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Abstract

The need for assessing similarity in meaning is central to most language tech-
nology applications. Distributional methods are robust, unsupervised methods
which achieve high performance on this task. These methods measure similarity
of word types solely based on patterns of word occurrences in large corpora, fol-
lowing the intuition that similar words occur in similar contexts. As most Nat-
ural Language Processing (NLP) applications deal with disambiguated words,
words occurring in context, rather than word types, the question of adapting
distributional methods to compute sense-specific or context-sensitive similari-
ties has gained increasing attention in recent work.

This thesis focuses on the development and applications of distributional meth-
ods for context-sensitive similarity. The contribution made is twofold: the main
part of the thesis proposes and tests a new framework for computing similarity
in context, while the second part investigates the application of distributional
paraphrasing to the task of question answering.

New framework for context-sensitive distributional similarity

The capacity to identify words, or larger units of text, which convey similar
meaning is of major importance to a large number of NLP applications which
require at least a minimal level of text understanding.

Distributional methods are the most robust approach to the task of comput-
ing word similarity. These are based on the hypothesis, initially formulated
by Harris (also known as the distributional hypothesis), stating that words
occurring in similar contexts tend to have similar meaning. Following this intu-
ition, these methods measure relatedness in meaning as indicated by patterns
of word occurrence in large corpora. More precisely, words are represented as
high-dimensional vectors, where the dimensions represent context features, such
as co-occurring context words. The relatedness of two words can be assessed
by comparing their associated vector representations.
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ii Abstract

The task of assessing meaning similarity is challenged by sense ambiguity, the
capacity of words to convey a number of different meanings. In the case of
homonymy etymologically distinct words accidentally share the same surface
realization and the conveyed meanings are significantly divergent. On the other
hand, polysemous words can exhibit a large number of related senses which
are determined by the distinctions in the prototypical contexts in which they
appear.

In a larger context, sense ambiguity is one of the major challenges that all
language technology applications are faced with, from information retrieval
to machine translation. The focus of recent work has been the question of
adapting distributional methods to compute sense-specific or context-sensitive
similarities. Distributional methods, in their traditional formulation, represent
meanings of word types and are therefore incapable of differentiating between
different usages, or different senses of a word. Furthermore, in a vector space
model this is made difficult by the fact that the vector representation of a word
mixes together all its different senses and usages over an entire corpus.

A number of methods for computing context-sensitive similarity within the
distributional representation paradigm have been proposed in the literature.

Our research goal is to investigate means of computing context-sensitive distri-
butional similarity which are aware of word senses. We propose to describe a
word in terms of a distribution over a set of data-induced meaning components
while the disambiguation process, leading to the meaning of words in context,
is modeled as a shift in this distribution. Specifically, the framework developed
represents words, occurring in isolation or in context, as probability distri-
butions over a global set of corpus-induced meaning components, or meaning
aspects. When given a word without a context, this representation reflects its
a priori meaning as a distribution over this set of latent meaning components.
When given a context, a shift in this distribution determines a disambiguated
representation, in which meaning components which are validated by the con-
text become more likely. Such representations can now be compared with a
clear interpretation: words, occurring both isolated or in context, have similar
meaning if they trigger the same latent components.

In turn, the meaning components themselves are induced form the corpus in
an unsupervised fashion. The intuition behind this is that each occurrence
of a word together with a context feature is explained by a latent meaning, or
latent meaning component, and the sum of all occurrences of a word is a mixture
over such latent classes. The goal is to induce the set of latent classes that best
explain the corpus co-occurrence data. For this, we follow Hofmann’s (Hofmann
and Puzicha [1989]) framework for unsupervised learning from dyadic data and
we use two variations of this method to induce latent classes.

Unlike previous work, our framework models the meaning of words in context
in a probabilistic setting, in which the meaning representations, as well as the
similarity computations, are obtained in a natural, intuitive fashion. Further-
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more, the framework is completely modular, as it can be applied to any type of
vector space model (VSM) and used with any suitable latent variable induction
model/algorithm. In this thesis, the framework is instantiated on a word-level
VSM, for the task of lexical substitution as well as on a paraphrase acquisition
VSM; we obtain promising results on both of these tasks.

Distributional paraphrasing for question answering

The second part of this thesis approaches the application of distributional para-
phrasing to the task of question answering. More precisely, the focus is twofold:

1. To investigate the integration of a paraphrasing component in an answer
extraction module.

2. To test the impact of context-sensitive paraphrasing on the task of ques-
tion answering.

Paraphrases are pairs of phrases which convey similar meaning, and can there-
fore substitute each other without changing the meaning of the sentences they
occur in. The purpose of paraphrase induction is again that of addressing the
challenge posed to most NLP applications by the fact that the same meaning
can expressed through a variety of different surface realizations.

A robust way to approach the task of automatically acquiring paraphrases is,
again, through the use of distributional methods. The mechanism behind this
is similar to that of computing lexical similarity as (typically small) phrases are
treated as atomic units; their occurrence patterns in large corpora are used for
computing similarity scores between such phrases. In particular, throughout
this thesis, we remain within the representation paradigm proposed by the
DIRT (Discovery of Inference Rules from Text) algorithm in Lin and Pantel
[2001a]. Phrases are paths in dependency graphs which are represented in a
space of contextual features consisting of the two words to the left and right
of the phrase paths. The vector representations obtained this way are used to
measure phrase similarity. When given a particular phrase, its top most similar
phrases, according to the similarity scores, are returned as paraphrases. An
example of a typical paraphrase obtained with the DIRT algorithm is X solve
Y ≈ X find solution to Y.

Our target application is Question answering (QA). This is the task of auto-
matically extracting answers to questions from large collections of text. One
of the main issues that QA systems face is caused by the fact that the same
meaning is often expressed differently in questions and in answer-containing
sentences. The use of paraphrases is one of the most natural ways to address
this problem and methods such as Lin and Pantel [2001a] have been developed
with applications such as QA in mind.
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We investigate the use of paraphrasing in QA by building a basic question
answering system centered around a paraphrasing component. We initially in-
vestigate what are appropriate ways of integrating a paraphrase component into
such a system, which make the most use of the knowledge encoded in a collec-
tion. We propose a language-model based answer extraction module, which can
be naturally enhanced with a paraphrasing component. Unlike previous work,
we focus on robustness: rather than using the paraphrase rules to obtain exact
matches between sentences and questions, we rather allow them to reduce the
distance between question and answer-containing sentences.

Further on, we instantiate the context-sensitive similarity framework for the
paraphrasing task and test the impact of context-sensitive paraphrasing to the
question answering system. We observe that the use of paraphrasing brings
overall improvements, which although significant, are severely limited by low
coverage: while large improvements can be observed on the sentences in which
paraphrases are used, the number of cases in which these are used is very small.
In future work we plan to investigate in more detail the limitations we observe,
in order to identify if these are true limitations of the paraphrasing method, or
are caused by other factors.



Kurzzusammenfassung

Die Notwendigkeit der Beurteilung von Bedeutungs ähnlichkeit spielt für die
meisten sprachtechnologische Anwendungen eine wesentliche Rolle. Distribu-
tionelle Verfahren sind solide, unbeaufsichtigte Verfahren, die für diese Auf-
gabe sehr effektiv sind. Diese Verfahren messen die Ähnlichkeit von Wortarten
lediglich auf Basis von Mustern, nach denen die Wörter in grossen Korpora vor-
kommen, indem sie der Erkenntnis folgen, dass ähnliche Wörter in ähnlichen
Kontexten auftreten. Da die meisten Anwendungen im Natural Language Pro-
cessing (NLP ) mit eindeutigen Wörtern arbeiten, also eher Wörtern, die im
Kontext vorkommen, als Wortarten, hat die Frage, ob distributionelle Verfah-
ren angepasst werden sollten, um bedeutungsspezifische oder kontextabhängige
Ähnlichkeiten zu berechnen, in neueren Arbeiten zunehmend an Bedeutung ge-
wonnen. Diese Dissertation konzentriert sich auf die Entwicklung und Anwen-
dungen von distributionellen Verfahren für kontextabhängige Ähnlichkeit und
liefert einen doppelten Beitrag: Den Hauptteil der Arbeit bildet die Präsentation
und Erprobung eines neuen framework für die Berechnung von Ähnlichkeit im
Kontext. Im zweiten Teil der Arbeit wird die Anwendung des distributional
paraphrasing auf die Aufgabe der Fragenbeantwortung untersucht.

Neuer framework für kontextabhängige distributionelle Ähnlichkeit

Die Fähigkeit der Identifikation von Wörtern oder grösseren Texteinheiten, die
eine ähnliche Bedeutung haben, spielt für viele NLP-Anwendungen, die ein
Mindestmass an Textverständnis erfordern, eine grosse Bedeutung.

Distributionelle Verfahren sind die sicherste Methode zur Berechnung von Wort-
ähnlichkeit. Diese Verfahren basieren auf der Hypothese, die ursprünglich von
Harris aufgestellt wurde und auch als distributionelle Hypothese bekannt ist.
Diese Hypothese besagt, dass Wörter, die in ähnlichem Kontext auftreten, dazu
tendieren, eine ähnliche Bedeutung zu haben. Dieser Erkenntnis folgend, mes-
sen diese Verfahren Bedeutungsbezüge, die sich durch die Auftretensmuster von
Wörtern in grossen Korpora äussern. Genauer gesagt werden Wörter als hoch-
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vi Kurzzusammenfassung

dimensionale Vektoren repräsentiert wenn die Dimensionen Kontextmerkmale
wie z.B. gemeinsam auftretende Kontextwörter darstellen. Der Bezug von zwei
Wörtern kann beurteilt werden, indem die ihnen zugehörigen Vektordarstellun-
gen verglichen werden.

Die Beurteilung von Bedeutungsähnlichkeit wird durch Mehrdeutigkeit, also
der Eigenschaft von Wörtern, eine Reihe verschiedener Bedeutungen zu trans-
portieren, erschwert. Im Fall von Homonymie haben etymologisch verschiedene
Wörter zufällig dieselbe äussere Form, wobei die transportierten Bedeutungen
wesentlich voneinander abweichen. Andererseits können polyseme Wörter eine
Vielzahl verwandter Bedeutungen aufweisen, die durch die Unterschiede in den
prototypischen Kontexten, in denen sie vorkommen, bestimmt werden.

In einem grösseren Kontext ist Mehrdeutigkeit eine der grössten Herausforde-
rungen, der sich alle sprachtechnologischen Anwendungen, von Information Re-
trieval bis hin zur maschinellen Übersetzung, gegenübersehen. Im Mittelpunkt
aktueller Arbeiten steht die Frage, ob distributionelle Verfahren angepasst wer-
den sollen, um bedeutungsspezifische oder kontextabhängige Ähnlichkeiten zu
berechnen. So, wie sie ursprünglich formuliert wurden, stellen distributionel-
le Verfahren Wordarten dar und können daher nicht zwischen verschiedenen
Verwendungen oder Bedeutungen eines Wortes unterscheiden. Darüber hinaus
kommt in einem Vektorraummodell die Schwierigkeit hinzu, dass die Vektordar-
stellung eines Wortes all seine verschiedenen Bedeutungen und Verwendungen
innerhalb eines ganzen Korpus vermischt.

In der Literatur wurde eine Reihe von Methoden für die Berechnung kon-
textabhängiger Ähnlichkeiten innerhalb des distributionellen Darstellungspa-
radigmas vorgeschlagen.

Das Ziel unserer Forschung ist es, Mittel zur Berechnung kontextabhängiger
distributioneller Ähnlichkeiten zu untersuchen, die auf Wortbedeutungen sen-
sibilisiert sind. Unser Vorschlag ist, ein Wort hinsichtlich der Verteilung in ei-
ner Gruppe Bedeutungskomponenten zu beschreiben, während der Verdeut-
lichungsprozess, der zur Bedeutung von Wörtern im Kontext führt, als eine
Veränderung in der Verteilung dieser latenten Bedeutungsklassen modelliert
wird. Der entwickelte framework stellt Wörter, die einzeln oder im Kontext
vorkommen, als Wahrscheinlichkeitsverteilungen über eine globale Reihe von
Korpus-induzierten Bedeutungskomponenten oder -aspekten. Bei einem Wort
ohne Kontext spiegelt diese Darstellung seine a-priori-Bedeutung als eine Ver-
teilung über eine Reihe latenter Bedeutungskomponenten wider. Ist Kontext
vorhanden, bestimmt eine Veränderung in dieser Verteilung eine eindeutige Re-
präsentation, in der Bedeutungskomponenten, die durch den Kontext bestätigt
werden, wahrscheinlicher werden. Solche Darstellungen können nun mit einer
eindeutigen Interpretation verglichen werden: Wörter, die sowohl alleinstehend
als auch im Kontext auftreten, haben eine ähnliche Bedeutung, wenn sie die
gleichen latenten Komponenten haben.

Die Bedeutungskomponenten selbst werden ihrerseits wieder unbeaufsichtigt
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vom Korpus abgeleitet. Die Erkenntnis, die sich dahinter verbirgt, ist, dass je-
des Vorkommen eines Wortes mit einem Kontextmerkmal durch eine latente
Bedeutung oder latente Bedeutungskomponente erklärt wird und die Gesamt-
heit all dieser Vorkommen eines Wortes eine Mischung über solchen latenten
Klassen sind. Das Ziel ist es, die Gruppe latenter Klassen abzuleiten, die am
besten die Daten der Korpuskookkurenz erklärt. Dafür lehnen wir uns an Hof-
manns (Hofmann and Puzicha [1989]) framework für unüberwachtes Lernen
aus dyadischen Daten und wir benutzen zwei Variationen dieser Methode, um
latente Klassen abzuleiten.

Im Gegensatz zu früheren Arbeiten modelliert unser framework die Bedeu-
tungen von Wörtern im Kontext in einem Wahrscheinlichkeitsrahmen, in dem
die Darstellung von Bedeutungen und die Berechnung von Ähnlichkeiten auf
natürliche, intuitive Weise erhalten werden. Weiterhin ist der Rahmen völlig
modular, da er bei jeglicher Art von Vektorraummodell (VRM) angewendet
und mit jedem geeigneten latenten Modell bzw. Algorithmus benutzt werden
kann. In dieser Dissertation wurde der framework auf einem VRM auf Wortebe-
ne für die lexikalische Substitution sowie auf einem VRM der Paraphrasener-
halt konstruiert. In beiden Aufgabenbereichen erhalten wir vielversprechende
Ergebnisse.

Distributional paraphrasing für Fragenbeantwortung

Der zweite Teil dieser Dissertation widmet sich der Anwendung des distribu-
tional paraphrasing auf die Fragenbeantwortung. Genauer gesagt stehen zwei
Aspekte im Fokus:

1. Wir untersuchen die Einbindung einer Paraphrasierungskomponente in
ein Antwortextraktionssystem.

2. Wir testen die kontextabhängige Paraphrasierungsmethode an der Fra-
genbeantwortung.

Paraphrasen sind Paare von Phrasen, die eine ähnliche Bedeutung transportie-
ren und sich daher gegenseitig ersetzen können, ohne die Bedeutung der Sätze
zu verändern, in denen sie vorkommen. Der Zweck von Paraphraseninduktion
ist wiederum der, die Herausforderung anzugehen, die sich den meisten NLP-
Anwendungen aufgrund der Tatsache stellt, dass die gleiche Bedeutung durch
eine Vielzahl verschiedener äusserer Erscheinungsformen ausgedrückt werden
kann.

Eine solide Methode, den automatischen Erhalt von Paraphrasen anzugehen,
ist die Verwendung distributioneller Verfahren. Der Mechanismus, der dahin-
ter steckt, ähnelt der Berechnung lexikalischer Ähnlichkeit, da (für gewöhnlich
kleine) Phrase als atomische Einheiten behandelt werden und ihre Auftretens-
muster in grossen Korpora für die Berechnung von Ähnlichkeitsscores zwischen



Phrasen benutzt werden. In dieser Dissertation bleiben wir durchweg inner-
halb des Darstellungsparadigmas, das vom DIRT (Discovery of Inference Ru-
les from Text) Algorithmus in Lin and Pantel [2001a] vorgeschlagen wurde.
Phrasen sind Wege in Abhängigkeitsgraphen, die in einem Raum von Kontext-
merkmalen dargestellt werden, die aus den beiden Wörtern links und rechts
von den Satzwegen/-strecken bestehen. Anhand der so erhaltenen Vektordar-
stellungen werden Phrasenähnlichkeiten gemessen. Ist ein bestimmter Phra-
se vorhanden, so werden die häufigsten ähnlichen Phrase entsprechend der
Ähnlichkeitsergebnisse als Paraphrasen ausgegeben. Ein Beispiel für eine ty-
pische Paraphrase, die anhand des DIRT Algorithmus erhalten wurde, ist: X
solves Y ≈ X finds solution to Y.

Unsere Zielanwendung ist (Question answering - QA). Dies ist die automati-
sche Extraktion von Antworten auf Fragen von grossen Textsammlungen. Eines
der Hauptprobleme, dem sich QA gegenübersehen, wird dadurch aufgeworfen,
dass die gleiche Bedeutung in Fragen und Antwortsätzen oft unterschiedlich
ausgedrückt wird. Die Verwendung von Paraphrasen ist eine der natürlichsten
Methoden, dieses Problem anzugehen, und Methoden wie z.B. Lin and Pantel
[2001a] wurden mit Anwendungen wie QA im Hinterkopf entwickelt.

Wir untersuchen die Verwendung von Paraphrasierung bei QA, indem wir ein
grundlegendes Fragenbeantwortungssystem entwickeln, dass um eine Paraphra-
sierungskomponente herum aufgebaut wurde. Zunächst untersuchen wir ange-
messene Verfahren zur Integration von Paraphrasenkomponenten in ein solches
System, und zwar die, die den grössten Nutzen aus dem Wissen ziehen, das
in solch einer Sammlung enkodiert ist. Wir schlagen ein sprachmodellbasiertes
Antwortextraktionssystem vor, das mit einer Paraphrasierungskomponente auf
natürliche Weise verbessert werden kann. Im Gegensatz zu vorherigen Arbei-
ten konzentrieren wir uns auf Stabilität: Anstatt die Paraphrasierungsregeln zu
nutzen, um exakte Treffer von Sätzen und Antworten zu erhalten, erlauben wir
ihnen, die Distanz zwischen Fragen und Antwortsätzen zu reduzieren.

Desweiteren konstruieren wir den kontextabhängigen Ähnlichkeitsrahmen für
die Paraphrasierung und überprüfen die Auswirkungen kontextabhängiger Pa-
raphrasierung auf das Fragenbeantwortungssystem. Unsere Beobachtungen zei-
gen, dass die Verwendung von Paraphrasierungen insgesamt Verbesserungen
hervorbringt, die obwohl sie beachtlich sind aufgrund geringer Abdeckung
stark eingeschränkt sind: Während bei den Sätzen, in denen Paraphrasen be-
nutzt werden, starke Verbesserungen beobachtet werden können, ist die Anzahl
der Fälle, in denen diese benutzt werden, sehr gering. In zukünftigen Arbeiten
haben wir vor, die Einschränkungen, die wir beobachten können, näher zu unter-
suchen, um herauszufinden, ob es sich dabei wirklich um Einschränkungen der
Paraphrasierungsmethode handelt oder ob sie in anderen Faktoren begründet
sind.



Chapter 1
Introduction

The need for assessing similarity in meaning is central to most language tech-
nology applications. Distributional methods are robust, unsupervised methods
which achieve high performance on this task. These methods measure similarity
of word types solely based on patterns of word occurrences in large corpora, fol-
lowing the intuition that similar words occur in similar contexts. As most Nat-
ural Language Processing (NLP) applications deal with disambiguated words,
words occurring in context, rather than word types, the question of adapting
distributional methods to compute sense-specific or context-sensitive similari-
ties has gained increasing attention in recent work.

This thesis focuses on the development and applications of distributional meth-
ods for context-sensitive similarity. The contribution made is twofold: the main
part of the thesis proposes and tests a new framework for computing similarity
in context, while in the second part we investigate the application of distribu-
tional paraphrasing to the task of question answering.

The remainder of this chapter describes the research context motivating our
work and briefly overviews our proposals.

1.1 Context-sensitive distributional similarity

Distributional methods for similarity The capacity to identify words, or
larger units of text, which convey similar meaning is of major importance to a
large number of NLP applications which require at least a minimal level of text
understanding.

Consider, for example, the task of information retrieval, one of the most impor-
tant and widely-used end-user language technology applications. In information
retrieval the goal is to return a set of documents which are most relevant to a
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2 Context-sensitive distributional similarity

query a user has entered. The main issue that information retrieval has to face
is that of term mismatch: relevant documents may use different words than the
ones present in the query. Query expansion is a popular technique which has
been proposed to address this issue. A query expansion module takes a query as
an input and generates terms which are related in meaning to the terms of the
query. Consider, for example, the following query (from Riezler et al. [2007]):

(1) how to enhance competitiveness of indian industries

Methods for computing similarity in meaning can be employed to obtain similar
words such as increase or improve for the query word enhance. These are added
to the original set of query terms to form an expanded set of words, which are
further used to retrieve documents. This technique has been shown to improve
retrieval performance, as it generalizes over the particular lexical choices of a
user’s query.

Distributional methods are the most robust approach to the task of computing
word similarity. These are based on the hypothesis initially formulated by
Harris, also known as the distributional hypothesis, stating that words occurring
in similar contexts tend to have similar meaning. Following this intuition,
these methods measure relatedness in meaning as indicated by patterns of word
occurrence in large corpora. More precisely, words are represented as high-
dimensional vectors, where the dimensions represent context features, such as
co-occurring context words. The relatedness of two words can be assessed by
comparing their associated vector representations.

An example of meaning representations employed in a typical vector space
model, the most widespread incarnation of distributional methods, is given in
Table 1.1. In this representation words to be compared are vectors in a space
in which contextual features are co-occurring words.

relation condition quality further economic country

improve 11489 9832 9008 2931 5191 5827
enhance 1392 117 756 2194 2023 1741

Table 1.1: Fragments of the distributional representations for words improve
and enhance. Values represent co-occurrence counts (in a 5 words symmetric
window) over the GigaWord corpus.

Context-sensitive distributional similarity The task of assessing mean-
ing similarity is challenged by sense ambiguity, the capacity of words to convey
a number of different meanings. In the case of homonymy, etymologically dis-
tinct words accidentally share the same surface realization and the conveyed
meanings are significantly divergent. On the other hand, polysemous words
can exhibit a large number of related senses, which are determined by the dis-
tinctions in the prototypical contexts in which they appear.
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In a larger context, sense ambiguity is one of the major challenges that all
language technology applications are faced with, from information retrieval to
machine translation. In the context of the information retrieval task, consider
for example the query (from Riezler et al. [2007]):

(2) how to induce labour.

Most likely in this case the user is interested in ways of inducing birth and is
not concerned with labour as a social class or as in the Labour Party. Query
expansion techniques have to account for this phenomenon, as expanding with
related terms corresponding to other meanings, such as work or employment,
may lead to harming retrieval performance.

The focus of recent work has been the question of adapting distributional meth-
ods to compute sense-specific or context-sensitive similarities.

Distributional methods, in their traditional formulation, represent meanings
of word types and are therefore incapable of differentiating between different
usages, or different senses of a word. Furthermore, in a vector space model
this is made difficult by the fact that the vector representation of a word mixes
together all its different senses and usages over and entire corpus.

As an example, consider the vector of labor, again represented in a space of
co-occurring words.

party department child worker birth hospital

labor 24113 22314 6368 2966 82 180

Table 1.2: Fragment of the distributional representation for word labor (co-
occurrence counts (in a 5 words symmetric window) over the GigaWord corpus)

Distinct usages of labor can be identified in this representation. Co-occurrence
with words such as party and department indicate a political context while birth
and hospital have most likely occurred when labor was used in the context of
giving birth. As it can be observed, the data suggests that this sense occurs only
to a small degree in the newspaper corpus used. Context-aware vector space
models face the task of untangling these mixture vectors in order to obtain
meaning-appropriate representations.

A number of methods for computing context-sensitive similarity within the
distributional representation paradigm have been proposed in the literature.
These distinguish themselves by the approach they take to solving this issue
and can be categorized as type-based methods and token-based methods. Type-
based methods are characterized by the attempt to shift the meaning of words
in context through operations which combine the vector of a target word, the
word to be represented, with a vector representation of the surrounding context.
In the example above, the approach of a type-based method is to combine the
vector of induce with that of labor in order to obtain a contextualized meaning



4 Context-sensitive distributional similarity

of labor. The intuition behind these methods is that of approximating either a
contextualized or a joint meaning through some vector combination. However,
most of these methods lack a solid motivation as it often remains unclear if the
vector operations proposed are the best ways to model the underlying intuitions
of the proposed model.

Token-based methods take a conceptually different approach to this problem as
they attempt to distinguish between different meanings of a word’s occurrences
in a large corpus. Unlike type-based methods, these do not attempt to recover
specific meanings from mixed vector representations: they rather differentiate
individual word occurrences that are indicative of distinct meanings. These are
further on used to build context-specific, disambiguated, vector representations.
In the example above, a token-based method builds a vector for labor in the
context of induce labor only using a subset of all of labor ’s occurrences: the
subset containing instances which are judged to be similar to the current con-
text, (for example alternative methods of bringing on labor or learn about foods
that induce labor).

Our approach Our research goal is to investigate means of computing context-
sensitive distributional similarity which are aware of word senses, in the line of
token-based methods. However, unlike these methods we propose a unitary,
complete probabilistic framework for computing meaning similarity in context.

We propose to describe a word in terms of a distribution over a set of data-
induced meaning components while the disambiguation process, leading to the
meaning of words in context, is modeled as a shift in the distribution of these
latent meaning classes.

More precisely, we use co-occurrence input data to induce a global set of latent
classes which intuitively correspond to different usages of words. We further
represent an isolated word as the a priori probability of these classes. This
distribution reflects its potential meanings, irrespective of a specific context.
The latent classes are in turn distributions over context words, reflecting the
typical context patterns associated with each class. Given a context feature, we
use posterior likelihoods for each of these latent classes, this time to represent
the context-aware meaning of a word. These representations are further on
used to compute meaning similarity, based on the underlying hypothesis that
words, isolated or in the presence of context features, exhibit similar meaning
if they trigger the same meaning components.

To exemplify this, consider the word labor from Table 1.2. When induced
from a newswire corpus, the most likely latent class may be a labour party
class, defined by context words such as party. When given the phrase induce
labour the distributional representation will reflect as most likely a birth class,
signaled by context words such as hospital. Such a context-aware representation
can further be used to deduce that the word birth is an appropriate synonym
for labour in this case.
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A main advantage of our framework is the fact that it is completely modular, as
we abstract away from a specific instantiation of the distributional hypothesis,
as well as from the algorithm used to induce latent classes.

We test our framework for the task of assessing lexical similarity in context as
well as for acquiring context-sensitive paraphrases.

1.2 Distributional paraphrasing for question answer-
ing

Despite the increased amount of attention that both distributional paraphrasing
as well as context-sensitive distributional similarity methods have received in
recent years, studies evaluating their impact in end-user NLP tasks are scarce.

The second part of this thesis approaches the application of distributional para-
phrasing to the task of question answering. More precisely, the focus is twofold:

1. We investigate the integration of a paraphrasing component in a answer
extraction module.

2. We test the context-sensitive paraphrasing method on the task of question
answering.

Distributional paraphrasing Throughout this chapter we have discussed
distributional methods for lexical similarity, however a long line of research has
studied methods for automatic paraphrasing. In paraphrasing, the focus is not
on assessing similarity of words, but of larger, more informative units of text.

Paraphrases are pairs of phrases which convey similar meaning, and can there-
fore substitute each other without changing the meaning of the sentences they
occur in. The purpose of paraphrase induction is again that of addressing the
challenge posed to most NLP applications by the fact that the same meaning
can expressed through a variety of different surface realizations.

Consider for example, the task of Question Answering (QA). In QA a system
is given a question and the goal is to extract the answer to the question from
large collections of text. The following question-sentence pair is extracted from
the data provided by the TREC02 QA (Voorhees [2002]) track:

(3) What does the acronym NATO stand for?

(4) NATO is an acronym, from the initials of the North Atlantic Treaty
Organization.
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In this example, a system can extract the answer by making use of a paraphrase
such as X acronym stands for Y ≈ X is an acronym, from the initials of Y.

A robust way to approach the task of automatically acquiring paraphrases is,
again, through the use of distributional methods. The mechanism behind this
is similar to that of computing lexical similarity as (typically small) phrases
are treated as atomic units and their occurrence patterns in large corpora are
used for comparing them. When given a particular phrase, its top most similar
phrases, according to the similarity computations, are returned as paraphrases.

The DIRT algorithm proposed by Lin and Pantel [2001a] in particular is one of
the most popular methods for paraphrasing and has not been outperformed
in accuracy by any other distributional method. The question of context-
appropriateness has also been in the focus of recent work on distributional
paraphrasing with a number of methods being developed to model context-
appropriateness within the DIRT paraphrasing method. In particular the frame-
work we propose in this thesis can also be instantiated on the underlying vec-
tor space model employed by DIRT in order to obtain context-sensitive para-
phrasing. The second part of the thesis focuses on employing context-sensitive
paraphrasing, as well as the original DIRT algorithm for the task of question
answering.

Employing distributional paraphrasing for QA Despite the fact that
the DIRT algorithm provides a method to easily acquire a relatively1 accurate
paraphrase resource, there has been rather little research on using this method
to solve the variability problem in NLP in general and in QA in particular.
Furthermore, despite the attention that the large number of its context-sensitive
extensions have received, there is no account to this date on employing these
for an end-user language technology application.

We focus on the use of distributional paraphrasing for the task of answer extrac-
tion in question answering. In particular we remain within the representation
paradigm proposed by Lin and Pantel which has been proven to be very effec-
tive. Phrases are paths in dependency graphs which are represented in a space
of contextual features consisting of the two words to the left and right of the
phrase paths.

In more detail, we start by investigating the challenges behind the applica-
tion of DIRT distributional paraphrasing for answer extraction. We approach
this by building a basic question answering system centered around a para-
phrasing component. We investigate what are appropriate ways of integrating
a paraphrase component into such a system, which make the most use of the
knowledge encoded in such a collection. Further on, we instantiate the context-
sensitive similarity framework for the paraphrasing task and test the effects of
context-sensitive paraphrasing to the question answering system.

1The accuracy of the method has been evaluated to be approximately 50% for the most
confident paraphrases.
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1.3 Overview of the thesis

This thesis consists of two parts: the main part (Chapters 2 to 7) proposes and
tests a new framework for computing similarity in context, while in a second
part (Chapters 8 and 9) we investigate the application of distributional para-
phrasing to question answering. We further briefly summarize the individual
chapters:

• Chapter 2 summarizes previous work on distributional methods for the
computation of meaning similarity in context. This chapter focuses on
word -level similarity, while the relevant work on context-sensitive paraphrasing
is presented in more detail in Chapter 7.

• Chapter 3 introduces the context-sensitive similarity framework we de-
velop, detailing the proposed vector representations as well as the com-
putation of similarity based on these representations. These are defined
in terms of latent classes which are learned from co-occurrence data; this
chapter abstracts away from the particular method used to induce the
latent classes.

• Chapter 4 presents two models which can be used to induce latent classes.
These are initially described in their original formulation, followed by their
particular instantiation in our framework.

• Chapters 5, 6 and 7 instantiate the framework proposed for the tasks of
word similarity, lexical substitution and paraphrasing in context.

• Chapters 8 starts the second part of this thesis focused on distributional
paraphrasing for question answering. In this chapter we overview related
work on employing distributional paraphrasing both for QA and for the
related task of Recognizing Textual Entailment.

• Chapter 9 defines a basic question answering system enhanced with a
syntax-level paraphrasing component. In this context, we instantiate both
the previously proposed DIRT algorithm as well as context-sensitive para-
phrasing obtained within the framework developed in the first part of the
thesis.

• Chapter 10 concludes by summarizing the main contributions of this thesis
and discussing directions for future work.

Preliminary versions of the work presented here have been published in Thater
et al. [2009] (Chapter 2), Dinu and Lapata [2010a] (Chapters 3 and 7), Dinu
and Lapata [2010b] (Chapters 4, 5 and 6) Dinu and Wang [2009] (Chapter 8)
and Chrupala et al. [2010] (Chapter 9).
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Chapter 2
Distributional similarity. Background
and related work

Methods for assessing word meaning similarity are needed by most language
technology applications and they become crucial for the tasks requiring a deeper
level of text understanding such as question answering.

With the availability of machine-readable dictionaries, a number of dictionary-
based methods have been proposed in the literature. These make use of the
information available in dictionaries, either in the form of definitions, exam-
ple sentences or as the relation graph present in a sense inventory such as
WordNet (Fellbaum [1998]). As opposed to dictionary-based methods, distri-
butional methods build representations and compute similarity based on the
co-occurrence patterns of words, as extracted from large amounts of typically
un-processed text. These are widely used, unsupervised methods which have
been shown to outperform dictionary-based methods not only in terms of ro-
bustness but also in the accuracy they achieve.

Vector space models are the most widely-spread distributional method and have
been been introduced as early as with the work of Salton [1971]. In his original
proposal, documents and queries are compared based on their representations
as highly-dimensional vectors. Distributional methods for representing word
meaning follow the intuition that words occurring in similar contexts tend to
have similar meaning. In this case, words are represented as vectors in a space
of indicative contextual features, such as other co-occurring words.

While traditional distributional methods are targeted at representing word
types the question of modeling the meaning of words occurring in context is
in the focus of recent work, which focuses on building linguistically and empir-
ically motivated models for word meaning on context.

In this chapter we start by briefly introducing distributional methods and in

9
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particular vector space models, in their traditional formulation, in Section 2.1.
We briefly discuss the main stages in building a vector space model as well as
the known limitations of these methods. In Section 2.2 we move further to the
issue of context-sensitivity and summarize the main approaches preceding our
work.

2.1 Background

Common to all distributional methods is the choice of representing word occur-
rences as vectors in high-dimensional space, where the dimensions correspond
to context features. Context features are usually chosen as linguistic clues in-
dicative of the word’s meaning. A typical choice of context features is the use
of co-occurring words. Table 2.1 gives an example of a vector representation for
the word professor as extracted from its occurrence in sentence 1). In this ex-
ample, context features are words occurring within a window of size five around
the target word professor.

(1) Once tenured, a professor can largely set his own responsibilities and
decide to a large extent how to divide his time between teaching, writing,
researching, and administration.

once tenured a can largely set his own

professor 1 1 1 1 1 1 1 1

Table 2.1: Non-zero dimensions of the professor vector extracted from sentence
1).

Vector space models are widely-used methods for computing word similarity
with applications ranging from information retrieval to essay grading. Specific
to vector space models, as a distributional method, are word type representa-
tions. These are obtained by adding the vectors of each individual occurrence
of a word, over a large collection of text. Such a vector describes a word’s
patterns of use by summing up over all its occurrences. To exemplify, the word
professor is represented in a vector space model extracted from GigaWord as
in Table 2.2; we list only the top most frequently co-occurring context words
as dimensions.

university law science political associate college

professor 42434 13615 7684 6257 6055 6011

Table 2.2: Dimensions with highest values of the professor vector extracted
from GigaWord.

For the rest of this section we overview the stages involved in building a vector
space model and we discuss the main limitations of this approach. A detailed
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account of vector space models together with their applications to NLP tasks
can be found in Turney and Pantel [2010] .

Main stages in building vector space models There are four steps in
building a vector space model: 1) extraction of the input vector representa-
tions, 2) weighting of the vector components, 3) dimensionality reduction and
4) similarity computations.

Input vector representations The most important step in building a vector
space model is the choice of input vector representation (Turney and Pantel
[2010]). This stage consists in building an input frequency matrix, which con-
tains words represented over a set of meaning-indicative context features.

A large number of alternative representations exist, each of them usually tar-
geted at a specific application. Information retrieval is the first, and one of
the most prominent applications of vector space models (Salton [1971], Salton
et al. [1975] Deerwester et al. [1990] Landauer and Dumais [1997] Finkelstein
et al. [2002]). In information retrieval, vector spaces represent words in terms of
the documents in which they occur, leading to word-document input matrices.
These can be used to compute word similarity as well as document similarity
with applications such as document retrieval and classification.

Weighting is the second stage in building vector space models. Weighting
schemes are functions on the vector values which are applied to overcome bias
that raw counts might introduce. To give an example, say or tell as context
words are very frequent in newspaper corpora and they are not indicative clues
of word meanings: in this domain they are too frequent to signal meaning
similarity. Examples of widely-spread weighting schemes are point-wise mutual
information or tf-idf (term frequency-inverse document frequency). A detailed
account of these can be found in Turney and Pantel [2010] and Zhitomirsky-
Geffet and Dagan [2009].

Dimensionality reduction methods aim at reducing the noise encountered
in the input data in order to achieve higher accuracy in computing similarity.
The goal is to reduce the dimensionality of the original space to obtain repre-
sentations over a small set of concept-like dimensions. Latent semantic analysis
(Deerwester et al. [1990] and Landauer and Dumais [1997]) is one of the most
widely-used methods for dimensionality reduction. Not all vector space mod-
els perform this step, a popular alternative being to retain as context features
only the most frequent or most indicative words (according to some weighting
scheme).

Similarity computations are the final stage of building a vector space model.
A number of vector similarity functions have been proposed in the literature.
One of the most popular measures is cosine similarity which measures the angle
between two vectors. Other measures commonly used are inverse divergence
methods, Dice coefficient, Lin similarity (Lin [1998a]), etc. An overview of
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their properties can be found in Turney and Pantel [2010].

Instances of vector space models A large number of vector space models
for word meaning similarity have been proposed as alternatives to the most
basic models, which define words by co-occurrence with documents or with
other words.

Syntax-based methods propose the use of dependency-based context-features in
order to obtain more informative word meaning representations (Grefenstette
[1994], Lin [1998b]). These have been shown to outperform their simpler pre-
decessors on tasks such as detecting synonymy or inducing first-sense heuristics
(Pado and Lapata [2007]).

A number of vector space models using different input representations have
been recently evaluated on a word similarity task in Agirre et al. [2009]. They
conclude that tighter definitions of context as well as syntactic features capture
tighter semantic relations such as synonymy while the bag-of-words approaches
find topically related words. The study also highlights once again the high
performance of vector spaces which are not only more robust in nature but are
also shown to be capable of outperforming dictionary-based methods.

In general, vector space models go beyond the representation of words or of
documents and can be used as a general paradigm in a variety of tasks. An
example of this is the use of vector space models for the task of categorizing
relations between pairs of words such as in Turney and Littman [2005] and
Turney [2006]. The vector space in Table 2.3 is an example of this and was
proposed by Baroni and Lenci [2009] for the tasks of recognizing SAT analogies
and semantic relation classification.

in at with use

teacher school 11894.4 7020.1 28.9 0.0
teacher handbook 2.5 0.0 3.2 10.1
soldier gun 2.8 10.3 105.9 41.0

Table 2.3: Fragment of the Concept × Concept by Link space proposed by
Baroni and Lenci [2009] using point-wise mutual information weighting.

In this example, the words (teacher, handbook) stand in a similar relation to
the words (soldier, gun) and this is signaled by their occurrence with words
such as with and use.

A vector space model which is of particular relevance to our work is introduced
by the DIRT (Discovery of Inference Rules from Text) algorithm in Lin and
Pantel [2001b] and Lin and Pantel [2001a]. We further briefly overview the
underlying vector space model, which is presented in greater detail in Chapter
7.

The DIRT algorithm introduces a method for extracting paraphrases such as
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X solve Y ≈ X find solution to Y. The method has been developed for NLP
applications that deal with the variability problem, i.e. the fact that in natural
language, the same meaning can be expressed in various ways.

The exact representation of a phrase (also called pattern), is that of a binary
relation with noun arguments, extracted as a path in a dependency graph.

The core of the DIRT method is a vector space model. In this vector space
model, each pattern is represented in two spaces: by its co-occurrence with left
hand side (X) and with right hand side (Y) noun fillers in a large corpus.

Table 2.4 exemplifies the DIRT input representation as extracted from the XIE
fragment of GigaWord. In the X-filler space phrases X solve Y and X settle Y
share common nouns such as country or china while in the Y-filler space the
nouns issue and problem occur most frequently.

X country china

X
subj←−− solve obj−−→ Y 556 108

X
subj←−− settle obj−−→ Y 211 379

Y issue problem

X
subj←−− solve obj−−→ Y 988 481

X
subj←−− settle obj−−→ Y 605 377

Table 2.4: Fragment of the DIRT vector space. Paths in dependency graphs
are represented in the space of co-occurring left and right filler nouns.

The patterns are compared in the X-filler space, and correspondingly in the Y-
filler space by using the Lin similarity measure introduced in Lin [1998a]. This
is preceded by the use of point-wise mutual information as a weighting scheme.
The final similarity score between two patterns is obtained by multiplying the
X and Y similarity scores. Further on, this similarity is used for building a
paraphrase collection by following two steps: 1) extract a large collection of
patterns from a corpus and 2) paraphrase each of these patterns by returning
its top most similar patterns, according to the similarity score.

Limitations of distributional methods Each choice for an input distribu-
tional representation can be thought of instantiating a different variant of the
distributional hypothesis. As the framework we develop throughout this the-
sis abstracts away from any particular choice of input representation, we will
not be concerned with the validity of the distributional hypothesis. In general,
we assume that the linguistic units to be compared are similar if they occur
with similar context features, as defined by the choice of input representation.
However, the main limitations of vector space models stem precisely from the
limitations of the distributional hypothesis.

A classic example is the case of synonymy and antonymy: some antonymous
words are mistaken for synonyms because they also tend to occur in simi-
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lar contexts. Differences between them are difficult to capture, irrespectively
of the choice made in defining contextual features. In general, vector space
models encounter difficulties in distinguishing between synonymy and other
semantic relations such as hyper/hyponymy, instance of relations or simple
topical relatedness. Various vector space models have been proposed for tar-
geting some of these specific relations, leading to observations such as the fact
that small context window correlates with detecting tighter semantic relations
such as synonymy. A special case is the case of asymmetric relations, such as
hyper/hyponymy or uni-directional entailment which have received particular
attention (Bhagat et al. [2007], Erk [2009]). In general, despite the advances
that have been made, directionality is not easy to determine and one of the
reasons for this is that it does not correlate very well with the subset relation.
To exemplify this, consider the word cat which is a hyponym of life form: it is
unrealistic to expect the contextual features of cat occurrences to be a subset
of those of life form occurrences.

A major limitation of vector space models, which has gained increasing atten-
tion, is caused by sense ambiguity: a word is represented as a type vector which
mixes together the different senses it exhibits. However, most applications need
to assess the meaning similarity of words occurring in context, which gives rise
to the question of meaning-aware, context-sensitive vector representations. The
same concern has been the focus of work extending the original DIRT algorithm
for distributional paraphrasing: as initially pointed out by the authors, para-
phrases accompanied by a description of the context in which they apply should
intuitively form a more accurate, reliable knowledge resource.

2.2 Context-sensitive distributional similarity

Polysemy is an issue to most NLP applications, which typically devise implicit
methods to perform meaning ambiguity resolution. It has been observed, how-
ever, that in many of these applications the question of meaning disambiguation
can be in fact reduced to that of computing context-sensitive, meaning-aware
similarity. For this reason, in recent years, the assessment of context-sensitive
similarity (in both mono-lingual and cross-lingual settings) has been introduced
as a stand-alone task (McCarthy and Navigli [2007]).

Traditionally Word Sense Disambiguation (WSD) has been proposed as stand-
alone task to help the development of meaning resolution modules to be in-
tegrated in end-user NLP applications. It is commonly agreed on that WSD
in its traditional formulation has failed to prove itself useful in its targeted
applications (Resnik [2006]).

As opposed to WSD, context-sensitive similarity assessment as a stand-alone
task circumvents the use of sense inventories as well as the controversial under-
lying principle of meaning resolution as a strict word-sense assignment. The
use of distributional methods for context-sensitive word similarity is a way to
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approach this task in an unsupervised manner, without the use of a dictionary
or of labeled data.

For the remainder of this section we summarize the main contributions to the
problem of context-sensitive meaning similarity. Context-sensitive similarity
methods distinguish themselves by the approach to solving this issue. Type-
based models, which we overview in Section 2.2.2, use vector spaces as input
and try to shift the meaning of words in context through operations which
combine the vector of the target word with the vector of context. On the other
hand, token-based methods make use of individual occurrence vectors, richer
information that is lost in some vector space representations. These methods
try to rather distinguish between subsets of a word’s occurrences which are
indicative of the specific meanings. These are presented in Section 2.2.3.

Finally, a related question in the focus of recent work is that of compositional
methods for distributional meaning similarity. These aim at building vector
representations of sentences as functions of the representations of the composing
words, much like in the tradition of formal semantics. These will be discussed
in Section 2.2.4.

2.2.1 Type-based methods for context-sensitive similarity

Type-based methods for context-sensitive distributional similarity build con-
textualized vector representations for words and employ these for performing
context-aware similarity computations. These methods implement two main
stages in obtaining contextualized meaning representations: 1) initially a vec-
tor space model is built and 2) given a target word and a context word, their
vectors are combined in order to obtain a context-sensitive vector representa-
tion.

The challenge faced by type-based methods is determined by the vector repre-
sentation of a word as a mixture of different usages in a large corpus.

Consider, for example, the fragment of the vector space representation for the
word heavy and two synonyms corresponding to two distinct meanings: frequent
and fat, given in Table 2.5.

use drug pound american bombing attack

frequent 738 181 14 225 188 929
heavy 3199 778 655 453 778 1707
fat 43 23 367 140 0 4

Table 2.5: Fragment of vector representations for words frequent, heavy and fat.
Values are co-occurrence counts within a symmetric context window of size 5
over the GigaWord corpus.

As it can be observed, the similarity between heavy and frequent is reflected only
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in a fragment of these vectors, by co-occurrence with words such as use or drug.
The words pound or american as context features signal a different meaning for
which fat is an appropriate synonym. Type-based approaches develop methods
to shift these mixed vector representations to meaning-specific vectors using
the given context. The methods proposed in the literature vary with respect
to the input vector space model as well as with the composition method. We
overview these for the remainder of this section.

Mitchell and Lapata [2008], Mitchell and Lapata [2009], Mitchell and
Lapata [2010] In Mitchell and Lapata [2008] the authors propose a general
formulation for vector composition which fits most of the type-based methods.

The composition p of two constituents, is obtained as a function of the two vec-
tors of the constituents u and v, R, the relation they stand in and K, additional,
background knowledge that may influence the meaning composition:

p = f(u, v,R,K)

This was proposed as a framework for vectorial composition, where meaning
representations of larger units of text are obtained from the vectors of its compo-
nents. However, the representations derived can also be used as contextualized
representations of words.

The authors build representations for short sentences consisting of intransitive
verbs and their subjects such as 2) and 3):

(2) The fire glowed.

(3) The face glowed.

The contextualized representations are evaluated based on their performance
on predicting human similarity judgments. More precisely, the system has to
return a high similarity score between sentence (2) and the word burn, as burn
is a synonym of glow in this context. In sentence (3), however, burn is not a
meaning-preserving substitute.

Throughout this study, the authors use a simple bag-of-words vector space
and test a number of vector addition and multiplication-based models: simple
component-wise addition, weighted addition and addition including distribu-
tional neighbors as proposed by Kintsch [2001], component-wise multiplication
and a combination model of both addition and multiplication. All the meth-
ods tested are naive instantiations of the general framework proposed, as they
ignore the syntactic relation and background knowledge components.

The experimental results show that models performing point-wise multiplica-
tion of component vectors outperform all additive methods and perform similar
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to the combination method. Multiplication requires no parameter tuning and
therefore no optimization, which makes if preferable to the combination method.
The intuition behind the component-wise composition methods is that multi-
plication approximates the intersection of the meaning of two vectors, whereas
addition their union. This is detailed in Mitchell and Lapata [2009]. Given a

word vector u, its components are weighted such that ui = P (ci|u)
P (ci)

, where ci
is a context feature, the i’th dimension of the vector space. Following simple
calculations they obtain that the components of the multiplied vectors give the
probability of each context feature given both u and v :

uivi =
p(ci|u)

p(ci)

p(ci|v)

p(ci)
=
p(ci|u, v)

p(ci)

In Mitchell and Lapata [2009], the authors further show that these simple mod-
els yield improvements in language modeling. The results are supported by
Mitchell and Lapata [2010], where they test three types of word combinations:
noun-noun, verb-object and adjective-noun. Again, the multiplicative model is
the best parameter-free method for all these combinations and it is only slightly
outperformed by more complex composition functions such as weighted average
and dilation.

Erk and Padó [2008], Erk and Padó [2009] In Erk and Padó [2008] the
authors focus on using syntax for addressing the same issue of context-sensitive
distributional similarity.

Their model is guided by syntax in two ways: 1) by using a syntactic vector
space model as input representation and 2) by employing selectional preferences
to contextualize occurrences of target words.

To exemplify their method, consider the meaning of a verb in the presence of
its object as in the phrase catch a ball. The meaning of the verb is modeled
using the verb’s vector together with the vector capturing the inverse selectional
preferences of the object; the latter is computed as the centroid of the verbs
that occur with this object. More precisely they compose the vector of catch
with vectors of other verbs that take ball as object (such as throw or toss).
This way the hope is that the vector of catch will be shifted towards its correct
meaning and further way from wrong meanings as in catch a disease. The
intuition behind this is that the meaning of a verb is a combination between its
overall meaning (its type vector) and the expectations that its object enforces
on the verb.

The exact vector composition they propose involves raising the selectional pref-
erence vector to a power n = 30, followed by point-wise multiplication with the
target word vector. Their method is tested on the Semeval Lexical Substitu-
tion task. To build this data set, annotators are presented with a set of target
words occurring in sentential context and they are asked to provide appropri-
ate substitutes for these words in each of these contexts. The authors test the
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contextualized representations on the task of ranking the set of all possible sub-
stitutes for a target word: for each data sentence, the appropriate substitutes
have to be ranked higher than substitutes corresponding to different meanings.
However, the subsequent study in Erk and Padó [2009] shows that good param-
eters for this computational model are difficult to estimate and might vary to
a great extent from one data set to another.

Thater et al. [2009], Thater et al. [2010] Thater et al. [2010] and Thater
et al. [2009] address the same issue, again in a syntactic space, but distinguish
themselves from previous work by proposing the use of distinct vector represen-
tations for predicates and arguments. In their models the focus is on building
complex, informative input vector space representations, which are then fol-
lowed by very intuitive and straightforward composition operations.

More precisely, they choose to represent verbs in a second order syntactic vector
space where the dimensions are triples containing two syntactic relations and
a verb lemma. For example, catch is represented using basis elements such
as: (obj,obj,toss). The values are given by second-order co-occurrence counts
of catch and toss as guided by syntax, in this case co-occurrence counts with
arguments that are objects of both verbs. Nouns are represented in a first order
space: for example ball is described by the co-occurrence frequency with the
context feature (obj, toss), i.e. the number of times it is an object of toss.

In Thater et al. [2009] the actual vector composition is defined in a very natural
manner. The meaning of a verb is obtained by restricting its vector to the
features active in the argument noun. More precisely, dimensions with value
larger than zero in the argument noun are kept intact while all others are set
to zero. Unlike in Erk and Padó [2008], the composition is not syntax-aware,
as the syntactic information is encoded only in the vector space representation.
Thater et al. [2010] implements slight changes to this model, leading to large
performance gains: the composition is component-wise vector multiplication,
similarly to Mitchell and Lapata [2008], and it is guided, this time, by the
syntactic relation between the two words to be composed.

The evaluation setting is that of Erk and Padó [2008] and the experimental
results obtained in both Thater et al. [2009] and Thater et al. [2010] significantly
outperform previous methods.

2.2.2 Token-based methods for context-sensitive similarity

Token-based methods take a different approach to the task of context-sensitive
similarity. Unlike type-based methods, which attempt to contextualize the al-
ready mixed, type vector representations (also called prototypes), token-based
methods make use of the evidence present in individual occurrence vectors (also
called examplar vectors). Individual occurrence vectors are vectors extracted
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from a single occurrence of a word; these representations are lost in vector space
models, which sum up over all occurrences of a word.

More precisely, given a word occurring in context, token-based methods con-
textualize meaning (i.e. build context-sensitive representations, or compute
context-sensitive similarities) as guided by similar occurrences of the word in
the input corpus.

Consider, for example, contextualizing the meaning of the word heavy in the
context of heavy user as in sentence 4). In token-based methods this is only
guided by occurrences of heavy in contexts similar to the current one. An ex-
ample of a similar context is the one in sentence 5), as indicated by overlapping
words such as use:

(4) Some heavy users develop a psychological dependence on cannabis.

(5) Heavy marijuana use doesn’t damage brain.

While following the same general intuition, token-based methods can vary to a
great extent in their exact instantiations. For the rest of this section we overview
two recent token-based methods for computing word similarity in context, as
well as the closely-related methods of attaching contextual preference classes to
DIRT paraphrases.

Reisinger and Mooney [2010] In Reisinger and Mooney [2010] the authors
propose to represent words, isolated, or occurring in context as sets of sense-
specific vectors (multi-prototype representation).

Specifically, a word’s occurrence vectors are clustered to produce groups of
similar context vectors. Following this, an average prototype vector is computed
separately for each cluster, as the centroid of the cluster’s elements. Such
a prototype vector is to be seen as a description of the contextual features
associated to a cluster. In the example above, the two occurrences of heavy
would be clustered together, along with other similar instances. The centroid
of these heavy vectors, i.e. the prototype vector, will ideally reflect the meaning
of frequent.

As words, both isolated and in context, are represented as sets of vectors, the
authors introduce new ways of measuring similarity. A first method (AvgSim)
computes similarity as an average over all pairings of prototype vectors (i.e.
cluster centroids). A second method, MaxSim, returns the similarity of the
most similar two clusters. The intuition behind this is that while AvgSim com-
putes the overall similarity (in the direction of type-based methods), MaxSim
performs mutual disambiguation as it only selects the most similar clusters and
returns their similarity. In the case of words in context, the distance between
prototype vectors is weighted by the probability that the context belongs to the
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prototype’s cluster.

On a task of predicting human assessments of word similarity (words occurring
in isolation) the authors show that the multi-prototype method outperforms
classic token- and type-based models. The context-sensitive method is evalu-
ated on the task of near-synonym generation for words occurring in sentential
context. On this task, their approach outperforms a context-ignoring method
for words occurring in infrequent senses, while no difference is observed for
words occurring in their majority sense.

Erk and Padó [2010] A similar idea is implemented in Erk and Padó [2010]
where the authors propose an exemplar-based model for capturing word mean-
ing in context. More precisely, in contrast to the multi-prototype approach, no
clustering takes place, as it is assumed that there are as many senses as there
are instances. An isolated word is represented by its individual token (exem-
plar) vectors. Given a sentential context, the meaning of the target word is
represented by a subset of the individual occurrence vectors of the word. More
precisely, the relevant, similar occurrence vectors are obtained through an ac-
tivation process which is defined in terms of similarity to the current sentential
context. For example the vector of heavy in (5) would be activated for the
target word heavy in (4).

The authors experiment with different forms of activation as well as with dif-
ferent type of contextualization: of the target word, of the candidate substitute
or of both. Their best results outperform the method proposed in Erk and
Padó [2008] although no syntactic component is used for this. However, this
paper only presents preliminary work, as the results are obtained by tuning the
model’s parameters (such as the activation threshold or type of activation) on
the test data.

Context-sensitive extensions of DIRT The issue of context-appropriateness
of distributional similarity computations has also been highlighted in the con-
text of the DIRT method for paraphrasing proposed by Lin and Pantel [2001b].
Although attempting to solve the same problem as the context-sensitive vector
space models, the research on context-appropriate DIRT paraphrases has been
carried out mostly independently of this.

In this context, it has been observed that the accuracy of the paraphrases
extracted is highly dependent on the context in which they are used. The
problem to be solved has been formulated as that of determining if a particular
paraphrase rules is appropriate or not in a given context. For example, consider
the rule X is charged by Y ≈ Y announced the arrest of X. This is correct in a
context such as 6), however not in 7):

(6) The prosecutors announced the arrest of Terry Nichols.
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(7) My account was charged by the gas station.

The approaches to this problem are in the line of token-based methods for
word similarity in context. Pantel et al. [2007], Basili et al. [2007], Szpektor
et al. [2008] and Connor and Roth [2007] focus on making DIRT rules context-
sensitive, all following the original proposal of Lin and Pantel [2001b], which we
summarize here. These methods are further described in more detail in Chapter
7.

The methods proposed in this context attempt to solve the problem by attaching
semantic classes to the X and Y slots of an inference rule. The semantic classes
are indicators of the correct context, and an instantiation of a rule is judged as
correct if the X and Y fillers belong to the attached semantic classes.

We will further detail the method described in Pantel et al. [2007] as subsequent
work closely follows their methodology.

The initial step in this method is to acquire a paraphrase database, using the
DIRT algorithm. The second step involves learning semantic classes for the X
and Y slots by grouping together semantically similar nouns. For this, Pantel
et al. [2007] build a set of semantic classes using WordNet in one case, and
the CBC clustering algorithm, in the other. Following this, given a specific
inference rule, only the semantic classes that can be associated to the rule are
selected. These are chosen based on the filler nouns common to both patterns.
For the example above, given the inference rule X is charged by Y, Y announced
the arrest of X, semantic classes attached to the rule may be: X: Person, Y:
Law Enforcement Agent. Further on, given an actual instance such as X: Terry
Nichols, Y: prosecutors, the degree to which X and Y belong to the attached
semantic classes is used as an indicator of the rule’s correctness in this context.

A number of confidence scores are estimated during each of these stages, such as
the similarity of the original DIRT rule, the confidence of the attached semantic
classes or the degree to which a noun (a rule instantiation) belongs to such a
class. A final score is computed as an aggregation of these scores. The methods
differ mostly with respect to the initial step of building semantic classes as well
as w.r.t. the computation of confidence scores and their aggregation.

All these methods show improvement over DIRT by evaluating on occurrences
of rules in context which are annotated as correct/incorrect by human partici-
pants.

Although presented in rather distinct manners all the token-based methods use
the same methodology for approaching this issue, which can be summarized
as in Table 2.6. In this table disambiguate denotes a generic function which
returns a common disambiguated representation based on the overlap of dis-
tributional features. This together with a measure for distributional similarity,
sim, are used in different ways to compute context-sensitive similarity by all
these methods, as depicted in Table 2.6.
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Pantel et al. [2007] Connor and Roth [2007]
Basili et al. [2007] Szpektor et al. [2008]

•sim(u, v) ∧ sim(c, disambiguate(u, v))

Erk and Padó [2010]
•sim(u, disambiguate(v, c))
•sim(disambiguate(u, c), v)
•sim(disambiguate(u, c), disambiguate(v, c))

Reisinger and Mooney [2010]
•sim(disambiguate(u, c), disambiguate(v, c))
•
∑

ci
sim(c, ci)sim(disambiguate(u, ci), disambiguate(v, ci))

•u, v : words (phrases) to be compared
•c : context in which u, v occur
•sim(u, v) : distributional similarity score
•disambiguate(u, v) : common disambiguated representation based on
overlap of distributional features

Table 2.6: Summary of token-based methods for distributional similarity in
context

2.2.3 Compositional distributional representations

Compositional frameworks using distributional representations aim at obtaining
vector representations for larger units of text, or even entire sentences, from
individual word vectors.

Early methods for distributional representations of sentences are shallow ap-
proaches based on simple vector operations. Variants of addition-based compo-
sition, in which the vectors of larger units of text are the sum of the individual
vectors, are common to many of these and in information retrieval this is still
one of the most widely-used methods for representing queries or documents
(Widdows [2008]). Similarly, in other applications, the same idea is used for
word sense discrimination (Schuetze [1998]) or for representing a sentence as the
addition of word vectors in a LSA space (Landauer and Dumais [1997]). Kintsch
[2001] proposes a variant of this in which the representations are strengthened
with the use of distributionally similar neighbors, which are also added to the
target word vectors.

These naive methods are unable to capture even basic differences in meaning
such as the fact that the man bit the dog is not the same as the dog bit the
man. Recent work such as Clark and Pulman [2007], Clark et al. [2008] and
Grefenstette et al. [2011] focus on comprehensive theoretical frameworks that
allow for these distinctions to be made. The explicit goal of these methods is
to bridge the gap between traditional formal semantics which is concerned with
functional composition of words while paying little attention to the lexicon,
and vector space models as empirical models for lexical meaning. In itself a
very ambitious task, a solution to this problem would be invaluable to the large
number of NLP applications that require the assessment of similarity between
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fragments of text.

From a theoretical perspective, a lot of progress has been made in these studies.
However the question of obtaining this theoretical model from data, which is
the key aspect of using distributional representations, remains unanswered. In
general the interpretation of distributional methods for modeling lexical mean-
ings is straightforward: the vector associated to a word can be interpreted as
a summary of its occurrence patterns. However, despite the recent advances
made, there is still no consensus on what is the appropriate interpretation of
representing a sentence as a vector, or how can this representation be translated
into accurate similarity computations. As noted by Widdows [2008], important
questions remain unanswered such as how to represent the complex information
available in a traditional parse tree as a point in space.

Our goal is more modest and these question need not be addressed in the context
of our work, as we only model lexical meaning as determined by context.

2.2.4 Summary

Throughout this section we have summarized type-based and token-based meth-
ods for word meaning similarity in context. These distinguish themselves by
the input data they use as well as with respect to the underlying principles
guiding them. While token-based methods use, in line with vector space mod-
els, frequency matrices as input, which sum up over all of a word’s occurrences,
token-based methods store and make use of word vectors obtained from indi-
vidual occurrences. Type-based methods, combine the mixed representations in
order to obtain disambiguated, context-specific ones, while token-based meth-
ods build disambiguated representations by identifying and selecting only the
corpus occurrences which are similar to the current context.

The framework we propose can be categorized as a type-based method as it uses
a typical vector space frequency matrix as input data. However, unlike most
of the previous methods, instead of trying to “guess” and empirically verify
ways of composing word vectors, we derive a motivated, probabilistic model for
contextualized meaning representations.

Conceptually, our work comes close to token-based methods which also assume
an underlying set of meanings, an underlying structure in the occurrence pat-
terns. However, unlike these methods, we build on the assumption that a latent,
hidden layer of meaning components can be induced solely from the input fre-
quency matrix; this task can be formulated within a complete probabilistic
framework which induces a set of latent classes which best approximate the
input frequency data. This is an unitary approach which avoids dividing the
problem of context-sensitive similarity into separate components, such as in pre-
vious work, which are difficult to tune both individually as well as a combined
system.
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Chapter 3
Distributional similarity via latent
senses

In vector space models, the vector representation of a word “mixes” together
its different senses and can be thought of as a summary of the word’s usages
over an entire corpus. For this reason, special methods need to be devised in
order to obtain disambiguated vector representations which distinguish between
different usages, or meanings of a word.

This chapter describes the general framework we propose for building context-
sensitive distributional representations and computing meaning similarity. More
precisely, we use a co-occurrence input frequency matrix to induce a set of la-
tent classes. We represent a word type as a probability distribution over the
induced classes. The intuition behind this is that the distribution reflects the
potential meanings of a word, irrespective of context. The latent classes are
in turn distributions over context words, reflecting the typical context patterns
associated with each class.

Given a context feature, the context-aware meaning of a word is represented
this time by the posterior probabilities of the latent classes, conditioned on
the context. These representations are further on used to compute meaning
similarity, based on the underlying hypothesis that words, isolated or in the
presence of context features, exhibit similar meaning if they trigger the same
meaning components.

Our approach follows Hofmann’s proposal for unsupervised learning from dyadic
data introduced in Hofmann and Puzicha [1989]. We start this chapter by sum-
marizing Hoffman’s framework in Section 3.1. In Section 3.2 we detail on the
main stages of the method we propose: 1) extraction of the input data 2)
building the contextualized representations and 3) performing similarity com-
putations. Finally in Section 3.3 we highlight the relation to previous work.

25



26Discovering latent meaning components as structure detection

3.1 Discovering latent meaning components as struc-
ture detection

In Hofmann and Puzicha [1989], Hofmann et al. [1998] and in subsequent studies
such as Hofmann [1999], the authors propose a framework for learning from
dyadic data. Dyadic data consists of a multiset of observation pairs, or dyads,
(x, y) from a domain X × Y where X and Y are abstract sets of objects; each
dyad (x, y) reflects one co-occurrence of x and y.

Hoffman points out that dyadic data is present in a large number of real-world
applications. These range from NLP applications to computer vision or pref-
erence analysis and consumption behavior. In NLP, dyads can be occurrences
of a word in a document or occurrences of words with contextual features. In
consumption behavior analysis for example, these may reflect the preferences
of individuals (X ) for various objects (Y).

Hofmann and Puzicha [1989] propose a unifying framework for statistical, un-
supervised learning from such data, which is based on a latent class model.
A latent class model assumes the data is explained by a hidden structure and
specifies a joint probability over the observation data and the latent structure.
As Hoffman points out, this approach can be used to solve two problems: the
one of statistical modeling and that of structure detection. In statistical model-
ing the goal is to learn a joint distribution over the two variables X and Y. This
is not trivial due the data sparseness problem: in real world data, most of the
pairs in X ×Y are never observed. The joint probability can thus be estimated
more reliably by marginalization over the latent variables. Structure detection
is obtained by estimating the posterior probabilities of the latent structure,
given observations.

Hofmann and collaborators propose a number of flat latent class models as well
as a hierarchical one. The most simple of these models is known as the aspect-
based model. In the aspect model, one assumes a latent variable over a finite
countable set of aspects A = {a1, ..., aK} and each dyadic observation (xi, yj) is
paired with a latent variable realization ak. The observation data is therefore
defined as a discrete mixture over latent variables: P (x, y) =

∑
a P (x, y, a).

The latent structure can thus be seen as partitioning the set of observations
into K classes. There is a main difference to hard clustering models as dif-
ferent occurrences of the same dyad are distinct objects and may therefore be
associated to different latent classes. The variables x and y are assumed to be
conditionally independent given a latent class a, therefore the probability of
observing a dyad can be factorized as P (x, y) =

∑
a P (x)P (a|x)P (y|a). Given

this model, Hoffman proposes maximal likelihood estimation, i.e. the estima-
tion of the latent structure (the parameters P (x), P (a|x) and P (y|a)) which
maximize the likelihood of the observation data.

We formulate the initial step of building isolated and contextualized meaning
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representations as a problem of structure detection. When analyzing data con-
taining occurrences of words and context features, it is natural to assume we
can induce a structure of classes associated to meaning aspects or meaning com-
ponents, as derived from distinctions in usage patterns. Following the structure
detection step, we propose to represent the meanings of words as distributions
over the induced latent classes.

Throughout this thesis we use the aspect-based model together with an exten-
sion of this proposed in Blei et al. [2003] in order to induce latent classes. The
remainder of this chapter describes the three main stages of the framework we
propose. The concrete specification of the latent variable models together with
the algorithms used for inducing them are the focus of Chapter 4.

3.2 Vector space framework for meaning similarity
in context

As discussed in Chapter 2 the steps of building a vector space model can be
summarized as: 1) extract an input frequency matrix from a large corpus, 2)
apply weighting scheme to decrease the effect of very frequent un-informative
context features, 3) perform dimensionality reduction to obtain a noise-reduced
representation and 4) perform vector similarity computations.

The framework we propose is composed of three main stages. Similarly to clas-
sic vector space models we start by extracting an input matrix. The second
stage is that of building vector representations. We propose a target linguistic
unit (occurring with a context feature or in isolation) to be represented as a
probability distribution over a total set of latent classes; the extraction of latent
classes is formulated as the structure detection problem in the context of dyadic
data. This step comprises steps 2) and 3) of traditional vector space models.
The representation we obtain is a proper distribution over a set of classes cor-
responding to latent, corpus-specific, concepts; therefore it is dimensionality
reduced and makes weighting schemes unnecessary. The third and final stage
is that of similarity computations.

3.2.1 Input frequency matrix

In vector space models, the input (frequency) matrix is a general structure
composed of vector representations for a set of linguistic units to be compared
(for example words for assessing word similarity or phrases for the task of
paraphrasing). Throughout this chapter we use the terminology of target items
which are represented in a space of context features to denote the rows and
columns of the input frequency matrix.

The input matrix is extracted from a corpus and contains co-occurrence counts
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Figure 3.1: Input frequency matrix

of target items occurring with context features. Specific input representations in
vector space models can be seen as instances of this general structure. Examples
of targets can be simple word types, if the goal is to acquire lexical similarity,
or fragments of text with an internal structure such as paths in dependency
parse graphs, for the task of acquiring paraphrases. Examples of context fea-
tures are document labels, typically employed for information retrieval tasks or
co-occurring words in simple bag-of-words spaces for word similarity. Models
aiming at capturing tighter, specific, semantic relations can employ more com-
plex features based on syntactic structure. We assume this input structure to
satisfy the distributional hypothesis. A specific hypothesis is not to our inter-
est in this chapter as we only assume an abstract property of the input matrix,
stating that target items occurring with similar context features have similar
meanings.

Input frequency matrices are typical examples of dyadic data. More formally,
we can consider a set of target items T = {t1, ..., tI}, a set of context features
C = {c1, ..., cJ} and a multiset S consisting of observations pairs (ti, cj) ∈ T ×C.
The observation data S can be alternatively seen as a I×J-dimensional matrix
which sums up the occurrences of each distinct observation pair in S.

For the rest of this chapter, we will use notation ti with i : 1..I to stand for
targets and cj with j : 1..J for context features. We denote an input matrix
by V , a I × J matrix containing the total set of targets, indexed by the set of
contextual features.

3.2.2 Representation over latent senses

As detailed in the previous chapter, despite the wide-spread use of vector space
models, it has been noted that representing words as a sum of their contextual
features over a large corpus has a major drawback as it ignores sense ambiguity.
Such representations can only reflect the mixture of usages of a target word,
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while many applications require the similarity assessment of words occurring in
context, of disambiguated words.

We approach this problem in a natural manner: since it is caused by the fact
that different senses of a word are mixed together, we attempt to solve it by
recovering the hidden structure in the corpus data. We formulate the problem
of inducing the latent, meaning-level structure, as the problem of structure
detection in dyadic data. More precisely we follow the aspect model summarized
in Section 3.1 and we assume the existence of latent classes Z = {z1, ..., zK},
such that every occurrence of an observation pair (ti, cj) is associated to a
latent class zk. Under the aspect mode,l one can estimate the latent structure
which maximizes the probability of the observed input data. More precisely, we
estimate the distribution of the latent class given a target word: P (zk|ti) and
the distribution of the context feature variable given a latent class: P (cj |zk).

Inducing the latent structure allows us to define new vector representations for
the meaning of words. We propose to represent these in terms of the likelihood
of each of the latent classes, leading to the following K-dimensional represen-
tations:

Basic representation for target ti

v(ti) = (P(z1|ti), ...,P(zK|ti)) (3.1)

The assumption behind such a representation is that a target word can be
described by a set of core classes and the frequency with which these are attested
in a corpus. Note that the representation in (3.1) is not fixed but parametrized
with respect to the input corpus (i.e. it only reflects word usage as attested in
that corpus). Representation over classes z1 . . . zK can also be seen as a means
of reducing the dimensionality of the original co-occurrence matrix.

One main advantage of this formulation is that we can naturally define meaning
representations for words occurring in context. Given an observation (ti, cj), a
target word occurring with a context feature, we can compute the probabilities
of the latent classes P (zk|ti, cj), leading to the following representation:

In-context representation for target ti with context feature cj

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (3.2)

where component P (zk|ti, cj) is the probability of class zk given target word ti
and context feature cj .

Here, target ti is again represented as a distribution over latent classes, but
is now modulated by a specific context cj , which reflects actual word usage.
As the empirical evaluation in Chapter 5 will show, this distribution is more
“focused” compared to the one in (3.1): the context helps disambiguate the
meaning of the target word, and as a result fewer classes will share most of the
probability mass.
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3.2.3 Computing similarity

In vector space models, vector similarity measures capture the intuition that
words are similar in meaning if they have similar occurrence patterns. The
vector representations we propose are proper distributions, unlike in most of
the vector space models. For this reason, some of the typical similarity measures
employed in vector spaces are particularly suited to our framework, and this
section will briefly highlight these.

A number of similarity measures are used in vector spaces, out of which func-
tions for measuring divergence between distributions are a natural choice for
computing meaning similarity in the framework we have proposed.

Kullback-Leibler divergence, or relative entropy, is a popular divergence mea-
sure. Intuitively, D(p||q) stands for the inefficiency of assuming that the distri-
bution is q when the actual distribution is p.

DKL(p|q) =
∑
i

pilog(
pi
qi

)

Since this is an asymmetric measure, we use the Jensen-Shannon divergence
which is the sum of the KL divergences of the two distributions from their
average distribution.

DJS(p, q) =
1

2
DKL(p|m) +

1

2
DKL(q|m) (3.3)

where m = 1
2(p+ q). The JS divergence has values in the [0, inf) interval, with

identical distributions having 0 distance. We use the inverse of this distance as
a similarity score: simJS(v, w) = 1

DJS(v,w)
.

Scalar product, or dot product, is another measure for vector similarity. In our
framework the scalar product stands for the probability that two words (isolated
or in-context) have the same meaning, as a sum over all possible meanings:

sp(v, w) = 〈v, w〉 =
∑
i

viwi

sp(v(t1), v(t2)) = ΣkP (zk|t1)P (zk|t2) (3.4)

sp(v(t1, c1), v(t2, c2)) = ΣkP (zk|t1, c1)P (zk|t2, c2) (3.5)

This function has an additional property when used to compare distributional
meaning representations. The scalar product values range in the (0, 1] interval;
however, the similarity between two identical vectors is 1 if and only if the
vectors are unit vectors, i.e. P (zi) = 1 for some i and P (zj) = 0, ∀j 6= i. Such a
vector can be interpreted as the meaning representation of a fully disambiguated
word, a word for which there is no uncertainty about its meaning. The scalar
product can therefore be said to reflect not only distribution similarity but also



Vector space framework for meaning similarity in context 31

how focused or un-ambiguous the distributions are, as very ambiguous words
are unlikely to be scored very similar. This is in contrast with the inverse
Jensen-Shannon divergence in which maximally similar words are words that
have identical distributions over classes, irrespective of their ambiguity level.

This leads to the observation that the framework we provide gives rise to a
natural concept of “ambiguity” of a word, as measured by the entropy of its
distributional representation. For an isolated word, this results in:

Amb(ti) = −ΣkP (zk|ti)logP (zk|ti)

Similarly, the entropy of a posterior distribution can be used as an indicator
of the ambiguity level of a word given a context feature. This measure of
ambiguity reflects how diverse the corpus usages of a word are, rather than
the word’s ambiguity in the sense of number of senses in a dictionary. One
advantage is that such a measure is corpus and domain-dependent; however,
as this value depends on the number of latent classes that we assume, it is not
interpretable in itself but can only be used as a way to compare words in terms
of their ambiguity level.

Similarity between words given a set of context features

We have considered so far the case of a target word occurring with one context
feature. However, in most applications, we are given words occurring in larger
context such as entire sentences. In this section we consider the case of a target
word t occurring with a set of n features ~c = (c1, ...., cn) extracted from its
context.

In the aspect model, each observation of a pair (t, c) is associated with a la-
tent class zk. This has made it straightforward to induce probabilities of latent
classes conditioned on a (target,context) pair, P (zk|t, c), which give the com-
ponents of our contextualized representations.

In the case of t occurring with a number of n context features we have n ob-
servation pairs (t, c1), (t, c2), ..., (t, cn). One can represent this tuple in terms
of the latent classes associated to each of these pairs, leading to the compu-
tation of P (~z|t,~c), for each ~z = (z1, z2, ..., zn) ∈ Zn. The interpretation of
P ((z1, z2, ..., zn)|t, (c1, c2, ..., cn)) is that the feature c1 is associated to latent
class z1, c2 with class z2, etc. This is however a Kn-dimensional representation
and computations on such representations are no longer feasible in practice.

For this reason we propose two alternative methods to compute similarity when
given a set of context features.

The first proposal is to represent a word in context as a K-dimensional vector
where each component stands for the probability that all context features have
been generated with the same meaning zk: P ((zk, zk, ..., zk)|t, (c1, c2, ..., cn))
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with k : 1, ...,K. The disadvantage to such a proposal is that the representation
of a word in context is no longer a proper distribution, as it only selects K
components out of the complete Kn-dimensional representation.

We propose a second method to integrate multiple context features into simi-
larity computations. This does not specifically build a vector representation for
a word and a set of context features as multiple context features are integrated
only at the final stage of computing similarity.

This method can be applied to typical lexical substitution data. In the lexi-
cal substitution scenario, we are interested in comparing two target words, or
phrases, t1 and t2 where t1 occurs in a sentential context and t2 is a candidate
substitute for t1 in the identical, given context. This is usually formulated as
a ranking task, where the goal is to rank a list of candidate substitutes; it has
been previously observed (Erk and Padó [2008], Thater et al. [2010]) that more
discriminative power is obtained when only one of the words, t1 or t2, is con-
textualized. For this reason, we propose to compute the similarity between t1
and t2 given context ~c : {c1, ..., cn} as:

sim(t1, t2|~c) = sim(v(t1, c1), v(t2)) ∗ ... ∗ sim(v(t1, cn), v(t2))

where ~c : {c1, ..., cn} are the features extracted from the sentential context.
Here v(t1, c1) is the single-feature representation given in 3.2 and v(t2) is an un-
contextualized vector representation as in 3.1. This way the context features are
considered individually and each feature yields a similarity score. The similarity
scores obtained from the entire context are multiplied to obtain a final score.

3.3 Relation to previous work

In the context of distributional methods for similarity in context, the method
we have proposed can be categorized as type-based as it only uses a frequency
co-occurrence matrix as input. However, unlike any of the previous type-based
methods, it defined a probabilistic setting, in which the notions of word meaning
and word meaning in context are in line with linguistic intuitions on these con-
cepts. Conceptually our framework comes closer to the token-based method
of Reisinger and Mooney [2010] and the methods for judging the context-
appropriateness of DIRT paraphrases initiated by Pantel et al. [2007]. These
also assume a latent structure which is typically discovered through some clus-
tering step. Unlike this line of work, our approach is much more unitary: the
aspect model framework allows us to formulate the problem as that of induc-
ing the latent structure which maximizes the likelihood of the data. Following
this, we build reduced vector representations which allow us to work within
the vector space model paradigm. This is a natural, general approach which
can be used to address the context-sensitive similarity problem in any of its
instantiations.



Relation to previous work 33

In particular, we would like to point to the similarities between our framework
and the theoretical proposal of Hanks [2000], which we briefly summarize here.

Following a long line of controversies on the appropriate nature of word senses
and of the process of meaning disambiguation, Hanks [2000] proposes to de-
scribe word meanings in terms of meaning components. Meaning components
reflect different aspects of the potential senses of a word and are to be trig-
gered in a graded, probabilistic, fashion when given a word in context. Each of
these components are in turn corpus-derived, determined by the word’s usages.
They are not necessarily mutually exclusive or mutually compatible, and an
occurrence of a word triggers one or more of the potential meaning aspects. In
Hanks [2010], the author further proposes these corpus-derived meanings to be
expressed in terms of typical collocations and other prototypical context fea-
tures. He argues that only combinations of these components can allow for the
flexibility encountered in natural language.

To exemplify his proposal, in Table 3.1 we list the potential meaning compo-
nents evoked by bank as suggested by Hanks [2000]1.

bank

• is an institution
• is a large building
• for storage
• for safekeeping
• of finance/money
• carries out transactions
• consists of staff and people

Table 3.1: Meaning components invoked by usages of bank Hanks [2000]

For example a blood bank activates the components for storage and for
safekeeping. A larger context may also offer clues for other components such
as is an institution, is a large building or consists of people. On
the other hand a financial bank will trigger of finance/money component,
carries out transactions and others, as indicated by the entire context.
To conclude, Hanks proposes a word’s meaning to be represented as “a unique
combination of the components that make up its meaning potential, activated
by contextual triggers”. This activation should be of probabilistic nature, as
indicated by occurrence patterns observed in large corpora.

The framework we have developed is very much in line with the theoretical
proposals of Hanks, as we represent the meaning of each word as a distribution
over corpus-derived latent classes, while a latent class is defined as a distri-
bution over context features. In the proposal of Hanks [2000], disambiguation
can be seen as the process of activating meaning components, as triggered by
context features. In our concrete framework, disambiguation is a shift in the
distribution of meaning components, indicative of a posteriori meaning. The

1Here, the author leaves out the homonym bank as in river bank.
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intuition behind is that when given an isolated word, we represent it in terms
of the most likely meaning components that we associate it with, given the in-
put corpus. Given an actual context clue, these beliefs change, as one or more
meaning aspects become more likely.

In the following chapter, we continue the presentation of our framework with
the description of two latent variable models which can be used to induce latent
classes.



Chapter 4
Models for Latent Variable
Factorization

This chapter describes the latent variable models employed for building contex-
tualized meaning representations.

What is common to all latent variable models is the assumption that some
data can be explained by a latent, hidden structure, and the goal is to uncover
this structure using only this raw observation data. This is a very natural
assumption, as such a hidden structure is conceptually motivated in many cases.
For example in consumption behavior, underlying preferences can be thought
of as explaining the observation data which may consist only of consumers’
shopping records. In NLP, the hidden structure corresponds to an abstract
representation level which we want to induce without the use of annotated
data. A number of hidden models have a long tradition in NLP, such as Hidden
Markov Models for POS tagging or unsupervised PCFG (Probabilistic Context
Free Grammar) induction for parsing, to name just a few.

The methods vary with respect to the particular assumptions on the underlying
structure. In this thesis, we use latent variable models developed in the context
of topic modeling, which are particularly suited for modeling word co-occurrence
data and the underlying senses of words.

In topic modeling the goal is to find the topics which span a corpus of docu-
ments. A document is associated to a distribution over topics, and in turn each
topic is defined as a distribution over words. The following example (from Blei
et al. [2003]) shows the typical output of a topic model. A set of topics, in
this case three topics, are associated with distributions over words (top 5 words
listed here), and each word in a document can be assigned to such a topic.

The most straightforward application of topic modeling is the computation of
document similarity. Two documents can be compared based on their distri-
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Arts Budgets Education

new million education
film tax students
show program schools
music budget education
movie billion teachers

The Metropolitan Opera Co.
and New York Philharmonic will
receive $400000 each. The Juil-
iard School where music and the
performing arts are taught will
get $250000.

Table 4.1: Latent topics in a collection of news text

butions over topics, representation which abstracts away from the actual words
contained by the documents and leads to more accurate similarity assessments.
Topic models have also been used in a variety of applications such as image
analysis (Li et al. [2005] Russell et al. [2006] Blei and Jordan [2003]), pop-
ulation genetics (Pritchard et al. [2000]) or for unsupervised part of speech
tagging (Toutanova and Johnson [2008]). In Sections 4.1 and 4.2 we detail on
Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation
(LDA). PLSA is the terminology used for the aspect model briefly introduced
in Section 3.1 while LDA is an extension of this.

In Section 4.1.2 we describe Non-negative Matrix Factorization (NMF). Matrix
factorization methods can also be thought of as uncovering a hidden structure in
the observation data. In this case, the observation data is a matrix, representing
the co-occurrence of two abstract sets of variables. Latent Semantic Analysis
(LSA) is such a factorization method which uses Singular Value Decomposition
(SVD) to identify the directions of maximum variation and project the data on
these directions. Intuitively, the goal of LSA is to identify the main concepts
underlying the data and to represent the words in terms of these concepts.

Unlike other matrix decomposition methods, NMF imposes the constraint of
non-negativity. This translates into assuming that the original data is an addi-
tive mixture over a set of latent components: a number of latent components
combine to explain the observation data, however only in an additive fashion.
This is a very important property as in most data there is no support for the
idea of a concept occurring in a negative quantity1.

NMF has been originally introduced in the context of computer vision. In image
analysis applications, the features, or latent components discovered this way can
be visualized; Lee and Seung [1999] show that when used to analyze a collection
of images of human faces, these components correlate very well with natural
parts of human faces, such as mouth or eyes. This way, the original, noisy vector
representation of a face image is transformed into a reduced representation
over these components. This natural decomposition into parts of faces is not

1A particular case of this problem has been shown to be equivalent to PLSA with maxi-
mum likelihood estimation (Ding et al. [2008]). However, the research on these two has been
conducted mostly independently and a number of algorithms have been proposed in the lit-
erature, specifically for solving the NMF problem. In our experiments we use one of these
algorithms motivating thus our presentation of NMF in this chapter.



Probabilistic Latent Semantic Analysis 37

obtained through any of the other dimensionality reduction methods tested in
this study, such as Principal Component Analysis or Vector Quantization.

NMF has been further used for computer vision (Li et al. [2001]), microarray
data analysis (Kim and Park [2007]), biomedical text mining (Chagoyen et al.
[2006]) or gene expression data analysis (Brunet et al. [2004], Gao and Church
[2005]).

4.1 Probabilistic Latent Semantic Analysis

This section describes the aspect model introduced by Hofmann and Puzicha
[1989] and Hofmann [1999] in 4.1.1. In section 4.1.2 we introduce the Non-
negative Matrix Factorization problem, a special case of which has been shown
to be equivalent to the PLSA method; section 4.1.3 details on the relation
between the two. This section is concluded with an NMF example.

4.1.1 Overview

This section details on the aspect model briefly introduced in Section 3.1. In
the context of topic modeling, the terminology used for the aspect model is
that of Probabilistic Latent Semantic Analysis (PLSA). In the PLSA model,
the observation data S is formed of occurrences of words in documents, i.e.
pairs in the domain D ×W, where D = {d1, ..., dI} is a set of document labels
and W = {w1, ..., wJ} is a set of words. Alternatively, the observation data can
be thought of as a collection of documents, where each document d comprises
of all its word occurrences. We will denote a document by the words occurring
in it: d = {wd1, ..., wdN}. We use dn ∈ {d1, ..., dN} as a word position index in
document d2.

PLSA associates to each observation pair a latent class from a finite discrete
variable Z = {z1, ..., zK}. The observation data is assumed to be generated
according to the following random sampling proccess:

1. Select a document with probability P (d)

2. For each word position dn in document d:

(a) Generate a latent topic z with probability P (zdn|d)

(b) Generate a word w with probability P (wdn|zdn)

The aspect model makes two independence assumptions which are necessary in
order to reduce the complexity of the model: 1) the observation pairs (d,w), a

2To simplify the presentation, subscripts are omitted when their presence does not carry
particular relevance.
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word occurring in a document, are generated independently, and 2) words and
documents are conditionally independent given a latent topic. This results in
P (w|z, d) = P (w|z), which allows the sampling of a word w to be conditioned
only on the latent class z.

Under the first independence assumption, the probability of the observed data
is:

P (S) =
∏
d

dN∏
dn=d1

P (d,wdn) =
∏
d

dN∏
dn=d1

K∑
k=1

P (d,wdn, zk)

where d ranges over the documents in the collection, and dn over each position
in these documents.

The goal of structure detection is to induce the latent structure which max-
imizes P (S), the likelihood of the observation data. Two parameterizations
are possible under the second independence assumption, as the probability of
a distinct word-document dyad (d,w) can be alternatively factorized as in 4.1
or 4.2:

P (d,w) =
∑
z

P (d,w, z) = P (d)
∑
z

P (z|d)P (w|z) (4.1)

P (d,w) =
∑
z

P (d,w, z) =
∑
z

P (z)P (d|z)P (w|z) (4.2)

4.1 corresponds to the generative process earlier defined, and it is known un-
der the name of asymmetric parametrization. Equivalently the symmetric
parametrization in 4.2 is also possible. In the asymmetric parametrization
the latent structure to be detected consists of the probability of the latent top-
ics given each document, P (z|d), and P (w|z), the probability of each word
given a topic. Depending on the particular application at interest, the sym-
metric parametrization may be preferable; this parametrization defines both
documents and words as probability distributions conditioned on latent topics.

The parameters (P (d), P (z|d) and P (w|z) for the asymmetric parametrization
or P (z), P (d|z) and P (w|z) for the symmetric one) can be determined through
maximum likelihood estimation, i.e. by maximizing the log-likelihood of the
observed data logP (S). For solving this problem, Hofmann [1999] proposes a
few variants of the EM algorithm.

4.1.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a matrix approximation method
which has become popular with the work of Lee and Seung in Lee and Seung
[1999] and Lee and Seung [2000]. NMF has also been proposed as a method
to obtain representations over a reduced space of features which reflect the
hidden structure in the input data. NMF decomposes a non-negative matrix as
a mixture over a set of basis elements which combine in an additive fashion. The
intuition that these elements will correspond to meaningful latent components,
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as opposed to other decompositions which do not enforce non-negativity, is
supported by the experimental results obtained by Lee and Seung.

Formally, given a (I×J) non-negative matrix V , the goal is to find non-negative
matrices W and H of sizes I ×K and K × J such that WH best approximates
V under a given cost function.

V ≈WH (4.3)

A non-negative matrix is a matrix whose elements are larger or greater than
0. Lee and Seung [2000] give algorithms for approximations under two cost
functions: Euclidean distance and a second cost function inspired from the
Kullback-Leibler (KL) divergence. This is the cost function of interest for our
work; it is defined as follows:

JNMF−KL(V ||WH) =
∑
i,j

Vijlog
Vij

(WH)ij
− Vij + (WH)ij

The problem is to find factors W and H which minimize JNMF−KL(V ||WH)
subject to the constraints W,H ≥ 0.

4.1.3 Equivalence between NMF and PLSA

As previously discussed, the PLSA problem is that of finding the factorized
distributions that maximize the likelihood of the observation data, under one
of the following equivalent parametrizations:

P (d,w) =
∑
z

P (d, z)P (w|z) =
∑
z

P (d)P (z|d)P (w|z)(asymmetric) (4.4)

P (d,w) =
∑
z

P (d, z)P (w|z) =
∑
z

P (z)P (d|z)P (w|z)(symmetric) (4.5)

This problem has been shown to be equivalent to the NMF with the JNMF−KL
cost function problem in Gaussier and Goutte [2005] and Ding et al. [2008]. In
particular, we are interested in a solution to the PLSA problem (more precisely
in the asymmetric parametrization), and for the rest of this section we show
how to obtain this from a NMF factorization.

Let V be a document-term input frequency matrix (therefore non-negative) and
T =

∑
i,j Vij the sum of its elements. We can normalize V such that the sum

of its elements is 1 (
∑

i,j Vij = 1) by Vij :=
Vij
T . V can now be interpreted as

the (empirical) distribution P̂ (d,w).

We define the following operations on the two factors W and H. Let B be a
(K ×K) diagonal matrix with Bkk =

∑
j Hkj . It can be easily shown that the

rows of matrix B−1H sum to 1 (
∑

j(B
−1H)kj = 1). The sum of all elements of

WB is also 1 (
∑

i,k(WB)ik = 1) because
∑

i,jWHij = 1.
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Matrices WB and B−1H are also a solution to the same NMF problem because
WH = (WB)(B−1H). Furthermore, the factors (WB) and (B−1H) can now
be interpreted as: P (d, z)(WB) and P (w|z)(B−1H). The equivalence result in
Ding et al. [2008] yields that P (d, z) and P (w|z) distributions obtained this way
give a solution to the maximum likelihood PLSA problem. This factorization
is depicted in Figure 4.1.

Figure 4.1: PLSA as matrix factorization: P (d,w) =
∑

k P (d, zk)P (w|zk)

Similarly, the symmetric and asymmetric parametrizations of Eq. 4.4 and 4.5
can be obtained from a NMF solution.

Symmetric parametrization LetB be a (K×K) diagonal matrix withBkk =
∑

j Hkj

and A a (K ×K) diagonal matrix such that Akk =
∑

iWki. We obtain:

WH = (WA)(A−1B)(B−1H)

WA (I ×K) P (d|z)
∑

i P (di|z) = 1
A−1B (K ×K) P (z)

∑
k P (zk) = 1

B−1H (K × J) P (w|z)
∑

j P (wj |z) = 1

Figure 4.2: Symmetric PLSA parametrization as matrix factorization:
P (d,w) =

∑
k P (d|zk)P (zk)P (w|zk)
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Asymmetric parametrization LetB be a diagonal matrix withBkk =
∑

j Hkj

and A a diagonal matrix with Aii =
∑

k(WB)ik.

WH = (A)(A−1WB)(B−1H)

A (I × I) P (d)
∑

i P (di) = 1
A−1WB (I ×K) P (z|d)

∑
k P (zk|d) = 1

B−1H (K × J) P (w|z)
∑

j P (wj |z) = 1

Figure 4.3: Asymmetric PLSA parametrization as matrix factorization:
P (d,w) =

∑
k P (d)P (zk|d)P (w|zk)

Example In this section we exemplify the use of NMF for modeling word
occurrences and their underlying senses on a toy input frequency matrix of
dimension 5× 4, given in Table 4.2.

The co-occurrence matrix reflects two meanings: one shared by target words
spread, transmit and signaled by co-occurring words virus and disease; a second
meaning is shared by reveal, show in the context of test and study. The word
shed is ambiguous between the two meanings, co-occurring with context features
indicative of both of them.

virus disease test study

spread 4 8 0 0
transmit 6 8 0 0
show 0 0 3 4
reveal 0 0 2 3
shed 3 1 2 4

Table 4.2: Input frequency matrix

The input to the NMF problem is the empirical distribution of the observed
data P (t, c), which is obtained as the normalized input matrix given in Table
4.3.

We set K = 2; the distributions estimated after 1000 iterations of the multi-
plicative rules algorithm of Lee and Seung [2000] are given in Tables 4.4, 4.5
and 4.6.
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virus disease test study

spread 0.08 0.16 0 0
transmit 0.12 0.16 0 0
show 0 0 0.06 0.08
reveal 0 0 0.04 0.06
shed 0.06 0.02 0.04 0.08

Table 4.3: Normalized input matrix V : Vij = P (ti, cj)

As expected, words spread and transmit are fully associated to a class Z1
(p(Z1|spread) = 1.0 and p(Z1|transmit) = 1.0) while show and reveal are
fully represented by class Z2. Without the presence of context both meanings
are possible for word shed with P (Z1|shed) = 0.4 and P (Z2|shed) = .6.

As indicated by the P (c|z) matrix, class Z1 is described by context words virus
and disease while Z2 is defined by context words test and study.

spread trans. show reveal shed

spread 0.25 0 0 0 0
trans. 0 0.29 0 0 0
show 0 0 0.14 0 0
reveal 0 0 0 0.10 0
shed 0 0 0 0 0.20

Table 4.4: P (t)

Z1 Z2

spread 1.00 0.00
transmit 1.00 0.00
show 0.00 1.00
reveal 0.00 1.00
shed 0.40 0.60

Table 4.5: P (z|t)

virus disease test study

Z1 0.43 0.57 0.00 0.00
Z2 0.00 0.00 0.39 0.61

Table 4.6: P (c|z)

Alternatively, this decomposition is equivalent to obtaining the original obser-
vation data as a sum over two classes, or “aspects”: P (t, c) ≈

∑
z P (t, c, z) ≈

P (t, c, Z1) + P (t, c, Z2). These are given in Tables 4.7 and 4.8.

The distributions in Tables 4.5 and 4.6 can further be used to compute repre-
sentations for the ambiguous word shed which are given in Table 4.9.

Without context the word shed is represented by classes Z1 and Z2 in a 0.4 : 0.6
ratio. However, given a context word such as virus we obtain a fully disam-
biguated representation with P (Z1|shed, virus) = 1.0 and P (Z2|shed, virus) =
0.0. This way, shed is maximally similar to transmit and spread when encoun-
tered in the context of virus and to show and reveal when encountered with
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virus disease test study

spread 0.10 0.14 0 0
transmit 0.12 0.16 0 0
show 0 0 0 0
reveal 0 0 0 0
shed 0.03 0.04 0 0

Table 4.7: P (t, c, Z1)

virus disease test study

spread 0 0 0 0
transmit. 0 0 0 0
show 0 0 0.05 0.09
reveal 0 0 0.04 0.06
shed 0 0 0.05 0.07

Table 4.8: P (t, c, Z2)

(target) P (Z1|t) P (Z2|t)
shed 0.4 0.6

(target, context) P (Z1|t, c) P (Z2|t, c)
(shed, virus) 1 0
(shed, study) 0 1

Table 4.9: Meaning representations

context study.

4.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was introduced in Blei et al. [2003] as an
extension of the PLSA model, and was originally proposed in the same context
of modeling collections of documents and their underlying topics.

The main difference to the PLSA aspect model is that LDA makes assump-
tions about the mixtures of topics in a document, as these are assumed to be
drawn from a Dirichlet distribution. The LDA variant we use was introduced by
Griffiths and Steyvers [2004]. This variant uses Dirichlet distributions both for
generating topic mixtures as well as for generating the mixture of words asso-
ciated to a topic. LDA has been proposed as a way to overcome the overfitting
issues that PLSA has been criticized for (Blei et al. [2003]).

More precisely, the generative model for each document d in the corpus is the
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following:

1. Generate a distribution over topics θd : Dirichlet(α)

2. For each word position dn in document d:

(a) Generate a latent topic zdn with probability P (zdn|θd)
(b) Generate a distribution over words φzdn : Dirichlet(β)

(c) Generate a word wdn with probability P (wdn|φzdn)

In more detail, for each document, we first draw the mixing proportion over
topics θd from a K-dimensional Dirichlet random variable with parameters α.
The Dirichlet distribution (see Appendix A for a detailed definition) is a K-
dimensional distribution with parameters α = (α1, ...αK) with α1, ..., αK > 0.
Its domain is the (K − 1) simplex, i.e. it is defined for all x1, ...xK−1 > 0 ,with
x1 + ... + xK−1 ≤ 1 and xK = 1 − x1 − ... − xK−1 and it has the following
probability density function:

f(x1, ..., xK ;α1, ..., αK) =
1

B(α)

K∏
i=1

xαi−1i (4.6)

where the beta function B(α) is a normalizing constant. Since a Dirichlet ran-
dom variable is defined such that

∑K
i=1XK = 1 it can be seen as a distribution

over distributions. In the LDA case, θd : Dir(α) models the distribution over
topic mixtures, indicating how probable each topic mixture is, given document
d.

Next, for each of the word positions in document d, a topic z is first drawn from
P (z|θd). Given each topic z, we sample φz a J-dimensional Dirichlet variable
with parameter β. Similarly, this will give mixture proportions, this time over
words w, given a topic z. Finally a word w is sampled from P (w|φz).

The joint probability of a document collection S and of the hidden variables is:

P (S,θ,φ|α, β) =
∏
d

P (θd|α)
dN∏

dn=d1

P (zdn|θd)P (φzdn |β)P (wdn|φzdn), (4.7)

The central computational problem in LDA is to obtain the posterior distri-
bution P (θ, φ, z|w, α, β) of the hidden variables z = (zd1, zd2, . . . , zdN ) given a
document d = (wd1, wd2, . . . , wdN ). Although this distribution is intractable in
general, a variety of approximate inference algorithms have been proposed in
the literature, such as a variational Bayes approximation in Blei et al. [2003] or
Gibbs sampling, a Monte Carlo Markov Chain method, in Griffiths and Steyvers
[2004].



Latent variable factorization for inducing latent meaning
classes 45

Effect of hyperparameter choice The parameters of the Dirichlet distri-
butions α and β, also called hyperparameters, are predefined, corpus-level pa-
rameters.

More precisely, the α parameters of a Dirichlet distribution control 1) the mean
of the marginals Xi i.e. the expected probability of each component and 2) the
variance of the marginals.

In the LDA case, a symmetric α, i.e. α1 = α2... = αK for the θ Dirichlet random
variable, means that, over the entire corpus, all topics are equally likely. Given
a symmetric α, a large α value determines low variance, meaning that most of
the mixtures will be close to the mean, a mixture in which all topics are equally
likely. On the other hand a small α value will turn skewed, sparse mixtures
more likely; in a sparse mixture only a small number of topics share most of
the probability mass while the rest of the topics have very low probability.

The effect of the parameter β of the φ Dirichlet random variable is similar. A
small value will indicate that only a small number of words are associated to a
latent topic and a symmetric β prior indicates that over the entire corpus, all
words are equally likely.

In topic modeling it is common to use symmetric α and β priors. These are
usually chosen to have small values to indicate the intuition that the topic
distribution of a document and the word distribution of a topic should be sparse
distributions.

4.3 Latent variable factorization for inducing latent
meaning classes

The observation data that is the focus of this thesis consists of occurrences
of target words with context features (ti, cj) ∈ T × C. In the topic modeling
terminology, a document would correspond to a target and the words in this
document are its co-occurring context features.

We use the PLSA/NMF and LDA models to induce a latent structure over a
set of K classes Z = {z1, ..., zK}. Although, as discussed, these methods differ
in the assumptions they make on the generative model of the data, they are
both motivated models for structure detection in dyadic data.

More precisely, the distributions we induce from the input frequency matrix are
the posterior of the latent class variable given a target word: P (zk|ti) and the
distribution over context features given a latent class P (cj |zk).

The distributions over latent classes for each target word P (zk|ti) give the
isolated word representations as described in Chapter 3. For the contextualized
representations we proposed the use of P (zk|ti, cj), which is the probability of
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a latent class zk given the observation of a word and a context feature. This is
obtained as:

P (zk|ti, cj) =
P (zk|ti)P (cj |zk)∑
k P (zk|ti)P (cj |zk)

Again, the independence assumption made here is that context features and
target words are conditionally independent given a latent class, leading to:
P (cj |zk, ti) = P (cj |zk). Although not true in general, the assumption is rela-
tively weak. We do not assume that words and context features occur indepen-
dently of each other, but only that they are generated independently given an
assigned meaning.

For the PLSA estimation we use the multiplicative rules algorithm proposed
to solve the NMF problem3. The distributions at interest correspond to the
asymmetric parametrization previously described. As discussed, NMF with
KL-divergence cost function is an equivalent problem and the previous section
has shown how to obtain the factorized distributions at interest from a NMF
solution. More precisely, the input matrix is the normalized frequency matrix
V . Given W and H, a solution to the NMF problem, we follow the operations
earlier described for obtaining the asymmetric parametrization and we obtain
meaning representations using:

P (zk|ti) = (A−1WB)ik; (4.8)

P (zk|ti, cj) =
P (zk|ti)P (cj |zk)∑
k P (zk|ti)P (cj |zk)

=
(A−1WB)ik(B

−1H)kj∑
k(A

−1WB)ik(B−1H)kj
(4.9)

For the estimation of the LDA model we use an implementation of the collapsed
Gibbs sampling algorithm as described in Heinrich [2008]. This is a Monte Carlo
Markov Chain (MCMC) method. MCMC are methods for simulating complex
distributions by generating a set of samples which is proven to converge to
the desired distribution. In our case, the method produces a chain of samples
of topic assignments z : z1, ..., zn for each context feature occurring with a
word c : c1, ..., cn, which converges to the posterior probability of topics, given
features: P (z|c). After a sufficient number of iterations, the chain converges to
the posterior and θ and φ can be estimated from samples of this chain. These
are further used for building meaning representations:

P (zk|ti) = θki (4.10)

P (zk|ti, cj) =
P (zk|ti)P (cj |zk)∑
k P (zk|ti)P (cj |zk)

=
θki φ

k
j∑

k θ
k
i φ

k
j

(4.11)

3Despite the findings reported in Ding et al. [2008], we have in fact failed to identify any
differences between the NMF multiplicative rules algorithm and the PLSA EM algorithm
proposed by Hofmann.
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In particular, the LDA model requires the specification of the hyperparameters.
For this, we use Dirichlet parameters that have been shown to perform well in
topic modeling, as the intuition behind this choice is similar. A small α value
indicates that only several meanings components are characteristic of a word
and small β that a meaning component is signaled by a relatively small number
of prototypical contextual features.

4.4 Previous applications to modeling semantics

In this section we summarize the previous work on using topic models and
NMF for modeling semantics. As shown throughout this chapter, these models
can provide a very straightforward and motivated basis for computing context-
aware meaning similarity within the vector space paradigm. Despite the clear
advantages that these probabilistic models offer, they have not been yet used
for approaching this issue.

Despite their general formulation, their use for modeling semantics has been
mostly restricted to the analysis of the document-word data specific to the
information retrieval scenario. The models we have described in this section can
be used as dimensionality reduction for vector space models, however the most
widely-used method is still Latent Semantic Analysis introduced by Landauer
and Dumais [1997]. For the rest of this chapter we will briefly introduce Latent
Semantic Analysis in order to point out the major differences between this
method and topics models. Following this, we overview some of the previous
work on using topic models and NMF as dimensionality reduction methods in
modeling semantics.

Latent Semantic Analysis (LSA) (Landauer and Dumais [1997] Deerwester et al.
[1990]) is one of the earliest and most popular dimensionality reduction meth-
ods. The goal is to map frequency matrices to lower dimensional spaces, in
which the dimensions hopefully reflect meaningful concepts, and thus rendering
similarity measures on these vectors more accurate.

Given a co-occurrence matrix X of size m×n, LSA computes the singular value
decomposition (SVD): UΣV . Matrices U : m×m and V : m×n are orthogonal
(the left and right singular vectors) and

∑
: m × m is a diagonal matrix of

singular values. By deleting m− k rows from the SVD factorization, we obtain
X ≈ Û Σ̂V̂ , with Û : m × k, Σ̂ : k × k, V̂ : k × n. Û Σ̂V̂ is the best rank k
approximation of X under Frobenius norm.

Matrix Û maps terms to a reduced space and similarity between terms i and j is
computed as the similarity between the two row vectors in Û . Two documents
can be compared using their corresponding column vectors in V̂ . Over the
years, it has been shown that this method can closely match human similarity
judgments and that it can be used in various applications such as information
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retrieval, document classification, essay grading etc4.

One of the main criticisms to the reduced-representations obtained in LSA stems
from the difficulty to interpret them. Unlike in the case of topic models, these
do no have probabilistic interpretations. Although empirically proven useful,
as similarity on these representations becomes more accurate, it is not possible
to see the underlying concepts that are discovered. Further on, it has also been
argued that, from a theoretic perspective, in the way it is currently employed,
LSA is not a sound method to discover such underlying latent structure (Bast
and Majumdar [2005]).

For the same reasons, the LSA method is not a candidate as a method for
latent structure detection in our framework. Just to exemplify this, consider
the following SVD factorization obtained on the input data in our previous toy
example.

spread -0.64 0.12
transmit -0.73 0.10
show -0.03 -0.64
reveal -0.02 -0.46
shed -0.21 -0.58

Table 4.10: Û

13.62 0.00
0.00 7.61

Table 4.11:
∑̂

-0.55 -0.08 0.80 0.19
-0.82 0.16 -0.52 -0.12

Table 4.12: V̂

Table 4.13: SVD decomposition of the input matrix in 4.2; k = 2

As it can be observed, the 2-dimensional representation given by matrix Û
reflects a similar structure to the one PLSA models find. However, without
an underlying probabilistic model it is impossible to obtain the contextualized
meaning representations we propose in our framework.

Topic models have been previously used for semantic tasks, however mostly on
document-word co-occurrence data. Work such as Cai et al. [2007] or Boyd-
Graber et al. [2007] uses the document-level topics extracted with LDA as
indicators of meanings for word sense disambiguation. These are integrated as
features in a supervised learning scenario.

More related to our work is that of Brody and Lapata [2009] who uses LDA-
based models which induce latent variables from task-specific data rather than
from simple documents. Brody and Lapata [2009] apply such a model for word
sense induction on a set of 35 target nouns. They assume senses as latent
variables and context features as observations; unlike our model they induce
local senses specific to every target word by estimating separate models with
the final goal of explicitly inducing word senses. Although motivated for the
WSD task, such word-specific representations are not straightforward to use for
computing similarity.

4There are number of interpretations on why this method is empirically successful. An
account of these can be found in Turney and Pantel [2010].
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NMF has been used as a dimensionality reduction method in Van de Cruys
[2008] and Novakovitch et al. [2009].

In Van de Cruys [2008], the authors propose an extension of this to handle
three-way data for word sense discrimination. After mapping words to reduced
representations, these are further on clustered based on these representations.
The authors do not investigate what exactly is the effect of this dimensionality
reduction compared to other methods. They also do not motivate the choice
for a second clustering step on these representations, as an alternative to the
soft clustering that the NMF algorithm implicitly performs.

The study in Novakovitch et al. [2009] performs a set of experiments to show
the superiority of NMF as a dimensionality reduction over LSA. This is a small
controlled study in which the authors compare NMF with LSA on inducing
“shades of meaning”. More precisely a small number of nouns are the target
words and input co-occurrence matrices are built for each of these nouns. Each
of these matrices makes use of corpus sentences which contain the target word.
The input representation chosen in these experiments is not that of standard
vector space models, as each word is represented by a matrix, rather than a
vector. Following this, a NMF algorithm and SVD are run in order to obtain
a K-dimensional reduced representations for each of the matrices associated to
a word. Values for K are chosen to correlate with the number of meanings
that the words have (as judged by humans or as appearing in WordNet). The
authors show that the meanings obtained by NMF method correlate better with
human judgments than the ones obtained through LSA.
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Chapter 5
Word Similarity

We experimentally evaluate the framework proposed on three tasks, in chapters
5, 6 and 7.

Word similarity (current chapter) In the word similarity task, the goal is
to accurately asses the similarity in meaning of two words. The gold standard
which word similarity methods are typically tested against consists of human
assessments of word similarity. For example (WordSim-353 dataset), words
such as midday-noon are judged as highly similar while professor-cucumber are
considered to be unrelated words by humans. The ability to recognize words
that are meaning-related is crucial to all NLP applications that require at least
some level of language understanding, turning thus word similarity into one of
the most fundamental semantic tasks. The current chapter addresses this task
within the context of our framework, by employing the basic representations
proposed in Chapter 3 for comparing words occurring in isolation. In particular
the focus of this chapter is to determine the best parameters for the probabilistic
methods we have proposed as well as for a set of baseline methods we compare
against.

Lexical substitution (Chapter 6) The lexical substitution task addresses
the question of word meaning similarity for words occurring in context. Lexical
substitution has been originally proposed as a robust alternative to word sense
disambiguation: the goal is to find substitutes of words occurring in sentential
context, rather than to assign to a word a single sense chosen from a particu-
lar sense inventory. Although in general the lexical substitution task is more
challenging than the (isolated) word similarity one, it addresses the important
problem of assessing similarity of words in context, as they naturally occur.
Computation of meaning similarity in context for the task of lexical substitu-
tion is the main evaluation of the framework we have proposed and is carried

51
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out in Chapter 6.

Contextual appropriateness of distributional paraphrases (Chapter
7) The role of contextual information in assessing similarity in meaning has
also been highlighted in the development of distributional paraphrasing meth-
ods1. The key observation made in the context of this work is, again, the fact
that certain phrases convey the same meaning only when occurring in partic-
ular contexts; this has lead to the conclusion that more accurate paraphrase
resources can only be obtained by analyzing context, and possibly enhanc-
ing paraphrases with such contextual information. Chapter 7 evaluates our
framework on assessing context-sensitive phrase-level similarities based on the
paraphrasing vector space model introduced by Lin and Pantel [2001b].

5.1 Experimental setup

In the word similarity task, the goal is to assign scores to pairs of words reflecting
their degree of similarity in meaning. A model for word similarity can be
evaluated in an application scenario, such as information retrieval or question
answering, or against human similarity judgments. Throughout this chapter,
we use the test collection of Finkelstein et al. [2002] (WordSim-353), containing
human-assigned similarity scores.

Data The WordSim-353 data set contains 353 pairs of words and their sim-
ilarity scores as annotated by human subjects. The annotation is not specific
about the type of similarity or relatedness in question, as the only instructions
provided to the annotators ask for “a numerical similarity score between 0 and
10 (0 = words are totally unrelated, 10 = words are very closely related)”

A subset of the data is annotated by 13 participants while the remainder is
annotated by 16 subjects. We use the entire data set together with mean
assigned similarity scores. Table 5.1 gives an example of this data.

Both highly similar words, such as midday-noon, are assigned high scores as well
as very related, however not-synonymous words, such as Maradona-football.
Despite the fact that guidelines require antonyms to be judged as similar if
they “belong to the same domain or represent features of the same concept”,
antonymous pairs such as smart-stupid are judged, on average, as being mildly
related. Despite the rather underspecified guidelines, the data set exhibits
substantial agreement, as we have obtained a mean rank correlation between
different annotators of over 0.8 Spearman Rho on this data set.

1We use the term “distributional paraphrasing” to stand for methods which derive para-
phrases solely based on occurrence statistics, such as the DIRT algorithm (Lin and Pantel
[2001b]), which is based on an underlying syntactic vector space model.
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Word pair Avg. relatedness

midday noon 9.29
magician wizard 9.02
Maradona football 8.62
tennis racket 7.56
smart stupid 5.81
professor cucumber 0.31

Table 5.1: Sample of the WordSim-353 data set

Evaluation metrics We test a number of methods on assigning similarity
scores to each pair of words in the data set. In order to compare these scores
with the scores assigned by human participants, both the gold and the system
scores are transformed into rankings. The gold annotation results in a tied
rank, as a number of pairs are assigned the same score. We use Spearman Rho
adjusted for tied rankings as a metric for the correlation between the rankings
returned by different methods and the gold ranking.

Given samples of two random variables X and Y corresponding to two rankings,
this is defined as:

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

where µX and µY are estimated with the empirical means X̄ and Ȳ and σX is
the standard deviation:

ρX,Y =
Σi(Xi − X̄)(Yi − Ȳ )√

Σi(Xi − X̄)2
√

Σi(Yi − Ȳ )2

The values of this correlation coefficient are in the [−1, 1] interval, with a value
of 1 indicating perfectly correlated variables, and −1 inversely correlated vari-
ables. A value of 0 indicates no correlation2.

Models In this chapter we compare the LDA- and NMF-based vector repre-
sentations against traditional vector space models (VSMs) baselines. Through-
out this chapter we the term probabilistic methods for these, in order to distin-
guish them from the baselines.

As discussed in Chapter 2.1, the main stages of building a VSM can be sum-
marized as: 1) Input matrix extraction, 2) Weighting of vector elements 3)
Dimensionality reduction and 4) Vector similarity computation. In order to
maintain a setting in which all methods are fully comparable, we test all of
them under the same input representation, a simple bag-of-words frequency
matrix.

2This coefficient is in fact the cosine similarity of the two centered ranking vectors. A
random variable is centered when the values of the sample have been shifted such that their
mean is 0.
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Table 5.2 summarizes the different settings we test, both for baselines as well
as for the probabilistic methods. For the rest of this section we briefly describe
these settings.

Baselines Probabilistic methods

1) Input matrix BoW input matrix

2) Weighting tf, tf-idf, pmi, if -

3) Dim. reduction LSA LDA, NMF
K: [200− 1000] {600, 800, 1000, 1200, 1400}

4) Sim. measures cos, sp, Lin, JS

Table 5.2: Settings for baselines and probabilistic methods for the word simi-
larity tasks.

1) Input matrix In order to facilitate comparison, both the baselines and
the proposed methods tested in this chapter use the same bag-of-words input
matrix. This represents target words in terms of co-occurrence with context
words, where context is defined as a symmetric window of size five around the
target word. In building the matrix the corpus used is the English GigaWord,
a collection of newswire text, amounting to a total of 1756M tokens.

For computational efficiency reasons, we prune the input matrix to size 30000×
3000: as targets we use the most frequent 30000 words, as found in the corpus;
context words are the most frequent 3000 words. A stop word list is used in
order to remove pronouns, articles, modal verbs and other function words from
the set of context words. In order for the LDA algorithm to scale to the large
amount of data, the co-occurrence counts were scaled down by a factor of 70.
This is necessary for the LDA method because the collapsed Gibbs sampling
algorithm scales linearly also with the total number of tokens in the input data:
it runs in O(NK) time, where K is the number of topics and N the total number
of tokens in the input data. The total number of tokens does not influence the
running times of the other algorithms and for this reason scaling is performed
only for the LDA method.

Table 5.3 shows a fragment of the input matrix. We list the three most fre-
quently co-occurring context words for target words professor and cucumber.

university law science pepper bean add

professor 42434 13615 7684 19 3 273
cucumber 1 0 0 166 88 79

Table 5.3: Fragment of the input matrix. Target words professor and cucumber.

2) Weighting schemes Weighting schemes are used in vector space models
as a means to enhance the effect of rarely occurring events. The intuition
behind is that words occurring very often tend to be less informative as context
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features and therefore less indicative of a word’s meanings. We implement a
number of widely used weighting schemes, which have been shown in the past
to outperform the use or raw frequency counts.

Term frequency (tf) weighting involves normalizing the rows of the input matrix
such that all elements sum up to 1. A cell vij represents the percentage of ti
co-occurring with context feature cj out of the total occurrences of ti. This
makes the vector associated to a word less sensitive to its total frequency.

tf(vij) =
vij

Σjvij

Term frequency-inverse document frequency (tf-idf) is defined as the product
between term frequency and inverse document frequency.

tf − idf(vij) = tf(vij)× idf(j)

where

idf(j) = log
J

|{j|vij > 0}|
where J is the number of columns in the matrix. The inverse document fre-
quency idf(j) turns a context feature j more relevant if its occurrence frequency
in the entire matrix is small, indicating a relevant event.

Point-wise mutual information (pmi) is an information-theoretic measure. It
quantifies the correlation between two co-occurring events in terms of their
independence as random variables.

pmi(vij) = log
P (ti, cj)

P (ti)P (cj)

If the two variables (i.e. occurrence of ti and of cj) are statistically independent
we obtain a pmi value of 0, indicative of no correlation. Correlated variables
result in positive pmi values, while negative correlation is indicated by negative
pmi. We estimate the probabilities as:

P (ti) =
Σjvij
Σijvij

P (cj) =
Σivij
Σijvij

P (ti, cj) =
vij

Σijvij

Finally, we also test the weighting scheme used in the composition models of
Mitchell and Lapata [2009]. We denote this weighting scheme as if (inverse
frequency); this is computed as the probability of context cj given ti, divided
by the overall probability of cj :

if(vij) =
P (cj |ti)
P (cj)

Simple calculations show that this weighting scheme is identical to point-wise
mutual information without the logarithmic scaling:

if(vij) =
P (cj |ti)
P (cj)

=
P (cj |ti)P (ti)

P (ti)P (cj)
=

P (ti, cj)

P (ti)P (cj)



56 Experimental setup

3) Dimensionality reduction As baseline dimensionality reduction we test
the widely-used Latent Semantic Analysis method.

LSA computes the singular value decomposition of a m × n input matrix X:
X = UΣV . Matrices U : m ×m and V : m × n are orthogonal (the left and
right singular vectors) and Σ : m ×m is a diagonal matrix of singular values.
By deleting m−K rows from the SVD factorization we obtain X ≈ Û Σ̂V̂ , with
Û : m×K, Σ̂ : K×K, V̂ : k×n. Û Σ̂V̂ is the best rank K approximation of X
under Frobenius (least squares) norm. We use the target word representation
obtained in matrix Û , which maps words to a reduced space of dimension K3.

Since reduction to any value of K can be obtain from a single SVD decompo-
sition, we test a wider range of values for K, a total of eight values, with K
ranging from 200 to 900. The results decrease considerably for K values outside
this interval. It is common to apply weighting schemes before computing the
SVD decomposition (see for example Husbands et al. [2005] or Aswani Kumar
[2009] for discussions on the importance of prior weighting). We perform SVD
decomposition on the original matrix of raw counts, as well as after applying
tf -idf , pmi and if weighting.

The probabilistic methods we propose use the following vector representations
for a target word ti:

v(ti) = (P (z1|ti), ..., P (zK |ti))

where the components P (zk|ti) are estimated using two methods: 1) NMF
with multiplicative update rules algorithm and 2) LDA with Gibbs sampling
algorithm.

Both these models take K as parameter. Since we are modeling an entire set of
30K words we have experimented with relatively large number of classes. We
test five K values: {600, 800, 1000, 1200, 1400}4.

The NMF objective function is not defined on 0 values. For this reason, we
precede the NMF update rules algorithm by adding to all entries in the matrix
a small positive value5.

Additionally to the K parameter, the LDA model takes as input the α and β
hyperparameters. For the α parameter we use 50/K which has been reported as
a good value for modeling collections of documents and their underlying topics
(Griffiths and Steyvers [2004]). Similarly to the topic modeling scenario, we
expect the number of senses triggered by a word to be very small in comparison
to the total number of senses. Similarly, only a relatively small number of

3There are a number of views on why SVD decomposition works as a dimensionality re-
duction method; an overview of these can be found in Turney and Pantel [2010].

4If we see the classes as determining a hard partition on the set of target words, a number
of 1000 classes would amount to assigning 30 words to each such cluster.

5Arbitrarily set to 1e-05 in these experiments.
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context words should be associated to a particular meaning and therefore we
also use a small β value of β = 0.01 (also used before by Porteous et al. [2008]).

4) Similarity measures A large number of vector similarity measures have
been proposed in the literature.

Cosine measures the angle between vectors and the intuition behind is that
similar words will be vectors pointing in the same direction, although different
overall frequency of words might determine very different vector lengths.

cos(v, w) =
< v,w >

||v|| ||w||
=

Σiviwi√
Σiv2i

√
Σiw2

i

Lin similarity was introduced in Lin [1998a] and is defined as follows:

lin(v, w) =

∑
i∈I(v)∩I(w)(wi + vi)∑
i∈I(v) vi +

∑
i∈I(w)wi

The ith value of a vector is the pointwise mutual information score and I(·)
gives the indices of positive values in a vector.

Divergence measures quantify the distance between two distributions and the
inverse of such a distance can be used to measure vector similarity. Such mea-
sures can only be applied to proper distributional representations; in our ex-
periments these are the ones obtained with the probabilistic methods as well as
those using the tf weighting scheme.

We use the inverse of the Jensen-Shannon divergence, which is defined as fol-
lows:

DJS(p, q) =
1

2
DKL(p|m) +

1

2
DKL(q|m)

where m = 1
2(p+ q) and DKL is the standard Kullback-Leibler divergence:

DKL(p|q) =
∑
i

pilog(
pi
qi

)

We use the inverse of the divergence to measure similarity:

JS(v, w) =
1

DJS(v, w)

Scalar (dot) product is the simplest function we implement for returning simi-
larity scores:

sp(w,w) =< v,w >= Σiviwi
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5.2 Model selection

Throughout this section we investigate the effect of different parameter set-
tings for the probabilistic models, namely: the effect of dimensionality K, of
the similarity measure used and of the number of iterations for which the two
algorithms are run. Parameter tuning is performed also for the baselines, how-
ever a detailed account of the results obtained is not provided here, as this is
not the focus of the evaluation. The best results and corresponding settings for
both baseline and probabilistic methods are reported in Section 5.3.

Dimensionality K and similarity measure

In this section we investigate the effect of the dimensionality K and of the
similarity measure on the performance of the models.

Together with the individual models obtained with each of the five K values,
we also experiment with a mixture model. A mixture model combines the
individual predictions of different models in order to obtain a single aggregate
prediction. It is generally known that mixing the predictions of models with
different parameter settings may lead to an increase in predictive power (see
for example Reisinger and Mooney [2010] for the same observation in a similar
experimental setting).

We test a mixture obtained from the similarity scores returned when using each
of the five K values. This is a straightforward mixture setting, in which all the
single scores are given equal weight by averaging over them:

simMIX(v, w) = avg(
∑
K

simK(v, w))

where v an w are two words and simK(v, w) is the similarity between them as
returned by a model with K latent classes. The equal-weights mixture turns
both the tuning of mixture weights, and of parameter K, unnecessary.

We test three similarity measures: scalar product (sp), cosine similarity (cos)
and inverse Jensen-Shannon divergence (JS). The use of Lin similarity is not
appropriate in this case, as it is defined on vectors of pmi values.

For the results reported in this section we run the LDA Gibbs sampling algo-
rithm for 1000 iterations and we average over three chain samples (at 800, 900
and 1000 iterations) to obtain estimates of the P (zk|ti) distributions6. We run
the NMF multiplicative rules algorithm for 100 iterations. In order to minimize
the effect of the initial random initialization of this algorithm, we start two
independent runs for each K value and average over their predictions.

The results for the individual K values as well as for the mixture methods, for
different similarity measures, are plotted in Figures 5.1, 5.2, 5.3 and 5.4. The

6Averaging over different states of the Monte Carlo Markov Chain chain is standard pro-
cedure in topic modeling. We observe no topic drift.



Model selection 59

LDA method yields the best results when using scalar product as similarity
measure (Figure 5.1). This is followed by the use of JS, which outperforms
cosine (Figures 5.3 and 5.4).

Figure 5.1: LDA-Scalar product Figure 5.2: NMF-Scalar product

Figure 5.3: LDA-Cosine Figure 5.4: LDA-Inverse JS

Irrespective of the similarity measure used, the LDA models perform better
with larger number of topics and their performance peaks at K = 1200 for
cosine and scalar product and K = 1000 for JS similarity. Mixture models are,
however, significantly better than the average performance for all similarity
measures and they are only slightly outperformed by the best single settings in
all cases.

Figure 5.2 plots the results obtained with the NMF method using scalar prod-
uct similarity. Scalar product is again the best way of measuring similarity,
outperforming JS, which in turn outperforms cosine. As it can be observed
NMF mixture outperforms the LDA mixture by over 3% in Spearman Rho cor-
relation. Unlike LDA, the best results are obtained when using the largest K
setting tested. This is similar to the findings of Hofmann [1999], where the per-
formance of the closely-related PLSA model increases with the dimensionality
K, without reaching an upper bound (K is however bounded by computational
efficiency considerations). The mixture setting is consistently performing well
for the NMF method as well.

To summarize, both methods prefer more complex models, with large K values.
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Mixing over all K settings, which turns parameter tuning unnecessary, is a
good strategy which significantly improves over the average performance. In
terms of similarity measures, we observe that scalar product and inverse JS
divergence perform best, again for both methods. This result corresponds to
the intuition that, in the probabilistic framework we have proposed, scalar
product and divergence methods are particularly motivated similarity measures,
as detailed in Section 3.2.3.

Number of iterations

A second aspect we investigate is the correlation between the number of it-
erations of the two algorithms and the performance of the models obtained.
Throughout this section we discuss the convergence of the two algorithms and
the use of early stopping.

Convergence The Gibbs sampling LDA algorithm generates a chain of sam-
ples which is proven to converge to the desired posterior distribution. In reality,
it is difficult to determine the convergence of the chain, and several methods
are available to measure the variation within a chain (Gilks [1999]). If there is
sufficient evidence for convergence one can either use a chain state (a sample)
which maximizes the likelihood of the data, or average over a number of samples
at a lag of, usually 50 or 100 iterations. In practice, it is common to use the
model obtained after the chain runs for a large number of iterations (usually
more than 1000, also called burn-in period) without the check for convergence.

The convergence of the NMF multiplicative rules algorithm can be monitored
through the KL-divergence error function. One our data, we observe that a few
hundred iterations are sufficient to result in a minimal error reduction rate.

Early stopping In the topic modeling literature, the use of early stopping
has been proposed as a technique for preventing overfitting. The intuition
behind this is that instead of running an algorithm until it has converged, a
model obtained at an earlier iteration might perform better. At an earlier
iteration the error function has not reached a local minimum, therefore the
model learned does not perfectly fit the observed data. This in turn may help
prevent overfitting and generalize better to unseen data. In the topic models
literature early stopping has been employed for the different variations of the
EM algorithm for PLSA in Hofmann [2004] or Hofmann [1999]. In this work
held-out data is used to determine a good stopping iteration.

In order to investigate whether a similar effect can be observed here, we perform
evaluations of the LDA and NMF methods using earlier iterations.

In the previous section we have run the LDA Gibbs algorithm for 1000 iterations
and averaged over 3 iterations at lag 100. In this section we evaluate the the
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algorithm when using the output from 100 to 1000 iterations7.

The performance of the LDA model, for each similarity measure, is plotted
in Figure 5.5. For simplicity, the LDA model plotted is the mixture over all
K values, however the same trends in the graphs are also observable for the
individual models.

Figure 5.5: LDA MIX across different number of iterations

In the case of scalar product, the best performing similarity measure, we observe
a significant drop in performance with the increase in the number of iterations,
of approximately 3% from the peak, at iteration 300, to iteration 1000. When
using cosine, also peaking at 300 iterations, we can observe a similar trend with
a total performance drop of 2%. The JS measure makes a distinctive note as it
reaches its best results after 700 iterations.

For the NMF formulation, we continue to run the algorithm for 300 iterations
and investigate the results at every 50 iterations step. We observe however that
the performance peaks at as early as iteration 100. For this reason we test
results every 10 iterations until iteration 100 is reached. We observe that the
performance peaks at around 50-100 iterations, with slight variations depending
on the similarity measure used. The best setting, scalar product, peaks at
iteration 70. After 300 iterations we observe a significant total drop of 5%
in Rho correlation, irrespective of the similarity measure used. Iterations 30
through 100 are plotted in Figure 5.6.

Overall we observe that both methods benefit from the use of early stopping,
for all K values tested8. This may be caused by the models not being fully

7When running the algorithm for, e.g. 300 iterations, we again average over three samples
at lag 100 (iterations 100, 200 and 300); at iteration 100 we only use the current state rather
than averaging over multiple states.

8In particular, in both algorithms, specific to earlier iterations are distributional represen-
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Figure 5.6: NMF MIX across different number of iterations

adequate for the task we test on, or by an overfitting effect. In future work
we plan experiment with monitoring log-likelihood on held-out data in order to
investigate whether the observed behavior is caused by overfitting; overfitting
is not unlikely given the high complexity, i.e. the large dimensionality K, of the
models.

5.3 Results

In Table 5.4 we list the Spearman Rho correlation scores of the best performing
settings for each type of model.

The simple vector space model (SVS) performs best with pmi weighting and Lin
similarity. If weighting together with cosine similarity is the next best setting.
These two configurations outperform by a large margin any other combinations
of similarity measures and weighting schemes.

As previously discussed, LSA dimensionality reduction is performed on raw
counts as well as with prior weighting functions. We observe that the weighting
scheme has a dramatic effect on the performance of the LSA method, with if
outperforming the other methods by a margin of over 10%. The best results
using LSA are obtained with if weighting, K=600 and using scalar product as
similarity. This setting outperforms the SVS models.

For the LDA and NMF models, we report results obtained with early stopping,
i.e. 300 iterations for LDA and 70 iterations for NMF. The similarity measure

tations which are less sparse, “less focused”. With larger number of iterations, these become
more sparse, with only a few topics sharing most of the distribution mass.
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used is scalar product. The LDA and NMF methods perform similarly to LSA.
When using early stopping, both LDA and NMF reach their best performance
with the largest K value of K = 1400 classes. Despite the fact that the LDA
model is at disadvantage, as it uses input data which is two orders of magnitude
smaller, it performs comparably to the other methods.

Model Weighting K Sim. measure Pearson

SVS pmi - lin 53.15
SVS if - cos 55.96
LSA if 600 sp 58.20
NMF - 1400 sp 57.89
LDA - 1400 sp 58.22

LSAMIX if Mix sp 58.00
NMFMIX - Mix sp 56.79
LDAMIX - Mix sp 56.49

Table 5.4: Model results on out of context word similarity.

The second part of the table shows the results for the mixture models. For
comparison, we also present an LSA mixture model. The mixtures perform
slightly worse than their best individual models, however, they are more robust
as they do not require parameter tuning.

5.4 Discussion

Throughout this section we exemplify the distributional representations induced
in our framework9 and following this we examine some of the errors made on
the word similarity data.

Tables 5.5 and 5.6 show the representations for the pair of words ranked as
most similar, according to all similarity measures: (psychology, psychiatry).
Words are described as distributions over classes, the top most probable ones
being given in Table 5.5. A class is described by a distribution over context
words. These are assigned names in 5.5 and further described by their most
likely context words in Table 5.6.

As it can be observed, the classes obtained for words psychiatry and psychology
capture prototypical contextual features, rather than distinct meanings. Both
words are described by two university-related classes and a third class indicating
the context of science, medicine. The two words only differ in their fourth most
frequent class, and these differences intuitively match the meaning difference
between the two words: for psychiatry this class points to a medical domain
illness, hospital while for psychology we find a class containing verbs such as
like, do, take, include which may refer to the study of psychology. The pair is

9as outputted by a single LDA model, K=1400 after 300 iterations
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Probability Class

psychiatry 0.26 university 1
0.19 university 2
0.06 science-medical
0.05 medicine

psychology 0.29 university 1
0.16 university 2
0.06 science-medical
0.05 verb

Table 5.5: Distribution over latent classes for target words psychology and
psychiatry

Class Word Distribution

university 1 0.12 professor 0.05 school 0.04 harvard 0.04 university
university 2 0.47 university 0.06 professor 0.04 school 0.03 study
science-medical 0.11 science 0.04 journal 0.04 academy 0.03 medicine
medicine 0.28 medical 0.08 say 0.06 doctor 0.05 hospital
verb 0.06 like 0.06 do 0.05 take 0.05 include

Table 5.6: Context word distributions associated to latent classes

scored very similar also by human judges receiving a mean similarity score of
8.08.

As a second example, we consider the words gin, vodka and brandy present in
the WordSim data. Their representations are given in Table 5.7.

Prob. Class Word distribution

gin 0.12 alcohol-drink wine, drink, bottle, beer
0.02 game game, play, team, match

vodka 0.12 alcohol-drink wine, drink, bottle, beer
0.12 commercial sell, product, company, market
0.04 russia russia, russian, boris, moscow

brandy 0.24 alcohol-drink wine, drink, bottle, beer
0.09 recipe 1, fresh, cup, 2, add, green
0.09 celebrity star, play, actor, movie, film

Table 5.7: Distribution over latent classes for target words gin, vodka and
brandy.

We observe that for the word gin, actual sense distinctions are captured: a card
game class is the second most frequent class, however much less likely than an
alcoholic beverage component. For the word vodka, which is un-ambiguous, we
observe that the representation captures again aspects of its meaning; specific to
this word are russia and commercial classes. The method finds that specific
to brandy are a recipe class (perhaps reflecting the use of brandy as a cooking
ingredient) and a celebrity class (possibly reflecting Brandy occurring as a
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girl’s name).

The similarity scores assigned by humans disagree to a large degree from those
assigned by our model in a number of cases. The most systematic error we
encounter suggests an inadequacy of the newspaper domain input corpus. Con-
sider for example the pair (planet, star) in Table 5.8. The word star is pre-
dominantly used with the meaning of celebrity in the input corpus, and for this
reason the high similarity that humans assign to this pair is not reflected in the
representations we induce.

Other examples of this are (magician, wizard) (with wizard predominantly oc-
curring in its software sense10) or (tennis, racket) (with racket occurring fre-
quently in its illegal business sense).

Prob. Class Word distribution

planet 0.18 planet earth, surface, atmosphere
0.07 find find, know, discover, show

star 0.04 entertainment 1 film, movie, show, like, star
0.03 entertainment 2 actor, do, play, director, star

wizard 0.10 software software, computer, program
0.08 entertainment 1 film, movie, show, like, star

magician 0.08 verb like, do, make, see, get
0.02 name david, mary, howard, clark

Table 5.8: Meaning representations of word pairs (planet, star) and (magician,
wizard) which are assigned high similarity by humans and low similarity by the
system.

This points to an interesting aspect of this data: when given ambiguous words,
human participants seem to rate their similarity by assigning meanings which
bring the two words closer together. In the out-of-context scenario, our models
are however designed to return an average similarity score, over all the pos-
sible meanings. This observation indicates that the performance on this task
can be improved by using a different similarity computation strategy11. An
optimal similarity computation strategy may depend, however, on the concrete
application requiring the comparison of words. For this reason, it is out of our
scope here to further adapt the similarity computations to the task of predicting
human similarity judgments.

10A software wizard is a user interface element.
11In the same line, Reisinger and Mooney [2010] propose a MaxSim strategy. In their work

words are represented as sets of clusters and the idea is to return the similarity between the
two most similar clusters (corresponding to the most similar meanings that the two words
have).
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5.5 Summary

Throughout this section we have tested the use of LDA and NMF as dimension-
ality reduction methods and compared them against a set of baseline methods
for the task of assessing word similarity. In particular, we have focused on
determining optimal settings, both for the probabilistic methods as well as for
the baselines, which we further employ on the task of lexical substitution in
Chapter 6.

For the probabilistic methods, we have observed that larger K values perform
better, however a basic mixture model in which all K settings receive equal
weight achieves very good performance. The advantage of using a mixture
model is that it turns parameter tuning unnecessary, as an optimal K value
need not be determined.

A second observation we make is that probabilistic methods perform better on
this task when using earlier iterations of their corresponding algorithms. In
future work we plan to investigate if this is an overfitting effect, determined by
the high complexity of our models.

Finally, we have qualitatively analyzed the data and exemplified the meaning
representations obtained with the probabilistic models. We observe that, as
expected for a data-driven method, the classes induced reflect aspects or com-
ponents of meaning, rather than distinct dictionary-like senses.



Chapter 6
Lexical Substitution

This chapter contains the main evaluation of the proposed framework, on the
task of computing lexical similarity in context.

While traditionally, distributional models of semantics are targeted at represent-
ing isolated words, most end-user NLP applications need to model the meaning
of words occurring in context. For this reason, distributional meaning repre-
sentations that are sense-specific or context-sensitive have been in the focus
of recent work. These aim at modeling meanings beyond the level of isolated
words while remaining within the distributional representation paradigm and
retaining its advantages.

Throughout this chapter we address the task of computing word similarity in
context by making use of the SemEval 2007 Lexical Substitution Task (LST)
benchmark dataset (McCarthy and Navigli [2007]), in which systems are re-
quired to find appropriate substitutes for target words occurring in sentential
context.

This task has been originally proposed as an alternative to the Word Sense Dis-
ambiguation task. In language technology, Word Sense Disambiguation (WSD)
has been proposed as a stand-alone task to help develop computational meth-
ods for assigning senses to words occurring in context. The desired goal is to
develop ambiguity resolution modules to be integrated in end-user applications
such as machine translation or information retrieval. The implicit assumption
of the WSD task is the view on word meaning as a list of separate senses, out of
which one or more are triggered by an occurrence of the word. The foundations
of this assumption have been subject to criticism both from a theoretical point
of view, by lexicographers, as well as from an application perspective due to
the observed difficulties encountered by computational models for WSD. Thus,
it is commonly agreed upon that WSD, at least in its traditional formulation,
has failed to prove itself useful in end-user applications (Resnik [2006]). It has
been, however, argued that the need for word sense resolution is in fact the
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need for assessing context-aware meaning similarity. This has lead to the pro-
posal of lexical substitution and cross-lingual lexical substitution as stand-alone
tasks. In these tasks, the goal is to find context-appropriate substitutes for a
word either within a mono-lingual setting (e.g. for information retrieval) or in a
cross-lingual setting (e.g. for machine translation). These tasks circumvent the
need for sense inventories or explicit sense assignment by casting the meaning
resolution problem as a (context-aware) similarity computation problem, which
is at the core of most language technology applications.

6.1 Experimental setup

Data We make use of the SemEval 2007 Lexical Substitution Task (LST)
benchmark dataset of McCarthy and Navigli [2007]. In the lexical substitution
task, a system is provided with a target word occurring in sentential context
and has to identify appropriate substitutes for it. The LST dataset contains
200 target words, namely nouns, verbs, adjectives and adverbs, each of which
occurs in 10 distinct sentential contexts. The total set contains 2,000 sentences.
Five annotators were asked to provide substitutes for these target words.

The following two sentences are instances of the target adjective still in the
LST data.

(1) It is important to apply the herbicide on a still day, because spray drift
can kill non-target plants.

(2) A movie is a visual document comprised of a series of still images.

For sentence (1), the annotators provide the following substitutes: calm (pro-
vided 5 times), not windy (1) and windless (1). In sentence (2) the adjective
has a completely different meaning, which is reflected in the corresponding sub-
stitutes: motionless (3), unmoving (2), fixed (1), stationary (1) and static (1).

We use the test portion of this data set (containing 90% of the total data). Fur-
ther on we prune this data set by eliminating multi-word expressions provided
as substitutes, as well as words that are not in our vocabulary1. Sentences that
are left with no valid substitutes are eliminated.

Table 6.1 summarizes the data used. We give the total number of substitutes
provided for each part of speech tag, on average, as well as the average number
of substitutes that are correct for each instance. As it can be observed, the less
ambiguous data is the adverb data where one third of the candidate substitutes
are correct. At the other extreme, verbs are the most difficult part of speech,
with approximately 15% percent of the substitutes being correct.

1The input matrix contains the 30000 most frequent words found in GigaWord. Some of
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Adv Adj Noun Verb All

#Sentences 286 464 490 435 1675
#Total subst.(avg.) 10.7 18.0 16.5 19.7 16.7
#Correct subst.(avg.) 2.9 3.7 3.2 3.5 3.4

Table 6.1: Lexical substitution data

The typical approach to the LST task involves two steps. Initially, a set of
candidate substitutes is generated with the use of inventories such as WordNet,
while in a second stage such candidate lists are ranked. Our goal is not that
of building a complete lexical substitution system, but rather on computing
context-sensitive similarities for solving the paraphrase ranking subtask.

For this reason we use the LST data similarly to Erk and Padó [2008] and to
subsequent work. In this setting, all the (gold) substitutes for each target are
pooled together, which creates a total list of possible substitutes for each target
word. Following this, the model has to produce a ranking of this total set of
substitutes, given a specific sentential context. Ideally, the context-appropriate
substitutes will be ranked high in detriment of the substitutes corresponding to
different senses of the target word.

Evaluation metrics and significance testing The original task proposes
precision out of ten as a scoring method. However, as shown in Thater et al.
[2009], this evaluation metric is not appropriate for this experimental setting.
For this reason, we use as evaluation metrics a rank correlation measure, Kendall
τ , as well as Generalized Average Precision (GAP) in order to facilitate compar-
ison with previously reported results. We further detail on these two measures.

Kendall τ is a non-parametric measure for computing rank correlation. Kendall
τa is defined as:

τa =
nc − nd

n(n− 1)/2

where
nc = number of concordant pairs
nd = number of discordant pairs
n = total number of pairs

A concordant pair is a pair of data instances for which the two ranks agree, i.e.
their relative order is the same in both lists, while a discordant pair is a pair
for which the ranks disagree. If one of the ranks is the gold standard rank, the
measure can be seen as penalizing inversions of the relative order of any two
elements in this gold rank.

Kendall τb correlation is simply adjusted to cases in which ranks contain tied

the LST words are not in this list.
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pairs. Given two ranks t and u, this is defined as:

τb =
nc − nd√

(n0 − n1)(n0 − n2)

where
n0 = n(n− 1)/2
n1 = Σiti(ti − 1)/2
n2 = Σiui(ui − 1)/2
ti = Number of tied elements in the i’th group of tied elements of rank t
ui = Number of tied elements in the i’th group of tied elements of rank u

The quantity (n0−n1) stands for the number of element pairs in the first rank
for which a strict order relation holds (i.e. elements sharing the same position
in the rank do not form such a pair, therefore their cardinality n1 is discounted).
The quantity (n0−n2) represents the corresponding number of “valid” pairs in
the second rank.

We also report results using a second metric, Generalized Average Precision
(GAP)(Kishida [2005]). Average precision is a measure typically employed in
information extraction and is defined as follows:

AP =
Σn
i=1xipi
R

pi =
Σi
k=1xk
i

where xi is a binary variable indicating whether the ith item as ranked by the
system is in the gold standard or not, R is the size of the gold standard, and n
the number of candidate substitutes to be ranked by the system.

Since the gold standard of our data also associates weights to substitutes, we
use generalized average precision instead which extends average precision to:

GAP =
Σn
i=1I(xi)pi
R′

R′ = ΣR
i=1yi

where I(xi) = 1 if xi is larger than zero, zero otherwise, and y1, . . . , yR, the
frequencies of paraphrases 1 to R of the ideal ranked list of paraphrases.

The GAP measure differs to rank correlations as it also takes confidence weights
into account, these being given by the number of people that suggest a particular
substitute word.

For significance testing, we use random shuffling (Yeh [2000]). Randomized
testing has the advantage of making no assumptions about the distribution of
the data, being one of the most reliable methods of significance testing. These
methods are very computational-intensive but usable on our data due to the
relatively small number of instances available.

In more detail, given two system outputs, the null hypothesis (i.e., that the two
predictions are indistinguishable) is tested by randomly mixing the individual
instances (in our case sentences) of the two outputs. We run this for a standard
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number of one million iterations. We count how many times the difference
in performance between the two (shuffled) outputs is equal or greater than
the difference observed between the original two outputs. This divided by the
number of iterations gives the significance level p. This measures the probability
that the same (or larger) difference in performance is observed under the null
hypothesis that the two systems are actually indistinguishable.

Models In this section, we overview the models tested on the lexical substi-
tution task. In particular, we test two sets of baselines (context-ignoring and
context-sensitive baselines) against the probabilistic models obtained in our
framework.

Context-ignoring baselines The first baseline we report is a simple vector
space (SVS) that does not use any contextual information. This baseline returns
the same ranking of the substitute candidates for each instance, based solely
on their similarity with the target word. We test the two best performing
settings for the word similarity task: if weighting with cosine similarity and
pmi weighting with Lin similarity.

Context-sensitive baselines Our baselines for similarity in context are vec-
tor addition and vector multiplication of Mitchell and Lapata [2008]. In Mitchell
and Lapata [2009] the authors show that multiplication approximates the in-
tersection of the meaning of two vectors, whereas addition approximates their
union.

More precisely, given a target word t and context word c, represented in a
J-dimensional vector space as:

v(t) = (t1, ..., tJ)

v(c) = (c1, ..., cJ)

the composed vector representations are obtained as:

vAdd(t, c) = v(t) + v(c) = (t1 + c1, ..., tJ + cJ)

vMult(t, c) = v(t). ∗ v(c) = (t1 ∗ c1, ..., tJ ∗ cJ)

Any input vector representation can be used with these composition methods
and for this reason we test 1) the simple semantic space (SVS) (as originally
proposed by the authors) as well as 2) dimensionality-reduced representations
obtained from LSA, LDA and NMF. We use notation such as AddLSA to stand
for addition as composition method and LDA as underlying vector representa-
tion.

The reason for choosing this baseline is twofold. Firstly, it has been shown that
it is a competitive model, when applied both on measuring contextual similarity
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and on language modeling. A second motivation stems from the fact that this
method is very easy to replicate; we can therefore compare all the models in
an identical setting, in which differences in results can be explained solely by
the their performance and not by differences in the experimental set-up. A
comparison with other reported results on this data set is performed in Section
6.2

Interaction between composition methods and weighting schemes
Mitchell and Lapata show that multiplication outperforms addition, when us-
ing the weighting scheme: if(t, c) = P (t,c)

P (t)P (c) , with t-target word and c-context
word. The intuition behind this is that multiplication approximates meaning
intersection, as it results in probabilities of context features given both target
and context word2.

However, component-wise composition operations cannot be interpreted inde-
pendently of the weighting scheme used. For example, the effect of multipli-
cation on if weighting is obtained by performing addition on pmi weighting.
More precisely, as we have pointed out in Chapter 2, the pmi weighting scheme
is identical to if on logarithmic scale:

pmi(v(t)) = log(if(v(t)))

For this reason, component-wise addition on pmi weights corresponds to mul-
tiplication on if weights:

pmi(v(t)) = (pmi(t1), ..., pmi(tJ)) = (log(if(t1)), ..., log(if(tJ)))

pmi(v(t)) + pmi(v(c)) = (pmi(t1) + pmi(c1), ..., pmi(tJ) + pmi(cJ))

= (log(if(t1)) + log(if(t1)), ..., log(if(tJ)) + log(if(tJ)))

= log(if(v(t)). ∗ if(v(c)))

In turn, different similarity measures are best associated with these weighting
schemes. Lin similarity, which is defined in an additive fashion, is used with pmi
weighting, while cosine similarity which is defined in a multiplicative fashion is
better suited for if weighting:

cos(v, w) =
Σiviwi√

Σiv2i

√
Σiw2

i

lin(v, w) =

∑
i∈I(v)∩I(w)(vi + wi)∑
i∈I(v) vi +

∑
i∈I(w)wi

where I(v) gives the indexes of the positive values of a vector v.

2This aspect is detailed in Chapter 2.
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Probabilistic models Our models use the following contextual representa-
tion, as detailed in Chapters 3 and 4:

v(t, c) = (P (z1|t, c), ..., P (zK |t, c))

where the components P (zk|t, c) are estimated using LDA and NMF.

We test the two mixture models, which we denote as ContNMFMIX
and ContLDAMIX

.
Parameter tuning is not necessary for these models as they return the average
similarity score over the predictions of each K value. We also test the best in-
dividual models as determined on the word similarity task in Chapter 5. These
are K=1400 with early stopping: 300 iterations for the LDA models and 70
iterations for NMF. We denote these models as ContNMF and ContLDA.

Treatment of context Our definition of context is identical for all methods.
Context words are considered to be words occurring within a 5-word window
around the target word. The probabilistic methods use only the most frequent
3000 words as context features; for this reason we can only use the context
words that are in this list, rather than all 10 context words that are extracted
for each instance. This results in using on average four context words for each
instance; all methods tested in this section use these same context words. Table
6.2 exemplifies the data used as input for the sentences in (1) and (2). We list
the entire candidate substitutes list, with the correct ones indicating the number
of people suggesting them in parentheses.

Target word Context words Candidate substitutes

still apply day calm(5), windless(1), static, hushed, ar-
ranged, serene, smooth, fixed, stationary,
motionless, quiet, peaceful, tranquil, unruf-
fled

still image series calm, windless, static(1), hushed, arranged,
serene, smooth, fixed(1), stationary(1), mo-
tionless(3), quiet, peaceful, tranquil, unruf-
fled

Table 6.2: Input data for target word still in sentences in (1) and (2).

To create a ranking of the candidate substitutes, we compose the vector of the
target with its context and compare it with each substitute vector. Given a
set of context words, we contextualize the target using each context word at a
time and multiply the individual similarity scores. We contextualize just the
target word and not the candidate substitutes. This approach has been shown
to bring higher discriminative power to the models, as opposed to performing
comparisons with both target and substitute embedded in an identical context
(Thater et al. [2010]).
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6.2 Results

The results on lexical substitution are shown in Tables 6.3 (baselines) and 6.4
(probabilistic methods) .

Baselines Context-ignoring vector space models can be very competitive
baselines on this task, as previously observed by Erk and Padó [2008] and
by subsequent studies. In particular, we observe that an adequate choice of
weighting scheme and similarity measure further improves the performance of
such a baseline. The best simple vector space model (SVS) is obtained us-
ing pmi weighting and Lin similarity. As a comparison, this context-ignoring
method scores 41.29 in GAP which is significantly higher than previously re-
ported context-ignoring baselines on the LST data 3.

Model Setting Kendall’s τb GAP

Random 0.0 31.61
SVS pmi, lin 12.09 41.29
AddSVS pmi, lin 15.14 43.41
AddLSA cos 11.03 39.02
AddLDA cos 12.19 40.08
AddNMF cos 13.79 41.84
MultSVS if, cos 14.67 42.14
MultLSA cos 0.0 31.61
MultLDA cos 12.04 40.13
MultNMF cos 14.61 41.79

Table 6.3: Baseline results on LST data.

Model Similarity Kendall’s τb GAP

ContNMF JS 17.57 44.94
ContLDA sp 14.60 42.18
ContNMFMIX

JS 17.38 44.67
ContLDAMIX

sp 15.66 42.66

Table 6.4: Probabilistic methods results on LST data.

The additive and multiplicative compositional models on the simple vector rep-
resentations (AddSVS and MultSVS) significantly improve over this baseline. We
observe that the two best combinations are addition with pmi weighting and
Lin similarity and multiplication with if weighting and cosine similarity. As
discussed in Section 6.1, this result is to be expected as these two combina-
tions approximate the same type of composition, the one proposed in Mitchell
and Lapata [2008]. Other combinations of weighting schemes and similarity
measures delivered significantly lower results.

333.04 GAP in Thater et al. [2009], 34.6 in Erk and Padó [2010] and 37.65 in Thater et al.
[2010]
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We also test the additive and multiplicative compositional models on dimensionality-
reduced representations obtained by performing LSA, LDA and NMF. The
scores are lower when using these representations over the SVS one. In partic-
ular, we observe that multiplication and LSA performs random. Addition and
LSA, while not achieving high performance, does significantly improve over ran-
dom. This corroborates previous work, in which LSA representations have been
composed in an additive fashion to obtain sentence representations.

Probabilistic models We list the results of the probabilistic methods in
Table 6.4.

Unlike on the word similarity task, we observe that the choice in similarity mea-
sure does not make a dramatic difference in the performance of the models. In
particular, the LDA models work best with scalar product while the NMF ones
prefer the use of inverse JS divergence. These two measures slightly outperform
the use of cosine in both types of models.

We observe that both NMF models outperform the best baseline compositional
models. We perform significance testing to compare the two NMF runs with the
two best baselines: AddSVS and MultSVS. The differences are highly significant
at levels p < 0.0014.

LDA models achieve similar performance to the best baseline composition meth-
ods. As discussed in Chapter 5, the computational complexity of the Gibbs
sampling LDA algorithm determines us to use considerably less input corpus
data for LDA, in comparison to the other methods. In Dinu and Lapata [2010b]
we show that when using the same, smaller amount of input data for all meth-
ods, LDA also significantly outperforms these baselines.

As shown in Table 6.4, using LDA and NMF representations as input for the
baseline addition and multiplication composition methods does not lead to per-
formance gains. Thus we can conclude that the performance of our framework is
not solely due to the use of LDA or NMF as (superior) dimensionality reduction
methods.

Comparison to other reported results The remainder of this section com-
pares the proposed probabilistic methods with previously reported results on
the LST dataset.

A number of methods for computing context-sensitive distributional similarity
have been tested on the Lexical Substitution data, however a direct comparison
is not straightforward due to the differences in data subsets as well as in the

4In general, we observe that even small difference in GAP scores correspond to statistically
significant differences. This has also been observed in Erk and Padó [2010], where the authors
note that, as a rule of thumb, differences of 0.7 in GAP correspond to highly significant
p < 0.01 levels.
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experimental settings specific to each of these methods. In this section, we
focus on the comparison with the best reported results on this data, in Thater
et al. [2010] (henceforth TFP). This has been made possible by the fact that
the exact test data was made available to us by the authors.

The main difference to the data set in Table 6.4 is the way the context words
are extracted from the sentential context. More precisely, TFP10 propose a
syntactic model, in which composition is guided by syntactic dependencies.
Context features are selected to be all the words which stand in a syntactic
relation with the target word, in a given sentence. This differs to the previous
experiments in which the context words were extracted from a window of size
5 around the target word5.

We re-run our experiments in order to test the proposed probabilistic methods
on this data set. As described in Chapter 5, for computational reasons, the first
experiment reduces the number of context features to the most frequent 3000
words. In order to be able to use all syntactic neighbors as context words, for
this second experiment we use an input matrix in which the context features
are no longer chosen to be the top most frequent words, but the context words
present in the TFP dataset. This way, the identical context words used by
the TFP method can also be used in our experiment6. We use our methods
with the settings determined in Chapter 5; more precisely we re-train a single
K = 1400 NMF model and the mixture LDA one. NMF uses JS similarity and
LDA scalar product similarity.

We report on a number of methods have been tested on the LST dataset:

• EP08: Method of Erk and Padó [2008], as reported by Erk and Padó
[2010]. Available only for verb data.

• EP10: Erk and Padó [2010]

• ML08-1: This is identical to the baseline setting MultSVS from Section
6.2; it uses if weighting and cosine similarity, as originally proposed by
Mitchell and Lapata [2008].

• ML08-2: Identical to the baseline setting AddSVS from Section 6.2; it
uses pmi weighting and Lin similarity, and can be seen as a variant of the
composition method of Mitchell and Lapata.

• TDP09: Thater et al. [2009] (Verb data)

• TFP10: Thater et al. [2010]

5There is a second, less relevant difference in the actual data instances and candidate
substitutes used. Just as in the previous experiments, some of the data is eliminated due to
constraints imposed by the experimental setting.

6Approximately 50% of the context features used are also in the top 3000 most frequent
words.
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• ContNMF: single K = 1400 NMF model with early stopping and JS simi-
larity.

• ContLDAMIX
: mixture LDA model, early stopping and scalar product sim-

ilarity.

However, it should be pointed out that, for a number of reasons, all these meth-
ods, with the exception of ML08-1 and ML08-2 , are not directly comparable
to our method. Similarly to EP10, our models do not use syntactic informa-
tion. However ContNMF uses an input corpus which is one order of magnitude
larger than the one used by EP10 (GigaWord, not scaled, vs. BNC). However,
the best result of EP10, which we report here, is obtained when tuning the
model’s parameters on test data, which puts the rest of the methods at sig-
nificant disadvantage. Furthermore EP10, unlike all the other methods here,
is not a vector space model, as the input data is not a matrix which sums up
over all occurrences of words. This model stores and uses individual occurrence
vectors, which is a richer, more informative, representation in comparison to
that of vector space models.

ContNMF, TFP10 and TDP09 are comparable with respect to the size of the
input data, as they both use the same input corpus. TFP10 and TDP09 models
make use, however, of syntactic information, input representation which is richer
than the bag-of-words data used both in our experiments as well as in EP10 and
ML08. EP08 is also a syntactic method, however trained on the smaller BNC
corpus. ContLDA is at disadvantage both due to the amount of input corpus data
used, as well as with respect to its simple bag-of-words input representation.

We report the results in Table 6.5. In this table all the methods use identical
test data, that of TFP10, with the exception of EP10.

Random score System score

EP10* 28.5 38.6
SVS 29.9 41.34
ML08-1 ∼ 42.17
ML08-2 ∼ 44.89
TFP10* ∼ 44.39

ContNMF ∼ 46.49
ContLDAMIX

∼ 43.58

Table 6.5: Results on the LST data. (* reported)

As it can be observed the score of the context-ignoring SVS baseline is very
similar to the one obtained in the previous experiment and outperforms the
EP10 score. ML08-1 and ML08-2 outperform this SVS baseline and perform
significantly better than in the previous experiment. This can indicate that
the use of syntactic neighbors as context features, rather than words within a
surrounding window of the target, has a positive impact on performance.
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The TFP10 method outperforms ML08-1 and performs similarly to ML08-2.
ContNMF outperforms all of these while ContLDA scores similarly to ML08 and
TFP10, despite the smaller amount of data it is trained on.

We further break down the results by individual parts of speech. These results
are given in Table 6.6.

Model Adv Adj Noun Verb

EP08* - - - 27.4
EP10* - - - 39.9
TDP09* - - - 36.54
ML08-1 47.89 42.21 44.17 36.85
ML08-2 52.06 44.24 46.89 39.31
TFP10* 48.19 39.41 46.38 45.17

ContNMF 54.30 46.89 47.69 40.55
ContLDAMIX

51.29 42.43 44.80 39.02

Table 6.6: Results on the LST data, broken down by part of speech. (* reported)

The table also reports the results obtained by methods of EP08, EP10, and
TDP09, which have been tested solely on verb data. These are outperformed
both by the methods we have implemented in this experiment (proposed meth-
ods and baselines) as well as by the TFP10 system.

The results also highlight qualitative differences between our methods and the
method of TFP10. TFP10 is better than all the other systems on verbs, scoring
5% better than ContNMF. However for all other parts of speech, ContNMF

outperforms TFP10 by a large margin. A similar behavior can be observed
for ML08-1 and ML08-2, which, similarly to our method, do not make use of
syntax. This result seems to indicate that operating on a syntactic level, which
is specific to TFP10, is beneficial for the treatment of verb data, and perhaps
not particularly useful for other parts of speech.

6.3 Discussion

Finally, we also examined how the context words influence the class distribu-
tions of target words using examples from the lexical substitution dataset and
the output of an individual LDA model. In many cases, a target word starts
with a distribution spread over a larger number of senses, while a context word
shifts this distribution to one majority sense. Consider, for instance, the target
noun jam in the following sentence:

(3) With their transcendent, improvisational jams and Mayan-inspired sense
of a higher, metaphysical purpose, the band’s music delivers a spiritual
sustenance that has earned them a very devoted core following.
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Probability Sense

jam 0.18 traffic
0.04 music
0.04 fan
0.04 vehicle

(jam, band) 0.88 music
0.08 fan

(jam, traffic) 0.73 traffic
0.06 vehicle

(jam, fruit) 0.92 recipe

Table 6.7: Class distributions for word jam in different contexts.

Classes Word Distributions

traffic road, traffic, highway, route, bridge
music music, song, rock, band, dance, play
fan crowd, fan, people, wave, cheer, street
vehicle car, truck, bus, train, driver, vehicle
recipe 1, cup, 2, add, salt, fresh, sugar

Table 6.8: Word distributions of latent classes.

Table 6.7 shows the latent classes activated for jam, while Table 6.8 lists the
five most likely words associated to them7.

As it can be seen, initially two traffic-related and two music-related senses
are activated, however with low probabilities. In the presence of the context
word band, we obtain a much more “focused” distribution, in which the music
sense has 0.88 probability. The system ranks riff and gig as the most likely
two substitutes for jam. The gold annotation also lists session as a possible
substitute. When given a context word such as traffic, the most probable class
is that of traffic followed by vehicle. Finally, in the context of fruit the
most predominant sense is the one indicated by a recipe class.

In a large number of cases, the target is only partially disambiguated by a con-
text word and this is also reflected in the resulting distribution. An example is
the word bug, which initially has a distribution triggering the software (0.09,
computer, software, microsoft, windows) and disease (0.06, disease, aids, virus,
cause) senses. In the context of client, bug remains ambiguous between the
senses secret-agency (0.34, agent, secret, intelligence, FBI) and software
(0.29):

(4) We wanted to give our client more than just a list of bugs and an invoice
— we wanted to provide an audit trail of our work along with meaningful
productivity metrics.

7Class names are again assigned in an attempt to best describe their associated word
distributions.
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There are also cases in which the contextualized distributions are not correct,
especially when senses are domain specific. An example is the word function
occurring in its mathematical sense with the context word distribution. How-
ever, the classes that are triggered by this pair all relate to the “service” sense
of function. This is a consequence of the newspaper corpus we use, in which
the mathematical sense of function is rare. We also see several cases where the
target word and one of the context words are assigned senses that are locally
correct, but invalid in the larger context such as in the following example:

(5) Check the shoulders so it hangs well, stops at hips or below, and make
sure the pants are long enough.

The pair (check, shoulder) triggers classes injury (0.81, injury, left, knee, shoul-
der) and ball-sports (0.10, ball, shot, hit, throw). However, the sentential
context ascribes a meaning that is neither related to injury nor sports. This
suggests that our models could benefit from more principled context feature
aggregation.

Generally, verbs are not as good context words as nouns. To give an example, we
often encounter the pair (let, know), used in the common “to inform” meaning.
The classes we obtain for this pair, are, however, rather uninformative general
verb classes: {see, know, think, do} (0.57) and {go, say, do, can} (0.20). An
interesting question is if this type of error can be eliminated in a space designed
to only use context features which are relevant for the meaning of target words,
for example by pruning context features based on pmi values.

6.4 Summary

In this section we have tested two instantiations of the framework (using NMF
and LDA for inducing the latent structure) for computing lexical similarity in
context on the task of lexical substitution.

Throughout this section, we have shown that a simple vector space model ignor-
ing context, as well as the straightforward component-wise operations proposed
by Mitchell and Lapata, are very strong baselines when instantiated with appro-
priate weighting schemes and similarity measures. We have shown, however,
that in identical, completely comparable experimental settings, our methods
outperform these baselines. Furthermore, we also outperform the best reported
results on this data set, obtained by Thater et al. [2010], model which uses
richer, syntactic information both in input representations as well as in guiding
the vector compositions.

A number of future work directions are possible. Conceptually, we have defined
our model in an asymmetric fashion, i.e., by stipulating a difference between
target words and contextual features. However, in practice, we have used vector
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representations that do not distinguish the two: target words and contextual
features are both words. This choice was made to facilitate comparisons with
the popular bag-of-words vector space models. However, differentiating target
from context representations may be beneficial particularly when the similarity
computations are embedded within specific tasks such as the acquisition of
paraphrases, the recognition of entailment relations or thesaurus construction.

Also note that our model currently contextualizes target words with respect to
individual contexts. Ideally, we would like to compute the collective influence
of several context words on the target. We plan to further investigate how to
select or to better aggregate the entire set of features extracted from a context.

Finally, we would also like to investigate the use of more advanced models/algorithms
for the stage of latent structure induction.



82 Summary



Chapter 7
Contextual Preferences for Inference
Rules

This chapter tests the framework we have proposed on the task of assessing the
contextual appropriateness of vector space model (VSM)-based paraphrases.

More precisely we operate on the representations introduced by Lin and Pantel
[2001b], who propose one of the most accurate fully distributional paraphrasing
methods. However, as for most distributional methods, it has been observed
(Lin and Pantel [2001a]) that meaning ambiguity is an issue. Paraphrases
extracted this way, are, typically, correct only in some of the contexts the
may occur in. Following this observation, a number of subsequent studies have
focused on assessing the correctness of a paraphrase rule given a context. This
problem can be reduced to that of computing context-sensitive similarities in
the vector space model of this specific paraphrasing method. In this chapter
we show that the framework we have proposed can be used to accurately assess
the context-appropriateness of paraphrase rules.

We overview the problem in Section 7.1. Section 7.2 describes previous work
on this task while Section 7.3 shows how it can be approached within our
framework. Section 7.4 provides an experimental evaluation and Section 7.5
discusses directions for future work.

7.1 Overview

A long line of research has studied methods for automatic paraphrasing, in
which the focus is not on assessing similarity of words, but of larger, more
informative units of text. Paraphrases are pairs of phrases which convey similar
meaning, and can therefore substitute each other without changing the meaning
of the sentences they occur in.

83
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The purpose of paraphrase induction is that of addressing the challenge posed to
most NLP applications by natural language variability: in natural language, the
same meaning can expressed through a variety of different surface realizations.
Question answering is one of the target applications of paraphrasing as it is
often the case that questions and answer-containing sentences express the same
meaning in different ways. Consider for example the following question-answer
sentence pair.

(1) Who is Tom Cruise married to?

(2) Actor Tom Cruise and his wife Nicole Kidman accepted “substantial”
libel damages on Thursday from a British newspaper.

The sentence in (2) contains the answer to the question in (1), however this
requires the knowledge that X’s wife, Y entails X is married to Y.

The intuitive advantage of using larger phrases over simple word similarity for
the variability issue is straightforward: in many cases the similarity of phrases
cannot be determined based on the meaning of the individual composing words.
For example, it is not evident what approach can be used in order to learn that
X pay attention to Y ≈ X attach importance Y, based solely on the composing
words. However, as we will further detail in this chapter, when two these phrases
are treated as units, there is enough distributional evidence to asses them as
similar in meaning.

A number of methods for paraphrasing have been proposed in the literature,
many of them relying on the use of comparable corpora (Barzilay and McKeown
[2001], Pang et al. [2003], Sekine [2005]). Comparable corpora may consist of
two translations of the same text into the same language, or news articles from
different sources, which cover the same events. Comparable corpora is not
widely available in all languages or in all domains, restricting thus the use of
such methods.

The DIRT algorithm (Lin and Pantel [2001a]) introduces a method for extract-
ing inference rules based on distributional representations, which makes use
solely of large amounts of monolingual text. The terminology used by the au-
thors is that of inference rules. As opposed to a paraphrase, an inference rule
consists of a pair of phrases for which meaning entailment holds in at least one
direction and in some contexts, not necessarily all. This definition relaxes the
notion of paraphrase, and, as the authors argue, in many applications such rules
are just as needed as tighter paraphrasing rules1.

In the DIRT algorithm, a phrase is a binary relation (with two noun arguments),
extracted as a path in a dependency graph. Such a path is usually called a

1Throughout this thesis we will use the terms inference rules/paraphrases interchangeably
to refer to these type of rules. A distinction between the two terms is, however, not intended,
as it is not relevant in the context of our work.
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pattern. An inference rule consists of two such patterns for which a meaning
entailment relation holds. The entailment may be bidirectional (i.e. a para-

phrase) such as in: X
subj←−− resolve

obj−−→ Y ≈ X
subj←−− solve

obj−−→ issue
nn−→ Y .

The meaning entailment may also hold in only one direction, as in: X
subj←−−

win
obj−−→ Y ⇒ X

subj←−− play obj−−→ Y .

The core of the method is a vector space model for computing similarity be-
tween two patterns. In this vector space model, each pattern is represented by
the co-occurrence with left hand side (X) and right hand side (Y) noun fillers
in a large corpus. Two patterns are compared in the X-filler space, and corre-
spondingly in the Y-filler space by using the Lin similarity measure, preceded
by pmi weighting. The final similarity score between two patterns is obtained
by multiplying the X and Y similarity scores. Further on, this similarity is used
for extracting paraphrases. A large collection of patterns is extracted from a
corpus and each of these patterns can be paraphrased by returning its top most
similar patterns, according to the similarity score.

The DIRT algorithm is relatively accurate for a mostly unsupervised method2,
as its accuracy is estimated to lie around 50% for the most confident paraphrases
(Szpektor et al. [2007]). However, as for most distributional methods, it has
been noted Lin and Pantel [2001a] that meaning ambiguity is an issue.

Consider the following DIRT paraphrase X
subj←−− shed

obj−−→ Y ≈ X
subj←−−

close
obj−−→ lower

nn−→ Y 3. Although unintuitive at first sight, this paraphrase is
very correct in a financial context, such as the one in (3):

(3) At the NYSE closing bell on the New York Stock Exchange, here is how
the major world indices and major U.S. stock indices ended the trading
session on the world markets as well as the emerging markets includ-
ing the stock market closing bell price: DOW (Dow Jones Industrial
Average) shed 348.63 points.

In this context DOW closed 348.63 points lower is a paraphrase of DOW shed

348.63 points. The phrase X
subj←−− shed

obj−−→ Y is, however, ambiguous in
meaning and in the following occurrence the paraphrase is inadequate:

(4) Infected cats shed a lot of virus particles into the environment.

It has been suggested that additional clauses, stating semantic constraints on
the X and Y fillers, should be appended to the inference rules in order to solve
this issue. This way, an instantiation of an inference rule (i.e. a rule in the

2With the exception of the parser used, which is trained in a supervised fashion, the method
can be considered unsupervised.

3From the demo available at http://demo.patrickpantel.com/demos/lexsem/paraphrase.htm
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context of specific X and Y noun fillers), can be judged as correct or not based
on the attached semantic constraints. More precisely, in the above example,
a semantic class such as Market Index could represent a constraint on the X
filler. The DOW instantiation of the X filler matches this class and therefore
the paraphrase is correct in this context.

A number of specific methods have been proposed for making DIRT rules
context-sensitive by building and attaching such semantic classes. Section 7.2
summarizes these.

7.2 Related work

Following the original suggestion of Lin and Pantel [2001a], Pantel et al. [2007]
propose a method to build and attach semantic classes to the X and Y filler
slots of an inference rule, indicating the contexts in which the rule holds. They
formally define the task to be solved as:

Task definition: Given an inference rule pi → pj and the instance < wX , pi, wY >
determine if < wX , pj , wY > is valid.

Variations of the method proposed by Pantel et al. [2007] have been investigated
in Basili et al. [2007] and Szpektor et al. [2008]. Although different in a number
of aspects, all these methods propose the same basic architecture, which can be
summarized as follows:

1. Acquire a paraphrase collection using the DIRT algorithm.

2. Learn semantic classes for the X and Y filler slots by grouping together
semantically similar nouns.

3. For each rule in the paraphrase collection, attach semantic classes to the
X and Y filler slots. These are chosen based on the filler nouns common
to both patterns. For example, when given an inference rule such as X is
charged by Y ≈ Y announced the arrest of X, semantic classes attached
to the rule may be: X: Person, Y: Law Enforcement Agent.

4. Given an inference rule and a context (i.e. X and Y instantiations), decide
if the rule holds in this context. The degree to which X and Y belong to the
attached semantic classes is used as an indicator of the rule’s correctness
in this context. For example, the previous rule is correct for the context:
X: Terry Nichols, Y: prosecutors because Terry Nichols belongs to the
Person class and prosecutors to Law Enforcement Agent.

A number of confidence scores are estimated during each of these stages, such as
the similarity of the original DIRT rule, the confidence of the attached semantic
classes or the degree to which a noun belongs to such a class. A final score is
computed as an aggregation of these scores.
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The methods differ mostly with respect to the step of building semantic classes
as well as w.r.t. the computation of confidence score and their aggregation.
For example in Pantel et al. [2007], the noun semantic classes are built using
WordNet in one case and the CBC clustering algorithm in another. In Basili
et al. [2007], the X and Y fillers are clustered for each rule individually using a
LSA-vector representation extracted from a large corpus. Both of these methods
are used in the framework proposed by Szpektor et al. [2008].

Connor and Roth [2007] take a slightly different approach, as they attempt to
classify the context of a rule as correct or not, without building or attaching
explicit semantic classes to a set of inference rules.

Their method is however conceptually similar to the other proposals. In more
detail, given a sentence S, a pattern v in this sentence and a second pattern u,
the task is to decide whether u is a good paraphrase for v in sentence S. They
decompose this problem in two stages: 1) decide if u and v are paraphrases
and 2) decide if the overlap of contexts that u and v appear in is similar to the
current context. Similarly to Pantel et al. [2007], the decisions are made based
on statistics measuring overlap of context features, the difference lying in the
use of a larger set of features, not just the filler nouns. Unlike related work,
they build a classifier for any triple (S, u, v) rather than building a database
containing paraphrases and attached semantic classes.

These methods are evaluated against a gold standard annotated by human par-
ticipants. A number of inference rules are randomly selected from the output of
the DIRT algorithm. Specific instances of these rules are selected form corpora
and judges are asked to asses weather the rule holds or not for each of these.

All methods show improvement over DIRT. On a common data set, Pantel
et al. [2007] and Basili et al. [2007] achieve statistically significant improvements
over DIRT (at 95% confidence level) when employing clustering methods to
learn semantic classes. Szpektor et al. [2008] propose a general framework
for these methods and show that some settings lead to significant (level 0.01)
improvements over DIRT, on data derived from the ACE 2005 event detection
task.

We list examples of the attached semantic classes obtained with the Pantel
et al. [2007] method (short ISP4) in Table 7.1. We consider two highly ranked

paraphrases of X
subj←−− shed

obj−−→ Y , namely X
subj←−− fall

obj−−→ Y and X
subj←−−

close
obj−−→ lower

nn−→ Y .

We list the semantic classes attached to the X and Y fillers of these two para-
phrases, in the order in which they are returned by the system. In the ISP
system, a semantic class is defined as a set of words that belong to it. We mark
classes which can be considered correct in bold fonts.

4Available as demo at http://demo.patrickpantel.com/demos/lexsem/paraphrase.htm
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X
subj←−−− shed obj−−→ Y ≈ X subj←−−− fall obj−−→ Y

X Y

{consumer idx,retail sale,prod. price} {shirt,jacket,pant}
{revenue,profit,income} {wake,spite,aftermath}
{unit,subsidiary,division} {woman,child,man}
{Times Index,Nasdaq Idx,Dow Jones} {revenue,profit,income}
{high,low,total} {about x percent,perc.,about %}

X
subj←−−− shed obj−−→ Y ≈ X subj←−−− close obj−−→ lower

nn−−→ Y

X Y

{Times Index,Nasdaq Idx,Dow Jones} {five cents,three cents,six cents}
{consumer idx,retail sale,prod. price} {about percent,percent,about %}
{unit, subsidiary, division} {more than x perc.,about four
{Rio Tinto,Bank of Austr.,Austr. Bank} perc.,less than one perc.}
{revenue,profit,income}

Table 7.1: Output of the ISP system: two paraphrases for X
subj←−− shed obj−−→ Y

and the semantic classes attached to them.

As discussed in the beginning of this section, all these previous methods reduce
the problem of determining the context-appropriateness of an inference rule to
the task of assigning a context-sensitive similarity score to the two phrases.
Following this observation, it becomes clear that our framework for context-
sensitive similarity computations can also be used for this task. Previous work
divides the context-sensitive similarity problem in different sub-components,
such as defining semantic classes, or attaching these classes to inference rules.
As opposed to this, our method provides an unitary approach to this, as it
implements a motivated, probabilistic, framework targeted specifically to the
goal of measuring similarity in context.

An important observation to be made here is that our method uses solely the
input data used by the original DIRT algorithm. All of the previous methods
for contextualizing DIRT rules use extra resources such as WordNet, or cluster
additional, noun-specific distributional data. Thus, another question which
is implicitly addressed by this work is if structurally richer information (i.e.
paraphrasing in context) can be extracted from the same type of input data as
the original DIRT method.

Section 7.3 shows how the context-sensitive similarity framework we have pro-
posed can be used for assessing the context-appropriateness of an inference rule
while Section 7.4 describes the experimental evaluation. Sections 7.5 and 7.6
discuss directions for future work and summarize the chapter.

7.3 Context-sensitive similarity for inference rules

The task of computing context sensitive similarity between phrases can be de-
fined as follows:
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Task definition: Given a pair of patterns pi, pj, and an instance < wX , pi, wY >
assign a similarity score indicating the meaning relatedness of pi and pj in con-
text wX , wY .

This similarity score can be used to solve the original task of Pantel et al. [2007],
that of determining the context-appropriateness of a rule as a binary true/false
decision, by imposing a confidence threshold.

The key observation we start from (as discussed in Section 7.1), is that the DIRT
algorithm is based on a vector space model for computing phrase similarity. The
method we have proposed in Chapter 3 can simply be instantiated on the specific
input data of this vector space; we obtain this way representations of patterns
as distributions over a total set of latent meaning classes. Given a pattern
and a context feature (X or Y filler), we can compute, as described in Chapter
3, posterior distributions which are in turn used to compare isolated patterns
or patterns occurring in context. The rest of this section details on the main
steps: extracting the input matrix, obtaining contextualized representations
and computing similarity.

Input matrix The input data is identical to that of the DIRT algorithm, con-
sisting of syntactic patterns represented by their co-occurrence frequency with
left and right noun fillers. Table 7.2 shows a fragment of this input frequency
matrix.

country-X government-X problem-Y issue-Y

(X solve Y ) 89 82 1088 134
(X settle Y ) 32 56 582 64

Table 7.2: Fragment of the DIRT-like input frequency matrix for acquiring
paraphrases

The filler nouns as context features are made disjoint by adding a postfix to
signal their role as X or Y fillers. In this example country occurs as a X-filler
of pattern X solve Y 89 times, while problem occurs as a Y-filler 1088 times.

Vector meaning representations We use this input data to induce a set of
K latent classes. Given a particular pattern p, its vector meaning representation
is given by the likelihood of each inferred class: P (zk|p), with k : 1..K. We build
contextualized representations for any given pattern p occurring with a context
feature w using the posterior probabilities: P (zk|p, w), with k : 1..K.

Computing similarity The similarity between patterns occurring with two
X and Y filler-words is obtained as proposed in Chapter 3, and as proposed by
the DIRT algorithm as well, as the product of the similarities obtained when
conditioning on the X and Y contexts individually.
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We experiment with two ways of computing similarity. In a first method both
patterns p1 and p2 are contextualized resulting in:

sim((wX , p1, wY ), (wX , p2, wY )) =sim(v(p1, wX), v(p2, wX))∗
sim(v(p1, wY ), v(p2, wY ))

where v(p, w) is the contextualized vector representation of p occurring with
word w5.

Alternatively we only contextualize one of the two patterns, following the ob-
servation made in Section 6.1, that this can bring higher discriminative power
to such methods, when used to differentiate between correct/incorrect para-
phrases:

sim((wX , p1, wY )(wX , p2, wY )) = sim(v(p1, wX), v(p2)) ∗ sim(v(p1, wY ), v(p2))

7.4 Evaluation

We test our method for context-sensitive similarity between syntactic patterns
on two related tasks: 1) Given a pattern p1 instantiated in a particular context
c and p2, a second pattern, assess the similarity between the two patterns, given
c and 2) Given a pattern p, and a context c, generate the top-N most similar
patterns in context c.

The first evaluation scenario is similar to that of the related work on contextual
preferences for DIRT. In these evaluations, given an instantiated pattern p1
and a second phrase, p2, systems have to decide if the paraphrase holds. Un-
fortunately, since none of these evaluation data sets were made available to us,
a comparison with these previous methods was not possible. To evaluate our
proposal, we compare it against the original DIRT algorithm. For this purpose,
we build an evaluation data set by adapting the data present in the lexical
substitution task.

To our knowledge, none of the previous related work has approached the second,
more difficult task, that of inducing context-sensitive paraphrases. This tasks
consists of generating context-appropriate paraphrases rather than assessing
if a given paraphrase is correct or not. Throughout this section we use our
framework for generating context-sensitive paraphrases for a set of patterns
extracted from question answering (QA) data. In this chapter, we exemplify
the main issues we observe when performing paraphrase induction, while in
Chapter 9 we induce paraphrases for question expansion in QA.

5We follow Lin and Pantel and, for each pattern occurring in the corpus, we also add its
inverse, in which the X and Y fillers are interchanged, and the direction of the rule is reversed.
This way, one can also identify similar patterns in which the X filler of one pattern matches
the Y filler of the second pattern.
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7.4.1 Experimental setup

Data We use the lexical substitution data (short LST, described in detail in
Section 5.4.1) to build a set of instantiated patterns together with appropriate
substitutes. We start by parsing the sentences using the Stanford dependency
parser. We extract all dependency paths containing the target word from each

LST sentence. An example of such path is pound
obj←−− shed

subj−−→ dog for the
target word shed and the following sentential context:

(5) Feeding an Overweight Dog [ offsite link ] To help your overweight dog
shed some pounds, you might need to change his eating habits - either
what or how much he consumes.

In the next step, we use the word substitutes provided by the LST data to build

pattern substitutes. An example is obtaining the pattern dog
subj←−− lose

obj−−→
pound as a substitute for the pattern dog

subj←−− shed obj−−→ pound. The confidence
score assigned to it is given by the number of people that suggested lose as a
good alternative for shed.

Pattern in context Gold substitutes Score

virus
obj←−− shed prep−−−→ to

pobj−−→ cat
obj←−− pass prep−−−→ to

pobj−−→ 2
obj←−− give prep−−−→ to

pobj−−→ 2
obj←−− transmit prep−−−→ to

pobj−−→ 2

pound
subj←−− shed obj−−→ dog

subj←−− lose obj−−→ 5
subj←−− relinquish obj−−→ 1
subj←−− discard obj−−→ 1

Table 7.3: Data instances obtained from the LST data.

Table 7.3 shows instances of target patterns in the obtained data, together
with their correct substitutes. A system is presented with such a target pattern
together with a total set of substitutes; this has been obtained from pooling
together all the substitutes for that target word. The similarity scores returned
by a system are used to rank this list, ideally with the correct substitutes being
ranked at the top.

The particular syntax-based representation that the DIRT method uses is best
suited for learning verbal paraphrases, i.e. patterns which are verb-rooted (Lin
and Pantel [2001a]). For this reason we only use the verb subset of the LST
data.

Models We test our method using LDA for latent class induction against the
DIRT algorithm baseline, both using the same input frequency matrix.
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The input frequency matrix is extracted from the XIE GigaWord fragment
containing approximately 100 million tokens6. We parse the text with the
Stanford dependency parser to obtain dependency graphs from which we extract
patterns together with counts of their left and right fillers. We extract paths
containing at most four words, including the two noun anchors. Furthermore
we impose a frequency threshold on patterns and words, leading to a collection
of a total of ≈80K distinct paths, with filler nouns ranging over a vocabulary
of ≈40K words.

We use the LDA model to estimate latent senses using the Gibbs sampling
algorithm. As in the previous chapter we set α = 50

K and β = 0.01. We test a
set of 5 K values: {800, 1000, 1200, 1400, 1600}. These are chosen to be large
since they represent the global set of meanings shared by all the patterns in the
collection. The DIRT method is implemented following the description in Lin
and Pantel [2001b].

7.4.2 Results

We start by investigating the effect of parameter K on the performance of the
models. Figure 7.1 plots the Kendall τb score obtained with each of the five K
values. The similarity measure used is scalar product. Similarly to the other
experimental evaluations in Chapters 5 and 6, we also build a mixture model
which averages the similarity scores returned by each individual K setting.

As it can be observed, the individual LDA models outperform DIRT for all K
values. As suggested by the previous experiments in Chapter 6, the mixture
model outperforms all of the individual models. This is an advantage, since
tuning the parameter K becomes unnecessary.

Figure 7.1: LDA and LDA-MIX (scalar product similarity) vs. DIRT

6We scale all co-occurrence counts by a factor of 3 in order to speed up computations.
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In figures 7.2 and 7.3 we plot the same models, this time using cosine and inverse
Jensen-Shannon (JS) as similarity measures. Cosine performs similarly to scalar
product, while in the case of JS we notice a significant drop in performance
with the K = 1600 setting performing slightly worse than DIRT. However, the
mixture model still outperforms DIRT.

Figure 7.2: LDA and LDA-MIX (cosine similarity) vs. DIRT

Figure 7.3: LDA and LDA-MIX (JS similarity) vs. DIRT

The results of the LDA MIX model using scalar product, both in Kendall τb and
in GAP evaluation metrics, are given in Table 7.4. We also test an LDA model
ignoring context which scores in the [11 − 14] τb interval, depending on the
similarity measure used. This scores lower than DIRT (14.5 τb), indicating that
DIRT is indeed a good method for computing (isolated) pattern similarity. We
perform significance testing using randomized shuffling as described in Chapter
5. The LDA methods using context outperform DIRT at significance level
p < 0.005. Using scalar product as similarity outperforms cosine, which in turn
outperforms JS divergence.
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Model τb GAP

Random 0.0 34.91

DIRT 14.53 48.06

LDAsp 21.27 52.37
LDAcos 21.38 51.12
LDAJS 17.31 50.06

Table 7.4: Results on Lexical Substitution data

In Table 7.5 we list the rankings returned for three occurrences of the pattern

X
subj←−− shed

obj−−→ Y . The contexts considered are (you, blood) extracted from
sentence (6), (dog, pound) (sentence (5)) and (study, light) (sentence (7)), each
of them illustrating a different sense of the verb shed. The gold substitutes are
highlighted in bold and the confidence score is given in parentheses.

(6) You have shed blood for us and we thank you .

(7) A mouse study sheds light on the mixed results coming from investiga-
tions into the cognitive effects of hormone replacement therapy.

The DIRT method is context-insensitive and therefore returns the same rank
for all instances (first column of the Table 7.5). The context-sensitive methods
allow us to obtain more informative, instance-specific, rankings. For each of
these contexts, the rankings differ to a great extent and favor the context-
appropriate substitutes, such as lose for dog shed pound or reveal for study shed
light. It is interesting to notice that shed light is ambiguous as it can also refer
to radiating light ; although study dismisses this meaning, it is still reflected in
the ranking obtained, as substitutes give and emit rank second and third.

7.5 Towards context-sensitive paraphrase induction

The DIRT algorithm gives a method for computing similarity between phrases
represented as patterns extracted from dependency parses. As discussed in 7.1,
similarity computations using DIRT are accurate enough to allow paraphrase
induction: given a target pattern, an entire collection of patterns is ranked
based on the similarity with the target phrase. The highest ranked patterns
are selected as paraphrases of the original phrase. An example of this is given
in Table 7.6, which lists the top most confident paraphrases for the phrase

X
subj←−− acquire obj−−→ Y .

Although determining the context-appropriateness of an inference rule is a task
that has been approached in the past, the question of performing context-
sensitive paraphrase induction within the DIRT representation framework has
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DIRT Context1 Context2 Context3
No context (you, blood) (dog, pound) (study, light)

drop give(1) drop reveal(2)
lose throw lose(5) give
give lose(3) give emit
reveal discard disperse throw(3)
relinquish reveal emit disperse
throw transmit throw discard
transmit spread reveal spread
pass emit discard(1) transmit
emit relinquish relinquish(1) relinquish
spread drop transmit pass
discard pass spread drop
disperse disperse pass lose

Table 7.5: Ranked substitutes for the pattern X
subj←−− shed obj−−→ Y

. Correct substitutes are marked in bold.

X
subj←−−− acquire obj−−→ Y

X
subj←−−− get obj−−→ Y

X
subj←−−− purchase obj−−→ Y

X
subj←−−− buy obj−−→ Y

X
subj←−−− use obj−−→ Y

X
pobj←−−− to prep←−−− sell obj−−→ Y

X
pobj←−−− by prep←−−− own obj−−→ Y

X
obj←−− provide prep←−−− with obj−−→ Y

X
pobj←−−− to prep←−−− provide obj−−→ Y

Table 7.6: DIRT paraphrases for X
subj←−− acquire obj−−→ Y

not been yet addressed. This task can be defined as follows:

Context-sensitive paraphrase generation: Given a target pattern pi and
an instance < wX , pi, wY >, return patterns pj such that pi and pj form an
inference rule in context wX , wY .

To exemplify this consider the pattern X
subj←−− shed

obj−−→ Y . In a newspaper
domain this phrase has a strong bias towards the meaning of to fall, to drop as
referring to market indexes. However, in contexts such as shed tear, shed blood
or shed light, the phrase has completely different meanings. The ISP system
of Pantel et al. [2007] identifies adequate semantic classes for shed ’s most fre-
quent (financial) sense (see Table 7.1); however, we observe that no paraphrase
reflecting any of the other senses is obtained in the top 100 paraphrases.
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This points to a property shared by all the methods developed to learn contex-
tual preferences for DIRT rules: they are based, and therefore tuned, on the
assumption that we are given a high-confidence DIRT rule. It is however not
clear how the methods can be adapted in order to discover pairs of patterns
which are in turn almost distributionally distinct in an out-of-context scenario.

The method we have proposed can be straightforwardly used for context sensi-
tive paraphrase induction. In this section we perform a second experiment as
we use it to paraphrase a set of patterns extracted from QA data. An evalua-
tion for this task is in the purpose of future work and, at the moment, we only
summarize a series of observations that can be made when manually inspect-
ing the paraphrases generated. Chapter 9 uses this method for paraphrasing
questions for an answer extraction module.

The task of context-sensitive paraphrasing can be expressed naturally in the
framework we have proposed: given a pattern pi in context wX we return
the top N patterns pj which maximize sim(vec(pi, wX), vec(pj , wX)). For the
cases in which we are given two context words wX and wY , we maximize
sim(vec(pi, wX), vec(pj , wX)) ∗ sim(vec(pi, wY ), vec(pj , wY )).

We use the LDA mixture model which we apply for paraphrasing a set of
patterns extracted from questions found in TREC QA data. Only one context
word is available for most patterns occurring in questions, as a second argument
is often a un-informative question word (e.g. who, which). To this set of
patterns we add the patterns encountered in the LST data set.

One of the main observations we make is that the paraphrases generated often
convey appropriate, context-aware lexical variation, but are not substitutable

in the provided context. Consider for example the pattern X
subj←−− appear prep−−−→

on
pobj−−→ Y , extracted from the question:

(8) When did Led Zeppelin appear on BBC?

This is paraphrased by DIRT as in Table 7.7 and by the context sensitive
method (JS and cosine similarities) as in Table 7.8.

The context-insensitive substitutes extracted with DIRT are very accurate, with
commonly returned patterns such as be on, see on or find on. The LDA method
returns television-related paraphrases such as broadcast on bbc, broadcast by bbc,
announced by bbc or tell bbc station. However, as it can be observed, while the
variation in lexical items is meaning-appropriate, there is a significant drop in
accuracy compared to DIRT, as many of the generated patterns cannot be used
as substitutes.

We observe another class of errors, in which the patterns returned are very
clearly associated with the given context, however not exhibiting the same

meaning as the original pattern. Consider the pattern X
subj←−− appear

prep−−−→
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X
subj←−−− appear prep−−−→ on

pobj−−−→ Y

X
obj←−− be prep−−−→ on

obj−−→ Y

X
obj←−− appear prep−−−→ in

obj−−→ Y

X
obj←−− release prep−−−→ on

obj−−→ Y

X
obj←−− see prep−−−→ on

obj−−→ Y

X
subjpass←−−−−−− be prep−−−→ on

obj−−→ Y

X
obj←−− go prep−−−→ on

obj−−→ Y

X
subjpass←−−−−−− find prep−−−→ on

obj−−→ Y

X
obj←−− come prep−−−→ on

obj−−→ Y

Table 7.7: DIRT paraphrases for X
subj←−− appear prep←−−− on pobj−−→ Y

zeppelin, X
subj←−−− appear prep−−−→ on

pobj−−−→ Y , bbc
LDA - inverse JS LDA - cosine

X
subjpass←−−−−−− broadcast prep−−−→ by

pobj−−−→ Y X
pobj←−−− in prep←−−− channel nn−−→ Y

X
partmod←−−−−− broadcast prep−−−→ by

pobj−−−→ Y X
poss←−−− tv nn−−→ Y

X
subj←−−− quote obj−−→ international

nn−−→ Y X
subjpass←−−−−−− announce prep−−−→ by

pobj−−−→ Y

X
subj←−−− tell obj−−→ station

nn−−→ Y X
aposs←−−− tv nn−−→ Y

X
subj←−−− tell obj−−→ program

nn−−→ Y X
prep−−−→ for

pobj−−−→ television
nn−−→ Y

X
partmod←−−−−− broadcast prep−−−→ on

pobj−−−→ Y X
partmod←−−−−− broadcast prep−−−→ by

pobj−−−→ Y

X
pobj←−−− of prep←−−− voice nn−−→ Y X

partmod←−−−−− broadcast prep−−−→ on
pobj−−−→ Y

X
pobj←−−− in prep←−−− channel nn−−→ Y X

prep−−−→ of
pobj−−−→ tv

nn−−→ Y

Table 7.8: Context-sensitive paraphrases for X
subj←−− appear prep←−−− on pobj−−→ Y

on
pobj−−→ Y this time occurring in context feminist-X, dollar-Y in the following

question:

(9) What American feminist appeared on a silver dollar?

The top paraphrases are dominated by the dollar context such as amount in
dollar or side of dollar, none of which having the same meaning as appear on.
Another example is the phrase shed blood, for which highest ranked patterns
are expressions which often occur with blood. These are donate blood, vessel
of blood or blood test, none of which are however similar in meaning with the
phrase shed blood.

Finally, we also notice that the method is not robust to parsing errors. For

example, the path you
subj←−− fly

obj−−→ pregnancy is obtained from an incor-
rect parse of a QA question. When paraphrasing this, the model returns with
average confidence scores, phrases such as collect from pregnancy, receive in
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pregnancy or receive for pregnancy. In the future we plan to investigate the use
of our model for detecting such erroneous parse paths. One way of approaching
this is by using selectional preferences which can be easily induced from our
framework; these can indicate highly unlikely contexts as being most probably
generated by parsing errors.

Another aspect to be investigated concerns the amount of input corpus data
used by these methods. Previous work shows that the performance of distri-
butional methods can increase significantly with the size of input data. Our
method in particular might benefit from this, as we attempt to learn a more
complex model than traditional vector space methods. However, it is still
an open question if it is possible to obtain an accurate model for context-
sensitive paraphrase generation which uses solely distributional information and
the DIRT-like representations in particular.

7.6 Summary

Throughout this chapter we have instantiated our framework on the task of
assessing the context-appropriateness of distributional paraphrases.

Although conceptually similar to previous work, our method provides a much
more unitary approach in which the context-sensitive similarity of phrases is
computed in a probabilistic setting. We have shown this to outperform DIRT,
the original distributional paraphrasing algorithm, while using the same corpus
input data.

Furthermore, the framework can be naturally applied to context-sensitive in-
duction of paraphrases, task which has not been yet approached in previous
work. The main observation made is that the lexical variation we obtain when
performing paraphrase generation this way is meaning-appropriate, however a
significant drop in accuracy from the original DIRT method is observed. In
future work we plan to further adapt our framework to this task, with the
goal of obtaining high-precision context-appropriate paraphrases. In Chapter 9
we test this preliminary version of the paraphrasing method against DIRT for
performing question expansion in a simple question answering pipeline.



Chapter 8
Distributional Paraphrasing for
Question Answering

The second part of the thesis investigates the use of distributional paraphrasing
for the task of question answering. The current chapter provides the necessary
background and proposes an answer extraction module centered around the use
of paraphrases for generalizing the meaning representation of a question.

Chapter 9 evaluates this proposal. In particular, it focuses on using two distri-
butional paraphrase methods: the DIRT method introduced by Lin and Pantel
and the context-sensitive paraphrasing method developed within the framework
proposed throughout this thesis.

8.1 Overview

Question Answering Question answering is an information retrieval task in
which a system is provided with a question and the goal is to automatically
retrieve an answer to this question by making use of large collections of texts.
A typical example is the following question, from the 2002 TREC QA track
(Voorhees [2002]):

(1) In what year did Joe DiMaggio compile his 56-game hitting streak?

Here a system has to identify 1941 as the correct answer string. In this par-
ticular TREC QA track, systems have to find the answer using a collection of
over one million documents, out of which at least one document answers the
question.

99
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Most of the existing question answering systems implement three main stages.
Initially, the question is analyzed and an expected answer type is determined.
For example for a when question, candidate answers are strings which represent
a date. Document retrieval and passage retrieval are also main components of
question answering systems. Typically, in these stages, vector space models or
language-model methods are used in order to compare queries with documents,
and to shorter text passages, and retrieve those which may contain the answer
to the question. The third stage is that of answer extraction. Given a question
and a set of candidate passages, the goal of answer extraction is to return the
exact string which is the answer to the question.

This work focuses on the answer extraction stage of question answering. More
precisely, an answer extraction module is given a question and a set of candidate
passages and the goal is to extract a string which is an answer to the question.
For example, given the following question-sentence pair, the goal is to extract
the correct answer string, “Nicole Kidman”:

(2) Who is Tom Cruise married to?

(3) Actor Tom Cruise and his wife Nicole Kidman accepted “substantial”
libel damages on Thursday from a British newspaper that reported he
was gay and that their marriage was a sham to cover it up.

As opposed to other retrieval tasks, QA, and answer extraction in particular,
require higher level of text understanding as similar meaning is often expressed
with various surface realizations in questions and in sentences containing the
answer. In the example above, the answer can be identified by a system which
can infer that Tom Cruise’s wife is in fact someone that Tom Cruise is mar-
ried to. In order to extract answers, one needs to provide a mechanism that
generalizes over the different ways in which the same concept can be expressed.

Overview of our approach We propose employing syntactic-level represen-
tations for questions and sentences and the use of distributional paraphrasing
to provide such means of generalization.

More precisely, our initial focus is the DIRT algorithm, which uses distributional
statistics to acquire paraphrases. Despite the fact that DIRT was developed
with applications such as QA in mind (Lin and Pantel [2001a]), and even though
it is a resource which is easy to acquire and relatively accurate, there has been
rather little research on using it to solve the variability problem in NLP, in
general, and in QA in particular.

Our second focus is the alternative use of context-sensitive paraphrasing for
answer extraction. More precisely, we employ the context-sensitive paraphras-
ing method detailed in Chapter 7 which is developed in the line of the DIRT
framework; this uses the same syntactic-level representation for phrases and
the same corpus evidence. The focus is, this time, on investigating the use
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of paraphrases which are context-appropriate, following the intuition that the
accuracy of a paraphrase is highly dependent on the context it is used in.

Our proposal is described and evaluated in Chapter 9. Throughout the cur-
rent chapter we provide the necessary background and overview previous work.
Paraphrases and other resources for question answering are described in Sec-
tion 8.2. As the use of DIRT in QA is rather limited, in Section 8.3 we discuss
previous studies and experiments performed on the related task of Recognizing
Textual Entailment (RTE).

8.2 Knowledge resources for QA

Over the years, a number of hand-crafted resources have been employed in
QA systems in order to generalize over different ways of expressing the same
meaning.

One of the most widely-used resources for question answering is WordNet, which
has been used for a variety of tasks in QA such as passage selection (Hovy et al.
[2000]), query expansion (Greenwood [2004]) or expected answer typing (Pasca
and Harabagiu [2001b], Pasca and Harabagiu [2001a]), to name just a few.

In more recent years, the use of deeper semantic representations has been pro-
posed. For example, studies such as Narayanan and Harabagiu [2004] use
PropBank (Palmer et al. [2005]) for identifying predicate-argument structure
and FrameNet (Baker et al. [1998]) for frame assignment. Resources such as
FrameNet or PropBank are costly to construct, they exist for a handful of
languages and suffer furthermore from low coverage. For example, Shen and
Lapata [2007] show that the benefits of using FrameNet in answer extraction are
severely limited by the low coverage of this resource. Difficulties in using these
resources become apparent also in the work of Kaisser and Webber [2007], which
address the same issue of using semantic roles for QA. In their experiments, the
use of PropBank, FrameNet and VerbNet (Kipper Schuler et al. [2009]) leads
to performance gains only when using carefully constructed heuristics and only
in specific cases.

A different line of research has focused on the use of automatic paraphrasing
for QA. In contrast to hand-crafted semantic resources, many of these methods
use minimal supervision and are based on the use of large quantities of text1.

The focus of our work is the DIRT algorithm which has been developed as
an alternative to the use of hand-crafted paraphrase resources in QA. The
algorithm does not find just paraphrases (i.e. phrases that can substitute each
other in most contexts) but also phrases that stand in a more loose semantic
relation: only one may a substitute for the other, and this may hold only in
some contexts. This leads to the authors’ preference for using the inference rule

1See Kaisser [2009] for an overview of some of the previous work on paraphrasing for QA
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terminology. The accuracy of the DIRT method is relatively high for a method
requiring minimal supervision (supervision is needed for parser training). The
method has been evaluated to ≈50% precision for the most confident expansions
(Szpektor et al. [2007]).

Furthermore, a number of methods have been developed for improving the
algorithm by learning the directionality of rules in Bhagat et al. [2007], or
attaching contextual information to the rules (Szpektor et al. [2008], Pantel
et al. [2007], Connor and Roth [2007]). Despite the attention that the DIRT
method has received, there has been rather little research on using it to deal with
the variability problem in QA. To our knowledge it has only been addressed by
Poon and Domingos [2009], who report on using DIRT for question answering
in a biomedical domain.

However, the DIRT resource has received more attention in the context of a
related task, that of Recognizing Textual Entailment. Section 8.3 overviews
relevant work in this context.

8.3 Preliminary experiments: DIRT paraphrasing for
RTE

Recognizing Textual Entailment (RTE) has been proposed as a stand-alone task
to address the issue of variability encountered in many NLP applications.

More precisely, the task has been formulated as that of detecting semantic infer-
ence between two fragments of text. The RTE (Dagan et al. [2006]) challenges
provide benchmark data sets for this task. In the RTE setting, a system is pro-
vided with a text T and a hypothesis H, and the goal is to detect if H can be
inferred from T. The RTE2 and RTE3 datasets are specifically built to mirror
the need for semantic reasoning required by four information retrieval applica-
tions: Question Answering, Information Retrieval, Information Extraction and
Summarization. For example, the QA subset is created by annotators in the
following manner: Annotators are provided with questions and answer passages
as returned by QA systems. Out of these passages, they select either a correct
or an incorrect answer string, and this is “plugged in” into the question while
transforming it into a declarative statement. The original passage is turned
into text T while the transformed question serves as hypothesis H.

The study of Clark et al. [2007] focuses on the type of knowledge required for
detecting inference in the RTE T-H pairs. This study brings some evidence to
confirm the intuition that the type of knowledge encoded in the DIRT resource
may be useful for RTE. The authors provide an insightful analysis based on 100
positive entailment pairs which attests that lexical substitution (e.g. synonyms,
antonyms) or simple syntactic variation account for the entailment only in a
small number of pairs. Thus, they conclude that one essential issue in the task
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of recognizing semantic inference is to identify more complex expressions which,
in appropriate contexts, convey similar meanings.

Several RTE systems, such as those of Bar-Haim et al. [2007], Iftene and
Balahur-Dobrescu [2007] or Clark et al. [2007], attempt to use DIRT, however
with inconclusive results regarding the usefulness of this resource. Following
this line of research, in Dinu and Wang [2009] we perform a series of experi-
ments focusing on using DIRT inference rules for the RTE task. The remainder
of this section details on our findings.

In our experiments, we use the DIRT collection provided by the authors which
is extracted from 1GB of newswire text. In total, the collection consists of
200K distinct patterns; for each of these, we use the top 40 most confident
paraphrases, following Lin and Pantel [2001a].

Initially we investigate how many DIRT-rule instantiations we encounter in the
RTE data sets.

The following T-H pair is an example of this.

(4) T: The sale was made to pay Yukos US$ 27.5 billion tax bill, Yugan-
skneftegaz was originally sold for US$ 9.4 billion to a little known com-
pany Baikalfinansgroup which was later bought by the Russian state-
owned oil company Rosneft.
H: Baikalfinansgroup was sold to Rosneft.

In this case, we encounter the rule X bought by Y≈Y sold to X with X and Y
instantiated as Baikalfinansgroup and Rosneft respectively.

Such instantiations can be identified in only 2% of the RTE pairs. An analysis
of these cases in the RTE2 development set shows that indeed, finding a DIRT
rule instantiated this way is a very good predictor of meaning entailment, as
80% of these pairs are cases of positive entailment. This is even higher than the
estimated accuracy of DIRT, most probably due to the bias of the RTE data
sets, which are built such that 50% of the pairs are true entailment.

A closer look at the data reveals that a large number of DIRT rules can be
identified as instantiated in a more flexible manner, such as in the following
example:

(5) T: Libya’s case against Britain and the US concerns the dispute over
their demand for extradition of Libyans charged with blowing up a Pan
Am jet over Lockerbie in 1988.
H: One case involved the extradition of Libyan suspects in the Pan Am
Lockerbie bombing.

In this case, we encounter the rule X concerns Y≈ X involves Y with X and Y
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fillers differently instantiated in T and H. The meaning entailment still holds
because one case in H is implied by Libya’s case against Britain and the US
in T and in this context the extradition of Libyan suspects in the Pan Am
Lockerbie bombing has the same meaning as the dispute over their demand for
extradition of... Despite the fact that the use of such a resource must allow
for flexibility, as shown by this example, most RTE systems, as well as the QA
system of Poon and Domingos [2009], use DIRT paraphrase rules only when
encountering a strict X and Y filler match.

Following this observation, we perform a second experiment which aims at
testing the degree to which the DIRT rules are a predictor for textual entailment
when applied in a more relaxed fashion.

We start by extracting matching dependency paths from T-H pairs. More pre-
cisely we first identify, if present, pairs of matching nouns in text and hypothesis
(for example case and extradition in the above example, which can be found
in both T and H). Following this we extract the dependency path between the
two nouns in the text and the dependency path between the two nouns in the
hypothesis. These form an example of matching dependency paths in text and
hypothesis.

After extracting these, the next step is to identify if an inference rule can
be applied on them. More precisely, we look for inference rules in which one
pattern is a subpath of the text path and the second pattern is a subpath of the
hypothesis path. This is a more relaxed application of an inference rule: there
is no constraint on the X and Y fillers to be identical. However, we still control
the context as we only allow them to be used in matching tree paths, which
guarantee some degree of overlap between the two sentences. In the example
above, the dependency paths extracted cover the fragment case concerns the
dispute over their demand for extradition in T and the fragment case involved
the extradition in H; the DIRT rule X concerns Y≈ X involves Y is matched
in these two dependency paths.

We select such T-H pairs in which we can find matching paths as well DIRT
rules. We observe that these still show a strong bias towards positive entailment:
≈70% of these pairs are positive, indicating that the occurrences of DIRT rules
in these pairs are still a strong indicator of meaning similarity between the two
sentences.

We further relax the application of the inference rules even more, by allowing
any word in such a rule to be replaced by a WordNet synonym. This obviously
introduces a lot of noise as the meaning ambiguity of words will lead to a
large number of incorrect inferences. Surprisingly, we observe that even in this
scenario, there is a strong bias towards true entailment. The subset of T-H
pairs extracted this way is considerably larger and we can still predict positive
entailment with 65% accuracy on RTE2 and 72% accuracy on RTE3. These are
high accuracy scores, as RTE is a difficult task: most of the submitted RTE2
systems scored 55%-61% in accuracy (Bar-Haim et al. [2006]) while most of the
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RTE3 systems scored 59%-66% (Giampiccolo et al. [2007]).

These experiments suggest that the full potential of a paraphrase collection
such as DIRT can only be realized in a flexible framework. The QA study of
Poon and Domingos only uses a very small number of paraphrases, the top
three most confident ones, and furthermore does not allow for flexibility: if a
sentence contains one of these paraphrases and if the available argument slot
in the question is identical to the corresponding argument slot in the sentence,
the sentence is considered a match

In the following section we propose an answer extraction pipeline which inte-
grates a paraphrase component. In line with the textual entailment observations
made in this section (and also made by work such as Marsi et al. [2007]) we fo-
cus on flexibility: we allow paraphrases to reduce the differences in dependency
structures between a question and a sentence containing the answer. This is in
contrast to relying on them only when they provide an exact match between
the question and the sentence.

8.4 Answer extraction pipeline

This section proposes an answer extraction module which integrates a syntactic-
level paraphrasing component. The other components of the QA pipeline, such
as passage retrieval, are not in the focus of our work and for this reason their
discussion is postponed to the experimental evaluation in Chapter 9.

We build a simple answer extraction system, which uses syntactic representa-
tions of questions and sentences in order to find answers. The main components
of this pipeline are:

1. Candidate answer extraction (Section 8.4.1). Given a question and a set
of text passages, we develop a simple strategy for identifying all the text
strings which may be the answers to a question.

2. Paraphrase-based question expansion (Section 8.4.2). This stage general-
izes the meaning representation of a question by performing dependency-
level paraphrasing.

3. Candidate answer ranking (Section 8.4.3). This is the last stage of our
answer extraction module, in which the goal is to rank all the candidate
answer strings. This is done based on the similarity between text passages
and questions, and the string ranked the highest is returned as the answer
to the question.
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8.4.1 Candidate answer extraction

The input of an answer extraction module is a question together with a set of
associated text passages, each typically consisting of one or a few sentences2.

In this section we describe the first step in answer extraction which consists
in identifying a set of candidate answer strings. At this stage the focus is on
recall, i.e. on obtaining all possible answer strings; the final stage of candidate
answer ranking will return a single such string as the answer.

We begin with the analysis of the question, which we parse using a dependency
parser. Following this, we identify a question word and key words in the ques-
tion parse tree. Question words are wh-words (who, what, when, when, how,
which) and key words are nouns and cardinal numbers. We further extract the
dependency paths between any pair consisting of a question word and a key
word.

More precisely, given a dependency tree, a dependency path is the sequence of
nodes and labeled edges between two nodes. Consider the following question-
sentence pair.

(6) Q: Who discovered the Mississippi river?
S: The Mississippi river was discovered by Hernando de Soto in 1541.

For this question we obtain the following dependency parse:

:::::
Who discovered

subj

��

dobj

""
the Mississippi river

nn
]]

det

\\

We extract the following dependency paths, connecting the question word who
to the key words river and Mississippi :

Who discovered the Mississippi river?

who
subj←−− discover

dobj−−→ river
nn−→ Mississippi

who
subj←−− discover

dobj−−→ river

Table 8.1: Question paths

2We operate on the assumption that at least one of these passages will contain the answer
to the question, however this is highly dependent on the performance of the passage retrieval
module.
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Next, we move to the analysis of candidate sentences. We parse each candidate
sentence and identify keywords that are present in the question. We extract all
the paths between such key words and any other nouns or cardinal numbers
present in the sentence. For the example above, the key words identified in the
sentence are river and Mississippi and we obtain the sentence paths in Table
8.2.

The Mississippi river was discovered by Hernando de Soto in 1541.

Soto
pobj←−− by

prep←−− discover
dobj−−→ river

nn−→ Mississippi

Soto
pobj←−− by

prep←−− discover
dobj−−→ river

1541
pobj←−− in

prep←−− discover
dobj−−→ river

nn−→ Mississippi

1541
pobj←−− in

prep←−− discover
dobj−−→ river

Table 8.2: Sentence paths

These paths connect a question key word to other words in the sentence. We
treat these words as answer candidates. In the current example, the answer
candidates are Soto and 1541.

This method will extract answer candidates that are single words, each cor-
responding to a node in the syntactic parse. In most of the cases, however,
the correct answer is a string containing more than one word. In the exam-
ple above, the answer is the entire string Hernando de Soto. For this reason,
as the final step in candidate answer extraction we generate (longer) answer
candidate strings from candidate words. We implement the following simple
POS tag-based heuristic: if we find the fragment theD SpanishJJ explorerNN

HernandoNNP deNNP SotoNNP, then the following strings will be generated:
de Soto and Hernando de Soto. This is because all the POS tags preceding
the word form Soto are proper nouns or numbers. The total set of candidate
answers will contain the original single word strings as well as the expanded
strings.

8.4.2 Question expansion using paraphrases

In this step, we generalize the meaning representation of a question by making
use of paraphrases.

The question and sentence meaning representations as sets of syntactic depen-
dency paths, are not general enough: they encode particular choices of lexical
items and syntactic constructions. We abstract away from these particulars
by using paraphrases obtained solely from distributional evidence. This sim-
ple approach stands in contrast with representations which explicitly posit and
use abstract dependencies such as those of Frame Semantics (Fillmore [1982],
Baker et al. [1998]), as distributional paraphrasing requires only large quanti-
ties of text and a parser. In comparison, such paraphrase resources are much
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easier to build and the extraction method can be extended to languages other
than English.

The intuition behind this approach is to include many realizations of the same
meaning in the question representation, such that the chance that it will closely
match a sentence containing the answer increases.

We associate an initial path set with each question, obtained as described above
and exemplified in Table 8.1. We rewrite these paths using paraphrases. More
precisely we allow paraphrase substitution by matching the whole path as well
as any sub-path (i.e. a valid subsequence of it). The reason for this is that, in
many cases, we encounter question paths which are too long to be paraphrased
as units as they do not occur sufficiently (or at all) in the input corpus. Finally,
we add these expanded paths to the original question paths.

Consider, for example, the question path X
subj←−− discover

dobj−−→ river
nn−→ Y .

We substitute this pattern by rewriting the fragment
subj←−− discover

dobj−−→ with
the paraphrases returned by the DIRT algorithm. Table 8.3 shows the top 10
paraphrases extracted by DIRT for this path.

X
subj←−− discover dobj−−→ Y

X
subj←−− find dobj−−→ Y

X
pobj←−− by prep←−− discover subjpass−−−−−→Y

X
subj←−− uncover dobj−−→ Y

X
pobj←−− by prep←−− find subjpass−−−−−→ Y

X
subj←−− detect dobj−−→ Y

X
subj←−− use dobj−−→ Y

X
subj←−− seize dobj−−→ Y

X
subj←−− unearth dobj−−→ Y

X
subj←−− recover dobj−−→ Y

X
subj←−− develop dobj−−→ Y

Table 8.3: Top 10 paraphrases for X
subj←−− discover dobj−−→ Y

8.4.3 Candidate answer ranking

Candidate answer ranking is the final stage of the answer extraction module.
In this stage, all candidate strings are ranked, and the top string is returned as
the answer to the question.

We reduce candidate answer ranking to the task of computing similarity be-
tween paths in question and paths in the retrieved sentences. Intuitively the
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sentence paths which match the question best will contain the answer to the
question. QA systems relying on syntactic-level representations have been pre-
viously shown to be effective in a number of studies, such as Punyakanok et al.
[2004], Cui et al. [2005], Shen and Klakow [2006], motivating thus our choice
for a syntax-based answer ranking module.

The candidate answer ranking is done first at sentence level, to return an answer
string for each sentence, and at question level, to return an answer for the entire
set of sentences associated to a question. The rest of this section describes these
two stages.

Sentence-level ranking

We rank the list of candidate answers by using two main ranking keys:

1. Expected answer type

2. Path similarity

If two strings score the same on these two ranking keys, we use a third key
which gives preference to longer strings. This rule is introduced to handle cases
such as the one previously discussed, in which Hernando de Soto is the complete
correct answer to the question rather than just Soto. The two main ranking
keys are detailed for the rest of this section.

Expected answer type In a first step we rank all possible candidates in
terms of the expected answer type, with those matching the expected type
being ranked at the top.

Typically, in QA systems, expected answer types are deduced based on a named
entity recognition/classification component. For example, a who question im-
plies an expected answer of type Person. We approximate this component with
a POS-tag-based heuristic. More precisely, for each question type, we define
a set of POS tags which are characteristic of that question type; for example
for a when question, we expect the answer string to contain a cardinal number.
This heuristics is summarized in Table 8.4.

The second key ranks candidate answers based on comparison of sentence paths
and question paths. This is the most relevant step and we continue with its
description.

Language-model-based path similarity Similarity between paths in syn-
tactic trees can be used as a base for identifying the correct answer string. For

example the similarity between who
subj←−− discovered obj−−→ river

nn−→Mississippi
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Question type Expected POS in answer string

who NNP || NNPS
which NNP || NNPS || CD
what NNP || NNPS || CD
where NNP || NNPS
how CD
when CD
other NNP || NNPS

Table 8.4: Simple POS-tag based heuristic for expected answer typing

and Soto
pobj←−− by

prep←−−− discover
dobj−−→ river

nn−→ Mississippi indicates Soto as
the correct answer to the question. We propose the use of a language model-
based approach to compute path similarity. We start with a brief overview of
language models and continue with their use for computing path similarities.

Language models A language model assigns probabilities to sequences of
words as estimated from a collection of data, such as a sentence, a document or
an entire corpus. Intuitively, these models give a characterization of a language
in terms of how likely it is that a string of words has been generated in that
language.

Language models have been used in many NLP areas such as speech recognition
or information retrieval. In information retrieval the goal is to rank documents
d in terms of their relevance to a query q. One common approach to this is
to learn language models for each of the documents θd. Documents are then
ranked based on the probability of the query given the language model of the
document P (q|θd). The intuition behind this is that the more likely it is for a
query to be generated by the language model of a document, the more relevant
the document is to the query.

Unigram language models assume that words in a sequence are generated in-
dependently: P (w1, ..., wn) =

∏
i P (wi). n-gram models with n ≥ 2 are more

informative as the occurrence of a word is conditioned on the past n− 1 words.
For example in a bigram model the probability of each word is conditioned on
the previous word: P (w1, ..., wn) =

∏
i P (wi|wi−1).

Language models can be estimated from direct frequency counts, however, these
are unreliable and all language models use some type of smoothing. The pur-
pose of smoothing is to overcome the data sparseness problem and to obtain
probability estimates which are more accurate. This is typically done by dis-
counting the probabilities of seen events, and by assigning probabilities larger
than 0 to unseen events.

One way to evaluate language models is through perplexity measurements.
More precisely, given an unigram language model p, learned from some in-
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put data, and an unseen test sample from the same data, x1, ..., xN , p can be
evaluated based on the perplexity with respect to this new sample. This is
defined as:

PPp(x1 , ..., xN ) = 2−
∑N
i=1

1
N

log2 p(xi)

The exponent is in fact the cross-entropy H(p̂, p) between the language model
probability p and the empirical distribution p̂ extracted from the sample. A low
perplexity score indicates a small cross-entropy between the sample distribution
and the model distribution. This shows that the test sample is predictable given
the estimated language model, indicating a good language model.

Language models for computing path similarity For computing path
similarity, we use a bigram language model with absolute discount smoothing
which is trained on question paths.

More precisely, we start by collecting all the paths in a question q connecting
the question word and a particular keyword kw. We denote this set by Pq(kw);
this will consist of just one path in the baseline setting (i.e. no paraphrasing)
and it will contain a larger number of paths when employing the paraphrase
component described in the previous section. We use this set of dependency
paths to learn a language model which we denote θPq(kw). In particular, we use
a bigram language model trained with absolute discounting smoothing (Zhai
and Lafferty [2004]) with discount parameter δ = 0.73.

We denote the set of paths connecting a keyword kw to an answer candidate
ai in sentence s, by Ps(kw, ai). Given a sentence path πs ∈ Ps(kw, ai), we
compute its perplexity with respect to θPq(kw) language model. The general
perplexity in a bigram model is given by equation 9.1. For our model this
results in the formula in equation 9.2.

PPp(x1 , ..., xN ) = 2−
∑N
i=1

1
N

log2 p(xi|xi−1) (8.1)

PPθPq(kw)
(πs) = 2

−
∑N
i=1

1
N

log2 PθPq(kw)
(πsi |πsi−1) (8.2)

where πs ∈ Ps(kw, ai) is a sentence path of length N , and PθPq(kw)
(πsi |πsi−1) is

the probability of the ith element of the path given the previous one, according
to the language model trained on the question paths θPq(kw).

Intuitively, we compute perplexity as an indicator of how predictable a sentence
path is, given the question language model. The lower the perplexity, the higher
the chances that the path contains an answer to the question. We therefore use
the inverse of the perplexity as a similarity score between question and sentence
paths.

One answer candidate ai typically occurs in more than one sentence path; in
this case we consider the path that minimizes the perplexity:

3Zhai and Lafferty [2004] show that absolute discounting smoothing performs well for the
information retrieval task; they also find that δ = 0.7 is a robust parameter value as it is
optimal for a range of various experimental settings.
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dist(q,s)(ai) = min
πs∈Ps(kw,ai)

PPθPq(kw)
(πs)

where dist(q,s)(ai) measures the the inverse of the confidence level of candidate
ai, extracted from sentence s, being an answer to question q.

The intuition behind the paraphrase expansion is that the language model
learned on an expanded set of paths will represent the general meaning of a
question, rather the particular lexical or syntactic form choices. Consider, for
example, the language model learned from the question Who discovered the
Mississippi river? after the expansion with the phrases in Table 8.3. In this
language model, the word find will have a high probability and an answer-
containing sentence such as De Soto found the Mississippi river will have a
lower perplexity score under this expanded language model.

We also use the specific rank of a paraphrase, as returned by the paraphrasing
algorithm. More precisely, when training the language model on a path set, we
weigh the contribution of a path to the model by 1

log2(R) where R is the path’s
rank.

Question-level ranking

For question-level scoring, we pool together all the answer candidate strings
from a set of question-relevant sentences and compute the overall ranking. We
denote the set of question-relevant sentences by S(q); this simply contains sen-
tences which may be relevant to the question, as returned by the passage re-
trieval component of a question answering system.

In order to aggregate these scores we first transform the distance scores into
their inverses. This way, a large distance is associated to a small score and
vice-versa. For a particular answer candidate, for each sentence in which it
does not occur, we assign a score of 0.

score(q,s)(ai) =

{
0 if ai not extracted from s

1
dist(q,s)(ai)+1 otherwise

We add the term 1 to the nominator to act as a positive “smoothing” parameter
which avoids division by zero. The candidate answers are then ranked according
to the sum of their sentence-level scores:

scoreq(ai) =
∑
s∈S(q)

score(q,s)(ai)

This concludes the presentation of the proposed answer extraction system.
Chapter 9 provides the experimental evaluation of this system, when instanti-
ated with DIRT and context-sensitive paraphrasing.



Chapter 9
Evaluation

In this chapter we perform the experimental evaluation of the answer extraction
method proposed in Chapter 8. Section 9.1 details on the experimental setup.
We integrate and evaluate paraphrases obtained from two sources: 1) the output
of the classic DIRT algorithm (Section 9.2) and 2) as returned by the context-
sensitive paraphrasing method described in Chapter 7 (Section 9.3).

9.1 Experimental setup

Data We test the baseline pipeline system together with the paraphrase ex-
tension module described in the previous chapter on the set of questions in the
QASP (Kaisser and Lowe [2008]) data set.

This resource was built using a subset of questions from TREC QA track
datasets from years 2002-2006. For each TREC factoid question for which
an answer could be found in the AQUAINT corpus, QASP provides the set of
answer sentences, together with the corresponding answer string1.

This data set allows us to evaluate our system for answer extraction both
at question level, as standard in QA evaluation, and at sentence level. The
question-level evaluation tests a system’s performance in retrieving the correct
answer for each given question. The sentence-level evaluation is concerned with
the actual number of sentences/passages in which the systems identifies the cor-
rect answer. The sentence-level evaluation on this data set is particularly suited
for the answer extraction task, as all sentences contain the answer, setting a
recall upper bound of 100%. The question-level evaluation is not informative
on the QASP resource, as in this setting all the candidate sentences contain an

1In QASP, questions which in TREC where grouped into series about a certain topic are
reformulated such that they can be answered in isolation – that is anaphoric references to the
topic were replaced with the topic phrase itself.

113
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answer to the question, which makes the retrieval of the question-level answer
much easier. For this reason, we use a second data set containing candidate
sentences that are automatically retrieved, on which we perform question-level
evaluation.

For this latter scenario, for each question, we take all the documents where at
least one answer sentence was given in QASP, and run sentence retrieval on the
full text of these documents. We use a language-model-based retrieval method
as in Ponte and Croft [1998] with Dirichlet smoothing (Zhai and Lafferty [2004]).
For each question, we use all sentences with perplexity lower than a threshold
of 2000, or the 10 top-ranked sentences if the perplexity is higher than this
threshold.

Table 9.1 summarizes these two data sets which we denote as QASPGOLD, which
is the original QASP resource, and QASPRETRIEVED, which contains automati-
cally retrieved sentences. QASPGOLD provides on average approximately 4 sen-
tences per question. The sentence retrieval method previously described results
in approximately 15 candidate sentences per question, in the QASPRETRIEVED

dataset.

TREC02 TREC03 TREC04 TREC05 TREC06

#Questions 429 354 204 319 352
#QASPGOLD 2002 1446 865 1456 1405
#QASPRETRIEVED 8018 5168 3189 5202 5004

Table 9.1: Number of questions and sentences in the QASP data sets.

Evaluation metrics We use accuracy and mean reciprocal rank (MRR) as
evaluation metrics. Accuracy reports the percentage of cases for which the
correct answer has been extracted and ranked first. In the case of sentence-
level evaluation we compute the average accuracy for each sentence, while at
question-level we compute a single accuracy score for each question.

The MRR is the reciprocal of the rank of the correct answer, averaged over all
sentences/questions. The reciprocal rank (RR) is the inverse of the position of
the correct answer in the returned rank:

RR(s) =
1

rank(a)

where s is a sentence and a the correct answer string; rank(a) is the position
of this answer string in the candidate answer ranking computed for sentence
s. If the answer extraction component has failed to extract the correct answer
string, the associated RR score is 0. If the correct answer has been ranked first
the RR reaches its maximal value 1. The motivation behind using the MRR
metric is that it measures the performance of a system in greater detail than
the accuracy metric.
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Parsing The system we have described in the previous chapter requires de-
pendency parsing.

Due to limitations of currently available parsing technology, an automatically
obtained best parse tree for a naturally occurring sentence has a high probability
of differing in at least one way from the analysis that a human expert would
assign to it. The problem is exacerbated in question answering, compared
to other NLP applications, by the fact that the most widely used training
resource for English parsing, the Penn Treebank, contains a very small number
of questions. In order to overcome this problem, we represent a question by
the set of dependency paths which are extracted not just from the single best
parse, but from n-best parses.

We use the Stanford parser (Klein and Manning [2003]) to obtain dependency
parses, running it in n-best, unlexicalized, mode for parsing questions. For
parsing sentences we only use the best parse obtained from the lexicalized mode.

9.2 DIRT paraphrasing

We acquire DIRT-style paraphrases using a 100-million-word portion of Giga-
word (Graff et al. [2003]), which we again parse using the Stanford dependency
parser.

We expand each question by paraphrasing noun-ending paths in its dependency
graph. In order to acquire paraphrases for a particular path, we use the DIRT
method (Lin and Pantel [2001b]) which has been detailed in previous chapters.

9.2.1 Model Selection

A first parameter to be determined is the optimal number of parses used for
n-best parsing of questions. Our hypothesis is that a single best parse leads to
low scores due to the lack of correct parses from which informative dependency
paths can be extracted. A larger number of parses might however introduce
noise into the data.

A second parameter to be determined is the number of paraphrases to be used
for question expansion. The DIRT algorithm provides a confidence value which
we use to control the amount of paraphrases used. A large confidence threshold
allows only a small number of high-precision substitutes to be used; a low
threshold will result in considerable decrease in precision with a trade-off for
larger recall.

We use the TREC 2002 portion of the QASPGOLD data set for development and
the remaining data for testing. Throughout this section we report on sentence-
level scores, which, as previously discussed, are much more informative than
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question-level scores on this data set.

Number of parses We use the development set to see the effect of increas-
ing the number n of parses used in the n-best parsing mode. When using n
alternative parses, all the paths extracted from all parses are pooled together
leading to a potentially very noisy representation of a question.

We test the effect of parsing on the baseline syntactic model, which does not em-
ploy paraphrasing. Figure 9.1 plots the accuracy and MRR scores, as functions
of the number of question parses considered.

Figure 9.1: Effect of increasing the number n of n-best parses in question
parsing. Sentence-level scores on TREC02 portion of QASPGOLD.

We observe that the accuracy and the MRR scores of the baseline method
increase significantly with the number of parses. This confirms our initial
hypothesis that the parser is not reliable in finding the best single parse of
questions. An example of this is the first question occurring in the data:
Who is Tom Cruise married to? From the best parse we can extract the

path who
dep←−− marriedJJ

subj−−→ cruise, where dep stands for unknown depen-
dency relation. Only the fifth parse results in the correct dependency path

who
dobj←−− marryV

subj−−→ cruise.

This increase in performance further indicates that our method is robust with
respect to the noise that these parses invariably introduce. We assume that
this is the case due to the fact that erroneous parse paths are unlikely to closely
match paths in answer sentences. Most of the gain in performance is obtained
by using the top 5 parses as opposed to the single best, however slight improve-
ments are obtained when increasing the number of parses to as much as 15. The
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use of more than 15 parses keeps the performance stable followed by a decrease
when using 25 or more parses.

We observe, however, that the performance of the method is limited by the
simple heuristics employed for answer extraction. More precisely, we also com-
pute an oracle score on this data set. The oracle score gives the percentage of
sentences in which the correct answer is extracted by the candidate answer ex-
traction component. This is the upper bound on the performance of the ranking
method, as failure in extracting the correct answer string as a candidate cannot
be corrected by any of the subsequent components of the system. While the
upper bound on the QASPGOLD data is 100%, as all sentences contain answers
to the questions, we only extract the correct answer string as an answer candi-
date in 74% percent of the cases; this becomes the upper bound for the ranking
method.

Paraphrase confidence threshold We investigate the precision/recall trade-
off of the paraphrasing component by testing a number of confidence thresh-
olds. We test a confidence threshold parameter τ with values in the set:
{0.30, 0.20, 0.10, 0.05, 0.04, 0.03, 0.02, 0.01}. These values are chosen based on
the confidence score distributions of the paraphrases obtained: a threshold of
0.3 results in generating, on average, one paraphrase, while 0.01 results in ex-
panding with approximately 250 paraphrases on average.

In Tables 9.2 and 9.3 we plot the accuracy and MRR scores against the threshold
values, including the no-paraphrasing baseline. We test the effect of paraphras-
ing when using the 1-best parse and the 15-best parses settings; the 15-best
parses setting was the optimal one in the previous experiments.

Figure 9.2: Effect of paraphrasing (1-best and 15-best parses). Sentence-level
accuracy on TREC02 portion of QASPGOLD.
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Figure 9.3: Effect of paraphrasing (1-best and 15-best parses). Sentence-level
MRR on TREC02 portion of QASPGOLD.

We observe that adding n-best parses and increasing the number of paraphrases
has a cumulative effect. Adding paraphrases to the single best parse brings
a modest improvement of 0.2 gain in accuracy and 0.25 in MRR. These are
obtained when using a confidence threshold of 0.02. This amounts to using, on
average, 200 paraphrases for each question path.

The results indicate that the paraphrase component is severely limited by the
use of a single best parse as the same confidence threshold of 0.02 brings sig-
nificantly larger performance gains (2.2% in accuracy and 1.8% in MRR) when
using 15 parses.

In order to get more insight into the effect of the paraphrasing component, we
analyzed the development set in more detail. More precisely, we are interested in
investigating how many times the paraphrase expansions determined a change
in the rank of the correct answer string. If adding paraphrases has no effect
on the ranking of the correct answer, it is safe to assume that the paraphrase
expansions available were not relevant to that question-sentence pair.

The results obtained are plotted in Figure 9.4. We count the number of sen-
tences in which the ranking was altered and compute the MRR scores on these
sentences, both without paraphrasing, which is the baseline setting, and with
paraphrasing (+ par.). We use 15 parses, and range over different paraphrase
thresholds.

We observe that the paraphrases are actually used only in a very small portion of
the total number of sentences. The numbers are particularly small considering
that answers to the questions are extracted from most of the sentences in this
total set, as indicated by the 74% oracle score.
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Figure 9.4: Performance on data subsets in which paraphrases are used (out of
2002 total sentences) as a function of paraphrase confidence threshold.

When using a very high confidence threshold of 0.3 we obtain a small number
of expansions, which are used only in 1% of the sentences. However, the results
indicate that these expansions are very accurate as the absolute gain in MRR
score is as high as 30%. As the confidence threshold decreases, we observe that
the paraphrases are still beneficial, as they increase performance by ≈10%.
However, they are used in a small number of cases, not more that 16% of the
data (319 sentences), when using the smallest confidence threshold of 0.01. We
also observe that paraphrases are used for the more difficult sentences as the
baseline method scores 10% lower on these subsets, as compared to the overall
average performance.

9.2.2 Results

We use the optimal development settings on the test data: n-best parses with
n = 15 and 0.02 paraphrase confidence threshold. We use as test data the
TREC03-TREC06 portions of the QASPGOLD. We also test these settings on
the automatically retrieved sentences in QASPRETRIEVED.

The notation we use throughout the rest of the chapter is the following:

• Oracle (sentence-level/question-level): percentage of sentences/questions
in which the correct answer is part of the set of strings extracted by the
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candidate extraction module.

• 1-best parse: baseline setting, using the single-best parse for questions

• n-best parses: 15-best parses for questions

• n-best parses + par.: 15-best parses for questions plus paraphrasing
component with a confidence threshold of 0.02

Sentence-level MRR scores on the gold data are shown in Table 9.2. The or-
acle scores range between 64%-72%, limiting the performance of the overall
answer extraction system. Next, we list the baseline setting (1-best parse and
no paraphrases), the n-best parses setting and n-best parses together with para-
phrasing. As it can be observed, the development data results carry over to the

TREC03 TREC04 TREC05 TREC06

Oracle 65.9 64.3 69.4 72.5

1-best parse 35.5 38.4 41.7 41.2
n-best parses 38.8 40.9 42.6 42.6
n-best parses + par. 39.2 42.2 43.3 43.7

Table 9.2: Sentence-level MRR on QASPGOLD: TREC03-TREC06

test data. Adding n-best parses brings significant improvements in all data sets,
scores which are further increased by the use of paraphrasing.

Both the use of n-best parses and the use of paraphrases add a considerable
amount of noise to the representations of the sentences. This is not an issue
when testing the method on gold sentences where we obtain significant increase
in performance.

We further test our method on the automatically retrieved data. The goal is to
investigate which results carry over when using typical question answering data.
In this data, the majority of the passages retrieved do not contain the correct
answers, making the method potentially less robust to the noise introduced by
multiple parses and by paraphrasing. We list the question-level results obtained
on the TREC02-TREC06 QASPRETRIEVED data in Table 9.3.

TREC02 TREC03 TREC04 TREC05 TREC06

Oracle 74.6 67.2 66.2 70.8 72.7

1-best parse 37.3 31.6 28.0 32.0 32.4
n-best parses 39.4 32.6 28.8 31.6 33.2
n-best parses + par. 41.0 33.6 29.6 32.4 33.8

Table 9.3: Question-level MRR on QASPRETRIEVED

We observe significant improvement on this data set again both from the use
of n-best parses and from that of paraphrases. The improvements obtained
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from the paraphrasing component are particularly surprising as we observe that
the paraphrases were in fact used only in approximately 3% of the sentences.
Although much less informative on this data set, we also list the sentence-level
results together with the sentence-level oracle score in Table 9.3; we observe
that the question-level improvements carry over from sentence-level ones.

TREC02 TREC03 TREC04 TREC05 TREC06

Oracle 16.3 15.7 15.0 18.0 16.9

1-best pars. 9.68 8.10 9.02 10.08 9.48
n-best pars. 10.24 8.80 9.35 10.14 9.71
n-best pars. + par. 10.59 8.91 9.52 10.39 9.90

Table 9.4: Sentence-level MRR on QASPRETRIEVED.

9.2.3 Discussion

In order to better understand the effect of paraphrasing, we manually inspected
a subset of the sentences in which paraphrases help improve performance and a
subset of those in which they harm performance. We use the QASPRETRIEVED

data set for this purpose.

An example of performance gain is the following question-sentence pair, from
the TREC02 QASPRETRIEVED:

(1) What year was Alaska purchased?

(2) In Seward, the town named for Secretary of State William Seward, who
bought Alaska for $7.2 million in 1867, a multimillion-dollar industry
has developed around ships that take visitors to the bird rookeries and
glaciers of Kenai Fjords National Park.

DIRT adds a number of paraphrases to the question path X
subj←−− purchase obj−−→Y,

including X
subj←−− buy

obj−−→Y, Y
pobj←−− to

prep←−−− sell
obj−−→ X. Under the language

model trained on these expansions, the path 1867
pobj←−− in

prep←−−− buy
obj−−→Alaska

has the lowest perplexity and the correct answer, 1867, is ranked highest.

We observe a number of similar cases, in which lexical variation is introduced by
the use of paraphrasing. For example, the sentence fragment the 1990 invasion
and occupation of Kuwait by Iraq is used to return Kuwait as the answer to What
country did Iraq invade in 1990? The highest ranked paraphrases influence the
language model most, and in this example DIRT returns X’s occupation of
Y and X’s invasion of Y as the most confident paraphrases of X invade Y.
Examples of other useful variation that we encounter are X won Y ≈ X, the
winner of Y, X manufacture Y ≈ Y made by X or X governs Y island ≈ X’s
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island of Y.

We observe, however, that in many cases in which the paraphrases improve
performance, their effect is that of allowing more flexibility at the syntac-
tic level, rather than introducing more complex variations. For example, we
encounter the question Who is the director of the Hermitage museum? The
language model trained on paraphrase expansions ranks the sentence path
piotrovski

appos←−−− director
poss−−→ museum as most similar to the question path

who
subj←−− director

prep−−−→ of
pobj−−→ museum. This leads to finding the correct

answer Dr. Mikhail Piotrovsky, however only by allowing variation at the syn-
tactic level.

We also observe that the added syntactic flexibility is also a common source

of error. For example
pobj←−− over

prep←−−− kill
subj−−→ is ranked most similar to

dobj←−− kill subj−−→ for the question-sentence pair How many people has ETA killed?
- ETA has killed nearly 800 people over the last 30 years. In this case it leads
to the the wrong answer 30 years being chosen over the correct answer 800.

Next, we inspect whether the effects of n-best parsing and paraphrasing are
uniform over different types of questions. We divide the questions into different
classes based on the first word present in the question. We obtain six categories:
who, what, which, how, when, where and we label as other, questions which do
not match any of these. Figure 9.5 shows the MRR scores broken down per
question type on the
TRECRETRIEVED data set.

We observe that for all types of questions, multiple parses improve the baseline
performance with the exception of when questions where we observe small de-
crease in MRR. In general, the effect of paraphrasing is not uniform over the
different types of questions. The highest gains are observed for who and what
questions. The latter form more than one third of the questions in this data set,
which explains the overall increase in performance. For the other question types
we observe either insignificant gains or decrease in MRR scores. In particular,
which questions seem to suffer from the use of paraphrases.

A closer look at the which question reveals that in many cases the answers
to which questions are relatively close to one of the question keywords, and
information present further away in the sentence is usually not informative.
The language model method has no bias towards returning shorter or longer
paths as answer-containing paths; in the case of which questions, these shorter
paths seem however preferable.

Bias towards smaller paths can be easily introduced in our system. We rank
paths based on perplexity scores which compute cross-entropy between the em-
pirical distribution, in our case obtained from the candidate path, and the
language model distribution learned from the question representation. The
cross-entropy term can be adjusted to favor smaller paths by replacing 1

N with
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Figure 9.5: Performance by question type on QASPRETRIEVED.

1
N+d , where we call d the perplexity discount parameter. The adjusted perplex-
ity becomes:

PPp(x1 , ..., xN ) = 2−
∑N
i=1

1
N+d

log2 p(xi|xi−1) (9.1)

d = 0 is the original setting which introduces no bias for path length, while
larger d values favor shorter paths. Figure 9.6 shows the MRR scores (with/without
paraphrasing) when varying the discount parameter d.

Figure 9.6: Performance for which questions when introducing bias for shorter
paths on QASPRETRIEVED.

We observe that giving preference to shorter paths brings significant improve-
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ments. The paraphrase component becomes beneficial in this setting and in
total we see an MRR gain of approximately 15% over the original un-biased
setting. This is mirrored by more than 10% gain in accuracy. However, when
employed for other question types, this bias determines no significant perfor-
mance changes from the original method.

This experiment seems to indicate that tailoring the settings to the properties
of individual question types may determine better performance and allow for
higher gains obtained through paraphrasing.

9.3 Context-sensitive paraphrasing

In a second series of experiments we integrate our context-sensitive paraphrasing
component in the baseline answer extraction pipeline. Intuitively, paraphrases
that are generated this way should allow for more accurate question expansions
compared to the DIRT method.

The context-sensitive paraphrasing component is integrated similarly to the
DIRT method, by expanding the set of question paths. Consider for example
the question:

(3) Q: What Spanish explorer discovered the Mississippi River?

The DIRT method paraphrases the path X
subj←−− discover

dobj−−→ Y indepen-
dently of a given context, as in Table 8.3. In this second experiment, we use
paraphrases which are specific to the given context of X:explorer and Y:river.
Naturally, other occurrences of this path, i.e. with different X and Y instan-
tiations, will be paraphrased differently; in contrast, DIRT returns the same
expansions for all of these.

In our experiments, we use the LDA-based method described in Chapter 7.
More precisely, the similarity between paths pi and pj in context wX , wY is com-
puted as sim(vec(pi, wX), vec(pj , wX)) ∗ sim(vec(pi, wY ), vec(pj , wY )), where
vec(p, w) is the contextualized representation of path p with context word w.
We employ, as in the previous chapters, scalar product (sp), cosine (cos) and
inverse Jensen-Shanon divergence (JS) as similarity measures. Table 9.5 lists

the top ranked paraphrases for explorer
subj←−− discover

dobj−−→ river when using
sp and JS as similarity measures.

In general, we observe that the precision of context sensitive (henceforth CS)
paraphrasing is lower than DIRT’s. Many of the expansions of a path are not
appropriate as substitutes. Some of the phrases obtained when performing the
substitution are unlikely to occur in natural language, such as river institute of
explorer or river academy of explorer in the example above. However, in many
cases, the lexical variation encoded in these expansions is appropriate to the
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explorer, X
subj←−−− discover dobj−−−→ Y , river

sp similarity JS similarity

X
subj←−−− find prep−−−→ by

pobj−−−→ Y X
subj←−−− unearth dobj−−−→ Y

X
pobj←−−− of prep−−−→ expedition

nn−−→ Y X
subj←−−− excavate dobj−−−→ Y

X
pobj←−−− of prep−−−→ institute

nn−−→ Y X
subj←−−− find prep−−−→ at

pobj−−−→ Y

X
subj←−−− dig dobj−−−→ Y X

partmod←−−−−− study dobj←−−− Y
X

pobj←−−− of prep−−−→ civilization
nn−−→ Y X

subj←−−− discover prep−−−→ in
pobj−−−→ Y

X
pobj←−−− by prep←−−− design partmod−−−−−→ Y X

prep←−−− with pobj←−−− academy nn−−→ Y

X
pobj←−−− by prep←−−− complete nsubjpass−−−−−−→ Y X

prep←−−− from pobj←−−− academy nn−−→ Y

X
pobj←−−− at prep−−−→ committee

nn−−→ Y X
partmod−−−−−→ work

prep−−−→ for
pobj−−−→ Y

X
partmod←−−−−− study dobj←−−− Y X

subj←−−− find prep−−−→ with
pobj−−−→ Y

X
subj←−−− unearth dobj−−−→ Y X

pobj←−−− by prep−−−→ discover
nsubjpass−−−−−−→ Y

Table 9.5: Context-sensitive paraphrases for X
subj←−− discover dobj−−→ Y

given context. In the current example, civilization, expedition, study or institute
are lexical items indicative of the context word explorer. In contrast, the DIRT
expansions of this same path, shown in Table 8.3, are highly accurate and the
lexical variants, such as find and detect are appropriate to most meanings of
discover.

In the remainder of this section, we present the results obtained when using
the context-sensitive paraphrasing component; in particular, we are interested
in investigating whether the answer extraction method benefits from the vari-
ation introduced this way, despite the large amount of noise present in the CS
expansions.

9.3.1 Model selection

Similarly to the previous section, we use the TREC02 portion of QASPGOLD

for development.

In particular, we investigate the changes in performance as a function of the
number of paraphrases employed. Unlike for DIRT paraphrasing, confidence
level thresholds are difficult to determine in the case of CS paraphrasing: the
absolute similarity scores vary from one similarity measure to another as well as
within different paraphrasing strategies. Different paraphrasing strategies are
determined by different ways of contextualizing. More precisely, if a particular
context word is not encountered often enough in the input corpus (e.g. some
proper names), it will not be present in our input matrix and, therefore cannot
be used as a context feature. In general, we only use the available context
words, which leads to using no context at all if none of the X or Y filler words
are available. To vary the amount of paraphrases, we simply use the top-n
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most confident expansions and vary the value of n rather than using confidence
thresholds.

Throughout this section we use the following notation for different paraphrasing
methods:

• DIRT: paraphrases obtained using the DIRT algorithm of Lin and Pantel
[2001b] (no context information is used)

• CSsim: Context Sensitive paraphrases obtained with the LDA-based method
of Chapter 7, using similarity measure sim ∈ {sp, cos, JS}.

• NCsim: No Context (i.e. context-ignoring) paraphrases obtained with
the LDA-based method of Chapter 7 and using similarity sim.

The LDA-based method we have proposed can be used both for context-sensitive
paraphrasing as well as in a context-ignoring mode, denoted CS and NC, re-
spectively. We vary the number of top-n expansions used with n ranging from
5 to 250, when added to the single best parse and 15 best-parses settings, using
the three similarity measures listed above. In Figure 9.7 we plot the results
obtained with the cosine similarity measure.

Figure 9.7: Effect of CS paraphrasing on 1-best and 15-best parses. Sentence-
level MRR on TREC02 portion of QASPGOLD.

Similarly to the previous results, adding paraphrases and using 15-best parses
is more beneficial than adding expansions to the single best parse. The absolute



Context-sensitive paraphrasing 127

MRR gains are in the range of 2% for 15-best parsing and 1% for 1-best parse;
the best performance is obtained when using 10 expansions, in both settings.

The different similarity measures perform similarly, with scalar product slightly
outperforming JS, which in turn slightly outperforms cosine. As the expansions
returned by these measures differ to a significant extent form each other, we
also test a mixture method which uses top-n sp expansions, followed by top-n,
JS and top-n cosine. Despite its simplicity, this mixture method outperforms
the use of all individual similarity measures.

Figures 9.8 and 9.9 show the MRR scores of the CS (mixture) method against
the DIRT method, when varying the number of paraphrases. In the single best

Figure 9.8: CS paraphrasing (mixture over the three similarity measures) vs.
DIRT on 1-best parse. Sentence-level MRR on TREC02 portion of QASPGOLD.

parse setting, we observe that CS paraphrases are beneficial as opposed to the
DIRT ones which bring almost no improvement in this setting. In the 15-parses
setting, we also observe significant differences between the two methods. The
CS method only slightly outperforms DIRT, however the maximal performance
gain is obtained when using as little as 30 paraphrases (10 from each similarity
measure) while DIRT’s performance peaks at a threshold of 0.02 which amounts
to approximately top-200 paraphrases on average2.

2In figures 9.8 and 9.9, the confidence thresholds for DIRT and the number of CS para-
phrases are approximately aligned: for example, 0.01 confidence threshold for DIRT corre-
sponds to using slightly less than 250 paraphrases on average. This is aligned to using 210
paraphrases of the CS method
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Figure 9.9: CS paraphrasing (mixture over the three similarity measures)
vs. DIRT on 15-best parses. Sentence-level MRR on TREC02 portion of
QASPGOLD.

The results suggest that beneficial, appropriate expansions are found at the
very top of the CS paraphrases, while in order to achieve the same goal, a much
larger number of general-meaning DIRT paraphrases are required.

In order to verify that the differences observed are caused by the use of context,
we also test the non-contextualized LDA-based method. The similarity between
paths pi and pj is computed as sim(vec(pi), vec(pj)), where vec(p) is the LDA
dimensionality-reduced representation of path p. We use the notation NC (No
Context) for this model. The results are plotted in Figure 9.10 (using cosine as
similarity measure).

Similarly to DIRT, the NC method benefits from using a large number of para-
phrases, and achieves the best performance only when as many as 200 expan-
sions are generated for each question path. This confirms the intuition that
the context-sensitive method ranks the useful expansions at the very top while
context-ignoring methods such as DIRT and NC require many more expansions
to achieve the same goal.

These results are summarized in Table 9.6, where we list the MRR values ob-
tained on the development set when employing the different paraphrasing meth-
ods.

Overall, the best CS method, the mixture setting, outperforms DIRT, how-
ever the NC settings employing a large number of expansions have the best
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Figure 9.10: Effect of NC paraphrasing on 1-best and 15-best parses. Sentence-
level MRR on TREC02 portion of QASPGOLD.

performance on the development set.

Similarly to the previous section, we investigate in more detail what is the
effect of CS paraphrasing on the development set. More precisely, we compute
in how many sentences the paraphrase expansions determine a change in the
ranking of the correct answer string (we use the term coverage to stand for this
percentage of sentences). The results are shown in Figure 9.11. We give the
coverage when varying the number of expansions as well as the performance
gains on the covered data subsets.

Similarly to DIRT, we observe that paraphrases bring significant improvements
over the baseline setting, in the range of 5%-15% absolute MRR gains. We
again observe, however, that these are used in a minority of cases, only in 15%
of the sentences when using the most relaxed setting; the upper bound is set by
the number of sentences in which the correct answer is extracted as a candidate,
which is ≈75%. The major difference from DIRT is that a similar coverage is
obtained by using much fewer expansions. For example, the coverage obtained
using the top-3 most confident CS paraphrases is only achieved when using
top-30 DIRT paraphrases. This finding matches with the overall MRR scores
shown Table 9.6: for CS paraphrasing, both coverage and MRR performance
peak when using a small number of expansions.
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Method Confidence level setting MRR Using Context

DIRT τ = 0.02 (≈top-200) 47.19

CSsp top-10 47.17 x
CSJS top-20 46.92 x
CScos top-20 46.85 x
CSMIXT 3 x top-10 47.31 x

NCsp top-200 47.27
NCJS top-200 47.66
NCcos top-200 47.54
NCMIXT 3 x top-100 47.41

Table 9.6: Results for different paraphrasing methods (15-best parses).
Sentence-level MRR on TREC02 portion of QASPGOLD.

Figure 9.11: Performance data subsets which make use of paraphrases (out of
2002 total sentences) using CS paraphrasing (sp similarity) as a function of the
number of paraphrases used.

9.3.2 Results

We use the TREC03-TREC06 portions of QASPGOLD as well as TREC02-
TREC06 of QASPRETRIEVED as test data. We test the baseline single best
parse and 15-best parses settings, as well as 15-best parses together with the
paraphrasing methods.

We compare the three paraphrasing methods using their best development set
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settings:

• DIRT: confidence threshold of τ = 0.02 (≈ 200 expansions on average).

• CS: mixture of all three similarity measures, 3× 10 expansions in total.

• NC: inverse JS similarity measure, 200 expansions.

In Table 9.7 we show the results on the QASPGOLD test data. For simplicity
the four data sets are concatenated and one overall score is reported. The
corresponding results on the retrieved data are reported in Table 9.8.

TREC03-06

1-best parse 39.23
15-best parses 41.27
15-best parses + DIRT par. 42.09
15-best parses + CS par. 42.14
15-best parses + NC par. 41.97

Table 9.7: Sentence-level MRR on TREC03-TREC06 portions of QASPGOLD

TREC02-06

1-best parse 32.87
15-best parse 33.80
15-best parse + DIRT par. 34.87
15-best parse + CS par. 34.61
15-best parse + NC par. 34.87

Table 9.8: Question-level MRR on TREC02-TREC06 portions of
QASPRETRIEVED

We observe no significant difference between the MRR scores obtained with
the three paraphrasing methods on the test data. In particular DIRT and NC
perform surprisingly similar of both data sets.

9.3.3 Discussion

The results seem to suggest a potential upper bound on the performance gains
obtained from paraphrasing in our experimental setting, irrespective of the
paraphrase method used. Other than the particular experimental setting in
itself, two other potential sources of this limitation may be 1) the extent to
which paraphrasing can account for the question-sentences variation encoun-
tered in the data and 2) the specific distributional paraphrasing setting used.
We further detail on these two aspects.

One important question that remains unanswered concerns the degree to which
paraphrasing can explain the variation encountered in the data. In our exper-
iments we observe that all three paraphrasing methods, when used, bring a
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significant, over 10% absolute gain, however their coverage is severely limited
to a small number of cases. This observation corroborates the findings of pre-
vious work on QA or recognizing textual entailment. This low coverage may
simply be specific to the problem, or may be a real shortcoming of the para-
phrasing method. In particular, we think that only a close investigation of QA
data focused on analyzing the paraphrasing aspect of this data, can answer this
question.

A second upper bound may be set by the input data used to learn the para-
phrases. All three methods extract the same total set of syntactic patterns
(≈80000), and furthermore, learn to paraphrase from the same evidence, the
left and right filler words. Variation that is not covered by the set of patterns
used may be required in order to improve on these results. In particular the
use of larger amounts of data as well as of larger context, going beyond the
filler nouns, may allow the methods to perform better. We expect this to be
the case especially for the CS methods, as these methods attempt to extract
significantly richer knowledge from the same amount of evidence. And finally,
the general limitations of the distributional paradigm may set an upper bound
on the performance on these methods.

Significant qualitative differences between context-sensitive paraphrasing and
the two context-ignoring paraphrasing methods can still be observed, despite
their similar performance. A small number of paraphrases is sufficient for the
CS method in order to obtain the same results as NC (30 expansions vs. 200)
suggesting that the variation obtained by the CS paraphrasing is more precise,
more specific. Furthermore, we have performed an analysis of the results per
question type, which reveals a different pattern for the CS method as opposed
to the no-context settings. For example the precision on who questions, which
benefit most from NC paraphrasing, is harmed by the use of CS expansions.
This seems to suggest again, that adapting the approach to handle variation
specific to different question types may prove itself helpful.

9.4 Summary

In this chapter we have evaluated the proposed syntax-based method for deal-
ing with lexical-syntactic variation in question answering. Dependency path
matching, as well as paraphrasing components for passage retrieval or answer
extraction have been used before in the literature. Unlike previous work, we
have focused on enhancing a baseline syntactic system solely with knowledge
acquired in an unsupervised fashion. The goal was to build a robust model, in
which the paraphrasing is used not only to provide an exact match between a
question and a candidate sentence (such as Poon and Domingos [2009], to our
knowledge the only other account on using DIRT for QA) but rather to allow
the representations of questions and answer-containing sentences to be brought
closer.
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We use a paraphrase component together with multiple parses for the questions
in order to expand the representation of a question’s meaning. The represen-
tations obtained contain, most likely, a number of dependency paths which do
not reflect the meaning of the question; obvious error sources are the multiple
alternative parses used or sense ambiguity in paraphrasing. However, we obtain
more variations than precision-oriented methods, which seems to be helpful for
answer extraction, a task for which multiple sources of evidence (e.g. a number
of sentences) are aggregated to produce a single answer. We obtain improve-
ments in answer extraction MRR scores both on the QASP gold sentences data
set and on a noisier collection of automatically retrieved sentences. These im-
provements are obtained despite the fact that, similarly to previous work such
as Dinu and Wang [2009], we notice that paraphrases are used only in a small
number of cases. We plan to further investigate to what extent this phenomenon
is caused by the paraphrase resource.

In particular, we test two types of paraphrasing, the previously proposed DIRT
method and the context-sensitive method we have developed in the previous
chapters. Despite the observation that the context-sensitive expansions are
much nosier, in practice they bring similar (in 15-parse setting) or better (in 1-
parse setting) improvement than the context-ignoring methods. In contrast to
the context ignoring methods, a small number of context-sensitive paraphrases
is sufficient in order to achieve the same performance gains, suggesting that this
method properly identifies the context-appropriate expansions.

Given the positive results reported in this chapter, we would like to further
explore some other research prospects. We would like to attempt to use domain
adaptation techniques in order to train a dependency parser which deals better
with questions and introduces less noise to the question meaning representation.
If fewer errors are propagated this could also mean that we gain more from
paraphrasing. Another prospect is that of using information about the question
type to guide the system to better answers. As shown in this chapter there are
indications that performance gains can be obtained by adapting the general
method we propose here to specific question types.
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Chapter 10
Conclusions

This chapter summarizes the main contributions of the thesis and discusses
directions for future work.

10.1 Summary

This thesis focuses on the use of unsupervised, distributional methods for se-
mantics. In the first part, we address the issue of context-sensitive distributional
representations and their use for assessing similarity in meaning. The second
part of the thesis focuses on the use of distributional paraphrasing for question
answering.

Context-sensitive distributional similarity The issue of adapting vec-
tor space models, or distributional methods in general, to the computation of
context-sensitive similarities has received increased attention in recent years.
This has been driven by the observation that a type-level representation, mix-
ing together all the distinct meanings or usages of a word, is not suitable in real
applications, which may deal with words occurring in context, disambiguated
words. This observation has been made for a number of distributional meth-
ods such as vector space models (VSMs) operating at word-level, for assessing
lexical similarity (Erk and Padó [2008], Thater et al. [2010]), or for phrase-
level VSMs used in distributional paraphrase acquisition (Pantel et al. [2007],
Connor and Roth [2007]).

The first part of the thesis addresses this problem by proposing a probabilis-
tic framework for context-sensitive distributional similarity. Specifically, the
framework developed represents words, occurring in isolation or in context, as
probability distributions over a global set of corpus-induced meaning compo-
nents, or meaning aspects. When given a word without a context, this rep-

135



136 Summary

resentation reflects its a priori meaning as a distribution over a set of latent
meaning components. When given a context, a shift in this distribution deter-
mines a disambiguated representation in which meaning components which are
validated by the context become more likely.

In turn, the meaning components themselves are induced form the corpus in
an unsupervised fashion. The intuition behind this is that each occurrence of
a word together with a contextual feature is explained by a latent meaning,
or latent meaning component, and the sum of all occurrences of a word is a
mixture over such latent classes. The goal is to induce the set of latent classes
that best explain the corpus co-occurrence data. For this, we follow Hofmann’s
(Hofmann and Puzicha [1989]) framework for unsupervised learning from dyadic
data and we use two variations of this method to induce latent classes.

Given a set of latent classes, a word is represented as a distribution over classes,
while words occurring in context are represented in terms of posterior distribu-
tions, reflecting the probability of each class conditioned on the given context.
Such representations can now be compared with a clear interpretation: words,
occurring both isolated or in context, have similar meaning if they trigger the
same latent components.

Unlike previous work, our framework models the meaning of words in context
in a probabilistic setting, in which the meaning representations as well as the
similarity computations are obtained in a natural, intuitive fashion. Further-
more, the framework is completely modular, as it can be applied to any type
of vector space model and used with any suitable latent variable induction
model/algorithm. In this thesis, the framework is instantiated on a word-level
VSM, for the task of lexical substitution as well as on a paraphrase acquisition
VSM; we obtain promising results on both of these tasks.

Distributional paraphrasing for question answering The second part of
the thesis focuses on the application of distributional paraphrasing to question
answering. This is driven by the observation that despite the development of
methods for unsupervised paraphrase acquisition, reports on using such meth-
ods in end-user NLP tasks, or in QA in particular, are almost inexistent. Simi-
larly, most of the more recent work on context sensitive distributional similarity
has not been tested so far in an application scenario. For this reason, in this
second part of the thesis we build a context-sensitive extension of the para-
phrasing method of Lin and Pantel [2001a] and test this, together with the
original method, on the task of answer extraction.

Question answering is the task of automatically extracting answers to questions
from large collections of text. One of the main issues that QA systems face
is caused by the fact that the same meaning is often expressed differently in
questions and in answer-containing sentences. The use of paraphrases is one of
the most natural ways to address this problem and methods such as Lin and
Pantel [2001a] have been developed with applications such as QA in mind.
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This part of the thesis focuses on the task of answer extraction, in which a
system is provided with a question and a set of candidate sentences and the goal
is to extract the exact string answering the question. We propose a language-
model based answer extraction module, which can be naturally enhanced with
a paraphrasing component. In particular, unlike previous work, we focus on
robustness: rather than using the paraphrase rules to obtain exact matches
between sentences and questions, we rather allow them to reduce the distance
between question and answer-containing sentences.

We observe that the use of paraphrasing brings overall improvements, which
although significant, are severely limited by low coverage: while large improve-
ments can be observed on the sentences in which paraphrases are used, their
number is very small. In future work we plan to investigate in more detail the
limitations we observe, in order to identify if these are true limitations of the
paraphrasing method, or if they are caused by other factors. The results ob-
served may reflect that paraphrases are in reality not a frequent phenomenon
in this setting. A related issues is that of separating the performance of a
paraphrasing component from the particularities of the QA system that it is in-
tegrated in; the improvements we observe can be very relevant if they carry over
to complex, very accurate QA systems, however this question remains open, as
the development of a fully-fledged QA system was not the goal of this work.

10.2 Outlook

A number of future work directions have been discussed throughout the thesis,
in the context of the individual aspects under consideration. This section high-
lights the potential use of the work presented here for information retrieval, one
of the most widely-used NLP applications.

Context-sensitive similarity computations are potentially relevant to all appli-
cations that require similarity in meaning of words or phrases which naturally
occur in context. In particular, we are interested in using this framework for
the tasks of query expansion/query reformulation in information retrieval.

One of the main issues that information retrieval engines face is that of term
mismatch: documents relevant to a user’s query may be using different terms
than the ones present in the query. Query expansion methods attempt to solve
this by identifying alternative, similar terms and adding these to the set of query
words; the resulted expanded query is then used by the search engine to retrieve
matching documents, instead of the original query. For example, for the query
how to make bombs1, expanding the term make with its synonym build can
help retrieve a potentially relevant document entitled: How to build homemade
nuclear weapons for peacful and defensive purposes. A related task is that of

1The query suggestions and retrieval examples given throughout this section are obtained
using the Google search engine.
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generating query suggestions. This consists in finding alternative, meaning-
related reformulations of a user’s query which can be further on proposed to
the user in order to help them refine the search and facilitate the retrieval of
relevant documents. For example, for the query Sir Arthur Conan Doyle books
(Alfonseca et al. [2009]), possible suggestions are related queries such as Sir
Arthur Conan Doyle works or Sherlock Holmes books.

In both cases, the ability to reliably asses similarity between queries or the sim-
ilarity of words occurring in query context plays an important role. In query
expansions methods, it is important that the term expansions found are ap-
propriate to the query, i.e. that the added terms correspond to the correct
meaning of the words in the context of the query. While this is done implicitly
by a number of query expansion methods, work such as Riezler et al. [2007]
and Riezler and Liu [2010] focuses on obtaining context-sensitive synonyms by
making use of machine translation or paraphrasing engines. The idea behind
this is that these methods will produce rephrasings of the query; these in turn
contain rephrased terms which are context appropriate. While all these meth-
ods may be used to achieve this goal, the framework developed in this thesis
is targeted at exactly this task and in future work we plan to investigate this
application.

For the related task of query suggestion, composition in vector space models has
already been proposed as a means to estimate the similarity of two queries, in
Alfonseca et al. [2009]. Given a target query, the task is to rank the entire set of
queries based on the similarity to the target and return the most similar ones. In
particular, the authors show that the choice of component-wise geometric mean
for composing the representations of words to form a representation of the query
performs particularly well. This corroborates the results of Mitchell and Lapata
[2008] as well as the experimental results presented in this thesis, in which
component-wise multiplication of words has proved to be a very competitive
baseline. A future work direction can be to investigate the use of the method
developed in this thesis for the comparison of queries.



Appendix A
Dirichlet distribution

The Dirichlet distribution is a K-dimensional distribution, K ≥ 2, with pa-
rameters α = (α1, ...αK), α1, ..., αK > 0 with the following probability density
function:

f(x1, ..., xK ;α1, ..., αK) =
1

B(α)

K∏
i=1

xαi−1i (A.1)

for x1, ...xK−1 > 0 , x1 + ...+ xK−1 ≤ 1 and xK = 1− x1 − ...− xK1 .

The beta function B(α) is a normalizing constant defined in terms of the Γ
function as follows:

B(α) =

∏K
i=1 Γ(αi)

Γ(
∏K
i=1 αi)

The parameters of the two Dirichlet mixtures used in LDA play an important
role as they control the mean and the variance of the marginals Xi:

E[Xi] =
αi∑K
i=1 αk

V ar[Xi] =
αi(α0 − αi)
α2
0(α0 + 1)

Let us consider the Dirichlet random variable X = (X1, ..., XK) ∼ Dir(α) with
K = 3. The following figures exemplify the probability density function for a
3-dimensional Dirichlet distribution with different α parameters.

If the α parameter is symmetric (α1 = α2 = α3) we obtain a figure such as
A.1. This plots the probability density function of the Dirichlet distribution
f(x1, x2, x3; 5, 5, 5) for all x1, x2, x3 > 0 and

∑
iXi = 1. The domain is a plane

because
∑

iXi = 1. As it can be seen, since the α parameter is symmetric, the
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most probable mixtures are those centered around the mean, for which each
topic is equally likely. In A.2 the α parameter is non-symmetric, α = (4, 3, 2),
and mixtures favoring the first topic over the second, and the second topic over
the third, are more likely.

Figure A.1: α = (5, 5, 5) Figure A.2: α = (4, 3, 2)

The actual vales of the α parameters control the variance. The relatively large
values α = (5, 5, 5) determine low variance, meaning that the probability of
mixtures very close to the mean is very high. With smaller α values such
as α = (2, 2, 2) in Figure A.3, the probability of mixtures close to the mean
decreases. In the Dirichlet(1,1,1) distribution plotted in Figure A.4, all mixtures
are equally probable.

Figure A.3: α = (2, 2, 2) Figure A.4: α = (1, 1, 1)
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