of strict amplifications in solved form
until we obtain a configuration of D. Each application increases the size of
the reachability relation, and hence there can be at most n? applications,
where n is the number of nodes of D. 0

The lemma above implies that configurability and solvability (i.e. deciding
whether a dominance graph has a configuration or a solved form respectively)
are equivalent problems. Concerning our second problem, the enumeration
problem, it also suffices to focus on solved forms: We will show that all
configurations of a dominance graph D can be obtained by applying Trans-
formation Rule 1 exhaustively to its minimal solved forms. Let us assume
that D is connected! so that all its solved forms are trees. Then our claim
follows immediately from the lemma below:

LObserve that this property can always be achieved: Add to D a dummy fragment with
a root r and a single leaf [, then add dominance edges from [ to every root different from
T.
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Lemma 6.2 Let Dy and Dy be two dominance graphs, which are trees. If
Dy is an amplification of D1, then Dy can be obtained from D; by at most

n? applications of Transformation Rule 1, where n is the number of nodes in
D;.

Proof. If D; # D,, then there is a dominance edge (/,7) which is in Dy but
not in D;. Let o denote the lowest common ancestor of [ and r in D;. We
have o # r, for otherwise » would be an ancestor of [ in both D; and Ds; this
would imply that Dy contains a cycle. Moreover, o # [. Assume otherwise,
then there is a path from [ to r in D;. Since (/,) is not an edge of D, this
path must visit a node x different from [ and r. As D, is an amplification
of D1, there is a path from [ to r in D, that visits z. But since D, is a tree
containing the edge (I, r), this is impossible.

From [ # a # r we conclude that in D; the nodes [ and r are descendants
of different children s; and s, of « (see left-hand side of Figure 6.6). In Dy, [
and hence s; are ancestors of . The fact that s; and s, are ancestors of r in
D, but siblings in D implies that « is a leaf and s; and s, are roots. In D,
s; must be an ancestor of s, or vice versa (cf. right-hand side of Figure 6.6).
Let us assume the former (the other case is symmetric), and let (s;, h) be the
first edge on the path from s; to s,. Clearly, A is a leaf in the fragment of s;.
Now we apply Transformation Rule 1 and replace in D; the dominance edge
(c, ;) by the dominance edge (h,s,). Thus we obtain a new tree D with
Reach(D;) C Reach(D) C Reach(D;). And hence, we can transform D; into
D, by at most n? applications of the transformation rule. (Observe that two
trees with the same reachability relation are equal.) O
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Figure 6.6: Situation in the proof of Lemma 6.2. (Dotted darts represent
paths in the trees.)



Chapter 7

Deciding solvability

In this chapter we show that solvability of a given dominance graph D can
be decided in linear time. We obtain this result as follows: First we prove
that solvability of D is equivalent to the absence of certain cycles (called
harmful cycles) in an undirected version of D. Then we develop a linear-
time algorithm which can check whether a graph contains a harmful cycle or
not.

Although the enumeration of solved forms is the topic of the next chapter,
we start this chapter with the presentation of an enumeration algorithm.
This brute-force algorithm is inefficient, but it will assist us in proving the
correctness of the harmful cycle criterion.

7.1 A brute-force enumeration algorithm for
minimal solved forms

We discuss an algorithm for enumerating all minimal solved forms of a dom-
inance graph D, which is due to Althaus et al. [ADK'03]. Let us denote
the set of all minimal solved forms of D by §(D). How can we find a solved
form of D? By definition, a solved form is a forest, i.e. it is acyclic and every
node has at most one incoming edge. If D contains a cycle, then it has no
solved form, and we can stop our search. So assume that D is acyclic. If it
is not in solved form, then there must be a node s in D with two or more
incoming edges. Recalling the definition of a dominance graph, we can infer
that s must be a root node and the incoming edges are dominance edges. In
the sequel we describe two transformation rules that allow us to reduce the
indegree of a root while — in some sense — preserving the set of solved forms.

Looking at the dominance graph D in Figure 7.1, we see that the domi-
nance edge d from [ to s is superfluous, because there is an alternative path
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D: A D'

O [0
O30

B
v,
B

Figure 7.1: Eliminating the redundant edge d in D to obtain D'.

from [ to s. Thus the dominance requirement d is implied by transitivity.
If we delete d from D and obtain D', we have Reach(D) = Reach(D'), and
hence S(D) = §(D’). We call a dominance edge d = (I, s) redundant in a
dominance graph D if there is a path from [ to s in D \ d. This gives rise to
the following transformation rule:

Transformation Rule 2 (Redundancy Elimination) Remove every re-
dundant dominance edge.

Our definition of redundancy coincides with the definition of transitive
redundancy introduced by Aho et al. [AGU72].! We can apply their algorithm
to make our dominance reduced, i.e. to remove all redundant dominance
edges.

But even a reduced dominance graph D may contain a root s with two
incoming dominance edges (1, s) and (lg,s) (see the left-hand side of Fig-
ure 7.2). Consider a solved form D, of D. Since both [; and Iy dominate
s in Dy and D, is a tree, we conclude that [; is an ancestor of I, or vice
versa. Assume the former, then /; must also be an ancestor of the root r,
of the fragment containing /. Thus D; is also a solved form of the graph
Dy, = D U (ly,r9) (cf. right-hand side of Figure 7.2). But if /; is an ancestor
of Iy in Ds, then Dy is a solved form of Dy = D U (ly, 1), where ry is the
root of the fragment of /,. Clearly, D, cannot be a solved form of both D,
and Dy. (Otherwise, Reach(D;) would contain both (I;,l3) and (I, 1), which
cannot be in a tree.) This means that S(D) = S(D;)US(D,), which justifies
our next transformation rule:

!Observe that a tree edge cannot be transitively redundant, because it is the only
incoming edge of its incident leaf.
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Figure 7.2: Dy and D, are generated by applying the choice rule to D.

Transformation Rule 3 (Choice) Let s be a root with at least two incom-
ing dominance edges (l1,s) and (la,s) and let r1 and ro be the roots of the
fragments containing the leaves Iy and ly, respectively. Generate two amplifi-
cations Dy and Dy by adding either (l1,72) or (la,71) to D (see Figure 7.2).

After an application of the choice rule, we have to work on two dominance
graphs, but what do we gain? Looking at D;, we see that the dominance edge
(I1, s) is redundant. We can remove it and reduce the indegree of s. Moreover,
since by our assumption ([, s) is not redundant in D, we know that D; is a
strict amplification of D. An analogous observation can be made for D,. So
whenever we apply the choice rule to a reduced dominance graph, the two
generated graphs have a bigger reachability relation than the original one.
This property will guarantee the termination of our enumeration algorithm.

The algorithm to enumerate the minimal solved forms of a dominance
graph D is straightforward (see Algorithm 7.1): First we check whether
the graph is acyclic, if not we can terminate. After that we eliminate all
redundant dominance edges. Then we look for a root s with two incoming
dominance edges. If no such root exists, then D is a forest and we report
D as a minimal solved form. So assume we find such a root s. Then we
apply the choice rule to s and process the generated instances D; and D,
recursively.

We prove correctness and termination of the algorithm. First we show
that any minimal solved form D; of D is reported by the algorithm. We have
seen that an application of the transformation rules above does not “lose” any
solved forms. So it is easy to see by induction that D, is an amplification of
some solved form D’ which is reported by the algorithm. Thus Reach(D’) C
Reach(Ds). Since D, is minimal, we get Reach(D;) = Reach(D'), which
implies Dy, = D', because both graphs are trees.
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Algorithm 7.1 Enumerating the minimal solved forms of D (brute force)

Procedure: Enum-BruteForce(D)
1: if D contains no (directed) cycle then
2:  eliminate all redundant dominance edges
3: if D has a root s with at least two incoming dominance edges then
4 apply the choice rule and generate two new instances D; and D,
5 Enum-BruteForce(D;); Enum-BruteForce(Ds)
6: else // D is in solved form
7 report D
8 end if
9: end if

It is clear that all reported dominance graphs are solved forms of D, but
we have to convince ourselves that they are indeed minimal. Suppose that
the algorithm reports a solved form D' of D which is not minimal. Then there
exists a minimal solved form D, of D such that D’ is a strict amplification
of D,. This implies that D, is also reported by the algorithm. Thus the
algorithm has made an application of the choice rule which “separated” D’
and Dy, i.e. the application generated two graphs D; and D; such that D' €
S(Dy) and D, € §(Ds). As we have shown, S(D;) and S(D;) are disjoint.
And hence, D' cannot be an amplification of D, a contradiction.

Now we prove termination. Since the choice rule is always applied to
reduced graphs, the reachability relation strictly increases every time. And
hence, the recursion depth is bounded by the maximum size of this relation,
which is n?, where n is the number of nodes of D. Observe that the running
time of this algorithm is exponential in general, because every call to the
procedure Enum-BruteForce may spawn two recursive calls. If we apply the
algorithm to an unsolvable graph, it may have to generate many intermediate
dominance graphs until it finds out that all branches of the computation
finally produce graphs with a cycle.

7.2 Harmful cycles

We will now develop a criterion which allows us to decide efficiently whether a
given dominance graph has a solved form or not. The following presentation
is based on [ADK™03]. So far we have only seen examples which have a solved
form. It is time to study some unsolvable examples. Let us look at Figure 7.3
and convince ourselves that the three graphs depicted there are unsolvable.
For D,, this is easy, because it contains a directed cycle. Concerning Dy,
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we see that the two leaves b and c in the topmost fragment both want to
dominate the root j, because there is a path from b to j and one from ¢ to
j. But since b and c are siblings in a tree fragment, this is impossible. It is
not obvious that D3 has no solved form. Let us apply the choice rule to the
root g: This generates two graphs D} = D3 U (b,d) and D§ = D3 U (e, a)
(cf. Figure 7.4). Due to symmetry, it suffices to look at D}. We see that the
two siblings b and ¢ want to dominate 7, which implies unsolvability.

Figure 7.3: Three unsolvable dominance graphs.

Is there a property that all the examples in Figure 7.3 have in common?
If we ignore the arrowheads of the edges, we observe that the three unsolv-
able dominance graphs contain a cycle. Unfortunately, a solvable dominance
graph DT may also contain an “undirected” cycle. In Figure 7.5 we have a
synopsis of an unsolvable graph D~ and a solvable graph D*. (D~ is the
graph in the middle of Figure 7.3, D is a subgraph of the solvable graph on
the left-hand side of Figure 6.4 on page 148.) D~ and D™ look very similar,
and they both contain undirected cycles C'y and C respectively.

What is the crucial difference between the two cycles? If we translate C}

back to the directed graph D™, we get two directed paths from a to 7. Since
both paths start with tree edges, they prove that two different children of a
(namely b and ¢) both want to dominate the node %, which is impossible. So
(' is a proof for the fact that D~ is not solvable.
Translating the cycle Cy back to D' we obtain two directed paths from b to
[. But this time both paths start with dominance edges. Thus there is no
problem, because in a solved form ¢ may be an ancestor of f or vice versa,
thus both of them can dominate .
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",
Dy:

Figure 7.4: Applying the choice rule to D5 to prove unsolvability.

We call a cycle which can prove unsolvability a harmful cycle?. The ex-
amples we have seen indicate that such a cycle must not visit two dominance
edges that are incident to the same leaf. The remainder of this section is
organized as follows: First we formally define harmful cycles, and then we
prove that solvability is equivalent to the absence of harmful cycles.

As we have seen above, the directions of the edges do not matter when
we look for harmful cycles. So instead of the original dominance graph D we
search the underlying undirected dominance graph U(D).

Informally, this graph is obtained by deleting the arrowheads

of all edges of D, the partition of the nodes into roots and D: ..~ UD):
leaves and the partition into tree and dominance edges are F) —»E
kept. As we can see on the right-hand side, #(D) can bea O/ |
multigraph (see Definition 2.7). —

This is reflected by our definition of an undirected dominance graph:
Definition 7.1 (undir. dom. graph) An undirected dominance graph U
is an undirected multigraph (V, E, inc) with two partitions V =V, UV, and
E = E,UE,;. V is partitioned into root nodes V, and leaf nodes V;; F is
partitioned into tree edges F; and dominance edges F;. The following must
hold: Every edge e € E is incident to one root and to one leaf, and every leaf
1s incident to exactly one tree edge.

We write U = (V, UV, E; U Ey, inc) to denote the undirected dominance
graph.

The underlying undirected dominance graph of a (directed) dominance graph

2In the papers [ADK*01, ADK*03] these cycles are called hypernormal.
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Figure 7.5: Two dominance graphs with undirected cycles (indicated by the
dashed lines). D~ is not solvable, but D is.

D = (V.UV}, E;U Ey) is the graph U(D) = (V, UV}, E, U Ey, inc), where inc
is defined as follows: For an edge e = (u,v) of D we set inc(e) := {u,v}.

In order to simplify notation we write e = {u,v} as an abbreviation for
inc(e) = {u,v}, although there can be several edges connecting u and v.
Observe that there can be at most one tree edge between uw and v in an
undirected dominance graph, but there may be more than one dominance
edge. We allow this on purpose, because our algorithm may add dominance
edges that are parallel to existing ones. (It will turn out that additional
dominance edges do not harm, because they will basically be ignored.)

We need to introduce some notions to talk about undirected
cycles. The cycle on the right side visits four nodes, we say that it @Jlf @
makes four bends. A bend is a triple (e, v, f) which consists of two ¢ i
distinct edges e and f that are incident to the node v. Our example @’;l”
has the following bends: (j,a,g), (g,b, h), (h,c,i) and (i, d, j).

Recalling the example in Figure 7.5, we see that the bend (g, b, h) is exactly
the kind of bend that we want to avoid, because b is a leaf and g and h are
both dominance edges. This motivates the following definition:

Definition 7.2 (harmful cycle) Let C denote a cycle in an
undirected dominance graph U. A bend (e, v, f) on C is called
forbidden if v is a leaf and e and f are dominance edges;
otherwise we say that (e, v, f) is admissible. The cycle C is
called harmful if C' is simple and all its bends are admissible.
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In the sequel we will prove that solvability of a dominance graph D is
equivalent to the absence of harmful cycles in /(D). For this aim, we show
two lemmas, which — in some sense — express the fact that an application of
a transformation rule does not affect the existence of harmful cycles. (For
the choice rule, this means that both generated instances contain a harmful
cycle if and only if there is a harmful cycle in the original graph.) First, we
prove that the removal of redundant edges does not affect the existence of a
harmful cycle.

Lemma 7.1 Let D' be a dominance graph which is obtained by applying
Transformation Rule 2 to a dominance graph D. Then U(D) contains a
harmful cycle iff U(D') does.

Proof. Suppose that redundancy elimination has removed the dominance
edge e = (I, s) from D. Since the edges of D' are a subset of those of D, we
only have to show the following: If Z(D) contains a harmful cycle C' which
uses the edge {/, s}, then there is also a harmful cycle in U (D’).

As C' is harmful, the bend at [ must be admissible, i.e. C' must use the
tree edge {r, [} incident to /. So we may suppose that C starts with {r, [} and
then uses {l, s} as second edge. Since e is redundant in D, there is a simple
(directed) path P from [ to s in D'. Let z denote the last node on C which
is also visited by P (z # [, and possibly x = s). Let P, denote the prefix
of P from [ to z. If x = r, then P, o (r,1) is a directed cycle in D', which
translates to a harmful cycle in U#(D’). So assume z # r. Thus the suffix
C, of C from x to r is not empty. Identifying P, with the corresponding
undirected path in U(D'), we obtain the simple cycle C' = {r,l} o P, o C,.
Since x # [, we conclude that C' does not use the edge {/, s}, and hence, it
is a cycle in U(D"). We have to check that any bend of C’ is admissible. For
the bend at the root » and any bend on C, this is obvious. As P, is directed,
any bend of P, is admissible, and if x is a leaf, P, must end with a tree edge.
So the bend at z is also admissible. And hence, C’ is harmful. d

Now we prove a similar lemma for the choice rule:

Lemma 7.2 Suppose an application of Transformation Rule & to a domi-
nance graph D generates two instances D1 and Dy. Then U(D) contains a
harmful cycle iff both U(Dy) and U(D2) do.

Proof. Let us assume that we apply the choice rule to two dominance edges
(I1,s) and (I, s) in D. This generates two amplifications D; = DU(ly,r9) and
Dy = D U (ly,71), where 71 and ry are the roots of the fragments containing
l; and Iy respectively (see Figure 7.2 on page 155). Since the edges of D are
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a subset of the edges of D; and of the edges of D,, we only have to prove
that U(D) contains a harmful cycle if U(D;) and U(Ds) do.

We consider a harmful cycle Cy in U(D;). If C; does not use the new
edge {ry,[1}, then it is also a cycle in U(D). So we may suppose C; =
{ra,11} o {l1, 71} o Pi, because the bend at /; must be admissible. Similarly,
we assume that U(D,) contains a harmful cycle Co = {r1,ls} o {l3, 72} 0 P,.

If P, or P, visits s, we can construct a harmful cycle in U(D): Suppose
for some i € {1,2} we have P, = P’ o P” such that P’ ends in s. Then
P’ o {s,l;} o {l;,r;} is a harmful cycle because P’ avoids I; and {l;,r;} is a
tree edge.

Hence, we may assume that both C; and Cy avoid s. Let x denote the
first node on P, different from r; that also lies on P,. If z = ry, then P; and
P, have no common inner node, and hence P, o P, is a simple cycle. Since
the endpoints of P, and P, are roots, we see that all bends are admissible,
and we are done.

Now consider the case x # ry. For i € {1,2} we decompose P; such that
P; = Q;oR;, Q; ends at x and R; starts at x (see Figure 7.6). Since P; avoids
l;, we conclude that ); does not visit ;. In particular we have Iy # = # Is.
We want to prove that (), also avoids l,. Suppose P; visits lo, otherwise
there is nothing to show. Since the simple path P; ends at r, and all bends
of P, are admissible, we can infer that the last edge on P; is the tree edge
{ly,r2}. As @, is a prefix of P; that ends in z and z is different from both
lo and 79, we conclude that [y is an inner node of R;. So )1 avoids l5. An
analogous argument shows that Q2 does not visit ;. (Observe that z # r;
by the choice of z.)

By construction, @); and )2 have no common node but z. Denote the
reversal of Q; by @7®'. Then the cycle C' = {r1,l1}o{l1,s}o{s,lo}o{ly,m}0
Q20 Q4 (see again Figure 7.6) is simple. If C' is not harmful, then the bend
at z — where (2 and Q7°" join — is forbidden. This means z is a leaf, and
both (); and )5 end with a dominance edge. Since the bend at z in C) is
admissible, we have that Ry starts with the tree edge incident to . Therefore
every bend on the cycle ()1 o Ry is admissible. By the choice of z, this cycle
is also simple. And hence, it is harmful. 0

We are ready to prove our characterization of solvability. The proof is based
on the correctness of the enumeration algorithm from the previous section.

Theorem 7.1 A dominance graph D is solvable iff U(D) does not contain
a harmful cycle.

Proof. Suppose first, U (D) contains a harmful cycle and we run our enu-
meration algorithm on D. Consider any instance D' which is generated
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Figure 7.6: Situation in the proof of Lemma 7.2. (Observe that R; may visit
lo, hence Q10 Ry o{re,la} o {ls,s}o{s,l1}o{ly,r1} is in general not a simple
cycle. An analogous observation can be made for Ry and [;.)

during this run by an application of a transformation rule. From the two
previous lemmas we can conclude that #(D') contains a harmful cycle. And
hence, D' cannot be a forest. Thus, Enum-BruteForce (D) will not report
any solved form, which implies that D is not solvable.

Assume now that U(D) does not contain a harmful cycle. Again, we run
our enumeration algorithm on D and trace its computations. Lemma 7.2
states that if the choice rule is applied to a graph without harmful cycle, then
at least one of the two generated instances has no harmful cycle. And hence,
we can inductively identify a branch in the computation of the enumeration
algorithm where all generated dominance graphs are free of harmful cycles.
Clearly, this branch cannot end with the discovery of a directed cycle. Thus
the branch terminates when a solved form of D is found. |

7.3 An efficient harmful cycle test

In this section we will give a linear time algorithm which can test whether a
given undirected dominance graph contains a harmful cycle. By Theorem 7.1,
this implies that deciding solvability for a dominance graph can be done in
linear time. This improves upon the results in [ADK*03].

The harmful cycle test will be developed gradually. We start with the
well-known depth first search algorithm which can look for arbitrary cycles
in undirected graphs. Then we make a simple modification which guarantees
that the algorithm reports only harmful cycles. Unfortunately, this algorithm
may miss harmful cycles, i.e. it may report that no harmful cycle exists,
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although there is one. After another modification that takes care of this
problem, we obtain a correct harmful cycle test.

DFS in undirected graphs

We forget about dominance graphs for the moment and consider arbitrary
undirected multigraphs. We recall the depth-first search algorithm (DFS),
which can be used to explore an undirected multigraph G in a systematic
way. Then we explain how this algorithm can be augmented for cycle de-
tection. We want to point out that we accept arbitrary cycles, i.e. we do
not impose any constraints on the bends. When DFS explores G, it main-
tains for each node v its status, which can be unreached, active or completed:
unreached means that v has not been discovered yet, active indicates that the
exploration of v is in progress, completed marks the end of the exploration.

The procedure DFS (without cycle detection) works as follows: At the
beginning the status of all nodes is set to unreached. Then DFS iterates over
all nodes. Whenever it discovers a node v with status unreached, it calls
the procedure DFS-visit to explore v. This procedure changes the status
of v to active and scans every edge e = {v,w} incident to v. Whenever it
encounters an unreached node w during the scan, it makes a recursive call
DFS-visit(w) to explore w. When the scan of v is finished, the status of v
becomes completed and the call DFS-visit(v) returns.

We discuss a well-known modification of this basic scheme which allows

to find cycles (see Algorithm 7.2). We use an array called dfs_inedge: For
every recursive call DFS-visit(w), it stores the edge which caused the call
(see line 10). If the respective call has been a top-level call (see line 4), then
dfs_inedge is set to none.
We make a crucial observation: At any time the active nodes lie on a simple
path P, and the edges on P are the dfs_inedges of these nodes. We make
this more precise. Every active node corresponds to a call of DFS-visit that
has not returned yet. So we can order the active nodes vy, ..., v according
to the call stack of DFS-visit such that DFS-visit(vy) is the top-level
call and DFS-visit(v;) has made a recursive call to DFS-visit(v;y1) for
i=0,...,k—1. Then P = [vy, dfs_inedge[vi], v1, ..., dfs_inedge[vg], vi]. Note
that vy is the node whose edges are currently scanned. Suppose now that
we scan an edge e # dfs_inedge[vg] (cf. line 7), and assume that e connects
v, with another active node v;. Then we have discovered a simple cycle
C = P'oe, where P’ is the subpath of P from v; to v,. This explains lines 11
and 12 of the algorithm.

Let us apply the algorithm to the example on the left-hand side of Fig-
ure 7.7. Assume that we explore the node a first, and that edges are scanned



164 CHAPTER 7. DECIDING SOLVABILITY

Algorithm 7.2 Finding arbitrary cycles with standard DFS

Procedure: DFS(G)
initialize the status of all nodes to unreached
: for all nodes v of G do
if status[v] = unreached then
dfs_inedge[v] +— none; DFS-visit(v)
report “no cycle found”

RAN SR o

Procedure: DFS-visit(v)
6: status[v] < active
7: for all edges e incident to v s.th. e # dfs_inedge[v] do
8  let w be the node adjacent to v via e
9: case 1: status|w] = unreached

10 dfs_inedge[w] < e; DFS-visit(w)
11:  case 2: status|w| = active

12: report “cycle found” and terminate
13: otherwise: do nothing

14: end for

15: status[v] < completed

from left to right. On the right-hand side, we visualize the state of the
algorithm at the time when it discovers the cycle: The node b is already
completed (indicated by the thick circle), the nodes a, ¢, d and e are active
(depicted by the double-circles) and the node f is still unreached. e is the last
node on the path of active nodes, which means that the call DFS-visit (e)
is currently executed. (This is why e is marked by two solid circles while
the outer circles of the other active nodes are dashed.) For each node v with
status|v] # unreached, we have marked dfs_inedge[v] by an arrowhead point-
ing towards v. The cycle is detected when the edge h is scanned, which leads
from e back to the active node c.

We make another observation. Let us call a node v reached iff its status
is active or completed. The explored subgraph of G is the subgraph which is
induced by the reached nodes. It is easy to see that the algorithm computes
a spanning forest F of the explored subgraph. The edges of the DF'S forest F
are the dfs_inedges of the reached nodes. We view F as a directed graph, for
each node v in the forest dfs_inedge[v] is oriented towards v. Thus an edge
(u,v) in F indicates that the call DFS-visit(u) has spawned a recursive call
DFS-visit(v). We say that u is a DFS father of v, and we call v a DFS
child of u. If v is an ancestor of w in the DFS forest, then there is a unique
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Figure 7.7: Discovering a cycle with standard DFS

path from v to w in F, which we denote by v255w. We freely identify the
directed path v2554y in F with the corresponding undirected path from v

to w in G.

Naive harmful cycle test

Suppose now that we have an undirected dominance graph U. We want
to modify Algorithm 7.2 such that only harmful cycles are reported. This
means that a cycle C' is only reported if all bends of C' are admissible. The
algorithm we obtain (see Algorithm 7.3) will be sound but not complete,
i.e. it may overlook harmful cycles. (In the next section we will show an
algorithm which is complete.)

Our first modification (in line 7 of Algorithm 7.3) ensures that the path of
active nodes has only admissible bends. Consider a call Naive-HC-visit (v)
(which corresponds to DFS-visit(v) in the standard algorithm). After v
has been made active, the path P of active nodes ends in v. Whenever an
edge e incident to v leads to a recursive call, then the path of active nodes
is extended to P’ = P oe. If we are dealing with a top-level call, then P is
empty and P’ consists of a single edge, which implies that it does not have
any bend. So we do not have any restrictions on e in this case. If we are
faced with a recursive call, then P ends with dfs_inedge[v], so P' has one
more bend than P, namely (dfs_inedge[v], v, e). Therefore we should scan an
edge e only if (dfs_inedge[v],v,e) is an admissible bend.?

Recall that we are in a top-level call iff dfs_inedge[v] = none. Thus we can
combine both cases into one by defining (none, v, e) to be admissible for any
edge e incident to v.

3We want to point out that (dfs_inedge[v], v, dfs_inedge[v]) is not a bend, and hence
e = dfs_inedge[v] is not admissible.
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Algorithm 7.3 Naive harmful cycle test

Procedure: Naive-HC-Test(U)
initialize the status of all nodes to unreached
: for all roots r of U do
if status[r] = unreached then
dfs_inedge[r] < none; Naive-HC-visit(r)
report “no harmful cycle found”

oUWy

Procedure: Naive-HC-visit(v)
6: status[v] < active
7. for all edges e incident to v s.th. (dfs_inedge[v], v, e) is admissible do
8  let w be the node adjacent to v via e
9: case 1: status|w] = unreached

10: dfs_inedge[w] < e; Naive-HC-visit(w)

11:  case 2: status[w] = active and (e, w, first edge of w2 v) admissible
12: report “harmful cycle found” and terminate

13: otherwise: do nothing

14: end for

15: status[v] < completed

But this modification is not enough. We also have to check the bend which
is generated when we “close” the cycle (see line 11). This becomes clear when
we look at the example in Figure 7.8. It shows a dominance graph containing
a cycle, and it visualizes the state of the algorithm when it scans the edge k
which closes the cycle. The bends at ¢ and d are admissible because they are
bends of the path of active nodes. The bend at e is also admissible, otherwise
k would not have been scanned (cf. line 7). But the bend (k, b, h) is forbidden,
because b is a leaf and k£ and h are dominance edges. This is captured by
the condition “(e, w, first edge of w25 v) admissible” in line 11. Thus our
algorithm does not report a harmful cycle when applied to this example.

How can we check this condition efficiently? In order to determine the
first edge f on the path w25y, we could trace the reverse path from v
to w by means of the dfs_inedges. But this may take a long time. We
can do it in constant time: If w is a root, then the bend is admissible, no
matter what f is. Otherwise, we look at dfs_inedge[w] and distinguish three
cases: If dfs_inedge|w] is a tree edge (cf. node b in Figure 7.8), then f is a
dominance edge, because there is only one tree edge incident to the leaf w
(by Definition 7.1). Thus the bend is forbidden in that case. If dfs_inedge[w]
is a dominance edge (see node d in Figure 7.8), then f must be the tree edge
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Figure 7.8: Example demonstrating why a second modification of Algo-
rithm 7.2 is necessary.

incident to w, for (dfs_inedge[w],w, f) is a bend of the path of active nodes.
We conclude that the bend is admissible then.

But what can we do if dfs_inedge[w] = none? The solution is to rule out this
case by a small modification (see line 2): We make top-level calls only for
root nodes. Since every leaf is adjacent to a root (by a tree edge), it is still
guaranteed that every node of the graph is explored.

From the discussion above it should be clear that the algorithm is sound:
When it reports a harmful cycle, then it has discovered a simple cycle and
it has checked that every bend is admissible. Unfortunately, there exist
examples like the dominance graph U in Figure 7.9. Although U contains
a harmful cycle (indicated by the thick edges), Algorithm 7.3 may not find
it. We say “may”, because the outcome of Naive-HC-Test depends on the
order in which the edges are scanned in line 7.

We trace a computation which fails to discover a harmful cycle. As-
sume the algorithm explores the root a first, i.e. it makes a top-level call
Naive-HC-visit(a). Then it scans the edge {a,b} and makes a recursive
call for b. Suppose this call scans {b, f} first, which leads to a recursive call
for f. The edge {f,e} gives rise to a recursive call for e, the state of the
algorithm at that time is shown as state (I) in Figure 7.9.

Since dfs_inedge[e] is a dominance edge, the dominance edge {e, g} is not
scanned during that call. The path of active nodes can only be extended by
the tree edge {e,d}, which causes a recursive call for d. During this call the
edge {d, b} is scanned (cf. state Q) in the figure). This closes a cycle, but as
the bend at b is forbidden, the cycle is ignored.

Then the recursive calls to d, e and f finish, and the algorithm returns to
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Figure 7.9: Example illustrating that Algorithm 7.3 may fail. (On he right-
hand side four intermediate states of a failing computation are depicted.)

b. It scans the edge {b,d} (see state @), but it takes no action, because
d is completed. The algorithm backtracks to a and makes a recursive call
Naive-HC-visit(c), which in turn spawns a recursive call for g. Then the
edge {g, e} is scanned for the first time (state @). Since e is already com-
pleted, nothing happens. After that all calls of Naive-HC-visit return, and
the algorithm reports that it has not found a harmful cycle.

We want to point out that a harmful cycle would have been found if {b, d}
had been scanned before {b, f} in the call Naive-HC-visit (b).

Correct harmful cycle test

We modify the naive harmful cycle test from the previous section such that
we obtain a correct algorithm. Let us reconsider the example in Figure 7.9, in
particular the state labelled 3): The algorithm is scanning the edge 0 = {b, d}
during the call Naive-HC-visit (b). As d is already completed at that time,
no action is taken. Observe that 0 is an edge on the harmful cycle C in
U, which suggests that 6 should not be ignored. There is another edge on
C' that has been ignored so far: {e, g} has not been scanned although e is
already completed. Before we discovered §, we knew only one path from b to
e, namely b2 ¢, Since this path ends with a dominance edge, we skipped
{e, g} when e was active. With the discovery of the so-called detour § there
is an alternative path @Q = ¢ o {d,e} from b to e ending with a tree edge.
Thus @' = @ o {e, g} contains only admissible bends. As @' is a subpath of
C, we should do something to make the algorithm aware of it. The idea is
to add a single dominance edge {b, g} to the graph as a short-cut for Q'.



7.3. AN EFFICIENT HARMFUL CYCLE TEST 169

Before we formalize this idea, we discuss how the addition of {b, g} influ-
ences the computation of the algorithm (see Figure 7.10). Suppose we are in
state @), discover the detour {b,d} and add the short-cut {b, g} (state @').
Before b is declared completed, the short-cut? is scanned and a recursive
call for ¢ is invoked (state ©®'). In this call the edges {g,e} and {g,c} are
explored. The former causes no action, because e is completed. The latter
leads to a recursive call for ¢ (state ®'). The algorithm scans {c,a} and
reports a harmful cycle.

Figure 7.10: The computation of the harmful cycle test after adding the
short-cut {b, g}.

In order to discover and handle detours we modify the harmful cycle test
as follows: When we scan an edge e = {v,w} in a call HC-visit(v), we
distinguish a third case (see lines 15 and 16 of Algorithm 7.4). If w is a
completed root, we invoke the procedure Collect. As we shall see later, € is
a detour and w is a descendant of v in the DFS forest. The task of Collect
is to check the nodes on v2254 for incident dominance edges that have not
been scanned so far and to add the corresponding short-cuts. As the graph
is altered by Collect, we create a working copy U of the original input Uy,

at the beginning of the algorithm (see line 1).

4“We assume that the short-cut is appended to the adjacency lists of b and g, which
guarantees that it will be scanned before b is declared completed.
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Algorithm 7.4 The correct harmful cycle test

Procedure: HC-Test(U;y,)
: U + copy of Ui,
: for all nodes v of U do
status[v] < unreached; mark[v] < false // mark is used by Collect
: for all roots r of U do
if status|r] = unreached then
dfs_inedge[r] <— none; HC-visit(r)
report “Up, contains no harmful cycle”

AN I

Procedure: HC-visit(v)

8: status[v] < active

9: for all edges e incident to v s.th. (dfs_inedge[v], v, e) is admissible do
10:  let w be the node adjacent to v via e

11:  case 1: status[w| = unreached

12: dfs_inedge[w] < e; HC-visit(w)

13:  case 2: status[w] = active and (e, w, first edge of w5 v) admissible
14: report “Uj, contains harmful cycle” and terminate

15:  case 3: status|w] = completed and w is a root

16: Collect(e) // collects previously forbidden dom. edges

17:  otherwise: do nothing

18: end for

19: status[v] < completed
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Before we describe the procedure Collect we define the notion of a detour:

Definition 7.3 (detour) An edge § incident to a leaf v and a root w is
called a detour if the following holds:

e The node v is an ancestor of w in the DFS forest. All nodes on v2ESw

except for v are completed.

e The edge ¢ is a dominance edge, dfs_inedgelv] is a tree edge, and § #
dfs_inedge[w]. (Thus § does not belong to the DFS forest.)

Suppose Collect is called for a detour ¢ incident to a leaf v and a root w.
The procedure traverses the nodes on v2554 in reverse order, i.e. it starts in
w and walks up in the DFS forest until it reaches v. This can be done with
the aid of the dfs_inedges, because dfs_inedge[x] connects a node = with its
father in the DFS forest.

Every node z (different from v) on v2%5 4 is checked for incident dominance
edges that have not been scanned so far. By Definition 7.3, = is completed.
So if z is a root, or if z is a leaf and dfs_inedge|x] is a tree edge, then all edges
have already been scanned. But if z is a leaf and dfs_inedge|z] is a dominance
edge, then only the tree edge incident to  has been scanned (cf. Figure 7.11).
For every dominance edge e = {z,y} incident to x with e # dfs_inedge[z],
we add the dominance edge ¢’ = {v,y} to the graph, i.e. we append €' to
adjacency lists of both v and y. We call e the origin of ¢/. Observe that ¢’
is a short-cut for the path 6 o (z2554)™" o e, which contains only admissible

bends (in particular at z).

6 3

Figure 7.11: Addition of a short-cut e’ for the path § o (z255w)™ o e.

It will turn out that it suffices to process every node in U at most once
by Collect. Therefore we mark every node = that is examined (see line 5)
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Algorithm 7.5 Collect previously forbidden dominance edges

Procedure: Collect(d)

Require: ¢ is a detour
1: let v be the leaf and w be the root incident to &

2 x<—w

3: repeat

4:  if mark[z] = false then

5: mark[z] < true

6: if x is a leaf and dfs_inedge[z] is a dominance edge then

7: for all dom. edges e = {x, y} inc. to = s.th. e # dfs_inedge[z] do
8: add the dominance edge ¢’ = {v,y} to U

9: originle'] < e

10: end for

11: end if

12:  x < father of z in the DFS forest
13: untilz = v
14: remove 0 from U // only needed for the proofs

and we skip marked nodes (cf. line 4).

Before the procedure terminates, it deletes the detour ¢ from U. This is
only needed for the correctness proof. At the time of its removal, § has al-
ready been scanned twice (first by HC-visit (w) and later by HC-visit (v)).
Hence, it would not be scanned again anyway. So in a practical implementa-
tion of the algorithm we can keep 9, and we do not have to store the origins
of the short-cuts (see line 9), as this information is only used in the proofs.

Correctness

Now we prove the correctness of the harmful cycle test. We begin by showing
that the precondition of the procedure Collect is never violated:

Lemma 7.3 Whenever Collect (e) is called in line 16 of Algorithm 7.4, e
15 a detour.

Proof. Let v be the leaf and w be the root incident to e. Since w is
completed when e is scanned during the call HC-visit (v), we have that w
is neither the DFS father nor a DFS child of v, i.e. dfs_inedge[v] # e #
dfs_inedge[w].

An induction on the number of calls to Collect shows that dfs_inedge[v]
is a tree edge and v is a DFS ancestor of w: Assume first that e € Uy,
(base case). Then e has already been scanned in the call HC-visit (w). Let
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us consider the state of the algorithm at that particular point in time: v
must have been reached (otherwise v would have become a DFS child of w),
but not completed (for v is still active now). Thus v has been active then,
which implies that v is a DFS ancestor of w. Since the call HC-visit (w) has
not reported a harmful cycle, (e, v, first edge on v2%5 ) is not admissible
(see line 13 of Algorithm 7.4 and observe that the roles of v and w are
interchanged). Thus dfs_inedge[v] is a tree edge.

Suppose now that e has been added by a call Collect(d) (induction step).
This implies that 0 is incident to v and some root r. Let é = origin[e],
é is incident to w and some leaf z. By the induction hypothesis, ¢ is a
detour. Therefore, the situation is as shown in Figure 7.12: dfs_inedge|v] is
a tree edge, and z is a node on v 25 We observe that é is present in the
original graph Uy, (because dfs_inedge[z] is a dominance edge). So € has been
scanned during the call HC-visit (w). When this call terminated, =z and its
DF'S ancestor v must have been active or completed. Since v is still active
now, it must have been active when the call for w was made. Hence, v is a
DFS ancestor of w.

The fact that dfs_inedge[v] is a tree edge implies that e is a dominance edge,
because there is only one tree edge incident to v. Since v is the last node
on the path of active nodes, when Collect(e) is called, all its proper DFS

descendants are completed, in particular those on v 25 . 0

Figure 7.12: Situation in the induction step of the proof of Lemma 7.3.

In the sequel we will show a crucial property of the procedure Collect.
Consider a call Collect(d). Let U; be the graph before the call and let U,
denote the graph after the call. Then U; contains a harmful cycle if and only
if Uy does. We break this claim into two lemmas and prove them separately.
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Lemma 7.4 If there is a harmful cycle in Us, then there is one in Uy.

Proof. Suppose the statement is false and let C' be a shortest harmful
cycle in Uy. C must use one edge ¢/ = {v,y} added by Collect(d). Let
e = origin[e'] = {z,y}. If C does not visit any node different from v on the
path v 254, we can replace €' by 6 o (1255)™" o e and obtain a harmful
cycle in Uj.

Otherwise we assume that C starts in v with the edge €'. Since all
nodes on v2"5.4 (except for v) are marked after the call and C' ends with
dfs_inedge[v], we can decompose C' = €'o Po{s,t} 0@ such that s is a marked
DFS descendant of v and () avoids any marked descendants of v. The cycle
v 50 {s,t} 0 Q is simple and uses only edges which are in both U, and
U, because it avoids €’ as well as any other edge added by Collect(J).

If it is not harmful, then the bend (dfs_inedge|s], s, {s,t}) is not admissible,
i.e. s is a leaf and both dfs_inedge[s] and g = {s,t} are dominance edges. If
s has been marked during the call Collect(d), a short-cut ¢’ = {v, ¢} with
origin ¢ has been added; so ¢’ o @ would be a shorter harmful cycle in Us.
Otherwise, a short-cut ¢"” = {v', ¢} has been added to some DFS ancestor v’
of s by an earlier call. As s is marked but v is not, v' cannot be a proper an-
cestor of v. Since s is a descendant of both v and v', v must be an ancestor of
v'. The edge g” still exists in Uy, otherwise ¢ would be a marked descendant
of v and hence of v. So v2E54' 0 ¢" 0 ) is a harmful cycle that does not use

any of the edges added by Collect(d). Hence, it is also contained in U;. O

Lemma 7.5 If there exists a harmful cycle in Uy, then there is one in Us,.

Proof. Let C be a harmful cycle in U;. If C avoids ¢, there is nothing
to show. Otherwise we assume that C starts in v with the edge 6. We
decompose C = § o Po{s,t} 0@ such that s is a marked DFS descendant of
v and @ avoids any marked descendants of v. (Note that w is a candidate
for s.) The cycle v 50 {s5,¢} o Q is simple and avoids §. Hence, it is
contained in Us. If it is not harmful, then s is a leaf and both dfs_inedge][s]
and g = {s,t} are dominance edges. Therefore a short-cut ¢’ = {v', ¢} has
been added to some (not necessarily proper) DFS descendant v’ of v. The
edge ¢’ still exists, otherwise ¢ would be a marked descendant of v' and hence
of v. So v2ES4' 0 ¢’ 0  is a harmful cycle in U; that does not use §. Hence,

it is also contained in Us. a

Combining the previous two lemmas, the next lemma follows by an easy
induction on the number of invocations of Collect:

Lemma 7.6 At any time the current graph U contains a harmful cycle iff
the original graph Uy, contains one.
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This implies that the algorithm is sound. When it reports a harmful
cycle, then the current graph U contains one. This follows immediately
from the fact that Collect never deletes an edge that is in the DFS forest
(cf. Definition 7.3). By Lemma 7.6, the original graph Uy, contains a harmful
cycle.

It remains to prove that the algorithm is complete: When no harmful
cycle is reported, then Uy, contains none. Let U* denote the current graph
U when the algorithm terminates. By Lemma 7.6, it suffices to show that
U* does not contain a harmful cycle.

In the subsequent proofs we will argue about the completion times of the
nodes. For a node v in U* denote by ct(v) the time when status[v] is set
to completed. We do need the exact times, we only compare time stamps
of different nodes. If the algorithm terminates without reporting a cycle,
then we can make some important observations about the relation of the
completion times of a node v and its adjacent nodes:

Lemma 7.7 Assume Algorithm 7.4 terminates without reporting a harmful
cycle. Let v be a node in U*, and denote by u its DFS father (if it exists).
Then ct(u) > ct(v), and the following holds:

1. If v is a root:
For every node w adjacent to v with w # u, we have ct(v) > ct(w).

2. If v is a leaf and dfs_inedge[v] is a tree edge:
For every node w adjacent to v with w # u, we have ct(v) > ct(w).

3. If v is a leaf and dfs_inedge[v] is a dominance edge:
Let r be the root that is adjacent to v by the tree edge. For every node
w adjacent to v with w # r, we have ct(r) < ct(v) < ct(w).

The possible constellations are shown in Figure 7.13.

Proof. It is clear that ct(u) > ct(v), because the call HC-visit(v) is
invoked by HC-visit (u).

Case 1: Assume that v is a root and there is an edge e = {v,w} with
w # u and ct(v) < ct(w). Suppose first that e already existed, before v was
completed. Then e is scanned during the call HC-visit(v). At that time
w must have been active (any other status would imply ct(v) > ct(w)). So
w is a DFS ancestor of v. Since no harmful cycle has been reported due to
this scan of e, we conclude that (e, w, first edge on wD—Fsv) is not admissible,
i.e. dfs_inedge[w] is a tree edge. This implies that e is identified as a detour
when scanned again later during the call HC-visit (w). So e is deleted by
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Figure 7.13: The constellations in U* described in Lemma 7.7, the arrowhead
of each edge points to the incident node with the smallest completion time.
(Dotted edges may represent a tree edge or a dominance edge.)

Collect, a contradiction.

Assume now that e is added as a short-cut after v has been completed. In
this case e is also recognized as a detour and deleted, again a contradiction.
Case 2: Suppose that v is a leaf, dfs_inedge[v] is a tree edge, and there is an
edge e = {v,w} with w # u and c¢t(v) < ct(w). No matter if e is a short-cut
or not, we know that e is scanned during the call HC-visit (v). At that time
w must have been active (otherwise ct(v) > ct(w)). But as w is a root, a
harmful cycle would have been discovered then, a contradiction.

Case 3: Let v be a leaf such that dfs_inedge[v] is a dominance edge, and
let r denote the unique root adjacent to v by a tree edge. The inequality
ct(v) > ct(r) follows from the fact that v is the DFS father of r.

Assume now that there is an edge e = {v, w} with w # r and ct(v) > ct(w).
We know that e is no short-cut in this case. Thus e is scanned during the
call HC-visit(w). At that time v must have been active (any other status
would imply ct(w) > ct(v)). Hence, v is a DFS ancestor of w, and the first
edge f on v2ES 4w is the tree edge incident to v and r. Therefore, the bend
(e,v, f) is admissible, which implies that a harmful cycle would have been
reported, a contradiction. 0

Now we are ready to finish the completeness proof.

Lemma 7.8 If Algorithm 7.4 reports that Uy, contains no harmful cycle,
then U, does not contain one.

Proof. Suppose otherwise. Then the algorithm terminates with a graph
U*, which contains a harmful cycle C' = [vg,e1,v1,..., Uk 1,65,V = g
(cf. Lemma 7.6). We may assume that ct(vy) has the largest completion time
of all nodes on C. Then we can show by induction that ct(v;) > ct(vis1)
for + = 0,...,k — 1. For ¢+ = 0 this is obvious. So suppose 7 > 0 and
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ct(vi1) > ct(v;). If v; is a root, or if v; is a leaf s.th. dfs_inedge[v;] is a
tree edge, then v; i is the only neighbour of v; with a larger completion time
(cf. cases 1 and 2 of Lemma 7.7). And the claim follows.
If v; is a leaf and dfs_inedge[v;] is a dominance edge, then e; must also
be a dominance edge (see case 3 of Lemma 7.7). Since C is harmful, the
bend (e;, v;, €;11) is admissible, i.e. e;,; is the tree edge incident to v;. By
Lemma 7.7, we have ct(v;) > ct(vii1).

Our inductive proof shows ct(vg_1) > ct(vg) = ct(vy), which contradicts
the assumption that vy has the largest completion time. d

Implementation and runtime analysis

We discuss how to implement the harmful cycle test for an undirected domi-
nance graph Uy, such that it runs in time O(n+m), where n is the number of
nodes and m is the number of edges of Uj,. In order to achieve this running
time we have to refine the current implementation of the procedure Collect
(see Algorithm 7.5). The problem is that Collect may visit a marked node
several times. Recall that Collect walks up in the DFS forest from a node
w to an ancestor v, which is not marked®. Since marked nodes are always
skipped during this walk, we can save time if we are able to jump quickly
from a node x to its closest unmarked ancestor in the DFS forest.

Algorithm 7.6 Improved implementation of Collect with Union-Find

Procedure: Collect(d)
1: let v be the leaf and w be the root incident to ¢
2: ¢ < Find(w)
3: while z # v do
4:  f <« father of x in the DFS forest
mark[z] < true; Union(z, f) // mark is used for explanation only
if x is a leaf and dfs_inedge[z] is a dominance edge then
for all dom. edges e = {x,y} inc. to x s.th. e # dfs_inedge[z] do
add the dominance edge ¢’ = {v,y} to U
end if
10:  z « Find(f)
11: end while

For this purpose, we use a Union-Find data structure in our improved
implementation of Collect (see Algorithm 7.6). We maintain a partition of
the nodes of Uy,. Every set S in the partition has a unique representative

5y is not marked because v is active and marked nodes are always completed.
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rs. We have the invariant that all nodes in S\ rs are marked, and rg is the
closest unmarked DF'S ancestor of each of them. Thus we can determine the
closest unmarked ancestor of a node z by calling Find(z). At the beginning
of the cycle test, every node forms a singleton set. Whenever a node x gets
marked, we unite the set of x with the set of its DFS father f (see line 5);
the representative of the union is the representative of the former set of f.
This establishes the invariant again.

Since the Union operations are not applied to arbitrary sets — we always unite
the set of a node with the set of its DF'S father — we can use the incremental
tree disjoint set union algorithm by Gabow and Tarjan [GT85|. Thus the
total time consumed by the Union-Find data structure is bounded by O(n)
plus the number of invocations of Collect.

Skipping marked nodes ensures that every dominance edge in U;, can
be the origin of at most one short-cut. Since the origin of each short-cut
is an edge in Uj,, we conclude that the number of edges in the graph U
is bounded by 2m. It easy to see that HC-visit is invoked once for each
node and that every edge is scanned at most twice. So we conclude that the
total running time of the harmful cycle test is O(n + m), which implies the
following theorem:

Theorem 7.2 Solvability of a directed dominance graph D can be decided in
time O(m), where m is the number of edges of D.

Proof. Follows immediately from Theorem 7.1 and the observation that D
has at most m/2 nodes. O



Chapter 8

Enumeration of solved forms

In this chapter we describe how the minimal solved forms of a dominance
graph D can be enumerated efficiently. We discuss two algorithms. The
first algorithm is obtained by plugging the efficient solvability check from the
previous chapter into the brute-force enumeration algorithm from Section 7.1.
This algorithm, called Enum1, runs in time O(m + N - n?m), where N is the
number of minimal solved forms, n is the number of nodes and m is the
number of edges of D. Then we give an example showing that this time
bound is tight for Enuml. The example gives rise to an improved algorithm
Enum2. Its running time is O(m + N - nm).

8.1 An efficient enumeration algorithm

The efficient solvability test from the previous section allows us to improve
the brute force enumeration algorithm (Algorithm 7.1 on page 156) consider-
ably. In order to obtain an efficient algorithm (cf. Algorithm 8.1), we replace
the test for a directed cycle in D by the test for a harmful cycle in U(D) (see
line 1).

We analyse the running time of Algorithm 8.1. Let us discuss how to
compute the transitive reduction of D (in line 2) efficiently. It is well-known
that this can be done in time O(nm) (see [GKT79, Sim88]), where n is the
number of nodes and m is the number of edges. But only the top-level
call needs to do the full-fledged reduction. The graphs processed in the
recursive calls have been generated from a reduced graph D by adding a
single irredundant edge (I, s) (cf. Transformation Rule 3 on page 155). We
show how to exploit this to compute the transitive reduction of D U (I, s)
much faster.

Adding (I, s) makes an edge (v, w) redundant iff there is a path from v to [

179
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Algorithm 8.1 Efficient enumeration of minimal solved forms

Procedure: Enuml(D)
1: if U(D) contains no harmful cycle then
2:  eliminate all redundant dominance edges
3: if D has a root s with at least two incoming dominance edges then
4 apply the choice rule and generate two new instances D; and Dy
5 Enum1(D;); Enum1(Dy)
6: else // D is in solved form
7 report D
8 end if
9: end if

and a path from s to w in D. So we mark all nodes in D that can reach [
with red colour and all nodes that can be reached from s with green colour.
Then we delete all edges where the source node is red and the target node is
green. Finally, we add ([, s). This yields a reduced graph and can be done
in time O(m).

The running time of the top-level call Enuml (D) — without the time
consumed by recursive calls — is O(nm). The size of the dominance graphs
can only decrease as the recursion depth increases. An application of the
choice rule adds one edge, but it makes at least one edge redundant. Thus
the number of edges can only decrease, which implies that the time spent by
a recursive call is O(m).

Consider a call Enum1 (D') such that D’ is solvable but not a solved form
itself. This call spawns two recursive calls Enum1 (D}) and Enumi1 (D). If D}
is not solvable, then the latter call terminates immediately and D} must be
solvable. We charge the time for processing D), to its solvable “sibling” D).
This shows that our analysis does not have to take into account recursive
calls for unsolvable graphs.

If Enum1 is applied to a solvable graph, it eventually reports at least one
minimal solved form D;. Let us charge the time spent by this application
to D,. As we have seen before, the recursion depth is bounded by n? (the
maximum size of the reachability relation). So each reported solved form
gets a total charge of O(n?m). Denote by N the number of minimal solved
forms of D. The total running time of Enum1 (D) is O(m + N - n*m). (Note
that the total running time is O(m), if D is unsolvable.)

Observe that N may be exponential in the size of D, as shown by the
example in Figure 8.1. On the left-hand side we see a dominance graph
D that consists of ©(k) nodes and edges and has k + 2 tree fragments.
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Figure 8.1: Example showing that N may be exponential in the size of D.

Each permutation 7 of [1; k] corresponds to a different solved form of D
(cf. right-hand side): « is the topmost and + is the bottommost fragment, the
fragments (i, ..., B are arranged according to m. So D has k! solved forms.
Hence, the running time of our enumeration algorithm may be exponential in
the size of its input. But it is output sensitive, its running time is polynomial
in the sum of the sizes of its input and output.

A worst case example for Enumi

We discuss an example which shows that the bounds given above are tight
for Algorithm 8.1. We define a sequence DM D@ DG . of dominance
graphs. D®) has ©(k) nodes and ©(k?) edges, it has only one solved form,
and Enum1 may make ©(k?) applications of the choice rule to find it. We say
“may”, because the number of applications depends on the selection of the
root and the two dominance edges to which the choice rule is applied.

The graph D%) has 2k tree fragments (see Figure 8.2): oy, ..., ax, Bo,
..+ Br and 7. The fragment o; has the root u; and two leaves v; and w;,
the fragment f3; consists of a root z; and a leaf y;, and the fragment - has
the root r and the leaf [. D®) has the following dominance edges: (v;,) for
i=1,...,k, (w,z;) fori=2,... kand (v;,2;) for 1 <i<j<k.

Clearly, D™ is in solved form, so assume k > 1. We apply the choice rule
exhaustively to the root r: Fori =1,...,k—1 we apply the rule to the edges
(vg,7) and (v, 7). This generates two amplifications G; (by adding (vg, u;))
and H; (by adding (v;, ux)). G; is not solvable, because U(G;) contains the
harmful cycle {vg, u; }o{u;, v;} o {w;, 2} o {xy, wi} o {wg, ug } o {ug, ve}. So the
recursive call for GG; terminates immediately, and the computation proceeds
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Figure 8.2: The first three graphs in our worst case example for Enum1.
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Figure 8.3: A possible computation of Enum1 applied to D).

with H;. In H;, the edge (v;, ) is redundant, the edge (vg,r) remains. After
k — 1 applications of the choice rule we have transformed D®) into a graph

F®) where the indegree of r is one. We can see this transformation in
Figure 8.3 for D®.

The subtree rooted at uy in F*) is in solved form (it is even a config-
uration). If we replace this subtree with a tree fragment consisting of two
nodes, we obtain the graph D*~"). (We invite the reader to compare F(® in
Figure 8.3 with D® in Figure 8.2.) An easy induction shows that D®*) has
a unique solved form S*) and that Enumi may have to apply the choice rule
(k=1)+(k—2)+...4+ 1= () times to find it. S® is in some sense similar
to DU): If the subtree rooted at uy in S*) is replaced by a fragment with
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two nodes, one obtains D) (see Figure 8.3).

8.2 An improved enumeration algorithm

In this section we show how to improve the worst case running time of the
enumeration algorithm. We will prove that a solved form of a dominance
graph D can be constructed in time O(nm) and all N minimal solved forms
can be found in time O(m+ N -nm), which shaves off a factor of n compared
to our previous results.

We reconsider the example in Figure 8.2 and analyse why Enum1 has spent
so much time to solve it. In order to reduce the indegree of the root r in
D®) from k to one, the choice rule is applied & — 1 times, and eventually
only one solvable graph remains. But £ — 1 unsolvable dominance graphs
are generated and to recognise unsolvability the harmful cycle test is called
for each of them. Our goal is to make only the “necessary” choices, which
means that we do not generate unsolvable instances anymore. To be more
precise, we are given a root s in a solvable dominance graph D and we want
to compute a sequence D1, ..., Dy of solvable amplifications of D with the
following property: S(D) = 8(D;) U ... U 8(Dy), and the indegree of s in
D; is one for i = 1,..., h. We will do this in time O(h - m).

Suppose we apply the harmful cycle test to U(D). Since D is solvable, it
will not report a harmful cycle. From the DFS forest that is computed we
will be able to deduce the solvability or unsolvability of certain amplifications
of D without generating them.

Let us look at a tree in the DF'S forest that is generated by the top-level
call HC-visit (s), and assume that s has a DFS child [ such that dfs_inedge][l]
is a dominance edge (see left-hand side of Figure 8.4). Thus the only DFS
child of [ is the root r of the fragment of I, because the bend at [ must
be admissible. Assume further that the root 7’ is a DFS descendant of [.
Then the edge {l, 7'} cannot belong to U(D), otherwise U (D) would contain
a harmful cycle which contradicts the assumption that D is solvable. We
conclude that D = D U (I,7') is not solvable.

Suppose further that there is a leaf [’ in the fragment of ' which is
adjacent to s by a dominance edge (see right-hand side of the figure). If we
apply the choice rule to the edges (I,s) and (I',s) it generates the graphs
D and D = D U (I',7). As we have just seen, D is unsolvable. So every
solved form of D is an amplification of D. Hence, we can add (I',r) to D and
remove the redundant edge (I’,s) without changing the set of solved forms
of D. Thus we reduce the indegree of s while preserving the solved forms.

The results from above are expressed in the following lemma:
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Figure 8.4: Left: DFS tree generated by HC-visit(s); the marked edge
{l,r'} cannot belong to U (D), if D is solvable. Right: Choice rule applied to
(1,s) and (I, s).

Lemma 8.1 Suppose that Algorithm 7.4 is applied to U(D) of a solvable
dominance graph D. Assume that a top-level call HC-visit(s) is made. Let
l be a leaf such that dfs_inedgell] = {l,s} is a dominance edge. Ifl' is a
proper DFS descendant of | and ' denotes the root of the fragment of ' in
D, then D = D U (I,1') is not solvable.

Assume further that l' is adjacent to s. Then we have for every solved form
D; of D that (I',r) € Reach(Ds), where r denotes the root of the fragment of
l. Hence, we can add (I';r) to any amplification D' of D without changing
the set of solved forms, i.e. S(D' U (I',r)) = S(D").

Proof. Since no harmful cycle is reported by the algorithm, the tree
edge {r',l'} becomes a DFS forest edge. So ' is the DFS father of I’ (if
dfs_inedge[l'] is the tree edge) or the DFS child of I" (if dfs_inedge[l'] is a
dominance edge). Hence, 7’ is a DFS descendant of .

Let U = U(D) and U = U(D). We compare computation of the calls
HC-Test(U) and HC-Test(U). We assume that the iterations in Algo-
rithm 7.4 (see lines 4 and 9) process the iterated items according to some
deterministic order, so that the computations of the two calls are parallel as
long as possible. Thus both calls make the same computations until the edge
e = {I,7'} is scanned for the first time during the harmful cycle test for U.
Observe that e cannot be the origin of a short-cut before [ is completed. Since
the bend (dfs_inedgell], [, e) is forbidden (see left-hand side of Figure 8.4), e
is scanned only during the call HC-visit ('), although [ becomes active be-
fore r'. As [ is still active then, the algorithm reports a harmful cycle in U.
Therefore D is not solvable.

Suppose that I is adjacent to s, i.e. D contains the dominance edge (', s).
Applying the choice rule to the edges (I, s) and (I, s) generates two graphs.
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One of these graphs is D, the other is D = D U (I';r). We know that
S(D) = S(D) U S(D) (see page 154). As S(D) is empty, every solved form
D, of D is an amplification of D, which proves the rest of the claim. 0

The lemma above allows us to reduce the indegree of s to one if s has
only one DFS child (that is adjacent to it by a dominance edge). Now
we consider two DFS children /; and /s of s and examine the solvability of
Dy =D U (l4,79) and Dy = D U (lg, 1) (see left-hand side of Figure 8.5).
Observe that these graphs are the two instances generated by applying the
choice rule to (1, s) and (I3, s). We assume that [; is completed before I, and
no other DF'S child of s is completed in between.

Suppose we add the edge d; = {l;,72} to U = U(D) and obtain U; (as
in the middle of the figure). If we invoke HC-visit(s) on Ui, the recursive
call for [; ignores d;, because dfs_inedge[l;] is a dominance edge. So does the
recursive call for ro, because [ is already completed at that time. Hence, D,
is solvable.

The situation is more complicated if we add dy = {l,71} to U, which
yields Uy (see right-hand side of the figure). We know that D, is unsolvable
iff Uy contains a harmful cycle. It will turn out that this is the case iff during
the call HC-visit (/) (including recursive calls spawned by this call) an edge
{r',1,} is scanned.

Hence, the call HC-visit (s) provides us with enough information to avoid
an explicit application of the choice rule to (I1, s) and (ls, s). The details are
given below:

Lemma 8.2 Suppose that Algorithm 7.4 is applied to U(D) of a solvable
dominance graph D. Assume that a top-level call HC—visit(s) is made. Let
ly and ly be two DFS children of s such that 1y is completed before ly and no
other DFS child of s is completed in between. Assume that the dfs_inedges
of both leaves are dominance edges, and denote by r1 and r9 the roots of the
fragments of 11 and ly, respectively. Then the following holds:

1. Dy = D U (ly,73) is solvable. (In fact, applying Algorithm 7.4 to U(D)
yields the same computation as for U(D).)

2. Dy = D U (ly, 1) is solvable iff during the call HC-visit(ly) (including
spawned recursive calls) no edge incident to ly is scanned.

Proof. Let U = U(D) and U; = U(D;), i = 1,2. As in the proof of
the previous lemma, the basic idea is again to compare the computation of
HC-Test (U) with those of HC-Test (U;) and HC-Test (U,).

The first claim follows from the fact that the harmful cycle test for Uy
basically ignores the edge di = {l1,72} (cf. middle of Figure 8.5). Since
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Figure 8.5: Examining two siblings /; and /5 in the DFS forest generated by
HC-visit(s).

the bend (dfs_inedge[l;],l1,d;) is not admissible, the edge is not scanned
in the call HC-visit(l;). It is scanned for the first time during the call
HC-visit(ry), and then no action is taken because [; is already completed
at that time. Thus the computations of the harmful cycle test for U; and
for U are identical. Since U contains no harmful cycle, the correctness of the
cycle test implies that there is no harmful cycle in U;. Hence, D is solvable.

In order to prove the second claim, we examine the computations of the
harmful cycle test for U and for U, in detail. Consider the computation for
Uy, and assume w.l.o.g. that the edge dy = {lo, 71} is the last edge that is
scanned during the call HC-visit (r;). Since /5 is unreached at that time, d,
becomes the dfs_inedge of I, and a recursive call HC-visit (l) is spawned.
We denote the state of the computation at that point in time by @), it is
shown on the right-hand side of Figure 8.5.

We switch now to the harmful cycle test for U and consider the point in
time when the call HC-visit (l,) is made, the state of that computation is
depicted as state (b) on the right-hand side of the figure.

The two states are similar, the only differences are the following: In state
@), we have dfs_inedgelly] = dy and [; and r; are still active, while in state
® both l; and 7 are completed and dfs_inedge[ls] = {s,lo}. From the states
@ and (p) the computations for Us and U proceed in parallel ways until one
the of the following occurs: [, gets completed or an edge incident to [y or ro
is scanned.

Assume first that /o becomes completed. Then in the computation for
Uy, r1 and l; become completed, too, and the computation continues with
the top-level call for s. In the computation for U, the recursive call for Iy
returns immediately to the top-level call. So after the completion of Iy, both
computations are in exactly the same state again (except for dfs_inedge[ls]).
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This means that each of them will terminate without reporting a harmful
cycle.

Suppose now that an edge incident to /; or r; is scanned. At that time
all nodes adjacent to r; except for /; and [y are already completed (because
we assumed that dy is the last edge to be scanned in the call for ;). This
implies that an edge incident to [/; is scanned. The harmful cycle test for U,
will report a cycle, because [y is active. (In the computation for U no action
will be taken, for [; is already completed there.)

So we have shown the following: The harmful cycle test for U, discovers a
harmful cycle iff the test for U scans an edge incident to /; while [ is active.
This proves the second claim of the lemma. 0

The two lemmas allow us to design an improved enumeration algorithm.
In order to be able to apply them, we make some changes to the edge scan
procedure (see E-visit in Algorithm 8.2). When this procedure is called
to scan the edges incident to a node v, the situation is as follows. We are
building the DFS tree with the root node s at the top. One DFS child of s
is active, we denote it by [; v is a (not necessarily proper) DFS descendant
of l. By lyrev we denote the DFS child of s that has been completed last. (If
[ is the first child, then [, = none).

While constructing the DFS subtree rooted at [, we want to collect all
DFS descendants !’ of [ that are adjacent to s (cf. Lemma 8.1), and we want
to check whether an edge incident to e, is scanned (see Lemma 8.2). This
explains why E-visit has the two additional arguments s and /ey, and why
a set L of leaves is returned. L contains all DFS descendants of v that are
adjacent to s (cf. line 1). When an edge incident to Iy, is scanned, lprey is
also put into L (see line 5).

Moreover, the test that checks whether a scanned edge closes a harmful cycle
has been omitted in E-visit, because we only apply it to graphs which do
not have such a cycle.

We discuss now the function EnumRoot (Dj, ,s) (see Algorithm 8.3), which
takes as input a solvable dominance graph Dy, and a root s (with indegree
at least 2) in Dy,. It returns a set A = {D,..., Dy} of dominance graphs
with the following property: S(Di,) = S(D1) U ... U 8(Dy), each D; is a
solvable amplification of D;, and the indegree of s in D; is one.

The algorithm works on three graphs in parallel. The first one is the
undirected dominance graph U, on which the harmful cycle test for U(Diy)
is simulated. The second graph is the directed dominance graph D, which
is used to record the information that is gathered during the simulation; D
is initialized with a copy of D;,. D is always a solvable amplification of D,.
The algorithm gradually adds dominance edges to D and removes dominance
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Algorithm 8.2 Modified edge scan used by Algorithm 8.3

Function: E-visit(v; s, lprev)
1: if v is adjacent to s then L < {v} else L + ()
2: status[v] < active
3: for all edges e incident to v s.th. (dfs_inedge[v], v, e) is admissible do

4:  let w be the node adjacent to v via e

5: if W = lpey then L« L U {lprev}

6: case 1: status[w| = unreached

7: dfs_inedge[w| < e; L + LU E-visit(w)

8: case 2: status[w] = completed and w is a root
9: Collect(e)

10: otherwise: do nothing

11: end for

12: status[v] < completed

13: return L

edges incident to s until the indegree of s becomes one. We want to point
out that the edge additions may introduce parallel edges and turn D into a
multigraph, so we remove parallel edges before D is returned (cf. line 27).
The third graph D is also a directed dominance graph and is initialized with
a copy of Di,. D is only needed for the correctness proof and will be discussed
later.

The algorithm builds a DFS tree rooted at s. It uses a variable [y, to
store the DFS child of s which has been completed last; at the beginning
lprey is mone. The simulation of the harmful cycle test starts with making s
active and setting dfs_inedge[s] to none. Then the edges incident to s are
scanned, we only consider dominance edges, because this enables us to apply
the previous lemmas. (Note that this is not a problem, for we may assume
that the original cycle test scans the dominance edges first.) Whenever a
dominance edge d = {s,[} is scanned such that [ is unreached, we make [ a
DFS child of s by setting dfs_inedge[l] = d and we call E-visit for [. This
constructs the DFS subtree rooted at [ and returns a list L of leaves (see
above).

Every leaf I in L\ {l, l,rev} is incident to s and a proper DFS descendant
of [. We add the dominance edge (I',r) to D, where r denotes the root of
the fragment of [ (cf. Lemma 8.1). This makes the edge (I, s) redundant, so
we remove it from D.

Assume now that [,y # none. If [, is contained in L, we create a copy
D' of D, add the dominance edge ([, 7prev) to D' and remove the redundant
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Algorithm 8.3 Enumeration algorithm EnumRoot

Function: EnumRoot(Dy,, s)
Require: Dy, is a solvable dominance graph, s is a root in Dj,

e e e T
Al

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

A<+ 0 /] Awill store the result
U <« U(Dy,); D < Dyy; D « Dy, // D only needed for the proof
lprev <= none // no previous DFS child of s
initialize the status of all nodes to unreached
dfs_inedge[s] <— none; status[s| «— active
for all dominance edges d = {s,!} in U incident to s do
if status|l] # unreached then continue (with for loop)
dfs_inedgell] «— d; L < E-visit(l; s, lprev)
r < root of fragment of [
for all ' € L\ {I, ey} do
// apply Lemma 8.1:
add dominance edge (I',r) to D; remove (I', s) from D
end for
if lyrey # none then
if lprey ¢ L then
D' <= D; rprey < root of fragment of [y, in D'
// apply Lemma 8.2 (part 2):
add dominance edge (I, 7prev) to D'; remove (I, s) from D’
remove parallel edges in D’
A < AU EnumRoot(D’, s)
end if
// apply Lemma 8.2 (part 1):
add dominance edge (Iprey,7) to D and D; remove (lprev, ) from D
end if
lprev 1
end for
remove parallel edges in D
A— AU {D}

return A
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edge (I,s) from D'. (7prev is the root of the fragment of lyre,.) We make a
recursive call EnumRoot (D', s) and add the reported graphs to the result set
A. This is motivated by the second statement of Lemma 8.2.

No matter if [y, is in L or not, we add the dominance edge (lprey,”) to
D (cf. statement 1 of Lemma 8.2), we remove (lyrey, s) from D due to re-
dundancy. (The edge (Iprey,7) is also added to D, but no edge is removed.)
Finally, we set [,y equal to [ and continue with the scan.

When the scan terminates, [,y is the only leaf in D that is adjacent to s
via a dominance edge. In fact, whenever line 6 is executed, [,y is the only
completed leaf that is adjacent to s by a dominance edge. This can be seen
by induction: When line 6 is executed for the first time /yrey, = none and no
node is completed. Assume now that the invariant holds. The call of E-visit
for [ declares all DFS descendants of [ completed. By the edge deletions in
line 12 we ensure that all proper descendants get disconnected from s. In
line 23 we disconnect /ey, S0 that [ is the only completed node adjacent to s
by a dominance edge. After setting [,y equal to [, the invariant holds again.
Since all leaves connected to s by dominance edges are completed after the
scan, we conclude that the indegree of s in D is one.

It is not obvious that D is solvable. Recall that we simulate a harmful
cycle test for U(Dyy,), so we cannot apply the lemmas to D, but we can apply
them to D. This follows from the fact that the edges added to D (see line 23)
are ignored by the harmful cycle test (see statement 1 of Lemma 8.2), which
implies that the computation of EnumRoot is also a simulation of the harmful
cycle test for (D). Therefore, D is solvable. The edges in D which are not
in D have been added in line 12. By Lemma 8.1, inserting these edges into
D does not change the set of solved forms. The same holds for the deletion
of redundant edges. Thus S(D) = S(D).

An analogous argument shows that if a recursive call EnumRoot (D', s) is
made, then D’ is a solvable dominance graph. Moreover, S(D) and S(D’)
are disjoint. This follows from the fact that the lines 18 and 23 can be seen
as an application of the choice rule to the edges (Iprev, s) and (/,s). Thus an
easy induction proves that the graphs in the returned set A have non-empty
and pairwise disjoint sets of solved forms.

We analyse the running time of the algorithm. Let m denote the number
of edges of Dy,. The time needed for simulating the harmful cycle test for
U is O(m). The graph D always has m edges until the parallel edges are
removed in line 27, which can be done in time O(m). If we do not count the
time spent in lines 16 — 20, the running time of EnumRoot is O(m). If we
make a recursive call, D’ can be constructed in time O(m). We charge this
time to the recursive call. Since every call reports one dominance graph, the
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total running time of EnumRoot (Djy, ,s) is O(|.A| - m), where A is the set of
amplifications returned by this call.
We summarize our results in the following lemma:

Lemma 8.3 If Algorithm 8.3 is applied to a solvable dominance graph D
and a root s in D, it generates a set A ={D,..., Dy} of amplifications of
D. The running time is O(h - m), where m is the number of edges of D.
Each graph D; € A is solvable, has at most m edges, and the indegree of s
in D; is one. Moreover, S(D) = 8(D;) U ... U 8(Dp).

Given the function EnumRoot it is straightforward to design the second
enumeration algorithm Enum2 (see Algorithm 8.4). Suppose we have a solv-
able dominance graph D. If all roots in D have indegree one, then D is a
solved form; we report D and terminate. Otherwise we choose a root s in D
with indegree greater than one. We call EnumRoot (D, s), which generates a

set A of amplifications of D. We apply Enum2 recursively to every graph in
A.

Algorithm 8.4 Enumeration algorithm Enum?2

Procedure: Enum2(D)
Require: D is a solvable dominance graph
1: if all roots in D have indegree at most one then
2:  report D and terminate
3: else
4:  pick root s s.th. indeg(s) > 1, every proper descendant has indegree 1
5. A<+ EnumRoot(D,s)
6: for all D' € A do Enum2(D’)
7: end if

We have to be careful how we select s, because EnumRoot may add edges.
We should make sure that s is not chosen again in a recursive call of Enum2.
Since D is solvable, it is a directed acyclic graph, and hence it makes sense
to talk about ancestors and descendants. We observe that all edges added
by EnumRoot (D,s) are incident to proper ancestors of s in D. This suggests
to pick a root s with indegree greater than one such that all its proper
descendants have indegree one. It is easy to determine s in time O(m): We
perform a depth-first search on D, until the first root s with indegree greater
than one is completed. (Note that all proper descendants of s are completed
before s.)

Now we analyse the running time of Enum2 (D). Let N denote the number
of minimal solved forms of D, and denote by n and m the number of nodes
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and edges respectively. Clearly, all the graphs that are processed in recursive
calls have at most O(m) edges. Moreover, our selection rule for s guarantees
that the recursion depth is bounded by n.

Consider a call Enum2(D’). It invokes EnumRoot(D’,s) for some root s,
which generates a set A’ in time O(].A'| - m). A’ gives rise to |A'| recursive
calls of Enum2. By charging O(m) time to each of these recursive calls, we
obtain an amortized time of O(m) for the call Enum2(D").

By each call of Enum2 at least one minimal solved form D is reported, and
no solved form is reported twice. As the recursion depth is bounded by n,
there are at most IV - n calls of Enum2. Therefore the total running time of
Enum2 (D) is O(N - nm).

We summarize our results in the following theorem:

Theorem 8.1 Let D be a dominance graph with n nodes and m edges, then
the solvability of D can be decided in time O(m). If D is solvable, a solved
form of D can be constructed in time O(nm), and all N solved forms can be
enumerated in time O(N - nm).

Proof. The only thing that remains to be discussed is how to construct a
solved form of a solvable dominance graph in time O(nm). We make a small
modification to the function EnumRoot: We delete the lines 15 — 21, i.e. we
do not make recursive calls anymore. Then the function runs in time O(m)
and constructs only one solvable dominance graph. If we plug this modified
function into Algorithm 8.4, we obtain an algorithm that reports a single
solved form in time O(nm). (Note that the recursion depth is still bounded
by n.) O



Chapter 9

Related work and discussion

This chapter is divided in two sections. The first section discusses some
related work in the field of computational linguistics. It focuses on dominance
constraints and two polynomial time solvable subclasses which can be applied
to many problems in computational linguistics. The second section deals with
related algorithms for deciding solvability and for enumerating solved forms.

9.1 Dominance constraints and subclasses

One might say that this section describes a struggle to find a logical lan-
guage for talking about trees that is rich enough to model certain problems
from computational linguistics and restricted enough to solve these problems
efficiently. First we introduce the language of dominance constraints which
is simple and powerful but unfortunately also very hard to process. Then
we discuss two proper subclasses which are useful in practice and can be
processed efficiently: normal and weakly normal dominance constraints.

Dominance constraints

The presentation in the following two sections is based on parts of [ADK 03],
most of the results in this section are due to Koller and Niehren.

The language of dominance constraints is a logi- f
cal language that talks about trees and the ancestor- }K
descendant relation of their nodes. In this language

trees are modelled as terms composed of function @ ¢
symbols. The ground term f(g(a,a)) corresponds Figure 9.1: f (9(a,a))
to the tree shown in Figure 9.1. It uses three func-

tion symbols with different arities: f with arity one, g with arity two, and a

193
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with arity zero. A function symbol of arity zero is called a constant.
A dominance constraint ¢ is a conjunction of dominance and labelling
literals of the following form

¢ = N | X <Y | X:f(Xq,..., Xp)

where X,Y and Xi,..., X, are variables and f is a function symbol of arity
n. The function symbols are drawn from a signature X, we assume that 3
contains at least one constant and one function symbol of arity at least two.
We denote the arity of function symbol f € ¥ by ar(f).

A solution of a constraint ¢ consists of a tree 7 and a variable assignment
« that maps the variables of ¢ to the nodes of 7 such that all literals are
satisfied.

We make this more precise. A constructor tree 7 is a triple (V, E, L) such
that the directed graph (V,E) is a rooted tree and L : VUE — Y UN
with L(V) C ¥ (node labels) and L(F) C N (edge labels). The edge labels
determine the left-to-right order of the outgoing edges of a node u € V. For
k = 1,...,ar(L(u)) there must be exactly one edge e = (u,v) € F with
L(e) = k. The variable assignment is a mapping « : Vars(¢) — V, where
Vars(¢) is the set of all variables occurring in ¢.

A tuple (7, «) satisfies a dominance literal X <* Y of ¢ iff there is a path
in 7 from a(X) to a(Y), i.e. a(X) is a (not necessarily proper) ancestor of
a(Y). We say that (7, «) satisfies the labelling literal X:f(X,..., X)) iff
L(a(X)) = f, and e, = (a(X), ®(Xy)) is an edge in E with L(e;) = k for
k=1,...,n.

A solution of the constraint ¢ = U:f(V) A Vig(X,Y) A X:a A Y:a is
the tree 7 in Figure 9.1 together with the obvious variable assignment c.
Since the variable assignment does not have to be surjective, any tree that
contains 7 as a subtree could also appear in a solution. Moreover, the variable
assignment does not have to be injective, the same tree together with an
extended variable assignment ' would also be a solution for the constraint
d ANW:f(Z). The variables U and W (as well as V and Z) are mapped to
the same node of 7. We say that U and W overlap in the solution (7, o).

The overlapping feature (in conjunction with the

Y
dominance literals) makes this language very expres- &= '
sive, and it is very hard to decide whether a given N 122
dominance constraint has a solution. In fact, Koller et Xy X,

al. [KNTO01] showed that this problem is NP-complete.
We do not give the proof here but we show an ex-
ample that illustrates the problem. Consider the constraint X:f(X, X3) A
YV:f(Y1,Y2) ANY <* X A X <* Y], which is depicted in Figure 9.2. Every so-

Figure 9.2: Overlap
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lution to this constraint must map X to same node as either Y or Y7, i.e. X
must overlap with ¥ or Y] in any solution.

In our drawings we indicate a parent-child relation implied by a labelling
literal X : f(...,Y,...) by a solid dart from X to Y. A dominance lit-
eral X <* Y is visualized by a dashed dart from X to Y. Hence, every
dominance constraint ¢ corresponds in a canonical way to a directed la-
belled graph G4. The nodes of G, are the variables of ¢ and the edges are
{(X,Y) | X:f(...,Y,...) € por X <*Y € ¢}. The edges induced by la-
belling literals are called tree edges, and the edges that stem from dominance
literals are dominance edges. The node and edge labels of Gy are given by
the labelling literals (cf. the definition of a constructor tree). The connected
components of the subgraph induced by tree edges are called the fragments
of G¢.

Normal dominance constraints

The NP-completeness result shed doubt on the practical usefulness of domi-
nance constraints until Althaus et al. [ADKT01]| were able to give a positive
result. They extended the language of dominance constraints by allowing
inequality literals of the form X # Y.! Then they identified the subclass of
normal dominance constraints, for which solvability can be decided in poly-
nomial time. The main property of these constraints is that the overlapping
is restricted: Only a root of a tree fragment may overlap with an unlabelled
leaf of another tree fragment. (Recall that this corresponds to the idea of
plugging roots into holes (i.e. unlabelled leaves) from Section 6.1.) A formal
definition follows:

Definition 9.1 (normal dominance constraint)
A dominance constraint ¢ with inequality is a conjunction of dominance,
labelling and inequality literals of the following form

b n= GAG | X <Y | Xif(Xy,..., X)) | X £Y

where X, Y and X1, ..., X, are variables and f is a function symbol of arity
n. In a labelling literal X:f(X1,...,X,), the variable X occurs in parent
position and the wvariables X1,..., X, occur in child position. A wvariable
that only occurs in parent position in ¢ is called a root, and a variable that
only occurs in child position in ¢ s called a hole.

A dominance constraint ¢ with inequality is called normal if it satisfies the
following conditions:

L As the reader has probably guessed, (7, a) satisfies X # YV iff a(X) # a(Y).
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1. If X and Y are variables that occur in parent position of two distinct
labelling literals, then ¢ contains the literal X #Y .

2. Every variable appears in at least one labelling literal of ¢.

3. For each wvariable there is at most one occurrence in parent position
and at most one occurrence in child position of a labelling literal. No
variable occurs twice in a single labelling literal.

4. If ¢ contains the literal X <*Y, then X s a hole and Y 1is a root.

When we talk about dominance constraints in the sequel, we will always
allow inequality literals. We want to make some remarks about this defini-
tion. Condition 1 (together with Condition 2) implies that the only possible
overlapping is between a hole and a root. Observe that Condition 3 does
not exclude fragments of solid edges in G, which contain a cycle, but if a
fragment is acyclic, then it is tree shaped. Condition 4 requires that dashed
edges in G4 are directed from holes to roots. We want to point out that not
every leaf of a solid tree fragment in G has to be a hole. In the constraint
X:f(Y,Z)ANZ : a the variable Y is a hole, but Z is not, although in G both
Y and Z are leaves of the fragment with root X.

Assume that we relax the definition of dominance graphs (see page 147)
a little bit and allow tree fragments of arbitrary height (instead of height
one). Clearly, all the results from the previous chapters continue to hold.
A dominance graph D with fragments of height different from one can be
transformed in linear time into an “equivalent” graph D’ with fragments of
height one: If we have a fragment of height greater than one, we remove all
nodes but the root and the leaves and connect the root to all the leaves by
tree edges. If there is a fragment of height zero?, i.e. just a root r, we add a
new leaf | and the tree edge (r,l) to the graph. This relaxation enables us
to view the graph G4 of a normal dominance constraint ¢ as a dominance
graph, if all fragments of Gy are acyclic.

As it was the case for dominance graphs, we also define the notion solved
form for a dominance constraint:

Definition 9.2 (solved form) A dominance constraint ¢ is in solved form
if Gy is a forest. ¢ is called an amplification of a (normal) dominance
constraint ¢' if ¢ and ¢’ contain the same labelling and inequality literals
and Reach(Gy4) D Reach(Gy) (i.e. ¢ entails all dominance literals of ¢'). A
solved form of ¢' is an amplification of ¢' which is in solved form.

2E.g., the constraint X:a corresponds to a fragment of height zero.
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A solved form ¢ of ¢' is called minimal if there is no solved form ¢" of ¢’
with Reach(Gg) C Reach(Gy).

We will show now that normal dominance constraints and dominance
graphs are equivalent with respect to solved forms. The precise correspon-
dence is given by the following theorem:

Lemma 9.1 Let ¢ be a normal dominance constraint such that Gy contains
no cyclic fragment. Then there is a one-to-one correspondence between the
minimal solved forms of ¢ and the minimal solved forms of G4 (viewed as a
dominance graph), which is given by the mapping ¢' — Gy .

Proof. By definition, every solved form ¢’ of ¢ is mapped to a solved
form of G4. The converse is in general not true, because of Condition 4 of
Definition 9.1: There may be a solved form of G, with a dominance edge
emanating from a leaf which is not a hole in ¢.

We will show that this is not the case for a minimal solved form D' of G:
If we apply one of our enumeration algorithms to G, (like Algorithm 8.1 on
page 180), it will report D’. Every edge in D' which is not contained in G,
has been inserted by an application of the choice rule. Since the choice rule
only adds edges to leaves which already have an outgoing dominance edge
(see Figure 7.2 on page 155), we conclude that every dominance edge in D’
emanates from a hole in ¢. Hence, D' corresponds to a solved form ¢’ of ¢
with G¢I =D.

So far we have proven that the mapping ¢’ — G4 and its inverse map
a minimal solved form to a solved form. An easy argument shows that a
minimal solved form of ¢ is mapped to a minimal solved form of G, and vice
versa. a

This theorem allows us to apply the algorithms from the previous chapters
to normal dominance constraints. But we have not proven yet that the notion
solved form deserves its name for dominance constraints. We show below that
every dominance constraint in solved form has a solution. This is not a trivial
result. The construction that transforms a dominance graph in solved form
into a configuration (see again Figure 6.5 on page 150) does not work for
dominance constraints, because this construction may add a dominance edge
to a leaf which is labelled by a constant, i.e. it is not a hole.

Lemma 9.2 A dominance constraint ¢ in solved form has a solution.

Proof. We only sketch the proof, the details can be found in the proof of
Lemma 3.6 in [ADK"03]. By definition, G, (including its dominance edges)
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is a forest. If it contains more than one tree, we add a new unlabelled root
r and connect 7 to the root of every tree by dominance edges. So from now
on we may assume that G, is a single tree.

In general, G4 is not a constructor tree (see page 194), because some
nodes and some edges — the holes and the dominance edges — are not labelled.
Since the signature ¥ contains a function symbol f of arity at least two and a
constant a, we transform G into a constructor tree 7. We repeatedly apply
the transformation shown in Figure 9.3. As every variable in ¢ is a node in
7, we can choose the variable mapping a to be the identity mapping. Thus
« satisfies every inequality literal. Hence, (7,a) is a solution of ¢. (This
solution does not involve any plugging at all, this issue is addressed later.) O

X
.

e
7z N
P

Figure 9.3: Transforming a subgraph induced by a hole and its outgoing
dominance edges into a labelled subgraph. (In the example ar(f) = 3.)

For a normal dominance constraint one can show a converse statement:
The existence of a solution implies the existence of a solved form. The
following lemma makes a slightly stronger statement:

Lemma 9.3 FEvery solution of a normal dominance constraint ¢ satisfies
some solved form of ¢.

Proof. See the proof of Lemma 3.7 in [ADK'03]. O

We give an example to illustrate that this lemma
does not hold for arbitrary dominance constraints:
N (X f (Vi ZYANY; <*UNZ; <* V) AU:a A Vea
This constraint has a solution (the tree f(a,a) with
the obvious variable mapping), but it has no solved
form. It is not normal because it violates Condi- « 4 U a H V
tion 1 of Definition 9.1. In order to make the constraint normal, one would
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have to add inequality literals, in particular X; # X,. Hence, the normal
constraint would not have a solution.

Combining the previous lemmas, we see that a normal dominance con-
straint ¢ has a solution iff it has a solved form. By Lemma 9.1, we can apply
the harmful cycle test (Algorithm 7.4) to G in order to decide whether ¢
has a solution.

Let us examine how the size of G4 depends on the size of ¢. The number
n of nodes of G4 is equal to the number of variables of ¢. G4 does not depend
on the inequality literals of ¢ at all. Let [ denote the size of a “reasonable”
encoding® of ¢. Then G, has O(l) edges and nodes. The next theorem follows
immediately from Theorem 8.1:

Theorem 9.1 Let ¢ be a normal dominance constraint with n variables.
Denote by | the encoding length of ¢. Deciding whether ¢ has a solution can
be done in time O(l). If ¢ is solvable, a solved form (and a solution) can be
constructed in time O(nl), and all N solved forms of ¢ can be enumerated in
time O(N - nl).

Constructive solutions of normal dominance constraints

Consider a dominance constraint ¢ which has a solution (7,a). Then any
constructor tree 7/ which contains 7 as a subgraph gives rise to a solution
(7', ). Hence, ¢ has infinitely many solutions. For many problems in com-
putational linguistics the acceptable solutions may only contain material that
is mentioned in the labelling constraints of ¢. Koller et al. [KNT03] gave a
formal definition of this property:

Definition 9.3 (constructive solution) A solution (1, ) of a dominance
constraint ¢ is called constructive if the following holds: For every node n
in T there is a variable X in ¢ such that a(X) =n and X is not a hole.

A constructive solution requires that every hole of ¢ overlaps with a root.
Thus this notion formalizes the idea of plugging roots into holes from Sec-
tion 6.1. Unfortunately, deciding whether a (normal) dominance constraint
has a constructive solution is NP-complete. (This follows immediately from
Theorem 10.1 in [ADK™"03].) Observe that the solution which is built in the
proof of Lemma 9.2 is not constructive.

3Each variable is encoded by an index in [1..n], which fits into one machine word. The
encoding size of a dominance literal is constant, and the size of a labelling literal involving
a function symbol f is linear in the arity of f. Inequality literals implied by normality are
not encoded at all.
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But Koller et al. [KNT03] were able to identify a subclass of constraints
called leaf-labelled, chain-connected normal dominance constraints for which
the existence of a constructive solution can be decided in linear time (with
our harmful cycle test). A normal dominance constraint ¢ is leaf-labelled
if every variable occurs on the left-hand side of a labelling or a dominance
literal. This means that the leaf of every fragment of G is either labelled by
a constant or the source of a dominance edge.
¢ is called chain-connected if the fragments Fi, ..., F; of G4 can be parti-
tioned into two disjoint sets @ and U such that the following holds (cf. Fig-
ure 9.4):

1. O is not empty.
2. For all 7 let r; be the root of F;. Fori=1,...,k — 1 either

e F; € O and F;;; € U, and there is a hole X, in F; such that
(Xir,mit1) € Reach(Gy) ; or

o I, €U and F;y; € O, and there is a hole X;;, in Fj;; such that
(Xit1,4,7:) € Reach(Gy).

3. For all ¢ € [2..k — 1] with F; € O the holes X,; and X, are different.

F1 F3 F5

Figure 9.4: A schematic picture of a chain. A dotted dart represents a path
in G4 (possibly a single dominance edge).

Koller et al. show the following theorem (see Theorem 13 in [KNT03]) for
the above defined subclass of normal dominance constraints:

Theorem 9.2 FEvery solved form ¢' of a leaf-labelled, chain-connected nor-
mal dominance constraint ¢ has a constructive solution.

This implies that the existence of a constructive solution of ¢ can be
checked in linear time. Koller et al. also show that G4 is always a configura-
tion of G,. Hence, a constructive solution of ¢ can be built from ¢’ in linear
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time. So if ¢ is solvable, all N constructive solutions can be enumerated in

time O(N -nl) where n is the number of variables and [ is the encoding length
of ¢.

Koller et al. conjecture that all linguistically useful constraints fall in the

subclass of leaf-labelled, chain-connected normal dominance constraints. In
order to justify their conjecture, they define a nontrivial grammar for a frag-
ment of English and show that it only generates dominance constraints that
belong to the class above.
Moreover, they consider an underspecification formalism called Hole Seman-
tics ([Bos96] and [Bos02]). They describe a back-and-forth translation be-
tween this formalism and normal dominance constraints. Due to this trans-
lation, the algorithms from the Chapters 7 and 8 can be used to speed up
the processing of Hole Semantics for practically useful instances.

Weakly normal dominance constraints

Bodirsky et al. [BDMNO4] introduced a subclass of dominance constraints
which is called weakly normal dominance constraints. This class is a proper
superclass of the class of normal dominance constraints. The main difference
is that Condition 4 of Definition 9.1 is relaxed for a weakly normal dominance
constraint ¢: If ¢ contains a dominance literal X <* Y, then X is a hole or
a root and Y is a root.

Weakly normal dominance constraints correspond to weakly normal domi-
nance graphs, which are dominance graphs that allow root-to-root dominance
edges. Bodirsky et al. show how to enumerate all N minimal solved forms
of a solvable weakly normal dominance graph D in time O(N - nm), where
n is the number of nodes and m is the number of edges of D. This matches
the asymptotic running time of the best enumeration algorithm presented in
this thesis. However, with respect to deciding solvability their best result
is O(nm). This is a factor of n slower than our solvability test for normal
dominance constraints (see Algorithm 7.4).

This gap gives rise to the question whether the approach from Chap-
ter 7 can be generalized to weakly normal dominance graphs. The answer
is probably negative as the example D on the left-hand side of Figure 9.5
demonstrates. It is easy to see that D is unsolvable. U(D) contains three
simple cycles: C; = [a,b, f,d, g,¢,a], Cy = [a,b, f,d,a] and C5 = [a, ¢, g,d, a.
We will show that none of these cycles alone proves unsolvability, i.e. none of
them corresponds to an unsolvable subgraph of D. The graph D, = D\ (a, d)
is solvable (cf. middle of the figure) and U(D;) contains C;. An analogous
observation can be made for Dy = D \ (¢, g) and C; (see right-hand side of
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the figure), as well as for D3 = D \ (b, f) and C3 (symmetrical to Dy and
Cy).

Figure 9.5: An unsolvable weakly normal dominance graph D without an
unsolvable simple cycle.

Niehren and Thater [NT03] show that enlarging the subclass of efficiently
solvable dominance constraints from normal to weakly normal dominance
constraints is relevant for computational linguistics. They describe a sublan-
guage of Minimal Recursion Semantics (see [CFS97]), which is called MRS-
nets. By defining a back-and-forth translation between MRS-nets and normal
dominance nets (a subclass of weakly normal dominance constraints), they
show that the algorithms in [BDMNO4] can be applied to MRS-nets.

9.2 Related algorithms

In this section we give an overview about the algorithms that have been de-
veloped for solving dominance constraints. To the best of our knowledge the
first algorithms for solving dominance constraints are based on constraint
programming (see [DG99] and [DN99]). The implementations are based on
set constraints [MM97]. The value of a set variable S is a set (usually of
integers), hence the domain of S is a set of sets. The encoding of a domi-
nance constraint as a constraint program with set constraints is similar in all
approaches. We follow the presentation of Koller and Niehren [KN02].
Consider a dominance constraint ¢ with n variables X;,..., X,. The
following descriptions become easier if we assume that ¢ has a solution (7, @),
which we do not know yet of course. For any pair {X;, X;} of variables we
can distinguish the relative position of the nodes n; = o(X;) and n; = a(X;)
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in 7: n; = nj, or n; is a proper ancestor of n; (denoted as n; <" n;), or n; is a
proper descendant of n;, or neither of the three previous cases holds, which
we denote by n; L n;. With respect to a variable X; we can partition the
variable indices in four disjoint sets:

e Eq;:= {j|a(Xi) = a(X))}

e Up; := {j|a(X;) 9t a(X))}

e Down; := {j|a(X;) <* a(X;)}
e Disj; := {j | a(X;) L a(X;)}

As we do not know these sets, we introduce finite set variables egq;, up,,
down; and disj;, which allow us to reason about these sets even if they are
not determined. For convenience we add two auxiliary set variables equp;
and egdown,, which will be constrained to be the union of eg; with up, and
down;, respectively. Moreover, we introduce for each variable X; a finite
domain integer variable label; which represents the — currently unknown —
label of a(X;) in 7. In addition, we have a tuple variable children; for the
children of «(X;). The variable X; itself is modelled as a tuple variable z;.
For each variable X; of ¢ we post the following constraints to the solver:

x; = [eq;, up;, down,;, disj,;, children;, label;]
A i€ eq N eq;Uup,Udown; U disj, = [1..n]
A equp; = eq; Uup, N eqdown; = eq; U down;

Now we show how the literals of ¢ are modelled in the constraint program:

[ X <* X;] = equp; C equp; N eqdown; 2 eqdown,
N disj; C disj;
[ Xi:f (X, X5,)] = label; =id(f) A children; = [Tjys .oy,
A down; = eqdownj, U...U eqdown;,
N up; =equp; A ... N up; = equp;
[Xi#X] = eqneg=0

These constraints alone do not guarantee that every solution of the con-
straint program encodes a forest. Consider for example the dominance con-
straint X # Xo; there is a solution where eq, = up, = {1}, eqy, = up, = {2}.
So for any pair of variables {X;, X} of ¢ we introduce an integer variable
R;; and impose the following constraint:

Rij € [14] N XOF(RZ'j = 1/\37,5 = Ty, Rij :2/\|[Xz <+ Xj]l:
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where

[X: <™ X5]
[Xi L X;]

[Xi< X;] A [X# X ]
eqdown,; C disj; N eqdown; C disj,

These constraints enforce that any solution of the constraint program en-
codes a forest. The variable R;; is useful for enumerating all solutions of the
constraint program during the search process.

The nice property of the solvers based on set constraints is that they can
handle arbitrary dominance constraints. Moreover, the practical applications
in computational linguistics usually involve not only dominance constraints.
Here the flexibility of the constraint programming approach becomes appar-
ent: Other constraints can be integrated seamlessly into the existing program.
But the approach that uses set constraints has some major drawbacks. Since
even deciding solvability for dominance constraints is NP-complete, there are
no non-trivial runtime guarantees. And applied to instances from computa-
tional linguistics these solvers are too slow to be really practical; observe that
the program above uses ©(n?) disjunctive propagators (xor) for a constraint
with n variables.

In fact, with respect to the class of normal dominance constraints the
solvers based on set constraints were outperformed by the first polynomial
time solver by Althaus et al. [ADK'01]. We want to point that these al-
gorithms have been integrated in the constraint solver of Oz [Smo95]. This
makes sure that the advantages of the constraint programming approach are
not lost.

The enumeration algorithm for minimal solved forms by Althaus et al. is
similar to the procedure Enuml in this thesis (see Algorithm 8.1). The core
of their algorithm is also a harmful cycle? test. Their test is different from
Algorithm 7.4 and it is less efficient.

We sketch the approach in [ADK'01] and [ADK"03]. The idea is to
transform the problem of finding a harmful cycle in an undirected domi-
nance graph U to a matching problem in an auxiliary graph A. For every
edge e = {u,v} in U there are two nodes ng, and ne, in A. The edge set
of A is partitioned in two sets M and K. M contains an edge {ney, ney } for
every edge e = {u,v} of U. For every admissible bend (e, v, f) in U (cf. Def-
inition 7.2) we have an edge {ne,,ns,} in K. It is easy to see that M is a
perfect matching in A. Althaus et al. show that A contains a harmful cycle
iff A contains a perfect matching M’ that differs from M.

The construction of the auxiliary graph is illustrated by an example in Fig-
ure 9.6. Each edge of U gives rise to two nodes in A (indicated as black

“In [ADK™*01] these cycles are called hypernormal cycles.
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bullets) and to an edge in M (indicated by a thick solid line). Every admissi-
ble bend in U corresponds to an edge in K (indicated by a thick dashed line).
Only one bend in U is forbidden, it is marked by “!” in the middle of the
figure. The harmful cycle C' = [a,b,d, c|] in U corresponds to an alternating
cycle C'" in A. Hence, it gives rise to the perfect matching M’ = M & C' in
A, which is depicted on the right-hand side of the figure. Observe that the
“harmless” cycle [d,c, f,g,h,e] in U does not correspond to an alternating
cycle in A.

N SN
N . N
N . N
N . N
N . N
N . N
\/ \

| f

N e
. .
. .
. .
. .

Figure 9.6: An example illustrating the construction of the auxiliary graph.

In order to test whether A contains a perfect matching M’ # M, one can
use an algorithm by Gabow et al. [GKT01] which has a linear running time in
the size of A. Unfortunately, there are examples where A is much larger than
U. Let n be the number of nodes and m be the number of edges of U. Then
A has n' = m nodes and it may have m’ = ©(nm) edges. Thus the worst
case running time of the solvability test is ©(nm). Using this test, Althaus et
al. obtain an enumeration algorithm that can enumerate all minimal solved
forms of a dominance graph in time O(n*m) per solved form.

The matching uniqueness test by Gabow et al. is based on Edmonds’
blossom-shrinking idea [Edm65]. A reader who is familiar with this tech-
nique may have observed some similarities with the procedure Collect (see
Algorithm 7.5) that is used by the harmful cycle test in this thesis. Al-
gorithm 7.4 operates directly on the dominance graph and its worst case
running time is O(m), which is a factor of n better.

Finally, we briefly discuss the algorithms by Bodirsky et al. [BDMNO04],
which can be applied to weakly normal dominance graphs. Their work is
based on the notion of freeness. A node u in a dominance graph D is called
free if there is a solved form of D where u has indegree zero. So if u is free,
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one can construct a solved form D' of D where u is the root of a tree in the
forest D'. Clearly, if D is solvable, it must contain at least one free node.
Bodirsky et al. show that a free node u satisfies the following two properties:

1. The indegree of v in D is zero.

2. In U(D) there are no two distinct tree edges e and f which are incident
to u and belong to same biconnected component® of U(D).

Let D be a dominance graph which consists of a single connected compo-

nent. Suppose we want to find a solved form of D. The algorithm of Bodirsky
et al. first chooses some candidate u for a free node, i.e. a node that satisfies
the two properties described above. (If no such candidate exists, the algo-
rithm fails.) Then u is removed from D, and for each connected component
of D\ u a solved form is computed recursively. Finally, these solved forms
and u are assembled to a solved form of D.
It can be shown that if the algorithm fails (for some choice of candidates),
then D is not solvable. Moreover, the algorithm can be easily modified to
enumerate all minimal solved forms of D: If there are several candidates for
a free node, one has to consider all of them instead of choosing only one of
them.

The running time of the solvability test by Bodirsky et al. is O(nm),
which is an order of magnitude slower than Algorithm 7.4. Concerning the
enumeration of solved forms, they match the asymptotic running time of the
procedure Enum2 (see Algorithm 8.4), which is O(/N - nm) to enumerate all
N minimal solved forms. Of course, one has to take into account that their
algorithms can be applied to a larger class of problems.

To summarize the second part of this thesis, one can say that we have
developed efficient algorithms which can be applied to practical problems
in computational linguistics. They contributed to proving that dominance
constraints are not only a theoretical tool for modelling problems, but also
give rise to practical implementations to solve these problems. For the class of
normal dominance graphs, our algorithms can compete with the best known
enumeration algorithms and they outperform all other known solvability tests
by at least a factor of n.

5A graph G is biconnected if it cannot be disconnected by the removal of a single node.
A biconnected component of U(D) is a maximal biconnected subgraph.



Summary

This thesis is divided in two parts: The first part discusses propagation
algorithms for some constraints. The second part deals with dominance
graphs, these graphs can be used to represent and solve some tree processing
problems arising in computational linguistics.

A constraint satisfaction problem (CSP) consists of a finite set of variables
Xi,..., X, with associated domains D1, ..., D, and a finite set of constraints
on these variables. The task is to find a solution, which means a variable
assignment that maps every variable X; to a value in D; and satisfies all con-
straints. The set of all possible variable assignments (including assignments
that are not solutions) is called the search space.

A very successful approach for solving CSPs interleaves constraint propa-
gation, which prunes parts of the search space that do not contain a solution,
and search, which explores the remaining parts. Thus the overall performance
of this approach depends heavily on the complexity of the propagation algo-
rithms and the amount of pruning that they achieve.

We present propagation algorithms for the following constraints:

e Sortedness and Alldiff:
The constraint Sortedness(Xi, ..., Xn;Y1,...,Y,) holds iff sorting the
sequence [Xi,...,X,] (in non-descending order) yields the sequence
[Y1,...,Y,]. The constraint Alldiff(X;,..., X,) holds iff Xi,..., X,
are pairwise different.
We assume that all variable domains are intervals and for each of the
two constraints we develop a bound-consistency algorithm that runs in
time O(n) plus the time needed to sort the interval endpoints.

e WeightedPartialAlldiff (abbreviated as WPA):
The constraint WPA(Xq, ..., X,; undef;T; W) is a generalization of
Alldiff. Not all assignment variables X, ..., X, have to take different
values; the special value undef may be assigned to several variables.
Only those assignment variables which are not equal to undef have to
take pairwise distinct values. Moreover, with every value different from
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undef that occurs in one of the domains Dom(X}), ..., Dom(X,) we
associate a weight that is determined by the value-weight table 7. The
constraint states that )" , weight(X;) = W, where W is the weight
variable.

We show that the problem of deciding whether this constraint has a
solution is NP-complete. But we identify some application scenarios
where we can achieve arc-consistency for the assignment variables in
time O(nm). Here m is the sum of the cardinalities of the domains of
the assignment variables.

e NonQuerlapping:

This constraint states that two objects in the two-dimensional plane
R? should not overlap. The shape of each object is determined by a
convex polygon Shp and the position of each object is specified by two
variables X and Y. The actual object is obtained by applying the
translation vector (X,Y’) to Shp.

We suppose that the variable domains are (closed) intervals of real
numbers, and we give a bound-consistency algorithm. Under the as-
sumption that comparisons and basic arithmetic operations can be per-
formed in constant time, the running time of our algorithm is linear in
the size of the input polygons.

The second part deals with a tree processing problem from computational
linguistics. The problem is given to us in the form of a dominance graph.
Informally, such a graph contains a collection of tree fragments which have
to be assembled into a tree T such that some given constraints are satisfied.
These constraints have the form “node u should dominate node v”, which
means that v should be an ancestor of v in 7T'.

We describe a criterion which allows us to decide efficiently whether a
given dominance graph D is solvable: We show that solvability is equivalent
to the absence of certain cycles in D (so-called harmful cycles). Based on
this criterion we develop an algorithm for deciding solvability of D that runs
in time O(n + m), where n is the number of nodes and m is the number
of edges of D. Finally, we present an algorithm that can enumerate all N
(minimal) solved forms of D in time O(m + N - nm).



Zusammenfassung

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil behandeln wir Propagier-
ungsalgorithmen fiir einige Constraints. Der zweite Teil beschaftigt sich mit
Dominanzgraphen; diese Graphen dienen der Beschreibung von Baumverar-
beitungsproblemen aus dem Bereich Computer-Linguistik.

Ein Constraint-Problem ist gegeben durch eine endliche Menge von Vari-
ablen Xi,...,X,, die zugehorigen Wertebereiche Dy,..., D, und eine end-
liche Menge von Constraints (Bedingungen, Anforderungen) fiir diese Vari-
ablen. Eine Losung des Problems ist eine Variablenbelegung, die jeder Vari-
ablen X; einen Wert in ihrem Wertebereich D; zuweist, so dafi alle Con-
straints erfiillt sind. Der Suchraum eines Constraint-Problems ist die Menge
aller Variablenbelegungen (auch solche, die keine Losung sind, gehéren dazu).

Ein erfolgreicher Ansatz zur Lésung von solchen Problemen besteht darin,
abwechselnd Constraint-Propagierung und Suche einzusetzen. Dabei dient
die Propagierung dazu, Teile des Suchraumes zu eliminieren, die keine Losung
enthalten, so dal die Suche nur noch einen kleinen Teil des urspriinglichen
Raumes explorieren mufl. Somit hangt der Erfolg dieses Ansatzes stark von
der Komplexitat der Propagierungsalgorithmen ab und davon, wieviel des
Suchraumes sie eliminieren konnen.

Wir beschreiben Propagierungsalgorithmen fiir die folgenden Constraints:

e Sortedness und Alldiff:
Der Constraint Sortedness(Xi, ..., Xn;Y1,...,Yy,) ist genau dann er-

fiillt, wenn man die Sequenz [Y7, . .., Y, | durch (aufsteigendes) Sortieren
der Sequenz [X7,...,X,] erhdlt. Der Constraint Alldiff(Xq,...,X,)
ist genau dann erfiillt, wenn den Variablen X, ..., X, paarweise ver-

schiedene Werte zugewiesen werden.

Die Wertebereiche, auf denen unsere Propagierer arbeiten sind In-
tervalle. Unsere Algorithmen erreichen “bound-consistency”, d.h. die
Endpunkte der Ausgabeintervalle sind konsistent. Die Laufzeit ist O(n)
plus die Zeit, die zum Sortieren der Endpunkte der Eingabeintervalle
bendtigt wird.

209
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e WeightedPartial Alldiff (abgekiirzt WPA):

Der Constraint WPA(Xj, ..., X,; undef;T; W) ist eine Verallgemeine-
rung von Alldiff. Die Werte der Variablen X1, ..., X,, miissen nicht alle
unterschiedlich sein; der spezielle Wert undef kann mehreren Variablen
zugewiesen werden. Nur die von undef verschiedenen Variablen miissen
paarweise verschiedene Werte annehmen. Jedem Wert v (auler undef)
ist durch die Gewichtstabelle T ein Gewicht weight(v) zugeordnet. Der
Constraint sagt aus, da§ Y ;| weight(X;) = W sein mu8.

Wir zeigen, dafl das Erfiillbarkeitsproblem fiir WPA-constraints NP-
vollstandig ist. Fiir einige Anwendungsszenarien entwickeln wir Al-
gorithmen, die “arc-consistency” erreichen und die Laufzeit O(nm)
haben, wobei m die Summe der Kardinalitiaten der Wertebereiche von
Xi,..., X, bezeichnet. (“Arc-consistency” bedeutet, daf} jeder Wert in
einem Ausgabe-Wertebereich Teil einer Losung des Constraints ist.)

e NonQuerlapping:

Dieser Constraint legt fest, daf} sich 2 zwei-dimensionale Objekte nicht
iiberlappen. Das Aussehen eines Objektes wird jeweils durch eine kon-
vexes Polygon Shp festgelegt, und seine Position wird durch zwei Vari-
ablen X und Y beschrieben. Das eigentliche Objekt erhalt man, indem
man Shp um den Translationsvektor (X,Y") verschiebt.

Wir gehen davon aus, dafl die Wertebereiche der Variablen (abgeschlos-
sene) Intervalle von reellen Zahlen sind. Unser Algorithmus erreicht
“bound-consistency” (vgl. oben). Unter Annahme das Vergleiche und
die grundlegenden arithmetischen Operationen auf reellen Zahlen in
konstanter Zeit ausgefiihrt werden konnen ist die Laufzeit linear in der
Gréfle der Polygone in der Eingabe.

Im zweiten Teil beschaftigen wir uns mit einem Baumverarbeitungsprob-
lem aus der Computerlinguistik. Das Problem wird durch einen Dominanz-
graphen beschrieben. Solch ein Graph enthilt eine Menge von Baumfrag-
menten, die zu einem Baum 7" zusammengesetzt werden sollen, so dafl die
Vorfahrrelation von 7" gewisse Bedingungen erfiillt. Diese haben die Form
“der Knoten u soll den Knoten v dominieren”, d.h. u soll ein Vorfahr von v
in T sein.

Wir beschreiben ein Kriterium, das die Grundlage fiir einen effizien-
ten Losbarkeitstest bildet: Ein Dominanzgraph D ist genau dann, wenn er
keinen “bosen Zyklus” (harmful cycle) enthalt. Unser Losbarkeitstest hat
eine Laufzeit von O(n + m), wobei n die Anzahl der Knoten und m die
Anzahl der Kanten von D ist. Dariiber hinaus entwickeln wir einen Algo-
rithmus, der alle N (minimalen) geldsten Formen von D in Zeit O(m+N-nm)
aufziahlen kann.
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