
Generating Anaphoric
Expressions

Contextual Reasoning in Sentence Planning

Dissertation
zur Erlangung des akademischen Grades eines Doktors der Philosophie

der Philosophischen Fakultäten der Universität des Saarlandes

vorgelegt von

Kristina Striegnitz

aus Berlin

Saarbrücken, 2005

Diese Dissertation wurde im Rahmen eines kooperativen Promotionsverfahrens
(cotutelle de thèse) zwischen der Universität des Saarlandes und der Univer-
sität Henri Poincaré (Nancy, Frankreich) erstellt.

Dekanin: Prof. Dr. Wolfgang Schweickard

Berichterstatter: Prof. Dr. Manfred Pinkal, Universität des Saarlandes
Dr. Claire Gardent, CNRS, Nancy

Tag der letzten Prüfungsleistung: 19.11.2004

Abstract

This thesis investigates the contextual reasoning involved in the production of
anaphoric expressions in natural language generation systems. More specifi-
cally, I propose generation strategies for two types of discourse anaphora which
have not been treated in generation before: bridging descriptions and additive
particles. To this end the contextual conditions that govern the use of these
expressions have to be formalized. The formalization that I propose is based
on notions from linguistics and extends previous approaches to the generation
of co-referential anaphora. I then specify the reasoning tasks that have to be
carried out in order to check the contextual conditions. I describe how they
can be implemented using a state-of-the-art reasoning system for description
logics, and I compare my proposal to alternative approaches using other kinds
of reasoning tools. Finally, I describe an experimental implementation of the
proposed approach.

Résumé

Cette thèse porte sur le raisonnement contextuel impliqué par la produc-
tion d’expressions anaphoriques dans un système de génération de langue na-
turelle. Plus précisément, nous proposons des stratégies pour générer deux
types d’anaphore n’ayant encore jamais été considérés dans la génération :
les anaphores associatives et les adverbes additifs. Dans ce but, nous for-
malisons tout d’abord les conditions contextuelles déterminant l’usage de ces
expressions. Cette formalisation est basée sur des notions linguistiques, et
étend les approches antérieures de génération d’anaphores co-référentielles.
Ensuite, nous spécifions les tâches de raisonnement à effectuer pour vérifier
ces conditions contextuelles. Nous décrivons comment ces tâches peuvent être
implémentées en utilisant un système d’inférence pour les logiques de descrip-
tion, et nous comparons notre approche à des approches alternatives utilisant
d’autres systèmes d’inférence. Pour finir, nous décrivons une implémentation
expérimentale de notre approche.

i

Acknowledgments

First of all, I would like to thank my supervisors Claire Gardent and Manfred
Pinkal without whom this thesis would not have been possible. I am grateful
to Claire for all the things that I learned from her, for always trusting me to
do my work properly, and for somehow getting me to finally write my thesis
in the end.

I am very grateful to Jean-Marie Pierrel for sorting out all kinds of admin-
istrative problems. The French and the German regulations on how to write
and defend a thesis are inconsistent — that I nevertheless managed to satisfy
both is largely due to Jean-Marie.

I also thank Bonnie Webber for making it possible for me to spend some
time in Edinburgh and for getting me started on the additive particles.

A very special thanks go to Carlos Areces for bribing me into writing, for
reading and commenting on various versions of my thesis, for making sure that
in the end all my references have page numbers, and for loads of other things.

Hélène Manuélian and Garance Paris read the French parts of my thesis
and turned them into something closely related to real French.

Finally, I thank everybody who has in some way or another contributed to
making the past four years a very happy part of my life.

iii

Contents

Die Generierung anaphorischer Ausdrücke (Zusammenfassung) 1

Résumé détaillé en français 9

1 Introduction 19

Part I Background 27

2 Natural Language Generation 29
2.1 NLG Subtasks . 30

2.1.1 Document Planning . 30
2.1.2 Microplanning . 34
2.1.3 Linguistic Realization 35

2.2 Architectures . 35
2.3 The Spud System . 37

2.3.1 Discourse Context . 38
2.3.2 Communicative Goal 39
2.3.3 Grammar . 39
2.3.4 Search Problem . 41
2.3.5 Textual Economy . 43

3 Generating Anaphora 47
3.1 Generating Definite Noun Phrases 47

3.1.1 Dale and Reiter’s Algorithm for the Generation of Defi-
nite Descriptions . 48

3.1.2 Definite Descriptions in Spud 53

v

3.1.3 Generating Pronouns 54
3.2 Other Kinds of Anaphora . 56

3.2.1 Verb Phrase Ellipsis 56
3.2.2 Non-sentential Answers in Dialogue 57
3.2.3 Non-canonical Syntactic Constructions 58

Part II Generating Anaphoric Expressions 61

4 Beyond Co-reference: Bridging Descriptions 63
4.1 Bridging . 64

4.1.1 Bridging Descriptions 64
4.1.2 Anchors . 66
4.1.3 Bridging Relations . 67

4.2 Familiarity . 68
4.3 Uniqueness . 72
4.4 Generating Bridging Descriptions 76

4.4.1 An Incremental Algorithm for Generating Bridging De-
scriptions . 76

4.4.2 Adapting Spud to the Generation of Bridging Descriptions 81
4.5 Probable and Inducible Parts 89
4.6 Discussion . 92

4.6.1 Summary . 92
4.6.2 Further Questions . 93

5 Beyond NP Anaphora: Additive Particles 95
5.1 Approaches to Additive Particles 96

5.1.1 Additive Particles as Presupposition Triggers or Context
Markers . 96

5.1.2 Alternative Particles as Focus Particles 98
5.2 Defining Also-Parallelism . 103
5.3 Alternative Sets in the Literature 106

5.3.1 Ontological Alternatives 106
5.3.2 Discourse Structure based Alternatives 108

5.4 Different Sources for Alternatives 112
5.5 Deriving Alternative Sets in a Generation System 117

5.5.1 Discourse Structure Based Alternative Sets 117
5.5.2 Explicitly Introduced Groups and Ontology Based Al-

ternative Sets . 119
5.6 Generating Additive Particles 119

5.6.1 Spud with Marking Principles 119
5.6.2 The Additive Marking Principle and Additive Markers 121
5.6.3 An Example . 123

vi

5.7 Discussion . 124
5.7.1 Summary . 124
5.7.2 Further Questions . 125

Part III Implementation 131

6 Automated Theorem Proving for Contextual Reasoning 133
6.1 The Reasoning Tasks . 133
6.2 Using a Description Logic Reasoner 135

6.2.1 Computing Speaker and Hearer Anchors 136
6.2.2 Checking the Familiarity and Uniqueness Conditions . 139
6.2.3 Computing Alternative Sets 140
6.2.4 Checking for Also-parallel Eventualities 141

6.3 First Order Logic Theorem Provers 141
6.4 Model Checking . 144
6.5 Discussion . 145

7 An Example Application 147
7.1 A Text-based Computer Game 147

7.1.1 Overview of the Game Architecture 148
7.1.2 The World Model . 149
7.1.3 The Discourse Model 151
7.1.4 The Language Analysis Module 152
7.1.5 Executing Actions in the Game World 153

7.2 The Generation Module . 153
7.2.1 Document Planning . 154
7.2.2 Microplanning and Realization 155
7.2.3 Generating Anaphoric Expressions 159
7.2.4 Discussion . 160

Part IV Conclusions 161

8 Conclusions 163
8.1 Generating Anaphora . 163

8.1.1 Bridging Relations and Also-parallelism 163
8.1.2 Familiarity and Uniqueness 164
8.1.3 Marking Principles for Triggering the Use of Anaphoric

Expressions . 165
8.2 Alternative Sets in NLG . 165
8.3 Automated Reasoning in Sentence Planning 166
8.4 Future Work . 167

vii

A A Brief Introduction to Tree Adjoining Grammar 169

B A Brief Introduction to Description Logics 173

Bibliography 175

viii

Die Generierung anaphorischer Ausdrücke

Diskursanaphern sind Ausdrücke, die direkt oder indirekt auf ein Individuum
referieren, das durch den vorhergehenden Text eingeführt wurde. Natürliche
Sprachen verfügen über eine Vielfalt von Ausdrücken für diesen Zweck. Ein
typischer Fall sind koreferentielle definite Nominalphrasen wie das Kaninchen
und es in Beispiel (1a). Beispiel (1b) zeigt eine indirekte Anapher : die Nomi-
nalphrase die Tür referiert nicht auf ein vorher bereits erwähntes Individuum,
aber es besteht eine Beziehung zwischen dem Referenten und einem bereits
erwähnten Individuum (in diesem Fall dem Haus), die sich aufgrund von
Weltwissen erschließen lässt. Eine dritte Kategorie, neben den koreferentiellen
und den indirekten Anaphern, stellen lexikalisch spezifizierte Anaphern dar
(Beispiel (1c)). Hier wird die Beziehung, in der der Referent des anapho-
rischen Ausdrucks und ein vorher eingeführtes Individuum stehen, nicht durch
Weltwissen bestimmt, sondern durch die Anapher selber. Neben Nominal-
phrasen können auch verschiedene andere Ausdrücke, wie z.B. bestimmte Dis-
kurspartikel, als Diskursanaphern betrachtet werden. Die Partikel auch in
Beispiel (1d) drückt beispielsweise aus, dass es eine Beziehung zwischen dem
im zweiten Satz und dem im ersten Satz beschriebenen Ereignis gibt.

(1) a. Antonia hat ein Kaninchen. Das Kaninchen ist weiß. Es hat große
Schlappohren und ein flauschiges Fell.

b. Antonia ging auf das Haus zu. Plötzlich öffnete sich die Tür.

c. Antonias Nachbar hat zwei Hunde. Der eine ist ein ganz gemeines
Biest, das die ganze Zeit bellt, aber der andere Hund ist ganz lieb.

d. Antonia isst gerne Kuchen. Sie isst auch gerne Eis.

Diskursanaphern sind ein wichtiges Instrument, um Kohäsion herzustellen.
Kohäsion ist eines der beiden Merkmale, die natürlich-sprachliche Texte von

1

2 Die Generierung anaphorischer Ausdrücke

einer bloßen Aneinanderreihung unabhängiger Sätze unterscheiden,1 und trägt
entscheidend zur Natürlichkeit und Flüssigkeit von Texten bei.

In der Generierung wurden bisher an Diskursanaphern nur koreferentielle
Nominalphrasen behandelt. Ausgehend von der Annahme, dass Generierungs-
systeme bessere Ausgaben erzeugen werden, wenn sie eine breitere Auswahl
von Diskursanaphern generieren können, untersuche ich die Generierung von
indirekten Anaphern und lexikalisch spezifizierten Anaphern. Beide Kate-
gorien sind meines Wissens noch nicht systematisch vom Blickwinkel der Gener-
ierung her betrachtet worden. Der Hauptbeitrag meiner Dissertation sind
Generierungsstrategien für indirekt anaphorische Nominalphrasen,2 ein Vertre-
ter der ersten Kategorie, und für additive Partikel,3 ein Vertreter der zweiten
Kategorie. Dazu werden zunächst die Bedingungen, die die Verwendung der
anaphorischen Ausdrücke bestimmen, formalisiert. Gegeben diese Bedingun-
gen wird spezifiziert, wie die Repräsentation des Diskurskontextes beschaffen
sein muss, und es werden die logischen Inferenzaufgaben formuliert, die das
Generierungssystem lösen muss. Ich vergleiche, inwieweit verschiedenartige au-
tomatische Inferenzsysteme diese Aufgaben lösen könnten. Abschließend wird
eine Implementierung der vorgeschlagenen Strategien in einer Text basierten
Dialoganwendung beschrieben.

Hintergrund

Die Generierung natürlicher Sprache

Die Aufgabe eines Systems zu Generierung natürlicher Sprache ist es, aus-
gehend von einer nicht-linguistischen (z.B. logischen) Repräsentation von In-
formation einen natürlich-sprachlichen Text zu erzeugen, der ein bestimmtes
kommunikatives Ziel erfüllt. Dazu muss das System eine Reihe von Entschei-
dungen treffen, da natürliche Sprachen normalerweise mehrere verschiedene
Möglichkeiten bereitstellen, um das vorgegebene kommunikative Ziel zu errei-
chen. Es muss beispielsweise entschieden werden, welche Information der Text
genau beinhalten soll, wie der Text und die einzelnen Sätze strukturiert sein
sollen, welche Wörter verwendet werden sollen und wie auf Individuen referiert
werden soll.

Die Generierung anaphorischer Ausdrücke

In der Literatur wird, was die Generierung anaphorischer Ausdrücke angeht,
hauptsächlich die Generierung koreferentieller Nominalphrasen behandelt.

1Das andere ist Kohärenz : die Inhalte der einzelnen Sätze sind durch semantische Rela-
tionen, wie z.B. kausale oder temporale Relationen, verknüpft.

2siehe Beispiel (1b)
3z.B. auch im Deutschen oder also, too im Englischen; siehe Beispiel (1d)

Die Generierung anaphorischer Ausdrücke 3

Dale und Reiter (1995) beispielsweise beschreiben einen Algorithmus, der
Beschreibungen von Individuen erzeugt. Der Algorithmus beschränkt sich auf
Individuen, die sowohl dem System als auch dem Hörer bekannt sind. Das
Hauptziel des Algorithmus ist es eine Beschreibung zu generieren, die nur auf
das vorgegebene Individuum passt und dieses somit eindeutig identifiziert und
die außerdem keine unnötige Information enthält. Die grundsätzliche Idee des
Algorithmus ist wie folgt. Er beginnt mit einer leeren Menge und fügt dann
inkrementell Eigenschaften dazu, die das vorgegebene Individuum beschreiben.
Sobald nur noch das vorgegebene Individuum durch die Eigenschaftsmenge
beschrieben wird, hält der Algorithmus. Verschiedene Arten von Heuristiken
steuern in welcher Reihenfolge die Eigenschaften zur Menge dazugefügt wer-
den.

Der Algorithmus von Dale und Reiter wurde später als Ausgangspunkt
für viele Erweiterungen und Verfeinerungen benutzt. Krahmer und Theune
(2002) und Passonneau (1996) schlagen zum Beispiel Erweiterungen vor, die
auch Pronomen erzeugen.

Zur Generierung anderer Arten von Diskursanaphern gibt es bisher relativ
wenige Untersuchungen. Guhe und Schilder (2002) und Hardt und Ram-
bow (2001) stellen Strategien für die Generierung von VP-Ellipsen vor, Erics-
son (2004) untersucht die Generierung von fragmentarischen Antworten in
Dialogen, und Klabunde und Jansche (1998), Humphreys (1995) sowie Cres-
well (2003) beschäftigen sich mit der Generierung nicht-kanonischer Satzstruk-
turen, wie z.B. Topikalisierung.

Die Generierung indirekter Anaphern

Als Beispiel für indirekte Anaphern untersuche ich die Generierung von in-
direkt anaphorischen definiten Nominalphrasen. Darunter verstehe ich defi-
nite Nominalphrasen, deren Referent im vorhergehenden Diskurs noch nicht
erwähnt wurde. Es besteht jedoch eine Beziehung zwischen dem Referenten
und einer Diskursentität, die im vorherigen Diskurs erwähnt wurde, und diese
Beziehung lässt sich aufgrund von allgemeinem Weltwissen erschließen. Die
Nominalphrase die Braut in Beispiel (2) ist indirekt anaphorisch. Der Refe-
rent, die Braut, ist vorher noch nicht erwähnt worden. Es gibt jedoch eine
Beziehung zwischen der Braut und der vorher erwähnten Hochzeit, und diese
Beziehung lässt sich aufgrund des allgemeinen Wissens, dass Hochzeiten im-
mer eine Braut involvieren, erschließen. Bei der Nominalphrase die Kellnerin
des Restaurants in Beispiel (3) handelt es sich ebenfalls um eine indirekte Ana-
pher. Im Unterschied zum vorherigen Beispiel wird hier explizit gemacht, dass
eine Beziehung zu einer vorher erwähnten Entität (nämlich dem Restaurant)
besteht. Das ist hier nötig, da andernfalls nicht klar wäre, ob die Kellnerin zu
der Bar oder zum Restaurant gehört.

4 Die Generierung anaphorischer Ausdrücke

(2) Letztes Wochenende war ich auf einer Hochzeit. Die Braut war eine
Freundin von mir.

(3) Wir haben einen Aperitif in einer Bar getrunken, bevor wir zum Restau-
rant gegangen sind. Die Kellnerin des Restaurants wurde wütend,
weil wir keinen Aperitif mehr trinken wollten.

Ich definiere die folgenden zwei Bedingungen, die indirekt oder direkt ana-
phorische definite Nominalphrasen erfüllen müssen:

Vertrautheit: Der Anker, d.h. das bereits bekannte Individuum, auf das di-
rekt oder indirekt referiert wird, muss im Diskurskontext identifiziert
werden können.

Einzigkeit: Der Anker muss aufgrund der Beschreibung eindeutig bestimm-
bar sein, und der Referent der Nominalphrase muss bezüglich des Ankers
einzigartig ist.

In Beispiel (4) ist die Vertrautheitsbedingung verletzt, da es nicht zum allge-
meinen Weltwissen gehört, dass Bücher etwas mit Kakerlaken zu tun haben,
so dass für die definite Nominalphrase die Kakerlake kein Anker identifiziert
werden kann. Die Verwendung des definiten Artikels ist somit unangebracht.
Die Beispiele (5) und (6) zeigen Fälle, in denen die Einzigkeitsbedingung ver-
letzt ist. Im ersten Fall kann der Anker nicht eindeutig bestimmt werden, da
sowohl das italienische als auch das chinesische Restaurant geeignete Kandi-
daten darstellen, und im zweiten Fall, ist es nicht plausible anszunehmen, dass
der Referent (die Buchseite) einzigartig bezüglich des Ankers (dem Buch) ist,
da es zum allgemeinen Weltwissen gehört, dass Bücher normalerweise mehr
als eine Seite haben.

(4) ??? Ich hob ein Buch hoch und die Kakerlake fiel raus.

(5) ??? In der Marktstraße gibt es ein italienisches und ein chinesisches
Restaurant. Der Koch ist exzellent.

(6) ??? Ich hob ein Buch auf und die Seite fiel raus.

Die Formalisierung der Vertrautheits- und Einzigkeitsbedingungen beruht
auf den Begriffen der Sprecheranker und Höreranker.

Sprecheranker: Die Sprecheranker sind alle Entitäten, die, gegeben das Wis-
sen des Sprechers, mit dem vorgesehenen Referenten der Nominalphrase
in einer Beziehung stehen.

Höreranker: Die Höreranker sind alle Entitäten, die, gegeben das Wissen
des Hörers und die durch die Nominalphrase gegebene Beschreibung, als
Anker für die Nominalphrase fungieren könnten.

Die Generierung anaphorischer Ausdrücke 5

Die Vertrautheitsbedingung verlangt, dass die Schnittmenge der Sprecher-
anker und Höreranker nicht leer sein darf. Das heißt, dass der Hörer min-
destens einen der vom Sprecher vorgesehenen Anker als Anker erkennen muss.
Die Einzigkeitsbedingung verlangt, dass die Menge der Höreranker eine Teil-
menge der Sprecheranker sein muss. Das bedeutet, dass keine Entität, die
nicht vom Sprecher als Anker vorgesehen ist, für den Hörer einen möglichen
Anker darstellen darf. Der zweite Teil der Einzigkeitsbedingung verlangt,
dass es plausible ist anzunehmen, dass der vorgesehene Referent einzigartig
ist bezüglich aller vertrauten Anker (d.h. der Schnittmenge der Sprecher- und
Höreranker).

Basierend auf diesen Bedingungen definiere ich eine Generierungsstrategie,
die die definite Nominalphrase inkrementell aufbaut, wobei darauf geachtet
wird, dass dabei nie die Vertrautheitsbedingung verletzt wird. Das Ergebnis
muss die Einzigkeitsbedingung erfüllen. Ich zeige, wie diese Generierungsstrate-
gie sowohl in Dale und Reiters Algorithmus als auch in Stones Spud-System
(Stone et al. 2003) integriert werden kann.

Die Generierung additiver Partikel

Um eine weitere Kategorie von Anaphern einzubeziehen untersuche ich die
Generierung von additiven Partikeln. Additive Partikel gehören zur den lexi-
kalisch spezifizierten Anaphern. Desweiteren sind sie Beispiele für Anaphern,
die nicht als Nominalphrasen realisiert werden.

Additive Partikel drücken eine Ähnlichkeit oder Parallelität zwischen dem
Ereignis, das im Satz, in dem die Partikel verwendet wird, beschrieben wird,
und einem bereits vorher im Diskurs erwähnten Ereignis aus. So drückt die
additive Partikel in Beispiel (1c) aus, dass das im zweiten Satz beschriebene
Ereignis parallel ist zu dem im ersten Satz beschriebenen Ereignis. In beiden
Fällen wird gesagt, dass Antonia eine Art von Süßigkeit mag.

Ich nenne die besondere Art von Parallelismus, die durch additive Par-
tikel ausgedrückt wird, Auch-Parallelismus. Ausgehend von der bestehenden
linguistischen Literatur zu additiven Partikeln, kann Auch-Parallelismus un-
formal folgendermaßen definiert werden.

Auch-Parallelismus
Die Beschreibung eines Ereignisses ist auch-parallel bezüglich des
Diskurskontextes, falls sie einer der beteiligten Entität eine Eigen-
schaft zuschreibt, die vorher bereits einer anderen alternativen Entität
zugeschrieben wurde.

Ein wichtiger Bestandteil dieser Definition ist der Begriff der alternativen
Entitäten. Das sind Gruppen von Entitäten, die aufgrund von ontologischen

6 Die Generierung anaphorischer Ausdrücke

und kontextuellen Kriterien gebildet werden. Um die Verwendung von ad-
ditiven Partikeln richtig vorhersagen zu können, muss ein Generierungssys-
tem also in der Lage sein, Auch-Parallelismus zu erkennen. Das setzt vo-
raus, dass es testen kann, ob zwei Entitäten Alternativen sind. Die Liter-
atur bleibt sehr vage was die Definition von alternative Entitäten betrifft. Es
ist daher eine genauere Charakterisierung notwendig. Ich zeige, dass es zwei
Gruppierungsmechanismen gibt, die die für additive Partikel relevanten Al-
ternativmengen erzeugen. Der erste Mechanismus gruppiert Entitäten gemäß
der Diskursstruktur und der zweite gemäß einer Ontologie. Beispiel (7) zeigt
Ereignisse, die aufgrund der Diskursstruktur auch-parallel sind: beide sind
Antworten auf die implizite Frage, warum Antonia Norbert geschlagen hat.
Die relevanten Ereignisse in Beispiel (8) hingegen sind auch-parallel, weil sie
sowohl Charlie als auch Norbert die Eigenschaft zuschreiben, gerne Kuchen
zu mögen. Charlie und Norbert sind beide menschliche Wesen und damit
ontologisch definierte Alternativen.

(7) Antonia hat Norbert gehauen, weil er ihr Fahrrad gestohlen hat.
Auch hat er sie einen Affen genannt.

(8) Antonia hat einen Kuchen gebacken. Norbert isst sehr unheimlich
gerne Kuchen und hat ihn ganz aufgegessen. Antonia hat mit ihm
geschimpft, weil Charlie auch gerne Kuchen isst.

Eine weitere Frage, die sich stellt, wenn man additive Partikel aus der
Generierungssicht betrachtet, ist, welche Mechanismen bestimmen, wann eine
additive Partikel verwendet wird. Es wird oft angenommen, dass additive
Partikel präsupponieren, dass es ein auch-paralleles Ereignis im Kontext gibt.
Präsuppositionen beschreiben jedoch nur die notwendigen Bedingungen, die
der Diskurskontext erfüllen muss, damit ein bestimmter linguistischer Aus-
druck verwendet werden darf. Sie machen keine Aussagen darüber, wann ein
bestimmter linguistischer Ausdruck verwendet werden muss. Da die Verwen-
dung von additiven Partikeln, wenn sie auftreten, meistens auch obligatorisch
ist, kann Auch-Parallelismus nicht nur als notwendige, sondern auch als hin-
reichende Bedingung für die Verwendung von additiven Partikeln angesehen
werden. Ich folge daher dem Vorschlag von Zeevat (2003) und nehme an, dass
es ein Markierungsprinzip gibt, das vorschreibt, dass ein Satz entsprechend
markiert werden muss, falls das beschriebene Ereignis auch-parallel bezüglich
des Kontextes ist.

Ich zeige, wie die vorgeschlagene Behandlung additiver Partikel in einem
Generierungssystem umgesetzt werden kann. Insbesondere zeige ich, wie die
relevanten Alternativmengen erzeugt werden können, und wie Markierungs-
prinzipien in die Spud-Architektur integriert werden können.

Die Generierung anaphorischer Ausdrücke 7

Automatische Beweissysteme für die Generierung

Die Verwendung von indirekt anaphorischen Nominalphrasen und additiven
Partikeln hängt von Eigenschaften des Diskurskontextes ab. Ein Generie-
rungssystem muss also Inferenzen auf dem Diskurskontext ausführen. Die
vorgeschlagenen Ansätze zur Generierung von Anaphern verwenden die fol-
genden drei Typen von Inferenzaufgaben.

1. Gegeben eine Formel ϕ und einen Kontext C, teste, ob ϕ aus C folgt.

2. Gegeben eine Formel ϕ und einen Kontext C, teste, ob ϕmit C konsistent
ist.

3. Gegeben eine Eigenschaft P und einen Kontext C, sammele alle Indi-
viduen a, so dass P (a) aus C folgt.

Der erste Typ von Inferenzaufgabe ist nötig, um bei der Generierung addi-
tiver Partikel zu entscheiden, ob es ein auch-paralleles Ereignis im Kontext
gibt. Die Formel ϕ sieht in diesem Fall in etwa so aus:

∃x[event(x) ∧ discourse old(x) ∧ P (x)],

wobei P für die Eigenschaft steht, die das Ereignis haben muss, um auch-
parallel zum im aktuellen Satz beschriebenen Ereignis zu sein.

Der zweite Typ wird verwendet, um den zweiten Teil der Einzigkeitsbe-
dingung zu testen. Die Formel ϕ drückt in diesem Fall aus, dass es nur ein
Individuum gibt, auf das die gegebene Beschreibung passt und das in einer
Beziehung zu einem bestimmte anderen Individuum (dem Anker) steht:

∃x[P (x) ∧ R(x, a) ∧ ∀y[(P (y) ∧ R(y, a)) → x = y]],

wobei P die durch die Beschreibung gegebene Eigenschaft ist und R eine der
Relationen, die bei indirekten Anaphern zwischen Referent und Anker vorkom-
men kann (z.B. eine Form von Meronymie).

Inferenzen von Typ 3 sind in den oben beschriebenen Ansätzen beson-
ders relevant. Sie sind erstens nötig, um die Sprecher- und Höreranker zu
berechnen, und zweitens, um die Alternativmengen zu berechnen. P ist in
diesen Fällen die Eigenschaft, die definiert, was in der jeweiligen Situation
einen Sprecher- oder Höreranker bzw. eine alternative Entität ausmacht.

Automatische Beweissysteme für Prädikatenlogik lösen Inferenzaufgaben
von Typ 1 oder Typ 2. Sie stellen jedoch keine Funktionalität zum Extrahieren
von Entitäten oder Eigenschaften bereit. Um die Sprecher- und Höreranker
sowie die Alternativemengen zu berechnen, müsste das System deswegen für
jede einzelne der im Diskurs erwähnten Entitäten testen, ob es die verlangte
Eigenschaft P hat.

8 Die Generierung anaphorischer Ausdrücke

Als alternative Lösung schlage ich vor ein Beweissystem für terminologis-
che Logiken zu verwenden. Diese Beweissysteme stellen eine Reihe unter-
schiedlicher Inferenzdienste bereit, unter anderem auch die Möglichkeit, für
eine gegebene Eigenschaft alle explizit erwähnten Entitäten, die diese Eigen-
schaft besitzen, aufzusammeln.

Terminologische Logiken sind weniger ausdrucksstark als Prädikatenlogik
und reichen im Allgemeinen nicht aus, um die Semantik natürlicher Sprache
darzustellen. Für die hier beschriebene Anwendung reicht die Expressivität
jedoch weitestgehend aus und die eingebauten Extraktionsmechanismen sind
ein großer Vorteil.

Eine Anwendung

Die hier beschriebenen Ansätze zur Generierung anaphorischer Ausdrücke sind
in einer experimentellen Anwendung, die insbesondere die Generierung von
Objektbeschreibungen verlangt, realisiert worden. Das verwendete Gener-
ierungsmodul ist eine Erweiterung des Spud-Systems (Stone et al. 2003). Die
Inferenzaufgaben werden mit einem Beweissystem für terminologische Logiken
gelöst (Racer, Haarslev and Möller 2001), das auch an anderen Stellen in
der Anwendung verwendet wird.

Schluss

Ich habe Generierungsstrategien für indirekt anaphorische Nominalphrasen
und für additive Partikel entwickelt. Insbesondere habe ich dazu die Bedingun-
gen, die die Verwendung dieser Ausdrücke bestimmen, formalisiert. Ich habe
die logischen Inferenzaufgaben, die dabei anfallen, spezifiziert und gezeigt, wie
verschiedene automatische Beweissysteme verwendet werden können, um diese
zu lösen.

Indirekt anaphorische Nominalphrasen und additive Partikel gehören zu
den indirekten beziehungsweise den lexikalisch spezifizierten Anaphern. Beide
Kategorien sind meines Wissens zum ersten Mal aus Generierungssicht unter-
sucht worden. Ich habe mich auf zwei spezielle Vertreter dieser Kategorien
konzentriert, gehe aber davon aus, dass sich die Ergebnisse übertragen lassen
auf andere indirekte oder lexikalisch spezifizierte Anaphern.

Ein weiterer Beitrag meiner Arbeit ist die Charakterisierung der verschiede-
nen Arten von Alternativmengen, die bei der Verwendung von additiven Par-
tikeln eine Rolle spielen. In der theoretischen Semantik sind in den letzten
Jahren eine Reihe von Phänomenen mit Hilfe von Alternativmengen analysiert
worden. Um diese Ergebnisse für die Generierung anwendbar zu machen, ist
eine genauere Charakterisierung dieser Alternativmengen nötig. Ich habe einen
ersten Schritt in diese Richtung getan.

Résumé détaillé en français

Les anaphores sont des expressions qui réfèrent directement ou indirectement
à un individu déjà mentionné dans le discours. Les anaphores sont de types
variés et se réalisent de diverses manières en langue naturelle. Les plus typiques
sont les expressions nominales définies co-référentielles, comme les syntagmes
the rabbit et it dans l’exemple (9a). Exemple (9b) illustre une anaphore in-
directe: le groupe nominal the door ne réfère pas à un individu qui a été
mentionné avant, mais il y a une relation entre le référent et un individu
déjà mentionné (la maison), qu’on peut déduire grâce aux connaissances du
monde (“les maisons ont des portes”). Les anaphores lexicalement spécifiées
constituent une troisième catégorie, à côté des anaphores co-référentielles et
des anaphores indirectes (Exemple (9c)). Ici, la relation entre le référent de
l’anaphore et un individu auparavant mentionné n’est pas déterminé par les
connaissances générales mais par l’anaphore elle-même. En plus des syntagmes
nominaux, différentes autres expressions peuvent aussi être considérées comme
anaphoriques, comme, par exemple, certains adverbes exprimant une relation
de discours. L’adverbe also dans l’exemple (9d) exprime, par exemple, qu’il
y a une relation entre les événements décrits par la deuxième et la première
phrase.

(9) a. Antonia has a pet rabbit. The rabbit is white. It has big, floppy ears
and a fluffy tail.
(Antonia a un lapin. Le lapin est blanc. Il a des grandes oreilles souples et une

queue cotonneuse.)

b. Antonia walked towards the house. All of sudden, the door opened.
(Antonia est allée vers la maison. Tout à coup, la porte s’est ouverte.)

c. Antonia’s neighbor has two dogs. One is a vicious beast that barks a
lot, but the other dog is very friendly.
(Le voisin d’Antonia a deux chiens. L’un des chiens est méchant, mais l’autre

chien est très sympathique.)

9

10 Résumé détaillé en français

d. Antonia likes cake. She also likes ice cream.
(Antonia aime le gâteau. Elle aime aussi la glace.)

Les anaphores constituent un moyen important pour créer de la cohésion.
La cohésion est une des deux caractéristiques qui différencient des textes en
langue naturelle d’un simple alignement de phrases indépendantes.4 Elle est
essentielle pour qu’un texte soit naturel et fluide.

La recherche en génération de langue naturelle s’est concentrée sur les
anaphores nominales et co-référentielles. Les autres types d’anaphores ont
largement été ignorés. Nous fondant sur l’hypothèse que les systèmes de
génération vont produire des résultats meilleurs s’ils sont capable de générer
un plus large choix d’expressions anaphoriques, nous étudions la génération
des anaphores indirectes et lexicalement spécifiées. À notre connaissance, ces
deux catégories n’ont jamais été étudiées systématiquement du point de vue
de la génération. La contribution principale de cette thèse est l’élaboration de
stratégies pour générer des syntagmes nominaux indirectement anaphoriques5

(qui sont des anaphores indirectes) et des adverbes additifs,6 (qui sont des
anaphores lexicalement spécifiées). Dans ce but, nous formalisons d’abord les
conditions qui déterminent l’utilisation des expressions anaphoriques. Étant
donné ces conditions, nous spécifions la représentation du contexte du discours
et nous formulons les tâches de raisonnement que le système de génération doit
effectuer. Nous comparons ensuite l’utilisation de différents systèmes de raison-
nement pour accomplir ces tâches. Enfin, nous décrivons une implémentation
des stratégies proposées dans une application de dialogue basée sur du discours
écrit.

État de l’art

La génération de langue naturelle

La tâche d’un système de génération de langue naturelle est de produire un
texte qui réalise un certain objectif communicatif prenant comme point de
départ une représentation non-linguistique (par exemple logique) de l’infor-
mation. Pour cela, le système doit prendre une série de décisions puisque
les langues naturelles mettent habituellement à notre disposition différentes
possibilités pour atteindre un même objectif communicatif. Il doit décider,
par exemple, quelle information le texte doit comprendre, comment le texte et
les différentes phrases doivent être structurés, quels mots doivent être utilisés
et comment les expressions référentielles doivent être réalisées.

4L’autre caractéristique est la cohérence: Les contenus des différentes phrases sont liés
par des relations discursives, par exemple des relations causales ou temporelles.

5voir l’exemple (9b)
6aussi en français ou also, too en anglais; voir l’exemple (9d)

Résumé détaillé en français 11

La génération d’expressions anaphoriques

En ce qui concerne la génération d’expressions anaphoriques, la littérature
traite principalement la génération de syntagmes nominaux co-référentiels.

Dale et Reiter (1995), par exemple, décrivent un algorithme pour générer
des descriptions d’individus. L’algorithme est limité aux individus que le
système aussi bien que l’auditeur connaissent. Le but principal de l’algorithme
est de produire une description qui, d’un coté, ne convient qu’au référent visé
et, de l’autre coté, ne contient pas d’information inutile. Le fonctionnement
fondamental de l’algorithme est le suivant. Il commence avec un ensemble vide
et ensuite ajoute de façon incrémentale des propriétés qui décrivent le référent
visé. L’algorithme s’arrête lorsque l’ensemble des propriétés contenues dans la
description permettent d’identifier sans ambiguité le référent visé. Différentes
sortes d’heuristiques dirigent l’ordre dans lequel les propriétés sont ajoutées.

L’algorithme de Dale et Reiter a été utilisé comme point de départ pour
beaucoup d’extensions et de raffinements. Krahmer et Theune (2002) et
Passonneau (1996) proposent, par exemple, des extensions pour générer des
pronoms.

Il y a relativement peu de résultats concernant d’autres types d’anaphores.
Guhe et Schilder (2002) et Hardt et Rambow (2001) présentent des stratégies
pour générer des ellipses verbales, Ericsson (2004) étudie la génération de
réponses fragmentaires dans les dialogues et Klabunde et Jansche (1998),
Humphreys (1995) et Creswell (2003) s’intéressent à la génération de struc-
tures syntaxiques non-canoniques, comme la topicalisation.

La génération des anaphores associatives

Dans cette thèse, nous étudions la génération d’anaphores associatives. Par
anaphores associatives, nous entendons des groupes nominaux définis dont le
référent n’a pas été mentionné dans le discours antérieur, bien qu’il existe une
relation entre ce référent et une entité déjà mentionnée. Cette relation peut
être déduite sur la base des connaissances du monde. Le syntagme nominal
the bride dans l’exemple (10) est une anaphore associative. Le référent, la
mariée, n’a pas été mentionné avant. Il y a toutefois une relation entre la
mariée et la mariage mentionné avant, et cette relation peut être déduite parce
qu’elle fait partie des connaissances générales (les mariages impliquent toujours
une mariée). En ce qui concerne le syntagme nominal the waitress of the
restaurant dans l’exemple (11), il s’agit également d’une anaphore indirecte.
À la différence de l’exemple précédent, il est explicite dans ce cas qu’il y a une
relation avec un individu mentionné avant (à savoir le restaurant), ce qui est
nécessaire, puisqu’autrement il ne serait pas possible de savoir si la serveuse
fait partie du bar ou du restaurant.

12 Résumé détaillé en français

(10) I went to a wedding last weekend. The bride was a friend of mine.
(J’étais à un mariage le week-end dernier. La mariée était une de mes amies.)

(11) We had an aperitif at a bar, before going to the restaurant. The wait-
ress at the restaurant got angry because we didn’t want to order an-
other aperitif.
(Avant d’aller au restaurant, nous avons pris un apéritif dans un bar. La serveuse

du restaurant s’est fâchée, parce que nous ne voulions plus d’apéritif.)

Nous définissons deux conditions qui doivent être satisfaites par les groupes
nominaux définis directement ou indirectement anaphoriques.

Familiarité: L’ancre, c’est à dire l’individu connu auquel le syntagme nominal
réfère directement ou indirectement, est identifiable par l’auditeur dans
le contexte du discours.

Ancrage unique: Étant donné la description l’ancre doit être identifiable
sans ambigüıté, et le référent du syntagme nominal doit être le seul à
pouvoir être relié à l’ancre.

Dans l’exemple (12) la condition de familiarité est violée, car nos connaissances
de monde ne nous disent pas que les livres impliquent la présence de cafards.
Par conséquent, le syntagme nominal the cockroach n’a pas d’antécédent et
l’utilisation du défini est impropre. Les exemples (13) et (14) montrent des cas
où la condition d’ancrage unique est violée. Dans le premier cas, l’antécédent
ne peut pas être déterminé sans ambigüıté, parce que le restaurant italien aussi
bien que le restaurant chinois sont de bons candidats. Dans le deuxième cas, il
n’est pas plausible de supposer que le référent (la page) est unique relativement
à l’ancre (le livre), parce que nous savons que les livres ont toujours plusieurs
pages.

(12) ??? I picked up a book and the cockroach fell out.
(J’ai pris un livre et le cafard est tombé.)

(13) ??? There are an Italian restaurant and a Chinese restaurant in Market
Street. The cook is excellent.
(Il y a un restaurant italien et un restaurant chinois dans la rue du Marché. Le

cuisinier est excellent.)

(14) ??? I picked up a book and the page fell out.
(J’ai pris un livre et la page est tombée.)

La formalisation des conditions de familiarité et d’ancrage unique est basée
sur les notions d’ancres du locuteur et d’ancres de l’auditeur.

Ancres du locuteur: Les ancres du locuteur sont tous les individus qui,
étant donné les connaissances du locuteur, sont reliés au référent visé.

Résumé détaillé en français 13

Ancres de l’auditeur: Les ancres de l’auditeur sont tous les individus, qui,
étant donné les connaissances de l’auditeur, pourraient fonctionner comme
ancre.

La condition de familiarité exige que l’intersection entre l’ensemble des
ancres du locuteur et l’ensemble des ancres de l’auditeur ne soit pas vide.
Cela veut dire que l’auditeur doit reconnâıtre au moins une des ancres prévues
par le locuteur comme ancre. La condition d’ancrage unique exige que les
ancres de l’auditeur soient un sous-ensemble des ancres du locuteur. Cela
signifie qu’aucun individu qui n’est pas prévu comme ancre par le locuteur
ne peut être considéré comme ancre par l’auditeur. La deuxième partie de
la condition d’ancrage unique exige qu’il soit plausible de supposer que le
référent cible est unique relativement à toutes les ancres familières (c’est à
dire les individus qui font partie de l’intersection des ensembles d’ancres du
locuteur et de l’auditeur).

En nous basant sur ces conditions nous définissons une stratégie de gé-
nération qui construit des groupes nominaux de façon incrementale, tout en
veillant à ce que la condition de familiarité ne soit jamais violée. Le résultat
doit satisfaire la condition d’ancrage unique. Nous montrons enfin comment
cette stratégie peut être intégrée dans l’algorithme de Dale et Reiter et dans
le système Spud développé par Stone (2003).

La génération des adverbes additifs

Pour prendre en compte une autre catégorie d’anaphores nous étudions la
génération des adverbes additifs. Les adverbes additifs font partie des anaphores
lexicalement spécifiées. De plus ils sont des exemples d’anaphores qui ne sont
pas réalisées par des syntagmes nominaux.

Les adverbes additifs expriment une ressemblance ou un parallélisme entre
l’évènement décrit par la phrase qui contient l’adverbe et un autre évènement
mentionné dans le discours précédent. Ainsi, l’adverbe additif dans l’exemple (9c)
exprime le fait que l’événement décrit dans la deuxième phrase est parallèle
à l’événement décrit dans la première phrase. Les deux phrases expriment
qu’Antonia aime une sorte de sucrerie.

Nous appellons ce genre particulier de parallélisme, qui est exprimé par des
adverbes additifs, l’aussi-parallelisme. Sur la base de la littérature linguistique
existante on peut définir l’aussi-parallelisme de la manière suivante.

Aussi-parallélisme
La description d’un événement est aussi-parallèle relativement au con-
texte de discours, si elle attribue une propriété à un individu partici-
pant, qui a auparavant été attribuée à un individu alternatif.

14 Résumé détaillé en français

La notion d’individu alternatif est un élément important de cette définition.
Les individus alternatifs sont des groupes d’individus, qui sont formés selon des
critères contextuels et ontologiques. Pour prédire correctement l’usage des ad-
verbes additifs, un système de génération doit donc être capable de distinguer
l’aussi-parallélisme. Cela suppose qu’il puisse vérifier si deux individus sont
des individus alternatifs. La littérature reste très vague en ce qui concerne
la définition d’individus alternatifs. C’est pourquoi une caractérisation plus
précise est nécessaire. Nous montrons qu’il y a deux mécanismes de groupe-
ment, qui produisent les ensembles d’individus alternatifs pertinents pour des
adverbes additifs. Le premier mécanisme groupe les individus selon la struc-
ture du discours et le deuxième selon une ontologie. L’exemple (15) montre des
événements, qui sont aussi-parallèles à cause de la structure du discours : tous
les deux sont des réponses à la question implicite “pourquoi Antonia a frappé
Nobert”. En revanche, les deux évènement en question dans l’exemple (16)
sont aussi-parallèles, parce qu’ils attribuent à Charlie ainsi qu’à Norbert la
propriété d’aimer les gâteaux. Charlie et Norbert sont tous les deux des êtres
humains et, par conséquent, des individus alternatifs définis par l’ontologie.

(15) Antonia hit Norbert because he had stolen her bicycle. He had also
called her a cow.
(Antonia a frappé Norbert, parce qu’il avait volé sa bicyclette. Il l’a aussi

traitée de vache.)

(16) Antonia baked a cake. Norbert really likes cake and ate it all. An-
tonia scolded him because Charlie also likes cake.
(Antonia a préparé un gâteau. Norbert adore les gâteaux et a tout mangé. Anto-

nia l’a grondé, parce que Charlie adore les gâteaux aussi.)

Une autre question qui se pose, si on considère la génération des ad-
verbes additifs, est de savoir quels mécanismes déterminent le moment où
un adverbe additif est utilisé. On suppose souvent que des adverbes ad-
ditifs présupposent qu’il y a un événement aussi-parallèle dans le contexte.
Cependant les présuppositions ne décrivent que les conditions nécessaires que
le contexte de discours doit satisfaire afin qu’une certaine expression linguis-
tique puisse être utilisée. Elles ne spécifient pas quand une certaine expression
linguistique doit être utilisée. Comme l’utilisation des adverbes additifs est
normalement obligatoire, l’aussi-parallélisme peut être considéré non seule-
ment comme condition nécessaire mais aussi comme condition suffisante pour
l’utilisation des adverbes additifs. Nous suivons donc la proposition de Zee-
vat et supposons qu’il existe un principe de marquage qui oblige à indiquer
explicitement dans la phrase que l’événement décrit est aussi-parallèle rela-
tivement au contexte.

Nous montrons comment le traitement proposé peut être appliqué dans un
système de génération. Plus précisement, nous montrons comment les ensem-

Résumé détaillé en français 15

bles d’individus alternatifs peuvent être calculés et comment des principes de
marquage peuvent être intégrés dans l’architecture de Spud.

Systèmes de raisonnement en génération

L’utilisation des syntagmes nominaux indirectement anaphoriques et des ad-
verbes additifs dépend de propriétés du contexte de discours. Par conséquent
un système de génération doit raisonner sur le contexte de discours. Les ap-
proches proposées dans cette thèse pour la génération des anaphores utilisent
trois types de tâches de raisonnement.

1. Étant donné une formule ϕ et un contexte C, vérifier, si ϕ est une
conséquence logique de C.

2. Étant donné une formule ϕ et un contexte C, vérifier, si ϕ est consistent
avec C.

3. Étant donné une propriété P et un contexte C, recueillir tous les indi-
vidus a de sorte que P (a) est une conséquence logique de C.

Le premier type de tâche est nécessaire pour décider lors de la génération
d’adverbes additifs s’il y a un événement aussi-parallèle dans le contexte. Dans
ce cas, la formule ϕ a la forme suivante:

∃x[event(x) ∧ discourse old(x) ∧ P (x)],

où P est la propriété que l’événement doit avoir pour être aussi-parallèle à
l’événement décrit dans la phrase courante.

Le deuxième type de raisonnement est utilisé pour vérifier la deuxième
partie de la condition d’ancrage unique. La formule ϕ exprime dans ce cas
qu’il n’y a qu’un individu auquel la description donnée convient et qui est
dans une relation avec un certain autre individu (l’ancre).

∃x[P (x) ∧ R(x, a) ∧ ∀y[(P (y) ∧ R(y, a)) → x = y]],

où P est la propriété qui est donnée par la description et R est une des relation
qu’on trouve entre les référents et les ancres des anaphores indirectes (par
exemple une relation méronymique).

Des inférences du type 3 sont particulièrement pertinentes dans les ap-
proches décrites précédemment. Premièrement elles sont nécessaires pour cal-
culer les ancres du locuteur et de l’auditeur et deuxièmement pour calculer les
ensembles d’individus alternatifs. P est dans ces cas la propriété qui définit ce
que constitue dans la situation spécifique une ancre du locuteur ou de l’auditeur
ou un individu alternatif.

16 Résumé détaillé en français

Des systèmes de raisonnement automatiques pour la logique du premier
ordre résolvent des tâches du type 1 et 2, mais ils ne fournissent pas de
mécanismes pour recueillir des individus ou des propriétés. Ainsi le système
aurait besoin d’un méchanisme supplémentaire pour noter les individus qui ont
été mentionnés. Pour recuillir ceux qui appartiennent aux ancres du locuteur
ou de l’auditeur ou à un ensemble d’individus alternatifs chaqun des individus
mentionnés devrait être contrôlé.

Comme solution alternative nous proposons d’utiliser un système de raison-
nement pour des logiques de description. Ces systèmes mettent à disposition
divers services de raisonnement. Parmi eux des méchanismes pour recueillir
tous les individus qui ont une propriété particulière.

Les logiques de description sont moins expressives que la logique de pre-
mier ordre et, en général, ne suffisent pas pour représenter la sémantique de
la langue naturelle. Cependant, pour l’application envisagée ici, le manque
d’expressivité n’est pas un obstacle et les mécanismes d’extraction incorporés
constituent un grand avantage.

Une application

Les approches décrites visant à la génération d’expressions anaphoriques ont
été réalisées dans une application expérimentale qui implique particulièrement
la génération de descriptions d’objets. Le module de génération utilisé est un
extension du système Spud (Stone et al. 2003). Les tâches de raisonnement
sont effectuées grâce à Racer (Haarslev and Möller 2001), un système de
raisonnement pour des logiques de description qui est aussi utilisé par les
autres modules de l’application.

Conclusions

Nous avons développé des stratégies pour générer des syntagmes nominaux in-
directement anaphoriques et des adverbes additifs. En particulier, nous avons
formalisé des conditions, qui déterminent l’usage de ces expressions. Nous
avons spécifié des tâches de raisonnement à effectuer et nous avons montré com-
ment différents systèmes de raisonnement peuvent être utiliser pour résoudre
ces tâches.

Les syntagmes nominaux indirectement anaphoriques et des adverbes ad-
ditifs appartiennent aux anaphores indirectes et aux anaphores lexicalement
spécifiées. Ces deux catégories sont, à notre connaissance, étudiées du point
de vue de la génération pour la première fois. Nous nous sommes concentrée
sur deux exemples spécifiques de ces catégories mais nous sommes convain-
cue que les résultats peuvent être appliqués aux autres exemples d’anaphores
indirectes ou lexicalement spécifiées.

Résumé détaillé en français 17

Une autre contribution de notre travail est la caractérisation des différentes
sortes d’alternatives qui jouent un rôle lors de l’usage des adverbes additifs.
En sémantique théorique, divers phénomènes ont été analysés à l’aide des
ensembles d’individus alternatifs au cours des dernières années. Pour rendre
ces résultats applicables à la génération une caractérisation plus précise de ces
ensembles est nécessaire. Nous avons proposé une telle caractérisation.

18 Résumé détaillé en français

Chapter 1

Introduction

Human authored natural language texts are more than a sequence of indepen-
dent sentences. First, such texts are coherent, that is, relations, for example
causal or temporal relations, hold between the semantic content of the sen-
tences. Second, such texts are cohesive (Halliday and Hasan 1976). They
contain expressions which establish semantic ties to earlier expressions in the
text, for instance, by repeating lexical items or co-referring with earlier ex-
pressions. Cohesion makes texts sound fluent and helps the hearer/reader to
reach the intended interpretation. It is thus important for systems that auto-
matically generate natural language texts to use cohesive devices correctly.

One important source for cohesion is the use of discourse anaphora. Dis-
course anaphora establish a link to an entity (which can be an individual,
a set of individuals, an event, a proposition etc.) that has been evoked by
the previous discourse. The prototypical case of discourse anaphora are co-
referential definite noun phrases, such as the rabbit and it in the second and
third sentence of Example (17).

(17) Antonia has a pet rabbit. The rabbit is white. It has big, floppy ears
and a fluffy tail.

The first sentence introduces a new entity which it describes as being Antonia’s
pet rabbit. The definite description the rabbit and the pronoun it establish a
co-referential link to this entity, that is, they refer to this previously introduced
entity.

However, co-referential definite noun phrases do not represent the whole
range of anaphoric expressions. First, the link that is established is not always
one of co-reference. Second, other linguistic constructions than noun phrases

19

20 Chapter 1. Introduction

can be anaphoric. Let us first look at the different types of anaphoric links
that have been introduced.

In the case of indirect or bridging anaphora the referent of the anaphor
is associated with an entity in the discourse context via a relation provided
by general domain knowledge. In (18), for example, the referent of the noun
phrase, the door is not identical to a discourse old entity, but it is related to
one, namely, the house mentioned in the first sentence. General knowledge
that houses have doors supports this link.

(18) Antonia went toward the house. All of sudden, the door opened.

Webber et al. (2003) additionally distinguish the class of lexically-specified
anaphora. Anaphora belonging to this class convey an idiosyncratic function
which maps a contextually given entity to the referent of the anaphoric ex-
pression. “Other noun phrases”, such as the expression the other dog in (19),
are an example.

(19) Antonia’s neighbor has two dogs. One is a vicious beast that barks a lot,
but the other dog is very friendly.

In the case of the other dog, the lexically-specified function takes a discourse old
entity, which is known to be a dog, as input and returns an entity which is also a
dog but different from the first one (this is the contribution of other) and which
furthermore is the only other contextually salient dog (this is the contribution
of the definite article). Other examples of lexically specified anaphora are noun
phrases of the form such dogs or comparatives without a “than-phrase” like
bigger dogs.

Here is a schematic overview over the different types of anaphoric links. t
stands for the referent of the anaphoric expression and a is an entity made avail-
able by the context. bridge is a bridging relation, that is a relation provided
by general domain knowledge as discussed above, and fα is the idiosyncratic
function associated with a lexically-specified anaphor.

co-reference t = a

indirect bridge(a, t)

lexically-specified t = fα(a)

The task of generating anaphoric expressions of the types discussed so far
is part of the more general task of generating referring expressions. The goal
of this task can be paraphrased as follows: given a target entity, build a noun
phrase such that the hearer can identify the target entity as the noun phrase’s
referent. The noun phrase has to inform the hearer whether it refers to an

21

entity that he already knows or whether he should introduce a new entity into
his model of the discourse. It also has to convey enough information to let the
hearer connect the referent of the noun phrase to the discourse context in the
right way; that is, he has to be able to exactly identify which old entity the
noun phrase is referring to (in the case of co-referential anaphora) or which
old entity the referent is linked to (in the case of bridging or lexically-specified
anaphora).

Given the different ways in which the referents of anaphoric noun phrases
can be linked to discourse old entities, we can already draw some conclusions
concerning the kinds of information that a generation system needs to have
access to in order to decide which kind of anaphoric expression to use. First
of all, it needs to know which entities have already been mentioned and what
properties have been used to describe them. In addition, the choice between
definite descriptions and pronouns requires a representation of salience. For
bridging descriptions, general knowledge about the relations between objects
of different kinds are necessary. Furthermore, the system has to be able to
reason with this knowledge to find out whether the target entity is related to a
contextually given entity via a relation that would license the use of a bridging
anaphor. Lexically-specified anaphora might require a further structuring of
the context. Bierner’s (2001) work on alternative markers like other or such,
for example, suggests that notions of alternative sets play an important role.

Up to now, we have only discussed anaphora that are realized as noun
phrases, but in addition to noun phrases a wide variety of linguistic construc-
tions has been identified as anaphoric. Webber (1979, 1988), for instance, pro-
poses analyses of verb phrase ellipsis and tense that treat them as anaphoric,
and according to van der Sandt’s (1992) theory of presupposition all presup-
position triggers are essentially anaphora. An interesting case of non-nominal
lexically-specified anaphora are discourse adverbials, such as also, instead, and
then, which express that the eventuality described by the clause containing the
adverbial is in a certain relation to a second eventuality evoked earlier in the
discourse. In (20), for example, also expresses that the eventuality of Antonia
liking ice cream is parallel to the one of Antonia liking cake.

(20) Antonia likes cake. She also likes ice cream.

Webber et al. (2003) analyze discourse adverbials as follows. The function fα

associated with discourse adverbials takes a contextually given eventuality as
argument and maps it to a lambda expression. When this lambda expression
is applied to the eventuality described by the clause containing the adverbial,
it yields a binary relation between the two eventualities. This binary relation
depends on the discourse adverbial: for instance, also expresses some sort of
parallelism while then expresses temporal succession. Schematically this looks
as follows, where a is the contextually given eventuality, t the eventuality

22 Chapter 1. Introduction

described by the clause containing the adverbial, fα the function associated
with the discourse adverbial and Rα the specific relation expressed by the
adverbial.

Rα(a, t) = λx[Rα(a, x)](t) = fα(a)(t)

From a generation perspective, the following two questions have to be an-
swered. First, is the eventuality described by the sentence that is currently
being generated related to a previously mentioned eventuality in such a way
that there is a discourse adverbial signaling this relation? Second, is it nec-
essary to express this relation? In (20), for example, the discourse adverbial
also is obligatory. Leaving it out would result in an infelicitous discourse.

From the perspective of a generation system having to decide whether to
trigger the use of a particular anaphoric expression, there is one important
difference between nominal anaphora and discourse adverbials. The decision
to use a nominal anaphor presents itself as a choice between different ways
of referring to a given entity. The obligation to generate some kind of noun
phrase comes from syntactic requirements. The selection between these differ-
ent possibilities is usually based on heuristics that prefer the shortest and/or
pragmatically most restricted version. The decision to use a discourse adver-
bial, on the other hand, is a choice between using that discourse adverbial or
not using it. As discourse adverbials are syntactically optional elements, there
are no syntactic requirements which force the generation system to choose one
of a number of possible alternatives to extend the current structure. Another
mechanism is needed to explain how the use of discourse adverbials is trig-
gered. This mechanism has to state more explicitly under which conditions a
given discourse adverbial has to be used.

Research in natural language generation has only looked at a limited range
of discourse anaphora. It has mainly concentrated on co-referential definite
descriptions and pronouns. Starting from the assumption that generation sys-
tems will be able to produce more cohesive output texts if they can use a wider
variety of anaphoric expressions correctly, this thesis investigates the genera-
tion of definite bridging descriptions (cf. Example 18) and the generation of
sentences containing additive particles (cf. Example 20). Bridging descriptions
belong to the class of indirect anaphora, while additive particles are a kind of
lexically-specified anaphor.

In order to decide when to use these anaphoric expressions, reasoning on the
discourse context is necessary. The questions that this thesis is most concerned
with are:

• What are the properties of the discourse context that determine the use
of a particular anaphoric expression?

• What are the reasoning tasks involved in the checking whether the dis-
course context has these properties?

23

• What information has to be represented in the discourse context?

My aim is to develop strategies for generating anaphoric expressions that can
be integrated into natural language generation systems. This imposes some
restrictions on the information that is available and the inferences that can be
carried out. Earlier treatments in theoretical linguistics are usually too com-
plex or not formal enough to be directly implemented in a system. My first
task is therefore to formalize the conditions under which particular anaphoric
expressions are used, and define suitable approximations if computational con-
straints make it necessary.

To make things concrete I will also show how my approach could be in-
tegrated into a generation system based on the Spud architecture developed
by Stone (1998). The core ideas of my approach are not dependent on Spud,
however. It would be possible to integrate them into other architectures. I
will also describe a small proof of concept implementation in an application
requiring the generation of short descriptive texts.

Contribution of the Thesis

This thesis proposes generation strategies for bridging descriptions and for the
additive particle also. Bridging descriptions belong to the class of indirect
anaphora and additive particles are lexically-specified anaphors. Both classes
of anaphoric expressions have, to the best of my knowledge, never been treated
from a natural language generation point of view before.

In my approach to the generation of anaphoric expressions, the plan-
ning and realization are carried out simultaneously and are interleaved with
contextual reasoning. Following the line of research started by Blackburn
et al. (2001), I am using state-of-the-art theorem provers to carry out the con-
textual inferences that arise in the generation of referring expressions. While
Blackburn et al. (2001) use first order logic theorem provers and model gen-
erators, I use description logic provers. Arguably, description logic is not
expressive enough to state everything that can be expressed in natural lan-
guages. Hence, I will have to make some simplifications. However, I will show
that description logic inference systems provide functionalities (in particular
the possibility to retrieve properties of entities or all entities with a certain
property), which are very useful for natural language processing purposes and
which are not provided by the currently available first order logic reasoning
systems.

In all approaches to the generation of referring expressions, the notion of
distractors (Dale and Reiter 1995) plays a central role. The commonly used
definition only captures co-referential definite descriptions. I propose a gener-
alized definition which explains what are distractors for bridging descriptions.

My analysis of additive particles is based on the notion of alternative sets.
Recently, linguists have found alternative sets to play a role in a variety of

24 Chapter 1. Introduction

phenomena (e.g., Rooth 1985; Steedman 2000; Kruijff-Korbayová and Web-
ber 2001). From a more computational point of view, Bierner (2001) has used
alternative sets in an approach to resolving alternative markers such as other
and besides, and Prevost (1996) has used them for generating contrastive
intonation patterns. I follow up on their research and show how alternative
sets can be used in the generation of additive particles. I furthermore claim
that two kinds of alternative sets play a role (one depending on the ontology
and the other one on discourse structure) and I make suggestions on how the
relevant alternative sets can be obtained in a generation system.

Definite descriptions and additive particles are so-called presupposition
triggers. While the notion of presupposition has been important in theoretical
semantics and natural language understanding, it has played virtually no role
in generation. This is due to the limited predictive power of presuppositions:
Presuppositions indicate when an expression should not be used, they do not
make any predictions about when an expression should be used. I, therefore,
argue that for generation purposes, the notion of presupposition has to be
complemented with a notion that makes such predictions.

Structure of the Thesis

This thesis is structured in three parts (“Background,” “Generating Anaphoric
Expressions,” and “Implementation”) followed by conclusions. The first part
introduces the area of natural language generation and previous work on the
generation of anaphoric expressions. More specifically, Chapter 2 gives a brief
overview of natural language generation, its subtasks and the standard archi-
tectures of generation systems. It also describes the Spud system (Stone 1998)
which will be used throughout the thesis to illustrate how the proposed treat-
ments of anaphoric expressions can be integrated into a generation system.
Chapter 3 discusses approaches to the generation of anaphoric expressions. In
particular, Dale and Reiter’s (1995) algorithms for generating definite descrip-
tions, and extensions to this algorithm for generating pronouns are described.
It also presents work on generating other kinds of anaphora, namely verb
phrase ellipsis, cleft constructions, and short answers to questions.

The two chapters of Part II contain the main results of this thesis. Chap-
ter 4 introduces my approach to the generation of bridging descriptions. After
determining the constraints governing the use of bridging descriptions, I de-
scribe a generation strategy and how to implement it either in terms of Dale
and Reiter’s (1995) Incremental Algorithm or within the framework of Stone’s
(1998) Spud system. Chapter 5 develops a strategy for generating additive
particles and shows how to integrate it into Spud.

Part III shows how the approach to the generation of anaphoric expres-
sions presented in this thesis can be implemented. Chapter 6 describes how
state-of-the art reasoning systems can be exploited to carry out the contextual

25

reasoning necessary for the generation of anaphoric expressions. The use of
different kinds of reasoning tools is compared. Chapter 7, finally, describes a
small proof of concept implementation of a generation system in a text-based
application. The main generation task in this application is the production of
small descriptive texts.

Part I

Background

Chapter 2

Natural Language Generation

Natural Language Generation (NLG) is about producing natural language
output starting from information represented in a non-linguistic way.

More specifically, an NLG system is given a communicative goal, a knowl-
edge source, and information about the hearer and the discourse situation and
history. It then has to produce a text satisfying the communicative goal. To
this end, the system has to retrieve the information that should be contained
in the text from the knowledge source. The format of this knowledge source
can vary considerably between different applications. It may be a database, or
it may be a description given in a logical language. In constructing the text,
the system should also take into account what it knows about the hearer, the
current discourse situation and the discourse history. So, the goal is not only
to communicate some content, but also to do so in a way that is the most
appropriate and effective with respect to the given application, purpose, and
discourse context.

McDonald (1990) suggests that while natural language understanding can
best be described as a process of hypothesis management, natural language
generation can be seen as a process of choice. Starting from an ambiguous in-
put, natural language understanding systems have to keep track of the possible
interpretations and make hypotheses about which is the intended interpreta-
tion. The input to NLG systems is normally unambiguous. Casting it into a
natural language text requires the system to select from the different ways of
expressing this input provided by the target language.

I start by describing in more detail the kinds of choices that an NLG system
has to make (Section 2.1). Section 2.2 then presents different architectures
that have been proposed for generation systems. Finally, Section 2.3 describes
one particular generation system, namely Stone’s (1998) Spud system. The
approaches to the generation of anaphoric expressions proposed in later parts

29

30 Chapter 2. Natural Language Generation

of this thesis will be implemented in a generation system based on the Spud

architecture.

2.1 NLG Subtasks

Dale and Reiter (1997, 2000) classify the main choices an NLG system has to
make into the following tasks.

Content determination selects the information that should be communi-
cated by the output text.

Document structuring arranges the information into a plan specifying the
structure of the output text.

Lexicalization maps the content to words or linguistic constructions.

Aggregation groups information into sentence-sized units.

Generation of referring expressions produces expressions referring to en-
tities.

Linguistic realization casts the constraints on content and structure that
have been specified by the previous steps into a natural language text.

Content determination and document structuring are often referred to as
document planning, and lexicalization, aggregation, and generation of referring
expressions are grouped under the label microplanning or sentence planning.
In an implemented system the tasks are not necessarily performed in the order
given here. Although many systems carry out document planning before sen-
tence planning and sentence planning before surface realization, the ordering
of the subtasks within these modules differs. Furthermore, not all systems
provide independent modules for each of the subtasks (Section 2.2 discusses
this point in more detail).

The descriptions of document planning, microplanning, and linguistic real-
ization that follow are not intended to be comprehensive. Their main aim is to
give the reader a general picture of the problems natural language generation
systems have to deal with. (See (Reiter and Dale 2000) for a more detailed
presentation of the field.) I will present one particular approach to document
planning in more detail, though, as I will use it in Chapter 5.

2.1.1 Document Planning

The task of document planning is to decide, first, what information should be
communicated (content determination) and, second, how it should be grouped
and ordered in the text (document structuring). Both of these subtasks are,

2.1. NLG Subtasks 31

of course, highly dependent on the domain of the application and the genre
of text that is to be produced. Linguistic knowledge, on the other hand, is
believed to play a lesser role.

The input to the document planning stage is a representation of the dis-
course context and a communicative goal. The discourse context records the
knowledge of the system, the knowledge of the user, and information about
the previous discourse. The communicative goal specifies the purpose of the
text that is to be generated. What kinds of communicative goals a system
will have to deal with depends on the application. It could be something like
“describe object X” or “compare objects X and Y” or even “argue why the
hearer should do X”.

The output of the document planning stage is a document plan; that is, an
object that specifies the content and structure of the output text. Although
different formats can be found, document plans often have the form of trees.
The leaves of the tree contain pieces of information that have to be communi-
cated, usually called messages. The tree structure groups these messages and
determines how they are related. Internal nodes of document plans are often
labeled with discourse relations, such as consequence or elaboration.

Content determination and document structuring can be carried out se-
quentially or simultaneously. In the first case, a set of rules selects the pieces
of information that should be communicated. A second step then orders this
information and produces a document plan (cf. McKeown’s (1985) Text

system and Hovy’s (1988) Text Structurer). If the two subtasks are carried
out simultaneously the target structure of the document guides the process of
finding the relevant information (cf. Lavoie et al.’s (1997) ModelExplainer

or Moore’s (1994) Pea system).
Most approaches to document planning use one of the following two strate-

gies. The first uses schemata which essentially define templates for the output
text that only have to be filled with the specific information corresponding to
the instantiation of the current communicative goal. The second is based on
rhetorical structure theory (RST, Mann and Thompson 1988), a framework
for describing the structure of texts on the basis of the discourse relations
that hold between different pieces of this text. In RST, discourse relations
are defined by the constraints that they impose on their arguments and the
effects that the speaker intends to achieve in using a particular discourse rela-
tion. When used for document planning, these definitions are reformulated as
planning operators and an automated planner is used to construct a document
plan that achieves the communicative goal.

The approach based on RST planning offers more flexibility than the one
based on schemata. Although, aggregation can slightly reorder information
and schemata can have optional parts, so that not all texts will contain the
same amount of information, texts produced with schemata all have essentially
the same structure. Nevertheless, schemata are popular because they are easy

32 Chapter 2. Natural Language Generation

schema: ‘describe weather’
DP1 = call schema(‘describe month overall’)
DP2 = call schema(‘describe significant events’)

return: DP1 if DP2 = null
sequence(DP1, DP2) else

schema: ‘describe month overall’
M1 = call content determination(‘average temperature’)
DP1 = call schema(‘describe overall rainfall’)

return: sequence(M1, DP1)

schema: ‘describe overall rainfall’
M1 = call content determination(‘rainfall of month’)
M2 = call content determination(‘total rain that year’)

return: elaboration(M1, M2) if same direction
contrast(M1, M2) else

schema: ‘describe significant events’
DP1 = call schema(‘list rain events’)
DP2 = call schema(‘list temperature events’)

return: null if DP1 = DP2 = null
DP1 (DP2) if DP2 = null (DP1 = null)
sequence(DP1, DP2) else

Figure 2.1: Example schemata for a weather reporting system.

to formulate and implement, and they are sufficiently expressive for many
applications.

An Interleaved Approach to Document Planning Based on Schemata

As mentioned above, I will now give a more detailed description of one par-
ticular approach to document planning which will be used later in this thesis.
This approach interleaves content determination and document structuring. It
uses schemata (McKeown 1985) to determine the structure of the output text
and to guide the process of retrieving information from the knowledge bases.

In many applications, the texts that have to be generated follow regular
patterns. Schemata are essentially “recipes” for texts capturing these recurring
patterns. They specify how a document is constructed from chunks of infor-
mation and possibly the discourse relations that hold between these chunks.

Schemata are naturally quite rigid. To allow for some degree of flexibility,
they can contain optional elements or elements which are only included if some
test is fulfilled. Schemata are also often specified in a modular fashion, so that
one schema can include instantiations of other schemata.

2.1. NLG Subtasks 33

sequence

sequence

message:
temperature slightly
higher than average

contrast

message:
rainfall almost
average

message:
overall rainfall
low

sequence

message:
heavy rain on
the 27th

message:
heavy rain on
the 28th

Figure 2.2: Document plan of the text in Example (21).

Figure 2.1 gives an example showing a set of simple schemata as they
might be used in the WeatherReporter system described in (Reiter and
Dale 2000). The purpose of the system is to generate retrospective weather
reports for a given month. The following text is an example.

(21) The month was slightly warmer than average with almost exactly the
average rainfall, but rainfall for the year is still very depleted. Heavy
rain fell on the 27th and 28th.

The schema ‘describe weather’ calls two schemata which describe the over-
all temperature and rainfall of the month (schema ‘describe month overall’)
and any periods of extreme temperature and rainfall (schema ‘describe sig-
nificant events’), respectively. The document plans produced by these two
schemata are combined by a sequence relation. If there have been no periods
of extreme weather, only the information about the month’s overall weather is
generated. The schema ‘describe month overall’ first accesses the database to
retrieve information about the average temperature of the given month. The
resulting message is combined with the result of the call of schema ‘describe
overall rainfall’ through a sequence relation. The schema ‘describe overall
rainfall’ in turn produces either an elaboration or a contrast subtree depend-
ing on how the current month’s rainfall compares to the overall rainfall in the
year so far. The text in Example (21) would hence correspond to the document
plan shown in Figure 2.2.

The schemata are used to plan a text top-down. Communicative goals are
associated with schemata; i.e., given a communicative goal the corresponding
schema is called. This schema then determines which other schemata need to

34 Chapter 2. Natural Language Generation

be called or which information has to be retrieved from the knowledge base.
So, content determination is done on the fly whenever a particular piece of
information is requested by the schema.

Although, schemata do not make it explicit, they can be seen as determin-
ing the issues under discussion in a particular stretch of discourse. I will make
use of this property of schemata in Chapter 5.

2.1.2 Microplanning

The tasks grouped under the microplanning heading (lexicalization, aggrega-
tion, generation of referring expressions) are taken to be dependent on linguis-
tic knowledge as well as the discourse context and the domain and purpose of
the application. Lexicalization, for example, obviously depends on the lexicon.
On the other hand, the choice of words is also influenced by non-linguistic fac-
tors such as the knowledge of the user, the purpose of the text, and the previous
discourse. Here are some examples:

Knowledge of the user. Different users may know different words or inter-
pret them differently. This has to be taken into account if the user is to
understand the text in the intended way.

Purpose of the text. For example, if the purpose is to emphasize a certain
aspect, some words may be better than others for highlighting that as-
pect.

Previous discourse. In some contexts it may facilitate understanding if an
expression that has been used before is picked up again. In other context,
it may be better style to avoid words that have already been used shortly
before.

The goal of aggregation is to make the output text more concise by com-
municating several pieces of information in one sentence. The linguistic means
used to achieve this goal are forms of coordination and subordination as well as
elliptical constructions (Dalianis 1999; Shaw 2002). Aggregation depends on
linguistic knowledge because the constructions a particular language provides
determine what ways of condensing information are possible. Furthermore,
it depends on the target audience and the target type of text, because the
degree of complexity a sentence may have is influenced by these factors. Fi-
nally, ontological and domain knowledge play a role as certain ways of grouping
information may require the objects involved to have similar properties.

The generation of referring expressions is the third task that Dale and
Reiter classify under microplanning. Its goal is to produce phrases that let the
hearer identify particular domain entities. This involves

1. choosing what kind of noun phrase to use (proper name, pronoun, definite
description, indefinite description, . . .),

2.2. Architectures 35

2. selecting the descriptive content that has to be included (Is the rabbit
sufficient, or do I also have to mention that the rabbit is white and is
sitting in a bathtub?), and

3. deciding how to express this content (Should I say the white rabbit in the
bathtub or better the white rabbit which is sitting in the bathtub?).

The decisions involved in the generation of referring expressions depend on the
constructions that the chosen output language provides (e.g., whether it uses
definite and indefinite determiners) and on such factors as whether the hearer
knows the entity or whether it has been mentioned before. Some aspects of
this task will be described in more detail in Chapter 3.

2.1.3 Linguistic Realization

Linguistic realization, also known as surface realization, is usually taken to be
independent of domain knowledge and discourse context. The task is to use
linguistic resources to build a syntactically and morphologically well-formed
sentence. As a standalone task, linguistic realization takes as input a specifi-
cation of the content that should be conveyed by the sentence to be generated.
To a certain extent, the structure of that sentence may also be specified. In
practice, lots of different formats with different levels of abstraction (from log-
ical formulas to almost complete specifications of the syntactic structure) have
been used to specify the input.

Grammar theories that have been popular in the generation community
are Systemic Functional Grammar (Halliday 1985) and Functional Unification
Grammar (Kay 1979). For both of them widely used tools and resources have
been developed.

More recently, some attention has also been paid to surface realization
algorithms starting from flat representations of logical formulas (Brew 1992;
Kay 1996; Carroll et al. 1999; Koller and Striegnitz 2002).

2.2 Architectures

There is no complete agreement about what the architecture of an NLG sys-
tem should look like. The approaches that have been proposed mainly differ in
how much interaction is allowed between the different generation tasks. The
two extremes are pipeline architectures (very limited interaction) and inte-
grated architectures (no separation of tasks). Most practical NLG systems
today use a three-stage pipeline model (Reiter 1994) where document plan-
ning, microplanning, and surface realization are performed one after the other.
Information is only passed forward from one stage to the next; there is no feed-
back. Integrated architectures, on the other hand, do not separate the three

36 Chapter 2. Natural Language Generation

tasks into independent modules at all. Appelt’s (1985b, 1985a) Kamp system,
for example, treats all stages of NLG within a uniform architecture based on
hierarchical planning. At the most abstract level Kamp plans illocutionary
speech acts, such as requesting or providing a certain piece of information.
At the next level, these illocutionary acts are mapped onto speech acts which
correspond to single sentences and are associated with partially specified syn-
tactic structures. The next levels further expand these syntactic structures
until they are complete and the system’s goal is fulfilled.

Between these two extremes, feedback and revision based architectures have
been suggested. Rubinoff (2000), for instance, suggests an architecture which
maintains modularity but allows the document planner to revise its decisions
based on feedback from the microplanner. For this purpose, the linguistic
structures chosen by the microplanner are annotated with information about
their semantic and pragmatic effects.

Modular systems with simpler interfaces and less interaction between mod-
ules are easier to built and maintain than integrated ones or systems where the
different modules interact in complex ways. The strict pipeline architecture is,
therefore, often argued to be preferable from a practical point of view. On the
other hand, a number of linguistic arguments have been put forward against
strict pipelines. Danlos (1987) and Appelt (1985a), for example, demonstrate
that there are cases where constraints from different modules have to interact
in order to produce the most natural output.

At the level of the subtasks of the three high-level modules, similar decisions
between modular pipeline organizations and integrated approaches have to
be made. As Reiter (1994) points out, for example, Hovy (1988) carries
out content determination and document structuring in two consecutive steps,
while Moore and Paris (1993) treat them in parallel.

A similar situation is true for the microplanning subtasks. They are often
addressed as independent tasks, but Wanner and Hovy (1996) argue that they
interact in intricate ways. Here are some examples to illustrate this. In (22),
the presupposition of remove specifies that what is to be removed (here: the
rabbit) has to be in the position from which it is to be removed (here: the
hat). The presupposition thus helps in determining the referents of the two
NPs. Hence, the construction of the referring expression depends on the choice
of the lexical item remove (i.e., lexicalization and the generation of referring
expressions interact).

(22) a. Remove the rabbit from the hat.

b. ??? Remove the rabbit in the hat from the hat with the rabbit.

In Example (23) Paul is supposed to be co-referential with he, as indicated
by the subscript. The example illustrates how the generation of referring ex-
pressions and aggregation interact: while in (23a) and (b) either the reference

2.3. The Spud System 37

to Paul in the subordinate clause or in the main clause can be pronominalized,
this is not the case when the order of the clauses is changed, as (23c) and (d)
show.

(23) a. When Pauli entered the room, hei saw ...

b. When hei entered the room, Pauli saw ...

c. Pauli saw ..., when hei entered the room.

d. # Hei saw ..., when Pauli entered the room.

Finally, Example (24) shows how the structure of the sentence can depend
on the available choices of referring expression. The second sentence of (24a)
expresses that there is a cook which is excellent and that this cook belongs
to the restaurant mentioned in the first sentence. This second fact is left
implicit. The main eventuality described by the sentence corresponds to the
first fact. The second sentence of (24b) similarly conveys two facts: namely,
that there is a monkey which is annoying and that this monkey belongs to the
neighbor mentioned in the first sentence. In this case, however, the second fact
corresponds to the main event described by the sentence while the first fact is
expressed by the relative clause. Trying to use the same sentence structure as
in (24a) does not work for this case (cf. 24c and 24d), as it is not possible to
use a bridging description to refer to the monkey.

(24) a. There is a new Italian restaurant in Market Street. The cook is excel-
lent.

b. I have a new neighbor. He has a monkey which is very annoying.

c. I have a new neighbor. ??? The monkey is very annoying.

d. I have a new neighbor. ? His monkey is very annoying.

The next section describes the Spud system by Stone (1998). Stone ad-
vocates a uniform architecture for microplanning arguing that interactions
between subtasks can be modeled more appropriately and easier in this way.

2.3 The Spud System

Stone’s (1998) Spud system1 is a generation system that integrates sentence
planning and surface realization in a uniform architecture. Starting from a
communicative goal, it simultaneously assembles the semantic content and
constructs the syntactic structure of an utterance achieving the communicative

1 Stone and Doran (1997) introduce the main ideas behind the architecture and Stone
et al. (2003) give a detailed description.

38 Chapter 2. Natural Language Generation

goal. This is done with respect to the discourse context specifying information
about the previous discourse, knowledge that the system assumes the hearer
has, and private knowledge of the system.

The communicative goal specifies which eventuality should be described. It
should be possible to describe this eventuality in one sentence or, at the most,
a very small text consisting of only a few sentences, as Spud is not designed
to do document planning. It assumes that an appropriate communicative goal
has been selected by a document planning step beforehand.

We now describe the discourse context, communicative goals, and gram-
mars that Spud works with. Then we explain Spud’s search procedure.

2.3.1 Discourse Context

Stone uses modal logic for knowledge representation. Modalities are used to
represent hearer and speaker knowledge. This allows to elegantly state fine
grained interactions between hearer and speaker knowledge (the speaker can,
for example, know that the hearer knows something which he himself doesn’t
know). In this thesis, I will use a simpler approach, which in many cases is
sufficient. I will simply split the discourse context in several parts.

A discourse context C consists of three parts 〈Cshared, Cprivate, Cstatus〉:

Cshared is a set of logical formulas specifying the domain knowledge which the
system (speaker) and the hearer share.

Cprivate is a set of logical formulas specifying the domain knowledge of the
system (speaker) which the hearer does not share.

Cstatus contains information about the discourse status of entities. In partic-
ular, it says which entities have been mentioned before, and it could be
extended to record information about the salience of entities.

Figure 2.3 shows an example. It tells us that the system and the hearer
both know that there is a rabbit which is in a hat and that there is a rose.
They also both know that rabbits are animals. The speaker knows in addition
that the rose is in a vase. The representation assumes a rich ontology in the
sense of (Hobbs 1985), which, for example, contains entities for events and
states, such as in1 . instruct(system,hearer) indicates that the situation is
one in which the system is giving instructions to the hearer. Finally, there is
information about the discourse status of entities. Stone and Doran (1997)
suggest various other pieces of information that should be recorded in this part
of the knowledge base as well, such as the relative salience of entities or the
open propositions that need to be addressed.

2.3. The Spud System 39

Cshared: rabbit(rab), hat(h), in(in1,rab,h), rose(ro),
∀x.rabbit(x)→ animal(x),
instruct(system,hearer)

Cprivate: vase(va), in(in2,ro,va)

Cstatus: status(rab,discourse old),
status(h, discourse old),
status(ro, discourse old),
status(va,brand new),
...

Figure 2.3: A Spud knowledge base.

2.3.2 Communicative Goal

The communicative goals that Spud works with are of the form 〈C, x,Γ〉,
where

1. C is the category of the linguistic structure to be built (S, NP , . . .),

2. x is the entity that needs to be described, and

3. Γ is a set of informational goals, i.e., facts that should be communicated.
Γ may be empty.

Within the context discussed in the previous section (Figure 2.3), a commu-
nicative goal could, for instance, be 〈S, in2, ∅〉, which means build a sentence
describing entity in2. Uttering the rose is in a vase would fulfill this goal. An-
other goal could be 〈S, e, {remove(e, hearer, rab, h), do next(e)}〉. This needs
further explanation. Let us assume we are in a dialog situation where the sys-
tem is instructing the hearer to do some task. The action planning component
has found that the next thing that needs to be done is to remove the rabbit
from the hat and the dialog manager decides that the hearer needs to be told so.
So, it sends Spud a communicative goal demanding that a sentence describing
eventuality e and conveying the facts do next(e) and remove(e,hearer,rab,h)
be built. This goal can be achieved by uttering the sentence remove the rabbit
from the hat.

2.3.3 Grammar

In the Spud system, linguistic knowledge is encoded in a Lexicalized Tree
Adjoining Grammar2 (LTAG) that associates semantic and pragmatic infor-

2See Appendix A for a brief introduction to Tree Adjoining Grammar.

40 Chapter 2. Natural Language Generation

� 〈S,E〉

� 〈NP, A〉

ε

� 〈VP, E〉

� 〈V, E〉

remove

↓ � 〈NP, X〉 � 〈PP 〉

� 〈P〉

from

↓ � 〈NP, Y 〉

assertion: {remove(E, hearer,X, Y), do next(E)}

presupposition: {in(S,X, Y)}

pragmatics: {instruct(system, A)}

� 〈NP, X〉

	 〈DET〉

the

 〈NP, X〉

rabbit

assertion:

presupposition: {rabbit(X)}

pragmatics: {status(X, discourse old)}

Figure 2.4: Example lexical entries.

mation with each elementary tree. Figure 2.4 shows two lexical entries.

The semantic contribution is split up in two components: assertion and
presupposition. Assertions contribute to the content that is communicated.
Presuppositions provide content that lets the hearer ground the utterance
in the shared knowledge. The elementary tree specifying an imperative ver-
sion of remove at the top of Figure 2.4, for instance, can be used to com-
municate that the hearer removes some object X from some other object Y
(remove(E, hearer,X, Y)) and that this is the next action that should be done
(do next(E)). It presupposes that X is in Y . Furthermore, each elementary
tree may specify pragmatic constraints. Such pragmatic constraints may re-
quire the entities mentioned in the utterance to have a certain discourse status
or may also restrict the use of the elementary tree to communicative situations
with particular properties. So, the rabbit may only be used if the entity it is
referring to is discourse old, and the imperative requires a situation where the
system is giving instructions to the hearer.

The capital letters in the semantic/pragmatic representation stand for open
variables over domain entities. They are bound when the trees are used in a
particular context. The syntax/semantics interface is encoded by associating
nodes in the tree with these variables. For example, the left substitution node
in the tree for remove is associated with the variable X . This means that the
tree that is substituted here has to be one describing the entity that X will be
bound to, which, as the semantic content specifies, is the entity that is being
removed. I will call the variable(s) a node is associated with the semantic
index of that node.

2.3. The Spud System 41

2.3.4 Search Problem

Now that we have seen what the knowledge base, the communicative goal and
the grammar look like, we can turn to the problem of finding an utterance
that achieves the communicative goal in the given context. This is a search
problem: the grammar lets us build many different derivation trees and we
have to find the one that achieves the communicative goal. Figure 2.5 shows
the specification of the search problem.

A search state consists of a TAG derivation tree associated with semantic
and pragmatic information, as described in the previous section, and a set of
informational goals. This is a subset of the set of informational goals provided
by the communicative goal. It contains those facts which are not yet con-
veyed by the linguistic structure that has been built. The search starts with
a minimal syntactic tree that consist of only one substitution node. Given
the communicative goal 〈C, t,Γ〉 (i.e., describe entity t with an utterance of
syntactic category C while conveying information Γ), this node is labeled with
the syntactic category C and the semantic index t. None of the informational
goals in Γ have been conveyed, yet.

The search has reached a goal state, if it has built a syntactic structure of
category C that does not have any open substitution nodes. Furthermore, the
presupposed information has to uniquely identify all entities it mentions. This
means that there should not be another way of instantiating the presupposition
which follows from the shared knowledge. (The notion of uniquely identifying
description will be made more precise in the following chapter.) Finally, all
facts specified by Γ must be conveyed by the structure that has been built.
That is, Γ must follow from the assertion together with the shared knowledge.

Search steps expand the tree by either substituting or adjoining an ele-
mentary tree. All semantic constraints of this elementary tree have to be
supported by the current context. That is, assertions have to be entailed by
Cprivate (the system’s private knowledge) and presupposition have to be en-
tailed by Cshared (the shared knowledge). The pragmatic constraints have to
be true with respect to the shared knowledge or the discourse state. It is an
important characteristic of Spud that it interleaves the construction of the lin-
guistic structure with calls to an automated theorem prover in order to check
the semantic and pragmatic requirements in the way just described.

Spud uses a greedy search strategy which tries to maximize the progress
made toward building a complete utterance that fulfills all communicative
goals and appropriately anchors its presuppositions. Here are the factors that
are evaluated to choose between alternative search steps.

1. Steps which convey more of the informational goals are preferred.

2. Steps which get closer to unambiguously identifying all discourse old
entities are preferred.

42 Chapter 2. Natural Language Generation

input: a communicative goal 〈C, e,Γ〉
a context Cprivate, Cshared, and Cstatus

an LTAG grammar which associates semantic constraints (asser-
tion

and presupposition) and pragmatic constraints with the elemen-
tary trees

state s(i): DTree(i), an LTAG derivation tree paired with semantic (asser-
tion and presupposition) and pragmatic constraints

Γ(i), a set of facts

initial state: DTree(0) = ↓ • 〈C, t〉

(state s(0)) Γ(0) = Γ

goal state: State s(i) is a goal state, if

1) DTree(i) is syntactically complete,

2) all entities mentioned in the presupposition associated with
DTree(i) are uniquely identified by the presupposed infor-
mation, and

3) Γ(i) is empty

operator: 1) Choose an elementary Tree T that can be adjoined or substi-
tuted into DTree(i). T ’s semantic and pragmatic constraints
must be supported by the context.

2) Adjoin or substitute T into DTree(i).

3) Add the semantic and pragmatic constraints associated
with t to those associated with DTree(i).

4) Subtract all facts expressed by T from Γ(i).

Figure 2.5: Spud’s search problem.

2.3. The Spud System 43

Figure 2.6: Rabbits in hats and bathtubs. From (Stone and Webber 1998).

3. Steps which introduce salient entities are preferred to those introducing
less salient entities.

4. Steps which eliminate open substitution nodes are preferred.

5. Steps that use trees with a more specific meaning are preferred. For this,
elementary trees are ranked off-line, such that, e.g., a definite determiner
will be preferred over an indefinite determiner.

These factors are ranked and a specific factor is only considered if all factors
ranked higher have not determined the choice. So, given the above order of
the factors, if there is one possibility of extending the derivation that conveys
more informational goals than all other possibilities, that one is chosen. Only
if this does not uniquely determine the search step, the next factor will be used
to choose between the left over candidates.

The next section illustrates Spud’s search strategy by way of an example.

2.3.5 Textual Economy

As we have seen, Spud simultaneously considers the semantics, pragmatics,
and syntax when constructing an utterance. Stone and Webber (1998) argue
that this integration of syntax, semantics, and pragmatics is necessary in order
to achieve textual economy. With this term they refer to the fact that natural
language utterances are often compact because inferences that are triggered
by material in one part of the utterance can be exploited in another part of the
utterance. Here is an example that illustrates their notion of textual economy.

Consider the situation given in Figure 2.6. There are several rabbits and
several hats in the picture, so that the noun phrase the rabbit on its own would
not uniquely identify one particular rabbit. Similarly, the hat would not be
sufficient to pick out exactly one hat. The noun phrases the rabbit in the hat
and the hat with the rabbit, however, uniquely identify one of the rabbits and
one of the hats, because there is only one rabbit/hat pair which fits these
descriptions. Now, consider the sentence in (25).

44 Chapter 2. Natural Language Generation

� 〈S, e〉

� 〈NP, hearer〉

ε

 〈VP, e〉

� 〈V, e〉

remove

↓ � 〈NP, rab〉 � 〈PP 〉

� 〈P〉

from

↓ � 〈NP, h〉

assertion: {remove(e, hearer, rab, h), do next(e)}

presupposition: {in(s, rab, h)}

pragmatics: {instruct(system, hearer)}

Figure 2.7: Communicative goal 〈S, e, {remove(e, hearer, rab, h), do next(e)}〉
— result of the first step.

(25) Remove the rabbit from the hat.

In this sentence, the noun phrases the rabbit and the hat unambiguously refer
to the rabbit in the hat and the hat with the rabbit, respectively. It’s not
necessary — and in fact not even natural — to say remove the rabbit in the
hat from the hat with the rabbit. This effect is due to the presuppositions of the
expression remove X from Y which requires that X must be in Y. Otherwise,
the removing would be impossible.

Let’s now see step by step how Spud handles this example. Assume that
the scene depicted in Figure 2.6 can be seen by both speaker and hearer. It is,
thus, taken to be shared knowledge. Furthermore, assume that the rabbit in
the hat is called rab and the corresponding hat h and that the communicative
goal is

〈S, e, {remove(e, hearer, rab, h), do next(e)}〉.

The derivation tree associated with the initial state, therefore, is ↓ • 〈S, e〉 and
the set of informational goals is {remove(e, hearer, rab, h), do next(e)}.

In the first step, Spud chooses the imperative form of remove (Figure 2.7).
The assertion fulfills all informational goals. However, there are two open
substitution nodes which have to be filled.

In the next step, Spud could add either the rabbit or the hat. To choose
between these two options, Spud applies the constraints described in Sec-
tion 2.3.4. The first one does not have any influence since all informational
goals have already been fulfilled. The second one is tested. Both entities rab
and h are discourse old and therefore need uniquely identifying descriptions.
Adding the rabbit (Figures 2.8) would constrain rab to be a rabbit which is in
something. There are two rabbits of this kind (the one in the bathtub and the
one in the hat). It would furthermore constrain h to be something containing
a rabbit, which also applies to two objects. Adding the hat instead would
end in an analogous situation: two entities fitting the description given for h,

2.3. The Spud System 45

� 〈S, e〉

� 〈NP, hearer〉

ε

� 〈VP, e〉

� 〈V, e〉

remove

� 〈NP, rab〉

� 〈DET〉

the

� 〈NP, rab〉

rabbit

� 〈PP 〉

� 〈P〉

from

↓ � 〈NP, h〉

assertion: {remove(e, hearer, rab, h), do next(e)}

presupposition: {in(s, rab, h), rabbit(rab)}

pragmatics: {instruct(system, hearer),
status(rab, discourse old)}

Figure 2.8: Communicative goal 〈S, e, {remove(e, hearer, rab, h), do next(e)}〉
— result of the second step.

� 〈S, e〉

� 〈NP, hearer〉

ε

� 〈VP, e〉

 〈V, e〉

remove

! 〈NP, rab〉

" 〈DET〉

the

〈NP, rab〉

rabbit

$ 〈PP 〉

% 〈P〉

from

& 〈NP, h〉

' 〈DET〉

the

(〈NP, h〉

hat

assertion: {remove(e, hearer, rab, h), do next(e)}

presupposition: {in(s, rab, h), rabbit(rab), hat(h)}

pragmatics: {instruct(system, hearer),
status(rab, discourse old),
status(h, discourse old)}

Figure 2.9: Communicative goal 〈S, e, {remove(e, hearer, rab, h), do next(e)}〉
— result of the third step.

and two entities fitting what has been conveyed about rab. Hence, the second
constraint does not bring about a decision either. In fact, none of the other
constraints prefers one option over the other. In this case, Spud arbitrarily
selects one. Let’s assume the rabbit is chosen.

Now, Spud could add the hat. Alternatively, it could adjoin the preposition
in to the NP the rabbit. However, this does not add any new information and
Spud prefers to fill the last open substitution node first. Figure 2.9 shows the
result. It has no open substitution nodes, it fulfills all communicative goals,
and it is pragmatically appropriate. Hence, it is a goal state.

Chapter 3

Generating Anaphora

This chapter surveys work on the generation of anaphoric expressions.
Section 3.1 is concerned with the generation of co-referential definite noun

phrases. It describes Dale and Reiter’s (1995) algorithm, which is the basis
for many later approaches and extensions. This algorithm is briefly compared
to the way referring expressions are generated in Spud (Stone 1998), which
was described in the previous chapter. While the original version of Dale and
Reiter’s algorithm only deals with definite descriptions, i.e., noun phrases of
the form the N , Section 3.1 closes with the presentation of three extensions that
can also generate pronouns (Krahmer and Theune 2002, Passonneau 1996).

There has been relatively little work on generating anaphoric expressions
other than definite noun phrases. Section 3.2 describes the work that I am
aware of, namely, Guhe and Schilder’s (2002) and Hardt and Rambow’s
(2001) approaches to the generation of verb phrase ellipsis, Ericsson’s (2004)
work on generating non-sentential answers to wh-questions in dialogue, and ap-
proaches to the generation of non-canonical syntactic structures by Klabunde
and Jansche (1998), Humphreys (1995), and Creswell (2003).

3.1 Generating Definite Noun Phrases

Research in this area has concentrated on the task of generating expressions
for referring to an entity which has been mentioned before or is known to the
hearer because it is visually given. The problem can be described as follows.
Given a representation of the knowledge that speaker and hearer share in
the current situation and given a target entity t (which the hearer knows),
construct a noun phrase that lets the hearer uniquely identify t among all
entities that he knows about.

47

48 Chapter 3. Generating Anaphora

{rabbit(r1), rabbit(r2), rabbit(r3), hat(h1), hat(h2), bathtub(b1),

white(r1), black(r2),white(r3), in(r1, h1), in(r2, h2), in(r3, b1)}.

Figure 3.1: A simple representation of the discourse context.

The simplest representation of the shared knowledge is a set of positive
literals such as shown in Figure 3.1. Such a representation can be taken to be
the result of the previous discourse or a representation of the visually available
information. Given the context of Figure 3.1, the definite noun phrase the
black rabbit could be used to describe entity r2. This would uniquely identify
r2 as there are no other entities which are both rabbits and black. If the goal
was to describe entity r1, on the other hand, the white rabbit would not be a
uniquely identifying description, because r3 also fits this description. We say
that r3 is a distractor of r1. However, the description the white rabbit in the
hat would uniquely identify r1. Note that this description is in fact uniquely
identifying two entities: r1 (the only white rabbit in a hat) and h1 (the only
hat containing a white rabbit). Since r1 can only be identified by relating it
to h1, we also have to provide a uniquely identifying description for h1.

If we also want to be able to generate pronouns, a simple representation
of the context as given above, is not sufficient. Some notion of salience is
necessary. We will come back to this point in Section 3.1.3.

In addition to the requirement that definite noun phrases should uniquely
identify their referent, they are usually required to be efficient, which means
that they should not contain any unnecessary information. For instance, the
black rabbit in the hat would not be an efficient description for entity r2 because
the information the r2 is in a hat is not necessary for distinguishing it.

There is still no agreement as to how exactly efficient is to be interpreted.
The most straightforward interpretation would be to require that the descrip-
tion should be minimal, i.e., there should not be another uniquely identifying
description which contains less information. However, it has also been argued
that some properties are easier to assess for humans than others and that
these properties should be included in a description even if, as a result, the
description is not minimal.

3.1.1 Dale and Reiter’s Algorithm for the Generation of Definite De-
scriptions

Dale and Reiter (1995) present four algorithms for the generation of co-refe-
rential definite descriptions which differ in the way they interpret efficiency.
Dale and Reiter compare the computational properties of these algorithms

3.1. Generating Definite Noun Phrases 49

and examine how the output compares to what humans do. Three of these
algorithms are based on the same core procedure, which I will describe now.
The fourth algorithm, which Dale and Reiter call Local Brevity, follows a
different strategy and I will not describe it here, as most later work has built
on one of the other three.

The Core of Dale and Reiter’s Algorithms

The input for the algorithms are

• a context C: a set of positive literals (such as the example in Figure 3.1),

• a target entity t: the entity which has to be identified.

The target t must be mentioned in C and C must mention at least one more
entity besides t. The output of the algorithms is a subset of C which uniquely
identifies t. If there is no such subset, the algorithm fails. Note that this
algorithm does not build natural language descriptions but only assembles the
semantic content that such a description should convey.

The algorithm starts with an empty set and then incrementally adds literals
until the description uniquely identifies all entities mentioned in it. An entity
a is uniquely identified by a set of literals L in a context C if there are no
distractors for a in C given L. Distractors are defined as follows.

Definition 3.1 (Distractors). Given a set of literals L (L ⊆ C) and an entity
a, the set of distractors of a in C are all those entities b 6= a for which there
exists a substitution σ such that

1. σ(L) ⊆ C

2. σ(a) = b.

The search problem the algorithm has to solve is given in Figure 3.2. States
are determined by the description that has been built so far and the list of
those entities that the description mentions but does not identify uniquely. In
the initial state, the description is empty and the target list contains only t,
the initial target provided as input. Goal states are all those states where the
target list is empty, which means that all entities mentioned in the description
are uniquely identified. A state s(i + 1) can be derived from state s(i) by
applying the search operator to it. This operator first adds a new literal to
the description. This literal is chosen from the given context and has to fulfill
the following two constraints. It has to extend the description, which means
that it has to mention an entity also mentioned in Description(i). Furthermore,
it has to rule out at least one distractor of at least one entity mentioned in
Description(i + 1). This means that Description(i + 1) mentions at least one

50 Chapter 3. Generating Anaphora

input: a set of literals C (the context)
a target entity t

state s(i): Description(i), a set of literals

Targets(i), a list of target objects

initial state: Description(0) = ∅

(state s(0)) Targets(0) = {t}

goal state: State s(i) is a goal state if

Targets(i) = ∅

operator: 1) Select a literal P from C, where P extends the description
and rules out at least one distractor.

2) Description(i+ 1) = Description(i) ∪ {P}.

3) Targets(i+1) is derived from Targets(i) by updating it with
P : first, those entities mentioned in P that are not men-
tioned in Description(i) are added and then, all those enti-
ties which given Description(i+1) do not have any distrac-
tors (Definition 3.1) are deleted.

Figure 3.2: Searching a uniquely identifying description.

3.1. Generating Definite Noun Phrases 51

entity for which the set of distractors given Description(i) is smaller than the
set of distractors given Description(i + 1). Finally, the list of target entities
is updated. This involves first adding all those entities to the list that are
mentioned in the newly added literal, but were not mentioned in the description
before, and then deleting all those entities that are uniquely identified by the
new description.1

Different Search Strategies

There are different ways in which the search can be performed. Dale and Reiter
discuss three, which they call Full Brevity, Greedy Heuristics, and Incremental
Algorithm.2 The Full Brevity strategy is a breadth first search which stops
as soon as a goal state is found. It is guaranteed to always find the shortest
descriptions possible. However, as Dale and Reiter point out, it has worst-case
runtimes which are exponential in the size of the final description. They there-
fore propose to use heuristics which allow to approximate the optimal solution
with a greedy search mechanism. The search strategy that Dale and Reiter
call Greedy Heuristic always chooses the search step that rules out the most
distractors. The Incremental Algorithm uses the following heuristics. It as-
sumes that properties are ordered according to a domain dependent preference
order. Going back to the example context in Figure 3.1, we could, for exam-
ple, assume that sortal information (rabbit, hat, bathtub) ranks higher than
color information, which ranks higher than location information. This order
can then be used to order all literals concerning a particular entity. For entity
r1, for example, we would get the ordering 〈rabbit(r1), white(r1), in(r1,h1)〉
and for entity h1 the ordering 〈hat(h1), in(r1,h1)〉. This then determines in
which order literals are added to the description. Of all the literals that are
applicable in a given state, the one that is ranked highest in the order has to
be chosen. Hence, the Incremental Algorithm just has to go stepwise through
the ordered lists of literals for the entities that are part of the description and
either include or discard each literal. This heuristics is supported by results
from psycholinguistics which indicate that humans prefer to include certain
types of properties before others (Levelt 1989; Pechmann 1989).

An Example Run of Dale and Reiter’s Incremental Algorithm

Let us assume that the input context is as given in Figure 3.1 and that
the target entity is r1. Figure 3.3 shows state by state how the greedy search

1In the 1995 paper, Dale and Reiter actually do not deal with relations between objects
(binary predicates). So, what I am presenting here is a simple extension along the lines
of (Dale and Haddock 1991).

2Note that the names are somewhat misleading: all three algorithms build the description
incrementally and both the Greedy Heuristics as well as the Incremental Algorithm perform
a greedy search.

52 Chapter 3. Generating Anaphora

State Description Targets Distractors
0 ∅ {r1} r1: all entities other than r1
1 {rabbit(r1)} {r1} r1: {r2, r3}
2 {rabbit(r1), white(r1)} {r1} r1: {r3}

h1: all entities other than h1

3 {rabbit(r1), white(r1), {r1, h1} r1: {r3}
in(r1,h1)} h1: {b1}

4 {rabbit(r1), white(r1), ∅ r1: ∅
in(r1,h1), hat(h1)} h1: ∅

Figure 3.3: Running Dale and Reiter’s algorithm with target r1 on the context
in Figure 3.1.

advances.

In the beginning, state 0, the description is empty. Hence, it does not
distinguish the target r1 from any other entity. The distractor set contains all
entities mentioned in the context. Adding literals to the description cuts down
the distractor sets of the targets more and more. In state 3, for example, r3 is
a distractor of r1, because substituting r3 for r1 and b1 for h1 would yield the
description

{rabbit(r3),white(r3), in(r3, b1)}

which is a subset of the context.

The example is following Dale and Reiter’s Incremental Algorithm and
literals are added in the order described above: first sortal information, then
color information, and then location information.

From Sets of Literals to Noun Phrases

The output of Dale and Reiter’s algorithm is fed to a surface realization mod-
ule which casts it into a natural language noun phrase. However, there is
no guarantee that such a noun phrase can be built. For instance, if the task
was to describe entity h1 with respect to the context of Figure 3.1, the algo-
rithm would produce the description {hat(h1), in(r1, h1),white(r1)}. There is
no straightforward way of realizing this description (which roughly corresponds
to the hat containing the white thing) as a noun phrase as it does not specify
any property for r1 which can be verbalized as a noun. To avoid this prob-
lem, Horacek (1997) proposes to build the syntactic structure of the definite
description in parallel to the selection of its content.

3.1. Generating Definite Noun Phrases 53

Negative and Disjunctive Information

The original version of Dale and Reiter’s algorithm is not able to generate
descriptions like the following.

(26) a. the black rabbits (the set of all entities which are black and rabbits)

b. the rabbits and the cat (the set of all entities which are either rabbits
or cats)

c. the rabbit which is not in a hat (the entity which is a rabbit and not
in a hat)

This is because Dale and Reiter’s algorithm cannot deal with sets of enti-
ties as the target and only considers descriptions which are a conjunction of
positive facts. Van Deemter (2002) presents an extension of this algorithm
which can produce descriptions of sets of entities and can employ negations
or disjunctions of properties in the description. Similarly, Gardent (2002)
proposes a formulation of Dale and Reiter’s algorithm as a constraint satis-
faction problem and extends it to plural descriptions involving negation and
disjunction.

3.1.2 Definite Descriptions in Spud

While Dale and Reiter’s algorithm was developed as a specialized and inde-
pendent module for generating (one particular kind of) referring expressions,
Spud provides an architecture that integrates different sentence planning and
surface realization tasks and promotes a tight interaction between syntactic,
semantic, and pragmatic constraints. It interleaves content selection for defi-
nite descriptions with surface realization, as is suggested by Horacek (1997).
New properties are added according to Dale and Reiter’s greedy heuristic, i.e.,
those properties that rule out the most distractors are preferred. This strategy
follows from the heuristics (described in Section 2.3.4) that Spud uses to guide
the search. These heuristics could be modified to allow other search strategies.

Section 2.3.5 showed an example, which illustrated how Spud works and
which also involved the generation of two definite descriptions: remove the
rabbit from the hat. The example is interesting because the two definite de-
scriptions are not independent of each other or of the rest of the sentence.
Spud’s integrated approach can capture these interactions. Dale and Reiter’s
incremental algorithm is designed to only deal with one definite description at
a time not taking into account information that might be provided by other
expressions in the sentence. A pipelined generation architecture using Dale
and Reiter’s algorithm for the generation of referring expressions would there-
fore generate the sub-optimal remove the rabbit in the hat from the hat with
the rabbit.

54 Chapter 3. Generating Anaphora

3.1.3 Generating Pronouns

We have seen two approaches to generating co-referential definite descriptions,
Dale and Reiter’s algorithm and the Spud system. They were mainly con-
cerned with the question of how much descriptive content a uniquely identify-
ing definite description has to convey and assume that the decision to generate
a definite description rather than some other kind of noun phrase has already
been taken.

This section describes work that addresses the question of how to choose
between definite descriptions and pronouns. While pronoun interpretation has
been studied extensively in theoretical and computational linguistics, pronoun
generation has received much less attention. Most generation systems use a
simple strategy such as the one suggested by Reiter and Dale (1997): Use
a pronoun to refer to an entity, if the entity was mentioned in the previous
clause and there is no other entity in the previous clause that the pronoun
could possibly refer to. But recently some more sophisticated approaches have
been developed.

Krahmer and Theune (2002) integrate a salience function into Dale and
Reiter’s algorithm that maps all entities in a given context to a natural number.
The higher this number the more salient is the entity. Salience is then used
to restrict the distractor sets: only those entities with equal or higher salience
than the target count as distractors. If the target entity is the single most
salient entity in the context, the algorithm produces a pronoun.

The salience function is loosely based on centering theory (Grosz et al. 1983;
Grosz et al. 1995) and on Hajičová’s (1993) approach to mapping salience to
numbers. It consists of the following three rules:

• At the beginning of the discourse all entities have salience value 0.

• Whenever an entity is mentioned in an utterance, it’s salience value is set
to a value dependent on the grammatical role it is realized as. Entities
realized as subject receive the highest salience value: 10. Objects get
salience value 9, and all other entities mentioned in that utterance are
set to a salience value of 8.

• If an entity that has a salience value higher than 0 is not mentioned in
an utterance, the salience value is decreased by 1.

Let’s look at some examples that illustrate how Kramer and Theune’s al-
gorithm works. Assume a visual scene containing various dogs, two of which
can be uniquely identified as the large black sausage dog and the small gray
poodle. In the beginning of a discourse all entities have the same salience value,
namely 0. Thus, the full descriptions are necessary in the first sentences of
Examples (27a–c). Mentioning entities increases their salience value. In Exam-
ple (27a), for instance, the salience of the large black sausage dog and the small

3.1. Generating Definite Noun Phrases 55

gray poodle is 9 after the first sentence, while all other dogs still have salience
value 0. Therefore, reduced descriptions are sufficient to uniquely identify the
sausage dog and the poodle in the second sentence. In Example (27b), the
salience value of the sausage dog is 9 after the first sentence and there is no
other entity with the same or a higher salience value — the algorithm uses
a pronoun. In Example (27c), finally, the sausage dog is the subject of the
first sentence. Hence, its salience value is increased to 10, while the poodle,
referred to by the object, receives salience value 9. Hence, the sausage dog is
the single most salient entity and is referred to by a pronoun in the following
sentence. This complies with the preferences that human subjects have shown
in an experiment conducted by Krahmer and Theune.

(27) [a scene with various dogs]

a. John bought the large black sausage dog and the small gray poodle.
The sausage dog was a bargain, but the poodle was very expensive.

b. Look at the large black sausage dog. Isn’t it cute?

c. The large black sausage dog was chasing the small gray poodle. It was
running very fast.

Passonneau (1996) also proposes a strategy for generating pronouns based
on Dale and Reiter’s algorithm. Her strategy combines centering theory based
constraints (Grosz et al. 1983; Grosz et al. 1995) with constraints derived
from Grosz and Sidner’s (1986) theory of discourse structure to model local
as well as global aspects of pronoun behavior.

Passonneau suggests to place a specialized module for predictions about the
use of pronouns before the main algorithm. This module is based on centering
theory. It predicts a backward looking center3 and then uses Rule 3 of Grosz
et al. (1983) and Rule 1 of Grosz et al. (1995) to predict which entities may
or may not be realized by a pronoun (see Figure 3.4).

A version of Dale and Reiter’s algorithm is then used to generate definite
descriptions and pronouns. Pronouns are generated if there are no distrac-
tors with the same gender and number features as the target and if the con-
straints imposed by the previous module are satisfied. Following Grosz and
Sidner (1986), Passonneau furthermore restricts the distractor sets to entities
active in the current discourse segment.

Testing her algorithm against a corpus, Passonneau finds that it predicts
83% of all definite noun phrases correctly.

Krahmer and Theune as well as Passonneau use rules inspired by center-
ing theory, but do not use centering theory directly. This might be because

3In centering theory, the backward looking center of an utterance is that entity which is
the most salient entity that is also mentioned in the previous utterance. A variety of criteria
for determining the salience ordering have been proposed. Passonneau uses thematic roles
so that, for instance, agents are highly salient.

56 Chapter 3. Generating Anaphora

1. If the backward looking center is the same entity as the back-
ward looking center of the previous utterance, then use a
pronoun. This rule may introduce pronouns even though
there are distracting entities. (Based on Rule 3 of (Grosz
et al. 1983).)

2. If the backward looking center is not pronominalized (or if
there is no backward looking center), none of the other enti-
ties may by realized as a pronoun. This imposes a constraint
on the algorithm that is applied subsequently. (Based on
Rule 1 of (Grosz et al. 1995).)

Figure 3.4: Passonneau’s rules predicting and constraining the use of pronouns.

centering theory seems to be very interpretation oriented. Kibble (1999) sug-
gests that in natural language generation, the rules of centering theory should
not be collected in one pronoun generation module, but should be distributed
over different modules and applied at different stages of document and sen-
tence planning. Beaver (2004), on the other hand, presents a declarative
formulation of centering theory using optimality theory, which he claims is
more amenable to generation. It has not yet been applied in a computational
approach to pronoun generation, though.

3.2 Other Kinds of Anaphora

This section describes previous work on the generation of anaphoric expressions
other than definite noun phrases. More specifically, I briefly present approaches
to the generation of verb phrase ellipsis, non-sentential answers to questions in
dialogue, and non-canonical syntactic structures such as topicalization. What
all of these phenomena have in common is that their meaning relies on material
that is made available by the context. In the cases of ellipsis and non-sentential
answers, context provides the elided material. In the case of non-canonical
syntactic structures, the context has to provide certain salient sets and open
propositions, which are required by the presuppositions associated with such
syntactic structures.

3.2.1 Verb Phrase Ellipsis

Example (28) shows a very simple case of verb phrase ellipsis. Here, the verb
phrase of the second clause (the target clause) has been elided. This is possible
because the context provides an antecedent (namely the first clause), which is

3.2. Other Kinds of Anaphora 57

parallel to the target clause and lets the hearer infer that the intended meaning
of the second clause is Norbert likes cake.

(28) Antonia likes cake, and Norbert does too.

There are two approaches to the generation of verb phrase ellipsis that I am
aware of. One, by Guhe and Schilder (2002), is based on comparing semantic
representations and producing a verb phrase ellipsis whenever a parallelism has
been detected. The other one, by Hardt and Rambow (2001), is a statistical
approach that uses semantic, syntactic and surface features to predict whether
to generate an elliptical sentence or not.

Guhe and Schilder (2002) build their approach on top of a system for incre-
mental content determination. Whenever a new piece of information arrives it
is incorporated into the semantic representation that has already been built.
If the resulting representation is parallel to the representation of some previ-
ously uttered sentence this fact is recorded using parallelism constraints. The
surface realization module can then use this information to produce a verb
phrase ellipsis. Guhe and Schilder do not specify whether their realization
module produces a verb phrase ellipsis whenever this is possible or whether
further heuristics are used to make the final choice between elliptical and non-
elliptical constructions.

Hardt and Rambow (2001) address this point. They extract positive and
negative examples of ellipsis drawn from a corpus (i.e., examples where the
verb phrase has been elided and examples where it has not been elided, al-
though it would have been possible to do so) and then use machine learning
to derive rules for deciding whether to elide a given verb phrase or not. The
features that they consider include the distance between target and antecedent
in sentences and in words, the length of the antecedent, the auxiliaries used
in target and antecedent, the voice, the syntactic relation between target and
antecedent, and the subcategorization frame of the head verbs. Hardt and
Rambow experiment with different subsets of the features but find that using
the whole set works best. Since this also includes surface-oriented features
such as the distance between target and antecedent in words or the auxiliaries
used, they argue that a module for generating verb phrase ellipses based on
their results should be located after the surface realizer. However, they are not
sure whether the dependence on surface-oriented features is real or whether it
just reflects that there are other semantic or syntactic features that they have
not yet considered and for which the surface-oriented ones are stand-ins.

3.2.2 Non-sentential Answers in Dialogue

In dialogues, questions are often answered by utterances which are not full
sentences. These utterances can only be interpreted when taking into account

58 Chapter 3. Generating Anaphora

the context, and in particular, the questions that they are responding to.
Example (29) shows an excerpt from the HCRC map task corpus containing
two non-sentential answers (F1 and F3).4

(29) G1: Where are you in relation to the top of the page just now?
F1: Uh, about four inches.
G2: Four inches?
F2: Yeah.
G3: Where are you from the left-hand side?
F3: About two.

Ericsson (2004) presents an extension of the information state based dia-
logue system GODIS which can generate non-sentential answers to wh-ques-
tions. The strategy is based on notions of information structure and basically
works as follows. If the utterance currently being generated is an answer to an
active question, the semantic representation of the answer is compared to that
of the question. Those parts of the answer which repeat parts of the question
can be left implicit; in information structural terms, only the rheme has to
be verbalized. This is why it is not necessary for F1 to say I am four inches
from the top of the page. Furthermore, if the answer is parallel to a previous
answer, only the differing parts have to be mentioned; i.e., only the focus or
kontrast of the rheme has to be verbalized. Answer F3, for instance, is parallel
to answer F1, and therefore, saying about two instead of about two inches is
sufficient.

3.2.3 Non-canonical Syntactic Constructions

There has been quite a lot of work discussing the conditions under which the
use of non-canonical syntactic constructions, such as topicalization (Exam-
ple 30a), wh-clefts (Example 30b), and it-clefts (Example 30c), are felicitous
(see, e.g., Prince 1978, Prince 1998, Ward 1988 and other references in
Creswell 2003).

(30) a. The book, Antonia gave to Norbert.

b. What Antonia gave to Norbert was the book.

c. It was the book that Antonia gave to Norbert.

All three constructions shown in (30) presuppose an open proposition, so
that their use is only licensed if the context makes available a sufficiently
salient open proposition that matches this presupposition. In the case of Ex-
ample (30a), this open proposition is Antonia gave X to Y, while it is Antonia

4The example is taken from (Ericsson 2003).

3.2. Other Kinds of Anaphora 59

gave X to Norbert for Examples (30b) and (30c). Topicalization in addition
presupposes the existence of a salient set of which the referent of the topicalized
noun phrase is a member.

Klabunde and Jansche (1998) propose a strategy for generating German
constructions that are similar to the English ones just discussed. In their
framework, grammar rules are associated with semantic and pragmatic con-
straints. For the constructions in question, the pragmatic constraints essen-
tially encode usage conditions similar to the ones described above for (English)
topicalization and cleft constructions. Their generation strategy is based on
abduction. More specifically, the use of a particular grammar rule is licensed if
the semantic and pragmatic constraints associated with it can be “explained”,
that is, can be either derived from the discourse context or can be assumed.
Sentences are built in a top-down fashion. If at some point several grammar
rules are applicable the algorithm chooses the derivation which involves the
most literals that can be proven (as opposed to having to assume them). If
that does not single out exactly one rule, the one which requires the fewest
assumptions is used, and as a last tie-breaker the one which re-uses assump-
tions most efficiently (i.e., which uses the same assumptions in several places)
is chosen. This strategy gives preference to constructions associated with more
specific conditions as long as these conditions are satisfied.

Humphreys (1995) argues that the decision to use a particular syntactic
structure should take into account the speaker’s intentions in terms of speech
acts. For instance, he proposes that wh-clefts are used to instantiate the free
variables in an open proposition that the speaker thinks the hearer is currently
aware of. If, for example, A asks the question Who did Sandy kiss at the party?,
B can assume that A is aware of the open proposition kiss(Sandy,X) and can
use the wh-cleft construction Who Sandy kissed was Jo to respond. Further-
more, Humphreys suggests that it-clefts are used to contradict or correct a
belief of the hearer as in the following interactions.

(31) a. A: Did Sandy kiss Jamie at the party?
B: It wasn’t Jamie who Sandy kissed.

b. A: Did Sandy kiss Jamie at the party?
B: It was Jo who Sandy kissed.

Based on the results of a corpus study, Creswell (2003) claims that neither
Klabunde and Jansche’s (1998) approach nor Humphreys’s (1995) approach
correctly predict the use of non-canonical syntactic constructions, but that
they dramatically overgenerate. She argues that the usage conditions com-
monly found in the literature are only necessary conditions for the use of a
particular construction but do not require the use of that construction. In her
model the use of a particular non-canonical syntactic structure communicates
additional non-truth conditional information. The structure should, therefore,
only be used if the speaker explicitly has the intention of communicating this

60 Chapter 3. Generating Anaphora

information. Creswell suggests that the main function of non-canonical forms
is to manipulate the salience of discourse entities. This can then be employed
to indicate the end of embedded discourse segments, to establish coherence
relations linking the current utterance to the previous discourse, or to disam-
biguate the information structure of the current sentence. Example (32), an
abbreviation of Creswell’s example (72), illustrates how a non-canonical form
can be used to convey that the speaker is intending to close off an embedded
discourse segment and to return to a previous one.

(32) [...] I listened every night to Edward R. Murrow. [a few sentences about
another radio person] But anyway, Edward R. Murrow, I never
missed. [...]

Creswell does not provide any discussion of how the corresponding commu-
nicative goals may be derived in a generation system. However, she proposes a
number of features encoding information about the discourse context (such as
occurrence of cue phrases and patterns of reference to entities in consecutive
sentences) which she assumes to be correlated with the communicative goals
governing the use of non-canonical forms. As discussed above, these goals all
have to do with the manipulation of the discourse state. She then uses these
features to train a statistical model for predicting the use of non-canonical
syntactic structures.

Part II

Generating Anaphoric Expressions

Chapter 4

Beyond Co-reference: Bridging Descriptions

The algorithms that we saw in Chapter 3 generate anaphoric definite descrip-
tions that refer to discourse old entities. However, there is also a class of
anaphoric definite descriptions which refer to discourse new entities. The
noun phrase the bride in (33) is an example.

(33) I went to a wedding last weekend. The bride was a friend of mine.

The bride has not explicitly been mentioned before, but nevertheless it is
anaphorically linked to the wedding in the first sentence. Without having to
say so explicitly, the definite description the bride is understood as referring to
the bride of the wedding mentioned just before. This link is supported by our
general knowledge that weddings involve brides. The noun phrase the bride is
what we call a bridging description.

This chapter is about generating bridging descriptions. Examples (34)
and (35) illustrate that a generation system which is capable of producing
bridging descriptions in the appropriate contexts will generate more cohesive
text than a system which is not. Example (34) is a version of Example (33)
where the fact that the wedding mentioned in the first sentence involved a
bride is made explicit. Example (35) shows two versions of a text describing
a restaurant scene. It mentions various people that have some relation to the
restaurant. (35b) states explicitly that these links exist, while the original
version, which was found in a film script and which is given as (35a), leaves
this information implicit. Both (34) and (35b) sound considerably less fluent
than their respective counterparts (33) and (35a) which are using bridging
descriptions.

(34) I went to a wedding last weekend. The wedding involved a bride. The
bride was a friend of mine.

63

64 Chapter 4. Beyond Co-reference: Bridging Descriptions

(35) a. The young woman scans the restaurant with this new informa-
tion. She sees all the patrons eating, lost in conversations. The
tired waitress taking orders. The busboys going through the mo-
tions, collecting dishes. The manager complaining to the cook
about something.

b. The young woman scans the restaurant with this new informa-
tion. She sees all the patrons of the restaurant eating, lost in
conversations. The tired waitress of the restaurant, taking or-
ders. The busboys of the restaurant going through the motions,
collecting dishes. The manager of the restaurant complaining
to the cook of the restaurant about something.

Section 4.1 will discuss the properties of bridging descriptions in more de-
tail. In Sections 4.2 and 4.3, I will adapt the criteria defined in Chapter 3 for
when it is appropriate to use a definite description and what an adequate def-
inite description has to look like. In Section 4.4, I present two algorithms for
generating co-referential definite descriptions and bridging descriptions: one in
the style of Dale and Reiter (1995), and a spud style algorithm. While I first
only treat bridging descriptions referring to necessary parts (cf. Clark 1975),
Section 4.5 shows how the approach can be extended to allow for bridging
descriptions referring to probable or inducible parts. Section 4.6 summarizes
the chapter and points to some further questions concerning the generation of
definite descriptions. This chapter is based on (Gardent and Striegnitz 2001)
and (Gardent and Striegnitz submitted).

4.1 Bridging

4.1.1 Bridging Descriptions

Clark (1975) has coined the term bridging inference for the reasoning based
on lexical and domain knowledge that a hearer has to do in order to detect
anaphoric links. He not only looks at noun phrases, but also at other pre-
supposition triggers, such as shown in Example (36). The cleft construction
presupposes that somebody told John to wear a suit. This presupposition can-
not directly be bound in the context. It is bound by a discourse new entity
which is related to the event introduced in the first sentences through a causal
discourse relation.

(36) John had a suit on. It was Jane who told him to wear it.

Clark also uses the term bridging for noun phrases which refer to a discourse
old entity but use properties which are new to the hearer to describe this entity.
The bastard in (37) is an example.

4.1. Bridging 65

(37) I met a man yesterday. The bastard stole all my money.

I will use the term bridging description in a more restricted way. The noun
phrases the ceiling and the murderer in (38) and (39) are examples. They
refer to discourse new entities. The existence of these entities, however, can
be inferred on the basis of some discourse old entity, which I will call anchor,
and general knowledge which says that entities belonging to the ontological
category the anchor belongs to are normally related to entities that fit the
description. The existence of the ceiling, for instance, can be inferred because
we know that rooms have a ceiling. Similarly, murdering events always involve
a murderer.

(38) I looked into the room. The ceiling was very high.

(39) John was murdered yesterday. The murderer got away.

Clark notices that the predictability of referents of bridging descriptions
varies. In Examples (38) and (39) the existence of the ceiling and the murderer
can be taken for granted given the anchoring entity. In Clark’s terminology,
ceilings are necessary parts of rooms and murderers play a necessary role in any
murdering event. In contrast, the bridging descriptions in Examples (40)–(42)
do not refer to necessary parts and roles of their anchors. A room, for instance,
does not necessarily have a window, nor does it necessarily have a chandelier.
But while rooms are likely to have windows, it is not common nowadays that
rooms have chandeliers. Nevertheless, the hearer can reconstruct that the
chandelier must be part of the room’s furnishings by using his knowledge
that chandeliers are a kind of lamp, which is a typical part of every room.
In a similar way, it can be reconstructed that the knife mentioned in (42)
refers to the weapon that was used in the murdering of John. Using Clark’s
terminology, the window refers to a probable part of the room, the chandelier
to an inducible part, and the knife to an optional participant of the murdering
event. This does, of course, not mean that there are three discrete categories of
bridging descriptions. There rather seem to be gradual differences between the
strengths of the link which general knowledge establishes between a discourse
old entity and the referent of the bridging description.

(40) I walked into the room. The window looked out to the bay.

(41) I walked into the room. The chandelier sparkled brightly.

(42) John was murdered yesterday. The knife lay nearby.

We will be concerned with definite bridging descriptions, but note that
indefinite bridging descriptions do exist, as the noun phrase a page in Exam-
ple (43) (taken from Prince (1992)) shows. Hearers will not interpret the noun

66 Chapter 4. Beyond Co-reference: Bridging Descriptions

phrase a page as referring to a page that accidentally happened to be stuck in
the book, but to a page that was a constituting part of the book.

(43) I picked up the book and a page fell out.

In all bridging descriptions that we have seen so far, the link to the anchor
was implicit, as in Example (44). I will also use the term bridging description
for definite noun phrases which explicitly mention the link as long as this link
is inferable from general world knowledge and can be left implicit in other
contexts. The noun phrase the waitress at the restaurant in Example (45) is
such a case. Here, the fact that the waitress is supposed to be interpreted as
the waitress of the restaurant is made explicit. (In fact, it has to be made
explicit as, otherwise, the waitress could be understood as referring to the
waitress of the bar.) Hence, I will distinguish between implicitly anchored
bridging descriptions and explicitly anchored bridging descriptions.

(44) We went to a restaurant yesterday. The waitress got angry because we
didn’t want to order an aperitif.

(45) We had an aperitif at a bar, before going to the restaurant. The wait-
ress at the restaurant got angry because we didn’t want to order an-
other aperitif.

Summarizing what we have so far, bridging descriptions are noun phrases
that refer to discourse new entities which are related to a discourse old entity,
such that the relation is supported by general lexical or domain knowledge. In
what follows we will call the referents of bridging descriptions targets and the
discourse old entity they are related to anchors. Bridging descriptions can be
anchored implicitly or explicitly. In the first case, the anchor is not mentioned
in the description; in the second case, it is mentioned.

Bridging descriptions and related phenomena have been treated under a
number of different names in the literature: for example, Prince (1981) calls
them inferables, Hawkins (1978) and Löbner (1985) both use the term associa-
tive anaphora, and Erkü and Gundel (1987) use the name indirect anaphora.

4.1.2 Anchors

Do definite descriptions always have a unique anchor? Spenader (2002) pre-
sents evidence that this is not the case, but that definite descriptions can have
multiple anchors. In her corpus study of definite descriptions in spoken di-
alogs, she found that annotators often disagree about the anchor of bridging
descriptions. Closer inspection of these controversial cases showed that the
disagreement was often not due to a mistake of the annotators, but that the
referent of the bridging description was in fact related to different entities at

4.1. Bridging 67

once. In (46), for instance, one annotator classified the noun phrase the rec-
ommended texts that are there printed in the syllabus as a bridging description
and linked it to the course. The other annotator chose the English honours
syllabus as the anchor treating the recommended texts that are there printed in
the syllabus as a containing inferable. Similarly, the death scene in (47) was
linked to Antony and Cleopatra as well as when she’s dying. In both examples,
it doesn’t make any difference for the interpretation which anchor is chosen.

(46) Well, [...] your best bet is to go to the University Library or write for the
English honours syllabus - read it and study it - do you see? Find
out what the course is and then start reading in the various subjects,
um, reading from the recommended texts that are there printed
in the syllabus and then prepare yourself for the degree.

(47) in the [uhm] - Antony and Cleopatra - in when she’s dying - - in
the death scene - - - and there I think you get - perfect emotion

4.1.3 Bridging Relations

Now, let us look more closely at the relations linking the referents of bridging
descriptions to their anchors. Are there constraints on the kinds of relation that
can do this job? This question is important for us as its answer will determine
what kind of information our generation system will have to take into account.
I have already said that the knowledge supporting the link between target and
anchor has to be of a “general” kind. It should not be specific to a certain
situation, but apply to whole classes of entities across situations.

The prototypical examples of bridging descriptions that are discussed in
the literature rely on knowledge of the form: if an entity belongs to the simple
ontological category A, then it is related via the relation B to an entity that be-
longs to the simple ontological category C. So, restaurants are related to cooks,
weddings to brides, but there are no links which are specific to restaurants with
blue doors and cooks with big ears, for example. In my formalization later on,
I will assume that the knowledge base represents exactly the simple ontolog-
ical categories as atomic properties, so that I only have to consider relations
between atomic properties. To decide which atomic properties exactly need to
be defined is one of the problems knowledge representation is concerned with.
In practice, there will of course be unclear cases, where it is difficult to decide
whether a given class should count as a simple ontological category or not. I
will not go into this problem here.

Furthermore, it is often assumed that there is a fixed set of relations that
is relevant for bridging. Classifications of these relations have, for example,
been suggested by Strand (cf. the discussion of his proposal in (Vieira 1998)),
Kleiber (1997), and Gardent et al. (2003). Although these classifications
differ, they all include the following relations:

68 Chapter 4. Beyond Co-reference: Bridging Descriptions

• set/member: a school class — the girls

• meronymy: a car — the engine

• function: a company — the president

• thematic role: murdered — the murderer

• attribute: a person — the age

Gardent et al. (2003) describe a corpus study aimed at identifying the range
of relations involved in bridging descriptions. They found that the relations
listed above cover 74% of all bridging descriptions; an additional 18% fall into
a class which they call individual/associate. This class covers cases where
the link is provided by the lexicographic definition of the property attributed
to the target, such as in the pairs a question – the answer, an operation –
the convalescence. Only a small percentage, less than 10%, of the bridging
descriptions seem to rely on a link which is established by more complicated
reasoning, taking into account the discourse structure or a longer chain of
implicit entities. This study has been carried out on a French corpus, but a
first evaluation on German data shows the same general trends. That is, it
seems possible to assume a fixed set of relations that can function as links
between targets and anchors of bridging descriptions.

In what follows, I will assume that I have such a set of bridging relations. I
will, furthermore, assume that the relation bridge is defined as subsuming all
bridging relations. That is, for all bridging relations R the following holds:

∀xy[R(x, y)→ bridge(x, y)].

So, when I write bridge(a, b), I mean that the entities a and b are related via
one of the predetermined bridging relations.

4.2 Familiarity

Attempts to explain the role of definiteness in establishing anaphoric links often
employ a notion of familiarity (Christophersen 1939; Heim 1982). The claim
is that the referents of definite descriptions are familiar to the hearer. What
familiarity is taken to mean can be sketched as follows. Definites indicate to
the hearer that he should use his previously acquired knowledge to determine
the referent of the noun phrase. In the case of co-referential noun phrases, he
will already know the referent and what he already knows about it will match
the given description. In the case of bridging descriptions, his knowledge will
enable him to find a relation between the referent and some other entity which
he is familiar with.

4.2. Familiarity 69

In the specification of the algorithms for generating definite descriptions in
Chapter 3 familiarity was not mentioned. This is because they only generate
co-referential definite descriptions, and without making it explicit, they assume
a very simple familiarity condition: The use of a definite description is only
licensed if the target entity is discourse old. The main task of the algorithms
was then to ensure that uniquely identifying definite descriptions were built.
Uniqueness will be treated in the next section. In this section, we will see
which notion of familiarity is needed to capture not only co-referential but
also bridging descriptions.

When looking at bridging descriptions, familiarity is important because
we have to distinguish those discourse new entities which can be anaphori-
cally linked to the previous discourse (the familiar ones) from those discourse
new entities which do not license an anaphoric link to the previous discourse
(the unfamiliar ones).1 The cockroach in (48a) and a page in (48b) are ex-
amples of an unfamiliar and a familiar entity, respectively. The cockroach
mentioned in (48a) is just a cockroach that accidentally happens to be in the
book, whereas the page in (48b) is not just any page but a page of the book
mentioned in the first sentence. Note that it is odd to say the cockroach of the
book. Similarly, (48c) is odd while (48d) is fine. We don’t have any knowledge
that would link books to cockroaches in a general way, but we do know that
books have pages.

(48) a. I picked up the book and a cockroach fell out.

b. I picked up the book and a page fell out.

c. # I picked up the book and the cockroaches fell out.

d. I picked up the book and the pages fell out.

In the rest of this section, we will examine in more detail what it means for
a hearer new entity to be familiar. First of all, we can say that to be familiar
a hearer new target entity has to be related to a discourse old entity, which we
call the anchor. Second, the hearer has to be able to infer the relation using
the description that is provided and his general lexical and domain knowledge.

Consider Example (49). Here, the target entity, described as the cook, is
related to a discourse old entity, the restaurant. And it is general knowledge
that all restaurants have cooks (as represented in 49b). When hearing the de-
scription the cook the hearer can therefore establish the previously mentioned
restaurant as a possible anchor.

(49) a. There is a new Italian restaurant in Market Street. The cook is
excellent. (the cook = the cook of the new Italian restaurant in Market
Street)

1Note that in my terminology, not only discourse old entities are familiar. Inferable
discourse new entities are also familiar.

70 Chapter 4. Beyond Co-reference: Bridging Descriptions

b. ∀x[restaurant(x)→ ∃y[cook(y) ∧ work for(y, x)]]

Note that whether an entity is familiar or not also depends on the prop-
erties that are used to describe it. Imagine, for example, that the cook of
Example (49) plays the saxophone in a band in his spare time. So, we could
also use the property saxophone player to describe him. However, in the given
context, the noun phrase the saxophone player would not allow the hearer to
link the referent to the discourse context. (There is no discourse old entity of
which we know that it must be related to a saxophone player.) We therefore
define familiarity to be a property of descriptions of entities and not of entities
alone.

To formalize the constraints governing the use of bridging descriptions, we
need a representation of the discourse context which distinguishes between
knowledge that is shared between hearer and speaker and the private knowl-
edge of the speaker. The speaker should, for example, only use the bridging
description the cook if he assumes that the hearer knows the rule in (49b).
The target entity, on the other hand, is, in the case of bridging descriptions,
an entity which is new to the hearer. All knowledge about the target entity
should therefore be private knowledge of the speaker. Hence, we will use a
structured context representation as it is used in the spud system (see Sec-
tion 2.3.1). In this representation, the discourse context consists of three parts:
the speaker’s/system’s private knowledge Cprivate, the knowledge that speaker
and hearer share Cshared, and information about the discourse state Cstatus.

Given a particular target entity, the speaker knows which entities this target
is related to. Those entities are possible anchors. A description of the target
is familiar, if, based on this description, the hearer can identify at least one
of the possible anchors. To capture this we will now define the sets of speaker
anchors and hearer anchors. The intuition behind these sets is as follows: the
speaker anchors are the entities intended by the speaker to be possible anchors
and the hearer anchors are those entities which the hearer considers as anchors.
For an anaphoric expression to be successful, the two sets have to coincide in
a way that will be made more explicit in this section and the next.

The set of speaker anchors contains all entities a such that the speaker
knows that a is identical to or related to target entity t. In other words, the
set of speaker anchors contains all entities which could act as anchors for the
target. The set of speaker anchors is defined as follows.

Definition 4.1 (Speaker Anchors). The set of direct speaker anchors (dSA)
for a given target entity t is simply dSA(t) = {t}. The set of indirect speaker
anchors (iSA) for a given target entity t in a given context C is defined as
follows:

iSA(t, C) = {a | Cprivate ∪ Cshared |= bridge(t, a)}.

4.2. Familiarity 71

Cshared: book(b),
∀y[book(y)→ ∃x[author(x) ∧ of (x, y)]],
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: author(a), of(a, b),
cockroach(c), of(c, b)

Cstatus: discourse old(b)

Figure 4.1: Example context to illustrate the definitions of anchors.

The set of speaker anchors (SA) for a given target entity t in a given context
C is the union of the direct and indirect speaker anchors for t in C:

SA(t, C) = dSA(t) ∪ iSA(t, C).

For instance, given the context in Figure 4.1 the set of speaker anchors for
entity b is {b}, the set of speaker anchors for a is {a, b} and the set of speaker
anchors for c is {c, b}.

The intuition behind the set of hearer anchors is that the speaker tries to
model how the hearer will interpret a given description. The set of hearer
anchors, hence, contains all those entities (known to both speaker and hearer)
which when taking into account only the shared knowledge, could act as an-
chors for the given description. For instance, given the description the cook
and assuming that it is shared knowledge that restaurants have cooks, the
set of hearer anchors would contain all cooks and all restaurants mentioned
in the shared knowledge (independently of whether they are in fact related
to the target). Since the hearer does not know the target, what he considers
possible anchors is based on the description only. The set of hearer anchors is,
therefore, defined with respect to the context and the property given by the
description.

Definition 4.2 (Hearer Anchors). Given a property P , and a context C, the
set of direct hearer anchors (dHA) is defined as

dHA(P,C) = {a | Cshared |= P (a)}.

Given a property P , and a context C, the set of indirect hearer anchors (iHA)
is defined as

iHA(P,C) = {a | Cshared |= ∃x[bridge(x, a) ∧ P (x)]}.

Given a property P , and a context C, the set of hearer anchors (HA) is the
union of the direct and indirect hearer anchors for P in C:

HA(P,C) = dHA(P,C) ∪ iHA(P,C).

72 Chapter 4. Beyond Co-reference: Bridging Descriptions

Definition 4.2 says that all entities of which the hearer knows that the
description holds are direct hearer anchors. So, the book b in Figure 4.1 is a
hearer anchor for entity b given the property book. In addition, a discourse old
entity a can be an indirect hearer anchor if the hearer knows that this discourse
old entity is related to an entity of which the property holds. For this reason,
entity b in Figure 4.1 is a hearer anchor for entity a given the property author.
The entity b is not a hearer anchor of c given property cockroach, though, as
∃x[bridge(x, b) ∧ cockroach(x)] does not follow from the shared knowledge.

The familiar anchors are then all those entities of which a) the speaker
knows that they are related to the target and for which b) the hearer can
infer that a relation to an entity matching the description must exist. In other
words, the familiar anchors are all those entities that belong to the set of
speaker anchors as well as to the set of hearer anchors. So, in Figure 4.1 entity
b is a familiar anchor for entity a when described using property author, but
not for entity c when described using the property cockroach.

Definition 4.3 (Familiar Anchors). The set of familiar anchors FA(t, P, C) of
an entity t, given property P , and context C is defined as follows:

FA(t, P, C) = (dSA(t) ∩ dHA(P,C)) ∪ (iSA(t, C) ∩ iHA(P,C)).

Now, we can define familiarity in terms of familiar anchors; an entity de-
scribed using a certain property is familiar if there are familiar anchors for this
entity and property.

Definition 4.4 (Familiarity). An entity t described using property P is famil-
iar in a context C if FA(t, P, C) 6= ∅.

Before turning to uniqueness, I want to make one last remark about the
set of familiar anchors. The definition given above allows for entities to have
several familiar anchors based on the same property. If there are several entities
to which the target is related and for which lexical or world knowledge provides
a relation to the target, all of these entities count as familiar anchors. This
fits the findings of Spenader (2002) discussed in Section 4.1.2.

4.3 Uniqueness

In the previous section, we saw that talking about a restaurant makes the
restaurant’s cook familiar, so that then an anaphoric expression can be used
to refer to the cook. For definite noun phrases, however, it is not sufficient
that the target entity is familiar. We also have to ensure uniqueness. That
is, we have to make sure that the hearer will be able to uniquely identify the
target entity. In Chapter 3 we defined a uniqueness condition for co-referential
definite descriptions, which required that the target entity be the only entity in

4.3. Uniqueness 73

the discourse context fitting the description. We now discuss how this notion
of uniqueness can be extended to also capture bridging descriptions.

Example (50) shows a bridging description which uniquely identifies its
referent: the cook in the second sentence unambiguously refers to the cook of
the Italian restaurant mentioned in the first sentence.

(50) There is a new Italian restaurant i in Market Street. The cook i is ex-
cellent.

The highlighted definite descriptions in Examples (51) and (52), in contrast,
are not uniquely identifying. (The subscripts indicate which are the intended
anchors.)

(51) There is an Italian restaurant i in Market Street and a Chinese restaurant
in Church Street. ??? The cook i is excellent.

(52) When I picked up the book i, ??? the page i fell out.

In (51) the speaker intended to refer to the cook of the Italian restaurant
(as indicated by the subscripts), but from the hearer’s perspective it is not
clear whether the cook refers to the cook of the Italian or the cook of the
Chinese restaurant. In other words, the hearer can identify two entities which
could act as indirect anchors, but he is not able to determine which of these
two is the correct one. In Example (52), the anchor is not problematic. The
hearer can correctly identify the book mentioned in the first sentence as the
anchor for the page. The definite description the page is still odd because
it implies that the book has only one page, and this contradicts our general
knowledge about books. These two examples suggest two conditions which a
definite description has to meet:

1. The description correctly determines the anchor, i.e., as intended by the
speaker.

2. It is plausible to assume that a given anchor is related to only one entity
that fits the description.

The cook in Example (51) violates the first condition. The description the
cook does not determine its anchor. There is an ambiguity whether the Italian
or the Chinese restaurant is the anchor. The page in Example (52) violates the
second condition. It is not plausible to assume that the book (the anchor) has
only one page because it contradicts our general knowledge that books have
more than one page. Note that this is a simplification. The following example,
for instance, is felicitous even if both the speaker and the hearer know that
there are two or more waitresses working for the restaurant. The bridging
description just expresses that there was one relevant waitress.

74 Chapter 4. Beyond Co-reference: Bridging Descriptions

(53) We went to the new Italian restaurant, yesterday. The waitress was
very nice.

The hearer could even reply by asking Oh, yeah? Which one was it? In
the context of generation, this simplification yields a strategy which under-
generates, i.e., there are situations where the use of a bridging description is
possible, but not predicted by our algorithm. To allow for a more permissive
formulation of the second of the above condition, we would need a formal char-
acterization of what it means for an entity to be relevant in a given situation.
While such a characterization is not available, the more restrictive formulation
is preferable, since slight under-generation is less harmful than over-generation.

Let us briefly compare these two conditions to the definition of unique-
ness used in Chapter 3. There we said that a definite description is uniquely
identifying if there is no entity but the target which fits the description. This
corresponds to what condition 1 does when only discourse old entities are con-
sidered. Condition 2 was not mentioned because it was trivially satisfied. The
only way that a target could be related to its anchor was via an identity re-
lation. And it is, of course, not possible that two different entities are related
via the identity relation.

The rest of this section will be devoted to formalizing the new notion
of uniqueness. Let’s start with the first condition: the description should
unambiguously determine its anchors. This can be stated using the notions of
hearer anchor and speaker anchor introduced in the last section.

Definition 4.5 (Uniqueness Condition I). Property P correctly identifies the
anchors of target t in context C iff

dHA(P,C) ⊆ dSA(t)

and

iHA(P,C) ⊆ iSA(t, C)

The set of speaker anchors only contains entities which are, so to speak,
real anchors, because the speaker knows that they are related to the target. By
requiring that the set of hearer anchors does not contain any additional entities
we ensure that the hearer does not consider any entities as anchors that are not
related to the target. By way of illustration consider the context represented
in Figure 4.2(a). The property cook does not correctly identify the anchors of
entity c in that context, since iHA(cook, C) = {r1, r2} while iSA(c, C) = {r1}.
However, the property λx.cook(x) ∧ ∃y[restaurant(y) ∧ italian(x) ∧ of(x, y)]
would correctly identify c’s anchors. I will call the entities which are in HA
but not in SA distracting anchors. So, in the example just discussed r2 would
be a distracting anchor for target c given the property cook.

The second condition that uniquely identifying definite descriptions have
to satisfy requires that it should be plausible to assume that the anchor is

4.3. Uniqueness 75

(a) Cshared: restaurant(r1), italian(r1),
restaurant(r2), chinese(r2)
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of(x,y) → bridge(x, y)]

Cprivate: cook(c), of(c, r1)
Cstatus: discourse old(r1), discourse old(r2)

(b) Cshared: book(b),
∀x[book(x)→ ∃yz[page(y)∧ of (y, x)∧ page(z)∧ of (z, x)∧ y 6= z]]
∀xy[of(x,y) → bridge(x, y)]

Cprivate: page(p), of(p, b)
Cstatus: discourse old(b)

Figure 4.2: Example contexts to illustrate the definition of uniqueness.

related to only one entity which fits the description. What we have to check is
whether it follows from the context that there is more than one entity of which
the property holds and which is related to the anchor. If this is the case, then
we have evidence that the second uniqueness condition is not satisfied and
that, therefore, a definite description cannot be used. If, however, the context
does not provide any evidence that there is more than one entity which fits
the description and is related to the anchor, then it is possible to assume that
the target entity is the only such entity. So, we are checking for consistency.
We are not requiring that uniqueness with respect to the anchor has to follow
from the context; it just has to be consistent with it.

Definition 4.6 (Uniqueness Condition II). Property P uniquely identifies tar-
get t with respect to its anchors in the context C iff

Cprivate ∪ Cshared 6|= ∃x[P (x) ∧ bridge(x, a) ∧ x 6= t]

holds for all entities a ∈ FA(t, P, C)

Given the target c and the property cook, this condition is satisfied in context
(a) of Figure 4.2. There is nothing in the context which enforces that r1

or r2 necessarily have more than one cook. In Figure 4.2 (b), in contrast,
the property page does not suffice to uniquely identify p with respect to its
anchors, since it follows from the shared knowledge that b has more than one
page.

Summing up, uniqueness is defined as follows:

Definition 4.7 (Uniqueness). Property P uniquely identifies target entity t
in the context C iff

76 Chapter 4. Beyond Co-reference: Bridging Descriptions

1. dHA(P,C) ⊆ dSA(t) and iHA(P,C) ⊆ iSA(t, C)
(the anchors are identified correctly), and

2. Cprivate ∪Cshared 6|= ∃x[P (x)∧ bridge(x, a)∧x 6=t] for all a ∈ FA(t, P, C)
(the target is unique wrt. its anchor)

4.4 Generating Bridging Descriptions

This section discusses algorithms for generating definite descriptions (co-re-
ferential and bridging) satisfying the familiarity and uniqueness constraints
introduced above. First, I discuss how to extend Dale and Reiter’s (1995)
incremental algorithm, then I show how Spud’s algorithm can be modified.
The general strategy employed by the new algorithms is as follows:

1. Start with an empty description.

2. Add literals until all entities mentioned in the description are uniquely
identified (Definition 4.7).

3. The description should be familiar at any point during generation (Def-
inition 4.4).

The order in which literals are added to the description depends on the search
strategy and the heuristics that are used.

Both algorithms work with sets of literals to represent the semantic content
that has already been assembled. To be able to use the definitions of the
previous sections we have to derive the property that is attributed to an entity
by a set of literals. Given a set of literals Γ, let

∧
Γ be the conjunction of

elements of Γ. If
∧

Γ mentions entities t1, . . . , tn then

P (ti,Γ) = λxi∃x1, . . . , xi−1, xi−1, . . . , xn

∧
Γ[t1/x1, . . . , tn/xn].

Given, for instance, the set of literals Γ = {cook(c), of(c, r), restaurant(r),
italian(r)} the property that is attributed to entity c by this set is

P (c,Γ) = λxc∃xr[cook(xc) ∧ of(xc, xr) ∧ restaurant(xr) ∧ italian(xr)].

Assuming a given target entity t, we will now also write HA(Γ, C) to mean
HA(P (t,Γ), C) and similarly for the direct (dHA) and indirect (iHA) hearer
anchors as well as for the familiar anchors (FA).

4.4.1 An Incremental Algorithm for Generating Bridging Descriptions

In this section, we will extend Dale and Reiter’s (1995) algorithm for the
generation of co-referential definite descriptions (Section 3.1.1) to bridging
descriptions. The search problem is shown in Figure 4.3.

4.4. Generating Bridging Descriptions 77

input: a context C consisting of Cshared,Cprivate, and Cstatus

a target entity t

state s(i): Description(i), a set of literals

Targets(i), a list of target objects

initial state: Description(0) = ∅

(state s(0)) Targets(0) = {t}

goal state: State s(i) is a goal state if

Targets(i) = ∅

operator: 1) Select a literal L from Cprivate ∪ Cshared. L has to

1. mention at least one entity in Targets(i),

2. rule out at least one distracting anchor for at least
one entity in Targets(i) or mentioned in L, and

3. FA(a,Description(i) ∪ {L}, C) should be non-empty
for all entities a mentioned in Description(i) ∪ {L}.
(Definition 4.4).

2) Description(i+ 1) = Description(i) ∪ {L}

3) Targets(i+1) is derived from Targets(i) by updating it with
L: first, those entities mentioned in L that are not men-
tioned in Description(i) are added and then, all those en-
tities for which Description(i + 1) satisfies the uniqueness
condition given in Definition 4.7 are deleted.

Figure 4.3: Searching a uniquely identifying description.

78 Chapter 4. Beyond Co-reference: Bridging Descriptions

As in the original version of the algorithm (see Section 3.1.1), states contain
a) the description Description(i) that has been built up to that state and b)
the set of those entities mentioned in Description(i) which have not yet been
uniquely identified. Descriptions are sets of literals. In the beginning, the
description is empty and the target list only contains the entity that was
specified in the input. We have found a solution if the target list is empty. A
new search state is computed by the following three steps:

Step 1: Select a literal. Pick a literal L such that Cprivate ∪ Cshared |= L.
L has to satisfy the following conditions.

• L has to mention at least one entity t which is an element of Targets(i).

• The addition of L should rule out at least one distracting anchor for at
least one entity mentioned in Targets(i) or in L.

• The resulting description has to be such that all entities mentioned in
this description are familiar given the description. More formally, for all
entities t mentioned in Description(i) ∪ {L} the set of familiar anchors
FA(t,Description(i) ∪ {L}, C) should not be empty.

If there is more than one viable literal, heuristics are used to choose one. As
before different heuristics are possible. For instance, literals which rule out
the most distractors could be preferred (as in Dale and Reiter’s (1995) greedy
heuristics) or literals could be added according to some predefined order (as
in Dale and Reiter’s (1995) incremental algorithm).

Step 2: Update the description. The literal L that is chosen in the first
step is added to the description:

Description(i+ 1) = Description(i) ∪ {L}.

Step 3: Update the target list. All entities mentioned in L which are not
elements of Description(i) are added to Targets(i). Then all those entities for
which Description(i+ 1) satisfies the uniqueness condition are eliminated from
the list.

We will now look at a few examples. We start with one where the algorithm
builds an implicitly anchored bridging description. Then, we will see one where
the algorithm has to explicitly anchor the description in order to correctly
determine the anchor. Finally, we will consider two situations in which the
algorithm fails (as it should) to construct a definite description. In the first
case, it is not possible to build a familiar description, and in the second case,

4.4. Generating Bridging Descriptions 79

the target cannot be described in a way that identifies it uniquely with respect
to its anchor.

In the examples that follow, we will assume a simple search strategy follow-
ing Dale and Reiter’s incremental algorithm. We will prefer sortal information
to any other kind of property, and unary literals to binary ones.

Example 1. Let’s assume the following context:

Cshared: restaurant(r),
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: cook(c), of(c, r)
Cstatus: discourse old(r)

Suppose the goal is to build an expression referring to entity c. Row one
of the table below shows the initial search state (description and target list)
as well as the hearer and speaker anchors of c. In the first step, the algorithm
could add either cook(c) or of(c,r). Dale and Reiter’s incremental heuristics
prefers the former. The set of hearer anchors of c now equals the set of speaker
anchors, and hence, the first part of the uniqueness condition is satisfied.
The second part of the uniqueness condition is also satisfied, as there is no
indication that r has more than one cook. Entity c can therefore be eliminated
from the target set, which then is empty. Hence, the algorithm has found a
goal state and stops.

Description Targets HA SA
1. ∅ {c} c: all entities of Cshared c : {r}
2. {cook(c)} ∅ c : {r} c : {r}

Example 2. For this example, we assume the following context. It is very
much like the context of the previous example, but there are two restaurants
now – an Italian one and a Chinese one.

Cshared: restaurant(r1), italian(r1),
restaurant(r2), chinese(r2)
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: cook(c), of(c, r1)
Cstatus: discourse old(r1), discourse old(r2)

Suppose that the target entity is again c. The search starts out as in the
previous example (as shown by rows 1 and 2 of the table below). In contrast to
the previous example, though, adding cook(c) to the description does not lead
to a goal state. The set of hearer anchors of c still contains both restaurants r1

80 Chapter 4. Beyond Co-reference: Bridging Descriptions

and r2 and is therefore not a subset of the speaker anchors. The only thing that
can be added in the next step is of (c, r1), which adds a new entity, r1, to the
target list. r1 is of type restaurant. However, adding the literal restaurant(r1)
to the description would not reduce the set of hearer anchors for either c or
r1. Assuming that the algorithm prefers literals which rule out distractors, it
chooses to add italian(r1) instead. Now, the set of hearer anchors of both c
and r1 are equal to the respective sets of familiar anchors. It is also consistent
with Cprivate ∪Cshared to assume that r1 has only one cook. Hence, both parts
of the uniqueness condition are fulfilled.

Note that there is no straightforward way of realizing the description as an
English noun phrase. It corresponds to something like the cook of the Italian
. . . , where a noun is missing in the embedded noun phrase. So, again, we see
that syntactic constraints should be taken into account when building definite
descriptions.

Description Targets HA SA
1. ∅ {c} c: all entities of Cshared c : {r1}
2. {cook(c)} {c} c : {r1, r2} c : {r1}
3. {cook(c), of (c, r1)} {c, r1} c : {r1, r2} c : {r1}

r1 : {r1, r2} r1 : {r1}
4. {cook(c), of (c, r1), ∅ c : {r1} c : {r1}

italian(r1)} r1 : {r1} r1 : {r1}

Example 3. Now consider the following situation:

Cshared: book(b),
∀x[book(x)→ ∃yz[page(y)∧ page(z)∧ of (y, x)∧ of (z, x)∧ y 6= z]]
∀xy[in(x, y)→ bridge(x, y)]

Cprivate: cockroach(c), in(c, b)
Cstatus: discourse old(b)

Imagine that we need to refer to entity c, the cockroach. c is not hearer
old, but c is related to a hearer old entity, namely the book b. So, the set of
speaker anchors is {b}. However, the shared knowledge does not include any
information which would tell the hearer that all books contain cockroaches or
that all cockroaches are related to books. So, there is no literal that could
be added to the description while preserving the familiarity condition. This
means that it is not possible to build a definite description and the algorithm
fails. Other mechanisms have to be used to build an appropriate indefinite
description.

Example 4. The last example uses the following context:

4.4. Generating Bridging Descriptions 81

Cshared: book(b),
∀x[book(x)→ ∃yz[page(y)∧ page(z)∧ of (y, x)∧ of (z, x)∧ y 6= z]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: page(p), of(p, b),
Cstatus: discourse old(b)

Imagine that the target is the page p. Adding the literal page(p) to the
description preserves familiarity and, furthermore, narrows down the set of po-
tential anchors to {b}. This means that the anchor can be identified correctly,
and the first part of the uniqueness condition is satisfied. However, the second
part of the uniqueness condition is not satisfied: Cprivate ∪ Cshared entails that
there is another page which is also part of the book b. The algorithm will try
to add of(p,b) in the next step. This will not change anything, and then there
will be nothing left to do. So, the algorithm will fail.

Description Targets HA SA
1. ∅ {p} c: all entities of Cshared c : {b}
2. {page(p)} {p} c : {b} c : {b}
3. {page(p), of (p, b)} {p} c : {b} c : {b}

4.4.2 Adapting Spud to the Generation of Bridging Descriptions

In this section, we want to adapt the Spud system described in Chapter 3
so that it can generate bridging descriptions. Recall that Spud is not a spe-
cialized system for generating definite descriptions like Dale and Reiter’s algo-
rithm. It provides a general mechanism for sentence planning. So, the units
that are planned are not single noun phrases, but can be whole sentences
or even small texts (if allowed by the grammar). The planning of referring
expressions is one subtask that Spud has to solve. Starting from a commu-
nicative goal of the form 〈C, e,Γ〉 (i.e., describe entity e with an expression
of syntactic category X while communicating the propositions contained in Γ;
see Section 2.3.2) spud simultaneously assembles the semantic content and
constructs the syntactic structure of an utterance. The building blocks in this
construction process are the lexical entries provided by a Lexicalized Tree Ad-
joining Grammar (LTAG) that associates semantic and pragmatic constraints
with each elementary tree. The semantic constraints specify the assertion and
presupposition of the elementary tree in question. The pragmatic constraints
specify properties of the discourse state and communicative situation in which
the tree can be used. In particular, we use the pragmatic constraints to state
requirements concerning the discourse status of possible anchors. Figure 4.4
shows the lexical entry for a noun with definite article. The pragmatic con-
straints demand that either the referent of the noun phrase be hearer old or
the anchor be discourse old. This ensures that bridging descriptions are used
only if they can be anchored to an entity which has been mentioned before.

82 Chapter 4. Beyond Co-reference: Bridging Descriptions

) 〈NP, X〉

* 〈DET〉

the

+ 〈NP, X〉

cook

assertion:

presupposition: cook(X)

pragmatics: status(X, hearer old)∨
anchor status(X, discourse old)

Figure 4.4: A lexical entry for a definite NP.

status(X, hearer old) and anchor status(X, discourse old) are abbreviations
for more complex tests. anchor status(X, discourse old), for example, is sat-
isfied if Cstatus |= discourse old(a) for at least one entity a ∈ FA(X,P,C), for
a given presupposition P and context C.

The outline of the search problem that Spud has to solve is shown in
Figure 4.5. States consist of an LTAG derived tree associated with semantic
and pragmatic constraints and of a set of informational goals, i.e., facts that
still have to be conveyed. In the beginning the derived tree consists of just one
node which in turn corresponds to an elementary tree consisting of just one
substitution node labeled with information from the communicative goal. The
set of informational goals corresponds to the set of facts Γ provided by the
input. A solution is found if the derived tree has no open substitution nodes
(i.e., is syntactically complete), and all entities referred to in the presupposition
are uniquely identified. Given the definition of uniqueness developed in this
chapter (Definition 4.7), that means that for all entities t mentioned in P (i)
(the presupposition associated with DTree(i)) the following should hold:

1. dHA(P,C) ⊆ dSA(t) and iHA(P,C) ⊆ iSA(t, C)
(the anchors are identified correctly)

2. Cprivate ∪ Cshared 6|= ∃x[P (x) ∧ bridge(x, a) ∧ x 6=t] for all a ∈ FA(t, P, C)
(the target is unique wrt. its anchor)

A new state s(i+ 1) is derived from the current state s(i) by applying the
search operator to state s(i). This involves the following steps:

Step 1: Select a lexical entry. An elementary tree T associated with
assertion AT , presupposition PT and discourse status constraints DT is chosen
from the lexicon. This elementary tree has to fulfill the following conditions.
There is a substitution σ which instantiates the free variables of the semantic
and pragmatic constraints. When σ is applied to T , it should be possible to
substitute or adjoin the result into DTree(i) at some node n. Furthermore, the
semantic constraints have to be supported by the context in the following way.
The instantiated assertion follows from the private knowledge of the speaker:

Cprivate |= σ(AT).

4.4. Generating Bridging Descriptions 83

input: a communicative goal 〈C, e,Γ〉
a context C consisting of Cprivate, Cshared, and Cstatus

an LTAG grammar which associates semantic constraints (asser-
tion

and presupposition) and pragmatic constraints with the elemen-
tary trees

state s(i): DTree(i), an LTAG derived tree paired with asserted informa-
tion

A(i), presupposed information P (i), and pragmatic con-
straints D(i).

Γ(i), a set of facts

initial state: DTree(0) = ↓ • 〈C, e〉, A(i) = P (i) = D(i) = ∅

(state s(0)) Γ(0) = Γ

goal state: State s(i) is a goal state, if

1) DTree(n) is syntactically complete,
2) for all entities mentioned in P(i), P(i) satisfies the unique-

ness condition specified by Definition 4.7, and

3) Γ(i) is empty

operator: 1) Choose an elementary tree T that can be adjoined or substi-
tuted into DTree(i) at node n. T ’s semantic and pragmatic
constraints must be supported by the context, in particular
familiarity (Definition 4.4) of the presupposed information
has to be guaranteed.

2) Adjoin or substitute T into DTree(i) at node n.

3) Add the semantic and pragmatic constraints associated
with T to those associated with DTree(i).

4) Eliminate all facts expressed by T from Γ(i).

Figure 4.5: Spud’s search problem — adapted to bridging descriptions.

84 Chapter 4. Beyond Co-reference: Bridging Descriptions

The instantiated presupposition follows from all knowledge of the speaker
(private and shared):

Cprivate ∪ Cshared |= σ(PT).

Moreover, the description has to be familiar for all entities mentioned in the
presupposition:

FA(t, σ(PT) ∪ P (i), C) 6= ∅ for all tmentionedinσ(PT) ∪ P (i).

Recall that in the original version of the algorithm, σ(PT) was required to
follow from the shared knowledge alone, i.e., all free variables in PT had to be
instantiated to entities that the hearer knows. In order to allow for bridging
descriptions this constraint had to be relaxed. The presupposed entities need
not be bound by discourse old entities themselves, but they have to be familiar.
That is, given the description, it must be possible to for the hearer to relate
them to discourse old entities.

Finally, σ(DT), the instantiated pragmatic constraints, have to be true
with respect to Cshared ∪ Cstatus.

Step 2: Combine the selected tree T with DTree(i) at node n. σ(T)
is either substituted or adjoined into DTree(i).

Step 3: Update the semantic and pragmatic information. Let AT ,
PT , andDT be the assertion, the presupposition, and the pragmatic constraints
associated with T , respectively. Then

A(i+ 1) = A(i) ∪ σ(AT),
P (i+ 1) = P (i) ∪ σ(PT), and
D(i+ 1) = D(i) ∪ σ(DT).

Step 4: Update the set of informational goals. Finally, the set of
informational goals Γ(i) needs to be updated. This means that all facts φ ∈
Γ(i) which follow from σ(AT) are deleted from Γ(i).

Search Strategy

Spud originally uses a greedy search strategy without any backtracking. This
basically means that the mechanism selecting elementary trees for extending
the linguistic structure being built must never make any mistakes. In partic-
ular, when the search is at a point where a noun phrase has to be built, the
selection mechanism has to decide whether to build a definite or an indefi-
nite noun phrase. In our extended version of Spud, it is not always possible to
make the correct choice at this point. We might notice only later that there are

4.4. Generating Bridging Descriptions 85

not enough properties to build a uniquely identifying description. Therefore,
I now propose to add a certain amount of backtracking to Spud.

We do not want to allow for general backtracking, because exploring dif-
ferent ways of building the same structure or different orderings of modifiers
should be avoided. So, we have to impose some restrictions on the choice
points that we store in order to return to them if needed later on. We will
remember only those alternatives which are contradictory to the choice actu-
ally being made. For instance, if two different initial trees can be substituted
at the same node, choosing one of them will rule out the possibility of ever
substituting the other one at that node later on. Therefore, we will remember
this alternative for backtracking. Alternatives involving different substitution
nodes, on the other hand, are not contradictory: choosing to do one of the
substitutions now does not mean that the other substitution cannot be done
later. Similarly, we assume that two adjunctions, even at the same node, are
not contradictory. In this way we avoid generating different permutations of
the same set of modifiers. So, backtracking is allowed only in a very restricted
number of cases, namely when there is a choice between substituting different
elementary trees at the same node. Note, that this restriction might need to be
relaxed further. It could, e.g., turn out that interacting pragmatic constraints
make two alternatives involving substitution at different nodes contradictory.

We are now ready to test this revised version of the Spud algorithm on
some examples.

Example 1. Assume that Spud is given the communicative goal 〈S, s1, ∅〉
and the following context:

Cshared: restaurant(r),
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: cook(c), of(c, r), excellent(s1, c)
Cstatus: discourse old(r)

Spud’s initial state is

, 〈S , s1〉
assertion: ∅
presupposition: ∅

The first step adds information about s1.
- 〈S, s1〉

↓ . 〈NP , c〉 / 〈VP , s1〉

0 〈V 〉

is

1 〈Adj , s1〉

excellent

assertion: {excellent(s1, c)}

presupposition: ∅

86 Chapter 4. Beyond Co-reference: Bridging Descriptions

Now, there is an open substitution node, which needs to be filled. The lex-
ical entry the cook (Figure 4.4) could be substituted here. The presupposition
is supported by the context using the substitution σ = {X ← c}:

Cspeaker |= cook(c)

FA(t, {cook(c)}, C) = {r} 6= ∅.

The pragmatic constraints are also fulfilled because r is discourse old.

2 〈S, s1〉

3 〈NP , c〉

4 〈DET 〉

the

5 〈NP , c〉

cook

6 〈VP , s1〉

7 〈V 〉

is

8 〈Adj , s1〉

excellent

assertion: {excellent(s1, c)}

presupposition: {cook(c)}

Now, the set of hearer anchors for c equals the set of familiar anchors for c.
In addition, nothing speaks against assuming that c is the only cook of r. So,
the uniqueness condition is satisfied and the search stops.

Example 2. The following context contains two restaurants which have both
been mentioned before.

Cshared: restaurant(r1), italian(r1),
restaurant(r2), chinese(r2)
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: cook(c), of(c, r1), excellent(s1, c)
Cstatus: discourse old(r1), discourse old(r2)

The goal is to express that the cook of the Italian restaurants is excellent. The
first few steps, until the cook is excellent has been built, are just as in the
previous example. In this case, however, this description is not a goal state.
The set of hearer anchors for c is {r1, r2} while the set of speaker anchors is
{r1}. spud tries to add information to rule out the distracting anchor. One
thing it can do is to adjoin the preposition of to the NP the cook.

4.4. Generating Bridging Descriptions 87

9 〈S, s1〉

: 〈NP , c〉

; 〈DET 〉

the

< 〈NP , c〉

= 〈NP , c〉

cook

> 〈PP〉

? 〈P〉

of

↓ @ 〈NP , r1〉

A 〈VP , s1〉

B 〈V 〉

is

C 〈Adj , s1〉

excellent assertion: {excellent(s1, c)}

presupposition: {cook(c),
of (c, r1)}

Now, we have an open substitution node which can be filled by substituting
the restaurant. In the resulting state, the anchors of c and r1 are still not
unambiguously identified, but adding the information that r1 is Italian rules
out all distracting anchors.

D 〈S, s1〉

E 〈NP , c〉

F 〈DET 〉

the

G 〈NP , c〉

H 〈NP , c〉

cook

I 〈PP〉

J 〈P〉

of

K 〈NP , r1〉

L 〈DET 〉

the

M 〈NP , r1〉

N 〈Adj 〉

Italian

O 〈NP , r1〉

restaurant

P 〈VP , s1〉

Q 〈V 〉

is

R 〈Adj , s1〉

excellent
assertion: {excellent(s1, c)}

presupposition: {cook(c),
of (c, r1), restaurant(r1),

italian(r1)}

Now, the sentence is syntactically complete and all presupposed entities are
uniquely identified. Thus, we have reached a goal state.

Note how syntactic constraints led to the substitution of the noun restau-
rant, although the information that it adds to the description is not necessary
for achieving the satisfaction of the uniqueness conditions.

Example 3. The last generation task I want to discuss is the problem of
referring to the page of a book. The communicative goal is 〈S, s, ∅〉 (build a
sentence describing entity s). The relevant context is as follows:

88 Chapter 4. Beyond Co-reference: Bridging Descriptions

Cshared: book(b),
∀x[book(x)→ ∃yz[page(y)∧ page(z)∧ of (y, x)∧ of (z, x)∧ y 6= z]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: page(p), of(p,b), torn(s,p)
Cstatus: discourse old(b)

In the first step, an elementary tree describing the state s is substituted.

S 〈S, s〉

↓ T 〈NP , p〉 U 〈VP , s〉

V 〈V aux〉

is

W 〈V part, s〉

torn

assertion: {torn(s, p)}

presupposition: ∅

Then, spud tries to fill the open substitution node. There are two elementary
trees which could be added: the page or a page. spud prefers the definite NP
(cf. the preference ranking described in Section 2.3.4).

X 〈S, s〉

Y 〈NP , p〉

Z 〈DET 〉

the

[〈NP , p〉

page

\ 〈VP , s〉

] 〈V aux〉

is

^ 〈V part, s〉

torn

assertion: {torn(s, p)}

presupposition: {page(p)}

This description does not satisfy the uniqueness condition because p is not
unique with respect to its anchor. It follows from the context that the book b
has more than one page. spud will try to repair this by adding more informa-
tion to the NP the page until it produces the page of the book. At this point
no more information can be added, and a greedy search strategy, as the one
the original version of Spud is using, would simply stop, failing to achieve the
communicative goal. Allowing for some backtracking, as was suggested earlier
in this section, Spud would continue by replacing the noun phrase the page of
the book with a page, because substituting a page is a contradictory alternative
to adding the page. The result would then be as follows:

_ 〈S, s〉

` 〈NP , p〉

a 〈DET 〉

a

b 〈NP , p〉

page

c 〈VP , s〉

d 〈V aux〉

is

e 〈V part, s〉

torn

assertion: {torn(s, p), page(p)}

presupposition: ∅

4.5. Probable and Inducible Parts 89

Cshared: room(r),
∀x[room(x)→ ∃y[room accessory(y) ∧ of (y, x)]]
∀x[chandelier(x)→ room accessory(x)]
∀xy[of(x, y)→ bridge(x, y)]

Cprivate: chandelier(c), of(c, r),
Cstatus: discourse old(r)

Figure 4.6: Example context involving inducible parts.

The result is syntactically complete, and the indefinite noun phrase does
not carry any presuppositions or pragmatic constraints. Hence, we have reached
a goal state.

4.5 Probable and Inducible Parts

Section 4.1 mentioned that bridging descriptions can refer to necessary parts
(restaurant–cook, room-ceiling) or to probable or inducible parts (car–spoiler,
room-chandelier). However, the definition of hearer anchors given above only
considers necessary parts. We will now see how to relax it so that it also
captures probable or inducible parts.

The following example illustrates that Definition 4.2 (the definition of
hearer anchors) is indeed too strict. Consider the context represented in Fig-
ure 4.6, and assume that the goal is to build an expression referring to entity
c, the chandelier. The speaker anchors for this entity are SA(c, C) = {c, r}.
The set of hearer anchors is defined as the set of all entities for which the
hearer can infer that they are related to an entity fitting a given property.
HA(chandelier, C) is empty because the hearer cannot infer that the room r
must have a chandelier. However, human hearers are able to infer the link be-
tween chandeliers and rooms, as Example (54) shows. Entity r should therefore
belong to the set of hearer anchors.

(54) John entered the room. The chandeliers were sparkling brightly.

It is possible to detect the link between the chandelier and the room because
we know that rooms have all kind of room specific accessory, such as windows,
furniture or lamps, and we also know that chandeliers are a special type of
room accessory. The new definition for an extended set of hearer anchors will
therefore have to consider entities for which the hearer can infer that they
are related via a bridging relation to an entity with property P , such that P
subsumes the description.2

2A property P subsumes another property Q iff ∀x[Q(x)→ P (x)] holds.

90 Chapter 4. Beyond Co-reference: Bridging Descriptions

Now, let’s see how such cases of reference to probable parts interact with
the uniqueness condition. Consider Example (55a). While salad bars are not a
necessary part of all restaurants, they are a kind of restaurant accessory, which
in turn is a necessary part of every restaurant. The use of the definite descrip-
tion in this example is problematic, though, because there are two restaurants
in the context which could both act as anchors, i.e., the uniqueness condition
is violated. This problem disappears if the link is made explicit, as shown in
Example (55b). The additional information rules out the Italian restaurant as
a potential anchor. This means that in order to calculate the hearer anchors
we have to generalize the information that the target is a salad bar to the fact
that it is a type of restaurant accessory, but the additional information (that
the target is at the Greek restaurant) has to remain as it is.

(55) a. There are an Italian restaurant and a Greek restaurant on Market
Street. ??? The salad bar is great.

b. There are an Italian restaurant and a Greek restaurant on Market
Street. The salad bar at the Greek restaurant is great.

The computation of speaker anchors does not differ for necessary or possi-
ble parts as it is not based on the description but only on the bridging relations
that the speaker knows exist. The basic strategy that I propose for capturing
the fact that hearers consider possible parts as anchors is to generalize the
description in a way that I will describe shortly and to use this generalized de-
scription for computing the hearer anchors. So, in the example above, instead
of computing the hearer anchors for the description {salad bar(b), at(b,r1),
restaurant(r1), greek(r1)}, we compute the hearer anchors for the description
{restaurant accessory(b), at(b,r1), restaurant(r1), greek(r1)}.

To define how the description is generalized, I use the (new) notion of main
target : if the goal is to build an expression referring to entity t, then t is the
main target. The planning of this referring expression may require reference to
other (secondary) targets. In the case of the salad bar at the Greek restaurant,
for instance, the salad bar is the main target and the Greek restaurant a
secondary target. Now, given a main target t and a description (set of literals)
L, the set of generalized descriptions L is defined as follows:

L = {LQ′ | there is a literal Q(t) ∈ L and

Q′ subsumes Q and

LQ′ = (L− {Q(t)}) ∪ {Q′(t)}}

The extended set of hearer anchors (HAE) for an entity t is then the union

4.5. Probable and Inducible Parts 91

of the hearer anchors for t given each LQ ∈ L:

HAE =
⋃

LQ∈L

dHA(P (t, LQ)) ∪
⋃

LQ∈L

iHA(P (t, LQ)).3

Unfortunately, closer inspection of this simple way of computing hearer
anchors based on generalized descriptions shows that it is too lenient. It will
classify entities as hearer anchors which, in fact, aren’t possible anchors. So,
we have to impose further restrictions.

The first problem can occur when using generalized descriptions in the
computation of direct hearer anchors. Assume that the shared knowledge
looks as follows and that the goal is to refer to entity e2.

Cshared: teacher(e1), woman(e2),
∀x[woman(x)→ person(x)],
∀x[teacher(x)→ person(x)]

Given the description {woman(e2)}, one possible generalization is {person(e2)}.
However, if this generalization was used to compute the hearer anchors, both
entities e1 and e2 would be considered as possible anchors, while intuitively,
the woman should unambiguously refer to e2. I, therefore, propose to order
the descriptions in L according to generality and to consider more general de-
scriptions only if the descriptions that they subsume do not yield any hearer
anchors. In the example, the description {woman(e2)} does produce a hearer
anchor and, hence, the generalization would not be considered.

The second problem occurs with indirect hearer anchors. Consider the con-
text in Figure 4.7. Assume that the goal is to refer to entity s and that the sys-
tem has already built the description the saxophone player ({sax player(s)}).
Note that this would (intuitively) be an infelicitous use of a bridging descrip-
tion as saxophone players are not typical restaurant accessory. Given the
method just proposed for computing hearer anchors, however, the description
could be generalized to {person(s)}. The set for hearer anchors computed for
this generalized description would be {r} because restaurants have cooks and
cooks are persons and, hence, restaurants have persons. As a result, the sets
of speaker and hearer anchors would coincide and the bridging description the
saxophone player would be licensed.

This kind of mistake can be avoided by capturing and integrating the in-
tuition that the rule that restaurants have cooks cannot be used because sax-
ophone players are not a subtype of cooks. The following revised definition of
indirect hearer anchors captures this. Given a target entity t, a generalized
description LQ and a context C, the set of indirect hearer anchors is defined
as follows:

3P (t, LQ) is the property attributed to t by the set of literals LQ as described on page
76.

92 Chapter 4. Beyond Co-reference: Bridging Descriptions

Cshared: restaurant(r),
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀x[cook(x)→ person(x)]
∀x[sax player(x)→ person(x)]
∀xy[of(x, y)→ bridge(x, y)]

Cprivate: sax player(s), of(s, r),
Cstatus: discourse old(r)

Figure 4.7: Example context involving non-inducible parts.

iHAE(P (t, LQ), C) = {a | Q is the most specific atomic property for which
Cshared |= ∃x[bridge(x, a) ∧Q(x)] holds, and
Cshared |= ∃x[bridge(x, a) ∧ P (t, LQ)(x)]

Given this definition of indirect hearer anchors, the restaurant r would not
be considered as an anchor for the generalized description {person(s)} because
person is not the most specific propertyQ for which Cshared |= ∃x[bridge(x, r)∧
Q(x)] holds; the property cook is more specific.

4.6 Discussion

4.6.1 Summary

This chapter described an approach to the generation of bridging descriptions.
I first formulated the constraints that bridging descriptions have to fulfill in
order to be appropriate with respect to the context in which they are used.
More specifically, they have to be familiar, which means that the hearer has to
be able to infer the existence of the target entity on the basis of general lexical
and domain knowledge and the content of the bridging description. Secondly,
they have to be uniquely identifying, which means that the anchors have to
be identified correctly and that it has to be plausible to assume that only one
entity fitting the description is related to the anchors.

The formalization of these constraints is based on the notions of speaker
and hearer anchors, which allow to generalize Dale and Reiter’s notion of
distractors such that not only co-referential but also bridging descriptions are
captured.

I then presented extended versions of Dale and Reiter’s algorithm and of
Spud’s algorithm which can generate familiar and uniquely identifying bridg-
ing descriptions.

Since bridging descriptions refer to hearer new entities, a representation of
the context that represents both the shared knowledge of speaker and hearer
and the private knowledge of the speaker is necessary. Furthermore, general

4.6. Discussion 93

lexical and domain knowledge has to be accessible in order to check familiarity.
Bridging descriptions are a kind of indirect anaphora in the terminology

of Webber et al. (2003). To the best of my knowledge, indirect anaphora
have never been examined from a generation point of view before. Krahmer
and Theune’s (2002) approach presented in Chapter 3 is capable of generating
a type of reduced definite description which they call “bridging description”.
However, their use of the term bridging description is slightly different from
the standard one introduced in Section 4.1. In their approach, the context
is a set of facts representing a visual scene that both speaker and hearer can
see. So, they do not represent the speaker’s private knowledge or rule based
background knowledge. They extend Dale and Reiter’s algorithm with a treat-
ment of salience so that noun phrases which are not uniquely identifying with
respect to the whole context can be used to refer to highly salient entities. Sim-
ilarly, possessive relations are expressed by possessive pronouns if the owner
is a salient entity. Furthermore, Krahmer and Theune suggest to replace pos-
sessive pronouns by the definite article if the owner is inanimate. The result
are definite descriptions that look like bridging descriptions. However, these
descriptions always refer to hearer old entities.

4.6.2 Further Questions

The algorithms presented above should be used together with a treatment of
salience, as there is evidence that the anchors of bridging descriptions have to
be salient in the same way that the referents of pronouns have to be salient
(Gundel et al. 1993; Erkü and Gundel 1987). To this end, the part of the
context recording information about the discourse state (Cstatus) would have
to provide more detailed salience information. In Chapter 3, we discussed some
approaches to deriving such information from the previous discourse. Then,
the different requirements on the salience of direct and indirect anchors would
be modeled as pragmatic constraints associated with the definite description.
More specifically, the anchor status requirement (cf. Figure 4.4) would specify
that indirect anchors need to be highly salient.

The goal of the algorithm presented here is to construct unambiguous refer-
ences to entities. Such anaphoric definite descriptions may include additional
information that is not used for anchoring the target entity but asserts new
information about that entity. The problem of how to choose and realize this
additional information is orthogonal to the problem discussed here. (Cheng
et al. 2001) describe a corpus study addressing this problem.

Finally, corpus studies (Fraurud 1990; Poesio and Vieira 1998) have shown
that more than 50% of all definite descriptions used in texts are neither directly
nor indirectly anaphoric. These 50% inculde noun phrases referring to absolute
uniques, such as the pope or the sun, but also noun phrases referring to hearer
new entities such as the expression the woman he went out with last night in

94 Chapter 4. Beyond Co-reference: Bridging Descriptions

the following example from Hawkins (1978).

(56) What’s wrong with Bill? Oh, the woman he went out with last
night was nasty to him.

This suggests that in order to produce natural sounding text a generation
system should also be able to use such non-anaphoric definites. However, I
do not know of any principled approach to generating them. An interesting
direction of further research would be to investigate in how far the uniqueness
conditions proposed here are useful for capturing the constraints governing the
user of non-anaphoric definite descriptions.

Chapter 5

Beyond NP Anaphora: Additive Particles

The previous chapter developed a strategy for generating bridging descriptions
which are a kind of indirect anaphor. In this chapter, we will look at another
class of anaphoric expressions, namely, lexically-specified anaphora. More pre-
cisely, this chapter is about the generation of additive particles such as also
or too. Additive particles are an interesting case to examine because they are
anaphoric expressions which are not realized as noun phrases. The main goal
of this chapter will be to specify in which contexts an additive particle should
be generated.

Consider the following example.

(57) Antonia invited friends for a Japanese dinner. She prepared miso soup,
sushi, and tempura. She also made some green tea ice cream.

Note that, if the last sentence did not contain the word also, the discourse
would sound much less fluent. Thus, also seems to play an important role here
in “gluing” the discourse together; in other words, it improves the cohesion of
the discourse. But what is the function of also that lets it achieve this cohesive
effect? Intuitively, also expresses in this example that whatever is said to hold
of some green tea ice cream holds of other things as well. It thereby marks
that there is a certain kind of parallelism between the last sentence and the
event of Antonia preparing miso soup etc. mentioned earlier in the discourse.
What “parallel” exactly means in this context is one of the points that will
be discussed further in this chapter. For the moment, I will simply use the
expression also-parallel to refer to the kind of parallelism that is signaled by
the use of also and other additive particles.

Here are the basic ingredients of my proposal. Following Zeevat (2003), I
assume that the use of additive particles is triggered by a marking principle,

95

96 Chapter 5. Beyond NP Anaphora: Additive Particles

which requires that utterances expressing a proposition that is also-parallel
with respect to the discourse context be marked. Hence, a generation system
has to be able to detect also-parallelism. The definition of also-parallelism
developed in this chapter crucially involves a notion of alternative sets, i.e.,
sets of entities which are similar with respect to a given property. I argue
that two kinds of alternative sets are relevant for also-parallelism: sets defined
through ontological categories and sets induced by discourse structure.

The chapter is organized as follows. Section 5.1 reviews previous analyses of
additive particles. Based on these analyses, I define a notion of also-parallelism
suited for generation in Section 5.2. This definition involves alternative sets.
So, I review previous work on alternative sets in Section 5.3 and then analyze
what kinds of alternative sets play a role in the use of additive particles in
Section 5.4. Sections 5.5 discusses how the relevant alternative sets can be
obtained in a generation system, and Section 5.6 shows how to integrate a
strategy for generating additive particles into a spud style generation algo-
rithm. Finally, Section 5.7 summarizes the chapter and discusses some open
questions.

I will restrict my investigations to cases of also that occur before or after
the final verb and cases of too that occur at the end of a clause. In particular,
I will not look at clause initial occurrences of also which behave differently in
some respects.

5.1 Approaches to Additive Particles

Before going into the discussion of previous analyses of additive particles I
want to introduce one piece of terminology. When comparing the sentence
the additive particle occurs in with the antecedent sentence, there is one con-
stituent which differs. In Example (57) this is the noun phrase some green tea
ice cream. I will call this constituent the associated constituent.

In this section, I will discuss previous accounts of additive particles. There
are two complementary strands of research. First, there are accounts that an-
alyze additive particles as presupposition triggers and are mainly interested in
the mechanisms by which additive articles influence the meaning of the sen-
tence they appear in. These accounts usually take the associated constituent
as given. Second, there are approaches which examine additive particles as a
kind of focus particle. They try to explain how the associated constituent is
identified.

5.1.1 Additive Particles as Presupposition Triggers or Context Markers

Traditionally, additive particles like too and also are taken to trigger presuppo-
sitions. According to Karttunen and Peters (1979), for example, they trigger
the following presupposition:

5.1. Approaches to Additive Particles 97

There are other x under consideration besides the entity e described
by the associated constituent, such that what is said about e in the
rest of the sentence also holds of x.

So, he also likes ice cream in (58), where ice cream is the associated con-
stituent, presupposes that there is some other entity besides ice cream which
Norbert likes.

(58) Norbert likes cake. He also likes ice-cream.

However, the behavior of additive particles is not always as predicted for
prototypical presupposition triggers as shown by Zeevat (2002) and van der
Sandt and Geurts (2001). In particular, additive particles (and in fact other
particles as well) display the following characteristics:

a) The presupposition that they supposedly trigger cannot be accommo-
dated. That is, there has to be an antecedent in the previous discourse.

b) Antecedents can be in positions which, according to Discourse Represen-
tation Theory (DRT) (Kamp and Reyle 1993), are inaccessible. That
is, the antecedent is in a position from where, according to the theory,
it should not be able to bind the presupposition.

c) When they are used, their use is often obligatory.

Examples (59–61) illustrate these points. Example (59) shows that the sen-
tence Norbert also likes ice cream is infelicitous at the start of a discourse. This
is evidence that the “presuppositions” triggered by additive particles have to
be bound by an antecedent and cannot be accommodated.1 In (60) the mate-
rial embedded under the modal may, which, according to DRT, is inaccessible
to the following sentence, binds the presupposition triggered by too. In Exam-
ple (61), finally, speaker B has to use an additive particle like also or too if he
wants to express that Norbert, just like Antonia, likes ice-cream. If he does
not include the additive particle, the utterance will either sound inappropriate
or it will be understood as a correction.

(59) # Norbert also likes ice cream.

(60) A: Antonia may well have dinner in New York.
B: Norbert is having dinner in New York, too.

(61) A: Antonia likes ice-cream.
B: # Norbert likes ice-cream.
B’: Norbert also likes ice-cream.

1In certain cases, the antecedent may be provided by the visual context rather than the
previous discourse.

98 Chapter 5. Beyond NP Anaphora: Additive Particles

Zeevat (2002, 2003) argues that the behavior of (additive) particles cannot
be explained when analyzing them as pure presupposition triggers and that a
set of marking principles needs to be assumed. In (Zeevat 2003), he therefore
suggests that additive and other discourse particles should be treated as context
markers, i.e., as expressions that mark the content of the current sentence as
standing in a certain relation to the discourse context. In particular, additive
particles would mark the fact that the context contains a proposition which is
also-parallel to the content of the current sentence.

From a generation point of view, Zeevat’s (2003) approach is particularly
useful because it predicts when additive particles should be used. Purely
presuppositional analyses do not make such predictions. They only say when
additive particles should not be used. Assume, for example, that a generation
system has to describe the eventuality like(e, antonia, cake) in a context in
which like(e’, antonia, ice cream) holds. The sentence Antonia likes cake as
well as the sentence Antonia also likes cake express this content. The second
version additionally carries a presupposition which, in the given context, can
be bound. This presupposition, however, is coupled to the use of the lexical
item also. It therefore does not have any impact on the appropriateness of
the version without also. If we want to enforce that in the given context the
version with also is preferred, we need to impose a marking principle requiring
that a sentence be marked if its content is also-parallel to a proposition in
the context. Interestingly, the heuristics that the spud algorithm described
in Chapter 3 uses to choose between using a definite or an indefinite article
implicitly encodes a similar marking rule for discourse old entities: if an entity
is discourse old, an NP referring to it marks this by using the definite article.

Zeevat also suggests a definition of also-parallelism. Under his definition
two sentences are also-parallel, if they are addressing the same question. We
will see later in this chapter that this cannot account for all occurrences of
additive particles.

5.1.2 Alternative Particles as Focus Particles

The word also is often classified as a focus particle (König 1991; Quirk
et al. 1985). Focus particles are phrases that interact with the information
structure of the sentence they occur in. Before discussing this interaction, let
me briefly introduce the notion of information structure.

Information structure partitions a sentence into two parts: the theme,
which refers to the issue that is being addressed or the question that the
sentence is answering, and the rheme, which advances the discourse by pro-
viding new information related to the issue under discussion. The information
structure of a sentence is reflected in its syntactic and prosodic realization.
Consider, for instance, the following question/answer pairs. (Here and in what
follows, I use small capitals to indicate the nuclear pitch accent, i.e., the most

5.1. Approaches to Additive Particles 99

prominent pitch accent in the sentence.)

(62) a. What did Antonia eat?

b. Antonia ate cake.

(63) a. Who ate cake?

b. Antonia ate cake.

(64) a. What did Antonia eat?

b. # Antonia ate cake.

In these examples, the questions fix which issue is under discussion. They
thereby impose a theme/rheme partitioning on the corresponding answers.
In Example (62) the question requires the answer to be about things that
Antonia ate. So, the theme of the answer is Antonia ate X while the rheme
is cake. Example (62), on the other hand, discusses who ate cake. So, the
theme of the answer is X ate cake and the rheme Antonia. The different
ways of partitioning the sentence Antonia ate cake into theme and rheme is
reflected in the intonation.2 Example (64) shows that a question/answer pair is
infelicitous if the intonation of the answer suggests a theme/rheme partitioning
which is different from the one required by the question.

In addition to the theme/rheme division, theories of information structure
often assume a second dimension along which sentences are partitioned. This
dimension distinguishes between kontrast and background. Kontrasts can occur
in the theme as well as the rheme and serve to distinguish the theme (rheme)
from possible alternative themes (rhemes) that the context makes available.
Example (65) illustrates this. As determined by the question, the theme of the
last sentence is Norbert had X and the rheme is pizza. Norbert is a kontrast
within the theme which serves to distinguish the current them from the con-
textually given theme Antonia had X. Kontrast is indicated in this example
by a (secondary) pitch accent on Norbert.

(65) Antonia and Norbert went to the restaurant together. Antonia had
spaghetti. What did Norbert have?
Norbert had pizza.

While it seems to be clear that intonation does reflect aspects of informa-
tion structure, there is no agreement on how particular notions of information
structure map to prosodic cues. It is often assumed that pitch accents mark

2Note that the intonation usually does not completely specify the extension of the rheme.
The sentence Antonia likes green bananas, for example, could be an answer to the question
Which kinds of fruit does Antonia like? In this case, the rheme would be green bananas. It
could also be an answer to the question Which kinds of green fruit does Antonia like? In
this case, the rheme would be bananas. This phenomenon has been called focus projection.

100 Chapter 5. Beyond NP Anaphora: Additive Particles

kontrasts. Steedman (2000), for example, proposes that pitch accents mark
kontrasts, while different phrase boundary tones indicate theme and rheme.
Vallduv́ı and Vilkuna (1998) propose instead that rhemes are always realized
with an H* pitch accent, while kontrasts are generally stressed but do not
necessarily have to be.

The terminology used in the literature on information structure is quite
diverse. Theme and rheme are also referred to as presupposition and focus
or topic and comment. Similarly, kontrast has also been called focus. See
(Kruijff-Korbayová and Steedman 2003) for a compact overview.

After this excursion to introduce the notion of information structure, let
us now return to the discussion of additive particles. Consider the following
examples.

(66) Antonia also gives cake to Norbert.

(67) Antonia also gives cake to Norbert.

They illustrate that the meaning of the additive particle changes as the in-
tonation changes. In Example (66) cake is the associated constituent of also
and the particle expresses that Antonia gives Norbert cake in addition to other
things; in Example (67), on the other hand, the associated constituent is Nor-
bert and the particle expresses that Antonia gives cake to Norbert in addition
to other people. Jackendoff (1972) called this phenomenon association with
focus. As he used the term focus to refer to the rheme, this indicates that he
took the pitch accent to indicate rheme and that he assumed that the asso-
ciated constituent is determined by the rheme. In the meanwhile it has been
shown, however, that the associated constituent can be part of the theme (like
in Example 68) and that focus particles are better analyzed as associating with
kontrast (cf. Krifka 1999 or Vallduv́ı and Vilkuna 1998).

(68) Antonia and Norbert went to the restaurant together. Antonia had
spaghetti. What did Norbert have?
Norbert also had spaghetti.

I now sketch two influential analyses of association with focus phenomena:
(Krifka 1992) and (Rooth 1992). We will see that both approaches analyze
additive particles as making statements about context dependent sets of al-
ternatives. I will not go into the details of the proposals here. A detailed
discussion and comparison of the two approaches can be found in (Kowal-
ski 2002).

Krifka’s (1992) approach to focus is based on structured meanings (von
Stechow 1982). In structured meaning approaches to focus, the semantic rep-
resentation of a sentence is divided into two parts, called background and focus.
The background is obtained from the semantics of a sentence by lambda ab-

5.1. Approaches to Additive Particles 101

stracting over the focused expression. The focus is the semantics of the focused
expression.

(69) Antonia likes Norbert.

background: λx[like(antonia, x)]

focus: norbert

Krifka analyzes focus particles as operators taking structured meanings as
arguments. His analysis of the particle also looks as follows. B stands for
background of the sentence without also, and F for the focus of the sentence
without also. x ≈ β is taken to express that x and β are comparable according
to contextual and ontological restrictions. Krifka does not give any further
details on how comparability is defined.

also(〈B,F 〉) : B(F) ∧ ∃X[X 6= F ∧ X ≈ F ∧ B(X)]

So, also expresses that the semantic content of the sentence without taking
into account the also is true (B(F)) and that there is an entity (X) which
is different from but comparable to the focused expression and of which the
background also holds. This analysis can be further refined by separating the
asserted part of the meaning from the presupposed part (Krifka 1992). The
following examples illustrate Krifka’s approach.

(70) Antonia also likes Norbert.

semantics: also(〈λx[like(antonia, x)], norbert〉) =

like(antonia, norbert)

∧ ∃X[X 6= norbert ∧X ≈ norbert ∧ like(antonia,X)]

(71) Antonia also likes Norbert.

semantics: also(〈λR[R(antonia, norbert)], like〉) =

like(antonia, norbert)

∧ ∃X[X 6= like ∧X ≈ like ∧X(antonia, norbert)]

Rooth (1992) couches his approach within the framework of alternative
semantics. The idea underlying alternative semantics is that each phrase is
associated with a focus semantic value in addition to its ordinary semantic
value. The ordinary semantic value are the usual truth conditions, while the
focus semantic value is a set which is obtained from the ordinary semantic
value by replacing the part corresponding to the focused expression with some
other expression of the same semantic type. Here is an example.

102 Chapter 5. Beyond NP Anaphora: Additive Particles

(72) Antonia likes Norbert.

ordinary semantic value: like(antonia, norbert)

focus semantic value: { like(antonia,x) | x is in the domain of
individuals }

Focus particles are taken to relate what is in their scope to alternatives
provided by the focus semantic value. Intuitively, exclusive particles, such as
also, say that all of these alternatives are false, while additive particles say
that at least one of these alternatives holds.

Expressions of the form NP also VP, for instance, say that VP(NP) holds
and that there is a property P such that P is different from VP, P is an element
of a set C, and P (NP) holds (see Example 73). The set C is, furthermore,
constrained to be a subset of the focus semantic value of VP. The exact value
of C can still be more restricted and has to be provided by the context. So,
this is where the notion of contextually given alternatives comes in in Rooth’s
approach.

(73) NP also VP.

semantics: VP(NP) ∧ ∃P [P ∈ C ∧ P 6= VP ∧ P (NP)]

for C ⊆ VP f where VP f is the focus semantic value of VP

The following examples illustrate Rooth’s analysis of additive particles.

(74) Antonia also likes Norbert.

semantics: like(antonia, norbert)
∧ ∃P [P ∈ C ∧ P 6= λx[like(x, norbert)] ∧ P (antonia)]

for C ⊆ {λx[like(x, y)] | y is in the domain of individuals}

(75) Antonia also likes Norbert.

semantics: like(antonia, norbert)
∧ ∃P [P ∈ C ∧ P 6= λx[like(x, norbert)] ∧ P (antonia)]

for C ⊆ {λx[R(x, norbert)] | R is in the domain of binary
relations }

So, both Krifka and Root employ a notion of alternative sets which is
subject to contextual restrictions. Rooth uses the variable C to model these
alternative sets and Krifka does it via his comparability relation ≈. Note that
the alternative sets represented by Rooth’s variable C and the alternative sets
generated by the relation ≈ differ. While ≈ holds directly between alternative
entities, C lifts this notion to bigger expressions. C contains expressions which
are identical up to one part, which is instantiated with different alternatives.
The alternative sets that I will be using in the rest of this chapter are of the

5.2. Defining Also-Parallelism 103

kind generated by ≈, that is, they are sets of alternative entities.
The need for contextually given alternative sets in analyses of focus par-

ticles is best exemplified with examples using the particle only. Consider the
following question/answer sequence.

(76) a. Did Antonia give cake and ice-cream to Norbert?

b. No, she only gave cake to Norbert.

c. But she also gave him a lollipop.

The answer in (76) clearly does not mean that cake was the unique thing that
Antonia gave to Norbert; it was just the only thing with respect to the set
of cake and ice-cream. Besides that, she may have given him other things,
such as a lollipop. So, the particle only does not refer to all entities different
from the associated constituent, but only to those entities different from the
associated constituent which belong to the same contextually given set as the
associated constituent.

In order to be able to predict the use of additive particles (and focus parti-
cles in general) a generation system obviously has to be able to decide whether
two entities belong to an alternative set. This means that we have to make
precise how the context restricts alternative sets. In the next section, we will
therefore review notions of alternative sets that have been used in the litera-
ture.

5.2 Defining Also-Parallelism

Adopting Zeevat’s approach that additive particles are markers, a generation
system would base its decision to include an additive particle into the sen-
tence it is currently planning on whether or not the current sentence is in a
certain relation to the discourse context. As I said earlier, I call the situation
that is being marked by additive particles also-parallelism. The accounts of
additive particles discussed in the previous section look at them from an inter-
pretation point of view. That is, their formulation of the meaning of additive
particles is based on surface information, such as intonation. When approach-
ing additive particles from a generation point of view, we need a definition of
also-parallelism which is based on semantic and pragmatic information alone,
as the surface realization is the output that we want to predict. So, in this
section, I will develop a definition of also-parallelism which is only dependent
on the semantics of a sentence and the discourse context. Factoring surface
information out of the analyses presented in the previous section, it can be
defined informally as follows.

Definition 5.1 (Also-parallelism (informal version)). A sentence is also-pa-
rallel with respect to the discourse context if it attributes a property P to one

104 Chapter 5. Beyond NP Anaphora: Additive Particles

element a of an alternative set which has been attributed before to another
element a′ of the same alternative set.

This definition says that the entities a and a′ are comparable (a ≈ a′)
but different (a 6= a′). Furthermore, the current sentence expresses that P (a)
holds and the discourse context entails that P (a′) holds. The sentence that is
currently being generated will contain a constituent referring to entity a. This
constituent will be the associated constituent.

Let us now make the definition more precise so that it will be possible for
a generation system to test whether the sentence it is currently building is
also-parallel with respect to the context.

Also-parallelism is closely related to the class of coherence relations called
resemblance relations by Kehler (2002). Resemblance relations relate even-
tualities that belong to a common type and the participants of which either
have similar properties as well or are contrasted. Kehler presents six different
instantiations of the resemblance relation: parallel, contrast, exemplification,
generalization, exception, and elaboration. The two sentences in Example (77)
taken from (Kehler 2002) are related by the parallel relation.

(77) Dick Gephardt organized rallies for Gore, and Tom Daschle distributed
pamphlets for him.

Kehler defines parallelism as follows. Two sentences S1 and S2 are parallel,
if their assertions specify two eventualities of types p1 and p2, respectively,
such that there is a common supertype p subsuming both p1 and p2. Further-
more, the participants of the eventualities a1, . . . , an and b1, . . . , bn have to be
of the same kinds. That is, given that the assertion of S1 describes the entities
a1, . . . , an using properties q1,1, . . . , q1,n and S2 describes b1, . . . , bn using prop-
erties q2,1, . . . , q2,n, there has to be a qi which subsumes q1,i and q2,i and which
is true of both ai and bi for each i (1 ≤ i ≤ n). In the case of Example (77) p1

and p2 are organize rallies for and distribute pamphlets for and the common
supertype is do something in support of. Furthermore, a1 and b2 correspond
to Dick Gebhardt and Tom Daschle which have the common property of being
supporters of the democrats3 and a2 and b2 are co-referent.

Also-parallelism seems reminiscent of Kehler’s parallel relation, but it is
more restricted. It is, for example, not possible to include an additive particle
into the second sentence of Example (77).

(78) a. ??? Dick Gephardt organized rallies for Gore, and Tom Daschle also
distributed pamphlets for him.

3 Kehler (2002) assumes that it is known that they are high-ranking democrats. Not
knowing this, the common property has to be inferred from the context.

5.2. Defining Also-Parallelism 105

b. ??? Dick Gephardt organized rallies for Gore, and Tom Daschle dis-
tributed pamphlets for him, too.

However, if we replace either distributed pamphlets for in the second sentence
by organized rallies for or Tom Daschle by a reference to Dick Gephardt,
then also-parallelism holds and an additive particle can be used and is in fact
(almost) obligatory.

(79) a. Dick Gephardt organized rallies for Gore, and Tom Daschle also or-
ganized rallies for him.

b. Dick Gephardt organized rallies for Gore, and he (= Dick Gephardt)
also distributed pamphlets for him.

Another difference between Kehler’s parallelism and also-parallelism is that,
while Kehler’s notion of parallelism is symmetric by definition, also-parallelism
is not symmetric as the examples in (80) show.

(80) a. Norbert ate an apple.
Antonia also ate something.

b. Antonia ate something.
??? Norbert also ate an apple.

So, also-parallelism involves one pair of parallel entities that is a pair of
alternatives (such as Dick Gephardt and Tom Daschle in Example (79a) and
organized rallies for and distributed pamphlets for in Example (79b)) while the
other participants either have to be pairwise co-referential or the description
given of entity bi in the second sentence also has to apply to the corresponding
entity ai.

Definition 5.2 (Also-parallelism). Let S be a sentence, e the eventuality it
describes, and let a1, . . . , an be the entities that are specified as participants of
e by S. Furthermore, let p be the sort of e as specified by S and q1, . . . , qn the
properties that S uses to describe a1, . . . , an. S is also-parallel with respect to
the context iff the context provides an eventuality e′ with participants b1, . . . , bn
such that bi and ai are alternatives for one i and qj holds of bj for all j 6= i.
If the above conditions hold, we will also say that eventuality e is also-parallel
to eventuality e′.

Let us illustrate this by means of an example. Suppose that the sentence
currently being generated has the semantic content

give(e, a1, a2, a3) ∧ antonia = a1 ∧ norbert = a2 ∧ book(a3).

So, the property p mentioned in the above definition is give, q1 is λx[antonia =
x], q2 is λx[norbert = x], and q3 is λx[book(x)]. This sentence is also-parallel

106 Chapter 5. Beyond NP Anaphora: Additive Particles

with respect to the context if the context provides an entity e′ such that
give(e′, b1, b2, b3). Furthermore, one of the entities a1, a2, a3 should be an al-
ternative of the corresponding entity bi, and for all other bj the context should
entail that qj(bj) holds. This means that there are three possibilities how e
can be also-parallel to e′.

1. a1 ≈ b1, norbert = b2, and book(b3).
So, in this case a1 should be the referent of the associated constituent
and the realization would be Antonia also gives a book to Norbert.

2. a2 ≈ b2, antonia = b1, and book(b3).
The corresponding realization would be Antonia also gives a book to
Norbert.

3. a3 ≈ b3, antonia = b1, and norbert = b2.
This should be realized as Antonia also gives a book to Norbert.

Note that Definition 5.2 requires exactly one participant of event e to be
an alternative of the parallel entity of event e′. That means that there will
be one associated constituent referring to one entity. Hence, the definition
does not cover cases as shown in Example 81, where both a book and Charlie
are associated with the additive particle. I will get back to such cases in
Section 5.7.

(81) Did Antonia give anything to the boys?
Yes, she gave a record to Norbert.
She also gave a book to Charlie.

5.3 Alternative Sets in the Literature

In this section, I review work that has made use of alternative sets. I will first
discuss alternative sets defined with respect to ontological knowledge. Then,
I turn to alternative sets induced by questions and show how this kind of
alternative sets gets evoked in discourses.

5.3.1 Ontological Alternatives

Bierner (Bierner 2001; Bierner and Webber 2000) proposes a treatment of
alternative markers, such as other, such, and besides, which is based on alter-
native sets. In his approach, alternative sets are defined by properties. That
is, given a property, exactly those entities which have this property form an
alternative set. Bierner only considers ontological categories as set-forming
properties. The property country, for example, would define the set of all
countries {argentina, belgium, denmark, . . .}.

5.3. Alternative Sets in the Literature 107

Modjeska (2003) shows that there are also occurrences of alternative mark-
ers that involve alternative sets specific to the context. She gives the example
in (82). It is not generally the case that associations are sponsors, but they
can be, and in the specific situation described the British Clothing Industry
Association is a sponsor.

(82) Until recently the British Clothing Industry Association subsidised
the event, enabling Britain’s designers to show their collections in an
international venue. But the association has tired of being the sole sup-
porter and other sponsors are needed. (Modjeska 2003, p. 36)

I am aware of two approaches that have used ontology based alternative
sets in generation, namely (Bierner 1998) and (Prevost 1995, 1996). They
base the generation of contrastive intonation on alternative sets. In Prevost’s
system, two entities are alternatives if the most specific concept they belong
to is the same or if their respective most specific concepts have the same direct
subsumer. Given the ontology on the left of Figure 5.1, for example, the most
specific concept e1 belongs to is swordfish which has the direct subsumer
fish. That means that e1 would be an alternative to all other fishes, like, for
example, entity e2.

With this definition the design of the ontology directly influences what
counts as alternatives. For example, given the ontology on the left in Fig-
ure 5.1, the entities e1 and e2 are alternatives to each other. In the ontology
on the right, on the other hand, e1 and e2 would not be alternatives because
the most specific concepts they belong to (swordfish and trout) do not have a
common direct subsumer.

To make the definition more flexible Prevost (1995) and Gardent and
Kohlhase (1997) suggest to take into account the length of the path in the
hierarchy leading from one entity to the other: the shorter the path, the
more plausible is the assumption that the two entities are alternatives. Pre-
vost (1995) wants to use this graded notion of parallelism to generate accents
of different strength, and Gardent and Kohlhase (1997) translate it into a
cost function for their abductive approach to recognizing parallelism. For the
purpose of deciding whether to introduce a marker or not, which is a binary
decision, a fixed cut-off point would still be needed.

Identifying certain concepts in the hierarchy as those that define alternative
sets would give some independence of the particular structure of the ontology.
Bierner follows this strategy. He defines alternatives as belonging to certain
broad ontological categories and, additionally, satisfying some constraints de-
rived from the current state of the system. For example, all actions (ontological
category) that belong to a procedure in the system’s current plan (constraint
based on the current state) are considered alternatives. Nine other kinds of
alternative sets are defined in a similar way. Depending on the complexity of

108 Chapter 5. Beyond NP Anaphora: Additive Particles

fish

swordfish

e1

tuna trout

e2

fish

salt water fish

swordfish

e1

tuna

freshwater fish

trout

e2

Figure 5.1: Two ontologies of different granularity.

the domain, it will be more or less feasible to identify alternative set forming
concepts in this way.

Summarizing, two general strategies for defining ontological alternative sets
have been used. One possibility is to define alternative sets with respect to
the structure of the ontology by specifying how many levels one is allowed to
go up for finding alternatives (e.g., Prevost 1995). The other strategy is to
pick certain ontological categories as alternative set defining properties (e.g.,
Bierner 1998). The sets that are obtained in either way can be reduced further
by taking into account properties related to the situation or discourse state
(e.g., Bierner 1998).

5.3.2 Discourse Structure based Alternatives

So, entities may be grouped into alternative sets because of their ontological
categories. But in a discourse, entities of divers ontological categories may
sometimes form an alternative set because of the role that they play in this
particular discourse. We will now review the mechanisms that have been
proposed to model this kind of alternative sets.

Hamblin (1973) has suggested that the semantics of questions is the set
of their potential answers. So, questions can be taken to introduce sets of
alternatives.

These sets can, for example, be used to explain how questions impose
restrictions on the information structure of their answers (cf. Section 5.1).
According to Rooth (1992) and Steedman (2000), the prosodic cues used for
marking the rheme presupposes a set. This set is constrained to be a subset
of what Rooth calls the focus semantic value, i.e., the set that is obtained
by replacing the rheme with alternative expressions. The set introduced by
a question can be used to bind this presupposed set. If this is not possible
because the set introduced by the question cannot be a subset of the focus
semantic value, the question/answer pair becomes infelicitous.

Such sets of alternatives which are due to questions also play a role in
discourses. Discourses do often not contain explicit questions, but it has been

5.3. Alternative Sets in the Literature 109

argued that they are structured by implicit questions (van Kuppevelt 1995;
Klein and von Stutterheim 1987). Under this view, sentences in a discourse
are answers to implicit questions. The hearer has to reconstruct what question
a given sentence is answering. The previous discourse as well as the sentences
itself provide clues which help him do so. On the one hand, a given stretch of
discourse limits the number of questions that can be discussed next. On the
other hand, the question that the speaker chooses to address next (whether
explicitly or implicitly given) will determine the information structure of the
answering sentence. The information structure, in turn, will be reflected in
the syntax and prosody, providing cues from which the hearer can reconstruct
the question.

In van Kuppevelt’s approach4, discourse evolves starting from a feeder,
which can be either a sentence or small discourse describing an eventuality or
a non-linguistic event occurring in the situation in which the discourse takes
place. A feeder induces a set of possible questions that could be asked to
further explain and elaborate on the content of the feeder. Van Kuppevelt
(1995) gives the following example:

feeder: John is ill.

possible questions: • What does he suffer from?
• For how long already?
• What is the reason?
• When do you expect him to recover?
• etc.

So, the discourse starts from a set of questions which can reasonably be
asked in the given situation. One of these questions is selected and becomes
the question under discussion (QUD). Which question is selected can be made
explicit by actually posing the question, or the selection can happen implicitly
by providing only an answering sentence. In the latter case, the answer has
to contain enough information for the hearer to reconstruct the question. For
example, in the dialog in (83) the question What did you eat? is explicit and
Spaghetti is sufficient as an answer. In a monologue where the question would
remain implicit a more contentful answer would be necessary as illustrated by
Example (84).

(83) A: We went to the Italian restaurant on Market Street, yesterday.

B: What did you eat?

A: Spaghetti.

4Independently, Roberts (1996) and Ginzburg (1996) have developed accounts of dia-
logue structure which are based on the same idea. I will concentrate on monologues, here,
and will, therefore, not explain the details of their approaches.

110 Chapter 5. Beyond NP Anaphora: Additive Particles

(84) a. We went to the Italian restaurant on Market Street, yesterday.

b. I ate spaghetti.

b′. # Spaghetti.

Often a QUD cannot be answered in just one step. This calls for subques-
tions or follow-up questions, providing partial answers to the original question.
Taken together, these answers will provide a complete answer to the original
question. In (85), for instance, the question about the presents that Antonia
and Norbert gave to their aunt is answered in two steps, each providing an
answer to a specialization of the original question.

(85) a. Yesterday, Antonia and Norbert visited their aunt because it was her
birthday.

〈 What did they give her? 〉

〈 What did Antonia give her? 〉

b. Antonia gave her some flowers.

〈 What did Norbert give her? 〉

c. Norbert gave her chocolates.

Example (86) exemplifies subquestions of a slightly different type. The first
question is answered but the speaker does not deem the answer sufficient and
provides a reason for why (86b) is indeed answering the question.

(86) a. Antonia hit Norbert.

〈 Why? 〉

b. He called her a cow,

〈 Why is that a reason for hitting him? 〉

c. and she hates it when anyone calls her that.

The QUD can be thought of as being the top-most element on a stack of
questions. When a new (sub-)question gets raised, it is pushed onto the stack
and becomes the QUD; when the QUD has been answered, it is popped off
the stack.

Once a question becomes the QUD, the discourse participants cannot aban-
don it without either providing an answer or agreeing that it cannot be an-
swered at the moment. In particular, the QUD has to be answered before a
new, unrelated question can be addressed. Examples (87) and (88) illustrate
what happens if this rule is violated. In (87), the feeder triggers, among oth-
ers, two questions, namely What did they give her? and Who else came to
the party?, which are answered one after the other. The answer of the first
question is given in two steps. In (88), the answering of the two questions is

5.3. Alternative Sets in the Literature 111

interleaved; i.e., the second question is addressed before the first one is fully
answered. As a result, the text sounds awkward. This is the case indepen-
dently of whether Norbert’s aunt is referred to by a pronoun or a definite noun
phrase.

(87) a. Yesterday, Antonia and Norbert visited their aunt because it was her
birthday.

〈 What did they give her? 〉

〈 What did Antonia give her? 〉

b. Antonia gave her some flowers.

〈 What did Norbert give her? 〉

c. Norbert gave her chocolates.

〈 Who else came to the party? 〉

d. Many other relatives were also there.

(88) a. Yesterday, Antonia and Norbert visited their aunt because it was her
birthday.

〈 What did they give her? 〉

〈 What did Antonia give her? 〉

b. Antonia gave her some flowers.

〈 Who else came to the party? 〉

c. Many other relatives were also there.

〈 What did Norbert give her? 〉

d. ??? Norbert gave her chocolates.

d′. ??? Norbert gave his aunt chocolates.

In his approach to additive particles as context markers, Zeevat (2003)
assumes a theory of discourse structuring questions such as the one by van
Kuppevelt. The additive particle is used to mark that the current answer is
an additional answer to a question that has already been answered once. While
I will also argue that the alternative sets which are introduced by the implicit
questions structuring the discourse play a role in the use of additive particles,
we will see in the next section that not all cases where the use of an additive
particle is obligatory can be explained that way.

We have seen two different characterizations of alternative sets. In the first
one the alternative set defining properties are derived from an ontology. And in
the second one they are induced by the implicit questions which are structuring
discourse. We will see in the next section that both types of alternative sets

112 Chapter 5. Beyond NP Anaphora: Additive Particles

are necessary and can account for different occurrences of additive particles.

5.4 Different Sources for Alternatives

To be able to check for also-parallelism, a generation system needs to determine
whether two entities belong to the same alternative set or not. While the
analyses of additive particles discussed in Section 5.1 all involve alternative
sets, they do not specify any further where these alternative sets come from.
We will now discuss some examples trying to get a better understanding of
what generates the alternative sets that play a role in the use of also.

The example given in the introduction to this chapter and repeated here
as (89) allows for two ways of explaining the origin of the relevant alternatives.

(89) Antonia invited friends for a Japanese dinner. She prepared miso soup,
sushi, and tempura. She also made some green tea ice cream.

Firstly, the alternative set in question, containing miso soup, sushi, etc., could
be defined ontologically as the set of Japanese dishes.

a.{x | japanese dish(x)}

Secondly, it could be evoked by the discourse structure as follows. The question
under discussion is What did Antonia prepare for dinner? This generates the
alternative set of all those things that Antonia prepared.

b.{x | make for dinner(a, x)}

Note the following difference between these two possibilities. In the case
where the relevant alternative set is defined ontologically, the defining property
(japanese dish) and the common property asserted to hold of one element of
the set (λx.make for dinner(a, x)) are not the same. If we assume that the
relevant alternative set is the one provided by the discourse structure, on the
other hand, the common property and the property defining the set are the
same (λx.make for dinner(a, x)). This difference can be explained as follows.
The ontologically defined sets are assumed to be shared knowledge, so that it
is not necessary to make explicit which entities belong to this set. In contrast,
as we saw in the previous section, the alternative set induced by an implicit
question is not shared knowledge; the hearer/reader has to be able to infer it
from the discourse.

In the remainder of this section, I will argue that both types of alternative
sets are needed to explain the different uses of also.

(90) gives an example which can only be explained with the help of alter-
native sets that have been induced by the discourse structure.

5.4. Different Sources for Alternatives 113

(90) a. Antonia hit Norbert

b. because he had stolen her bicycle.

c. He had also called her a cow.

What the use of also in the last sentence expresses is that the event of Norbert
calling Antonia a cow (let’s call it e1) in addition to the event of Norbert
stealing Antonia’s bicycle (let’s call it e2) is a reason for why Antonia hit
Norbert. So, the relevant alternative set has to be a set of events including
both e1 and e2. This set cannot be one which is due to ontological reasons. To
start with, it is not plausible to assume an ontological category that subsumes
both of these events. Such a category would either be very broad, such as
the class of all events, or very particular, such as the class of all things that
make Antonia mad. If we allowed very broad categories to define alternative
sets, almost everything would be an alternative of everything else. Classes
such as the class of all things that make Antonia mad, on the other hand,
would require a very fine grained ontology which is tailored to the topic of the
discourse that is being generated.

Furthermore, whether or not the two event descriptions (Norbert stole An-
tonia’s bicycle and Norbert called Antonia a cow) count as parallel depends on
the discourse structure they occur in. This should not be the case if the events
were alternatives because of their ontological category. In Example (91), the
descriptions of the two events appear in a different discourse structure than in
Example (90), and the use of an additive particle is not required, and, in fact,
would be slightly odd.

(91) a. Norbert stole Antonia’s bicycle.

b. She got really mad at him,

c. but Norbert just/ ???also called her a cow

d. and took off on the bicycle.

So, ontological knowledge does not explain why the two events e1 and e2

should be alternatives. The alternative set evoked by the discourse structure
of Example (90), on the other hand, does group e1 and e2 into one set. The
question under discussion (QUD) for sentences (b) and (c) is Why did Antonia
hit Norbert? This question induces the alternative set

{x | reason(x, e) where e is the event of Antonia hitting Norbert}.

The events e1 and e2 are both reasons for Antonia’s hitting Norbert and are,
therefore, members of this set.

(92) shows an example from the Brown Corpus which displays similar fea-
tures. The question under discussion for the last two sentences is What are
the positive results of the experiment?.

114 Chapter 5. Beyond NP Anaphora: Additive Particles

(92) a. These experiments can be considered exploratory only.

b. However, they do demonstrate the presence of large normal pressures
in the presence of flat shear fields which were forecast by the theory
in the first part of the paper.

c. They also give information which will aid in the design of a more
satisfactory instrument for the measurement of the normal pressures.

Now, consider the following example. As in the previous section, angle
brackets indicate the (implicit) questions that structure the discourse.

(93) a. Antonia and Norbert went to an Italian restaurant for dinner.

〈 What did they eat? 〉

〈 What did Antonia eat? 〉

b. Antonia had spaghetti.

〈 What did Norbert eat? 〉

c. Norbert also had spaghetti.

In this example, also expresses that Norbert, like Antonia, had spaghetti. So,
the relevant alternative set should be one containing Norbert and Antonia. Let
us first have a look at the alternative sets generated by discourse structure.
The question What did they eat? asks for pairs of dishes, such that Antonia
and Norbert ate them. That is, the alternative set generated by this questions
is something like

{〈x, y〉 | eat(antonia, x) and eat(norbert, y)}.

This question is answered in two steps by providing answers for the subques-
tions What did Antonia eat? and What did Norbert eat? Both of these ques-
tions induce alternative sets consisting of dishes, namely

{x | eat(antonia, x)}

and
{x | eat(norbert, x)},

respectively. Hence, none of the alternative sets due to discourse structure
contains Norbert or Antonia.

On the other hand, Norbert and Antonia do belong to the same ontolog-
ical category, namely the category of human beings. In addition, the text
introduces them as a group in sentence (93a).

(94) shows an example from the Brown Corpus which is similar in structure.
The relevant alternative set is that of speakers at a dog show. It is introduced
explicitly in sentence (94a). The text first gives a long summary of what

5.4. Different Sources for Alternatives 115

Mrs. Long said in her speech and then summarizes what Mr. Barcus said in
his speech. Also marks the phrase reporting that Mr. Barcus said something
which Mrs. Long also said.

(94) a. As has been the custom for the past several years, John Cross [...]
arranged for the Juniors’ meeting before the Class, and invited two
speakers from the dog world to address them.

b. [... 1 sentence]

c. After the Juniors were welcomed and congratulated for qualifying for
the Finals of the Junior Class, Mrs. William H. Long, Jr. was in-
troduced as the first speaker.

d. [... 19 sentences (about Mrs. Long’s speech) ...]

e. Mrs. Long wished all the Juniors luck in the Class [...]

f. The second speaker was Harvey Barcus, President of the Dog Writers
Ass’n of America.

g. [... 6 sentences (about Mr. Barcus’ speech) ...]

h. In closing, Mr. Barcus also wished all the Juniors luck in their Class.

The alternative set relevant for the use of also in this example is not based
on discourse structure. The argumentation to show this is analogous to the
one that we used for Example (93). However, discourse context does play a
role. The alternative set does not seem to be derived from a general ontology
alone, since the set of speakers at a dog show is not a concept which can be
assumed to be represented as an atomic concept in an ontology. So, it seems
to be possible to explicitly introduce alternative sets or to, at least, provide
restrictions on sets derived from the general ontology.

Sentences (b) and (c) in (93) are answers to two parallel subquestions of a
more general QUD (What did they eat?). Similarly, sentences (e) and (h) of
Example (94) can be seen as answers to parallel subquestions. It may, there-
fore, seem that an explanation based on discourse structure could be devised
for these cases. (95) gives an example which shows more clearly that discourse
structure cannot be responsible for the use of also in such cases. Sentence (b)
is the antecedent for the additive particle in sentence (e). The relevant alter-
native set should be one containing Norbert and Charlie. Discourse structure
does not help in this case: while (b) gives an explanation for why Norbert
ate all the cake, (e) gives a reason for why Antonia scolded Norbert. Norbert
and Charlie are alternatives by virtue of being both human beings. Differently
from Examples (93) and (94), the discourse does not explicitly introduce a
more specific set they belong to. Implicitly it is clear, though, that Norbert
and Charlie are not just any human beings, but have some special relation to
Antonia.

116 Chapter 5. Beyond NP Anaphora: Additive Particles

(95) a. Antonia baked a cake.

b. Norbert really likes cake

c. and ate it all.

d. Antonia scolded him

e. because Charlie also likes cake.

To summarize, we have seen cases where the relevant alternative set was
clearly not due to ontology but could be explained by discourse structure.
And we have seen cases where it was clearly not due to discourse structure.
I believe that the forming of alternative sets in these latter cases is based on
ontological categories. However, the discourse can provide information that
further restricts these ontologically given sets. In many cases, both alternative
set forming mechanisms apply. The alternative set licensing the use of also
in the introductory example of this chapter, for instance, can be explained by
ontology as well as discourse structure. Further research is needed to get a
better grip on the mechanisms that influence ontologically defined alternative
sets.

The distinction between ontology based and discourse structure based al-
ternative sets has been developed based on an exploratory corpus study of 105
cases of also found in the Wall Street Journal. In order to verify the proposed
classes, I have then used them to analyze 81 randomly selected examples of
also from the Brown Corpus. This analysis was carried out in three phases.

I first tried to find an antecedent for each occurrence of an additive particle
and marked the antecedent as well as the associated constituent. In the second
phase, I annotated the discourse surrounding the occurrence of the additive
particle with the QUDs that structure it. Finally, in a third pass, I checked for
each occurrence of an additive particle whether the referent of the associated
constituent and the referent of the parallel constituent in the antecedent answer
the same QUD, whether they are explicitly introduced as belonging to a group,
or whether they have a common ontological category.

The results are as follows. 59% of the 81 cases from the Brown Corpus
involved discourse structure based alternatives, in 14% of the cases the alter-
native set was explicitly introduced as a group, and 16% involved an ontology
based alternative set. The remaining cases (11%) were occurrences of also
that could not be analyzed. In most of these remaining cases it was impossible
to find an antecedent, but in a few cases it was not possible to classify the
alternative set licensing the use of also.

5.5. Deriving Alternative Sets in a Generation System 117

5.5 Deriving Alternative Sets in a Generation System

In order for a generation system to be able to decide whether to use an additive
particle it has to be able to detect also-parallelism, and since the definition of
also-parallelism crucially involves the notion of alternative sets, the generation
system needs to have access to a representation of alternative sets. In this
section, I propose strategies for deriving the alternative sets that are relevant
for additive particles in a generation system.

5.5.1 Discourse Structure Based Alternative Sets

We have seen in the previous section that the alternative sets relevant for the
use of alternative particles can be introduced by discourse structure. More
explicitly, assuming that discourses are structured by (implicit) questions (
van Kuppevelt 1995, cf. Section 5.3) different answers to the same question
under discussion (QUD) are alternatives.5 So, to decide whether two entities
are alternatives, a generation system needs to know whether these two entities
are answers to the same QUD.

To decide which questions have to be asked in which order and what infor-
mation has to be provided to answer them is the task of document planning
(cf. Chapter 2). And indeed, schemata are usually designed to follow a strategy
of questions and subquestions. These questions are not made explicit in rep-
resentations of schemata, but they are reflected in the schema steps (i.e., calls
of subschemata and instructions to retrieve information from the database),
which specify how to answer the QUD.

The schemata for the weather reporting system shown in Figure 2.1 on
page 32, for example, are designed to answer the following questions and sub-
questions (indicated by indentation).

(96) a. schema: describe weather
〈 What was the weather like in month X? 〉
〈 What were the overall tendencies? 〉
→ call schema describe month overall
〈 What significant events were there? 〉
→ call schema describe significant events

b. schema: describe month overall
〈 What were the overall tendencies? 〉
〈 What was the average temperature? 〉
→ knowledge base query for average temperature
〈 How much rainfall was there? 〉
→ call schema describe overall rainfall

5For the moment, I am restricting myself to QUDs with exactly one wh-word. I will get
to QUDs with multiple wh-words or no wh-word in Section 5.7.

118 Chapter 5. Beyond NP Anaphora: Additive Particles

c. schema: describe overall rainfall
〈 How much rainfall was there? 〉
〈 What was the overall rainfall? 〉
→ knowledge base query for overall rainfall
〈 How does the rainfall in month X compare to the overall rainfall

in the same year? 〉
→ knowledge base query for overall rainfall in year

d. schema: describe significant events
〈 What significant events were there? 〉
〈 On which days did it rain particularly heavily? 〉
→ knowledge base query for days of heavy rain
〈 On which days was it particularly cold or warm? 〉
→ knowledge base query for days with extreme temperatures

Queries to the knowledge base may return more than one answer, which
means that the corresponding question under discussion can be answered in
more than one way and that the answers constitute an alternative set.

For example, the subquestion On which day did it rain particularly heav-
ily? triggers a knowledge base query that returns all dates of those days on
which rainfall exceeded a given threshold. Let’s say that there are several an-
swers to this query, namely the 3rd, 4th, 22nd, and 23rd. So, the alternative
set {3rd, 4th, 22nd, 23rd} is created. Depending on decisions which are made
during aggregation and lexicalization this might trigger the use of an additive
particle later on, as illustrated by Example (97).

(97) Heavy rain fell on the 3rd and 4th. There was heavy rain on the 22nd
and 23rd, too.

The accessibility of alternative sets introduced in this way is dependent on
the corresponding QUD; they are accessible only as long as the QUD is active.
As was said in Section 5.3, QUDs are maintained in a stack. And whenever
a question is answered, it is popped from the stack. At the same time, the
corresponding alternative set becomes inaccessible.

The view of schemata presented here makes them very similar to the dialog
plans used by Larsson et al. (2000, 2002). They describe a dialog system
architecture based on the idea of structuring discourse through questions. In
their system, an initial question raised by the user is used to select a plan from
a predefined library of dialog plans. This dialog plan specifies what information
has to be retrieved from the knowledge base and which subquestions have to
be raised if the original question cannot be answered in one step.

Another common approach to document planning is based on RST relations
(Mann and Thompson 1988) as mentioned in Section 2.1.1. While I have
suggested a strategy based on schemata here, I believe that discourse structure

5.6. Generating Additive Particles 119

based alternative sets could also be constructed in an RST based planning
approach. The basic idea would be that two propositions are alternatives if
they are both related to a third proposition by the same RST relation.

5.5.2 Explicitly Introduced Groups and Ontology Based Alternative Sets

In Section (5.4), we have seen that the discourse can introduce alternative sets
explicitly (cf. Examples (93) and (94)). I, therefore, assume that the use of
expressions referring to sets of entities (like plural or coordinated NPs) leads to
the creation of alternative sets. Typically, the alternative sets created in this
way will contain entities which are of a common ontological type. However, I
do not explicitly impose this restriction. So, if a coordinated NP, for instance,
refers to entities belonging to different ontological categories, these entities will
be considered alternatives.

Finally, there are cases involving alternative sets which are neither due
to discourse structure nor to explicitly introduced groups (cf. Example (95)
in Section 5.4). To cover these cases I adopt a rather restrictive strategy
for retrieving alternative sets along the lines of Prevost 1995, 1996): given
two entities, take the sets of most specific concepts for each of these entities.
If the intersection of these two sets is not empty, then the two entities are
alternatives. The alternative sets obtained in this way can be further restricted
using constraints due to the current state of the system (cf. Bierner 1998).
These constraints will be highly dependent on the particular application. In
the system described in Chapter 7, for example, the location of the user in a
virtual world will impose restrictions on the alternative sets derived from the
ontology.

5.6 Generating Additive Particles

I will now integrate a strategy for generating additive particles based on their
analysis as markers into a Spud style generation system. To this end, we first
have to decide how to treat marking principles in this generation system. I,
then, specify what the additive marking principles looks like, and, finally, close
by showing an example.

5.6.1 Spud with Marking Principles

Marking principles impose general well-formedness constraints on the output:
if and only if the condition specified in the marking principle is true, the
sentences should contain a marker that signals that this condition holds. Ev-
ery sentence has to meet this requirement. Spud’s original mechanisms do
not provide a way of expressing such constraints. They only allow to specify

120 Chapter 5. Beyond NP Anaphora: Additive Particles

pragmatic constraints that are associated with particular linguistic expres-
sions and have to be satisfied whenever these expressions are used. Pragmatic
constraints associated with linguistic expressions that are not used, do not
have any effect. Therefore, pragmatic constraints cannot be used to express
that sentences without a particular particle or other linguistic structure are
inappropriate in certain contexts.

In what follows, I will assume that the system has access to a set of marking
principles as part of its linguistic knowledge. To ensure that the output of
the generation system complies with all constraints imposed by these marking
principles a test to this effect has to be passed by all goal states. Hence, given
the communicative goal 〈C, t,Γ〉 (i.e., build a linguistic structure of category
C which is describing entity t and which is communicating all facts specified
in set Γ), Spud has to carry out the following tests in order to check whether
the algorithm has reached a goal state. (The first three items are as in the
original version described in Figure 2.5 of Chapter 2, the last item is new.)

1. The linguistic expression associated with the current state is syntactically
complete.

2. It communicates all of the facts specified in Γ.

3. It allows the reader to uniquely anchor all presuppositions in the context.

4. It obeys all marking principles.

This ensures that no utterances violating any marking principles are gen-
erated. Now, we have to explain how the use of markers is triggered. For
the moment, I assume that markers do not have any semantic content of their
own. Their only function is to mark that a condition specified by one of the
marking principles holds. Their use is licensed if this condition is satisfied.

Recall Spud’s search algorithm:

1. If the current utterance U is a solution, then return U and stop.

2. Otherwise, compute all possible ways of extending U .

3. Rank them according to a set of given heuristics, and make the best one
the current utterance.

In step 2, an elementary tree is considered if it can be substituted or adjoined
to U , if its assertion and presupposition are true with respect to the private
and shared knowledge respectively, and if its pragmatic constraints are fulfilled.
That is, the introduction of markers is possible if the corresponding marking
condition is satisfied. Heuristics then decide which elementary tree is chosen.
To trigger the use of markers in those cases where they are needed, I use a
new filter (in addition to the ones specified in Section 2.3): if some marking

5.6. Generating Additive Particles 121

condition is satisfied but the current structure does not express that this is so,
prefer elementary trees which signal that this marking condition is satisfied.
I rank this filter below the existing ones so that the syntactic structure and
semantic content are largely assembled before markers are introduced.

5.6.2 The Additive Marking Principle and Additive Markers

Marking principles are of the following form: 〈name: I, domain: D, precon-
ditions: P, marking condition: MC〉. In the case of additive particles, the
marking principle is instantiated as follows:

name: also-parallel(E,E ′)
domain: a full sentence S
precondition: syntactically complete
marking condition: E, the eventuality described by sentence S,

is also-parallel with respect to the context
(cf. Definition 5.2).

The name slot specifies an identifier with parameters. Lexical items are
linked to marking principles using this identifier. The id of the additive mark-
ing principles is also-parallel(E,E ′) where E is the eventuality described in
the current sentence which is also-parallel to some eventuality E ′ provided by
the context.

The domain slot specifies which semantic entities or syntactic structures
the marking principle applies to. In the case of the additive marking principle,
this is the full sentence and the eventuality described by it, but it is possible
to imagine marking principles that apply only to noun phrases, for example.

The precondition slot specifies which conditions have to be fulfilled for
the marking principle to be applicable. These preconditions are used to avoid
unnecessary checking of the marking condition. In the case of the additive
marking principle, the precondition specifies that the relevant sentence should
not have any open substitution nodes.

The marking condition, finally, states the contextual condition which
triggers marking. If the condition specified in this slot is true, the use of an
elementary tree which can signal that this is the case is required.

Here, I have shown what the additive marking principle looks like. Marking
principles will also be needed for the treatment of other anaphoric expressions,
especially, other anaphoric particles, in which case the general schema would
have to be instantiated appropriately.

Figure 5.2 shows the lexical entries for the additive markers also and too.
They are associated with semantic and pragmatic constraints containing a new
slot for specifying that they are markers and which contextual condition they
are signaling. Additionally, they require that the contextually provided event
be discourse old.

122 Chapter 5. Beyond NP Anaphora: Additive Particles

f 〈VP , E〉

g 〈Part〉

also

∗ h 〈VP , E〉

assertion: ∅
presupposition: ∅
pragmatics: {discourse old(E ′)}
marking: {also-parallel(E,E ′)}

i 〈S,E〉

∗ j 〈S,E〉 k 〈Part〉

too

assertion: ∅
presupposition: ∅
pragmatics: {discourse old(E ′)}
marking: {also-parallel(E,E ′)}

Figure 5.2: Lexical entries for the additive particles also and too.

Cshared: {go to(e1, g1, r), in g(a, g1), in g(n, g1), restaurant(r),
eat(e2, a, s), spaghetti(s), named(a,Antonia),
named(n,Norbert)}

Cprivate: {eat(e3, n, s
′), spaghetti(s′), eat(e4, a, p), pizza(p)}

Cstatus: {discourse old(r), discourse old(g1), discourse old(a),
alt set({a, n}), alt set({s, p}) . . .}

Figure 5.3: Example: extended discourse context.

To test whether a sentence describes an also-parallel eventuality Defini-
tion 5.2) is used. This presupposes that it is possible to retrieve the alterna-
tives of a given entity. I assume that the strategies described in Section 5.5 are
used for determining alternatives and that the currently available alternative
sets are represented in the discourse context. The discourse context shown in
Figure 5.3, for example, results from a discourse like

(98) Antonia and Norbert went to the restaurant.
〈 What did Antonia eat? 〉
Antonia ate spaghetti.

At this point there are two alternative sets which are active, namely, {a, n} and
{s, p}. The first one, consisting of Antonia and Norbert, has been introduced
because Antonia and Norbert have explicitly been mentioned as a group in the
first sentence. The second alternative set, consisting of s and p is due to the
implicit question What did Antonia eat?.

5.6. Generating Additive Particles 123

l 〈S, e3〉

↓ m 〈NP , n〉

n 〈NP , n〉

o 〈PN , n〉

Norbert

a: ∅
p: {named (n,Norbert)}

p 〈VP , e3〉

q 〈V , e3〉

eats

a: {eat (e3, n, s
′)}

p: ∅

↓ r 〈NP , s′〉

s 〈NP , s′〉

t 〈N , s′〉

spaghetti

a: {spaghetti (s′)}
p: ∅

Figure 5.4: tag composition of Norbert ate spaghetti.

5.6.3 An Example

Suppose that the current discourse context C looks as the one given in Fig-
ure 5.3 and that the communicative goal that was given to the generation
system is 〈S, e3, ∅〉 (i.e., build a sentence describing entity e3). A spud-like
generator would construct the derivation tree shown in Figure 5.4.

The search then continues as follows. Spud checks whether the tree is
a solution, i.e., it checks whether it is syntactically complete (which is the
case), whether all informational goals are fulfilled (there are none so that this
is trivially the case), and whether all presuppositions are uniquely anchored
(which is the case as well).

Finally, it has to check whether all marking principles are obeyed. In
particular, this means that it has to establish whether the current sentence is
also-parallel with respect to the context. Eventuality e3 is of type eat and it
follows from the context (Cshared) that there is a discourse old eventuality which
is of type eat as well, namely, e2. The participants of e3 are the entities n and
s′ and the corresponding entities of e2 are a and s. Entities n and a are in an
alternative set and it follows from the shared knowledge that spaghetti(s) holds.
Hence, eventuality e3 is also-parallel to eventuality e2. Since this is not signaled
by the current utterance, the additive marking principle is violated. However,
the addition of lexical entries with the marking constraint also-parallel(e3, e2)
is licensed. The next search step will therefore add one of the lexical items
shown in Figure 5.2. The result of adjoining the lexical entry for also is shown

124 Chapter 5. Beyond NP Anaphora: Additive Particles

in Figure 5.5. Now, the marking principle is satisfied and the search stops.

u 〈S, e3〉

v 〈NP , n〉

w 〈PN , n〉

Norbert

x 〈VP , e3〉

y 〈Part〉

also

∗ z 〈VP , e3〉

{ 〈V , e3〉

ate

↓ | 〈NP , s′〉

} 〈N , s′〉

spaghetti

assertion: {eat(e3, n, s
′), spaghetti(s′)}

presupposition {named(n,Norbert)}

pragmatics: ∅

marking: {also-parallel(e3, e2)}

Figure 5.5: The result of adjoining also to the derivation tree of Figure 5.4.

5.7 Discussion

5.7.1 Summary

In this chapter, I have proposed a strategy for generating sentences containing
additive particles. I assume that the use of additive particles is triggered by a
marking principle along the lines of (Zeevat 2003) requiring that a sentence
be marked if it is also-parallel with respect to the context. Also-parallelism
is defined in terms of alternative sets. I argue that there are two kinds of
alternative sets which play a role in the analysis of additive particles: sets which
group entities due to their ontological category and sets which are induced by
the implicit questions structuring discourse (van Kuppevelt 1995).

I believe that the proposed strategy is a starting point for investigating
the generation of other focus particles and, more generally, other expres-
sions involving alternative sets, such as the alternative markers studied by
Bierner (2001) from an interpretation point of view. Investigating such ex-
pressions will also shed more light on the kinds of alternative sets that play a
role and on the mechanisms evoking them in discourse.

5.7. Discussion 125

5.7.2 Further Questions

This chapter has concentrated on characterizing the conditions that trigger
the use of an additive particle and on implementing a strategy for planning
additive particles in a generation system. The algorithm that I have presented
always generates also in a default position which is before the finite verb.
There are a number of questions pertaining to surface realization that I have
not examined. I will now discuss some of them. Then I will touch on two
issues related to the creation of alternative sets which I have not discussed
above, namely the influence that salience might have on the accessibility of an
alternative set and what kinds of alternative sets are triggered by questions
under discussion with more than one wh-word.

Ways of Signaling Also-parallelism

Throughout the chapter, I have assumed that also-parallelism can be marked
by adjoining the particle also to the verb phrase of the also-parallel sentence.
However, there are various other ways of signaling also-parallelism.

To start with, other particles than also are available. Many of the examples
that have been presented in this chapter could be rendered with too or as well
instead of also (cf. Example (99)).

(99) a. Antonia prepared miso soup, sushi, and tempura. She made some
green tea ice cream, as well.

b. Antonia and Norbert went to an Italian restaurant for dinner. Anto-
nia had spaghetti. Norbert had spaghetti, too.

The use of too and as well seems to be more restricted than that of also. They
occur only rarely in cases where the associated constituent encompasses the
whole sentence. Fjelkestam-Nilsson (1983) classifies only 6 occurrences of too
in the Brown Corpus to be of this kind. In general, too and as well are much
less frequent than also. According to Fjelkestam-Nilsson (1983), also occurs
1069 times in the Brown corpus, whereas too only occurs 278 times and as well
52 times.6

The particles moreover and furthermore can replace also in cases where
the whole sentence is the associated constituent. So, Example (90) could also
be realized as in (100).

(100) [Antonia hit Norbert. Why?]

a. He had stolen her bicycle.

b. Furthermore, he had called her a cow.

6These numbers do not include occurrences of too with the meaning of too much or
occurrences of as well in the construction as well as.

126 Chapter 5. Beyond NP Anaphora: Additive Particles

b′. Moreover, he had called her a cow.

Either differs from also in that it requires a negative context, as shown in
Example (101).

(101) Antonia doesn’t like sushi. Norbert doesn’t like sushi either.

Finally, constructions with like or in addition to can be used to signal also-
parallelism. Example (102) from the Brown corpus shows this. The difference
to the previously discussed particles is that the alternative entity is mentioned
explicitly in these constructions.

(102) a. Artur Schnabel was one of the greatest Schubert-Beethoven-Mozart
players of all time [...]

b. But Schnabel was a great teacher in addition to being a great per-
former [...]

Besides particles, certain ways of aggregating several propositions into one
sentence can serve the purpose of signaling that two propositions are also-
parallel. (103) shows some examples.

(103) a. Antonia ate spaghetti and pizza. (NP coordination)

b. Antonia ate spaghetti and Norbert did too. (VP ellipsis)

Further studies are needed to decide which way of signaling also-parallelism
is preferred in a given context, and which are the factors influencing this deci-
sion.

Position of Additive Particle

Another surface realization issue that I have not addressed is the question of
where to place also in a sentence. There is some variation in the syntactic
position the particle also occurs in. However, also commonly occurs either be-
fore the conjugated verb or after the auxiliary verb as shown in Example (104).
This is the case independently of the position of the associated constituent.
80% of the 81 occurences of also in the Brown corpus that I examined are in
this position and when only looking at written texts, this number goes up to
90%.

(104) a. The jury also commented on the Fulton ordinary’s court [...]

b. [...] eleven other minerals also have been found [...]

c. Observations have also been made at 1.5mm using optical techniques
[...]

5.7. Discussion 127

Intonation

Another surface realization related question that will become relevant if not
written but spoken output is to be generated is where to place pitch accents.
The nuclear pitch accent (which is the most prominent pitch accent in a sen-
tence) can fall either on the associated constituent, as in Example (105), or on
the particle itself, as in Example (106).

(105) Antonia had spaghetti.
She also had a pizza.

(106) Antonia had spaghetti.
Norbert also had spaghetti.

Reis and Rosengren (1997) argue that accent placement depends on the
position of also with respect to the associated constituent. They suggest the
following accent placement rule. If the associated constituent follows also
in the sentence, a pitch accent is placed on the associated constituent; if it
precedes also, then also itself carries the main accent.

To be able to apply these rules, we have to identify the associated con-
stituent. To this end, our formulation of also-parallelism and the marking
principle would have to be changed slightly: Definition 5.2 already identifies
the referent of the associated constituent, but does not pass this information
on to later processing steps. It would have to be changed in such a way that
the referent of the associated constituent is retained and made accessible for
surface realization.

Influence of Salience

The use of anaphoric expressions is usually restricted by properties of the
intended antecedent. It has to be sufficiently salient and distinguishable from
potential distractors. How do these factors influence the use of also? Let us
start by looking at the distance that separates occurrences of also from their
antecedents. The following table summarizes results from the Brown corpus.

distance in sentences 0 1 2 3 > 3 no antecedent
% of cases 19.4 41.9 17.7 3.2 4.8 12.9

The distribution is very similar to what is found for pronouns: mostly, the
antecedent is not more than two sentences away. But there are a few cases
where the distance is much bigger. Example 94 was such a case: the antecedent
is 8 sentences before the occurrence of also.

Interestingly, the relevant alternative set is introduced in a sentence which,
assuming that the discourse is structured as a tree, is dominating both the
sentence containing the also as well as its antecedent. The following figure
shows a schematic representation of this configuration.

128 Chapter 5. Beyond NP Anaphora: Additive Particles

discourse

"speaker A did X" "speaker B also did X"

"... two speakers ..."

I suspect that this configuration is not accidental, but that alternative sets
are only accessible in the part of the discourse dominated by the node corre-
sponding to the sentence that introduces the alternatives set. This intuition
still needs to be tested, though.

QUDs With Multiple Wh-words

The QUDs (questions under discussion) that I have used as examples through-
out this chapter have all contained exactly one wh-word. So, if an alternative
set was created, its members were single entities. What about QUDs with
multiple wh-words? Do they induce sets of alternative tuples instead of sets
of alternative entities? And do these alternative tuples trigger the use of also
in the same way that alternative entities do? Example (107) shows that this
is not the case.

(107) It’s Christmas and the children are exchanging presents.

〈 Who gave what to whom? 〉

Antonia gave chocolates to Norbert.

Charlie #also gave a book to Antonia.

Assuming that the set of possible answers is defined as {give(x, y, z)|x, z ∈
children, y ∈ objects} the tuples 〈Antonia, chocolates, Norbert〉 and 〈Charlie,
a book, Antonia〉 should be alternatives and the additive particle should have
several associated constituents. However, as the example shows, the use of
also is not licensed in this case.

This does not mean that it is impossible for also to have multiple associated
constituents as the following example shows. The additive particle in the last
sentence seems to associate with a book and Charlie.

(108) Did Antonia give anything to the boys?

5.7. Discussion 129

Yes, She gave chocolates to Norbert.

She also gave a book to Charlie.

This example only works because the question makes clear that we are talking
about instances of Antonia giving something to one of the boys. In cases
where the question does not set up such a context, the eventualities of Antonia
giving chocolate to Norbert and a book to Charlie do not license the use of
also (cf. Example (109)).

(109) What did Antonia give to Norbert and Charlie?

She gave chocolates to Norbert.

She ??? also gave a book to Charlie.

Interestingly, the use of also in the context of the question Who gave what
to whom? can be licensed when “zooming in” on one of the elements of the
tuple as the following examples show.

(110) It’s Christmas and the children are exchanging presents.

〈 Who gave what to whom? 〉

Antonia gave chocolates to Norbert.

(“Zooming” in on Antonia giving presents.)

She also gave a book to Charlie.

(111) It’s Christmas and the children are exchanging presents.

〈 Who gave what to whom? 〉

Antonia gave chocolates to Norbert.

(“Zooming” in on Norbert receiving presents.)

He also got a book from Sally.

My explanation for what happens is as follows. The original questions sets
the frame. Within this frame, the speaker has the freedom to choose different
strategies for answering. He can, for example, decide to concentrate first on
Antonia in the role of the giver and to compare her with the other children in
that role. The subquestion that the speaker is answering in this case is similar
to In what relevant giving events did Antonia participate as a giver?.

The speaker should reflect in the syntactic structure (and prosodic contour)
which strategy he has chosen. In Examples (110) and (111) he makes clear that
he is focusing on Antonia in the first case and on Norbert in the second case
by referring to them in the subject position. In Example (112), in contrast, no
such clues indicate that the speaker is talking about things that Norbert got.

130 Chapter 5. Beyond NP Anaphora: Additive Particles

Consequently, the use of also is awkward.

(112) It’s Christmas and the children are exchanging presents.

〈 Who gave what to whom? 〉

Antonia gave chocolates to Norbert.

Sally ???also gave a book to Norbert.

Part III

Implementation

Chapter 6

Automated Theorem Proving

for Contextual Reasoning

In the previous chapters, I have argued that the generation of anaphoric ex-
pressions requires reasoning on the discourse context. This means that a gen-
eration system will need access to inference tools. Nowadays, a variety of
automated reasoning systems covering different logics and different reasoning
tasks is available. This chapter shows how the contextual reasoning involved
in the generation of anaphoric expressions could be implemented using a de-
scription logic reasoning system. It then compares this approach to the use of
alternative reasoning systems.

6.1 The Reasoning Tasks

As we have seen in the last chapters, the use of definite descriptions and
additive particles depends on properties of the discourse context. To check
these properties a generation system will have to carry out reasoning tasks of
the following form:

1. (entailment) Given a formula φ and a representation of the relevant
part of the discourse context C, check whether φ follows from C.

2. (consistency) Given a formula φ and a representation of the relevant
part of the discourse context C, check whether φ is consistent with C.

3. (retrieval) Given a property P and a representation of the relevant part
of the discourse context C, retrieve all entities a, such that P (a) follows
from C.

133

134 Chapter 6. Automated Theorem Proving for Contextual Reasoning

The first kind of reasoning task (entailment checking) is necessary for the
generation of additive particles. It is used to check whether there is a discourse
old eventuality which is also-parallel to the eventuality described in the current
sentence (cf. Definition 5.2). The formula φ looks as follows in this case:

∃x[event(x) ∧ discourse old(x) ∧ P (x)].

P is the property that defines also-parallel eventualities. What P exactly looks
like depends on the semantic content of the current sentence. For instance,
let us say that the current sentence is describing the eventuality e such that
eat(e, antonia, b) ∧ apple(b) and that antonia and norbert are alternative en-
tities. If the context C entails that there is a discourse old eventuality which
has the property

λx∃y[eat(x, norbert, y) ∧ apple(y)],

then e is also-parallel with respect to the context. C, the relevant part of the
discourse context, is in this case the union of Cshared and Cstatus.

1

Consistency checking (the second type of reasoning task) is needed for the
generation of definite descriptions. It is used to check the second part of the
uniqueness condition (Definition 4.7). The formula φ expresses in this case that
a given entity a (the anchor) is related (via a bridging relation) to exactly one
individual which fits the given description. Let P be the property expressed
by the description, then

φ = ∃x[P (x) ∧ bridge(x, a) ∧ ∀y[(P (y) ∧ bridge(y, a)) → x = y]].

C is the union of Cprivate and Cshared in this case. For example, the description
the page passes the second part of the uniqueness condition if for all familiar
anchors a (cf. Example 4 in Section 4.4.1)

∃x[page(x) ∧ bridge(x, a) ∧ ∀y[(page(y) ∧ bridge(y, a)) → x = y]],

is consistent with Cshared ∪ Cprivate.
Retrieval (the third type of reasoning task) is especially relevant. It is nec-

essary to compute the sets of speaker and hearer anchors, which the approach
to generating definite descriptions described in Chapter 4 is based on. Recall
that the notions of speaker and hearer anchors played an important role in the
definitions of familiarity and uniqueness proposed in that chapter. Computing
the sets of speaker and hearer anchors is, therefore, a central task.

1Recall that we are using a structured representation of the discourse context consisting
of three parts: the speaker’s private knowledge Cprivate, the knowledge that speaker and
hearer share Cshared, and information about the discourse status of entities Cstatus(cf. Sec-
tion 2.3.1).

6.2. Using a Description Logic Reasoner 135

The set of speaker anchors (Definition 4.1) contains the target entity (di-
rect speaker anchor) and all entities of which the speaker knows that they
are related to the target via a bridging relation (indirect speaker anchors).
The direct speaker anchor is determined by the input. To compute the indi-
rect speaker anchors for the target t, we have to retrieve all entities with the
property λx[bridge(t, x)] from Cprivate ∪ Cshared.

The set of hearer anchors (Definition 4.2) contains all entities of which
the hearer knows that they fit the description (direct hearer anchors) and all
entities of which the hearer knows that they are related via a bridging relation
to an entity fitting the description (indirect hearer anchors). Hence, we have
to retrieve all entities with the property λx[P (x)] and all entities with the
property λx∃y[bridge(y, x) ∧ P (y)] from Cshared(with P being the property
expressed by the description).

Retrieval is also necessary for computing the sets of alternatives needed
for the generation of additive particles. The property P is, in this case,
the property that defines in the given situation what is an alternative en-
tity. This can be an ontological category or a property introduced by the
question under discussion (cf. Section 5.4). For instance, if the question under
discussion is What does Antonia eat?, then all entities that have the property
λx∃e[eat(e, antonia, x)] are alternatives.

6.2 Using a Description Logic Reasoner

This section describes how the reasoning tasks described above can be carried
out using a description logic (DL) reasoning system. (For a brief introduction
to description logics (DL) see Appendix B.) There are differences among
the existing DL reasoning systems concerning the language that they support
and the functionality that they provide, for instance, not all of them allow
for A-Box reasoning. All queries discussed in this section can be directly
implemented using the Racer system (Haarslev and Möller 2001).2

DL inference systems do reasoning with respect to a knowledge base con-
taining information about concepts, relations between concepts, and proper-
ties of specific individuals. For our application that means that we encode
the discourse context as a DL knowledge base and then specify the contextual
constraints that have to be verified as DL queries to this knowledge base.

The representation of discourse context that we have been using through-
out this thesis, consists of several parts (Cshared, Cprivate, ...) each of which
is a set containing atomic facts (such as rabbit(r1) or in(r1, h1)) and formulas
(such as ∀x[rabbit(c) → animal(x)]). The atomic facts explicitly state prop-
erties of specific discourse entities. The formulas represent general ontological
knowledge.

2Racer is available at http://www.sts.tu-harburg.de/~r.f.moeller/racer/.

136 Chapter 6. Automated Theorem Proving for Contextual Reasoning

When using this representation to specify a DL knowledge base, the atomic
facts will make up the A-Box and the rule-based background knowledge the T-
Box. This presupposes that the information is expressible in DL. In particular,
this means that only a restricted form of quantification is available. The
knowledge that we need to model bridging descriptions is of the form for all
x, if x has atomic property P, then there is a y which has atomic property Q
or of the form for all x, if x has atomic property P, then it also has atomic
property Q. Rules of this kind can be expressed in DL.

Furthermore, standard DL only allows for unary or binary predicates. In
Chapter 5, we represented eventualities with n participants as n + 1-ary re-
lations, such as, for example, eat(e, antonia, cake). We will now use a neo-
Davidsonian representation, where unary predicates specify the ontological
sort of an event and binary relations encode the relation between eventu-
alities and their participants. So, instead of eat(e, antonia, cake) we write
eat(e) ∧ agent(e, antonia) ∧ theme(e, cake).

As discussed in the preceding paragraphs, the language provided by DL
systems for coding knowledge is of restricted expressivity. It is less expressive
than first order logic, for example. The query language supported by DL
systems, on the other hand, is very powerful. DL reasoning systems offer a
variety of different inference services. Among them are, for instance:

Subsumption Checking. Given two concepts, do all individuals
belonging to the first concept also belong to the second one?

Instance Checking. Given an individual and a concept, does the
individual belong to the concept?

Instance Retrieval. Given a concept, retrieve all instances of
this concept from the knowledge base.

We will see in the next sections that instance retrieval is especially useful for
our purposes.

6.2.1 Computing Speaker and Hearer Anchors

As discussed above, the sets of speaker and hearer anchors are computed by
collecting all entities which are mentioned in a given knowledge base and of
which a specified property holds. In a DL reasoning system this is implemented
in a straightforward way using the instance retrieval functionality. More specif-
ically, two query types are relevant: retrieving all instances of a given concept
from a knowledge base (concept-instances(Concept)) and retrieving all in-
stances which are related to another given instance by a particular relation
(individual-fillers(Individual, Role)).

The queries for retrieving speaker and hearer anchors given a target entity
t and a set of literals L (the semantic content of the definite description) are

6.2. Using a Description Logic Reasoner 137

MakeDLConcept(t, L)

C = {C | C(t) ∈ L}

L′ = L− {C(t) | C(t) ∈ L}

R+ = {∃R.D | R(t, x) ∈ L and
D = MakeDLConcept(x, L′ −R(t, x))}

R− = {∃R−.D | R(x, t) ∈ L and
D = MakeDLConcept(x, L′ − R(t, x))}

return
d

C∈C
C u

d
R+∈R+ R+ u

d
R−∈R− R− u >

t is the target entity, and L a set of literals (the description)

Figure 6.1: Rendering descriptions as description logic concepts.

as follows. CL is a DL concept representing the property of t that is expressed
by description L.

• direct speaker anchors: t (no reasoning is necessary)

• indirect speaker anchors: individual-fillers(t, bridge)

• direct hearer anchors: concept-instances(CL)

• indirect hearer anchors: concept-instances(∃bridge.CL)

The concept CL is constructed from the set of literals L using the function
MakeDLConcept shown in Figure 6.1. Assuming that we want to compute the
potential anchors of object t, we first collect all unary properties of t in L and
conjoin the predicate symbols to form a concept expression. These properties
are deleted from the set L. Then, we take one by one the binary properties
relating t to some other object x via a relation R, and we (recursively) build a
concept expression D for x and conjoin ∃R.D with the previously constructed
part. For example, for L = {cook(c), part of (c, r), restaurant(r), italian(r)}
and target c MakeDLConcept will build the following DL concept:

cook u ∃part of .(restaurant u italian) u >.

The first conjunct corresponds to
d

C∈C
C, the second conjunct to

d
R+∈R+ R+,

and
d

R−∈R− R− is empty as there are no relations of the form R(x, t) in L.
Let us now illustrate how the hearer anchors are computed based on a

concept which is derived from a growing set of literals using the function
MakeDLConcept. Suppose that we are given the following context.

138 Chapter 6. Automated Theorem Proving for Contextual Reasoning

Cshared: restaurant(r), italian(r),
restaurant(r′), chinese(r′)
∀x[restaurant(x)→ ∃y[cook(y) ∧ of (y, x)]]
∀xy[of (x, y)→ bridge(x, y)]

Cprivate: cook(c), of(c, r)

And suppose that the goal is to build a description of entity c. The fol-
lowing table shows how the description grows. It gives for each step the con-
cept that MakeDLConcept builds for the entities mentioned in the descrip-
tion and it shows the result of the retrieval queries that compute the direct
and indirect hearer anchors, i.e., the queries concept-instances(CL) and
concept-instances(∃bridge.CL), respectively.

L (the cook) = {cook(c)}

CL,c = MakeDLConcept(L, c) = cook
concept-instances(CL,c) = ∅
concept-instances(∃bridge.CL,c) = {r, r′}

L (the cook of) = {cook(c), of(c, r)}

CL,c = MakeDLConcept(L, c) = cook u ∃of.>
concept-instances(CL,c) = ∅
concept-instances(∃bridge.CL,c) = {r, r′}
CL,r = MakeDLConcept(L, r) = ∃of−.cook
concept-instances(CL,r) = {r, r′}
concept-instances(∃bridge.CL,r) = ∅

L (the cook of the restaurant) = {cook(c), of(c, r), restaurant(r)}

CL,c = MakeDLConcept(L, c) = cook u ∃of.restaurant
concept-instances(CL,c) = ∅
concept-instances(∃bridge.CL,c) = {r, r′}
CL,r = MakeDLConcept(L, r) = restaurant u ∃of−.cook
concept-instances(CL,r) = {r, r′}
concept-instances(∃bridge.CL,r) = ∅

L (the cook of the Italian restaurant) = {cook(c), of(c, r), restaurant(r)}

CL,c = MakeDLConcept(L, c) = cook u ∃of.(restaurantu italian)
concept-instances(CL,c) = ∅
concept-instances(∃bridge.CL,c) = {r}
CL,r = MakeDLConcept(L, r) = restaurant u italian u ∃of−.cook
concept-instances(CL,r) = {r}
concept-instances(∃bridge.CL,r) = ∅

6.2. Using a Description Logic Reasoner 139

Limitations of the proposal. The strategy just described does not cor-
rectly compute the hearer anchors for descriptions involving entities which
are (directly or indirectly) related to themselves, such as the dog that bites
itself or the dogs biting each other. Given the description {dog(d), bite(d, d)},
for instance, MakeDLConcept would construct the concept dog u (∃bite.>) u
(∃bite−.>) for target entity d. This concept denotes all dogs which bite some-
thing (but not necessarily themselves) and are bitten by something (but not
necessarily by themselves). In fact, it is not possible to define a DL concept
which denotes the class of all dogs biting themselves as DL does not provide
mechanisms for arbitrarily binding variables and referring back to them. This
means that there is no general strategy for retrieving the hearer anchors cor-
rectly.

Although, it would be possible to compute the direct hearer anchors by first
computing the set of all entities that bite themselves and the set of dogs and
then building the intersection, this strategy would not work for the indirect
hearer anchors. In the case of indirect hearer anchors the relevant self-biting
dogs may not be explicitly represented in the A-Box and they cannot be re-
trieved.

6.2.2 Checking the Familiarity and Uniqueness Conditions

The familiarity condition and the first part of the uniqueness condition are
checked using the sets of speaker and hearer anchors which have been computed
as described in the last section. The familiarity condition requires that the
intersection of speaker and hearer anchors not be empty, and the first part of
the uniqueness condition requires that the hearer anchors be a subset of the
speaker anchors.

To check the second part of the uniqueness condition, we test whether it
is consistent with the shared knowledge to assume that the anchor is related
to exactly one instance of the DL concept corresponding to the description.
To formulate this query we employ number restrictions. For example, the
property of having exactly one page is formulated as follows:

(= 1 R−

Bridge).page.

To test whether it is consistent with world knowledge that an entity a has this
property we test whether the negation follows from world knowledge. If so, it
is not consistent, otherwise it is. So, we send the query “is a an instance of the
concept ¬(= 1 R−

Bridge).page” (individual-instance?(¬(= 1 R−

Bridge).page))
to the DL prover for all indirect familiar anchors a, that is, all entities a which
are in the intersection of the indirect speaker and hearer anchors.

140 Chapter 6. Automated Theorem Proving for Contextual Reasoning

6.2.3 Computing Alternative Sets

To compute the alternative sets of a given entity we also use instance retrieval
mechanisms. The strategies for retrieving ontology based alternatives on the
one hand and discourse structure based alternatives on the other hand differ.

In the first case, sets of alternative entities are retrieved using the query
concept-instances(C), where C is a sortal concept determined by the onto-
logical categories of the entity for which we are searching alternatives. These
categories are retrieved from the knowledge base using other types of re-
trieval queries. How exactly it is implemented depends on the definition of
ontological alternatives being used. If we want to follow Prevost’s defini-
tion (Prevost 1995, 1996; see Section 5.3.1), for example, we have to re-
trieve the most specific sortal concepts that the entity in question belongs
to as well as their direct subsumers. This could be implemented as fol-
lows. The query individual-direct-types(t) gives us the most specific
concepts that entity t belongs to. We then filter this set using the query
concept-subsumes?(sort, X) (Is concept X subsumed by concept sort?), so
that we keep only the sortal concepts. Finally, we can retrieve the direct
subsumers of the remaining concepts using the query concept-parents(X).

In the case of alternative sets induced by discourse structure, the schemata
used by the document planning module specify the question under discussion
and the corresponding retrieval strategy. It might happen that the property
which alternative entities should have cannot be expressed by a single DL
concept. In such cases, sequences of queries are necessary to retrieve the
desired entities.

If, for example, the question under discussion is What does Antonia eat?,
then all entities a such that ∃x[eat(x)∧ agent(x, antonia)∧ theme(x, a)] have
to be retrieved. Note, that the property that a has to have involves a reference
to a specific individual, namely antonia. Assuming a suitably expressive DL
language, there is a way of representing this property as a DL concept, namely
∃theme−.(eat u ∃agent.{antonia}). However, this representation involves the
expression {antonia}, which stands for the concept that denotes the singleton
set {antonia}, and the operator {...} is not supported by current DL reasoning
systems.

I, therefore, propose to use the following strategy, instead. We retrieve all
eating events (using the retrieval query concept-instances(eat)), then filter
out those events e where Antonia is the agent (using the test
individuals-related(e, antonia, agent)), and finally retrieve the themes
of these events (using the retrieval query individual-fillers(e, theme)).
This strategy can be implemented in a general way for properties that have
the same basic structure as the example, that is, a conjunction of literals where
all variables except for one are existentially quantified. But it only works as
long as the events the system is talking about are explicitly represented in the

6.3. First Order Logic Theorem Provers 141

A-Box. The more general query using the {...} operator could also deal with
cases where the eating event is not explicitly represented but can be inferred
from the knowledge base.

The Racer system for DL reasoning has very recently been equipped with
a new query language for instance retrieval.3 In this query language the multi-
step strategy proposed here could be formulated as one single query.

6.2.4 Checking for Also-parallel Eventualities

To check whether the context provides an eventuality which is also-parallel to
the one described in the current sentence we first have to define the property
P that has to hold of also-parallel eventualities and then we have to check
whether it follows from the given knowledge base that there is an entity which
has this property P .

As in the case of discourse structure based alternative sets in the previ-
ous section, these properties can mention specific entities. If, for example,
the semantic content of the current sentence is kiss(e) ∧ kisser(e, antonia) ∧
kissed(e, norbert), and norbert and charlie are alternatives, then we have to
check whether there is an eventuality e′ such that kiss(e′)∧kisser(e′, antonia)∧
kissed(e′, charlie) holds. As in the previous section, we cannot encode this
property into one single DL concept that current DL reasoning systems can
work with. However, we can use the same strategy involving multiple calls to
the DL system we used above.

To summarize, the limited expressivity of DL imposes some restrictions on
what kind of queries can be formulated. Although these restrictions are not
serious for the task discussed here, there are some cases where we can only
approximate the desired query to the knowledge base (descriptions of entities
which are directly or indirectly related to themselves). On the other hand, the
wide range of inference services offered by modern DL reasoning systems (in
particular, the retrieval functionality) is very useful as it directly supports the
reasoning tasks required by the application.

6.3 First Order Logic Theorem Provers

This section discusses how the contextual reasoning necessary for the treatment
of anaphoric expressions proposed in this thesis could be carried out in first
order logic. There are several reasons why an approach based on first order
logic theorem provers might be an alternative to the one based on description
logics discussed in the previous section. First, first order logic can be used to
represent natural language semantics in a more general way than description

3A description of the new query language is available at the Racer web-site http:

//www.sts.tu-harburg.de/~r.f.moeller/racer/.

142 Chapter 6. Automated Theorem Proving for Contextual Reasoning

logics (which are clearly not expressive enough to represent the meaning of
natural language sentences in general). While there are some phenomena which
require a higher order treatment, first order logic is sufficient for large parts
of natural language semantics. Second, first order logic is more standard than
description logics. As a consequence, a large collection of well-developed tools
is available.

First order logic theorem provers are designed for the following reasoning
task:

Theorem Proving. Given a first order logic sentence φ, is φ
valid?

So, entailment and consistency checking (the first two types of reasoning
tasks mentioned in Section 6.1) can be formulated in a straightforward way.
To check whether the discourse context provides an also-parallel eventuality
we ask the theorem prover whether the formula

ψCshared∪Cstatus
→ φ

is valid. ψCshared∪Cstatus
is a formula representing Cshared ∪ Cstatus and φ a

formula expressing that there is a discourse old eventuality which has the
necessary property for being also parallel.

The reasoning task related to the second part of the uniqueness condition
can be formulated as follows. We check whether the formula

ψCshared∪Cprivate
→ ¬φ

is valid. φ expresses here that the anchor which has been provided is related to
exactly one entity fitting the given description. If it is valid that ψCshared∪Cprivate

implies the negation of φ, then φ is not consistent with Cshared ∪ Cprivate.
There is one caveat, though: The task of validity checking for first order

logic is undecidable. That is, there is no guarantee that a first order logic
theorem prover can answer our queries in a finite amount of time. In a practical
system, we would have to work with a time limit and it might happen that
the theorem prover has to answer I don’t know when the specified time is
over. For the generation process this means that there might be cases where
the information necessary for deciding whether to use a particular anaphoric
expression or not is not available. It would, however, have to be tested whether
this every becomes a serious problem for our application.

Now, let us turn to the retrieval tasks: computing the sets of speaker and
hearer anchors and the sets of alternative entities. First order logic theorem
provers do not provide retrieval mechanisms. So, we need additional mecha-
nisms to keep track of the entities that have been mentioned. Then we can
check for each one of these entities whether it has the necessary properties.

6.3. First Order Logic Theorem Provers 143

For example, to collect the direct hearer anchors, we have to check for each
entity a mentioned in the discourse, whether ψCshared

→ P (a) is valid, with P
being the property given by the definite description.

To avoid such extra bookkeeping, we proposed an alternative formulation
in (Gardent and Striegnitz 2001) which directly encodes the familiarity and
uniqueness constraints into a first order logic formula in such a way that the
sets of speaker and hearer anchors do not have to be represented explicitly.
In this approach, the familiarity and uniqueness constraints associated with a
definite noun phrase of the form the N referring to entity t are formulated as
theorem proving tasks as follows.

Familiarity: one of the following formulas has to be valid

ψCshared∪Cstatus
→ ∃x[discourse old(x) ∧N(x)]

(There is a discourse old entity which fits the description.)

ψCshared∪Cstatus
→ ∃x [in focus(x) ∧ ∃y [N(y) ∧ bridge(y, x)]]

(There is a focused entity which is related to an entity fitting
the description.)

Uniqueness: the following formula has to be invalid

ψCshared∪Cprivate
→ ¬∀x[(N(x) & distractor(x, t))→ x = t]

(There are distractors which fit the description.)

The familiarity condition checks whether the existence of a suitable anchor
(direct of indirect) is entailed by the shared knowledge. Following Gundel
et al. (Gundel et al. 1993; Erkü and Gundel 1987), the definition of familiarity
encodes the constraint that the indirect anchors of bridging descriptions should
be in focus, which means highly salient.

The uniqueness condition checks whether it is consistent with the speaker’s
knowledge to assume that there are no distractors fitting the description. For
this it makes use of the predicate distractor, which is true of all entities that are
potential distractors; that is, all entities which are not identical to the target
and which (when not taking into account the information provided by the
description) are potential referents for the definite description. The predicate
distractor is defined by the following rules:

• focused items are potential distractors to any entity

∀xy[in focus(x)→ distractor(x, y)]

• entities inferable from focused items are also distractors to any entity

∀xy[∃z[in focus(z) & bridge(x, z)]→ distractor(x, y)]

144 Chapter 6. Automated Theorem Proving for Contextual Reasoning

• entities which are discourse old are distractors to all other discourse old
entities which are not in focus

∀xy[(d old(x) & d old(y) & ¬(in focus(y)))→ distractor(x, y)]

The representation of the discourse context used up to now in this thesis
lists general rules relating concepts to each other (for example, ∀x[rabbit(x)→
animal(x)]) and facts about entities (for example, rabbit(r1)). Implicitly, we
have assumed a unique name assumption, that is, we have assumed that all
entities with different names are distinct. First order logic theorem provers
(in contrast to DL reasoning systems) do not usually have a unique name
assumption for constants. For example, such a theorem prover would consider
the formula rabbit(r1) ∧ rabbit(r2) to be consistent with the assumption that
there is one unique rabbit (∃x[rabbit(x) ∧ ∀y[rabbit(y)→ x = y]]), because r1

and r2 might be equal. We explicitly have to state that this is not the case
by adding an inequality statement: r1 6= r2. Thus, the formulas of the form
ψC (which we are using to represent the discourse context) are conjunctions
of all the rules and facts listed in C plus inequality statements for all pairs of
entities mentioned in C.

A disadvantage of not representing the speaker and hearer anchors explic-
itly, is that we can only check whether or not the uniqueness condition is
satisfied. It is not possible to measure the contribution that adding different
properties to the description would make towards reaching the goal of build-
ing a uniquely identifying noun phrase. This contribution can be evaluated by
looking at the difference between the sets of hearer and speaker anchors. The
smaller the difference, the closer we are to a uniquely identifying description.

To sum up, a number of highly optimized automated theorem provers for
first order logic are available. However, the only inference service that they
support is validity checking. Therefore, the implementation of the reasoning
tasks necessary for the application discussed here requires some extra book-
keeping.

6.4 Model Checking

The most intuitive way to think about the context set up by the previous
discourse is to take it as a model, that is, a set of entities plus information about
the properties that these entities have and how they are related. Contextual
constraints associated with linguistic expressions require this model to have
certain properties. Checking whether a given model has certain properties
(that is, whether it satisfies a given formula) is the reasoning task that is
carried out by model checkers.

Model Checking. Given a model M and a formula φ, find an
instantiation σ such that σ(φ) true inM.

6.5. Discussion 145

It is, however, not enough to take the model to contain only the informa-
tion that has explicitly been conveyed by the previous discourse. Additional
background knowledge is needed. In (Striegnitz 2001) I, therefore, suggest to
embed calls to an ontology into the model checking algorithm. This allows to
infer additional properties for the entities mentioned in the discourse model.
To account for bridging descriptions, however, we also have to be able to infer
the existence of new entities. It is not immediately clear how this approach
could be extended into this direction.

An alternative solution, which would be able to account for indirect ana-
phora, would be to use model building techniques to build the representation of
the discourse context using a representation of what has been said before in ad-
dition to a representation of the background knowledge as input. Bos (2003)
and Ramsay and Seville (1999) propose approaches along those lines sug-
gesting to use model generation for discourse interpretation. Bos, however,
shows that the currently available model builders still have problems to scale
up to larger domains and longer discourses. Another desirable feature which
is not yet supported would be that the model builder could start from some
pre-defined model instead of an empty one. This would permit to extend the
discourse model incrementally and to encode situational knowledge directly as
a model.

6.5 Discussion

The contextual constraints involved in the generation of anaphoric expres-
sions mainly talk about properties of entities in the discourse context and
about other entities with the same properties that the discourse context might
provide. This can be formulated most naturally when the discourse context is
taken to be represented as a model (or a model-like structure). As off-the-shelf
model builders and model checkers are not yet fully suited for our application,
the approach based on model building and model checking briefly outlined in
Section 6.4 has not been examined in detail in this thesis. But it would be an
interesting direction for future investigations.

In this chapter, I have instead proposed an implementation of the “dis-
course context as model” approach using a DL reasoning system. I take the
A-Box to represent a partial model of the previous discourse. All entities
that the previous discourse has explicitly introduced are mentioned in the A-
Box. The T-Box complements this partial model with additional background
knowledge. Using A-Box reasoning and the retrieval functionality it is pos-
sible to check properties of this model. There are some restrictions on what
can be asked about the model. In particular, inferable entities are not explic-
itly represented, which means that queries concerning such entities have to be
formulated as queries about the discourse old entities that they are related to.

146 Chapter 6. Automated Theorem Proving for Contextual Reasoning

At least with respect to the following aspect, this restriction actually makes
the DL approach even better suited for natural language processing than the
one based on standard model building and model checking. Standard model
building would introduce representations for all inferable entities, most of
which will not be needed as they will never be referred to in the later dis-
course. To illustrate this point by means of a somewhat extreme case, imag-
ine that the rule ∀x[centipede(x) → ∃y1 . . . y100[foot(y1) ∧ of(y1, x) ∧ . . . ∧
foot(y100)∧of(y100, x)]] is part of our background knowledge and that the dis-
course mentions Norbert the centipede. A normal model builder would hence
try to generate 100 individuals to represent the feet of Norbert. The subse-
quent discourse might refer to one of these feet (for example, to the third foot
on the right), in which case we have to be able to infer that this foot exists, but
most probably all other feet will not be referred to. Hence, a representation
for them is not needed.

Let us turn to first order logic theorem provers. They are designed for
checking the validity of formulas and, therefore, do not provide the possibility
of fixing a structure representing the background knowledge against which
reasoning is carried out. This means that for each query the whole discourse
context has to be encoded as part of the input formula. More importantly, it
also means that first order logic theorem provers cannot offer the variety of
inference services found in DL reasoning systems. In particular, they do not
provide retrieval mechanisms. As a result, the view under which the discourse
context is a kind of model cannot be implemented as straightforwardly when
using a first order logic theorem prover as in the other frameworks I have
discussed.

It is of course true that DLs are less expressive than first order logic. But
this has consequences which are an advantage rather than a disadvantage.
Thanks to its reduced expressivity DL reasoning systems can offer effective
(that is decidable and computationally well behaved) reasoning services.

However, the lack of expressivity also means that DL is definitely not ex-
pressive enough to fully capture natural language semantics. Nevertheless,
I believe that DL reasoning is useful for natural language processing. First,
there are specific reasoning tasks that occur in natural language processing for
which the expressivity of DLs is sufficient. Here, for example, we have been
looking at the generation of descriptions which are expressing sets of positive
facts, and the expressivity of DL was largely sufficient for the relevant rea-
soning tasks. Secondly, current practical approaches to natural generation do
not take into account all of natural language semantics anyway. So, for the
moment, the restrictions that the lack of expressivity of DLs imposes on an
implementation are minor.

Chapter 7

An Example Application

This chapter describes the implementation of a generation system based on the
Spud architecture (Stone 1998) which integrates the strategies for generating
bridging descriptions and additive particles described in this thesis. The con-
textual reasoning is done using the description logic inference system Racer

(Haarslev and Möller 2001) which is available at http://www.cs.concordia.
ca/~haarslev/racer/.

As a testing environment, I use the engine for playing text adventures
that we describe in (Koller et al. 2004).1 Section 7.1 gives an overview of
this application. Section 7.2 then describes the architecture of the generation
system and its interaction with the game application.

7.1 A Text-based Computer Game

Text adventures are a form of computer games that was very popular in the
eighties. The player interacts with the game world (e.g. the rooms and objects
in a space station) by typing natural-language commands, and the computer
provides feedback in the form of natural-language descriptions of the world and
of the results of the player’s actions. Typically, the user has to solve puzzles
to win the game.

Traditional text adventures employ very simple techniques for analyzing
the natural language input. The output texts are hard-coded into the system.
We use techniques from computational linguistics for all natural language pro-
cessing steps. The first version was implemented by a group of students as
part of a software project in computational linguistics. The application is
particularly nice for teaching about natural language processing as it involves

1In fact, the first part of this chapter (Section 7.1) is based on (Koller et al. 2004).

147

148 Chapter 7. An Example Application

> look at the bottle

The bottle is filled with a green liquid. The label is not

readable.

Figure 7.1: An example use of a bridging description.

> look

You are on a couch. There also are a green frog and a brown

frog on the couch.

> take the sword and the crown

You have the sword. You also have the crown.

Figure 7.2: Example uses of additive particles.

the whole cycle of language interpretation, generation and dialogue manage-
ment. But at the same time it is easily scalable. In (Koller et al. 2004), we
furthermore claimed that natural language based computer games provide an
environment for testing NLP modules, which is what I am doing here. Since
the game world can be defined freely, the application can be adapted to the
special features of the module which is to be tested.

The main generation task that occurs in this application is to produce de-
scriptions of the game environment and the objects in it. Bridging descriptions
are useful if a detailed description (more than one sentence) of an object re-
ferring also to its subparts has to be given (Figure 7.1). Additive particles
improve otherwise monotonous enumerations (cf. Figure 7.2).

7.1.1 Overview of the Game Architecture

The general architecture of the game engine is shown in Figure 7.3. Underlying
the system are two description logic knowledge bases, which share a set of
common definitions: One represents the true state of the game world and the
other keeps track of what the player knows about the world. The solid arrows
show the flow of information when processing player input and generating a
response. The dashed arrows indicate which modules access the knowledge
bases and the discourse model and whether they only retrieve information or
also change the stored information.

The processing steps are as follows. First, the user input is analyzed. This
involves parsing the input and building a semantic representation specifying
the action that the user wants to execute and describing the objects that
this action involves. These object descriptions then have to be resolved to
individuals of the game world, taking into account the knowledge that the
player has about the world and the discourse model, which keeps track of
when and how individuals were mentioned in the previous dialog. The result

7.1. A Text-based Computer Game 149

Model
Discourse

Analysis
Language Language

Generation

Executing
Actions

A−Box: World ModelA−Box: User Knowledge

T−Box

Figure 7.3: The architecture of the game engine.

is a ground term or a sequence of ground terms that indicates the action(s) the
user wants to take. The Actions module looks up these actions in a database
(where they are specified in a STRIPS-like format, Fikes et al. 1972), checks
whether the action’s preconditions are met in the world, and, if so, updates
the world state with the effects of the action.

The action can also specify effects on the user’s knowledge, i.e., information
that should be conveyed to the hearer through a natural language text. The
generation component which I am describing here (and which is replacing the
one described in (Koller et al. 2004)) consists of two components: The doc-
ument planning module constructs a sequence of communicative goals which
are then verbalized by the sentence planning and realization module. This last
module also updates the player knowledge with the new information that the
player received through the generated text.

The system is implemented in the programming language Mozart (Mozart
Consortium 1999) and communicates with the DL reasoning system Racer

(Haarslev and Möller 2001) to access the knowledge bases.

I now describe each of the game’s components in more detail.

7.1.2 The World Model

The game world is modeled using description logics (DL).2 A T-Box is used
to specify the concepts and roles in the world and define some useful complex
concepts, for example, the concept of all objects the player can see. Such a
T-Box is shared by two different A-Boxes representing the state of the world
and what the player knows about it, respectively.

2See Appendix B for a brief introduction to DL.

150 Chapter 7. An Example Application

room(kitchen) player(myself)
table(t1) apple(a1)
apple(a2) worm(w1)
red(a1) green(a2)
bowl(b1) bowl(b2)
has-location(t1, kitchen) has-location(b1, t1)
has-location(b2, kitchen) has-location(a1, b2)
has-location(a2, kitchen) has-detail(a2,w1)
has-location(myself, kitchen) . . .

Figure 7.4: A fragment of a world A-Box.

Figure 7.5: Graphical representation of the A-Box fragment.

The player A-Box will typically be a sub-part of the game A-Box because
the player will not have explored the world completely and will therefore not
have seen all the individuals or know about all of their properties. Sometimes,
however, it may also be useful to deliberately hide effects of an action from
the user, for example, if pushing a button has an effect in a room that the
player cannot see. In this case, the player A-Box can contain information
that is inconsistent with the world A-Box. A fragment of an example A-Box
describing a state of the world is shown in Figure 7.4; Figure 7.5 gives a
graphical representation of the situation represented by this A-Box.

The T-Box specifies that the world is partitioned into three parts: rooms,
objects, and players. The individual myself is the only instance that is ever
defined of the concept player. Individuals are connected to their locations
(i.e. rooms, container objects, or players) via the has-location role; the A-
Box also specifies what kind of object an individual is (for example, apple)
and what properties it has (red). The T-Box then contains axioms such as
apple v object, red v color, etc., which establish a taxonomy among concepts.

These definitions allow us to add axioms to the T-Box which define more
complex concepts. One is the concept here, which contains the room in which
the player currently is – that is, every individual which can be reached over a

7.1. A Text-based Computer Game 151

has-location role from a player object.

here
.
= ∃has-location−1.player

In the example in Figure 7.4, here denotes the singleton set {kitchen}: It
is the only individual to which an instance of player is related via the role
has-location.

Another useful concept is accessible, which contains all individuals which
the player can manipulate.

accessible
.
= ∀has-location.here t
∀has-location.(accessible u open)

All objects in the same room as the player are accessible; if such an object is
an open container, its contents are also accessible. The T-Box contains axioms
that express that all instances of certain concepts (for example, table, bowl, and
player) are always open. This permits access to the player’s inventory. In the
simple scenario above, accessible denotes the set {myself, t1, a1, a2, b1, b2}.
Finally, we can define the concept visible in a similar way as accessible. The
definition is a bit more complex, including more individuals, and is intended to
denote all individuals that the player can “see” from his position in the game
world.

7.1.3 The Discourse Model

While the world model only describes the current state of the game world,
the discourse model keeps track of certain aspects of the discourse history.
In the original implementation described in (Koller et al. 2004), the dis-
course model is used only for resolving pronouns. To this end, it maintains
information about the salience of entities following the approach described by
(Strube 1998). When an entity is mentioned, it is inserted into a list of entities
ordered according to their salience. hearer-old discourse entities (introduced,
e.g., by definites) are ranked higher (i.e. are more salient and therefore more
likely to act as referents for pronouns) than hearer-new discourse entities (such
as referents of indefinites). Within these categories, elements are sorted ac-
cording to their position in the currently processed sentence. For example, the
ranking of discourse entities for the sentence take a banana, the red apple, and
the green apple would look as follows:

[red apple ≺ green apple]old ≺ [banana]new

The list of salient entities is built incrementally and updated after each
input sentence. Updating removes all discourse entities which are not realized
in the current utterance. That is, there is an assumption that only referents
mentioned in the previous utterance can be referred to using a pronoun.

152 Chapter 7. An Example Application

When a pronoun is encountered, it is resolved to the most salient entity in
the current discourse model that matches the pronoun’s agreement constraints.
The restrictions which the grammar and the application impose on the player
input (no embeddings, no reflexive pronouns) allow the analysis of sentences
with intra-sentential anaphora like take the apple and eat it. The incremental
construction of the discourse model ensures that by the time the pronoun it is
encountered, the apple has already been processed and can serve as a possible
antecedent.

For the treatment of additive particles, I extended the discourse model such
that it also maintains a list of currently active alternative sets. As discussed
in Chapter 5, there are different mechanisms for introducing alternative sets
into this list. At the moment, the application is using discourse structure
based alternative sets and alternative sets due to explicit grouping of entities.
Discourse structure based sets are introduced during the document planning
phase of the generation module as will be described in more detail below. The
second type of alternative set is introduced when the user uses a plural or
coordinated noun phrase, such as in look at the green frog and the brown frog.
Assuming that the green frog and the brown frog refer to frog1 and frog2,
respectively, the set {frog1, frog2} is added to the list of alternative sets.
Such an alternative set remains active throughout the response of the system.

7.1.4 The Language Analysis Module

The user input is parsed using a parser for (topological) dependency grammar
(Duchier and Debusmann 2001; Duchier 2004). The syntactic dependency tree
produced by the parser is then used to derive a semantic representation spec-
ifying which action the user wants to execute and describing the objects that
the action is to be performed on. These object descriptions record the con-
tent of the referring noun phrase as well as agreement information. In the next
analysis step, they are mapped to individuals in the knowledge base. Pronouns
are resolved with respect to the discourse model as described in the previous
section, and definite and indefinite noun phrases are resolved using Racer’s
retrieval functionality. The task is simplified in the adventure setting by the
fact that players will typically only refer to objects which they can “see” in
the virtual environment, as modeled by the concept visible above. Further-
more, they should not refer to objects they haven’t seen yet. So, the semantic
content of the noun phrase is transformed into a DL concept expression, and
then a query is sent to Racer asking for all instances of this concept in the
player knowledge A-Box. In the case of definite descriptions there should be
exactly one such instance, in the case of indefinite descriptions there can be
several. Assuming that the player does not have a particular object in mind
when using an indefinite the system arbitrarily chooses one. See (Gabsdil
et al. 2002) for more on how ambiguities are handled.

7.2. The Generation Module 153

take(patient:apple1)
preconditions: accessible(apple1), takeable(apple1),

not(inventory-object(apple1))
game world effects:

add: has-location(apple1,myself)
delete: has-location(apple1, bowl1)

user knowledge effects:
add: has-location(apple1,myself)
delete: has-location(apple1, bowl1)

Figure 7.6: An instantiated action operator.

7.1.5 Executing Actions in the Game World

The output of the language analysis modules is a list of action descriptions,
such as 〈take(patient : apple1), eat(patient : apple1)〉 (which is the result of
analyzing the user input take the apple and eat it). Such action descriptions
are used to retrieve action operators from a database. Like STRIPS operators
(Fikes et al. 1972), action operators specify an action’s preconditions and ef-
fects. The execution module checks whether all preconditions are satisfied in
the game world, and then updates the game world according to the effects.

In addition, action operators have a slot for specifying the effects on the
user knowledge A-Box. This also determines which information should be
communicated to the user to indicate that the action has been performed
successfully, and what has changed in the world as a result. Figure 7.6 shows
an example of an (instantiated) action operator. The preconditions specify
that an object can only be taken if it is accessible to the player, if it is takeable
(certain objects are not takeable, because they are too big, heavy, etc.), and if
the player does not yet have it. The effect (on the game world as well as the
user knowledge) is that the location of the object changes. Such instantiated
action operators are the input for the generation modules, which are described
in the following section.

7.2 The Generation Module

This section describes the generation module that was implemented for this
thesis. It consists of two stages: a document planning module based on
schemata (McKeown 1985; see also Chapter 2.1.1) and a microplanning and
surface realization module following the Spud approach (Stone 1998 and see
Chapter 2.3).

154 Chapter 7. An Example Application

7.2.1 Document Planning

The input to the document planning module are instantiated action opera-
tors as shown in Figure 7.6. The output is a tree structure representing the
overall organization of the output text. The nodes of this tree are labeled
with communicative goals for individual sentences which can be passed on to
the microplanning module, and the internal nodes are labeled with discourse
relations.

Schemata are selected based on action names. In the majority of cases,
a schema which simply reports the facts listed in the ‘add’ part of the user
knowledge effects (schema ReportUKAdd) is called. This is the case for the
action take, for instance. So, given the action operator shown in Figure 7.6,
document planning would simply return a communicative goal of the form

〈S, e, {e : has-location(apple1,myself)}〉.3

The underlying assumption is that just stating the positive effects of an action
will let the player infer the negative ones; i.e., telling him that the location of
the apple is now the player himself also conveys that the location of the apple
is not any longer the bowl.

For some actions just stating the immediate effects is not enough. If the
player opens a box, for example, we want to not only inform him of the fact
that the box is now open, we also want to let him know what he can see inside
the box. So the action open triggers a sequence of two schemata: first, the
schema ReportUKAdd is called, and then a schema describing the contents of
the container that has been opened (schema DescribeContents).

The actions look and look at do not have any immediate effects on the game
world at all. Their only purpose is to give information to the player. They
trigger the schemata DescribeLocation and DescribeObject for generating
descriptions of locations or objects, respectively. Both of these schemata in-
volve calls of subschemas.

Figure 7.7 shows the output of the document planning module for the action
open(patient:chest1). It consists of a sequence of two communicative goals.
The first one (produced by a call of the schema ReportUKAdd) demands that
a sentence communicating the fact that chest1 is open be built. The second
communicative goal (produced by a call to the schema DescribeContents) is
to state that the objects crown1 and sword1 are contents of the chest.

The generation module does not use a sophisticated module for aggregation
at the moment, but some aggregation is done during document planning. In
the example, this leads to the decision to group crown1 and sword1 so that the

3The communicative goals are as introduced in Chapter 2.3 and determine the syntactic
category of the expression that is to be generated, the semantic index the root node is
associated with, and a set of informational goals that should be conveyed by the resulting
expression.

7.2. The Generation Module 155

sequence

ReportUKAdd

〈S, e1, {e1 : open(chest1)}〉

DescribeContents

〈S, e2, {e2 : contains(chest1, group1),
ing(crown1, group1),
ing(sword1, group1)}〉

Figure 7.7: Document plan for describing the results of opening a chest.

mircoplanning module will realize reference to these objects as a coordinated
noun phrase.

Figure 7.8 shows the document plan for the game’s reaction to the user
input look. The schema invoked by the action look is the DescribeLocation

schema. It includes calls to subschemas, including a call to itself. This recur-
sive call is triggered because couch1, the location of the player, is not a closed
container; the player can see what is around the couch. This example also il-
lustrates how discourse structurally induced sets of alternatives (cf. Chapter 5)
are created during the document planning phase. In step 5), for instance, the
implicit question under discussion that is being asked is Which objects except
for ‘couch1’ are in the location ‘room1’? This makes couch1 an alternative of
all answers (in this case only table1). For the same reason, an alternative set
containing myself and the group of frog1 and frog2 is introduced in step 3).

The text that will be produced from this schema could be as follows. Its
exact form depends on the properties of the entities mentioned (frog1, frog2,
room1 etc.).

(113) You are on a couch.
There also are a green frog and a brown frog on the couch.
The couch is in a bedroom.
You also see a table in the bedroom.
The bedroom has an exit to the south.

7.2.2 Microplanning and Realization

The microplanning and realization module traverses the document plan and
treats the communicative goals at the leaves one by one using a variant of
Spud as described in (Stone 1998; Stone et al. 2003). The implementation
differs from the original Spud system introduced in Section 2 with respect to
the following points:

1. semantic constraints in the lexicon

2. checking the semantic constraints

156 Chapter 7. An Example Application

DescribeLocation

sequence

1) 2) 3)
DescribeLocation

sequence

4) 5) 6)

1) 〈S, e1, {e1 : has-location(myself, couch1)}〉

2) DescribeProperties
〈S, e2, {e2 : has-location(group1, couch1}〉

3) DescribeOtherObjectsInLoc
alternative set: {myself, group1}
〈S, e3, {e3 : has-location(group1, couch1),

ing(frog1, group1),
ing(frog2, group2)}〉

4) 〈S, e4, {e4 : has-location(couch1, room1)}〉

5) DescribeOtherObjectsInLoc
alternative set: {couch1, table1}
〈S, e5, {e5 : has-location(table1, room1}〉

6) DescribeExits
〈S, e6, {e6 : has-exit(room1, exit1}〉

Figure 7.8: Document plan for reacting to a look command.

7.2. The Generation Module 157

3. search strategy

4. evaluation of states

I will now discuss each of these differences in turn.

Semantic constraints in the lexicon. Spud associated each elementary
tree with the following semantic constraints:

• assertion: The information conveyed by the elementary tree which is
new for the hearer.

• presupposition: The information conveyed by the elementary tree
which is old for the hearer.

• pragmatic constraints: Pragmatic restrictions on the previous dis-
course (for example, salience of entities).

In addition, I specify selectional restrictions. This allows me to state that
a particular elementary tree can only be used if the entities involved belong
to certain ontological classes. Furthermore, I add a special slot for markers
specifying what condition they are signaling (cf. Section 5.6.2).

Checking the semantic constraints. As described above the game is
based on two description logic knowledge bases: one describing the actual state
of the game world, i.e., the private knowledge of the system, and one modeling
what the player knows about the game world, i.e., the shared knowledge. An
elementary tree can be combined with the current derivation, if the semantic
and pragmatic constraints associated with the elementary tree are supported
in the following way. There is an instantiation of the free variables used in the
specification of the semantic and pragmatic constraints of the elementary tree
such that

• the assertion is true with respect to the game world

• the presupposition is true with respect to the player knowledge

• the pragmatic constraints are true with respect to the discourse model
and the player knowledge

• the selectional restrictions are true with respect to the game world

Instantiating lists of facts with open variables against a knowledge base is
a task which is not normally supported by DL reasoning systems.4 I, there-
fore, use a front-end which retrieves the instances of individual facts and then
computes the possible combinations.

4The recently introduced Racer Query Language now provides this functionality.

158 Chapter 7. An Example Application

In some cases the semantic representation that I would like to use in the
specification of the grammar does not match with the way the game world
is modeled in the description logic knowledge bases. For example, the world
model does not represent events or states, while they are used in the grammar.
Similarly, the grammar needs some special constructions representing groups
of entities in order to deal with coordinations. The interface to the description
logic knowledge bases therefore translates the lexical semantics used in the
grammar to the semantic representation used in the world model.

Similarly, the interface maps constraints on the discourse status of entities
to queries to the discourse model or the player knowledge. While constraints on
the salience of entities are evaluated with respect to the salience list maintained
in the discourse model, the restriction hearer-old is evaluated with respect to
the player knowledge by simply checking whether the entity in question is an
instance of some concept in that knowledge base.

Search strategy. Originally Spud uses a greedy search strategy without
backtracking. I am using the search strategy outlined in Chapter 4.4.2, which
does allow for restricted backtracking. In addition to the current state, I keep
track of a list of fallback states, which are used in case the search ends in a
dead end. These fallback states correspond to choices that are incompatible
with the ones that have been taken to reach the current state. The search
strategy looks as follows.

if the current state is a goal state
then return this state and stop
elseif the current state is a dead end
then take one of the most recent fallback states and continue

searching
else
• compute all possible next states by adjoining or substituting ele-

mentary trees to the derivation built so far
• select one based on a set of given heuristics
• if the chosen extension is a substitution and if other substitutions

would have been possible at the same node, then add these states to
the list of fallback states
• continue the search with the selected state

endif

In Chapter 4.4.2, I motivated the need for backtracking using an example
involving a bridging description. In the game application, I furthermore found
that always having to specify the semantic constraints of an elementary tree
in such a way that a greedy search algorithm will find a goal state without
ending in a dead end can be tedious and tricky. The form of backtracking
proposed before helps in these cases.

7.2. The Generation Module 159

Evaluation of search states. I use only a subset of the heuristics that
Spud uses to select its next state. I also order them differently putting more
emphasis on first building a syntactically complete tree.

1. Steps which eliminate open substitution nodes are preferred.

2. Steps which convey more of the informational goals are preferred.

3. Steps which get closer to unambiguously identifying all discourse old
entities are preferred.

7.2.3 Generating Anaphoric Expressions

Definite Noun Phrases

Definite noun phrases are used to refer to entities that the player has already
encountered, i.e., entities which are mentioned in the player knowledge, or to
parts of them. The descriptions of entities which are co-referential to previ-
ously mentioned ones have to distinguish this entity from all others mentioned
in the player knowledge and currently visible to the player. For bridging de-
scriptions, I propose to use the strategy described in Chapter 4. The speaker
and hearer anchors can be computed as described in Chapter 6.

Additive Particles

Additive particles are treated as markers as proposed in Chapter 5. To check
whether a sentence is also-parallel, the system first checks whether the seman-
tic content (assertion plus presupposition) mentions an entity for which the
context provides an alternative. The currently active alternatives of an entity
are recorded in the discourse model (see Section 7.1.3). They have been intro-
duced either by the use of a coordinated noun phrase or during the document
planning stage (cf. Section 7.2.1). If such an entity is found, then the part
of the semantic content which corresponds to the associated constituent is re-
placed with a reference to the alternative entity. (The associated constituent
is the biggest subtree of the derivation tree which has at its root an elementary
tree which in turn has a root node associated with the entity in question as
semantic index.) This is best illustrated by means of an example. Suppose the
current sentence is the frog is on the couch and has the semantic content:

{has location(f1, c1), frog(f1), couch(c1)}.

And let us assume that the discourse model says that the entity myself is
an alternative of f1. So, we delete the semantic content corresponding to
the associated constituent (the constituent referring to f1) and replace f1 by
myself . The result is

{has location(myself, c1), couch(c1)}.

160 Chapter 7. An Example Application

If this formula is true with respect to the player knowledge, then the current
sentence is also-parallel.

In the previous example, couch(c1) was part of the presupposed informa-
tion. Otherwise, we would also have to replace c1 with an uninstantiated
variable (as in this case, the requirement for also-parallelism would not be
that myself is on the same couch as f1, but it just has to be on a couch).
This would yield:

{has location(myself,X), couch(X)}.

The current sentence would be also-parallel, if there was an instantiation for
X, such that the result followed from the player knowledge.

7.2.4 Discussion

In this section, I have describe a proof-of-concept implementation of the al-
gorithms for generating anaphoric expressions developed in this thesis. The
chosen application, i.e., a text adventure, was useful for testing the algorithms
because it allows to tailor the game world such that the desired phenomenon
can be tested effectively. However, the knowledge base and grammar used in
the implementation are relatively small. In order to see whether the proposed
algorithms scale up to more realistic applications, tests involving a bigger
knowledge base and grammar need to be conducted.

Part IV

Conclusions

Chapter 8

Conclusions

At the beginning of this thesis I argued that discourse anaphora are important
devices for achieving cohesion and that, therefore, generation systems have
to be able to correctly employ the range of discourse anaphoric expressions
provided by natural languages in order to generate fluent and natural sounding
texts. Up to now, generation research has concentrated on a few selected types
of discourse anaphora (namely, definite descriptions and pronouns). To cover
the whole range of anaphoric expressions, the existing generation approaches
have to be extended to handle indirect and lexically specified anaphora as well
as non-nominal anaphoric expressions.

In this thesis, I have developed generation strategies for two exemplary
cases of indirect anaphora and lexically specified anaphora: definite bridging
descriptions and additive particles. Most importantly, I have identified and
formalized the relation linking target and anchoring entities and the contex-
tual conditions that license and trigger the use of these anaphoric expressions.
Based on this analysis, I have specified the reasoning tasks that have to be car-
ried out and have discussed how they can be implemented using state-of-the-art
reasoning tools. Finally, I have shown how the proposed generation strategies
can be integrated into a generation system based on the Spud architecture,
which provides a uniform framework for sentence planning and interleaves the
planning process with calls to a reasoning system.

8.1 Generating Anaphora

8.1.1 Bridging Relations and Also-parallelism

Anaphoric expressions establish a link between a target entity and an anchor,
i.e., a discourse old entity. In the case of co-reference, this is the identity

163

164 Chapter 8. Conclusions

relation. In my analysis of indirectly anaphoric noun phrases target and anchor
are linked by relations belonging to a predefined set of bridging relations.
Previous work has shown that it is possible to identify such a set and has made
suggestions as to what it looks like. In the case of lexically specified anaphora,
the link established between the target and its anchor is idiosyncratic to the
anaphor. It therefore needs to be identified for each anaphor. I have called
the anaphoric link that additive particles establish between two eventualities
also-parallelism. The characterization of this resemblance relation is part of
the contribution of this thesis. Also-parallelism essentially requires that the
description given of the target event and its participants also be true of the
anchoring event and its participants except for one. This one participant can
be different but must be an alternative of the corresponding participant of the
target event.

Although also-parallelism is specific to additive particles, the concepts in-
volved in its characterization are not. They will be reused in the generation
of other anaphoric expressions involving similar relations, such as again or
another, as well as other pragmatic phenomena, for instance intonation.

8.1.2 Familiarity and Uniqueness

The general idea underlying the use of anaphoric definite noun phrases is that
the description should be such that the hearer is able to find the correct an-
chor (familiarity) and that he only finds the correct anchor (uniqueness). To
capture the generation of bridging descriptions, the existing formulations of
these two conditions had to be extended. I have, hence, formulated a version
of the familiarity condition which takes into account that entities can be fa-
miliar by being related to a discourse old entity (instead of being discourse old
themselves) and a version of the uniqueness condition which takes into account
that inferred entities can act as distractors. The formalization is based on the
notions of speaker and hearer anchors, which, intuitively, are the set of anchors
intended by the speaker and the set of entities considered as possible anchors
by the hearer, respectively. For successful reference these two sets essentially
have to coincide.

In my analysis of additive particles I have concentrated on characteriz-
ing also-parallelism. However, the notions of speaker and hearer anchors are
relevant for lexically specified anaphora as well. The definitions have to be
adapted to take into account the particular relation associated with the lexi-
cally specified anaphor, but then the general principle that speaker and hearer
anchors have to coincide holds. Example (114) shows a case where it is impos-
sible to decide, when taking the hearer’s point of view, which eventuality or
set of eventualities the speaker intends as anchor (the uniqueness condition is
violated), and in Example (115) it is not possible to identify a possible anchor
at all (the familiarity condition is violated).

8.2. Alternative Sets in NLG 165

(114) This summer Antonia went to Japan, and Norbert to Argentina. ??? Char-
lie did too.

(115) This summer Antonia went to Japan, and Norbert to Argentina. ??? Char-
lie also went to China.

8.1.3 Marking Principles for Triggering the Use of Anaphoric Expressions

The contextual constraints associated with anaphoric expressions are often rep-
resented as presuppositions. These presuppositions constitute licensing condi-
tions for the use of anaphoric expressions. If there is a choice between differ-
ent expressions, generation systems often default to choosing the one with the
most specific contextual constraints. In particular, the Spud system uses this
strategy. This leads, for example, to a preference of definite descriptions over
indefinite ones in cases where the definite article is licensed.

For additive particles, this mechanism is not sufficient. It cannot correctly
predict the use of these particles. I have, therefore, suggested to adopt a view
where the use of additive particles is governed by marking principles.

Note that the effects of Spud’s original heuristic to prefer pragmatically
more specific realizations could also be captured by explicit marking princi-
ples. A marking principle requiring that entities which are discourse old be
marked would, for example, trigger the use of a definite noun phrase to refer
to discourse old entities much in the same way that Spud’s heuristic prefers
definites to indefinites in these cases.

I believe that the use of marking principles in generation is not restricted
to additive particles, but will be relevant for the treatment of other expres-
sions commonly analyzed as presupposition triggers, as well. Presuppositions
can be viewed as specifying the conditions that license the use of anaphoric
expressions and marking principles as specifying the conditions that trigger
their use. It is obvious that both play a role in the generation of anaphoric ex-
pressions. Future work has to clarify their form and how they interact in order
to develop a more uniform treatment of anaphoric expressions in generation.

8.2 Alternative Sets in NLG

In theoretical semantics various phenomena have been analyzed with the help
of alternative sets in the past years (for instance, association with focus
(Rooth 1992; Vallduv́ı and Vilkuna 1998), information structure related issues
(Steedman 2000; Kruijff-Korbayová and Webber 2001), alternative phrases
(Bierner 2001), certain anaphoric discourse adverbials (Forbes 2003)). Usu-
ally the notion of alternative sets remains quite vague, though. To be able to
apply these results in natural language generation a more precise characteri-
zation of alternative sets is necessary. I have done a first step in this direction

166 Chapter 8. Conclusions

by characterizing the sources of alternatives relevant for the use of additive
particles. More specifically, I have argued that alternatives are induced by the
following mechanisms:

• Two answers to the same question under discussion are alternatives.

• Two entities belonging to the same ontological category are alternatives.

• Two entities that have explicitly been introduced as belonging to the
same group, for example, by a coordinated noun phrase, are alternatives.

The use of such alternative sets in generation will not be limited to additive
particles. The generation of other lexically specified anaphora, for instance cer-
tain other discourse adverbials, such as instead or otherwise, or certain nominal
anaphora, such as another N or such N, will also depend on alternative sets.
Furthermore, alternatives play a role for the production of certain information
structure related phenomena, such as intonation.

8.3 Automated Reasoning in Sentence Planning

The most natural way to think about the reasoning tasks that have to be
carried out in connection with the generation of anaphoric expressions is to
use a model to represent what has been said in the previous discourse and to
take the possible anchors to be entities in this model. Checking whether a
possible anchor exists is then a model checking task. Furthermore, we have to
be able to retrieve all possible anchors in order to be able to compute progress
towards the goal, i.e., a successful anaphoric expression. To implement this
using a theorem prover for first order logic is tedious.

A more appropriate solution would be a system that alternates model gen-
eration to incrementally build the discourse model and model checking (also
allowing for retrieval) to check the contextual constraints. I argued that, while
systems of that sort are not yet available as off-the-shelf tools, description logic
reasoning systems can be used to imitate the desired behavior. The basic idea
is to view the A-Box as a (partial) model representing the previous discourse
and the T-Box as the general background knowledge that the speaker has.
Entities of the discourse model can then be accessed using the instance check-
ing and instance retrieval functionality provided by description logic reasoning
systems. In particular, the possibility to retrieve all instances belonging to a
given concept is useful for computing the speaker and hearer anchors and the
sets of alternative entities.

Even though description logics are not expressive enough to represent the
semantics of natural language in general, I believe that there are many rea-
soning tasks that arise during the interpretation and generation of natural

8.4. Future Work 167

language utterances for which the expressivity of description logics is suffi-
cient. Many inferences involving world knowledge are about information of
the type all A are B or all A are related to a B, which is exactly the kind of
information that description logics are designed to work with. In particular,
the inferences associated with the types of bridging descriptions that we have
been looking at are of this kind. Furthermore, I believe that description logic
reasoning systems are useful in practical systems which require some natural
language processing but not necessarily have to model all aspects of natural
language semantics.

8.4 Future Work

A proof-of-concept implementation of the strategies for generating anaphoric
expressions proposed in this thesis has been described in Section 7. Now,
an evaluation in a more realistic framework is needed. Such an evaluation is
necessary to prove that the strategies scale up to bigger knowledge bases and
grammars and to show that they do not over- or undergenerate. Starting from
the existing implementation I want to extend the knowledge base and grammar
to be able to cover a wider variety of concepts and bridging relations.

In addition to the evaluation, there are different aspects of the work pre-
sented in this thesis which I would like to develop further. Firstly, there
is still work to do on the generation of anaphoric expressions. To arrive at
a more unified picture of the conditions that license and trigger the use of
anaphoric expressions further examples of lexically-specified anaphora (nom-
inal as well as non-nominal) have to be examined from a generation point
of view. In particular, I am planning to investigate the following three cat-
egories of lexically-specified anaphora. First, I want to look at other ways
of signaling also-parallelism and the differences between the conditions that
trigger their use. Second, I want to apply the mechanisms developed in this
thesis to the generation of certain nominal lexically-specified anaphora which
involve a relation resembling also-parallelism. In particular, I am thinking of
the alternative markers studied by Bierner (2001). Finally, I want to examine
other anaphoric discourse adverbials. The Penn Discourse TreeBank (Milt-
sakaki et al. 2004) which is currently under development at the university of
Pennsylvania and which will extend the Penn TreeBank with an annotation of
discourse adverbials and their arguments will be of great help for this task.

Another direction into which I would like to extend the work described in
this thesis concerns the generation of referring expressions. While I have only
been concerned with anaphoric definite descriptions, corpus studies have shown
that there are many uses of definite descriptions which are not anaphoric.
There is no general approach to generating them, yet. I believe that the
notion of uniqueness developed for the generation of bridging description will

168 Chapter 8. Conclusions

be useful to account for such non-anaphoric definites. I have started a corpus
study of non-anaphoric definites in German in order to identify the conditions
that determine their use.

The characterization of the alternative sets that play a role in the use of
additive particles is another contribution of this thesis which can be reused in
generation. I would like to examine the generation of expressions other than
additive particles which depend on alternative sets in order to further clarify
what kinds of alternative sets play a role, how they are evoked in a discourse,
and how this can be modeled in a generation system.

Finally, this thesis has contributed to mapping out the inference tasks that
occur in natural language processing systems. Further work is needed to de-
velop reasoning environments that possibly combine different inference mech-
anisms to naturally support all kinds of reasoning tasks relevant for natural
language processing.

Appendix A

A Brief Introduction to Tree Adjoining Grammar

A Tree Adjoining Grammar (TAG) consists of a set of trees called elementary
trees, which can be combined into larger structures using two operations called
substitution and adjunction.

There are two types of elementary trees in TAG: initial trees (such as trees
a), b), and c) in Figure A.1) which are used to encode the basic syntactic
frame of syntactic functors and auxiliary trees (such as tree d) in Figure A.1)
which encode modifiers e.g. adjectives, prepositional phrases (PP) or adverbs.
Elementary trees may contain so-called substitution nodes (marked with ↓).
Additionally, auxiliary trees must have a unique foot node (marked with ∗),
i.e., a leaf node labeled with the same category as the root of the tree.

The two operations, substitution and adjunction, are then used to combine
trees into bigger trees. Intuitively, substitution inserts an initial tree with root
category X at some substitution node n with category X in some other tree.
Adjunction, on the other hand, caters for recursion and permits inserting an
auxiliary tree with root and foot node category X at a node labeled with

~

np

det
�

the

↓ �

n

�

n

rabbit

�

s

↓ �

np vp
�

v
�

sleeps

�

n

adj
�

white

∗ �

n

(a) (b) (c) (d)

Figure A.1: Elementary trees.

169

170 Appendix A. A Brief Introduction to Tree Adjoining Grammar

�

np

det
�

the

↓ • n • n

rabbit

=⇒

�

np

det
�

the

�

n

rabbit

Substitution

�

np

det
�

the

�

n

rabbit

�

n

adj
�

white

∗ �

n

=⇒

�

np

det
�

the

�

n

adj
�

white

�

n

rabbit

Adjunction

Figure A.2: Substitution and adjunction.

category X in some other tree. Substitution and adjunction are illustrated in
Figure A.2.

There are two ways of representing the result of a series of substitution and
adjunction operations. The derived tree is the syntax tree that the combination
operations have produced, and the derivation tree visualizes the operations
that were performed. Figure A.3 shows a derived tree and the corresponding
derivation tree. Given the grammar in Figure A.1 the sentence the white rabbit
sleeps can be derived by first substituting tree a into tree c at node 11, then
substituting tree b into tree a at node 2, and finally, adjoining tree d into tree
b at node 0. In the graphical representation solid edges stand for substitution
and dashed edges for adjunction.

In Lexicalized Tree Adjoining Grammar (LTAG), all elementary trees must
have an anchor, i.e., at least one leaf node must be labeled with a word. The
elementary trees shown in Figure A.1 all have an anchor and could therefore
be part of an LTAG.

Another common extension of the TAG formalism is to decorate the nodes
of elementary trees with feature structures. In this case, all nodes are associ-
ated with two feature structures, called top and bottom. TAGs normally only

1I am using Gorn addresses to refer to nodes in a tree. So, 0 refers to the root node, 1
means the left most daughter node of the root node, 2 the second daughter from the left of
the root node, and 21 would be the left most daughter of the second daughter from the left
of the root node.

171

�

s

�

np

det
�

the

�

n

adj
�

white

�

n

rabbit

vp
�

v

sleeps

¡ c

¢ a

node 1

£ b

node 2

¤ d

node 0

derived tree derivation tree

Figure A.3: A derivation tree and the corresponding derived tree (with respect
to the grammar fragment given in Figure A.1).

allow for flat feature structures, i.e., simple attribute value matrices where
values may not be feature structures again. It is possible to co-index values
in feature structures associated with different nodes. Substitution nodes only
have one feature structure. When substitution takes place, this feature struc-
ture is unified with the top feature structure associated with the root node
of the initial tree being substituted. When adjoining an auxiliary tree at a
node i, the top feature structure of that node i is unified with the top feature
structure of the auxiliary tree’s root node and the bottom feature structure of
node i is unified with the bottom feature structure of the auxiliary tree’s foot
node. Finally, a derivation is valid only if for all nodes the top and bottom
feature structures associated with that node can be unified.

For a more detailed introduction to TAG see (Joshi and Schabes 1997).

Appendix B

A Brief Introduction to Description Logics

Description logic (DL) is a family of logics in the tradition of knowledge repre-
sentation formalisms such as KL-ONE (Brachman and Schmolze 1985). DL is
a fragment of first-order logic which only allows unary and binary predicates
(called concepts and roles in this context), Boolean connectives, and very re-
stricted quantification. The syntactic objects it is concerned with are concept
terms, role terms, and constants. Concept terms denote sets of individuals,
role terms denote binary relations, and constants denote individuals; they are
defined as follows.

concept terms:

C an atomic concept, denotes a set of individuals

C t C ′ a disjunction denotes the union of the denotations of C
and C ′

C u C ′ a conjunction denotes the intersection of of the denotations
of C and C ′

¬C denotes all individuals that are not in the denotation of C

∃R.C denotes the set of individuals that are connected via the
role R to an individual in the denotation of C

∀R.C denotes the set of individuals such that every individual to
which they are related through R is in the denotation of C

(= nR).C
(< nR).C
(> nR).C

denote the set of individuals that are connected via role
R to exactly/less than/more than n individuals which are
instances of C

⊥ the empty concept, denotes the empty set

173

174 Appendix B. A Brief Introduction to Description Logics

role terms:

R an atomic role, denotes a binary relation

R−1 the inverse role, denotes the inverse relation of R

A knowledge base consists of a T-Box, which contains axioms relating con-
cepts and roles, and an A-Boxes, which states that individuals belong to cer-
tain concepts, or are related by certain roles. The axioms in a T-Box typi-
cally have either the form C v C ′, stating that C denotes a subset of C ′, or
C

.
= C ′, expressing that the denotations of C and C ′ are equal. The axiom

rabbit v animal, for instance, expresses that all rabbits are animals, and the
axiom mother

.
= femaleu ∃(has-child).> expresses that all mothers are female

and have a child and that everybody who has a child and is female is a mother.
A-Box axioms are of the form C(a) and R(a, b) expressing that individ-

ual a belongs to the denotation of C and that the individuals a and b are
related via the role R, respectively. The assertion rabbit(roger), for exam-
ple, expresses that the property rabbit holds of the individual roger, and
has-child(lisa, antonia) expresses that antonia is the child of lisa.

Reasoning systems for description logics support a range of different rea-
soning tasks. Among the most common are consistency checking, subsump-
tion checking, and instance and relation checking. Consistency checks decide
whether a combination of T-Box and A-Box can be satisfied by some model,
subsumption checking decides of two concepts whether all individuals that be-
long to one concept must necessarily belong to the other, and instance and
relation checking test whether an individual belongs to a certain concept and
whether a certain relation holds between a pair of individuals, respectively. In
addition to these basic reasoning tasks, description logic systems usually also
provide some retrieval functionality which, e.g., allows to compute all concepts
that a given individual belongs to, or all individuals that belong to a given
concept.

There is a wide range of different description logics today which add differ-
ent extensions to the basic set of operators given above. Of course, the more
expressive these extensions become, the more complex the reasoning problems
are. In the last few years, new systems such as FaCT (Horrocks et al. 1999)
and RACER (Haarslev and Möller 2001) have shown that it is possible to
achieve surprisingly good average-case performance for very expressive (but
still decidable) description logics. I employ the RACER system, mainly be-
cause it allows for A-Box inferences.

For more information on DL consult (Baader et al. 2003).

Bibliography

The numbers in square brackets at the end of a bibliographic entry refer to
the pages where the document was cited.

Appelt, D. E. (1985a). Planning English Referring Expressions. Artificial
Intelligence 26, 1–33. [36]

Appelt, D. E. (1985b). Planning English Sentences. Cambridge University
Press. [36]

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider
(Eds.) (2003). The Description Logic Handbook – Theory, Implementa-
tion and Applications. Cambridge University Press. [174]

Beaver, D. (2004). The Optimization of Discourse Anaphora. Linguistics
and Philosophy 27, 3–56. [56]

Bierner, G. (1998). TraumaTalk: Content-to-Speech Generation for Decision
Support at Point of Care. In Proceedings of the 1998 Fall Symposium of
the American Medical Informatics Association, pp. 698–702. [107, 108,
119]

Bierner, G. (2001). Alternative Phrases – Theoretical Analysis and Practical
Application. Ph. D. thesis, University of Edinburgh. [21, 24, 106, 124,
165, 167]

Bierner, G. and B. Webber (2000). Inference through Alternative-Set Se-
mantics. Journal of Language and Computation 1 (2), 277–291. [106]

Blackburn, P., J. Bos, M. Kohlhase, and H. de Nivelle (2001). Inference
and Computational Semantics. In H. Bunt, R. Muskens, and E. Thijsse
(Eds.), Computing Meaning, Volume 2, pp. 11–28. Kluwer Academic
Publishers. [23]

Bos, J. (2003). Exploring Model Building for Natural Language Understand-
ing. In Proceedings of the 4th Workshop on Inference in Computational
Semantics (ICoS-4), pp. 41–55. [145]

175

176 Bibliography

Brachman, R. and J. Schmolze (1985). An Overview of the KL-ONE Knowl-
edge Representation System. Cognitive Science 9 (2), 171–216. [173]

Brew, C. (1992). Letting the Cat out of the Bag: Generation for Shake-
and-bake MT. In Proceedings of the 15th International Conference on
Computational Linguistics, pp. 610–616. [35]

Carroll, J., A. Copestake, D. Flickinger, and V. Poznanski (1999). An Ef-
ficient Chart Generator for (Semi-)Lexicalist Grammars. In Proceed-
ings of the 7th European Workshop on Natural Language Generation
(EWNLG’99), pp. 86–95. [35]

Cheng, H., M. Poesio, R. Henschel, and C. Mellish (2001). Corpus-based
NP Modifier Generation. In Proceedings of the 2nd Meeting of the North
American Chapter of the Association for Computational Linguistics
(NAACL). [93]

Christophersen, P. (1939). The Articles: a study of their theory and use in
English. Ph. D. thesis, Copenhagen University. [68]

Clark, H. H. (1975). Bridging. In Schank and Nash-Webber (Eds.), The-
oretical Issues in Natural Language Processing. MIT Press. Reprinted
in: Johnson-Laird and Wason (eds.) Thinking. Readings in Cognitive
Science. Cambridge University Press. 1977. [64]

Creswell, C. (2003). Syntactic Form and Discourse Function in Natural Lan-
guage Generation. Ph. D. thesis, University of Pennsylvania. [3, 11, 47,
58, 59]

Dale, R. and N. Haddock (1991). Content Determination in the Generation
of Referring Expressions. Computational Intelligence 7 (4), 252–265. [51]

Dale, R. and E. Reiter (1995). Computational Interpretations of the Gricean
Maxims in the Generation of Referring Expressions. Cognitive Sci-
ence 18, 233–263. [3, 11, 23, 24, 47, 48, 51, 64, 76, 78]

Dalianis, H. (1999). Aggregation in Natural Language Generation. Journal
of Computational Intelligence 15 (4), 384–414. [34]

Danlos, L. (1987). The linguistic basis of text generation. Cambridge Uni-
versity Press. [36]

Duchier, D. (2004). Lexicalized Syntax and Topology for Non-projective
Dependency Grammar. In L. S. Moss and R. T. Oehrle (Eds.), Electronic
Notes in Theoretical Computer Science, Volume 53. Elsevier. [152]

Duchier, D. and R. Debusmann (2001). Topological Dependency Trees: A
Constraint-based Account of Linear Precedence. In Proceedings of the
39th Annual Meeting of the Association for Computational Linguistics,
pp. 180–187. [152]

Bibliography 177

Ericsson, S. (2003). The Generation of Enriched Utterances in the Informa-
tion State Based Dialogue System GoDiS. Course essay. [58]

Ericsson, S. (2004). Being as Informative as the User Wants: The Gen-
eration of Information Enriched Utterances. In Proceedings of the 17th
International FLAIRS Conference. [3, 11, 47, 58]

Erkü, F. and J. Gundel (1987). The Pragmatics of Indirect Anaphora. In
J. Verschueren and M. Bertuccelli-Papi (Eds.), The Pragmatic Perspec-
tive, pp. 533–545. John Benjamins Publishing Company. [66, 93, 143]

Fikes, R. E., P. E. Hart, and N. J. Nilsson (1972). Learning and Executing
Generalized Robot Plans. Artificial Intelligence 3, 251–288. [149, 153]

Fjelkestam-Nilsson, B. (1983). ALSO and TOO. Ph. D. thesis, Stockholm
University. Published by Almquist & Wiksell, Stockholm. [125]

Forbes, K. (2003). Discourse Semantics of S-modifying Adverbials. Ph. D.
thesis, University of Pennsylvania. [165]

Fraurud, K. (1990). Definiteness and the Processing of Noun Phrases in
Natural Discourse. Journal of Semantics 7, 395–433. [93]

Gabsdil, M., A. Koller, and K. Striegnitz (2002). Natural Language and
Inference in a Computer Game. In Proceedings of COLING, pp. 294–
300. [152]

Gardent, C. (2002). Generating Minimal Definite Descriptions. In Proceed-
ings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 96–103. [53]

Gardent, C. and M. Kohlhase (1997). Computing Parallelism in Discourse.
In Proceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 1016–1021. [107]

Gardent, C., H. Manuélian, and E. Kow (2003). Which bridges for bridging
definite descriptions? In Proceedings of the 4th International Workshop
on Linguistically Interpreted Corpora. [67, 68]

Gardent, C. and K. Striegnitz. Generating Bridging Definite Descrip-
tions. Submitted to H. Bunt and R. Muskens (Eds.), Computing With
Meaning, Vol. 3. Available at http://www.coli.uni-sb.de/~kris/

publications.html. [64]

Gardent, C. and K. Striegnitz (2001). Generating Indirect Anaphora. In
Proceedings of Fourth the International Workshop on Computational Se-
mantics (IWCS-4), pp. 138–155. [64, 143]

Ginzburg, J. (1996). Dynamics and the Semantics of Dialogue. In J. Selig-
man and D. Westerstahl (Eds.), Logic, Language and Computation, Vol-
ume 1, pp. 221–237. CSLI Lecture Notes. [109]

178 Bibliography

Grosz, B., A. Joshi, and S. Weinstein (1983). Providing a Uniform Account
of Definite Noun Phrases in Discourse. In Proceedings of the 21st Annual
Meeting of the Association for Computational Linguistics, pp. 44–50. [54,
55, 56]

Grosz, B., A. Joshi, and S. Weinstein (1995). Centering: A Framework
for Modelling the Local Coherence of Discourse. Computational Linguis-
tics 21 (2), 203–225. [54, 55, 56]

Grosz, B. J. and C. L. Sidner (1986). Attention, Intention and the Structure
of Discourse. Computational Linguistics 12, 175–204. [55]

Guhe, M. and F. Schilder (2002). Underspecification for incremental gener-
ation. In Proceedings of the 6th KONVENS (Konferenz zur Verarbeitung
natürlicher Sprache), pp. 37–44. [3, 11, 47, 57]

Gundel, J., N. Hedberg, and R. Zacharski (1993). Cognitive Status and the
Form of Referring Expressions in Discourse. Language 69 (2), 274–307.
[93, 143]

Haarslev, V. and R. Möller (2001). RACER System Description. In Proceed-
ings of the First International Joint Conference on Automated Reasoning
(IJCAR-01), pp. 701–706. [8, 16, 135, 147, 149, 174]

Hajičová, E. (1993). Issues of Sentence Structures and Discourse Patterns.
Charles University, Prague. Volume 2 of Theoretical and Computational
Linguistics. [54]

Halliday, M. and R. Hasan (1976). Cohesion in English. London: Longman.
[19]

Halliday, M. A. (1985). An Introduction to Functional Grammar. London:
Edward Arnold. [35]

Hamblin, C. (1973). Questions in Montague English. Foundations of Lan-
guage, 41–53. [108]

Hardt, D. and O. Rambow (2001). Generation of VP-Ellipsis: A Corpus-
Based Approach. In Proceedings of the 39th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 282–289. [3, 11, 47, 57]

Hawkins, J. A. (1978). Definiteness and Indefiniteness. London: Croon
Helm. [66, 94]

Heim, I. (1982). The Semantics of Definite and Indefinite Noun Phrases.
Ph. D. thesis, University of Massachusetts. [68]

Hobbs, J. (1985). Ontological Promiscuity. In Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics, pp. 61–69. [38]

Horacek, H. (1997). An Algorithm for Generating Referential Descriptions
with Flexible Interfaces. In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics, pp. 206–213. [52, 53]

Bibliography 179

Horrocks, I., U. Sattler, and S. Tobies (1999). Practical Reasoning for
Expressive Description Logics. In H. Ganzinger, D. McAllester, and
A. Voronkov (Eds.), Proceedings of LPAR’99, Number 1705 in LNAI,
pp. 161–180. Springer-Verlag. [174]

Hovy, E. (1988). Planning Coherent Multisentential Text. In Proceedings of
the 26th Annual Meeting of the Association for Computational Linguis-
tics, pp. 163–169. [31, 36]

Humphreys, K. (1995). Formalizing Pragmatic Information for Natural Lan-
guage Generation. Ph. D. thesis, University of Edinburgh. [3, 11, 47, 59]

Jackendoff, R. (1972). Semantic Interpretation in Generative Grammar.
Cambridge MA: MIT Press. [100]

Joshi, A. and Y. Schabes (1997). Tree-Adjoining Grammars. In G. Rozen-
berg and A. Salomaa (Eds.), Handbook of Formal Languages, Chapter 2,
pp. 69–123. Berlin: Springer-Verlag. [171]

Kamp, H. and U. Reyle (1993). From Discourse to Logic. Dordrecht: Kluwer.
[97]

Karttunen, L. and S. Peters (1979). Conventional Implicature. In C.-K. Oh
and D. A. Dinneen (Eds.), Presupposition, Volume 11 of Syntax and
Semantics, pp. 1–56. Academic Press. [96]

Kay, M. (1979). Functional Grammar. In Proceedings of the 5th Meeting of
the Berkeley Linguistics Society, pp. 142–158. [35]

Kay, M. (1996). Chart Generation. In Proceedings of the 34th Annual Meet-
ing of the Association for Computational Linguistics, pp. 200–204. [35]

Kehler, A. (2002). Coherence, Reference, and the Theory of Grammar. CSLI
Publications. [104]

Kibble, R. (1999). Cb or not Cb? Centering theory applied to NLG. In
Proceedings of the ACL Workshop ‘The Relation of Discourse/Dialogue
Structure and Reference’, pp. 72–81. [56]

Klabunde, R. and M. Jansche (1998). Abductive Reasoning for Syntactic
Realization. In Proceedings of the 9th International Workshop on Natural
Language Generation, pp. 108–117. [3, 11, 47, 59]

Kleiber, G. (1997). Des anaphores associatives méronymiques aux anaphores
associatives locatives. Verbum 1–2, 25–66. [67]

Klein, W. and C. von Stutterheim (1987). Quaestio und referentielle Bewe-
gung in Erzählungen. Linguistische Berichte 109, 163–183. [109]

Koller, A., R. Debusmann, M. Gabsdil, and K. Striegnitz (2004). Put my
galakmid coin into the dispenser and kick it: Computational Linguistics
and Theorem Proving in a Computer Game. Journal of Logic, Language
and Information (JoLLI) 13, 187–206. [147, 148, 149, 151]

180 Bibliography

Koller, A. and K. Striegnitz (2002). Generation as Dependency Parsing. In
Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 17–24. [35]

König, E. (1991). The Meaning of Focus Particles. Routledge. [98]

Kowalski, A. (2002). Nichtlokale semantische Phänomene — Fokus-
Hintergrund-Struktur und Ausnahmephrasen im Deutschen. Ph. D. the-
sis, Universität des Saarlandes. Saarbrücken Dissertations in Computa-
tional Linguistics and Language Technology, Vol. 16. [100]

Krahmer, E. and M. Theune (2002). Efficient Context-Sensitive Generation
of Referring Expressions. In K. van Deemter and R. Kibble (Eds.), In-
formation Sharing: Givenness and Newness in Language Processing, pp.
223–264. CLSI Publications. [3, 11, 47, 54, 93]

Krifka, M. (1992). Compositional Semantics for Multiple Focus Construc-
tions. In J. Jacobs (Ed.), Informationsstruktur und Grammatik, pp. 17–
53. Westdeutscher Verlag. [100, 101]

Krifka, M. (1999). Additive Particles under Stress. In Proceedings of SALT
(Semantics and Linguistic Theory) 8, pp. 111–128. [100]

Kruijff-Korbayová, I. and M. Steedman (2003). Discourse and Information
Structure. Journal of Logic, Language and Information 12 (3), 249–259.
Special Issue: Discourse and Information Structure. [100]

Kruijff-Korbayová, I. and B. Webber (2001). Concession, Implicature, and
Alternative Sets. In Proceedings of Fourth the International Workshop
on Computational Semantics (IWCS-4), pp. 227–248. [24, 165]

Larsson, S. (2002). Issue-Based Dialogue Management. Ph. D. thesis,
Göteborg University. [118]

Larsson, S., P. Ljunglöf, R. Cooper, E. Engdahl, and S. Ericsson (2000).
GoDiS – An Accomodating Dialogue System. In Proceedings of the
ANLP/NAACL-2000 Workshop on Conversational Systems, pp. 7–10.
[118]

Lavoie, B., O. Rambow, and E. Reiter (1997). Customizable Descriptions of
Object-oriented Models. In Proceedings of the 5th Conference on Applied
Natural Language Processing (ANLP-1997), pp. 253–256. [31]

Levelt, W. (1989). Speaking: From Intention to Articulation. MIT Press.
[51]

Löbner, S. (1985). Definites. Journal of Semantics 4, 279–326. [66]

Mann, W. and S. Thompson (1988). Rethorical Structure Theory: Towards
a Functional Theory of Text Organization. Text 3, 243–281. [31, 118]

Bibliography 181

McDonald, D. D. (1990). Natural language generation. In S. C. Shapiro
(Ed.), Encyclopedia of Artificial Intelligence, pp. 983–997. New York:
John Wiley and Sons. [29]

McKeown, K. (1985). Text Generation. Cambridge University Press. [31, 32,
153]

Miltsakaki, E., R. Prasad, A. Joshi, and B. Webber (2004). The Penn Dis-
course TreeBank. In Proceedings of the Language Resources and Evalu-
ation Conference (LREC 2004). [167]

Modjeska, N. (2003). Resolving Other-Anaphora. Ph. D. thesis, University
of Edinburgh. [106, 107]

Moore, J. (1994). Participating in Explanatory Dialogues. Cambridge, MA:
MIT Press. [31]

Moore, J. and C. Paris (1993). Planning Text for Advisory Dialogues. Com-
putational Linguistics 19, 651–694. [36]

Mozart Consortium (1999). The Mozart Programming System web pages.
http://www.mozart-oz.org/. [149]

Passonneau, R. J. (1996). Using Centering to Relax Gricean Informa-
tional Constraints on Discourse Anaphoric Noun Phrases. Language and
Speech 39 (2–3), 229–264. [3, 11, 47, 55]

Pechmann, T. (1989). Incremental Speech Production and Referential Over-
specification. Linguistics 27, 89–110. [51]

Poesio, M. and R. Vieira (1998). A Corpus-based Investigation of Definite
Description Use. Computational Linguistics 24 (2), 183–216. [93]

Prevost, S. (1995). A Semantics of Contrast and Information Structure for
Specifying Intonation in Spoken Language Generation. Ph. D. thesis,
University of Pennsylvania. [107, 108, 119, 140]

Prevost, S. (1996). An Information Structural Approach to Spoken Lan-
guage Generation. In Proceedings of the 34th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 294–301. [24, 107, 119, 140]

Prince, E. F. (1978). A Comparison of Wh-Clefts and It-Clefts in Discourse.
Language 54, 883–906. [58]

Prince, E. F. (1981). Toward a Taxonomy of Given-New Information. In
P. Cole (Ed.), Radical Pragmatics, pp. 223–255. Academic Press. [66]

Prince, E. F. (1992). The ZPG letter: subjects, definiteness, and
information-status. In S. Thompson and W. Mann (Eds.), Discourse
description: diverse analyses of a fund raising text, pp. 295–325. John
Benjamins. [65]

182 Bibliography

Prince, E. F. (1998). On the limits of syntax, with reference to Left-
Dislocation and Topicalization. In P. Culicover and L. McNally (Eds.),
The Limits of Syntax, Volume 29 of Syntax and Semantics, pp. 281–302.
Academic Press. [58]

Quirk, R., S. Greenbaum, G. Leech, and J. Svartvik (1985). A Comprehen-
sive Grammar of the English Language. London: Longman. [98]

Ramsay, A. and H. Seville (1999). Models and Discourse Models. In Pro-
ceedings of the 1st Workshop on Inference in Computational Semantics
(ICoS-1), pp. 111–124. [145]

Reis, M. and I. Rosengren (1997). A Modular Approach to the Grammar
of Additive Particles: the Case of German Auch. Journal of Seman-
tics 14 (3), 237–309. [127]

Reiter, E. (1994). Has a Consensus NL Generation Architecture Appeared,
and is it Psycholinguistically Plausible? In Proceedings of the Seventh In-
ternational Workshop on Natural Language Generation (INLGW-1994),
pp. 163–170. [35, 36]

Reiter, E. and R. Dale (1997). Building Applied Natural Language Gener-
ation Systems. Journal of Natural Language Engineering 3, 57–87. [30,
54]

Reiter, E. and R. Dale (2000). Building Natural Language Generation Sys-
tems. Studies in Natural Language Processing. Cambridge University
Press. [30, 33]

Roberts, C. (1996). Information Structure in Discourse: Towards an In-
tegrated Formal Theory of Pragmatics. In J.-H. Yoon and A. Kathol
(Eds.), Papers in Semantics, Volume 49 of OSU Working Papers in Lin-
guistic. Ohio State University. [109]

Rooth, M. (1985). Association with Focus. Ph. D. thesis, University of Mas-
sachusetts, Amherst. [24]

Rooth, M. (1992). A Theory of Focus Interpretation. Natural Language Se-
mantics 1, 75–116. [100, 101, 108, 165]

Rubinoff, R. (2000). Integrating Text Planning and Linguistic Choice With-
out Abandoning Modularity: The IGEN Generator. Computational Lin-
guistics 26, 107–138. [36]

Shaw, J. (2002). Clause Aggregation: An approach to generating concise
text. Ph. D. thesis, Columbia University. [34]

Spenader, J. (2002). Presupposition in Spoken Discourse. Ph. D. thesis,
Stockholm University. [66, 72]

Steedman, M. (2000). Information Structure and the Syntax-Phonology In-
terface. Linguistc Inquiry 31, 649–689. [24, 100, 108, 165]

Bibliography 183

Stone, M. (1998). Modality in Dialogue: Planning, Pragmatics and Compu-
tation. Ph. D. thesis, University of Pennsylvania. [23, 24, 29, 37, 47, 147,
153, 155]

Stone, M. and C. Doran (1997). Sentence Planning as Description Using
Tree Adjoining Grammar. In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics, pp. 198–205. [37, 38]

Stone, M., C. Doran, B. Webber, T. Bleam, and M. Palmer (2003). Mi-
croplanning with Communicative Intentions: The SPUD System. Com-
putational Intelligence 19, 311–381. [5, 8, 13, 16, 37, 155]

Stone, M. and B. Webber (1998). Textual Economy Through Close Coupling
of Syntax and Semantics. In Proceedings of INLG 1998, pp. 178–187. [43]

Striegnitz, K. (2001). Model Checking for Contextual Reasoning in NLG. In
P. Blackburn and M. Kohlhase (Eds.), Proceedings of the 3rd Workshop
on Inference in Computational Semantics (ICoS-3), pp. 101–115. [145]

Strube, M. (1998). Never Look Back: An Alternative to Centering. In Pro-
ceedings of the 17th International Conference on Computational Linguis-
tics and the 36th Annual Meeting of the Association for Computational
Linguistics, Volume 2, pp. 1251–1257. [151]

Vallduv́ı, E. and M. Vilkuna (1998). On Rheme and Kontrast. In The Limits
of Syntax, Volume 29 of Syntax and Semantics, pp. 79–108. Academic
Press. [100, 165]

van Deemter, K. (2002). Generating Referring Expressions: Boolean Exten-
sions of the Incremental Algorithm. Computational Linguistics 28 (1),
37–52. [53]

van der Sandt, R. (1992). Presupposition Projection as Anaphora Resolu-
tion. Journal of Semantics 9, 333–377. [21]

van der Sandt, R. and B. Geurts (2001). Too. In Proceedings of the 13th
Amsterdam Colloquium, pp. 180–185. [97]

van Kuppevelt, J. (1995). Discourse structure, topicality and questioning.
Journal of Linguistics 31, 109–147. [109, 117, 124]

Vieira, R. (1998). A Review of the Linguistic Literature on Definite Descrip-
tions. Acta Semiotica et Lingvistica 7, 219–258. [67]

von Stechow, A. (1982). Structured Propositions. Report of the SFB
99, Konstanz University. Available at http://vivaldi.sfs.nphil.

uni-tuebingen.de/~arnim10. [100]

Wanner, L. and E. H. Hovy (1996). The HealthDoc Sentence Planner.
In Proceedings of the 8th International Workshop on Natural Language
Generation (INLGW-8), pp. 1–10. [36]

184 Bibliography

Ward, G. (1988). The Semantics and Pragmatics of Preposing. Outstanding
Dissertations in Linguistics. Garland. [58]

Webber, B., A. Joshi, M. Stone, and A. Knott (2003). Anaphora and Dis-
course Structure. Computational Linguistics 29 (4), 545–587. [20, 21, 93]

Webber, B. L. (1979). A Formal Approach to Discourse Anaphora. New York
& London: Garland. [21]

Webber, B. L. (1988). Tense as Discourse Anaphor. Computational Linguis-
tics 14, 61–73. [21]

Zeevat, H. (2002). Explaining Presupposition Triggers. In K. van Deemter
and R. Kibble (Eds.), Information Sharing, pp. 61–88. CSLI Publica-
tions. [97, 98]

Zeevat, H. (2003). Particles: Presupposition Triggers, Context Markers or
Speech Act Markers. In R. Blutner and H. Zeevat (Eds.), Optimality
Theory and Pragmatics. Palgrave-McMillan. [6, 95, 98, 111, 124]

Lebenslauf

Name Striegnitz
Vornamen Kristina Irene
Geburtstag 11. September 1974
Geburtsort Berlin
E-mail: kris@coli.uni-sb.de

1980–1984 Grundschule Münchehagen

1984–1986 Orientierungsstufe Loccum

1986–1990 Ratsgymnasium Stadthagen

1990–1991 Albany High School, Albany, Texas, USA

1991–1993 Ratsgymnasium Stadthagen

05/1993 Abitur, Ratsgymnasium Stadthagen
Note: 1,1

1993–1995 Universität des Saarlandes; Computerlinguistik

10/1995 Vordiplom in Computerlinguistik, Universität des Saarlandes
Note: 1,1

1995–1996 Tohoku Universität, Sendai, Japan; Japanisch und Linguistik

1996–2000 Universität des Saarlandes; Computerlinguistik

1/2000 Diplom in Computerlinguistik, Universität des Saarlandes
Note: 1,1

2000–2004 Promotion an der Universität des Saarlandes; Computerlin-
guistik
Cotutelle mit der Universität Henri Poincaré — Nancy 1,
Frankreich

