Constrained Shortest Paths
and Related Problems

Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultat I
der Universitit des Saarlandes

von

Mark Ziegelmann

Saarbrucken
30. Juli 2001

Datum des Kolloquiums: 30. Juli 2001

Dekan der Naturwissenschaftlich-Technischen Fakultat I:
Professor Dr. Schulze-Pillot-Ziemen

Gutachter:
Professor Dr. Kurt Mehlhorn, MPI fiir Informatik, Saarbriicken
Professor Dr. Ulrich Lauther, Siemens AG, Miinchen

Kurzzusammenfassung

Das klassische Kiurzeste-Wege-Problem, bei dem man einen Pfad minimaler Kosten
zwischen zwei Knoten eines Graphen sucht, ist effizient in polynomieller Zeit 16sbar. In
vielen praktischen Anwendungen wollen wir jedoch, dass ein Pfad bestimmte Budget-
oder Resourcenbedingungen erfiillt. Dies ist das Kiurzeste-Wege-Problem mit Nebenbe-
dingungen, das zur Klasse der “schweren” Probleme gehort, fur die wir keinen poly-
nomiellen Algorithmus kennen. In dieser Arbeit stellen wir eine 2-Schritt-Methode
fir das Kirzeste-Wege-Problem mit Nebenbedingungen vor. Wir losen zuerst eine
Relaxierung des Problems und erhalten eine obere und untere Schranke, um dann
durch Schlieen der Liicke durch geschicktes Auflisten von Pfaden das Optimum zu
bestimmen. Wir vergleichen bekannte und neue Verfahren sowohl theoretisch als auch
experimentell. Die 2-Schritt-Methode ist auch auf eine allgemeinere Klasse von Netz-
werkoptimierungsproblemen mit Nebenbedingungen anwendbar. Wir illustrieren die
generische Methode anhand einiger Beispiele. Danach stellen wir unser Softwarepaket
CnoP vor, das dieses generische Verfahren implementiert, sowie alle bekannten Ver-
fahren fir das Kiirzeste-Wege-Problem mit Nebenbedingungen zur Verfugung stellt.

Abstract

The classical shortest path problem, to find a path of minimal cost between two nodes
in a graph, is efficiently solvable in polynomial time. However, in many applications
we also have additional budget or resource constraints on a path. This problem is
known as constrained shortest path problem and unfortunately belongs to the class
of “hard” problems for which no polynomial time algorithm is known. In this thesis,
we propose a 2-step method for the constrained shortest path problem. We first solve
a relaxation to get upper and lower bounds and then close the gap with clever path
ranking to obtain the exact solution. We compare different old and new methods both
theoretically and experimentally. The 2-step method also works for a more general
class of constrained network optimization problems. We illustrate the generic approach
using several examples. We have also developed a software package CNOP that provides
this generic 2-step approach as well as all state of the art algorithms for constrained
shortest paths.

Acknowledgments

The work on this thesis was carried out from 1998-2001 at the Max-Planck-Institut
fir Informatik in Prof. Dr. Kurt Mehlhorn’s research group. I want to thank the
Deutsche Forschungsgemeinschaft for granting me a scholarship as a member of the
Graduiertenkolleg “Effizienz und Komplexitat von Algorithmen und Rechenanlagen”.
The working conditions at MPI have been exceptional. Excellent technical facilities
made my life easy, generous travel support allowed me to meet researchers from all
over the world at workshops and conferences, and the large number of researchers and
guests in the institute created a stimulating research atmosphere.

Foremost, I want to thank my advisor Prof. Dr. Kurt Mehlhorn for giving me the op-
portunity to work in his excellent Algorithms and Complexity Group. He introduced
me to the constrained shortest path problem and I have learned a great deal from him.
His teaching and research style is really inspirational.

Thank you to Prof. Dr. Ulrich Lauther from Siemens AG for inviting me to an inter-
nal workshop on applied discrete optimization. We had interesting discussions on the
constrained shortest path problem that were the start of a fruitful collaboration.

I would also like to thank Prof. Dr. Jorg-Riidiger Sack from SCS Carleton for introduc-
ing me to the geodesic shortest path problem and working with me on the geometric
version of the constrained shortest path problem.

The contributions of my friends and collegues have been numerous and invaluable. I
enjoyed all the discussions of not only scientific content. The cycling and the running
group also helped me to keep my mind fresh. Thank you Andreas, Christian, Ernst,
Frank, Fritz, Marite, Michael, Nicola, Susan, the Stefans, Sven, Thomas, Uli, Volker
and all the others.

Thanks to Andreas Crauser and Bobbye Pernice for proofreading this thesis and for
their constructive comments. Stefan Funke and Michael Seel also had numerous sug-
gestions that helped to improve the presentation.

Special thanks go to Andreas Crauser, Stefan Funke, Nicola Geismann, and Michael
Seel for always being there during my academic and private rollercoaster ride.

A big thank you to Katrin Borchers for being my soul sister and adding another di-
mension to my life.

Last, but certainly not least, I want to thank my family for their endless love and
support.

Mark Ziegelmann
Saarbricken, July 2001

Contents

1 Introduction

2 Preliminaries

2.1

2.2

2.3

3 The
3.1
3.2

Basic Graph Theory and Network Algorithms
2.1.1 Definitions Lo e
2.1.2 Shortest Paths oo
2.1.3 Minimum Spanning Trees
2.1.4 Maximum Flows and Minimum Cuts
Basic Complexity Theory
221 NP-completenesso o
2.2.2 Approximation Schemes L.
Linear Optimization,
2.3.1 Linear Programming
2.3.2 Polyhedra
2.3.3 Solving Linear Programs
2.3.4 Integer Linear Programming
2.3.5 Lagrangean Relaxation
Constrained Shortest Path Problem

Problem Definition oo oL
Previous Work L

3.2.1 Complexity e

o N NN

10
11
12
12
14
14
14
16
17
19
20

CONTENTS

3.2.2 Dynamic Programming Recursion 27
3.2.3 eApproximations. oL o oo 28
3.2.4 TLabeling Approaches, 30
325 PathRanking o 31
3.2.6 ILP Formulation 32
3.2.7 Relaxation Methods 33
3.3 Solving the Relaxation oo 38
3.3.1 A Different ILP Formulation 38
3.3.2 The Single Resource Case, 40
3.3.3 Running Time of the Hull Approach 43
3.3.4 The Multiple Resource Case 50
3.3.5 The Parametric Shortest Path Problem 53
34 Closingthe Gap 56
3.4.1 Problem Reductions oL 57
3.4.2 Closing the Duality Gap 58
3.0 Experiments. e 63
3.5.1 The Benchmarks, 63
3.5.2 Single Resource Case 66
3.5.3 Multiple Resource Case 78
3.6 Problem Variantso Lo 82
3.7 Conclusion e 83
Constrained Network Optimization 85
4.1 Constrained Network Optimization Problems 85
4.1.1 The General Hull Approach 86
4.1.2 Closing the Gap with Solution Ranking 89
4.2 Constrained Minimum Spanning Trees 92
4.2.1 Complexity e 92
4.2.2 Solving the Relaxation 93
4.2.3 Performance Guarantee 95
424 APTASfor CMST 97
4.2.5 Problem Reductions, 98

ii

CONTENTS

426 GapClosing. e
4.2.7 Experiments e
4.3 The Table Layout Problem
4.3.1 Problem Formulation
4.3.2 Complexity
4.3.3 Reduction to Minimum Cut
4.3.4 Solving the Lagrangean Relaxation
4.3.5 Closingthe Gap
4.4 Constrained Geodesic Shortest Paths
44.1 Geodesic (Weighted) Shortest Paths
4.4.2 Applying the Hull Approach
443 Experiments e
4.4.4 An e-0-Approximation Scheme00

4.5 Conclusion i e e e e e

5 CNOP - A Constrained Network Optimization Package
5.1 Design of the CNOP Package
5.2 Special Case: Constrained Shortest Paths
5.3 Special Case: Constrained Minimum Spanning Trees

54 CONOP Availability
6 Discussion
Bibliography
Summary
Zusammenfassung

Index

125
125
129
131
132

135

137

143

145

147

iii

Chapter 1

Introduction

The shortest path problem is one of the fundamental problems in computer science.
It has been well studied and efficient polynomial time algorithms are known. Shortest
path problems frequently arise in practice since in a variety of application settings we
wish to send some material (e.g., a data packet, a telephone call, or a vehicle) between
two specified points in a network as quickly, as cheaply, or as reliably as possible.

However, in a practical setting we are often not only interested in a cheapest path or
a quickest path but rather in a combination of different criterias, e.g. we want to have
a path that is both cheap and quick. This is known as the bi- or multicriteria shortest
path problem. Since optimizing over all criteria at once is not possible we choose one
criteria as the cost function that we want to minimize, the others as resource functions
and impose resource (or budget) limits on the maximal resource consumption of a
path. The constrained shortest path problem is to find a minimum cost path between
two nodes whose resource consumptions satisfy the resource limits.

Applications

The constrained shortest path problem has a large number of practical applications:

The first application that comes to mind is route planning in traffic networks. We want
to go from A to B and for example want to minimize the possibility of traffic congestion
while imposing a length constraint on the path (see Figure 1.1). Alternatively, we want
to go from A to B as fast as possible but have budget constraints on fuel consumption
and road fees.

CHAPTER 1. INTRODUCTION

b EDA 4.3 (0) 19912000 Max-Planck-Tnstitut Fiir Informati

Figure 1.1: Minimum congestion path satisfying length constraint (areas of congestion are
shaded). The minimum cost path is brown, the minimum resource path yellow and the
constrained shortest path green.

In communication networks, we have the quality of service (QoS) routing problem. We
are searching for a path of minimum costs that obeys given delay or reliability bounds.
This is again a constrained shortest path problem. Further information can be found
in the papers of Orda (1998) and Xue (2000).

There are also other applications that can be modeled as constrained shortest path
problems:

Elimam and Kohler (1997) show how to model two engineering applications as (multiple
resource) constrained shortest path problems: optimal sequences for the treatment
of wastewater processes and minimum cost energy-efficient composite wall and roof
structures.

Dahl and Realfsen (2000) and Nygaard (2000) studied the linear curve approzimation
problem and showed how to model this as a constrained shortest path problem (see
Section 3.5). They find a path that corresponds to a minimal error approximation using
a limited number of breakpoints (see Figure 1.2). Applications are data compression in
areas like cartography, computer graphics, and image processing. In the area of traffic
and communication networks this is known as routing problem with hop constraints,
i.€., a limit on the number of path links.

There are several applications in operations research that involve constrained shortest
paths as a subproblem in column generation methods:

«r 5 LEDA 4.3 (c) 1991-2000 Max-Planck-Institut fiir informatik rﬂ LEDA 4.2 (c) 1991-2000 Max-Planck-institut fiir informatik

powered by LEDA | | LEDA 4.2

Figure 1.2: Coastline of Corsica (800 points) and minimum error approximation using only
200 points

Borndorfer and Lébel (2001) consider the duty scheduling problem and propose an
adaptive column generation algorithm that needs to solve multiple resource constrained
shortest paths as a subproblem.

Jahn, M&hring, and Schulz (1999) study a route guidance problem. They consider the
optimal routing of traffic lows with length restrictions in road networks with conges-
tion, and also propose a column generation method with constrained shortest paths as
subproblem.

A similar problem in the QoS area was investigated by Holmberg and Yuan (1997) who
also need constrained shortest paths as a subproblem in a column generation approach.
Liibbecke and Zimmermann (2000) proposed a column generation method for the
scheduling of switching engines that also needs to solve constrained shortest paths
as subproblem.

We see that the constrained shortest path problem is of immense practical interest in
different areas of operations research.

Unfortunately, the introduction of even a single resource constraint turns the problem
into a hard problem where we do not know a polynomial time algorithm to solve it.
However, regarding its huge practical importance we would still like to solve the problem
(or at least get an approximation) as efficiently as possible.

In this thesis we study the constrained shortest path problem both theoretically and
experimentally. We also consider related problems like constrained minimum span-

CHAPTER 1. INTRODUCTION

{L_v LEDA 4.2 (c) 1991-2000 Max-Planck-Institut fiir Informatik {L:] LEDA 4.2 (c) 1991-2000 Max-Planck-Tnstitut fiir Informatik

IEDA42 1 IEDA 4.2

Figure 1.3: Minimum cost spanning tree and Minimum cost reliability constrained spanning
tree. Width of edges corresponds to fault probability.

ning trees where we want to find a spanning tree of minimal cost while its resource
consumptions satisfy the resource limits (see Figure 1.3).

Our Contribution

There is a variety of work on constrained shortest paths coming from different commu-
nities like operations research, algorithms, communication networks, and even signal
processing. Almost all papers come up with essentially the same algorithm solving a
relaxation of the problem for the single resource case. They only differ in the pre-
sentation of the method. Some derive it from geometric intuition, others adopt the
Lagrangean relaxation viewpoint. Starting from a new ILP formulation of the prob-
lem, we will combine geometric intuition and linear programming theory to obtain a
unified understanding of the method. Using this combined view, we are the first to
prove a tight polynomial runtime bound for this method. We will show that the relax-
ation can be solved with O(log(nRC)) parametric shortest path computations, where
n is the number of nodes in the network and C' and R denote the maximal cost and
resource consumption of an edge, respectively. Our reformulation also allows us to
extend the method to the multiple resource case, which has been an open problem up
to now.

Solving the relaxation gives us upper and lower bounds for our problem. Previous
papers suggested different gap closing steps to obtain a 2-step method for constrained

shortest paths. We again give a geometric intuition of the gap closing step and propose
a special labeling approach to close the gap.

Then we experimentally compare all state of the art methods for constrained shortest
paths on different benchmarks. This is the first detailed experimental runtime compar-
ison for constrained shortest paths.

We then show that the 2-step method can be generalized to a broader class of con-
strained network optimization problems. All we need is a function returning the un-
constrained optimum and a function ranking solutions. The single resource runtime
bound for the relaxation extends. We illustrate the generic method using three ex-
amples: constrained minimum spanning trees, table layout, and constrained geodesic
shortest paths.

We have developed a software package CNOP that implements the generic 2-step ap-
proach. A user only has to specify a function solving the corresponding unconstrained
problem and a function ranking problem solutions. Additionally, CNOP offers all state
of the art methods for constrained shortest paths and can be used as a testbed to see
which approach is most suited for a special application. While several implementations
of different methods exist, this is the first package that makes all state of the art meth-
ods publically available. It also offers the first publicly available implementation for
the constrained minimum spanning tree problem. The flexibility of the CNOP pack-
age allows the user to experiment with other bi- or multicriteria network optimization
problems.

We presented our results at the 8th Annual European Symposium on Algorithms 2000
in Saarbriicken and the 3rd Workshop on Algorithm Engineering and Experiments 2001
in Washington, DC.

Outline

We first review some basic notation, central algorithms and techniques in Chapter 2.
Chapter 3 deals with the constrained shortest path problem. We propose a new re-
laxation formulation that allows us to derive simple combinatorial algorithms to solve
the relaxation in the single and the multiple resource case. We discuss gap closing
methods to obtain a 2-step approach and finally evaluate the different methods exper-
imentally. In Chapter 4 we extend our 2-step approach to the more general class of
constrained network optimization problems and discuss three examples: constrained
minimum spanning trees, the table layout problem, and constrained geodesic shortest
paths. In Chapter 5 we present our software package CNOP that implements the generic
2-step approach. Finally, we close with a discussion of our results and open problems
in Chapter 6.

Chapter 2

Preliminaries

In this chapter we give a short and succinct overview of all the mathematical tools, ter-
minology, and basic results we are going to use. The reader familiar with the notations
introduced here may skip this chapter and refer to it when necessary.

2.1 Basic Graph Theory and Network Algorithms

In this section we give several basic definitions from graph theory and review the ideas of
some important network algorithms. Further details can be found in Ahuja, Magnanti,
and Orlin (1993).

2.1.1 Definitions

A directed graph G = (V, E) consists of a set V' of nodes and a set E of edges whose
elements are ordered pairs of distinct nodes. We denote an edge e from node u to node
v by e = (u,v). A directed network is a directed graph whose edges and/or nodes have
associated numerical values (e.g., costs, capacities, etc).

We define an undirected graph in the same manner as we define a directed graph except
that edges are unordered pairs of distinct nodes. We write e = {u,v} for an undirected
edge connecting nodes u and v. In undirected graphs, an edge can be viewed as a “two-
way” street, whereas in directed graphs, an edge is only “one-way”. An wundirected
network is an undirected graph whose edges and/or nodes have associated numerical

CHAPTER 2. PRELIMINARIES

values.

Throughout this thesis we often make no distinction between graphs and networks,
so we use the terms synonymously. We also often speak of graphs without specifying
whether the graph is directed or not. In that case, the meaning can be derived from
the context or is simply valid for both types.

We let |V| = n denote the number of nodes and |E| = m the number of edges in a
graph G. For an edge e = (u,v) we call u the source and v the target of the edge. Both
u and v are called endpoints of the edge. Two edges are called adjacent if they share
a common endpoint. The degree of a node is the sum of the number of its incoming
edges and the number of its outgoing edges.

A graph G' = (V',E') is a subgraph of G = (V,E) f V' C V and E' C E. Tt is a
spanning subgraph if V! =V and E' C E.

A path between two nodes u and v in a graph G is an alternating tuple
(u, (u,w1), w1, ..., w:, (w,,v),v) of nodes of V" and edges of F starting in u and ending
in v so that every node is adjacent to its neighbouring edges. If all nodes are pairwise
distinct we have a simple or loopless path.

A cycle is a simple path (i1, (41,42), %2, - - -, (ir—1,%r),%r) together with the edge (ir,%1).
A graph is called acyclic if it contains no cycle.

We will say that two nodes ¢ and j are connected if the graph contains at least one path
from node 7 to node j. A graph is connected if every pair of nodes is connected.

A tree is a connected graph that contains no cycle. A tree T is a spanning tree of G if
T is a spanning subgraph of G.

A cut is a partition of the node set V' into two parts S and S = V —S. Each cut defines
a set of edges consisting of those edges that have one endpoint in S and the other in
S. An s-t-cut is defined with respect to two distinguished nodes s and ¢ and is a cut
[S, S] satisfying the property that s € S and t € S.

Paths, spanning trees and cuts will play an important role in the following chapters.
We now briefly review network algorithms for these structures.

2.1.2 Shortest Paths

In the shortest path problem (SP) in a network G = (V, E) with cost function ¢ defined
on the edges, we want to compute the minimum cost (or shortest) path from a node s
to all other nodes. Shortest paths have the following properties:

Property 1: If the path (s = i1, (41,%2),%2,..., (4h—1,%4),%, = k) is a shortest path

2.1. BASIC GRAPH THEORY AND NETWORK ALGORITHMS

from node s to node k, then for every ¢ = 2,3,...,h — 1, the subpath (s =
i1, (11,%2), 92, .., (fg—1,%¢), Iq) is a shortest path from node s to node 4.

Property 2: Let d(j) denote the shortest path distance from node s to node j. Then
a directed path P from s to k is a shortest path if and only if d(j) = d(i) + ¢;; for every
edge (i,7) € P.

There are two general approaches for solving the shortest path problem efficiently:
label-setting and label-correcting methods.

Label-Setting Algorithms: The label-setting algorithms assign tentative distance
labels to the nodes and then iteratively identify a true shortest path distance (a per-
manent label) to one or more nodes at each step. They work for non-negative cost
functions.

algorithm label-setting :

PERM =0

TENT =V

d(i) = oo for each node i € V
d(s) =0

while |PERM| < n do {

choose i € TENT with d(i) = min{d(j) : j € TENT}
PERM = PERM U {i}

TENT = TENT \ {i}

for_all_adj_edges (i,7) of i do

if d(j) > d(i) + ci; then d(j) = d(i) + c;;

This label-setting algorithm is known as Dijkstra’s algorithm. Using Fibonacci heaps,
it can be shown to run in O(nlogn + m) time.

Label-Correcting Algorithms: Label-correcting algorithms can also deal with neg-
ative edge lengths and make use of the shortest path optimality conditions:

Theorem 2.1.1 (Shortest Path Optimality Conditions): For every node j € V,
let d(j) denote the length of some directed path from the source node s to node j.

CHAPTER 2. PRELIMINARIES

Then the numbers d(j) represent shortest path distances if and only if they satisfy the
following optimality conditions:

d(j) < d(i) +ey V(i,j) € E.

The label-correcting algorithms maintain a distance label with each node and iteratively
update these labels until the distance labels satisfy the optimality conditions.

algorithm label-correcting :

d(i) = oo for each node i € V
d(s) =0
LIST = {s}

while LIST #) do {

remove node % from LIST
forall_adj_edges (i,j) of i do
if d(j) > d(i) +cij {
d(j) = d(i) + cij
if 3 ¢ LIST then add j to LIST

}

Identifying an edge violating the optimality condition is the key point here. A FIFO
implementation of LIST leads to a polynomial running time of O(nm); a dequeue
implementation as proposed by Pape (1974) can be exponential in the worst case but
is very efficient in practice, especially on road networks.

More details can be found in Ahuja, Magnanti, and Orlin (1993).

2.1.3 Minimum Spanning Trees

The minimum spanning tree problem (MST) in a network G = (V, E) with cost function
¢ defined on the edges is to find a spanning tree of minimal cost in G. As for the
shortest path case, optimality conditions play a central role in developing algorithms
for the problem.

Theorem 2.1.2 (Cut Optimality Conditions): A spanning tree 7' is a minimum
spanning tree if and only if it satisfies the following cut optimality conditions: For every
tree edge (i,5) € T, we have ¢;; < ¢y for every edge (k,!) that is contained in the cut
formed by deleting edge (,7) from T'.

10

2.1. BASIC GRAPH THEORY AND NETWORK ALGORITHMS

Theorem 2.1.3 (Path Optimality Conditions): A spanning tree 7' is a minimum
spanning tree if and only if it satisfies the following path optimality conditions: For
every nontree edge (k,!) of G, we have ¢;; < ¢y for every edge (k,!) that is contained
in the path in T connecting nodes k and .

There is a simple algorithm for MST using the path optimality conditions, known as
Kruskal’s algorithm:

We first sort all edges in nondecreasing cost order and define a set, LIST, that is the set
of edges we have chosen as part of a minimum spanning tree. Initially, LIST is empty.
We examine the edges in sorted order one by one and check whether adding the edge
we are currently examining to LIST creates a cycle with the edges already in LIST.
If it does not, we add the edge to LIST; otherwise we discard it. We terminate when
ILIST| = n — 1. At termination, the edges in LIST constitute a minimum spanning
tree. Kruskal’s algorithm can be implemented in O(m + nlogn) time, plus time for
sorting the edges’.

There is another simple algorithm for MST using the cut optimality conditions, known
as Prim’s algorithm:

This algorithm builds a spanning tree from scratch by fanning out from a single node
and adding edges one at a time. It maintains a spanning tree on a subset S of nodes
and adds a nearest neighbour to S. It does so by identifying an edge (4, j) of minimum
cost in the cut [$,S]. Prim’s algorithm can be implemented in O(m + nlogn) time
using Fibonacci heaps.

For more details we again refer to Ahuja, Magnanti, and Orlin (1993).

2.1.4 Maximum Flows and Minimum Cuts

Maximum Flows: Given a directed graph G = (V, E), a source node s € V, a sink
node ¢t € V, and a non-negative capacity cap, for every edge of e, the goal is to find a
maximum flow from s to ¢. For a node v, we use In(v) and Out(v) to denote the set
of edges ending in and emanating from v, respectively, and for an edge e we use f, to
denote the flow along this edge.

maximize Zeeom(s) fe

subject 0 Y .coutwy fe = eemw) fe for every node v € V'\ {s, ¢}
fe < cap for every edge e € £
e g
fe 20

!We can even reach O(ma(n, m)) using an improved union-find implementation (where a(n,m) is
the inverse Ackermann function as defined in Cormen, Leiserson, and Rivest (1993)).

11

CHAPTER 2. PRELIMINARIES

The first family of constraints states that we have flow conservation at all nodes distinct
from s and ¢ and the other constraints state that flows are non-negative and bounded
by the edge capacities. The goal is to maximize the flow leaving node s subject to these
constraints.

Minimum s-t-Cut: In the setting of the maximum flow problem we may also be
interested in a minimum capacity cut C separating s and t. A set C of edges is called
an s-t-cut if every path from s to ¢ contains at least one edge in C. The capacity of
C is the sum of the capacities of the edges in C. The minimum s-t-cut problem can
be easily formulated as an ILP. We have a zero-one variable for every edge e with the
intended semantics that e € C' iff y, = 1.

minimize) . capeye
subject to YDoecpYe > 1 for every s-t-path P
ye € {0,1} for every edgeec E

There is an important duality relationship between maximum flows and minimum cuts:

Theorem 2.1.4 (Max-Flow Min-Cut Theorem): The maximum value of the flow
from a source node s to a target node ¢ in a capacitated network equals the minimum
capacity among all s-t cuts.

There is a preflow push algorithm that solves the maximum flow problem and hence
minimum cut problems in O(n?®) time. We again refer to Ahuja, Magnanti, and Orlin
(1993) for a detailed explanation.

2.2 Basic Complexity Theory

When we analyze the performance of an algorithm in this thesis we assume the common
RAM-model and use asymptotic analysis, the Big-Oh notation, to bound the worst case
complexity (refer to Cormen, Leiserson, and Rivest (1993) for details).

2.2.1 NP-completeness
Complexity theory allows us to classify a problem into two broad classes:

1. Easy problems that can be solved by polynomial-time algorithms,

2. Hard problems that are not likely to be solved in polynomial time and for which
all known algorithms require exponential running time.

12

2.2. BASIC COMPLEXITY THEORY

Complexity theory requires the problems to be stated in such a way that we can answer
them with yes or no; we refer to this yes-no version of a problem as the recognition
VETSLon.

Now we introduce the complexity classes:

We say that a recognition problem R belongs to the complexity class P if some
polynomial-time algorithm solves problem R. The recognition versions of the short-
est path problem or the minimum spanning tree problem belong to the class P, for
example.

We say that a recognition problem R is in the complexity class NP, if for every yes
instance I of R, there is a short (polynomial-length) verification that the instance is a
yes instance. Note that it is much easier to verify that, for example, a given assignment
satisfies a boolean formula, than deciding that there is no satisfying assignment.

A recognition problem R is said to be NP-hard if all other problems in the class NP
polynomially transform to R.

A recognition problem R is said to be N'P-complete if (1) R € NP, and (2) R is
NP-hard.

Examples for N"P-complete problems are the well-known Traveling Salesperson Prob-
lem, the Knapsack Problem, and the constrained shortest path problem that we consider
in this thesis. The book by Garey and Johnson (1979) is an excellent source for NP-
completeness results.

Sometimes the running time of an algorithm is of the form O(n*C) where C is a number
given in the problem instance (e.g., the maximum edge weight). Such a running time
is not polynomial since we would like to have log C instead of C. We call running times
of that kind pseudo-polynomial.

If the input instance satisfies the similarity assumption, i.e., C = O(n*), for some
fixed integer k, the running time becomes polynomial. If a problem is NP-complete
even when the similarity assumption is satisfied, we say that the problem is strongly
NP-complete. A problem that is N'P-complete but fails to stay N'P-complete if the
similarity assumption is satisfied is called weakly N'P-complete.

We will see that the constrained shortest path problem belongs to the weakly N 7P-
complete problems, whereas the Traveling Salesperson Problem is strongly N7P-
complete.

13

CHAPTER 2. PRELIMINARIES

2.2.2 Approximation Schemes

Since many optimization problems are “hard nuts”, i.e., we do not know polynomial-
time algorithms for them, we are often interested in algorithms that provide a feasible,
but suboptimal solution in polynomial time, together with a provable guarantee re-
garding its degree of suboptimality.

We call an algorithm A an e-approzimation algorithm for a minimization problem with
optimal cost Z*, if for each instance of the problem, algorithm A runs in polynomial
time and returns a solution with cost Z 4, so that

Za<(1+e€)Z*.
Symmetrically, for a maximization problem we require

Zas>(1+e)Z".

We say that we have a polynomial time approzimation scheme (PTAS), if for every
fixed € > 0, there exists an e-approximation algorithm.

A polynomial time approximation scheme is rather powerful from a theoretical view-
point, given that we do not know an exact polynomial-time algorithm for the problem,
as it allows an arbitrarily close approximation the problem.

One of the most commonly used techniques for deriving PTAS for weakly N P-hard
problems is rounding and scaling. We will see examples of this technique later.

2.3 Linear Optimization

In linear optimization we are interested in optimizing a linear function subject to a
set of linear constraints. Many interesting problems fall into this category and can be
modeled as linear optimization problems: production planning, scheduling problems,
network flow problems, and many more.

We give a short overview of the mathematical background, main results and solution
techniques for linear optimization. This overview is based on Chvatal (1983), Schrijver
(1986), and Bertsimas and Tsitsiklis (1997). These books can also be used for further
reading.

2.3.1 Linear Programming

In the Linear Programming Problem we are given a system Az < b of linear inequalities

T

and a linear objective function f(z) = ¢"z. The goal is to find a feasible solution Z

14

2.3. LINEAR OPTIMIZATION

(which means Az < b) that maximizes (or minimizes) the objective function. Given
a matrix A € R™*" a vector b € R™ and a vector ¢ € R", the corresponding linear
program (LP) is denoted by

or abbreviated as
max{c’ z | Az < b}.

Problems of a similar form can be easily converted into this standard form. A feasible
solution z* is called an optimal solution if ¢ z* > ¢" % for all feasible solutions z. If a
linear program has no feasible solution, it is called nonfeasible.

The concept of duality is of fundamental importance in the field of linear programming.
For every linear program

(P) : max{c'z | Az < b},

another linear program, called the dual problem to (P), can be associated, which is
defined as

(D) : min{yTb | yTA = ¢,y > 0}.
The problem (P) is called the primal problem.

We now state several important results about connections between the primal and dual
problem.

Lemma 2.3.1: The dual of the dual is the primal.

Lemma 2.3.2 (Weak duality): If z is primal feasible and 7 is dual feasible then
'z < g"b.

Theorem 2.3.1 (Strong duality): If a linear programming problem has an optimal

solution, so does its dual, and the respective optimal costs are equal.

Theorem 2.3.2 (Complementary slackness): Let x and y be feasible solutions to
the primal and the dual problem, respectively. The vectors and y are optimal solutions
for the two respective problems if and only if
yi(AFz —b;) =0 V constraints 1,
(c; —yTAj)z; =0 V variables j.

Duality often enables us to form a different, sometimes simpler view of a problem. We
will see an application of duality in the next chapter.

15

CHAPTER 2. PRELIMINARIES

2.3.2 Polyhedra

Now we want to give the geometric interpretation of linear programming and need some
polyhedral theory. A good source for further information is Schrijver (1986).

A polyhedron P C R"™ is the set of points defined by a finite number of inequalities. A
bounded polyhedron is called a polytope.

Now we relate polytopes to convex hulls. A set C is called convez if xz,y € C implies
Az +(1—A)y € Cforall 0 < X < 1. The convez hull of a set of points S is the smallest

convex set containing S.

Polytopes are precisely those sets in R” that are the convex hull of finitely many points
in R”. If a € R* \ {0} and ap € R, then the polyhedron {z € R | al'z < ag} is called a
halfspace. Every polyhedron is the intersection of finitely many halfspaces.

An inequality e’z < ag is called valid with respect to a polyhedron P if P C {z €
R | aTz < ag}. A set F C P is called a facet of P, if there exists a valid inequality
a’z < ap of Psothat F = {z € P | a’x = ap}. In this case we say that F is the face
of P defined (respectively induced) by the valid inequality a’'z < ag. Note that every
face of a polytope is itself a lower-dimensional polytope.

Especially important faces are those of minimum and maximum dimension. The 0-
dimensional faces of P are called vertices of P and the faces of dimension dim(P) — 1
are called facets of the polytope.

In this thesis we will restrict ourselves to rational polytopes P, i.e., P C Q. A rational
polytope is called integral if all its vertices are integral. The applicability of polyhedral
methods in combinatorial optimization often comes down to the ability to prove that
polyhedra are integral.

Proving integrality of polyhedra is a very difficult task. We will state two of the most
important results giving us conditions for integrality.

Theorem 2.3.3 (Hoffmann 1974): A rational polytope P is integral if and only if
for all integral vectors w the optimal value of max{w!'z | z € P} is an integer.

Another sufficient condition is the total unimodularity of the constraint matrix. A
matrix A is called totally unimodular if each subdeterminant of A is —1,0, or 1.

Theorem 2.3.4 (Schrijver 1986): Let A be a totally unimodular matrix and let B
be an integral vector. Then the polyhedron P = {z | Az < b} is integral.

16

2.3. LINEAR OPTIMIZATION

2.3.3 Solving Linear Programs

We briefly sketch two well-known methods for solving linear programs: The simplex
method which is the most commonly used method in practice due to its efficiency, al-
though it is not polynomial in the worst case, and the ellipsoid method that was the first
method guaranteeing polynomial running time but lacking efficient implementations.
A detailed description of these algorithms can be found in Chvétal (1983), Schrijver
(1986) and Bertsimas and Tsitsiklis (1997).

We do not present interior point methods which combine practical efficiency and poly-
nomial running time. An overview of these methods can be found in Bertsimas and
Tsitsiklis (1997).

The Simplex Method

The simplex method requires an LP in the following form

max clz
st. Az =0b
z>0
for an m x n matrix A and a m-vector b. Let B = {Bj,..., By} be a set of column
indicesand N = {1,...,n}\B. Let Ap be the m xm-matrix consisting of columns given

by B. Ap is called a basis of A if Ap is non-singular. The solution zp = Ab_lb, zny = 01is
called the basic solution of Ax = b. We call a basic solution primal feasible, if Aglb > 0.

In the following lemma we characterize the extreme points of a polyhedron by bases of
the matrix A.

Lemma 2.3.3: Let z be an extreme point of a polyhedron P = {z | Az = b,z > 0},
for a matrix A with full rank. Then there exists at least one basis Ag of A, so that
T = Aglx B. If z is a primal feasible solution, then z is an extreme point.

Geometrically speaking, the simplex method starts with a feasible extreme point z(0),
It then iteratively computes a feasible extreme point z(*1) that provides a better
objective function value. The algebraic counterpart to extreme points are the bases
of the matrix A. If the current solution is not degenerate, i.e., has a unique basis,
there is a simple calculation that provides the information whether the addition of an
index in the current basis leads to a basis with a better optimal solution. If there is
no such variable then the current solution is optimal. A further calculation gives the
indices that we can remove from the basis to preserve primal feasibility. If there is no

17

CHAPTER 2. PRELIMINARIES

such variable, the problem is unbounded (see Chvétal (1983) for details of the so-called
tableau method).

Geometrically, an exchange of an index B; of a basis B corresponds to a move along
the line defined by Ap\p,zp = 0 until a further constraint is met (the corresponding
index enters the basis). Such a basis exchange is also called a pivoting step.

To avoid cycling in degenerate cases when an extreme point has several bases there are
different pivoting strategies that are described in Chvétal (1983).

For the primal simplex method, we need a feasible basis to start with. Often, a feasible
basis is known for a specific problem. If not, we have to solve the auziliary problem, an
LP for which a feasible basis is known, and whose optimal solution is feasible for the
original problem. Details are again found in Chvéatal (1983).

We have just described the primal simplex method. In every iteration, we have a primal
feasible basis and we iterate until there is no basis update possible that improves the
objective function value. There is also a dual simpler method. In every iteration we
have a basis, so that there is no index whose addition could improve the objective
function value, but it is not necessarily primal feasible, i.e., there can be indices ¢ with
z; < 0. In an iteration we move in a direction that increases the value of a variable
whose value is negative, thus preserving the optimality of the new extreme point if it
is primal feasible.

Although Klee and Minty gave an example that shows that the running time of the
simplex method (regardless which pivoting rule is used) can be exponential (see also
Chviétal (1983)), the practical performance is usually good and the simplex method is
the method most commonly used in practice.

The Ellipsoid Method

The ellipsoid method of Khachian is a method that polynomially solves linear programs.
The heart of its procedure solves the membership problem of finding a point in the
interior of a polytope P = {z | Az < b} or deciding that P. = (.

Starting with an initial ellipsoid enclosing P., this method iteratively computes el-
lipsoids that cover P.. The volume of these ellipsoids decreases geometrically. In an
iteration step we try to find a hyperplane h that separates the center of the current
ellipsoid from the polytope, so we can construct a new enclosing ellipsoid with smaller
volume. Eventually, the center of the new ellipsoid must lie in P or the volume will
be so small that we can conclude P. = (). Khachian has shown that this can be done
in polynomial time provided that a separating hyperplane can be found in polynomial
time. Computing the optimal LP value from a point x; € P. can be done by cutting

18

2.3. LINEAR OPTIMIZATION

off that point with a new constraint ¢’z < ¢’z; and reiterating the process until the
new polytope contains no more feasible point. The interested reader should refer to
Schrijver (1986) and Bertsimas and Tsitsiklis (1997) for more details.

The ellipsoid method is an important theoretical result but it is not competitive in
practice.

An interesting fact concerns linear programs with an exponential (or even infinite)
number of constraints that are impossible to be generated and stored implicitly. The
running time of the Ellipsoid method does not depend on the number of constraints,
the only problem dependent part of this method is deciding whether a point z is in the
polyhedron and, if not, finding a hyperplane separating z from the polyhedron. If this
separation problem can be solved in polynomial time then the Ellipsoid method is also
polynomial.

If we want to solve LPs of that type in a practically efficient way, we use the so-called
cutting plane generation method: Instead of considering all the constraints at once, we
start off with a small subset of the constraints and solve the relaxed problem with the
simplex method. Let z be the optimal solution. We now solve the separation problem
for . If = is in the original polyhedron then no violating constraint was found and x
is indeed the optimal solution of the original problem. Otherwise we add a violating
constraint to our constraint subset and iterate. The optimal basis of the old problem
is dually feasible for the new problem, thus we can start the dual simplex method with
this basis. One usually observes that the dual simplex needs only very few iterations
to solve the new problem.

A surprising observation is that this method usually terminates after a rather small
number of iterations. We will see an application of this method in the next chapter.

Applying the cutting plane generation method to the dual problem is identical to
applying the delayed column generation method to the primal which is used when we
have an exponential number of variables.

2.3.4 Integer Linear Programming

In discrete optimization problems, we seek to find a solution z* in a discrete set X that
optimizes an objective function f(z) defined for all x € X.

Discrete optimization problems often arise in a variety of contexts in science and engi-
neering. A natural and systematic way to study a broad class of discrete optimization
problems is to model them as integer linear programming problems.

CHAPTER 2. PRELIMINARIES

The integer linear programming problem, or integer linear program (ILP) is defined as
max{c’ z | Az < b,z integral}.

So integer linear programming is the same as linear programming except that (some)
variables are restricted to take integer values. Solving ILPs to optimality is an N P-
complete problem (Garey and Johnson 1979) as opposed to LP solving that can be
done in polynomial time using the Ellipsoid method.

In comparison to linear programming, integer linear programming is significantly richer
in modeling power (e.g., introduction of binary choice variables). Many network op-
timization problems can be elegantly modeled as ILPs as we will see in the following
chapters.

There is a variety of methods to solve ILPs, such as cutting plane methods or branch
and bound methods. We again refer to Bertsimas and Tsitsiklis (1997) for further
reading.

2.3.5 Lagrangean Relaxation

To describe the general form of the Lagrangean relaxation technique, suppose that we
consider the following integer programming problem

z*=min 'z
s.t. Az =10
Cx=d
T integer,

and assume that A,C,b,c,d have integer entries. Let X = {x integer | Cx = d}. In
order to motivate the method, we assume that optimizing over the set X can be done
efficiently. However, adding the constraints Az = b to the problem makes the problem
difficult to solve. The Lagrangean relaxation technique uses the idea of relaxing these
complicating constraints by bringing them into the objective function with associated
Lagrange multipliers . We refer to the resulting problem

z=min 'z +pl(Az —b)

s.t. reX

as Lagrangean subproblem of the original problem and refer to the function

L(p) = min{c'z 4+ uT(Az — b) | z € X}

2.3. LINEAR OPTIMIZATION

as the Lagrangean function.

Note that a solution of the Lagrangean subproblem does not need to be feasible for the
original problem since we have eliminated the constraints Az = b. The following lemma
tells us what information we can get from a solution of the Lagrangean subproblem.

Lemma 2.3.4: For any vector p of the Lagrangean multipliers, the value L(u) of the
Lagrangean function is a lower bound on the objective value z* of the original problem.

As we have seen, for any value of the Lagrangean multiplier p, L(x) is a lower bound
on the optimal objective function value of the original problem. To obtain the sharpest
lower bound, we would need to solve the following optimization problem

L* = max L(u)
1

which we refer to as the Lagrangean multiplier problem or Lagrangean dual problem
associated with the original problem.

It is clear from Lemma 2.3.4 that weak duality holds:
Theorem 2.3.5 (ILP duality): We have L* < z*.

We now state the general theorem that tells us that the optimum of the Lagrangean
dual is equal to the integer relaxation of the ILP.

Theorem 2.3.6 (Lagrangean Relaxation): If we apply the Lagrangean relaxation
technique to a linear programming problem (P) defined as min{c’z | Az = b,Cz =
d,z > 0} by relaxing the constraints Az = b, then the optimal value L* of the La-
grangean dual equals the optimal objective function value of (P).

The preceding theorem tells us that Lagrangean relaxation provides an alternative
method for solving a linear programming problem. In some situations the relaxed prob-
lem is easy to solve, but the original problem is not; in these situations, a Lagrangean-
based algorithm is an attractive solution approach. We will see an example in the
following chapter.

We now briefly review a standard procedure for solving the Lagrangean dual, the sub-
gradient procedure.

Let us first give a geometric illustration of the Lagrangean dual. The function L(u)
is concave and piecewise linear, since it is the minimum of a finite collection of linear
functions of u (see Figure 2.1). As a consequence, the problem of computing L* can be
recast as a linear programming problem, but with a large number of constraints. If we
could assume that the function L(u) is differentiable then the classical steepest ascent

21

CHAPTER 2. PRELIMINARIES

Figure 2.1: Illustration of Lagrangean Relaxation.

method for maximizing L(u) is given by the sequence of iterations

In our case, the function L(y) is not differentiable and thus the gradient VL(u(®) does
not always exist. For this reason we need to extend the notion of the gradient to
nondifferentiable concave functions.

Definition 2.3.1: Let f be a concave function. A vector s so that
f(@) < f(a) + " (z — %),

for all x € R", is called a subgradient of f at *. The set of all subgradients of f at z*
is denoted by Of (z*).

The following lemma establishes a necessary and sufficient condition for the maximum
of a concave function.
Lemma 2.3.5: Let f: R" — R be a concave function. A vector z* maximizes f over

R™ if and only if 0 € 0f(z*).

The following subgradient optimization algorithm generalizes the steepest ascent algo-
rithm and can be used to maximize a nondifferentiable concave function such as the
Lagrangean function L(u).

1. Choose a starting vector p(®).

2. Given (%) choose a subgradient s() of the function L(-) at u(. If s = 0 then
1 is optimal and the algorithm terminates, otherwise continue.

22

2.3. LINEAR OPTIMIZATION

3. Let pltD) = 4@ 4 §;5() where §; is a positive stepsize parameter. Increment i
and go to step 2.

Typically, only the extreme subgradients s(are used. A popular stepsize is given by

- Lo L)
||s@]2

for 0 < o <1 and Lp being an estimate of the optimal value.

In practice, the stopping criterion 0 € L(u(") is rarely met. Typically, the algorithm is
stopped after a fixed number of iterations. In some cases when the relaxed constraints
are in the form Az < b instead of Az = b, we also have to take care that u(® > 0.
This adds to the disadvantage of not being able to guarantee monotonic convergence.
In order to find a near-optimal solution, several iterations are necessary. Usually, after
ten iterations the stepsize is too small and the algorithm is loses the ability to make
rapid progress. On the other hand, this is a very simple procedure that is applicable
to a wide range of problems and often is the only way to obtain reasonably good
bounds efficiently. The selection of step sizes also leaves room for finetuning for special
applications. We will see an application of the subgradient method in the next chapter.

23

Chapter 3

The Constrained Shortest Path Problem

In this chapter we consider a variant of the classical shortest path problem, the (re-
source) constrained shortest path problem (CSP). Unlike the original shortest path
problem, CSP is NP-complete. Since there are important applications that can be
modeled by CSP, we are interested in solving the problem as efficiently as possible.

We start the chapter with a discussion of previous work. As with many difficult prob-
lems, we will first look at a simpler one, an LP relaxation of CSP. Starting from a
new ILP formulation, we derive a combinatorial method for solving the relaxation by
combining simple geometric intuition with optimization theory. In the single resource
case our approach is equivalent to previously proposed methods, however, we are the
first to prove a tight polynomial bound on the running time. We also obtain the first
combinatorial method to solve the relaxation exactly in the multiple resource case.
Solving the relaxation gives us upper and lower bounds. We will then review old meth-
ods and present new methods for closing the possible duality gap to obtain an exact
2-step method for CSP. We close the chapter with a detailed experimental comparison
of the different methods.

3.1 Problem Definition

The (resource) constrained shortest path problem (CSP) asks for the computation of a
least cost path obeying a set of resource constraints. More precisely, we are given a
graph G = (V, E) with |[V| = n and |E| = m, a source node s and a target node ¢, and

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

k resource limits A() to A(¥). Each edge e has a cost ¢, and uses 7‘((}) units of resource
1, 1 <14 < k. Costs and resources are assumed to be nonnegative. They are additive
along paths. The goal is to find a least cost path from s to ¢t that satisfies the resource

constraints.

The special case k = 1 is called the single resource case which has previously been
studied more extensively (see Section 3.2) and we will consider this case in Section 3.3.2.
The multiple resource case for k > 1 will be discussed in Section 3.3.4.

3.2 Previous Work

We give an overview of the previous work on the constrained shortest path problem.

3.2.1 Complexity

Whereas the (unconstrained) shortest path problem can be efficiently solved in poly-
nomial time, we will see that the introduction of a single additional resource constraint
makes the problem N P-complete.

CSP is listed as problem ND30 (shortest weight-constrained path) in Garey and Johnson
(1979) and reported to be NP-complete by a transformation from PARTITION. Handler
and Zang (1980) give an interesting connection to the well known knapsack problem
that has a very similar flavour:

We are given a set of n — 1 items, each having a value v; and a weight w;, for j =
1,...,n — 1. The goal is to pack items into a knapsack so that the weight limit A is
not exceeded and so that the value of the chosen items is maximized. The knapsack
problem (KP) is formally given as follows:

n—1
j=1

n—1
s.t. ija:j S A
j=1

z;j€{0,1} j=1,....,n—1

where v;, w;, A are positive integers. Now we set up an n-node network with two parallel

arcs from every node j tonode j+1 for 5 =1,...,n—1. Let cg-’lj?ﬂ =M - Uj,?"](-’lj)+1 =
w; and (:;72]) 1 = M, r](?]) +1 = 0 be the parameters for the first and second arcs for

26

3.2. PREVIOUS WORK

(M*U1,’U)1) m (M*UZ,'LU2) (M*Un—2,’wn—2)/_\(M*’Un—1,wn—1)
@ [2)) (n—1) @
(M, 0) (M, 0) (M,0) (M, 0)

Figure 3.1: Network for the knapsack problem.

j=1,...,n — 1, respectively, where M = max{v; : j =1,...,n — 1} (see Figure 3.1).
Then it is evident that KP may be solved by finding a shortest path (with respect to
parameter ¢) from node 1 to node n, subject to a resource constraint (with respect to
parameter 7), with right hand side A. Since KP is N'P-complete it can be deduced that
CSP is also N'P-complete.

3.2.2 Dynamic Programming Recursion

Early work dealing with CSP in the case of a single resource was done by Joksch (1966)
who presented an algorithm based on dynamic programming (see also Lawler (1976)).

We call a path from node 7 to node j an r-path if the resource consumption of the
i-j-path is less than or equal to r. Hence we are looking for a shortest! \-path from
1 to n. Let ¢j(r) be the cost of the shortest r-path from node 1 to node j. Then the
following recursive definition holds:

cj(r) = min{c;(r — 1), i g;rrl] Sr{Ci (r—rij) +cijt}-

Setting ¢1(r) =0 for 0 < r < X and ¢j(0) = oo for all j = 2,...,n, we may recursively
compute the optimum of CSP which is given by ¢, ()).

The running time of this method is O(mA) and the space consumption is O(nA). Hence
dynamic programming gives us a pseudopolynomial algorithm for CSP, as for the related
Knapsack problem.

As in the case of the Knapsack problem, the dynamic programming approach can also
be used to obtain a PTAS for CSP by rounding and scaling, which is discussed the next
subsection.

The labeling approaches discussed in Section 3.2.4 build on this dynamic programming
recursion making use of the fact that ¢;(r) is a step function.

!minimum cost

27

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

3.2.3 e-Approximations

CSP is weakly N'P-complete since we have just seen a simple pseudo-polynomial dy-
namic programming formulation. Hassin (1992) has applied the standard technique of
rounding and scaling to obtain a fully polynomial e-approximation scheme (PTAS) for
CSP. We briefly review his method now.

In the previous subsection we have seen a simple dynamic programming procedure. For
our purposes another recursive algorithm is more suitable:
Let g;(c) denote the resource consumption of a minimum cost 1-j-path whose cost is
at most c¢. Then the following recursive definition holds:
i(c) = min{g;(c —1 min i(c—cij) + it}

g]() {g]()5 (i,j)EE,cich{gZ(zy) zg}}
Setting g1(c) =0forc=0,..., OPT and g;(0) = oo for j = 2,...,n, we may iteratively
compute the optimum.

Note that OPT is not known a priori, but it satisfies OPT = min{c | g,(¢) < A}. Thus,
gj(c) is first computed for ¢ = 1 and j = 2,...,n, then for ¢ = 2, and so on, until we
have gn(c) < A for the first time, meaning that OPT is set to this value of ¢. The
complexity of this algorithm is O(|E|OPT).

Now let V be a given value, and suppose we want to test whether OPT > V or
not. A polynomial procedure answering that query can be extended to a polynomial
algorithm for finding the exact value of OPT by simply performing a binary search.
As our problem is NP-hard we have to be satisfied with a weaker test.

Let € be fixed, 0 < € < 1. We now explain a polynomial time e-approximation test with
the following properties: If it outputs a positive answer then definitely OPT > V. If
it outputs a negative answer, then all we know is that OPT < V(1 + ¢).

The test rounds the edge costs c;;, replacing them by

Cij J Ve
Ve/(n—1)

I

n—1

This decreases all edge costs by at most Ve/(n — 1), and all path costs by at most
Ve. Now the problem can be solved by applying the previous algorithm to a network
with the scaled edge costs |c;j/(Ve/(n — 1))]. The values g;(c),j = 2,...,n, are first
computed for ¢ = 1, then for ¢ = 2,3,... until either g,(c) < A for some ¢ = ¢ <
(n—1)/e,or ¢ > (n—1)/e.

In the first case, a A-path of cost at most

Ve

16+V6<V(1+6)

28

3.2. PREVIOUS WORK

has been found, i.e., OPT < V(1+¢). In the second case, every A-path has ¢’ > (n—1)/e
or ¢ >V, so that OPT > V. So the test performs as required.

The polynomial running time for fixed € is explained as follows: Taking the integer
part of a nonnegative number in the interval {0,...,U} can be done in O(logU) time
using binary search. Thus, rounding the edge costs takes O(|E|log(n/€)) time since we
only scale edge costs of edges with cost less than V, i.e., (n — 1)/e. Next we perform
O(ne) iterations of the algorithm above which again gives a O(|E|log(n/€)) running
time. The latter is therefore also the complexity of the whole test procedure.

Now we use this test procedure to derive a PTAS based on rounding and scaling: To
approximate OPT we first determine easily computable upper and lower bounds. An
upper bound UB can be set to the sum of the n — 1 largest edge costs or, alternatively,
to the cost of the minimum resource path. A lower bound LB can be set to 0 or to the
cost of the minimum cost path.

If UB < (1 + €)LB then UB is an e-approximation to OPT. Suppose now that UB >
(1+€)LB. Let V be a given value LB <V < UB/(1+¢€). The test procedure can now
be applied to improve the bounds on OPT. Specifically, either LB is increased to V
or UB is decreased to V(1 + €). By performing a sequence of tests, the ratio UB/LB
can be reduced. Once this ratio reduces to some predefined constant, say 2, then an e-
approximation can be obtained by applying the dynamic programming algorithm to the
scaled edge costs |c;;/(LBe/(n —1))|. The error introduced is at most eLB < eOPT.

The running time for the last step is O(|E|n/e). Reduction of the ratio UB/LB is best
achieved by performing binary search on the interval (LB, UB) in a logarithmic scale.
After each test we modify the bounds. To guarantee fast reduction of the ratio we
execute the test with the value z so that UB/z = /LB, that is z = (UB - LB)Y/2. The
number of tests required to reduce the ratio below 2 is therefore O(loglog(UB/LB))
and each test takes O(|E|n/¢) time. Hassin (1992) shows how to compute an integer
value near (UB - LB)'/? in O(loglog(UB/LB)) time. This gives us a total running time
of O(loglog(UB/LB)(|E|(n/e) + loglog(UB/LB))) for this e-approximation algorithm
and hence a PTAS for the constrained shortest path problem.

Hassin (1992) also gives an alternative PTAS whose complexity only depends on the
number of input variables and 1/¢ and obtains a running time of O(|E|(n?/¢) log(n/¢)).
The best PTAS was obtained by Phillips (1993) who reaches a running time of
O(|En/e + (n?/€) log(n/e)).

29

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Jllill

Figure 3.2: The ordered label list storing non-dominated promising subpaths.

3.2.4 Labeling Approaches

Labeling approaches can be seen as an improvement of the dynamic programming
methods in the sense that they follow the line of Pareto-optima approaches and do not
consider dominated paths. An v-w-path p is dominated by an v-w-path ¢ if ¢, > ¢, and
Tp > Tq, i-€., ¢ is more efficient than p with respect to cost and resource consumption?.

The standard labeling approaches as described in Aneja, Aggarwal, and Nair (1983),
Desrochers and Soumis (1988), Desrosiers, Dumas, Solomon, and Soumis (1995), Lau-
ther (2001), and Stroetmann (1997) use a set of labels for each node. Each label
represents a path ¢ from s to this node and consists of a tuple of numbers (¢4, 74)
representing cost and resource consumption of this path. Only non-dominated labels
are stored in the list of each node in increasing cost order which implies decreasing re-
source order in the single resource case (see Figure 3.2). As Joksch (1966) has already
observed, this list of non-dominated labels are the break points of a step-function and
only these have to be considered to find the optimal solution.

A labeling algorithm now finds all non-dominated labels on every node. Starting with
no labels at every node, except for label (0, 0) at node s, the algorithm extends the label
lists by extending non-dominated s-v-subpaths along their outgoing arcs. A path does
not need to be extended and is called non-promising if its minimal resource completion
exceeds the resource limit or if its minimal cost completion exceeds an upper bound on
the solution.

Apart from this core algorithm, there are again label setting and label correcting vari-
ants. We will discuss these variants in more detail in Section 3.4.2.

No matter what strategy is used, the worst case complexity still does not improve on the
O(mR) bound of dynamic programming. We will see in Section 3.5 how the different
variants perform in experiments.

2 A multiple resource definition is analogous. Therefore, we concentrate on the single resource case.

30

3.2. PREVIOUS WORK

Since CSP labeling methods follow the ideas of the standard shortest path labeling
algorithms and since they allow easy incorporation of other constraints (e.g., time
windows on the nodes) they are often used in practice (see Jahn, M6hring, and Schulz
(1999), Desrosiers, Dumas, Solomon, and Soumis (1995)).

3.2.5 Path Ranking

A straightforward but usually nonefficient strategy in combinatorial optimization prob-
lems is the enumeration of solutions.

Hence, CSP can be solved by ranking paths in non-decreasing cost order until we have
found a path obeying the resource limit(s). This first feasible path then constitutes
the optimal solution. The path ranking problem, often called k-shortest path problem,
has been widely studied in the literature (Yen 1971; Katoh, Ibaraki, and Mine 1982;
Skicism and Golden 1989; Miaou and Chin 1991; Azevedo, Madeira, and Martins 1993;
Martins and Santos 1996; Eppstein 1999; Jimenez and Marzal 1999) (refer to Eppstein
(1999) and Jimenez and Marzal (1999) for a more detailed discussion). The asymptot-
ically best algorithm is due to Eppstein (1999) and runs in time O(m + nlogn + kn).
Jimenez and Marzal (1999) proposed a recursive enumeration algorithm that runs in
O(m + knlog(m/n)) but turned out to be more efficient than Eppstein’s algorithm in
their experimental comparison. We will briefly sketch their method now:

They use the following idea for the computation of the k-shortest paths? from node s
to v: Let P*(v) denote the set of the k-shortest paths from s to v and 7*(v) denote the
k-shortest path from s to v. Each path in P¥(v) reaches v from some node u incident to
v. In order to compute ¥ (v), for every node u incident to v, we only need to consider
the shortest path from s to u that does not lead to a path in Pk_l(v). Thus, we can
associate with v a set of candidate paths C(v) among which 7*(v) can be chosen, that
contains at most one path from each node u incident to v.

Their recursive enumeration algorithm implements this idea:
1. Compute 7! (v) for all v € V by any shortest path algorithm and set k = 1.
2. Repeat until 7¥(¢) does not exist or no more paths are needed:

(a) Set k =k + 1 and compute 7%(t) by calling NeztPath(t, k).

For k > 1, and once 7' (v), 72 (v),...,7*"!(v) are available, NeztPath(v,k) computes
7 (v) as follows

3Not necessarily loopless paths.

31

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

1. If kK = 2 then initialize a set of candidates to the next shortest path from s to v
by setting C(v) = {n'(u) - v : (u,v) € E and 7' (v) # 7' (u) - v}.

2. If v = s and k = 2 go to step 6.

!

3. Let u and k' be the node and index, respectively, so that 7*~1(v) = 7% (u) - v.
4. If 7¥'+1(u) has not yet been computed, compute it by calling NextPath(u, k' +1).
5. If %' +1(u) exists, then insert %'+ (u) - v in C(v).

6. If C(v) # 0, then select and delete a path with minimum length from C(v) and
assign it to 7% (v), else 7%(v) does not exist.

Jimenez and Marzal (1999) store the k-shortest paths to a node v dynamically in a
linked list, whereas each path 7*(v) = 7/ (u) - v is compactly represented by its length
and a back pointer to path 77 (u). The set of candidates C*(v) is represented as a heap.
Jimenez and Marzal (1999) show that their recursive enumeration algorithm runs in
time O(m + knlog(m/n)).

Since the number of paths to be ranked before finding the optimum may be exponential
in the size of the graph, the path ranking method is known to perform badly in an
experimental setting (Handler and Zang 1980; Skicism and Golden 1989) which we will
confirm in our experimental section.

3.2.6 ILP Formulation

CSP can be formulated as a zero-one integer linear program as follows: We define 0-1
variables z;; for edges (i,j) € E:

1 ifedge (i,7) belongs to an optimal path,
o
" 0 otherwise.

32

3.2. PREVIOUS WORK

The ILP for CSP is then given by

min Z Z Cij.’L‘,’j (31)

i€V jev

st SN rWry; <A@ va=1,.. 0k (3.2)
1€V jEV
domip = mji VieV\{st} (3.3)
i€V i€V
D wy=1 (3.4)
JEV
Y =1 (3.5)
i€V
T € {0,1} Vi,j €V (3.6)

Equations (3.2) ensure that the total resource consumptions of the path satisfy the
resource limits. Equations (3.3), (3.4), and (3.5) are the standard shortest path con-
straints: Equation (3.3) is the degree constraint for each vertex of the graph (other
than source and target) while equations (3.4) and (3.5) ensure that one edge leaves the
source and one edge enters the target vertex.

Hence the ILP for CSP is the usual shortest path formulation with additional resource
constraints. The ILP has |E| variables and |V| + k constraints.

3.2.7 Relaxation Methods

Since the resource constraint turns the well studied, efficiently solvable shortest path
problem into an A'P-hard one, there has been a variety of work (for the single resource
case) relaxing this resource constraint by turning it into the objective function and
solving scaled cost shortest path problems to obtain bounds for the original problem.

The previously proposed methods essentially all follow this idea and only differ by a
varying degree of theoretical underpinning or intuition. We will briefly review the dif-
ferent methods and present a unified, both theoretically sound and intuitive description
of this idea together with a new running time analysis in the next section.

The Method of Aneja and Nair

Aneja and Nair (1978) were the first to propose a parametric approach for CSP. They
examined the relation of CSP to bicriteria shortest paths (BCSP) and observed the
importance of nondominated extreme paths. By turning the resource constraint in the
objective function and introducing scaling parameters for costs and resources obtained

33

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

by the slope of the line through two extreme points, they essentially give the hull ap-
proach that we will introduce in the next section. They show that their algorithm
needs at most n iterations of scaled costs shortest path computations if the nondom-
inated extreme points are randomly distributed over the entire nondominated region.
We will improve on this result in Section 3.3.3. Moreover, they erroneously claimed to
have found the optimal solution of CSP with this procedure, thus ignoring the possible
duality gap that was first pointed out by Pujari, Agarwal, and Gulati (1984).

The Method of Minoux and Ribeiro

Minoux and Ribeiro (1985, 1986) consider the hard constrained shortest path problem
where we have upper and lower resource limits. As an application they show how to

transform equality constrained knapsack problems to doubly constrained shortest path
problems (Minoux and Ribero 1984).

Their approach relies on generating partial solutions (from s to v) by solving parametric
shortest path computations and combining these with final solutions (from v to t) to
obtain feasible solutions. They design a pseudopolynomial algorithm for solving the
general parametric shortest path problem and extend a previous result by Karp and
Orlin (1981) that was only valid for a special case.

Their approach gives approximate solutions for the doubly constrained shortest path
problem with rather good quality as shown in their experiments with problems arising
from equality constrained knapsack problems.

The Method of Handler and Zang

Handler and Zang (1980) were the first to propose a 2-step approach for single resource
CSP. They first solve the Lagrangean Dual of the problem and then close the (potential)
duality gap with a k-shortest path algorithm.

To derive a lower bound on the problem they relax the resource constraint in La-
grangean fashion, i.e., they scale it with a Lagrange multiplier g and turn it into the

34

3.2. PREVIOUS WORK

Figure 3.3: Illustration of Lagrangean Relaxation. Paths correspond to lines.

objective function.

L(/j,) = min Z Z(Cij + Mrij)-Tij — UA (37)

i€V jev
dwyp =z VieV\{st} (3.8)
% i€V

D wy=1 (3.9)
a4

Y =1 (3.10)
1€V

Tij € {0,1} Vi,j €V (3.11)

The function L(u) is just a scaled cost shortest path computation and thus can be
efficiently solved for fixed nonnegative values of u. Handler and Zang are interested in
maximizing the lower bound, i.e., in solving the Lagrangean dual
L* = L(p*) = max L(p).
u>0

They propose a combinatorial method to solve this Lagrangean Dual problem that is
based on computing a successive approximation of the piecewise linear concave function
L(u) over p > 0. Since we can write L(u) = L(p,z) as L(p,x) = f(z) + ug(xz) with
f(z) = X cijzij and g(z) = > 7z — A, each path can be interpreted as a line in
L-p-space (see Figure 3.3). The lower envelope of the lines corresponding to the so-far
computed paths is interpreted as current approximation. In general they have two
paths z* and 2~ so that g(z7) > 0 and g(z~) <0, and f(z~) < f(z"). Then they set
g = (f(z7) = f(z1))/(g(zT) —g(z™)) as the new value for the multiplier and compute
Ly ,x). fL(x) = L or g(z') = 0 then L(y') is the optimum of the Lagrangean dual.

35

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Otherwise we set z+ = ' if g(z') > 0or = = &’ if g(¢') < 0. The procedure is iterated
until we find the optimum.

Having solved the Lagrangean Dual, we have upper and lower bounds for CSP. If there
is a gap, Handler and Zang propose closing this gap by path ranking with a k-shortest
path algorithm. To make use of the dual relaxation solution they rank the paths with
respect to the optimal reduced cost function and are thus able to continue “naturally”
from the dual solution. In their experiments they show that this 2-phase method
reduces the number of paths to be ranked considerably compared to path ranking with
respect to the original cost function. We will support this claim in our experiments
(see Section 3.5) and give an intuitive geometric explanation.

The relaxation method that we will propose in the next section follows this idea, in fact,
in the single resource case our combinatorial approach is identical to their relaxation
method except that we take a more intuitive primal viewpoint in the derivation of our
method. Contrary to Handler and Zang, we are able to prove a tight polynomial bound
on the number of iterations of our method and are also able to extend it to optimally
solve the multiple resource relaxation.

The Method of Beasley and Christofides

Beasley and Christofides (1989) propose an algorithm for the multiple resource con-
strained shortest path problem. They first use a subgradient procedure to approxi-
mately solve the Lagrangean Dual and then close the possible duality gap with a tree

search procedure after applying problem reduction techniques?.

We have seen an ILP formulation for our problem in Section 3.2.6. To derive a lower
bound on the problem they relax the resource constraints in Lagrangean fashion, i.e.,
they scale them with Lagrangean multipliers y; ¢ = 1,...,k and turn them into the

4 Actually, they also consider costs and resources on nodes and lower bounds on the resource con-
sumption but since the node consideration is a straightforward generalization and since their treatment
of the lower bounds seems rather heuristical, we only describe the standard multiple resource formula-
tion.

36

3.2. PREVIOUS WORK

objective function.

k k

min Z Z(Cij + Z ulrg-))xij - Z /j,l)\(l) (3.12)
eV jev =1 =1
Z.Tij = Z.’Eji VieV\{s,t} (3.13)
i€V eV
Y ag=1 (3.14)
JEV
Y =1 (3.15)
i€V
Tij € {O, 1} Vi,j €V (316)

For fixed nonnegative values of the multipliers u; this is just a usual shortest path
problem with scaled costs and can be solved efficiently.

Beasley and Christofides now use a subgradient procedure to maximize the lower bound
since k Lagrange multipliers make it complicated to obtain the exact solution®.

We now briefly review their update of the Lagrangean multipliers ;. Let ul(g) be the set
of multipliers in step g of the subgradient procedure leading to a solution path p with
cost ¢; and resource consumption rg). Let UB and LB be the current upper bound
and lower bound value given by path p. The new Lagrangean multipliers for step g + 1

are given as
MZ(Q-H) _ max{O, 'uz(g) +T. Hz}

where H; = -\ + rg) and the step size T is defined as

__ f(UB—LB)
(GO o)

This is an approximate procedure that depends on the parameters f and the initial
upper bound. Beasley and Christofides use f = 0.25, an initial upper bound UB\® =
50LB©), where LB is the minimum cost of a path. The subgradient procedure is
not guaranteed to converge against the optimum of the relaxation, hence it is sensible
to stop the iteration when the change of the bounds (and the stepsize) falls beyond
a certain limit. Beasley and Christofides abort the computation after 10 iterations.
We will compare the solution quality and running time of their method with our new
approach in our experimental Section 3.5.

After the subgradient procedure they perform problem reductions with the bounds
obtained (see Section 3.4.1).

5We will show in Section 3.3.4 how this can be done.

37

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

If a duality gap exists, Beasley and Christofides close the gap using a binary depth
first tree search procedure constructing a path from the source node and computing,
at each tree node, a lower bound for the optimal completion of this path (backtracking
when the upper bound is exceeded and performing further problem reductions when the
upper bound is improved). This can be interpreted as a branch and bound method.

The Method of Xue

Xue (2000) proposes a primal-dual method for finding the optimal scaling parameter
u in the single resource case. He uses a mixture of binary search and hull approach
and determines the running time to be O(log p) shortest path iterations where p is the
number of nondominated® s-t-paths which is O(n) since we might have p = 2" in the
worst case.

Additionally, he observes that this method is also applicable for the constrained mini-
mum spanning tree problem.

3.3 Solving the Relaxation

In this section we propose a simple combinatorial method for solving the relaxation of
single resource CSP. We give a geometric and a simplex interpretation of our method
and we will show that it only needs a logarithmic number of shortest path computa-
tions which is the first tight bound for this method. We then extend our approach
to the multiple resource case to obtain the first combinatorial method computing the
relaxation for multiple resource CSP exactly.

3.3.1 A Different ILP Formulation

We start with a (somewhat unusual) integer linear programming formulation. For any

(1)

path p from s to ¢ we introduce a 0-1 variable z, and we use ¢, and v’ (i =1,...,k)

5minus equivalent ones

38

3.3. SOLVING THE RELAXATION

to denote the cost and resource consumption of p, respectively. Consider

min Z CpTp (3.17)
p

st Y ap=1 (3.18)
p

ZTI()i)wp <2\ =1,k (3.19)
p

z, € {0,1} (3.20)

This ILP models CSP. Observe that integrality together with (3.18) guarantees that
zp=1 for exactly one path, (3.19) ensures that this path is feasible, i.e. obeys the
resource constraints, and (3.17) ensures that the cheapest feasible path is chosen.

We obtain an LP by dropping the integrality constraint. The objective value LB of the
LP relaxation (P) is a lower bound for the objective value of CSP. The linear program
has k + 1 constraints and an exponential number of variables and hence is non-trivial
to solve.

The dual of the LP relaxation (P) has an unconstrained variable u for equation (3.18)
and k variables v; <0, ¢ =1,...,k for the inequalities (3.19):

The dual problem (D) can now be stated as follows:
max w+ ADy 44 /\(k)vk
S.t. U+ 7“;,(,1)'01 + - --rl(,k)'uk <c¢ Vp
v; <0 i=1,...,k
The dual relaxation has only k+1 variables albeit an exponential number of constraints.

Lemma 3.3.1: The dual relaxation can be solved in polynomial time by the Ellipsoid
Method.

Proof. We show that the separation problem can be solved in polynomial time: Let
u*,v],...,v; be the current values of the dual variables. The separation problem
amounts to the question whether there is a path g so that

u* + v{r(gl) +---+ UZT,(II“) > ¢

or equivalently

cq — UTT((II) — = UZT((Ik) < .

This question can be solved with a shortest path computation with the scaled edge costs
(1) *,.(K)

Ce = Ce—ViTe —+++—vyre . Since costs and resources were assumed to be nonnegative

39

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

and since v; < 0, it is guaranteed that the scaled edge costs are also nonnegative so
that we may always compute a shortest path.

Hence we can identify violated constraints in polynomial time which completes the
proof. O

Let us verify that the dual relaxation of our reformulation is indeed equivalent to the
previously mentioned Lagrangean relaxation.

Lemma 3.3.2: The Lagrangean Relaxation and the dual relaxation (D) of the con-
strained shortest path problem have the same optimal value.

Proof. Strong duality (see Theorem 2.3.1) tells us that the optimal solutions of (D) and
(P) coincide. It is also known (see Theorem 2.3.6) that the optimum of (P) is equal to
the optimum of the Lagrangean relaxation of CSP. O

Now we turn to the simpler case of only one resource.

3.3.2 The Single Resource Case

Most of the previous work considered the single resource case which is also what we will
do first. Only full understanding of the single resource case enables a generalization to
the multiple resource case.

So let us consider the single resource relaxation. The dual now has two variables, u
and v <0:

max U+ Av
s.t. u+rpv<c, Vp
v <0

The dual can be interpreted geometrically which gives us more insight into the LP and
suggests a combinatorial method for solving it:

Standard Interpretation: A pair (u,v) is interpreted as a point in the u-v-plane.
Each constraint is viewed as a halfspace in the u-v-plane and we search for the maximal
feasible point in direction (1,) (see Figure 3.4).

We propose a different geometric interpretation which gives even more intuition.

40

3.3. SOLVING THE RELAXATION

U
direction (1,)

/

Figure 3.4: Find maximal point in direction (1, A) in the intersection of halfspaces.

(Geometric) Dual Interpretation: A pair (u,v) is interpreted as a line in r-c-
space (the line ¢ = vr 4+ u). A constraint u + rpv < ¢, is interpreted as a point (r,, cp)
in r-c-space. Hence every path corresponds to a point in r-c-space. We are searching
for a line with non-positive slope that maximizes u + Av while obeying the constraints,
i.e. which has maximal c-value at r = X, and which has all points (r,,c,) above or
on it (see Figure 3.5), i.e. we are searching for the segment of the lower hull” which
intersects the line r = A.

Figure 3.5: Find line with maximal c-value at » = A which has all points above or on it.

We now use the new interpretation to derive a combinatorial algorithm for solving the
dual. Although equivalent to Handler and Zang’s method, our formulation is simpler
and more intuitive.

The Hull Approach: We are searching for the segment of the lower hull which
intersects the limit line r = A. We may compute points on the lower hull with shortest

"We use a sloppy definition of lower hull here: there is a horizontal segment to the right incident to
the lowest point.

41

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

path computations, e.g. the extreme point in c-direction is the point corresponding to
the minimal cost path and the extreme point in r-direction is the point corresponding
to the minimal resource path.

We start with the computation of the minimum resource path. If this path is nonfea-
sible, i.e. all points lie to the right of the limit line, the dual LP is unbounded and the
CSP problem is nonfeasible. Otherwise we compute a lower bound, the minimum cost
path. If this path is feasible, we have found the optimum of CSP, and the constraint A
is redundant in that case.

Otherwise we have a first line through the two points that corresponds to a (u, v)-value
pair where v is the slope and wu is the c-intercept of the line.

Now we test whether all constraints are fulfilled, i.e. whether all points lie above or on
the line. This separation problem is solved with a shortest path computation with the
scaled costs ¢, = ce — vre (see Lemma 3.3.1) and can be viewed as moving the line in
its normal direction until we find the extreme point in that direction (see Figure 3.6).
If no point below the line is found, we conclude that no constraint is violated and have

Figure 3.6: Finding a new point on the lower hull.

found the optimal line. The optimal value of the dual relaxation is its intersection with
the limit line r = A.

Otherwise we update the line: The new line consists of the new point and one of the
two old points so that we again have a line that has all previously seen hull points
above it and that intersects the limit line with maximal c-value.

We iterate this procedure until no further violating constraint is found.

Note that the hull approach is equivalent to Handler and Zang’s method of Section 3.2.7.
We operate in the more intuitive geometric dual (paths correspond to points) and they
operate in the Lagrangean plane (paths correspond to lines). The absolute values for
our variable v are therefore identical to the values of the Lagrangean multiplier y (we
have the identity —v = p).

42

3.3. SOLVING THE RELAXATION

3.3.3 Running Time of the Hull Approach

Now we show that the number of iterations for solving the relaxation with the hull
approach for integral costs and resources is logarithmic in the input. This is the first
result that gives nontrivial bounds for the number of iterations.

We assume that edge costs and resources are integers in the range [0..C] and [0..R],
respectively. This implies that the cost and resource of a path lie in [0..nC] and [0..nR],
respectively.

Theorem 3.3.1: The number of iterations of the hull approach is O(log(nRC)). Hence
the (Lagrangean) relaxation of CSP can be solved in O(log(nRC)(nlogn + m)) time
which is polynomial in the input.

Proof. We examine the triangle defining the unexplored region, i.e. the region where
we may find hull points. The maximum area of such a triangle is A0, = 1/2n2RC,
the minimum area is A, = 1/2. We will show in the following Lemma that the area
of the triangle defining the unexplored region is at least divided by 4 in each iteration
step of the hull 0. Since we have integral resources we may conclude that O(log(nRC))
iterations suffice. O

Lemma 3.3.3: Let A; and A;;; be the area of the unexplored region after step 7 and
i + 1 of the hull approach, respectively. Then we have A;;1 < 1/4A4;.

Proof. Let A and B be the current feasible and nonfeasible hull point in step ¢ and let
sl 4 and slp be the slopes which lead to the discovery of A and B, respectively. The line
ga through A with slope sl4 and the line gp through B with slope slp intersect in the
point C. The triangle T4 pc defines the unexplored region after step ¢ (see Figure 3.7).
Hence A; = A(TaBc)-

Without loss of generality, consider an update of the current feasible point A%. Let A
be the new hull point that was discovered with slope sl4p of the line through A and
B.

We assume that A’ lies on the segment AC. The new unexplored region after the
update step is defined by A', B, and the intersection point C’ of line gp and the line
g, through A" with slope slsp (see Figure 3.7). We have 4,1 = A(T BCt)-

Now the proportionality principle tells us something about the proportions of the side
lengths of the two triangles. We have |CA'|/|CA| = |CC'|/|CB| and |CA'|/|CA| =
|A'C'|/|AB|. 1f we set |CA'|/|CA| =z < 1, we get |C'B| = (1 — z)|CB| and |A'C'| =
z|AB.

8The nonfeasible update is analogous.

43

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Figure 3.7: Area change of unexplored region in an update step.

The angle 8 between the segments AB and C'B also appears between the segments
A'C' and CC', hence the angle v between the segments A'C' and C'Bisy=m—f3
(see Figure 3.7). Thus, |sinvy| = |sinf].

The area of triangle Tapc is A; = 1/2|AB||CB|sin 3 and the area of the new triangle
Ty e is Aip1 = 1/2|A'C||C Bl siny = 1/22(1 — z)|AB||CB|sin = z(1 — z)4;.

The product of the two side lengths of the new triangle is maximized for z = 1/2, i.e.
when choosing A as midpoint of the segment C' A. Hence we have A;41 < 1/4A4;.

It is easy to see that when we chose the new hull point A* so that it lies on the line
g, but in the interior of the triangle T4pc and form the new triangle T'. 5, its area
is smaller than the area of a triangle T 5. Hence A;;1 < 1/4A; for an arbitrary
update step. O

The same asymptotic running time for solving the relaxation can be obtained by using
binary search on the slopes. We will now elaborate this method that has already been
outlined by Ahuja, Magnanti, and Orlin (1993) and was used in a modified way by Xue
(2000), and compare it to the hull approach.

Binary Search: We again assume nonnegative integral costs and resources. The
cost and the resource value of a path lie in [0..nC] and [0..nR], respectively. The slope
of an edge of the lower hull is determined by two paths, say p and ¢, with r, < r,. The
slope is therefore a rational number of the form (¢, — ¢p)/(rq — 7p)-

Lemma 3.3.4: A slope is either —oo or a rational number between —nC and 0. Any
two (finite) slopes differ by at least 1/(n?R?).

Proof. The numerator is an non-positive integer whose absolute value is bounded by

44

3.3. SOLVING THE RELAXATION

nC and the denominator is a non-negative integer bounded by nR. O
Now we can do the binary search on the slopes:

s1 =05
s9 = nC}

while (s3 — s1 > 1/(n?R?)) {

s = [(s2 — s1)/2];

compute shortest path p with respect to edge costs ce + s7¢;
if (rp, =) break;

if (rp < A) sp = s; else s1 = s;

When the program terminates we either have an optimal path whose resource con-
sumption is exactly A or two slopes s; and sy so that the line with slope s; touches
the lower hull to the right of the vertical line r = A, the line with slope so touches the
lower hull to the left of the vertical line, and so that s; — sy < 1/(n?R?). Let p and q
be the two paths corresponding to the two extreme points. The segment pg must be a
hull segment since p and ¢ lie on the hull and since the slopes of the tangents in p and
q differ by at most 1/(n?R?).

Theorem 3.3.2: The binary search algorithm solves the relaxation of CSP in
O(log(nRC)) iterations which is polynomial in the input.

Proof. The difference of the slopes of the current left and right hull point is halfed in
each iteration until it is smaller than 1/(n%R?) (starting from nC). Hence the number
of iterations is bounded by O(log(nRC)). O

This means that the number of iterations performed by binary search to compute the
relaxation is asymptotically the same as the number of iterations performed by the
hull approach. As binary search is conceptually simpler than the derivation of the hull
approach, we might ask about the advantages of the hull approach.

We now give both a theoretical and a qualitative argument for prefering the hull ap-
proach in practice:

Although asymptotically equivalent, the running time of the hull approach has better
constants. Here we have the stop criterion 1/2n2RC/4' < 1/2 which means that we
need at most 7 < log(nRC) iterations, i.e. the constant hidden in the Big-Oh notation
is 1.

45

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

The stop criterion in the binary search approach is nC/2! < 1/(n?R?) which means
that we need at most 7 < 6log(nRC) iterations. Hence the running time of the hull
approach is better by a factor of 6.

This can also be explained more informally. The hull approach is more goal driven and
detects optimality in a single step, whereas binary search is not as adaptive and has
to continue the iteration until the two slopes differ by less than 1/(n?R?) to be able to
guarantee optimality.

Worst Case Scenario

We proved that the hull approach solves the relaxation in O(log(nRC)) iterations. Now,
the question is whether this worst case bound can actually be reached with a problem
instance. Our proof suggests a geometric scenario where the hull approach runs into
this worst-case bound. We simply place the points so that in each step the area where
we may still find points is exactly divided by 4.

Lemma 3.3.5: Given the points p 1 = (nR,0),p; = ((1 — (i + 1)/2")nR,nC/2") for
i=0,1,...,log(nC) and A = nR — 1, the hull approach has to visit all the points,
hence performing O(log(nRC)) iterations, until it terminates.

Proof. The proof is by induction on the number of steps ¢ following the ideas of the
iteration proof. U

Figure 3.8 represents the geometric worst case scenario. It remains to find a real network

r

N,
nR

Figure 3.8: Geometric worst case for the hull approach.

46

3.3. SOLVING THE RELAXATION

corresponding to this geometric situation. The rules for logarithm-computation tell us
that O(log(nRC) = O(log max{n,R,C}). We first assume that C > n and without
loss of generality that R = C. Figure 3.9 shows a network that forces the hull approach
into log R iterations if A is set to R — 1.

0,0)
0,¢/2)
(C/4,C/4)

(28 = (i +1))C/2¢,C/2%)

(C—(logC+1),1)
(C,0)

Figure 3.9: Network giving the worst case bound for R = C > n.

Now we consider the case n > R,C and assume without loss of generality that R =
C =1 and that n is a power of 2. Figure 3.10 shows a network with 2n + 2 nodes
and 2n + logn + 2 edges. The network realizes log n + 2 paths leading to points p_1 =
(n,0),p; = (1 — (1 +1)/2")n,n/2%) for i = 0,1,...,logn. This forces the hull approach

1 2 logn + 1

(1,0) (1,0) oy ™/?

(0,0) eoeo

Figure 3.10: Network giving the worst case bound for n > R, C.

into log n+1 iterations when we have a resource limit A = n—1. Hence we can conclude
that our worst case bound is indeed tight.

The bound for the binary search method is ©(log(nRC)) in the given version since
we always have to continue the iteration until the slopes differ by less than 1/(n?R?)

47

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

N
T

Figure 3.11: Bad quality of the bounds.

(C,0) (C,0) (C,0) (C,0)

(0,R) (0,R) (0,R) (0,R)

Figure 3.12: Network with n nodes (n/2 — 1 nodes in the upper and lower chain). Assuming a
resource limit A = nR/2 and R > C we realize the geometric situation of Figure 3.11 and get
a (nC/2 + 1)-approximation of the optimum.

except when we hit the true optimal solution, i.e. an extreme point p with r, = A.

Quality of the Bounds

The hull approach gives us a feasible path as an upper bound whereas the optimum of
the relaxation is a lower bound for CSP. The question is: how good are the bounds?

We will give a simple example showing that the bounds come with no constant approxi-
mation guarantee. Again, it is easy to construct a geometric example (see Figure 3.11).
We have only three points pi,pe2, and p3. Two of them, p; = (0,S5) and p = (T,0),
define the lower hull. The resource limit A is set to 7' — 1, so p; is feasible and po
is nonfeasible. The third point denoting the optimum is ps = (A, [S/T"]). We have
UB=S,LB=S5/T, and OPT = [S/T"]. Without loss of generality, we assume that
T > S and receive a S-approximation in the example under consideration. Figure 3.12
shows us that S can be O(nC), hence the approximation can be made arbitrarily bad.
Slight modifications also show that the obtained lower bound does not yield a constant
approximation of the optimum.

48

3.3. SOLVING THE RELAXATION

Despite these negative theoretical results for pathological examples we will see in our
experiments that the bounds are usually very good considering networks arising in
practical situations.

A Different Interpretation: The Simplex Approach

In the following we want to interpret the hull approach as a dual simplex algorithm with
cutting plane generation. This will lead to the generalization for multiple resources.

Cutting plane generation is a commonly used technique when the number of constraints
is very large compared to the number of variables. This is precisely our situation, we
only have two variables but an exponential number of constraints in the worst case,
moreover these are only implicitly given.

So let p be the minimal resource path. If r, > A, the dual LP is unbounded and CSP
is nonfeasible. So assume that 7, < X and let P = {p}. Then (u*,v*) = (¢p,0) is an
optimal solution for the linear program max u + Av subject to v < 0 and u + vrp, < ¢
for all p € P.

More generally, assume that P is a set of s—¢ paths and that (u*,v*) is an optimal
solution to the LP, maxu + Av subject to v < 0 and u + vr, < ¢, for all p € P.
It follows from complementary slackness that if v* < 0 then there are two paths pq
and pp with u* + v*r,, = ¢p, (1 = 1,2) and if v* = 0 then there is a path p; with
u* +v*rp, = ¢p,. Moreover, 1, < X and 7, > A, i.e. the paths define the segment of
the lower hull of the points {(r},c,) : p € P} that is intersected by the line r = .

A shortest path computation with edge costs ¢, = ¢, —vr, checks whether the constraint
u* +v*r, < ¢p is satisfied by all s—¢ paths. If yes, we have the optimal solution of the
dual. If not, the shortest path computation gives a path g most violating the constraint.

Next we use the dual simplex algorithm to find the optimum for the constraint set
P U{q}. In the single resource case, this is possible with a single pivot step, moreover,
the new optimum is defined by ¢ and one of the paths p1, ps defining the old optimum.
This follows from the construction history since it defines a region where the point
(rg,cq) corresponding to the new path g may lie (see Figure 3.13). The only points of
the current lower hull that are seen by the new point are the two points corresponding
to p1 and py. Hence, the new optimum is easily obtained. We terminate when no more
violated constraints can be found.

This is the simplex interpretation of the hull approach. Hence, the same running time
as for the hull approach applies for this cutting plane generation approach.

49

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Figure 3.13: The “unexplored” region.

3.3.4 The Multiple Resource Case

We return to the general case of k resources. Beasley and Christofides’ method also
approximates the optimum for the dual relaxation in the multiple resource case whereas
Handler and Zang leave this open for future work. We restate the relaxation problem:

max u+ ABYu; + .04 AEy,
s.t. U+ 7"1(,1)111 + - rz(,k)vk <c, Vp
v; <0 i1=1,...,k

We again give two interpretations of the dual relaxation:

Standard Interpretation: A tuple (u,vy,...,vx) is interpreted as a point in u-v;-
-+ - -yi-space. We view each constraint as a halfspace in u-vi-- - - -vg-space and search
for the maximal feasible point in direction (1, \('),..., A*)). The optimum is defined
by k + 1 — [constraints that are satisfied with equality and is parallel to [coordinate

axe59 .

(Geometric) Dual Interpretation: A tuple (u,vi,...,vx) is interpreted as a hy-
perplane in r(D-...-r()_c-space (the hyperplane ¢ = o1 o gr(R) 4 u). A
constraint u + 1)17",(,1) +--+ Ukngk) < ¢p is interpreted as a point (7“15,1), .- ,rék), ¢p) in
M- pB)_c-space. We are searching ({(;r a hy;zg)rplane c=vrW 4. 4ur) 4oy with

nonpositive v;’s, that has all points (rp ’,...,rp ’,c,) above or on it, and has maximal
c-value at the limit line (r(D, ... 7®*)) = (A .. X)) (see also Figure 3.14).

We again describe two approaches to solve the dual relaxation based on the different
interpretations:

9Where [is the number of v;’s that are zero.

50

3.3. SOLVING THE RELAXATION

/)\2

"2

Figure 3.14: Two resources.

Simplex Approach: We extend the dual simplex method with cutting plane gener-
ation to multiple resources. Contrary to the single resource case, it is not clear how to
efficiently find a feasible path that bounds the optimal value. We add an artificial path
p from s to t which consists of a single edge of very large cost'® and uses no resources,
and set P = {p}. The constraint for p guarantees finiteness: Let u and v; be a feasible
solution of the dual relaxation. Then vir,(,i) > ;A for all ¢ by the feasibility of p and
the non-positivity of the v;’s and hence

u + Z ’Ui>\(i) <u+ Zwrz(f) < ¢p-
% %

The optimal solution for the LP, maxu+), v; A\ gubject to v; < 0 and u+ > fuirg) <
cp for allp € P is given by u = ¢y and v; =0 forall s = 1,... k.

More generally, assume that P is a set of s—¢ paths and that (u*,v},...,v}) is an
optimal solution to the LP, maxu +), XDy, subject to v; <0 and u +), Uirz(,i) <¢
for all p € P. It follows from complementary slackness that if v; = 0 for [of the
v;’s then there are k + 1 — [paths pi,...pgy1— € P with u* +), vg‘r;,(,? = ¢p; for

j=1,... k+1—1

Now we check whether there are violated constraints, i.e. we ask whether there is a
path ¢ with 44", f)ir(gi) > cq where (4,01, ..,0;) is the current optimal solution. This
separation problem is again solved by a shortest path computation with scaled costs
Ce=Cc— D @irgi).

In the first iteration, we have 9; = 0 for all4 = 1,...,k and compute the minimum cost
path. If this is feasible for all constraints, we have found the optimum for CSP.

Otherwise, we use the dual simplex algorithm to find the optimum for the set P U{q}.
Contrary to the single resource case, optimizing may need more than one pivot step

10¢.g. nC since the cost of every simple path is bounded by (n —1)C

51

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

and the new optimum may also consist of other points in P that have not been part of
the previous optimum. This is due to the following fact: The area where new points
can be found is a simplex determined by the halfspaces that correspond to the points
that define the current optimum, and the hyperplane defining the current optimum
(see Figure 3.15). In contrast to the single resource case, the current optimal hull facet
does not “block” previous points from that region, the new point may also see previous
hull points. Hence, they might also be part of a new optimal solution.

Figure 3.15: The unexplored region in the multiple resource case.

We iterate this procedure and terminate when no more violated constraints can be
found.

Geometric Approach: We start with the artificial feasible point and then compute
the minimum cost point. Then, in each iteration, we have to determine the optimal
face'! of the lower hull'? seen so far. Since a newly computed hull point ¢ might also
see previous hull points not belonging to the old optimal face (as explained above), we
have more candidates for the new optimal solution and hence, the update step is not
as easy as in the single resource case. We have to determine the ¢-visible facets of the
old hull to update the new lower hull as in an incremental k + 1-dimensional convex
hull algorithm (Clarkson, Mehlhorn, and Seidel 1993). The new optimal face is the face
incident to ¢ that intersects the limit line!'3.

Now we check whether there is a violated constraint. This is done by solving a shortest
path problem with scaled costs which again can be seen as moving the facet defining
hyperplane in its normal direction until we reach the extreme point in this direction.

We stop the iteration when no more violating constraints are found. If the artificial

'14.¢. the face intersecting the limit line

'2A point is again treated as rays in r1,...,r;-directions to ensure that all faces of the lower hull
have a normal vector with nonpositive entries.

131t may be parallel to some coordinate axis r(¥) indicating that the dual variable v; is zero.

52

3.3. SOLVING THE RELAXATION

feasible point is part of the optimal solution then the problem is nonfeasible!*.

Bounding the number of iterations is difficult for the multiple resource case but
Lemma 3.3.1 tells us that the dual relaxation can be solved in polynomial time us-
ing the Ellipsoid method.

Due to the more complicated update step, we could not extend the geometric arguments
in the proof for the number of iterations of the single resource case. However, if we
assume that the volume where we may still find points corresponding to violating
constraints decreases by a factor of Z > 1 per iteration of the multiple resource hull
approach, we get the following conjecture.

Conjecture 1: Let C be the maximum cost and Ry, ..., Ry the maximum resource
consumption of an edge. Then the CSP relaxation for k resources can be solved with
O(klog(nCRy - -+ Ry)) shortest path computations.

The biggest initial volume is bounded by Yn**t'CR; --- Ry, the smallest volume by

n!
1/n!. Then, we have the break criterion

%n’”’lCRl---Rk 1
VA < n!

which implies that

k+1

v log Z

log(nCRy - - Ry).

The conjecture is supported by our experiments in the next section.

3.3.5 The Parametric Shortest Path Problem

Before moving on to the central problem of closing the gap, we discuss some extensions
of our problem focussing on the single resource case. Taking a look at the relaxation
we see that we are left with a parametric shortest path problem and our aim is to find
the optimal parameter for a given resource limit. Two generalizations come to mind:

1. If we don’t have a resource constraint, we are interested in the bicriteria problem
and would like to know the whole hull.

2. At the moment we always consider paths from s to t. How about a bicriteria
(parametric) single source shortest path problem (SSSP) ?

' QOnly if the artificial path had infinite cost.

53

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Bicriteria Shortest Paths - Computing the Whole Hull

In the original CSP formulation we are given a resource limit and the hull approach
computes the hull segment intersecting the limit line giving the optimum of the La-
grangean relaxation. In the bicriteria shortest path problem we do not have a resource
limit and are interested in Pareto-optimal paths, i.e. paths that dominate others. If we
compute the whole lower hull we get all the extreme Pareto-optimal paths and, given
an arbitrary resource limit, would be able to report the optimum of the corresponding
CSP relaxation immediately.

We can compute the whole lower hull with an easy modification of the hull approach.
In the hull approach, starting with the minimum cost and minimum resource point,
we computed a new hull point (scaling with the slope of the segment defined by the
two points) and always had one recursive call with the new tentatively optimal basis
segment that was determined by the limit A. In the absence of the resource limit we
now have two recursive calls. We abort a recursive call if we have found no violating
constraint.

How many recursive calls do we need to compute the whole lower hull 7 In each recursive
call we either find a new hull point and continue with two recursive calls or we see that
we can stop the recursion. Hence, the number of shortest path computations is at most
twice the number of points on the lower hull. If we again consider integral costs and
resources in [0..C] and [0..R] we obtain the following result.

Lemma 3.3.6: The whole lower hull can be computed in O((nmax{C, R})?/3) itera-
tions using the modified hull approach.

Proof. Har-Peled (1998) has shown that the number of points on an integer hull with
diameter D is bounded by O(D?/3). The lemma follows since the modified hull approach
has no problems with degeneracies (they at most double the number of iterations). [

An example with 2v/nC points on the hull can be easily obtained when choosing the
points

i—1
pi=(i,nC —ivnC+» j) i=0,1,...,v/nC

j=1
and their reflections on the main diagonal ¢; = (pz(y), pgm)) (here we assume that vnC
is integral). It is easy to verify that all points lie on the hull (see Figure 3.16), the
points p ;.= and g,/ are collinear with the points p ,=_; and g, /,7_; and will not
be counted. A corresponding network realizing this geometric scenario can be easily
constructed following the lines of Figure 3.10.

54

3.3. SOLVING THE RELAXATION

nC*®

Figure 3.16: Case of v/nC points on the lower left hull.

Parametric SSSP - Can we deal with many targets?

In the parametric single source shortest path problem the cost function of each edge
is a linear function in u. We have ¢, = ¢, + ure and we want to obtain a tree TH of
shortest paths from a source node s to all other nodes for all values of y from 0 to oo.

The question now is how many different trees may exist and how can we compute them.
Ahuja, Magnanti, and Orlin (1993) outline the following algorithm.

Let d°(5),d"(j), and d°(j) denote the shortest distance between nodes s and j with
respect to the cost functions ¢, 7, and é. Consider T# for some p. If d°(j) and d"(j) are
the distances in T# with respect to cost functions ¢ and r, then, by the shortest path
optimality conditions, d°(j) + ud"(j) is the distance with respect to cost function ¢ in
T#. We now define py,; for a nontree edge e = (k,!) by

dC d”' . dT‘
—cg, /c if c; <O,
Lkt = { ki / Cki kol

3.21
00 otherwise. ()

with ¢, = r +d" (k) — d"(1). Let i = min{uy|(k,l) ¢ T#}. Then the tree T remains
a shortest path tree as long as u < . Let edge (p,q) be a nontree edge for which
ppg = fi- Then, adding edge (p,q) to T* and dropping the unique tree edge entering
node ¢ gives us an alternate shortest path tree at yu = .

Hence, starting with 7° which is simply the shortest path tree with respect to cost
function ¢, we repeatedly use the method described above to obtain successive shortest

55

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

path trees for increasing values of the parameter p, until p = oco. It follows from our
definition (3.21) that this will only happen when ¢, > 0 for each nontree edge (k,).
The last tree will be the same as the shortest path tree computed with respect to the
cost function r.

What can we say about the number of iterations of the previous algorithm, i.e. the
number of different shortest path trees 7 We have a look at the following potential
function ¢ = 7 i, d"(v) as suggested by Ahuja, Magnanti, and Orlin (1993). If R
is the maximal resource value of an edge, then we can conclude that ¢ < n?R. Now
we take a look at the effect of a change in the shortest path tree 7# on the potential
function ¢: A nontree edge e = (k,l) can only change T* if c% < 0, or alternatively
d"(l) > d" (k) + rg;- After the change we have d"(l) = d" (k) + ;. This means we have
a strict decrease in the potential function ¢. Therefore, we can conclude that we need
at most O(n?R) iterations of the previous algorithm that runs in O(m) time after the
initialization. Hence, we can solve the parametric shortest path problem in O(mn?R)
time.

If we compute the whole hull for the CSP relaxation given a target node t, the slopes
of the hull segments are a subset of the y-values giving rise to different shortest path

15 Thus, computing the whole hull for all nodes in the graph, we may also get

trees
the different values of p in O(n(nR)?/3) iterations assuming R > C without loss of
generality. This would give us a running time of O(n(nR)%3(nlogn + m)) for the

parametric shortest path problem which is a better bound for large or dense graphs.

Multiple target CSP is a different story, however. Given a resource limit A\, the param-
eter leading to the optimum of the relaxation for one target node does not have to do
anything with the one for another target node.

3.4 Closing the Gap

We have seen in the previous section how we can solve the Lagrangean relaxation of
CSP efficiently. However, integer programming duality tells us that a duality gap may
exist. In this section we will present several methods for closing this gap to obtain the
optimal solution of CSP. Before we come to the discussion of gap-closing we will review
pruning methods that reduce the problem size using the resource limit(s) and upper
and lower bounds.

5Two points defining a segment denote two alternative shortest paths from s to ¢ using the slope of
the segment as parameter. Using all parameters between the slope of the preceding hull segment and
this hull segment gives us the left endpoint. All parameters between the slope of this segment and the
slope of the subsequent hull segment lead to the right endpoint.

56

3.4. CLOSING THE GAP

3.4.1 Problem Reductions

We review possibilities for reducing the problem size by pruning nodes and edges that
cannot be part of an optimal solution. The hope is that this will speed up the gap-
closing step.

Resource-based reductions

Let RUQ, be the least amount of resource ¢ that we can use when going from node v to
node w (¢ = 1,...,k). Then, any node v for which a resource ¢ (i = 1,...,k) exists so
that

R 4+ RY > \®)

can be eliminated from the problem as it cannot lie on the optimal path. A similar

formula exists for edges. The resource-based reductions were first given by Aneja,

Aggarwal, and Nair (1983). The time needed for the resource reductions is 2k SSSP
(d)

computations'® to compute the values Ry, followed by an iteration over all nodes and
edges.

The resource reductions are possible right at the beginning, before computing the re-
laxation. We will see in the experimental section whether the time spent in the problem
reductions will actually pay off in the subsequent computation.

Cost-based reductions

Given a feasible upper bound UB on the optimal solution of CSP we can extend the
idea of the resource reductions to cost reductions. If C,, denotes the minimal cost
from node v to node w, then any node v with

CS’U + qut > UB

can be pruned. A similar condition exists for the edges. The effectivity of the cost
reductions depends on the quality of the upper bound.

Dumitrescu and Boland (2000) propose a repeated reduction method. Their idea is
simple: They eliminate nodes and arcs that cannot be part of an optimal solution
using the pruning techniques described above and update upper and lower bounds on
the fly. If the network was reduced in such a step, this process is reiterated as the

6The first k¥ SSSP computations have s as starting node then we reverse all edges and use ¢ as
starting node for the last £ SSSP computations before restoring the original graph.

57

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

bounds might have changed. This method performs very well for hard constrained
problems but fails otherwise since detecting a better upper bound during the iteration
is mere luck.

Beasley and Christofides (1989) have shown how to use upper and lower bounds from
the relaxation for pruning.

Consider any feasible path p with coordinates (r
(v1,...,v%) with v; < 0 for 4 = 1,...,k. Then r](,z
for all 2 and hence

.,Tp ,C¢p), and any U =

(1)’__ ()
) < X9 and —virz(,i) < —u A0

k k
cp— quirl(,i) + Zvi/\(i) < UB
i=1 i=1

for any given upper bound UB > c,.

Let Cypy be the shortest path from node v to node w with respect to cost function
Ce=Ce— D Uir((:). If

k
Cov+ Cu+ Y v > UB
i=1
then there can be no feasible path through node v with costs smaller than UB, and
node v can be deleted. A similar formula for edges is also easily derived.

Let 4,01, . . ., U be the optimal solution of the dual relaxation. Since 4 is the cost of the
shortest path with respect to cost function ¢, = c.—), ﬁirgi) and the objective function
u+y, ;A is maximized for 4,91, .., g, this choice of the v; seems to be good for
obtaining a large problem reduction. We will support this claim in our experimental

section.

A geometric interpretation of the problem reductions can be obtained from Figure 3.17.
Paths to the right of the limit line and above the upper bound line cannot be optimal, so
the hope is to eliminate a large number of these with the resource and cost reductions.
We are also not interested in paths that lie above the line parallel to the optimal hull
segment that intersects the limit line A with cost value UB. This motivates the lower
bound cost reductions. However, it should be noted that we cannot guarantee the
elimination of all paths in the uninteresting areas since they might pass through nodes
and edges being part of the optimal solution.

3.4.2 Closing the Duality Gap

Now we come to the central gap-closing step. We review the gap-closing methods
proposed by Handler and Zang (1980) and Beasley and Christofides (1989). Then we
show how we can adapt labeling methods to do efficient gap-closing.

58

3.4. CLOSING THE GAP

Figure 3.17: Closing the gap between upper and lower bound.

Let us first give an intuitive geometric interpretation of the gap-closing step!”. Fig-
ure 3.17 shows the situation after solving the relaxation. The relaxation optimum is
the c-value of the intersection of the optimal hull segment found by the hull approach
with the limit line A\, providing a lower bound on the optimal solution of CSP. The
left endpoint of the optimal hull segment corresponds to a feasible path and its cost
provides an upper bound. Now, the true optimum may lie in the triangle defined by
the optimal hull segment, the limit line, and the upper bound line (see shaded area in
Figure 3.17). A similar interpretation exists for the multiple resource case.

Path Ranking

Handler and Zang (1980) use a k-shortest path algorithm to close the duality gap. They
observed that path ranking with respect to the scaled costs leading to the relaxation
optimum provides a way to continue “naturally” from the dual solution. They update

upper and lower bounds along the way and stop when the duality gap is closed, i.e.,
LB > UB which means that OPT = UB.

We now give a simple geometric intuition. Closing the duality gap by path ranking with
respect to the Lagrangean costs means moving the line through the optimal hull segment
in its normal direction and thus “sweeping” the area where the true optimum may lie
(see Figure 3.17). The path ranking will start with the two segment defining hull points
since they both have minimal Lagrangean cost'®. The intersection of the “sweepline”
with the limit line A depicts the lower bound progression. When we encounter a feasible
path improving the previous upper bound, the “sweep area” gets smaller. We can stop
sweeping, i.e., ranking once the possible area is completely swept, i.e., LB > UB.

"for the single resource case
'80f course there also may be other paths with identical minimal Lagrangean cost.

59

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

We may also see from the geometric interpretation that although the area where the
optimal solution may lie can be small, we might have to sweep a much larger area
to detect optimality. So we end up enumerating a lot of paths that are known to be
nonfeasible or worse than the current upper bound. Below, we attempt a different
approach that only considers feasible paths that improve the upper bound, pruning
others away once we discover that they are not important.

A Tree Search Procedure

Beasley and Christofides (1989) suggested using a depth-first tree-search procedure to
close the duality gap. Their method can be seen as branch and bound technique.

Let ¢ be the cost function that is scaled with parameters 9; < 0, i.e., e = cc—), @irgi).
Typically, the 9; are the parameters leading to the optimum of the Lagrangean relax-
ation. Starting from the source node s, we do a depth-first tree-search procedure. If v
is our current branching node we have a subpath from s to v that can potentially be
extended to an optimal path. Then, we chose the edge e = (v,w) for which z, = 1
when computing shortest paths from node v with cost function ¢.

Now we do reductions, eliminating nodes and edges that would force the subpath into
nonfeasibility or its cost over the best upper bound.

We can backtrack in the tree when the current lower bound exceeds the best known
upper bound or when all outgoing edges of the current branching node have been elimi-
nated by problem reductions. Backtracking involves restoring pruned nodes and edges.
Backtracking from node s means that there is no feasible path in the network.

This is basically a branch and bound scheme. We fix values of some variables z.
and compute lower bounds for the corresponding subproblems, branching from them if
they might be extended to an optimal solution, and discarding them when we detect
nonfeasibility or no improvement on the upper bound.

This method is not efficient in practice. We will see in the following how to implement
the basic idea much more efficiently.

Labeling Methods

We have already discussed labeling methods in Section 3.2.4. Now we go into more
detail keeping our focus on the single resource case although the methods also work for
the multiple resource case. In the standard shortest path problem, labeling methods
keep the tentative distance of the shortest path from s to v as a label in each node
v. In the CSP case, a label representing an s-v-path has a cost and a resource value.
We need to store a list of labels per node since there is no longer a total order among

60

3.4. CLOSING THE GAP

—_ \‘ /

b

| |

| |

| |

Lo g .
cr / \

Figure 3.18: Inserting a new label in the label list.

labels. Only the notion of domination exists. A label (¢, r,) dominates another label
(cqs7q) if ¢p < ¢ and 7, < 4. Hence we keep a list of non-dominated labels in each
node and keep it sorted in increasing cost order to facilitate update operations.

Now we distinguish two methods, label setting like Dijkstra’s algorithm and label cor-
recting like Pape/Moore’s algorithm. The CSP counterparts of label setting algorithms
have been introduced by Aneja, Aggarwal, and Nair (1983) and Desrosiers, Dumas,
Solomon, and Soumis (1995), label correcting approaches were proposed by Desrosiers,
Dumas, Solomon, and Soumis (1995), and Lauther (2001), Stroetmann (1997). We now
discuss these two methods in detail and show how we may make use of the relaxation
bounds.

Label Setting: As in Dijkstra’s algorithm we use a priority queue PQ to drive the
consideration of labels from which to propagate. The priority queue is ordered by
minimal completion cost to aim for optimal cost completion'®. While the priority
queue is non-empty we extract the minimum cost label. Let v be the end node of
the corresponding path. Since we consider the labels in increasing cost order we can
prune all labels with smaller cost from the label list at node v since they must have all
been considered already. This is done to keep the label lists small and thus to decrease
update time. Then we check whether the extracted label is still non-dominated?’. This
is the case if we find the label at the head of the label list?!. Now we propagate from
node v, and consider all outgoing edges e = (v,w). If the minimal cost completion
of the enlarged path is beyond the current upper bound and if the minimal resource
completion is still feasible we update the label list of node w. This is done as follows
(see also Figure 3.18). Again, we first prune labels with cost less than that of label
I. Then, we go through the list to locate the cost position of the enlarged label [’
If we encounter a label that dominates I’ we discard label I, otherwise we insert it

9Tn the single resource case we could also order it by minimal resource completion to aim for
feasibility. This should be better for hard constrained problems.

?*Note that we might have found something better in the meantime.

2n the multiple resource case we would have to check all labels with the current cost.

61

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

Lo L Lo

Figure 3.19: Propagating an updated label list.
in the list. After insertion we check whether we can prune subsequent labels since

I" might dominate them. We can stop pruning after the first non-dominated label is
encountered??. If the new label I’ was non-dominated, we also insert it into the priority
queue and continue. We stop with the optimum once a path has reached the target
since this will be a path of minimal cost and will be feasible.

Using the upper bound from the relaxation we expect to consider fewer labels and
hence expect a better practical performance. This only takes the upper bound into
account, but we would like to continue from the lower bound as in the case of path
ranking. Hence we use the lower bound (completion) costs in the priority queue. Now
we can stop the iteration when the lower bound completion cost value at the limit line
A has reached the current upper bound. This also means that we might reach several
feasible paths improving the upper bound. The problem now is that the pruning and
the update of the label list is more difficult. If we keep the label list as it is, we cannot
do the initial pruning since we consider labels in lower bound completion cost order.
If we store the labels in lower bound cost order in the label list, we loose the simple
increasing/decreasing structure in the single resource case and checking for domination
is more difficult. We will see in the experiments that the best strategy is to skip the
pruning in the single resource case and to do pruning with the labels stored in lower
bound order in the multiple resource case since here there are fewer dominating paths.

Label Correcting: In the label correcting case we do not use a priority queue having
labels as entries but a list of nodes instead. While this list is non-empty, we remove the
first node and propagate from this node to all adjacent nodes. Propagation now means
to “merge” the label list of the current node enlarged with the new edge with the label
list of the adjacent node while removing labels that cannot possibly be extended to

22This is trickier for the multiple resource case, though.

62

3.5. EXPERIMENTS

optimal paths (see Figure 3.19)?3. We keep track of the nodes in the list and only push
or append a node that is not in the list when the label list was modified. We push a
node if the label list of the adjacent node was previously empty and append otherwise.
The idea is that once a label list has been modified we have to update the adjacent
nodes at some point and this should rather be done immediately instead of using the
wrong labels again before the update.

Again, using the upper bound from the relaxation we expect a reduction in the number
of considered labels. But now, the consideration of nodes is independent of the cost
and resource functions so we cannot use lower bound costs here. However, we may use
them in the propagation step and therefore expect further pruning.

In the following experimental section we compare the practical performance of the
different gap-closing methods.

3.5 Experiments

We will perform a detailed experimental comparison of the different proposed methods
for single and multiple resource CSP. Since the performance of the algorithms is ex-
pected to vary for different network types we will do experiments on random and real
world data using the following graph types: grid graphs, road graphs, and curve approx-
imation graphs. We will also vary the “hardness” of the constraint since some methods
favour weakly constrained problems whereas they fail on problems with stronger con-
straints.

All our experiments measure CPU time in seconds on a Sun Enterprise 333MHz, 6Gb
RAM running SunOS 5.7 using LEDA 4.3 and our CNOP package?* compiled with
GNUs g++ version 2.95.2 with optimizing flag 0.

3.5.1 The Benchmarks

We use the following three network types as benchmarks:

DEM: Digital elevation models (DEM) are gridgraphs where each node has an as-
sociated height value. We use samples of European DEMs?®.

23Usually we will discover that most compared labels are identical but keeping track of the “hot”
labels is very difficult.

24Refer to Chapter 5 for a detailed discussion.

25 Available from USGS EROS Data Center (global digital elevation model (DEM) with a horizontal

grid spacing of 30 arc seconds (approximately 1 kilometer)).

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

DA 4.3 (c) 1991-2000 Max-Planck-Institut fiir Informati

]

Figure 3.20: Minimum congestion satisfying length constraint (areas of congestion areas are
shaded) (left). Minimum total height difference satisfying length constraint (right). The
minimum cost paths are yellow, the minimum resource paths brown, and the constrained

shortest paths green.

Our DEMs are bidirected, i.e., m ~ 4n. We use the absolute value of height differences
as the cost function for an edge and get integer edge costs in the interval [0..600]. We use
random integers from the range [10..20] as resource of an edge modeling some random
length function. We are interested in minimizing the accumulated height difference of
a path with a constraint on its total length (see also Figure 3.20).

ROAD: We use US road graphs?. Edges modeling roads are again bidirected, and
the structure gives us m ~ 2.5n. We use congestion as the cost function. We define
congested areas with integers in the range [0..100]. We use the euclidean distance
between the endpoints of an edge as the resource function. These distances are double
precision floating point values in the range [0..7]. We are interested in minimizing
congestion subject to a (euclidean) length constraint (see also Figure 3.20).

CURVE: In the curve approximation problem we want to approximate a piecewise
linear curve by a new linear curve using fewer breakpoints. This is an important
data compression problem in areas like cartography, computer graphics, and signal

?6Obtained from TIGER/DLG3 data, provided by Jan Vahrenhold.

64

3.5. EXPERIMENTS

Figure 3.21: Curve approximation graph (left) Approximation error of a shortcut edge (right).

processing. Dahl and Realfsen (2000) and Nygaard (2000) have shown how to model
this problem as a constrained shortest path problem:

Assuming that the breakpoints on the given curve occur in the order v, v, ..., v,, we
view the breakpoints as nodes and introduce an arc (v;,v;) for each ¢ < j. Figure 3.21
shows the resulting graph. The cost of an edge is set to the approximation error that is
introduced by taking this shortcut instead of the original curve (see Figure 3.21). Note
that no further assumption is made concerning the metric generating these weights.
For instance, any l,-norm for 1 < p < oo may be used. The resource consumption of
an edge is set to 1. Given a limit K on the number of breakpoints, we now have a
constrained shortest path problem and may compute the minimum error approximation
of the linear curve using at most K breakpoints2’

We use a random test signal as linear function. We assume that one can reach all
20 subsequent breakpoints from a given node which implies that m ~ 20n. We use
the l1-metric to compute approximation errors and get double precision floating point
values in the range [0..300] as costs.

We have four examples per network class and use three different resource limits between
minimum resource consumption r,,;, and resource consumption 7,4, of the minimum
cost path: Strongly constrained (10% off r,,i,), normally constrained (in the middle
between 7pin and 7p4;), and weakly constrained (10% off 7p4,) problems.

?"Note that this special constrained shortest path problem can be solved in polynomial time O(n®)
with dynamic programming since K < n.

65

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

3.5.2 Single Resource Case

We first experimentally evaluate the performance of the different CSP methods for the
single resource case.

Relaxation

We now want to compare different methods for solving the relaxation:

1. Hull approach,
2. Subgradient procedure,

3. Binary search.

We stop the subgradient method if two subsequent multipliers u differ by less than 0.02
or after the hull approach has reached the optimum of the relaxation to allow for a
better comparison. The subgradient parameters regulating the stepsize and the initial
upper bound were set as suggested by Beasley and Christofides (1989).

We stop the binary search approach prematurely when it has reached the optimal hull
segmentzs.

We are interested in the performance of the different relaxation methods as well as in
the quality of the obtained bounds.

We first take a look at the DEM benchmarks. Figure 3.22 shows a comparison of the
number of iterations needed to solve the relaxation®®. We see that the hull approach
seems to take an almost constant number of iterations: it takes about eight iterations
to solve the relaxation exactly. The binary search method uses two to three iterations
more to reach the optimal hull segment3’. The subgradient procedure is terminated
after the same number of iterations as in the hull approach.

Let us take a look at the quality of the obtained bounds (see Figure 3.23). We see that
both upper and lower bounds obtained by the hull approach are very close to the opti-
mum. The lower bounds are within 1%, the upper bounds within 5% of the optimum.
Binary search reaches these bounds with more iterations than the hull approach. The
approximate bounds of the subgradient procedure are clearly worse, the lower bounds
are within 10% of the optimum and the upper bounds can exceed the optimum by up
to 100%.
2hut not yet verified its optimality.

29 approximately or exactly depending on the method.
39However, without premature break, we would need around 50 iterations until the break criterion

is met.

66

3.5. EXPERIMENTS

DEM
14 T T T T T T T T
hull = subgrad —+—
12 E
%]
c
o
< 10 E
8
S
g 8 A —
c P T — -
5 "
c /
6 - .
« g
4 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000

number of nodes

Figure 3.22: Number of iterations of the relaxation methods (DEM).

DEM

T T

100 B
£
>

E sof i
(=X
o
k]

2 60| UB hull ——
I

S UB subgrad —x—
o

S a0} LB subgrad —&—
Q.
c
o

g 20 .
=
o

Q. — .+

& O0f o i

o0 W 1 1 1 1 1 1 1 1

0 5000 10000 15000 20000 25000 30000 35000 40000

number of nodes

Figure 3.23: Quality of the relaxation bounds (DEM).

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

ROAD
10 T T T T T T T
hull = subgrad —+—

9 4

8 - 4
%]
c
k=l
T
3 T i
k]
g of 1
g /ﬂo—h,
c y +

5F / 4

/ ~+
/
4+ 4
1 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 80000
number of nodes

Figure 3.24: Number of iterations of the relaxation methods (ROAD).

Now we take a look at the ROAD benchmarks. Figure 3.24 shows a comparison of the
number of iterations needed to solve the relaxation. Again, the number of iterations
of the hull approach seems to be constant with never more than six iterations. Bi-
nary search reaches the optimal hull segment several iterations after the hull approach,
whereas the subgradient procedure is again stopped after the same number of iterations.

Figure 3.25 shows the effect on the quality of the obtained bounds. The lower bounds of
the hull approach are within 20% of the optimum, the upper bounds are better and lie
within 10% of the optimum. The subgradient procedure fails completely. The bounds
are often almost a factor of two away from the optimum which does not improve much
on the trivial bounds in that case.

Finally, we take a look at the CURVE benchmarks. Figure 3.27 shows a comparison
of the number of iterations needed to solve the relaxation. Here we see a logarithmic
behaviour of the number of iterations of the hull approach (as theoretically guaranteed).
The reason for this is the special structure of the hull (see Figure 3.26) that contains
a larger number of hull points since there is a solution for any resource value between
minimum and maximum resource consumption. The binary search approach again
uses a few iterations more to reach the optimal hull segment, whereas the subgradient
method often reaches the multiplier break in around 11 iterations which is slightly
better than the hull approach.

68

3.5. EXPERIMENTS

approximation percentage of optimum

ROAD
150 T T T T
UB hull —+—
UB subgrad —*—
100 - LB subgrad —=— |
50 |
0 = e —
50 +
(=3
=]
B 9 —f
_100 1 1 1 1 1 1 1

10000 20000 30000 40000 50000 60000 70000 80000

number of nodes

Figure 3.25: Quality of the relaxation bounds (ROAD).

5000
4500
4000
3500
3000
error 2500
2000
1500
1000
500
0

2

Ul - 00 0 ® ®O

(=)

breakpoints

Figure 3.26: Structure of the curve approximation hull for the example in Figure 3.21.

69

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

CURVE
18 T T T T T

16

14

12

number of iterations

hull —+—

binsearch —+—

1 1 1 1 1
0 2000 4000 6000 8000 10000
number of nodes

Figure 3.27: Number of iterations of the relaxation methods (CURVE).

Figure 3.28 shows the quality of the obtained bounds. We see that the exact bounds
of the hull approach are extremely good. In most cases they are only 0.1% away from
the optimum, indeed, we even reach the CSP optimum several times. The approximate
lower bounds of the subgradient method are also very good reaching almost the same
quality as the exact bounds, but the upper bounds are worse and exceed the optimum
by around 10%.

The experiments presented used the normally constrained benchmarks. The bench-
marks with strong and weak constraints exhibit similar results.

We conclude that the relaxation bounds are really good in experiments with random
and real world data (the higher the number of iterations of the hull approach, the better
the bounds), although pathological examples can make them arbitrarily bad. We also
see that the number of iterations of the hull approach seems to rise very slowly for
increasing graph sizes. The subgradient procedure sometimes requires fewer iterations
than the hull approach but one has to pay regarding the bound quality. In the case of
road graphs, however, it fails completely. An adapted setting of the stepsize parameters
might improve this but tuning parameters for different network structures is usually
not what we want. Binary search is never better than the hull approach. Hence, the
hull approach should be the method of choice when we are interested in good bounds
in efficient time.

70

3.5. EXPERIMENTS

CURVE
03 T T T T T
l UB hull —+—
L+ -
£ 02 S UB subgrad —*—
2 . LB subgrad
- —
2 01¢f E
o —
S .
g OF 1
b= -
g -01rt -
]
[e N
s 02 .
< ‘
£
5 03F | E
a |
2 |
04 F | E
05 m 1 1 1 1 1
2000 4000 6000 8000 10000
number of nodes

Figure 3.28: Quality of the relaxation bounds (CURVE).

Problem Reductions

Now we investigate the effectivity of the problem reductions using the obtained bounds.
Here we examine all three constraint types.

Apparently, the reduction percentage using the resource reductions depends on the
constraint type. Only for the CURVE benchmarks (see Table 3.3), there is no resource
reduction possible due to the special structure of the underlying graph.

In the DEM case (see Table 3.1) we see that combined resource and cost reductions
can reduce the networks to around 5% of their original size if we use the exact bounds

strong constraints normal constraints weak constraints
n m T | crBC | crMZ || rr | crBC | crMZ || rr | crBC | crMZ

2500 | 9800 817 | 7.94 | 291 49.36 | 47.48 | 8.07 75.37 | 45.06 | 14.75
5625 | 22200 11.29 | 11.10 | 3.86 53.50 | 52.25 | 3.06 76.06 | 54.25 | 4.29
10000 | 39600 17.76 | 17.75 | 4.50 62.88 | 39.03 | 1.97 80.94 | 57.16 | 2.45
15625 | 62000 16.98 | 16.98 | 2.43 72.33 | 54.98 | 1.08 88.61 | 68.23 | 12.15
22500 | 89400 16.63 | 16.59 | 1.42 66.05 | 66.00 | 7.12 82.61 | 82.05 | 7.68
30625 | 121800 || 16.94 | 10.60 | 0.92 71.05 | 31.39 | 2.49 88.41 | 69.93 | 1.62
40000 | 159200 || 28.76 | 23.09 | 5.57 79.67 | 63.37 | 9.80 92.60 | 52.15 | 1.94

Table 3.1: Pruning reduction percentage after resource reductions (rr) and cost reduction
using approximate bounds (crBC) or exact bounds (crtMZ) (DEM).

71

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

strong constraints normal constrained weak constraints
n m rr | crBC | crMZ || rr | crBC | ceMZ || rr | crBC | crMZ

9990 | 21342 6.01 | 0.29 | 0.22 14.85 | 1.04 | 0.92 22.52 | 14.48 | 10.83
15049 | 35438 1.94 | 0.50 | 0.49 5.32 | 1.67 | 0.64 9.50 | 2.66 | 0.65
24086 | 50826 5.72 | 2.13 | 2.06 20.33 | 17.40 | 4.32 28.05 | 15.5 | 12.73
52847 | 120332 || 2.51 | 1.48 | 0.68 14.04 | 8.18 | 6.40 18.05 | 10.22 | 5.98
77059 | 171536 || 3.58 | 1.83 | 0.93 1546 | 7.98 | 3.69 23.70 | 13.51 | 12.40

Table 3.2: Pruning reduction percentage after resource reductions (rr) and cost reduction
using approximate bounds (crBC) or exact bounds (crMZ) (ROAD).

strong constraints normal constraints weak constraints
n m rr | crBC | ceMZ || rr | crBC | ceMZ || rr | crBC | crMZ

500 9790 100 | 100 44.82 || 100 | 29.12 | 16.26 || 100 | 29.74 | 16.67
1000 | 19790 100 | 100 22.77 || 100 | 17.61 | 17.60 || 100 | 48.19 | 16.75
2500 | 49790 100 | 100 57.21 || 100 | 50.90 | 27.51 || 100 | 55.25 | 14.87
5000 | 99790 100 | 100 16.78 || 100 | 65.35 | 27.68 || 100 | 49.66 | 5.48

10000 | 199790 || 100 | 100 40.75 || 100 | 100 27.80 || 100 | 100 23.41

Table 3.3: Pruning reduction percentage after resource reductions (rr) and cost reduction
using approximate bounds (crBC) or exact bounds (crtMZ) (CURVE).

regardless of the hardness of the constraint. Using the approximate subgradient bounds
in the cost reduction we get almost no additional network reduction.

In the ROAD case (see Table 3.2) we again get a large reduction to around 5% of the
original network size. In this case, the reduction effectivity varies with the hardness of
the constraint. The subgradient bounds allow a similar reduction (only slightly worse).

In the CURVE case (see Table 3.3) we do not get such impressive reductions as before.
We only reach an average of around 25% using the exact bounds. The approximate
bounds result in a much worse average reduction percentage of around 60%. Of course,
we have to keep in mind that resource reductions were not possible in that case.

We conclude that the problem reductions are most effective using the exact relaxation
bounds and that we are often able to reduce the networks considerably. We will see in
the following how this improves the gap-closing step®'.

31Gince our gap-closing methods use online reduction techniques we will not perform the reductions
explicitly before the gap-closing step.

72

3.5. EXPERIMENTS

Closing the Gap

Now we turn to the gap-closing step. We compare different gap-closing strategies after
the computation of the relaxation:

e Path ranking with the k-shortest path algorithm of Jimenez and Marzal (1999)32
Their algorithm also enumerates paths with loops, which does not cause a prob-
lem for the gap-closing step provided that the network contains no zero length
cycles with respect to the lower bound costs. If we modify the algorithm to only
rank loopless paths we get an additional factor of n in the runtime bound. We
switch between both methods to always get the best possible performance for the
different network types,

e Label setting method driven by lower bound costs using upper and lower bounds
of the relaxation,

e Label setting method driven by original costs using upper and lower bounds of
the relaxation,

e Label correcting method using upper and lower bounds of the relaxation.

We compare the gap-closing performance starting from the exact and the approximate
solution of the relaxation.

We also compare our 2-step method with other CSP methods:

e ILP solving with CPLEX,
e Dynamic programming,

e Path ranking,

e Label setting,

e Label correcting.

We first turn to the DEM case. Figure 3.29 shows a runtime comparison of different
gap-closing methods. We observe that path ranking®? (ksp) and the labeling approach
starting from the lower bound costs (1bc) are the best methods. We also observe that
gap-closing using these two methods is dominated by the time for solving the relaxation.
We even get an almost linear behaviour in that case. Gap closing with labeling methods

32 Although online pruning is also possible when closing the gap with a k-shortest path algorithm we
omit it here since it is difficult to integrate in the recursive enumeration scheme.

33The original version that does not enforce loopfree paths is faster than the loopfree variant in this
case.

73

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

DEM
T T T . I I |
40 - _
trel —+—
35 I tlbc subgrad —x— |
tkSp — 5
30 _
@
o 25 |
£
2 20 _
s
-
2 15 i
10 | |
—t
i i
— ,,’il’:f:f: T
0 lpme—r— | . | | | | |
0 000 10000 15000 20000 25000 30000 35000 40000
number of nodes

Figure 3.29: Runtime of different gap-closing methods starting from the relaxation optimum
and the relaxation approximation (DEM).

using the original cost function (1cc, 1c) is clearly worse (label correcting being superior
to label setting).

If we use the approximate bounds from the subgradient procedure and use labeling
starting from the corresponding lower bound costs (1bc subgrad), we see that the
gap-closing step also takes much more time than using the exact bounds of the hull
approach.

Figure 3.29 shows the results using the normally constrained benchmarks. The exam-
ples with other constraints lead to similar results.

Now we compare the best of the different CSP methods on the DEM benchmarks (see
Table 3.4). We see that ILP solving performs worst, followed by dynamic programming
which is also not competitive. Naive path ranking in increasing cost order even fails to
solve the smallest problems. Labeling methods are competitive for small problems. We
observed that the label correcting method is better than the label setting method3.
The label correcting method even performs best for strongly constrained problems but
becomes much slower for the other constraint types®® where the 2-step method (hull
approach then gap-closing with labeling starting from the lower bound costs) clearly
performs best. Moreover, the 2-step method shows similar performance on all different
constraint types.

34 As expected, both methods are slower without using the relaxation bounds.
35The online pruning is not that effective in these cases.

74

3.5. EXPERIMENTS

strong constraints normal constraints weak constraints
N 2step | label | DP | ILP [2step | label | DP | ILP || 2step | label | DP | ILP
625 008 [003 [315]137009 004 [316] 132009 |006 |322] 139
2500 || 04 |014 |29.7|682 039 [049 [309|67.8(041 |0.98 | 31.4]68.5
5625 || 0.99 | 046 |- - 1.03 [216 |- - 1.06 | 4.35 |- -
10000 || 2.17 [1.36 |- - 224 | 806 |- - 229 | 17.18] - -
15625 || 3.29 | 2.23 |- - 3.25 | 17.86 | - - 341 |41.27 |- -
22500 || 6.35 | 3.43 | - - 629 | 26.3 |- - 6.03 | 60.7 |- -
30625 || 7.02 | 4.49 |- - 7.70 | 4253 | - - 779 | 104.2 | - -
40000 || 10.7 | 10.29 | - - 1146 | 98.9 | - - 12.05 | 2415 | - -

Table 3.4: Total time in seconds for different CSP methods (DEM). A ’-’ means that the
computation was aborted after 5 minutes.

Now we turn to the ROAD benchmarks. We first have a look at different gap-closing
methods starting from the exact bounds (see Figure 3.30). Again, the labeling method
starting from the lower bound costs (1bc) is overall the best gap-closing method. This
time however, the differences are not that pronounced. Also, we again have the situa-
tion that gap-closing takes less time than computing the relaxation. Due to the special
cost /resource distribution we have to use the loopless path ranking variant (ksp), oth-
erwise too many paths with loops are involved in the ranking process. Gap closing
starting from the approximate relaxation of the subgradient method (1bc subgrad)
again takes longer than starting from the exact bounds of the hull approach but the
difference is not that significant, as in the DEM case.

Figure 3.30 shows the results using the normally constrained benchmarks. The exam-
ples with other constraints lead to similar results.

Now we compare the best of the different CSP methods on the ROAD benchmarks
(see Table 3.5). We see that ILP solving and dynamic programming fail to compute
the optimum within five minutes even on our smallest road graphs. In the ROAD
case, we observe that the label correcting method performs best over all constraint
types, although its running time is dependent on them. The running time of the 2-step
method is not dependent on the constraint type but is worse by a factor of 1.5 to 3 than
labeling. The reason for the excellent performance of labeling in the ROAD case is the
special structure of the road networks that have a very small node degree. Moreover,
even for weakly constrained road networks the resource reductions allow to reduce the
size of the network to at least 30% of the original size, hence the online reductions in
the labeling methods are very effective. Using the explicit resource reductions before
performing the hull approach also reduces the time for the 2-step method to around
the same level as the labeling methods.

75

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

ROAD

14

trel ——

121 tibe subgrad —x—

tksp —8—

10

running time (s)

1 1 1 1 1 1 1
10000 20000 30000 40000 50000 60000 70000 80000
number of nodes

Figure 3.30: Runtime of different gap-closing methods starting from the relaxation optimum
and the relaxation approximation (ROAD).

strong constraints normal constraints weak constraints
N 2step | label | DP | ILP || 2step | label | DP | ILP || 2step | label | DP | ILP
9990 [l 0.99 | 0.36 |- - 099 |0.39 |- - 099 |043 |- -
15049 || 1.6 | 0.58 | - - 1.64 | 0.60 | - - 1.61 | 0.66 |- -
24086 || 2.93 | 1.01 | - - 292 |13 |- - 3.05 | 1.54 |- -
52847 || 6.78 | 2.61 | - - 6.33 | 3.66 |- - 7.09 | 6.04 |- -
77059 || 12.03 | 4.34 | - - 12.02 | 6.58 | - - 13.19 | 10.77 | - -

Table 3.5: Total time in seconds for different CSP methods (ROAD). A -’ means that the
computation was aborted after 5 minutes.

3.5. EXPERIMENTS

CURVE
T T T T T
14 + trel —+— —
t Ibc subgrad —*—
12 tksp —5— N
@ -
[} +
£ s
[=2}
c
IS
£ i
2
1
2000 4000 6000 8000 10000

number of nodes

Figure 3.31: Runtime of different gap-closing methods starting from the relaxation optimum
and the relaxation approximation (CURVE).

We finally turn to the CURVE benchmarks. Figure 3.31 shows the performance of
different gap-closing methods starting from the exact relaxation bounds. Again path
ranking® (ksp) and label setting starting from the lower bound costs (1bc) perform
best and take only very little time compared to solving the relaxation. Label correcting
(1cc) and normal label setting (1c) are extremely bad despite the good bounds which
can be explained by the special structure of the graph that does not allow very effective
online pruning. Starting from the approximate relaxation of the subgradient method
(1bc subgrad) gap-closing again takes longer than starting from the exact bounds of
the hull approach but is also dominated by the time for solving the relaxation.

Figure 3.31 shows the results using the normally constrained benchmarks. The exam-
ples with other constraints lead to similar results.

Now we compare the best of the different CSP methods on the CURVE benchmarks
(see Table 3.6). It is interesting to observe that dynamic programming is competitive
to labeling in the case of CURVE graphs. The reason for this effect is that we now
have a possible solution for each resource value, so the “naive” method of considering
each resource value for a better solution is promising here. However, the best method
clearly is again the 2-step method?37.

36The original version that does not enforce loopfree paths is faster than the loopfree variant in this
case.

37Something interesting happens when we choose a fractional resource limit. Due to the special
structure of the problem (see Figure 3.26) it is possible that we have to rank a lot of paths until we

77

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

strong constraints normal constraints weak constraints
N 2step | label | DP | ILP || 2step | label | DP | ILP | 2step | label | DP | ILP
500 022 085 [049]9.7 [[022 [325 [098 [9.8 | 024 |48 [1.49 [9.9
1000 [030 [297 [195]26.7 || 057 |1031|416 | 265 065 |17.44|6.17 | 26.8
2500 || 1.59 [1242 | 149|162 | 1.87 [592 [308 |163 | 1.93 | 101.2 | 464 | 162
5000 || 2.67 | 44.7 | 653 |- 451 [225.1 1360 | - 4.09 |- 209.8 | -
10000 || 7.14 | - - - 10.09 | - - - 11.04 | - - -

Table 3.6: Total time in seconds for different CSP methods (CURVE). A ’-’ means that the
computation was aborted after 5 minutes.

Conclusion: We have tested different CSP methods on three benchmark network
types using three different constraint types. We observed that the bounds obtained by
solving the relaxation exactly with the hull approach are very good. The approximate
bounds of the subgradient method are sometimes close to the exact bounds but often
clearly worse.

The good bounds allow effective problem reductions that are implicit in all gap-closing
methods. Label setting starting from the exact lower bound costs is the best overall
gap-closing method in the 2-step approach followed by path ranking. For all bench-
marks we observed that this gap-closing method is dominated by solving the relaxation.
Moreover, the running time does not seem to depend on the hardness of the resource
constraint. Using the approximate bounds for gap-closing always results in a higher
running time.

Dynamic programming and ILP solving are never competitive with the 2-step method.
Only labeling is competitive3®. It is always a good choice in small and hard constrained
problems but suffers on other types, except in the case of ROAD graphs. Hence the
2-step method that first performs the hull approach and then closes the gap with label
setting from the lower bound costs is a safe choice for all settings.

3.5.3 Multiple Resource Case

Now we experimentally evaluate the performance of CSP methods for the multiple
resource case. Due to the increasing number of parameters that may affect the running
time, we only concentrate on random grid graphs with costs and resources in the interval

[10,50].

have swept the necessary region to guarantee optimality. In the case of an integral resource limit, we
almost immediately hit a path with this resource consumption that constitutes the optimum.
38We found out that label correcting usually outperforms label setting methods.

78

3.5. EXPERIMENTS

40 ; : | ,
lres ——
= 5 —— °©
35 F3res —x— |
4res —=— B
30 + |
g
2 /))))77%77777777%
c I
o |
8
2
B -
@
Qo
E -
>
c
10 |
ot P —
—
5 - -
0 I .) .
0 5000 10000 15000 20000
number of nodes

Figure 3.32: Tterations of the hull approach for multiple resources.

Relaxation

In the multiple resource case, we have only two relaxation methods, the hull approach
and the subgradient procedure. We are again interested in the number of iterations
and the quality of the bounds obtained from the relaxation.

Contrary to the single resource case, we could not prove a polynomial running time
for our hull approach but Figure 3.32 shows that the number of iterations seems to
be k times the number of iterations of the single resource case which supports our
Conjecture 1 in Section 3.3.4.

Figure 3.33 shows the quality of the obtained bounds. Contrary to the single resource

39 However, the lower bounds are

case, we have no guarantee of a feasible solution
again very close to the optimum with the subgradient bounds being slightly worse than

the exact hull approach bounds.

Problem Reductions

Since we only get upper bounds in some cases, problem reductions are not as effective
as in the single resource case.

39The observation is that the hull approach returns more feasible solutions of better quality than the
subgradient procedure.

79

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

05 - ' ' ' hullLB —+—]
OPT
§ ot _
g
a —t
° e
o 05 | -
[
[=)
8 /
c
[}
< -1k 7 E
o y
Qo /
[/
o /
T /
£ -15 E
= /
o /
Q /
=X /
] 21+ -
gl
25 1 1 1 1
0 5000 10000 15000 20000 25000
number of nodes

Figure 3.33: Quality of the relaxation bounds for two resources.

Closing the Gap

Now we want to compare the running times of the 2-step method with different gap-
closing strategies starting from the exact and the approximate bounds (see Figure 3.34).
The exact bounds lead to a faster gap-closing step, as observed before. The labeling
method starting from the lower bounds (1bc) is the best overall gap-closing approach
but we now observe that gap-closing may dominate the running time since pruning is
no longer as effective.

This can also be observed in Figure 3.35 where we compare two labeling methods. The
performance deteriorates and is now clearly worse than the 2-step method. The reason
for this effect is that the nice structure of the label lists in the single resource case is
no longer possible, there are fewer dominated labels, thus more labels to consider.

Other methods like multiple resource dynamic programming or ILP solving are also
not competitive with the 2-step method.

Conclusion: We have seen that the multiple resource case is harder than the single
resource case. The performance of labeling methods breaks down since the pruning is
no longer effective due to fewer dominated paths. The 2-step method performs best,
although the number of iterations for the relaxation increases and although the gap-
closing step sometimes dominates the overall running time.

80

3.5. EXPERIMENTS

running time (s)

40

35 |

30 |

20 |

15

trel ——

tksp —*k—
tIbc subgrad —&—

L

5000 10000 15000 20000
number of nodes

Figure 3.34: 2-step method for two resources.

running time (s)

220

200

180

160

140 -

120

80

40

20 |

label setting —+— —

700 800 900 1000 1100 1200 1300
number of nodes

Figure 3.35: Labeling methods for two resources.

81

CHAPTER 3. THE CONSTRAINED SHORTEST PATH PROBLEM

3.6 Problem Variants

There are many variants of the CSP problem:

Instead of having an upper limit on the resource consumption, we might also have lower
bounds on the resource consumption (see Elimam and Kohler (1997) for an application).
Saigal (1968) (see also Roessl (1968)) have considered the special case of finding a
minimum cost path containing exactly g arcs. The 2-step method can be adapted to
handle this situation by using a modified function testing for feasibility.

If we omit the resource constraint(s) and want to minimize both cost and resource(s),
we are dealing with bi- or multicriteria shortest path problems. Here we are inter-
ested in the so-called Pareto-optimal paths, i.e., paths that are not dominated by any
other path. Work on the bicriteria shortest path problem was done by (Hansen 1980;
Henig 1985; Brumbaugh-Smith and Shier 1989; Mote, Murthy, and Olson 1991; Miiller-
Hannemann and Weihe 2001), the multicriteria version was considered by (Martins
1984; Warburton 1987; Tung and Chew 1992; Modesti and Sciomachen 1998). Henig
(1985) and Modesti and Sciomachen (1998) also consider special utility measures for
Pareto-optima in bicriteria and multicriteria shortest path problems, respectively.

Hansen (1980) also discusses the interesting case in which the cost and/or resource
function is not additive along paths but the minimum or maximum of the edge costs
and resources. They examine all possible combinations. The 2-step method relies on
the efficient computation of parametric shortest path problems. This is not so easy in
these cases, as simple scaling usually does not do the trick.

Another well-known problem variant is the so-called shortest path problem with time
windows (SPPTW) in which we are looking for a shortest path with the side condition
that for each node visited by the path, the time required to reach it is contained in the
time window of the specific node. Hence, CSP is a special case of SPPTW where there
only is a time window on the target node. Labeling approaches can be easily adapted to
solve SPPTW (see Desrosiers, Dumas, Solomon, and Soumis (1995) for an overview of
existing methods). The SPPTW problem has many important applications: It appears
as a subproblem in column generation or Lagrangean relaxation approaches used to
solve vehicle routing problems, fleet planning problems and crew scheduling problems.
It is not clear whether a 2-step method using an adapted labeling approach for the gap-
closing step improves on the proposed labeling methods of Desrosiers, Dumas, Solomon,
and Soumis (1995).

In the CSP problem we examined paths from s to . The single source variant could
also be of interest, in which we want to have the CSP from s to every other node v.
The dynamic programming method solves this problem and the labeling methods can

82

3.7. CONCLUSION

also be adapted to deal with this variant sacrificing pruning possibilities. The 2-step
method does not seem adaptable in a reasonable way to handle multiple targets at
once.

3.7 Conclusion

In this chapter we have reviewed state-of-the-art methods and proposed new methods
for the constrained shortest path problem. Starting from a new ILP formulation we
derived a combinatorial method for solving the relaxation of CSP by combining simple
geometric intuition with optimization theory. We obtained the first exact combinatorial
approach for solving the multiple resource relaxation. In the single resource case our
approach is equivalent to previously proposed methods, however, we were the first
to prove a tight polynomial runtime bound of O(log(nRC)(nlogn + m)) using only
geometric arguments. Although we could show that the obtained upper and lower
bounds do not come with a constant approximation guarantee we have seen in our
experiments that the bounds are very good.

To obtain the optimal solution of CSP we have to apply a gap-closing step that we
again visualized with a simple geometric interpretation. We reviewed existing gap-
closing approaches and showed how to modify the label setting method to obtain an
efficient new gap-closing method.

The experimental comparison of the new methods with existing state of the art methods
showed that the best 2-step method (solving the relaxation with the hull approach and
closing the gap with label setting starting from the lower bound costs) is a competitive
method for all considered network classes and constraint types, in some cases it is even
superior to all other methods. Only the label correcting approach is faster in the case
of road graphs and sometimes for other hard constrained small networks.

83

Chapter 4

Constrained Network Optimization

In this chapter we consider the general form of resource constrained network optimiza-
tion problems. CSP is a special case of this problem class but it turns out that the
2-step method for CSP also extends to the general case.

We will first give a definition of constrained network optimization problems and show
how the 2-step method easily extends to this broader problem class.

Then we will discuss examples of constrained network optimization problems: con-
strained minimum spanning trees, table layout, and constrained geodesic shortest
paths.

4.1 Constrained Network Optimization Problems

Suppose we are given a network G with n nodes and m edges and a cost function
¢: E — R" defined on the edges.

Many linear network optimization problems like shortest paths, minimum spanning
trees or minimum cuts ask for the computation of a list of edges satisfying problem
specific structural constraints (to form a path, a spanning tree, etc.) so that the sum
of the edge costs is minimized.

Using 0-1-variables z, for each edge in the graph, this can be written as an integer

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

linear program (ILP) as follows:

min g CeZe

eckE
s.t. z€S

ze € {0,1}

where z € S abbreviates the specific structural constraints (path, spanning tree, etc.).

For many network optimization problems of this form efficient algorithms for solving
the problem in polynomial time O(p(n,m)) exist (like in the case of shortest paths,
minimum spanning trees, etc.).

If we also have k resource functions r(®) : E — RT defined on the edges and impose the
additional constraints that the resource consumptions of our optimal solution should
not exceed given resource limits A#) for s = 1,..., %k, we get a (resource) constrained
network optimization problem of the form:

min E CeZe

ecl
s.t. ze S
ngi)zeg/\@ Vi=1,...,k
eck
ze € {0,1}

Even one additional resource constraint usually makes the problem NP-hard as it is
for example the case for constrained shortest paths or constrained minimum spanning
trees (see Garey and Johnson (1979)).

Constrained network optimization problems are of special interest in practical applica-
tions since there we often have to deal with bi- or multicriteria optimization problems
in networks that are precised by budget- or resource constraints.

We have seen a 2-step method for CSP, a special constrained network optimization
problem, in the previous chapter. It turns out that this method can easily be reformu-
lated for the general case.

4.1.1 The General Hull Approach

As solving the ILP for constrained network optimization is too hard, we again first aim
for the Lagrangean relaxation that is obtained by turning the complicating resource
constraints into the objective function.

86

4.1. CONSTRAINED NETWORK OPTIMIZATION PROBLEMS

We proceed the same way as in the previous chapter, that is, we turn the cost/resource
independent structural problem constraints z € S on the 0-1-variables z, into newly
defined variables: We introduce integer variables x4, for each possible solution (e.g.,
path, spanning tree, etc.) of our problem. So our problem can be stated as:

min E Cso0lT s0l

sol

S.t. szol =1

sol

ngi)lmsol < A i=1,...,k
sol

Tsol € {Oa 1}

Dropping the integrality constraint we can set up the corresponding dual problem (D):
k o
max u+ Z v\
i=1

k
s.t. u + Z Uirg))l < cso1 Vsol
i=1

v <0 i=1,...,k

The dual program (D) has k + 1 variables, an unconstrained variable u and k non-
positive variables v; for ¢ = 1,...,k, and a constraint for each solution satisfying the
structural properties. Hence, the number of constraints can get exponentially large.
The dual program is again equivalent to the Lagrangean Dual of the constrained net-
work optimization problem.

The only difference from the previously studied CSP relaxation is that we now have
constraints for each solution obeying certain structural properties instead of paths.
However, the constraints can still be interpreted as halfspace equations, and a solution
as a point in the cost-resource-space (see Figure 4.1 for the single resource interpreta-
tions).

The method for solving the CSP relaxation that we described in the previous chapter
was based on the fact that we could solve the separation problem efficiently with scaled-
cost shortest path computations. Now, in the general case, the separation problem is
to ask whether there is a solution sol’ so that

}k: (4)
i
Cool! — UiT g o1t <u
=1

87

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

u
direction (1,) * .

Vi :

Figure 4.1: (Left) Find the maximal point in direction (1,) in the halfspace intersection.
(Right) Find line with maximal ¢-value at r = A which has all points above or on it.

for given values of u and v; < 0. Such a solution can be found by solving the uncon-
strained network optimization problem with a scaled cost function we = ¢, — ZZ uirff)
on the edges.

If we assume that the underlying (unconstrained) network optimization problem for a
given cost function can be solved in time O(p(n,m)), where p is a polynomial in the
input, then we get the following lemma.

Lemma 4.1.1: The Lagrangean relaxation of the constrained network optimization
problem can be solved in polynomial time.

Proof. The problem (D) is equivalent to the Lagrangean relaxation. We assumed that
the unconstrained network optimization problem can be solved in polynomial time,
hence also the separation problem is polynomially solvable. Thus, we can solve the
Lagrangean relaxation in polynomial time with the Ellipsoid method. U

The preceding lemma guarantees that the multiple resource relaxation can be solved
polynomially with the Ellipsoid method. Of course, we are interested in a special
combinatorial method as in the CSP case. Since solving the separation problem was
the only problem-dependent step in the proposed dual simplex method with cutting
plane generation and its geometric interpretation, the hull approach, we may also use
this method in the general case of constrained network optimization.

The iteration bound of the single resource hull approach also extends since the proof
involved only problem independent geometric arguments. Hence, assuming that a de-
sired network solution consists of at most O(m) edges and assuming m = O(n?), we
have the following general theorem.

Theorem 4.1.1: The general hull approach computes the Lagrangean relaxation of a
network optimization problem with a single resource constraint in O(log(nRC)p(n,m))

88

4.1. CONSTRAINED NETWORK OPTIMIZATION PROBLEMS

time if the corresponding unconstrained problem can be solved in time O(p(n,m)) and
the maximal cost and resource of an edge is C' and R, respectively.

Proof. Assuming that a desired network solution consists of at most O(m) edges and
assuming m = O(n?) we conclude that a solution of maximal cost and resource is
bounded by O(mC) and O(mR), respectively. The rest of the proof uses only geometric
arguments, hence the iteration bound follows. U

We obtain the same asymptotic bound for the general binary search approach:

Lemma 4.1.2: The general binary search approach computes the Lagrangean re-

laxation of a network optimization problem with a single resource constraint in

O(log(nRC)p(n, m)) time.

The other geometric result concerned with the computation of the whole lower hull
containing the extreme Pareto-optimal paths also extends:

Lemma 4.1.3: The whole lower hull containing the extreme Pareto-optimal solutions
can be computed in O((m max{C, R})?/3) iterations using the modified hull approach.

4.1.2 Closing the Gap with Solution Ranking

Solving the relaxation with the hull approach, we obtain a lower bound on the optimal
solution. We also record the value of the best feasible solution that provides an upper
bound!. A duality gap may exist since the optimal hyperplane found by the hull
approach together with the resource limit planes and the upper bound plane define an
area where the true optimal solution may lie (see Figure 4.2 for an illustration of the
single resource case). In the CSP case, we have closed this gap using a path-ranking
procedure that enumerates paths in nondecreasing order with respect to the optimal
reduced costs. Sweeping the area where the true optimal solution may lie with this
procedure and updating bounds along the way, we may determine the optimum.

We can again adopt the same geometric interpretation in our general constrained net-
work optimization case. Now, we want to rank general network solutions with respect
to the optimal reduced costs?.

Lawler (1972) gave a general method for ranking discrete optimization problems that
we will explain in the following.

! A feasible solution (provided the problem is feasible) is only guaranteed in the single resource case.
2The hope is again that the area (or volume) that has to be swept until finding the optimum (being
an indicator for the number of solutions to be ranked) does not get too large.

89

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

Figure 4.2: Closing the gap between upper and lower bound.

The Method of Lawler: We assume that the problem is one of minimization in a
network and that the solutions are expressed in terms of 0-1-variables 1, x2, ..., Ty, On
the edges. We also assume that an efficient procedure determining optimal solutions
exists, subject to the condition that certain of these variables are assigned fixed values.
If no feasible solution exists for certain fixed values of the variables, the value of an

optimal solution is taken to be +oo.

The following simple procedure ranks solutions from the first to the K-th, for prede-
termined K:

. (Start) Compute an optimal solution without fixing the values of any variables,

and place this solution in LIST as the only entry. Set k = 1.

. (Output k-th solution) Remove the least costly solution from LIST and output

this solution, denoted z(*) = (mgk), .. ,a:(mk)), as the k-th solution.

. (Test k) If k = K, stop.

. (Augmentation of LIST) Suppose, without loss of generality, that z*) was ob-

tained by fixing the values of 1,2, ..., %s. Leaving these variables fixed as they
are, create m — s new problems by fixing the remaining variables as follows:

(k)

(1) Tg+1 = 1- xs+1,
— _ (k)
(2) "I"S‘f‘l - x5+1,$8+2 =1- $5+2’
_ (k) _ (k) _ (k)
(3) Ts+1 = T i1,Ts+2 = L9, Ts43 — 1- Tsis
k k k k
(m—3s) zsp1 = ‘Tg_glaxs—ﬂ = ngjL)g, sy Im—1 = $£n)_1axm =1- xsn)

Compute optimal solutions to each of these m — s problems and place them in

90

4.1. CONSTRAINED NETWORK OPTIMIZATION PROBLEMS

LIST, together with a record of the variables which were fixed for each of them.
Set k =k + 1. Return to Step 2.

The key to this procedure is the “branching” operation performed in Step 4. Let
X denote the set of feasible solutions for the problem for which z(*) is optimal,
and let XU X@ . X(m=5) denote the sets of feasible solutions for problems
(1),(2),-..,(m—s) created in Step 4. It is easy to verify that X(DUX@y...ux(m—s) =
X — {z(k)}. That is, the branching operation excludes only z(*) from further consider-
ation.

If we again assume that the time to compute a single optimization problem is
O(p(n,m)), then we can conclude that we may rank the K best solutions in time
O(Kmp(n,m)). The space is bounded by O(Km) but this bound may be reduced to
O(K + m) while only doubling the computation time (see Lawler (1972)).

We can use this general method to close the duality gap in our constrained network
optimization problems. Let LB be the optimum of the Lagrangean relaxation, w* the
reduced costs leading to the relaxation optimum (i.e., w} = c, — >, v} réi)), and UB
the cost of the best-known feasible solution. We use the optimal reduced costs w* as
cost function and start solution ranking updating upper and lower bounds along the
way until w*(sol) + >, v} A > UB. The following “online” pruning is possible: We
may discard a new problem in Step 4 if the resource consumption of the fixed chosen
edges® exceeds a resource limit or if the cost of the fixed chosen edges* exceeds UB.
We also only insert a new solution in LIST if w*(sol) + 3, v} A\() < UB.

It should be noted however, that despite the simplicity and genericity of Lawler’s
method, it is often possible to find more efficient ranking algorithms for specific prob-
lems, as it is for example the case in the k-shortest path or the k-minimum spanning
tree problem.

Now we have a generic 2-step method for solving constrained network optimization
problems for single or multiple resources:

1. Compute the Lagrangean relaxation with the hull approach solving unconstrained
network optimization problems in each iteration.

2. Close the duality gap with Lawler’s solution ranking method starting from the
lower bound.

3together with the minimal resource completion of the solution
“4together with the minimal cost completion of the solution

91

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

LR U /I O A S I B A

(_Ma 0) (_M: 0) (_M: 0) IM: 0) (_Mz 0)
2 eee @ XX @/ 2n +

4
(—vr,w1)

(=vn, wn)

Figure 4.3: Network for the knapsack problem.

4.2 Constrained Minimum Spanning Trees

We now consider another constrained network optimization problem, the constrained
minimum spanning tree problem (CMST). Again, each edge has a cost value and k
resource values and we are given limits on the resource consumption of a spanning tree.
The goal is to find a spanning tree of minimal cost that satisfies the resource limits.

Previous work on this problem concentrating on the single resource case has been done
by Aggarwal, Aneja, and Nair (1982) and Hamacher and Ruhe (1994) who solved the
relaxation with a hull approach variant and closed the duality gap by branch and
discard, and local search, respectively. Ravi and Goemans (1996) presented a PTAS
for the problem and Xue (2000) solved the relaxation with a combination of binary
search and hull approach.

Using the general 2-step approach of the previous section we get a simple algorithm for
multiple resource CMST.

4.2.1 Complexity

The unconstrained minimum spanning tree problem is efficiently solvable in polynomial
time, for example with Kruskal’s or Prim’s algorithm. Again the introduction of even
a single additional resource constraint changes the complexity of the problem.

Theorem 4.2.1 (Aggarwal, Aneja, and Nair (1982)): CMST is NP-complete.

Proof. We polynomially transform the knapsack problem to CMST. Consider the fol-

92

4.2. CONSTRAINED MINIMUM SPANNING TREES

lowing knapsack problem:

n

max E ’Uj.’L‘j

Jj=1

n
s.t. ija;j <Ww

=1
z;€{0,1} j=1,...,n

Now we construct a network with 2n 42 nodes as shown in Figure 4.3, where each edge
e in the network carries two numbers corresponding to ¢, and 7., M is a large positive
real number, and W corresponds to A.

Clearly, the knapsack problem may be solved by finding a minimum cost spanning tree
in the constructed network with resource consumption), r. < X. The lower horizontal
edges which are in this tree would reveal the variables at level 1 in the optimal solution
to the knapsack problem. Since the knapsack problem is AN P-complete, the theorem
follows. O

4.2.2 Solving the Relaxation

It is easy to see that CMST has the desired properties of a constrained network opti-
mization problem as defined in Section 4.1. Hence we can use a 2-step method to solve
CMST. The hull approach now has scaled cost minimum spanning tree computations
as a subproblem.

Let us now consider the Lagrangean relaxation of single resource CMST. The bound
on the number of iterations of the hull approach extends if we again assume integral
costs and resources in [0..C] and [0..R], respectively.

Corollary 4.2.1: The Lagrangean relaxation of single resource CMST can be solved
in O(log(nRC)) iterations with the hull approach. This gives a total running time of
O(log(nRC)(m + nlogn)).

The bound O((n max{R,C})?/3) on the maximum number of points on the lower hull
(corresponding to extreme Pareto-optimal spanning trees) also extends.

However, the bicriteria minimum spanning tree problem also allows a strongly polyno-
mial bound, hence the relaxation can also be solved in strongly polynomial time. The
reason is that a minimum spanning tree is defined by the order of the edges of the
network.

93

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

Lemma 4.2.1: In the parametric minimum spanning tree problem with cost function
Ce = Co + Ure, as we vary u from —oo to oo, we get at most m? minimum spanning
trees and every two consecutive minimum spanning trees are adjacent.

Proof. We call an ordered pair of edges [(4, j), (k,1)] with (¢, 7) # (k,1) a qualified pair if
13 > k. Clearly, there are at most m(m —1)/2 = O(m?) qualified pairs. Now suppose
that 7" and T" are two adjacent minimum spanning trees at u = ji, and T" is obtained
from T' by replacing a tree edge (7,7) with a non-tree edge (k,!). The path optimality
conditions tell us that for any nontree edge f = (u,v) we have ¢, + pre < cy + pry for
all tree edges e in the tree path connecting u and v. Since both 77 and 7" are minimum
spanning trees at p we have equality if we choose e = (7, j) and f = (k,[). Since we are
increasing p from —oo to co we can conclude that r;; > 7, i.e., the pair (7, j), (k,1)]
is a qualified pair. Hence, each change in the spanning tree uses up a qualified pair and
clearly no qualified pair can be repeated. Thus, we obtain at most O(m?) spanning
trees during the parametric analysis. U

This also means that the lower hull consists of at most O(m?) points, i.e., the hull ap-
proach cannot take more than O(m?) iterations of MST computations which is strongly
polynomial in the input.

Ravi and Goemans (1996) have shown how to use the elegant parametric search tech-
nique of Megiddo (1983) to obtain a bound of O(log? n) for the number of iterations in
solving the Lagrangean relaxation.

Solving the Lagrangean Relaxation with Parametric Search: It is well known
that the minimum spanning tree solution only depends on the linear order which is
induced on the set of edges by their weights. Our edge weights are of the form ¢, =
Ce + pure and we want to find the parameter p* that leads to the optimum of the
Lagrangean relaxation.

For any given value of 1 we can determine whether u < p*, u = p*, or 4 > p*. For this
purpose, among all optimum trees with respect to &, we can find the two trees T
and 7T},4; which have smallest and largest resource consumption. This can be done by
using a lexicographic ordering of the edges instead of the ordering induced by ¢. For
example, to compute Thin, we use the ordering (r.,c.) < (rf,cy) if ce < ¢f orif ce = ¢y
and re < ry. Then p < p* if r(Thmin) > A, p > p* if 7(Thin) < A, and p is (a possible
value for) p* otherwise.

If we now try to find an optimum tree for the value y*, without knowing y*, we would

like to sort the edges with respect to their costs at u*. Given two edges e and f, we

*

can determine if ¢f < ¢}, ¢

= c}, or ¢, > c} without actually knowing p*. We only

94

4.2. CONSTRAINED MINIMUM SPANNING TREES

need to determine the breakpoint, say p.y, of the two linear functions ¢, and ¢y as a
function of x4 and determine if pop < p*, pey = p*, or pey > p*. This can be done by
two minimum spanning tree computations (to determine T}, and Ty, as above) at
the value p.f.

Therefore, if we use an algorithm which makes O(m logm) comparisons to determine
the ordering of the weights at u*, we will be able to determine p* and the corresponding
tree by O(mlogm) minimum spanning tree computations.

Megiddo (1983) proposed doing that much more efficiently. Instead of using a serial
sorting algorithm, suppose now that we use a parallel sorting algorithm, repeatedly re-
stricting the interval containing p* until the edges are sorted with respect to ¢*. Specif-
ically, we apply the parallel sorting algorithm of Preparata (1978) with O(mlogn)
processors to the set of ¢}’s. The process works in O(logn) phases. During a single
phase, O(mlogn) critical values are produced by sequentially simulating the multi-
processor machine. Then we perform a binary search consisting of O(logn) minimum
spanning tree operations to obtain a restricted interval. This implies a time bound
of O(mlogn + (m + nlogn)logn) per round, which results in a total running time of
O(mlog?n + nlog®n) and thus only O(log? n) minimum spanning tree computations.
Given the correct permutation of the edges, we can find y* as well as the correspond-
ing tree(s). Hence using Megiddo’s technique, we have the following theorem giving a
strongly polynomial bound on the number of minimum spanning tree computations.

Theorem 4.2.2 (Ravi and Goemans (1996)): The Lagrangean relaxation of
CMST can be computed using O(log?n) minimum spanning tree computations
implying a bound of O(mlog?n + nlog3n).

However, in practice we usually have C, R = O(n), so the hull approach should be
preferred since it is much easier to implement.

4.2.3 Performance Guarantee

Ravi and Goemans (1996) also showed that in solving the relaxation we actually get
a performance guarantee. Define an («, 8)-approximation for CMST as a polynomial-
time algorithm that always outputs a spanning tree with total cost at most « OPT and
total resource at most SA°.

It can be shown that (a slight modification of) the hull approach computing the La-
grangean relaxation is a (1,2)-approximation and, provided that OPT > C, also a
(2, 1)-approximation algorithm. The proof of the performance guarantee exploits the

5Observe that the definition is not completely symmetrical in the two cost functions as the limit A
is given.

95

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

fact that two adjacent spanning trees on the spanning tree polytope® differ by exactly
two edges (one in each tree).

Theorem 4.2.3 (Ravi and Goemans (1996)): Let ¢* denote the cost function
leading to the optimum LB of the Lagrangean relaxation, and let C' and R denote
the maximal cost and resource of an edge, respectively. There exists a minimum span-
ning tree 77 with respect to ¢* of cost at most LB < OPT and of resource at most
A+ R. Additionally, there exists a minimum spanning tree T3 with respect to ¢* of cost
at most LB + C < OPT + C and of resource at most \.

Proof. Computing the optimum of the Lagrangean relaxation using either the hull
approach or parametric search we get two spanning trees T< and T~ that are minimal
with respect to the optimal lower bound costs ¢*. We know that ¢(T<) > OPT > LB
and (7<) < A. On the other hand we know that ¢(T”) < LB < OPT and r(T~) > A.

To derive the existence of a minimum spanning tree with respect to ¢* of resource
between A and A + R we use the adjacency relationship on the spanning tree poly-
tope. This adjacency relationship follows from the fact that forests of a graph define a
matroid, the graphic matroid.

Lemma 4.2.2: The spanning trees T and T” are adjacent on the spanning tree poly-
tope if and only if they differ by a single edge swap, i.e., there exist e € T' and e’ € T"
such that T —e =T" — €.

By considering the optimum face of the spanning tree polytope induced by the spanning
trees minimal with respect to ¢*, this lemma implies that if we have two optimum trees
T< and T~ then there must exist a sequence T< = Ty, T1,...,T = T~ of optimum
spanning trees so that 7; and 7;,; are adjacent for ¢ = 0,...,k — 1. But 7; and T;41
only differ in one edge swap. Thus, there must exist two adjacent spanning trees T; and
Tiy1 with r(T;41) < r(T;) + R < A+ R, moreover, we have ¢(T;+1) < OPT. Similarly,
it can be seen that T; obeys the desired cost and resource bounds.

To compute the sequence Ty, 11, ..., Ty starting from Ty, we repeatedly swap an edge
e in T but not in the current tree with a maximum (lower bound) cost edge not in
Tj but on the cycle closed by e. We can stop when we reached a tree with resource
at least A. This sequence will therefore end in k£ < n — 1 steps. Naively implemented,
this would take O(n) time per swap, for a total running time of O(n?). However, using
dynamic trees (Sleator and Tarjan 1983) we can do the series of swaps in O(nlogn)
time. U

5The convex hull of incidence vectors of spanning trees.

96

4.2. CONSTRAINED MINIMUM SPANNING TREES

Corollary 4.2.2: A (1,2)-approximation of CMST can be computed in O(log? n(m +
nlogn)) time or, alternatively, in O(log(nRC)(m + nlogn)) time.

Proof. Compute the optimum of the relaxation with parametric search or the hull
approach. Compute the sequence of optimum spanning trees in O(nlogn) time until
we find a tree T with ¢(T) < OPT and 7(T) < A+ R. Hence, 7(T') < 2X if we assume
to have pruned all edges with resource greater than . U

Unfortunately, we don’t get a (2,1)-approximation with the same arguments since we
do not know OPT and thus cannot prune edges with cost exceeding OPT. So we only
get this weaker result.

Corollary 4.2.3: If OPT > C then a (2, 1)-approximation of CMST can be computed
in O(log? n(m + nlogn)) time or, alternatively, in O(log(nRC)(m + nlogn)) time.

4.2.4 A PTAS for CMST

Ravi and Goemans (1996) show how the (1,2)-approximation algorithm can be turned
into a PTAS by modifying the initial edge pruning rule. Earlier, we pruned all edges
with resource greater than A since no such edge edge would be used in any feasible
solution. The approximation guarantee of 2\ on the resource consumption of the so-
lution followed from Corollary 4.2.2. To reduce this ratio, we could prune all edges
with resource greater than e\ for some fixed ¢ > 0. Then R would be at most €],
resulting in a final tree of resource consumption at most (1 + €)A. However, we may
discard edges that could possibly be used in an optimal solution. The key observation
is that at most 1/e¢ of the pruned edges can be used in any optimal solution, and there
are only O(no(l/ 6)) choices of subsets of pruned edges that may occur in any optimal
solution. For each one of these polynomially many choices, we include the chosen edges
in the tree, shrink the connected components , and run our algorithm on the resulting
graph with a resource limit of A minus the resource of the chosen edges. The solution
output is the tree with minimum cost among all trees over all the choices”. The proof
that the cost of the returned tree is at most the optimum value OPT is completed by
considering the running of the algorithm for the same choice of the chosen edges as in
some optimal solution of CMST.

This PTAS gives us a solution with cost of at most OPT and resource consumption
of at most (1 + €)X\ for any fixed ¢ > 0. However, we would be more interested in a
“traditional” PTAS giving us a feasible solution with cost of at most (1 + €¢) OPT.

"Note that all trees have resource consumption of at most (1 + €)A.

97

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

The idea now is to use costs instead of resources as the budgeted objective in the
available algorithm. Consider running the given algorithm for all possible integral limit
values on the cost of the tree to find a tree of approximately minimum resource. Over
all these runs, find the smallest value C’ of the limit so that the resource of the tree
output is at most A. Since no smaller value of the cost limit of the tree gives a tree
of resource at most A, it must be the case that C' is a lower bound on the cost of
any spanning tree of resource at most A. But the tree obtained by running the given
algorithm with a cost limit of C' must have cost at most (1 + €)C’, and therefore has
the desired properties. Binary search is used to speed up the determination of C’ using
O(log(nC)) invocations of the given approximation algorithm. This is still polynomial
in the input but no longer strongly polynomial.

4.2.5 Problem Reductions

As in the constrained shortest path case it is also possible here to use the resource
limit(s) and upper and lower bounds to prune nodes and edges that cannot be part
of an optimal solution. Aggarwal, Aneja, and Nair (1982) were the first to propose a
pruning step. They suggested finding for each edge e a minimum resource spanning
tree T' containing e. If 7(T") > A then it is safe to delete e from the network. Similarly,
we can use a given upper bound UB on the cost of the optimal solution of CMST. Find
for each edge e a minimum cost spanning tree 7' containing e. Edge e can be pruned
if ¢(T') > UB. Aggarwal, Aneja, and Nair (1982) suggested applying the above steps
repeatedly until no change results in the network (as Dumitrescu and Boland (2000)
proposed for CSP).

We will extend their pruning ideas to also considering the lower bound costs and to
shrink edges. This results in a more effective pruning step as we will see in the exper-
imental section. We follow the ideas of Eppstein (1990) who used them to obtain a
more efficient spanning tree ranking algorithm.

Let T be a spanning tree that is minimal with respect to the weight function w. Every
non-tree edge has a single tree replacement edge. We define R (e) for a non-tree edge
e connecting nodes z and y to be that edge on the tree path between z and y having
the highest weight.

Lemma 4.2.3: Let Rg(e) denote the replacement edges of a graph G with respect to
weight function w, and let UB and LB denote an upper and a lower bound on the weight
of an optimal tree, respectively, then any edge e with w(e) — w(Rg(e)) > UB — LB
can be pruned from the graph. Moreover, the pruning can be implemented in time
O(ma(m,n)).

98

4.2. CONSTRAINED MINIMUM SPANNING TREES

Proof. 1t follows from the definition that w(e) — w(Rg(e)) is the weight added by
including e in a spanning tree. If this exceeds the gap between upper and lower bound,
this edge cannot be part of an optimal solution. The replacement edges Rg(e) can be
computed efficiently in O(ma(n,m)) time using a result of Tarjan (1979) as shown in
(Eppstein 1990). The time bound follows. O

This implies problem reductions for CMST regarding the resource function(s) where
we have A as an upper bound and min,, as lower bound for i = 1,...,k. Given
upper and lower bounds on the cost (as we have after the hull approach) we can also
do problem reductions with respect to costs and lower bound costs.

It is also possible to reduce the number of nodes in the graph by contracting edges
that are guaranteed to be part of an optimal solution. Just as each non-tree edge has
a single tree replacement edge, it turns out that each tree edge has a single non-tree
replacement edge r¢(e). For any edge e in the spanning tree, disconnecting the tree
into two components 77 and T», we define the replacement edge r¢(e) to be the least
weight edge in G, other than e, between a vertex in 77 and one in T5.

Lemma 4.2.4: Let r¢(e) denote the replacement edges of a graph G with respect to
cost function ¢, and let UB and LB denote an upper and a lower bound on the cost of
an optimal tree, respectively, then any edge e with ¢(rg(e)) — c(e) > UB — LB can be
contracted as it will be contained in an optimal solution. Moreover, the contractions
can be implemented in time O(ma(m,n)).

Proof. For each edge, c(rg(e)) — c(e) is the extra cost that we would have to add to
the tree if we were to remove e. If this extra cost exceeds the gap between upper
and lower bound, we can conclude that e has to be part of an optimal solution, so
we can contract edge e. The replacement edges rg(e) can be computed efficiently in
O(ma(n,m)) time using a result of Tarjan (1979) as shown in (Eppstein 1990). The
time bound follows. O

We will see in the experiments that this pruning strategy improves on the pruning of
Aggarwal, Aneja, and Nair (1982) and allows a more efficient gap closing step.

4.2.6 Gap Closing
Solving the Lagrangean relaxation we get an upper and a lower bound on the optimal
solution of CMST. As in the CSP case we are interested in closing this duality gap.

Aggarwal, Aneja, and Nair (1982) use a branch and discard strategy that essentially
corresponds to a minimum spanning tree ranking algorithm with pruning, whereas

99

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

Hamacher and Ruhe (1994) apply a local search heuristic to close the gap in their
algorithm for the single resource case.

We will use our general solution ranking idea and close the gap with a k-minimum
spanning tree ranking algorithm:

Katoh, Ibaraki, and Mine (1981) proposed a k-minimum spanning tree algorithm that
runs in time O(Km + min{n?,mloglogn}) and space O(K + m). Their algorithm
computes a spanning tree T; when T1,T5,...,T; 1 are given using the branch-and-
bound technique of Lawler (1972) that we presented in Section 4.1.2. Using the special
properties of spanning trees they improve upon Lawler’s general time bound.
Eppstein (1990) used reduction techniques as described in Section 4.2.5 to obtain a
O(mlog B(m,n) + k?) time bound where S(m,n) = min{i : log®n < m/n} that
improves on the previous bound if k¥ = O(m).

We use a spanning tree ranking algorithm to close the duality gap as described in
Section 4.1: We use the optimal reduced costs as cost function and rank spanning trees
until we have swept the possible area. The mentioned online pruning again applies.

Despite the strongly polynomial size of the hull in the CMST case, we again cannot
give a polynomial worst case bound on the number of paths to be ranked in the gap
closing step.

4.2.7 Experiments

Our CNoP package® offers a 2-step implementation for CMST. LEDA’s implementation
of Kruskal’s algorithm for minimum spanning trees is used as the core function in the
hull approach. The gap closing step is done with an implementation of the spanning
tree ranking algorithm of Katoh, Ibaraki, and Mine (1981). The problem reductions of
Section 4.2.5 are also provided.

We use benchmarks of the minimum-cost reliability-constrained spanning tree problem
that arises in communication networks: We are given a set of n stations in the plane
that can communicate with each other. We now want to connect the stations, the cost
of a connection might be modeled by the distance of the stations and the reliability
of a connection by its fault probability. We now want to compute a minimum cost
connection (spanning tree) so that its total fault probability is beyond a given limit
(see Figure 4.4). In our benchmarks, we place the stations randomly in a 1000 x 1000
square. Then we connect nodes lying in a certain range of each other to obtain a
clustered graph with m = 4n. The cost of an edge is its euclidean distance. We
choose random fault probabilities from the range [10..20] as edge resources and impose

8Refer to Chapter 5 for a detailed discussion.

100

4.2. CONSTRAINED MINIMUM SPANNING TREES

«r ¥ LEDA 4.2 (c) 1991-2000 Max-Planck-Institut fiir informatik rﬂ LEDA 4.2 (c) 1991-2000 Max-Planck-institut fiir informatik

LEDA4Z | | LEDA 4.2

Figure 4.4: Minimum cost spanning tree and Minimum cost reliability constrained spanning
tree. Width of edges corresponds to fault probability.

a “normal” constraint (as in the CSP experiments in Section 3.5) on the resource
consumption, i.e., fault probability.

We want to experimentally analyze the number of iterations needed to solve the re-
laxation, the quality of the obtained upper and lower bounds, the effectivity of the
problem reductions and the number of spanning trees to be ranked in the gap closing
step.

Table 4.1 shows the results. We observe that the number of iterations of the hull
approach needed to solve the relaxation rises very slowly for increasing network sizes.
The gap between the upper and lower bounds is extremely small, we sometimes even
obtain the optimal solution with the hull approach. This confirms the experimental
observations in the constrained shortest path case.

Now we consider the problem reductions. The reductions proposed by Aggarwal, Aneja,
and Nair (1982) are not effective and leave our benchmark networks unreduced. Our
resource reductions also do not reduce the problem size. This is due to the resource
distribution on the edges and to the fact that the gap between the resource constraint
and the value of the minimum resource spanning tree is too big. However, our cost
reductions using upper and lower bounds are very effective (see columns 6 and 7 in
Table 4.1) since the bounds are so good.

Finally, we turn to the gap-closing step. We observe that only a very small number
of spanning trees has to be ranked until the optimum is found. This can be explained

101

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

size hull approach reduced size gap-closing

n m UB LB it [n |m # trees || OPT

250 1250 || 14504.7 | 14474.6 | 9 143 | 343 5 14475

250 | 1250 || 15639.8 | 15606.8 | 10 || 155 | 382 50 15607.7
250 | 1250 || 16089.7 | 16040.6 | 11 || 194 | 538 18 16040.9
250 | 1250 || 15572.6 | 15537.2 | 10 || 156 | 368 5 15537.2
500 | 2500 || 28297 28265.7 | 12 || 300 | 709 6 28265.8
500 | 2500 || 28561.1 | 28561.1 | 11 || O 0 0 28561.1
500 | 2500 || 29014.3 | 28982.9 | 10 || 301 | 744 39 28983.9
500 | 2500 || 29202.1 | 29170.7 | 11 || 298 | 710 13 29170.9
750 | 3750 || 39788.2 | 39788.2 | 10 || O 0 0 39788.2
750 | 3750 || 40078.2 | 40046.9 | 11 || 444 | 1084 13 40047.1
750 | 3750 || 40381 40351.6 | 12 || 471 | 3404 4 40351.6
750 | 3750 || 40722.5 | 40675.9 | 11 || 600 | 1587 58 40676.2
1000 | 5000 || 49420.1 | 49405.5 | 12 || 363 | 738 3 49405.6
1000 | 5000 || 50916.5 | 50901.7 | 13 || 343 | 801 30 50901.9
1000 | 5000 || 50575.2 | 50575.2 | 11 || O 0 0 50575.2
1000 | 5000 || 51442.8 | 51427 13 || 331 | 757 8 51427.2

Table 4.1: Performance of the 2-step method on the minimum-cost reliability-constrained
spanning tree benchmarks.

by the clustered network structure and the resource distribution. A large number of
spanning trees exists for most given resource consumptions which results in a large
number of hull points. Thus, the lower bound almost constitutes the optimum which
means that only very few spanning trees have to be ranked until we hit the optimal
solution.

Since the number of trees to be ranked in the gap closing step is so small, it is more
efficient to omit the problem reduction step as it takes more time than is gained in the
gap closing step on the reduced graph®.

The experiments show that the 2-step method for CMST is very efficient on our bench-
marks. However, there are certainly other cost/resource distributions and graph types,
where the bounds from the relaxation are not as excellent and lead to a much larger
number of spanning trees to be ranked to determine the optimum.

9The number of spanning trees to be ranked is usually identical or changes only minimally.

102

4.3. THE TABLE LAYOUT PROBLEM

Sam I don’t

I like th
Sam I am T don’t like them a ke them

Green at all
Green eggs and ham | at all

eggs and

ham

Table 4.2: Layout options for a table.

Sam

Sam
1 s
am

Table 4.3: Non-nesting configurations for the content “Sam I am”.

4.3 The Table Layout Problem

In this section we study a geometric problem arising in typography: the problem of
laying out a two-dimensional table. Each cell has content associated with it and we
have choices of the geometry of cells.

Anderson and Sobti (1999) formulated a combinatorial version of this problem that fits
into our constrained network optimization problems. We review their formulation and
illustrate the application of our 2-step method.

4.3.1 Problem Formulation

An M x N table is a two-dimensional array with M rows and N columns, which has
content associated with each of its M N cells (see Table 4.2). For each cell, there
is a specified set of configurations in which the associated item can be displayed. A
configuration is, basically, a rectangle specified by giving its height and its width (see
also Table 4.3). In other words, a configuration is a tuple of the form (height, width),
and the configuration set Cj; is of the form {(hfj, fwfj)|1 <k<K;}forl<i< M and
1 < j < N. A table can be displayed in a variety of different layouts (see Table 4.2).
Suppose 7 is an M x N table. A layout £ of T is a selection of a configuration for
each cell. More formally, for each 4, j we have an integer l;; (1 < [;; < K;;) giving the
index of the configuration used from the set C;j;. When we have fixed the configuration
for each cell, we can determine the dimensions of the table. Let h;; and w;; be the
i
The height h; of row 4 is the maximum height of any cell in the row, and the width w;

height and the width necessary for the (4, j)-th cell, i.e., let h;; = hé;j and w;j = w

103

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

of column j is the maximum width of a cell in the column. The height of the layout,
height(L) is 3, hi, and the width of the layout, width(L) is 3, w;.

In the table layout problem, given a width limit W for a table 7, we want to find the
layout £ of 7 with minimum height height(L) so that width(L) < W.

The ILP formulation uses 0-1-variables xfj to indicate whether or not cell 4,7 is in
configuration k. Then we obtain this formal ILP:

. k .k
min E max{h; x*.
—jk iy
7
t k .k
- i,k
J

Zx%zl
k

wfj € {0,1}

In the table layout problem, we assume that the configurations do not nest. Given
two configurations, one must have greater height and the other greater width. This
means we only consider the Pareto-optimal configurations. We will assume that the
configurations are ordered by increasing height and decreasing width.

4.3.2 Complexity

The recognition version of the table layout problem, the question of whether there
is a layout £ with height(£) < H and width(L) < W for the given table, is NP-
complete, even when the tables are restricted to be simple, i.e., the heights and widths
of configurations are restricted to being 1 or 2.

For simple tables, a cell is said to have a choice item if there are two distinct config-
urations to choose from, and a dummy item if there is only a single configuration. In
the layout problem, a dummy item has the configuration set {(1,1)}, and a choice item
has the configuration set {(1,2),(2,1)}.

Theorem 4.3.1 (Anderson and Sobti (1999)): The layout problem for simple ta-
bles is N"P-complete.

Proof. We reduce the clique problem to the layout problem. Suppose we want to
determine if there is a clique of size F' in an N vertex, M edge graph G. We construct
a simple N x M table T as follows: For any 4, j, cell (i, 7) of T has a choice item if the
i-th vertex of G is incident on the j-th edge of GG, and otherwise has a dummy item.

104

4.3. THE TABLE LAYOUT PROBLEM

21 \8p

Figure 4.5: Flow graph corresponding to the table layout problem of Table 4.2. Black edges
are infinite capacity edges.

(Essentially, 7 is just the incidence matrix of G with the 0-entries replaced by choice
items.) Les H =N+ F and W = 2M — (5) Then, G has a clique of size F' if and
only if table 7 has a layout £ with height(L£) < H and width(L) < W. O

4.3.3 Reduction to Minimum Cut

Anderson and Sobti (1999) found an interesting connection between table layout and
network flow. They showed how to solve the weighted sum minimization problem
by constructing a flow graph where the minimum cut corresponds to a layout £ which
minimizes height(L) + p - width(L). The flow graph has the following bipartite graph
structure: We have a source, a sink, and row vertices and column vertices. The source
is connected to row vertices, column vertices are connected to the sink, and there
are infinite capacity edges between some row and column vertices. The vertices for
a particular row correspond to each possible height for the row (determined by the
configurations of cells in the row). These vertices are chained together (through infinite
capacity edges) in increasing order of height, and there is an edge from the source to a
row vertex with capacity equal to the difference between its height and its predecessor’s
height. A similar construction is used for each column, there is an edge from a column
vertex to the sink with capacity equal to y times the difference between its width and
its predecessor’s width. The edge for a particular configuration of cell (7,) is placed
between a vertex of row ¢ and column j.

We now give the formal definition of Anderson and Sobti (1999) for the flow network
G, for a given M x N-table T:

We define the sets of “row-heights” and “column-widths” as RH (i) = Ujvzl{hfj 11 <
k < Kij} and CW(j) = UL {wk : 1 <k < Kj;}.

105

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

It is easy to observe that if layout £ minimizes u-weight, then for each 4,5 we have
hi € RH (i) and w; € CW (j). For notational convenience, we rename elements of RH (7)
and CW(j) so that RH (i) = {a;x : 1 <k < d;} and CW (j) = {bjx : 1 <k <e;}, with
a1 < @2 < -+ < @iy, and bj1 < bjo < -0 < bje;. For every 4,5,k (1 <k < Kjj),
let pk denote the rank of hk in RH (i), and let qu denote the rank of wfj in CW(3).
Thush =a, kandw b

5Pij ,q”
The vertex set of G, is UUV U {s,t}, where U = Uf\/jl Ui and V = UN,IV' with
Up={uip : 1 <k <di+1} and V; = {V; = {v; : 1 <k < e; +1}. Vertices in U;
constitute the gadget for row i, vertices in V; for column j.
The edge set of G, is Ey U Ey UX UY U Z, where
By = UL {(uig, wigr1) : 1 <k < di}, By = UL {(vjh41,058) : 1 < k < g5},
X ={(s,u)) :ue€U}U{(s,v51) :1<j <N},
Y ={(v,t)) :v e V}U{(uj1,t) : 1 <i< M}, and
Z = UZ 1Ug 1(Zij U{(u Uipl» t), (s, quK)}) with Z;; = {(u; Pk Uyl 1) 11 <k < Ky}

Edge capacities in G, are as follows: All edges in Ey, Ey and Z have infinite capacity.
Arcs in X of the form: (s,wv; 1) have infinite capacity, (s, u;1) have capacity a; 1, (s, uix)
(for 1 < k < d;) have capacity a;x — a; k-1, and (s, u;q4,4+1) have infinite capacity.
Arcs in Y of the form: (u;1,t) have infinite capacity, (v;,1,t) have capacity ub; 1, (v, 1)
(for 1 < k < e;) have capacity u(bjx — bjk—1), and (vje,+1,t) have infinite capacity.
This completes the construction. Figure 4.5 gives an example.

What can we say about the number of nodes and edges in this graph? Clearly, the
number of nodes n is bounded by O((N + M)K) where K = max{K;;} is the maximal
number of configurations in a cell. Let L be the maximal number of words in a cell
and let C be the maximal number of characters of a word in the content. A simple
way to compute all configurations in a cell, hence bounding the maximal number of
configurations, is to compute, for each h, the minimum width w that gives a cell of
height h. To find the minimum width cell for a fixed height, we use binary search on
the line width that is bounded by O(LC). Given the width of a cell, we can compute
its height in O(L) time with a simple greedy algorithm'®. This gives us a total running
time of O(L?log(LC)). Hence, the number of nodes n in the flow graph is bounded by
O((N + M)L?1og(LC)). The number of edges m can be as large as O(n?).

A minimum s-t cut of this graph is found. Since there is a finite capacity cut, the infinite
capacity edges do not cross the cut. This makes it possible to identify row heights and
column widths which correspond to the cut. There is a direct correspondence between
the cut size and the weighted sum of the height and width, so the minimum cut gives
the optimal table. The key point to verify is that for each cell, there is a configuration
which can fit in the cell. This holds because of the placement of infinite capacity edges

10 Anderson and Sobti (1999) give an improved but more complicated algorithm.

106

4.3. THE TABLE LAYOUT PROBLEM

1 1 1 1 .72 - .247.24/1.9

Figure 4.6: Minimum s-t cut in flow graph. Green edges are cut edges. Value of cut is 8.56.

from row vertices to column vertices.

The following theorem describes the close correspondence between min-cuts in G, and
layouts of 7.

Theorem 4.3.2 (Anderson and Sobti (1999)): For each s-t min-cut @ in G,
there exists a layout £ of 7 with capacity of () being equal to the u-weight of L.
Similarly, for each layout £ of 7 that minimizes the p-weight, there exists an s-t cut
Q in G, with capacity of () being equal to the y-weight of L.

Given a table T and a positive real number p, a minimum p-weight layout £ of 7 can
be computed in polynomial time. We first construct the flow network G, and then find
an s-t minimum cut ¢ in G,. This can be done by finding a maximum flow in G, in
time O(n?) with a preflow push algorithm and using the max-flow-min-cut theorem to
obtain an s-t minimum cut in G .

Layout £ can be recovered from cut) as follows: Let SUT be the partition of the vertex
set of G, dictated by @, where s € S and ¢t € T. Now, one can observe that for every
i:1 <4< M, there exists some integer f; : 1 < f; < d; so that {u;, : 1 <k < f;} CT
and {u;} : fi <k <d; +1} C S. Similarly, for every j : 1 < j < N, there exists some
integer g; : 1 < gj <ejsothat {v;;: 1<k <gj} CTand {vj:9; <k<ej+1}CS.
This occurs due to the infinite capacity arcs in Fy, Fy, X, and Y, and due to the fact
that @) is a cut with finite capacity. From the f;’s and the g;’s, we can construct a
layout £ of T in the following manner: Let h; be a; 5, and w; be bj .. For each i, j let
l;; be any [such that héj < a;,f, and wéj < bjg;- Such an [is guaranteed to exist and
the h;’s, w;’s and [;;’s as defined above describe a valid layout with p-weight equal to
the capacity of Q).

Figure 4.6 gives an example for y = 0.24 and Table 4.4 shows the corresponding layout.

107

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

Sam I don’t
I am like them

Green eggs | at all

and ham

Table 4.4: Table layout resulting from minimum cut of Figure 4.6. Height is 4, width is 19.

4.3.4 Solving the Lagrangean Relaxation

Now we have seen that we can solve the weighted sum minimization problem with a
parametric network flow problem which means that the hull approach can be used to
solve the Lagrangean relaxation of the table layout problem.

Let L be the maximal number of words to be displayed in a cell, and let C be the
maximum number of characters of a word in the content. Then we can conclude that
the maximal height of a table layout is bounded by M L and the maximal width by
NL(C + 1). Thus we get the following bound.

Corollary 4.3.1: The Lagrangean relaxation of the table layout problem can be solved
with the hull approach using O(log(N M LC)) min cut computations in the correspond-
ing flow graph.

The bound on the total number of extreme points on the lower hull corresponding to
extreme Pareto-optimal table layouts also extends:

Corollary 4.3.2: The maximal number of extreme points on the lower hull is bounded
by O((LC max{N,M})?/3). The whole lower hull can be computed by a modified
version of the hull approach with the same bound on the number of iterations.

Anderson and Sobti (1999) proposed a method equivalent to the hull approach for
solving the relaxation but left the running time open. However, they pointed out
that Gallo, Grigoriadis, and Tarjan (1989) studied the source parametric maximum
flow problem, where the capacity of every source edge (s,7) is a non-decreasing linear
function of a parameter y > 0 and all other edge capacities are fixed. This is symmetric
to our problem and a general formulation. We now want to determine the maximum
flow for p values 0 = p1 < pg < --- < pp,. Let MF(u) denote the maximum flow
problem for a specific value of u, v(y) its maximum flow value, and [S(u),S(¢)] an
associated minimum cut. Gallo, Grigoriadis, and Tarjan (1989) show how to modify
a preflow-push algorithm to solve this problem by successively determining MF (p;4+1)
from MF(p;) in a bound of O(n3) as for a single maximum flow computation.

It also turns out that the corresponding minimum cuts satisfy the nesting condition

108

4.3. THE TABLE LAYOUT PROBLEM

Henning Mankell: Sebastian Haffner: No Angels: No Angels:

Der Mann, der laechelte | Geschichte eines Deutschen || Daylight in your eyes | Elle’ ments

Joanne Rowling: Norman Finkelstein: Glashaus: Daft Punk:

Harry Potter und Die Holocaust- Industrie Wenn das Liebe ist Discovery

der Feuerkelch

Joanne Rowling;: Dietrich Schwanitz: Crazy Town: Eric Clapton:

Harry Potter und der Bildung Butterfly Reptile

Stein der Weisen

Joanne Rowling: Guenther Ogger: D-12: Dido:

Harry Potter und die Der Boersenschwindel Shit on you No angel

Kammer des Schreckens

Joanne Rowling: Florian Tllies: Daft Punk: De- Phazz:

Harry Potter und der Generation Golf One more time Death by chocolate

Gefangene von Askaban

John Grisham: Hans- Olaf Henkel: Outkast: Peter Maffay:

Die Bruderschaft Die Macht der Freiheit Ms. Jackson Heute vor
dreissig Jahren

Ingrid Noll: Dale Carnegie: Rammstein: Aerosmith:

Selige Witwen Sorge dich nicht, lebe! Sonne Just push play

Charlotte Link: Guenther de Bruyn: Wheatus: Goldfrapp:

Die Rosenzuechterin Preussens Luise Teenage dirtbag Felt mountain

Rosamunde Pilcher: Bodo Schaefer: Niemann: Crazy town:

Wintersonne Der Weg zur Im Osten The gift of game

finanziellen Freiheit

Donna Leon: Lance Armstrong;: Ricky Martin: Robbie Williams:

In Sachen Tour des Lebens Nobody wants Sing when

Signora Brunetti to be lonely you’re winning

Table 4.5: Table of book and music bestsellers in Germany (March 2001). Width of the table
is 88 characters, the height is 27 rows.

S(p1) C S(u2) C -+ S(up) which allows us to conclude that p < n.

We can conclude that the piecewise linear function v(u) has at most n — 1 breakpoints,
i.e., the lower hull contains at most n — 1 extreme points. Gallo et al. (1989) also
present a quite involved algorithm to compute all breakpoints in O(n3) time.

This means we also have a strongly polynomial algorithm to compute the optimum of
the relaxation. However, the nesting property does not allow us to prove an approxi-
mation guarantee for the bounds as in the case of CMST.

Let us now show an example that illustrates the quality of the obtained bounds. Ta-
ble 4.5 is the Top 10 list of the German book and music bestsellers. With some “hand
tuning” we came up with a table of 27 rows for a maximum width of 88 characters.

109

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

40 ’-\
35
height o 5 \

20 I

15

|

50 60 70 &0 90 100 110 120 130 140 150 160 170 180 190
width

Figure 4.7: Whole hull of the layout problem for Table 4.5 showing the extreme
Pareto-optimal layouts.

The corresponding flow graph has 170 nodes and 515 edges. Using an implementa-
tion of the weighted sum minimization problem and our CNOP package!! providing
the general hull approach we computed the whole lower hull giving us extreme points
corresponding to extreme Pareto-optimal table layouts. The lower hull consists of 10
points (see Figure 4.7).

Since heights and widths are integers, it is often possible to detect optimality even
though upper and lower bound do not coincide. For the example of a width limit of
88 characters, we have an extreme point of the hull giving an optimal solution to the
table layout problem that is given in Table 4.6. Now we only need 22 rows.

4.3.5 Closing the Gap

We have seen in the previous section that the bounds obtained by the hull approach
are usually quite good (which was also observed by Anderson and Sobti (1999) in their
experiments). If there still is a duality gap, we may close it by ranking minimum cuts
with respect to the optimal reduced costs. Hamacher, Picard, and Queranne (1984)
proposed an algorithm for finding the K best cuts in a network that runs in time
O(Kn*) following the generic method of Lawler (1972). We can use this algorithm in
our 2-step method to obtain the optimal solution to table layout problems.

"Refer to Chapter 5 for a detailed discussion.

110

4.3.

THE TABLE LAYOUT PROBLEM

Henning Mankell: Sebastian Haffner: No Angels: No Angels:
Der Mann, der Geschichte eines Daylight in Elle’
laechelte Deutschen your eyes ments
Joanne Rowling: Harry Norman Finkelstein: Die || Glashaus: Wenn | Daft Punk
Potter und der Feuerkelch Holocaust- Industrie das Liebe ist Discovery

Joanne Rowling: Harry Potter

Dietrich

Crazy Town

Eric Clapton:

und der Stein der Weisen Schwanitz: Bildung Butterfly Reptile

Joanne Rowling: Harry Potter Guenther Ogger: Der D-12: Shit Dido: No

und die Kammer des Schreckens | Boersenschwindel on you angel

Joanne Rowling: Harry Potter: Florian Tllies: Daft Punk: De- Phazz: Death
und der Gefangene von Asbakan | Generation Golf One more time | by chocolate

John Grisham: Hans- Olaf Henkel: Die Outkast: Peter Maffay: Heute
Die Bruderschaft Macht der Freiheit Ms. Jackson vor dreissig Jahren
Ingrid Noll: Dale Carnegie: Sorge Rammstein: Aerosmith:

Selige Witwen dich nicht, lebe! Sonne Just push play
Charlotte Link: Die Guenther de Bruyn Wheatus: Goldfrapp:
Rosenzuechterin Preussens Luise Teenage dirtbag | Felt mountain
Rosamunde Pilcher: Bodo Schaefer: Der Weg || Niemann: Crazy town: The
Wintersonne zur finanziellen Freiheit Im Osten gift of game

Donna Leon: In
Sachen Signora
Brunetti

Lance
Armstrong: Tour
des Lebens

Ricky Martin:
Nobody wants
to be lonely

Robbie Williams:
Sing when you’re
winning

Table 4.6: Table of book and music bestsellers with minimal height of 22 rows for a width

limit of 88 characters.

111

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

4.4 Constrained Geodesic Shortest Paths

In this section we examine a continuous version of the shortest path problem. We review
an approximation algorithm of Lanthier, Maheshwari, and Sack (2001) for the weighted
geodesic shortest path problem on a polyhedral terrain and use this method to get an
approximation of the constrained geodesic shortest path problem where each face of
the terrain has an additional weight and we have a constraint on the second weighted
length of a path. We theoretically and experimentally investigate the approximation
quality of our method and close with an e-J-approximation scheme for the problem.

4.4.1 Geodesic (Weighted) Shortest Paths

So far, the shortest path problems we have considered have been of discrete nature.
However, there are important applications in geographical information systems (GIS)
where we want to compute a shortest path between two points on a polyhedral terrain.
Such a shortest path is a geodesic shortest path and this problem is continuous.

More formally, let s and ¢ be two vertices on a given possibly non-convex polyhedron
P in R3, consisting of n triangular faces on its boundary, and let each face have an
associated positive weight. An Fuclidean shortest path (s, t) between s and t is defined
to be a path with minimum euclidean length among all possible paths joining s and ¢
that lie on the surface of P. A weighted shortest path I1(s,t) between s and ¢ is defined
to be a path with minimum cost among these paths, where the cost of the path is the
sum of the euclidean lengths of all segments multiplied with the corresponding face
weight!2.

Currently, the best known algorithm for euclidean shortest paths is due to Chen and
Han (1996) and runs in O(n?) time but is very sensitive to numerical errors. Since most
application models are approximations of reality and high-quality paths are favoured
over optimal paths that are “hard” to compute, we review approximation algorithms of
Lanthier, Maheshwari, and Sack (2001) for the weighted shortest path problem. Their
idea is to add Steiner points and edges to discretize the problem:

Fixed Scheme: We place m Steiner points evenly along each edge of P. For each face
fi, 1 <11 < n of P, we compute a face graph G; as follows: The Steiner points, along
with the original vertices of f;, become vertices of G;. Connect a vertex pair v,, vy of
G; to form an edge (vq,vp) of G; if and only if v, and v, correspond to Steiner points
(or vertices) that lie on different edges of f; or are adjacent on the same edge of f;.
The weight of a graph edge (vg, vp) is the Euclidean distance |v,vp| between v, and vy
times the weight of f;, and the magnitude of this weight will be denoted as ||vgvs||.

12A path segment traveling along an edge of P uses the minimum weight of the adjacent faces.

112

4.4. CONSTRAINED GEODESIC SHORTEST PATHS

T

Figure 4.8: Adding Steiner points and edges to a face.

A

Sy

/ J

/ fi \
A |

\ d
b
\

Figure 4.9: A face-crossing segment and its approximation of a weighted shortest path.

Figure 4.8 shows how 6 Steiner points and 26 edges are added to a face to form the
face graph G; when we have m = 2. Let L be the maximal length of an edge in P.
Assuming that a segment of the optimal path runs through face f;, what can we say
about approximating this segment using edges of G; 7

Claim 1 (Lanthier, Maheshwari, and Sack (2001)): Given a segment s; crossing

face f;, there exists an edge s} in G; so that ||s}|| < ||s;| +wy, - L.

Proof. Each edge in P is divided into m + 1 intervals which have length at most mL—I—l
Let s; = ab, where without loss of generality, a and b are the end points of s; lying on
edges e, and ey of f;, e, # ey, respectively. Let ¢ (respectively, d) be the Steiner point
in f;, where ¢ (respectively, d) is closest to a (respectively, b) among Steiner points on
eq (respectively, ep). Since ¢ and d lie on different edges of f;, we know that there is an
edge e € G; joining them (see Figure 4.9) and we set 3;- = e. The triangle inequality
assures that |s7| < |ab| + [s;| + [bd|. Since we chose the closer interval endpoints, we

have [ca| < 2(mL—+1) and |bd| < m Hence, |s}| < |s;| + 75. Now, multiplying with
the face weight wy,, we get [|s}|| < |[s;]| —i—wfimiﬂ. O

A graph G is computed by forming the union of all face graphs G;, 1 < i < n. All edges
of G lie on the surface of P hence a path exists in G that approximates the shortest
path II(s,t). We get the following approximation guarantee:

113

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

Figure 4.10: Optimal, guaranteed approximate and approximate path.

Lemma 4.4.1 (Lanthier, Maheshwari, and Sack (2001)): Given two vertices s
and ¢ of P, there exists a path II'(s,%) in G between the vertices corresponding to s
and ¢ so that ||II'(s,?)|| < ||H(s,?)|| + mLHkW, where k is the number of segments of
(s, t).

Since a shortest path may have ©(n?) segments (Lanthier, Maheshwari, and Sack 2001)
we get the following result.

Corollary 4.4.1 (Lanthier, Maheshwari, and Sack (2001)): Using the fixed
scheme, we can compute an approximation II'(s,t) of the weighted shortest
path TI(s,t) between two vertices s and ¢ on the polyhedral surface P so that
[|ITT' (s,¢)|| < ||II(s,t)|| + W L, where L is the longest edge of P and W is the maximum
weight among all face weights of P. Moreover, we can compute this path in O(n®)
time.

Note: The bound above can be made tighter and written as ||II'(s, t)|| < ||TI(s,t)|| +

Vﬁ{“, where Ly is the sum of the edge lengths of P that II(s,t) passes through and Ep

is the number of edges that II(s,t) passes through.

Lanthier, Maheshwari, and Sack (2001) also proposed an interval scheme forcing the
intervals between adjacent Steiner points on an edge to be of equal length. This typi-
cally reduces the number of Steiner points and edges although the worst cases analysis
carries over.

They also presented a heuristic for an efficient refinement of an approximation. After a
preliminary approximation IT'(s, t), a buffer region P’ is determined which is the union
of all faces intersected by II'(s,t). Then the approximation scheme is applied to P’
with an increased number of Steiner points to obtain a refined approximation I1”(s, t).
However, 11" (s, t) is not guaranteed to converge to the optimal path II(s,t), only if the
considered buffer contains it (see Figure 4.10).

114

4.4. CONSTRAINED GEODESIC SHORTEST PATHS

4.4.2 Applying the Hull Approach

Now we consider a bicriteria variant of the weighted geodesic shortest path problem.
Each face f now has two weight values, w&l) and w?). Given an s-t path p on the
terrain surface, we define the cost ¢, of path p to be its w(l)—weighted euclidean length,
and the resource consumption r, to be its w®-weighted euclidean length.

The constrained geodesic (weighted) shortest path problem (CGSP) is to find the min-
imum cost path from s to ¢t on the surface of P so that its resource consumption does

not exceed a given upper limit \'3.

This continuous problem can also be formulated as an ILP by a slight adaption of the
formulation in Section 3.3.

o = 1 ifpisa (simple) path from s to t on the surface of P
P71 o0 otherwise.

min Z CpTp
P
s.t. Z zp =1
p
Z TpTp < A
p

zp € {0,1}

In the discrete version (CSP), we had at most an exponential number of paths, but the
continuous version (CGSP) has an infinite number of paths, hence, the dual relaxation
also has an infinite number of constraints:

max U+ Av
s.t. u+rpv < ¢ Vp
v <0

The separation problem is the following: Is there a path ¢ with @ + ¥ry, > ¢, or
@ > ¢g — Ury (where 4,7 are optimal values for the variables for the current set of
constraints). This separation problem is solved by a shortest path computation with
the scaled costs ¢; = ¢; — U1 = Es(w?) — Q_Jwg?)) for a segment s on the surface of P.
In the discrete case, we could solve the separation problem exactly, in the continuous
case, we have to be satisfied with an approximate solution using one of the schemes
discussed in Section 4.4.1.

We now bound the error of the approximate extreme points that we compute with one

of the approximation schemes.

13 A multiple resource definition and formulation is analogous.

115

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

L(W1-vW2)

LWo

p N wdy

Figure 4.11: Exact and approximate extreme point and the width of the approximation strip.

Lemma 4.4.2: Let W, be the maximal face weight of the first weight function w(®),
W the maximal face weight of the second weight function w?, and L be the maximal
euclidean length of an edge of P. For any v < 0, there is an approximation IT'(s,) of
the shortest weighted path II(s,t) with respect to weight w; = wscl) - 'uwgg) with

) k
Hw(S,t) S H,;,(s,t) + m—HL(Wl — ’UWQ)

Its weighted length with respect to w(!) is

, k
Hw(l) (S, t) S Hw(l) (3, t) + m—-|—]_LW1

and its weighted length with respect to w(?) is

, k
Hw(Q) (S, t) S Hw(2) (3, t) + m——HLWQ
where k is the number of segments of II(s,¢) and m is the number of Steiner points per

edge.

Proof. The first claim follows from Lemma 4.4.1 since the maximum scaled weight is
W1 — vWs. The next two claims follow from Lemma 4.4.1 and Claim 1 since weights
are multiplicative and since for every segment s; of the optimal path there is an ap-

proximating segment s’ with |s}| <|[s;| + mLH O

This means that for any scaled weight we are guaranteed a bounded approximation
with respect to the scaled weight and both weight functions. Hence, every extreme
point p has a guaranteed approximating counterpart p’ that lies within a rectangle of

116

4.4. CONSTRAINED GEODESIC SHORTEST PATHS

Cp

lof
14

’ 1
LByl - - AL £7s
LB [==~ %1 fTT

Tp

Figure 4.12: The guaranteed hull approximation.

width LW, and height LW, with lower left endpoint at p if we choose m = n?

Figure 4.11).

(see

Using Dijkstra to compute a shortest path II(s,t) with respect to the scaled weight
function w in the discretized graph, we get a path II”(s,t) with

(s, 1) < Iy (s, 1)

where I (s,t) is the guaranteed approximate path of II(s,t). However, we cannot
guarantee that

"

I, (s,t) < I, (s,t) and TT,_(s,t) < 1T, (s,t)

since II" (s,t) might pass through other faces than II' (s,t) and II(s,t) (see also Fig-
ure 4.10). We will argue in the following that this does not cause any problems.

We use the approximate scheme as a subproblem in the hull approach to solve the
separation problem approximately. Hence, we compute approximate extreme points
and again stop when no further constraint (corresponding to the discretized graph)
is violated. Figure 4.12 shows an example of a continuous hull and its guaranteed
approximate hull. We know that any approximate extreme point that we obtain must
lie in the strip between these two hulls, so there are no problems if such a point “leaves”
its guaranteed rectangle. The width wd, of the strip between the two hull depends on
the absolute value of the slopes |v| and can be bounded as

1
Lmin{W;, Wy} < w, = L(W;siny + Wacosy) < L\/Wl2 + W22 with tany = ﬂ
v

as illustrated in Figure 4.11 if we choose m = n?.

117

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

What can we say about the approximation of the optimum of the dual relaxation of
CGSP?

Lemma 4.4.3: Let LB denote the optimal solution of the dual relaxation and LB’ the
corresponding approximate solution in the discretized graph. Let m denote the number
of Steiner points per edge in the fixed scheme and L the maximum edge length in the
terrain and W7 and W5 the maximum face weights in the terrain with respect to weight
functions wy and we, respectively.

If ¥ is the slope of the optimal hull segment in the approximation and k is the number
of path segments in the exact solution of the last separation problem (with ¢) then we
get

~

/ k
LB < LB+ ——L(W1; —9W5).
< + P (W1 — 9Wys)
Proof. The claim follows from Lemma 4.4.1. O

Since a weighted shortest path might pass through ©(n?) faces we get the following
Corollary.

Corollary 4.4.2: Let LB denote the optimal solution of the dual relaxation and LB’
the corresponding approximate solution in the discretized graph. If ¢ is the slope of
the optimal hull segment in the approximation we get

LB < LB + L(W; — 5W5).

Moreover, we can compute this approximate solution to the dual relaxation with the
hull approach in O(n> log(n LW W5)) time.

Proof. The bounds for the hull approach apply. We know that the maximal w(®-
weight of a shortest w(!)-weighted path is at most n?LW,. Similarly, the maximal
wM-weight of a shortest w(?)-weighted path is at most n2LW;. The rest follows from
Corollary 4.4.1. O

Unfortunately, we cannot bound the approximate optimal slope ©. Indeed, it is possible
that the absolute value of the slope of the optimal hull segment returned by the hull
approach is much larger than the slope of the guaranteed optimal hull segment, resulting
in an even more pessimistic bound (see Figure 4.12).

However, we can also give a bound using the continuous hull that is independent of the
outcome of the hull approach:

Lemma 4.4.4: Let pg,p1,-.. denote the sequence of points on the continuous lower
hull between the extreme point with respect to resource and the extreme point with

118

4.4. CONSTRAINED GEODESIC SHORTEST PATHS

respect to cost in nondecreasing resource coordinate. Let p;« denote the point with
smallest cost coordinate so that .. + LW; < X and let v* denote the slope of the hull

segment PgxPix41-
Then the following holds:

LB < LB + L(W; — v*Wy).
Proof. See Figure 4.12. O

The preceding Lemma implies that our approximations cannot be too bad even though
we don’t know how good they are since this depends on the continuous hull. Therefore,
we introduce a notion of sensitivity. Let

¢(A) = min{cy : 7p < A}
be the optimum dependent on A. This is a step function. Now the sensitivity s(}) is
defined as
c(A—=d) —c())
d
This is the absolute value of the lower hull slope. Hence, intuitively, the approximation

s(A) = max{ :d > 0}.

LB' is bad when the optimal solution to the problem is very sensitive to small changes
of the resource limit A\. However, it also depends on LWj since if this is large then v*
might be much steeper then the optimal lower hull slope.

Other Weight Functions: So far, the only difference between our cost and resource
function is the different face weight, whereas the euclidean length is in both functions.

We give two examples for an alternative resource function:

e Constant resources on the faces: The scaled costs of a path segment s
running through face f are now ¢; = Esw;l) — vw%). Using the same arguments
as in Claim 1 we can show that there exists an approximating segment s’ in the
discretized graph so that

s L
Csr S ot m1t

L .o
Cg/ S Cg + m——i—lwf

Tg = Tg

In Corollary 4.4.2, the approximation of LB then turns into LB < LB + LW,
hence is independent of © and W.

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

o Weighted height difference as resource: The scaled costs of a path segment
s running through face f are now ¢; = ¢ swgcl) —vhd Sw?), where hd; is the absolute
value of the height difference of segment s. Since the height differences cannot
exceed the length of a segment we can use the same arguments as in Claim 1 and
obtain the result that there is an approximating segment s’ with

(1) (2)y L

Cy < Cs + (wf — vw;

Hence, the bounds of Corollary 4.4.2 are also valid for this resource function.

4.4.3 Experiments

We have implemented the fixed scheme of Lanthier, Maheshwari, and Sack (2001) and
provide it as an (approximate) network optimization function. The implementation
is a Dijkstra variant and deals implicitly with the discretized graph, the nodes are
represented by a pair (edge, Steiner point number), and the Steiner edges are also
computed “online”. This was suggested by Lanthier, Maheshwari, and Sack (2001)
since for a larger number of Steiner points, space will become a problem.

Now we can use our CNOP package'* providing the generic hull approach to compute
an approximation for the dual relaxation. Using a k-shortest path algorithm working
on the discretized graph!®, we can also obtain the optimum on the discretized graph
that provides an approximation to the optimum of CGSP.

We show by example how the approximation of the hull improves as we increase the
number of Steiner points per edge. The underlying polyhedral terrain is a triangulated
irregular network (TIN) being a part of the Swiss Alps. We use unweighted euclidean
length as cost function and slope-weighted height difference as resource function (see
Figure 4.14 for the minimum cost and minimum resource path).

Here are the TIN details: The TIN consists of 369 faces, the maximum and average
euclidean edge lengths are L = 1499.47 and L4, = 151.58. Since the cost function is
unweighted, we have wgcl) = 1 for all f, hence W; = 1. The maximum and average
height difference of an edge are HD = 1435.4 and HD 4,y = 89.81. The maximal and
average slope of a face is Wy = 69.12 and W, = 2.84. We encountered between 22
and 73 path segments for a path from s to ¢.

Let us take a look at the refinement of the approximation of the whole lower hull for
an increasing number of Steiner points per edge starting with no Steiner points (see
Figure 4.13). We observe that the approximation for 12 Steiner points does not improve
significantly on the 8 Steiner points approximation, especially for smaller absolute slope

YRefer to Chapter 5 for a detailed discussion.
Sor a modification working implicitly as suggested above

120

4.4. CONSTRAINED GEODESIC SHORTEST PATHS

T T T T T T T T
g
2800 . . 1
0 Steiner points —+—
4 Steiner points —x—
2600 \ 8 Steiner points —x— |
\ 12 Steiner points —&—
2400 i
ES]
2 2200 R
Q@
S
2 2000 1
S
3
1800 1
1600 R
1400 1
1200 | R
850 900 950 1000 1050 1100 1150 1200
slope-weighted height difference

Figure 4.13: Refining the hull approximation by increasing the number of Steiner points per
edge.

Figure 4.14: Euclidean shortest path (green) and path of minimum slope-weighted height
difference (red) in a TIN.

121

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

‘ # Steiner points H 0 ‘ 4 ‘ 8 ‘ 12 ‘
hull points 10 |28 |40 |42
time/extreme point || 0.02s | 0.91s | 2.30s | 4.28s

Table 4.7: Number of hull points and time for extreme point computation for an increasing
number of Steiner points per edge.

values. So we expect that the exact continuous hull is approximated reasonably well by
the 12 Steiner points hull, even though the guaranteed approximation bound is much
worse. The reason for the varying difference in the hull refinement for varying slopes
is that we have an unweighted problem in the cost coordinate and a weighted problem
in the resource coordinate.

Table 4.7 shows what we have to pay for the refined approximation of the hull. We
see that there is a large trade-off between approximation quality and running time'®.
We also observe that the number of hull points increases drastically from the simple
computation without Steiner points to the computations with a larger number of Steiner
points. This can be explained by the fact that although the continuous hull is a step
function, it contains portions of continuity, hence a good approximation should reflect

this.

4.4.4 An e-6-Approximation Scheme

CGSP is NP-hard (since even the discrete version CSP is) and we present an e-6-
approximation scheme for CGSP that is a simple combination of the e-schemes of
Aleksandrov, Maheshwari, and Sack (2000) and Hassin (1992).

Aleksandrov, Maheshwari, and Sack (2000) present an algorithm that approximates the
geodesic (weighted) length of a path p by a path p using a discretization of P so that
c(p) < (1 + €)c(p). Their approximation algorithm runs in O(n/elog1/e(14/€ + logn))
while producing a discretized graph G = (V(G¢), E(Ge)) of size |[V(G¢)| = %log% and
‘E(Ge)| = %% log %

We now use their algorithm to discretize the graph giving an e.-approximation for the
cost-weighted geodesic length, then we apply their algorithm again to obtain an ¢,-
approximation for the resource-weighted geodesic length. The two discretized graphs
are merged into a graph Ge ., = (Ve ¢,, Fe,¢,) s0 that for every path p in P of cost
c(p) and resource r(p) there is a path p in G, with ¢(p) < (1 + €.)c(p) and r(p) <
(1+e)r(p).

16 This trade-off can be improved using the buffer heuristic described in Section 4.4.1.

122

4.5. CONCLUSION

Now we apply the e-scheme of Hassin (1992) for CSP to the discretized graph G, .,
with a modified resource limit A = (1 + ¢,)A. Hassin’s scheme approximates the CSP
optimal path pop, in Ge, ¢, With c(pops,) = minc(p) s.t. r(p) < X with a path Dapproz
that is an ey-approximation of CSP on G, ,, i.e., c(Papproz) < (1 + €m)c(Pops,,) and
'r(papproz) < X

Since the path pyp, is just an e.-approximation with respect to the cost and an ¢,-
approximation with respect to the resource of the optimal path p,,, of CGSP, the
path pepproz is an (1 + €x)(1 + €.)-(1 + €,)-approximation of the CGSP optimal path
Poptp 1 the sense that C(pappmz) <(4em)(1+ €C)C(p0ptp) and T(pappro:c) < (1+e€)

Theorem 4.4.1: There is an e-J-approximation scheme for CGSP approximating the
optimal path p,p; with a path peppros S0 that c(papproz) < (1+€)c(popt) and 7(Papproz) <

(1+6)A. The approximation can be computed in O(ﬁ log?’(e%&) log Y2 time where
UB and LB are upper and lower bounds for GCSP.

Proof. We combine the e-scheme of Aleksandrov, Maheshwari, and Sack (2000) and
Hassin (1992) as described above. Just set € = €€y + €. + € and § = €.
The running time is obtained as follows: The discretized graph G ., is of size

_ 1 _ 1 1
|V(G€C=€T)| - eczer log €c+er and |E(G€c’€r)| - 6cier €cter log €ct+er”

The scheme of Hassin runs in O(V(Gec.er)EUIE(GEC’ET” log % which is

1 1 n2 1 UB

- log> log —
O(6H€c+6'rec+€r o8 (60+67‘) o8 LB)
and can be simplified to
n? 1 UB
log? log —).
O(€(€+5)2 Og (€+(5) Og LB)

4.5 Conclusion

In this chapter we have seen that the 2-step approach for constrained shortest paths
can be extended to a generic method to solve general constrained network optimization
problems.

This triggered simple exact algorithms for the constrained minimum spanning tree
problem and the table layout problem. Both problems allow a strongly polynomial
algorithm for solving the relaxation in the single resource case. However, our generic
hull approach is much easier to implement and seems to be the method of choice in
practice. Moreover, it also works for the multiple resource case.

123

CHAPTER 4. CONSTRAINED NETWORK OPTIMIZATION

We also obtained an approximate algorithm for the continuous constrained geodesic
shortest path problem that has not been studied before. By combining two PTAS for
discrete CSP and continuous geodesic paths, we also presented an e-J-approximation
scheme for the constrained geodesic shortest path problem.

124

Chapter 5

CNOP - A Constrained Network
Optimization Package

In this chapter we describe our software package CNOP, which provides a generic frame-
work for constrained network optimization. CNOP is flexible, easy to use, and offers rich
functionality. It provides all state of the art methods for constrained shortest paths, as
well as the first publically available implementation for constrained minimum spanning
trees. Moreover, it contains a large number of demo programs for route planning, curve
approximation, table layout, etc.

5.1 Design of the CNnoP Package

We decided to develop CNOP, a platform for constrained network optimization'. OQur
design goals were ease of use, flexibility, and a large functionality.

We implemented the package in C++ using LEDA (Mehlhorn and Naher 1999; Mehlhorn
et al. 2001b). In the following presentation, we are often sloppy with giving the com-
plete types for the interfaces of our functions to preserve readability. A more “technical”
documentation can be found in the manual of the CNOP package (Ziegelmann 2001).

The main function of our package is

RESULT_TYPE cnop(G,s,t,cost,resource,limit, I);

!CNoP stands for Constrained Network Optimization Package.

CHAPTER 5. CNOP - A CONSTRAINED NETWORK OPTIMIZATION PACKAGE

The first 6 parameters contain the problem description. Here G is the graph of the
underlying network problem, s and t are nodes, cost is the cost function defined
on the edges, resource is the resource function defined on the edges and limit is the
resource limit. In the multiple resource case, resource is an array of resource functions
on the edges and limit is an array of resource limits.

All the flexibility is encapsulated in the choice class I whose methods are explained be-
low. To make use of the generic 2-step approach for constrained network optimization,
the user has to specify two generic functions, netopt and ranking.

The function netopt is used as core routine by the relaxation methods to solve the
separation problem. It is of the general form

list<edge> netopt(G,s,t,cost,resource, scalevector, c, newpoint);

where scalevector specifies how to scale the new weight function for the network
optimization (it contains the absolute values of the dual variables v; (1 <4 < k)). The
result of the network optimization with the scaled weight is returned as a list of edges,
its optimal value in ¢, and newpoint is the resulting extreme point, i.e., its coordinates
are cost value and resource value(s) of the solution.

This function can be specified with the method set_network optimization(netopt)
of the choice class I. Default is a dummy function. When the function netopt is
specified, CNOP solves the relaxation of the constrained network optimization problem.

To close the possible duality gap, the user also has to specify the function ranking
which has to be of the form

bool ranking(G,s,t,cost,resource,limit, scaledcost, scalevector, UB,
LB, UBsol);

where scaledcost is the new weight function scaled with scalevector leading to the
optimum of the relaxation, UB and LB are upper and lower bounds, and UBsol is the
feasible solution resulting from the relaxation.

Now the ranking function should rank the solutions with respect to weight function
scaledcost and update the bounds UB, LB and the best feasible solution UBsol until
the optimum is found (return value true) or nonfeasibility is detected (return value
false).

This function can be specified for the gap closing step with the choice method
set_gap_close_approach(ranking). Default is a dummy function.

A specification of these two functions enables CNOP to perform the 2-step method to
obtain the optimum of the underlying constrained network optimization problem.
A user has many other possibilities to adapt the generic process to his or her own needs:

126

5.1. DESIGN OF THE CNOP PACKAGE

The CNOP package offers different methods for solving the relaxation of a constrained
network optimization problem:

e MZhull = O, the hull approach that computes the exact relaxation result. The
implementation for the single resource case is trivial. The basis update for the
multiple resource case uses the implementation of the dynamic & + 1-dimensional
convex hull algorithm of Clarkson, Mehlhorn, and Seidel (1993) that is offered by
the dd-geokernel LEP (Mehlhorn, Naher, and Seel 2001a).

e MZcplex = 1, the hull approach that computes the exact relaxation result. The
basis update is done by calling CpLEX (CPLEX 2001).

e BC = 2, the subgradient method of Beasley and Christofides (1989) that computes
an approximation of the relaxation.

e BS = 3, the binary search method that computes the exact relaxation result (only
in the single resource case).

Apart from the binary search approach, all other methods also work in the multi-
ple resource case. However, the hull approach for multiple resources needs either the
dd-geokernel LEP (MZhull) or the CPLEX library (MZcplex), only the subgradient
method works without additional software.

The default is MZhull for the single resource case and BC for the multiple resource case.
To change the relaxation approach, we use the choice method set_rel method(int m).

It is also possible to enforce a premature break in the relaxation approaches to di-
rectly control the running time. Using the method set max_it(int it), it is pos-
sible to stop the iteration after a specified number of iterations. Using the method
set _break delta(double d), it is possible to stop the iteration when the slope differ-
ence? is less than a given limit delta. Default is 50 iterations and a delta of 0.

The method set_do_relax(bool b) can be used to switch the relaxation computation
on or off (default is relaxation turned on).

Solving the relaxation in general does not yield the optimal solution, therefore a
gap closing step is necessary. This step is turned on or off with the method
set_gap_close(bool b) (default is gap closing turned on).

It is also possible to enforce a premature break in the gap closing approach since the
number of solutions to be ranked may be huge. Using the method set_gc_max num(int
n), it is possible to stop the solution ranking in the gap closing approach after a spec-
ified number of iterations. Using the method set_gc_delta(double d), it is possible

%i.e., difference in the dual variables v;

127

CHAPTER 5. CNOP - A CONSTRAINED NETWORK OPTIMIZATION PACKAGE

to stop the gap closing when the difference between the upper and lower bound is less
than a given limit. Default is n=-1 (meaning no iteration limit) and d=0.

It is also possible to provide a special function testing the feasibility of a solution (e.g.,
the ability to integrate lower bounds on the resource consumption, etc.). This function
should have the form

bool is_feasible(solution, solution_value, limit);

where solution is a list of edges specifying the solution, solution value is an array of
the cost-resource consumption of the solution, and 1imit is the resource limit(s). This
function can be specified with the method set_is_feasible(is_feasible). Default is
a function that tests whether the given solution satisfies the given resource limit(s).

The return type of the result of our customized cnop function is the following quadruple:
typedef four_tuple<list<edge>, double, double, bool> RESULT_TYPE;

The first component returns the solution in a list of edges, the second gives the value
of the best solution that was found. The third component is the lower bound value. If
this is greater or equal to the second component, we have found the optimal solution,
otherwise we only have an approximate solution. The fourth component returns false
if the problem was detected to be nonfeasible?.

In addition to the generic cnop function, CNOP offers a function whole hull that
computes all extreme Pareto-optimal solutions* for constrained network optimization
problems in the single resource case. The function has the general form

list<point_solution_pair> whole_hull(G,s,t,cost,resource, netopt);

where point_solution_pair denotes the list of edges and the cost-resource value of a
solution.

Example:
#include <CNOP/cnop.h>

list<edge> s_t_min_cut(const graph& G, const node& s, const node& t,

3In the case of a premature break when no feasible solution has yet been found, it will return true
since we do not know whether there is a feasible solution.
*geometrically speaking, the whole lower hull

128

5.2. SPECIAL CASE: CONSTRAINED SHORTEST PATHS

const edge_array<double>& cost, const edge_array<double>& resource,
const double& slope, double& c, array<double>& sol_val) {

int main() {

choice I;

I.set_gap_close(false);
I.set_network_optimization(s_t_min_cut);

RESULT_TYPE res=cnop(G,s,t,cost,resource,res_limit, I);
list<edge> sol=res.first();

double UB=res.second();

double LB=res.third();

return O;

Here we define a function solving the minimum cut problem. Then, the hull approach
is used to obtain upper and lower bounds for the constrained minimum cut problem.
The gap closing step is turned off.

We have used the generic cnop function to compute the relaxation of the table lay-
out problem and of the constrained geodesic shortest path problem. In the first case
we provided a special minimum cut function solving the weighted sum minimization
problem (see Section 4.3.3) as core function netopt. In the second case, the core func-
tion netopt was provided by an implementation of the approximate Steiner scheme
for weighted geodesic paths (see Section 4.4.1). Both problems are available as demo
programs in the CNOP package.

5.2 Special Case: Constrained Shortest Paths

Since our focus in constrained network optimization problems was on constrained short-
est paths (see Chapter 3), we offer a special function csp for single and multiple resource
CSP. The function csp is of the same form as cnop, all the choice methods also apply.
The main difference is that we already provide functions for netopt and ranking.

We can use the shortest path implementations offered by LEDA as core algorithm
netopt for the relaxation methods. We offer

129

CHAPTER 5. CNOP - A CONSTRAINED NETWORK OPTIMIZATION PACKAGE

e shortest_path DIJKSTRA, the bidirectional Dijkstra variant of LEDA,

e shortest_path BELLMAN FORD, LEDA’s Bellman-Ford implementation that also
handles negative edge costs (provided that there are no negative cycles),

e shortest_path PAPE, a shortest path implementation of Pape’s algorithm,

e shortest_path ACYCLIC, a pulling implementation for acyclic graphs.

The default network optimization function is shortest_path DIJKSTRA. Of course, a
user may also choose his or her own shortest path implementation.

We also offer several methods for the gap closing step, i.e., the function ranking:

e k shortest_path rea, an implementation of the k-shortest path algorithm of
Jimenez and Marzal (1999),

e k shortest_path rea loopless, an adaption of the preceding implementation
that only considers loopless paths,

e labeling approach_1b_cost, labeling algorithm starting from lower bound costs,
e label_correcting, label correcting algorithm,

e labeling approach_cost, labeling algorithm starting from cost,

e labeling approach resource, labeling algorithm starting from resource,

e dynamic_programming_cost, dynamic programming algorithm starting from cost,

e dynamic_programming resource, dynamic programming algorithm starting from
resource.

The first five approaches also work in the multiple resource case, the last three methods
are only available in the single resource case. For a more detailed explanation of the
different gap closing methods refer to Section 3.4.2. The default gap closing function
is labeling_approach_1b_cost. Of course, a user may also provide his or her own gap
closing method.

In addition to the general framework, we also offer problem reduction methods as
described in Section 3.4.1. Nodes and edges of the graph are removed whose inclusion
in a path would force the resource consumption over the resource limit or the cost over
the upper bound on the optimal solution. They can be switched on or off (default) by
the user with the choice methods set_res_red(bool b) and set_len red(bool b).

130

5.3. SPECIAL CASE: CONSTRAINED MINIMUM SPANNING TREES

Example:

#include <CNOP/csp.h>

int main() {
choice I;
RESULT_TYPE resl=csp(G,s,t,cost,resource,upper_bound, I);

I.set_do_relax(false);
I.set_gap_close_approach(label_correcting);
I.set_res_red(true);

RESULT_TYPE res2=csp(G,s,t,cost,resource,upper_bound, I);

return O;

The first call of csp uses the hull approach to solve the relaxation, no problem reductions
and the labeling approach starting from the lower bound costs. The second call does
not solve the relaxation but performs resource reductions before applying the label
correcting approach (see Section 3.4.2).

The CNOP package enables a user to experiment with all the known “state of the art”
methods for CSP, trying out various combinations to see which setting fits best for a
particular application. Indeed, we also used CNOP as experimental platform for our
experiments in Section 3.5. The route planning and curve approximation applications
of CSP are also available as demo programs in the CNOP package.

5.3 Special Case: Constrained Minimum Spanning Trees

We also offer a special function cmst for the constrained minimum spanning tree prob-
lem (CMST) for single and multiple resources.

As core algorithm netopt for the relaxation methods, we can use LEDA’S implemen-
tation of Kruskal’s minimum spanning tree algorithm that runs in O(mlogn). So we
provide min_spanning treeLEDA as default function for the relaxation.

For the gap closing step we implemented the spanning tree ranking algorithm of Katoh,
Ibaraki, and Mine (1981)3. So we provide k min spanning tree as default ranking
function.

®We implemented only the simpler O(Km) space variant.

131

CHAPTER 5. CNOP - A CONSTRAINED NETWORK OPTIMIZATION PACKAGE

As in the constrained shortest path case, it is possible to perform problem reductions
(see Section 4.2.5). We again provide functions for the problem reductions in the
constrained spanning tree caseS. They can be turned on or off (default) by the user as
before.

Example:
#include <CNOP/cmst.h>

int main() {
choice I;
RESULT_TYPE resl=cmst(G,s,t,cost,resource,upper_bound, I);

I.set_do_relax(false);
I.set_res_red(true);
RESULT_TYPE res2=cmst(G,s,t,cost,resource,upper_bound, I);

return O;

}

The first call of cmst uses the hull approach to solve the relaxation, no problem reduc-
tions, and the £ minimum spanning tree approach starting from the lower bound costs.
The second call does not solve the relaxation but performs resource reductions before
applying the £ minimum spanning tree algorithm.

To the best of our knowledge, this is the first publically available implementation for
the constrained minimum spanning tree problem. Only Aggarwal, Aneja, and Nair
(1982) report about an implementation that is not publically available and deals only
with the single resource problem.

5.4 (CNoP Availability

We have seen that our CNOP package provides a generic platform for constrained net-
work optimization problems. It is very flexible and adaptable to the user’s needs.
Moreover, it offers rich functionality in the area of constrained shortest paths and con-
strained minimum spanning trees, as well as many demo programs for applications that
we have discussed in this thesis.

SHowever, our simplified implementation uses O(m?) time, instead of the O(ma(m,n)) variant
presented in Section 4.2.5.

132

5.4. CNOP AVAILABILITY

CNorP is tested for GNUs g++ compiler version 2.95.2 under Solaris and Linux using
LEDA 4.3. CNOP will become a LEDA extension package (LEP) in the near future. A
more detailed documentation including installation information can be found in the
CNOP manual (Ziegelmann 2001). The CNOP package including demos and testdata
can be downloaded from the URL

http://www.mpi-sb.mpg.de/ "mark/cnop

The first version of CNOP had more than 50 downloads from academic, commercial,
and military sites in the period January—-July 2001.

133

Chapter 6

Discussion

In this thesis, we have studied constrained shortest paths and related network opti-
mization problems with resource constraints. These problems are motivated by a large
number of practical applications but usually are N"P-hard as opposed to their uncon-
strained counterparts that can be efficiently solved with polynomial time algorithms.

Our main goal was to come up with efficient practical algorithms to solve such problems
exactly or at least approximately.

We studied the constrained shortest path problem in Chapter 3. Using a new ILP for-
mulation, we combined geometric intuition and linear programming theory to derive a
simple combinatorial approach to solve the Lagrangean relaxation of CSP. The method
was previously known in the single resource case but we were the first to prove a tight
polynomial running time. We were also the first to extend the method to solve the
multiple resource relaxation exactly. The running time for the multiple resource case
is still open but we proposed a conjecture that is supported by our experiments.

We obtained an exact 2-step algorithm for CSP by closing the duality gap with path
ranking that was suggested earlier for the single resource case. We also proposed a new
gap-closing method, an adapted labeling approach that makes use of the upper and
lower bounds of the relaxation.

A detailed experimental study showed that the 2-step approach using our new gap
closing approach is a competitive method for all considered test instances while often
even being clearly superior to other state of the art methods.

In Chapter 4 we showed that a 2-step method, solving the relaxation with our hull
approach and closing the gap with solution ranking, also works for the general con-

CHAPTER 6. DISCUSSION

strained network optimization problems.

Subsequently, we illustrated the general method using three examples: constrained
minimum spanning trees, table layout, and constrained geodesic shortest paths. In
these examples we compared the application of our generic method with previous work
that considered the specific problem structure.

A generic framework for constrained network optimization problems is provided by
our CNOP package that we presented in Chapter 5. The package combines ease of
use, flexibility, and rich functionality. A user may chose between different relaxation
methods, and provide own network optimization and solution ranking implementations
to obtain an approximate or exact method for the considered application as we have
demonstrated with the table layout problem and the constrained geodesic shortest path
problem, which are available as demo programs. CNOP is the first publically available
package that offers all state of the art methods for constrained shortest paths and can
be used as a testbed to see which approach is most suited for a special CSP application.
It also offers the first publically available implementation for the constrained minimum
spanning tree problem.

The generic 2-step approach is a simple and elegant technique and a variety of appli-
cations can be modeled as constrained network optimization problems. However, we
sometimes also pay for the genericity since some special problems that are easily for-
mulated as constrained network optimization problems might allow a different, more
efficient solution technique. For example, we can formulate the degree constrained
minimum spanning tree problem, where we want to compute a spanning tree of mini-
mum cost so that each node in the tree has maximal degree D, as resource constrained
minimum spanning tree problem with a resource for each node. But this does not
seem to be a promising method for the problem. The same deficit applies if we use a
modified function for testing the feasibility of a solution in order to incorporate addi-
tional structural constraints (like requiring that a constrained shortest path also passes
through a specified set of nodes) into the 2-step method. If a problem has special cost
or resource functions (e.g., only having cost/resource values of 0 or 1) it might also be
more promising to look for a special solution method for the particular case. However,
the CNOP package helps us to identify the cases where we should look for other, more
efficient methods, e.g., if the gap closing step takes too much time or if the relaxation
bounds are bad.

136

Bibliography

Aggarwal, V., Aneja, Y., and Nair, K. 1982. Minimal spanning tree subject to a
side constraint. Computers and Operations Research 9, 287-296.

Ahuja, R., Magnanti, T., and Orlin, J. 1993. Network Flows. Prentice Hall.
Aleksandrov, L., Maheshwari, A., and Sack, J.-R. 2000. Approximation algorithms

for geometric shortest path problems. In: 32nd ACM Symposium on Theory of
Computing (STOC), 286-295.

Anderson, R., and Sobti, S. 1999. The table layout problem. In: Proc. 15th Sym-
posium on Computational Geometry (SoCG), 115-123.

Aneja, Y., Aggarwal, V., and Nair, K. 1983. Shortest chain subject to side condi-
tions. Networks 13, 295-302.

Aneja, Y., and Nair, K. 1978. The constrained shortest path problem. Nav. Res.
Log. Q. 25, 549-553.

Azevedo, J., Madeira, J., and Martins, E. 1993. An algorithm for the ranking of &k
shortest paths. European Journal on Operational Research 69, 97-106.

Beasley, J., and Christofides, N. 1989. An algorithm for the resource constrained
shortest path problem. Networks 19, 379-394.

Bertsimas, D., and Tsitsiklis, J. 1997. Linear Optimization. Athena Scientific.

Borndorfer, R., and Lobel, A. 2001. Scheduling duties by adaptive column gen-
eration. Tech. Rep. ZIB-01-02, Konrad-Zuse-Zentrum fir Informationstechnik
Berlin.

Brumbaugh-Smith, J., and Shier, D. 1989. An empirical investigation of some
bicriterion shortest path algorithms. Furopean Journal on Operational Research
43, 216-224.

Chen, J., and Han, Y. 1996. Shortest paths in a polyhedron. International Journal
of Computational Geometry and Applications 127-144.

BIBLIOGRAPHY

Chvatal, V. 1983. Linear Programming. W.H. Freeman and Company.

Clarkson, K., Mehlhorn, K., and Seidel, R. 1993. Four results on randomized
incremental construction. Computational Geometry: Theory and Applications
3(4), 185-212.

Cormen, T., Leiserson, C., and Rivest, R. 1993. Introduction to algorithms. MIT
Press.

CPLEX. 2001. Using the CPLEX callable library. CPLEX Optimization, Inc.,
http://www.cplex.com.

Dahl, G., and Realfsen, B. 2000. The cardinality-constrained shortest path problem
in 2-graphs. Networks 36(1), 1-8.

Desrochers, M., and Soumis, F. 1988. A generalized permanent labeling algorithm
for the shortest path problem with time windows. INFORMS 26, 191-212.

Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. 1995. Time constrained
routing and scheduling, vol. 8 of Handbooks in Operations Research and Man-
agement Science: Network Routing, chap. 2.4 Constrained shortest path prob-
lems, 70-80. Elsevier Science, Netherlands.

Dumitrescu, 1., and Boland, N. 2000. The weight-constrained shortest path prob-
lem: preprocessing, scaling and dynamic programming algorithms with numer-
ical comparisons. In: International Symposium on Mathematical Programming
(ISMP).

Elimam, A., and Kohler, D. 1997. Two engineering applications of a constrained
shortest path model. Furopean Journal of Operational Research 103, 426-438.

Eppstein, D. 1990. Finding the k smallest spanning trees. In: Proc. 2nd Scan-
dinavian Worksh. Algorithm Theory, no. 447 in Lecture Notes in Computer
Science, 38-47, Springer-Verlag.

Eppstein, D. 1999. Finding the k shortest paths. SIAM Journal on Computing
28(2), 652-673.

Gallo, G., Grigoriadis, M., and Tarjan, R. 1989. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing 18(1), 30-55.

Garey, M., and Johnson, D. 1979. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York.

Hamacher, H., Picard, J., and Queranne, M. 1984. On finding the k-best cuts in a
network. Operations Research Letters 2(6), 303-305.

Hamacher, H., and Ruhe, G. 1994. On spanning tree problems with multiple ob-
jectives. Annals of Operations Research 52, 209-230.

138

BIBLIOGRAPHY

Handler, G., and Zang, I. 1980. A dual algorithm for the constrained shortest path
problem. Networks 10, 293-310.

Hansen, P. 1980. Bicriterion path problems. In: G. Fandel, and T. Gal, eds.,
Multiple Criteria Decision Making: Theory and Application, 109-127, Springer
verlag, Berlin, Proceedings of a Conference held at Hagen, Germany, 1979.

Har-Peled, S. 1998. An output sensitive algorithm for discrete convex hulls. Com-
putational Geometry: Theory and Applications 10, 125-138.

Hassin, R. 1992. Approximation schemes for the restricted shortest path problem.
Math. Oper. Res. 17(1), 36-42.

Henig, M. 1985. The shortest path problem with two objective functions. Furopean
Journal of Operational Research 25, 281-291.

Holmberg, K., and Yuan, D. 1997. A multicommodity network flow problem with
side constraints on paths solved by column generation. In: International Sym-
posium on Mathematical Programming (ISMP).

Jahn, O., Mohring, R., and Schulz, A. 1999. Optimal routing of traffic flows
with length restrictions in networks with congestion. Tech. Rep. 658-1999, TU
Berlin.

Jimenez, V., and Marzal, A. 1999. Computing the K shortest paths. A new algo-
rithm and an experimental comparison. In: Proc. 8rd Workshop on Algorithm
Engineering (WAE99), LNCS 1668, 15-29, Springer, Berlin.

Joksch, H. 1966. The shortest route problem with constraints. Journal of Mathe-
matical Analysis and Application 14, 191-197.

Karp, R., and Orlin, J. 1981. Parametric shortest path algorithms with an appli-
cation to cyclic scheduling. Discrete Applied Mathematics 3, 37—45.

Katoh, N., Ibaraki, T., and Mine, H. 1981. An algorithm for finding £ minimum
spanning trees. Siam Journal on Computing 10(2), 247-255.

Katoh, N., Ibaraki, T., and Mine, H. 1982. An efficient algorithm for & shortest
simple paths. Networks 12, 411-427.

Lanthier, M., Maheshwari, A., and Sack, J.-R. 2001. Approximating shortest paths
on weighted polyhedral surfaces. Algorithmica (to appear), preliminary version
in SoCG9I7.

Lauther, U. 2001. personal communication.

Lawler, E. 1972. A procedure for computing the k best solutions to discrete opti-
mization problems and its application to the shortest path problem. Manage-
ment Science B 18, 401-405.

139

BIBLIOGRAPHY

Lawler, E. 1976. Combinatorial Optimization: Networks and Matroids. Holt,
Rhinehart and Winston.

Liibbecke, M., and Zimmermann, U. 2000. Computer aided scheduling of switching
engines. In: CASPT2000.

Martins, E. 1984. On a multicriterion shortest path problem. European Journal of
Operational Research 16, 236-245.

Martins, E., and Santos, J. 1996. A new shortest paths ranking algorithm. Tech.
rep., Univ. de Coimbra, http://www.mat .uc.pt/ eqvm.

Megiddo, N. 1983. Applying parallel computation algorithms in the design of serial
algorithms. Journal of the ACM 30, 852-865.

Mehlhorn, K., and Néher, S. 1999. LEDA - A platform for combinatorial and
geometric computing. Cambridge University Press.

Mehlhorn, K., Naher, S., and Seel, M. 200la. The Geokernel LEP
User Manual Version 2.1. Max-Planck-Institut fiur Informatik,
http://www.mpi-sb.mpg.de/LEDA/friends/dd geokernel .html.

Mehlhorn, K., Naher, S., Seel, M., and Uhrig, C. 2001b. The LEDA User Manual.
Max-Planck-Institut fur Informatik, http://www.mpi-sb.mpg.de/LEDA.

Mehlhorn, K., and Ziegelmann, M. 2000. Resource constrained shortest paths. In:
8th Annual European Symposium on Algorithms (ESA), LNCS 1879, 326-337.

Mehlhorn, K., and Ziegelmann, M. 2001. CNOP - A package for constrained net-
work optimization. In: 8rd Workshop on Algorithm Engineering and Experi-
ments (ALENEX), LNCS 2153, 15-28.

Miaou, S., and Chin, S. 1991. Computing k-shortest paths for nuclear spent fuel
highway transportation. Furopean Journal on Operational Research 53, 64-80.

Minoux, M., and Ribero, C. 1984. A transformation of hard (equality constrained)
knapsack problems into constrained shortest path problems. Operations Re-
search Letters 3(4), 211-214.

Minoux, M., and Ribero, C. 1985. A heuristic approach to hard constrained short-
est path problems. Discrete Applied Mathematics 10, 125-137.

Minoux, M., and Ribero, C. 1986. Solving hard constrained shortest path prob-
lems by Lagrangean relaxation and branch-and-bound algorithms. Methods of
Operations Research 53, 304-316.

Modesti, P., and Sciomachen, A. 1998. A utility measure for finding multiobjective
shortest paths in urban multimodal transportation networks. Furopean Journal
on Operational Research 111, 495-508.

140

BIBLIOGRAPHY

Mote, J., Murthy, I., and Olson, D. 1991. A parametric approach to solving bicri-
terion shortest path problems. Furopean Journal on Operational Research 53,
81-92.

Miiller-Hannemann, M., and Weihe, K. 2001. Pareto shortest paths is often feasible
in practice. In: 5th Workshop on Algorithm Engineering (WAE), to appear.

Nygaard, R. 2000. Shortest Path Methods in Representation and Compression of
Signals and Image Contours. Ph.D. thesis, Norwegian University of Science
and Technology.

Orda, A. 1998. Routing with end to end QoS guarantees in broadband networks. In:

Proceedings of the Conference on Computer Communications (IEEE Infocom),
27-34.

Pape, U. 1974. Implementation and efficiency of Moore-algorithms for the shortest
route problem. Mathematical Programming 7, 212-222.

Phillips, C. 1993. The network inhibition problem. In: 25th ACM Symposium on
Theory of Computing (STOC), T76-785.

Preparata, F. 1978. New parallel sorting schemes. IEEE Trans. Comput. C-27,
669-673.

Pujari, A., Agarwal, S., and Gulati, V. 1984. A note on the constrained shortest
path problem. Nav. Res. Log. Q. 31, 87-94.

Ravi, R., and Goemans, M. 1996. The constrained minimum spanning tree prob-
lem. In: Proc. 5th Scandinavian Workshop on Algorithmic Theory (SWAT),
LNCS 1097, 66-75.

Roessl, M. 1968. Comments on a paper of R. Saigal, a constrained shortest route
problem. Operations Research 16, 1232-1234.

Saigal, R. 1968. A constrained shortest route problem. Operations Research 16,
205-2009.

Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley.

Skicism, C., and Golden, B. 1989. Solving k-shortest and constrained shortest path
problems efficiently. Annals of Operations Research 20, 249-282.

Sleator, D., and Tarjan, R. 1983. A data structure for dynamic trees. Journal of
Computer and System Sciences 26, 362-391.

Stroetmann, K. 1997. The constrained shortest path problem: A case study in
using ASMs. Journal of Universal Computer Science 3(4), 304-319.

Tarjan, R. 1979. A data structure for dynamic trees. Journal of the ACM 26,
690-715.

141

Tung, C., and Chew, K. 1992. A multicriteria pareto-optimal path algorithm.
European Journal on Operational Research 62, 203-209.

Warburton, A. 1987. Approximation of pareto-optima in multiple-objective short-
est path problems. Operations Research 35(1), 70-79.

Xue, G. 2000. Primal-dual algorithms for computing weight-constrained shortest
paths and weight-constrained minimum spanning trees. In: 19th IEEE Inter-
national Performance, Computing, and Communications Conference (IPCCC),
271-277.

Yen, J. 1971. Finding the K shortest loopless paths in a network. Management
Science 17, 712-716.

Ziegelmann, M. 2001. The CNOP Manual. Max-Planck-Institut fur Informatik,
http://www.mpi-sb.mpg.de/ "mark/cnop.

Summary

The shortest path problem is one of the fundamental problems in Computer Science.
It is well studied and efficient polynomial time algorithms are known. Shortest path
problems frequently arise in practice since in a variety of application settings we wish to
send some material (e.g., a computer data packet, a telephone call, or a vehicle) between
two specified points in a network as quickly, as cheaply, or as reliably as possible.

However, in practice we are often not only interested in a cheapest path or a quickest
path but rather in a combination of different criterias, e.g., we want to have a path that
is both cheap and quick. This is known as the bi- or multicriteria shortest path problem.
Since optimizing over all criteria at once is not possible we choose one criteria as cost
function that we want to minimize, the other as resource functions and impose resource
(or budget) limits on the maximal resource consumption of a path. The constrained
shortest path problem is to find a minimum cost path between two nodes whose resource
consumptions satisfy the resource limits.

The constrained shortest path problem is of immense practical interest in different areas
of operations research. Applications include route planning, quality of service routing,
duty scheduling, route guidance, and even curve approximation.

Unfortunately, the introduction of even a single resource constraint turns the problem
into a hard problem where we do not know a polynomial time algorithm to solve it.
However, regarding its huge practical importance we would still like to solve the problem
(or at least get an approximation) as efficiently as possible.

In this thesis we study the constrained shortest path problem both theoretically and
experimentally. We also consider related problems, like constrained minimum span-
ning trees where we want to find a spanning tree of minimal cost while its resource
consumptions satisfy the resource limits.

There is a variety of work on constrained shortest paths coming from different commu-
nities like operations research, algorithms, communication networks, and even signal
processing. Almost all papers come up with essentially the same algorithm solving a re-
laxation of the problem for the single resource case. They only differ in the presentation
of the method. Some derive it from geometric intuition, others adopt the Lagrangean
relaxation viewpoint. Starting from a new ILP formulation of the problem, we combine
geometric intuition and linear programming theory to obtain a unified understanding
of the method. Using this combined view, we are the first to prove a tight polynomial

runtime bound for this method. We showed that the relaxation can be solved with
O(log(nRC)) parametric shortest path computations, where 7 is the number of nodes
in the network and C' and R denote the maximal cost and resource consumption of
an edge, respectively. Our reformulation also allows us to extend the method to the
multiple resource case, which has been an open problem up to now.

Solving the relaxation gives us upper and lower bounds for our problem. Previous
papers suggested different gap closing steps to obtain a 2-step method for constrained
shortest paths. We again give a geometric intuition of the gap-closing step and propose
a special labeling approach for the gap-closing step.

Then we experimentally compare all state of the art methods for constrained shortest
paths on different benchmarks. This is the first detailed experimental runtime compar-
ison for constrained shortest paths.

We then show that the 2-step method can be generalized to a broader class of con-
strained network optimization problems. All we need is a function returning the un-
constrained optimum and a function ranking solutions. The single resource runtime
bound for the relaxation extends. We illustrate the generic method using three ex-
amples: constrained minimum spanning trees, table layout, and constrained geodesic
shortest paths. In these examples we compare the application of our generic method
with previous work that considered the specific problem structure.

We developed a software package CNOP that implements the generic 2-step approach.
A user only has to specify a function solving the corresponding unconstrained problem
and a function ranking problem solutions. Additionally, CNOP offers all state of the
art methods for constrained shortest paths and can be used as a testbed to see which
approach is most suited for a special application. While several implementations of
different methods exist, this is the first package that makes all state of the art methods
publicly available. It also offers the first publicly available implementation for the
constrained minimum spanning tree problem. The flexibility of the CNOP package
allows the user to experiment with other bi- or multicriteria network optimization
problems.

Zusammenfassung

Das Kiirzeste-Wege-Problem ist eine der fundamentalen Problemstellungen der In-
formatik. Es ist wohlstudiert und es existieren effiziente polynomielle Algorithmen.
Kiirzeste-Wege-Probleme treten oft in der Praxis auf, da wir in vielen Anwendungen
daran interessiert sind, in einem Netzwerk etwas (ein Datenpaket, einen Telefonanruf
oder ein Fahrzeug) von einem Startpunkt so schnell, billig oder zuverlassig wie moglich
zu einem Zielpunkt zu senden.

Hiaufig sind wir in Anwendungen nicht nur an einem billigsten oder kiirzesten Pfad in-
teressiert, sondern vielmehr an einer Kombination verschiedener Kriterien. Wir suchen
zum Beispiel einen Pfad, der sowohl billig als auch kurz ist. Dies ist als Kurzeste-
Wege-Problem mit mehreren Kriterien bekannt. Da es nicht moglich ist, alle Kriterien
gleichzeitig zu optimieren, wihlen wir ein Kriterium als zu optimierende Kostenfunk-
tion aus, die anderen Kriterien werden als Ressourcenfunktionen betrachtet, wobei
wir obere Schranken fiir den maximalen Ressourcenverbrauch eines Pfades festlegen.
Das Kurzeste- Wege-Problem mit Nebenbedingungen ist nun, einen Pfad mit minimalen
Kosten zwischen zwei gegebenen Punkten zu finden, dessen Ressourcenverbrauch diese
Schranken nicht iibersteigt.

Die Losung dieses Problems ist von grofler praktischer Bedeutung. Anwendungen finden
sich zum Beispiel auf den Gebieten der Routenplanung, dem sogenannten quality of
service routing, der Dienstplangenerierung, der Routenfithrung und sogar der Kurven-
approximation. Leider macht schon eine zusitzliche Ressourcennebenbedingung aus
dem “einfachen” Kiirzeste-Wege-Problem ein “schweres” Problem, fiir das wir keinen
polynomiellen Algorithmus kennen. Aufgrund der grofien praktischen Relevanz wollen
wir jedoch dieses Problem so effizient wie moglich 16sen oder zumindest approximieren
konnen.

In dieser Arbeit untersuchen wir das Kiirzeste-Wege-Problem mit Nebenbedingungen
sowohl theoretisch als auch praktisch. Wir behandeln auch verwandte Probleme, wie
minimale Spannbiaume mit Nebenbedingungen.

Es gibt eine Reihe von Arbeiten tiber Kiirzeste-Wege mit Nebenbedingungen aus ver-
schiedenen Bereichen der Informatik. Fast alle Arbeiten stellen im Prinzip denselben
Algorithmus zum Losen einer Relaxierung des Problems vor. Der einzige Unterschied
liegt in der Préasentation der Methode. Die einen leiten das Verfahren allein von der
geometrischen Intuition her, andere wenden allgemeine Techniken der Lagrange Re-
laxierung an. Wir kombinieren einfache geometrische Intuition mit der Theorie des

Linearen Programmierens und erhalten ein umfassendes Verstindnis der Methode.
Diese kombinierte Sichtweise erlaubt es uns, zum ersten Mal eine scharfe polynomielle
Laufzeitschranke fiir das Verfahren zu zeigen. Wir beweisen, dass man die Relaxierung
mit O(log(nRC)) Kirzeste Wege Berechnungen mit skalierten Kosten 16sen kann,
wobei n die Zahl der Knoten des Netzwerks ist und C und R die maximalen Kosten
beziehungsweise Ressourcen einer Kante darstellen. Unsere kombinierte Sichtweise er-
laubt es uns auch, das Verfahren auf mehrere Nebenbedingungen zu erweitern, was
bislang ein offenes Problem war.

Das Losen der Relaxierung gibt uns eine obere und eine untere Schranke fiir unser
Problem. Friithere Arbeiten schlugen verschiedene Ansitze zum Schliefen dieser Liicke
vor, um somit eine 2-Schritt-Methode zu erhalten. Wir prasentieren wieder eine kom-
binierte theoretische und geometrisch intuitive Sichtweise des zweiten Schrittes und
stellen ein neues Labeling-Verfahren zum Schlieflen der Liicke vor.

Danach vergleichen wir alle gangigen und neu vorgeschlagenen Methoden fiir Kiirzeste-
Wege mit Nebenbedingungen experimentell. Dies ist der erste detaillierte experi-
mentelle Vergleich verschiedener Losungsverfahren.

Weiterhin zeigen wir, dass die 2-Schritt-Methode auf eine allgemeinere Klasse von Netz-
werkoptimierungsprobleme mit Nebenbedingungen anwendbar ist. Wir bendtigen nur
eine Funktion, die das Netzwerkoptimierungsproblem ohne Nebenbedingung lost, sowie
eine Funktion, die Lésungen in aufsteigender Kostenreihenfolge auflistet. Die Schranke
fir die Zahl der Iterationen zum Losen der Relaxierung gilt weiter. Wir illustrieren diese
generische Methode anhand von drei Beispielen: Minimale Spannbdume mit Nebenbe-
dingungen, Tabellenlayout und Geodatische-Kiirzeste-Wege mit Nebenbedingungen.
Hierbei vergleichen wir die Anwendung unseres generischen Verfahrens mit fritheren
Arbeiten, die die jeweilige spezielle Struktur des Problems berticksichtigen.

Wir haben ein Softwarepaket CNOP entwickelt, das dieses generische Verfahren imple-
mentiert. Ein Benutzer muss nur eine Funktion zum Loésen des Problems ohne Nebenbe-
dinungen und eine Funktion zum Auflisten von Losungen bereitstellen. Dariiber hinaus
stellt CNOP alle gingigen Verfahren fiir das Kiurzeste-Wege-Problem mit Nebenbe-
dingungen zur Verfigung und kann somit als ideale Testumgebung dienen, um her-
auszufinden, welche Methode fiir eine spezielle Anwendung am geeignetsten ist. Es ex-
istieren zwar schon Implementierungen einiger Verfahren, aber CNOP macht zum ersten
Mal alle gangigen Methoden 6ffentlich nutzbar. CNOP bietet ebenso die erste 6ffentliche
Implementierung fiir das Minimale-Spannbaum-Problem mit Nebenbedingungen. Die
Flexibilitat des CNOP-Pakets ermoglicht es dem Benutzer, auch mit anderen Netzwerk-
optimierungsproblemen mit Nebenbedingungen zu experimentieren.

Index

Symbols
€-approximation 14
PTAS .. 14
NP o 13
NP-complete................... 13
NP-hard....................... 13
weakly N'P-complete 13
P 13
B
binary search....................... 43
buffer region................ 112
C
CGSP see constrained geodesic shortest
path
CMST....... see constrained minimum

spanning tree

constrained geodesic shortest path.113
constrained minimum spanning tree. 90

constrained shortest path........... 25
(70) 81377 < 16
convex hull 16
CPLEX ..t 125
CSP..... see constrained shortest path
cub ... 8

St-cub... ... 8

cutting plane generation............ 19
CyCle. ..o 8
D
delayed column generation.......... 19
DEM....... see digital elevation model
digital elevation model.............. 62
duality ..o 15
complementary slackness 15
dual problem................... 15
primal problem................. 15
strong duality 15
weak duality.................... 15
E
ellipsoid method 18
F
fixed scheme....................... 110
G
2e0desiC. ..o 110
graph.... ...l 7
acyclic. ...l 8
connected............oiiii.. 8
directed ...t 7
subgraph 8
undirectedol 7
H
halfspace ...l 16

hull approach....................... 40

I
ILP......... see integer linear program
integer linear program 20
interval scheme.................... 112
K
K minimum spanning trees......... see
spanning tree ranking
K shortest paths see path ranking
L
label correcting................... 9, 61
label setting.............. ... 9, 60
Lagrangean relaxation.............. 20
Lagrange multiplier............. 20
Lagrangean dual................ 21
layout ... 101
LEDA ... 123
linear program...................... 15
LP ...l see linear program
M
maximum flow.............. ..., 11
minimum cutooo L 12
minimum spanning tree............. 10
N
network.......... ... e 7
directedl 7
undirected Lol 7
P
parametric search................... 92
Pareto-optimal...................... 30
path. 8
loopless........ccoviiiiiiiit. 8
optimality conditions........... 11
simple.........oooiiiii i, 8
path ranking........................ 31

polyhedron 16

polytope..........coiiiiiit, 16
facet.o 16
pseudo-polynomial.................. 13
R
recognition problem................. 13
S
separation problem 19
shortest path 8
Fuclidean 110
optimality conditions............ 9
weighted 110
simplex method..................... 17
dual simplex method 18
primal simplex method 18
solution ranking 87
spanning tree........................ 8
spanning tree ranking............... 98
subgradient method............. 22, 36
T
table layout 102
TIN. see triangulated irregular network
triangulated irregular network 118
U
unimodular........... oLl 16

