Bridging the Gap Between Underspecification Formalisms:
Minimal Recursion Semantics as Dominance Constraints

Abstract

Minimal Recursion Semantics (MRS) is
the standard formalism used in large-scale
HPSG grammars to model underspecified
semantics. We present the first provably
efficient algorithm to enumerate the read-
ings of MRS structures. It is obtained by
translating MRS into normal dominance
constraints for which efficient algorithms
exist.

1 Introduction

In the past few years there has been considerable
activity in the development of formalisms for un-
derspecified semantics (Alshawi and Crouch, 1992;
Reyle, 1993; Bos, 1996; Copestake et al., 1999; Egg
et al., 2001). The common idea is to delay the enu-
meration of all readings for as long as possible. In-
stead, they work with a compact underspecified rep-
resentation for as long as possible, only enumerating
readings from this representation by need.

Minimal Recursion Semantics (MRS) (Copes-
take et al., 1999) is the standard formalism for se-
mantic underspecification used in large-scale HPSG
grammars (Pollard and Sag, 1994; Copestake and
Flickinger, 2000). Despite of this clear relevance, the
most obvious questions about MRS are still open:

1. Is it possible to enumerate the readings of
an MRS-structure efficiently? No algorithm
is published so far. Existing implementa-
tions seem to be practical, even though the
existence of readings of an MRS structure
is already NP-complete (Theorem 10.1 of
Althaus et al. (2003)).

2. What is the precise relationship to other un-
derspecification formalism? Are all of them the
same, or else, what are the differences?

We answer both questions in this paper. We dis-
tinguish the sublanguages of MRS-nets and nor-

mal dominance nets, and show that they can be in-
tertranslated. We can therefore apply existing con-
straint solver for normal dominance constraints to
enumerate the readings of MRS-nets in low polyno-
mial time.

MRS-nets or equivalently normal dominance nets
are sufficiently powerful for modeling scope un-
derspecification: they generalize on chain-connected
normal dominance constraints, which are already
sufficient as argued by Koller et al. (2003). Nets can
also be defined for Hole semantics (Bos, 1996); the
results of the present paper show, that this yields an-
other equivalent underspecification formalism.

Furthermore, this paper introduces a new proof
technique: Arguing about MRS is reduced to rea-
soning about weakly normal dominance constraints
(Bodirsky et al., 2003). Dealing with hole semantics
is easier since it requires properties of normal dom-
inance constraints only (Koller et al., 2003).

2 Minimal Recursion Semantics

We first define a simple version of Minimal Recur-
sion Semantics (Copestake et al., 1999) that captures
the essence of MRS, and then discuss the differences
to the original version.

2.1 Definition

MRS is a description language for formulas of some
first order object languages with generalized quanti-
fiers. Underspecified representations in MRS consist
of elementary predications and handle constraints.
Roughly, elementary predications are object lan-
guage formulas with “holes” into which other for-
mulas can be plugged; handle constraints restrict the
way these formulas can be plugged into each other.

Underspecified representations are built from the
following vocabulary:

1. Variables. An infinite set of variables ranged
over by h. Variables are also called handles.

2. Constants. An infinite set of constants ranged



over by x,y,z. Constants are the individual vari-
ables of the object language.
3. Function symbols. A set of function symbols
ranged over by P and sets of quantifier symbols
Qy for all individual variables x, where Q stands
for a quantifier. We call Qy the variable binder
of x.
4. The symbol < for the outscopes relation.
Formulas of MRS have three kinds of literals:
1. h:P(X1,...,%n,01,...,hm)
2. h:Qx(hy,h2)
3. hy<hy
The first two forms are called elementary predica-
tions (EPs) and the third form handle constraints.
The position on the left of a colon “;” in an EP
is the label position and the positions on the right
the argument positions. Let M be a set of literals.
The labels of M are those handles occurring in label
but not in argument positions in M. The argument
handles of M are those that occur in argument but
not in label position.

Definition 1 (MRS). An MRS is finite set M of

MRS-literals such that:

M1 Every handle occurs at most once in label and
at most once in argument position in M.

M2 Handle constraint hy < hy in M always relate
argument handles h; to labels h, of M.

M3 For every constant (individual variable) x in ar-
gument position in M there is a unique literal of
the form h: Qx(h1,h2) in M.

We call an MRS compact if it satisfies:

M4 Every handle of M occurs exactly once in an
elementary predication of M.

We say that a handle h immediately outscopes a
handle h" in an MRS M iff there is an EP E in M such
that h occurs in label and h’ in argument position of
E. The outscopes relation is the reflexive, transitive
closure of the immediate outscopes relation.

We often represent MRSs by graphs. For instance,
the graph in Figure 1 represents the following MRS
for the sentence “Every student reads a book.”

{hy:every,(hz,ha), h3:student(x), hs:somey(hg, hg),
h7:book(y), hg:read(x,y),h2 < hz,hg < h7}

Elementary predications are drawn with solid edges
and handle constraints are represented by dotted

every, somey
y ;
studenty booky
readyy

Figure 1: Graph for “Every student reads a book.”

lines. Note that we make the relation between bound
variables and their binders explicit by dotted lines;
however, redundant “binding-edges” are omitted.

A solution for an underspecified MRS is called a
configuration, or scope-resolved MRS.

Definition 2 (Configuration). An MRS M is a con-
figuration if it satisfies the following conditions.

C1 The graph of M is a tree, i.e. no handle properly
outscopes itself, no handle occurs in different
argument positions and all handles are pairwise
connected by elementary predications.

C2 If two EPs h:P(...,x,...) and hg:Qx(h1,hy)
belong to M then hg outscopes h in M.

We call M a configuration for another MRS M if
there exists some substitution o : arg(M’) — lab(M’)
which states how to identify argument handles of M’
with labels of M, so that:

C3 M={o(E) | EisEPin M}, and
C4 a(hy) outscopes hy in M for all hy <h, € M'.

The value o(E) is obtained by substituting all ar-
gument handles in E, leaving all others unchanged.

2.2 Remarks

Our version of MRS differs in some respects from
the original version in Copestake et al. (1999).
First, we assume that different EPs must be la-
beled with different handles, and that labels can-
not be identified. In standard MRS, however, con-
junctions are encoded by labeling different EPs with
the same handle. If we make the plausible assump-
tion that different labels cannot be identified dynam-
ically, i.e. if different labels in an MRS M remain
different in every configuration of M, then these EP-
conjunctions can be resolved by introducing an ad-
ditional EP which makes the conjunction explicit.
Second, we use a slightly weaker form of handle
constraints. Standard MRS uses “geq” constraints
instead of our outscopes constraints. A handle h



is geq h" (written h =¢h’) in an MRS M if either
h =h’ or h:Qx(h1,h2) occurs in M and hy is geq h'.
Thus, h =qh’" implies h < h’, but not the other way
round. Although geg-constraints are stronger than
outscopes constraints, we don’t konw of any exam-
ple, where this additional strength is needed.

Apart from these differences, we also depart from
standard MRS in some minor details, e.g. we use
sets instead of multi-sets and omit the usual top-
handle, which is useful only during semantics con-
struction.

3 Dominance Constraints

Dominance constraints are a general framework for
the partial description of trees, and thus of the syn-
tax trees of logic formulas. Dominance constraints
are the core language underlying CLLS (Egg et
al., 2001), which adds parallelism and binding con-
straints.

3.1 Syntax and Semantics

We assume a finite or infinite signature X of function
symbols with fixed arities and an infinite set Var of
variables ranged over by X,Y,Z. We write f,g for
function symbols and ar( f) for the arity of f.

A dominance constraint ¢ is a conjunction of
dominance, inequality, and labeling literals of the
following form, where ar(f) = n:

b= XY [ XAY [ X f(Xg,-- o, Xn) [ O AP

Dominance constraints are interpreted over finite
constructor trees over signature Z, i.e. ground terms
constructed from the function symbols in ~. We
identify ground terms with trees that are rooted,
ranked, edge-ordered and labeled. A solution for a
dominance constraint consists of a tree T and a vari-
able assignment o that maps variables to nodes of 1
such that all constraints are satisfied: a labeling lit-
eral X: f(Xg,...,Xn) is satisfied iff the node a(X) is
labeled with f and has daughters a(X31),...,a(Xn)
in this order; a dominance literal X<*Y is satisfied
iff there is a path from o (X) to a(Y) in T; and an in-
equality literal X #Y is satisfied iff a(X) and a(Y)
are distinct nodes.

Note that a solution may contain additional mate-
rial. For instance, the tree f(a,b) satisfies the con-
straint X<*Y AX<*ZAY:aAZ:b.

3.2 Normality and Weak Normality

The satisfiability problem of arbitrary dominance
constraints is NP-complete (Koller et al., 2001) in
general. However, Althaus et al. (2003) identify a
natural fragment of dominance constraints, normal
dominance constraints, which have a polynomial
time satisfiability problem. Bodirsky et al. (2003)
generalize this notion to weakly normal dominance
constraints.

Definition 3. A dominance constraint ¢ is normal if
it satisfies the following conditions.

N1 (a) each variable of ¢ occurs at most once in the
labeling literals of . A variableY; is a hole of ¢
whenever it occurs as an argument in a labeling
X:f(Y1,...,Yn) of ¢; else it is a root of ¢.

(b) each variable of ¢ occurs at least once in the
labeling literals of ¢.

N2 if X and Y are distinct roots in ¢, X #Y occurs
ind.

N3 (a) if X <*Y occursin ¢,Y isarootin ¢.

(b) if X <*Y occursin ¢, X isa hole in ¢.

A dominance constraint is weakly normal if it satis-
fies all above properties except for N1(b) and N3(b).

The idea behind (weak) normality is that the con-
straint graph (see below) of a dominance constraint
consists of solid fragments which are connected
by dominance constraints; these fragments may not
overlap in a solution.

Note that this definition applies only to compact
constraints. As for MRS, all dominance constraints
can be compactified, provided that dominance links
relate either roots or holes with roots.

Dominance Graphs. We often represent domi-
nance constraints as graphs. A dominance graph is
the digraph (V,<* w<). The graph of a weakly nor-
mal constraint ¢ is defined as follows: The nodes
of the graph of ¢ are the variables of ¢. A labeling
literal X : f(Xg,...,Xn) of ¢ contributes tree edges
(X,X) € <« for 1 <i <n that we draw as X—X;;
we freely omit the label f and the edge order in the
graph. A dominance literal X<*Y contributes a dom-
inance edge (X,Y) € <* that we draw as X -----Y.
Inequality literals in ¢ are also omitted in the graph.



For example, the constraint graph f g
on the right represents the dominance ‘ l
constraint X : f(X') AY :g(Y)AX'SZA 3y
Y'<FZANZ:aANXAY NXAZNY £Z

A dominance graph is weakly normal or a wnd-
graph if it does not contain any forbidden subgraph
of the following forms:

Dominance graphs of a weakly normal dominance
constraints are obviously weakly normal.

Solved Forms and Configurations. The main dif-
ference between MRS and dominance constraints
lies in their notion of interpretation: solutions versus
configurations.

Every satisfiable dominance constraint has in-
finitely many solutions. Algorithms for dominance
constraints therefore do not enumerate solutions but
solved forms. We say that a wnd-graph @ is in solved
form iff @ is a forest. The solved forms of @ are
solved forms @' that are more specific than ®, i.e. ®
and @’ differ only in their dominance edges and the
reachability relation of @ extends the reachability of
@’. A minimal solved form of @ is a solved form of
® that is minimal with respect to specificity.

The notion of configurations from MRS applies
to dominance constraints as well. Here, a configura-
tion is a dominance constraint whose graph is a tree
without dominance edges. A configuration of a con-
straint ¢ is a configuration that solves ¢ in the ob-
vious sense. Configurations correspond precisely to
simple solved forms, which are tree-shaped solved
forms where every hole has exactly one outgoing
dominance edge.

Lemma 1. Simple solved forms and configurations
correspond: Every simple solved form has exactly
one configuration, and for every configuration there
is exactly one solved form that it configures.

Unfortunately, Lemma 1 does not hold for nom-
inal instead of simple solved forms: there are con-
straints that have minimal solved forms which do
not have a configuration. For instance, consider the
schema of the constraint on the left in Figure 2. The
graph on the right schematically represents a mini-
mal solved form for it. Obviously, this solved form
does not have a configuration.

AN
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Figure 2: A dominance constraint (left) with a mini-
mal solved form (right) that has no configuration

4 Representing MRSs

We next map MRSs to weakly normal domi-
nance constraints so that configurations are pre-
served. Unfortunately, this translation is based on a
non-standard semantics for dominance constraints,
namely configurations. We address this problem in
the following sections.

The translation of an MRS M to a dominance con-
straint ¢y is quite trivial. The variables of ¢\ are the
handles of M and its literal set is:

{h:Py,..x,(h1,...) | h:P(Xq,...,Xn,h1,...) € M}

U {hZQX(hl,hz) | hZQX(hl,hz) € M}

U {h1<1*h2 | hi<hse M}

U {h<1*ho | hIQx(hl,hz),hoZP(...,X,...) € M}
U {h#h" | h,h"in distinct label positions of M}
Compact MRSs M are clearly translated into weakly
normal dominance constraints. Labels of M become
roots in ¢y while argument handles become holes.
Weak root-to-root dominance literals are needed to
encode MRS’s variable binding condition C2. It
could be formulated equivalently through lambda
binding constraints of CLLS (but this is not neces-
sary here in the absence of parallelism).

The compactness assumption does not seriously
limit the results of this paper, but simplifies its pre-
sentation. Arbitrary MRSs could either be handled
by “compressing” several predicate symbols into a
more complex predicate symbol, or allowing for a
slightly more general notion of weakly normal dom-
inance constraints.

Proposition 1. The translation of a compact MRS
M into a weakly normal dominance constraint ¢y
preserves configurations.



This weak correctness property follows straight-
forwardly from the analogy in the definitions.

5 Constraint Solving

We recall an efficient algorithm from (Bodirsky et
al., 2003) that enumerates all minimal solved forms
of a wnd-graph or constraint. All results of this sec-
tion are proved there.

The same algorithm can be used to enumer-
ate configurations for large subclasses of wnd-
constraints or MRSs, as we will see in Section 6. But
equally importantly, this algorithm provides a pow-
erful proof method to reason about solved forms and
configurations on which all our results rely.

5.1 Weak Connectedness

Two nodes X and Y of a wnd-graph @ = (V,E) are
weakly connected if there is an undirected path from
X toY in (V,E). We call ® weakly connected if all
its nodes are weakly connected. A weakly connected
component (wcc) of @ is a maximal weakly con-
nected subgraph of ®. The wccs of @ = (V,E) form
proper partitions of V and E.

Proposition 2. The graph of a solved form of a
weakly connected wnd-graph is a tree.

5.2 Freeness

The idea of the enumeration algorithm is based on
the notion of freeness.

Definition 4. A node X of a wnd-graph @ is called
free in @ if there exists a solved form of & which is
a tree with root X.

A weakly connected wnd-graph without free
nodes is unsolvable. Otherwise, it has a solved form
whose digraph is a tree by Prop. 2, and the root of
this tree is free for @.

Given a set of nodes V/ C V, we write ®|y for the
restriction of @ to nodes inV’ and edges in V' x V.
The following lemma characterizes freeness:

Lemma 2. A wnd-graph ® with free node X satis-
fies:

F1 node X has indegree zero in graph ®, and

F2 no distinct children Y and Y’ of X in @ that are

linked to X by immediate dominance edges are
weakly connected in the remainder ®|y\ (x;-

5.3 Algorithm

The algorithm for enumerating the minimal solved
forms of a wnd-graph (or equivalently constraint)
is given in Figure 3. We illustrate this algorithm at
the problematic wnd-graph @ in Fig. 2. The dom-
inance net @ is weakly connected, so that we can
call solve(®). This procedure guesses the topmost
fragment in the solved form of @ (which exists by
Proposition 2 as the solved form is a tree).

The only candidates are L1 or L2 since L3 and
L4 have incoming dominance edges violating prop-
erty F1. Let us choose fragment L2 to be topmost.
The graph which remains when removing L2 is still
weakly connected. It has a single minimal solved
form computed by a recursive call of the solver,
where L1 dominates L3 and L4. The solved form of
the restricted graph is then put below the left hole of
L2, since it is connected to this hole. As a result, we
obtain the solved form on the right of Fig. 3.

Normalizing @ has an interesting consequence:
norm(®) can not be satisfied while placing L2 top-
most. Our algorithm detects this correctly: the nor-
malization of fragment L2 is not free in norm(®)
since it violates property F2.

Theorem 1. The function solved_form(®) com-
putes all minimal solved forms of a weakly normal
dominance graph ®; it runs in quadratic time per
solved from.

6 Correct Encoding

We next explain how to encode a large fragment of
MRSs into wnd-constraints such that configurations
correspond precisely to minimal solved forms. The
result of the translation will indeed be normal.

6.1 Problems and Examples

The naive representation of MRS formulas as
weakly normal dominance constraints is only cor-
rect in a weak sense. The encoding fails in that some
MRSs without configurations are mapped to solv-
able wnd-constraints. For instance, this holds for
both MRSs in Fig 2.

We even cannot hope to translate arbitrary MRSs
correctly into wnd-constraints: the configurability
problem of MRSs is NP-complete, while satisfiabil-
ity of wnd-constraints can be solved in polynomial
time. We next introduce the fragment of MRS-nets



solved_form(®) =
Let @4,..., Py be the wees of @ = (V,E)
Let (Vi, E;) be the result of solve(®;)
return (V,UK_;Ej)
solve(®) =
precond: ® = (V,<w<*) is weakly connected

choose a node X satisfying (F1) and (F2) in @ else fail

LetYq,...,Y, be all nodes s.t. X «Y;

Let ®y,. .., P be the weakly connected components of ®fy_x v, ..y}
Let (Wj,E;) be the result of solve(®;), and Xj € W; its root

return  (V,UX_,EjU<U<] U<3) where

< ={(Yi, X)) | X2 (Yi,X") e < AX € Wi},

< ={(X, X)) | =3X": (Y, X)) e <FAX € W}

Figure 3: Enumerating the minimal solved-forms of a wnd-graph.
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Figure 4: Fragment Schemas of Nets

and equivalent wnd-nets, and show that they can be
intertranslated in quadratic time.

6.2 Dominance and MRS-Nets

A hypernormal path (Althaus et al., 2003) in a wnd-
graph is a sequence of adjacent edges that does
not traverse two outgoing dominance edges of some
hole X in sequence, i.e. a wnd-graph without situa-
tions Yy > X< Ya.

A dominance net ¢ is weakly normal dominance
constraint whose fragments all satisfy one of the
three schemas in Fig. 4. MRS-nets can be defined
in analogy. This means that all roots of ¢ are labeled
in ¢, and that for all fragments X: f(Xy,...,Xn) of
¢ where n > 0 one of the following three conditions
holds:

strong. n >0and forall Y € {Xy,...,Xn} there ex-
ists a unique Z such thatY <* Z in ¢, and not exists

Z such that X <* Z in ¢.

weak. n>1andforallY € {Xy,...,Xn_1,X} there
exists a unique Z such thatY <* Z in ¢, and not ex-
ists Z such that X, <* Z in ¢.

island. n =1 and all variables in {Y | Xy <*Y } are
connected by a hypernormal path in the graph of the
restricted constraint ¢,_x,3, and not exists Z such
that X <*Z in ¢.

As mentioned before, dominance nets generalize
chain-connectedness (Koller et al., 2003). In short,
the important property of a chain-connected con-
straint is that whenever a hole has two outgoing
dominance edges (say, to X and Y), then either X
dominates Y orY dominates X in every solved form.
This property is reflected directly by the island prop-
erty above.

6.3 Normalizing Dominance Nets

Dominance nets are wnd-constraints. We next show
how to translate configurability of dominance nets
correctly to satisfiability of normal dominance con-
straints.

The trick is normalization of weak dominance
edges. The normalization norm(¢) of a weakly nor-
mal dominance constraint ¢ is obtained by convert-
ing all root-to-root dominance literals X <* Y as fol-
lows:

XY = X <'Y

if X roots a fragment of ¢ that satisfies schema
weak of net fragments. If ¢ is a dominance net then



norm(¢) is indeed a normal dominance net.

Theorem 2. The configurations of a weakly con-
nected dominance net ¢ correspond bijectively to the
minimal solved forms of its normalization norm(¢).

The proof captures the rest of this section. We will
show in a first step (Prop.3 below) that the configu-
rations are preserved when normalizing weakly con-
nected nets. In the second step, we then show that
minimal solved forms of normalized nets, and thus
of norm(¢), can always be configured (Prop. 4 be-
low).

Corollary 1. Configurability of weakly connected
MRS-nets can be decided in polynomial time; con-
figurations of weakly connected MRS-nets can be
enumerated in quadratic time per configuration.

6.4 Correctness Proof

Most importantly, nets can be recursively decom-
posed into nets:

Lemma 3. If a dominance net ¢ has a configuration
whose top-most fragment is X: f(Xg,...,Xq), then
the restriction ¢y _¢x x,,....x,} IS @ dominance net.

Proof. First note that X is free in ¢ so that it does not
have incoming edges (condition F1). This means,
that restriction deletes only such dominance edges
that depart from nodes in {X,Xi,...,Xn}. Other
fragments thus only loose ingoing dominance edges
by normality condition N3. Such deletions preserve
the validity of the schemas weak and strong.

The island schema is more problematic. We have
to show that the hypernormal connections in this
schema can never be cut. So suppose thatY : f(Y1) is
an island fragment with outgoing dominance edges
Y1 <* Z; and Y1 <* Zp, so that Z; and Z, are con-
nected by some hypernormal path traversing the
deleted fragment X: f(Xg,...,Xn). We distinguish
the three possible schemata of this fragment:

strong. Since X does not have incoming dominance
edges, there is only a single non-trival kind of traver-
als, drawn in Fig. 5(a). But such travesals contradict
the freeness of X according to F2.

weak. There is one other possible way of traversing
weak fragment, shown in Fig. 5(b) Let X <*Y be
the weak dominance edge. The traversal proves that
Y belongs to the weakly connected components of
one of the X;, so the & A X, <* Y is unsatisfiable.

[ v
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Figure 5: Traversals through fragments of free roots

This shows that the hole X, cannot be identified with
any root, i.e., ¢ does not have any configuration in
contrast to our assumption.

island. Free island fragments permit only one sin-
gle non-trivial form of traversal, depicted in. Fig.
5(c). But such traversals are not hypernormal.

O

Proposition 3. A configuration of weakly con-
nected dominance net ¢ also configure its normal-
ization norm(¢), and vice versa of course.

Proof. LetC be a configuration of ¢. We show that it
also configures norm(¢). Let S be the simple solved
form of ¢ that is configured by C (Lemma 1), and S’
a minimal solved form of ¢ more general than S.

Let X: f(Yq,...,Yn) be the top-most fragment of
the tree S. This fragment must also be the top-most
fragment of S’, which is a tree since ¢ is assumed to
be weakly connected (Prop. 2). S’ is constructed by
our algorithm (Theorem 1), so that the evaluation of
solve(¢) must choose X as free root in ¢.

Since ¢ is a net, some literal X : f(Y1,...,Yn) must
belong ¢. Let ¢’ = x.v,,....v,) be the restriction of ¢
to the lower fragments. The weakly connected com-
ponents of all Yy, ..., Yo_1 must be pairwise disjoint
by F2 (which holds by Lemma 2 since X is free in
¢). The X-fragment of net ¢ must satisfy one of three
possible schemata of net fragments:

weak. There exists a unique weak dominance edge
X <* Z in ¢ and unique hole Y, without outgoing
dominance edge. The variable Z must be a root in ¢
and thus labeled. If Z is equal to X then ¢ were un-
satisfiable by normality condition N2, which is im-
possible. Hence, Z occurs in the restriction ¢’ but not
in the weakly connected components of any Yq, ...,
Yn—1. Otherwise, the minimal solved form S’ could



not be configured since the hole Yy, could not be iden-
tified with any root. Furthermore, the root of the Z-
component must be identified with Y, in any config-
uration of ¢ with root X. Hence, C satisfies Y, <1* Z
add by normalization.

The restriction ¢’ must be a dominance net by
Lemma 3, and hence, all its weakly connected com-
ponents are nets. For all 1 <i < n—1, the compo-
nent of Y; in ¢’ is configured by the subtree of C at
node Y;, while the subtree of C at node Y, configures
the component of Z in ¢’. We can thus apply the in-
duction hypothesis to prove that the normalizations
of all these components are configured by respective
subconfigurations of C. This yields that norm(¢) is
configured by C.

strong. If the fragment of X is strong, then it is not
altered by normalization. We can thus recurse to the
lower fragments of ¢ as we did in the previous case
(if there exist any).

islands. Island remain unchanged by normalization,
S0 we can recurse to the lower fragments. O

Proposition 4. Minimal solved forms of normal,
weakly connected dominance nets have configura-
tions.

Proof. By induction over the construction of min-
imal solved forms, we can show that all holes of
minimal solved forms have a unique outgoing dom-
inance edge at each hole. Furthermore, all minimal
solved forms are trees since we assumed connect-
edness (Prop.2). Thus, all minimal solved forms are
simple, so they have configurations (Lemma 1). [

7 Conclusion

We have related two undespecification formalism,
MRS and normal dominance constraints. We have
distinguished the sublanguages of MRS-nets and
normal dominance nets that are sufficient to model
scope underspecification, and proved their equiva-
lence. Thereby, we have obtained the first provably
efficient algorithm to enumerate the readings of un-
derspecified semantic representations in MRS.
Finally, our encoding has the advantage that re-
searchers interested in dominance constraints can
soon benefit from the large grammar resources of
MRS. This requires further work in order to deal
with unrestricted versions of MRS used in practice.
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