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Summary  

The dual mechanisms of control theory (DMC, Braver & Barch, 2002) assumes that 

goal-directed behavior requires the ability to actively maintain context representations and 

to flexibly update these representations whenever environmental conditions change. Based 

on the claim that increasing age reveals a shift from a proactive toward a reactive mode of 

context processing, the present thesis aimed at investigating the mechanisms underlying 

the time course of context updating in younger and older adults. Temporal differences 

between an early, anticipatory updating of context information in younger adults and a 

delayed, interference-based updating mechanism in older adults, respectively, were 

hypothesized to be reflected in event-related potentials (ERPs). Specifically, these ERP 

differences in the predominant manner of context updating should be a core component of 

cognitive aging independent of performance differences. Furthermore, as the DMC account 

postulates affective factors to influence the balance between employing pro- and reactive 

control (Braver, Gray, & Burgess, 2007), this thesis sought to shed light on the interaction 

between motivational factors and context processing.  

This thesis is built upon three publications reporting behavioral performance 

measures and ERP components of context processing as measured with the AX-

Continuous-Performance-Test (AX-CPT). In Paper I, the behavioral data show distinct 

age-related impairments whenever the updating of context information was required for 

correct task completion. In the ERP data, context updating in younger adults was reflected 

in a P3b-like component prompted by context cues indicating the need for information 

updating. In older adults, the P3b-activation was independent of the reliance on the 

context, but linked to perceptual changes in the context cue identity. Matching behavioral 

performance in the AX-CPT between younger and older adults, Paper II provides evidence 

that the mechanisms underlying age differences in context updating in ERPs were 



 

VIII 

 

independent of behavioral performance differences per se. Moreover, Paper II 

substantiates predictions of the DMC theory as those older adults showing equivalent 

performance to a group of younger adults exhibited a late N450 component linked to 

response conflict and the need for reactive control.  

Whereas Paper I and II clearly illustrate age-related changes in context processing, 

Paper III investigates whether motivational cues signaling performance-contingent reward 

promote the updating of context information. The behavioral data show motivational cues 

to benefit context updating only in younger adults, although the ERP correlates suggest 

similar processing of motivational cues in both age groups. In the ERP data on context 

processing, younger adults showed reduced proactive context updating to avoid losing 

rewards, reflected in an attenuated P3b, but an increased need for reactive context updating 

before task execution. In older adults, P3b amplitudes differed for context conditions on 

motivational cues irrespective of valence suggesting improved context representation.  

Altogether, the present thesis contributes to the understanding of age differences in 

context processing and is of high importance for theoretical models on the relationship 

between cognitive and affective processes. First, although younger and older adults 

prioritized different strategies in context updating, these are closely linked to age-

differences in higher-order context representation and not exclusively due to a reactive 

shift with increasing age. Second, in line with the DMC theory, temporal differences in 

context updating underlie context processing in performance-matched age groups. Third, 

reward motivation reveals a strong impact on context updating at distinct processing stages 

in younger and older adults, who show differential sensitivity to motivational valence. This 

finding extends recent neuro-cognitive models and empirical data on the relationship 

between affective factors and cognitive control strategies and contributes to the 

understanding of this relationship in cognitive aging. 
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Zusammenfassung  

Zielgerichtes Verhalten unterliegt im Rahmen der “dual mechanisms of control“ -

Theorie (DMC, Braver & Barch, 2002) der Fähigkeit, kognitive Repräsentationen von 

Kontextinformationen aufrechtzuerhalten und im Einklang mit sich ändernden Bedingung-

en zu aktualisieren. Da mit zunehmendem Alter eine Verlagerung von einem proaktiven zu 

einem reaktiven Muster der Aktualisierung von Kontextinformationen (kurz: Kontext-

aktualisierung) angenommen wird, ist das Ziel der vorliegenden Dissertation die zugrunde 

liegenden Mechanismen des zeitlichen Verlaufs der Kontextaktualisierung in jüngeren und 

älteren Erwachsenen zu untersuchen. Unterschiede zwischen einer frühen, antizipator-

ischen Kontextaktualisierung jüngerer und einem späteren, interferenzbasierten Modus der 

Kontextakualisierung älterer Erwachsener sollen sich in ereignis-korrelierten Potentialen 

(EKPs) widerspiegeln. Die EKP-Unterschiede werden als zentraler Bestandteil kognitiver 

Altersveränderungen unabhängig von Leistungsunterschieden zwischen den Altersgruppen 

angenommen. Da im Rahmen der DMC-Theorie affektive Faktoren das Überwiegen eines 

pro- bzw. reaktiven Kontrollstils beeinflussen, wird zudem der Einluss motivationaler 

Faktoren auf die Kontextverabeitung untersucht (Braver, Gray & Burgess, 2007).  

Die Dissertation basiert auf drei Publikationen zu Verhaltens- und EKP-Daten in 

dem AX-Continuous-Performance-Test (AX-CPT). Die Verhaltensdaten in Artikel I zeigen 

Altersdefizite in Bedingungen, welche eine Kontextaktualisierung für die korrekte Auf-

gabenbearbeitung erforderten. In den EKP-Daten jüngerer Erwachsener ist die Kontext-

aktualisierung mit der Amplitude der P3b-Komponente assoziiert. Die P3b älterer Er-

wachsener ist hingegen unabhängig von der Notwendigkeit der Kontextaktualisierung, 

jedoch sensitiv gegenüber perzeptuellen Veränderungen der Kontextinformation. Durch 

den Vergleich jüngerer und älterer Probanden mit ähnlicher Verhaltensleistung liefert 

Artikel II den Nachweis, dass die EKP-Unterschiede der Kontextaktualisierung jüngerer 



 

X 

 

und älterer Erwachsenen unabhängig von Performanzunterschieden sind. Da diejenigen 

älteren Erwachsenen mit einer vergleichbaren Leistung zu jüngeren Erwachsenen eine 

späte N450-Komponente der Konfliktverarbeitung aufweisen, untermauert Artikel II die 

Annahme der DMC-Theorie hinsichtlich reaktiver Kontrolle älterer Erwachsener.   

Während Artikel I und II deutliche Altersunterschiede in der Kontextverarbeitung de-

monstrieren, untersucht Artikel III den Einfluss motivationaler Hinweise, die eine Be-

lohnung oder Bestrafung für die individuelle Verhaltensleistung ankündigen, auf die 

Kontextaktualisierung. In den Verhaltensdaten profitieren lediglich jüngere Erwachsene 

von diesen Hinweisen, obwohl die EKPs beider Altersgruppen eine verstärkte Verarbeit-

ung der Hinweise gegenüber einer neutralen Bedingung nahe legen. Die EKP-Daten der 

Kontextverarbeitung jüngerer Erwachsenen zeigen eine verringerte P3b-Amplitude, sowie 

die Notwendigkeit für reaktive Kontrolle in Bestrafungs-Bedingungen. Die P3b-Amplitude 

älterer Erwachsenen hingegen differenziert in den Kontextbedingungen zwischen neutralen 

und motivationalen Durchgängen, jedoch unabhängig von deren Valenz.  

Die vorliegende Dissertation trägt zum Verständnis von Altersunterschieden in der 

Kontextverarbeitung bei und ist für theoretische Annahmen über kognitiv-affektive Zu-

sammenhänge von großer Bedeutung. Altersunterschiede in der Kontexterarbeitung zeigen 

sich nicht ausschließlich in zeitlichen Mustern, sondern auch in der kognitiven 

Repräsentation der Kontextbedingungen. Im Einklang mit der DMC-Theorie unterliegt die 

Kontextverarbeitung in Altersgruppen mit vergleichbarer Leistung zeitlichen Unter-

schieden der Kontextaktualisierung. Motivationale Hinweise weisen einen starken Einfluss 

auf unterschiedliche Prozesse der Kontextverarbeitung in jüngeren und älteren Er-

wachsenen auf, die zugleich unterschiedlich auf die Valenz des Hinweises reagierten. 

Dieser Befund erweitert aktuelle neuro-kognitive Modelle und empirische Daten über den 

Einfluss affektiver Faktoren auf kognitive Kontrollstile um die Altersperspektive. 
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1 Introduction 

 
For a long time, understanding individual goals as key determinants of behavior 

has attracted both philosophers and psychologists (Adler, 1998). In today’s cognitive 

psychology, the ability to focus on goal representations has been recognized as being 

critical for guiding adaptive behavior (Miller & Cohen, 2001). Nevertheless, it becomes 

evident from daily life that personal goals differ widely in their motivational value 

(Chiew & Braver, 2011b). Some goals, such as preparing for an upcoming exam, will 

be potentially rewarded and strongly influence behavior. Thus, goal-directed behavior is 

the product of cognitive and affective processes, although the underlying mechanisms 

remain largely unknown (Pessoa & Engelmann, 2010). Investigating cognitive-affective 

interactions might be particularly important in old age as advancing age is followed by a 

decline in various facets of controlled behavior, while affective processes seem to be 

relatively preserved (Carstensen & Mikels, 2005; West, 1996). In a current framework, 

neurobiological age changes are assumed to cause a temporal shift in the updating of 

goal-relevant context information for controlled behavior (Braver & Barch, 2002). As 

anticipated reward is expected to prompt context updating, the question arises whether 

incentives are useful to promote context processing in older adults.  

The present thesis adresses this question by utilizing the high temporal resolution 

of ERPs. In the first study, ERPs serve to establish the neural mechanisms of temporal 

dynamics in context processing. In the second study, ERP-correlates are used to 

uncover the impact of incentives on context processing in younger and older adults. 

Eventually, the results of this thesis will contribute to the understanding of neuronal 

processes of cognitive aging, offer potential means to influence goal-directed behavior 

in old age, and elucidate possible mechanisms of cognitive-affective interactions. 
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2 Theoretical and Empirical Foundations 

 

The following section serves as a review of theoretical and empirical foundations. 

Beginning with the description of cognitive control processes and the neuronal 

mechanisms involved, the second part outlines senescent changes focusing on the 

dopamine system and the prefrontal cortex. Part three and four summarize age-related 

changes in cognitive control tasks with regard to recent aging theories. In particular, 

evidence to the claim is provided that increasing age reveals a shift from a proactive 

toward a reactive mode of context processing. Afterward, the fifth part introduces the 

AX-CPT that allows investigating temporal mechanisms of context processing. Part six 

reviews age differences in behavioral and ERP markers of task switching. Thereafter, 

current findings about motivational manipulations on cognitive control are reported. 

The section closes by outlining the objective of the present thesis. 

 

2.1 Cognitive Control Processes and Their Neural Basis  

 

One remarkable feature of the human mind is its ability to exert controlled 

behavior in changing environmental conditions by selecting goal-directed actions from 

an unlimited behavioral repertoire (Miller & Cohen, 2001). For instance, aiming to go 

to the gym after work requires selecting and monitoring a complex chain of actions, 

such as packing the bag and pursuing the way to the gym, as well as the flexible 

switching between actions to persist toward this aim (Miller, 2000). This is particular 

important whenever automatic actions (e.g., returning home) interfere with the intended 



 

3 

 

purpose (Braver et al., 2007). The term cognitive control
1
 refers to the fundamental 

higher-order cognitive ability to select, maintain, and guide “lower-level” (Alvarez & 

Emory, 2006, p. 17) sensory and motor mechanisms in favor of goal-directed, adaptive 

behavior (Braver & Cohen, 2000; Karbach & Unger, 2014; Miller & Cohen, 2001). 

Thereby, cognitive control functions are assumed to enable the resistance against 

interference and distraction, support the updating and shifting of goals, and facilitate the 

planning of temporally extended actions (Karbach & Unger, 2014; Kopp, Lange, Howe, 

& Wessel, 2014; Miller, 2000; Miyake et al., 2000; Shallice, 1982). 

In an influential theory on cognitive control by Miller and Cohen (2001), it is 

assumed that the ability to form “task contingencies” (Miller, 2000, p. 60), i.e., 

associations between environmental conditions, internal states, and behavioral actions 

related to goal achievement is essential for establishing goal-directed behavior. 

Psychophysiological research in healthy subjects, neurological impaired patients, and 

non-human primates suggest that the prefrontal cortex (PFC) and the midbrain 

dopamine (DA) system are the prerequisite underlying these task contingencies 

(D'Ardenne et al., 2012; Miller, 2000; Miller & Cohen, 2001).  

Specifically, the PFC receives multiple pieces of (sub-) cortical sensory and motor 

information to build-up complex representations. Sustained activity of PFC neurons 

serves to maintain such complex, goal-relevant information against distraction (Braver 

et al., 2007; Miller, Erickson, & Desimone, 1996; Miller & Cohen, 2001), as it has been 

shown during delayed-response tasks in macaques (Miller et al., 1996). Sustained 

                                                 
1
 Note: There is no general agreement whether the mechanism underlying controlled behavior is best 

described in the term “cognitive control” (cf. Miller & Cohen, 2001) or “executive functions” (cf. Alvarez 

& Emory, 2006). Some scholars seem to equate cognitive control and executive functions (Diamond, 

2011; Luszcz & Lane, 2008), whereas others explain performance in complex executive tasks (e.g., 

planning, problem solving) by applying cognitive control functions (i.e., inhibition, working memory, 

shifting, cf. Miyake et al., 2000; see 2.3). 
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activitation along with its extensive connectivity allows the PFC to top-down control 

activity in domain-specific brain areas responsible for executing controlled, goal-driven 

actions (Desimone & Duncan, 1995; Miller & Cohen, 2001). In this role, the PFC is 

supported by a network of cortical and subcortical brain structures areas providing the 

means to guide goal-directed behavior (Miller, 2000). For instance, the anterior 

cingulate cortex (ACC) is assumed to support the monitoring of response competition 

and conflict (Botvinick, Cohen, & Carter, 2004; Carter et al., 1998). Critically, ACC 

projections to the PFC are supposed to indicate the need for supervisory regulation as a 

result of detecting ongoing conflict, and are accordingly important as a “performance-

monitoring mechanism” (Braver et al., 2007, p. 78) to PFC-function (Miller & Cohen, 

2001). Furthermore, a frontal-parietal network activated during tasks requiring the 

maintenance of task-relevant information serves the guidance of attentional top-down 

control (Cohen et al., 1997; Corbetta & Shulman, 2002; Madden, Whiting, & Huettel, 

2005). Recriprocal connections between the PFC and the basal ganglia support the 

maintenance of task-relevant information against interference, particular by means of 

dopaminergic influences from the striatum (Cohen, Braver, & Brown, 2002; Gruber, 

Dayan, Gutkin, & Solla, 2006).  

The DA influence on PFC activation is particularly critical for establishing task 

contigencies (Miller, 2000). Phasic DA release primarily from the midbrain ventral 

tegmental area (VTA) to reward not only encodes actual goal achievement (Miller, 

2000; Schultz, 1998), but DA bursts can also undergo temporal changes and triggered 

by reward-predicting cues or inhibited if expected reward is hold back, thus being 

critical for learning stimulus-response associations (cf. Miller & Cohen, 2001; Schultz, 

1998, 2010). The gating of DA to DA-innervated PFC neurons encoding the nature of 

the actual reward serves to support information maintenance in the PFC (Gruber, A. J. 
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et al., 2006) and to temporally connect PFC-activation elicited by reward with PFC-

activity of preceding actions and environmental cues (Miller, 2000). Eventually, these 

task contingencies can be recalled to trigger goal-relevant behavior in a specific 

situation (Miller, 2000).  

Taken together, the interplay between a subset of PFC-regions and the DA system 

and a can be regarded as a supervisory mechanisms controlling a broad network of 

posterior, lower-level brain regions in goal-directed action (Miller, 2000; Miller & 

Cohen, 2001; Shallice, 1982). Accordingly, as behavior becomes more practiced, the 

demand on control processes monitored by the PFC is diminished (Braver et al., 2007; 

Duncan & Owen, 2000; Miller & Cohen, 2001). Reports on patients with frontal brain 

lesions render support to the role of the PFC in controlled behavior, as these patients are 

often unable to maintain goal-relevant information to pursue goal-driven actions, but 

exhibit increased distractibility toward salient information eliciting automatic responses 

(Shallice & Burgess, 1991; Shallice, Burgess, Schon, & Baxter, 1989). At the same 

time, these patients fail to flexible adapt to changing environmental conditions or to 

acquire novel responses to ambiguous stimulus characteristics (Petrides, 1990). 

However, deficits in controlled behavior may also appear due to a decline in the PFC 

and the DA-system inherent in healthy aging (Cabeza, Nyberg, & Park, 2005; Li, 

Lindenberger, & Sikström, 2001). The following paragraph summarizes the most 

prominent senescent changes in the PFC and the DA system, before turning to age 

differences in cognitive control. 
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2.2 Senescent Changes in the PFC and the DA System 

 

As described in the previous section, the PFC and the DA system are assumed to 

play an important role for cognitive control functions required in everyday life. Despite 

large individual differences and an age-related deterioration in other brain regions and 

neurotransmitter systems (for an overview, see Cabeza et al., 2005), increasing age has 

been associated with neuroanatomical and neurochemical alterations particularly 

pronounced in the PFC and the DA system (Dennis & Cabeza, 2008; Raz, 2005). Life-

span studies reveal the earliest and steepest decline in neuronal gray matter volume in 

frontal areas (Braver et al., 2001; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 

2003). Within the frontal lobe, age-related neuronal loss is greatest in the PFC and 

regional differences indicate larger atrophy in the dorso-lateral than in the orbito-frontal 

PFC (Raz, 1997, 2005). Age-related atrophy of neuronal white matter seems to be 

pronounced in frontal areas (Raz et al., 1997; but see Resnick et al., 2003). Whereas the 

deterioration of prefrontal gray matter in aging occurs in a linear fashion, prefrontal 

white matter volume seems to follow an inverted U-function in longitudinal studies 

(Bartzokis et al., 2001; Jernigan et al., 2001; Raz et al., 2005). Nevertheless, reduced 

axonal integrity and myelin thickness in aging strongly affect white matter integrity, 

particularly in the PFC (Jernigan et al., 2001; Pfefferbaum, Adalsteinsson, & Sullivan, 

2005).  

Concerning the mesencephalic DA-system, three major separate albeit interacting 

DA-pathways have been identified (cf. Bäckman & Farde, 2005; see also Ashby, Isen, 

& Turken, 1999; Mirenowicz & Schultz, 1996). The nigro-striatal circuit involves 

neurons in the substantia nigra projecting to the striatum, which is densly innervated by 

DA-neurons of the caudate nucleus and the putamen (Green, 1994). Originating from 
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DA-neurons in the midbrain VTA, the meso-limbic pathway projects to the limbic 

system and the ACC, while the meso-cortical pathway continues into the neocortex 

including the PFC (Bäckman & Farde, 2005; Panksepp & Moskal, 2008). Aging is 

associated with a linear or even exponential loss of DA across the whole brain starting 

in middle adulthood (Bäckman & Farde, 2005; Dennis & Cabeza, 2008), but especially 

pronounced in the nigro-striatal system and the PFC (Bäckman & Farde, 2005;  Li et al., 

2001; Suhara et al., 1991). These age-related changes include a reduction of DA-

neurons particularly in the substantia nigra, accompanied by a decrease in DA-synthesis 

rate, postsynaptic DA-receptor binding, and DA-transporter protein expression 

(Bäckman et al., 2000; Rinne, 1987; Suhara et al., 1991). As the striatum has reciprocal 

connections to the neocortex via frontal-striatal circuits (Li et al., 2001), age-related 

changes in the nigro-striatal DA-system are expected to impair performance on tasks 

relying on cognitive control supported by the PFC (Bäckman & Farde, 2005; Bäckman, 

Nyberg, Lindenberger, Li, & Farde, 2006, Li et al., 2001). The most prominent age 

differences in cognitive control tasks are summarized in the following paragraph.  

 

2.3 Age-related Changes in Cognitive Control Tasks 

 

Whereas the acquired knowledge of cultural procedures has been shown to remain 

either unaffected, to decline only in very old age, or even to improve with aging (Baltes, 

Staudinger, & Lindenberger, 1999), the age-related decline in the PFC and the DA-

system outlined in the previous section have been associated with behavioral deficits in 

tasks requiring the supervisory control of cognitive processes (Bäckman et al., 2006). 

However, what exactly defines cognitive control and whether cognitive control 

constitutes a unitary or a multidimensional construct is still a matter of debate (Luszcz 
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& Lane, 2008, Miyake et al., 2000; Salthouse, Atkinson, & Berish, 2003). Traditionally, 

the central executive component in Baddeley’s model of working memory (WM; 

Baddeley, 1992) has been proposed as a candidate for the control of cognitive 

processes. WM refers to a resource-limited form of memory (Oberauer, 2005) that 

serves the online storage and manipulation of goal-relevant information in the service of 

flexible, controlled processing (Baddeley, 1992; Braver et al., 2007; D'Esposito, 2007; 

Kane, Conway, Hambrick, & Engle, 2007; Reuter-Lorenz & Sylvester, 2005). The 

central executive in particular has been associated with the regulation and manipulation 

of domain-specific short-term memory content to fulfill goal-directed actions and linked 

to frontal-lobe functioning (Baddeley, 1992; Braver et al., 2007; D’Esposito, 2007; 

Kane et al., 2007; Klingberg et al., 2005; Miyake et al., 2000).   

Recent research assumes that cognitive control can be fractionated into different 

sub-functions including WM (Fisk & Sharp, 2004; Luszcz & Lane, 2008; Miyake et al., 

2000; for a recent overview, see Karbach & Unger, 2014). In the study by Miyake and 

colleagues (2000), confirmatory factor analysis on tasks generally assumed to tap 

cognitive control revealed three underlying separable, but interrelated latent target 

functions, namely, the updating and monitoring of WM representations, the inhibition 

of predominant responses, and the attention shifting between tasks (cf. Miyake et al., 

2000). Importantly, the factor structure was replicated in a sample consisting of a large 

age range (Fisk & Sharp, 2004). Performance reflected in the three variables showed a 

significant decline with increasing age (Fisk & Sharp, 2004). In the following, typical 

age-related changes in tasks loading on these factors will be reviewed. Whether the 

changes can be explained by an age-related impairment in a single underlying factor 

(e.g., Salthouse, 1996) will be discussed subsequently. 
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Concerning the ability to temporally maintain, monitor, and update WM content 

(Miyake et al., 2000), aging has been found to be accompanied with a performance 

decline across a variety of WM-tasks, for instance, in delayed item recognition, in the n-

back task stressing the continuous updating and monitoring of memory (Reuter-Lorenz 

& Jonides, 2007), as well as in complex span measures involving item storage and 

processing from secondary tasks (Conway et al., 2005). Some studies reveal a larger 

age-related decline in WM for visuo-spatial than verbal material (Bopp & Verhaeghen, 

2007; Hale, Myerson, Emery, Lawrence, & Dufault, 2007; Reuter-Lorenz & Sylvester, 

2005; but see Park et al., 2002) and a larger decline as the demand on information 

manipulation in WM and the general task complexity increase (Braver & West, 2008; 

Reuter-Lorenz & Sylvester, 2005; Salthouse & Babcock, 1991). Age differences in the 

ability to monitor information are also related to conflict detection. In the Wisconsin 

Card Sorting Test (WCST; Berg, 1948), subjects sort carts to target categories whilst 

adapting the sorting behavior to the announcement of a change in target criterion 

(Miyake et al., 2000). Older adults show more perseveration errors than younger adults 

indicating a failure to monitor and use feedback for behavioral adaption (Gunning-

Dixon & Raz, 2003; Zelazo, Craik, & Booth, 2004). The decline in the efficiency to 

learn from feedback seems to be related to age-related differences in psycho-

physiological measures of error processing and feedback monitoring reflecting the 

interaction between the midbrain’s DA systems and the ACC (e.g., Herbert, Eppinger, 

& Kray, 2011; Nieuwenhius et al., 2002)  

Age-related impairments in the ability to inhibit the influence of task-irrelevant 

information have a tradition in explaining cognitive aging phenomena (Lustig, Hasher, 

& Zacks, 2007). The enhanced interference effect in older adults when naming the color 

of an incongruent stimulus (i.e., ‘‘red’’ written in blue ink) compared to a congruent 
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stimulus (e.g., ‘‘red’’ written in red ink) in the Stroop task (Stroop, 1935; Verhaeghen 

& Cerella, 2002; West, 2004; West & Alain, 2000b) renders support for an age-related 

decline in the inhibitory control of predominant responses. Older adults also show 

increased reaction times in the stop-signal task indicating a decline in the ability to 

withhold an ongoing response (Kramer, Humphrey, Larish, Logan, & Strayer, 1994). 

Moreover, age differences can be found in the antisaccade task measuring the inhibition 

of a reflexive saccade toward a suddenly emerging cue and the execution of an 

antisaccade to the opposite of the cue (Hallett & Adams, 1980; Nieuwenhuis, 

Ridderinkhof, Blom, Band, & Kok, 2001). A slower onset of correct antisaccades and 

augmented saccade errors in old age suggests an impaired suppression of the automatic 

orientation to the cue (Butler, Zacks, & Henderson, 1999).  

Finally, a decline in the flexible shifting back and forth between tasks and mental 

sets to changing environmental conditions (Monsell, 2003) in older adults is related to 

increased perseveration errors in the WCST (for a review, see Rhodes, 2004; see also 

Fisk & Sharp, 2004; Zelazo et al., 2004). Older relative to younger adults also show 

larger reaction time costs when two tasks are performed concurrently compared to 

performance on a single task (Verhaeghen & Cerella, 2002, 2008). This increase in 

performance costs can also be obtained in task switching (Rogers & Monsell, 1995) 

requiring the permanent switching between task rules on successively presented trials 

relative to performance on single tasks without switching (Rogers & Monsell, 1995). 

However, the latter seems to be related to age differences in the maintenance and 

coordination of two task sets in WM when being in a switch situation than the switching 

per se (Kray & Lindenberger, 2000; Wasylyshyn, Verhaeghen, & Sliwinski, 2011; for a 

recent review, see Kray & Ferdinand, 2014).  
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2.4 Recent Theories of Cognitive Aging 

 

The foregoing paragraph has outlined three factors critical to controlled behavior, 

namely the updating and monitoring of WM content, the inhibition of automatic 

responses, and the flexible shifting between mental sets (Miyake et al., 2000). An age-

related decline has been found in all of these factors, which are moderately correlated to 

each other (Fisk & Sharp, 2004). It should be noted that complex cognitive control 

tasks, such as the WCST, are assumed to involve performance reflected in more than 

one factor (Fisk & Sharp, 2004; Karbach & Unger, 2014; Miyake et al., 2000). Recent 

aging theories questioned whether the age-related decline in cognitive control tasks can 

be explained by a limited number of underlying factors or even by a single mechanism 

(Braver et al., 2001; Craik & Salthouse, 2008; Kray & Ferdinand, 2014; Li et al., 2001; 

Lustig et al., 2007; Salthouse & Babcock, 1991). Importantly, any hypothesized 

mechanisms needs to encompass age-related changes in neuro-biological factors, brain 

mechanisms, and behavioral findings (Braver et al., 2001; Dennis & Cabeza, 2008; Li et 

al., 2001). Although a number of current cognitive aging theories involve a 

neurobiological framework (for a review, see Dennis & Cabeza, 2008; Hale et al., 2007; 

West, 1996), the following paragraph introduces the prominent processing-speed theory 

of cognitive aging (cf. Salthouse, 1996), before turning to the DMC theory (Braver et 

al., 2001), which is of most interest for the scope of the present dissertation. 
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2.4.1 The Processing-Speed Theory of Adult Age Differences in Cognition 

 

One of the most influential theories on cognitive aging is the processing-speed 

theory of adult age differences in cognition (cf. Salthouse, 1996; see also Myerson, 

Hale, Wagstaff, Poon, & Smith, 1990; Verhaeghen & Cerella, 2008). By mechanisms of 

limited time and simultaneity (Hale et al., 2007), the well-documented age-related 

decline in speed with which perceptual, motor, or cognitive operations can be 

performed is assumed to account for age differences in multiple cognitive tasks (Dennis 

& Cabeza, 2008; Salthouse, 1996; Schaie, 1989). Age-related neuronal changes, such as 

diffuse cell loss, deteriorated myelin sheaths as well as reductions in the number of 

dendritic branches, active synapses, and neurotransmitters are proposed to account for 

slowed propagation of neuronal impulses and disrupted neuronal synchronization, 

underlying the decline in processing speed (Dennis & Cabeza, 2008; Miller, 1994; 

Myerson et al., 1990; Raz, 2005; Rypma & D'Esposito, 2000; Salthouse, 2000; but see 

Söderlund, Nyberg, Adolfsson, Nilsson, & Launer, 2003). Indeed, results showing that 

the decline in white matter integrity mediates the relationship between age and 

performance in cognitive tasks are in support of this notion (cf. Dennis & Cabeza, 2008; 

Madden et al., 2009).  

In conditions of constrained time, decreased processing speed is assumed to lead 

to insufficient time available to perform single processing stages, with more time 

necessary for early operations limiting time for executing later operations (Dennis & 

Cabeza, 2008; Fisk & Sharp, 2004; Salthouse, 1996). This “limited time mechanism” 

(cf. Salthouse, 1996, p. 404) explains larger age differences in complex tasks consisting 

of a number of processing steps to perform than in tasks featuring low-level difficulty 

(i.e., “complexity cost”, cf. Li, Lindenberger, & Frensch, p. 879; Kliegl, Mayr, & 
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Krampe, 1994; Salthouse, 1996). In conditions of unlimited time, slowed processing 

reduces the amount of simultaneously available information in tasks requiring multiple 

processing steps. The de-synchronization occurs as information processed at earlier 

stages decays over time and is therefore unavailable or even outdated for later 

processing stages (cf. Salthouse, 1996). Deficits in the “simultaneity mechanism” (cf. 

Salthouse, 1996, p.405) may not only cause a higher rate of errors, but also the need for 

repeating critical operations (Salthouse, 1996).  

The processing-speed theory has been influential to the research on cognitive 

aging by demonstrating an attenuated or even non-significant influence of age on 

numerous cognitive measures after statistical controlling for age differences in 

processing speed (Lindenberger, Mayr, & Kliegl, 1993; Salthouse, 1996). Hence, 

processing speed has been explained as a common mediator of age differences in 

cognitive tasks such as WM span, memory, reasoning, or spatial abilities to name only a 

few (Lindenberger et al., 1993; Luszcz & Lane, 2008; Salthouse, 1994; Schaie, 1989). 

Here, older adults’ latencies have often been described as a linear function of younger 

adults’ reaction times (Myerson et al., 1990; Verhaeghen & Cerella, 2002).  

However, the impact of processing speed on age differences varies across 

cognitive tasks. Some age effects on performance remain stable after controlling for 

speed differences, such as for switching and dual-task performance (Braver et al., 2001; 

Verhaeghen & Cerella, 2002; Verhaeghen, Steitz, Sliwinski, & Cerella, 2003). 

Although age differences in many tasks share variance based on age-related slowing, 

cognitive tasks seem to differ in the reliance on the common speed factor. Following 

this line of thought, processing speed might not be the only mechanism accounting for 

age differences across cognitive tasks (West, 2004). Critically, the processing-speed 

theory predicts an age-related decline in the neuronal propagation of information to 
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underly reduced speed of processing, but it remains unclear by which means this deficit 

occurs (Braver et al., 2001). Particularly, distinct age effects on the PFC and the DA-

system, and typical patterns of age-related differences in psychophysiological measures, 

such as task-related neuronal over-activations or activation overlap between different 

tasks (cf. Cabeza et al., 2005; Reuter-Lorenz & Sylvester, 2005) are not considered (see 

part 2.6.2). 

 

2.4.2 The Dual Mechanisms of Control Theory 

 

In common with the foregoing theory (Salthouse, 1996), the DMC theory strives 

to explain age differences in multiple cognitive tasks by a common underlying 

mechanism (Braver et al., 2001). In the DMC theory, it is proposed that the relationship 

between the PFC, more precisely its dorso-lateral part (DL-PFC), and the DA-system 

serves the processing of context information required for cognitive control. This 

relationship is supposed to be influenced by individual differences and non-cognitive 

factors (Braver et al., 2007). Hence, the DMC theory not only contributes to the 

understanding of age differences in cognitive control, but also offers a potential means 

to experimentally investigate and modulate the variability of cognitive control within 

subjects (for a review, see Braver, 2012; see section 2.7).  

In the DMC framework, context processing involves the ability to internally 

represent, maintain, and update context information (Braver & Barch, 2002). Context 

information comprises any task-relevant information, such as goal representations, task 

instructions, or stimulus characteristics (Braver et al., 2001; Braver & Barch, 2002). In 

line with an earlier account on PFC-function (Miller & Cohen, 2001; see section 2.1), 

sustained activity of DL-PFC neurons serves the long-lasting representation of goal-
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relevant context information in an accessible state (Braver & West, 2008). In situations 

claiming a high demand on cognitive control (see section 2.1), actively maintained 

context representations are assumed to top-down regulate activations of posterior and 

subcortical brain areas in order to influence the direct stimulus-response pathways 

consistent with internal goals (see Figure 1; Braver & Barch, 2002). Thus, context 

representations constitute a subset of WM-representations (Braver et al.,  2007), but are 

assumed to modulate both the processing and the storage of goal-relevant 

representations within WM (Braver et al., 2001, 2007).  

As controlled behavior requires the adaption to rapidly changing conditions 

(Miller & Cohen, 2001), a DA-guided gating mechanism is presumed to regulate the 

balance between the stable maintenance of context in the DL-PFC and its flexible 

updating to novel or unexpected information (see Figure 1; Braver & Barch, 2002; 

Cohen et al., 2002). In line with the role of the midbrain DA-system in learning based 

on reward achievement (Braver et al., 2007; Bromberg-Martin, Matsumoto, & 

Hikosaka, 2010; Schultz, 2002), phasic DA-projections to the DL-PFC after salient, i.e., 

novel and reward-predicting cues are associated with the updating of context 

information by gating external information into the PFC. In contrast, in the absence of 

phasic DA release, the gate is closed, thereby protecting context representations against 

access of distracting information (Braver et al., 2001; Braver & Barch, 2002).  
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Support for the DMC theory is drawn mainly from computational modeling, but is 

also provided by recent neuroscientific research and studies on patient populations with 

disturbances in the DA-system and the PFC (Barch, 2004; Braver et al., 2001; Cohen et 

al., 2002). For instance, D’Ardenne and colleagues (2012) applied functional magnetic 

resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to first identify 

and then interrupt DL-PFC-regions associated with the encoding and representation of 

context information in a WM-task. The fMRI data also indicated phasic DA-release 

from the VTA and the substantia nigra after the presentation of task-relevant context 

information. As this DA release was positively correlated to DL-PFC activation and 

behavioral performance, the study provides evidence for the gating of context 

representations into the PFC (D’Ardenne et al., 2012). Furthermore, the results of the 

study are in line with the beneficial effect of increased DA-release by pharmacological 

Figure 1. Schematic diagram of the context processing model (own depiction, modified and 

adapted from Braver et al., 2001). 

Recurrent PFC-activation serves to maintain context information in order to top-down 

bias the direct pathway between input and response. Phasic DA-activity to reward  

prediction regulates the updating of context information in the PFC. 
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substitutes on task tapping the use of contextual information (Barch, 2004). Moreover, 

the DMC may also account for cognitive control deficits in psychiatric disorders such as 

in Schizophrenia. Abnormalities in the PFC and the DA-system commonly observed in 

Schizophrenia may lead to impaired encoding, representation, and maintenance of 

context information (Braver, Barch, & Cohen, 1999). On the basis of these 

considerations, disturbancies in the DA-systems may lead to an imbalance in gating 

context information, i.e., on the one hand reduced updating and maintenance of task-

relevant information, but one the other hand representation of task-irrelevant 

information. These changes on the neuronal level may lie at the core of poor 

interference control and behavioral perserveration in schizophrenic patients (Braver et 

al., 1999).  

 

2.5 One Way to Measure the Nature of Context Processing:  

The AX-CPT 

 

Regarding the decline in the PFC and the DA-system in healthy aging (Bäckman 

& Farde, 2005, see section 2.2), age-related deficits in context processing are expected 

and have been investigated by applying a specific variant of the AX-CPT (Paxton, 

Barch, Storandt, & Braver, 2006; Rosvold, Mirsky, Sarason, Bransome, & Beck, 1956; 

Servan-Schreiber, Cohen, & Steingard, 1996). In the task, subjects are confronted with 

letters presented one at a time in a series of cue-probe pairs (Braver et al., 2001; see 

Figure 2). A target response to the probe is required whenever the letter “A” (i.e., cue 

A) is followed by the letter “X” (i.e., probe X), whereas a non-target response is 

mandatory whenever either a cue other than the letter “A” (generally termed cue B) is 

followed by the letter “X”, or whenever the letter “A” is followed by a letter other than 
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the letter “X” (generally termed probe Y). Thus, correct responses to probes require the 

trial-to-trial representation and maintenance of context information provided by the cue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As the target-combination (i.e., A-X trials) occurs with a frequency of 70%, 

whereas each non-target combination (i.e., A-Y, B-X, and B-Y trials) occurs with 10% 

frequency, subjects have a high expectation of exerting a target-response whenever the 

cue A or the probe X is presented. According to the DMC theory, this expectation can 

be used to examine intact versus impaired context processing and is statistically 

expressed by computing performance on BX- relative to AY-trials. Both trials violate 

the expectation of a target-response due to an invalid cue (i.e., BX-trials), or an invalid 

probe (i.e., AY-trials). Preserved context processing in younger adults is predicted to 

result in better performance on BX- than AY-trials. This is due to the assumption that 

the intact representation and maintenance of the cue B should be associated with the 

Figure 2. Trial procedure of the AX-CPT (own depiction, adapted and modified from Braver et al., 2001).  

A target response is required, whenever the probe “X” immediately follows the cue “A” (i.e., AX-

trial), whereas a non-target response is required on all other combinations of cues and probes (i.e., 

BX-, AY-, and BY-trials). Note that cue “B” refers to any letter except “A” and probe “Y” refers to 

any letter except “X”. 



 

19 

 

advanced preparation of a non-target response to the probe X (Braver, Satpute, Rush, 

Racine, & Barch, 2005), whereas the representation of contextual information on AY-

trials is assumed to result in a strong expectation and preparation of a target-response 

causing a tendency for false alarms to the probe Y (Braver et al., 2005). In contrast, 

impaired representation of contextual information in older adults is supposed to benefit 

performance on AY-trials but to impair performance on BX-trials. In AY-trials, the 

failure to maintain the cue information reduces interference during presentation of the 

probe Y linked to a non-target response. In contrast, deficits in representing and 

maintaining cue information will lead to relatively more false alarms on BX-trials, in 

which the strong tendency for a target response to the probe X needs to be overridden 

(Fröber & Dreisbach, 2014). However, apart from the trade-off between performance on 

AY- and BX-trials across the two control modes, it should be noted that due to the high 

frequency of AX-trials, proactive control is the optimal strategy in the AX-CPT 

(Redick, 2014).  

In a number of behavioral studies, Braver and colleagues (2001, 2002, 2005) 

received support for age-related deficits in context processing, as younger adults 

showed better performance on BX- than AY-trials, whereas older adults showed the 

reciprocal pattern (Braver et al., 2005). Importantly, the age effect remained significant 

when controlling for processing speed, and older adults showed even faster reaction 

times than younger adults on AY-trials. Hence, the results speak against the hypothesis 

of age differences in processing speed as the single underlying mechanism (Salthouse, 

1996). Instead, as the pattern is highly consistent with the DMC theory, Braver and 

colleagues claimed context processing to be the common factor underlying age 

differences in inhibition, WM, and attentional control often regarded as separable 

components of cognitive control (Braver et al., 2001; see section 2.3; Miyake et al., 
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2000). For instance, the active maintenance of task-relevant context information is not 

only essential to protect information against interference in WM-tasks. Context also 

reflects the representation of a contemporary task rule over a dominant response 

tendency in inhibition tasks, and supports goal-directed behavior by biasing the task-

relevant and inhibiting the task-irrelevant response (Braver et al., 2001; Braver & 

Barch, 2002). Age differences in switching tasks might be due to the failure to update 

the current relevant task-set and to actively represent it in WM (Braver & West, 2008), 

which again serves the top-down implementation of the targeted behavior and the 

inhibition of behavior related to the currently irrelevant task-set. Following these 

considerations, instead of separating age differences in cognitive control into a decline 

of several sub-components, age differences in context processing are expected to lie at 

the core of age deficits in various measures of cognitive control (Braver et al., 2001). In 

further support of this notion are correlations between performance in the AX-CPT and 

other cognitive control tasks establishing the construct validity of the task (Braver et al., 

2005).  

 

2.5.1 Context Processing in a Proactive and in a Reactive Manner 

 

Earlier versions of the DMC-theory on age differences in context processing have 

been described as the goal-maintenance or context-processing account (Braver et al., 

2001; Braver & West, 2008). The DMC theory extents these accounts by assuming that 

aging specifically affects the predominant manner of context updating (Braver, 2012). 

This assumption is based on results of a study applying a variable delay between the 

presentation of the cue and the probe in the AX-CPT (Braver et al., 2005). Prolonging 

the delay between the presentation of the two stimuli offers the possibility to separately 
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investigate the core components of context processing, i.e., context updating and 

context maintenance (West, 2004).  

In case of intact context updating but impaired maintenance, extending the cue-

probe delay is expected to exacerbate the age-related reciprocal performance on AY- vs. 

BX- trials, because 1) weak context representations in older adults should increasingly 

lose strength in a long delay condition and accordingly cause larger BX-errors (Braver 

et al., 2005) whereas 2) intact context representations in younger adults will reach the 

full activation strenght in a long delay and consequently cause increased AY-errors 

(Braver et al., 2005). The investigation of this assumption showed maintenance deficits 

only in oldest adults and subjects suffering from Alzheimer’s disease. Hence it was 

concluded that age differences in context updating, but not maintenance, underlie the 

performance pattern in the AX-CPT. The result gave rise to the definition of “dual 

mechanisms of control” (DMC; Braver, 2012, p.106): Younger adults are supposed to 

exhibit proactive control, defined as a mode that fosters early updating and sustained 

maintenance of context information by the time context information is presented. 

Thereby, this “early selection” (Braver, 2012, p. 106) optimally triggers the top-down 

representation of task-relevant processes to anticipate upcoming events. In contrast, 

older adults tend to show transient context representation and therefore reactivate 

context information in a bottom-up fashion once interference is detected. This “just-in-

time-manner” (Braver, 2012, p. 106), termed reactive control, serves the “late 

correction” (cf. Braver, 2012, p.106) and flexible activation of goal representations after 

conflict onset.   

Although pro- and reactive control are flexibly applied to optimize cognitive 

control in daily life as they feature complementary costs and benefits (cf. Braver, 2012, 

see Braver et al., 2007, page 82), age-related differences in the predominant manner of 
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context updating perfectly explain the behavioral performance differences in the AX-

CPT between younger and older adults. Moreover, the mechanisms underlying the 

relative predominance of proactive control in younger, and reactive control in older 

adults have been confirmed on the basis of a fMRI-investigation on the AX-CPT. 

Younger adults showed increased activation in lateral PFC after context cue 

presentation that sustained during the cue–probe delay. In contrast, older adults tend to 

exibit descreased PFC-activations to the cue, but larger transient lateral PFC activation 

to the onset of the probe (Braver, Paxton, Locke, & Barch, 2009; Braver & Bongiolatti, 

2002; Paxton, Barch, Racine, & Braver, 2008; for a similar result in cued task 

switching, see Jimura & Braver, 2010).  
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Intermediate Summary and Implications for the Present Study 

The DMC framework provides an explanation of age differences in a variety of 

cognitive control tasks by assuming temporal differences in the processing of task-

relevant context information between age groups (Braver & Barch, 2002). Whereas 

younger adults usually show a preparatory, proactive mode of context updating to bias 

subsequent behavior, older adults engage in a delayed reactivation of contextual 

information to resolve interferenc (Braver et al., 2007; Kopp et al., 2014). Although the 

mechanisms underlying the age-differential time course of context updating has been 

confirmed on the basis of fMRI (Braver et al., 2009; Braver & Bongiolatti, 2002; 

Paxton et al., 2008), the main drawback of fMRI is its sparse temporal resolution. 

Hence, it would be more appropriate to investigate the neuronal mechanisms underlying 

the time course of context updating in younger and older adults by psychophysiological 

measures yielding a high temporal resolution (Friedman, Nessler, Johnson, Ritter, & 

Bersick, 2008).  

To this end, the dissertation project aims at examing age differences in pro- and 

reactive control by an ERP-approach which allows the online measurement of updating 

processes (Friedman et al., 2008; Gajewski & Falkenstein, 2011; Kray & Ferdinand, 

2014). The ERP-technique makes use of changes in voltage measured in the electro-

encephalograph (EEG) by electrodes placed on the surface of the scalp. The voltage 

changes are the result of dipole generation by summation of synchronous neuronal 

postsynaptic potentials (Fabiani, Gratton, & Coles, 2000; Luck, 2005). ERPs are usually 

time-locked to an external or internal event, hence reflecting “event-related” brain 

responses of the EEG (Fabiani et al., 2000). Apart from exogenous ERPs (Fabiani et al., 

2000), endogenous ERPs are thought to reflect cognitive information processing in 

response to the presentation of a stimulus (i.e., stimulus-locked ERPs) or due to the 
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execution of a response (i.e., response-relaed ERPs). In general, ERP components are 

defined by their peak latency in milliseconds (ms), their polarity and amplitude in 

microvolts (µV), and by the electrode position at which the amplitude is maximal. 

Although the ERP approach offers sparse spatial information, the high temporal 

resolution of ERPs allows to draw inferences about distinct processing stages elicited by 

experimenal manipulations (Luck, 2005). The present thesis will utilize the temporal 

charactersitic of the ERP-approach to track cognitive processing stages associated with 

pro- and reactive context updating in a paradigm described in the following section. As 

this paradigm has only been applied to investigate context updating in younger adults so 

far, the following section will also report ERP-correlates of task-switching studies in 

younger and older adults regarded as the basis for the ERP-hypotheses of the present 

dissertation.   
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2.6 ERP Correlates of Proactive and Reactive Control   

 

The next paragraph will first introduce a paradigm that can be applied to measure 

context updating in ERPs. Then, age differences in cue- and probe-locked ERPs of task-

switching studies will be reported before turning to a recent study investigating 

neuronal mechanisms of pro- and reactive control in younger and older adults. 

 

2.6.1 ERP Correlates of Context Updating in Younger Adults 

 

The study by Lenartowicz, Escobedo-Quiroz, and Cohen (2010) made use of the 

precise temporal information of ERPs to determine neuronal correlates of updating 

context information in a modified version of the AX-CPT in a student sample. In this 

version of the AX-CPT, the necessity to update context information can be manipulated 

on a trial-by-trial basis along context-dependent (c-dep) and context-independent (c-

indep) conditions arranged in cue-probe pairs (see Figure 3; Lenartowicz et al., 2010; 

see Figure 5, Appendix, for an adapted version applied in the present dissertation). On 

c-dep trials, the correct response to one of two probes is dependent on the preceding 

context, as stimulus-response (S-R) mappings are exactly reversed for the two cue-

probe combinations. Thus, correct responding on c-dep trials is expected to require 

updating and maintenance of the cue information as well as the reconfiguration of S-R 

rules (Lenartowicz et al., 2010). On c-indep trials in contrast, the correct response to 

probes is independent of the preceding context cue as S-R rules are exactly the same for 

the two cue-probe combinations. Hence, correct responding to probes on c-indep trials 

only relies on the assignment to one of two response buttons. The two context 
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conditions (c-dep, c-indep) have a 25% probability each and are intermixed with 50% 

control trials, which only consist of cue presentation. As these control trials do not 

require any response, they are included to control for ERP correlates reflecting the pure 

processing of perceptual cue information (Lenartowicz et al., 2010).  

 

 

 

 

Results of this study showed a context effect, i.e., a difference between context 

conditions reflected in better performance on c-indep trials than on c-dep trials in 

behavioral data. Context updating in the ERP data was linked to a larger frontally 

distributed P2 component after context cue presentation on c-dep trials than on c-indep 

and control trials. The context effect in the P2 was followed by larger parietal P3b and a 

larger negative going component (i.e., reflecting a Contingent Negative Variation, abbr. 

CNV) on c-dep than c-indep and control trials associated with task-reconfiguration and 

context maintenance processes, respectively (Lenartowicz et al., 2010). Importantly, to 

Figure 3. Schematic figure of the modified AX-CPT (own depiction; cf. Lenartowicz et al., 2010).  

Context updating and maintenance provided by the cue is required on context-dependent 

trials as response-assignments are exactly reversed for the two probes. Correct responses 

on context-independent trials are independent of context information as correct responses 

to the probes are identical. Control trials serve the presentation of perceptual cue 

information without task requirements. 



 

27 

 

make sure that the frontal P2 was indeed related to context effects and not to cue 

switches found in previous studies (West, Langley, & Bailey, 2011), the study by 

Lenartowicz et al. (2010) included an analysis of sequence effects of c-dep, c-indep, and 

control trials to separate ERPs of actual context updating from ERP-effects linked to a 

perceptual change in the cue irrespective of context. This analysis revealed that the P2 

was only sensitive to context updating, whereas the P3b and the CNV also reflected 

changes in context-cue identity independent of the context manipulation. Therefore, it 

was concluded that the P3b and the CNV might also indicate an effect of cue priming 

(Lenartowicz et al., 2010). 

Hence, the modified AX-CPT by Lenartowicz and colleagues (2010) is well 

suited to determine the temporal dynamics of neuronal mechanisms underlying context 

updating and maintenance. However, the DMC account considers context updating in 

older adults as a late correction mechanism (Braver et al., 2007), occurring after the 

detection of interference (Braver, 2012). Thus, less efficient context updating in the cue 

interval in older adults should require the use of reactive control, particular on c-dep 

trials where ambiguous probes (and overlapping response rules) induce conflict 

concerning the correct response. Although this analysis was not included in the study by 

Lenartowicz et al. (2010), mechanisms of reactive control can be investigated by ERPs 

time-locked to presentation of the executive stimulus (i.e., the probe). Thus far, age 

differences in psychophysiological measures of control processes associated with cue- 

and probe-presentation have been examined in task-switching paradigms; therefore, the 

following section summarizes age differences in ERPs established in the task-switching 

literature.  
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2.6.2 Age Differences in ERP Correlates of Cue and Probe Processing 

 

In task switching, subjects are instructed to successively alternate between two or 

more tasks afforded by a limited number of executive probe stimuli usually mapped to 

the same response set (for a review, see Jost, De Baene, Koch, & Brass, 2013; Kiesel et 

al., 2010; Kray & Ferdinand, 2014; Monsell, 2003). Behavioral performance in task-

switching blocks (termed mixed task blocks) is compared to performance in blocks 

involving only one task to perform (termed single task blocks). The performance 

difference between single and mixed task blocks, labeled mixing cost, is assumed to 

reflect the ability to select and maintain multiple task sets in WM (Goffaux, Phillips, 

Sinai, & Pushkar, 2008; Karayanidis, Whitson, Heathcote, & Michie, 2011; Kray & 

Ferdinand, 2014; Kray & Lindenberger, 2000). In task switching, the term task set 

refers to cognitive processes supporting the selection, coordination, and execution of an 

appropriate response to accomplish the task instruction (Monsell, 2003; Rogers & 

Monsell, 1995) 

 In contrast to mixing costs, performance differences between a task switch and a 

task repetition within mixed task blocks, labeled switching costs, are thought to reflect 

the ability to perform a switch respectively the time taken by task-set reconfiguration 

(Rogers & Monsell, 1995)
2
. The majority of aging studies (for a meta-analysis, 

Wasylyshyn et al., 2011) has found reliable age differences in mixing costs after 

controlling for general slowing, whereas age differences in switching costs have 

revealed mixed results and seem to be smaller than age differences in mixing costs 

                                                 
2
Note that studies may differ in the calculation of mixing costs. While most studies compare performance 

in single to mixed-repeat trials, some calculate mixing costs as the difference between performance in 

single blocks relative to performance on the average of switch and repeat trials within mixed blocks (cf. 

Adrover-Roig & Barceló, 2009; Karayanidis, Whitson, Michie, & Heathcote, 2010).  
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(Kray & Lindenberger, 2000; Verhaeghen et al., 2003, but see Friedman et al., 2008). 

Thus, older adults seem to show impairments in dealing with dual-task demands in a 

switch situation, but the switching itself seems to be less affected by aging (Kray & 

Ferdinand, 2014; Verhaeghen et al., 2003; West & Moore, 2005; see section 2.3). 

However, the absence of age differences in switching costs may also be due to the fact 

that older adults have a deficit in task switching in conditions of high interference 

(Karayanidis et al., 2011). For instance, in case stimulus or response attributes of two 

tasks are overlapping (Kray & Ferdinand, 2014; Mayr, 2001), older adults tend to 

update the task sets all the time even when it is not required, i.e., even on repeat trials 

within mixed blocks (Mayr, 2001). Thus, the reliance on updating the task set leads to 

increased reaction times on repeat trials, and consequently reduces the difference 

between repetitions and switches (Friedman et al., 2008; Kray & Ferdinand, 2014).  

In cued task-switching paradigms, the to-be executed task to the upcoming probe 

is announced by a preceding task cue (Monsell, 2003). Task cues typically diminish 

behavioral mixing and switching costs in younger and older adults, suggesting that 

subjects benefit from advanced preparation (Kray & Ferdinand, 2014). Nevertheless, 

residual switching costs in paradigms involving a long preparation interval (for a 

review, see Meiran, 1996) indicate that performance relies on not only cognitive 

processes associated with the cue (i.e., advanced preparation and configuration of the 

upcoming response), but also on control processes associated with the probe (i.e., 

interference from and inhibition of the preceding task set; cf. Kieffaber & Hetrick, 

2005; Monsell, 2003). Therefore, cued-task switching paradigms allow the separation of 

cognitive processes in ERPs time-locked to the task cue reflecting task-preparatory, 

proactive processes from ERPs time-locked to the probe coupled to reactive processes 

(Eppinger, Kray, Mecklinger, & John, 2007; Friedman et al., 2008; Karayanidis et al., 
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2011; West, Jakubek, Wymbs, Perry, & Moore, 2005; West & Moore, 2005). Aging has 

been found to be accompanied by differences in the latency, amplitude, and topography 

of these ERPs (Friedman et al., 2008; Karayanidis et al., 2011). Thus, the results of age 

effects in pro- and reactive control in cued task-switching studies are the background 

from which the hypotheses of the dissertation will be derived.  

 

Cue-locked ERPs: The P3b and the CNV 

In the cue-locked epoch, a posteriorly distributed positive component is 

commonly elicited approximately 300 ms after cue presentation, which is larger in 

mixed than single task blocks in younger adults (Karayanidis et al., 2011; West et al., 

2011). This “mixing-cost positivity” (cf. Karayanidis et al., 2011) is assumed to be 

generated in frontal and parietal brain regions (Polich, 2007) and indexes the amount of 

resource allocation available for updating and revising WM-content to incoming 

stimuli, which is labeled as a P3b in Oddball paradigms (Donchin & Coles, 1988; 

Polich, 2007). Accordingly, the larger amplitude on mixed relative to single task blocks 

is interpreted as the updating of task-sets after task cue presentation essential on mixed 

but not on single blocks (Eppinger et al., 2007; Jost, Mayr, & Rösler, 2008; Kray, 

Eppinger, & Mecklinger, 2005; West, 2004; West & Travers, 2008). Older adults 

usually exhibit a temporally delayed or prolonged P3b, but no amplitude difference to 

younger adults (Karayanidis et al., 2011; Kray et al., 2005; West, 2004; but see West & 

Moore, 2005). This finding may either indicate a slowing of updating processes (Kray et 

al., 2005), or a tendency that older adults use the whole cue-target interval (CTI) for the 

encoding of the task context and the preparation of the upcoming response (i.e., 

prolonged WM-updating; Czernochowski, 2011; West, 2004). Younger adults also 

show a “switch cost positivity” (cf. Karayanidis et al., 2011), i.e., a larger positive 
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component on switch relative to repeat trials within mixed blocks (Jost et al., 2008; 

Nicholson, Karayanidis, Poboka, Heathcote, & Michie, 2005; West et al., 2011). This 

P3b emerges about 500 ms after task-cue presentation (Friedman et al., 2008; 

Karayanidis et al., 2011; West & Moore, 2005) and is interpreted as reflecting updating 

and anticipatory reconfiguration processes on switch trials (Eppinger et al., 2007). In 

older adults, the switch cost positivity is substantially smaller or absent relative to 

younger adults (Friedman et al., 2008). As this difference is mainly due an increase in 

P3b amplitudes on repeat trials, it reflects that older adults tend to update task-sets on 

both switch and repeat trials (Friedman et al., 2008; Kray & Ferdinand, 2014). This 

finding corresponds to the lack of behavioral age effects on switching costs (Eppinger et 

al., 2007; Friedman et al., 2008; Karayanidis et al., 2011; Mayr, 2001).   

Distinct age differences have also been found in the scalp distribution of the P3b 

in mixing and switching costs: Whereas the P3b amplitude typically increases from 

frontal to posterior sites in younger adults and is largest at parietal electrodes, older 

adults exhibit a more evenly distributed P3b across the anterior-posterior plane due to 

an increase at frontal sites (Fabiani, Friedman, & Cheng, 1998; Karayanidis et al., 

2011). Whether this frontal shift reflects a compensational mechanism to maintain good 

performance (Daffner et al., 2011; De Sanctis, Gomez-Ramirez, Sehatpour, Wylie, & 

Foxe, 2009), or less efficient frontal lobe functioning (Fabiani et al., 1998) is a matter of 

an ongoing debate. For instance, as a consequence of reduced efficiency in control 

processes, the more widespread P3b can be attributed to older adults’ need to 

additionally recruit frontal areas to carry out the task (Daffner et al., 2011; Fabiani et al., 

1998). In this regard, research from neuro-imaging in older adults helps to explain costs 

and benefits of increased brain activations (particularly at prefrontal sites; Reuter-

Lorenz & Cappell, 2008). For instance, the compensational-related utilization of neural 
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circuit hypothesis (abbr. CRUNCH; cf. Reuter-Lorenz & Cappell, 2008) suggests that 

the age-related trade-off between neuronal over- and under-activations depends on the 

level of task demand and reflects general processing efficiency. Increased, bilateral 

PFC-activation in older adults (relative to unilateral activation in younger adults and 

age-related neuronal under-recruitment) correlated with high performance in a memory 

task in seniors (Cabeza, Anderson, Locantore, & McIntosh, 2002), suggesting 

compensatory brain activity to meet task demands. But, as task difficulty increased, 

PFC regions in the elderly become under-activated and performance declined relative to 

younger adults (Reuter-Lorenz & Cappell, 2008; see also Cabeza et al., 2005).  

At the end of the cue-locked epoch, cued task-switching studies show a negative 

fronto-central CNV that emerges roughly from 600 ms after task cue onset, depending 

on the duration of the CTI (Adrover-Roig & Barceló, 2009; Kray et al., 2005; West 

2004; West & Moore, 2005). The CNV is larger on mixed than single blocks as well as 

on switch relative to repeat trials and has been related to the retrieval and maintenance 

of task representations (Goffaux et al., 2008; Kray et al., 2005; West 2004). Whereas 

West (2004) and West and Moore (2005) found the CNV to be larger on mixed than 

single blocks in younger, but attenuated in older adults, the larger CNV on mixed than 

single blocks in Kray et al. (2005) was present in older adults only. This discrepancy 

might be due to the fact that the studies differed in the duration of the CTI which is 

critical to maintenance demands (Braver et al., 2005), as well as the electrodes involved 

in statistical analysis of the CNV (see Wild-Wall, Hohnsbein, & Falkenstein, 2007). 

Nevertheless, the age differences in the CNV across the aforementioned studies seem to 

be related to a larger effort or a failure to maintain the updated task-set until 

presentation of the executive stimulus in older adults (Kray et al., 2005; West, 2004; 

West & Moore, 2005).  
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Probe-locked ERPs: The P3b, the N450, and the sustained potential  

Compared to the results of cue-locked ERPs in task switching, age differences in 

probe-locked components linked to interference processing, conflict resolution, or 

response preparation have only been rarely investigated (Eppinger et al., 2007; 

Gajewski & Falkenstein, 2011; Goffaux et al., 2008; Karayanidis et al., 2011; Kray et 

al., 2005; West & Travers, 2008). The processing of the executive stimulus in cued 

task-switching has been associated with a parietal P3b emerging about 300–800 ms 

after probe presentation (Gajewski & Falkenstein, 2011; Goffaux, Phillips, Sinai, & 

Pushkar, 2006; Periánez & Barceló, 2009). In younger adults, the P3b is larger in single 

than in mixed blocks (Goffaux et al., 2006; Jost et al., 2008), and in repeat than switch 

trials (Gajewski & Falkenstein, 2011; Goffaux et al., 2006; Karayanidis et al., 2011). 

The former result has been suggested to reflect less post-probe interference on single 

blocks (cf. Karayanidis et al., 2011). The latter has been interpreted to reflect facilitated 

and efficient target processing, i.e., a larger amount of attentional resources and WM-

capacity available for probe processing on repeat trials (Daffner et al., 2011;  Goffaux et 

al., 2006; West & Travers, 2008). Studies on age differences in the probe-locked P3b 

have produced inconsistent findings. For instance, Goffaux et al. (2008) found no age 

differences in the probe-locked P3b of mixing costs between age groups. However, 

Adrover-Roig and Barceló (2009) and West and Travers (2008) found comparable 

probe-locked P3 amplitudes on single and mixed blocks in the elderly. Yet, Karayanidis 

and colleagues (2011) showed a larger difference between single and mixed blocks in 

the P3b in older than younger adults, although this finding might be due to a larger 

amount of task practice in the study (Karayanidis et al., 2011). In general, the reduced 

amplitude differentiation between single and mixed blocks suggests that both blocks 

might be equally difficult for older adults (Kray & Ferdinand, 2014; West & Travers, 
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2008). Again, as for the cue-locked data, the probe-locked P3b is more evenly and 

widespread distributed across the scalp in older adults, indicating a compensatory or 

inefficient resource allocation to probe evaluation supported by frontal brain regions 

(Adrover-Roig & Barceló, 2009; Kray & Ferdinand, 2014).  

As the DMC-theory assumes the lack of proactive control to increase the need for 

reactive control once interference is detected (Braver, 2012), it would be helpful to 

investigate ERPs not only to linked to probe evaluation (as resembled by the P3b), but 

also to processes of conflict detection and response preparation. The N450 and the 

positive sustained potential (abbr. SP) have been associated with conflict-related 

processes, although not exclusively in task-switching studies (for a review, Larson, 

Kaufman, & Perlstein, 2009). The N450 is a negative going deflection assumed to have 

its origin in the ACC (labeled Ni in Kray et al., 2005; Liotti, Woldorff, Perez, & 

Mayberg, 2000) and usually obtained at fronto-central, central, and parietal electrodes 

in the time range between 200 ms and 650 ms after stimulus presentation (Eppinger et 

al., 2007; Kray et al., 2005; Liotti et al., 2000; West, 2004). Commonly, the N450 has 

been studied in the Stroop task (Rebai, Bernard, & Lannou, 1997; see section 2.3, see 

also Eppinger et al., 2007 and West, 2004). In younger adults, incongruent Stroop 

stimuli usually elicit a larger N450 than congruent stimuli (Rebai et al., 1997) even in 

the absence of response conflict. Therefore, the N450 has been associated with 

interference detection at the stimulus level (cf. Mager et al., 2007; Liotti et al., 2000; 

West, 2004). Interestingly, the effect of conflict in the N450 in the Stroop can be 

separated from the aforementioned probe-locked P3b and the SP which emerges from 

500 ms post-probe (Liotti et al., 2000; Mager et al., 2007; West et al., 2005). Whereas 

the P3b might not be sensitive to conflict (West & Alain, 2000b), the larger parietal SP 

to incongruent trials in younger adults has been shown to correlate with reaction time 
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and accuracy in the Stroop, suggesting a role in conflict resolution (Liotti et al., 2000; 

West, 2004; West & Alain, 2000a), or response selection (Liotti et al., 2000; West et al., 

2005). However, both the amplitude of the N450 and the SP increase as the demand on 

conflict processing rises, indicating that younger adults can transiently adapt to changes 

in contextual conditions (Eppinger et al., 2007; West & Alain, 2000b).  

Older adults show a later onset of the N450 and a prolonged duration (Eppinger et 

al., 2007; Kray et al., 2005; Mager et al., 2007) associated with slowed and extended 

conflict processing (Kray et al., 2005). Some studies also found the N450 amplitude to 

be attenuated in older adults, which implies an age-related decline in the efficiency to 

detect conflict supported by the ACC (West, 2004; West & Alain, 2000a). Moreover, 

whereas the N450 in younger adults is particularly pronounced in situations of high 

conflict (West & Alain, 2000b), an increased N450 to incongruent stimuli in older 

adults can be found even in conditions of frequent conflict, indicating that they are less 

able to adapt to task demands (Eppinger et al., 2007). Concerning the SP, only two 

studies investigated the effects of aging on its amplitude. In West (2004), older relative 

to younger adults showed an attenuated SP on incongruent trials in the Stroop when 

color naming was claimed. In contrast, the SP to incongruent Stroop stimuli in the study 

by West and Alain (2000a) was larger in older adults. However, the larger SP in West 

and Alain (2000a) might resemble an prolongation of the SP-like component that was 

found in older, but not younger adults in the former study (West, 2004). Thus, the age-

differential effect on the SP particularly in the color-naming condition, reflecting a 

condition of high interference, might indicate some first evidence for a functional 

reorganization of conflict processing in older adults (West, 2004).  

In sum, the cued task-switching paradigm is a useful tool to establish age 

differences in the time course of cue- and probe-related control processes. The ERP-
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results of task switching studies can be used as a background from which to examine 

whether younger adults indeed rely on proactive preparation, whereas older adults 

invest in reactive control in the AX-CPT. To this end, it would be necessary to compare 

temporal differences in ERP correlates of context processing between younger and older 

adults in the same paradigm. Moreover, the DMC account claims that employing pro- 

versus reactive control is accompanied by complementary costs and benefits, as 

indicated by the reciprocal behavioral performance on AY- and BX- trials in the AX-

CPT (Braver et al., 2005). Thus, to substantiate the assumptions by DMC theory, it 

would be essential 1) to detect neuronal indices of age-related temporal dynamics in 

pro- and reactive control and 2) to show that the age difference in temporal dynamics of 

context processing reflects a trade-off in the reliance on pro- and reactive control in 

behavioral measures.      

 

2.6.3 An ERP-Study on Proactive and Reactive Control in Younger  

and Older Adults 

 

So far, the study by Kopp and colleagues (2014) investigated ERP correlates 

associated with proactive and reactive control in a task-switching version of the WCST 

in younger and older adults (Kopp et al., 2014). Participants were instructed to 

categorize cards of ambiguous probes either according to the probes’ color or shape. 

The current categorization rule remained until feedback-based transition cues signaled a 

switch. The authors found larger central P3a amplitudes for cues announcing a 

subsequent rule switch than a rule repetition in younger, but not in older adults (Kopp et 

al., 2014; West et al., 2011). Older adults showed increased P3b amplitudes at frontal 

sites in ERPs time-locked to the probe. Hence, it was interpreted that younger adults 
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used the cue information in a proactive, preparatory manner, whereas older adults relied 

on probe-related information to prepare the upcoming response in a reactive manner. 

Importantly, and as predicted by the DMC account, the age-related shift from a 

proactive toward a reactive control mode was paralleled by equal behavioral task 

performance of the two age groups (Braver, 2012; Kopp et al., 2014). However, it 

should be noted that in the probe-locked P3b, older adults showed increased amplitudes 

on both switch and repeat trials. This finding could reflect that older adults exhibited a 

delayed updating of task-rules not only on switch trials, but also on repeat trials in 

which the categorization rule remained the same and hence interference should be 

reduced. This finding is similar to the absence of P3b-differences between switch- and 

repeat trials in older adults in task switching (Eppinger et al., 2007; Friedman et al., 

2008; Kray & Ferdinand, 2014), although in task-switching studies this effect is usually 

found in cue-locked ERPs. One explanation for the result in the study by Kopp and 

colleagues (2014) could be the use of transition cues, which only signal a switch, but do 

not explicitly announce the upcoming task (Jost et al., 2013; Kray & Ferdinand, 2014). 

Hence, although this study found ERP evidence for reduced proactive control in the 

elderly, transition cues might have put a high demand on cognitive control in older 

adults, which in turned might have led to a nonselective over-recruitment of control 

processes at the time the probe was presented. Therefore, and in contrast to this study, 

the present thesis will investigate the age-related tradeoff between pro- and reactive 

control by applying the AX-CPT by Lenartowicz et al. (2010) in which context cues 

explicitly signal the need for context updating on c-dep and c-indep trials, respectively. 
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2.7  Motivational Influences on Cognitive Control  

 

The previous sections outlined senescent changes in the predominant manner of 

context processing, the underlying neuronal mechanisms, and ERP correlates to track 

pro- and reactive control (Braver et al., 2007; Kopp et al., 2014). However, the DMC 

theory states that pursuing cognitive control pro- versus reactively (and vice versa; 

Braver, 2012) might not only trace back to advancing age, i.e., to individual differences 

between subjects, but may differ considerably within subjects. Individual differences in 

the predominant mode of cognitive control within subjects are claimed to occur due to 

situational demands (e.g., memory load, Braver et al., 2007) or due to non-cognitive 

factors such as affective emotional or motivational manipulations (Braver, 2012).   

The later claim is based on lines of evidence that DA is critical for both cognitive 

and affective processes (Ashby et al., 1999; Braver et al., 2007; Chiew & Braver, 

2011b; Schutz, 2010). In this respect, the remainder of the theoretical part is dedicated 

to the question whether motivation can be manipulated to modulate context processing 

in younger and older adults. To this end, the following sections will review affective 

definitions, report current considerations on the interaction between cognitive and 

affective processes, and summarize recent findings of emotion regulation in old age. It 

should be noted that affective influences on cognitive control have been studied in the 

light of motivational and emotional manipulations, such as mood induction or 

performance-contingent reward, respectively. Nevertheless, there is some evidence that 

the mechanisms underlying these modulations are different (cf. Chiew & Braver, 2014; 

Fröber & Dreisbach, 2014). As the dissertation aims at investigating motivational 

influences, section 2.9 will focus on empirical evidence of motivational effects on 

cognitive control in behavioral and ERP data.  
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2.7.1 The Relationship Between Affective and Cognitive Processes 

 

Recent psychological perspectives assume that the traditional separation between 

processes primarily labeled as “cognitive” and processes viewed as “affective” ignores 

accumulating evidence that cognitive and affective processes are closely related in the 

control of behavior (Pessoa, 2008). While there seems to be a consensus that cognition 

involves processes such as reasoning, language, memory, attention, or cognitive control 

(Pessoa, 2008; Pessoa & Engelmann, 2010), affective processes are related to the more 

broadly, squishy defined concepts of emotion and motivation (Buck, 2000; Chiew & 

Braver, 2011b; Elliot, 2008; Pessoa, 2008). In an overview of current definitions of the 

constructs emotion and motivation, Chiew and Braver (2011b) suggest that both 

emotion and motivation describe the relationship between a person and the environment 

(for a general overview, see also Roseman, 2008). Motivation is characterized as an 

internal mechanisms focusing on the fundamental goal to obtain reward and to avoid 

punishment (”approach and avoidance motivation”; Elliot, 2008, p.3). Thus, motivation 

is closely linked to the direction of behavioral actions targeting a goal of “hedonic 

value” (Chiew & Braver, 2011b, p.2; Roseman, 2008). In contrast, emotions have been 

described as a subjective affective experience resulting from an evaluation of a situation 

or a stimulus (Chiew & Braver, 2011b; Dolan, 2002; Rolls, 2000; Scherer, 2005). 

Emotional states are comprised of physiological, expressive, cognitive, and behavioral 

changes (Chiew & Braver, 2011b; Ekman, 1992; Roseman, 2008; Scherer, 2005).  

Some researchers argue that emotion and motivation can be dissociated in the 

extent to which they are subjective versus objective, impulsive versus deliberate and 

specific versus general (Roseman, 2008). In this view, emotions have been described as 

being rather subjective, impulsive, and more general with regard to motives, whereas 
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motivations are considered as objective, deliberate, and related to specific conditions 

(Roseman, 2008). Nevertheless, although these definitions attempt to dissociate 

motivation and emotion, they cannot cover that the two constructs reflect internal states 

or processes and may be inextricable linked (Chiew & Braver, 2011b). For instance, the 

experience of an emotional state is often (but not exclusively, see Laming, 2000) a 

result of the delivery of reward or punishment (Rolls, 2000) and emotional states 

themselve flexibly motivate behavior toward goal optimization (Chiew & Braver, 

2011b). Hence, emotion and motivation seem to be “two sides of the same coin” (Buck, 

2000, p. 196), i.e., they cannot be separated (cf. Chiew & Braver, 2011b).  

In current neuro-cognitive theories, cognitive and affective processes are assumed 

to be integrated in terms of functional and neuroanatomical brain dynamics and 

collectively contribute to goal-directed behavior (Gray, 2004; Pessoa, 2008, 2009; 

Pessoa & Engelmann, 2010). In this regard, the lateral PFC (lPFC) has been proposed as 

one of the key brain regions for integration (Pessoa, 2008; for further brain areas 

incorporating affect-cognition interactions, see Pessoa & Engelmann, 2010; Watanabe, 

2007). Patient studies provide evidence that PFC-lesions or specific forms of dementia 

affecting the frontal lobes are accompanied not only by deficits in controlled behavior 

(e.g., in WM-tasks), but also by dramatic changes in mood states, emotional and social 

behavior (Dalgleish, 2004; Damasio & Anderson, 2012). This finding is supported by 

neuromaging data showing subregions of the PFC to be engaged in different aspects of 

processing: While the lPFC (especially the DL-PFC) seems to be responsible for 

updating and maintaining goal-related information, the apprehension of emotional value 

and the processing of reward seems to depend on the orbitofrontal and the ventromedial 

part of the PFC (Braver & Barch, 2002; Dalgleish, 2004; Damasio & Anderson, 2012; 

Pessoa, 2008). Most importantly, these studies also support the assumed integration of 
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cognitive and affective influences in the lPFC (Pessoa, 2008). In an overview by 

Watanabe (2007), it is summarized that lPFC-neurons show increased firing for task-

relevant information in WM, benefitting the maintenance of stimulus information. 

Moreover, these neurons also exhibit increased firing for reward, indicating the 

encoding of a stimulus’ value. Critically, proof for the integration of reward- and 

maintenance-bound information was established by an enhancement of the WM-related 

activity by the expected reward value of the to-be maintained stimulus. Importantly, this 

enhancement was larger as predicted from adding WM- and reward-related activations 

(Watanabe, 2007). Similar affective influences on lPFC functions in cognitive control 

have been affirmed by showing a larger maintenance-related activity in DL-PFC for 

emotional than neutral information (Perlstein, Elbert, & Stenger, 2002; Pessoa; 2008), 

and a larger inhibition-related DL-PFC activation for negative than neutral words 

(Goldstein et al., 2007). Interestingly, affective stimuli affected DL-PFC activations 

only when they were critical for performance on the WM- or inhibition-task (Perlstein 

et al., 2002; Pessoa; 2008), suggesting an important role of the lPFC in processing 

affective significance in the service of goal-directed behavior (Perlstein et al., 2002; 

Pessoa, 2008).  

The aforementioned findings contribute to the lPFC-theory by Gray and 

colleagues (Gray, 2004; Gray, Braver, & Raichle, 2002). Specifically, the authors claim 

that the affective influence on cognitive control abilities need to be highly specific to 

suggest a true cognitive-affective integration. It is hold that if a certain brain area (i.e., 

the lPFC) provides such an integration, this assumption would be corrobated by fMRI-

data showing a combined contribution of neuronal affective and cognitive processes on 

behavior. In other words, specialised affective and cognitive subprocesses would be 

insaparable merged into a new function (cf. Gray et al., 2002). In statistical terms, this 
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hypothesis should be reflected by an “crossover interaction” (Gray et al., 2002, p.4115). 

of cognitive and affective factors with no main effects in the specific brain area 

(Goldstein et al., 2007; Gray et al., 2002). In support of this notion, Gray and colleagues 

(2002, 2004) found highly selective effects of positive and negative mood 

manipulations on task-related activation patterns of the lPFC in a spatial and a visual 

WM-task without main effects. Such highly specific affective modulations of cognitive 

control abilities (i.e., promoting some abilities while inhibiting others) may be 

particularly adaptive for behavior to fullfill specific situational requirements (for 

instance, to gain reward; Gray, 2004). Hence, the lPFC is regarded as a key brain region 

supporting highly specific affective influences on cognitive control and promoting 

adaptive behavior in changing environmental conditions.  

 

2.7.2 The Role of Dopamine in Cognitive and Affective Processes  

 

Although the integration of cognitive and affective processes in lPFC might be 

beneficial to adaptive behavior, the critical question of how this integration is 

specifically achieved remains to be answered (Pessoa, 2008). Current theories about 

affective influences on cognitive control functions bring the midbrain DA system (see 

section 2.2 for anatomy) into focus (Ashby et al., 1999; Braver, 2012; Braver et al., 

2007; Chiew & Braver, 2011b; Cohen et al., 2002; Hoebel, Avena, & Rada, 2008; 

Panksepp & Moskal, 2008; Pessoa, 2008). In the affective literature, it is well-known 

that chemical stimulants inducing feelings of euphoria and approach motivation, such as 

amphetamines, enhance extracellular DA transmission particular in the nucleus 

accumbens (NAc) of the ventral striatum (Di Chiara et al., 2004; Grace, Floresco, Goto, 

& Lodge, 2007). This finding corresponds to rewarding effects of DA release by lever 
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pressing of electrodes implanted in the VTA or substantia nigra in studies on 

intracranial self-stimulation in rats (cf. Garris et al., 1999; Panksepp & Moskal, 2008; 

Schultz, 2010). The midbrain DA system has even been described as the neuronal 

correlate of the reward system (cf. Schultz, 1998; see also Schultz, 2010 for a definition 

of rewarding events). While some DA neurons exhibit slow, tonic activity, the majority 

of neurons in the mesencephalic DA system exhibit fast, phasic activations to afferent 

influences, particularly reward (Bromberg-Martin et al., 2010; Grace et al., 2007; 

Schultz; 2010). As can be seen in Figure 4A (adapted from Schultz, 2010), DA neurons 

initially exhibit phasic bursts of activity after unpredicted primary reward, such as food 

or liquids (Bromberg-Martin et al., 2010; Schultz, 2010). However, by pairing reward 

with sensory stimuli, the phasic DA activation will no longer occur by the time the 

initial reward is actually delivered, but will be triggered by conditioned stimuli 

predicting later reward (see Figure 4B, Schultz, 2010). As DA neurons only show 

activity if the delivery (or absence) of reward is different to expectation, it is assumed 

that the phasic increase in DA activation is critical for reinforcement learning (Di 

Chiara et al., 2004; Mirenowicz & Schultz, 1996; Schultz, 2010): If a delivered reward 

is better than predicted from previous experience, DA neurons will be activated, 

whereas if the predicted reward fails to appear, DA activity will be inhibited 

(Bromberg-Martin et al., 2010; Chiew & Braver, 2011b; Schultz, 2010). Accordingly, 

these DA signals can be used to reinforce or weaken reward-preceding actions critical 

for establishing associative learning (Bromberg-Martin et al., 2010; Chiew & Braver, 

2011b).  
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Although the role of midbrain DA in reward has been established (Schultz, 2010), 

recent theories suggest that DA neurons display phasic activity also to aversive or 

salient events in general, although the former might be conveyed by a smaller number 

of DA neurons and a weaker DA response (Bromberg-Martin et al., 2010; Ikemoto & 

Panksepp, 1999; Mirenowicz & Schultz, 1996). Some DA neurons respond to reward 

while at the same time exhibiting firing to aversive events (i.e., penalty; Mirenowicz & 

Schultz, 1996). Therefore, it has been assumed that appetitive and aversive events 

possess a similar “motivational salience” because both are behaviorally relevant, 

although they may differ in their “motivational value”, being positive for reward and 

negative for penalty (cf. Bromberg-Martin et al., 2010, p.815). Accordingly, so-called 

motivational value coding DA-populations can be stimulated by reward and inhibited by 

Figure 4. Schematic figure of DA activity (adapted and modified from Schultz, 2010).     

Copyright by BioMed Central. 

A. Phasic DA bursts (represented by dots), indicated by an increase in the 

activity distribution after delivery of primary reward announced by the 

triangle. B. During learning, increased DA release (represented by dots) is 

temporally shifted to conditioned stimuli announced by the triangle predicting 

later reward.   



 

45 

 

penalty, whereas motivational salience coding DA-populations are excited by both 

reward and penalty but inhibited by neutral events. The latter are thought to be critical 

for orienting to and processing of important stimuli and situations of behavioral 

relevance (cf. Bromberg-Martin et al., 2010). 

Given the fundamental role of DA neurons in reward processing and associative 

learning, it is particularly noteworthy that further lines of evidence emphasize the role 

of DA in cognitive control (cf. Chiew & Braver, 2011b). Herein, it has been put forward 

that as midbrain DA can be send to frontal cortices (for details, see section 2.2), DA 

may alter specific control functions subserved by the PFC (Chiew & Braver, 2011b; 

Cohen et al., 2002; Pessoa & Engelmann, 2010). In pharmacological studies, 

computational modeling, and single-cell recordings in non-human primates, the DA 

influence to the PFC is assumed to enhance the signal-to-noise ratio of neuronal 

responses by suppressing spontaneous firing, but enhancing neuronal activity to afferent 

input (Cohen et al., 2002; Miller et al., 1996;  Li et al., 2001; Pessoa & Engelmann, 

2010). At the same time, this modulatory function of DA supports sustained activity of 

PFC neurons, which in turn benefits short-term storage of information for controlled 

behavior (Cohen et al., 2002), for instance in WM-tasks (Goldman-Rakic, 1995; 

Sawaguchi & Goldman-Rakic, 1991; Watanabe, 1996, 2007). 

However, the role of the PFC in rote memory storage has been challenged (Cohen 

et al., 2002; D'Esposito, Cooney, Gazzaley, Gibbs, & Postle, 2006; Reuter-Lorenz & 

Sylvester, 2005). Instead, recent models suggest that phasic DA-release regulates the 

balance between maintenance and updating of stimulus representations within the PFC 

(see also section 2.4.2; Braver et al., 2007; Gruber, A. J. et al., 2006). In these models, 

midbrain DA-bursts from D2-receptors to salient and reward-predicting cues are 

assumed to be forwarded to the PFC in order to signal the need for gating information 
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into the PFC (Gruber, A. J. et al., 2006). In contrast, in the absence of salient and 

reward-predicting information, phasic DA release will be inhibited by tonic DA levels 

possibly from D1-receptors which ensure the stability of information maintenance 

(Cohen et al., 2002). Overall, DA activity has been attributed to play a key role in 

mediating affective influences on cognitive control performance, but so far, the precise 

mechanisms, and the differential impact of motivational salience and value coding DA- 

neurons seem to be only poorly understood. 

 

2.8 The Positivity Effect in Old Age 

 

Given that DA seems to play a crucial role in the effects of aging (see section 2.2) 

and anticipated reward (Chiew & Braver, 2011b) on cognitive control, affective-

cognitive interactions might be especially important in advancing age (Carstensen & 

Mikels, 2005; Mather & Carstensen, 2005). Although it is well known that aging is 

accompanied by a decline in various facets of cognition (see section 2.3), there is 

increasing evidence that affective functions, for instance, emotional regulation and the 

processing of affective stimuli, might be relatively preserved or even improved in old 

age (Carstensen & Mikels, 2005; Mather & Carstensen, 2005; Reed & Carstensen, 

2012). These age differences have been explained in the so-called socioemotional 

selectivity theory (cf. Mather & Carstensen, 2005) hypothesizing that personal goals 

have to be regarded within temporal constraints. Specifically, if individuals perceive 

future time horizons as enduring, they will focus on goals related to the future, such as 

gaining knowledge. In contrast, if individuals recognize future time as restriced, as it 

likely occurs in aging, they will focus on immediate, meaningful goals, such as 

emotional regulation (Carstensen, Isaacowitz, & Charles, 1999). Accordingly, it has 
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been found that in order to enhance well-being, older adults invest more cognitive 

resources than younger adults in emotional regulation. This can be seen by heightened 

processing of positive, gratifying information in contrast to negative or neutral 

information in cognitive task assessing attention or memory performance (Carstensen & 

Mikels, 2005). It should be noted that the critical factor leading to this age-related 

“positivity effect” (cf. Reed & Carstensen, 2012, p.1) is the individually perceived time, 

and not age per se. Hence, differences in how a respective task is framed (limited or 

unlimited time) may explain inconistencies in the positivity effect across studies (Reed 

& Carstensen, 2012). This finding also suggests that emotional regulation can be 

flexible applied in old age, ruling out age differences in neural markers of affective 

processing (Carstensen & Mikels, 2005). Connecting with the previous paragraphs, and 

the assumptions of the DMC theory (Braver & Barch, 2002), it might therefore be 

interesting to examine whether preserved affective processing, and even increased 

processing of positive information in old age, might be beneficial to cognitive control in 

older adults, for instance by triggering context processing.  
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Intermediate Summary and Implications for the Present Study 

Anatomical and functional data suggest that the major role of the PFC in integrating 

affective and cognitive functions may be subserved by midbrain DA release initiated by 

reward and reward-predicting stimuli (Cohen et al., 2002). Given its precise temporal 

characteristic, DA release serves the updating of PFC representations to guide behavior 

toward reward achievement (Cohen et al., 2002; Schultz, 2010; Watanabe, 2007). This 

idea has been incorporated in the DMC-model as reward-predicting stimuli are assumed 

to trigger updating of context information for goal-directed behavior (Braver & Barch, 

2002). Hence, giving the temporal differences in processing context information 

between age groups (Braver & Barch, 2002), it might be interesting to examine whether 

reward-predicting cues are able to modify the temporal dynamics of context processing 

or even to promote proactive context updating in older adults (Braver et al., 2007). This 

line of thought is supported by evidence showing reward anticipation to increase 

voluntary preparation for an upcoming stimulus, which can be reflected in ERPs 

(Gruber & Otten, 2010; Gruber, Watrous, Ekstrom, Ranganath, & Otten, 2013; 

Halsband, Ferdinand, Bridger, & Mecklinger, 2012).  

However, as initial evidence suggests that DA activity might not only be triggered 

by reward, but by salient cues in general (Bromberg-Martin et al., 2010), the question 

arises whether context updating can be triggered by DA release to behavioral relevant 

salient positive (i.e., reward) and negative (i.e., penalty) manipulations in general. 

Although this differentiation has been largely neglected so far, it might be especially 

important in older adults who seem to focus on positive information (Mather et al., 

2005). Therefore, the second aim of the dissertation is to investigate the influence of 

motivational salient cues on the time course of context updating in younger and older 

adults reflected in ERPs. Moreover, ERPs help to reveal whether motivational effects 
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on context processing in the AX-CPT are associated with context updating, task-

reconfiguration, or maintenance associated with proactive control (Lenartowicz et al., 

2010), with processes of conflict detection and response selection reflecting reactive 

control (Krebs, Boehler, Applebaum, & Woldorff, 2013; West & Alain, 2000a, 2000b; 

West et al., 2005), or both. So far, motivational manipulations on mechanisms of 

context processing have mainly been conducted in younger adults, and the following 

paragraph summarizes these studies regarding behavioral and ERP-results. 

 

2.9 Behavioral and ERP-Studies of Motivational Manipulations 

on Cognitive Control 

 

In accordance with the DMC theory, recent studies on cue processing in task-

switching paradigms and the AX-CPT report reward prediction to fasten reaction times 

relative to baseline blocks without reward. As this effect cannot be attributed to a speed-

accuracy tradeoff, the reward effect on cognitive control seems to be highly specific 

(Braver et al., 2009; Jimura, Locke, & Braver, 2010; Kleinsorge & Rinkenauer, 2012; 

Locke & Braver, 2008; Pessoa & Engelmann, 2010). In the AX-CPT under reward 

conditions, the relationship between performance on AY- and BX-trials suggests reward 

to foster context cue processing in a preparatory, proactive manner (Chiew & Braver, 

2013, 2014). Larger effects of reward incentives on mixed than single task blocks in 

task switching indicate an effect of reward incentives particular in situations of 

increased cognitive control demands (Kleinsorge & Rinkenauer, 2012).  

Compared to results on reward incentives on cognitive control, only a few studies 

investigated the influence of penalty manipulations (Braver et al., 2009; Krawczyk & 

D'Esposito, 2013). In the AX-CPT, anticipated penalties caused a slowing in reaction 
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times, and a reduction of errors (Braver et al., 2009), suggesting increased reactive 

control. However, in this study, penalties were only applied after errors on no-go trials 

and hence the comparison to the reward-related effect is missing. In contrast, both 

reward and penalty fastened reaction times in a cued attention task which was not at the 

cost of errors, interpreted as improved perceptual sensitivity and sharpened exogenous 

attention on motivationally salient trials (Engelmann & Pessoa, 2007). In sum, different 

lines of evidence suggest that anticipated rewards and probably also penalties might 

benefit cognitive control in younger adults. 

Only a handful of studies investigated the effect of anticipated reward on ERP 

correlates of cognitive control. In a study on the Stroop task, Krebs and colleagues 

(2013) found larger P3b amplitudes to reward-predicting cues preceding the 

presentation of the executive Stroop- stimulus. This finding was interpreted as reflecting 

increased preparatory attention toward the upcoming ambiguous Stroop stimulus which 

was essential to obtain later reward. In a task-switching study, larger P3b amplitudes on 

reward trials during response execution (probe-locked) were supposed to reflect a larger 

investment of available WM benefitting fast responding (Capa, Bouquet, Dreher, & 

Dufour, 2013). In addition, the CNV has also been associated with reward processing, 

as larger CNV amplitudes were found on trials indicating reward for fast and correct 

responses (Capa et al., 2013; Falkenstein, Hoormann, Hohnsbein, & Kleinsorge, 2003; 

but see Goldstein et al., 2006). Finally, in the Stroop study by Krebs and colleagues 

(2013), reward incentives modulated conflict-related components, such as the N450 and 

the SP. Although amplitude modulations were not reported, the two components peaked 

earlier during reward trials. This temporal shift might indicate an earlier onset of 

conflict processing triggered by enhanced attention allocation toward the presentation of 

the Stroop stimulus linked to the preceding cue-locked P3b (Krebs et al., 2013). 
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Taken together, previous research in younger adults has outlined highly selective 

effects of reward conditions on cognitive control especially when enhanced controlled 

processing was demanded. Interestingly, although some of the aforementioned studies 

used slightly different paradigms to assess cue processing, motivational influences were 

found in all ERP components in younger adults that have been linked to context 

processing in a pro- and reactive manner (see section 2.6.2). Despite these previous 

results, the impact of motivational manipulations on context processing in old age has 

been largely neglected. Also largely unclear from the literature is the effect of penalty 

manipulations on cognitive control performance. In this regard, it would be particularly 

necessary to conduct ERP studies assessing the effect of reward and penalty on context 

processing in the same paradigm.  



 

52 

 

Summary and Research Objectives 

Considerable evidence suggests that as people age, they are confronted with a 

decline in goal-directed behavior (Baltes et al., 1999; Fisk & Sharp, 2004). Apart from 

monitoring age-related deficits on the behavioral level, current research attempts to 

elucidate the underlying mechanisms, and to connect behavioral and neurobiological 

changes of advancing age (Braver & Barch, 2002; Li et al., 2001; Salthouse, 1996; 

West, 1996). Particularly in an aging society (Pack et al., 2000), research on the nature 

of age differences in cognitive processes is important as components of cognitive 

control seem to be strongly related to intellectual functioning (Friedman et al., 2006) 

and essential to performing everyday life activities (Vaughan & Giovanello, 2010). 

Understanding the precise age-related changes therefore contributes to the early 

differentiation between normal and pathological aging (Braver et al., 2005), and paves 

the way for developing and implementing age-appropriate facilities and effective 

interventions to promote successful cognitive aging. Hence, the knowledge on the 

mechanisms of cognitive control is fundamental to support sustained autonomy in older 

adults (for a review on aging and intervention, see Daffner, 2010).  

Paper I and II
3
 

 
As a framework to reveal the core mechanisms of age differences in cognitive 

control, the DMC theory (Braver & Barch, 2002) claims that the well-known neuro-

biological decline in the PFC and the DA system with advancing age causes a temporal 

shift in the gating of context information required for controlled behavior. Although the 

expected age differences in pro- and reactive control have been established on the basis 

                                                 
3
Note that the data set in paper I and II was drawn from the same experiment and therefore constitutes 

results of one study.  



 

53 

 

of behavioral data, the precise neuronal mechanisms underlying the time course of 

context processing in younger and older adults remain largely unknown.  

Therefore, based on the theoretical assumptions of the DMC theory (Braver, 

2012) and on the experimental design by Lenartowicz and colleagues (2010), the first 

study of the thesis aims at investigating context updating in both younger and older 

adults in an ERP approach allowing the online measurement of control processes. 

Although Lenartowicz and colleagues (2010) found context updating, but not cue 

switching, to be announced by a frontal P2 component in younger adults, this finding 

strongly contrasts with results of cued task-switching studies. Herein, the parietal P3b 

has usually been linked to the updating of task-cue information (Kray & Ferdinand, 

2014; Kray et al., 2005; West, 2004). The frontal positivity has only rarely been 

reported or specifically associated with an upcoming switch signaled by transition cues 

(West et al., 2011). Thus, the first study (Paper I) offers an important insight into the 

questions of whether 1) age-related differences can already be found in early (i.e., the 

P2), or only in late (i.e., the P3b and CNV) cue-related potentials of context and task 

cue-related processing (Kray et al., 2005; Lenartowicz et al., 2010), and 2) whether the 

effects reflect context processing rather than cue priming (Lenartowicz et al., 2010).  

Understanding the age-related shift from pro- toward reactive control requires 

investigating cue- and probe-based mechanisms at one time tied to age differences in 

task performance (Steffener, Barulli, Habeck, & Stern, 2014). As only one study so far 

shed light on the neuronal mechanisms of pro- and reactive control in old age (Kopp et 

al., 2014), data of the first study are reanalyzed (Paper II) in order to examine whether 

the lack of proactive preparation in older aduls is accompanied by a relatively increase 

in reactive control indexed by ERP correlates of conflict processing (i.e., the N450).  
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Moreover, the first study contains a further crucial consideration (Paper II): 

Research on cognitive aging is challenged by accumulating evidence that between 

group differences in neuroscientific correlates of cognition can vanish after statistical 

controlling for age, suggesting that age differences on the neuronal level are modulated 

or confounded by individual differences, such as in actual performance (Riis et al., 

2008; Rugg & Morcom, 2005). Hence, a second aim was to approve whether the age-

related shift in the temporal dynamics of context updating in ERPs indeed lies at the 

core of cognitive aging (Braver & Barch, 2002). Although this aim has been largely 

neglected so far (for an exception, see Daffner et al., 2011; De Sanctis et al., 2009; 

Goffaux et al., 2008), it can be achieved by investigating ERP correlates of pro- and 

reactive control in performance-matched age groups and may yield several important 

conclusions: First, in case ERP correlates show a relatively predominance of pro- to 

reactive control in younger than older adults when performance is matched, this finding 

would reveal that reactive control in old age is beneficial or even compensatory to 

performance. Second, age differences in ERPs of pro- and reactive control would also 

suggest that the psychophysiological processes underlying overlapping performance in 

younger and older adults are not identical (De Sanctis et al., 2009; Oberauer, 2005). 

Finally, investigating ERP differences within the sample of older adults might also 

indicate neural recruitment of distinct processes contributing to behavior in well- and 

poor-performing subjects (Daffner et al., 2011), which is important for inventing 

strategies to promote successful cognitive aging (De Sanctis et al., 2009).  

Paper III 

Based on overlapping reliance on the midbrain DA system between cognitive and 

affective processes, the second ERP-study in younger and older adults investigated the 

claim by the DMC theory that motivational cues may impact the time course of context 
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processing (Braver & Barch, 2002). Specifically, as affective processing is relatively 

preserved in old age (Carstensen & Mikels, 2005), the crucial question was whether one 

can manipulate individual differences in context processing within subjects (e.g., by 

motivational cues) to influence temporal differences in context processing between 

subjects (i.e., age groups). Given that anticipated reward may enhance neuronal 

mechanisms for processing of subsequent information reflected in ERPs (Gruber & 

Otten, 2010), motivational cues indicating performance-contingent reward and penalty 

in the second study preceded presentation of context cue information in the AX-CPT. 

Although previous research has already examined the effect of reward, it remains 

unclear from the literature whether context updating may only be benefited by reward 

cues, or also by motivationally salient cues in general (being positive or negative) that 

have been associated with DA-release (Bromberg-Martin et al., 2010; Schultz, 2010). 

This question might be particularly important in older adults, as research on the 

positivity effect indicates a focus of positive relative to negative and neutral events in 

the elderly (Carstensen & Mikels, 2005). Moreover, there is also some first evidence 

that motivational salience and valence effects might be reflected in different ERP 

components (Ferdinand & Kray, 2013). Hence, the ERP approach on the influence of 

motivational cues on context processing in the second study allows determining 1) 

whether motivational cues impact context processing in younger and older adults as 

expected by the DMC theory and whether this impact is related to cue- or probe-related 

processes in the respective age group, 2) whether motivational value and salience 

effects differentially affect behavioral and ERP correlates of context processing, and 3) 

whether younger and older adults differ in the impact of positive information on context 

processing. In general, this study has the potential to illustrate certain means to promote 

context updating important to cognitive control in older adults. 
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3 Overview of Publications 

Paper I 

 

Schmitt, H., Ferdinand, N.K., & Kray, J. (2014). Age-differential effects on updating 

cue information: Evidence from event-related potentials. Cognitive, Affective, and 

Behavioral Neuroscience, 14, 1115-1131.  

 

This article reports age differences in behavioral and ERP data on context processing 

and cue switching in a modified AX-CPT in younger and older adults.  

 

 Theoretical background. Based on the claim that age differences in the 

temporal dynamics of updating and maintaining context information are fundamental to 

cognitive aging (Braver & Barch, 2002), this study investigated age differences in ERP 

correlates context processing. A modified AX-CPT was applied (cf. Lenartowicz et al., 

2010), consisting of trials in which context updating and maintenance were mandatory 

for correct responding on a subsequent probe (i.e., c-dep trials), and trials in which 

correct responses to probes were independent of the preceding context cue (i.e., c-indep 

trials). In a previous study in younger adults, context updating on c-dep trials has been 

associated with an early frontal P2 followed by a parietal P3b, and a central CNV linked 

to task-set reconfiguration and context maintenance, respectively (Lenartowicz et al., 

2010). Importantly, context updating in the P2 in the mentioned study was not by virtue 

of perceptual changes in context cue per se (Lenartowicz et al., 2010).  

Hypotheses. According to previous studies showing an age-related decline in the 

ability to update context information, prolonged latencies and higher error rates on c-

dep than c-indep trials for older than younger adults were expected (Braver & Barch, 

2002; Kray et al., 2005). In the ERP data of younger adults, larger frontal P2 and 
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parietal P3b amplitudes for c-dep than c-indep trials, associated with context updating 

and task reconfiguration, respectively, as well as a larger negative-going CNV on c-dep 

trials indicating context maintenance were predicted. The decline in context processing 

in older adults was assumed to result in reduced P2- and P3b-amplitudes on c-dep trials 

(Braver & Barch, 2002; Lenartowicz et al., 2010; Kray et al., 2005), and a more 

widespread P3b-scalp distribution (Fabiani et al., 1998). Age differences were also 

expected in context maintenance in the CNV (Kray et al., 2005; West, 2004). Finally, 

since perceptual changes in the context cue on c-dep, but not on c-indep trials were 

assumed to elicit context updating, an analysis of ERP-correlates was applied to 

separate changes in cue identity from changes in context (Lenartowicz et al., 2010). 

Main results and conclusion. In line with previous studies, an age-related 

decline in context updating was obtained in longer latencies and higher error rates on c-

dep than c-indep trials for older than younger adults (Braver & Barch, 2002, Kray et al., 

2005). In the ERP data, the P2 showed no effect of context conditions, neither in 

younger nor in older adults. Since the P2 amplitude in the previous study was reduced 

on no-go trials with 50% probability which were not included in the present study 

(Lenartowicz et al., 2010), the P2 seems to reflect stimulus repetition and task relevance 

rather than context updating (Falkenstein et al., 2003; Potts, 2004). 

Age differences in ERPs were clearly observed in the P3b. In accordance with 

oddball- and task-switching studies (Donchin & Coles, 1988; Kray et al., 2005), 

younger adults showed larger parietal P3b amplitudes on c-dep than c-indep trials, 

indicating that the parietal P3b reflects the updating of context information. Although 

P3b amplitudes in older adults were similar on c-dep and c-indep trials and evenly 

distributed across the scalp, older adults exhibited larger P3b amplitudes whenever the 

identity of the context cue changed relative to when it was repeated. Importantly, this 
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effect occurred irrespective of the actual context condition. Thus, older adults seem to 

encounter difficulties in representing higher-order context conditions and therefore 

update context information whenever there was a perceptual cue change. Interestingly, 

this finding is in line with previous studies showing a strong reliance on visual 

information in the elderly (Spieler, Mayr, & LaGrone, 2006). In line with a behavioral 

study showing context maintenance to be relatively spared in old age (Braver et al., 

2005), younger and older adults did not differ in the larger CNV on c-dep than c-indep 

trials, reflecting higher demands on context maintenance in the former (Kray et al., 

2005; Lenartowicz et al., 2010). Hence, age differences in context updating and 

maintenance seem to be dissociable on the basis of ERPs. Although the study did not 

reveal direct evidence for an age-related shift in the temporal dynamics of context 

updating, it formed the basis for a consecutive report on pro- and reactive control by 

analyzing context effects in probe-locked data (Schmitt, Wolff, Ferdinand, & Kray, 

2014). 

 

Paper II 

Schmitt, H., Wolff, M.C. Ferdinand, N.K., & Kray, J. (2014). Age differences in the 

processing of context information: Is it age or is it performance? Journal of 

Psychophysiology, 28, 202-214.  

 

This study investigates age differences in ERP correlates reflecting pro-and reactive 

control in the AX-CPT independent of performance differences between the age groups.  

 

Theoretical background. In the first study, age differences in ERP correlates of 

context processing were tightly linked to age differences in the cue-locked P3b 
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(Schmitt, Ferdinand, & Kray, 2014), but these might also reflect behavioral 

performance differences between the age groups. To rule out this issue, the second 

study analyzed age-related differences in ERP correlates of context conditions in 

performance-matched age groups. Moreover, dividing the sample in high- and low 

performing younger and older adults indicated further context effects in the N450 

component of the probe-locked ERP, which has previously been linked to conflict 

detection and conflict processing (Liotti et al., 2000; West et al., 2005) and might 

therefore indicate the need for reactive control (Braver & Barch, 2002; Kopp et al., 

2014). Thus, to examine whether age differences in pro- and reactive control are 

attributable to individual differences in age or in performance, context effects were 

analyzed in the cue-locked parietal P3b and the probe-locked central N450 in four 

groups of high and low performing younger and older adults. 

Hypotheses. Based on the first study (Schmitt, Ferdinand, & Kray, 2014), we 

expected high performing younger and older adults to show larger P3b amplitudes on c-

dep than c-indep trials than low performers (Adrover-Roig & Barceló, 2009; 

Lenartowicz et al., 2010; Schmitt, Ferdinand, & Kray, 2014). Context effects in the 

N450 indicating the need to resolve response conflict were expected in larger 

amplitudes on c-dep trials, containing reversed S-R mappings, than c-indep trials 

(Eppinger et al., 2007; Liotti et al., 2000; Mager et al., 2007). If older adults do not fully 

engage in proactive cue processing reflected in the P3b, but instead rely on reactive 

control, then conflict processing indicated by the N450 should larger in older than in 

younger adults (Braver & Barch, 2002; Kopp et al., 2014). However, in case high-

performing older and low-performing younger adults show comparable cue-locked P3b 

amplitudes, then the need for reactive control in high performing elderly should be 

reduced. Finally, if low-performing elderly fail to update context information and to 
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reconfigure S-R mappings in a proactive manner (reflected in the P3b), but instead rely 

on reactive control, then the N450 should be enhanced particularly on c-dep trials.  

Main results and conclusion. After dividing the age groups into four 

performance groups on the basis of a behavioral index, behavioral context effects were 

comparable between the groups of low-performing younger and high-performing older 

adults. However, the performance-matched groups continued to differ in their reliance 

on proactive control: Low-performing younger, but not high-performing older adults 

showed larger P3b amplitudes on c-dep than c-indep trials reflecting context updating. 

In contrast, high performing older adults showed larger amplitudes of the N450 on c-

dep than c-indep trials, indicating conflict detection and the need to reactivate context 

information before task execution. Thus, the study substantiates predictions by the 

DMC theory that temporal differences in context processing are a core component of 

cognitive aging (Braver & Barch, 2002) independent of individual performance. Since 

high-performing older adults performed equivalently to low-performing younger adults 

the study renders further support for the DMC theory assuming older adults to 

compensate the lack of proactive control by applying reactive control (Braver, 2012). 

 

Paper III 

Schmitt, H., Ferdinand, N.K., & Kray, J. (2015). The influence of monetary incentives 

on context processing in younger and older adults: An event-related potential study. 

Cognitive, Affective, and Behavioral Neuroscience.  

 

This study investigates the impact of performance-contingent reward on the time course 

of context processing in the AX-CPT in younger and older adults.  
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Theoretical background. Recent models on cognitive control (Gray, 2004) 

assume that subjects pursue behavioral goals carrying a high motivational value such as 

reward. Reward-predicting cues are able to modulate DA input into the PFC (Schultz, 

2002) and may hence benefit proactive context updating (Braver & Barch, 2002). 

Previous research revealed enhanced neuronal activity to reward cues promoting the 

processing of subsequent stimuli (Gruber, M. J. et al., 2013). Since (1) the impact of 

penalty on cognitive control has only been rarely investigated (Locke & Braver, 2008), 

but (2) the motivational valence of information seems to be reflected in distinct ERP 

components of cognitive control (Ferdinand & Kray, 2013), and (3) the valence of 

information is thought to influence emotion-regulation in old age (Mather & 

Carstensen, 2005), we compared motivationally salient gain and loss with neutral cues 

preceding context information in the AX-CPT on their impact on temporal dynamics of 

context updating (uncovered by ERPs) in younger and older adults.  

Hypotheses. Motivationally salient cues were expected to benefit behavioral 

performance especially on c-dep trials in which cognitive control demands are high 

(Bromberg-Martin et al., 2010; Chiew & Braver, 2013; Kleinsorge & Rinkenauer, 

2012). Based on the DMC theory (Braver & Barch, 2002) and recent findings on DA 

function (Bromberg-Martin et al., 2010), gain and loss cues in younger adults were 

expected to enhance proactive context updating, reflected in larger context effects in the 

P3b and CNV than neutral cues. Since older adults seem to focus on positive events 

(Mather & Carstensen, 2005), it was an open question whether older adults would 

display a valence effect, i.e., a greater performance benefit and a modulation of probe-

related context effects on gain relative to loss trials. Alternatively, as suggested by the 

DMC theory (Braver & Barch, 2002) reward trials could promote proactive control 

linked to increased cue-related context effects (i.e., the P3b and CNV).  
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Main results and conclusion. Motivationally cues revealed a strong impact on 

context processing in reaction times and ERPs. Younger adults showed shortened 

latencies whenever motivational cues indicated possible reward, indicating enhanced 

proactive context processing to benefit fast and accurate responses. In contrast, older 

adults exhibited larger context effects on both gain and loss cues, interpreted as cautious 

responding whenever motivational cues signaled potential gains or losses. Both age 

groups showed attention capture by and information updating of task-relevant gain and 

loss relative to neutral cues, indicated by larger a P2 and P3b to motivationally salient 

cues. In the ERPs on context processing, younger adults showed increased effort to 

maintain context information (reflected in the cue-locked CNV) and a reactivation of 

context information (reflected in the probe-locked N450 and SP) on loss trials. This 

finding corresponds to an earlier study showing a reactive shift in conditions of 

potential loss in younger adults (Locke & Braver, 2008). Older adults showed context 

effects on motivationally salient cues in cue-and probe-locked P3b amplitudes. 

Compared to our previous study, these context effects might indicate that motivationally 

salience sharpens context representations, although older adults continued to reactive 

context information during response execution on motivationally salient trials.  

In sum, the results indicate a flexible modulation in the predominant manner of 

context updating by motivational cues. They contribute to previous fMRI-results 

revealing changes in motivational state in the AX-CPT to shift context updating toward 

reactive respectively proactive control (Braver et al., 2009). Finally, the study did not 

render support for a positivity effect in old age, but strong evidence for age-differential 

motivational valence and salience effects; therefore it is of high importance to neuro-

cognitive models assuming functionally specialized cognitive and affective processes to 

interact with cognitive control. 
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4 Discussion 

 

The aim of the dissertation was to determine age differences in component 

processes of context processing and its modulation by motivational incentives. In the 

first study, in line with previous results and theoretical considerations, the age-related 

decline in context updating in the AX-CPT was expected in attenuated amplitude 

modulations of the parietal P3b and central CNV of context processing (Braver & 

Barch, 2002; Kray et al., 2005). It was of specific interest whether age differences 

would be detected in the frontal P2 of context updating revealed in a prior study 

(Lenartowicz et al., 2010). A posteriori, to consider core age effects, the first study also 

analyzed ERP correlates of context processing in performance-matched age groups. 

Since the shortfall of proactive control is assumed to evoke conflict during response 

preparation (Braver, 2012), increased need for reactive control in conflict-related 

potentials (i.e., the N450; West, 2004) was expected in older adults. In the second study, 

motivational cues were predicted to promote updating of subsequent context cues 

reflected in behavioral performance and aforementioned ERPs particularly in older 

adults. Largely unclear from the literature, it was an open question whether motivational 

cues modulate pro- and/or reactive control processes, and whether age-differential 

valence or salience effects would be detected (Mather & Carstensen, 2005).    

The general discussion is structured into five parts. The first part is dedicated to 

the contribution of individual differences in age and performance to behavioral and ERP 

markers of context processing (Paper I and II). The second part discusses the impact of 

motivational cues on age-related changes in pro- and reactive control (Paper III). 

Afterward, an overall synopsis, as well as limitations of the present studies and future 

research directions are provided. The thesis closes with a general conclusion.  
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4.1 Age and Individual Differences in Context Processing  

 

Behavioral age differences in context processing. As expected and in line with 

previous reports on age differences in context processing (Braver, 2012; Braver & 

Barch, 2002), the first study showed larger error rates and longer reaction times for 

older than younger adults primarily on trials requiring the updating and maintenance of 

context information. Importantly, the age differences in the context effect remained 

after statistically controlling for processing speed (Kray & Lindenberger, 2000; 

Salthouse, 1996), suggesting that context processing is a key issue to cognitive aging 

(Braver & Barch, 2002). Moreover, it should be noted that the first study applied a 

slight modification of the AX-CPT (Braver et al., 2005) in order to investigate a more 

pure form of context updating (Lenartowicz et al., 2010). Whereas the traditional AX-

CPT requires processing of context cues on each trial to choose between target and non-

target responses (see section 2.5), context updating in the modified AX-CPT in the 

present studies was only required on c-dep, but not on c-indep trials. Hence, c-indep 

trials seem to resemble single task blocks in cued switching tasks, in which the cue is 

irrelevant for the response assigned to the subsequent probe. In contrast, c-dep trials are 

akin to mixed blocks requiring the updating of cue information for responding to the 

upcoming probe. Since older adults exhibit increased costs (in terms of error rates and 

reaction times) on c-dep trials consisting of ambiguous probes and overlapping 

response-sets, the results of the present study are fully in line with age differences in 

task switching showing older adults to be particularly sensitive to task interference 

(Kray & Ferdinand, 2014; Mayr, 2001). 
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ERP correlates of context updating. The DMC framework (Braver, 2012; Braver 

et al., 2001, 2007) assumes that increasing age reveals a shift in the temporal dynamics 

of context updating, hence the ERP-study in Paper I can be seen as a first step to 

investigate this assumption. In contrast to the previous results by Lenartowicz and 

colleagues (2010), the current study could not reveal effects of the context manipulation 

in the frontal P2 of the ERP, and also no age differences therein. One post-hoc 

explanation for this discrepancy could be a slight modification of the paradigm in the 

present study. Specifically, to control for neuronal correlates of cue presentation without 

demands on context processing, the AX-CPT in Lenartowicz et al. (2010) included 50% 

control trials consisting of cue-only presentations, intermixed with 25 % c-dep and 25 

% c-indep trials. Since the amplitudes of the frontal P2 in this study had been shown to 

be larger for c-dep than c-indep trials and largely reduced on control trials, the latter 

were excluded from the present study. However, the P2 seems to be particularly 

sensitive to task requirements and stimulus characteristics, as larger P2 amplitudes can 

be found for infrequent targets and trials requiring effort mobilization (Falkenstein et 

al., 2003; Luck & Hillyard, 1994; Potts, 2004). Hence, whereas c-dep and c-indep target 

trials occurred with 50% frequency in the present study and were equally salient, the 

most difficult c-dep trials in the foregoing study were quite rare and required high 

occasional effort (Falkenstein et al., 2003). Accordingly, effects of stimulus frequency, 

salience, and processing effort on c-dep and c-indep trials might underlie amplitude 

differences in the P2 in the previous study, rather than context updating per se (Astle, 

Jackson, & Swainson, 2008; Potts, 2004). In this regard, it is also noteworthy that prior 

studies found larger frontal P2 amplitudes for both task cues, precisely indicating the 

upcoming task, as well as for transitions cues, signaling an unspecific switch of tasks, 

compared to cue repetitions (Rushworth, Passingham, & Nobre, 2002, 2005; West et al., 
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2011). It was concluded that the frontal P2 reflects a “change detector” by the ACC 

(West et al., 2011, p. 621), for instance to promote general switching demands 

(Adrover-Roig & Barceló, 2009). Although the study by Lenartowicz et al. (2010) 

involved a control analysis ruling out that the P2 is sensitive to cue switches, it seems 

that further work is needed to clarify the function of the frontal P2 in context updating. 

Compared to the frontal P2, context effects were clearly obtainable in the parietal 

P3b and the central CNV, with age differences restricted to the former. Since the larger 

P3b to c-dep than c-indep trails if fully in line with updating requirements in cued task 

switching and oddball studies (Donchin & Coles, 1988; Kray et al., 2005; West, 2004), 

it is reasonable to conclude that the amplitude of the parietal P3b reflects the updating 

of context information. At odds with the hypotheses, older adults showed comparable 

P3b amplitudes on c-dep and c-indep trials, which were evenly distributed across the 

scalp. The increased P3b amplitudes to c-indep trials which should not elicit context 

updating is in line with ERP results of task switching, showing a diminished or absent 

“switch cost positivity” in older adults (cf. Karayanidis et al., 2011) due to increased 

P3b amplitudes on repeat trials (Friedman et al., 2008). At first sight, this finding 

suggests that older adults invest the same amount of processing resources on the 

updating of context information on both c-dep and c-indep trials and additionally recruit 

frontal areas to do so, for instance, as a compensational or non-selective strategy to 

update context information on any trial (e.g., Cabeza et al., 2005; Czernochowski, 2011; 

Daffner et al., 2011; Karayanidis et al., 2011; Kray & Ferdinand, 2014; Mayr, 2001; 

Whitson, Karayanidis, & Michie, 2012). This suggestion is corroborated by results of a 

fMRI study (DiGirolamo et al., 2001) showing that during task switching, older adults 

activate DL-PFC and medial frontal cortex not only on mixed, but also on single blocks. 

Although the topography of ERPs does not allow drawing conclusions concerning the 
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underlying neuronal generator(s), the frontal shift in older adults’ P3b scalp distribution 

might indicate an additional recruitment of frontal areas for performance on the task 

(Daffner et al., 2011). This assumption is substantiated by a recent study showing 

widespread activation of prefrontal brain regions to benefit performance in older adults 

(De Sanctis et al., 2009). Nevertheless, and as pointed out in section 2.6.2, the 

interpretation of the additional recruitment of frontal areas in older adults is still subject 

to debate (Cabeza et al., 2005; De Sanctis et al., 2009; Fabiani et al., 1998; Reuter-

Lorentz & Sylvester, 2005) and may vary with task demands (see Daffner et al., 2011).  

Interestingly however, the control analysis in the present thesis provided 

important new insights in the mechanisms underlying context processing in older adults. 

By comparing ERP correlates of switches in context conditions to switches in cue 

identity, it turned out that younger adults’ internal representation of the task only 

differentiated between context conditions (i.e., larger P3b amplitudes on c-dep than c-

indep trials; see Appendix, Figure 5), whereas older adults were sensitive to cue 

switches in general, irrespective of changes in context (i.e., larger P3b amplitudes for 

cue switches than cue repetitions on both c-dep and c-indep trials). In other words, older 

adults seemed not to represent the two context conditions according to c-dep and c-

indep trials (see Figure 5) as suggested by ERP data in younger adults, but each cue-

probe combination was internally represented by an own S-R mapping, leading to four 

different task conditions (see Appendix, Figure 6 for a schematic illustration). In line 

with this differential representation, the P3b-data suggest that older adults updated 

context information whenever perceptual changes in the environment (here: the context 

cue) suggested a change in task rules, and not due to changes in context representations. 

However, given the task structure (see Figure 3), a change in the context cue from one 

trial to the other should only require context updating on c-dep trials, but not on c-indep 
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trials. Thus, depending on the internal representation of the task, the term “context 

information” has a differential meaning in younger and older adults, with older adults 

updating context information whenever there was a change in any task cue as suggested 

by ERP data. 

The strong reliance on perceptual information in the elderly has already been 

reported in an elegant study design including eye tracking by Spieler and colleagues 

(2006). In this study, older adults continued to rely on the inspection of redundant task 

cues on single-task trials directly following an initial cued task-switching phase 

prompted, suggesting that older adults struggle to shift into a more efficient, low-control 

mode (Spieler et al., 2006). Although age differences in the flexible selection of control 

modes are unlikely to explain the results of the present study as the task remained 

identical through the experiment, the two studies have in common that older adults 

seem to outsource task requirements to external cue information (here: perceptual 

switches) when available instead of relying on internal representations (here: context 

conditions). Put another way, rather than updating context information following 

internal representations of context conditions and task requirements as in younger 

adults, context updating in older adults seems to be guided by salient, external cue 

switches. This finding may have been caused by inhibited access to (Zelazo et al., 2004) 

or a degradation of context representations in older adults (Braver et al., 2001) 

Moreover, it could also reflect task instructions, as the present study refrained from 

explicitly pointing out the two context conditions but instructed subjects on four 

different task rules. Hence, to fully understand the mechanisms underlying context 

processing and context representations in the AX-CPT, it would be interesting to 

examine whether age differences in the P3b disappear in case task instructions highlight 

the dependency on cue information and thus different context conditions. 
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Comparable to the P3b, CNV amplitudes were larger for c-dep than c-indep trials. 

The amplitude of the CNV has been interpreted as reflecting the extent of maintaining 

of goal-relevant information and of task preparation (Karayanidis et al., 2011; 

Lenartowicz et al., 2010; Wild-Wall et al., 2007). Thus, larger CNV amplitudes on c-

dep, requiring maintenance of context information for responding to the probe, than on 

c-indep trials, not requiring context maintenance, accord with the expectations and 

earlier results on the AX-CPT (Lenartowicz et al., 2010). Recent studies on the effects 

of aging on the amplitude of the CNV have revealed mixed results (for a summary, see 

Wild-Wall et al., 2007). In this regard, the lack of age differences in the present study 

contrasts with age effects in the CNV in the studies by West (West, 2004; West & 

Moore, 2005) and Kray and colleagues (2005), who found increasing age to go along 

with deficits in goal-maintenance and a larger effort in maintaining cue information as 

reflected in the CNV. The absence of age effects in the CNV is also in contrast to a 

previous fMRI study on the AX-CPT, showing reduced activation of the lPFC for 

maintaining goal-relevant information during the CTI in older adults (Paxton et al., 

2008). 

However, in line with the current results, there is evidence from fMRI that the 

neuronal mechanisms supporting simple storage of information in WM tasks are less 

affected by aging (Reuter-Lorenz & Sylvester, 2005; Rypma & D'Esposito, 2000). 

Moreover, the lack of age differences in the CNV in the present study is in accordance 

with behavioral data on the AX-CPT (Braver et al., 2005, see section 2.5.1), indicating 

that context updating, but not maintenance is affected by aging. Hence, ERP correlates 

are able to confirm the behavioral results and precisely reveal dissociable age 

differences in updating, but not maintenance abilities, which may not be afforded by an 

fMRI design (Paxton et al., 2008).  
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Nevertheless, it can also be hypothesized that the seeming discrepancy in age 

effects on maintenance capabilities in the CNV across studies traces back to the use of 

different CTIs. For instance, Braver and colleagues (2005) demonstrated that only 

increased duration of the CTI (i.e., 5000 ms) and hence larger maintenance demands 

produced behavioral deficits in old-old (>75 years of age) adults relative to young-old 

(<75 years of age) adults and a short (i.e., 1000 ms) CTI. However, Redick and Engle 

(2011) found no maintenance deficits in younger adults with low WM capacity in a long 

CTI in the AX-CPT, but did not investigate ERPs. Therefore, to support the notion of 

the DMC theory that the mechanisms underlying context updating and maintenance are 

separable and differentially affected by increasing age, further studies should 

systematically vary the CTI in the AX-CPT and measure age differences in the CNV. 

 

Age and individual performance differences in pro- and reactive control. In line 

with a large literature on performance differences among older adults (Braver et al., 

2005, Daffner et al., 2011, De Sanctis et al., 2009; Fabiani et al., 1998; Nyberg, Lövdén, 

Riklund, Lindenberger, & Bäckman, 2012; Riis et al., 2008), the analysis on the 

composite index of context processing revealed a large performance variability within 

older adults. Separating the age groups based on a common index of context processing 

disclosed no performance differences between high performing older and low 

performing younger adults. This result is comparable to the studies by Daffner and 

colleagues (2011) and Goffaux and colleagues (2008) showing that older adults with 

high WM ability to exhibit equivalent performance to a group of (low performing) 

younger adults in either reaction times or error rates. In extension to these reports, a 

subgroup of older adults in the present study seems to be able to exhibit similar 
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performance to younger adults when examining performance differences in a joint 

measurement of both reaction times and error rates as in the current study. 

Rerunning the analysis on context effects in the cue-locked P3b - the only 

component for which age differences had been observed - in the four subgroups 

revealed that both, high and low performing younger adults showed the aforementioned 

context effect in the parietal P3b, reflecting context updating. This effect was absent in 

both performance groups of older adults. The results are important as the DMC theory 

makes the strong claim that age differences in the neuronal mechanisms supporting 

context updating underlie the age-related decline in a wide variety of cognitive tasks 

(Braver et al., 2001). Hence, the thorough analysis in the performance-matched groups 

ensures that the alterations in the P3b of context updating revealed in the first article are 

indeed due to mechanisms of increasing age, and not due to performance differences per 

se (Rugg & Morcom, 2005), suggesting a key determinant of cognitive aging (Braver & 

Barch, 2002).  

Interestingly, the analysis of probe-locked data indicated a context effect in the 

N450 component in high performing older adults. In general, the amplitude of the N450 

is interpreted as reflecting conflict detection supported by the ACC (Liotti et al., 2000; 

West, 2004). Therefore, it seems as if the lack of proactive engagement (i.e., in the cue-

locked P3b) in high performing older adults is followed by increased conflict 

concerning the correct response particularly for reversed S-R mappings on c-dep trials, 

for which the N450 was largest. This interpretation is consistent with the results of a 

fMRI study on the AX-CPT revealing larger probe- than cue-related activation in lPFC 

in older than younger adults (Paxton et al., 2008). Moreover, the ERP results 

corroborate the assumption by Braver et al. (2007), who speculated that the lack of 
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proactive control supported by the PFC leads to a strong involvement of further brain 

regions in reactive control, particularly the ACC.  

The ERP results of the analysis in Paper II can only be discussed in light of a 

limited number of studies to date investigating the relative contribution of individual 

differences in age and performance to cognitive control (see Adrover-Roig & Barceló, 

2009; Goffaux et al., 2008 for approaches). Though, the results indicate that the 

mechanisms underlying equivalent behavioral performance in younger and older adults 

not necessarily need to be the same (Oberauer, 2005). In line with the study by Kopp et 

al. (2014), the shift toward reactive control in old age as indicated by ERPs seems to be 

compensational as high performing older adults did not differ in the behavioral data 

from low performing younger adults. In the present study, reactive control reflected in 

the N450 was particularly increased for c-dep trials, while the allocation of reactive 

control in Kopp et al. (2014) was independent of the experimental condition and hence 

rather unspecific. Besides, in extension to the study by Kopp et al. (2014), the current 

study uncovers that the mechanisms of reactive control were only present in high, but 

not in low performing elderly.  

The latter point warrants further discussion. In the cue-related ERPs, low 

performing older adults showed a more widespread distribution of the P3b than high 

performing older adults, reflecting the frontal shift in poor performers in a previous 

report (Fabiani et al., 1998). However, the difference in the P3b distribution did not 

interact with the experimental context manipulation. Hence, to gain insight not only into 

sources of differences between younger and older adults (Daffner et al., 2011), but also 

into the critical mechanisms distinguishing high from low performing elderly, the cue-

related analysis allows no clear conclusion. In contrast, the probe-related N450 

undoubtedly differentiated older subjects on different performance-levels: While the 
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high performers showed a context effect in the N450, no such effect was observed in the 

low performers. Thus, the analysis on ERP differences within the group of older adults 

reveals that successful performance in older adults might especially take place during 

processing stages of reactive control.  

At this point, however, it remains unclear how increased and even comparable 

performance to younger adults can be achieved through mechanisms of reactive control. 

Although the N450 is associated with conflict detection generated in the ACC (Liotti et 

al., 2000), it remains open whether and how detected conflict can be resolved. Within 

the conflict theory on the ACC (Botvinick et al., 2004), it is suggested that ACC-

activations serve as a “control signal” (West & Moore, 2005) to the (DL-) PFC. This 

signal modulates activity within the (DL-) PFC necessary to implement and regulate 

attentional top-down control in posterior brain regions for conflict resolution (Botvinick 

et al., 2004; Braver et al., 2007; Miller & Cohen, 2001; West & Moore, 2005). 

Nevertheless, as Botvinick et al. (2004) point out, the precise mechanisms allowing the 

translation of detected conflict into compensatory changes remain unclear. From the 

ERP-literature, a possible candidate related to mechanisms of conflict resolution is the 

probe-related SP (see section 2.6.2; West et al., 2005); however, no such potential could 

been detected in high performing older adults. Hence, future research on reactive 

control needs to precisely investigate mechanisms providing the transfer from conflict 

detection into adjustments of cognitive control, for instance by means of ERPs.  

Finally, it should be noted that not only high performing older, but also low 

performing younger adults showed a context effect in the probe-locked N450. It remains 

unclear, why low performing younger adults exhibited reactive control given the 

proactive preparation reflected in the cue-locked P3b. One post-hoc explanation is that 

low performing younger adults also had to process residual conflict during probe 
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presentation, which may account for their worse performance relative to high 

performing younger adults in the composite index. This finding is supported by results 

of the study by Redick (2014), showing mechanisms of reactive control in younger 

adults with low WM capacity. In sum, the results suggest that more work is needed to 

disentangle the contribution of age and behavioral performance on the temporal 

dynamics of processing context information. 

 

4.2 Motivational Influences on Context Processing 

 

Behavioral age differences in motivational influences on context processing. 

The behavioral data of the second study lend support to the prediction of motivational 

influences on cognitive control, which turned out to be different for younger and older 

adults. Although both age groups showed an effect of motivational salience on context 

effects in reaction time data, the effect in younger adults draws back to a benefit, i.e., 

fastened responding when motivational cues signaled potential gains, whereas older 

adults exhibited larger context effects on both, gain and loss trials.  

The younger adults’ reduced context effect on gain trials was caused by faster 

responding on c-dep trials, which replicates results of previous studies showing fastened 

reaction times under reward conditions even when performance at baseline (i.e., no 

reward condition) was already good (Chiew & Braver, 2013; Falkenstein et al., 2003). 

Moreover, similar to a previous report, the speed-up in the present study was not at the 

cost of errors, as no influence of motivational cues on error rates was detectable (Chiew 

& Braver, 2013; Kleinsorge & Rinkenauer, 2012), suggesting a true enhancement of 

cognitive control by motivational cues (Pessoa & Engelmann, 2010). This finding 

corresponds to predictions of the DMC theory (Braver & Barch, 2002), as gain cues 
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might have triggered proactive context updating specific for c-dep trials and hence 

supported fast and correct responding to the probe (Chiew & Braver, 2013). The results 

also address recent models on cognitive-affective integration (Gray, 2004; Pessoa, 

2009). Therein, it is assumed that motivational influences regulate behavior to be 

adaptive in a specific situation (Gray, 2004). In the present study, gaining money was 

particular important for younger adults, and hence gain cues increased cognitive control 

to determine behavioral outcomes (Pessoa, 2009).   

A further aim was to compare the impact of reward and penalty manipulations on 

cognitive control within the same task (Locke & Braver, 2008). Younger adults showed 

a larger improvement in context processing under gain than loss conditions. Again, this 

finding could be interpreted in terms of theories on affective-cognitive interactions 

(Gray, 2004; Gray et al., 2002; Pessoa, 2008, 2009). As younger adults performed 

relatively well in the task and committed few errors, gaining money by fast responding 

might have been more relevant respectively adaptive than losing money by incorrect 

responding. However, in the “dual competition framework” (Pessoa, 2009, p.160), 

motivational influences on cognitive control are considered to occur by means of altered 

perceptual processing. Hence, the analysis on ERP correlates of the valence effect in the 

subsequent section is particularly helpful to investigate the neuronal mechanisms 

underlying the processing of motivational cues in younger adults more thoroughly.  

In contrast to the valence effect in younger adults, cognitive control in the elderly 

was affected by motivational cue salience. Slowed performance on c-dep gain and loss 

trials caused a larger context effect relative to neutral trials, but motivational cues did 

not affect error rates. Hence, older adults’ performance may be best described in a more 

“cautious” responding whenever motivational cues indicated the possibility to win or 

lose money. The dual competition model (Pessoa, 2009) assumes that enhanced sensory 
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processing of motivational stimuli might negatively affect control performance, because 

increased resources devoted to sensory processing limits “common-pool resources“ 

(Pessoa, 2009, p.162) available for cognitive control. Hence, drawing attention to 

motivationally salient stimuli might have taken away limited processing resources in old 

age. In turn, as processing ressources were particularly required for performance on the 

cognitively demanding c-dep trials, this may have caused the slowed responding on 

motivational trials. Nevertheless, current research demonstrating that the negative 

impact of motivational and emotional stimuli on cognitive control to depend on the 

level of affective significance speaks against this assumption (Pessoa, 2009). Here, it 

has been shown that particularly highly arousing stimuli (Verbruggen & De Houwer, 

2007; Vogt, De Houwer, Koster, Van Damme, & Crombez, 2008) impair cognitive 

control performance. As the present study used stimuli low in affective significance 

(i.e., pictures of money bags), it is unlikely that the processing of motivational stimuli 

compromised cognitive control performance.  

Instead, the salience effect in older adults might reflect explicit task instructions 

that both gain and loss cues are equally important for the monetary bonus given when 

starting the experiment. This suggestion may also account for the absence of a positivity 

effect, as the positivity effect seems to be most reliable whenever experimental 

situations do not explicitly place situation-specific constraints on affective processing 

(Reed & Carstensen, 2012), such as favoring explicit aspects of information. Thus, as 

the present study emphasized that gain and loss cues were equally relevant, older adults 

may have equally focused on their processing (Mather & Carstensen, 2005). 

Alternatively, the age-related positivity effect has been shown to be strongly linked to 

cognitive resources, as it is most evident in older adults with high levels of cognitive 

control ability but diminished in pathological aging (i.e., Alzheimer’s disease) or 
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whenever cognitive resources are diverted to task demands (i.e., dual-task procedures; 

Reed & Carstensen, 2012). Since the AX-CPT was fairly challenging for older adults as 

inferred from behavioral data in the first study, cognitive resources might have been 

occupied in the primary tasks, and not available for processing motivational information 

and particularly positive information. As the first study already revealed large 

performance variability among older adults, one possibility to rule out this concern 

would be to examine the impact of motivational cues on context processing in high- and 

low performing elderly. Another is to look at ERPs reflecting the cognitive processing 

of motivational cues, which are presented in the following. 

 

ERP correlates reflecting processing of motivational cues. So far, only a limited 

number of studies investigated age differences in ERP correlates of basic affective 

processing (Olofsson, Nordin, Sequeira, & Polich, 2008; Samanez-Larkin et al., 2007; 

Wood & Kisley, 2006). The current study provides evidence that both age groups were 

strongly affected by the salience of motivational cues reflected in larger P2 and P3b 

amplitudes relative to neutral cues. In line with previous work on processing affective-

laden items, larger central P2 amplitudes to gain and loss cues may reflect automatic 

attention capture by salient stimuli (Carretié, Hinojosa, Martín-Loeches, Mercado, & 

Tapia, 2004; for a review, Olofsson et al., 2008), whereas larger parietal P3b amplitudes 

to salient cues have been linked to the controlled updating of task-relevant stimulus 

information and the amount of attentional resources for stimulus processing (Briggs & 

Martin, 2009; Donchin & Coles, 1988; Krebs et al., 2013; Polich, 2007; Olofsson et al., 

2008).  

Whereas the P2 amplitudes did not differ between the age groups, the effect of 

motivational salience on the P3b amplitude was more pronounced in younger than older 
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adults, probably due to an increase in the frontal proportion of the P3b in older adults. 

Age differences in the anticipation of motivational events have only rarely been 

investigated and are not well understood (Olofsson et al., 2008; Samanez-Larkin et al., 

2007; Wood & Kisley, 2006). Hence, the results of the study suggest that older adults 

exhibit slightly reduced attentional allocation to gain and loss cues, while the automatic 

processing of salient information is utterly preserved. Again, in contrast to previous 

studies (Mather & Carstensen, 2005; Samanez-Larkin et al., 2007), but in accord with 

the behavioral data, older adults showed comparable P2 and P3b amplitudes to gain and 

loss cues and hence no positivity effect. However, as discussed, gain and loss cues were 

equally salient and instructed to be important for the monetary outcome, which may 

have diminished valence effects in the elderly.  

The finding of larger P2 and P3b amplitudes to salient cues in both younger and 

older adults is relevant for the rational of the second study, as it aimed to promote 

context updating by motivational cues. First, the ERP results suggest that both younger 

and older adults indeed processed the meaning of the motivational stimuli as they were 

behaviorally relevant. This assumption is supported by results of an so far unpublished 

follow-up study in our lab, illustrating that the effect of motivational salience in ERP 

correlates dissapears by presenting the motivational cues blockwise instead of randomly 

within blocks. Second, the processing of motivational relevance is highly important as 

Gruber and Otten (2010) found enlarged P2 and P3b amplitudes to reward cues 

preceding to be-remembered items to benefit later recollection. As the effect was 

specific for high compared to low monetary reward in Gruber and Otten (2010), 

younger adults seemed to voluntarily exercise control over anticipatory and preparatory 

processes to benefit updating and encoding of a subsequent event (Gruber, M. J. et al., 

2013; Gruber & Otten, 2010). In the present study, evidence is provided that increased 
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voluntary preparation may not only occur after reward, but also after salient cues in 

general (i.e., reward and penalty) as well as in older adults. Third, transferred to the aim 

of the present study and the assumptions of the DMC theory (Braver & Barch, 2002), 

the long-lasting preparation for task-relevant information may have been useful for the 

gating of subsequent context information. In extension to the DMC theory, the results 

suggest that also penalty-predicting cues enhance prestimulus activity and hence might 

be able to trigger context updating. However, whether neuronal acitivty to reward and 

penarly observed in both age groups actually translates into context processing will be 

discussed hereafter.  

 

ERP correlates reveal age-differential salience and valence effects on context 

processing. The analysis of ERPs on context processing in cue- and probe-locked data 

reveals differential modulations by motivational cues in the two age groups. Whereas 

younger adults seem to focus on the impact of negative events (i.e., losses), context 

processing in older adults was generally affected by salient cues (i.e., gains and losses). 

Of most importance for the research question, the age-differential modulations took 

place at different stages in the time course of context processing.  

In the cue epoch, younger adults showed context effects in the parietal P3b and 

the central CNV replicating the results of the first study. Additionally, cue valence 

modulated CNV amplitudes, which were largest for loss trials. This finding might 

reflect that younger adults strongly engage in maintaining context information in the 

CTI whenever incorrect and slowed responses would be penalized. This interpretation 

fits with the description of a prior result that the amplitude of the CNV mirrors the 

short-term mobilization of effort (Falkenstein et al., 2003). However, in the study by 

Falkenstein and colleagues (2003), CNV amplitudes were increased during reward as 
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compared to neutral trials. One reason for the discrepancy to the present results could be 

that Falkenstein et al. (2003) applied a simple choice reaction time task and the impact 

of penalties (i.e., for incorrect responding) was not assessed at all. Moreover, as 

outlined in the discussion of the previous results, the functional significance of the CNV 

seem to depend on multiple factors, such as the delay manipulation and the demands on 

maintenance capability. Therefore, more work is needed to understand how effects of 

cue valence, task demands, effort mobilization, and context maintenance interact. At the 

moment, the behavioral results provide some first evidence that gain cues led to 

fastened responding, while the CNV data suggests that younger adults more likely 

invest effort in the avoidance of losses. 

In the probe epoch, negatively valenced cues continued to influence context 

processing in younger adults. In the early time-window, context effects were found only 

in a fronto-centrally distributed negative deflection on loss trials, bearing resemblance 

to the N450 of conflict processing in the first study and earlier reports (Liotti et al., 

2000; West et al., 2005). In the later time-window, context effects in a parietally 

distributed slow positive component were reduced on loss trials only. This component 

might reflect the sustained positive potential (Krebs et al., 2013; West & Alain, 2000a), 

indicating conflict resolution and response selection (West et al., 2005). Taken together, 

the results of the entire probe epoch suggest that anticipated losses in younger adults 

give rise to more response conflict on trials with reversed S-R assignments (i.e., c-dep 

trials) and subsequently enhanced processing demands for its resolution. This idea is 

fully in line with the reaction time data, indicating a larger context effect for loss than 

for gain trials. Moreover, the ERP results correspond to a recent fMRI study 

investigating neuronal activations indicating the tradeoff between pro- and reactive 

control under blockwise neutral, reward, and penalty conditions in the AX-CPT (Braver 
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et al., 2009). On reward blocks, younger adults exhibited increased sustained activity in 

a prefrontal network, reflecting increased proactive control. On penalty blocks, the 

time-course of activity shifted within these brain regions to the presentation of the 

probe, i.e., reflecting increased reactive control. Thus, the current ERP-results together 

with the previous fMRI-findings raises the interesting possibility that the avoidance of 

monetary losses moves context processing in younger adults toward a reactivation of 

context information before task execution (Braver et al., 2009). This view is 

strengthened by the study by Unger, Kray, and Mecklinger (2010) showing that (self-

relevant) failure inductions may cause a shift toward mechanisms of reactive control in 

younger adults, which can be reflected in ERPs of cognitive control. Critically, in the 

present study, context information might have been updated in the cue-probe epoch as 

well, as suggested by the context effect in cue-locked P3b and CNV amplitudes. 

Nevertheless, to avoid self-relevant monetary penalty on loss trials, experienced 

response conflict and interference lead to an additional reactivation of context 

information in younger adults (Braver et al., 2009).  

In the aforementioned fMRI-study, potential gains increased cue-related activity in 

prefrontal brain areas (Braver et al., 2009). In contrast, gain cues in the present study 

affected behavioral data but not ERPs. A closer look at the results of the mentioned 

fMRI study indicates that the increase in cue-related activity seems to depend on 

personality factors, as it was largest in highly-reward sensitive subjects (Braver, 2012; 

Locke & Braver, 2008). This assumption is corroborated by research on cognitive-

affective interactions, suggesting that affective influences on cognitive control, in 

particular for low-arousing stimuli as applied, might also vary with state-dependent 

effects such as mood and anxiety (Pessoa, 2009). In self-report data, it has been 

revealed that the stronger subjects are affected by affective manipulations, the larger the 
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impact on performance and underlying mechanisms (Gray, 2001, 2004; Locke & 

Braver, 2008; Pessoa, 2009). As state-dependent effects and individual differences in 

personality factors have not been assessed in the current design, future studies should 

therefore disentangle the effects individual differences in approach (and avoidance) 

motivations (Elliot, 2008), temporal differences in context processing, and the 

underlying neuronal mechanisms. 

An important new insight of the present study is that the analysis of cue- and probe-

related ERPs indicates a differential modulation of context processing by motivational 

cues for younger than older adults. In the cue-locked epoch, context effects in P3b 

amplitudes were found only on motivationally salient trials in older adults, repeating the 

salience effect in older adults’ behavioral data. In adherence to the hypothesis, the 

absence of context effects in the P3b during neutral trials suggests deficits in proactive 

context processing (Braver & Barch, 2002). Hence, it replicates the interpretation of the 

first study, namely that impaired context representations cause the updating of context 

information on any trial. However, the salience effect in the cue-locked data in the 

second study raises the interesting possibility that motivationally salient cues seem to 

modify context processing in older adults by sharpening representations about context 

conditions (Pessoa, 2009). 

In order to fully understand temporal mechanisms of context processing and the 

impact of motivational cues in older adults, the results of the cue-locked epoch have to 

be discussed in light of the probe-locked data. In the probe-locked ERPs, older adults 

showed larger frontally and parietally distributed context effects only for motivationally 

salient cues in the early phase, and this effect became more posterior in the late epoch. 

The waveform might reflect a prolonged P3b-like component across the two time 

windows. Thus, unlike the N450 and SP of conflict detection and resolution in younger 
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adults, the probe-locked P3b in older adults suggests increased WM recruitment 

required for context updating and task reconfiguration before response execution 

(Daffner et al., 2011; Goffaux et al., 2006; West & Travers, 2008). This finding 

suggests that the temporal shift of context processing toward reactive control reported in 

old age (Braver & Barch, 2002; Braver et al., 2005; Paxton et al., 2008) is particularly 

engaged whenever the correctness of the response is important for the behavioral 

outcome, i.e., during gain and loss trials. Again, as for the behavioral and ERP data of 

the motivational cue, the ERPs of the cue- and probe-locked epoch lend no support for a 

positivity effect in old age. 

Taken together, the ERP and behavioral data in older adults displayed a consistent 

pattern, as context processing in all temporal stages was modulated by motivational cue 

salience. First, behavioral context effects were larger during gain and loss trials. 

Second, older adults similarly processed the salient information provided by gain and 

loss cues in the motivational cue interval, and third, differential cue- and probe-locked 

P3b amplitudes for context conditions were found only on motivationally salient trials. 

Compared to the first study in which (1) the amount of (proactive) context updating was 

similar for c-dep and c-indep trials, and (2) context effects were only apparent in probe-

locked ERPs, the present results suggest that under conditions of high motivational 

salience, older adults show a temporal shift toward a sharpened representation of 

context conditions when context cues were inititally presented in the cue epoch. This 

finding fits nicely with a previous fMRI-study revealing a flexible change from a probe- 

toward a cue-based PFC-activations in the AX-CPT after strategy training in older 

adults (Braver et al., 2009). Moreover, as anticipated motivational cues have been 

shown to benefit encoding of subsequent information (Gruber, M. J. et al., 2013; Gruber 

& Otten, 2010), and older adults showed salience effects in ERPs of the motivational 
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cues, this shift might have been triggered by increased prestimulus activity before the 

presentation of contextual information. One possibility could be that increased 

prestimulus activity reflects increased attention to goal-relevant information (Krebs et 

al., 2013), but the precise mechanisms underlying this benefit clearly warrant future 

investigation. 

Finally, regarding the assumptions of the DMC theory (Braver & Barch, 2002; 

Braver et al., 2005) and the aforementioned shift from reactive to proactive control after 

strategy training (Braver et al., 2009), the cue-locked context effects on motivationally 

salient trials in older adults are not assumed to reflect a normalization of age-related 

differences underlying context updating. Rather, the results suppose that motivational 

cues led to an early representation of context conditions occuring in addition to the 

probe-locked context effects. As the probe-locked context effects were particularly 

pronounced during gain and loss trials, older adults might have still experienced 

response conflict and the need to reactivate context conditions during probe 

presentation. Eventually, this interpretation might also explain the larger behavioral 

context effects during gain and loss cues in older adults.  

 

4.3 Synopsis 

 

The present thesis investigated fundamental mechanisms of age differences in 

context processing which are of high importance to recent theories on cognitive aging. 

Moreover, the susceptibility of context processing by incentives will not only be of 

interest for the DMC framework and neuroscientific models on cognitive-affective 

interactions, but might also have practical implications. 
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 In line with the DMC theory (Braver & Barch, 2002), the two studies revealed 

reliable age differences in context processing that cannot be explained by age-related 

slowing as the single underlying mechanism (Salthouse, 1996). Considering older adults 

as a whole group, differences in the internal representation of context information and 

the task may have caused a strong reliance on perceptual information, resulting in 

context updating on both context conditions. This unexpected finding contrasts with the 

assumptions by the DMC theory, but might explain why some studies fail to detect a 

decline of proactive control in older adults (Kray, Schmitt, Heintz, & Blaye, in press).  

Alternatively, the assumed age-related trade-off between proactive and reactive 

context updating (Braver et al., 2005) might only be detected when investigating a 

subgroup of older adults. Hence, contributing to the DMC theory, the dissertation 

project unveils that only high-performing older adults indeed relied on a late correction 

mechanisms suggesting reactive control. In addition, this finding provides important 

new insights into the mechanisms of cognitive aging. First, within different performance 

groups of older adults, the study emphasizes the importance of intact reactive control 

for successful cognitive aging. Second, as high performing older adults showed 

equivalent performance to a subgroup of younger adults, but relied on a different 

control strategy, high performing older adults cannot simply be described as low 

performing younger adults. Instead, it suggests fundamental differences in context 

processing between age groups (cf. Oberauer, 2005). The latter will be of considerable 

interest for theoretical models on cognitive aging, and challenges the view that 

cognitive age differences only reflect individual performance differences. To the best of 

our knowledge, the present thesis is the first to disentangle the contribution of 

variability in age and performance on the mechanisms of context processing. 
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It is also worth considering that the present study confirms the hypothesis that 

context updating and maintenance are separable constructs differentially affected by 

increasing age. Hence, the fine-grained ERP approach applied in the dissertation project 

helps to substantiate the dissociation between the age-related decline in context 

updating and maintenance, which could not be afforded by functional brain imaging 

measures (Paxton et al., 2008). Therefore, in order to modify context processing in older 

adults, cognitive interventions (Daffner, 2010) should start with promoting particularly 

the aspects of context updating and the reliance on contextual representations, rather 

than context maintenance. In this regard, the results of the second study can be viewed 

as a first approach. 

Contributing to the idea and previous results of reward-related gating (Braver & 

Barch, 2002; Chiew & Braver, 2011b; Watanabe, 2007), proactive control in the second 

study was fostered under conditions of anticipated gains. However, unlike expected 

from the DMC theory, this interpretation only holds for younger adults. In all temporal 

stages of context processing, older adults were strongly affected by the salience of 

motivational information. Although this finding is surprising in light of the age-related 

positivity effect (Mather & Carstensen, 2005), it substantiates recent findings of a 

reduced positivity effect under explicit task instructions and cognitively demanding 

conditions. Again, the ERP approach was able to precisely unveil the temporal stages of 

cognitive control and the mechanisms underlying the age-differential valence and 

salience effects. In extension to basic affective research (Oloffson et al., 2008), salient 

cues were followed by enhanced attention and task-relevant processing, and this pattern 

was relatively preserved in old age. First and foremost, this finding suggests that the 

experimental manipulation worked out. Beyond that, it will be of considerable 

importance to theoretical considerations on affective influences on goal-relevant 
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behavior. As prior research showed that attention to and processing of reward-related 

information can be voluntarily used in the service of subsequent stimulus processing 

(Gruber & Otten, 2010), the results indicate that pre-stimulus activity not only benefits 

memory performance, but it might also contribute to cognitive control in younger 

adults. Moreover, the voluntary control over pre-stimulus activity reflected in ERPs 

might also be engaged in penalty conditions and in older adults.  

Obviously, the conclusion of pre-stimulus activity influencing cognitive control 

warrants further research. Nevertheless, the ERP results of motivational influences on 

context processing might already now open a wide field for applications. For the first 

time, the study showed that impaired goal-representations in the elderly can be 

sharpened by motivational cues. Hence, to promote goal-directed behavior in old age, 

important, necessary, and essential information has to be made fairly salient.  

In addition to the beneficial effect of salient cues to context representations, older 

adults seemed to continue to apply mechanisms of reactive control under incentive 

conditions. Therefore, in contrast to the DMC theory (Braver et al., 2005), context 

updating may not be either proactive or reactive, but at least in conditions of salient 

information, older adults seem to recruit proactive mechanisms in addition to delayed 

control. Hence, as with the different mechanisms underlying comparable performance 

in younger and older adults in the first study, promoting context processing in older 

adults might not necessarily result in a similar pattern to that of younger adults. This 

assumption is supported by the fact that context processing in younger adults was more 

strongly affected by cue valence. Given the lack of previous studies investigating the 

impact of reward and penalty incentives under matched conditions of cognitive control, 

the present thesis reveals a relatively larger impact for penalty in younger adults. This 

effect might reflect a larger relevance of negative consequences for younger adults’ 
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outcomes in the present study. In this regard, inconsistencies in the current literature 

regarding the effect of reward and penalty incentives could also mirror the impact of 

personality factors and state-dependent effects on cognitive-affective interactions. 

Finally, differences in the subjective sensitivity to the kind of incentives applied might 

also account for age-differential valence and salience effects.  

 

4.4 Limitations and Future Research Directions 

 

Although the present dissertation provided considerable insights into the neural 

mechanisms of context processing, some limitations of the two studies should be 

addressed in future research directions.  

First, the rational of the present thesis was based on the assumptions that the age-

related decline in DA transmission to the PFC causes specific deficits in context 

processing (Barch, 2004; Braver & Barch, 2002), while DA release to incentive cues 

triggers the gating of goal-relevant context information (D’Ardenne et al., 2012; Gruber 

& Otten, 2010; Schultz, 2010). Clearly, as DA activity was not assessed, no conclusion 

can be drawn about the causal role of DA release in age- and incentive-related effects 

on context processing. Hence, to strengthen the functional role of DA in context 

updating, future work should directly measure DA activity in different age groups and 

experimental conditions, for instance by means of molecular imaging studies. Although 

much progress has been made on this topic, current inconsistencies regarding individual 

differences in DA in genetic (Barnett, Scoriels, & Munafò, 2008; Laukka et al., 2013; 

Nagel et al., 2008) and molecular imaging studies (Bäckman & Farde, 2005; Nyberg et 

al., 2012) may trace back to cross-sectional analyses (Nyberg et al., 2012), individual 

performance differences (Bäckman & Farde, 2005), or genotype characteristics (Laukka 
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et al., 2013).  Hence, particularly for context processing, more longitudinal work is 

needed focusing on the interaction between individual performance differences, 

increasing age, and changing DA levels.  

Secondly, and related to the first caveat, the present study was not designed to 

clarify whether DA itself implements the gating signal into the PFC or whether DA- 

release initiates a neuronal signal to other brain areas and neurotransmitter systems in 

order to accomplish context updating (see D’Ardenne et al., 2012 for a similar 

consideration). As research concerning this question is still in its infancy, the means by 

which DA activity is translated into context updating need to be strictly investigated. 

This aspect will also be of particularly interest for understanding the mechanisms 

underlying context processing modulated by incentives (Chiew & Braver, 2011b). 

Previous work has shown that presenting the same kind of reward at several times 

reduces the dopaminergic response (Schultz et al., 2010). However, the EEG approach 

in the current study required a large number of trials and accordingly a large number of 

incentive repetitions. Without understanding the precise functional principles of DA, it 

might therefore speculative to conclude whether the detected valence and salience 

effects on context processing were indeed linked to DA activity.  

It is also noteworthy that the motivational manipulation in the second study 

comprised monetary gains (and losses) depending on the behavioral accuracy, while 

response speed was irrelevant to the monetary outcome
4
. Although this approach was 

chosen to put older adults not under (time) pressure, it might render the comparison to 

previous studies on incentive-related effects difficult. For instance, prior work on 

younger adults usually applied adaptive response-time procedures, penalizing both 

slowed and incorrect responses in cognitive control tasks (Chiew & Braver, 2011b, 

                                                 
4
 See details in Paper III. Only responses exceeding 5000 ms were excluded from the analysis.  
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Kleinsorge & Rinkenauer, 2012; Krebs et al., 2013; Locke & Braver, 2008). Hence, in 

the present study, it cannot be ensured that with increasing task practice (and hence 

reduced error rates), younger adults were still motivated by incentive cues. Therefore, 

the current study can only be regarded as a first step to investigate the effect of 

motivational cues particularly in older adults. For reasons of comparability and 

motivational effects, follow-up studies in different age groups should use adaptive task 

procedures and assign incentives depending on behavioral performance in both error 

rates and reaction times. In this regard, it could also be useful to analyze diffusion 

models, which are able to track changes in speed-accuracy-tradeoffs between 

experimental groups and incentive conditions (for a discussion, see Chiew & Braver, 

2011a, and Dambacher, Hübner, & Schlösser, 2011). 

Besides limitations of the study design, a further critical point concerns the 

interpretation of the control analysis. The ERP-results of switches in context and in cue 

identity were interpreted as age differences in higher-order context representations. 

However, it should be noted that only the P3b data was sensitive to this dissociation and 

hence the conclusion is bound to restricted data. This constraint is important as prior 

research in younger adults revealed cognitive processes related to task (respectively 

context) and cue switches to constitute distinct phenomena (for a review, Jost et al., 

2008, 2013) which can be separated on temporally and topographically properties of 

specific ERPs (Jost et al., 2008, 2013; Nicholson, Karayanidis, Bumak, Poboka, & 

Michie, 2006) and neuronal generators revealed by fMRI (Brass & von Cramon, 2004;  

De Baene & Brass, 2011). Thus, the view that older adults are more sensitive to external 

switches in cue than to switches in context representations should be substantiated by 

further work investigating the neuronal basis of this dissociation. This line of research 

would also contribute to the understanding of age differences in the reliance on 
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perceptual information. In the present study, it was argued that representations might 

have been impeded by the manner with which the context conditions were instructed 

(see discussion page 68/69). Moreover, cognitive resources required for processing cue 

switches in younger adults can be reduced by practice (Mayr & Kliegl, 2003). Hence, it 

would be interesting to see whether older adults might built up context representations 

when explicitly pointing to the two context conditions in the AX-CPT, and whether 

electrophysiological correlates of cue switches are modulated by extensive practice in 

older adults.  

The final issue concerns the interpretation of individual differences in older adults 

with regard to mechanisms of successful cognitive aging. In the present studies, 

individual performance differences were considerably larger in older than younger 

adults (see Laukka et al., 2013 for a discussion). It can be argued that the younger age 

group consisted of a homogenous sample of university students from one age cohort, 

whereas the sample of older adults included a random population selection (see Rugg & 

Morcom, 2005). However, apart from behavioral and ERP-differences in the AX-CPT, 

no differences in demographic or control variables separated the group of high and low 

performing older adults at first sight. Hence, then questions arise of what exactly 

constitutes the difference between subgroups of older adults (Daffner, 2010), whether 

high performance in old age is rather flexible or persistent, and how intact cognitive 

control in high performing older adults translates into successful aging observed in 

every-day life. On the basis of these considerations, the understanding of mechanisms 

underlying individual age differences in the future might be a fruitful approach to 

promote successful cognitive aging in daily life.     
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4.5 Conclusion 

 

Taken together, the present dissertation shed light on the mechanisms and 

modulations of age differences in goal-directed behavior. Aimed to determine the time 

course of context processing in younger and older adults, it turned out that the updating 

of goal information is not only a question of “when”, but also of “how”. Specifically, 

the ERP approach reveals that depending on how context is represented, changes in 

internal representations in younger adults versus salient perceptual switches in older 

adults seem to trigger the updating of goal information. Although this conclusion seems 

to be at odds with the assumptions of the DMC theory (Braver & Barch, 2002), it is in 

line with recent findings suggesting a strong reliance on perceptual information in older 

adults (Spieler et al., 2006). Further work on the impact of experimental manipulations, 

such as task instructions and task practice, will be desirable to uncover the underlying 

mechanisms. 

Crucially, investigating performance-matched subjects supported the assumed 

temporal shift from pro-toward reactive control in advancing age (Braver & Barch, 

2002). The younger adults constituted a homogenous group, whereas subgroups of older 

adults differed widely in performance (Nyberg et al., 2012). Above-average performing 

older adults indeed relied on a late correction mechanism, although it remains a future 

research question how this correction is translated into adaptive behavior (Botvinick et 

al., 2004). Hence, from a methodological point, the present thesis stresses the analysis 

of individual differences to precisely disentangle the mechanisms of successful 

cognitive aging (Daffner, 2010; Oberauer, 2005; Rugg & Morcom, 2005). 

The dissertation project also contributes to the understanding of affective 

influences on cognitive control. Motivational cues modulated performance when 
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cognitive control demands were highest (Chiew & Braver, 2013; Kleinsorge & 

Rinkenauer, 2012) suggesting a true integration of cognitive and affective processes 

(Gray, 2004). 

Importantly, the ERP approach was able to advance the understanding of 

cognitive-affective interactions in aging, as contrasting salience versus valence effects 

took place at differential processing stages in younger and older adults. Given the high 

relevance of losses for the monetary outcome, younger adults exhibited increased 

processing efforts and reactive conflict under conditions of penalty. Although this result 

substantiates prior work on the hitherto less examined influence of penalty, it also 

contrasts with research on reward-related gating (Braver et al., 2009). Progress in the 

understanding of individual sensitivity to reward and penalty, as well as experimental 

“pay-off schemes” (Dambacher et al., 2011, p.4) might reveal important new insights.  

The strong impact of motivational salience on context processing in old age also 

sheds light on the age-related positivity effect. Both reward and penalty benefited the 

representation of context information in older adults, although salient information did 

not promote proactive control. Instead, in extension to the DMC theory (Braver, 2012), 

both control modes might be equally and concurrently applied in older adults. Given the 

complex nature of the task, and its explicit reference to salient cues, future work on the 

positivity effect needs to examine effects of task difficulty, individual performance, and 

automatic processing of motivational information (Reed & Carstensen, 2012).  

In summary, the present thesis contributes to the understanding of age, individual 

differences, and motivational influences on the mechanisms of goal-related context 

processing. Eventually, and contributing to the introduction, it would also be interesting 

for future research to examine the reverse issue, i.e., how cognitive control ability might 

impact motivation in advancing age (Gray, 2004; Gay et al., 2002).  
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6 Appendix 

 

 

 

Figure 5. Assumed representation of the task rules in the AX-CPT in younger adults.   

Younger adults seem to internally represent the task rules according c-dep and c-indep 

conditions as suggested by ERP data. Note that the task instruction refrained from explicitly 

pointing to the two context conditions. Figure adapted and modified from Schmitt, Wolff et 

al., 2014. Stimuli from Minear and Park (2004) and Rossion and Poutois (2004). 

Figure 6. Assumed representation of the task rules in the AX-CPT in older adults.  

  Relative to younger adults (see Figure 5), ERP data suggest that older adults internally 

represent each cue-probe combination separately, and not according to higher-order c-dep 

and c-indep conditions. Note that this representation mirrors task instructions. Stimuli from 

Minear and Park (2004) and Rossion and Poutois (2004).  


