
   

 

Molecular Modeling of  

the Transmembrane Domain 

of Envelope Glycoproteins from Flaviviridae 

Viruses 

 

 

Dissertation 

zur Erlangung des Grades  

des Doktors der Naturwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät III 

Chemie, Pharmazie, Bio- und Werkstoffwissenschaften 

der Universität des Saarlandes 

 

 

von 

Siti Azma Jusoh 

 

Saarbrücken 

November 2010 





   

i  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag des Kolloquiums: 16. Dezember 2009 

Dekan:    Prof. Dr. Petra Bauer 

Berichterstatter:  Prof. Dr. Volkhard Helms 

   Prof. Dr. Richard Zimmerman 

Akad. Mitarbeiter: Dr. Michael Hutter 

   

 

 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

iii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne Benutzung 

anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder indirekt 

übernommenen Daten und Konsepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde 

bisher weder In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung 

eines akademischen Grades vorgelegt. 

 

 

Saarbrücken, Dezember 2010 



 iv 

Acknowledgement 

Foremost, I owe my deepest gratitude to my supervisor, Prof. Dr. Volkhard Helms for accepting me as 

his student and guiding me along my PhD journey. Thank you for patiently editing my writing and 

giving many useful advices. I also would like to thank his wife, Regina who helped my family and me 

during our initial stage in Germany. I would like to thank the group secretary, Kerstin for helping me 

with the paperworks. 

 

I am thankful to the group members of Computational Biology Group for sharing memorable 

moments, experiences, valuable academic discussion as well as many other aspects of life especially Dr. 

Michael Hutter, Dr. Tihamér Geyer, Dr. Wei Gu, Mazen Ahmad, Peter Walter, Dr. Susanne Eyrisch, 

Mohamed Hamed Ali Fahmy, Christian Spaniol, Jennifer Metzger, Nadine Schaadt and Po-Hsien Lee.  

 

My special appreciation goes to Barbara Hutter, Özlem Ulucan, Yvonne and Alesandro Marangon for 

being my closest friends.  

 

I will not forget to thank Dr. Shirley Siu and Prof. Dr. Rainer Böckmann for teaching me MD 

simulations in membrane lipid bilayer. I thank Danielle, Caroline and Beate from Prof. Dr. Rainer 

Böckmann group and many other friends in Germany for various kinds of help.  

 

I thank Dr. Christoph Welsch from the Johann Wolfgang Goethe University, Frankfurt for his 

contributions to the project described in Chapter 3. His contributions are marked specifically in the text. 

 

I would not have been able to perform my study without financial contribution from my main sponsor, 

the Universiti Teknologi MARA Malaysia, and additional financial supports from the Volkswagen 

Foundation. I would like to acknowledge Centre for Bioinformatics of Saarland University for the 

computational and research supports. 

 

Finally, I would like to thank my parents, Jusoh Ismail and Aini Mohamud for their love, care and 

dedication to rise me. I am grateful for my beloved husband, Mustakim Mohamed Adnan for his 

endless love and continuous support and also both of my sons Luqman Syahmi and Ayman Shafi for 

being the major drive that motivates me every single day. Thank you for my families for always being 

there for me.  

 

I thank to Allah SWT for His bless and guidance through this entire journey. 

 



   

v  

 

Abstract 

 

The putative transmembrane (TM) domains of the envelope glycoproteins from the family Flaviviridae 

consist of a highly polar segment in between two hydrophobic stretches. This type of sequence pattern 

does not yet exist in the database of high resolution structures of membrane proteins. Mutagenesis 

studies have shown that the TM domains act as membrane and signal anchors, and are responsible for 

heterodimerization. In hepatitis C virus (HCV), the TM domains of the envelope glycoproteins E1 and 

E2 were hypothesized to heterodimerize via an ion pair of Lys-Asp. Our MD simulations showed that 

the E1-E2 heterodimer formed by the charged residues located in the core of the lipid bilayer stabilized 

the helical conformation of E2. We compared the effect of other types of ion pair interactions using 

engineered peptides and obtained similar results. We found that an Asp amino acid had the strongest 

kink-inducing effect on the helix when it was located in the middle of a single-pass TM helix. The 

extended analyses on dengue, Japanese encephalitis, West Nile and bovine viral diarrhea viruses again 

showed that their putative TM domains behave similarly. All the TM domains of the E1/prM tended to 

tilt and remain helical in membrane bilayer. In contrast, the TM domains of the E2/E that contain a 

central Asp residue were severely kinked. Altogether, these TM domains illustrated a similar structural 

behavior in the lipid bilayer milieu. 
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Kurzfassung 

 

Die mutmaßlichen Transmembran (TM)-Domänen der Hüllglykoproteine der Familie Flaviviridae 

bestehen aus einem hochpolaren Segment zwischen zwei hydrophilen Abschnitten. Diess 

Sequenzmuster sind noch nicht in der Datenbank hochaufgelöster Strukturen von Membranproteinen 

enthalten. Gemäß Mutagenesestudien agieren die TM-Domänen als Membran- und Signalanker und 

sind für die Heterodimerisierung verantwortlich. Im Hepatitis C-Virus (HCV) heterodimerisieren die 

TM-Domänen der Hüllglykoproteine E1 und E2 möglicherweise über ein Ionenpaar zwischen Lys-Asp. 

Unsere MD-Simulationen zeigten, dass das E1-E2-Dimer, das durch die geladenen Residuen im Kern 

der Lipiddoppelschicht gebildet wird, die helikale Konformation von E2 stabilisiert. Der Effekt anderer 

Ionenpaarinteraktionen in künstlichen Peptiden führte zu ähnlichen Ergebnissen. Asp in der Mitte einer 

TM-Helix verursachte den stärksten Krümmungseffekt. Weitere Analysen mit anderen Flaviviridae 

(Dengue, Japanese encephalitis, West Nile und bovine viral diarrhea virus) zeigten ebenfalls ein 

ähnliches Verhalten ihrer mutmaßlichen TM-Domänen. Alle TM-Domänen von E1/prM tendierten zur 

Krümmung und blieben in der Membrandoppelschicht helikal. Hingegen waren die TM-Domänen von 

E2/E, die ein zentrales Asp enthalten, stark gekrümmt. Insgesamt zeigten diese mutmaßlichen TM-

Domänen ein ähnliches strukturelles Verhalten in der Membran. 
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Thesis Overview 

 

This thesis deals with the transmembrane (TM) helix segments of the two envelope glycoproteins from 

Flaviviridae viruses which contain several highly polar amino acid residues located in the centre of the 

TM segments. Here, the structure of the thesis is outlined. 

Chapter 1 provides a brief introduction of membrane proteins which covers their types, structure and 

functions, purposely to highlight their crucial roles in living organisms. Then, I specifically explain the 

mechanisms and components related to the synthesis of the helical membrane proteins. The ribosome-

translocon complexes are shown to directly be involved in the biogenesis, the lateral translocation into 

the membrane lipids and the topological decision of the membrane proteins. Furthermore, I bring up the 

unresolved issues about the models of the active ribosome-translocon complexes and recent discussions 

regarding the controversial biological hydrophobicity scale. These fundamental issues are critical in the 

decision making to produce accurate prediction methods for membrane proteins. In addition, I give 

some information about the membrane lipids which are the residing home for the membrane proteins 

and their dynamic properties as well as their interaction to each other. At the end, I summarized the 

background of the peptides that were used in this thesis. 

In Chapter 2, the technique of classical MD simulation is briefly explained including a discussion of the 

utilized force field. The protocols to implement a simulation of a peptide in lipid bilayer system are also 

described here.  Some experimental data are shown side by side with respective results from other 

simulation studies.  

Chapter 3 presents the results of our first project with the objective to study an ion pair interaction that 

mediates a TM helix dimer. This project was motivated by the abundant experimental data on hepatitis 

C virus (HCV) that suggested an important contribution of a salt-bridge for the dimerization of the 

putative TM helices from the E1 and E2 envelope glycoproteins. We modeled the suggested E1-E2 

heterodimer with the Lys-Asp salt-bridge purposely to observe the effect on the helical structure. We 

explored with the MD simulation methods other possibilities that can weaken or strengthen the helix-

helix interaction by performing mutations on the selected key residues as proposed by the experiments. 

From this, we conclude that the strong E1-E2 dimer interaction is driven by the ion pair. But the ion 

pair alone does not prevent the local unfolding of the helical structure. From the simulations, we clearly 

saw an additional hydrogen bond interaction involving another polar residue that mediates the dimer 

and improved the helical conformations.      
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Chapter 4 – The initial objective of this second project was to study three other types of salt bridges 

based on the same idea as the first work. The salt bridge interactions between the two helices were set 

up to be in the middle of the bilayer core and this time we used engineered TM sequence segments. The 

helical segments, named H-segment, each contained one charged residue in the centre. Therefore, the 

resulted interaction will solely come from the studied residues that formed the salt bridge. As expected, 

we showed that each type of salt bridge resulted in a stable dimer interaction throughout the 200 ns MD 

simulations. Also, the structural behavior of the helices that contained Lys and Asp were the same as 

the E1 and E2 from the HCV. Additionally, we discovered that on this time scale (more than 150 ns), 

several water molecules from the bulk phase were able to penetrate into the bilayer core and solvated 

the charged residues. Even more, they were dynamically exchanged with bulk waters. This event was 

illustrated by continuous replacement of water molecules in the core region of the bilayer. However, 

this surprising microsolvation phenomenon in hydrated hydrophobic bilayers needs to be further 

verified by experimental methods in order to explain in quantitative ways.  

In Chapter 5, we again used the biological sequences as models to study effects of charged amino acids 

on the helical stability of the TM domain. Based on the simulation of helix monomers from the two 

previous works, we noted that the helices containing a single Asp amino acid in the centre of the 

transmembrane helix were locally unfolded and kinked. Therefore, one of the questions that we wanted 

to know was whether an Asp amino acid caused that particular effect. We used the putative TM domain 

of several other well known Flaviviridae viruses as models. All of them contain at least one charged 

residue at the middle of their TM segments. Interestingly, the simulation results showed that the Asp 

residue located in the centre of the transmembrane helix tend to cause disruption and kinking to the 

monomers. Moreover, all the E1/prM helices which do not contain an Asp remained as perfect helical 

structure, rather than most of the E2/E helices that were severely kinked. We also used several popular 

web servers which predict three-dimensional structure in order to characterize these putative TM 

sequences. Here we showed results from the I-Tasser prediction server that managed to provide 9 out of 

10 correct 3D predicted structures similarly as been observed during the MD simulation.  

Finally, we summarize the findings and propose further investigations for this study in Chapter 6. 
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Zusammenfassung 

Die vorliegende Arbeit befasst sich mit den Transmembran (TM)-Helix-Segmenten von zwei  

Glykoproteinen der Hüllen von Flavoviridae Viren, die einige hochpolare Aminosäuren enthalten, die 

im Zentrum des TM-Segments lokalisiert sind. Im folgenden wird der Aufbau der Arbeit erläutert. 

Kapitel eins umfasst eine kurze Einführung der Membranproteine und beschreibt deren Typen, ihre 

Struktur und deren Funktionen insbesondere im Hinblick auf ihre wichtigen Rollen im lebenden 

Organismus. Im Anschluss beschreibe ich die Mechanismen und die Komponenten, die bei der 

Synthese der helikalen Membranproteine von Bedeutung sind. Es wird gezeigt, dass die Ribosom-

Translokon-Komplexe unmittelbar an der Biogenese, der lateralen Translokation in die Membranlipide 

und der topologischen Ausrichtung der Membranproteine beteiligt sind. Darüber hinaus spreche ich 

wenig erforschte Aspekte des Modells des aktiven Ribosom-Translokon-Komplexes an sowie neuere 

Diskussionen über die Kontroversen bezüglich der biologischen Hydrophobizitätsskala. Diese 

grundlegenden Themen spielen eine entscheidende Rolle im Prozess der Entscheidungsfindung, um 

möglichst getreue Vorhersagemethoden für Membranproteine zu entwickeln. Zusätzlich gehe ich auf  

Membranlipide ein, die in Membranproteinen angesiedelt sind, sowie auf ihre dynamischen 

Eigenschaften und Interaktionen untereinander. Schließlich gebe ich einige Hintergrundinformationen 

zu Peptiden, die im Rahmen dieser Arbeit Verwendung fanden. 

In Kapitel zwei wird die Technik der klassischen MD-Simulation erläutert und das verwendete 

Kraftfeld diskutiert. Die Protokolle zur Implementierung der Simulation eines Peptids in der 

Lipiddoppelschicht werden ebenfalls beschrieben. Einige experimentelle Daten werden im einzelnen 

dargestellt mit entsprechenden Resultaten aus anderen Simulationsstudien. 

Kapitel drei präsentiert die Resultate unseres ersten Projekts, welches sich mit der Interaktion eines 

Ionenpaares befasst, das für die Mediation eines TM-Helix Dimers verantwortlich ist. Die Motivation 

für dieses Projekt beruht auf zahlreichen experimentellen Daten über das Hepatitis C Virus (HCV), die 

die Bedeutung einer Salzbrücke in den Vordergrund stellen, welche die Dimerisierung der TM-Helices 

aus den E1 und E2 Hüllglycoproteinen vermittelt. Wir modellierten dieses E1-E2 Heterodimer mit der 

Lys-Asp Salzbrücke in der Absicht, einen Effekt auf die helikale Struktur beobachten zu können. Wir 

überprüften mit Hilfe von MD-Simulationen weitere Möglichkeiten, die Helix-Helix Interaktion zu 

verstärken oder zu schwächen, indem ausgewählte Schlüsselresiduen, die experimentell bestimmt 

wurden, mutiert wurden. Aus dieser Studie schlussfolgern wir, dass die starke E1-E2 Dimer-Interaktion 

über das Ionenpaar vermittelt wird. Jedoch kann das Ionenpaar allein die lokale Strukturänderung der 

helikalen Struktur nicht verhindern. Mit Hilfe der Simulationen beobachteten wir eine zusätzliche 
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Wasserstoffbrücken-Interaktion, an der eine weitere polare Residue beteiligt ist, die die Bildung des 

Dimers vermittelt und die helikalen Konformationen stabilisiert. 

Kapitel vier – Das ursprüngliche Ziel des zweiten Projekts lag in der Studie von weiteren drei Typen 

von Salzbrücken, die auf derselben Grundlage wie in der ersten Studie basieren. Die 

Salzbrückeninteraktionen zwischen zwei Helices wurden in der Mitte eine Lipid-Doppelschicht 

platziert. Wir verwendeten in dieser Simulation künstliche TM Sequenzsegmente. Die helikalen 

Segmente, genannt H-Segmente, enthalten in ihrem Zentrum jeweils eine geladene Residue. Deshalb 

beruht die resultierenden Interaktion allein auf der untersuchten Residue, die die Salzbrücke ausbildet. 

Wir zeigten, dass jeder Salzbrückentyp erwartungsgemäß zu einem stabilen Dimer im Verlauf von 

200ns MD-Simulationen führt. Auch gleicht das strukturelle Verhalten der Helices, die Lys und Asp 

enthalten, den E1 und E2 Proteinen aus HCV. Zusätzlich entdeckten wir auf dieser Zeitskala (mehr als 

150ns), dass einige Wassermoleküle aus der Bulkphase in den Doppelschichtkern eindringen und die 

geladenen Residuen solvatisieren konnten. Überdies wurden sie dynamisch mit dem Bulkwasser 

ausgetauscht. Dieses Ereignis wurde begleitet von fortlaufendem Austausch von Wassermolekülen in 

der Kernregion der Doppelschicht. Dieses überraschende Mikrosolvatationsphänomen in hydratisierten 

hydrophoben Doppelschichten muss allerdings mit Hilfe weiterer experimenteller Methoden verifiziert 

werden um diese Beobachtung auch quantitativ zu erklären.  

In Kapitel fünf verwendeten wir biologische Sequenzen als Modelle, um die Auswirkungen von 

geladenen Aminosäuren auf die helikale Stabilität der TM-Domäne zu untersuchen. Auf Grundlage der 

Simulation von Helixmonomeren aus den beiden vorangegangenen Arbeiten fanden wir heraus, dass 

Helices, die eine einzige Asp-Aminosäure im Zentrum der Transmembran-Helix haben, lokal  

denaturiert und geknickt werden.  Deshalb bestand eine zu klärende Frage darin, ob ein Asparagin 

ebenfalls einen solchen Effekt verursachen kann. Als Modelle verwendeten wir die mutmaßliche TM-

Domäne von einigen weiteren gut bekannten Flavoviridae. Alle enthalten wenigstens eine geladene 

Residue in der Mitte ihrer TM-Segmente. Interessanterweise zeigten die Ergebnisse der Simulation, 

dass die Asp-Residue im Zentrum der Transmembran-Helix dazu neigt, innerhalb der Monomere 

Brüche und Knicke zu verursachen. Darüber hinaus bewahren alle E1/prM Helices, die kein Asp 

enthielten, ihre perfekte helikale Strukture, wohingegen die meisten E2/E-Helices strukturell deutlich 

geknickt wurden. Wir verwendeten einige weit verbreitete Webserver zur Vorhersage von 

dreidimensionalen Strukturen, um diese mutmaßlichen TM-Sequenzen zu charakterisieren. Wir zeigen 

Ergebnisse des I-Tasser Vorhersageservers, dem es gelang, 9 von 10 korrekte 3D-Strukturen 

vorherzusagen, die denen aus den MD-Simulationen ähnlich sind.  

Zum Schluss fassen wir die Ergebnisse in Kapitel sechs zusammen und geben einen Ausblick auf 

mögliche weitere Untersuchungen, die die Projekte dieser Arbeit betreffen. 
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CChhaapptteerr  11    
IInnttrroodduuccttiioonn  ooff  tthhee  BBiioollooggiiccaall  
CCoommppoonneennttss  

1.1 Membrane Proteins 
 

Membrane proteins represent up to 30% of the open-reading frames of sequenced genomes (Wallin & 

von Heijne, 1998) and play essential roles for biological functions such as signal transduction, solute 

and molecular transport across membranes, energy production, membrane and protein biogenesis, cell-

cell interactions and nerve conduction. These important cellular processes make them the prime target 

for drug design. In fact, the membrane proteins are currently the targets for at least 50% drugs in the 

market (Terstappen & Reggiani, 2001)(Overington et al, 2006). Despite the growing number of 

structures of membrane proteins at atomic resolution, the number is still representing only less than 2% 

out of the total. Currently, there are only ~252 three-dimensional structures 

(http://blanco.biomol.uci.edu/) (White, 2009) of different membrane proteins determined at atomic 

resolution by X-ray crystallography or Nuclear Magnetic Resonance (NMR) spectroscopy due to the 

difficulties with extraction and crystallization. 

The main criterion contributes to the differences between membrane proteins and soluble 

proteins are due to their residing location. The soluble proteins reside in an aqueous phase but the 

membrane proteins are buried in the hydrophobic milieu of membrane lipids. Thus, the exterior 

surfaces of the membrane embedded proteins comprise of mostly non-polar amino acids. However, 

their internal packing is similar to that of soluble proteins.  
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1.1.1 Types of Membrane Proteins 
 

There are two main groups of membrane proteins; the integral type and the peripheral type. The integral 

membrane proteins are permanently attached to the membrane lipids, where a large portion is 

embedded in the hydrophobic layer of the cell membrane. In contrast, the peripheral type is temporarily 

adhered to the biological membrane where they may interact with other proteins or directly with the 

membrane lipids. Examples of peripheral type of proteins are regulatory protein subunits associated 

with ion channels or receptor proteins. Integral membrane proteins can be again categorized into two 

main types; the α-helix bundles and the β-barrel types. The helix-bundle type of membrane proteins 

occur in most cell membranes. Indeed, ~27% of the human proteome are estimated to be α-helical 

transmembrane (TM) proteins (Almen et al, 2009). The β-barrel proteins where the β–strands are 

arranged in an anti-paralleled fashion are found only in the lipid-rich cell walls of a few Gram-negative 

bacteria, in outer membrane of mitochondria and in chloroplasts. The bacterial porin protein family 

typically forms as β-barrel proteins. The porins, which contain a water-filled channel, function as a 

filter to transport hydrophilic molecules across the bacterial cell membrane.    

The α-helix bundle membrane proteins can be further assigned to three subgroups which are a 

monotopic that spans half of the bilayer, a bitopic that span both of the bilayer, and a polytopic that 

span the entire bilayer more than once which also called multi-spanning membrane proteins (illustrated 

in FIGURE 1.1). In this thesis, the studies are focusing only on the bitopic and the polytopic types of 

the integral membrane proteins.  Below, I will describe main characteristics of the helical membrane 

proteins. Several groups of membrane proteins will be briefly explained and the recent published crystal 

structures are shown together with their protein databank (PDB) id.  

 

Integral Helical Membrane Proteins 

The TM helices of the integral membrane proteins are composed primarily of non-polar amino acids. 

Typically, they consist of about 25 amino acids (1.5Å per residue) which can comfortably span the 30 

Å thick membrane lipid bilayer (Bowie, 1997)(White & Wimley, 1999). The preferred location of the 

amino acids in the TM segments is based on their properties. The hydrocarbon region of the membrane 

bilayer usually consists of non-polar amino acids such as Ala, Leu and Val. Their hydrophobic side-

chains can interact well with the lipid carbon tails. On the other hand, polar and charged amino acids as 

for example Asp, Arg, Lys, Glu, Asn and Glu are normally present near the end of the TM segments 

near to the membrane interfacial region. At this location, the side chains of these amino acids can form 

hydrogen bonding with bulk water. Another distinct feature of the TM helix is the distribution of the 

Tyr, Trp and Phe residues towards the membrane interface. This clustering of aromatic amino acids of 
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the integral membrane proteins has been referred as ‘aromatic belt’ (Ulmschneider & Sansom, 

2001)(Adamian et al, 2005). 

The higher distribution of Arg and Lys in cytoplasm compared to periplasm was statistically 

observed in bacterial inner membrane proteins that led to the ‘positive-inside rule’ (von Heijne, 1992). 

The positive-inside rule is useful to predict the TM protein topology based on the amino acid sequences. 

When the N-terminal flanking region possesses fewer positive charges and the TM domain is relatively 

longer, the segment tends to form an Nlum/Ccyt orientation, in which the N-terminus is in the lumen of 

endoplasmic reticulum and the C-terminus is in the cytoplasm. In contrast, when the N-terminal 

flanking domain possesses more positive charges than the C-terminus, the TM domain adopts the 

opposite orientation (Ncyt/Clum). Both orientations are possible for the bitopic TM helix and they are 

categorized into the type I membrane protein if contained a cleavable signal-anchor (FIGURE 1.1). 

Type II and type III contained a non-cleavable signal anchor attached to the N-terminus and located in 

the cytosol and lumen, respectively.    

 

 

FIGURE 1.1 The positive-inside rule and topologies of membrane proteins. The dash lines 
indicate the membrane bilayer interface. (a), (b) and (c) are types of helical membrane proteins; 
monotopic, bitopic and polytopic, respectively. The positive-inside rule illustrates the bias 
positively charged residues in the connected loop (fewer than 60 residues) between the TM 
helices that located in the cytoplasm. However, it should be noted that if the length of the loop is 
longer, the rule is ignored. Also, type of TM helices depends on the signal anchor (cleavable or 
non-cleavable) and its location (cytosol or lumen).  
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1.1.2 Functions of Integral Helical Membrane Proteins 
 

G-protein-coupled receptors (GPCRs)  

G-protein-coupled receptors (GPCRs) are the type of integral membrane protein known as membrane 

receptors that play specialized roles in the communication between the cell and the extracellular signals 

(lights, odors and tastes) and intracellular signals (hormones and neurotransmitters) through the signal 

transduction process to trigger changes in the function of the cell. The family of GPCRs is the largest 

class of receptors in the human genome and is found only in eukaryotes. In fact, it is the largest of all 

protein families. GPCRs also have a great pharmacological importance since 50-60% of all approved 

drugs are targeting members from GPCR family (Hopkins & Groom, 2002)(Overington et al, 2006). 

The signature motif of GPCRs is that they comprise of 7-TM helices (FIGURE 1.2).  

 

 

FIGURE 1.2 The GPCR family. Examples here are (a) Mammalian Rhodopsin/Opsin from Bos 
taurus (3CAP); (b) Human β2-adrenergic (1RH1); (c) Human adenosine A2A receptor (A2A-
adenosine) (3EML) is the most recent solved GPCRs structure. The figures were taken from the 
OPM database (http://opm.phar.umich.edu/). 

 

Active Transport 

The transport proteins are mostly integral membrane proteins which are responsible for the movement 

of ions, small molecules, proteins and lipids across a biological membrane. The active transporter 

requires energy to function in order to transport solutes against the concentration gradients. The ATP-

binding-cassette (ABC) family of membrane proteins is one example of active transporters that utilize 

the energy released during adenosine triphosphate (ATP) hydrolysis to translocate a wide variety of 

substrates across extra- and intracellular membranes such as small toxic molecules and lipids (FIGURE 
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1.3). P-glycoprotein is a member of the ABC transporter family associated with multi-drug resistance 

(MDR). It belongs to the human ABCB family (known as ABCB1/MDR1). P-glycoprotein functions as 

an efflux-pump which filters out hundreds of chemically unrelated toxins including the drugs to 

suppress tumor cells. This has caused problems in the treatment of cancers. The recently published 

crystal structure of mouse P-glycoprotein serve as the best template to study human P-glycoprotein 

(FIGURE 1.3 (a)).  

 

 

FIGURE 1.3 The ABC transporters. (a) The crystal structure of P-glycoprotein from mouse 
(ABCB1a) (3G5U) (Aller et al, 2009) was recently published. It currently represents the best 
template for human P-glycoprotein. (b) MsbA (3B60) (Ward et al, 2007) is also an MDR type of 
ABC transporter as well as (c) Sav1866 (2HYD) (Dawson & Locher, 2006). Both are from 
bacteria. The sequence identities among these three structures are only ~30% to each other. The 
proteins classified in the ABC-protein family are based on the sequence motif and domain 
organization. The figures were taken from the OPM database (http://opm.phar.umich.edu/).  

 

Channels and Pores  

The channel or pore type refers to the membrane proteins that have pore across the lipid bilayer that 

function to control the influx and outflux of the molecules or ions across the cellular membrane.  

Ion channels contain a selective ion-conduction pore that can be gated by voltage or a ligand. 

The main function of voltage-gated ion channels in the nervous system is to process sensory signals and 

generating motor outputs. They have crucial roles in the initiation and propagation of nerve impulses. 

The first discovered structure of membrane channel was from the bacterial potassium channel, KvAP 

(Doyle et al, 1998). Up to now, there are several crystal structures for potassium channels for examples 

from eukaryote are Kv1.2 (3LUT) (see FIGURE 1.4), KcsA (1K4C); and bacteria: KvAP, Kirbac. The 

potassium channels are commonly voltage-gated and function in a tetrameric unit. Other voltage-gated 
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channels that already have a published high resolution structure are sodium channel (Nav), calcium 

channel (Cav). Ligand-gated ion channels usually form a pentameric unit.   

Pore type of membrane proteins usually transport water (an example in the FIGURE 1.4: 

AQP1) and glycerol. They are known as aquaporins and glycerolporin, respectively. Similar to the ion 

channels, the pore type function in a passive way but highly selective based on the size of the molecules. 

Other than channels to regulate ions, there are also channels to regulate energy for example ATP 

channels and protein conducting channels (e.g. SecY/Sec61; see more in section 1.2.1). 

 

 

FIGURE 1.4 Structure of membrane protein channels. From left to right: The human aquaporin 
typically can function as a single subunit, the potassium channel is commonly consists of 4 
monomers that form a functional central pore. The acetylcholine receptor (nAchR), MscS, MscL, 
ASIC1, SecY. The figure was adapted from (Khalili-Araghi et al, 2009); depicts the channel 
types that have been studied using the molecular dynamics simulation.     

 

Other Functions Energy Generation 

In plants and bacteria, membrane proteins play the main role to produce energy through the process of 

photosynthesis by capturing the light energy. The first high resolution structure of a membrane protein 

was that of the bacterial photosynthetic reaction center from purple bacteria (Deisenhofer et al, 1984). 

Other than that, membrane proteins also can exist as enzymes that are responsible for intramembrane 

proteolysis and are involved in cell immune system known as family of Membrane Associated Proteins 

in Eicosanoid and Glutathione metabolism (MAPEG).  
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1.2 Biogenesis of Helical Membrane Proteins 

1.2.1 Translocon Machinery 
 

The translocon is the core machinery involved in the translocation process of both soluble proteins and 

membrane proteins. However, the synthesis of membrane proteins is unique and much more complex 

than that of soluble proteins (Zimmermann et al, 2010)(White & von Heijne, 2008)(Rapoport, 

2007)(Rapoport et al, 2004). The translocon is directly involved in recognition, orientation, lateral 

integration and insertion of the membrane protein. It is called Sec61 complex and SecY complex 

(FIGURE 1.5). These proteins are located in the eukaryotic endoplasmic reticulum (ER) and 

prokaryotic plasma membrane, respectively. Its main function is to discriminate between the soluble 

proteins that have to cross the membrane completely and membrane proteins that integrate laterally into 

the membrane lipids. Furthermore, the translocon complex is even directly involved in determining the 

membrane protein topography based on the acid amino sequence. However, most of the molecular 

details of this mechanism are still unclear.  

 

 

FIGURE 1.5 The SecY complex. (a) View from side, b. view from the cytosol, (adapted from 
(Zhang & Miller, 2010); c. Cross-sectional view of the channel from the side (Rapoport, 2007). 
The first crystal structure of the translocon in the closed state was solved for the archaeal SecY 
complex of Methanococcus jannaschii in the year 2004 (Berg et al, 2004). Figure (a) and (b) are 
illustrated with the “diagram” showing the predicted movement of the structure from the closed-
state to the open-state. Note that the ‘pore ring’ is involved in filtering specific molecules to enter 
when the ‘plug’ is open.   
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Briefly, the translocon is a conserved heterotrimeric membrane protein complex consisting of 

α-, β-, and γ-subunit. The α- and γ-subunits are highly conserved in both the eukaryotes and the bacteria 

and crucial for the function of the translocon.  The α-subunit mainly forms the protein translocation 

channel. It has an aqueous interior (Rapoport et al, 1996) (Rapoport, 2007) and is divided into two 

halves, TM 1-5 and TM 6-10. The loop between TM 5 and 6 at the back of the α -subunit serves as a 

hinge, allowing the α-subunit to open at the front, the so called "lateral gate". The 10 helices of the α-

subunit form an hourglass-shaped pore that consist of cytoplasmic and external funnels, the tips of 

which meet about half way across the membrane. There are also six hydrophobic residues located at the 

tips where their side-chains orient inwardly to behave as a "pore ring". When the cytoplasmic funnel is 

empty, the external funnel is plugged by a short helix (FIGURE 1.5). Thus, not even a small molecule 

including a water molecule can pass through the protein-conducting channel (Saparov et al, 

2007)(Gumbart & Schulten, 2006). The channel itself is a passive pore which relies on the translocon 

partners for example a ribosome as driving force to translocate the nascent polypeptides (Rapoport, 

2007).  

 

1.2.2 Constitutive Membrane Proteins 
 

Like all proteins in cells, constitutive membrane proteins go through the normal translation processes in 

ribosome. Then depending on the signal from precursor polypeptides, the nascent peptides can get 

translocated by the translocon complex machinery using two ways; Co-translational and post-

translational. (1) Co-translational: Briefly, this secretory pathway through the translocon complex 

begins when an ER signal sequence emerges from the ribosome and is recognized by the 

ribonucleoparticle signal-recognition particle (SRP). Then, the ribosome-nascent polypeptide-SRP 

complex targets to the ER membrane. The GTP hydrolysis by SRP and its receptor releases the signal 

sequence and subsequently transfer the complex to a protein-conducting channel of the translocon 

complex. The elongating polypeptide chain subsequently moves directly from the tunnel inside the 

ribosome into the protein-conducting channel. Furthermore, the translocon complex processes the 

nascent polypeptide according to the sequence segment. Soluble proteins have mostly hydrophilic 

segments that will across the translocon channel. On the other hand, the membrane segments are more 

hydrophobic and will integrate laterally into the membrane bilayer (FIGURE 1.6). (2) Post-

translational: The soluble proteins may also get transported through the translocon complex using this 

pathway. Suggested due to their weak hydrophobic signal, the precursor polypeptides escape the 

recognition from the SRP and complete the synthesis before the translocation (Tyedmers et al, 2000). 

There is no such case for the membrane proteins which use the post-translational pathway.  
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FIGURE 1.6 Biosynthesis of proteins in ribosome-translocon complexes. (a) Translocation of a 
soluble protein. (b) Translocation of membrane proteins. Upper panel shows a bitopic Nlum-Ccyc 
type of membrane protein, and the lower panel shown the Ncyc-Clum type. The red line indicates 
the hydrophobic region of a signal sequence. (The figure taken from (Rapoport, 2007). 

 

The folding process of membrane proteins is still not clear. Based on the fact that most soluble 

proteins are able to form secondary structure in the aqueous phase prior to becoming compact, the 

forming of the TM helices may also occur before they integrate into the membrane lipid bilayer. Due to 

the energetic cost of forming the helical structure in the hydrophobic lipid environment, most likely the 

event takes place in the translocon environment. In fact, photo-crosslinking experiments captured a 

bound signal helix of about two turns near the translocon lateral exit site of translocon (Plath et al, 

1998).  The forming of helical structure before the integration is somehow necessary for the membrane 

proteins that could facilitate the translocon recognition. Thus, the translocon complex may orient the 

nascent helical segment according to the physico-chemical characteristics of the amino acids. For 

example, orient the nonpolar face of the helix to make contact with the lipid environment when they 

move into the membrane phase. Indeed, the orientation and position of the amino acids in the helix can 

serve as a coded signal whether the helix can integrate as a single helix or it needs to associate with the 

subsequent nascent polypeptide. Experimental studies showed that the TM helices made contact with 

the translocon and lipids during the synthesis (Meindl-Beinker et al, 2006). This contact will facilitate 

the integration and oligomerization of the membrane proteins. However, most details about the 

processes of the multi-spanning membrane protein oligomerization are still not clear. Most likely the 

tertiary structure formation does not take place in the protein conducting channel due to the size of the 

channel (8 Å) that seems to allow only a single helix to pass through (Berg et al, 2004)(Rapoport, 2007).  

In contrast, evidence from accessibility studies of fluorescence-quenching experiments showed that the 

aqueous pore in a functioning translocon is 40-60 Å in diameter (Hamman et al, 1997). Several low-
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resolution studies of cryo-electron microscopy (cryo-EM) support this hypothesis (Hanein et al, 

1996)(Beckmann et al, 1997)(Ménétret et al, 2000). A hypothetical model based on aquaporin 

presented a similar idea of having a central translocation pore, but formed by oligomeric translocon 

complexes (Pitonzo & Skach, 2006) (FIGURE 1.7). The central pore that contained reduced lipids 

could facilitates the membrane protein folding due to the increase area per lipid that correlates with the 

increase of water permeability (Mathai et al, 2010). The higher hydration in the lipid bilayer 

environment may energetically assist the process of membrane protein folding at least for the 

marginally hydrophobic TM helices.  

Yet, there are also several studies that indicate that the translocation pore is not located at the 

centre of translocon complexes. For example (1) a back-to-back tetramer configuration of mammalian 

Sec61 complexes was obtained from cryo-EM experiments (Ménétret et al, 2005). Even though the 

four-subunits of the heterotetramer translocons complexes resulted to form a central pore, but the data 

suggest that the pore is rather depressed and could be filled with lipids (Ménétret et al, 2005). Moreover, 

the result showed that there was only one actively working Sec61 complex that directed the elongated 

precursor polypeptide. (2) In another study using cryo-EM, a ribosome-bonded SecYEG translocon 

complex from Escherichia coli was shown to form a dimer. Similarly, during the co-translocation 

process, only one translocon subunit laterally opened to allow the integration of the nascent polypeptide 

into the lipid bilayer (Mitra et al, 2005)(Driessen, 2005).  

Additionally, there are numerous proteins that get associated with the translocon during the 

post-translocation process including translocation-associated membrane protein (TRAM) (Görlich et al, 

1992), the translocation-associated protein complex (TRAP) (Wiedmann et al, 1987), the 

oligosaccharyl transferase (Görlich et al, 1992), the signal peptidase complex and the ER-lumenal 

polypeptide chain binding protein (BiP) (Shibatani et al, 2005) (Dudek et al, 2005) (Dudek et al, 2009). 

These translocon-associated proteins are suggested to assist the lateral integration and folding of 

membrane proteins the endoplasmic reticulum membrane.  
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FIGURE 1.7 Models of translocon complex during the biosynthesis of membrane proteins. (a) 
The single and empty crystal structure of archaeal SecY complex ( a homolog for Sec61 
translocon complex) from M. jannaschii indicates that the diameter of the protein-conducting 
channel is about 8 Å and consists of a lateral exit site to a membrane lipid bilayer (Berg et al, 
2004). The recent model of the ribosome-bonded Sec61 translocon (~11 Å) obtained from mass 
spectrometry also suggests the same illustration (Ménétret et al, 2008). (b) The cryo-electron 
microscopy (cryo-EM) analyses showed a back-to-back tetramer configuration of Sec61 
complexes (Ménétret et al, 2005) but suggested that only one actively working Sec61 complex 
that directly elongates a precursor polypeptide. (c) Another cryo-EM study of SecYEG complex 
from E. coli observed a front-to-front dimer configuration of ribosome-translocon complexes. 
However, the opening of both SecY halves was shown not to generate one central channel. The 
data suggest that during the translocation of a hydrophilic segment of the nascent chain, only one 
of the SecY laterally opened to the bulk lipid (Mitra et al, 2005). (d) A model from fluorescence-
quenching experiments showed a large central pore (40-60 Å) of functionally intact Sec61 
translocon (Hamman et al, 1997). This model is supported by early low-resolution EM studies 
(Hanein et al, 1996)(Beckmann et al, 1997)(Ménétret et al, 2000). (e) A hypothetical model of an 
oligomeric front-to-front configuration of translocon during the synthesis of multi-spanning 
membrane proteins that based on the topological analysis of the aquaporin 1 (AQP1). The figure 
was adapted from (Skach, 2009). 

 

1.2.3 Non-constitutive membrane protein 
 

The non-constitutive membrane proteins refer to foreign peptides as for examples antimicrobials and 

toxins. These peptides do not use the translocon machinery to cross the plasma membrane. There are 

several ways how they gain entry into the cell. For example, (1) a toxic protein, colicin forms a 

complex with the vitamin B12 receptor, BtuB, and then recruits the OmpF porin to translocate its C-

terminal toxic domain in order to kill the cell (Zakharov et al, 2006); (2) diphtheria toxins (a bacterial 

toxin) manage to enter and disrupt the membrane bilayer after triggering the V-ATPase proton pump 

protein that causes a decrease of the cell pH. The acidic environment induces the diphtheria toxin (B 

chain) to form a pore in the membrane that facilitates the entry of its toxic domain (A chain) into the 

cytoplasm (Rodnin et al), (3) melittin (bee venom), is an amphiphilic peptide that forms an α-helical 

structure when bound to the membrane and creates a pore in the membrane when the peptide 

concentration is increased (Raghuraman & Chattopadhyay, 2006). Altogether, these examples that all 

occur in nature infer that a single peptide alone is not independent to spontaneously get inserted into the 

membrane. The peptide needs to modify the normal physiological conditions of the cell (e.g. increase 

acidity) or/and able to manipulate the host proteins in order to gain entry into the membrane lipids.  
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Similarly, the spontaneous insertion of pH-low-insertion peptide (pHLIP) into the membrane is 

also triggered by low pH and by the protonation of Asp (there are Asp residues located in the center of 

the monomer and at the end of C-terminal). The pHLIP peptide showed to be soluble in aqueous phase, 

bind to the membrane as unstructured molecule and stably get inserted across the membrane as a α-

helix monomer (Andreev et al, 2010). Hence, the two-stage model of (Popot & Engelman, 2000) is 

somehow still relevant to describe the entry pathway of the non-constitutive membrane proteins into the 

membrane lipids. We note that the case of pHLIP which contains a charged residue in the centre of the 

monomer and gets inserted at low pH condition is somehow similar to that of putative TM helices of 

envelope glycoproteins from the Flaviviridae virus family (Lindenbach et al, 2007). In contrast to other 

non-constitutive peptides, these viral envelope glycoproteins are integrated into the ER membrane 

through the translocon complex similarly as the constitutive membrane proteins (Cocquerel et al, 2002). 

 

1.2.4 Biological Hydrophobicity Scale 
 

The classical idea of Kyte and Doolittle suggests that sequence hydrophobicity is the main criterion that 

determines the location of TM segments (Kyte & Doolittle, 1982). Although many protein prediction 

methods are based on such hydrophobicity scales (von Heijne, 1992)(Rost et al, 1996)(Tusnady & 

Simon, 2001), it remains unclear exactly how to perfectly discriminate between TM segments and 

soluble segments. The present methods have an uncertain accuracy in predicting semi-hydrophobic TM 

segments. 

The so-called biological hydrophobicity scale is based on a large-scale systematic 

experimentally study of peptide-partitioning between the aqueous and membrane phase (TABLE 1.1). 

It describes the apparent free energy of insertion (∆Gapp) of each of the 20 natural amino acids when 

located in the centre of a TM helix (Hessa et al, 2005). This translocon-based scale has triggered a 

controversy because it strikingly showed that the energetic penalty for inserting charged residues (at 

pH=7) into the lipid bilayer when located centrally in the TM helix is not as high as expected from 

biophysical simulation studies (MacCallum et al, 2008)(Dorairaj & Allen, 2007)(Ulmschneider et al, 

2007a). In fact, the experimental water-to-cyclohexane partitioning scale (Radzicka & Wolfenden, 

1988) showed a much higher cost to bury those charged amino acids in the core region of the lipid 

bilayer. Interestingly, the biological hydrophobicity scale is in excellent agreement with the former 

Wimley-White hydrophobicity scale (water-to-POPC interface) and the Wimley-White octanol-based 

scale (water-to-octanol) (Wimley & White, 1996)(Wimley et al, 1996) (TABLE 1.1). There may be 

several reasons why the Wimley-White scales are correlated with the biological hydrophobicity scale: 

First, they used the whole residue scale and second, the water-octanol condition allowed a suitable 

environment for the partitioning of polar and nonpolar molecules.   
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TABLE 1.1 Solvation and transfer of Free Energies for acid amino (the data are in units of 
kcal/mol). 

Residue aPeptide- 
Translocon 

bWater to 
POPC 

interface 

cWater to 
octanol  

dWater to 
cyclohexane 

eGeneralized 
Born 

membrane 

Asp 0.11 0.17 0.50 −1.81 0.11 

Asn 2.05 0.42 0.85 6.64 3.55 

Cys −0.13 -0.24 -0.02 −1.28 0.25 

Gln 2.36 0.58 0.77 5.54 3.39 

Gly 0.74 0.01 1.15 −0.94 0.58 

His 2.06 0.96 2.33 4.66 3.33 

Ile −0.60 -0.31 -1.12 −4.92 −0.87 

Leu −0.55 -0.56 -1.25 −4.92 −1.21 

Met −0.10 -0.23 -0.67 −2.35 0.38 

Phe −0.32 -1.13 -1.71 −2.98 −0.81 

Pro 2.23 0.45 0.14 — 1.93 

Ser 0.84 0.13 0.46 3.40 2.08 

Thr 0.52 0.14 0.25 2.57 1.71 

Trp 0.30 -1.85 -2.09 −2.33 1.12 

Tyr 0.68 -0.94 -0.71 0.14 0.84 

Val −0.31 0.07 -0.46 −4.04 −0.59 

Arg 2.58 0.81 1.81 14.92 11.42 

Asp 3.49 1.23 3.64 8.72 23.61 

Glu 2.68 2.02 3.63 6.81 27.23 

Lys 2.71 0.99 2.80 5.55 20.85 
 

aPeptide-Translocon-based scale (Hessa et al, 2005); bWater-POPC interface whole residue 
(Wimley & White, 1996); cWater-octanol whole residue (Wimley et al, 1996); dWater- 
cyclohexane (Radzicka & Wolfenden, 1988); eGeneralized Born implicit-membrane  
(Ulmschneider et al, 2007a).  

 

What could be the possible factors that reduce the cost of inserting marginally hydrophobic TM 

helices into the lipid bilayer? None of the current computational methods are able to clearly explain the 

low cost of desolvating the charged residues Arg, Lys, Asp and Glu according to the translocon-based 

hydrophobicity scale. The translocon-based biological hydrophobicity scale has triggered a challenge to 

scientists in the computational biophysical field in seeking data to explain these discrepancies. 

Computer simulation studies by (1) (MacCallum et al, 2008) showed that Lys, Asp and Glu adopted 

neutral protonation states in the core region of the lipid bilayer, but this work did not give a definitive 

result about the charged status of Arg; (2) (Dorairaj & Allen, 2007) simulated a long polyLeu helix with 

an Arg in the center and claimed that the free energy barrier for the Arg in the core bilayer might be as 

high as 17 kcal/mol. They suggested that Arg changes to a neutral state in the core region of membrane 

bilayer. This is somehow contrary to the presence of charged residues in the integral membrane proteins 

that is very likely required for their specific functions. For example, the S4 helix of voltage-gated ion 
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channels contains four Arg that are exposed to lipids and must remain charged to function (Long et al, 

2005) (Hessa et al, 2005). Therefore, it is not surprising that the putative TM domain of the envelope 

glycoproteins from Flaviviridae virus family contain at least one charged residues located in the centre 

of their TM helices. In hepatitis C virus, these charged amino acids were shown experimentally to play 

multiple roles including ER retention, dimerization and in the virus assembly (Ciczora et al, 2007). A 

change from a charged to the neutral state will obviously defeat the purpose of their function.  

One possible explanation for the discrepancy between the in vivo biological hydrophobicity scale 

and the computer simulations is the use of pure nonpolar membrane bilayers in the simulations, 

whereas in nature the cell membrane consists of heterogeneous components. For example it contains 

many different types of lipids (Johansson & Lindahl, 2009b) and integral membrane proteins 

(Johansson & Lindahl, 2009a). MD simulation results showed that adding more proteins in the 

membrane bilayer reduced the solvation energy for the charged Arg close to the experimental 

observation (3-5kcal/mol) (Johansson & Lindahl, 2009a). One of their findings was that the increase of 

the protein content in the cell membrane facilitates the TM helices to retain a certain degree of water 

hydration in the hydrophobic milieu. The contact between the translocon and TM helices allows the 

translocon to recognize the TM helices thus facilitating the integration process. Furthermore, helix-

helix interaction can significantly assist the insertion of marginally hydrophobic TM helices into the 

lipid bilayer. The dimerization of H-segments containing polar Asn and Asp residues located in the 

center of the TM segment was shown to result in a low ∆Gapp (Meindl-Beinker et al, 2006). Moreover, 

the putative TM segment of envelope glycoprotein E1 and E2 from HCV also has been suggested based 

on the experimental data to form a salt bridge before integrating to the lipid bilayer (Ciczora et al, 2007).  

 

1.3 Membrane Lipids 
  

Compartmentalization by biological membranes defines eukaryotic cells and organelles, prokaryotic 

cells and even some viruses by separating them from the aqueous solution. Thus, this principal allows 

each cell to perform its independent intracellular processes. By becoming the boundary of the cells, the 

membranes take control to regulate the transport of substances into and out of the cells. They are 

differentially permeable to only small substances such as water, oxygen and carbon dioxide that may 

diffuse through. In contrast, charged ions for example sodium and potassium, and bigger molecules 

require special carrier proteins or channels to actively transport them across the membranes. Big 

molecules such as proteins also can enter or leave cells by being incorporated into vesicles in the 
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processes called endocytosis and exocytosis, respectively. These responses of different mechanisms of 

membranes to perform specific tasks provide evidences that they are not only just passive boundaries!     

According to the fluid mosaic model that was first proposed in 1972 by Singer and Nicolson 

(Singer & Nicolson, 1972) (Singer, 1974), biological membranes consist of heterogeneous components 

which are lipids, proteins and carbohydrates (FIGURE 1.8).  

 

 

FIGURE 1.8 General model for membrane structure is based on the Singer-Nicholson ‘fluid 
mosaic model’ (Singer & Nicolson, 1972). The figure was adapted from (Pietzsch, 2004).  

 

Lipid molecules are the backbone of the biological membranes. There are more than 1000 types 

of lipid species in cell (Sleight, 1987)(Lev, 2010). For example, erythrocytes alone contain about 100 

types (Lipowsky & Sackmann, 1995) Phospholipids (glycerophospholipids) are the most abundant 

lipids in eukaryotic membranes. The phospholipids comprise of a glycerol backbone, which facilitates a 

high variability of different head groups and acyl chain combinations. The main head group classes are 

the phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

phosphatidylinositol (PI). PS and PI are the charged types of head groups. The acyl chains typically 

vary from 16 to 22 carbons in length and they contain 0 to 6 double bonds. In addition to the 

phospholipids, sphingolipids and sterols (cholesterol) are also important components in membranes. 

The basic unit of the membrane is a bilayer formed by phospholipids and sphingolipids. Most 

membranes have an asymmetric distribution of lipids in their two leaflets. The outer leaflet of the 

mammalian plasma membrane consists mainly of sphingolipids, PC and cholesterol, but the inner 

leaflet has a higher concentration of negatively charged phospholipids that can lead to a surface 

potential on the cytosolic site of cell membranes (Devaux & Morris, 2004). This surface potential can 
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affect local ion concentration as well as membrane protein conformation and function. The physico-

chemical asymmetry across the bilayer leaflet is dynamically modulated according to cell specific 

processes. For example the increase of PS type of lipids in the outer leaflet determines that a cell is 

entering apoptosis (Kagan et al, 2000).  

Lipids are amphiphilic molecules which consist of two distinct regions; a water soluble 

(hydrophilic), and a water-insoluble (hydrophobic). Due to this characteristic, they have a tendency to 

self-assemble in a water environment. The hydrophilic head group region tends to interact with water 

molecules and the hydrophobic acyl chain region prefers to pack with each other to reduce contacts 

with the water molecules. This results in an aggregation of a specific form of lipid assembly that is 

determined by the physico-chemical properties of the lipid molecules. The cone-shape lipids form 

inverted hexagonal structures, the cylindrical shaped ones form bilayers and the inverted cone-shaped 

lipids form micelles (FIGURE 1.9). It is important to note that these resulting shapes are caused by 

external condition for instance temperature, hydration or counterions (Tresset, 2009). Under normal 

physiological condition, hydrated phospholipids typically form bilayer structures. 

 

 

FIGURE 1.9 Phospholipid assemblies: (a) bilayers, (b) micellar hexagonal, and (c) inverted 
hexagonal structures. These images are adapted from (Tresset, 2009). 

 

1.4 Flaviviridae Virus family 
 

Flaviviridae (from the Latin word flavus which stands for, “yellow”) are named after the first human 

virus discovered over one century ago, the yellow fever virus (Strode, 1951). This large family of viral 

pathogens is responsible for causing severe diseases and mortality in humans and animals. It consists of 

three genera (see FIGURE 1.10): Flavivirus, the largest group among other Flaviviridae genuses that 

currently has more than 70 members, classified for vector-borne disease agents such as dengue virus 

(DENV), japanese encephalitis (JEV), yellow fever virus (YFV) and West Nile virus (WNV); 
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Pestivirus is the animal pathogen (5 members), for example bovine viral diarrhea virus (BVDV); and 

Hepacivirus consists of the hepatitis C virus (HCV) that causes hepar-related diseases, cirrhosis and 

hepatocellular carcinoma in infected individuals. HCV virus includes at least 6 genotypes and 

numerous subtypes. GB virus A (GBV-A), GBV-B and GBV-C are shown by nucleotide and protein 

analyses to be most closely related to HCV than to other members of the Flaviviridae family. Therefore, 

they are grouped together in the Hepacivirus genus (FIGURE 1.10). The similar features of the viruses 

in Flaviviridae are the virion morphology, the genome organization and the replication strategy. Besides 

these similarities, however, each genus expresses distinct effects and therefore these viruses cannot be 

treated using the same drugs. 

 

FIGURE 1.10 The Flaviviridae virus family. Shown is a phylogenetic tree based on sequence 
comparisons of NS3 helicase regions. Example of the flaviviruses: yellow fever virus (YFV); 
dengue virus (DENV), West Nile virus (WNV), and tick borne encephalitis virus (TBEV); the 
pestivirus genus: bovine viral diarrhea virus (BVDV) and classical swine fever (CSFV); 
hepacivirus genus: hepatitis C virus (HCV) including GB virus B (GBV-B); GB virus A (GBV-
A) and C (GBV-C). (The figure was taken from (Thomas et al, 2005)).   

 

At the time of writing, there are already successfully developed vaccines available against YFV, 

JEV and TBEV. However, there is no effective antiviral drug or even vaccines available against the 

DENV and HCV. The HCV antivirals are due to be released in the middle of year 2012 leucopenia 

(Opar, 2010). However, the new antiviral drugs, which are targeting the NS3B protein, need to be 

coupled with the current drugs in order to effectively function. The use of Ribavirin and pegylated 

interferon caused side-effects for patients such as anemia and leucopenia (Opar, 2010). Therefore, 

ongoing experiments need to find better solutions to treat the HCV disease.  
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The viruses of Flaviviridae gain entry into the cell via endocytosis after binding to the cellular 

receptors that are specific for viral envelope glycoproteins (Murray et al, 2008). The low pH during the 

endosomal pathway induces fusion between the virion envelope and the cell membrane, thus causing 

the nucleocapsid to uncoat and release the RNA genome. There are several experimental evidences 

showing that the envelope glycoproteins of these viruses are involved in the fusion stage (Lindenbach et 

al, 2007). Interestingly, the released virus genome is recognized by the host cell as a messenger RNA. 

Therefore, it uses the constitutive pathway similar to the biogenesis of membrane proteins in order to 

replicate (FIGURE 1.11).  

 

 

FIGURE 1.11 Processing of the hepatitis C virus. Members of Flaviviridae family likely utilize 
the same mechanism in order to replicate in host cells. (a) They are suggested to enter the host 
cellular membrane via endocytosis. (b) Then, the low pH induces fusion of the virion envelope 
with the cellular membrane. Followed by the uncoating of the nucleocapsid, the RNA genome is 
release into the cytoplasm. (c) The RNA is processed by the host translocon machinery resulting 
in ~3000 amino acids of polyprotein (d) RNA replication - Processing by viral and cellular 
enzymes releases the individual viral gene products.  (e) Packaging and assembly (f) Virion 
maturation and final release via exocytosis. (The figure was taken from (Moradpour et al, 2007). 
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1.4.1 Transmembrane Domains of the Envelope Glycoproteins 
 

The envelope glycoproteins of the family Flaviviridae have TM domains that are composed of two 

stretches of hydrophobic residues separated by a short segment that contains at least one fully 

conserved charged residue (Cocquerel et al, 2000) (FIGURE 1.12). The TM domains act as signal for 

the ER retention, are responsible for the dimerization of the envelope glycoproteins and essential for the 

formation of the viral envelope.  

 

 
FIGURE 1.12 Sequence alignment of the putative TM domains of the envelope proteins from 
the Flaviviridae virus family. The domain composed of two hydrophobic segments (yellow 
background) separated by a short polar segment (blue background) contains highly conserved 
polar and charged residues (highlighted in pink). The segment of E1-HCV (1EMZ) is shown on 
top of the alignment. To date, this is the only three-dimensional structure available representing 
the envelope glycoproteins of Flaviviridae virus family. This structure of E1 (350-370) was 
obtained by NMR-spectroscopy constraint measured in 50% TFE (2,2,2-trifluoroethyl-1-2-d2 
alcohol). 

 

1.4.2 TM Domain of the E1-E2 Dimer of Hepatitis C Virus 
 

In this section, the envelope glycoproteins of HCV will be discussed in more detail due to their 

important role in this dissertation project. We selected this system because of the abundance of 

experimental data that could support our computational study of TM helix dimerization. Briefly, the 

HCV was discovered in the year 1989. Unfortunately, compared to the other well known members of 

Flaviviridae family for instant dengue and yellow fever viruses, the study of HCV lagged behind 



Chapter 1 

 20

because it is extremely difficult to propagate the HCV genome in culture. Only recently, the 

development of HCV pseudoparticles (HCVpp) (Bartosch et al, 2003) and the efficient amplification of 

cell culture system (HCVcc) (Wakita et al, 2005) have contributed to major advances in investigating 

the functions of HCV (Ciczora et al, 2005)(Ciczora et al, 2007).  

The RNA genome of HCV contains a single long open reading frame (ORF) of approximately 

9600 nucleotides encoding for a single polyprotein of about 3200 amino acids. The ORF between the 

5’-noncoding region (NCR) and 3’-NCR is composed of three structural (core, E1, E2) and seven non-

structural (p7, NS2-NS5B) proteins. The 5’-NCR contains an internal ribosome entry site (IRES) 

required for the translation of the HCV genome (Bartenschlager et al, 2004) (Penin et al, 2004). The E1 

and E2 envelope glycoproteins were suggested to be responsible for the viral entry by binding to the 

host cell receptor (Bartenschlager et al, 2004). Their putative TM domains are an extreme example of a 

multifunctional membrane-spanning sequence. These domains consist of fewer than 30 amino acid 

residues and are composed of two hydrophobic stretches separated by a short segment containing at 

least one fully conserved charged amino residue (FIGURE 1.12). The charged residues in the centre of 

the TM domain have been shown to be responsible for the ER retention and the heterodimerization of 

the glycoproteins (Ciczora et al, 2007)(Lindenbach et al, 2007).  

 

1.4.3 Model of the E1-E2 Dimer Biogenesis  
 

Is the hydrophobicity signal the sole criterion used by the SRP to decide the fate of the precursor 

polypeptides? If yes, it must be a precise value needed to determine whether the nascent polypeptide 

must be co- or post-translationally processed. It is possible that marginally hydrophobic segments 

contain an extra signal to get selected co-translationally. Interestingly, the E1 and E2 envelope 

glycoproteins contain not only a signal that directs the biogenesis processes co-translationally but also a 

signal which determines the topology of the glycoproteins. It has been shown that hydrophobic 

sequences located at the C-terminal of both TM segments contains a signal sequence that is responsible 

for the translocation of the protein located downstream. The C-terminal half of E1 is involved in the 

translocation of the ectodomain of E2, and the C-terminal half of E2 is involved in the translocation and 

integration of p7 polyprotein (Reed and Rice, 2000)(Cocquerel et al, 2002). Due to the influence of the 

signal sequences, the topology of E1 and E2 envelope glycoproteins adopts that of type I TM proteins 

with an N-terminal ectodomains and a C-terminal hydrophobic anchor (Nlum/Ccyc) (cyt, cytosol; lum, 

luminal) (Cocquerel et al, 2002). Since the ectodomain of E1 and E2 are translocated into the lumen of 

the ER, they were suggested to adopt a hairpin structure. The experimental evidences suggest that the 

formation of the hairpin structure occurs before the signal sequence cleavage (Cocquerel et al, 2002). 
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Then, after the cleavage, the C-terminus of the TM domain is reoriented to form a single TM spanning 

segment (Op De Beeck et al, 2000) (Cocquerel et al, 2002) (FIGURE 1.13).  

 

 

FIGURE 1.13 Model of synthesis of the E1-E2 envelope glycoproteins of HCV. (1) The N-
terminus of E1 is translocated into the lumen of the ER as well as its C-terminal half which 
contains of the signal sequence of E2 adopts a hairpin structure. (2) After the signal sequence 
cleavage between E1 and E2, the C-terminal half of the TM domain of E1 is reoriented toward 
the cytosol resulting to a single TM spanning segment. (3) Similarly, the TM domain of E2 
transiently adopts a hairpin structure to allow the translocation of p7. (4) After the signal 
sequence cleavage between E2 and p7, the signal sequence present in the C-terminal half of the 
TM domain of E2 is reoriented toward the cytosol. The TM domains of E1 and E2 form a dimer 
and laterally integrate into the lipid bilayer. The arrows denote the cleavage sites by the ER 
signal peptidase. Figure adapted from (Cocquerel et al, 2002). 
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2.1 Molecular Dynamics Simulations 
 

The molecular dynamics (MD) method allows atomistic descriptions of biological components evolving 

in time based on classical mechanics. It was first introduced by Alder and Wainwright in the year 1957 

(Alder & Wainwright, 1957)(Alder & Wainwright, 1959) to study the transition of solid-fluid phases of 

hard spheres. Their discovery set the stage for the development of MD as a basic tool in statistical 

mechanics. The next major advance was in 1964, when Rahman carried out the first simulation using a 

realistic potential for liquid argon (Rahman, 1964) and for liquid water in 1974 (Stillinger & Rahman, 

1974). The first protein simulation was performed in 1977 for the bovine pancreatic trypsin inhibitor 

(BPTI) (McCammon et al, 1977). Today, with the rapid development in the computer technology, the 

MD method is routinely used in a wide range of molecular research to obtain information about 

structural, dynamical and thermodynamic properties of complex biomolecular components as well as in 

chemistry and material science. Examples are the binding of ligands to soluble proteins, membrane 

protein aggregation in the lipid phase, interaction of protein-DNA complexes as well as the role of MD 

to aid in conformational sampling in experimental procedures such as X-ray crystallography and NMR 

structure determination.  

 At the present time, the MD methods are conveniently compiled as powerful software packages 

that can be executed on small desktop PCs up to parallel supercomputers depending on the system size 

and simulation length that is aim for. Popular MD software packages are CHARMM (Chemistry 

Harvard Macromolecular Mechanics (MacKerell et al, 1998), GROMACS (Groningen Machine for 

Chemical Simulations) (Hess et al, 2008)(Van Der Spoel et al, 2005), GROMOS (Groningen Molecular 

Simulation) (Oostenbrink et al, 2004) and NAMD (Nanoscale Molecular Dynamics) (Phillips et al, 

2005). Each package usually uses its own developed force field which is a set of interaction parameters 

and semi-empirical rules to evaluate forces between different types of atoms in the simulation system. 

Perhaps the best known force fields are AMBER (Ponder & Case, 2003), CHARMM (MacKerell et al, 

1998), GROMOS (Oostenbrink et al, 2004) (Berendsen et al, 1995)and OPLS (Jorgensen et al, 1996).  
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2.2 Methods 
 

A rigorous MD simulation must be based on a mathematical model that correctly describes the energy 

of a system as a function of its structure. Ideally, structure and dynamics of molecules could be 

determined from electron and nuclei combinations by numerically solving the time-dependent 

Schrödinger equation.  
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In the Schrödinger equation (equation. 2.1), Ĥ is the Hamiltonian operator, Ψ is the wave function, and 

h is the reduced Planck constant. It describes the full dynamics of a molecular or atomic system based 

on the principles of quantum mechanics. Unfortunately, it is still far beyond the capacities of modern 

computers to apply the time-dependent Schrödinger equation to systems with more than 10 atoms. 

Therefore, the Born-Oppenheimer approximation is used to simplify the problem. The idea is based on 

the fact that the electron mass is the significantly smaller than the mass of nuclei and therefore allows 

for their movement to be independently computed. In this scheme, the electron configuration is relaxed 

for every configuration of the fixed nuclei. Then, the nuclei are propagated according to a mean-field 

approximation. The Newton's second law of motion is used to replace the time-dependent Schrödinger 

equation which results in the ab initio MD method that is based on the movement of electron or the 

classical MD method that is based on the position of nuclei. The classical MD method uses 

parameterized analytical potentials (derived by fitting to quantum mechanical models or experiments) 

and allows the treatment of systems up to sizes billions of atoms (Roth et al, 2000). 

Newton’s equation of motion is   
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where Fi is the force, acting on the i-th particle, mi is the mass and ai is the acceleration of the i-th 

particle. For this purpose we need to calculate the force, Fi acting on the atoms, and these are derived 

from the potential energy U(rN), where rN = (r1, r2,…rN) represents the complete set of 3N atomic 

coordinates.  

An integration scheme is required to determine the time evolution of the atomic positions and 

velocities. Given the positions and velocities at t = 0 the positions and velocities at a later time t can be 
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obtained using a suitable algorithm. The Verlet algorithm is one of the simplest numerical methods 

used to integrate Newton’s equations of motion. This popular integrator offers great stability as well as 

time-reversibility and energy conservation properties. It can be derived by writing a simple Taylor 

expansion 
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where ∆t is an integration time step, r is the position at a given time t, and O represents the terms of 

order three and higher. In the equation of motion, the first and second derivatives of position can be 

replaced with a velocity, v and acceleration, a respectively. By summing the respective Taylor 

expansion for )( ttr ∆−  and truncating )( 3tO ∆ , the Verlet algorithm is revealed (Verlet, 1967).

 

2

2

1
)()(2)( t

m

F
ttrtrttr ∆+∆−−=∆+

     (2.4) 

The verlet algorithm uses the positions and accelerations at the time t and the positions at the time 

tt ∆−  to predict the positions at the time tt ∆+ , where t∆  is the integration step. The velocities are 

obtained from the basic definition of differentiation: 
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where acceleration is substituted using Newton’s equation of motion to give force divided by mass. 

However, there is an error of the order of 2t∆ . Therefore, to obtain more accurate velocities, the Leap-

Frog algorithm (Hockney & Eastwood, 1988) is used, using velocities at half time step  
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The velocities at time t can be also computed from  
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The atomic positions are then obtained from: 
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Equivalent to the leap-frog algorithm, the velocity Verlet can yield the position, velocity and 

acceleration with the same step. However, the velocity Verlet is more computationally expensive 

because of the increased calculation required per time step.   

 

2.2.1 Molecular Force Fields 
 

To simulate a molecular system, a computational model must be developed to determine the energy of a 

system according to the current positional of all particles accounting for bonded interactions in 

polyatomic molecules and for interactions among the particles. The interactions are described by a force 

field, which constitutes a set of functions that sum up the potential energy of the system. The basic 

functional form of the force field consists of both intramolecular forces which describe covalently 

bonded interactions and intermolecular forces describing non-bonded interactions.  

V(r1,….,rN) = Ebonded + Enon-bonded      (2.9) 

The intramolecular forces are bonded interactions and consist of a bond stretching (2-body), bond angle 

(3-body), and dihedral angle terms (4-body) (FIGURE 2.1). 

Vbonded  = Vbonds + Vangles + Vimp.dih + Vpro.dih     (2.10) 

The bonded energy is the total sum of the different interaction energies that are defined by connectivity. 

This stretching energy between a pair of bonded atoms is based on the Hookean spring model 

Vbond (bij) = Σ ½ Kij
b
 (bij – bij

0)2      (2.11) 

where Kij
b is the force constant which controls the stiffness of the bond spring, bij

0 is the equilibrium 

bond length, and bij is the actual bond length between atoms i and j. This equation estimates the energy 

associated with the vibration about the equilibrium bond length. The term describing the bending 

energy is represented by an angle formed by three atoms and is also based on Hooke’s law.    

Vangle (θ ij) = Σ ½ Kijk
θ
 (θijk – θijk

0)2      (2.12) 

where Kijk
θ is the angle-bending force constant that controls the stiffness of the angle spring, θijk

0 is the 

equilibrium bond angle, and θijk is the actual angle formed by atoms i, j and k. Thereby, this equation 

estimates the energy associated with the vibration about the equilibrium bond angle. The proper 

dihedral angle is defined as the angle formed by four atoms linearly bonded together. The torsion 

energy is modeled by a simple periodic function 

 Vproper (φ iklj) = Σ ½ Kijkl
φ
 (1 + cos(nφiklj – φ0))    (2.13) 

with Kijkl
φ is the torsional barrier, φiklj represents the angle between the two planes shared by atoms i, j, k 

and j, k, l. In organic chemistry, the angle relates to the trans state at 180º and gauche at ±60º. n 
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describes the periodicity of the energy function, and φ0 is a reference torsional angle that defines the 

positions of the energy minima. Lastly, the improper dihedral angle depends on the position of three 

atoms centered around a fourth atom. It is used to enforce both planar and chiral conformations. 

 Vimproper (ξiklj) = Σ ½ Kijkl
ξ
 (ξ – ξ0)2     (2.14) 

Kijkl
ξ is the energy constraint, ξ is the actual angle between two planes, and ξ0 is the reference angle.  

 

 

FIGURE 2.1 Schematic representation of bonded interactions. (a) Bond stretching between two 
bonded atoms, (b) angle bending (1,3 interaction), (c) proper dihedral and (d) improper dihedral 
(1,4 interaction).  

 

The intermolecular forces are describing interactions between separate atoms. This non-bonded 

interaction is represented by the Lennard-Jones (LJ) and Coulomb potentials that sum all the energies of 

all possible interacting non-bonded atoms i and j 

Vnon-bonded = ELJ + ECoulomb      (2.15) 

The Lennard-Jones potential (also known as 6-12 potential) describes the van der Waals interaction that 

represents a combination of repulsion (Pauli repulsion) and attraction (London dispersion) between a 

pair of non-bonded atoms. The repulsion occurs when distances between interacting atoms become 

smaller than the sum of their contact radii and causes a repulsive force proportional to 1/r12, where r is 

the interparticle distance. However, when the two atoms are beyond a certain distance, favorable dipole 

interactions are induced, which pull the atoms closer together. This attraction decays quickly with 1/r6. 

The full Lennard-Jones potential is thus written as:  

VLJ = Σ 4εij ( (Aij/r ij)
12 – (Bij/r ij)

6)      (2.16) 

where Aij  is the short-range repulsive term coefficient, Bij is the attractive term coefficient and rij is the 

actual distance between atoms i and j. The A parameter is obtained from atomic polarizability, or it can 

be calculated quantum mechanically. The B parameter is typically derived from crystallographic data. 

The second term of the non-bonded interactions is the electrostatic interaction between two charged 

atoms expressed by the Coulomb potential,  

 VCoulomb = Σ 1/4πε0εr . qiqj/r ij        (2.17) 
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where qi and qj are the effective partial charges for atoms i and j, respectively. ε0 is the permittivity of 

vacuum, εr is a relative dielectric constant and rij is the distance between atoms i and j (FIGURE  2.2). 

If all atoms of the system including the solvent are modeled explicitly, εr equals to 1.  

 

 

FIGURE 2.2 Schematic representations of the non-bonded interactions. (a) Lennard-Jones 
potential and (b) Coulomb potential. 

 

 

2.2.2 Periodic Boundary Condition 
 

The limitation of the available computer speed sets the limit for the size of the system that can be 

simulated over useful lengths. An artificial boundary must exist to truncate the number of molecules 

due to the finite number of simulated atoms. However, these boundaries cause surface effects due to 

neglecting the interactions with particles beyond the boundaries. To reduce these effects, periodic 

boundary conditions are frequently used (Allen & Tildesley, 1989) in MD simulations to mimic an 

infinite bulk system. Consequently, molecules at one edge of the system will interact with molecules at 

the opposite edge.  

 

2.2.3 Treatment of Long Range Interactions 
 

In a large system with N atoms, there are much fewer bonded interactions to be computed in a 

simulation because the number of bonded interaction is linearly dependent on N. In contrast, the 

computation of non-bonded interactions costs much more computation time because each atom can 

potentially interact with all the other atoms. Therefore, the number of non-bonded interaction scales as 

N2. Due to the limited computing capacity and the finite size of the simulation cell, the interaction of 

the non-bonded atoms must be in practice truncated. In former times, this was generally solved by using 

cut-offs method. The interactions are calculated only up to a certain distance and after this cut-off 

distance the potential of the interaction goes to zero. The size of the simulation cell restricts the cut-off 

distance due to the periodic boundaries condition where the molecule would interact with two and more 
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copies of another molecule if the cut-off distance is too large. Thus, the cut-off distance has to be 

smaller than half of the shortest unit vector of the simulation cell (Allen & Tildesley, 1989). For the 

Lennard-Jones potential, the short-range interaction (r-6) can be cut well below the symmetry distance. 

Unlike the Lennard-Jones interactions, the Coulomb potential of electrostatic interactions (r-1) cannot 

be easily cut-off due to their long-range nature. Using the same cut-off method leads to serious artifacts. 

These effects can be reduced by shifting the force function to zero or by switching the force smoothly 

off at the cut-off radius. Nowadays, it is standard practice to include the long-ranged Coulombic 

interactions by employing a variant of the Ewald-type summation techniques that compute the energy 

in infinite lattices. In this work, the Particle Mesh Ewald (PME) technique (Essmann et al, 1995) was 

used. It is an improvement version of the original Ewald summation method which converted the sum 

over all pairwise interactions into real-space and Fourier space components. Because of using the fast 

Fourier transform (FFT) algorithm (Darden et al, 1993) (Essmann et al, 1995) it scales as N log N.  

 

 

2.2.4 Simulation in the Isothermal-Isobaric Ensemble 
 

A standard MD simulation simply solving Newton’s equation of motion is performed in the 

microcanonical ensemble where the energy and volume of the system are constant (NVE-ensemble). In 

such a simulation, all states have the same energy as the starting configuration. No relaxation processes 

to states at lower energy or transitions over energy barriers can be observed. However, most real 

experiments are performed at constant pressure and temperature instead at constant volume and at 

constant energy. In that case, the distribution of states of different energy is governed by the Boltzman 

distribution. Therefore, in order to make the simulation correspond to the real experiment, one has to 

characterize the macroscopic equilibrium state by keeping the state parameters temperature and 

pressure of the modeled system to given values. In this work, pressure was always set to ambient 

pressure (105 Pa) and the temperature was set to different values between 310 and 323 K. In MD 

simulation, this condition is called the isothermal-isobaric ensemble or NPT-ensemble, where the 

number of atoms, the temperature and the pressure are kept constant. There are many methods to keep 

the temperature constant, one of which is the Berendsen algorithm that mimics a weak coupling to an 

external heat and pressure bath (Berendsen et al, 1984). In the Berendsen scheme, the temperature 

scaling method is essentially a direct scaling of the particle velocities but it is softened with a time 

constant. When coupled to a heat bath, the actual system temperature, T0 is corrected according to 

  
T

TT

dt
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τ
−= 0           (2.18) 
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where t is the time, T0 is the desired temperature and τT is the time constant. So the temperature 

deviation decays exponentially with τ. In practice, the temperature is adjusted by scaling the velocity of 

all particles at each time step. This results in a change of the kinetic energy, Ekinetic 
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where Ndf is the number of degrees of freedom and kb is Boltzmann’s constant. Equation 2.20 is based 

on the equipartition theorem; where the system temperature, T can be determined and is defined by the 

sum of the kinetic energy; TkNmvE bdf
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corresponds to a temperature change 
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Therefore, the scaling factor can be derived as 
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with the time step t∆ and the temperature coupling time constant τT.
  

Similarly to temperature, also the pressure can be scaled. The pressure is controlled by scaling 

the coordinates and vectors of the simulation cell at every time step. For the isothermal-isobaric 

ensemble condition, the pressure must first be defined for a MD simulation 

 ∑
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where V is the volume of the system and Nf is the number of degrees of freedom. r ij = r i-r j and Fij  is the 

force on the particle i due to particle j. Using the Berendsen pressure coupling method, the pressure, P, 

is scaled similarly as the temperature towards the given reference pressure P0 . 

 
P
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τ
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A pressure change can be done by changing the virial through scaling of interparticle distances. The 

scaling matrix is given by the elements  
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where τP is the pressure coupling time and β is the isothermal compressibility of the system. The 

appropriate time constant for pressure is 0.1ps or larger. A smaller time constant leads to instability of 

the algorithm with increased pressure and volume fluctuations.  

Particle coordinates r i are scaled as 

 ii rr µ=`         (2.26) 

The equations 2.25 and 2.26 are used for an anisotropic system. It can be reduced to an isotropic system 

if µ =  µ1.  

 

 

2.2.5 Simulation of Peptides in Lipid Bilayer Systems 
 

Due to the complexity of the membrane composition, it is very difficult to experimentally characterize 

the membrane properties at microscopic scale. Over the years, NMR and X-ray diffraction experiments 

(Petrache et al, 1998)(Nagle & Tristram-Nagle, 2000) and simulations studies of membrane lipids have 

been done side by side. This resulted in the possibility to construct theoretical models for lipid bilayers. 

The current available force fields for simple lipid bilayers are able to successfully reproduce structural 

experimental properties such as density, heat of vaporization and chain order (Gompper & Schick, 

2008). The lipid parameter set known as ‘Berger lipid’ that was constructed from a combination of 

GROMOS-87 bonds, angles, and dihedral (Ryckaert-Belleman dihedral for the chains), OPLS for LJ-

interactions (with Berger’s adjustment for the chains), and partial charges from the work by Chiu et al 

has been widely used for various phospholipid simulations because it provide good results that 

reproduce the experimental data (Berger et al. 1997).  

In order to sample the correct or realistic statistical motion of the physiological membrane 

system, the simulation temperature of the bilayer system needs to be set above the melting temperature 

to a liquid-crystalline state, Lα. Above the melting transition, lipids exist in a fluid and disordered state. 

The thickness of the bilayer decreases and the area per molecule increases. In contrast, below the 

melting temperature, a pure phospholipid bilayer is in a gel phase, which is characterized by a high 

chain order. For instance the chains tend to orient parallel to each other. At the physiological 

temperature, most abundant phospholipid species form the Lα phase. However, DPPC is one type of the 

lipids in biological membranes prone to exist in a gel phase at the physiological temperature. In gel 

phase, the highly ordered hydrocarbon chains tend to form a cone-shaped structure. The transition 
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temperature from Lα state to Lβ of DPPC occurs at 42°C (315 K).  The DPPC and DMPC are common 

lipid species which have been used in numerous experimental (Nagle & Tristram-Nagle, 2000) and 

computational (Tieleman et al, 1997) studies of lipid systems. Both of these lipids were been used in the 

simulation works for this thesis (FIGURE 2.3). 

 

 

FIGURE 2.3 Common lipid types used in the MD simulations of membrane lipid bilayer 
systems. (Left) DMPC and (Right) DPPC lipids are shown in the united-atom representation. The 
CH2 and CH3 groups of lipid alkyl chains are modeled as united-atoms. The DMPC has slightly 
shorter acyl chains than DPPC but they have a different melting-transition temperature.    

  

The isothermal-isobaric ensemble is the most appropriate for the MD simulation of a lipid 

bilayer that resemble the real experimental condition. The constant volume ensemble (NVE-ensemble) 

is not suitable for the bilayer simulations due to fluidity problem (Tieleman and Berendsen, 1996). It is 

also necessary to enforce the surface tension (γ) of the bilayer to a fitted value along with the normal 

pressure on the bilayer (NγPT ensemble). Otherwise, the small lipid bilayer simulations run in NPT 

ensemble generally do not approach the expected equilibrium state when γ = 0. In order to overcome 

the abnormal behavior of the particles near the boundaries, periodic boundary condition (PBC) is 
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implemented. For simulations in the lipid bilayer system, the usage of PBC means simulating an 

infinite stack of alternating layers of lipid and water. 

The choice of the water model is closely related to the force field parameters used for the lipid 

model. In the GROMACS simulation software, the Berger lipid (Berger et al, 1997) has been 

implemented for MD simulations of lipid bilayers. The most recommend water model in combination 

with the Berger lipids is SPC (simple point charge) water model (van Buuren et al 1993). This is 

because the special reduced LJ-interactions between the water oxygen, OW, and the CH2/CH3 groups 

have been optimized for the Berger lipids (Berger et al, 1997). To avoid serious unwanted artifacts 

caused by the PBC, a sufficient number of water molecules are necessary to simulate lipid bilayers. 

Generally, there should be at least about 32 waters per lipid for simulations of phospholipids with 

phosphocholine polar groups (Gompper & Schick, 2008). For our works that involve the study of 

peptides in a lipid bilayer system, the GROMOS FF53A6 force field was employed (Oostenbrink et al, 

2004) in all simulations. This recently developed force field parameter has been specifically 

parameterized to reproduce free enthalpies of solvation in water and cyclohexane. The values 

correspond well to the experimental data of the 20 amino acid residues. Therefore, it has been 

recommended as one of the most suitable force fields to date for studies on protein folding (van 

Gunsteren et al, 2006). Additionally, Poger et al have shown that the use of the FF53A6 force field 

provides excellent agreement of lipid bilayer properties with the experimental data (Poger et al, 2010) 

(Poger & Mark, 2010).  

    

Embedding of Peptides in Lipid Bilayer 

There are several protocols to prepare the starting configuration for the simulation of peptides in a lipid 

bilayer system. The coordinates of the peptide or protein of interest can be obtained from a crystal 

structure, an NMR structure or an engineered model. The coordinates for the lipids can be constructed 

by several softwares as, for instance Visual Molecular Dynamics (VMD) (Humphrey et al, 1996). But, 

due to the high viscosity of fluid lipid, a quite long time is needed to equilibrate the lipids. Therefore, 

several methods were suggested in order to reduce the equilibration time of peptide-lipids system in 

MD simulations. One example is to use previously equilibrated pure lipid bilayers which can be 

obtained from several trusted webs.  

In this thesis, we followed the protocol that was established by (Faraldo-Gómez et al, 2002) 

that used the equilibrated lipid bilayers as the starting configuration. The main purpose of this method is 

to prepare an optimized cavity that suits the peptide of interest. This can reduce the equilibration time 

of the system as well as providing an optimal interaction between the peptide and the surrounding lipid 

molecules. At the initial stage, several lipids that centrally overlap with the peptide are removed. This 

can be done by (1) simply putting both coordinate files together, (2) manually check with any molecular 
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visual graphic software and (3) manually deleting overlapping lipid molecules. The solvent-

accessibility protein surfaces of the peptide was computed by the MSMS program (Sanner et al, 1996) 

using the probe size radius of 1.4 Å. The resulting cavity was used as an input for the MDRUN program 

of the modified version of GROMACS 3.1.4 package to create the optimized cavity of the peptide. 

Then the coordinates of the lipid bilayer are combined with the coordinate file of the peptide. This 

coordinate file is used as a starting structure for the production run (FIGURE 2.4). 

 

 

FIGURE 2.4 Schema of MD simulation process of peptide in lipid bilayer system based on 
GROMACS software.  

 

 

Equilibration and Diffusion 

Simulations of pure lipid molecules in bulk water will take approx. 10 ns to 100 ns to form a bilayer 

phase if starting from random solution. The equilibration of DPPC lipid bilayer in MD simulation was 

shown to be about 23 ns (Marrink et al, 2001). However, the equilibration of the peptide-lipid bilayer 

system is not easy to validate due to the absence of experimental data for the transfer free energy of 

lipid bilayer (Sapay & Tieleman, 2008). Although, some peptides were shown to equilibrate in 

nanosecond time scale, there is a high possibility that the straightforward MD is unable to cross high 

energetic barriers. For example, simulations of small synthetic peptides in a DOPC lipid bilayer system 

in 50 ns time scale were showed to be insufficient to reproduce the experimental data (Aliste & 

Tieleman, 2005).      

The lateral diffusion coefficient of lipid bilayers in liquid phase measured from experiments is 

approximately 1.27-1.52 x 10-7 cm2/s. In simulations, the value obtained from 288 lipid molecules was 

0.95 x 10-7 cm2/s and 2.92 x 10-7 cm2/s 72 for a lipid system (Sundararajan, 2008). MD simulations of 

lipid bilayers to study the diffusion of benzene in DMPC lipids were shown to provide favorable results 
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as that of the experimental data in about 2 ns. The rate of the diffusion for benzene molecules was 

found to be higher when near to the bilayer core compared to the head group region (Stouch, 1993), and 

can be increased in higher temperature (Bassolino-Klimas et al, 1993). However, in the case of 

diffusion of a peptide, the sizes of the macromolecules need to be taken into consideration.       

 

2.2.6 Analyses of Simulations 
 

For pure lipid bilayer systems, MD simulation methods have come to the stage where they can 

reproduce the experimental values. Therefore, several standard analyses are being used to compare the 

results from a simulation with the experimental data.  

 

Deuterium Order Parameter 

The order parameter of the lipid tails in MD simulations can be compared to values obtained from 

NMR experiments. From the simulations, the value can be calculated from the average fluctuation over 

the equilibration time based on the order parameter tensor that measures the spatial restriction of the 

motion of a CH vector.  

 ijjiijS δθθ −= coscos3
2

1
       (2.27)

 
 

where θi is the angle between the ith molecular axis and the bilayer normal. The brackets indicate an 

ensemble average. Then the deuterium order parameter SCD can be calculated from 

  
yyxxCD SSS

3

1

3

2 −−=
        (2.28) 

Both acyl chains of the lipid are computed separately. The experimental value of SCD for DPPC lipids is 

0.20 ± 0.02 (Nagle, 1993) that was computed based on the 4th to 8th CH2 group. For comparison 

FIGURE 2.5 shows the results from a recent simulations study. Towards the end of the lipid tails, the 

order parameter drops towards zero, demonstrating no preferential orientation. 
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FIGURE 2.5 Deuterium order parameter of DPPC (Poger et al, 2010) and DMPC (Poger & 
Mark, 2010) lipids from recent simulation studies using the GROMOS FF53A6 force field.   

 

Bilayer Thickness 

The thickness of the bilayer reflects the ordering of the lipid acyl chains and thus to the state of the 

particular type of lipids. In an MD simulation, the bilayer thickness can be computed by averaging the 

headgroup-to-headgroup thickness of the bilayer at each time step based on the center of mass 

coordinates of each lipid head group.   

 

Area per Lipid 

The conventional approach to compute the area per lipid is to divide the total area of the simulation box 

by the number of lipids in one monolayer and subtract the space occupied by the solute.  

 

TABLE 2.1 Comparing data for pure lipid bilayer properties between experiments and 
simulations.  

Lipid bilayer 
type 

Bilayer thickness, Temp. 
(nm) 

Area per lipid 
(nm2) 

 Experiment Simulation Experiment Simulation 
DMPC c3.53 (30 ºC) 

b3.60 (30 ºC) 

d3.46 (30 ºC) c0.606 (30 ºC) 
b59.5-67.6 (30 ºC) 

d0.642 (30 ºC) 

DPPC b3.83 (50 ºC) a3.60 (52 ºC) 
 

b0.633-0.729 (50 ºC) 
 

a0.600 (52 ºC) 
e0.655 (52 ºC) 

a(Tieleman & Berendsen, 1996); b(Nagle & Tristram-Nagle, 2000); c(Kučerka et al, 2005); 
d(Griepernau et al, 2007); e(Patra et al, 2004). 
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2.2.7 Current State of Molecular Dynamics Simulations of Membrane 
Systems 

 

The X-ray crystallography technique provides the highest quality of protein structure among the 

available structural determination methods. But, for the integral membrane proteins the crystallization 

is typically carried out in detergent solutions which do not resemble their physiological environment. 

Thus, MD simulation of lipid bilayer system may provide a means to study the behavior of integral 

membrane proteins in an environment of a lipid bilayer. Moreover, the static data alone does not reveal 

the functional dynamics of biological processes. In contrast, the MD simulations allow monitoring the 

detailed motion of each molecule of a system on fast time scales which are not accessible by 

experiment. The MD methods have been successfully employed to study the ion selectivity permeation 

and the gating mechanism in potassium ion channels for examples the bacterial K channel (KcsA) 

(Shrivastava & Sansom 2000), the voltage-gated K channel (KvAP) (Monticelli et al, 2004), and the 

inward rectifier K channel (Kir) KirBac1.1 (Domene et al, 2004). Similarly, in the study of 

aquaglyceroporins, a standard protocol of MD simulations of POPE bilayer system managed to observe 

water and glycerol permeation through the human water channel aquaporin-1 (AQP1) and the 

homologous bacterial glycerol facilitator (GlpF), respectively (de Groot & Grubmuller, 2001). These 

dynamic events of ion, water and glycerol permeations through the pore domain of membrane proteins 

were obtained in approximately 10 ns of simulation time and were in good agreement with the 

experimental rate of ion permeation (Sansom et al, 2002). Commonly, MD simulation has been 

employed to characterize experimental structures atomistically. For the M2 helix of the nicotinic 

acetylcholine receptor (naAchR), MD simulation reproduced a similar structure as was illustrated by 

solid state NMR data of the kinked TM helix caused by the central Leu (Law et al 2000). In the field of 

drug engineering, the study of peptide-lipid interaction is crucial to be fully described by the all-atom 

MD simulation in the bilayer system (Phil and Sansom 1999). The engineered antimicrobial peptides 

were shown to diffuse into the lipid bilayer in approximately 30-50 ns MD simulations (Shepherd et al 

2003)(Aliste & Tieleman 2005). Altogether, these evidences illustrate that the MD simulation method is 

a powerful method to gain knowledge about the structure and functions of membrane proteins in their 

natural lipid bilayer environment.  

However, similarly to lab bench experiments, computational methods also have limits. The MD 

simulation which is based on the classical approximation cannot reproduce quantum effects as for 

example the formation or breaking of bonds. Moreover, the simplified partial charges that are required 

for the potential functions do not guarantee to reproduce the exact experimental data (Tieleman & 

Berendsen, 1996)(Tieleman et al, 1997). The straightforward MD simulation method is also prone to 

cause the protein to get stuck in local energy minima due to the high energy barriers. 
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Nowadays, MD methods are advancing rapidly with the continuous development of computer 

technologies. New dedicated hardwares and enhancement of computational algorithms have increased 

the simulation time up to the microsecond scale (Freddolino et al, 2008). Therefore, we can expect to 

reach the millisecond time scale soon. This is the time where most of the exciting biological processes 

occur for example the folding of soluble proteins. Computational methods promise great benefits to the 

pharmaceutical industry. The importance of the membrane proteins for this industry has lead to the 

method developments that can be optimized for membrane proteins. For example the coarse-grained 

MD simulations of membrane proteins in lipid bilayer was recently shown to produce reliable results 

and therefore this method could be one of the promising methods to study the folding membrane of 

protein (Sansom et al, 2008). There are also extensions for the classical MD simulation such as the 

replica exchange and the umbrella sampling methods that are now optimized for the membrane proteins 

that can improve the conformational sampling and compute the free energy, respectively (Nymeyer et al, 

2005)(Chetwynd et al, 2010).  

In summary, based on these increasing method developments, MD simulation may soon become a 

routine procedure in biology, chemistry and physic for varied purposes. Collaboration efforts between 

experimentalist and computational biophysicists will speed up the MD approach to reach the level of 

experimental accuracy.  



38 

 

CChhaapptteerr  33    
CCoonnttrriibbuuttiioonn  ooff  CChhaarrggeedd  aanndd  PPoollaarr  
RReessiidduueess  ffoorr  tthhee  FFoorrmmaattiioonn  ooff  tthhee  
EE11--EE22  HHeetteerrooddiimmeerr  ffrroomm  HHeeppaattiittiiss  
CC  VViirruuss  

Published in Journal of Molecular Modeling, 16 (10): 1625-1637, 2010 

 

The transmembrane domains of the envelope glycoprotein E1 and E2 have crucial 
multifunctional roles in the biogenesis of hepatitis C virus. We have performed molecular 
dynamics simulations to investigate a structural model of the transmembrane segments of the 
E1-E2 heterodimer. The simulations support the key role of the Lys370-Asp728 ion pair for 
mediating the E1-E2 heterodimerization. In comparison to these two residues, the simulation 
results also reveal the differential effect of the conserved Arg730 residue that has been 
observed in experimental studies. Furthermore, we discovered the formation of inter-helical 
hydrogen bonds via Asn367 that stabilize dimer formation. Simulations of single and double 
mutants further demonstrate the importance of the ion-pair and polar interactions between the 
interacting helix monomers. The conformation of the E1 fragment in the simulation of the E1-
E2 heterodimer is in close agreement with an NMR structure of the E1 transmembrane 
segment. The proposed model of the E1-E2 heterodimer supports the postulated cooperative 
insertion of both helices by the translocon complex into the bilayer. 
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3.1 Introduction 
 

Hepatitis C virus (HCV) is estimated to have infected at least 170 million people worldwide and is a 

major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (Appel et al, 2006). Until 

recently, experimental studies on HCV were limited due to lack of efficient cell culture systems for the 

virus amplification. However, this situation has changed with the development of novel in vitro systems 

(Moradpour et al, 2007), particularly the HCV pseudoparticles (Bartosch et al, 2003) (HCVpp) and the 

first system for efficient production of infectious viral particles in cell culture (Wakita et al, 2005) 

(HCVcc). 

HCV is the only member of the Hepacivirus genus which belongs to evolutionary related viruses 

of the Flaviviridae family (Francki et al, 1991)(Lindenbach et al, 2001). The virus genome contains a 

long open reading frame of more than 9600 nucleotides that is translated into a single polyprotein of 

approximately 3000 amino acids length (Matsuura & Miyamura, 1993). The open reading frame 

between the 5’-non coding region (NCR) and 3’-NCR is composed of the structural core protein and the 

two envelope glycoproteins E1 and E2, the p7 ion channel and at least six non-structural proteins.  

Binding and internalization of the HCV are essential steps in the viral replication cycle mediated 

by the envelope glycoproteins E1 and E2. The E1 and E2 proteins are released by host signal peptidase 

cleavages (Lindenbach et al, 2001) and assemble as a non-covalent E1-E2 heterodimer which is 

retained in the endoplasmic reticulum (ER) (Dubuisson et al, 2000). These two membrane proteins are 

type I transmembrane (TM) proteins which are composed of a large N-terminal ectodomain towards the 

ER lumen and a C-terminal hydrophobic anchor. The membrane-spanning segments for both E1 and E2 

are located at the C-termini and predicted to be less than 30 amino acids long with two stretches of 

hydrophobic residues separated by a short polar segment with at least one highly conserved charged 

residue (Cocquerel et al, 2000). Interestingly, two consecutive GxxxG motifs are known within the TM 

of E1. The presence of the GxxxG motif in glycophorin A (GpA), a membrane protein of erythrocytes, 

at the helix-helix packing interface is known to be involved in the GpA homodimerization (Cuthbertson 

et al, 2006). Experimental studies demonstrated that the TM domains of E1 and E2 are not just 

membrane anchors, but play important multifunctional roles during the biogenesis of HCV (Dubuisson 

et al, 2000)(Ciczora et al, 2007), e.g. virus entry (Ciczora et al, 2007), ER retention, as an internal 

signal peptide and E1-E2 heterodimerization (Cocquerel et al, 2002).  

In particular, Gly354, Gly358, and the conserved charged residues in the TM region Lys370, 

Asp728 and Arg730 were shown to be involved in E1-E2 heterodimerization. Different experiments, 
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mutagenesis studies of alanine scanning insertion, site-directed mutagenesis and tryptophan 

replacement suggest a salt-bridge interaction between Lys370 and Asp728 at the helix-helix dimer 

interface, which strongly contributes to the E1-E2 heterodimerization (Ciczora et al, 2007)(Ciczora et al, 

2005). The charged residues in the TM domain of E1 and E2 glycoproteins of bovine viral diarrhea 

virus (BVDV) were also claimed to be responsible for the heterodimerization (Ronecker et al, 2008). So 

far, this hypothesis has not yet been confirmed by structure determination methods. In contrast to these 

residues, Arg730 was shown to play a minor role for the assembly of the E1-E2 envelope glycoprotein 

(Ciczora et al, 2007). 

Despite their relative abundance in the protein-coding regions of different genomes (25-30 %), 

only a few high-resolution structures of membrane proteins could be determined so far due to the 

difficulty of membrane protein crystallization in the lipid bilayer environment (White, 2004). Yet, 

molecular dynamics (MD) simulations of membrane proteins embedded in lipid bilayers have become 

quite popular and successful in the last ten years (Cuthbertson et al, 2006)(Bond & Sansom, 2003). In 

particular, MD simulations were applied to study the spontaneous aggregation of phospholipids around 

membrane proteins (Böckmann & Caflisch, 2005) or have been used to investigate the relative position 

of individual TM helices in lipid bilayers (Lomize et al, 2006) and their dynamic interactions with 

phospholipid bilayers (Matthews et al, 2006). For example, the structure of the Glycoprotein A (GpA) 

dimer was computationally predicted (Treutlein et al, 1992), including results from an extensive 

mutagenesis work (Lemmon et al, 1992) to narrow the search. The prediction was later refined, using 

an improved global search method (Adams et al, 1996). The subsequently determined NMR structure of 

the GpA dimer in micelles (MacKenzie et al, 1997) was in good agreement with the predicted structure. 

Furthermore, MD simulations were used to study the behavior of individual helices of 

bacteriorhodopsin (Woolf, 1998), the oligomerization of the helices of Vpu (Candler et al, 

2005)(Fischer & Sansom, 2002), the free energy for dimerization of GpA (Hénin et al, 2005), and the 

protonation equilibrium of Arg residues within a TM helix (Yoo & Cui, 2008). 

The principal aim of the present study was to identify critical regions and crucial residues within 

HCV envelope proteins for the formation of the E1-E2 heterodimer. Thus, we performed atomistic MD 

simulations for the putative TM domain of the E1-E2 heterodimer from HCV. Our results provide, for 

the first time, an atomic structural and dynamic model for the TM domain of the E1-E2 heterodimer. 

The simulations reveal the importance of the ion-pair interaction and of additional inter-helical 

hydrogen bonds in the middle of the helix interfacial region for the structural integrity of the 

heterodimer. Furthermore, we confirmed the locations of the conserved residues which are in good 

agreement with the experimental studies.  
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3.2 Methods 
 

3.2.1 Sequences 
 

The protein sequences used for MD simulations of E1 and E2 from the hepatitis C virus genome 

polyprotein were obtained from the UniProtKB/Swiss-Prot database (http://au.expasy.org/uniprot/) (Wu 

et al, 2006). The E1 sequence used in this study is G350 AHWGVLAGIA 360 YFSMVGNWAK370 

VLVVLLLFAG 380 VDA. The E2 sequence is WAIKWEYVV720 LLFLLLADAR 730 

VCSCLWMMLL 740 ISQAEA. Both sequences are from HCV genotype 1a. 

We also used test segments, named H-segments, which were used to study apparent membrane-

transfer free energies of each of the 20 naturally occurring amino acids (Hessa et al, 2005). The H-

segments were prepared as ideal α-helices, which contained a charged amino acid in the middle of their 

TM helix. MD simulations of the H-segments were compared to the results of E1 and E2 monomer 

simulations (see below).  

 

3.2.2 Sequence Analysis 
 

This part of the project was carried out by Dr. Christoph Welsch from the Johann Wolfgang Goethe 

University, Frankfurt. Sequences of HCV envelope proteins were retrieved from public HCV databases, 

UniProtKB and euHCVdb (http://www.euHCVdb.de) (Combet et al, 2007). HCV genotypes have been 

differentiated according to a consensus proposal for a unified system of HCV genotype nomenclature 

(Simmonds et al, 2005). Sequence alignments were computed using CLUSTAL W  (Larkin et al, 2007) 

and MUSCLE (Edgar, 2004), and subsequently improved by minor manual modifications using the 

SEAVIEW alignment editor (Galtier et al, 1996). A comprehensive sequence analysis was performed in 

604 HCV E1 sequences (HCV genotype 1: 476, other genotypes: 128) and in 569 HCV E2 sequences 

(HCV genotype 1: 444; other genotypes: 125). We deduced amino acid polymorphisms in the E1 and 

E2 TM domains including all sites associated with E1-E2 heterodimerization investigated in this study. 
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3.2.3 TM Protein Prediction 
 

Five prediction methods for helical membrane proteins were employed to determine the start and end 

points of the E1 and E2 TM regions: PHDHTM (Rost et al, 1996), SPLIT4 (Juretic et al, 2002), 

HMMTOP2.0 (Tusnady & Simon, 2001), TMHMM (Krogh et al, 2001), and TMMOD (Kahsay et al, 

2005). MINS2 (Park & Helms, 2008a) was used to predict the membrane insertion free energy of the 

TM domains of E1 and E2. 

 

3.2.4 Molecular Dynamics Simulations 
 

All structures used in this study were prepared as ideal α-helices. The SCWRL program (Canutescu et 

al, 2003) was used to position the side chain rotamers and to generate mutants. Gromacs (Hess et al, 

2008) tools were used to set up paralleled dimers aligned along the membrane normal with a salt bridge 

interaction at their helix-helix interfaces. In this conformation, the side chains of the charged residues 

were within 5 to 6 Å distance to each other (see TABLE 3.1) and Asn367 forms an inter-helical 

hydrogen bond. MD simulations of the E1-E2 heterodimer were done twice and each simulation was 

assigned different starting velocities. 

A snapshot of a fully hydrated equilibrated lipid bilayer containing 128 DMPC lipids 

(Griepernau et al, 2007) solvated with 5,673 simple point change (SPC) water molecules was used as a 

starting point for all MD simulations. A cavity within the bilayer was created using the protocols of 

reference (Faraldo-Gómez et al, 2002). The solvent-accessible protein surfaces of the peptides were 

calculated by the program MSMS (Sanner et al, 1996) using a probe size radius of 1.4 Å. The solvent-

accessible surfaces of the peptides were used as templates for estimating the volume of the necessary 

cavity. In each case, 4-6 lipids in the centre of the projected hole were removed to avoid overlaps of 

lipids with the protein. 200 ps of simulation with a modified version of the Gromacs version 3.1.4 

(Berendsen et al, 1995) were performed to create the protein cavity in the DMPC lipid bilayer. Each 

peptide sequence was embedded into the DMPC bilayer using a cavity of suitable size. The mixed 

protein-lipid bilayer system was surrounded by approximately 45 water molecules per lipid molecule, 

thus ensuring full hydration of the membrane (Siu et al, 2008). The protein/lipid/water system was then 

subjected to 500 steps of energy minimization using the steepest descent algorithm. Ions (Na+ and Cl-) 

were added to neutralize the system and to achieve close-to-physiological conditions at ~0.1 M NaCl. 

This was followed by a 200 ps MD run with harmonic position restraints (force constant 1000 kJ mol 

nm -2) applied to all heavy atoms of the protein. This procedure allowed the lipids and the water 
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molecules to relax around the protein after insertion of the protein. Subsequently, fully unrestrained 

production runs of 100 ns duration were performed for the protein/lipid systems.  

All simulations were performed using the Gromacs 4.0.3 package (Hess et al, 2008). All 

monomer and dimer simulations were performed with united atom force field based on GROMOS96 

(53a6) (Oostenbrink et al, 2004) for the peptides and the Berger force field (Berger et al, 1997)(Chiu et 

al, 1995) for the phospholipids. Periodic boundary conditions were used in all directions. The system 

was coupled to a temperature bath at 310 K separately for the protein, the lipids, and the water/ions 

with a coupling constant of 0.1 ps-1   (Berendsen et al, 1984). For the pressure, semi-isotropic coupling 

was employed separately for the lateral and for the normal directions with a coupling time τp = 1 ps. 

The compressibility was set to 4.5 x 10 -5 bar -1. Covalent bonds to H-atoms were constrained using the 

LINCS algorithm (Hess et al, 1997) and an integration step size of 2 fs was used. The non-bonded pair 

list was generated every 10 steps with a cutoff of 1.0 nm. For short range van der Waals interactions, a 

cutoff distance of 1.0 nm was used. The long-range electrostatics interactions were treated using the 

Particle-Mesh Ewald method with a grid spacing of 0.12 nm and cubic interpolation. 

Analyses of the trajectories were primarily performed with tools included in the Gromacs 4.0.3 

suite (Hess et al, 2008)(Berendsen et al, 1995). Root mean square deviation (RMSD) analyses were 

based on atoms of the protein backbone. Salt bridge contacts were defined by monitoring the average 

distance between the side chains (see TABLE 3.1). Helix centers of mass were computed using the 

coordinates of Cα atoms only for the segments 5-25 (E1) and 35-55 (E2). All images in this work were 

prepared with the Pymol program (http://pymol.sourceforge.net). 

 

TABLE 3.1 Salt-bridges between E1-E2 wild-types and mutants. Given are average values for 
the data between 80 and 100 ns of the MD simulations. A salt-bridge distance is calculated by 
averaging the distances between the hydrogen and oxygen atoms from an amine/carboxyl group 
of E1 and the carboxyl group of E2. Only mutants with a predicted salt-bridge at the helix-helix 
interface are calculated. 

Wild -Types & Mutants of E1-
E2 Heterodimers 

Interacting Residues Interacting Atoms Average Salt Bridge 
Distances (nm) 

Wild Type 1 Lys370···Asp728 NZ:HZ···OD:CG 0.31 ± 0.03 
Wild Type 2 Lys370···Asp728 NZ:HZ···OD:CG 0.32 ± 0.02 
Mutant R730K Lys370···Asp728 NZ:HZ···OD:CG 0.30 ± 0.03 
Mutant G354A & G358A Lys370···Asp728 NZ:HZ···OD:CG 0.30 ± 0.03 
Mutant K370R Arg370···Asp728 NH:HH···OD:CG 0.34 ± 0.05 
Mutant D728E Lys370···Glu728 NZ:HZ···OE:CD 0.27 ± 0.01 
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3.3 Results 
 

3.3.1 Sequence Analysis of the TM Domain of the E1 and E2 
 

This part of the project was carried out by Dr. Christoph Welsch from the Johann Wolfgang Goethe 

University, Frankfurt. The conserved residues Gly354, Gly358, Lys370, Asp728 and Arg730 were 

predicted to be located in the TM region of E1 and E2 in HCV genotype 1a from the UNIPROT 

database. A comprehensive sequence analysis was carried out to investigate the natural polymorphisms 

occurring at these particular amino acid sites. 

We found the Lys370 in E1 being only once replaced by Arg in HCV genotype 1. All other 

genotypes investigated showed no polymorphism at this site in E1. The residues Asp728 and Arg730 

are highly conserved in HCV E2 genotype 1. We found a non-conservative polymorphism only at 

position 728. The polar residue Asp was replaced by the aromatic and non-polar residue Tyr. Again no 

polymorphism at 728 or 730 was found in genotypes 2, 3 or 5, whereas Gly728 and Lys730 were found 

in genotype 4 once respectively, and Val728 and His730 in genotype 6 once respectively. Overall, 

polymorphisms at Lys370, Asp728 and Arg730 have been observed only exceptionally.  

Two consecutive GxxxG motifs are present in the TM segment of E1. Gly350 and Gly354 were 

found to be highly conserved in all genotypes investigated. The second motif showed the conservative 

polymorphism Gly358Ala in genotypes 1, 5 and 6. Gly358 was conserved in genotypes 2, 3, and 4. 

Genotype 1 showed an Ala twice at 358. Only Ala358 was found in genotype 5. Genotype 6 showed 

Ala358 in the majority of sequences investigated (30 over 43).  

 

3.3.2 Identification of TM Residues by Secondary Structure 
Prediction Methods 

 

We used five different methods for secondary structure prediction of the TM domains of E1 and E2 (see 

FIGURE 3.1). This gave predicted TM helices of 21 to 31 amino acids length for the TM domain of E1. 

The consensus segment predicted by at least three out of five methods ranges from Val355 to Ala379. 

For the TM domain of the E2 glycoprotein, the consensus segment assigned by at least three methods 

ranges from Tyr718 to Ser742. Interestingly, all methods placed the conserved charged residues Lys370, 

Asp728 and Arg730 in the middle part of the TM domains.  
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The MINS2 (Park & Helms, 2008b) method that is based on amino acid frequencies and 

calibrated against the dataset of Hessa et al. (2007) was applied to compute membrane insertion free 

energies of TM segments. Compared to the threshold of 3.5 kcal/mol for observed TM helices in known 

structures of helical membrane proteins, MINS2 gives a favorable insertion free energy for the isolated 

TM segments of E1 (1.8 kcal/mol) when using Lys370 as center, and a border-line value of 4.3 

kcal/mol for E2 (4.3 kcal/mol) when using Asp728 as center.  

 

 

FIGURE 3.1 Results from Secondary Structure Prediction Programs. The consensus prediction 
is given at the bottom; the positions in the consensus sequence indicate that three or more 
methods gave the same results. Highlighted in blue in the consensus prediction are the charged 
residues Lys370, Asp728 and Arg730. The dotted lines show the segments which were used in 
the MD simulations.  

 

3.3.3 MD Simulations of E1 and E2 Monomers 
 

MD simulations were carried out to investigate the behavior of the monomeric TM segments containing 

a charged residue in the middle of the helices. We observed that during the 100 ns MD simulations the 

charged residues Lys370 from E1 and Asp728 from E2 were attracted towards the lipid bilayer 

interface. Only Lys370 was able to comfortably anchor to the interfacial region without affecting the 

helix stability (FIGURE 3.2). Due to its shorter side chain, Asp728, which is positioned in the centre of 

the TM domain of E2, was not able to anchor to the interface region. Moreover, its strained 

conformation led to disruption of the α-helical conformation of the N-terminal half of the E2 monomer. 

In contrast the E1 helix segment was stable along the simulation time. Analogous simulations of H-

segment monomers containing Lys and Asp amino acids in the middle of the TM segments, 

respectively, gave similar results (see FIGURE 3.3) thus confirming our observations and providing 

further evidence that they are caused by the charged Lys370 and Asp728 residues. 
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FIGURE 3.2 Final snapshots of MD simulations from the E1 and E2 monomers: (a) E1 TM 
segment with a charged Lys370, and (b) E2 TM segment with a charged Asp728. Lipid tails and 
ions are not shown for clarity. The charged Lys370 and Asp728 are shown as stick representation. 

 

 

FIGURE 3.3 Final snapshot after 100 ns of MD simulations of the H-segment monomers 
containing a charged residue in the middle of their TM domains: (a) H-segment with a charged 
Lys and (b) H-segment with a charged Asp. Lipid tails and ions are not shown for clarity.  
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3.3.4 MD Simulations of E1-E2 Heterodimers 
 

FIGURE 3.4 shows the consensus TM assignment based on the analysis of all MD simulations. Both 

the MD simulations of the individual helices and of the heterodimers indicate that the TM domain of E1 

consists of 29 residues ranging from Gly354 to Gly380 (G354VLAGIA 360 YFSMVGNWAK370 

VLVVLLLFAG 380VD). The E2 TM domain was observed to contain 27 residues between two polar 

residues at both N- and C-termini (EYVV720 LLFLLLADAR 730 VCSCLWMMLL740 ISQ). These are 

Glu717 and Tyr718 at the N-terminus and Ser742 and Gln743 within the C-terminal region. The 

consensus from the secondary structure prediction methods agrees closely with the consensus of the 

MD simulations sequences.  

 

 

FIGURE 3.4 TM residues of E1 and E2 resulting from 100 ns of MD simulations are compared 
to the results of secondary structure prediction methods. The consensus prediction resulting from 
the MD simulations and secondary structure methods are given at the bottom.  

 

To investigate the dynamics of the TM domain of the modeled E1-E2 dimer structure (see 

methods section), we performed two MD simulations of the E1-E2 wild type heterodimer with different 

starting velocities. These were named WT1 and WT2 in the subsequent tables and figures. Both 

simulations resulted in similar stable final E1-E2 conformations (FIGURE 3.5). FIGURE 3.6 shows 

root-mean-square deviations (RMSDs) of each monomer in the simulations of the E1-E2 heterodimer 

with respect to the perpendicular starting conformation. The RMSD values of the entire structures 

stabilize between 0.5 and 0.7 nm which is mainly due to a tilting motion of one peptide with respect to 

its initial perpendicular orientation in order to find an optimal position in the membrane environment. 

The tilting motion observed matches with the fact that secondary structure prediction assigned TM 

segments of 25 to 30 residue length (see above). RMSD analyses also indicate that both simulations of 

the E1-E2 heterodimer showed smaller fluctuations than the simulations of the E1 and E2 monomers.  
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FIGURE 3.5 Final snapshots after 100 ns MD simulation of the E1-E2 heterodimers in the two 
wild-type simulations. The conserved residues Asn367, Lys370, Asp728 and Arg730 are 
highlighted as stick presentation. Lipid tails and ions are not shown for clarity. 

 

 

FIGURE 3.6 Root-mean-square deviations (RMSDs) of E1 and E2 TM domains of the E1-E2 
wild-type and mutant heterodimers. (A) RMSDs of wild-type E1-E2 heterodimers versus the E1 
and E2 simulations of isolated helices. (B) RMSDs of single mutants which contain a salt-bridge 
at the helix-helix packing and (C) RMSDs of double mutants. In (B) and (C), the E1-E2 wild-
type 1 is shown for comparison.  

 

The heterodimerization was clearly mediated by the salt bridge interaction of the charged 

Lys370 and Asp728 at the helix-helix interface. TABLE 3.1 shows average distances between the 

functional groups (atoms Lys370-NZ:HZ and Asp728-CG:OD) to measure the stability of the Lys-Asp 

ion-pair. The distance was found to be stable at 0.30 - 0.32 nm in the WT1 and WT2 simulations. Due 



                                                  Contribution of Charged and Polar Residues for the HCV E1-E2   

49  

to the helical periodicity, Arg730, being two positions away from the central Asp728, pointed into the 

opposite position and faced the hydrophobic lipid bilayer to anchor to the lipids polar interface.  

    Apart from formation of the central ion pair, we also observed formation of additional inter-helical 

H-bonds (see TABLE  3.2). This appears to be a novel finding related to the formation of the E1-E2 

dimer. For the wild-type, about 1 ± 0.4 H-bonds are formed between Asn367 and Asp728. 

 

TABLE 3.2 Average H-bonds analyzed for the data between 80 and 100 ns of MD simulations 
of E1-E2 wild-types and mutants. 

Residues Wild 
type 1 

Wild 
type 2 

R730K G354A & 
G358A 

K370R D728E K370A 

367-728 0.89 ± 0.47 1.02 ± 0.42 0.88  0.41 0.80 ± 0.48 0.52 ± 0.51 0.98 ± 0.19 0.72 ± 0.47 
370-728 0.02 ± 0.12 0.00 ± 0.04 0.03 ± 0.18 0.12 ± 0.34 0.78 ± 0.89 0.88 ± 0.45 0 
367-370 0.90 ± 0.37 1.00 ± 0.32 0.70 ± 0.48 0.91 ± 0.56 1.42 ± 0.98 0.98 ± 0.33 0.01 ± 0.08 
728-730 0 0 0 0 0 0 1.00 ± 0.56 
367-730 0 0 0 0 0 0 0.49 ± 0.50 
370-730 0 0 0 0 0 0 0 
367,370-
728,730a 

0.91 ± 0.48 1.02 ± 0.42 0.92 ± 0.44 0.91 ± 0.56 1.30 ± 0.94 1.86 ± 0.47 1.21 ± 0.72 

TMb 1.85 ± 0.53 1.98 ± 0.46 1.53 ± 0.65 1.48 ± 0.72 2.30 ± 0.97 3.00 ± 0.63 3.00 ± 1.14 

a H-bonds interactions among the four residues; b H-bonds interactions between two helices.  

 

3.3.5 Mutational Analysis 
 

MD simulations of E1-E2 single and double mutants were carried out to analyze the naturally occurring 

polymorphisms and to confirm the contributions of the conserved amino acids of the E1 and E2 TM 

segments. All three single mutants with a salt-bridge (R730K, K370R, and D728E) were set-up 

independently as for wild-type and maintained stable heterodimers during the simulations (FIGURE  

3.7) as for wild-type that are stabilized by an ion-pair interaction when started from a salt-bridged 

conformation. This behavior can be expected due to the conservative nature of the mutation. The 

charged residues of all single mutants with an ion-pair interaction were in close atomic contact as for 

the wild-type (0.27 – 0.34 nm distance) (TABLE 3.1). Also, the RMSD values are of similar magnitude 

than those of the wild-type simulations (FIGURE 3.6). Interestingly, despite having a longer side chain 

than Asp, the replaced Glu residue of the D728E mutant showed the shortest average distance (0.27 

nm). The longer side chain of Glu apparently allows for an optimal contact with the Lys730 side chain. 

On the other hand, the K370R mutant had the largest average salt-bridge distances (0.34 nm), which 

may be caused by the long and bulky side chain of the mutated Arg. 
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FIGURE 3.7 Final snapshots of MD simulations from single mutant dimers with a salt-bridge. 
(a) K370R mutant, (b) R730K mutant, and (c) D728E mutant. The conserved residues Asn367, 
Lys370, Asp728, Arg730 and mutated residues are shown as stick representation. Lipid tails and 
ions are not shown for clarity.  

 

The MD simulations of the three double mutants (N367L & K370L, D728L & R730L, G354A 

& G358A) resulted in different conformations with intact TM helices (FIGURE 3.8). The largest 

structural fluctuations compared to the starting structure were observed for the D728L & R730L double 

mutant (FIGURE 3.8a). Mutating the conserved residues N367 and K370 in E1, and D728 and R730 in 

E2 led to a partial separation of the two helices (see Cα distances in TABLE 3.3). However, the 

G354A & G358A double mutant was as stable as the wild-type during the simulation (FIGURE 3.8c), 

probably due to the presence of the salt-bridge interaction. 
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TABLE 3.2 Structural parameters for the data between 80 and 100 ns of the MD simulations of 
E1-E2 wild-type heterodimer and E1-E2 mutants. Average number of H-bonds per time frame: 
An H-bond characterized by Donor-Hydrogen-Acceptor (D-H···A) is defined to have an H···A 
distance less than 3.5 Å and a D-H···A angle greater than 120º. Interacting residues at the helix-
helix packing are shown for each dimer. 

 HCV: E1-E2 Cα distances between 
E1 and E2 helices 

(nm) 

TM 
Tilt Angles E1 

( ° ) 

TM 
Tilt Angles E2 

( ° ) 

Wild-type    

Wild-type 1 (K···D) 1.10 ± 0.03 41.3 ± 5.1 40.8 ± 4.7 

Wild-type 2 (K···D) 1.08 ± 0.02 47.3 ± 4.0 50.2 ± 4.1 

Single mutants with a salt-bridge    

R730K (K···D) 1.08 ± 0.03 50.0 ± 3.7 67.2 ± 1.4 

K370R (R···D) 1.17 ± 0.03 59.5 ± 2.2 42.8± 4.1 

D728E (K···E) 1.23 ± 0.03 41.0 ± 3.1 41.9 ± 1.7 

Single mutants without salt-bridge    

K370A 0.97 ± 0.02 60.0 ± 3.0 Kinked 

D728A 1.07 ± 0.03 40.4 ± 4.1 Kinked 

Double mutants    

D728L & R730L 1.76 ± 0.04 13.3 ± 4.2 43.3 ± 4.1 

N367L & K370L 1.31 ± 0.05 47.7 ± 3.9 52.0 ± 5.2 

G354A & G358A (K···D) 1.11 ± 0.04 45.7 ± 4.0 45.1 ± 3.7 

 
 

 

 

FIGURE 3.8 Final snapshots of MD simulations from the double mutant dimers. (a) D728L & 
R730L, (b) N367L & K370L and (c) G354A & G358A (mutated residues are not shown). The 
conserved residues Asn367, Lys370, Asp728, Arg730 and the replaced Leu are shown as stick 
representation. Lipid tails and ions are not shown for clarity.  
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The tight heterodimerization of the ion-pair stabilized helix dimers is also reflected by a close 

distance between the centers of mass of the two helices (TABLE 3.3). All single mutants with a salt-

bridge (K370R, R730K and D728E), and the G354A & G358A double mutant showed close distances 

(1.08 – 1.23 nm) as the two wild type simulations (1.08 - 1.10 nm). On the other hand, the double 

mutants (N367L & K370L and D728L & R730L) showed much larger separations (1.31 – 1.76 nm) 

reflecting the absence of an ion pair interaction or of other stabilizing inter-helical interactions 

(TABLE 3.3 and FIGURE 3.8). Most simulations showed tilting angles of the two helices around 40º 

to 60º. The only exception is the E1 monomer in the double mutant D728L & R730L that is almost 

straight (13º) as this mutant dissociated.   

As discussed before, additional inter-helical H-bonding was observed to stabilize the helix 

dimer and prevent helix kinking or partial unfolding. For the mutants with a salt bridge (R730K and 

G354A & G358A) a similar average number of inter-helical H-bonds was found as for wild-type (0.91 

– 1.02) (FIGURE 3.9). The highest average number of inter-helical H-bonds resulted from the D728E 

mutant (1.86) followed by the K370R mutant (1.30) indicating more favorable contacts. 

 

FIGURE 3.9 Inter-helical H-bond interactions for the E1-E2 wild-types and mutants.  

 

To clarify the function of the salt bridge interaction at the helix-helix interface, we mutated 

Lys370 to Ala which removes the ability to form an ion-pair between the helix monomers (FIGURE 

3.10a). Interestingly, even in the absence of an ion-pair interaction, the K370A mutant was 

heterodimerized during the simulation. The distance between the helix monomers is the closest one 

found (0.97 nm) (TABLE 3.3) and the average number of H-bond interactions between both monomers 
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was similar to the other heterodimerized conformations (1.21 nm) (FIGURE 3.9). Here we found that 

Asp728 made very stable contacts with Arg730 so that Arg730 turned around and was now located at 

the helix-helix interface. Arg730 then formed an H-bond with Asn367 with 72% occupancy. This 

behavior caused local unfolding in the centre of the E2 of K370A mutant (FIGURE 3.10a). On the 

other hand, if Asp728 is mutated into Ala, no rotation of Arg730 in E2 was observed (FIGURE 3.10b). 

 

 

FIGURE 3.10 Final snapshot of mutants (a) K370A and (b) D728A. The conserved residues 
Asn367, Lys370, Asp728 and Arg730 are shown as stick representation. The mutated residues, 
lipid bilayer, water and ions molecules are not shown for clarity. 

 

3.3.6 Comparison of MD Structures vs the NMR structure 
 

As the only NMR structure available for the HCV envelope glycoproteins is a segment of E1 consisting 

of 21 residues (Op De Beeck et al, 2000) with the PDB-code 1EMZ.pdb, RMSD analyses were done on 

the same segment during the MD simulations with respect to the NMR structure (FIGURE 3.11). We 

compared the RMSD of the backbone atoms of the E1 TM segment (Gly350 – Lys370). The central 

part (354-370) formed a well defined α-helix in the simulation. The average conformation from 

residues 359-367 in the simulation of the E1-E2 dimer has an RMSD of 0.06 nm compared to the NMR 

structure, whereas the RMSD of the structural ensemble derived from NOE restraints was 0.03 nm (Op 

De Beeck et al, 2000). Although we found a somehow larger RMSD of the 21 residue segment (Gly350 

to Lys370) of 0.15 nm, these deviations are still smaller to the variation within the NMR ensemble of 

24 structures (0.29 nm) (Op De Beeck et al, 2000). Thus, the E1 helical conformation derived from MD 

simulations is quite similar to the conformation determined by NMR in trifluoroethanol (TFE) (Op De 

Beeck et al, 2000). As expected, the largest RMS fluctuations were observed for the residues at the 
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helix ends near the membrane bilayer interface. Although previous NMR studies did not show the 

segment Gly354 to Gly358 to be α-helical, we found that this segment is in stable α-helical 

conformations in the MD simulations on the investigated timescale. The segment between Gly354 and 

Gly358 was observed to be in the TM region during the MD simulations (FIGURE 3.2), but the 

GxxxG motif was not located at the helix-helix interface (see discussion below). 

 

 

FIGURE 3.11 Superimposition of the E1 segment from the E1-E2 heterodimer wild-type to the 
NMR structure, 1EMZ.pdb. Coloring scheme: Black – 1EMZ.pdb; Grey – Segment of E1 from 
the simulation of the E1-E2 heterodimer model. RMSD values are listed below the figures; (a) 
Segment consists of residue G350 to K370, (b) segment from G354 to K370. Conserved residues 
G354, G358, N367 and K370 are highlighted as wire frame presentation, and (c) segment from 
I359 to N367. 

 

3.4 Discussion 
 

In the viral Flaviviridae family, at least one positively charged residue is highly conserved in both 

putative TM domains of the envelope glycoproteins (Cocquerel et al, 2000). Polymorphism analysis of 

the conserved residues G354, G558, Lys370, Asp728 and Arg730 in all HCV genotypes indicates that 

mutations rarely occur at these particular sites. The data analyzed in this study confirms previous 
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findings (Cocquerel et al, 2000)(Ciczora et al, 2007) that these conserved residues are crucial for the 

viral specific functions of the E1 and E2 envelope proteins. 

Having a charged residue in the middle of a TM domain would be energetically unfavorable for 

an isolated α-helix. Instead, these residues would probably appear neutral by shifting their pKa values 

at an energetic expense or they try to position their charged side-chain into the polar head-group region 

(Yoo & Cui, 2008). In spite of these considerations, an experimental study by Hessa et al. (Hessa et al, 

2005) proved that single TM segments with a polar or charged residue in the middle of the domain were 

able to be inserted as membrane proteins via Sec61 translocon.  

The MD simulations of helix monomers revealed that the charged Lys370 and Asp728 had 

different effects on the TM segments of E1 and E2 monomers, respectively, if they were placed as 

isolated helices in a membrane lipid bilayer. The TM segment of the E1 helix was stable during the 

simulation, whereas the N-terminal half of the TM segment of E2 was disrupted, possibly due to the 

shorter side chain of Asp730. Subsequent MD simulations of H-segments containing a charged Lys or 

Asp showed a similar behavior. Asp residues were previously shown to induce stronger distortions in α-

helices compared to basic residues (Johansson & Lindahl, 2006). Moreover, Hessa et al. (Hessa et al, 

2005) found that the biological apparent insertion free energy scale showed the highest value (3.49 

kcal/mol) when Asp was placed in the middle of the TM domain of the H-segment compared to other 

amino acids. 

Dubuissson and co-workers suggested that the E1 and E2 TM helices are inserted cooperatively 

into the lipid bilayer based on mutagenesis results (Ciczora et al, 2007)(Ciczora et al, 2005). Here, we 

put this hypothesis on stable energetic and structural grounds based on extensive MD simulations of 

wild-type and mutant heterodimers. Indeed, favorable salt-bridge and H-bonding interactions between 

the TM segments of E1 and E2 contribute to stabilization of the dimer conformation in lipid bilayers. 

As mentioned above, the E2 monomer containing the charged Asp728 unfolded partially during MD 

simulations. However, when simulated as part of the E1-E2 heterodimer, the E2 maintained its stable α-

helical structure. This is a strong indication that the dimer conformation of the E1 and E2 envelope 

glycoproteins is a favorable arrangement even in a hydrophobic environment. If the ion-pair of Lys370 

and Asp728 at the helix-helix interface is already established in the translocon or near to its exit, as 

suggested before (Cocquerel et al, 2000)(Cocquerel et al, 2002), this should facilitate the entry of the 

E1-E2 heterodimer into the lipid bilayer environment (Cocquerel et al, 2002). Moreover, the stability of 

this ion-pair interaction may serve as a kinetic barrier against the E1-E2 heterodimer dissociation. This 

role is in agreement with the suggested function of one or more hydrophilic residues which were 

observed in other TM domains to be responsible for the ER retention (Bonifacino et al, 1991). Since 

Lys370 and Asp728 were located at the helix-helix interfacial region in our model, Arg730 was 

positioned oppositely where it faced the lipid tails. To optimize its position, the positively charged side 
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chain of Arg730 oriented its guanidinium group towards the polar region of the lipid bilayer. Molecular 

simulations previously showed that Arg adjust energetically in the membrane environment and its long 

side chain is likely to remain positively charged in lipid bilayers (Yoo & Cui, 2008). Also, the charged 

Arg residues in the voltage sensor domain of potassium channels behaved such that the Arg residues 

were stabilized by the polar head groups of lipids and water molecules (Freites et al, 2005). 

The atomistic observation from the MD trajectories also reveals a so far unreported inter-helical 

H-bond contributed by Asn367 which also contributes to stabilize the structure of the E1-E2 

heterodimer. Inter-helical H-bonds are known to be of particular importance for the formation of 

secondary or tertiary structure in the hydrophobic membrane center with low dielectric environment 

(Joh et al, 2008). A recent report from von Heijne and co-workers also demonstrated that engineered 

TM domains with inter-helical interactions mediated by polar residues are more efficiently inserted into 

the lipid bilayer (Meindl-Beinker et al, 2006).  

We now discuss the relevance of the sampled dimer conformations. At the start of each 

simulation, the two helices were arranged parallel to the membrane normal with the ion-pairing residues 

facing each other. The simulations then showed that these initial orientations are stable on the time 

scale of the simulations what supports the experimental finding that the E1-E2 helices are inserted by 

the translocon with the ion-pair already formed. A situation of an E1-E2-dimer with one or both of the 

helices turned by 90 or 180 degrees, for example, likely never occurs in nature. However, as we clearly 

did not sample the range of possible orientations, we cannot address whether the generated models 

correspond to the thermodynamically most favorable orientation of the isolated E1-E2 helices. That 

would require sampling a large range of orientations over long simulation times what is currently 

infeasible by plain MD simulations in explicit bilayers. The simulated 100 ns time scale is clearly not 

sufficient for entire helices to turn around their axis in a lipid bilayer. As an alternative, using an 

implicit-solvent representation of the membrane (Im et al, 2003)(Tanizaki & Feig, 2005)(Bu & Brooks 

III, 2008)(Bu et al, 2007)(Lazaridis, 2003)(Mottamal et al, 2006)(Ulmschneider et al, 2007a) would 

allow for a more complete sampling and for faster orientational relaxation. Besides, replica-exchange 

simulations allow to speed up the penetration into membranes and re-orientations (Nymeyer et al, 2005). 

However, it is not clear from experiment what is the thermodynamically most favorable state of the two 

isolated helices because the experiments (Ciczora et al, 2007)(Cocquerel et al, 2002) were always 

performed on the full E1-E2 proteins with the external domains present. So it is in fact possible that 

dimerization is only stable with the external domains present. 
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3.4.1 Simulations of Heterodimer Mutants 
 

To further confirm the location of the important residues of the TM domains of E1 and E2, we carried 

out simulations of several conservative mutants. The single mutants R730K, K370R and D728E, which 

contain a salt bridge between the helices, were all heterodimerized during the simulations with stable α-

helical conformations. These results strongly support that the ion pair interaction between the particular 

charged amino acids is responsible for the inter-helical interaction. The distances between the charged 

side chains of these single mutants are similar to the E1-E2 wild-type (0.27-0.34 nm). These results are 

in perfect agreement with experimental findings which reported that R730K and D728E mutants form 

heterodimers similarly to the E1-E2 wild-type (Ciczora et al, 2005).  Our analysis of natural 

polymorphisms indicates that the R730K mutant occurred once in genotype 4 of HCV which is very 

rare. On the other hand, the R730K mutants only resulted in a slightly reduced incorporation and 

infectivity of E1-E2 proteins into HCVpp compared to the E1-E2 wild-types. Here, Lys led to a similar 

dimer conformation than with Arg730 since both are positively charged amino acids. We note, however, 

that in this structural model, with a salt-bridge stabilized heterodimer, Arg730 is not located at the 

helix-helix interface and its mutation should not affect dimerization. In contrast, the infectivity of the 

D728E mutant was strongly reduced, however without affecting the formation of heterodimers (Ciczora 

et al, 2007)(Ciczora et al, 2005). This indicates that even conservative mutations that can be expected to 

maintain the salt-bridge interaction may lead to different biological function such as viral entry. One 

may therefore speculate that placing the longer side chain of Glu between the two helices may affect the 

helical packing although this is not apparent in the simulations. 

In a second set of mutant simulations, we mutated Lys370 to Ala to investigate the effect of 

removing the salt-bridge on the E1-E2 heterodimerization. Interestingly, the K370A mutant still 

managed to remain heterodimerized during the simulation. Arg730 turned around to interact with 

Asn367 so that the average number of H-bonds between the E1-E2 helices increased compared to the 

wild-type. Inter-helix H-bonding of polar amino acids was recently studied experimentally by 

systematically constructing H-segment dimers (Meindl-Beinker et al, 2006). This work concluded that 

polar inter-helix interactions increase the translocon insertion efficiency of both helices. However, this 

rotation of Arg730 caused severe rearrangements of the backbone conformation in the central part of 

the E2 TM helix. In the experimental setting, mutation of Lys370 led to reduced heterodimerization to 

about 50% (Ciczora et al, 2007). On the other hand, mutation of Asp728 severely reduced the E1-E2 

heterodimer biogenesis to about 10 to 20% when replaced with hydrophobic amino acids such as Leu, 

Ala or Trp (Ciczora et al, 2007)(Ciczora et al, 2005)(Op De Beeck et al, 2000).  

In a third, final set of double mutants, the central residues at 367 and 370 or 728 and 730 were 

replaced by leucine residues. Both double mutants resulted in significantly enlarged distances between 
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the TM helix monomers compared to the wild-type and to the mutants containing a salt-bridge. The E2 

double mutant D728L/R730L residue gave a larger average distance (1.76 Å) between the helix dimer 

than the E1 double mutant N367L/K370L (1.31 Å). Interestingly, these results are again in line with the 

experimental study, which reported a differential effect of both double mutations (Cocquerel et al, 

2002). For soluble proteins, there exist several computational methods that can qualitatively predict the 

effect of protein mutations on their stability (Benedix et al, 2009)(Potapov et al, 2009). It is certainly 

feasible to transfer these methods to the area of TM proteins. Up to now, however there is a lack of 

quantitative experimental data on the thermodynamics stability of TM helix bundles and respective 

mutants against which such computational methods can be calibrated. 

 

3.4.2 GxxxG Motif 
 

For the GpA homodimer, the GxxxG motif at the helix dimer interface has been shown to play an 

important role for the homodimerization (Langosch et al, 1996)(Senes et al, 2000). Also for the E1-E2 

heterodimer, mutating either Gly354 or Gly358 impaired the E1-E2 assembly (Ciczora et al, 2007). In 

the structural model of the E1-E2 heterodimer developed in this study, however, the Gly350, Gly354 

and Gly358 residues are not located at the helix interfacial region. Therefore, we did not observe any 

possible interaction between the GxxxG motif of E1 and the residues from the TM domain of E2. 

However, this does not exclude the probability of GxxxG segments to heterodimerize at the ectodomain 

region of the E2 glycoprotein. The E1 helix conformation agrees nicely with an experimental structure 

of E1 solvated in TFE. Whereas the NMR analysis revealed an unwinding of the N-terminal end of the 

E1 helix between Gly354 and Gly358, this region stayed intact in an α-helical conformation during the 

heterodimer simulations. 
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3.5 Conclusion 
 

This study puts the assignment of the TM domains of E1 and E2 on a firm basis. The structural model 

explains the roles of the highly conserved positively and negatively charged residues in the family of 

Flaviviridae glycoproteins. The stability of the ion pair supports the hypothesis (Cocquerel et al, 2002) 

that membrane insertion at the translocon complex occurs cooperatively for the E1 and E2 helices. 

Otherwise, having unpaired charged residues in the middle of a membrane bilayer would be 

thermodynamically unfavorable. The emerging structural model of the helix dimer shows the 

importance of the Lys370-Asp728 ion pair at the center of the lipid bilayer for the formation of the E1-

E2 heterodimer.  
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DDiimmeerrss  

Submitted to BBA Biomembranes, Under revision 

 
Charged and polar amino acids in the transmembrane domains of integral membrane proteins 
can be crucial for protein function and also promote helix-helix association or protein 
oligomerization. Yet, our current understanding is still limited on how these hydrophilic 
amino acids are efficiently translocated from the Sec61/SecY translocon into the cell 
membrane during the biogenesis of membrane proteins. In hepatitis C virus, the putative 
transmembrane segments of envelope glycoproteins E1 and E2 were suggested to 
heterodimerize via an Lys-Asp ion pair in the host endoplasmic reticulum. Therefore in this 
work, we carried out molecular dynamic simulations in explicit lipid bilayer and solvent 
environment to explore the stability of all possible bridging ion pairs using the model of H-
segment helix dimers. We observed that, frequently, several water molecules penetrated from 
the interface into the membrane core to stabilize the charged and polar pairs. The hydration 
time and amount of water molecules in the membrane core depended on the position of the 
charged residues as well as on the type of ion pairs. Similar microsolvation events were 
observed in simulations of the putative E1-E2 transmembrane helix dimer of envelope 
glycoproteins from the hepatitis C virus. Thus this study illustrates the important contribution 
of water microsolvation to overcome the unfavorable energetic cost of burying charged and 
polar amino acids in membrane lipid bilayers. 
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4.1 Introduction 
 

Helical transmembrane (TM) bundles are the predominant type of polytopic TM proteins. Their 

structures are assemblies of mainly hydrophobic helices. However, for functional reasons, they 

sometimes contain polar and charged residues even in the hydrophobic core of the membrane bilayer. 

Once the proteins are fully folded, these residues are shielded from the lipid environment. However, the 

insertion into the membrane via the Sec61/SecY translocon is an energetically challenging hurdle that 

these helices need to overcome. It has been suggested that cooperative insertion of multiple helices may 

facilitate this process (Meindl-Beinker et al, 2006). For example, TM helix dimers found in the family 

of Flaviviridae viruses (Mukhopadhyay et al, 2005) (Lindenbach et al, 2001) are stabilized by charged 

and polar residues in the center of the lipid bilayer (Ciczora et al, 2007). Since these are formed from 

only two helices, it is not possible to fully shield the charged residues from the surrounding lipid acyl 

chains.  

The energetic cost of inserting polar and charged amino acids into lipid membrane was 

analyzed by several computational studies (MacCallum et al, 2008)(Ulmschneider et al, 2007b)(Yoo & 

Cui, 2008)(Dorairaj & Allen, 2007). However, the experimental studies by von Heijne, White and their 

colleagues (Hessa et al, 2005)(Hessa et al, 2009) indicated that the insertion energy for a helix 

monomer containing charged or polar residues is not as high as predicted from the free energy of 

solvation (Radzicka & Wolfenden, 1988). The efficiency to get inserted into the membrane by the 

translocon machinery depends strongly on the positions of the polar/charged residues with respect to 

the membrane and to each other and on helix-helix association (Meindl-Beinker et al, 2006). Recent 

experimental studies suggested that motifs from loop regions or from the nearest- neighbor TM helices 

can also favor the membrane insertion (Hedin et al, 2010). Also, TM helix repositioning in the 

membrane during the folding and oligomerization (Kauko et al, 2010) could be one of the reasons for 

lowering the cost of inserting the charged and polar residues. Johansson and Lindahl pointed out that 

high protein content in biological membranes could counterbalance the hydrophobic environment of 

membrane lipid bilayers (Johansson & Lindahl, 2009a). We will argue here that the remarkable 

efficiency of multi-spanning TM helices containing polar and charged residues to partition into the 

hydrophobic core of the lipid bilayer could also be explained –in part – if those residues remained 

partially solvated during the folding process (Krepkiy et al, 2009). The aqueous interior of the protein-

conducting channel in the translocon suggests that water molecules could be co-translocated with the 

peptide chains. This could in fact lower the energetic cost of transcolating polar amino acids during the 

TM protein biosynthesis. 
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For the envelope glycoproteins E1 and E2 of hepatitis C virus, the TM domains were suggested 

to heterodimerize via a salt-bridge (Cocquerel et al, 2002). Additional support for this model has been 

found in a recent MD simulation study that observed atomistically the contribution of polar and charged 

residues to the helix-helix association of the E1-E2 heterodimer (Jusoh et al, 2010). The TM segments 

of the E1 and E2 glycoproteins consist of two stretches of short hydrophobic residues with a short 

segment of highly conserved polar and charged residues in between. This pattern also occurs in the 

putative TM domains of other envelope glycoproteins from Flaviviridae viruses (Cocquerel et al, 2000). 

The TM segments of these viruses are believed to be not only involved in the virus entry but also 

responsible for the retention of the E1-E2 envelope glycoproteins in the endoplasmic reticulum 

membrane (Ciczora et al, 2005). These unique multifunctional roles inspired us to further investigate 

the roles of the polar and charged amino acids in the TM helix domains.  

In this work we employed atomistic molecular dynamics simulations with explicit modeling of 

the lipid bilayer and water environment to explore the behavior of TM helix monomers containing a 

charged residue in the middle of the helix segments. Thereafter, we studied helix dimers interacting via 

an ion pair to observe the dynamic properties of the peptide-water-lipid bilayer system. As a model 

system we used the so-called H-segment that was extensively studied as a fusion TM segment by Hessa 

et al. (Meindl-Beinker et al, 2006)(Hessa et al, 2005)(Hessa et al, 2009)(Hessa et al, 2007). The results 

from the simulation of monomers demonstrated differential effects of the individual charged amino 

acids on the isolated TM helices in DMPC or DPPC lipid bilayers. Furthermore, we show the effect of 

dimerization via a salt-bridge and the position of the interacting charged residues which give rise to 

dynamic microsolvation events in the dehydrated membrane lipid bilayer. Similar trends for hydration 

were observed in the previously published simulations of the TM domain of E1-E2 envelope 

glycoproteins of hepatitis C virus (Jusoh et al, 2010) which were carefully re-analyzed for this work. 

 

4.2 Methods 
 

4.2.1 Sequences and System Preparation 
 

This work has been inspired by the in vivo hydrophobicity scale of (Hessa et al, 2005) and (Hessa et al, 

2007). Consequently, we used the same H-segment sequence as those authors comprising the 27 

residues GGPG-AAAALALALXLALALAAAA-GPGG. The “X” represents the location in the TM 

helix monomer that was substituted by a charged residue (Arg, Lys, Glu, Asp) in this study. For the TM 
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helix dimers that are bridged by ion pairs, 2 sets of simulations were performed; set X14-Y14 and set 

X12-Y16, that differed in the location of the positively charged and negatively charged residues. The 

numbers indicate the positions of the charged residue in the helices.  

All structures used in this study were prepared as ideal α-helices. The SCWRL 

program (Canutescu et al, 2003) was used to position the side-chain rotamers. For the TM helix dimers, 

Gromacs 4.0.3 (Hess et al, 2008) tools were used to set up paralleled H-segment dimers with the 

charged residues pointing to each other at the helix-helix interfaces. When constructed this way, the 

terminal side-chain atoms of the charged residues were separated by distances between 0.3-0.5 nm. The 

protonation states of the titratable side-chains were kept as found at pH 7 in aqueous solution. 

 

4.2.2 Peptide-Bilayer System Setup 
 

We used two different lipid bilayers as membrane environment for the simulation of the H-segment 

monomers. The starting geometries were constructed from a fully hydrated equilibrated lipid bilayer of 

128 dimyristoyl-phosphatidylcholine (DMPC) lipids solvated with 5,673 simple point charge (SPC) 

water molecules (Griepernau et al, 2007) and from 128 dipalmitoyl-phosphatidylcholine (DPPC) lipids 

solvated in 6143 SPC water molecules (Berendsen et al, 1981), respectively. A cavity of suitable size 

was created to accommodate one or two TM helices using the protocols of reference (Faraldo-Gómez et 

al, 2002). The solvent-accessible protein surfaces of the TM helices required for the cavity 

measurement were calculated by the program MSMS using a probe size radius of 1.4 Å (Sanner et al, 

1996).  

Each peptide monomer or dimer was introduced parallel to the membrane bilayer normal in the 

lipid membranes. In each case, 4-8 lipids were removed that severely overlapped with the peptides and 

the protein-lipid bilayer system was surrounded by approximately 45-50 water molecules per lipid 

molecule, thus ensuring full hydration of the membrane. The system was then subjected to 500 steps of 

energy minimization using the steepest descent algorithm in order to relax any steric conflicts generated 

during the setup. Na+ and Cl- ions were added to neutralize the system and to achieve close-to-

physiological conditions at ~0.1 M NaCl. This was followed by a 200 ps MD run with harmonic 

position restraints (force constant 1000 kJ mol nm -2) applied to all heavy atoms of the protein. This 

procedure allowed the lipids and the water molecules to relax around the protein after its insertion. 

Subsequently, fully unrestrained production runs of at least 100 ns duration were performed for the 

systems.  
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4.2.3 Simulation Details 
 

The DMPC and DPPC lipid bilayer interactions were described with the Berger force-field parameters 

(Berger et al, 1997). The TM helices were modeled with the united atom force-field GROMOS96 53a6 

(Oostenbrink et al, 2005). Simulations were performed with the Gromacs 4.0.3 package (Hess et al, 

2008) using 2-fs time steps. Periodic boundary conditions were used in all directions. Bonds to H atoms 

were constrained using the LINCS algorithms (Hess et al, 1997). For the short-range van der Waals 

interactions, a cutoff distance of 1.0 nm was used. The long-range electrostatic interactions were treated 

using the particle mesh Ewald (PME) method with a grid spacing of 0.12 nm and cubic interpolation. 

The non-bonded pair list was generated every 10 steps with a cutoff of 1.0 nm. Water, lipids and 

peptide systems were coupled separately to temperature baths, 323 K for the DPPC and 310 K for 

others using the Berendsen algorithm with a time constant of τT = 0.1 ps  (Berendsen et al, 1984). The 

higher temperature is commonly used for DPPC simulations (Nagle & Tristram-Nagle, 2000) (Krüger 

& Fischer, 2008) to avoid that the lipids form a gel-like phase with increased ordering of the 

hydrocarbon chains. For keeping the pressure constant, semi-isotropic coupling was employed 

separately for the lateral and for the normal directions with Berendsen weak coupling and a τp = 1 ps 

time constant. The compressibility was set to 4.5 x 10 -5 bar -1 (Berendsen et al, 1984).  

Analyses of the trajectories were primarily performed with tools included in the Gromacs 4.0.3 

suite (Hess et al, 2008). Root mean square deviations (RMSDs) analyses were based on the coordinates 

of all atoms of the peptides. The hydrogen bond analyses used a 0.35 nm distance cut-off between 

donor-acceptor atoms and required the bond angle to be between 150-180°. All protein structure images 

in this work were prepared with the Pymol program (http://pymol.sourceforge.net). 

 

4.3 Results and Discussion 
 

In this work, all-atom MD simulations were performed to investigate the structure and degree of 

internal solvation of membrane lipid bilayers containing TM helix monomers with a charged residue 

located in the centre of the helix and TM helices that are associated via an ion pair, respectively. As 

designed TM domain, we used the so-called H-segment (Hessa et al, 2005) which was prepared as an 

ideal helix for the starting structures of the simulations. 16 systems were simulated for at least 100 ns 

each.    
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4.3.1 Simulation of Monomers in DMPC and DPPC Lipid Bilayers 
 

During the simulations of H-segment monomers in a DMPC lipid bilayer, all helices remained close to 

the conformation of an ideal α-helix (RMSD 0.06 nm), except for the H-segment containing Asp at the 

helix center (0.27 nm) which partially unfolded (TABLE 4.1). The intact H-segment monomers tilted 

strongly between 52.3 and 67.5 ° with respect to the membrane normal (also see FIGURE 4.1). The 

thickness of the hydrocarbon core of the bilayer membrane for the monomers in a DMPC bilayer 

ranged between 3.45-3.59 nm (TABLE 4.1). This result is in good agreement with the membrane 

thickness of a pure DMPC lipid bilayer (3.46 nm) obtained from MD simulation (Griepernau et al, 

2007) and in the experiment (Lewis & Engelman, 1983)(Kučerka et al, 2005).  

 
TABLE 4.1 MD simulations of H-segment monomers in DMPC and DPPC lipid bilayers. All 
simulations were run for 100 ns of simulation time. The flanking residues (Gly-Gly-Pro-Gly) at 
either N or C-terminal side were not included in the analyses of RMSDs from ideal helix and the 
average helical angle. The membrane thickness, computed by GridMAT-MD (Allen et al, 2009), 
indicates the average hydrophobic thickness of the membrane, measured from the average 
distances between the phosphate atoms of upper and lower leaflets. 

H-segment 
monomers 

Membrane 
thickness 

(nm) 

RMSDs from ideal 
α-helix 
(nm) 

Average helical 
angle per-residue 

(°) 

Tilting angle 
( ° ) 

In DMPC     
Asp14 3.58 ± 0.40 0.27 ± 0.03 63.94 ± 16.27 Kinked 
Glu14 3.45 ± 0.31 0.06 ± 0.02 98.63 ± 0.80 67.5 ± 9.3 
Lys14 3.59 ± 0.32 0.06 ± 0.01 98.36 ± 0.67 59.0 ± 4.4 
Arg14 3.51 ± 0.35 0.06 ± 0.02 99.33 ± 0.87 52.3 ± 12.0 
 
In DPPC 

    

Asp14 3.99 ± 0.33 0.25 ± 0.01 79.63 ± 9.46 Kinked 
Glu14 4.20 ± 0.44 0.05 ± 0.01 99.35 ± 0.60 47.8 ± 3.4 
Lys14 4.02 ± 0.37 0.32 ± 0.02 48.76 ± 10.91 Kinked 
Arg14 3.93 ± 0.42 0.06 ± 0.02 98.58 ± 0.78 53.1 ± 4.5 
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FIGURE 4.1 MD simulations of H-segment monomers containing a charged residue. (a-d) in 
DMPC lipids, (e-h) in DPPC lipids. The H-segment monomers are represented as helical cartoon. 
The charged amino acids are labeled and shown as van-der-Waals spheres. The lipid head groups 
are shown as yellow spheres and water molecules as red-white spheres. Lipid acyl-chains are not 
shown for clarity.  

 

FIGURE 4.2 RMSDs of the H-segment monomers and dimers from the starting structures. (a) 
H-segment monomers in DMPC bilayers; (b) H-segment monomers in DPPC bilayers; (c) H-
segment dimers of set X14-Y14 and (d) H-segment dimers of set X12-Y16.  
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In a DPPC bilayer consisting of lipid molecules with longer hydrophobic carbon-tails, one 

could expect that both Asp and Glu would severely bend the backbone of the helices due to their short 

side chains (Johansson & Lindahl, 2006). However, the only amino acid which caused the same effect 

as Asp was Lys. The helical conformation of the H-segment containing a charged Lys largely deviated 

from the starting structure (0.32 nm) and exhibited severe distortions. The other H-segment monomers 

containing Arg and Glu remained structurally stable (0.06 and 0.05 nm RMSD, respectively) similar to 

when simulated in the DMPC lipid bilayers. FIGURE 4.2 shows the effect of each charged residue to 

the helix monomers during the simulation time. The average helical per-residue angle (see TABLE 4.1) 

describes the helix integrity. For an ideal α-helix, the angle should be close to 100 °, but the partially 

unfolded helices of the H-segments with Asp in DMPC and DPPC lipids and Lys in DPPC lipids 

showed smaller average angles below 80°.  

The unfolding of a TM helix reveals which portions of the peptide cannot be favorably 

accommodated in the hydrophobic lipid bilayer environment. Naturally, all charged residues in a TM 

helix like to interact with other polar or charged atoms. In our setup, the only chance for the centrally 

placed charged residues to achieve a favorable coordination of their charged side-chains is to form 

hydrogen bonds with water molecules or with the polar head groups of the lipids at the membrane 

interfacial region. For that reason, all H-segments tilted in order for their side-chains to reach the 

hydrophilic interface but at the same time optimized the position of the other residues according to the 

environment. The side chain of Asp is the shortest among the four charged residues. Even with a tilted 

TM helix, a centrally placed Asp side-chain cannot reach the interface region unless the ideal helix 

geometry is distorted causing partial unfolding. No such behavior was observed for the H-segment 

monomer containing a Glu amino acid which has the second shortest side-chain next to Asp. Even 

when simulated in the thicker DPPC lipid bilayer, the Glu amino acid positioned in the center of the 

helix did not affect the helical conformation along the simulation time. Surprisingly, the only amino 

acid causing severe distortions beside Asp in a DPPC bilayer was Lys.  

The flexible side-chain of Lys is well-known to efficiently snorkel up to form hydrogen bonds 

with the phosphate and carbonyl groups of the phospholipids. However, in the DPPC lipid bilayer, the 

H-segment adopted a smaller helix tilting angle to enable the flanking anchors (Gly-Gly-Pro-Gly) on 

both sides to interact well with the membrane interfacial region. Therefore, the side-chain of Lys could 

not reach out to form hydrogen bonds with the hydrophilic region as in the DMPC bilayer. As a result 

this caused the H-segment to partially distort in the DPPC bilayer (TABLE 4.1 and FIGURE 4.1e-h). 

Interestingly, we noted that the undistorted H-segments containing the Arg and Glu amino acids 

oriented their charged side-chains either to the N- or C-termini. In contrast, for the H-segments with 

Asp/Lys amino acids, the Asp and Lys side-chains oriented to the same termini in both types of lipids 

(FIGURE 4.1). Although it was noted before that the side-chain orientation of charged residues is 
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generally biased toward the N-terminal region (Johansson & Lindahl, 2006), the H-segments exhibited 

both orientations in this work. 

The occurrence of polar or charged amino acids in a hydrophobic TM helix monomer 

destabilizes the helical structure due to the strong interaction of the polar side-chain with the 

hydrophilic membrane interface. Although the helix could overcome the unfolding by tilting, the helical 

integrity will still depend on the helix length and the sequence composition (Jaud et al, 2009). The 

shorter the TM helix and the more polar or charged residues exist, the less stable is the helix. In nature, 

the helix distortion illustrates the non-TM topology and this is supported by statistical analysis of the 

current high resolution structures (London & Shahidullah, 2009). No TM helix monomer or dimer 

containing a charged residue exists in the database so far. Interestingly, White, von Heijne and 

colleagues showed on the basis of in vivo free energy of insertion of the 20 amino acids that marginally 

hydrophobic TM segments can be filtered by the translocon to be integrated into the membrane lipids 

(Hessa et al, 2005), regardless of the post-processing TM state. Therefore, the observed unfolding 

behavior of the helices indicates a lower preference for the TM state (Zhao & London, 2006) which 

correlates to the increment of the apparent free energy of insertion. Our results from the monomer 

simulation are in agreement with the apparent free energy of the biological scale that assigned the 

highest insertion energies to H-segment monomers containing Asp (3.49 kcal/mol) followed by Lys 

(2.71 kcal/mol (Hessa et al, 2005). In fact, a charged Asp residue was shown by several experiments to 

induce partial helix unfolding when located deeper in the core of the bilayer (Caputo & London, 2004). 

 

4.3.2 Dimer Simulations 
 

This study was initially inspired by the putative TM helices of the envelope glycoprotein from the 

family of the Flaviviridae viruses which contain at least one positively charged residue located in 

between hydrophobic stretches and have been suggested to exist as monomers and/or dimer 

(Mukhopadhyay et al, 2005). In HCV, the putative TM helices of the E1 and E2 envelope glycoproteins 

were suggested to associate as a dimer via an ion pair of Lys-Asp amino acids. Here, we investigated 

the structural integrity of TM dimers with different types of ion pairs as well as the dynamic interaction 

among the components in the membrane lipid bilayer system. Two sets of H-segment dimers were 

simulated with four different combinations of charged residues. In the first set named X14-Y14 both 

charged residues were placed at the same position in the TM helices. In the second set named X12-Y16, 

the charged residues were located one turn apart from each other. 

We measured the bilayer thickness by averaging the distances between lipid head groups in the 

upper and lower leaflets of the lipid membrane with the tool GridMAT-MD (Allen et al, 2009). The 
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DMPC bilayer thickness of the set X14-Y14 ranged between 3.62-3.73 nm and for the set X12-Y16 

between 3.57-3.72 nm (TABLE 4.2). These values are larger than those observed in the monomer 

simulations (3.45-3.59 nm). Likely induced by the ion pair interaction between the charged residues, 

also the tilting angles of both partner helices decreased significantly compared to the helix monomers. 

The tilting angles of the helices with a positively charged amino acid were in the range 16.3 – 32.7 º 

and the helices with a negatively charged amino acid tilted between 20.0 - 49.1 ° (TABLE 4.2). 

 

TABLE 4.2 Simulation details of H-segment dimers. All simulations were run for 100 ns. X and 
Y denote the two helices of the TM helix dimer. 

H-segment 
dimers 

Membrane 
thickness 

(nm) 

RMSDs from the ideal α-helix 
conformation (nm) 

(80-100 ns) 

Tilting angle 
( º ) 

(80-100 ns) 

  Helix Helix 
      
Set X14-Y14  X Y X Y 
K14-D14 3.62 ± 0.54 0.09 ± 0.06 0.18 ± 0.02 28.4 ± 3.9 44.4 ± 3.9 
K14-E14 3.72 ± 0.41 0.08 ± 0.01 0.23 ± 0.02 23.9 ± 3.3 49.1 ± 3.2 
R14-D14 3.73 ± 0.37 0.07 ± 0.02 0.31 ± 0.008 25.9 ± 5.4 Kinked 
R14-E14 3.73 ± 0.50 0.07 ± 0.02 0.30 ± 0.03 16.3 ± 5.3 Kinked 
      
Set X12-Y16  X Y X Y 
K12-D16 3.72 ± 0.43 0.06 ± 0.02 0.26 ± 0.02 22.0 ± 7.2 24.2 ± 4.8 
K12-E16 3.57 ± 0.51 0.08 ± 0.04 1.72 ± 0.05 32.7 ± 4.1 45.6 ± 5.2 
R12-D16 3.67 ± 0.41 0.10 ± 0.01 0.29 ± 0.09 29.8 ± 4.0 44.6 ± 5.5 
R12-E16 3.72 ± 0.37 0.13 ± 0.02 0.18 ± 0.01 28.5 ± 4.3 20.0 ± 3.8 

 

The RMSD analyses of both dimer helices showed a large difference between the helices 

containing a positively charged (Arg, Lys) and those containing a negatively charged (Glu, Asp) amino 

acid (TABLE 4.2). The helices with a positively charged residue stayed structurally close to an ideal 

helix (0.08 - 0.13 nm). On the other hand, the helices with a negatively charged Asp or Glu amino acid 

deviated between 0.18 to 0.31 nm from the ideal conformation. We also noted that most of the helices 

with the charged Asp/Glu exhibited kinking but their helix partners were stably intact as depicted in 

FIGURE 4.3. FIGURE 4.2 shows the RMSDs of the helix dimers from their starting structures along 

the simulation time compared to simulation of monomers. Each dimer from both sets deviated between 

0.2-0.7 nm from its starting structure.  

 

These findings show that the position of the charged residues in the TM helix influenced the 

helical conformation of the H-segment dimers. Although interacting via the same type of salt-bridge, 

different locations of the charged residues affected the helix-helix packing in different ways. Set X14-

Y14 resulted in severe helix bending and kinking particularly for the helices which contained a 

negatively charged residue (FIGURE 4.3 (b), (c) and (d)). The only exception is H-segment dimer 
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K14-D14. However, in the set X12-Y16, the integrity of the TM helices was better maintained for the 

helices containing a positively charged residue, R12-D16, K12-E16 and R12-E16, compared to those in 

the other set X14-Y14 which contain the same salt-bridges.  

In all dimer simulations of the H-segment, we observed very tight ion pair interactions of the 

charged residues along the simulation time. Although we found several kinked helices, they were not 

unfolded as in H-segment monomers. Particularly for the H-segment monomer with the negatively 

charged Asp residue, the ion pair interaction to the other helix partner significantly increased the TM 

topology state. We found a similar effect in the simulations of the E1-E2 TM dimer of HCV where the 

ion pair interaction increased the helix integrity and stabilization (Jusoh et al, 2010). This underlines 

that the presence of polar and charged residues in multi-spanning membrane proteins may in part serve 

to stabilize helix-helix association. Indeed, peptide dimer interactions mediated by interhelical 

hydrogen bonds between Asn-Asn and Asp-Asp amino acids were shown experimentally to enhance the 

membrane insertion efficiency (Meindl-Beinker et al, 2006).  

 

 

FIGURE 4.3 Dimer simulations with two different locations of the charged residue pairs, set 
X14-Y14 and set X12-Y16. Final snapshots after 100 ns of MD simulation of H-segment dimers 
with an interhelical salt-bridge interaction. The charged residues are labeled as single-letter code. 
Lipid phosphates are shown as yellow balls. Water molecules near the charged residues are 
shown in stick representation and water in the bulk phase as van der Waals spheres. Lipid acyl-
chains are not shown for clarity. 
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4.3.3 Water Hydration of the Membrane Core 
 

Events of water crossing and residence in pure lipid bilayers are very rare. For that reason, it is 

remarkable to observe water molecules which are able to reside in hydrophobic environments, 

particularly in the core region of the membrane lipid bilayer. Water penetration into the lipid bilayer 

was already reported in simulation studies (Johansson & Lindahl, 2006) and measured experimentally 

by solid-state NMR where waters coordinated Arg residues pointing into the lipid bilayer (Li et al, 

2010). Water hydration of nonpolar cavities was also detected by NMR for the protein interleukin 1β 

(Ernst et al, 1995) and by crystallography for the protein T4 lysozyme (Liu et al, 2008).  

 

FIGURE 4.4 Hydration analyses of the charged residues in the hydrophobic core of the 
membrane lipid bilayer. Figures (a) to (h) are labeled according to the type of H-segment dimers. 
Shown are snapshots after 100 ns of MD simulation where the side-chains of the interacting 
charged residues are shown as stick representation together with water molecules within a 
distance of 0.7 nm. The graphs show the number of hydrogen bonds formed between the charged 
amino acids and the waters in each simulation. 
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Here, we observed repeatedly that the charged residues attracted several water molecules from 

the bulk phase to the membrane center to form hydrogen bonds (FIGURE 4.2). This resulted in 

permanent water penetration into the core of the membrane lipid bilayer. We note that, initially, the 

membrane core never contained any water molecules at the start of a MD simulation. The hydration 

level in the hydrophobic membrane core (characterized by the average number of hydrogen bonds) 

depended on the location of the charged residues in the membrane lipid bilayer. The deeper inside the 

core, the longer time water molecules needed to make contact with the charged residues. FIGURE 4.4 

clearly indicates that the TM helix dimers from the set X12-Y16 were hydrated earlier than the set X14-

Y14. The fastest solvation was observed for the dimer R12-D16, where the water molecules managed to 

enter the hydrophobic core of the lipid bilayer within 10 ns of simulation time. The lowest hydration 

was found for both dimers interacting via Lys-Glu salt-bridges. Only one water molecule penetrated 

after 80 ns for the dimer K12-E16 whereas the dimer K14-E14 was still totally dehydrated after 100 ns 

of MD simulation. 

 The number of hydration waters also depended on the type of ion pair and the location of the 

charged amino acids in the TM helix (FIGURE 4.4). The TM helix dimers containing Lys-Asp and 

Lys-Glu ion pairs were not hydrated as much as dimers with Arg-Asp and Arg-Glu pairs. The average 

number of hydrogen bonds between the charged amino acids and the penetrating water molecules 

varied in each simulation. The helix dimers containing an Arg residue attracted more water molecules 

into the core of the membrane bilayers (3-5 water molecules), compared to the helix dimers with a Lys 

(1-3 water molecules). This is quite expected because Arg has more hydrogen-donor atoms in its side-

chain compared to Lys (three-hydrogen donors). The helix dimers containing Arg-Asp pairs showed the 

same amount of water molecules in the membrane core after 100 ns of simulation, although the 

hydration of the dimer R14-D14 took place at a later time (~38 ns) than for the dimer R12-D16 (~6 ns).   

As described, the hydrogen bonds between the charged residues and the water molecules varied 

due to the type of salt-bridge and the location of the charged residues. FIGURE 4.5 summarizes the 

average number of hydrogen bonds observed in the membrane core in each dimer simulation. The 

results clearly illustrate that the average number of hydrogen bonds of the set X14-Y14 is lower than 

the set X12-Y16. In each case, there was at least one hydrogen bond stably connecting the interacting 

charged residues along the simulation time. The detailed analysis of the average number of hydrogen 

bonds is shown in TABLE 4.3. The largest number of hydrogen bonds was found for the H-segment 

dimer R12-D16 (~5 hydrogen bonds with waters). One reason for this could be that the charged 

residues are located nearer to the hydrophilic interface. Secondly, the side-chain of Arg contains the 

largest number of hydrogen bond donor atoms. Surprisingly, the side-chain of Asp also participated in 

almost the same number of hydrogen bonds to water molecules as Arg in sets K12D16 and R12D16 

(FIGURE 4.5 and TABLE  4.3). In the partially hydrated region of the membrane interfaces, all 

charged amino acids have the choice either to form hydrogen bonds with waters or with the polar 
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groups of lipids. Positively charged amino acids (Arg/Lys) usually act as hydrogen bond donors and 

negatively charged amino acids (Asp/Glu) naturally act as hydrogen bond acceptors (Johansson & 

Lindahl, 2006). We found that in the dehydrated region of the membrane core where the amount of 

water is limited, the available water molecules tend to act both as hydrogen bond acceptors and donors 

for the basic and acidic charged amino acids, respectively (FIGURE 4.5).  

 

 

FIGURE 4.5 Average number of hydrogen bonds in each dimer simulation between the charged 
residues themselves and with water molecules in the core region of the membrane bilayer during 
80-100 ns simulations. Black: Hydrogen bonds between the charged residues themselves; gray 
bars: hydrogen bonds between the positively charged residues and water molecules; white bars: 
hydrogen bonds between the negatively charged residues and water molecules.  
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TABLE 4.3 Number of hydration waters that coordinate the charged residue pairs in the center 
of the membrane bilayer and hydrogen bond analyses for the MD simulations of H-segment 
dimers. The number of hydration waters was computed in a sphere of 0.7 nm radius around the 
side-chains of the charged residues. 

  Average number of hydrogen-bonds 

Simulations No. of hydration 
waters at 100 ns 

Charged residues to 
bulk waters 
(80-100ns) 

Between charged-
residues 
(0-100ns) 

Lys-Asp (K14-D14) 1 0.78 ± 0.42 1.32 ± 0.52 

Lys-Asp (K12-D16) 3 2.56 ± 1.32 1.03 ± 0.67 

Lys-Glu (K14-E14) 0 0 1.10 ± 0.47 

Lys-Glu (K12-E16) 1 0.41 ± 0.49 1.25 ± 0.68 

Arg-Asp (R14-D14) 4 2.07 ± 1.28 1.57 ± 0.97 

Arg-Asp (R12-D16) 4 4.25 ± 1.50 0.98 ± 0.95 

Arg-Glu (R14-E14) 3 1.16 ± 0.61 1.83 ± 0.88 

Arg-Glu (R12-E16) 5 1.57  ± 1.04 2.12 ± 0.77 

 

The results from the MD simulations of helix dimers showed that once water molecules came 

into contact with the charged residues, several of them managed to stay throughout the simulation time. 

The hydration level and penetration time of water molecules differed although the dimers comprised the 

same type of salt-bridge. We extended the simulations of two helix dimers (R14-E14 and R12-E16) up 

to 200 ns to characterize the water solvation on a longer time scale. We observed that further water 

molecules continued to penetrate into the core of the membrane bilayer to solvate the charged residues. 

FIGURE 4.6 clearly depict the increasing number of water molecules in a sphere of 0.7 nm radius 

around the side-chains of the charged residues along the simulation time. Again the helix dimer R12-

E16 was hydrated more than the R14-E14 dimer although both comprised the same type of ion pair. Up 

to 8 water molecules occupied the core membrane of the R12-E16 dimer after 152 ns of simulation and 

their number gradually decreased to 5 water molecules on average till 200 ns (FIGURE 4.6). In the 

R14-E14 simulation the level of hydration remained around 4 water molecules till 200 ns.  

Interestingly, the water molecules which were retained in the hydrophobic core of the 

membrane even managed to exchange with the bulk water on the 200 ns time scale. We observed 

several events of such dynamic water replacements in order to solvate the hydrophobic environment 

around the charged residues. FIGURE 4.7 shows individual snapshots from the simulation of the R12-

E16 dimer. The R12-E16 dimer was more hydrated at an earlier stage compared to the R14-E14 dimer 

as the charged residues are located closer to the membrane interface. In the R12-E16 simulation, the 

first water molecule started to enter the core region at 17 ns and jumped back into the bulk phase after 

27 ns. The second water molecules went into the core at 22 ns shortly 5 ns before the first water jumped 

out and remained up to 103 ns. Similar water replacement events occurred throughout the simulation 

where new water molecules replaced the old ones. In total, 15 and 7 different water molecules were 
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observed that solvated the membrane core during the 200 ns simulation of the R12-E16 and R14-D14 

systems, respectively.  

 

 

FIGURE 4.6 Hydration in the membrane core of (a) R14-E14 and (b) R12-E16. Shown is the 
number of water molecules per snapshot in a sphere of 0.7 nm radius around the center of mass 
of both charged residues in each simulation.  

 

 
FIGURE 4.7 Microsolvation of the R12-E16 dimer in the membrane core. Snapshots are labeled 
according to the simulation time. In total, 15 different water molecules solvated the charged Arg 
and Glu ion pair during the 200 ns MD simulation. The water molecules are represented as 
spheres and colored based on the range of penetration time: (1) entering before 50 ns (orange); 
(2) entering and exiting in the interval (17 - 100ns ) (maroon); (3) entering after 100 ns and 
exiting before 200 ns (cyan); (4) entering after 100 ns and residing in the core until 200 ns (blue). 
The other water molecules are shown as grey. The R12-E16 helix dimer is shown as cartoon and 
the side-chain of Arg and Glu are highlighted as sticks. The lipid head groups are shown as grey 
spheres. Lipid acyl-chains are not shown for clarity. 
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4.3.4 Microsolvation of the Putative Transmembrane Helix Dimers 
from Hepatitis C Virus 

 

In the putative TM dimer of the E1-E2 envelope glycoproteins of hepatitis C virus, the helix dimer was 

suggested to interact via a salt-bridge of charged Lys-Asp amino acids. Our previous study showed that 

besides the salt-bridge interaction also inter-helical hydrogen bonds between the TM segments 

contributed to stabilizing the E1-E2 dimer (Jusoh et al, 2010). Several simulations of the TM domain of 

E1-E2, that were all started from the same configuration revealed three possible modes of interaction 

(FIGURE 4.8): (a) interaction via the salt bridge Lys370-Asp728 only, (b) interaction only via a 

hydrogen-bond between Asn367 and Asp728 and (3) the dimer interacts via both the hydrogen bond 

and the salt bridge where the side-chains of Asn367, Lys370 and Asp728 are oriented to the helix-helix 

interface in the core region of the bilayer.  

The latter exhibited the most stable TM structure with a low hydration of only 2 water 

molecules during 100 ns of simulation (FIGURE 4.8c). The highest hydration was observed for the 

first case, where the E1-E2 dimer was interacting via hydrogen bonds formed by Asn367 and Asp728, 

and Lys370 faced the lipid acyl-chains. Due to the positively charged side-chain of Lys, several 

phosphate head groups were pulled into the core what locally distorted the lipid membrane. Among the 

three models, the only E1-E2 dimer model that exhibited kinking (and a locally unfolded E2 helix) was 

the first type. The Asn367 residue not involved in hydrogen bonds pulled bulk waters and lipid head 

groups into the core region and this deformed the local thickness of the membrane lipid bilayer. 

Therefore, it is tempting to suggest that the third model of an E1-E2 dimer interacting via both the 

hydrogen bond (Asn367-Asp728) and the ion pair (Lys370-Asp728) could be the one existing in nature 

based on the stability of the TM state and the relatively unperturbed membrane thickness. However, 

further experimental studies should be carried out to confirm this hypothesis.   

Intensive mutagenesis works by the group of Dubuisson showed that the highly conserved 

Lys370 and Asp728 residues contributed to the HCV E1-E2 heterodimerization (Ciczora et al, 2005) 

(Ciczora et al, 2007). They noted, however, that when mutating Asp728 to Lys, the heterodimerization 

was still unaltered (Ciczora et al, 2005) and concluded that the ion pair is not the sole contributor to the 

helix-helix association. In our previous study, we also simulated a model of the putative E1-E2 dimer 

where Lys370 was mutated to Ala (Jusoh et al, 2010). The results from the MD simulations indicated 

that even in the absence of ion pair interaction, the E1-E2 dimer may still be stably associated because 

Asn367 formed hydrogen bonds with the side-chains of Asp728 and the oriented side-chain of Arg730. 

In the wild type E1-E2 dimer simulations, Asn367 contributed to the stability of the dimer as well 

besides Lys370 and Asp728 (Jusoh et al, 2010). FIGURE 4.9 shows the snapshot of the putative TM 

domain of E1-E2 of HCV after 200 ns of simulation as well as its hydration plot during the simulation. 
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We observed a maximum number of four water molecules that managed to reside at one time to solvate 

the charged and polar residues. The hydration level is comparable to the H-segment dimers having the 

same type of Lys-Asp ion pair (K14-D14 and K12-D16). Eight different water molecules solvated the 

membrane core during the 200 ns simulation.  

 

 

FIGURE 4.8 Models of the TM segment of the E1-E2 dimer from hepatitis C virus. The putative 
structures resulted from different polar/charged interactions at the helix-helix interface. a: 
Asn367-Asp728; b: Lys370-Asp728 and c: Asn367-Lys370-Asp728 interaction. The side-chains 
of Asn, Lys, Asp and Arg are shown as sticks. The E1-E2 dimers are shown as cartoon and the 
water molecules in a sphere of 0.7 nm radius are shown as sticks. Lipid acyl-chains are not 
shown for clarity. The small figures are shown to illustrate the whole system for each dimer. The 
snapshots shown are final conformations after 100 ns MD simulation.   

 

 

 

FIGURE 4.9 Microsolvation in the putative TM model of the E1-E2 dimer from hepatitis C 
virus. (a) Snapshot at 200 ns MD simulation of the TM domain of E1-E2 dimer; (b) The number 
of water molecules during the simulation in a sphere of 0.7 nm radius around the side-chains of 
Asn367-Lys370-Asp730.  
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We also analyzed the water hydration in the simulations of mutated E1-E2 dimers. As for the 

wild-type E1-E2 dimer, a similar increasing trend of solvation was observed for the simulation of 

R730K (FIGURE 4.10a). This is expected because the mutated residue, Arg730, is not located at the 

helix-helix interface. Thus the hydration is the same as in the wild type. For the doubly mutated E1-E2 

dimer, where we replaced Gly354 and Gly358 by Ala, only two water molecules managed to retain at 

the same time (FIGURE 4.10b). It is interesting that although both TM dimers had the same Asn-Lys-

Asp interaction at the helix-helix interface, the number of water molecules during the 100 ns time scale 

was different. It is possible that Gly354 and Gly358 facilitated the penetration of water molecules to 

solvate the highly polar residues. Therefore, a lower degree of hydration could have resulted when both 

glycines were mutated to Ala.  

 

 

FIGURE 4.10 Microsolvation of the TM domain of the E1-E2 HCV mutated dimers. Simulation 
of (a) R730K dimer; (b) G354A&G358A doubly mutated dimer. The plot shows the number of 
water molecules interacting with the side-chains of Asn367, Lys370 and Asp728 in a sphere of 
0.7 nm radius. Both mutated models contain the same Asn-Lys-Asp interaction at the helix-helix 
interface as the E1-E2 wild type. The snapshots in the lower panel show the final conformations 
after 100 ns of MD simulation.  
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Although water permeability across lipid membranes has been extensively studied, the 

mechanism still remains unclear (Mathai et al, 2010). Recent experiments showed that the penetration 

of water molecules correlated stronger with the area per lipid than with the chain length, saturation, or 

composition of the head group of the lipids (Mathai et al, 2010). In the case of an HIV1-TAT peptide, 

computational studies supported the model where the peptide translocates from the hydrophilic 

interface of the bilayer into the membrane core (Herce & Garcia, 2007). Although the peptide was 

highly hydrophilic and contained many charged Arg and Lys, it was able to cross the hydrophobic core 

of the membrane when helped by further peptides nearby.  

In a pre-study, we also simulated systems with uncharged Asp and Lys in TM helix monomers 

and dimers. In none of these simulations, water molecules or lipid head groups penetrated into the core 

of the bilayer. Neither did we observe membrane deformations. However, we did not observe stable 

association of any helix dimer. This contradicts the experimental data about the importance of 

interhelical hydrogen-bonding residues for the H-segments (Meindl-Beinker et al, 2006) and of 

interhelical ion-pairing residues for the E1-E2 dimer of HCV (Ciczora et al, 2005). Therefore we 

focused on studying the charged forms of these residues here. The MD simulations of our study clearly 

revealed that individual water molecule from the bulk phase may enter the hydrophobic core of the 

membrane to coordinate polar and charged side-chains. Also, the simulation time scale of ~ 100 ns 

appeared long enough so that they may reversibly exchange. However we do not consider the level of 

hydration to be converged on this time scale. This will require substantially longer plain MD 

simulations or the use of simulations in the semi-grand canonical ensemble (Deng & Roux, 2008). 

Another possible concern is the suitability of the combination of Berger force field for the lipids and the 

SPC water model to study the favorability of microhydration relative to the bulk phase. Definite 

answers will require the availability of some experimental data possibly from solid-state NMR (Li et al, 

2010).  

 

4.4 Conclusion 
 

The experimental free energies required for transferring charged amino acids from water to 

cyclohexane (Radzicka & Wolfenden, 1988) as well as the theoretical values according to the 

generalized Born scale (Ulmschneider et al, 2007b) are at least twice as large as the values of the 

biological scale of Hessa et al. (Hessa et al, 2007) and those of the Wimley-White hydrophobicity scale 

(Wimley & White, 1996). Recent studies demonstrated that the insertion of TM helices containing polar 

and charged residues into the membrane is facilitated by non-covalent interactions with motifs in loop 
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regions and nearest-neighbor TM helices, as well as by TM helix repositioning in the membrane during 

the folding and oligomerization, and by the high protein content in biological membranes.  

Furthermore, this study shows based on molecular dynamics computer simulations of H-segment 

dimers and E1-E2 dimers from Hepatitis C virus that microsolvation of polar and charged amino acids 

and even ion pairs is another important factor that facilitates the oligomerization of membrane proteins 

and their insertion in the lipid bilayer. In the simulations, several water molecules from the bulk phase 

repeatedly managed to penetrate into the bilayer core where they hydrated the charged residues. These 

buried water molecules frequently exchanged with waters from the bulk phase on timescales of tens of 

nanoseconds. These observations illustrate that the very hydrophobic core of pure lipid bilayer 

membranes shows a significant degree of physicochemical adaptability in the presence of embedded 

TM helices and proteins. 
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CChhaapptteerr  55    
MMoolleeccuullaarr  DDyynnaammiiccss  SSiimmuullaattiioonn  ooff  
PPuuttaattiivvee  TTrraannssmmeemmbbrraannee  DDoommaaiinnss  
ooff  EEnnvveellooppee  GGllyyccoopprrootteeiinnss  ffrroomm  
FFllaavviivviirriiddaaee  VViirruusseess  

 

The envelope glycoproteins of the family of Flaviviridae viruses are responsible for the initial 
binding of the virion to the cell membrane of the host cells before entering the host cells. 
During the virus biogenesis, these proteins are retained in the membrane of endoplasmic 
reticulum, and then they assemble with the other particles to form a mature virus. The TM 
domains of the envelope glycoproteins are have been shown to play multiple roles. For 
example, they contain a signal peptide, responsible for the endoplasmic reticulum retention 
and are crucial for the E1-E2 or prM-E dimerization. Unfortunately, so far no X-ray structure 
has been determined for the complete structure of E1/prM and E2/E envelope glycoproteins. 
Knowledge about these TM domains could lead to the finding of possible drug targets or 
vaccine candidates for the Flaviviridae viruses. Here we show that the TM segments of the 
E1/prM are more stable as a helix monomer compared to the TM segments of the E2/E 
envelope glycoproteins in lipid bilayers. Severely kinked helices were observed during the 
MD simulation of the TM domains of the DENV-E, WNV-E and JEV-E which are similar to 
the previous results for the HCV-E2 presented in Chapter 3. Comparative studies based on 
sequence analyses and from MD simulations show paralleled results that support the idea that 
the TM domains of the E1/prM and E2/E consist of a highly polar segment located in between 
two hydrophobic stretches.    
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5.1 Introduction 
 

Dengue virus (DENV) infects more than 50 million people annually and the hepatitis C virus (HCV) is 

currently chronically infecting more than 170 million people worldwide (Vlachakis, 2008). They 

belong to the group of viruses for which till now there exists no specific antiviral therapy. These viruses 

are members of the family Flaviviridae which consists of three main genera; Flaviviruses, 

Hepaciviruses and Pestiviruses. The largest group is the Flavivirus that currently has more than 70 

members of tick-borne or mosquitoes-borne viruses including DENV, West Nile Virus (WNV) and 

Japanese encephalitis virus (JEV). The hepacivirus genus consists of only one member, the HCV which 

is transmitted among humans by infected blood. Both Flavivirus and Hepacivirus genera are human 

pathogens. The Pestivirus is a genus that can only infect animals as, for example, the classical swine 

fever virus (CSFV) and the bovine viral diarrhea virus (BVDV). The family of Flaviviridae shares 

similarities in virion morphologies, genome organization and replication mechanism.  

The envelope proteins namely and E2 (in Hepacivirus and Pestiviruses) and prM and E (in 

Flaviviruses) are responsible for the initial binding to the host cells. The transmembrane (TM) domains 

that are located at the C-terminus cause the envelope glycoproteins to be retained in the membrane of 

the endoplasmic reticulum during the virus biogenesis. In Chapter 3, we showed that the putative TM 

segment of HCV-E1 was stable as a single-pass TM helix during the simulations although it contains 

highly polar and charged residues in its centre (Jusoh et al, 2010). In parallel, the NMR-derived 

structure of E1 illustrated that the polar Asn367 and the positively charged Lys370 are part of the 

helical region (Op De Beeck et al, 2000). In contrast, the putative TM segment of the HCV-E2 locally 

unfolded and kinked when it existed as a helix monomer in the membrane bilayer. The simulation study 

supports the experimental hypothesis that the highly conserved charged residues located in the middle 

of both putative TM domains of HCV-E1 and HCV-E2 are crucial for their heterodimerization (Jusoh et 

al, 2010)(Ciczora et al, 2007). The other members of the family Flaviviridae virus also show the similar 

TM sequence pattern. Their putative TM domains of envelope glycoproteins contain a short highly 

polar segment consisting of highly conserved charged and polar residues connecting two hydrophobic 

stretches see FIGURE 1.12.  

Here, we extended the structural analyses of Chapter 3 to the several other members of the 

family of Flaviviridae. MD simulations were used to simulate each of the putative TM segments of 

E1/E2 or prM/E envelope glycoproteins as a single helix monomer. In this study, the sequences were 

obtained from four more viruses; DENV, JEV and WNV which represent the Flavivirus genus, and the 
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BVDV that represents the Pestivirus genus. The data were analyzed and compared with that of HCV of 

genus Hepacivirus.       

 

5.2 Methods 
 

5.2.1 Sequence Analyses 
 

The sequences of the envelope glycoproteins of the Flaviviridae viruses were obtained from the 

UNIPROT database (http://www.uniprot.org). The referral id numbers from UNIPROT are described in 

parentheses for each of the viruses. In this study, we used sequences from HCV (P26664) and BVDV 

(P19711) to represent genus Hepacivirus and Pestiviruses, respectively. Sequences from three other 

viruses, DENV (P14337), JEV (P32886) and WNV (P06935), are representing genus Flaviviruses. Here, 

we were only interested in the envelope glycoprotein domains. Therefore, the corresponding sequences 

suggested by the UNIPROT as TM domain that are named E1/prM and E2/E proteins were further 

analyzed. 

The sequences obtained from the UNIPROT database were initially analyzed by several 

secondary structure prediction servers. The TOPCONS web server (http://topcons.cbr.su.se/) was used 

to analyze the full sequences of the envelope glycoproteins. Then, putative TM segments were analyzed 

by a DeltaG prediction server (http://dgpred.cbr.su.se/) (Hessa et al, 2007) to predict their apparent free 

energy, ∆Gapp. Then, the I-Tasser web server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) 

(Zhang, 2008) was used to predict the 3D structure of the putative TM segments. 

 

5.2.2 Molecular Dynamics Simulations 
 

An equilibrated simulation box of 128 DMPC lipids solvated in 5673 water molecules was chosen as 

the starting configuration for the simulations. The helix monomers were embedded into the lipid bilayer 

parallel to the bilayer normal by using the protocols given by (Faraldo-Gómez et al, 2002) that was 

described in details in the two previous chapters. Then, Na+ and Cl- ions were added randomly to 

neutralize the system and provided a close-to-physiological condition of 100 mM salt. The initial helix-

lipids-water system was subjected to 500 steps of energy minimization using the steepest descent 
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algorithm followed by 200 ps simulation with harmonic position restraints. Finally, fully unrestrained 

productions run were performed for a simulation length of 200 ns. 

The DMPC lipids were described with the Berger force-field parameters (Berger et al, 1997). 

The GROMOS96 FF53A6 force field (Oostenbrink et al, 2005) was used for the peptide that was 

showed to produce good interaction between lipid and peptide. SPC water model was used (Berendsen 

et al, 1981). All simulations were carried out by using GROMACS simulation software, version 4.0.3 

(Hess et al, 2008). Periodic boundary conditions were used in all directions. Electrostatic interactions 

were calculated explicitly at a distance smaller than 1 nm, and long range electrostatic interactions were 

calculated by particle-mesh Ewald summation (Darden et al, 1993). Lennard-Jones interactions cutoff 

was 1 nm. All bonds were constrained by using the LINCS algorithm (Hess et al, 1997) allowing for an 

integration time step of 2 fs. The simulation temperature was kept constant by weakly (τp = 0.1 ps) 

coupling the lipids, protein, and solvent separately to a temperature bath of 310  K. Likewise, the 

pressure was kept constant by weakly coupling the system to a pressure bath of 1 bar.  

 

5.3 Results  
 

5.3.1 Secondary Structure Prediction  
 

We used the TOPCONS web server to predict the secondary structure of the studied envelope 

glycoproteins. The screening of a full length combination of E1 and E2 or prM and E amino acid 

sequences showed that both the E1/prM and the E2/E envelope glycoproteins contain at least one TM 

domain (FIGURE 5.1). The results for the genus Flavivirus (DENV, WNV and JEV) were consistently 

similar to each other with two TM domains located at their C-terminal regions of the prM and E 

proteins.  In the case of BVDV, a representative from Pestivirus, two putative TM domains were 

predicted for the E1 region and only one putative TM domain for the E2 region. The TOPCONS server 

provided a slightly different prediction for the envelope glycoprotein of HCV-E1. However, the 

locations of the putative TM regions of the HCV-E1 and E2 are still the same as were previously 

suggested (Op De Beeck et al, 2000)(Cocquerel et al, 2000). The only difference is that one more 

putative TM region was predicted by four predictors of TOPCONS approximately 23 residues upstream 

from the HCV-E1 region of interest (P26664 350-383). The HCV-E2 protein was shown to have only 

one putative TM domain similarly to the BVDV-E2. However, when shorter sequence segments were 
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given as inputs (segments with approximately 24-35 amino acid residues with charged residues located 

at the centre), TOPCONS predicted single-pass helices (results not shown here) for the input segments.     

   

 

FIGURE 5.1 TOPCONS analyses for complete sequences of the E1/prM and E2/E envelope 
glycoproteins from Flaviviridae viruses. The left sides (upstream region) show the putative TM 
domains for the E1/prM and the right sides (downstream region) that of E2/E. These data were 
generated by the TOPCONS web server (http://topcons.cbr.su.se). Each result is labeled by the 
virus name. 
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For all studied segments, the ∆Gapp values ranged from -0.60 to 2.54 kcal/mol (TABLE 5.1). 

The ∆Gapp values for the putative TM domains obtained by the TOPCONS prediction server (FIGURE 

5.1) are listed with the extension labels A and B in TABLE 5.1. The sequences with the extension label 

“MD” are the segments used in the MD simulations.  

 

TABLE 5.1 DeltaG predictions of putative TM segments of the envelope glycoproteins from 
Flaviviridae viruses. The virus names with A, B, and C extensions indicate the suggested TM 
sequence segments from the TOPCONS analyses for the full sequence analyses of the envelope 
glycoproteins. The virus names with the extension ‘MD’ indicate the segments that were used for 
MD simulations. The criteria for these “MD” segments are (1) they contain a charged residue in 
the centre of the sequence segments, (2) their length is 23-40 amino acids, and (3) consensus 
results were obtained from at least three TOPCONS predictors.  

Virus Genus & 
Type 

Sequence (residue length) 
∆G 

(kcal/mol) 
Flavivirus   
DENV-prM-A 
DENV-prM-B 
DENV-prM-MD 

WILRHPGFTIMAAILAYTIGT (21) 
QRALIFILLTAVAPSMTMRCI (21) 
PGFTIMAAILAYTIGTTHFQRALIFILLTAVAP (33) 

1.249 
0.640 
1.255 

JEV-prM-A 
JEV-prM-B 
JEV-prM-MD 

WILRNPGYALVAAVIGWMLGS (21) 
MQRVVFAILLLLVAPAYSFNC (21) 
PGYAFLAATLGWMLGSNNGQRVVFTILLLLVAP (33) 

1.826 
-0.136 
2.540 

WNV-prM-A 
WNV-prM-B 
WNV-prM-MD 

WIIRNPGYAFLAATLGWMLGS (21) 
QRVVFTILLLLVAPAYSFNCL (21) 
NPGYALVAAVIGWMLGSNTMQRVVFAILLLLVAP (34) 

2.406 
0.000 
1.657 

Pestivirus   
BVDV-E1-A 
BVDV-E1-B 
BVDV-E1-MD 

LTRIWNAATTTAFLVCLVKIV (21) 
MVQGILWLLLITGVQGHLDCK (21) 
RIWNAATTTAFLVCLVKIVRGQMVQGILWLLLITG (35) 

1.035 
2.293 
0.917 

Hepacivirus   
HCV-E1-A 
HCV-E1-B 
HCV-E1-MD 

LDMIAGAHWGVLAGIAYFSMV (21) 
WAKVLVVLLLFAGVDAETHVT (19) 
GAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA (34) 

2.037  
1.939 
1.687 

   

Flavivirus   
DENV-E-A 
DENV-E-B  
DENV-E-MD 

GVSWTMKILIGVIITWIGMNS (21) 
TSLSVSLVLVGIVTLYLGVMV (21) 
LGILLTWLGLNSRSTSLSMTC IAVGMVTLYL G (32) 

1.479 
-0.403 
1.275 

JEV-E-A 
JEV-E-B  
JEV-E-MD 

GMSWITQGLMGALLLWMGVNA (21) 
RSIALAFLATGGVLVFLATNV (21)  
GALLLWMGVNARDRSIALAFLATGGVLVFLA (29) 

1.644 
0.051 
2.053 

WNV-E-A 
WNV-E-B  
WNV-E-MD 

FRSLFGGMSWITQGLLGALLLWMGIN (26) 
RSIAMTFLAVGGVLLFLSVNV (21)  
GLLGALLLWMGINARDRSIAMTFLAVGGVLLFLSV (35) 

1.161 
-0.005 
1.707 

Pestivirus   
BVDV-E2-C 
BVDV-E2-MD 

ESILVVVVALLGGRYVLWLLV (21) 
DYFAESILVVVVALLGGRYVLWLLVTYMVLSEQKALG (37) 

-0.433 
1.882 

Hepacivirus   
HCV-E2-C 
HCV-E2-MD 

LLFLLLADARVCSCLWMMLLI (21) 
EYVVLLFLLLADARVCSLWMMLLIAQAEA (29) 

-0.630 
0.070 
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5.3.2 I-TASSER 3D Structure Prediction 
 

The I-TASSER prediction server predicted all the upstream TM domains (E1/prM) to exist as stable 

non-kinked helices (FIGURE 5.2). As expected, due to the absence of an ASP amino acid in the centre 

of the BVDV-E2 segment, no kinked behavior was observed. I-TASSER gave different results for the 

E2 and E types of envelope glycoproteins. The TM domains of DENV-E, WNV-E and JEV-E were 

predicted to centrally unfold. This behavior was probably caused by their central ASP residue. However, 

for the DENV-E that contain no central ASP, was also kinked as the others. Surprisingly, 4 out of 5 

models of the HCV-E2 were predicted as non-kinked helices by I-TASSER. The HCV-E2 segment 

contains a negatively charged ASP in its centre. The structural templates that were used by the I-

TASSER for modeling this target sequence were related to light-harvesting complexes or electron 

transport proteins (e.g. 1S5L, 1Q90, 1EHKC, 1JBO, 1DXR).  

 

 

 

FIGURE 5.3 Representative 3D models obtained from the I-TASSER server. For the E1/prM : 
BVDV-E1 (2/5), HCV-E1 (1/3), DENV-prM (1/3), JEV-prM (1/3), WNV-prM (1/4) and the 
E2/E: BVDV-E2 (1/5), HCV-E2 (4/5), DENV-E (0/5), JEV-E (0/5) and WNV-E (0/5). The 
numbers in the parentheses indicate how many stable non-kinked helices were among all 
predicted models.       
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5.3.3 MD Simulations of TM Helix Monomers 
 

We initially did several test simulations for the short hydrophobic stretches. However, they resulted in 

unfolded helices (results not shown here). Therefore we decided to use the longer sequence segments 

that contain highly polar residues located in the centre of the segment (TABLE 5.1, refer to those that 

are labeled with the extension –MD). These putative TM domains of the E1/prM were observed as 

stable helices during the 200 ns simulation time (FIGURE 5.3). Only the JEV-prM slightly kinked. In 

contrast, the TM domains of the E2/E severely kinked (HCV-E2, DENV-E, JEV-E and WNE-E) except 

the TM domain of the BVDV-E2. The RMSD analyses based on the ideal α-helix, clearly showed that 

the putative TM domain of E1/prM were closer to the ideal helix than the E2/E (FIGURE 5.4).    

 

 

FIGURE 5.3 Final configurations after 100 ns of MD simulation of the prM/E1 and the E/E2 
TM helix monomers from the Flaviviridae viruses. The TM helices are shown as helical cartoon. 
Bulk water, lipid head groups and the charged residues in the center of the TM helices are 
represented as atomic spheres. Lipid acyl chains are not shown for clarity.  

 

 The putative TM domains of E1/prM contain at least one positively charged residue. The 

DENV-E, WNV-E and JEV-E (Flaviviruses) contain only an Arg, HCV-E1 contains a Lys, and the 

BVDV-E1 contains both Lys and Arg residues (TABLE 5.1). During MD simulations, the side chains 

of their Lys and Arg residues managed to tilt and make contact with lipid head groups or bulk water. 
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The putative TM domains of the HCV-E2, WNV-E and JEV-E contain at least one negatively charged 

Asp residue. Asp which has the shortest side chain among all four charged amino acids was not 

efficiently anchored to the bilayer interface. Therefore this could be the possible cause for the observed 

kinking of the helix. We conclude that all the TM domains in this study which contain at least a single 

Asp in the centre of their TM segments resulted in severely kinked helices. The only exception to this 

‘role’ is the DENV-E domain which contains no Asp. Also this peptide was observed as a kinked helix, 

similarly to the other members of the Flavivirus genus.  

 

 

FIGURE 5.4 RMSD from the conformation of an ideal α-helix for the putative TM helices of the 
envelope glycoproteins from the Flaviviridae viruses. Five flanking residues each from both 
sides of the N and C-terminal regions were not included in the calculation. Each graph is labeled 
according to the virus name. Red lines refer to the TM domain of the E/prM, and the black lines 
refer to the TM domain of the E2/E.  

       

The analysis of the lipid bilayer membrane thickness showed a range between 3.35 to 3.51 nm (TABLE 

5.2). There is no significant difference of the membrane thickness results between the E1/prM and the E2/E 
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domains. The tilting angles were computed only for the unkinked TM domains. The smallest tilting angle 

was obtained for the TM domain of DENV-prM (TABLE 5.2). The other TM domains tilted by more than 

42° which is obviously not in the typical range for  tilting angles of helical TM proteins (White & Wimley, 

1999). However, one should not forget that the ectodomain region of these envelope proteins could affect the 

structural behavior of the helix monomers. We speculate that, in nature, the tilting angle of these TM 

domains may be smaller when the large ectodomain region is present or/and due to the heterodimerization of 

both envelope glycoproteins. 

      

TABLE 5.2 Structural behavior during MD simulations of putative TM helices from envelope 
glycoproteins of Flaviviridae viruses. The membrane thickness, computed by GridMAT-MD 
(Allen et al, 2009) indicates the average hydrophobic thickness of the membrane, measured from 
the average distances between the phosphate atoms of upper and lower leaflets.  

Monomers of 
Flaviviruses 

Membrane thickness 
(nm) 

Tilting angle of helices 
( ° ) 

(80-100ns) 

BVDV-E1 3.46 ± 0.42 64.6 ± 5.9 
BVDV-E2 3.51 ± 0.51 78.0 ± 8.3 
HCV-E1 3.42 ± 0.50 60.6 ± 4.9 
HCV-E2 3.45 ± 0.54 Kinked 
DENV-prM 3.50 ± 0.34 32.3 ± 5.0 
DENV-E 3.45 ± 0.48 Kinked 
JEV-prM 3.50 ± 0.30 42.5 ± 4.5 
JEV-E 3.35 ± 0.52 Kinked 
WNV-prM 3.52 ± 0.33 61.7 ± 4.0 
WNV-E 3.52 ± 0.51 Kinked 

 

 

5.4 Discussion and Conclusion 
 

Sequence analyses of the envelope glycoproteins from the Flaviviridae viruses showed that these 

membrane proteins have TM domains that are located at the end of their C-terminal region. Full length 

sequence analyses by TOPCONS showed that the E1/prM envelope glycoproteins contain two putative 

TM domains connected by a short loop. For HCV-E1, this result is not in agreement with the 

experimental data that suggest that both regions exist as a single TM domain (Type I membrane 

protein) (Cocquerel et al, 2002)(Cocquerel et al, 2000). Moreover, the NMR-derived structure (1EMZ) 

of a segment from the HCV-E1 showed that the Asn367 and Lys370 residues are in the helical region 

(Op De Beeck et al, 2000). The structure suggests that both of these highly polar residues are inter-

connecting the two hydrophobic stretches and they are located in the core of the lipid bilayer. Both of 
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the hydrophobic segments are too short to exist as a single-pass helix in the lipid bilayer environment. 

In fact, we performed several test simulations for the hydrophobic stretches as helix monomers 

(approximately 20 amino acid residues), but they unfolded during the simulations.  

The I-TASSER prediction server also predicted a model of HCV-E1 as an unkinked helix 

containing the polar and charged residues in the center of a segment of 26 amino acids length. I-

TASSER gave similar 3D structural predictions for the other segments of E1/prM. Furthermore, the 

MD simulations also showed that these putative TM domains were stably retained as non-kinked helix 

monomers in the lipid bilayer environment. Interestingly, although these putative TM segments contain 

several charged amino acid residues located in the centre of the segments, their ∆Gapp values are in the 

range found for other translocon integrated TM peptides and for TM segments from known 3D 

structures of membrane proteins (Hessa et al, 2007)(Hessa et al, 2009)(Hessa et al, 2005). This shows 

that the ∆Gapp predictions also in agreement with the experimental data. However, the ∆Gapp only 

illustrates the possibility of the TM domain to laterally integrate from the translocon into the membrane 

bilayer but not their structural conformation. Here we showed that most of the putative TM domains of 

the E2/E were severely kinked during the simulations. This type of kinked TM helix monomer does not 

exist in the current PDB database. Moreover, the unfolded and severely kinked helices indicate that 

they are unfavorable to remain as stable helix monomers in the lipid bilayer. We showed in Chapter 3 

that the helical structure of HCV-E2 improved when it exists as a heterodimer interacting with HCV-E1 

(Jusoh et al, 2010). Therefore, based on this extended study, we suggest a similar mechanism for the 

other members of Flaviviridae viruses. Furthermore, the E1-E2 or the prM-E envelope glycoproteins 

have been proposed based on experimental data to exist as a heterodimer and to be retained in the ER 

membrane. The HCV-E1-E2 heterodimer was shown to interact before entering the membrane bilayer 

environment (Cocquerel et al, 2002). Both of the TM domains of E1 and E2 were hypothesized to form 

a hairpin-like structure before the signal sequence is cleaved in the translocon environment. Then each 

of the TM domains formed a single pass type I TM helix in membrane bilayer environment (Cocquerel 

et al, 2002). The heterodimerization of these envelope glycoproteins was explained by the dependency 

of the correct folding of the E2/E in the presence of the E1/prM (Lorenz et al, 2003)(Cocquerel et al, 

2002).                

In conclusion, we showed the structural behavior of the putative TM helix monomers from the 

envelope glycoproteins of the Flaviviridae viruses in the membrane bilayer. The results presented here 

suggest that several TM domains of the E2/E may not exist as stable single-pass helices in nature 

depending on the type and total amount of the central polar and charged residues. 
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CChhaapptteerr  66    
CCoonncclluussiioonn  aanndd  OOuuttllooookk  

Acid amino sequences do not only play an important role for the functions of a TM domain but also 

determine its structural behavior. The MD simulations of the engineered monomer peptides were used 

as references. This study showed that a single-pass TM helix that contains at least one Asp residue 

located in the center severely kinked during the MD simulation. The similar strategy was applied to the 

TM domains of the envelope glycoproteins of the Flaviviridae viruses. These TM domains of HCV-E2, 

JEV-E, and WNV-E that contain an Asp amino acid were observed to be severely kinked during the 

simulation. However, a TM helix without a central Asp residue still has a tendency to kink if it contains 

several other highly polar charged residues as found for the TM domain of the DENV-E. In contrast, 

the TM helix monomers of HCV-E1, BVDV-E1, DENV-prM, and WNV-prM showed stable helical 

conformations during 200 ns of simulation time. Interestingly, the TM domain of E1/prM that is located 

in the upstream segments of the nascent polypeptide was shown to be more stable when expressed as a 

single-pass helix in bilayer compared to the TM domains of the E2/E. The unstable helical 

conformation of the E2/E monomers in the MD simulations could relate with the dependency of the 

E2/E envelope glycoprotein to the presence of the E1/prM as been suggested by the experimental data. 

Therefore, heterodimerization of the E1-E2 or prM-E envelope glycoproteins before entering the lipid 

bilayer may be the best option for the E2/E to prevent the misfolding event. Altogether, the results show 

that these putative TM domains of the envelope glycoproteins from Flaviviridae viruses illustrate 

similar structural behavior of their TM regions.  

The classical MD simulation is the best unbiased method to study membrane proteins in their 

realistic bilayer environment. Here we clearly show that when a TM helix monomer contains charged 

or polar residue located in its center that helix has a tendency to tilt or severely kink depending on the 

type and total amounts of the highly polar residues. However, the straightforward MD simulation may 

not be suitable to sample alternative conformations for this type of TM helix monomer. The interaction 

between the charged and polar side chains with the hydrophilic atoms at the bilayer interfacial region 

started at the initial simulation time. This tight interaction might cause potential energy barriers to 

sample other type of conformations although the time of a simulation is exhaustively prolonged. 

Another strategy for future structural studies of this type of TM domain is to employ modern techniques 

to enhance conformational sampling during MD simulations as for example, the replica exchange or the 

umbrella sampling methods. But, we still need to keep in mind that getting more structural 

configurations does not mean getting correct structures. More experimental data are still needed to 
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verify the structural conformations for the TM domains of these envelope glycoproteins characterized 

in this study. 
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