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Aging is characterized by a decline of performance in many measures of cognitive 

functioning such as working-memory, inhibition, and reasoning. A previous training 

study (Karbach & Kray, 2009) indicated that task-switching training might improve 

crucial cognitive processes which are affected by aging, leading to broad transfer effects 

in both old and young adults. The present study aimed to identify exactly which 

processes to train in order to facilitate transfer across task domains with cognitive control 

training. To this end we manipulated memory-load and inhibition-load in a task-

switching paradigm, as we expected these processes to be the important variables 

affecting training scope. We compared performance improvements in four task-switching 

groups and an active control group in a pretest-training-posttest design with young and 

old adults. High inhibition-load seems to be crucial during training, as near-transfer in old 

adults was evident only in this condition. However, we did not find far-transfer effects, 

which we attribute to the sparse training material and relatively low cognitive control 

demands during training. In summary, our near-transfer results, together with the latest 

developments in the literature, suggest that transfer scope might be maximized through 

high inhibition training conditions in old adults. 
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Introduction 

What is going to be investigated in the present work in short is how people’s 

cognitive abilities can be improved in younger and older age. Our life expectancy during 

the last century has increased significantly and this trend is expected to continue in the 

future (Vaupel, 2010). As a result, we are now facing the problem that our societies are 

rapidly ageing, especially in the developed countries. Unfortunately, we also know that 

aging is associated with a decline in many areas of cognitive functioning (for reviews, see 

Bishop, Lu, & Yankner, 2010; Craik & Salthouse, 2000; Hedden & Gabrieli, 2004; 

Lindenberger & Mayr, 2013; Nyberg, Lövdén, Riklund, Lindenberger, & Bäckman, 

2012; Reuter-Lorenz, 2002).  

The human mind is an evolving entity that undergoes continuous transformation 

during development. This transformation is reflected in the functional and structural 

changes that take place in the nervous system during an individual’s lifespan. On the one 

hand, these changes are the consequences of unfolding biological processes that underlie 

the maturation and decline of the human brain. On the other hand, the human brain is 

capable of undergoing substantial experience dependent changes, a phenomenon which is 

referred to as cognitive plasticity. 

Cognitive plasticity refers to the ability of the brain to reorganize, change, and 

improve cognitive processes in order to deal more effectively with problems or to achieve 

aims more efficaciously. These cognitive changes are also reflected in the structural and 

functional changes of the nervous system. Traditionally, cognitive plasticity has been 

studied through examining the neural changes that take place in the brain of laboratory 

animals, for example, as result of enriched environment. With the development of non-

invasive neuroimaging methods it became possible to study, how different types of 
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training such as motor skill acquisition, lead to neural changes in human subjects as well. 

In the clinical context, cognitive training has been successfully used even before these 

developments. There is evidence that training interventions can be effective to counteract 

adverse conditions that arise after brain lesions. These findings point to substantial and 

often surprising plasticity of the human brain.  

From a developmental perspective there is evidence showing cognitive plasticity 

throughout the adult lifespan (for reviews see Burke & Barnes, 2006; Greenwood, 2007). 

The reserved cognitive plasticity in older adults can be measured as changes in the 

structure and function of the human brain. For example, a magnetic resonance imaging 

(MRI) study has shown that three months of training in juggling leads to an expansion of 

grey matter in specific areas of the brain in younger adults (Draganski et al., 2004). A 

similar study has shown that older adults could also learn juggling, although with 

somewhat less proficiency, and that similar areas undergo change as a result of the 

training (Boyke, Driemeyer, Gaser, Büchel, & May, 2008). Moreover, it has been shown 

that changes can be observed as a result of training in white matter structure (Scholz, 

Klein, Behrens, & Johansen-Berg, 2009), but this malleability might be limited with 

increasing age (Bengtsson et al., 2005). Hence, improvements in cognitive functioning 

might be expected even at old age. 

Apart from the questions regarding the range of plastic capacity of the brain 

throughout the lifespan, another important issue in cognitive aging research is the 

question of whether cognitive decline can be reversed through training (Baltes & 

Lindenberger, 1988; Mayr, 2008). To be more precise the question revolves around 

finding out what processes should be trained and how, so that cognitive decline is 

reversed effectively. This requires that the training does not remain specific to the trained 
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task, but that it generalizes to a wide range of other tasks. This transferability of training 

gains should be an essential consideration in any cognitive training program. 

However, it has been difficult to find transfer of training to tasks that are not very 

similar to the trained task itself (for reviews see Green & Bavelier, 2008; and Noack, 

Lövdén, Schmiedek, & Lindenberger, 2009). One explanation for the limited scope of 

transfer effects is that only task-specific processes were trained, limiting the transfer to 

tasks relying on the same processes. Recent findings, however, point to the feasibility of 

cognitive interventions with a wider range of transfer (Anguera et al., 2013; Schmiedek, 

Lövdén, & Lindenberger, 2010). 

In the field of cognitive aging, past research investigating the reserve capacity of 

older adults focused on improving episodic memory through mnemonic techniques and 

improving reasoning (Baltes & Kliegl, 1992; Baltes, Sowarka, & Kliegl, 1989; Singer, 

Lindenberger, & Baltes, 2003; Verhaeghen, Marcoen, & Goossens, 1992; Zehnder, 

Altgassen, Martin, & Clare, 2009). Recently, however, a different approach has been 

studied that might prove to be more effective: instead of training explicit strategies, a 

number of studies investigated the training of more general processes, such as executive 

functions (Bherer et al., 2005; Dahlin, Neely, Larsson, Bäckman, & Nyberg, 2008; 

Dahlin, Nyberg, Bäckman, & Neely, 2008; Karbach & Kray, 2009; Karbach, Mang, & 

Kray, 2010; Kramer, Larish, & Strayer, 1995; Kray, Karbach, Haenig, & Freitag, 2012; 

Li et al., 2008). Executive functions cover a range of cognitive processes that are 

necessary for higher-level cognitive functions, such as problem solving (Miller, 2000), 

and can be differentiated into several components, such as updating, inhibition and 

shifting (Miyake et al., 2000).  

Previous research by Karbach and Kray (2009) has demonstrated the efficacy of 

training executive functions by means of a task-switching paradigm. In four sessions, 
 3 



children, younger adults, and older adults were trained in task-switching that heavily 

relies on executive functions, such as updating, inhibition and shifting. The training has 

demonstrated broad transfer effects beyond the trained tasks as measured by pretest to 

posttest performance improvements in inhibition, working-memory, and even in fluid 

intelligence in all age groups. These findings seem promising, nevertheless, the question 

remains regarding what processes are actually trained and facilitate transfer across task 

domains when participants take part in a task-switching training. The primary focus of 

the present dissertation is to determine the relative importance of executive components 

to the transfer effects in younger and older adults. Therefore, different training conditions 

were created that differed in cuing-type and inhibition-load. Performance improvements 

were compared in a pretest-training-posttest design to an active control group in younger 

and older adults. With this setup we intended to uncover whether during task-switching 

training improvements in interference control, updating, or merely more efficient shifting 

are responsible for improvements as evidenced by far-transfer effects.  

The dissertation is divided into three parts. Firstly, I will present a review of the 

relevant literature, giving an overview about the concepts of executive functions, 

cognitive training, and transfer. I will also present the main findings regarding aging and 

training effects in the task switching paradigm. Based on this overview I will point out 

the specific question which this study is intended to answer. Secondly, in the empirical 

part, I will present the methods and results of my study. And thirdly, the last part 

comprises a critical discussion of the results and provides an outlook for future directions 

in research on this topic. 
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Review of the literature 

The review of the literature is separated into three parts. In the first part, 

theoretical models and empirical findings will be reviewed regarding executive control, 

the relation of executive functions to higher intellectual abilities, and age differences in 

executive functions. In the second part, theoretical concepts and empirical findings 

regarding cognitive plasticity and training interventions will be reviewed. In the third 

part, the focus will be on cognitive plasticity in older age primarily in relation with task-

switching training. In addition, the transferability of training gains in cognitive 

interventions will be considered in this last part, along with an overview of measuring 

and evaluating transfer effects. 

DEFINITIONS, MODELS, AND MEASUREMENT OF EXECUTIVE CONTROL 

Definitions of Executive Control 

In everyday life we often face situations, in which we cannot depend on automatic 

behavioral patterns but have to regulate our behavior according to unexpected changes in 

the environment. Imagine walking down the street listening to music while crossing the 

road at the sign of the green light. Suddenly a car wants to cross your way seemingly 

unaware of you. In such cases you have to exert control over what features of the 

environment you attend to (approaching car rather than music), how to respond to 

different stimuli from the environment (does it blink?), and to select what behaviors are 

most relevant in the given situation (stop, walk back, or walk faster). The execution of 

such actions requires many separate mechanisms. With the term “executive functions”, 

we are referring to several sub-processes that are important in regulating goal-directed 

behavior when circumstances change and control is required. In the present dissertation, I 

will use the terms executive control and cognitive control interchangeably. Cognitive 
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control can also be defined as “the ability to regulate, coordinate, and sequence thoughts 

and actions in accordance with internally maintained behavioral goals” (cf. Braver, 

2012). 

Although there is lack of consensus about a taxonomy of executive processes, 

there is general agreement that they include at least the following three components: 

working-memory operations including updating and maintenance of relevant information 

(‘updating’), inhibition of irrelevant information (‘inhibition’), and shifting between 

multiple tasks or mental sets (‘shifting’). In addition, it is also postulated that some forms 

of ‘supervising’ or ‘monitoring’ processes are also crucial in ensuring that goal oriented 

behaviors succeed. There are different hypotheses of how this monitoring process might 

take place. Some imagine a system in which errors during task execution are reported, 

which subsequently leads to adjustments in cognitive control (Gehring, Goss, Coles, 

Meyer, & Donchin, 1993). Some suggest a mechanism which reports whenever there is a 

higher level of conflict during task execution, which again leads to subsequent 

adjustment of cognitive control (Cohen, Botvinick, & Carter, 2000). Although there are 

more detailed classifications of executive functions (e.g. Jurado & Rosselli, 2007), for the 

present considerations the above description will suffice (for a recent review, see 

Hofmann, Schmeichel, & Baddeley, 2012). 

Models of Executive Control 

Early cognitive models of executive control postulated a unified central executive 

system, such as the central executive in Baddeley’s working-memory model (for a review 

see Baddeley, 2003) and the supervisory attention system in Shallice’s Supervisory 

Attention System model (Norman & Shallice, 1980). In Baddeley’s original model, the 

central executive was not well specified. In Shallice’s model, attentional control is dived 
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into two processes, one of which controls behavior according to habitual patterns or 

schemas, guided by cues from the environment, and one attentionally limited control 

system, the supervisory attentional system (SAS), which intervenes whenever habitual 

response is insufficient. In both models, the executive system has been related to frontal 

lobe functioning (Miller & Cohen, 2001; on the relationship between frontal lobe and 

cognitive control see Miller, 2000). 

Presently, although the exact specification and the interrelation of the processes 

underlying cognitive control are still debated, the idea of a strictly unified cognitive 

control system has been abandoned on the basis of a number of empirical findings 

coming from different fields in cognitive psychology. The first argument against a 

unified executive system stemmed from clinical observations, suggesting that executive 

functions are selectively impaired (e.g. Godefroy, Cabaret, Petit-Chenal, Pruvo, & 

Rousseaux, 1999). For instance, patients with posterior lobe damage exhibit impaired 

short-term memory, while some patients with frontal damage exhibit impaired inhibitory 

function. Neuroimaging studies also support the idea of separable processes in cognitive 

control (e.g., Collette et al., 2005; Dreher & Berman, 2002; MacDonald, Cohen, Stenger, 

& Carter, 2000; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004; E. E. Smith & 

Jonides, 1999). 

A second line of argument came from psychometric studies examining 

correlations between performances on different executive control tests. One study by 

Miyake and colleagues (Miyake et al., 2000) assessed in a large sample of younger 

participants several tests related with the three broad areas of executive control 

(inhibition, shifting, and updating) and found in a latent variable analysis that these 

processes are in fact separable. Fisk and Sharp (Fisk & Sharp, 2004), investigating 

individuals aged between 20 and 81 years, have also found three separate factors of 
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executive control, and showed that all of them exhibit significant decline with ageing. A 

general consensus emerged among the researchers in this field that these processes – 

inhibition, shifting, and updating - are indeed core components of executive functions 

(Bialystok & Craik, 2006 p. 70-95; Hofmann et al., 2012). 

Thirdly, there is evidence for differential age-related changes in executive control. 

There are studies indicating that executive functions show differential developmental 

trajectories (Cepeda, Kramer, & Gonzalez de Sather, 2001; Garon, Bryson, & Smith, 

2008; Hughes, 2011; Williams, Ponesse, Schachar, Logan, & Tannock, 1999), but the 

general structure of executive control is the same for childhood and adulthood. A study 

for instance (Huizinga, Dolan, & van der Molen, 2006) investigated participants 7 to 21 

years old, and showed that ‘working-memory’ and ‘shifting’ developed at different rates, 

with ‘shifting’ performance attaining adult levels during adolescence and ‘working-

memory’ continuing to develop during young adulthood. 

Cognitive development and its relation to executive control 

One influential theoretical model describing intellectual development is the ‘two 

component model’ initially proposed by Baltes (for a review, see Baltes, Lindenberger, & 

Staudinger, 2006; Baltes, 1987). It suggests that lifespan intellectual development can be 

characterized by the development of two components of intellectual functioning. The first 

is the so called ‘mechanics’ component, that refers to basic processes that are biologically 

based, such as speed, accuracy, and coordination of elementary processes. It rapidly 

develops during childhood through young adulthood, but then already starts to show 

decline in middle adulthood. It can be said that it is strictly based on the biological 

development of the nervous system. The other component is called 'pragmatics' 

component not strictly related with the architecture of the nervous system, but it is the 
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abstract knowledge base that the individual is endowed with, and which can grow by the 

influence of culture. This component does not show decline until very old age.  

The ‘mechanics’ component is the means to gain knowledge, while ‘pragmatics’ 

component is the abstract knowledge gained, or that is being 'crystallized'. Evidence for 

this two-component model comes from multiple sources (see Baltes et al., 2006; p. 598-

600.), including longitudinal studies (e.g. Seattle Longitudinal Study) indicating that 

cognitive abilities related with the ‘mechanic’ component (i.e. reasoning, memory, 

perceptual speed, spatial orientation) follow a nearly linear decline throughout adulthood, 

while cognitive abilities related with the ‘pragmatics’ component (i.e. verbal ability, 

numeric ability) does not show decline until very old age (see Figure 1). 

 

Figure 1 Cross-sectional data from the Seattle Longitudinal Study (image from Hedden & 
Gabrieli, 2004) 

Causes of Age-Related Changes in Cognition 

In this section different approaches to explain age-related changes in cognition 

will be outlined, along with empirical findings. The first of these is the 'general slowing' 

hypothesis, which mainly explains age-related changes in intellectual fluid abilities as a 
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function of a general slowing of processes (T. Salthouse, 1996). According to this theory, 

the slowing down of executing processes leads to impaired cognitive performance in 

most cognitive tasks. While the general slowing hypothesis is still an integral theory for 

explaining age-related decline in many areas, it is not adequate to explain age-differences 

in conditions with high cognitive control demands (Mayr & Kliegl, 1993; Verhaeghen, 

Steitz, Sliwinski, & Cerella, 2003). 

Age-related changes in intellectual abilities can also be explained as a function of 

changes in inhibitory processes. An early study (Kramer, Humphrey, Larish, & Logan, 

1994) for instance, found little evidence for age-related deficits in inhibitory processes, 

however older adults had more difficulty than younger adults to abort an action (in a stop 

signal paradigm where participants are asked to respond to a visual stimuli unless they 

hear an auditory signal), and it also proved more difficult for older adults to learn new 

rules in a categorization task. Also, comparing younger and older adults, inhibition 

related processes were found to be delayed in the elderly as evidenced by delayed 

inhibition-related ERPs (event related potentials, recorded with electroencephalogram) 

(Falkenstein, Hoormann, & Hohnsbein, 2002). 

It is also possible to attribute age-related differences in intellectual abilities to 

changes in working-memory performance. Recent studies have demonstrated that older 

adults show deficits in suppressing task-irrelevant information during working-memory 

performance whereas their ability to enhance task-relevant information is intact 

(Gazzaley, Cooney, Rissman, & D’Esposito, 2005). Furthermore, it has been shown that 

an interruption during task maintenance distracts both younger and older adults, however 

while younger adults quickly disengage from the task-irrelevant disruptor and reestablish 

task-relevant functional networks, older adults are impaired in dynamic shifting between 

competing representations (Clapp, Rubens, Sabharwal, & Gazzaley, 2011). Similar 
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findings came also from a study employing an inhibition of return paradigm (Wascher, 

Falkenstein, & Wild-Wall, 2011) and another study using a dual task paradigm (Hahn, 

Wild-Wall, & Falkenstein, 2011) suggesting that older adults process irrelevant 

information similarly as relevant information, and this leads to impairments in working-

memory performance. 

We can also approach to explain age-related differences in intellectual abilities in 

terms of biological changes in the nervous system. Some decades ago large scale general 

neuron loss was suggested to be the main reason for age-related cognitive decline (Ball, 

1977; Coleman & Flood, 1987). However, recently it became evident that general neuron 

loss in most areas does not contribute significantly to age-related cognitive decline 

(Burke & Barnes, 2006) but rather there are specific areas such as the prefrontal cortex 

(PFC) in which neuron loss is related to cognitive decline. A study, for example, with 

aged monkeys have found an approximately 30 percent reduction of neurons compared to 

younger animals in the dorsolateral PFC area 8A, and this reduction correlated with 

impaired performance in a working-memory task, but at the same time other areas related 

to working-memory (such as area 46) were well preserved (Smith, Rapp, McKay, 

Roberts, & Tuszynski, 2004). Less age-related change has been reported for many 

electrophysiological properties of neurons in the hippocampus and the PFC, such as 

resting membrane potential, membrane time constant, threshold to elicit an action 

potential, and rise time and duration of an action potential (Burke & Barnes, 2006). 

However, reduced synapse number in older animals might be related with cognitive 

decline. It has been found in rats, that synapse number per neuron diminishes during 

aging in the dentate gyrus, which is a hippocampal sub-region that is important in spatial 

memory (Geinisman, Toledo-Morrell, & Morrell, 1986). 
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Previously, I have mentioned that there is a close connection between executive 

control and functioning of the prefrontal cortex (Miller, 2000).The frontal lobes develop 

more slowly than other brain areas, and many attribute the development of executive 

functioning during childhood and adolescents to the maturation of the frontal lobes 

(Casey, Tottenham, Liston, & Durston, 2005). We also know that the frontal lobes are 

also among the first areas that show deterioration during aging (Hedden & Gabrieli, 

2004). A cross-sectional neuroimaging study for instance, estimating volumetric changes 

of different areas of the brain across the lifespan, has revealed a steady linear decline of 

the lateral prefrontal cortex from age 20, while other areas like primary visual cortex 

showed only slight age-related decline in volume (Raz et al., 2004). For a review on the 

relationship between prefrontal cortex function and cognitive aging, see West (1996). 

Measurement and Development of Executive Control Components 

We were interested in training related improvements in executive functions which 

were measured with a wide array of tests in the present study. An overview of the 

operationalization of these constructs will be given below. The specific tests within each 

domain will be described in the method section. 

Task Switching 

Shifting is measured by paradigms in which participants have to switch regularly 

between multiple task sets (for a recent review, see Kiesel et al., 2010; Grange & 

Houghton, in press). Each event from the environment affords a range of possible set of 

responses, and the appropriate response varies as a function of the task. In an 

experimental setting, task sets can be specified by instruction (e.g., categorizing colors, or 

shape).  
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The first description and use of the task-switching paradigm can be traced back to 

Jersild’s early paper from 1927 (Jersild, 1927). He conducted a series of experiments 

with students who had to work through a list of items, either repeating one task or 

alternating between two (Monsell, 2003). Comparing the time needed to finish the single-

task list with the time needed to finish the alternating-task list was used as an indicator of 

the time needed to switch between task sets. Later Jersild’s paradigm was reinvented by 

Biedermann and Spector (1976) using discrete reaction time measures. Nowadays 

researchers mostly use computerized tests to measure task-switching performance. 

Participants are usually instructed first to perform a simple categorization task by 

pressing one of two response buttons for a set of stimuli according to a simple rule, for 

example, deciding whether a picture is colored or black and white (task A). Then with the 

same set of stimuli or another set of stimuli they are instructed to perform another 

categorization task often by using the same response buttons, for example, deciding 

whether a picture depicts animals or flowers (task B). We call these blocks in which 

participants perform only one categorization task single-task blocks. The blocks in which 

tasks need to be shifted are called mixed-task blocks. Moreover, in alternating-runs 

paradigm, participants are instructed to alternate between two tasks within a block, 

according to a predefined sequence, such as to switch the task on every second trial. 

Finally, in task cuing paradigms, participants are instructed to switch tasks according to a 

cue that is presented before the stimulus appears. If we use the same stimulus set for both 

tasks, we say that the stimuli is bivalent (or ambiguous on the stimulus level). Bivalent 

stimulus affords responses for both tasks in which case cognitive control demands are 

higher and costs are more substantial (Jersild, 1927; Rogers & Monsell, 1995). A 

univalent stimulus on the other hand affords only one task set. Ambiguity can also arise 

on the response level, when the same stimulus in different task sets requires different 
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responses. In the mixed-task blocks two trial types can be separated. On so called non-

switch trials the same task has to be performed as in the previous trial (AA or BB) and on 

so-called switch trials one has to switch from one task to the other task (AB or BA). 

By registering performance on both single blocks and mixed blocks, two kinds of 

task-switching costs can be calculated (cf. Kray & Lindenberger, 2000). We can either 

calculate the performance difference between performing single-task blocks and mixed-

task blocks (termed mixing cost in the following), or we can calculate the performance 

difference between switch and non-switch trials within mixed-task blocks (termed switch 

cost in the following). In the early studies with the task-switching paradigm, performance 

costs were calculated only as the difference between single and mixed blocks (e.g. 

Allport, Styles, & Hsieh, 1994; Jersild, 1927). However, it is assumed that this 

comparison reflects not purely the additional demand to perform a task switch in mixed 

task blocks compared to single task blocks, but also the additional demand to keep 

multiple task sets in an active state (cf. Rogers & Monsell, 1995). To have a more precise 

estimation of the performance cost resulting from switching between the task sets per se, 

Rogers and Monsell (1995) proposed to compare the performance on switch and non-

switch trials within mixed-task blocks. Mixing costs are thought to reflect an additional 

memory demand, while switch costs are thought to reflect the switching process per se. 

The terminology regarding these performance costs is not unitary among researchers. For 

instance, switch costs have been also termed specific or local switch cost and mixing cost 

as general or global switch cost. 

Both switch and mixing costs are robust, they can be found with different types of 

tasks even after extensive practice (Kray & Lindenberger, 2000), and they have been 

found repeatedly in task-switching studies (for a review, see Kiesel et al., 2010). Given 

their interrelatedness one might ask whether mixing and switch costs are separable. Is it 
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true that mixing cost reflects mainly working-memory demands, while switch costs 

reflect mainly shifting demands? By applying confirmatory factor analysis, Kray and 

Lindenberger (2000) have demonstrated that the two types of costs are indeed separable 

and that they are domain general latent factors of cognitive control. This is in line with 

the previously presented models of cognitive control by Miyake and colleagues (2000; 

see page 69-72.), showing that the executive functions, ‘updating’ and ‘shifting’ are 

distinguishable constructs. Neuroimaging findings by Crone and colleagues (2006), also 

support that task-rule representation (i.e. retrieving, maintaining and implementing 

relevant rules) and task-set reconfiguration are separable, showing different activation 

patterns in the lateral and medial prefrontal cortex respectively. 

There are also alternative task-switching paradigms (see Grange & Houghton, 

2014), such as (a) task-cuing paradigm where unpredictable cues dictate which task to 

perform, (b) intermittent instructions paradigm where repeated performance on a single 

task is occasionally changed by a cue to continue with another single task, and (c) 

voluntary task-selection paradigm where participants decide themselves which task to 

perform. 

Task switching costs and their explanation 

The task-switching paradigm has become an extensively used paradigm in the last 

decade in order to understand executive control functions. The primary goal of most task-

switching studies was to elucidate the underlying causes of the switch costs. It has been 

attempted to explain the phenomena of the switch costs from different angles with 

multiple methods including computational, neuroscientific, and behavioral methods. In 

the following, I will mainly discuss empirical evidence from behavioral studies. 
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Switch costs has been proved to be a robust phenomenon found across different 

task-switching paradigms (alternating runs paradigm, task-cuing paradigm, intermittent 

instructions paradigm, voluntary task selection paradigm). Here, I shall briefly introduce 

two competing models that initially tried to explain the source of the observed task-

switching costs in task-switching paradigms. The first model was originally proposed by 

Rogers and Monsell (1995), while the second by Allport (1994). According to the first 

model, there are two components that contribute to the existence of switch costs. The first 

is an endogenous component related with top-down reconfiguration of task-sets prior to 

stimulus presentation. It has been observed that if the cue-stimulus interval in the task-

cuing paradigm (Meiran, 1996) or the response-stimulus interval in alternating runs 

paradigm (Rogers & Monsell, 1995) is increased, then this prolonged period to prepare 

for the next trial results in reduced switch costs. However, even with very long 

preparation time switch costs do not disappear entirely. These observations led to the 

proposal that there is a further task-set reconfiguration process, dependent on the actual 

presentation of the stimuli, termed as the exogenous component of task-set 

reconfiguration. According to the second model proposed by Allport (1994), switch costs 

are explained as a result of interference between the competing task sets (for a review of 

findings, see Kiesel et al., 2010; p. 861-868.). This interference can arise either as a result 

of persisting activation of currently irrelevant task-sets, or as a result of persisting 

inhibition of the currently relevant task-set. 

Age-related changes in task-switching abilities 

While most of the studies on task-switching focused on younger adults, there have 

been a number of studies investigating age differences in task-switching performance as 
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well (for a review, see Grange & Houghton, 2014, pp. 350–371). In this section, I will 

provide an overview of the extant empirical findings on age differences in task-switching. 

It is now well documented that cognitive aging is associated with a decline in 

dual-task performance and also with an increase in mixing costs in the task-switching 

paradigm, but there are no such age-related changes with regard to switch costs (Kray, 

Eber, & Lindenberger, 2004; Wasylyshyn, Verhaeghen, & Sliwinski, 2011). In one study, 

a large sample of 5271 participants from age 10 to 66 took part in an internet based task-

switching study (Reimers & Maylor, 2005). The results of this study indicated that while 

mixing costs decreased from 10 to 18 years old, and then showed an almost linear 

decline, switch costs remained relatively stable. Similarly, comparing younger and older 

adults Kray and Lindenberger (2000) found a more pronounced difference in mixing 

costs than in switch costs. They suggested that this means that advancing age negatively 

influences the ability to maintain and coordinate multiple task sets in working-memory 

but not shifting itself. 

There has been some concern whether the theory of general slowing can account 

for the age differences in both mixing costs and switch costs. In a meta-analysis 

Wasylyshyn and colleagues (2011) concluded that with regard to the explanation of 

mixing costs there is a genuine age difference not accounted for by general slowing, 

whereas switch costs can be accounted for by it. 

In summary, only processes related with the maintenance and coordination of 

multiple task-sets seems impaired in the elderly, but not shifting itself. The magnitude of 

these age differences, however, depends on a number of factors, such as cuing type, task 

ambiguity, and preparation time. As the factors of cuing type and task ambiguity were 

manipulated in the present study, empirical findings regarding these effects will be 

presented next. 
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The effects of cuing in task-switching 

As previously mentioned, in a task-switching study with younger and older adults, 

Kramer and colleagues (Kramer, Hahn, & Gopher, 1999) demonstrated that older adults 

achieved age equivalence with regard to switch costs after a small amount of practice. 

However their study also showed that older adults were unable to improve their switch 

performance through training under high memory-load conditions.  

Furthermore, according to a meta-analytic study, cuing and task predictability do 

not affect age differences with regard to task-switching costs such that there is a reliable 

difference between younger and older adults with respect to mixing costs, and there is no 

difference with regard to switch costs, independent of whether cues are provided or not or 

whether task sequences are predictable or not (Wasylyshyn et al., 2011). 

The effects of task ambiguity in task-switching 

I have argued previously that there is little age-related change with respect to 

‘shifting’ as evidenced by task-switching studies, whereas the ‘updating’ and ‘inhibition’ 

components (presumably related with mixing costs) seem to be impaired with progressive 

aging. Mayr (2001) suggested that increased mixing costs might reflect a decreased 

ability to maintain reliable representations of currently relevant task sets in the face of 

ambiguous stimulus information. One might argue that this could stem from a decreased 

ability to inhibit currently task-irrelevant information, which might then interfere with 

currently task-relevant information. However, this explanation has been ruled out (Mayr, 

2001; Experiment 1.), as the inhibition of recently activated task-sets is even larger in 

older adults then younger adults. Importantly, in a further study Mayr (2001; Experiment 

2) found that mixing costs are only different between younger and older adults if stimuli 

are ambiguous (affording multiple task-sets) and response sets are overlapping (responses 

are mapped onto the same response options, i.e. same buttons). Thus, Mayr suggested 
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that, as a result of less reliable task-set representations, older adults might need to rely 

more extensively on set-updating processes, which results in larger mixing costs in older 

adults. According to this, while younger adults update only on switch trials, older adults 

update on both switch and non-switch trials. This is in line with theoretical models 

suggesting a larger reliance on external information in older adults than in younger adults 

to guide action, which is probably due to difficulties in selecting and maintaining 

cognitive representations in older age (for a review, see Lindenberger & Mayr, 2013). 

Inhibition 

Inhibition is measured most frequently by the Stroop task (Stroop, 1935) which 

has several versions (e.g. color, number) but what is common is that a prepotent response 

has to be inhibited in favor of another response. We choose this type of inhibition task for 

the reason that it has similar executive control demands as the task-switching training 

applied in our study, namely, inhibition of currently irrelevant information and 

maintenance of currently relevant information. In a typical Stroop task, participants are 

presented with words (‘red’, ‘green’, ‘house’, ‘shoe’ etc.) in different colors. The task of 

the participants is to name the color of the ink the words are printed with. In this way, we 

get three different conditions: color words printed in the same color (congruent condition) 

to which response is fastest; non-color words (neutral condition) which serves as a 

baseline; color words printed in a different color (incongruent condition) to which 

response is slowest. The reason for these latency effects is that there are activations on 

different levels for color representations (color of stimulus; color concept associated with 

word), and these can facilitate each other (congruent condition) or get into conflict 

(incongruent condition) (for a review on the Stroop paradigm, see MacLeod, 1991). 
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Working-memory 

With the term working-memory we refer to the process of continuously 

maintaining a trace of information in a temporary active state, updating it when 

necessary, and to use it according to specific goals (Baddeley, 2003). Working-memory 

allows us to keep relevant information in an active, retrievable state when the information 

is no longer directly accessible from the environment. It is important not only in short-

term buffering of information, that is no longer directly accessible, but also in shielding 

that information from disruptions by irrelevant information.  

Cognitive control is involved in the regulation of the contents stored in working-

memory (Smith & Jonides, 1999) for which updating, maintenance, inhibition and 

shifting are essential ingredients. Maintenance also requires inhibition, which makes it 

possible to suppress task-irrelevant information and automatic impulsive responses. 

Inhibitory processes contribute to working-memory performance in the suppression of 

task-irrelevant information. 

There are different types of working-memory tests that can be divided according 

to what type of information participants have to maintain throughout the task. This way 

we can speak of visual working-memory tests and verbal working-memory tasks. Verbal 

working-memory measures include operation span tasks, such as reading or counting 

span, in which relevant information have to be maintained in an active state while 

executing a secondary task. In the present study, we used operation span tasks. According 

to a model by Miyake and colleagues (Miyake et al., 2000), operation span tasks 

primarily require updating ability but not shifting or inhibition. 

Updating can also be measured by n-back tasks in which participants are 

presented with a train of stimuli and the task is to indicate if the stimulus is the same as 

the one presented n previously. For example, in a 2-back task participants have to press a 
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response button if the present stimulus is the same as the one before the last stimulus. 

Performing this task requires the continuous updating of information stored in working-

memory. 

Intelligence 

The terms intelligence, general cognitive ability, intelligence quotient (i.e. IQ) are 

used interchangeably (cf. Deary, Penke, & Johnson, 2010). A broad definition of 

intelligence can be given as the following (cf. Gottfredson, 1997, p. 13): “Intelligence is a 

very general capability that, among other things, involves the ability to reason, plan, 

solve problems, think abstractly, comprehend complex ideas, learn quickly and learn 

from experience. It is not merely book learning, a narrow academic skill, or test‑taking 

smarts. Rather, it reflects a broader and deeper capability for comprehending our 

surroundings—‘catching on’, ‘making sense’ of things, or ‘figuring out’ what to do. 

Intelligence, so defined, can be measured, and intelligence tests measure it well.” 

It has been found that the performance on fluid intelligence tests predict well how 

participants perform on other cognitive tasks. One of the models of intelligence by Cattell 

and Horn (see Linn, 1989, pp. 29–73) distinguishes fluid intelligence (intelligence as 

‘process’) and crystallized intelligence (intelligence as ‘product’). Fluid intelligence is 

typically assessed by tests that require new knowledge creation. Crystallized intelligence 

on the other hand is typically assessed by tests that require already stored knowledge 

(about facts, etc.).  

As mentioned in the introduction, our ability to organize complex actions is 

intimately related to intelligent behavior and crucially dependent on executive functions. 

We know that there is a high correlation between fluid intelligence and working-memory 

but they are not identical (Conway, Kane, & Engle, 2003). It has been shown that a 
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child’s working-memory capacity at 5 years old is a better predictor of academic 

achievement than IQ (Alloway & Alloway, 2010). However it is not clear what links 

together working-memory and fluid intelligence. One study (Friedman et al., 2006), 

examining the relationship between the three main executive control components – 

inhibition, shifting, and updating – and fluid intelligence, has shown that updating is 

highly correlated with intelligence but shifting and inhibition are not. Another study has 

indicated that cognitive flexibility as indexed by the efficiency to update task-sets is 

correlated with fluid intelligence as measured by the Raven test (Colzato, Wouwe, 

Lavender, & Hommel, 2006). Others have linked the ability to suppress task-irrelevant 

information in working-memory to fluid intelligence (Burgess, Gray, A, & Braver, 2011). 

Although there is no agreement between different studies regarding the specific 

contribution of different executive functions to fluid intelligence, they indicate that 

executive functions are closely related with fluid intelligence. 

Summary 

Executive functions show decline during aging and this decline is associated with 

impaired cognitive functioning. I have presented that executive functioning is not a 

unitary construct, but can be separated into at least three different components (inhibition, 

shifting, and updating). The task-switching paradigm allows the calculation of switch 

costs and mixing costs, which are psychometrically distinguishable and presumably 

related with the components of shifting and inhibition/updating respectively. Task-

switching studies suggest that age-related decline in executive functioning does not 

primarily affect the ability of shifting. According to one theory, in the face of ambiguous 

situations older adults might rely on excessive set-updating processes in order to solve 

tasks more efficiently. 
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COGNITIVE PLASTICITY AND TRAINING INTERVENTIONS 

Learning and Transfer 

In this section, I will present theoretical concepts and empirical findings in 

connection with learning or skill acquisition that will be important in understanding how 

general and enduring training benefits might be achieved. 

Skill learning can be defined as a change (i.e. improvement) in perceptual, 

cognitive, or motor performance that is elicited by training and lasts for an extended time 

period (weeks or months), thereby differing from mere adaptation or other short-term 

effects (Green & Bavelier, 2008). Thus, in the context of cognitive training, we can 

differentiate between an early stage of learning that takes place within minutes related to 

the familiarization with the task, and a later stage of learning that requires training for a 

longer period of time (Green & Bavelier, 2008). Here, we are interested in the latter type 

of learning. More specifically, we are interested in training with generalizable transfer 

effects. 

Broadly speaking, by transfer we refer to situations in which training in one task 

leads to performance improvement on another non-trained task (for a taxonomy of 

transfer distance see Noack et al., 2009 p. 446-448.). Researchers often differentiate 

between near transfer and far transfer. By near transfer we mean that the transfer is 

restricted to structurally similar tasks which share similar stimuli characteristics, response 

rules and requirements, etc. By far transfer we mean that the transfer is not restricted to 

similar tasks but leads to performance improvement on structurally dissimilar tasks as 

well (for a critical review on the concept of far transfer, see: Barnett & Ceci, 2002). 

The first hurdle for cognitive interventions came from observations indicating that 

despite the plasticity of perceptual and motor skills, effects of training are mostly task 

specific. A lack of transfer effects would be problematic for cognitive interventions, as 
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the aim of these interventions should be to reach beyond the trained context and mitigate 

age-related cognitive decline that hinders individuals in their daily lives. 

Thus, the question arises whether anything can be trained beyond task-specific 

processes which are related to a given paradigm. As suggested by Klingberg (2010), a 

distinction can be made between explicit and implicit learning. Explicit learning is the 

process when performance improvement (for example in working-memory tasks) is 

initiated by learning new strategies for encoding and handling information by rehearsing 

techniques, chunking or meta-cognitive strategies. An example for explicit learning is 

when participants learn a strategy to chunk long series of digits into smaller meaningful 

units, thereby extending effective recall length (e.g., although short-term storage of 

information is restricted to 7 ± 2 items (Miller, 1956), by chunking participants has been 

shown to be able to recall up to 79 digits (Ericcson, Chase, & Faloon, 1980)). Given that 

explicit learning usually only work with trained material (i.e. it does not transfer to other 

tasks; for example learning how to memorize digits does not help memorizing letters) the 

question remains as to what extent can implicit learning be exploited to facilitate broad 

general improvement. 

It has been suggested that in order to show transfer effects from one task to 

another the two tasks should share some common underlying processes. As a general 

principle, it can be assumed that by training one task, certain processes and functions are 

strengthened, which, if relevant to another task, will enhance performance on that other 

task as well. As an example, there is evidence that updating training shows transfer only 

if underlying brain structures and functioning is shared with the target test (Dahlin, 

Neely, et al., 2008).  
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Principles to enhance training and transfer effects 

What are the optimal conditions for training-related improvements (e.g. time, 

frequency, motivation, intensity), and what are limiting factors (upper boundaries on 

plastic changes, process specific limits, and so forth)? Factors that modify training 

outcomes include task difficulty and motivation. According to Vygotsky's ‘zone of 

proximal development’ model (Vygotsky, 1980), learning is most efficient when tasks to 

be solved are close to the upper limits of the participants’ current abilities. The reason for 

this is that in cases where task difficulty is too high or too low, it leads to a decrease in 

motivation and thereby reduced learning. Hence many cognitive interventions apply 

adaptive training procedures in which task difficulty is changing according to the 

improving performance of the individual (i.e. if participants get better during training the 

task becomes more demanding, if participants get worse during training the task becomes 

less demanding). 

How to quantify transfer? 

There are some essential requirements that should be followed at the design of 

training studies, therefore these criteria will be reviewed here briefly.  

Usually, assessing the effectiveness of a training one has to measure baseline 

performance on the tests of interest before the training and then after the training. As in 

most cases we expect improvements on tests at posttest, we shall make sure that the 

effects that we see are not merely retest effects (i.e. performance improves by repeated 

encounter with the same test). One thing that we can do is to use modified tests at the 

posttest, so that they are not exactly the same as at the pretest. The tests should ideally be 

counterbalanced, so that half the participants use the original and half the modified 

version at pretest, and at posttest the other way around. 
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Another important aspect for evaluating training related improvements is that we 

should make sure that participants improved as a result of gaining skills specifically 

related to the training and not some other trivial factors. For example, repeated visit to the 

lab can make participants more comfortable, so that they might perform better because of 

that circumstance in comparison to a no contact control group which does not visit the lab 

in between pretest and posttest sessions. In order to avoid this problem one can use active 

control groups. These groups also spend the same time in the lab, performing a test which 

is similar to the training task, but which differs in some crucial aspect. For instance, we 

used an active control group that practiced no switching between trials, but only single-

task blocks. In this way the task-switching training groups and the active control group 

conditions were almost similar, except for one crucial difference: the task-switching 

training groups alternated between tasks while single-task groups did not. 

In general, participants can be assigned to training groups based on their pretest 

performance on the tests of interest, so that baseline differences do not make it 

problematic to interpret changes at posttest. One scenario could be where one group has 

already high performance at pretest while another group does not, and after training at the 

posttest assessment the high performance groups do not show any further improvement 

while the initially lower performing group reaches the level of the high performing. In 

this case one might interpret wrongly that only one of the groups improved. Whereas, it 

might be equally valid to interpret that there was no more room for improvement in the 

initially high performing group which is commonly referred to as a ceiling effect. The 

details of the matching procedure of the present study will be described in the method 

section. 

When evaluating training interventions, apart from statistical testing for 

significance (i.e. between pre- and posttest measures), it is recommended to also report 
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effect sizes (Wilkinson, 1999). Effect sizes quantify the magnitude of the training effects, 

that is, the pretest-posttest improvement. It also makes possible to compare studies with 

different designs, samples and analyses (Wilkinson, 1999). It has been suggested that to 

qualify for successful training effect size should be at least 0.30 (Klauer, 2001), or 

alternatively the proportion of participants showing improvement after training should be 

higher than 50 percent (Derwinger, Neely, Persson, Hill, & Bäckman, 2003). According 

to Cohen (1988) effect sizes using Cohen’s d between 0.2 – 0.3 should count as “small”, 

around 0.5 as “medium”, and above 0.8 as “large”. Also, ideally, long-term maintenance 

of training benefits should be assessed. Thus, inspection of effect sizes, proportion of 

participants showing transfer, long-term stability of improvements, and individual 

differences in relative improvements should ideally be investigated for the evaluation of 

cognitive interventions. 

One further difficulty in evaluating cognitive interventions is, however, how to 

quantify transfer scope. Noack and colleagues (Noack et al., 2009) suggests that mere 

improvement on individual tests in itself might not reflect improvement on the level of 

general cognitive abilities, instead, one should look for improvements on the latent 

variable level by measuring multiple tests in a given domain. Thus, effect range should be 

assessed by a wide range of cognitive tests. Showing transfer of training on the latent 

variable level might provide stronger evidence for the effectiveness of a given cognitive 

intervention. 

COGNITIVE TRAINING IN OLDER AGE 

Investigating the possibility of cognitive plasticity through cognitive interventions 

in older age is a relatively new research area. There has been substantial progress in 

cognitive aging research for several decades, but the focus shifted only recently (see 
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Kramer & Willis, 2002; Mayr, 2008) to what can be actually done in order to slow down 

or even to reverse cognitive decline observed in the many cognitive abilities affected by 

aging, which has been well documented through longitudinal and cross sectional studies. 

Most early studies on cognitive training focused on memory training with explicit 

strategies, such as the method of loci (Baltes & Kliegl, 1992; Verhaeghen et al., 1992), 

and training on fluid intelligence (Baltes, Kliegl, & Dittmann-Kohli, 1988; Baltes et al., 

1989; Blieszner, Willis, & Baltes, 1981). The interventions using the method of loci, a 

mnemonic technique to improve memory performance, in younger and older adults 

generally indicated that younger as well as older adults were able to improve their 

memory performance, although younger adults were better able to do so. In addition it 

was also found that training gains were maintained for months or even years (Brehmer et 

al., 2008). 

There is also evidence for plasticity with regard to executive functions, even in 

older age. A study for example by Dahlin and colleagues (Dahlin, Nyberg, et al., 2008) 

investigated the plasticity of executive functions in younger and older adults. They 

trained participants for 5 weeks in updating information in working-memory, and found 

that compared to a control group, both younger and older adults improved their 

performance on updating. Moreover, the training-induced improvements were maintained 

for a period of 18 months after training. In younger adults, the training also led to 

improvements on an untrained task that also required updating. However, even after five 

weeks of training older adults remained below the level of performance reached by 

younger adults after two weeks, and they did not show transfer to a 3-back task. This 

suggests that there might be limits on how much older adults can gain through training 

with regard to updating processes. 
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A recent study by Anguera and colleagues (Anguera et al., 2013) measured 

multitasking with participants aged 20 to 79 years in a three dimensional video game and 

showed a linear decline in performance with aging. However, training older adults (60 to 

85 years) in an adaptive version of the video game for a period of one month showed 

marked improvements (compared to an active and a no-contact control group) in 

multitasking, reaching better performance than untrained 20-year-olds. Furthermore, this 

improvement in multitasking was still observable after six months. The training also led 

to improvements on untrained cognitive abilities, such as enhanced sustained attention 

and enhanced working-memory. Furthermore, both the single-task-training and the 

multitask-training led to similar improvements in single task components, but only the 

multitask-training led to enhanced multitasking, sustained attention and working memory 

performance. This indicates that the mechanism that drives the training effects is the 

improved interference resolution resulting from overlapping cognitive control processes 

during task execution in the multitask-setting. 

These findings point to the preserved plasticity of executive functions, such as 

updating and multitasking even in older age, although there might be limitations 

regarding the possible level of performance that can be achieved by older adults (i.e. in 

certain facets of executive functions older adults might not reach performance levels of 

younger adults, as suggests the updating training by Dahlin (2008); not so for 

multitasking (Anguera et al., 2013)). Also, there has been a number of recent reviews on 

working-memory training (Melby-Lervag & Hulme, 2013; Morrison & Chein, 2011; e.g. 

Shipstead, Redick, & Engle, 2012). These reviews indicated that although there have 

been a number of studies showing reliable short-term improvements of working-memory, 

the improvements were rather task-specific, and there is little evidence for generalization 

of working-memory training to other skills (Melby-Lervaag & Hulme, 2013). Also, many 
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studies used only single tasks to assess whether there was change in executive functions 

following training, whereby improvements can be explained as task-specific learning 

(Shipstead et al., 2012). Finally, it has been suggested that working-memory training 

regimens can be differentiated as strategy training (training specific strategies to improve 

memory performance) and core training (training of core cognitive processes needed for 

successful memory performance), and that a greater generalizability might be expected 

from core working-memory trainings (Morrison & Chein, 2011). This is a similar idea to 

what has been said above regarding explicit and implicit learning. The next section will 

provide an overview about the training with task-switching in older age, the cognitive 

intervention that is being applied in this study. 

Training with task-switching 

In this section, empirical findings regarding the plasticity of task-switching 

abilities will be overviewed. As mentioned earlier, there are two performance costs that 

can be differentiated in relation to task-switching: mixing and switch costs. Mixing costs 

reflect the ability to maintain and coordinate multiple task sets in mind. Switch costs 

reflect more directly the ability to switch task sets. By examining the results of extensive 

practice on these two performance costs in task-switching, inferences regarding the 

degree of plasticity in maintenance/coordination and shifting can be drawn. As 

mentioned previously in the presentation of the task-switching paradigm, many studies 

have shown that by training it is possible to reduce switch costs (e.g. Cepeda et al., 2001; 

Rogers & Monsell, 1995) as well as mixing costs (e.g. Gajewski & Falkenstein, 2012; 

Minear & Shah, 2008; Salminen, Strobach, & Schubert, 2012). With regard to age 

differences in task-switching costs and training, in a task-switching study with younger 

and older adults Kramer and colleagues (Kramer et al., 1999) demonstrated that after a 
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small amount of practice, older adults achieved equivalent switch costs to younger adults. 

Another study by Kray and Lindenberger (2000) investigated switch and mixing costs in 

participants aged 20 to 80 years. After participants underwent four sessions of training in 

a set of task-switching tasks, pretest to posttest changes were examined in switch and 

mixing costs across age groups. The results indicated significant practice effects, with 

both switch and mixing costs being reduced through practice. Also, older adults showed 

more reduction in mixing costs than younger adults. However, both switch and mixing 

costs were still reliable at posttest, and older adults still showed larger mixing costs than 

younger adults. These findings point to the plasticity of executive functioning as reflected 

in the training-related reductions of both types of task-switching costs even in older age, 

but they also suggest that even after extensive practice both switch and mixing costs are 

still observable. 

Are training gains generalizable? 

Although, as we have seen, there is ample evidence for plastic capacity even in 

older age, an important question concerning cognitive interventions is not merely whether 

a specific task can be trained but whether generalizable skills can be obtained by 

completing the intervention. The limitations of training studies became apparent in early 

studies in that they usually did not show substantial transfer to other untrained tasks (for a 

review on the training literature, see e.g., Green & Bavelier, 2008). There are plenty of 

commercial products that claim to improve cognitive functioning. However, their 

generalizability to other tasks above the tasks that are actually trained is still ambiguous. 

One influential large scale online experiment testing 11,430 participants for six weeks 

(for an average 26 hours) has shown that there were no differences in improvement 

between two experimental groups (experimental group 1 practicing tasks emphasizing 
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reasoning, planning, and problem solving; experimental group 2 practicing tasks of short-

term memory, attention, visuospatial processing and mathematics) and an active control 

group (answering general knowledge questions through the internet) on benchmark tests 

(reasoning, verbal short-term memory, spatial working-memory and paired-associates 

learning) that were assessed at pretest and posttest (Owen et al., 2010). Recent reviews of 

cognitive intervention studies also suggest that effect sizes are usually small and that 

training usually does not generalize to untrained tasks (Noack et al., 2009). Nevertheless, 

one should keep in mind that much depends on the kind of training applied in training 

studies. For example, there have been a number of studies showing the beneficial effects 

playing video games on a variety of cognitive abilities (e.g., Boot et al., 2010; Castel, 

Pratt, & Drummond, 2005; Green & Bavelier, 2008). It has been shown that playing 

action video games can enhance visual selective attention in younger adults, improving 

attentional capacity, the spatial distribution of attention, and also that it reduces 

attentional bottlenecks in sequential processing (Green & Bavelier, 2003). Moreover, 

some studies found that video games improve not only selective attention but executive 

functions as well, such as shifting (e.g., Green, Sugarman, Medford, Klobusicky, & 

Bavelier, 2012; Strobach, Frensch, & Schubert, 2012).  

Furthermore, studies also found that reversing age-related decline in executive 

functions through video game training might be possible even in older age (Basak, Boot, 

Voss, & Kramer, 2008). In a study of Basak and colleagues (2008), older adults were 

training in a real-time strategy video game to improve executive functions. Relative to a 

control group, trainees improved in executive functions, such as shifting, working-

memory, and visual short-term memory. In another online game-training experiment, van 

Muijden, Band, and Hommel (2012) also investigated whether cognitive control can be 

trained in older adults. One group practiced with alternating between five different 
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videogames, which presumably taxed cognitive control, as participants were required to 

select and integrate information, manipulate working-memory representations, and switch 

between task sets (cf. van Muijden et al., 2012). This group practiced for seven weeks 

while an active control group answered quiz questions for the same period of time. 

Transfer effects included improvement of inhibition (stop-signal task) for the training 

group and improvement of selective attention for the control group. However, as several 

other tests (e.g., Stroop task, counting span, task-switching) did not show transfer effects, 

this study indicated only limited plasticity of cognitive control in older adults. 

An elusive goal of cognitive training studies is to achieve improvements in 

general intelligence. After a long history of failure to achieve improvements in reasoning 

through training (Sternberg, 2008), there has been some empirical support that after all it 

might be possible (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Klingberg et al., 2005; 

Schmiedek et al., 2010). In a seminal study, Jaeggi and colleagues (2008) trained 

participants on an adaptive dual n-back task, and showed for the first time that far transfer 

to fluid intelligence might be possible. Moreover, they also showed that improvements on 

fluid intelligence were dependent on training dosage. However, the results should be 

viewed critically (see, Sternberg, 2008). One of the criticisms of the study was that to 

measure fluid intelligence they used a shorter, speeded version of the BOMAT (a 

commonly used test measuring fluid intelligence) (Moody, 2009). The problem was that 

whereas this test contains 29 items and is supposed to be solved within 45 minutes, 

participants were allowed only 10 minutes to solve the task in the study by Jaeggi and 

colleagues (2008), and therefore, given that task sequence follows increasing difficulty, 

only the easiest items could be tested. Thus, it is conceivable that dual n-back tasks do 

not train executive functions per se, but attention (see for example: Oelhafen et al., 2013), 

which might lead to better performance in speeded measures of fluid intelligence.  
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Since then, many studies tried to replicate the findings of improving fluid 

intelligence by n-back training, some with success (e.g. Jaeggi et al., 2010; Jaeggi, 

Buschkuehl, Jonides, & Shah, 2011; Jaeggi, Buschkuehl, Shah, & Jonides, 2014) some 

without success (e.g., Colom et al., 2013; Heinzel et al., 2014; Oelhafen et al., 2013; 

Redick et al., 2013; Salminen et al., 2012; Thompson et al., 2013). Although the 

empirical findings with n-back training are still controversial, the results indicate that 

generalizable skills might indeed be possible to achieve through cognitive training. In the 

next section the transfer effects of task-switching training will be considered. 

Transfer effects with task-switching training 

There has been a number of studies investigating training and transfer effects in 

task-switching and dual-task performance in both younger and older age, suggesting that 

there are significant age-related deficits (Hahn et al., 2011; Verhaeghen et al., 2003), but 

also that cognitive plasticity is preserved in older adults and that they can improve by 

training (e.g., Bherer et al., 2005; Kramer et al., 1995; Lussier, Gagnon, & Bherer, 2012). 

It has been presented above that we can differentiate between two types of task-switching 

costs, switch and mixing costs. If task-switching costs are reduced during training as a 

result of enhanced efficiency in the ability to coordinate and reconfigure competing task 

sets, then transfer to other similar task-switching situations and to other tasks relying on 

shared control processes should show improvements as well. 

One of the first studies examining transfer effects with a task-switching paradigm 

was a study done by Minear and Shah (2008). They investigated the extent to which task-

switching training transfers to non-trained switching tasks (i.e. near transfer). Participants 

were trained in either an unpredictable cued paradigm or a predictable alternating runs 

paradigm with run length two in a pretest-training-posttest design. Near transfer effects at 
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posttest were assessed on both a predictable and an unpredictable task-switching 

paradigm. In a first experiment, transfer was only evident for mixing costs in the 

unpredictable training groups. However, this transfer was constrained to a similar 

unpredictable task-switching paradigm at posttest and not to a predictable task-switching 

paradigm. There were no difference between the transfer effects of a control group and a 

predictable switching group. Reaction times got significantly faster for the unpredictable 

switching group after training for both switch and nonswitch trials compared to the 

control group which resulted in differences in the mixing costs but not in the switch costs, 

as both switch and nonswitch trials became faster. If we assume that predictable and 

unpredictable switching requires the same control processes, then if shifting related 

control processes in general were really improved in the unpredictable task-switching 

group it should have actually been easier for them to perform a predictable switching 

paradigm - which was not the case. In a second modified experiment (by inserting a 200 

ms cue stimulus interval) the findings were replicated. Nevertheless, all groups improved 

performance from pretest to posttest on the predictable task-switching. In a third 

experiment (with varying cues), comparing control group to the unpredictable task-

switching group similar transfer effects were found for mixing costs in the unpredictable 

paradigm. Most importantly, a further analysis showed that the source of transfer was the 

improvement in the ability for recovery from an unexpected switch.  

In summary, this study has shown that with an unpredictable task-switching 

training the ability to recover from an unexpected switch can be improved, but this 

improvement does not show up in a predictable task-switching paradigm because 

unexpected switches are not present there. On the other hand, control groups and task-

switching groups (either predictable or unpredictable) did not show difference in transfer 

to a predictable task-switching paradigm. 
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As for today, only a few studies investigated the trainability of cognitive control 

processes from a lifespan perspective. Even less used the task-switching paradigm to 

investigate whether training generalizes to other tasks. The most important of those 

studies for the present study is a training study of Karbach and Kray (2009), therefore, it 

will be presented next. 

In comparison to the study by Minear and Shah (2008), in the study of Karbach 

and Kray (2009) a different paradigm was used, and participants trained for a longer 

duration. The main goal of the study was to investigate lifespan differences in near and 

far transfer effects in three age groups (children 8-10, younger adults 18-26, older adults 

62-76) and the modulation of the transfer effects by the employment of verbal self-

instructions (i.e. naming the upcoming task goal in the preparation interval, supposedly 

facilitating task maintenance and selection) and also by the introduction of variability in 

the training (i.e. training with different tasks and stimuli in each training sessions, 

supposedly supporting transfer effects). They used a pretest-training-posttest design, with 

three task-switching training groups and an active control group. The task-switching 

paradigm used was an alternate runs paradigm, with a run-length of two (i.e. tasks 

switched every second trial). At pretest there were two tasks (Task A and Task B), with 

responses assigned to the same response button in both task sets. Stimuli comprised of 16 

fruit and 16 vegetable pictures, either in small or large size. In Task A participants had to 

decide whether the picture was fruit or vegetable; in Task B participants had to decide 

whether the picture was small or large. There were four training sessions. The task-

switching training groups practiced mixed blocks, with new tasks (Task C: transportation 

task, decide whether picture shows planes or cars; Task D: number task, decide whether 

one or two planes/cars are presented). The task-switching training group with variable 

training had in addition six other tasks (Tasks E-J). The active control group practiced the 
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single tasks, C or D, in separate blocks. Each session started with two practice blocks 

followed by 24 experimental blocks (17 trials each), resulting in a total of 1768 trials 

throughout the four sessions. At pretest and posttest a cognitive test battery assessed 

participants task-switching ability (single task and mixed task performance), inhibitory 

control (color stroop and number stroop), verbal working-memory (reading span and 

counting span) spatial working-memory, and fluid intelligence (figural reasoning/letter 

series, Raven’s Standard Progressive Matrices). The task-switching task at pretest and 

posttest consisted of 2 practice blocks, followed by 20 experimental blocks (8 single and 

12 mixed blocks). 

The main findings of the study were the following: (a) near transfer was found for 

both mixing and switch costs; (b) near transfer for mixing costs was most pronounced for 

older adults and children; (c) verbal self-instructions alone not but (d) verbal self-

instructions with variable training modulated near transfer effects; (e) far transfer effects 

were found in several areas, like interference control, spatial and verbal working-memory 

as well as fluid intelligence; and (f) far transfer effects were not modulated by either age 

or type of task-switching training.  

Effect sizes were larger for near transfer than for far transfer. With regard to 

mixing costs, effect sizes were larger in all age groups for task-switching groups (d’ = 

0.98 – 2.15) than for single-task groups (d’ = 0.11 - 0.55). The results were similar 

regarding switch costs: effect sizes were larger in all age groups for task-switching 

groups (d’ = 0.88 – 1.14) than single-task groups (d’ = 0.22 - 0.60). For task-switching 

groups, effect sizes were relatively large even for far transfer (younger adults d’ > .60, 

older adults d’ > .40 in most cases).Compared to the task-switching training groups the 

single-task groups showed only small effect sizes in far transfer, most values of d’ were 

smaller than 0.30 for both younger and older adults. 
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Figure 2 Karbach & Kray (2009): Effect size d’ for near and far transfer as a function of 
training (single-task, task-switching), transfer measure (MC = mixing costs; SC = switch 
costs; IC = interference control; VWM = verbal working-memory; SWM = spatial 
working-memory; FI = fluid intelligence), and age (younger adults, older adults). 

Since then, far transfer effects of task-switching training to interference control 

and working-memory have been replicated with ADHD children as well (Kray et al., 

2012). However, it should be noted that effect sizes have been on medium levels for 

single-task groups as well. This has been attributed to improved ability of focusing 

attention to the task in general. 

Another study (Zinke, Einert, Pfennig, & Kliegel, 2012), investigating near and 

far transfer effects of task-switching training in adolescents (aged 10-14 years) have 

found near transfer effects for mixing costs but far transfer effects were restricted to 

improvements in a choice reaction time task and faster reaction times on a 2-back task. 

However, this study involved only three sessions of training which might have been not 

sufficient to show broader effects of the training. 
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Given the broad transfer effects of the study by Karbach and Kray (2009), it 

seems to be important to further investigate the paradigm, as if it indeed turns out to be 

effective, it could guide the development of cognitive interventions to ameliorate age-

related cognitive decline. However, in order to better optimize task-switching training 

programs, the question remains as to exactly what the transfer effects can be attributed to. 

There are multiple factors that could have contributed to the observed transfer effects but 

the most prominent among those might probably be inhibition demands, memory 

demands, and shifting demands. 

In the present study we will use similar dependent variables at pretest and posttest 

as in the study done by Karbach and Kray (2009), but during the training we will use a 

different task-switching paradigm in which we will manipulate the level of interference 

and memory load. Furthermore, we will only focus on younger and older adults. 

GENERAL SUMMARY 

Cognitive control is necessary to set up, manage, and coordinate goal-directed 

behavior. There are several components of cognitive control that can be separated as 

indicated by psychometric studies (Miyake & Friedman, 2012; Miyake et al., 2000) and 

neuroimaging studies (Collette et al., 2005; E. E. Smith & Jonides, 1999). A frequently 

adopted taxonomy takes inhibition, shifting, and updating as key components of 

cognitive control (Hofmann et al., 2012; Miyake & Friedman, 2012). Cognitive control is 

assumed to be closely related to higher-level cognitive abilities, such as fluid intelligence, 

which is also evidenced by similar developmental trajectories across the lifespan (Craik 

& Bialystok, 2006). 

One of the commonly used paradigms to measure executive functions is the task-

switching paradigm (Monsell, 2003). It requires participants to switch regularly between 
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two or more task sets related with simple categorization tasks. By registering 

performance on single blocks, in which only one task is repeated continuously, and 

mixed blocks, which involve task-switching and task repetition trials, two comparisons 

are usually made to measure different aspects of executive functions. Switch costs 

measure the shifting ability, which is assumed to require the inhibition of irrelevant task 

sets and activation of relevant task sets. Mixing costs give a measure related to the 

efficiency of keeping and coordinating multiple task sets in mind. Studies investigating 

age differences in these two components of task-switching generally indicated that while 

mixing costs are increased in older age, switch costs stay on the same level in older age 

(if general slowing is taken into account), indicating intact abilities to switch between 

task sets (Wasylyshyn et al., 2011). 

One of the main questions of the present work is whether cognitive decline can be 

remedied by cognitive intervention, and related with that, the question of how to do this 

effectively. There is a growing body of empirical evidence suggesting that even in older 

age there is hope for plastic changes to be brought forth by cognitive interventions. 

However, mere reserved plasticity to improve through training is not sufficient in itself. If 

training effects are strictly task specific then there is little point in training. This has been 

a problem, as many studies indicated that the transfer scope of cognitive trainings might 

be limited to tasks very similar in structure to the trained task (Green & Bavelier, 2008; 

Owen et al., 2010). 

In recent years, however, a number of training studies demonstrated generalizable 

transfer effects with different training regimens. For example, intensive practice of 

working-memory is suggested to improve fluid intelligence (Jaeggi et al., 2008). Another 

example is multitask training, which demonstrated transfer to untrained cognitive control 
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abilities in older adults, improving sustained attention and working-memory (Anguera et 

al., 2013). 

The present work focuses on the beneficial effects of a task-switching training 

paradigm and the mechanisms mediating transfer effects to untrained cognitive abilities 

in younger and older adults. A study conducted by Karbach and Kray (2009) showed 

evidence for far transfer effects of task-switching training. After four sessions of training 

in task-switching, older and younger adults showed broad transfer to measures of 

inhibition, working-memory and fluid intelligence (compared to an active control group). 

However, it remained unclear as to what processes were actually trained during task-

switching.  
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Statement of problem and research predictions 

In the previous parts age-related changes in cognitive control have been outlined, 

as well as age-related differences in task-switching costs. Although, as we could see 

above, considerable research is trying to elucidate the necessary conditions and kinds of 

trainings for successful transfer, there are still many open questions. One approach to 

facilitate the effectiveness and transfer of cognitive training has been based on the idea 

that there is a possibility for plastic change in basic cognitive control processes, and 

given that higher level cognitive abilities are based on these basic processes (such as 

inhibition, shifting, and updating) the training of them should lead to broad transfer. 

However, one problem is that we do not know the precise kind of training to bring forth 

substantial and long lasting changes in basic cognitive control processes. The present 

study examined the applicability of a task-switching approach to elicit such changes 

following a previous task-switching training study. 

In addition, by creating training conditions with different levels of demands in 

inhibition and updating, the aim of the present study was also to disentangle what 

processes are actually trained during task-switching. The knowledge gained through this 

study regarding the transfer effects in different training conditions might have practical 

relevance for designing optimal training programs for the elderly. The core question that 

the study is intended to answer is the following: what components of cognitive control 

trained by the task-switching paradigm are the most important in eliciting transfer 

effects? And a further sub-question stemming from the main question can be stated as 

follows: are there age-differences with that regard (i.e., are the same components of 

cognitive control important in eliciting transfer effects in both younger and older adults)? 
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OVERVIEW OF STUDY DESIGN 

The specific design of the present training study was based largely on a previous 

task-switching training study by Karbach and Kray (2009). Most importantly we used the 

same amount of training (i.e. same amount of practice trials). The differences between the 

two studies were the specific tasks used, and related to that, the change in the nature of 

the stimuli (pictures in the previous study; characters in the present study).  

Solving task-switching tasks requires cognitive control that can be separated into 

three main components, as mentioned in the theoretical introduction: ‘updating’, 

‘inhibition’ and ‘shifting. To disentangle the relative involvement of these different 

cognitive control components in task-switching we had to use a design in which we could 

separately manipulate demands on these three components.  

‘Updating’, demands were manipulated by the presence or absence of a task cue. 

The reason for this is that without a task cue participants had to continually update which 

task to perform during the task-switching paradigm. Therefore, in the absence of a cue, 

demands on ‘updating’ were high, whereas if task cues were present throughout the task, 

demands on ‘updating’ could be kept low. 

With regard to ‘inhibition’, demands were manipulated by combining stimuli 

which were either task specific or neutral. During task execution, if participants were 

presented with a bivalent stimuli (i.e. containing two different task specific stimuli), then 

response to the currently irrelevant stimuli had to be suppressed; therefore demands for 

‘inhibition’ were high. Whereas, if participants were presented with a univalent stimuli 

(i.e. containing a task specific stimuli and a neutral stimuli), then demands for ‘inhibition’ 

were low, as no competing responses had to be suppressed.  

By the combination of these manipulations, four different task-switching training 

groups were created in which participants had to switch between two tasks on every 
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second trial within each block. In addition, we had a single-task training group, which 

practiced the same two tasks, but in isolation. Therefore, they did not have to switch tasks 

within blocks. It was assumed that if the ‘updating’ and ‘inhibition’ manipulations would 

not yield any difference in transfer effects between the task-switching training groups, 

but at the same time all task-switching training groups would show transfer effects 

relative to the single task training group, then the ‘shifting’ component is mostly 

responsible for the observed transfer effects. 

As it will be described in the method section, near transfer was measured at 

pretest, posttest, and at the follow-up sessions with a task-switching paradigm different 

from the ones used during training. Far transfer was also assessed in these three 

occasions. Measures for far transfer consisted of a battery of cognitive tests assessing 

verbal working memory (reading span, counting span), interference control (color stroop, 

number stroop), updating (digit backwards; 2-back, 3-back), and reasoning (Raven 

Standard Progressive Matrices, BOMAT). As mentioned previously, we used multiple 

indicators for each construct to assess whether improvements are present on the latent 

variable level. This decreases the likelihood that transfer effects are task specific. The 

specific details of the training groups and the tasks at pretest and posttest are presented in 

the method section. 
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RESEARCH PREDICTIONS 

This part is divided into four parts. The specific research predictions are outlined 

(1) with regard to the task-switching training sessions, (2) with regard to near transfer 

effects to a similar untrained switching task, and (3) with regard to far transfer effects to 

other executive control tasks, and (4) long-term maintenance of the task-switching 

training. Each section begins with a brief summary of the relevant theoretical 

considerations, followed by the predictions. 

Task-Switching Training Sessions 

The main interests of this study are the near and far transfer effects of the training. 

Nevertheless, examining the training effects during the four training sessions will help us 

to better understand the near and far transfer effects. This will be done by examining age 

differences in the training benefits of the groups that practiced task-switching. The four 

different task-switching conditions are: 1) with task cues (low updating) and univalent 

stimuli (low inhibition); 2) with task cues and bivalent stimuli (high inhibition); 3) 

without task cues (high updating) and univalent stimuli; and 4) without task cues and 

bivalent stimuli. 

Age differences in the reduction of switching costs  

As previously presented, switch costs can be reduced through practice in both 

younger and older adults, but there are no differences in the rate of reduction between 

younger and older adults (Bherer et al., 2005; Karbach & Kray, 2009; Kramer et al., 

1999; Kray & Lindenberger, 2000). Therefore, we expect that: switch costs will be 

reduced throughout the four training sessions (prediction 1); there will be no differences 

in reduction between younger and older adults (prediction 2); switch costs will still be 

found at the fourth training session (prediction 3). 
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The impact of inhibition demands  

Performance costs in task-switching and especially switch costs are sensitive to 

whether the stimuli are bivalent or univalent (affording multiple or single task sets 

respectively). Switch costs are greater in bivalent conditions (e.g., Allport et al., 1994; 

Jersild, 1927; Rogers & Monsell, 1995; Spector & Biederman, 1976). Therefore, we 

expect that switch costs will be greater in bivalent groups (prediction 4).  

Previous studies indicated that older adults have more difficulties than younger 

adults when there is an ambiguity in the stimuli to respond to (i.e. when stimuli are 

bivalent) (Mayr, 2001). Therefore, we expect that switch costs will be larger for older 

adults than for younger adults in the task-switching groups with bivalent stimuli 

(prediction 5). 

The impact of updating demands  

Previous studies indicated that older adults have more difficulties than younger 

adults when there is a higher demand on updating internal representations of upcoming 

task goals (i.e. when task cues are not provided) (Lindenberger & Mayr, 2013). 

Furthermore, previous studies have indicated that older adults can use task cues to 

prepare for an upcoming task in a similar way as younger adults, leading to a similar 

amount of reduction of mixing and switch costs (Cepeda et al., 2001; Kramer et al., 1999; 

Kray, 2006). Therefore, we expect that switch costs will be larger in older adults than in 

younger adults in the uncued task-switching groups (prediction 6). 

There is evidence suggesting that older adults have difficulties when task 

uncertainty increases. In a study by Kray and colleagues (2002), using an externally cued 

task-switching paradigm, age-related differences in mixing costs disappeared when task 

cues were provided. Also, Kramer and colleagues (Kramer et al., 1999) demonstrated that 

in an alternate runs task-switching paradigm if memory demands are increased then older 
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adults are less able to reduce switch costs through training. Therefore, we expect that 

older adults will show less reduction through training in uncued task-switching groups 

(prediction 7). 

Near Transfer Effects 

In general, we expect larger reduction in switch costs for task-switching groups 

relative to the control group from pretest to posttest (prediction 8), as well as larger 

reduction in mixing costs for task-switching groups relative to the control (prediction 9). 

The impact of inhibition demands  

We expect larger transfer (i.e. larger reduction in switch and mixing costs) from 

the more demanding conditions to the less demanding conditions, therefore larger transfer 

from high inhibition demand training to low inhibition demand conditions (prediction 

10). 

The impact of updating demands  

Similar to our expectation regarding inhibition demands, we expect larger transfer 

from the more demanding conditions to the less demanding conditions, therefore larger 

transfer from high memory demand training to low memory demand conditions 

(prediction 11). 

Age differences in the reduction of switching costs  

There is evidence that older adults show a greater impairment with regard to 

mixing costs, whereas on the level of switch costs there is not much difference between 

younger and older adults (Karbach & Kray, 2009; Kray & Lindenberger, 2000; Reimers 

& Maylor, 2005; Wasylyshyn et al., 2011). Therefore, we expect: larger mixing costs in 

older adults than in younger adults at pretest (prediction 12); and no difference in switch 
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costs between younger adults and older adults at pretest (prediction 13). We also expect 

more substantial reduction in mixing costs for older adults from pretest to posttest than 

for younger adults (prediction 14). 

Far Transfer Effects 

The main interest of this study is to investigate the mechanisms mediating transfer 

effects of a task-switching training paradigm to untrained cognitive abilities in younger 

and older adults. As mentioned above, evidence for far transfer effects of task-switching 

training comes from a study conducted by Karbach and Kray (2009), which showed 

broad transfer effects to measures of inhibition, working-memory and fluid intelligence. 

However, this previous study did not give an answer regarding which processes were 

actually trained during task-switching. We are interested in how manipulating demands 

on inhibition and updating affects transfer effects, and whether there are age-related 

differences in the transfer effects. 

With respect to Interference Control we have the following predictions: 

Prediction 15: larger reduction with respect to interference costs in those groups 

that trained with bivalent task-switching condition as compared to those groups that 

trained with univalent task-switching. 

With respect to Verbal Working-memory we have the following predictions: 

Prediction 16: larger improvements in verbal working-memory in those groups 

that trained with uncued task-switching condition as compared to those groups that 

trained with cued task-switching. 

Prediction 17: larger improvements in verbal working-memory in those groups 

that trained with bivalent task-switching condition as compared to those groups that 

trained with univalent task-switching. 
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With respect to Updating we have the following predictions: 

Prediction 18: larger improvements in those groups that trained with uncued task-

switching condition as compared to those groups that trained with cued task-switching; as 

well as larger improvements in those groups that trained with bivalent task-switching 

condition as compared to those groups that trained with univalent task-switching 

(prediction 19). 

With respect to Fluid Intelligence we have the following predictions: 

Prediction 20: larger improvements in task switching groups than single-task 

groups. 

Predictions to long-term maintenance of task-switching training 

There are previous results indicating long term maintenance of training in the 

domain of working memory (Dahlin, Nyberg, et al., 2008). Similarly, we also expect that 

training effects will be maintained after six months in task switching. Furthermore, 

previous training studies with younger and older adults indicated a larger drop in 

performance for older adults at follow up sessions (Brehmer et al., 2008; Li et al., 2008). 

Similarly, we expect that relative to younger adults, older adults will show a larger drop 

in performance from posttest to follow up. 
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Method 

PARTICIPANTS 

Overall 176 participants were recruited for the study. Thirteen participants had to 

be excluded from the analysis either because they did not want to finish the study (n = 9), 

because of health problems (n = 3) or because of mixing up training groups during 

training sessions (n = 1). The final sample consisted of 81 young adults (mean age = 21.9 

years; age range = 19-25 years) and 82 older adults (mean age = 70.8 years; age range 

65-85 years). They were recruited from a subject pool at Saarland University, and were 

paid 56 and 64 Euros, for younger and older adults respectively, to participate in the six 

sessions of the study, plus 20 Euros for a follow up assessment. Table 1 provides some of 

the descriptive statistics of the study sample. 

Table 1 Descriptive Statistics of the Effective Sample for Age, Gender Distribution 

 Younger Adults Older Adults 
N 81 82 
Mean age 21.9 70.8 
Age range 19-25 65-85 
Female 40 43 
Years of education 15 14 

MATERIALS AND PROCEDURE 

Paper pencil tests as well as computerized tests were registered during the study. 

The computerized tests were presented with E-Prime software package. Manual 

responses were registered with a standard desktop keyboard. 

The effectiveness of different types of task-switching training conditions was 

assessed by a pretest-training-posttest-follow-up design. To examine near- and far-

transfer as well as the maintenance of transfer effects, the pretest session included 

baseline measurements of a single-task and different task-switching conditions as well as 

 50 



a battery of comprehensive cognitive tasks. After the pretest session participants were 

assigned to one of five training groups and worked through four training sessions. The 

posttest and follow-up sessions were similar to the pretest session with parallel versions 

of the tests used at pretest. Participants were expected to participate in the six sessions 

with at least two intervening days between the sessions. Testing took approximately three 

weeks per person. Mean duration between last training session and posttest was 5 days. 

Follow up measurements took place 6 months after the pretest sessions. 

MEASURES AT PRETEST, POSTTEST AND FOLLOW-UP 

Table 2 gives an overview of the different psychometric tests and cognitive tasks 

at pretest, posttest and follow-up. The cognitive battery included tests that were used in 

previous dissertation study (Karbach, 2008), with slight modifications to some of the tests 

which will be indicated below. 
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Table 2 Measured constructs, items, type of tests, estimated time needed for completion 
of tests and sources. 

Construct Items Type Estimated 

Time (min) 

Source 

 Demographic 
Questionnaire 

paper 
pencil 

3  

 Self Efficacy 
Questionnaire 

paper 
pencil 

3   

Perceptual 
Speed 

Digit Symbol paper 
pencil 

1,5 – 3  (Wechsler, 1982) 

Shifting Task Switching computer 20   

Verbal 
Working-
memory 

Digit Backward paper 
pencil 

3  (Wechsler, 1981) 

Verbal 
Working-
memory 

Reading Span computer 5-7  (Kane et al., 2004) 

Verbal 
Working-
memory 

Counting Span computer 6  (Kane et al., 2004) 

Updating AX-CPT computer 5  (Servan-Schreiber, 
Cohen, & Steingard, 

1996) 

Updating 2-back computer 5  (McElree, 2001) 

Updating 3-back computer 5  (McElree, 2001) 

Inhibition Color Stroop computer 8-11  (T A Salthouse & Meinz, 
1995) 

Inhibition Number Stroop computer 3-5  (T A Salthouse & Meinz, 
1995) 

Fluid 
Intelligence 

BOMAT paper 
pencil 

15-18  (Hossiep & Hasella, 
2010) 

Fluid 
Intelligence 

Raven paper 
pencil 

10-13  (Raven, 1988) 

Similar to the previous Karbach study (2008) two to three different tests were 

used to measure each ability at a latent level to reduce measurement errors. 
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Verbal working-memory was assessed by Digit Backward, Reading Span, and 

Counting Span tests; fluid intelligence by the BOMAT and Raven’s Progressive Matrices 

tests; updating by the 2-back, 3-back and AX-CPT tests; and inhibition by the Color 

Stroop and Number Stroop tests. For near transfer a task-switching task was developed 

which provided baseline measurements of four different kinds of task-switching 

conditions. In addition, a Demographic Questionnaire, a Self-Efficacy Questionnaire, and 

the Digit Symbol tests were also administered. 

DEMOGRAPHIC QUESTIONNAIRE 

The demographic questionnaire assessed basic information about the participants 

such as gender, handedness, highest school achievement, years of education, physical and 

mental health, hearing and vision. These measures were later analyzed to control for 

differences between training groups.  

SELF-EFFICACY QUESTIONNAIRE1 

The Self-Efficacy Questionnaire contained 20 statements (e.g.: “I believe that I 

can solve brainteasers easily.” [“Ich bin der Meinung, dass ich Denksportaufgaben gut 

lösen kann.”]) and participants had to indicate their agreement with a given sentence on a 

7 point likert scale from -3 to 3. 

COGNITIVE BATTERY 

Digit Symbol 

The same paper pencil version of the Digit Symbol Substitution Test was applied 

as in the Karbach study (2008) adapted from Wechsler’s Adult Intelligence Scale (1982). 

The test is supposed to indicate basic processing speed. On the upper part of the test sheet 

1 this questionnaire was included in the study as part of a separate project, and is not analyzed in the present 
dissertation 
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nine symbols were paired with nine digits. Below that 100 of the digits were presented 

without the symbols. The task of the participants was to fill in as many of the empty cells 

with the corresponding symbols in 90 seconds as they could. The test score was the sum 

of correctly paired symbols.  

Digit Backward 

In the Digit Backward test the experimenter read aloud series of numbers and the 

participants had to repeat the series in reverse order (cf. Wechsler, 1981). The task started 

with two practice trials containing two items. The next three trials contained three items, 

then four items, and so on. The test ended if the participant could not repeat correctly any 

of the three trials with a given length or continued for up to 24 trials at maximum. The 

test score was the number of the items in the longest correctly recalled trial, as well as the 

number of totally correct items. 

BOMAT 

The BOMAT (Bochumen Matrizentest Standard) is a non-verbal paper-pencil 

reasoning test (Hossiep & Hasella, 2010). On a page participants saw a matrix of 5 x 3 

with figures of basic geometrical shapes in grayscale, and one of the figures was missing 

(see Figure 3Error! Reference source not found.). Below the matrix there were six 

figures, and the task was to find out which figure fits the matrix above. After three 

practice examples participants had 15 minutes to work through 28 examples. For the 

pretest and posttest parallel versions with different examples were available. For the 

follow-up test examples were taken from the pretest (even numbered) and posttest (odd 

numbered). The test score was the sum of correctly solved examples. 
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Figure 3 Example sheet from the BOMAT test 

2-back 

A shorter and modified version of the 2-back task was applied in the present study 

compared to the one used in the Karbach study (2008) (adapted from McElree, 2001). In 

this 2-back task participants saw in the middle of the screen a succession of numbers 

(from 1 to 9) presented for 1000 ms with 0 ms in between the numbers. The task was to 

monitor the numbers and press a button on the keyboard (P) if the given number was the 

same as two before, or another button (Q) in every other case. The task started with a 

practice block of 20 trials followed by the experimental block of 108 trials. Target 

probability was 25 percent. For the older participants an extra practice block (20 trials) 

with longer stimulus presentation time (2000 ms) was included as they had difficulties to 

perform this test. Then they had the normal practice block (20 trials) that the younger 

participants had. A further difference between the test of the younger and older adults 
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was that the older adults only had to press a button (P) if the given number was the same 

as the number before the last. Due to visual problems font sizes were also enlarged for 

older adults (72 points instead of the 24 points used for younger adults; Courier New). 

The test score was hits minus false alarms.  

Reading Span 

The same Reading Span test with a slight modification was applied as in the 

Karbach study (2008), which was a shortened form of the test used by Kane and 

colleagues (2004) (with 8 trials instead of 12 trials). As in other operation span tasks 

participants had to engage in a primary task, and in the meanwhile they had to perform a 

secondary interfering task. In this reading span task, participants were presented with 

displays showing grammatically correct sentences which were either sensible or 

nonsense, followed by a question mark and a letter in uppercase (B, F, H, J, L, M, Q, R, 

X) separated by space. In the secondary task participants were to decide whether the 

given sentence made sense or not by saying aloud “yes” or “no” (e.g. Beim Einkaufen 

muss man immer darauf achten, dass das Wasser nicht zu hoch steht.  ?  H). The 

sentences consisted of 7 to 14 words, with a mean of 10.5 words. After a decision they 

had to read aloud a letter (in the above example H) and memorize that letter, which was 

the primary task. The set of letters were repeated across trials with approximately equal 

proportion, but they were not repeated within a given trial. Then the experimenter pressed 

a button and a new display was shown immediately. After that either a new display 

followed where the task was the same or the participant was prompted to recall the 

memorized items, which they had to write down on an answer sheet in the correct order 

starting with the first item they had to memorize. Font sizes were 28 points, white color, 

and Arial type on a blue background. Set sizes (i.e. the number of recalled items) of trials 
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were between two to five. Participants received three practice trials that were followed by 

eight experimental trials ranging from two to five items. Each length of set size occurred 

twice in a random order. The test score was the number of correctly recalled trials, and 

the number of correctly recalled items. 

Color Stroop 

A computerized version of the Color Stroop task was applied (cf. Karbach, 2008). 

Participants were presented words (red, blue, green, yellow, hat, book, tree, flea [actually 

they were written in German: rot, blau, grün, gelb, Hut, Buch, Baum, Floh]) in different 

colors (red, blue, green, yellow). The task of the participants was to indicate the color in 

which the word was written with one of four buttons of the keyboard (S - red, K – blue, N 

-green, C - yellow) that were marked with the respective colors. The stimuli were written 

in 18 points, presented on a white background. The stimulus presentation time was until 

response but maximum 2000 ms. The inter-stimulus interval was 700 ms. The task started 

with two practice blocks, each containing 12 trials. That was followed by four 

experimental blocks, each containing 24 trials. In each block three different types of trials 

were intermixed: in congruent trials words “red”, “blue”, “green”, “yellow” are written 

with the same color that the word refers; in incongruent trials the words “red”, “blue”, 

“green”, “yellow” are written with different colors than to which the words refer; and in 

neutral trials the words “hat”, “book”, “tree”, “flea” are presented with any of the four 

colors. By subtracting from the mean reaction times of incongruent trials the mean 

reaction times of neutral trials we obtain a measure indicating the interference effects. 

AX-CPT 

In a modified AX version of the Continuous Performance Test (i.e. AX-CPT, 

adapted from Servan-Schreiber et al., 1996) participants first saw a cue (A, F, G, S) for 
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500 ms that was followed by a probe (X, C, M, U) for 500 ms. The probe was present 

until response (but 1300 ms maximum). Cue probe interval was 2000 ms. The task was to 

press a button on the keyboard (P) for an AX cue-target combination, or another button 

(Q) in every other cue-target combinations (that could either be an AY [that is A 

followed by a C, M or U], a BX [that is an F, G or S followed by an X] or a BY [that is a 

F, G or S followed by a C, M or U]). If participants did not answer within 1300 ms after 

the presentation of the probe, they were shown a display urging them to answer faster. 

The probability of AX trials were 70 percent, all other combinations (AY, BY, BX) were 

10 percent. The task started with two practice blocks of 12 trials followed by two 

experimental blocks of 50 trials. Fonts were 48 points Calibri type. Dependent variables 

were latencies and error rates. 

3-back 

Only the younger adults performed the 3-back task (adapted from McElree, 2001) 

as it proved to be too hard to perform for the older adults. The 3-back task was similar to 

the 2-back task. As in the 2-back task participants saw a series of numbers (from 1 to 9) 

successively. The presentation time for each number was 1000 ms. The task was to 

monitor the numbers and press a button on the keyboard (P) if the given number was the 

same as the number two before the last, or another button (Q) in every other case. The 

task started with a practice block of 20 trials followed by an experimental block of 108 

trials. Target probability was 25 percent. Font sizes were 24 points Courier New. The test 

score was again the percentage of the correctly answered target trials. 

Counting Span 

This task was adapted from Kane (2004; see also, Karbach, 2008). Participants 

were presented displays showing shapes of 3 to 9 dark blue circles, 1 to 5 green circles 
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and 1, 3, 5, 7 or 9 dark blue squares on a grey background. Across displays the number of 

these three shapes was approximately balanced. The secondary task of the participants 

was to count loudly the number of dark blue circles (i.e. in the case of 3 dark blue circles 

for example saying aloud “one”, “two”, “three” - “three”, repeating the final number) and 

then to memorize that number, which was the primary task. Then the experimenter 

pressed a button and a new display was shown immediately, and the participants had to 

count again the number of dark blue circles and memorize that number as well. After a 

prompt they had to write down the correct numbers in order of presentation. Set sizes (i.e. 

the number of recalled items) of trials were between two to five. After three practice trials 

participants performed eight experimental trials followed (with set sizes 2*2, 2*3, 2*4 

and 2*5, in a mixed order). Test score was the number of correctly recalled trials, and the 

number of correctly recalled items. 

Number Stroop 

The Number Stroop task was adapted from Salthouse and Meinz (1995). In this 

task participants were presented with the following characters (1, 2, 3, 4, X, M, A, H) and 

in a trial any of these characters could be presented 1, 2, 3 or 4 times next to each other. 

The task of the participants was to indicate how many characters were displayed on the 

screen (with the keyboard buttons S - 1, K - 2, C - 3, N - 4). Other details (stimulus size, 

presentation time, number of trials and blocks) were similar to that of the Color Stroop 

task. Similarly to the Color Stroop task, in each block three different types of trials were 

intermixed: in congruent trials the characters “1”, “2”, “3”, “4” were displayed the same 

number of times that the character indicated; in incongruent trials the characters “1”, “2”, 

“3”, “4” were displayed with a different number of times than to which the character 

referred to; and in neutral trials the characters “X”, “M”, “A”, “H” were presented 1, 2, 3 
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or 4 times next to each other. Dependent variable was again the interference effect, which 

was obtained by subtracting from the mean reaction times of incongruent trials the mean 

reaction times of neutral trials 

Raven’s Standard Progressive Matrices (Raven) 

The Raven’s Standard Progressive Matrices (Raven, 1988) is a non-verbal 

reasoning task. It has black and white figures which are combinations of basic 

geometrical shapes in matrixes of 3 x 3 with one of the figures missing (see Figure 4). 

The task of the participants was to find out which figure would fit best from a given array 

of eight figures which were displayed below the matrix. The test started with three 

examples, after which participants had to solve as many items as they could in 10 

minutes. Parallel versions for pretest and posttest were made by separating the complete 

test containing 36 items into two sets, by having the odd numbered items (item 1, item 3 

etc.) at pretest and the even numbered items (item 2, item 4 etc.) at posttest. For the 

follow-up, items from the pretest as well as the posttest version were selected, choosing 

every second item from them starting with the first (i.e.: item 1 from pretest, item 2 from 

posttest, item 5 from pretest, item 6 from posttest etc.). All in all at the pretest, at the 

posttest as well as at the follow-up there were 18 items in order of increasing difficulty. 

The test score was the sum of correctly solved items.  
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Figure 4 Example sheet from the Raven test 

Measurement of Task Switching 

For the purposes of the present study new task-switching programs had been 

developed. They were written in E-prime programming environment, and were run on lab 

computers with E-prime software. For studying near transfer effects different switching 

tasks were designed for the pretest-posttest sessions and the training sessions.  

Below the specific details of the tasks at pretest and posttest and the training 

groups will be presented. 

Pretest and Posttest 

At pretest, baseline performance on five types of switch conditions were assessed. 

Stimuli consisted of a pair of characters presented next to each other in the middle of the 
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screen, similar to a design be Rogers and Monsell (Rogers & Monsell, 1995) (see Figure 

5). 

 

Figure 5 Schematic depiction of the task-switching paradigm used in the study 

In the “digit” task (Task A) one of the characters was a number, which could be 

either smaller (1, 2, 3, 4) or larger (6, 7, 8, 9) than five. Task A required participants to 

decide whether a number is smaller or bigger than 5. In the “letter” task (Task B) one of 

the characters was a letter, which could be written either in lowercase (f, t, d, j) or in 

uppercase (F, T, D, J). In Task B participants had to decide whether a letter was 

uppercase or lowercase. 

The relevant characters appeared randomly (balanced) at either side. In the single-

task blocks the other element of the stimuli pair was always selected from the currently 

irrelevant set. A small diagram situated between the keyboard and the computer monitor 
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indicated the response assignments of the two tasks. The combination of the above 

characters resulted in 128 stimuli combination in both Task A and Task B. The same two 

response keys (Q and P) were used for both tasks as well as in all other switching tasks.  

In single-task blocks participants had to perform either Task A or Task B 

separately. In mixed-task blocks participants had to switch tasks on every second trial. 

There were four types of mixed-task blocks (see Figure 6): 

•         With cues / univalent stimuli. In this condition requirements for updating were 

kept low as a cue (“digit”, “letter” [“BUCH”, “ZAHL”]) always indicated which 

task to perform. Inhibition was also low as task-relevant stimuli were always 

paired with a task-irrelevant stimuli, selected from a neutral set [*,?,#,%]. 

•         Without cues / univalent stimuli. It was similar to the first type except that the cue 

(“+”) did not indicate which task to perform, so that participants had to maintain 

the relevant task-set. 

•         With cues / bivalent stimuli. It was similar to the first type except that task relevant 

stimuli were always paired with interfering stimuli selected from the other task-

set (example stimuli pair: 1F). 

•         Without cues / bivalent stimuli. It was similar to the third type, except that the cue 

(“+”) did not indicate which task to perform, so that participants had to maintain 

the relevant task-set. 
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Figure 6 Illustration of the four task-switching conditions 

Pretest and Posttest procedure 

At pretest and posttest the single-task blocks were presented first, starting with a 

short practice block (9 trials) of either Task A or Task B (counterbalanced), followed by 

3 experimental blocks (17 trials / block). This was followed by the second single-task 

practice block (9 trials) (Task B or Task A), 3 experimental blocks (17 trials), and then 

the mixed-task blocks, 3 block / type, 17 trials / block, in the following order: with cues / 

univalent stimuli, with cues / bivalent stimuli , without cues / univalent stimuli, and 

without cues / bivalent stimuli. 

During data analysis the practice blocks as well as the first trial of each block was 

dropped, resulting in 48 trials for each condition. Response types (left/right), stimulus 

types (smaller/lowercase – smaller/uppercase – larger/lowercase – larger/uppercase) as 

well as task types (digit/letter) were counterbalanced in each condition and block, and the 

sequence of stimuli was randomized for each block. 

Before the participants started with the computer test the experimenter explained 

the tasks both visually with the help of a diagram and verbally. Instructions were also 

provided in the program before each type of task explaining the given task as well as a 
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diagram (see Figure 7) with the response assignments before the ninth and fifteenth 

blocks. 

 

Figure 7 Schematic depiction of the task-switching paradigm showing response 
assignments presented in the program. 

Trials started with a cue for 1000 ms, which was followed by the target until the 

subject responded and then 25 ms blank screen until the next cue (see Figure 8). Subjects 

were instructed to respond as fast and as accurate as possible. Feedback about their 

performance (error rate, RT) was given at the end of each block. To finish the task took 

approximately 20-30 minutes. 
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Figure 8 Schematic depiction of the trial procedure in the task-switching tasks. 

Training 

For the four training sessions participants were assigned to one of the following 

five training groups based on their pretest performance (Digit Symbol, Raven, single task 

mean RT, mixing costs, Color Stroop, Number Stroop, 2-back, 3-back, AX-CPT). The 

method for matching the participants based on these tests will be presented later. 

Single-task group: 

In the Single-task group participants trained with alternating single-task blocks 

including Task C and Task D. In Task C (’letter’ task) participants had to decide whether 

a letter was consonant (G, K, M, R) or vowel (A, E, U, I). In Task D (’digit’ task) 

participants had to decide whether a number was odd (1, 3, 5, 7) or even (2, 4, 6, 8). The 

presentation of the stimuli was similar to the pretest and posttest single-task blocks, 

which resulted in 64 stimuli combination in Task A and 64 in Task B. With regard to 

response assignments participants had to press (Q) for odd (‘digit’ task) and vowel 

(‘letter’ task) and (P) for even (‘digit’ task) and consonant (‘letter’ task). This stimulus 

response assignment was constant across the five groups. Before each of the sessions the 

experimenter reiterated the task rules. A small diagram situated between the keyboard 
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and the computer monitor also indicated the response assignments of the two tasks for all 

five groups. 

Task-switching groups 

These mixed-task conditions were similar to their corresponding pairs at pretest 

and posttest, except that instead of Task A and B they practiced Task C and D. These 

have been described above at the Single-task group. In all conditions there were 128 

stimuli combinations. As for the Single-task group the experimenter reiterated the task 

rules before each of the sessions. A small diagram situated between the keyboard and the 

computer monitor also indicated the response assignments of the two tasks, as well as the 

program also showed a diagram before participants started with the first block. 

Training sessions for all groups consisted of 24 experimental blocks (17 trials per 

block) and took approximately 20-30 minutes to finish. In this way all participants had 

performed 1632 trials after the four sessions. After each block participants were 

presented with a feedback display showing the average reaction times and error rates of 

the previous block. Participants of the Single-task group with odd ID numbers started 

their first and third sessions with 12 blocks of digit tasks followed by 12 blocks of letter 

tasks. Their second and fourth sessions started with 12 blocks of letter tasks followed by 

12 blocks of digit tasks. Participants with even ID numbers had the other way around. 

Participants of the four mixed task groups had only mixed blocks (alternating between 

Tack C and Task D as described above). Each block started with two digit tasks followed 

by two letter tasks, etc., with the last trial being a digit task. Testing took place in two 

labs with the same equipment. Each lab had three workstations so that during the training 

sessions (but not during pretest, posttest or follow up sessions) participants could be 

instructed and tested in parallel for up to three persons per lab. 
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FOLLOW-UP SESSION 

As mentioned earlier all participants were contacted after approximately six 

months after their first session date and were offered 20 Euros to participate in a follow 

up assessment. The procedure for the follow up was identical to that of the posttest with 

parallel versions of the tests as indicated above. 

PROCEDURE 

At the beginning of the experiment all participants gave their informed consent. 

After a Demographic Questionnaire, at pretest, posttest, and follow-up, and a Self-

Efficacy Questionnaire and the cognitive battery were assessed. An overview of the study 

design is provided in Table 3. 

Table 3 Study design showing the tests assessed during specific phases of the study as 
well as different task conditions of the task-switching test and the five different training 
groups 

Pretest  
Session 1 

Training  
Sessions 2-5 

Posttest  
Session 6 

Follow Up  
Session 7 

Task switching: 
Single task 

Low inhibition Low 
updating 

Low inhibition High 
updating 

High inhibition Low 
updating 

High inhibition High 
updating 

Active control group 
(single task training) 

 
Low inhibition Low 
updating group 

 
Low inhibition High 
updating group 

 
High inhibition Low 
updating group 

 
High inhibition High 
updating group 

Task switching: 
Single task 

Low inhibition Low 
updating 

Low inhibition High 
updating 

High inhibition Low 
updating 

High inhibition High 
updating 

Task switching: 
Single task 

Low inhibition Low 
updating 

Low inhibition High 
updating 

High inhibition Low 
updating 

High inhibition High 
updating 

Working-
memory 

(reading span, 
counting span) 

Working-
memory 

(reading span, 
counting span) 

Working-
memory 

(reading span, 
counting span) 

Interference 
(color stroop, 

number stroop) 

Interference 
(color stroop, 

number stroop) 

Interference 
(color stroop, 

number stroop) 
Updating 

(2-back, 3-back, 
AX-CPT) 

Updating 
(2-back, 3-back, 

AX-CPT) 

Updating 
(2-back, 3-back, 

AX-CPT) 
Reasoning 

(Raven, BOMAT) 
Reasoning 

(Raven, BOMAT) 
Reasoning 

(Raven, BOMAT) 
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MATCHING THE PARTICIPANTS 

To make comparisons unbiased baseline differences between the five training 

groups on the critical measures had to be considered. Therefore after pretest we 

calculated the following scores for each participant. From the task-switching part we 

calculated Speed of Task Execution (single-task median RT) and Mixing Cost (median 

RT). For Interference Score we calculated interference costs by subtracting congruent 

trials (median RT) from incongruent trials (median RT) separately for the Color and 

Number Stroop, then averaged them. For Updating Score we calculated PR scores (hits - 

false alarms) separately for 2-back, 3-back and AX-CPT, than averaged them. For 

Working-memory Score we calculated correct answers on Reading Span, Counting Span 

and the span of the Digit Backwards task, than we averaged them. For Fluid Intelligence 

Score we used the Raven task scores. At last we also used the score on Digit Symbol for 

the matching. 

The basic idea behind the matching was the following. For each age group, the 

first five participants were assigned randomly to the five different training groups. Then 

we calculated standard deviations separately for the critical test scores (Speed of Task 

Execution, Mixing Cost, Interference Score, Updating Score, Working-memory Score, 

Fluid Intelligence Score, Digit Symbol Score) of these five participants. By adding the 

standard deviations of these seven scores together we got an indicator of how far these 

five groups are from each other. Then from the sixth participant we did the following. As 

we wanted to get minimal difference between the groups we had to assign the participant 

in a group so that this indicator (defined as the sum of the SDs of the seven measures) 

changes always to a lowest value. Therefore we tested how the indicator would change in 

the five possible cases, and then we assigned the participant to the group in which, as a 
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result of changing the average scores of the seven critical measures in the respective 

group, the indicator assumed the lowest value. 

DATA ANALYSIS 

Task switching and Stroop tasks 

During data analysis practice blocks were discarded as well as the first trials of 

each block. Mean reaction times for correct responses were calculated for specific trial 

(switch, non-switch; congruent, incongruent, neutral) and block (single, mixed) types. 

For the analysis of training and transfer effects general and specific switch costs were 

defined by two orthogonal contrasts. In the first contrast performance of single task trials 

were compared with switch and non-switch trials in mixed blocks (i.e.: -2 1 1, general 

switch cost). In the second contrast performance within mixed blocks were compared 

between switch and non-switch trials (i.e.: 0 -1 1, specific switch cost). 

Similar to other studies we also used log transformed reaction times during data 

analyses (e.g. Karbach, 2008; Kray & Lindenberger, 2000). The reason for using log 

transformed reaction times is the following. If we assume that there is a constant value 

with which older adults are slower than younger adults (for instance, if they are 2 times 

slower), than difference-scores in log transformed scores between younger and older 

adults will be the same. For example, if younger adults perform stay trials in 300 ms and 

switch trials in 350 ms, and assuming older adults are twice as slow, and they perform 

stay trials in 600 ms and switch trials in 700 ms, then after log transformation the 

difference of log(350)-log(300)=log(700)-log(600). Thus log transformation takes 

general slowing into account. Additional age-differences in task-switching costs should 

reflect genuine age-related differences in cognitive processing. 
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Matching 

Before analyzing the training and transfer data, it was controlled whether there 

were baseline differences between the five training groups in the two age groups with 

regard to the dependent variables of interest (single trials, stay trials, switch trials, mixing 

costs, switch costs) (Table 4 and Table 5). 

Table 4 Mean (M) reaction times and standard deviations (SD) for each trial type (single, 
stay, switch) as well as mixing and switch costs separately for each training group at 
pretest. 

  Training Group 
  Group 1 

single (n=16) 
Group 2 

cued/univalent 
n=(16) 

Group 3 
cued/bivalent 

n=(16) 

Group 4 
uncued/univalent 

n=(17) 

Group 5 
uncued/bivalent 

n=(16) 
Trial Type M (SD) M (SD) M (SD) M (SD) M (SD) 
 Younger 
Single 511 (49) 519 (47) 521 (71) 513 (78) 525 (58) 
Stay 597 (100) 599 (106) 590 (115) 602 (182) 599 (99) 
Switch 676 (139) 676 (150) 677 (135) 695 (231) 696 (134) 
Mixing cost 86 (76) 79 (77) 69 (69) 89 (116) 73 (69) 
Switch cost 79 (53) 77 (63) 87 (53) 93 (61) 97 (57) 
 Older 
Single 680 (68) 721 (138) 659 (102) 701 (79) 689 (64) 
Stay 913 (155) 940 (231) 883 (179) 925 (176) 907 (141) 
Switch 1010 (199) 1047 (292) 978 (203) 1033 (204) 1007 (151) 
Mixing cost 234 (110) 219 (134) 224 (128) 224 (143) 218 (121) 
Switch cost 96 (106) 106 (108) 95 (59) 108 (65) 100 (84) 

Reaction Time Analysis 

To assess baseline differences in mean reaction times a three-way ANOVA was 

conducted with the within-subjects factor Trial Type (single, stay, switch) and between-

subjects factors Age Group (younger adults, older adults) and Training Group (Group 1-

5). Results showed a main effect of Age Group for single trials, F (1, 153) = 188.65, p < 

.001, stay trials, F (1, 153) = 169.36, p < .001, as well as for switch trials, F (1, 153) = 

121.60, p < .001. There were no significant main effects of Training Group in any of the 
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trial types, (all ps > .60), and neither were interactions between Age Group and Training 

Group, (all ps > .56). 

To assess baseline differences in mixing costs and switch costs a three-way 

ANOVA was conducted with the within-subjects factor Trial Type (single, stay, switch) 

and between-subjects factors Age Group (younger adults, older adults) and Training 

Group (Group 1-5). We set up two orthogonal contrasts for the factor Trial Type to 

determine mixing and switch costs. The first contrast tested single trials against stay and 

switch trials (mixing cost) the second contrast tested stay trials against switch trials 

(switch cost). Results showed a main effect of Age Group for mixing costs, F (1, 153) = 

72.53, p < .001, but not for switch costs (p = .22). There were no significant main effects 

of Training Group in either mixing or switch costs, (all ps > .95), nor significant 

interactions between Age Group and Training Group, (all ps > .96). 
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Error Rates 

Table 5 Mean (M) percentage correct trials and standard deviations (SD) for each trial 
type (single, stay, switch) separately for each training group at pretest.  

  Training Group 
  Group 1 

single (n=33) 
Group 2 

cued/univalent 
n=(33) 

Group 3 
cued/bivalent 

n=(32) 

Group 4 
uncued/univalent 

n=(33) 

Group 5 
uncued/bivalent 

n=(32) 
Trial Type M (SD) M (SD) M (SD) M (SD) M (SD) 
 Younger 
Single 95.83 

(3.42) 
95.18 

(2.77) 
96.68 

(2.50) 
94.91 

(3.86) 
96.74 

(2.84) 
Stay 95.96 

(3.11) 
95.12 

(3.18) 
96.09 

(2.42) 
95.59 

(2.57) 
96.61 

(2.68) 
Switch 93.95 

(5.48) 
94.14 

(3.57) 
92.45 

(5.56) 
91.12 

(3.26) 
94.47 

(3.70) 
 Older 
Single 98.35 

(1.43) 
96.94 

(2.19) 
97.20 

(1.81) 
98.18 

(1.55) 
97.79 

(1.61) 
Stay 96.69 

(2.66) 
95.71 

(3.31) 
96.09 

(4.57) 
96.16 

(2.51) 
96.35 

(3.36) 
Switch 95.10 

(3.66) 
93.50 

(4.98) 
93.62 

(4.87) 
94.34 

(3.76) 
93.95 

(4.81) 

 

To assess baseline differences in error rates a three-way ANOVA was conducted 

with the within-subjects factor Trial Type (single, stay, switch) and between-subjects 

factors Age Group (younger adults, older adults) and Training Group (single, LMLI, 

LMHI, HMLI, HMHI). Results showed a main effect of Age Group for single trials, F (1, 

153) = 21.07, p < .001, but not for stay trials (p = .50) or switch trials (p = .21). There 

were no significant main effects of Training Group for any trial types (all ps > .32), 

neither any interactions between Age Group and Training Group, (all ps > .19). 
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Results 

AGE-RELATED DIFFERENCES IN TASK-SWITCHING TRAINING AS A FUNCTION OF 
INHIBITION AND UPDATING DEMANDS 

To examine practice-induced training gains the training data were analyzed 

separately for the single-task group and the four task-switching groups. The single-task 

group data were submitted to a two-way ANOVA including the within-subjects factor 

Session (1, 2, 3, 4) and between-subjects factor Age group (younger adults, older adults). 

With regard to the task-switching groups data were submitted to a four-way ANOVA 

including the within-subjects factors Session (1, 2, 3, 4) and Trial type (stay, switch) and 

the between-subjects factors Age group (younger adults, older adults) and Group (Group 

2, Group 3, Group 4, Group 5). Mean reaction times and percentage of correct trials for 

all training groups and sessions can be found below (Figure 9 - Figure 11). 

RTs and ERs Group 1 

 

 
Figure 9. Mean RT (ms) and percentage of correct trials (%) as a function of Training 
Session (1, 2, 3, 4) and Age Group (younger adults, older adults) for Group 1 (single task 
– bivalent stimuli). Error bars indicate the standard error of the mean. 

450 

500 

550 

600 

650 

700 

1 2 3 4 

RT
 (m

s)
 

Training Session 

80 

85 

90 

95 

100 

1 2 3 4 

Co
rr

ec
t T

ria
ls

 (%
) 

Training Session 

Younger adults 
Older adults 

 74 



Latencies. Analysis of the data from Group 1 (single task – bivalent stimuli) 

revealed a main effect of Age group, F(1, 31) = 55.07, p < .001, ŋ2 = .64, indicating that 

older adults were generally slower than younger adults. Furthermore there was a 

significant main effect of Session, F(1.85, 57.42) = 28.98, p < .001, ŋ2 = .48, indicating a 

reduction in latencies from the first training session to the last training session. There was 

no interaction between Session and Age Group (p = .79) 

Error rates. Analysis of error rates revealed a main of Age group, F(1, 31) = 

19.77, p < .001, ŋ2 = .39, indicating that older adults were more accurate than younger 

adults. 

RTs and ERs Groups 2-5 

With regard to the reaction time and accuracy analysis for task-switching groups 

(Groups 2-5) the overall ANOVA results can be found below (Table 6). Means and error 

rates for all training groups and trial types can be found in the Appendices (Table 15 and 

Table 16). 
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Table 6 Overall ANOVA results for task-switching groups (Groups 2-5) based on log-
transformed reaction times (Log-RT) and error rates. (ER) 

 Log-RT ER 
Effect df F p ŋ2 df F p ŋ2 

Age group  1, 122 128.21 <.001 .51 1, 122 30.86 <.001 .20 
Group 3, 122 15.82 <.001 .28 3, 122 .52 .67 .01 
Age group * Group 3, 122 1.12 .35 .03 3, 122 2.05 .11 .05 
Session 2.07, 252.74  484.97 <.001 .80 1.63, 198.88 26.89 <.001 .18 
Session * Age group2  2.07, 252.74 2.32 .10 .02 1.63, 198.88 6.53 <.05 .05 
Session * Group 6.22, 252.74  1.32 .25 .03 4.89, 198.88 2.08 .07 .05 
Session * Age group * Group 6.22, 252.74 1.95 .07 .05 4.89, 198.88  1.12 .35 .03 
Trial type  1, 122 418.02 <.001 .77 1, 122 164.28 <.001 .57 
Trial type * Age group3  1, 122 .02 .88 <.01 1, 122 2.20 .14 .02 
Trial type * Group 3, 122 6.49 <.001 .14 3, 122 .25 .86 .01 
Trial type * Age group * Group 3, 122 .93 .43 .02 3, 122 .21 .89 .01 
Session * Trial type  2.38, 290.34 120.06 <.001 .50 2.80, 341.67 29.97 <.001 .20 
Session * Trial type * Age group4  2.38, 290.34 5.65 < .05 .04 2.80, 341.67 8.90 <.001 .07 
Session * Trial type * Group 7.14, 290.34  1.09 .37 .03 8.41, 341.67 1.50 .15 .04 
Session * Trial type * Age group 
* Group 

7.14, 290.34 .90 .51 .02 8.41, 341.67 .78 .63 .02 

Latencies. With regard to latencies all main effects reached significance, as well 

as two of the two-way interactions (Trial Type * Group; Session * Trial Type) and one of 

the three-way interactions (Session * Trial Type * Age Group). 

Error rates. With regard to error rates, with the exception of Group, all main 

effects reached significance, as well as two of the two-way interactions (Session * Age 

Group; Session * Trial Type) and one of the three-way interactions (Session * Trial Type 

* Age Group). 
  

2 Based on mean reaction times there was an interaction between Session and Age group, F(1.86, 227.17) = 
18.37, p < .001, ŋ2 = .13 
3 Based on mean reaction times there was an interaction between Trial type and Age group, F(1, 122) = 
9.51, p < .05, ŋ2 = .07 
4 Based on mean reaction times this interaction was not significant (p = .60). 
 76 

                                                 



 

 

 

 

Figure 10. Mean reaction times (ms) as a function of Session (1, 2, 3, 4), Age group 
(younger adults, older adults), Group (Group 2, Group 3, Group 4, Group 5) and Trial 
type (stay, switch). Error bars refer to standard error of the mean. 
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Figure 11. Percentage of correct trials (%) as a function of Session (1, 2, 3, 4), Age group 
(younger adults, older adults), Group (Group 2, Group 3, Group 4, Group 5) and Trial 
type (stay, switch). Error bars refer to the standard error of the mean. 
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Contrasts 

In the next phase follow up analyses were performed with a-priori contrasts in 

line with our predictions to disentangle the interactions with the factor Group. Given that 

no specific hypotheses were put forth with regard to the training related changes across 

the four training sessions analyses will concentrate on comparisons between the first and 

fourth training sessions. Thus, data were subjected to a four way ANOVA including the 

within-subjects factors Session (1, 4) and Trial Type (stay, switch) and the between-

subjects factors Age Group (younger adults, older adults) and Group (Group 2, Group 3, 

Group 4, Group 5). As none of the comparisons yielded significant differences with 

regard to accuracy, only the significant results from latencies will be reported. 

Contrast 1: univalent stimuli groups (Group 2 and Group 4) – bivalent stimuli groups 
(Group 3 and Group 5) 

There was a main effect of Group, F(1, 124) = 22.22, p < .001, ŋ2 = .15, 

indicating that latencies were longer in bivalent stimuli groups than in univalent stimuli 

groups. Furthermore there was a significant interaction between Trial type and Group, 

F(1, 124) = 8.45, p = .004, ŋ2 = .06, indicating that the bivalent stimuli groups had larger 

switch costs than the univalent stimuli groups. There was also a tendency for an 

interaction between Session and Group, F(1, 124) = 3.76, p = .055, ŋ2 = .03, indicating 

that reaction times improved more in bivalent groups from the first session to the last. 

However there was no interaction between Session, Trial Type and Group (p > .12), 

indicating that switch costs reduced equally in both univalent and bivalent groups from 

the first session to the last session. There was also an interaction between Session, Age 

Group and Group, F(1, 124) = 4.20, p = .042, ŋ2 = .03, indicating that reaction times 

improved more in bivalent groups from the first session to the last session for younger 
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adults compared to older adults. Other interactions with Age Group did not reach 

significance (all ps > .10). 

Contrast 2: cued switching groups (Group 2 and Group 3) – uncued switching groups 
(Group 4 and Group 5) 

There was a significant interaction between Trial type and Group, F(1, 124) = 

9.70, p = .002, ŋ2 = .07, indicating that the uncued switching groups had larger switch 

costs than the cued switching groups. However, neither the main effect for Group nor any 

of the interactions reached significance (all ps > .10). 

Contrast 3: univalent stimuli groups: cued switching group (Group 2) – uncued 
switching group (Group 4) 

There was a tendency for an interaction between Trial type and Group, F(1, 124) 

= 3.75, p = .055, ŋ2 = .03, indicating that the uncued univalent switching groups had 

larger switch costs than the cued univalent switching groups. However neither the main 

effect for Group, nor any other interactions reached significance (all ps > .42). 

Contrast 4: bivalent stimuli groups: cued switching group (Group 3) – uncued 
switching group (Group 5) 

There was a significant interaction between Trial type and Group, F(1, 124) = 

5.95, p = .016, ŋ2 = .05, indicating that the uncued bivalent switching groups had larger 

switch costs than the cued bivalent switching groups. However neither the main effect for 

Group, nor any other interactions reached significance (all ps > .10). 

General Summary 

From the above results the following conclusions can be drawn. Reaction times 

reduced in all training groups and older adults were generally slower than younger adults. 

Switching costs also reduced in all task-switching training groups. Although the amount 

of switch costs or its reduction from the first to the last session did not differ between 
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younger and older adults, there was a difference in the amount of RT reduction from the 

first to the last session within bivalent groups, indicating a larger reduction in younger 

adults in those groups. Furthermore, task-switching groups with bivalent stimuli had 

longer latencies and larger switch costs than task-switching groups with univalent stimuli. 

Also, uncued switching groups had longer latencies and larger switch costs than the cued 

switching groups. Furthermore, uncued-univalent switching groups had larger switch 

costs than the cued-univalent switching groups and uncued-bivalent switching groups had 

larger switch costs than the cued-bivalent switching groups. Finally, the amount of 

reduction in switch costs did not differ between any of the groups and there were no 

interactions with age. With regard to error rates, we can conclude that older adults were 

generally more accurate than younger adults, and that in overall, accuracy improved from 

the first session to the fourth. 
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NEAR TRANSFER OF TASK-SWITCHING TRAINING 

To assess near transfer to a similar switching task, data were submitted to a four-

way ANOVA including the within-subjects factors Session (pretest, posttest) and Trial 

type (single, stay, switch) and the between-subjects factors Age group (younger adults, 

older adults) and Training group (Group 1, Group 2, Group 3, Group 4, Group 5). Mean 

reaction times and percentage of correct trials for all training groups and sessions are 

displayed in Table 7and Table 8. As age differences with regard to mixing and switch 

costs as well as speed of responding was entirely similar at posttest to that of the results 

at pretest, we will not report those effects again, but will focus on interactions with the 

factors Training group and Session. 
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Table 7 Mean (M) reaction times and standard deviations (SD) for each trial type (single, 
stay, switch) as well as mixing and switch costs for younger and older adults separately 
for each training group at pretest and posttest. 

  Training group 
  Group 1 

single (n=33) 
Group 2 

cued/univalent 
n=(33) 

Group 3 
cued/bivalent 

n=(32) 

Group 4 
uncued/univalent 

n=(33) 

Group 5 
uncued/bivalent 

n=(32) 
Trial type M (SD) M (SD) M (SD) M (SD) M (SD) 
 Younger 
 Pretest 
Single 511 (49) 519 (47) 521 (71) 513 (78) 525 (58) 
Stay 597 (100) 599 (106) 590 (115) 602 (182) 599 (99) 
Switch 676 (139) 676 (150) 677 (135) 695 (231) 696 (134) 
Mixing cost 125 (96) 118 (98) 113 (80) 135 (137) 122 (76) 
Switching cost 79 (53) 77 (63) 87 (53) 93 (61) 97 (57) 
 Posttest 
Single 469 (45) 472 (44) 474 (66) 481 (68) 480 (48) 
Stay 523 (55) 509 (68) 501 (77) 526 (124) 514 (61) 
Switch 582 (87) 561 (107) 566 (101) 598 (181) 574 (98) 
Mixing cost 84 (50) 64 (53) 59 (50) 81 (94) 64 (49) 
Switching cost 59 (46) 52 (44) 65 (35) 72 (64) 60 (42) 
 Older 
 Pretest 
Single 680 (68) 721 (138) 659 (102) 701 (79) 689 (64) 
Stay 913 (155) 940 (231) 883 (179) 925 (176) 907 (141) 
Switch 1010 (199) 1047 (292) 978 (203) 1033 (204) 1007 (151) 
Mixing cost 282 (128) 272 (144) 271 (140) 278 (149) 268 (119) 
Switching cost 96 (106) 106 (108) 95 (59) 108 (65) 100 (84) 
 Posttest 
Single 613 (70) 678 (108) 671 (110) 669 (84) 660 (79) 
Stay 787 (128) 829 (204) 744 (159) 832 (151) 782 (132) 
Switch 902 (157) 926 (236) 835 (202) 934 (194) 897 (146) 
Mixing cost 231 (101) 199 (137) 118 (117) 214 (98) 180 (83) 
Switching cost 115 (66) 97 (72) 91 (71) 102 (71) 115 (84) 
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Table 8 Mean (M) percentage correct trials and standard deviations (SD) for each trial 
type (single, stay, switch) for younger and older adults separately for each training group 
at pretest and posttest. 

  Training group 
  Group 1 

single (n=33) 
Group 2 

cued/univalent 
n=(33) 

Group 3 
cued/bivalent 

n=(32) 

Group 4 
uncued/univalent 

n=(33) 

Group 5 
uncued/bivalent 

n=(32) 
Trial type M (SD) M (SD) M (SD) M (SD) M (SD) 
   Younger   
   Pretest   
Single 96 (3.42) 95 (2.77) 97 (2.50) 95 (3.86) 97 (2.84) 
Stay 96 (3.11) 95 (3.18) 96 (2.42) 96 (2.57) 97 (2.68) 
Switch 94 (5.48) 94 (3.57) 92 (5.56) 91 (3.26) 94 (3.70) 
   Posttest   
Single 95 (2.87) 95 (3.76) 95 (3.77) 94 (5.12) 94 (4.18) 
Stay 95 (3.12) 93 (4.14) 95 (3.32) 94 (3.63) 95 (3.41) 
Switch 92 (4.88) 93 (4.53) 95 (2.90) 90 (5.87) 95 (3.54) 
 Older 
 Pretest 
Single 98 (1.43) 97 (2.19) 97 (1.81) 98 (1.55) 98 (1.61) 
Stay 97 (2.66) 96 (3.31) 96 (4.57) 96 (2.51) 96 (3.36) 
Switch 95 (3.66) 94 (4.98) 94 (4.87) 94 (3.76) 94 (4.81) 
 Posttest 
Single 99 (1.37) 99 (1.20) 97 (4.25) 98 (2.66) 99 (1.32) 
Stay 98 (2.07) 96 (2.93) 98 (1.73) 97 (2.59) 98 (1.61) 
Switch 96 (4.22) 95 (3.51) 97 (2.98) 96 (3.09) 98 (1.75) 

 

Latencies. There was a significant main effect of Session, F(1, 153) = 322.29, p < 

.001, ŋp
2 = .68. There was also an interaction between Session and Age group, F(1, 153) 

= 4.72, p < .05, ŋp
2 = .03, indicating that the reduction in latencies from pretest to posttest 

was larger for younger adults than for older adults5 (see Figure 12). Furthermore, there 

was also an interaction between Session and Trial type, indicating that mixing costs 

reduced from pretest to posttest, F(1, 153) = 75.45, p < .001, ŋp
2 = .33, but switch costs 

did not reduce from pretest to posttest (p = .62). 

5 However this interaction was not significant based on mean reaction times (p = .29) 
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More importantly we were interested in the interactions with Training group. 

There was neither a main effect of Training group (p = .88), nor an interaction between 

Session and Training group (p = .69). However there was a significant interaction 

between Session, Training group and Trial type, F(8, 306) = 2.61, p < .05, ŋp
2 = .06, as 

well as a tendency for an interaction between Session, Training group, Trial type and Age 

group, F(8, 306) = 1.79, p = .08, ŋp
2 = .05. Therefore, in the next step specific contrasts 

were set up to disentangle the above interactions.  

Contrast 1: single-task group (Group 1) – task-switching groups (Group 2-5) 

The first contrast revealed that there was a larger reduction in mixing costs from 

pretest to posttest in the task-switching groups than in the single-task group , F(1, 154) = 

6.33, p < .05, ŋp
2 = .04. However, age did not modulate this reduction (p = .27). 

Furthermore, there were no differences in the reduction of switch costs from pretest to 

posttest between the task-switching groups and the single-task group (p = .26). 

Contrast 2: univalent stimuli groups (Group 2 and Group 4) – bivalent stimuli groups 
(Group 3 and Group 5) 

The second contrast revealed that there was a larger reduction in mixing costs 

from pretest to posttest in the bivalent stimuli groups than in the univalent stimuli groups, 

F(1, 154) = 5.10, p < .05, ŋp
2 = .03. Furthermore, this reduction was larger for older 

adults than for younger adults, F(1, 154) = 4.02, p < .05, ŋp
2 = .003. However, there were 

no differences in the reduction of switch costs (p = .80) from pretest to posttest between 

the bivalent stimuli groups and the univalent stimuli groups. 
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Contrast 3: univalent stimuli groups: cued switching group (Group 2) – uncued 
switching group (Group 4) 

The third contrast revealed that there was no difference in the reduction of mixing 

costs from pretest to posttest between the univalent cued switching group and the 

univalent uncued switching groups (p = .83). Furthermore, there was also no difference in 

the reduction of switch costs (p = .90) from pretest to posttest between the univalent cued 

switching group and the univalent uncued switching groups. 

Contrast 4: bivalent stimuli groups: cued switching group (Group 3) – uncued 
switching group (Group 5) 

The fourth contrast revealed that there was a tendency for a difference in the 

reduction of mixing costs from pretest to posttest between Group 3 and Group 5 , F(1, 

154) = 3.17, p = .08, ŋp
2 = .02, indicating a larger reduction of mixing costs in the 

bivalent-cued switching group (Group 3) than in the bivalent-uncued switching group 

(Group 5). Furthermore, this was modulated by age, F(1, 154) = 4.03, p < .05, ŋp
2 = .03, 

indicating a larger reduction of mixing costs in older adults than in younger adults. 

However, there was no difference in the reduction of switch costs (p = .99) from pretest 

to posttest between the bivalent-cued switching group and the bivalent-uncued switching 

groups. 
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Figure 12. Mixing costs and switch costs, based on mean reaction times, in both age 
groups (younger adults, older adults) separately for each group (Group 1-5). Error bars 
refer to the standard error of the mean. 

Error rates. There was a significant main effect of Age group, F(1, 153) = 33.89, p 

< .001, ŋp
2 = .18, indicating that older adults were more accurate than younger adults. 
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There was also an interaction between Session and Age group, F(1, 153) = 36.75, p < 

.001, ŋp
2 = .19, indicating that while older adults got more accurate from pretest to 

posttest, younger adults got less accurate. Furthermore, there was a significant main 

effect of Trial type, F(2, 153) = 66.78, p < .001, ŋp
2 = .31, indicating that stay trials were 

less accurate than single trials, F(1, 153) = 14.16, p < .001, ŋp
2 = .09, and switch trials 

were less accurate than stay trials, F(1, 153) = 65.74, p < .001, ŋp
2 = .30. There was also 

an interaction between Session and Trial type, F(2, 306) = 9.52, p < .001, ŋp
2 = .06, 

indicating that switch costs reduced from pretest to posttest, F(1, 153) = 17.30, p < .001, 

ŋp
2 = .10, but mixing costs did not reduce from pretest to posttest (p = .88). Moreover, 

there was an interaction between Trial type and Age group as well, F(2, 306) = 3.21, p < 

.05, ŋp
2 = .02. Finally, there was an interaction between Trial type, Session and Training 

group, indicating a larger reduction of mixing costs in bivalent groups than in univalent 

groups from pretest to posttest, F(1, 156) = 8.94, p < .05, ŋp
2 = .05. 

Summary. The results thus showed that when task-switching groups are pooled 

together, there was a larger reduction in mixing costs from pretest to posttest in the task-

switching groups than in the single-task group. However, there were no differences in the 

reduction of switch costs from pretest to posttest between the task-switching groups and 

the single-task group. 

Analyzing near-transfer effects separately for younger and older adults 

In the next step the above analyses were carried out separately for younger adults 

and older adults. Thus data were submitted to three-way ANOVAs including the within-

subjects factors Session (pretest, posttest) and Trial type (single, stay, switch) and the 

between-subjects factor Training group (Group 1, Group 2, Group 3, Group 4, Group 5). 

 88 



Younger adults 

Latencies. There was a significant main effect of Session, F(1, 76) = 216.39, p < 

.001, ŋp
2 = .74. There were also reliable mixing costs, F(1, 76) = 115.29, p < .001, ŋp

2 = 

.60, and switch costs, F(1, 76) = 350.32, p < .001, ŋp
2 = .82. Furthermore, there was also 

an interaction between both contrasts, indicating that mixing costs reduced from pretest 

to posttest, F(1, 76) = 25.99, p < .001, ŋp
2 = .26, and that switch costs also reduced from 

pretest to posttest F(1, 76) = 10.98, p < .001, ŋp
2 = .13. There was no main effect of 

Training group (p = .996). As previously we were more interested in the interactions with 

Training group. However, there was neither an interaction between Session and Training 

group (p = .64), nor an interaction between Session, Training group and Trial type (p = 

.95). 

Error rates. There was a significant main effect of Session, F(1, 76) = 10.10, p < 

.05, ŋp
2 = .12. There was also a significant main effect of Trial type, F(2, 152) = 28.24, p 

< .001, ŋp
2 = .27, indicating reliable switch costs, F(1, 76) = 31.61, p < .001, ŋp

2 = .29. 

Furthermore, there was also an interaction between Session and Trial type, indicating a 

reduction in accuracy for stay trials relative to switch trials from pretest to posttest F(1, 

76) = 3.47, p < .05, ŋp
2 = .15. There was no main effect of Training group (p = .33). With 

regard to the interactions with Training group, there was an interaction between Trial 

type and Training group, F(8, 152) = 2.33, p < .05, ŋp
2 = .11, and an interaction between 

Session, Training group and Trial type, F(8, 152) = 2.26, p < .05, ŋp
2 = .11. 

To disentangle the interactions with Training group we set up contrasts as before. 

There was a tendency for a larger switch cost reductions in task-switching groups than 

single-task groups F(1, 76) = 3.48, p = .07, ŋp
2 = .11. There was also a tendency for 

univalent groups to be more accurate than bivalent groups, F(1, 76) = 3.22, p = .08, ŋp
2 = 

.04. Also, there was larger reduction of switch costs, F(1, 76) =5.78, p < .05, ŋp
2 = .07 as 

 89 



well as mixing costs, F(1, 76) = 4.50, p < .05, ŋp
2 = .05, in bivalent groups compared to 

univalent groups. Furthermore, there was a tendency for larger specific switch costs in 

uncued groups compared to cued groups, F(1, 76) = 3.66, p = .06, ŋp
2 = .04. Finally, there 

was also a tendency for bivalent-cued groups to be more accurate than bivalent-uncued 

groups, F(1, 76) = 3.93, p = .05, ŋp
2 = .04, and bivalent-cued groups had lower switch 

costs, F(1, 76) = 8.81, p < .005, ŋp
2 = .10, than bivalent-uncued groups. 

Older adults 

Latencies. There was a significant main effect of Session, F(1, 77) = 117.19, p < 

.001, ŋp
2 = .60, indicating a reduction in latencies from pretest to posttest. There was also 

a significant main effect of Trial type, F(2, 154) = 467.95, p < .001, ŋp
2 = .86, indicating 

reliable mixing costs, F(1, 77) = 365.19, p < .001, ŋp
2 = .83, as well as switch costs, F(1, 

77) = 243.87, p < .001, ŋp
2 = .76. Furthermore, there was also an interaction between 

Session and Trial type, F(2, 154) = 30.96, p < .001, ŋp
2 = .29, indicating that mixing costs 

reduced from pretest to posttest, F(1, 77) = 50.01, p < .001, ŋp
2 = .39. There was no main 

effect of Training group (p = .76). However, there was an interaction between Session, 

Training group and Trial type, F(8, 154) = 3.44, p = .001, ŋp
2 = .15. In order to break 

down the interaction with Training group for the latency data, in the next step specific 

contrasts were set up, similar to that of the pooled analysis. 

Contrast 1: single-task group (Group 1) – task-switching groups (Group 2-5) 

The first contrast revealed that there was a larger reduction in mixing costs from 

pretest to posttest in the task-switching groups than in the single-task group , F(1, 77) = 

5.87, p < .05, ŋp
2 = .07. There were no differences in the reduction of switch costs from 

pretest to posttest between the task-switching groups and the single-task group (p = .32). 
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Contrast 2: univalent stimuli groups (Group 2 and Group 4) – bivalent stimuli groups 
(Group 3 and Group 5) 

The second contrast revealed that there was a larger reduction in mixing costs 

from pretest to posttest in the bivalent stimuli groups than in the univalent stimuli groups, 

F(1, 77) = 7.89, p < .05, ŋp
2 = .09. There were no differences in the reduction of switch 

costs (p = .53) from pretest to posttest between the bivalent stimuli groups and the 

univalent stimuli groups. 

Contrast 3: univalent stimuli groups: cued switching group (Group 2) – uncued 
switching group (Group 4) 

The third contrast revealed that there was no difference in the reduction of mixing 

costs from pretest to posttest between the univalent cued switching group and the 

univalent uncued switching groups (p = .81). There was also no difference in the 

reduction of switch costs (p = .81) from pretest to posttest between the univalent cued 

switching group and the univalent uncued switching groups. 

Contrast 4: bivalent stimuli groups: cued switching group (Group 3) – uncued 
switching group (Group 5) 

The fourth contrast revealed that there was a difference in the reduction of mixing 

costs from pretest to posttest between Group 3 and Group 5 , F(1, 77) = 6.19, p < .05, ŋp
2 

= .07, indicating a larger reduction of mixing costs in the bivalent cued switching group 

(Group 3) than in the bivalent uncued switching group (Group 5). There was no 

difference in the reduction of switch costs (p = .46) from pretest to posttest between the 

bivalent cued switching group and the bivalent uncued switching groups. 

Error rates. There was a significant main effect of Session, F(1, 77) = 32.59, p < 

.001, ŋp
2 = .30, indicating an increase in accuracy from pretest to posttest. There was also 

a significant main effect of Trial type, F(2, 154) = 43.38, p < .001, ŋp
2 = .36, indicating 

reliable switch costs, F(1, 77) = 36.30, p < .001, ŋp
2 = .32, as well as mixing costs, F(1, 
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77) = 22.32, p < .001, ŋp
2 = .23. Furthermore, there was also an interaction between 

Session and Trial type, F(1.55, 154) = 6.10, p < .005, ŋp
2 = .07, indicating an increase in 

accuracy for switch trials relative to stay trials from pretest to posttest F(1, 77) = 11.06, p 

= .001, ŋp
2 = .13. There was no main effect of Training group (p = .49). 

Summary. The results from the separate analyses thus showed that there was a 

larger reduction in mixing costs from pretest to posttest in the task-switching groups 

relative to the single-task group only in older adults. With regard to the reduction of 

switch costs from pretest to posttest, there were no differences between the task-

switching groups and the single-task group or between the task-switching groups in either 

the younger adults or in the older adults. 

Furthermore, with regard to the older adults, comparing the task-switching groups 

to each other, the results indicated that there was a larger reduction in mixing costs from 

pretest to posttest in the bivalent stimuli groups than in the univalent stimuli groups. The 

results also indicated a larger reduction of mixing costs in the bivalent cued switching 

group (Group 3) than in the bivalent uncued switching group (Group 5).  
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FAR TRANSFER 

As mentioned previously in the method section each theoretical construct was 

measured on multiple tests. As a more reliable assessment of far transfer effects can be 

achieved by using composite measures combining several tests, firstly, data from the 

different tests was examined whether they can be collapsed together for each construct. 

We performed exploratory factor analysis with the variables digit backward span, 

counting span, reading span, Raven, 2-back (hits-false alarms), AX-CPT updating (ER; 

AY vs. BXR), AX-CPT interference (ER; AX+BY vs. AY+BX), Color Stroop 

interference (RT and ER; incongruent - neutral), Number Stroop interference (RT and 

ER; incongruent - neutral). The BOMAT was not included, as due to printing error data 

from younger adults couldn’t be evaluated. The 3-back was also not included, as we 

assessed it only in younger adults. However, apart from a factor for working memory 

(including the variables: digit backward span, counting span, reading span), other factors 

couldn’t be meaningfully interpreted (Table 9 - Table 12). Therefore only these three 

tests were aggregated, the other tests were analyzed separately. The total variance 

explained by the model was 66.85%. 
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Table 9. Principal Component Analysis, Rotated Component Matrix. 

 Component 

1 2 3 4 5 

Digit Backward .67 .30 -.04 -.04 .12 

Counting Span .70 -.05 .28 .18 -.23 

Reading Span .85 -.02 .03 -.02 .08 

Raven .23 .70 .19 .19 .00 

2-back .11 .29 .60 .34 -.02 

Color Stroop RT .06 -.84 .01 .14 .01 

Number Stroop RT .06 .00 .04 -.03 .92 

Number Stroop ER .06 -.01 -.08 .85 -.04 

Color Stroop ER .14 .45 -.32 -.35 -.34 

AX-CPT Interference -.08 -.22 -.62 .36 .31 

AX-CPT Updating .08 -.16 .76 -.10 .22 
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Table 10. Correlations Between the Psychometric Tests in the Cognitive Battery for both Age Groups. Correlations marked in 
red refer to indicators for one factor. 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
1. Digit Backward Span 1             

2. Counting Span .24 
** 

1            

3. Reading Span .37 
** 

.45 
** 

1           

4. Raven .27 
** 

.24 
** 

.17 
** 

1          

5. 2-back .17 
* 

.20* .14 .21 
** 

1         

6. AX-CPT Updating .03 .18 
* 

.07 .09 .21 
** 

1        

7. AX-CPT Interference -.09 -.15 -.11 -.14 -.25 
** 

-.26 
** 

1       

8. Color Stroop RT -.13 -.01 .00 -.41 
** 

-.11 .12 .20 
* 

1      

9. Number Stroop RT .05 -.08 .11 -.06 .02 .16 
* 

.12 .04 1     

10. Color Stroop ER .16 
* 

-.04 .06 .12 -.06 -.20* -.14 -.30 
** 

-.18 
* 

1    

11. Number Stroop ER .01 .12 .06 .05 .12 -.05 .14 .12 .03 -.10 1   

12. Mixing Cost -.22 
** 

-.21 
** 

-.13 -.52 
** 

-.20 
** 

.04 .16 
* 

.25 
** 

.09 -.21 
** 

-.16 
* 

1  

13. Switching Cost -.05 -.03 -.01 -.08 -.12 -.04 .02 .08 .14 -.12 -.08 .43 
** 

1 

** p < .01 (two-tailed), * p < .05 (two-tailed)                     
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Table 11. Correlations Between the Psychometric Tests in the Cognitive Battery for Younger Adults. Correlations marked in 
red refer to indicators for one factor. 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
1. Digit Backward Span 1 

 
            

2. Counting Span .20 
 

1            

3. Reading Span .34 
** 

.44 
** 

1           

4. Raven .01 
 

.15 .20 1          

5. 2-back .15 .22 .13 .33 
** 

1         

6. AX-CPT Updating .09 
 

.19 .10 .25 .17 1        

7. AX-CPT Interference -.10 -.25 
* 

-.13 -.13 -.28 
* 

-.49 
** 

1       

8. Color Stroop RT .09 
 

-.03 -.03 -.17 -.10 .05 -.08 1      

9. Number Stroop RT .02 
 

-.10 .15 -.05 -.11 .08 -.14 -.01 1     

10. Color Stroop ER .19 .03 .24 
* 

-.10 .01 -.10 -.08 -.07 .11 1    

11. Number Stroop ER -.06 
 

-.01 .14 -.05 .22 -.03 -.08 .21 -.12 -.17 1   

12. Mixing Cost -.03 -.14 -.04 -.01 -.29 
** 

-.04 .23 
* 

.04 .26 
* 

-.13 .04 1  

13. Switching Cost .05 -.07 .07 .07 -.11 -.01 .16 .00 .17 -.19 .08 .66 
** 

1 

** p < .01 (two-tailed), * p < .05 (two-tailed)                     
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Table 12. Correlations Between the Psychometric Tests in the Cognitive Battery for Older Adults. Correlations marked in red 
refer to indicators for one factor. 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
1. Digit Backward Span 1.00 

 
            

2. Counting Span .19 
 

1.00            

3. Reading Span .41 
** 

.46 
** 

1.00           

4. Raven .15 .14 .23 
* 

1.00          

5. 2-back .19 .17 .16 .28 
* 

1.00         

6. AX-CPT Updating .01 .21 .05 .15 .25* 1.00        

7. AX-CPT Interference -.08 -.10 -.10 -.21 -.26 
* 

-.17 1.00       

8. Color Stroop RT -.04 .17 .06 -.04 -.13 .14 .28 
* 

1.00      

9. Number Stroop RT .09 
 

-.06 .10 -.03 .10 .20 .19 .03 1.00     

10. Color Stroop ER .06 -.16 -.07 -.04 -.13 -.24 
* 

-.15 -.29** -.28* 1.00    

11. Number Stroop ER .03 .20 -.02 .01 .04 -.05 .25 
* 

.17 .11 -.09 1.00   

12. Mixing Cost -.11 -.11 -.20 -.31 
** 

-.17 .06 .13 -.03 -.01 -.11 -.26 
* 

1.00  

13. Switching Cost -.07 .03 -.05 -.06 -.13 -.06 -.03 .05 .12 -.07 -.15 .36 
** 

1.00 

** p < .01 (two-tailed), * p < .05 (two-tailed)                   
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For analyzing far-transfer measures both reaction times and error rates were 

submitted to ANOVAs with the between-subjects factors Age group (younger adults, 

older adults) and Training group (Group 1, Group 2, Group 3, Group 4, Group 5) and the 

within-subject factor Session (pretest, posttest). Group contrasts were similar to that of 

the near transfer analyses. In the case of the Stroop and AXCPT data an additional 

within-subject factor for Trial Type (Stroop: neutral/congruent/incongruent; AXCPT: 

AX, AY, BX, BY) was added, with specified contrasts for interference costs (Stroop: -1 0 

1; AXCPT: 1 -1 -1 1) and updating (AXCPT: 0 -1 1 0). Error rates and reaction times 

data for trial types and costs can be found in the Appendices (Table 17 - Table 28). 

AX-CPT 

With regard to reaction times, there was a main effect of Session, F(1, 162) = 

18.90, p < .001, ŋp
2 = .10, indicating better performance at posttest. Furthermore, there 

were significant interference costs, F(1, 154) = 346.86, p < .001, ŋp
2 = .68, reflected by 

better performance on non-interference trials than interference trials, but it did not 

interact with Session, (p > .81). There was also a significant effect for the Updating 

contrast, F(1, 154) = 370.81, p < .001, ŋp
2 = .70, indicating better performance on BX 

trials as compared to AY trials, but it also did not interact with Session, (p > .10). Group 

contrasts did not reveal differences between single and task-switching groups in any of 

the above comparisons, (all ps > .33), nor did the contrasts between bivalent and 

univalent groups, (all ps > .25), or the contrasts between cued and uncued groups, (all ps 

> .33). With regard to age differences, there was a tendency for larger interference effects 

in older adults compared to younger adults, F(1, 161) = 2.93, p = .09, ŋp
2 = .02, but there 

were no age differences in Updating, (p > .24). There was no interaction of Session and 
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Age Group, (p > .67). Finally, there were no interactions of Age Group and Session in 

any of the group contrasts. (all ps > .19). 

With regard to error rates, there was no main effect of Session (p = .62). There 

were significant interference costs, F(1, 162) = 123.75, p < .001, ŋp
2 = .43, indicating 

higher error rates in interference trials compared to non-interference trials. There was 

also a significant effect for the Updating contrast, F(1, 162) = 33.50, p < .001, ŋp
2 = .17, 

indicating higher error rates in AY trials compared to BX trials. With regard to age 

differences, there was an interaction of Session and Age Group, F(1, 161) = 13.43, p < 

.001, ŋp
2 = .08, indicating that error rates decreased in older adults from pretest to 

posttest. Age Group also interacted with the Updating contrast, F(1, 161) = 8.47, p < 

.005, ŋp
2 = .05, indicating higher error rates in younger adults on AY trials, and there was 

a tendency for an interaction of Age Group, Updating and Session, F(1, 154) = 2.88, p = 

.09, ŋp
2 = .02, indicating that while younger adults had a decrease in AY performance, 

t(80) = 4.29, p < .001, older adults performance increased on AY trials from pretest to 

posttest, t(81) = 2.55, p < .05. Finally, there was a tendency for an interaction of Age 

Group, Updating and Session in the group contrast for single and task-switching group, 

F(1, 154) = 2.88, p = .09, ŋp
2 = .02, indicating that in older adults there was a tendency 

for an increase in accuracy for BX trials in task-switching groups, t(63) = 1.78, p = .08. 
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Figure 13. AX-CPT Interference costs (RT) as a function of Training group (single, 
switch), Age group (younger adults, older adults) and Session (pretest, posttest). Error 
bars refer to the standard errors of the mean. 

 

Figure 14. AX-CPT Interference costs (ER) as a function of Training group (single, 
switch), Age group (younger adults, older adults) and Session (pretest, posttest). Error 
bars refer to the standard errors of the mean. 
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Inhibitory Control (Color Stroop, Number Stroop) 

Color Stroop 

With regard to reaction times, there was a significant interference effect, F(1, 

162) = 200.87, p < .001, ŋ2 = .55, however it did not interact with Session (p = .81). 

Group contrasts did not modulate the interactions of Trial Type and Session (all ps > .12). 

With regard to age differences, there was an interaction between Age group and Trial 

type, F(1, 161) = 50.06, p < .001, ŋ2 = .24, indicating that older adults had larger 

interference costs than younger adults. There was no interactions of Session, Age Group 

and Trial Type (p = .63). Group contrasts did not modulate any of the above interactions 

with Age Group (all ps > .50). 

 

Figure 15 Color stroop mean interference costs (ms) as a function of Age group (younger 
adults, older adults), Training group (single, switch) and Session (pretest, posttest). Error 
bars refer to the standard errors of the mean. 

With regard to error rates, there was a significant interference effect, F(1, 162) = 
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Session (all ps > .42). With regard to age differences, there was an interaction between 

Age group and Trial type, F(1, 161) = 5.95, p < .05, ŋ2 = .04, indicating that older adults 

had larger interference costs than younger adults. There was no interaction of Session, 

Age Group and Trial Type (p = .10). Group contrasts did not modulate any of the above 

interactions with Age Group (all ps > .46). 

Number Stroop 

With regard to reaction times, there was a significant interference effect, F(1, 

162) = 60.52, p < .001, ŋ2 = .27, however it did not interact with Session (p = .31). The 

group contrast comparing single-task and task-switching groups modulated the 

interaction of Trial Type and Session, F(1, 158) = 3.89, p = .05, ŋ2 = .02, indicating a 

tendency for a decrease in interference cost in task-switching groups from pretest to 

posttest, t(130)=1.908, p = .06. With regard to age differences, there was no interaction 

between Age group and Trial type (p < .79). There was no interactions of Session, Age 

Group and Trial Type (p = .42). Group contrasts did not modulate any of the above 

interactions with Age Group (all ps > .49). 
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Figure 16 Number stroop mean interference costs (ms) as a function of Age group 
(younger adults, older adults), Training group (single, switch) and Session (pretest, 
posttest). Error bars refer to the standard errors of the mean. 

With regard to error rates, there was a significant interference effect, F(1, 162) = 

102.91, p < .001, ŋ2 = .39, which decreased from pretest to posttest, F(1, 162) = 7.61, p < 

.05, ŋ2 < .04. The group contrasts did not modulate the interactions of Trial Type and 

Session (all p’s > .60). With regard to age differences, there was no interaction between 

Age group and Trial type (p = .46). There was no interaction of Session, Age Group and 

Trial Type (p = .50). Group contrasts did not modulate any of the above interactions with 

Age Group (all ps > .14). 
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(p = .70). Group contrasts did not modulate the interaction of Age Group and Session (all 

ps > .60). 

 

Figure 17 2-back mean performance (hits – false alarms) as a function of Training group 
(single, switch), Age group (younger adults, older adults) and Session (pretest, posttest). 
Error bars refer to the standard errors of the mean. 

3-back 

There was a main effect of Session, F(1, 71) = 7.69, p < .05, ŋp
2 = .10, indicating 

that the groups improved from pretest to posttest, however group contrasts did not reveal 

differences between groups in the improvements from pretest to posttest (all ps > .26).  
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Figure 18 3-back mean performance (hits – false alarms) as a function of Training group 
(single, switch) and Session (pretest, posttest) for young adults. Error bars refer to the 
standard errors of the mean. 

Working-memory 

Working-memory capacity was measured by the counting span, reading span and 

digit backward tests. Individual test scores were standardized and averaged. There was no 

main effect of Session (p = .46). The group contrast comparing single-task and task-

switching groups showed a tendency for an interaction with Session, F(1, 158) = 3.31, p 
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groups, t(33) = 1.31, p = .19, and non-significant increase in task-switching groups, 

t(128) = 1.54, p = .14. With regard to age differences, there was an interaction between 

Age Group and Session, F(1, 161) = 4.33, p < .05, ŋ2 = .03, indicating a non-significant 

decrease in performance in older adults, t(81) = 0.93, p = .36, and significant increase in 

younger adults, t(80) = 2.01, p < .05. Group contrasts did not modulate the interaction of 

Age Group and Session (all ps > .73). 
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Figure 19. WM span as a function of age group (younger adults, older adults), Training 
group (single, switch) and Session (pretest, posttest). Error bars refer to the standard 
errors of the mean. 

Fluid intelligence 

Raven 

There was a main effect of Session, F(1, 161) = 7.54, p < .05, ŋ2 = .04, indicating 

a decrease in performance from pretest to posttest. The group contrast comparing single-

task and task-switching groups showed a tendency for interaction with Session, F(1, 157) 

= 3.14, p = .08, ŋ2 = .02, indicating a non-significant increase in performance in single-

task groups, t(33) = .33, p = .74, and significant decrease in task-switching groups, t(127) 

= 3.26, p < .001. With regard to age differences, there was a tendency for an interaction 

between Age Group and Session, F(1, 160) = 3.49, p = .06, ŋ2 = .02, indicating a non-

significant decrease in performance in older adults, t(80) = .68, p = .50, and significant 

decrease in younger adults, t(80) = 3.07, p < .05. Group contrasts did not modulate the 

interaction of Age Group and Session (all ps > .13). 
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Figure 20 Raven mean performance (correct trials) as a function of age group (younger 
adults, older adults), Training group (single, switch) and Session (pretest, posttest). Error 
bars refer to the standard errors of the mean. 

BOMAT 

Due to printing errors in the test material the BOMAT data from younger adults 

couldn’t be analyzed. Therefore the analysis was restricted to the older adult’s data. 

There was a main effect of Session, F(1, 81) = 11.05, p = .001, ŋ2 = .12, indicating an 

increase in performance from pretest to posttest. However the group contrast comparing 

single-task and task-switching groups showed no interaction with Session (p = .29).  
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Figure 21 BOMAT mean performance (correct trials) as a function of Training group 
(single, switch) and Session (pretest, posttest). Error bars refer to the standard errors of 
the mean. 

Digit Symbol 
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measure of perceptual speed. The expectation was that cognitive control training does not 
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162) = 26.62, p < .001, ŋ2 = .14, indicating an increase in performance from pretest to 

posttest. The group contrast comparing single-task and task-switching groups showed no 

interaction with Session (p = .76). With regard to age differences, there was an 

interaction between Age Group and Session, F(1, 161) = 25.35, p < .001, ŋ2 = .13, 

indicating a non-significant increase in performance in older adults, t(81) = .37, p = .72, 

and significant increase in younger adults, t(80) = 7.69, p < .001. Group contrasts did not 

modulate the interaction of Age Group and Session (all ps > .39). 
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Table 13 Digit symbol mean (M) scores and standard deviations (SD) for younger and 
older adults separately for each training group at pretest and posstest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

n=(34) 

Group 2 
cued switching – 
univalent stimuli 

n=(32) 

Group 3 
cued switching – 
bivalent stimuli 

n=(29) 

Group 4 
uncued switching 
– univalent stimuli 

n=(32) 

Group 5 
uncued switching 
– bivalent stimuli 

n=(33) 
Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 69 (11) 69 (12) 67 (5) 64 (11) 68 (9) 
Older adults 47 (8) 47 (8) 46 (8) 47 (9) 44 (7) 
 Posttest 
Younger adults 75 (9) 77 (13) 72 (8) 68 (9) 71 (10) 
Older adults 48 (14) 47 (10) 48 (7) 46 (11) 43 (8) 
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FOLLOW-UP ANALYSES 

We also checked the follow-up data for the near transfer effects in task switching. 

We were interested whether the training gains in the high-inhibition task-switching 

training groups in older adults still remains after six months. Data were submitted to a 

three-way ANOVA including the within-subjects factors Session (pretest, follow-up) and 

Trial type (single, stay, switch) and the between-subjects factor Training group (Group 1, 

Group 2, Group 3, Group 4, Group 5). We used to same contrasts as in the near-transfer 

analysis to compare training groups, and trial types. Mean mixing costs for all training 

groups and sessions are displayed in Table 14. 

Analyses revealed that there was no larger reduction in mixing costs from pretest 

to follow-up in the task-switching groups than in the single-task group (p = .21), but 

there was still a larger reduction in mixing costs from pretest to follow-up in the bivalent 

stimuli groups than in the univalent stimuli groups, F(1, 69) = 6.61, p < .05, ŋp
2 = .08. 

There was no difference in the reduction of mixing costs from pretest to follow-up 

between the bivalent cued switching group and the bivalent uncued switching group (p = 

.10). 
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Table 14. Mean (M) reaction times and standard deviations (SD) for mixing costs for 
younger and older adults separately for each training group at pretest, posttest and follow-
up. 

  Training group 
  Group 1 

 
Group 2 

cued/univalent  
Group 3 

cued/bivalent  
Group 4 

uncued/univalent  
Group 5 

uncued/bivalent  
Session M (SD) M (SD) M (SD) M (SD) M (SD) 
 Younger 
Pretest 125 (96) 118 (98) 113 (80) 135 (137) 122 (76) 
Posttest 84 (50) 64 (53) 59 (50) 81 (94) 64 (49) 
Follow Up 77 (63) 73 (58) 64 (46) 61 (43) 71 (57) 

 Older 
Pretest 282 (128) 272 (144) 271 (140) 278 (149) 268 (119) 
Posttest 231 (101) 199 (137) 118 (117) 214 (98) 180 (83) 
Follow Up 244 (97) 230 (163) 198 (142) 244 (104) 180 (93) 

EFFECT SIZES OF TRAINING AND TRANSFER 

In this last section the effect sizes of training and transfer measures will be 

presented. Values of Cohens’ d were calculated, which is a measure of the standardized 

mean difference between the performances of the first and last sessions in the case of the 

training results, and standardized mean differences between pretest and posttest with 

regard to transfer effects. All d-values were corrected for small sample bias using the 

formula (d’6) suggested by Hedges and Olkin (1985 p. 79-81.) 

First, effect sizes were calculated for the reduction of switch costs from the first 

training session to the fourth training session in the task-switching training groups (see 

Figure 22). Effect sizes were relatively large for both age groups in all training groups (d’ 

= 0.62 - 1.59). In both age groups effect sizes were largest in the cued–univalent group 

(d’ = 1.42 - 1.59). In cued–bivalent group effect sizes dropped somewhat for younger 

adults (d’ = 1.26), but dropped noticeably in older adults (d’ = 0.62). In the uncued 

6 dunbiased = =(1-3/(4×(N-2)-1))×d; where N represents the total sample size on which d is based 
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groups effect sizes were on similar levels for younger adults (d’ = 1.21), for older adults 

it increased compared to the cued-bivalent group (d’ = 0.96 - 0.99). 

 

Figure 22. Effect sizes (d’) for switch cost reductions during training for younger and 
older adults in the four task switching groups. 

Next, effect sizes were calculated for the reduction of switch costs and mixing 

costs from pretest to posttest in all five groups (see Figure 23 and Figure 24). With regard 

to switch costs in younger adults effect sizes were on a comparable moderate level in 

three of the task-switching groups (d’s = .34 - .47) and also in the single-task group (d’ = 

.40). However, the uncued-bivalent group showed relatively large effect size (d’ = .75). 

In comparison, older adults, showed small or even negative effect sizes (d’s = -.21 - .10). 
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Figure 23. Effect sizes (d’) for switch cost reductions from pretest to posttest for younger 
and older adults in the five training groups. 

With regard to mixing costs effect sizes were moderate to large in both age groups 

(d’s = 0.46 - 1.35). For younger adults effect sizes were on similar levels for the uncued-

univalent and the single-task group (d’s = 0.46 - 0.51), and larger for the other three task-

switching groups (d’s = 0.69 - 0.76). For older adults effect sizes were comparable in the 

two univalent groups (d’s = 0.53) and the single-task group (d = 0.60), and they were 

larger in the bivalent groups (d’s = 0.97 - 1.35), especially in the cued-bivalent group. 
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Figure 24. Effect sizes (d’) for mixing cost reductions from pretest to posttest for younger 
and older adults in the five training groups. 

Next, effect sizes were calculated for the far transfer measures from pretest to 

posttest for task-switching and single-task groups (see Figure 25 and Figure 26). In 

general effect sizes for far-transfer measures were smaller than for near-transfer (largest 

d’s = 0.47 - 0.54). For younger adults there were small effect sizes for the task-switching 

group for Working Memory, AXCPT and Number Stroop (d’s = 0.21 - 0.28) as well as 

for the 2-back task (d = 0.16). Effect sizes for the single-task group were on a moderate 

levels for Color Stroop, 2-back, and 3-back (d’s = 0.29 - 0.47). For older adults except for 

the Bomat (d’s = 0.31 - 0.54) effect sizes were low in both task-switching and single-task 

groups (all d’s < 0.23). 
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Figure 25. Far-transfer effect sizes (d') for younger adults as a function of measure (WM: 
Working Memory; AXCPT: RT Interference; Number Stroop: RT Interference, Color 
Stroop: RT Interference; Raven; 2-back, 3-back). 

 

 
Figure 26. Far-transfer effect sizes (d') for older adults as a function of measure (WM: 
Working Memory; AXCPT: RT Interference; Number Stroop: RT Interference, Color 
Stroop: RT Interference; Raven; 2-back, 3-back). 
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Discussion 

SUMMARY OF MAIN RESULTS 

The present study aimed to identify what processes are trained during task-

switching training and which of these processes facilitate transfer across task domains. 

To this end we manipulated updating and inhibition demands in four task-switching 

groups and compared performance improvements in a pretest-training-posttest design to 

an active control group in younger and older adults. Task-switching groups had higher 

cognitive control demands than the active control group that practiced only with a single 

task, as task-switching groups were required to switch between two different task-sets 

regularly during training. Updating demands were manipulated by the presence or 

absence of task cues. In task switching groups without task-cues updating demands were 

higher than in task-switching groups with task-cues, as in the former task-sets had to be 

continually updated internally without external help from the cue. Inhibition demands 

were manipulated by using bivalent or univalent stimuli. In the groups with bivalent 

stimuli, a task-relevant character was always paired with another character that would be 

relevant in the other task-set, which resulted in interference between task sets. In the 

groups with univalent stimuli, a task-relevant character was always paired with a neutral 

character that was not associated with any task-set in the context of the task-switching 

task; therefore it did not induce interference between task sets. We measured both near-

transfer to a switching task which was structurally similar to the one used during training, 

and far-transfer to other cognitive tasks which were structurally different than the task 

switching paradigm used during training. 

During the four sessions of training we could track changes in switch costs, and 

group differences therein. Analyses revealed that switch costs decreased as a function of 

sessions in both age groups. There were no age differences with regard to switch costs. 
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With regard to group differences, groups with higher updating demands (i.e. without 

cues) had larger switch costs, than groups with low updating demands (i.e. with cues). 

Also, groups with high inhibition demands (bivalent stimuli) had larger switch costs than 

groups with low inhibition demands (univalent stimuli). 

With regard to near-transfer, we assessed performance cost reductions from 

pretest to posttest in both mixing and switch costs. Interestingly, only older adults 

showed transfer effects, and they did so only with regard to mixing costs. With regard to 

group differences, older adults trained with high inhibition demands (bivalent stimuli) 

showed larger reduction in mixing costs. Furthermore, within bivalent groups, the group 

with low updating demands (with cue) had larger reductions in mixing costs than the 

group with high updating demand (without cue). Finally, far-transfer measures did not 

indicate more improvement in task-switching groups from pretest to posttest as compared 

to single-task groups. In the following I will take these results into context and discuss 

them in more detail. 

Effects of Age, Cuing Type and Stimulus Ambivalence on Task-Switching Training 

Reaction times reduced in all training groups throughout the four training sessions 

and older adults were generally slower than younger adults. Slower reaction times were 

expected from older adults in line with general observations and theory from the 

literature (e.g., T. Salthouse, 1996). With regard to error rates we can conclude that older 

adults were generally more accurate than younger adults, and that overall, accuracy 

improved from the first session to the fourth. The more accurate performance in older 

adults might reflect a more conscientious stance of older adults towards finishing the 

task, while younger adults might have wanted to finish the task fast and therefore were 
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more careless. This idea is in line with findings showing that older adults put more effort 

into task performance than younger adults (Ennis, Hess, & Smith, 2013).  

Previous findings showed that switch costs are larger in bivalent than in univalent 

conditions (e.g., Allport et al., 1994; Jersild, 1927; Rogers & Monsell, 1995; Spector & 

Biederman, 1976). Our task-switching data from the four training sessions are in line 

with these prior findings. It shows that reconfiguring task-sets is more difficult in the face 

of ambivalence.  

Consistent with previous findings, switching costs reduced in all task-switching 

training groups in both younger and older adults (Bherer et al., 2005; Karbach & Kray, 

2009; Kramer et al., 1999; Kray & Lindenberger, 2000), indicating that plasticity of this 

cognitive control process is spared with aging. Furthermore, the amount of reduction in 

switch costs did not differ between groups. This means that no matter the differing levels 

of inhibition or updating demands imposed by the different task-switching training 

groups in the present paradigm, switch costs reduced from the first to the fourth session at 

a similar rate. Previous findings also suggested that there are no differences in the rate of 

reduction between younger and older adults in switch costs (Bherer et al., 2005; Karbach 

& Kray, 2009; Kramer et al., 1999; Kray & Lindenberger, 2000). Together these findings 

indicate that older adults do not have more difficulty to reduce their switch costs in 

conditions that involve bivalent stimuli, as compared to univalent conditions. So, despite 

larger bottom up interference, older adults are capable to implement relevant task sets, 

and to improve in this ability on par with younger adults.  

Transfer gains 

The first set of analyses investigated whether the observed effects in the present 

study are in line with those observed in the literature with regard to age differences in 
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task switching. Our results are consistent with previous findings showing both reliable 

mixing and switch costs in the task-switching paradigm, as well as larger mixing costs in 

older adults (Cepeda et al., 2001; Karbach & Kray, 2009; Kray et al., 2004; Kray & 

Lindenberger, 2000; Kray, 2006; Mayr, 2001; Reimers & Maylor, 2005; Verhaeghen & 

Cerella, 2002). However, the near transfer results showed that there was a larger 

reduction in mixing costs from pretest to posttest in the task-switching groups relative to 

the single-task group only in older adults. This is inconsistent with the findings of 

Karbach and Kray (2009), which showed large mixing cost reductions in younger age as 

well.  

Furthermore our results indicated that there was no far transfer, i.e. groups that 

took part in task-switching training showed no better performance after training than did 

the group that took part in the single task training. This result is inconsistent with 

previous findings (e.g. Karbach & Kray, 2009). This result is unfortunate, as we were 

interested in how manipulations of updating and inhibition demands modulate far-transfer 

effects in younger and older adults during task-switching training. However we cannot 

answer these questions based on the present results. In the following I will discuss in 

detail the possible reasons for the smaller transfer effects. 

EXPLANATIONS FOR THE SMALLER TRANSFER GAINS 

In recent years there have been a number of studies that  similarly had difficulties 

in replicating transfer effects resulting from task-switching training (Pereg, Shahar, & 

Meiran, 2013a; von Bastian & Oberauer, 2013; Zinke et al., 2012). In the following I will 

present the differences between these studies, explain how our study contribute to this 

landscape of findings, and explain which factors are important to elicit transfer from task-

switching training. I will do this separately for near- and far-transfer. 
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Near transfer 

Comparing effect sizes with previous study 

In general the magnitude of mixing costs in our study was smaller for both age 

groups, (at pretest: 79 ms for younger adults, 224 ms for older adults) than in the study by 

Karbach and Kray (2009) (172 ms and 371 ms for younger and older adults respectively). 

Furthermore, with regard to the reduction of switch costs from pretest to posttest, there 

were no differences, in either the younger or older adults, between the task-switching 

groups and the single-task group, or between the task-switching groups with different 

stimuli. This is also inconsistent with the findings of Karbach and Kray (2009), which 

showed large switch cost reductions in both age groups in the task-switching groups 

compared to the single-task group. Again, the magnitude of switch costs in our study was 

smaller for both age groups, (at pretest: 87 ms for younger adults, 101 ms for older 

adults) than in the study by Karbach and Kray (2009) (204 ms and 337 ms for younger 

and older adults respectively). The smaller mixing and switch costs already at pretest 

indicate that the task was not that challenging in our paradigm as in the previous study by 

Karbach and Kray (2009). Given the relatively good performance already at pretest it is 

reasonable to assume that there was no room to improve, which can explain the lack of 

transfer effects with respect to mixing and switch costs.  

With regard to the older adults, comparing the task-switching groups to each 

other, the results indicated that there was a larger reduction in mixing costs from pretest 

to posttest in the bivalent stimuli groups than in the univalent stimuli groups. The results 

also indicated a larger reduction of mixing costs in the bivalent cued switching group 

than in the bivalent uncued switching group. This means that older adults are not that able 

to benefit from training in uncued switching, but also that training with bivalent condition 

transfers better within the task switching domain.  
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However there are some additional factors that need to be addressed. At both 

pretest and posttest participants performed task switching blocks from all types of 

conditions, thus the performance in each of these tasks conditions contributed to the 

measured mixing cost. It is reasonable to assume that the hardest condition will not be 

that easy for those trained in the easiest condition. So those trained in the hardest 

condition should show the largest reduction in mixing costs, since they got better in the 

most demanding task. In other words, there was more transfer to similar conditions and 

given that bivalent conditions produce the highest mixing costs, the greatest transfer 

occurred in bivalent groups. However, the transfer is still not so narrow as this benefit 

remained even though we changed task-set from training to posttest, indicating that older 

adults got better at resolving bivalent task-switching in general. They improved in 

decreasing their response time difference between resolving single-tasks trials and mixed-

task trials. The source of this improvement is primarily better interference resolution, 

rather than better updating processes as we have found differences between univalent and 

bivalent groups, but there were no differences between cued and uncued groups. Thus, a 

more substantial part of the mixing cost likely reflects some form of inhibition related 

process rather than updating processes. 

Other studies 

A study by Pereg, Shahar and Meiran (2013b) using the same paradigm as 

Karbach and Kray (2009) could replicate previous findings with respect to switch cost 

reduction in alternating-runs task-switching paradigm; however, in a cued task-switching 

paradigm they have found only a marginally significant effect, and no effect when run 

length changed from 2 to 3. With respect to mixing costs there were no transfer effects. 

Furthermore, the switch cost reductions were smaller than those found in Karbach and 
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Kray’s (2009) study (d’=0.93 vs. d’≈ 1.6 respectively). There is another study by von 

Bastian (von Bastian & Oberauer, 2013), which used the same stimuli as Karbach and 

Kray (2009). Near-transfer was assessed on a similar alternating-runs task-switching 

paradigm, with bivalent stimuli. Results showed transfer to switch costs, the size of 

which also correlated with improvements during training. Another study by Zinke and 

colleagues (Zinke et al., 2012) also attempted to replicate the transfer effects of the study 

by Karbach and Kray (2009) in adolescents. The reduction in switch costs during the 

training sessions were comparable to the switch cost reductions seen in the study by 

Karbach and Kray. In a similar task-switching paradigm they were able to replicate 

transfer effects with regard to mixing costs, but not with regard to switch costs, which is 

similar to our results. In summary, in all these studies near transfer effects from Karbach 

and Kray were partly replicated, but not completely, so it is not unique that some of our 

results are negative. 

Which processes improved? 

The study by Pereg, Shahar and Meiran (2013b) tried to disentangle whether 

switching or working memory updating is improved during task-switching training, and 

found support for the notion that updating is improved during task-switching training. 

From these findings Pereg (2013) concluded that updating processes are involved in 

alternating-runs task-switching training, yet they are not too demanding, leading to 

limited transfer to similar contexts. Furthermore, Pereg et al. noted that it seems like 

some very specific updating skills were trained in the alternating-runs task-switching 

paradigms: those related to changing tasks every 2nd trial, but broader working memory 

updating skills were not (cf. Pereg et al., 2013b). According to our study interference 

control is a more likely candidate of improvement, at least in older adults. But the pattern 
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of findings was similar in younger adults if we compare mixing cost reductions in the 

five groups with older adults. As mentioned previously, it is a reasonable explanation that 

there was not much room to improve given the already small mixing costs at pretest in 

the younger groups which resulted in non-significant results. It would be interesting to 

see whether a similar paradigm as in the original study by Karbach and Kray (pictorial), 

with the present idea (of manipulating inhibition and updating demands) could show 

these results in younger adults as well. 

Far-transfer 

Inhibition 

As mentioned in the introduction, the Stroop tasks that were used in our study 

required similar executive control demands as the task-switching training. In both task 

domains, inhibition of currently irrelevant information and maintenance of currently 

relevant information was necessary. Therefore we expected to find larger improvements 

in Stroop tasks after task-switching training compared to single-task training, especially 

in bivalent task-switching conditions, that are most similar to the Stroop setting (i.e. 

stimulus triggers both task-sets). However our results did not show larger improvements 

in the Stroop task after task-switching training, and there were no differences in 

performance improvement between bivalent and univalent task-switching groups. 

At first inspection, our result regarding the Stroop task is inconsistent with 

previous findings. Therefore, it is important to consider details about the experiments. In 

the study by Karbach and Kray (2009) task-switching groups showed more 

improvements than the single-task group, and effect sizes were relatively large, at least 

for younger adults (younger adults: d’ ~ 0.8; older adults: d’ ~ 0.2). However, Karbach 

and Kray (2009) mention that there was an unexpected deterioration in the Stroop 
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performance for younger adults in the single-task group. This might be explained due to 

the fact that for younger adults at pretest the task-switching group had almost twice as 

much interference-cost as the single-task group (57 ms and 30 ms respectively). Thus 

matching of the groups was not ideal which might have influenced the results. At posttest 

interference costs changed to 27 ms and 48 ms for task-switching and single-task groups 

respectively. Thus, what happened is that the task-switching group reached the pretest 

level of the single-task group after training, while the single-task group got worse from 

pretest-to posttest. Apparently, the same was the case for the older group. For the single-

task group pretest-posttest interference costs change from 57 ms to 72 ms, while for the 

task-switching group it changed from 77 ms to 56 ms.  

These problems could have been avoided in our study, however, unfortunately we 

also encountered problems during matching the groups. We assumed that the color and 

number versions of the Stroop task measure the same underlying construct, and therefore 

we used an aggregate score of the two tasks during matching. However, later analysis 

showed that there was no significant correlation between the two tests (r = .04 for RT 

interference cost). Therefore, analysis was performed separately for these two tests, but 

on the separate tests there were large baseline differences between the groups (see Table 

17 and Table 18). Thus, from the present Stroop results we cannot make inferences 

regarding transfer effects. With regard to AX-CPT interference costs we didn’t find 

transfer effects. 

With regard to other studies, the study by Pereg et al. (2013b) found a marginally 

significant training-related improvement for a manual Stroop task, but not for a vocal 

Stroop task. In the study by Zinke (2012) with adolescents there was no transfer to 

inhibition as measured by a color stroop and a flanker task. In the study by von Bastian 

and Oberauer (2013) there was also no transfer to inhibition as measured by a number 
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Stroop and a Flanker task. Thus, there is weak support for the idea that task-switching 

training in the present format is demanding enough to cause generalized improvements in 

inhibitory processes per se. 

Working memory 

The measure for working memory was an aggregate of two operation span tests, 

the reading span and counting span, and the digit backward test. We found no transfer 

effects for working memory. Although there was a tendency for a larger improvement in 

task-switching groups this might be partly due to the fact that there was an unexpected 

decrease in the performance of the single-task group. Our result is somewhat inconsistent 

with results from Karbach and Kray (2009). With regard to n-back tests or AX-CPT 

updating we also couldn’t find transfer effects. 

A previous study, which investigated multitask video game training on cognitive 

control processes in older adults, indicated that whereas improvements were observed for 

tasks where one has to frequently switch items in working memory (n-back), there were 

no improvements in working memory span per se (as measured by operation span tasks) 

(Basak et al., 2008). Our results are in line with the finding that working-memory span 

does not change with task-switching training, however, we did not find transfer to n-back 

tasks.  

Transfer effects to working-memory measures were also absent in other task-

switching training studies (e.g. Pereg et al., 2013; Bastian & Oberauer, 2013). Only in 

one study was there a tendency for transfer effect with respect to faster responses in a 2-

back task, but not to improved accuracy (Zinke et al., 2012). Thus there is weak support 

for the idea that task-switching training causes generalized improvements in working-

memory span or working-memory updating. 
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Fluid Intelligence 

With regard to the fluid intelligence tests we also faced some problems. For 

younger adults we couldn’t analyze data of the BOMAT due to printing errors of the test 

sheets for a large number of participants, and with regard to the Raven test, we found that 

performance decreased from pretest to posttest. The performance decrease in the Raven 

test can be explained due to the fact that test items followed increasing difficulty, and at 

pretest participants only did odd numbered items while they did the even numbered items 

at posttest. There was a tendency for differences in pre-post changes between groups, but 

not in the expected direction, showing a non-significant increase in single-task and a 

significant decrease in task-switching groups. The BOMAT did not show differences in 

pre-post improvements between task-switching and single-task groups. 

Our result regarding fluid intelligence is inconsistent with previous findings. In 

the study by Karbach and Kray (2009), task-switching groups showed more 

improvements than the single-task group. This might be explained by the more reliable 

measure there, as they measured fluid intelligence on the latent level by combining 

several test scores. However, there were similar problems with matching the groups as 

mentioned previously. There were ceiling effects for both younger and older adults in the 

single-task groups that might weaken the results regarding transfer effects to fluid 

intelligence. However, in the study by von Bastian and Oberauer (2013) there was also 

transfer to fluid intelligence after task-switching training. As both of these studies used 

mostly similar stimuli during training, the differences in transfer effects between our 

study and theirs might be related to that factor (i.e. stimulus complexity during training). 

I will explore this possibility later. 
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EXPLANATIONS FOR THE TRANSFER GAINS IN OLDER ADULTS 

Impairments in dual-task contexts 

Meta-analyses in the aging literature suggest that age-related deficits occur 

prominently in divided attention and dual-task contexts (Verhaeghen, 2011; Wasylyshyn 

et al., 2011). However, it has also been shown that dual-task performance can be 

improved, even in older age, and that training leads to transfer effects involving new 

stimuli (Bherer et al., 2005). Our findings are in line with these observations in that we 

have seen age-related deficits mainly in mixing costs. We have also demonstrated that 

mixing costs can be decreased with training, and have found evidence for transfer effects 

in high-interference task-switching conditions in older adults. 

We can postulate that task-switching facilitate performance in dual-task settings 

compared to a single task setting (i.e. reduce mixing costs). In a single task setting there 

is no interference between competing task sets, however in dual-task setting there is 

interference. Task-switching training under high interference conditions might help 

cognitive processes related with facilitation and suppression of relevant and irrelevant 

task-sets respectively. Older adults have more difficulties in this respect; however, a 

proper task-switching setting might provide a way of training these processes. Thus, our 

results extend previous findings by highlighting a specific source (interference) for the 

dual-task costs in older adults and indicating the possibility of improving cognitive 

processes that are affected by age in dual-task settings. 

Improved interference resolution in older adults 

There are theories postulating age-related inhibitory deficit as the underlying 

cause of impaired cognitive performance (Hasher & Zacks, 1988; Lustig, Hasher, & 

Zacks, 2007). There is supporting evidence that problems with inhibitory processes 
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underlie impaired performance in different cognitive domains, such as working memory 

(Gazzaley et al., 2005) and processing speed (Lustig, Hasher, & Tonev, 2006). However, 

it is important to specify exactly which aspects of inhibitory processes might show age-

related deficits. It has been suggested that a unitary view of age-related decline in 

inhibition is not appropriate as there is age equivalence in many aspects of inhibitory 

processing (Kramer et al., 1994). Also, there are studies that indicate that there is no task-

inhibition deficit per se in older adults, as there are no age-differences in the size of n-2 

task repetition costs (Lawo, Philipp, Schuch, & Koch, 2012; Li & Dupuis, 2008; Mayr, 

2001). With regard to training effects, it has been shown that older adults are able to 

improve their ability to inhibit task-irrelevant information (Wilkinson & Yang, 2011). 

On the other hand, it has been suggested that cognitive control relies on the 

flexible adaptability of fronto-parietal brain networks and that this flexibility is 

instantiated by hubs of brain regions that can rapidly update connectivity patterns 

according to task demands (Cole et al., 2013). It has also been suggested that 

multitasking leads to more substantial performance costs in older adults because of a 

diminished ability in older adults to switch between task-relevant and task-irrelevant 

brain networks (Clapp et al., 2011). In light of these studies, our results might indicate 

that older adults improved in flexible switching between task-relevant and task-irrelevant 

representations. Transferable improvements in our study were only observed in task-

switching groups with high-interference load. In these conditions interruptions might 

potentially occur from the irrelevant task-set. Therefore, older adults might have 

improved in their ability to switch between the currently irrelevant task-set and the 

relevant task-set more efficiently, which led to transferable gains. This mechanism for the 

transfer effects is also consistent with the idea that novel task performance is dependent 
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upon the reuse of flexible connectivity patterns used during a practiced task (Cole et al., 

2013). 

Our results showing near transfer effects of the training groups only with high 

inhibition demands are in line with recent results from Anguera and colleagues (Anguera 

et al., 2013). In that study, older adults showed improvements in multitasking (i.e. a task 

involving interference), and this improvement lead to better performance on untrained 

cognitive abilities, such as enhanced sustained attention, divided attention, and enhanced 

working-memory after training multitasking with a three dimensional video game. Given 

that in their study both the single-task-training and the multitask-training led to similar 

improvements on single task components, but only the multitask-training led to enhanced 

multitasking, sustained attention and working memory performance, the mechanism that 

must have driven the training effects was most likely the interference resulting from 

overlapping cognitive control processes during task execution in the multitask-setting. It 

is likely that task-switching training as well might produce transfer effects based on 

similar principles as multi-task training. The results presented in this thesis also support 

the idea that older adults are able to improve processes related with better interference 

control, although the transfer scope of the present study was limited. 

Plasticity of cognitive control components 

Apart from the general slowing hypothesis, some theories postulate that a limited 

number of executive control processes might be responsible for age-related decline in 

cognitive performance (Braver & Barch, 2002). Previous studies have indicated that even 

in older age cognitive control might be improved with training (Basak et al., 2008; 

Karbach & Kray, 2009). Our training results support the notion that switching costs can 

be reduced through training. However, we found no transfer effects for switching cost, 
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which questions whether the switching component of cognitive control is subject to 

training-induced improvements in general. Furthermore, our results suggest a difference 

in the plasticity of different components of cognitive control as we have found no 

correlations between training gains in switching costs and pre-post gains in mixing costs. 

Our results are in line with previous studies suggesting that there are separable 

components of cognitive control (Miyake et al., 2000), and specifically with studies 

suggesting that switching and mixing costs are separable constructs (Kray & 

Lindenberger, 2000). Furthermore, similar to previous studies we also found that while 

switching processes are spared with aging, processes underlying mixing costs are more 

affected by aging (Kray & Lindenberger, 2000; Reimers & Maylor, 2005). It is an 

interesting problem, that in theory switching and mixing costs are not independent of 

each other. While in switching cost calculations we compare trials that have the same 

level of maintenance demands (resulting from keeping two task-sets in mind), when we 

compare mixed and single trials there is a difference between maintenance demands. 

Furthermore, when we compare mixed trials and single trials for the mixing cost 

calculations, the mixed trials are affected by both the higher maintenance and the 

additional switching demands. These processes can be separated by a variant of the task-

switching paradigm, the fade-out paradigm. Studies with the fade-out paradigm show that 

age-related differences in mixing costs are evident even when switching processes are 

potentially no longer necessary (Mayr & Liebscher, 2001). The question regarding the 

relative contribution of different cognitive control processes remains open. 

Context, cuing, preparation 

The difference between providing cues and not providing cues in the present task-

switching paradigm is that in the latter case the need for internal cognitive control is 
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increased. There are theories suggesting that older adults have difficulties when task 

uncertainty increases due to lack of contextual cues from the environment (Lindenberger 

& Mayr, 2013). In agreement with previous studies (e.g., Kray et al., 2002) our results 

from the four training sessions showed larger switch costs in uncued groups than in cued 

groups, but no age differences therein. While some studies indicated that older adults can 

use task cues to prepare for an upcoming task in a similar way as younger adults as 

evidenced by a similar amount of reduction of switch costs with changing cue stimulus 

interval (Cepeda et al., 2001; Kray, 2006), there is also a study showing age-related 

impairments in mixing costs when time for task preparation is decreased (Lawo et al., 

2012). Our results showed a similar amount of reduction in switch costs in younger and 

older adults throughout the four training sessions in both cued and uncued groups, which 

implies that switching ability might be independent of contextual demands. Furthermore, 

it has been demonstrated that in an alternate runs task-switching paradigm if updating 

demands are increased then older adults are less able to reduce switch costs through 

training (Kramer et al., 1999). Consistent with this finding we found larger mixing cost 

reductions in older adults in cued-bivalent task-switching groups than in uncued-bivalent 

task-switching training groups. 

With regard to other studies, as reported by Pereg and colleagues (2013a), there 

are two studies which showed only limited transfer of cued task-switching training. The 

first of these studies is a Ph.D. work of Armony-Shimoni (2001). “In Armony-Shimoni's 

Ph.D. study, participants were trained on the randomized-runs paradigm (Altmann and 

Gray, 2002, Altmann and Gray, 2008 and Gopher et al., 2000) in which task-cues 

appeared at the beginning of runs of trials varying in length between 4 and 12 trials. The 

results indicated some transfer of training effects across different kinds of stimuli (e.g., 

from letters to digits) or across different computational operations as long as they 
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belonged to the same modality, such as spatial processing (e.g., from comparing which 

one of two groups has more items to evaluating whether a group has more or less than 

five items). However, when the processing mode changed (e.g., from spatial to semantic) 

or when the judgment goals changed (e.g., from judging high-vs.-low to judging odd-vs.-

even) no transfer of training was found” (cf. Pereg et al., 2013a, p. 468.).  

The second study showing limited transfer of task-switching is a master thesis 

from Sosna (2001). “Sosna's Master's Thesis included 2 experiments in which 

participants were trained in a cued-TS paradigm involving two spatial location tasks (up-

down and right-left). In Experiment 1, there were three training sessions and switch 

probability varied between training groups. In Experiment 2 (6 training sessions), 

different versions of the training paradigm were used. In both experiments the switch 

costs were subjected to training effects but not to transfer effects” (cf. Pereg et al., 2013a, 

p. 468).  

The differences between ours and Karbach and Kray’s study and the above two 

are that we and Karbach and Kray used an alternating-runs task-switching paradigm, 

while they used cued task-switching paradigms. The previously mentioned study by von 

Bastian and colleagues also used cues to indicate upcoming task sets, whereas in Karbach 

and Kray’s study it was uncued. In our study, we had both cued and uncued conditions. 

However, this was not decisive from the perspective of far-transfer effects. On the other 

hand we also changed stimuli from pictorial to characters, as I mentioned previously. It 

might imply that it is important to have stimuli inducing high inhibition, but it is also 

important for the task-switching to go uncued, so that there is higher demand for 

updating. One can argue that when task switching goes uncued it resembles more of a 

multitask setting because participants are engaged in two processes simultaneously. 
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Further studies could investigate this issue to provide more insight into the role of 

updating processes. 

COMPARING DIFFERENT PARADIGMS 

Stimulus complexity 

We should consider the similarities and differences between studies in the stimuli 

and task-sets used. In our experiment stimuli consisted of characters, such as digits and 

letters, and task-sets were based on decisions regarding these characters, such as parity 

decision, magnitude decisions, etc. In Karbach and Kray’s study, ambiguous stimuli were 

used, and these were pictorial, and both task-sets were bound to a simple picture. It is 

reasonable to assume that there is a much higher level of interference in that case than in 

the present study, where interference is a bit lighter, coming from two characters standing 

next to each other. By focusing selective spatial attention to the relevant character on the 

left or the right the interference from the irrelevant character could have been arguably 

smaller in the present study than it was in the study of Karbach and Kray. Nevertheless, 

in our study there was still a significant difference between bivalent groups and univalent 

groups with regard to switch and mixing costs, as we could see during the training and 

also in the transfer of older adults’ mixing costs. What would have been better in our 

study is to use during training not digit-digit-letter-letter task, but only digit tasks, for 

instance, using a sequence like parity-parity-magnitude-magnitude, such that one 

stimulus, a number, would be bound with both task sets. That would have been 

equivalent with regard to interference with Karbach and Kray’s study. 

In the study by Zinke and colleagues (2012), there were two different versions of 

task-switching tasks at pretest and posttest. One of them was very similar to that used 

during training, an alternating-runs task-switching paradigm, using similar stimuli 
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(pictorial). The other was a random-cued task-switching paradigm, with different stimuli 

(numerical). In the similar task-switching paradigm they were able to replicate transfer 

effects with regard to mixing costs, but not with regard to switch costs, which is similar 

to our results from the older participants. However, in the random-cued task-switching 

paradigm with numerical stimuli no transfer effects were found. 

The lack of near-transfer effects in younger adults in our study is in line with the 

results of the study by Minear and Shah (2008) in which they showed no transfer (either 

switch or mixing costs reduction) from a predictable task-switching training to a similar 

predictable task-switching paradigm. In one of their experiment, there was no difference 

between a predictable switching, a random switching and a control group with regard to 

transfer in a predictable switching paradigm. More importantly, task-sets and stimulus 

complexity was similar to ours (such as: odd-even, consonant-vowel, uppercase-

lowercase, greater than-less than, etc. decisions). The only transferable gain in their 

experiments was mixing cost reductions from unpredictable task-switching paradigms to 

similar unpredictable task-switching paradigms, but not from a predictable to an 

unpredictable paradigm. 

Training duration 

In general, it should be assumed that transfer effects are proportional to training 

improvements in the practiced tasks, and many training studies have indeed found such a 

relationship (Anguera et al., 2013; Basak et al., 2008; Jaeggi et al., 2008). It also should 

be noted however, that most training studies have found transfer effects only after 

extensive practice (>20 hours). In contrast, we used a relatively short training (1,5-2 

hours). Minear and Shah (2008) used a comparable amount of training (1152 trials). The 

study by Zinke et al. (2012) used even less, only three training sessions. The presence of 
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near transfer effects even after such a short training in older adults is encouraging, and it 

would be interesting to know how far older adults’ performance might be improved with 

more extensive training. Furthermore, the short training duration coupled with a decrease 

in task difficulty might be responsible for the lack of far-transfer effects in the present 

study as compared to previous studies (Karbach & Kray, 2009).  

Training difficulty 

While in our study the training difficulty was not adaptive, other studies used 

adaptive training designs to achieve far-transfer effects (e.g., Anguera et al., 2013; Jaeggi 

et al., 2008). With regard to updating training with n-back tasks Jaeggi (2008) argues that 

updating demands need to be kept high throughout training in order for updating 

processes to improve. Another study with working memory training directly compared 

the effectiveness of adaptive and non-adaptive regimens (Brehmer, Westerberg, & 

Bäckman, 2012) and showed that adaptive training results in generally larger transfer 

gains. In contrast, the task-switching trainings applied in the previously mentioned 

studies did not fulfill that criterion with the exception of von Bastian and colleagues 

(2013). They used a more intensive (20 sessions, 30-40 min / session), adaptive training, 

with three different stimulus dimensions (pictorial, verbal and figural, i.e., cliparts, 

words, and simple geometrical shapes respectively). Also, as there were more sessions, 

new task sets were introduced every fourth session to keep participants motivated and 

enhance variability of training. Future task-switching training studies should therefore 

apply adaptive training paradigms. 

Control groups 

As mentioned in the introduction the implementation of proper control groups in 

training studies is essential. However, there were differences in the training studies with 
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regard to what kind of control groups they used, and these differences might be important 

to keep in mind as we compare the separate studies. In the study by von Bastian and 

colleagues (2013), the active control group did not perform single-task blocks as in the 

Karbach study. Their task comprised three visual matching tasks (face matching, digit 

matching, pattern matching). Training for this control group was also adaptive, which 

meant reducing the allowed time to respond as participants improved their performance. 

The study by Zinke at al. (2012) included a task-switching training group and a no-

contact control group. Matching of control groups to experimental groups is also often 

carried out based on only a subset of the tests that are eventually used during 

comparisons. The present study was relatively well controlled in that respect compared to 

other studies, and it is recommended for future studies as well to use a comprehensive 

matching along all measures. 

MAINTENANCE OF TRAINING GAINS 

With regard to the maintenance of the training gains, our results showed enhanced 

task-switching performance in older adults in high-inhibition groups compared to low-

inhibition groups which lasted at least up to six months. This is a novel finding as 

previous studies with task-switching training did not look for maintenance of training 

gains. This result is important, as it indicates that the plasticity of cognitive control 

functions achieved by the training is not a transient phenomenon, and joins studies which 

showed maintenance effects after training (e.g., Brehmer et al., 2012; Dahlin, Nyberg, et 

al., 2008; Li et al., 2008).  

INDIVIDUAL AND GROUP LEVEL TRAINING GAINS 

In studies of cognitive training we often look for differences on the group level. 

However, individual variability in training gains of a given regimen can be also an 
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important aspect. Individual differences in the amount of training gains can be substantial 

(Bissig & Lustig, 2007), and training benefits are often smaller for those individuals who 

are cognitively more impaired. There is evidence for instance, that memory plasticity 

decreases monotonically with advancing age (Verhaeghen et al., 1992). Our results 

indicate that there is a strong correlation between mixing costs at baseline and pre-post 

gain in mixing costs. This means that those individuals who have more problems at 

baseline improve more, which is an encouraging finding from the perspective of remedial 

applications. 

FUTURE DIRECTIONS - MECHANISM OF CHANGE WITH TRAINING IN OLDER ADULTS 

In this study we measured reaction times and try to decipher changes in cognitive 

functions. However, direct measurements of the brain could complement our studies and 

give additional information about cognitive aging. Multiple studies have indicated that 

the prefrontal cortex plays a key role in cognitive control by modulating activity of 

diverse brain areas (Miller, 2000). The exact mechanism for this long range modulation is 

not entirely known, but inter-areal phase synchronization between distributed neural 

populations is likely to play an important role in the process (Varela, Lachaux, 

Rodriguez, & Martinerie, 2001). It has also been demonstrated that working memory 

training increases prefrontal and parietal activity (Olesen, Westerberg, & Klingberg, 

2004) and that during working memory performance increasing memory load strengthens 

frontoparietal phase synchrony (Palva, Monto, Kulashekhar, & Palva, 2010). It might be 

postulated, that with older age top-down biasing of functional networks is diminished 

which leads to impaired cognitive performance. It has been shown that frontal theta-

power and long-range theta-coherence is positively correlated with improved task 

performance after multitask training in older adults, and that older adults show more 
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youth like patterns of theta-activity after training (Anguera et al., 2013). Slow wave theta 

synchrony of distributed neural networks is indeed a likely signature of cognitive control 

(Mizuhara & Yamaguchi, 2007; Schroeder & Lakatos, 2009; Womelsdorf, Johnston, 

Vinck, & Everling, 2010; Womelsdorf, Vinck, Leung, & Everling, 2010), and might play 

an important role in our understanding of the mechanism of age-related and training-

related changes in cognitive control. Future studies might focus more on these 

physiological aspects which are so far largely underexplored. 
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LIMITATIONS OF THE STUDY 

Selection of sample was not representative to the population. Our young adults 

were mainly psychology students. Furthermore, there are many disadvantages of a cross-

sectional study in comparison to a longitudinal study (Raz & Lindenberger, 2011; 

Salthouse, 2011). Age-differences in measurements might be attributed to factors other 

than the effects of aging on the brain. 

We often find age-related decline in cross-sectional comparisons of cognitive 

measures (e.g. see review by Hedden & Gabrieli, 2004). We might uncritically make the 

assumption that progressive age is related with mental deterioration. However, we should 

have good explanations of how and why specific factors, such as specific changes in 

brain volume or function, might cause changes in cognitive behavior. There can be many 

competing explanations for differences between groups in cross-sectional studies that can 

fit certain empirical findings equally well or even better than simply assuming age as the 

causal agent. Not addressing these issues might hinder our progress towards 

understanding cognitive aging. If one approaches the field with the mindset that there 

must be age-related differences, one will easily find evidence in a cross-sectional dataset. 

But one has to be always critical keeping in mind alternative explanations. In the specific 

field of task-switching longitudinal studies are still lacking, and so a precise estimate of 

age related decline in task-switching performance remains to be elucidated; although at 

present there are no good alternative explanations for the observed cross sectional 

differences than assuming progressive impairment of performance with the aging brain. 
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CONCLUSION 

There is a growing body of literature investigating the transfer effects of cognitive 

trainings, and remedial applications of such trainings in the elderly (Anguera et al., 2013; 

Karbach & Kray, 2009). It is important to understand which aspects of cognition show 

age-related decline, the extent to which such decline can be prevented, and how to restore 

cognitive function to levels observed in younger adults. The present study was designed 

to uncover which cognitive control processes contribute to general training related 

improvements and elucidated important factors that need to be minded in future training 

studies. Specifically, our findings lend support to the idea that cognitive control can be 

enhanced in high-interference dual-task contexts in the elderly. Interference resolution 

seems to be the most likely factor that underlies age related cognitive impairments, but 

our study suggests that it can be improved through training with paradigms such as task-

switching featuring bivalent stimuli. Furthermore, we suggest that stimulus complexity is 

an important factor in driving transfer effects that should be further examined in future 

studies. We found no far transfer effects, which seems to be in agreement with recent 

task-switching studies. However, other studies with high-interference multitasking 

paradigms involving engaging complex stimuli did find far-transfer effects. Thus, we 

believe that designing engaging training programs in keeping with the present theoretical 

considerations (i.e. importance of interference level) might be a fruitful approach to 

counteract cognitive aging. Lastly, the maintenance of transfer gains after six months also 

points towards the practical applicability of the present approach. 
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Appendices 

Table 15 Mean reaction times (ms) as a function of Session (1, 2, 3, 4), Age (younger 
adults, older adults), Group (Group 2, Group 3, Group 4, Group 5) and Trial (stay, 
switch) 

 Session 
 Training 1 Training 2 Training 3 Training 4 
 Stay Switch Stay Switch Stay Switch Stay Switch 

Training 
Group 

M SD M SD M SD M SD M SD M SD M SD M SD 

 Younger adults 
Group 2  592 63 721 122 537 56 614 94 508 47 557 74 501 52 540 70 
Group 3 724 94 950 210 627 89 758 151 574 68 667 110 565 79 652 121 
Group 4 595 129 757 211 536 86 628 135 519 81 591 124 514 81 574 111 
Group 5 703 122 939 222 613 78 775 191 577 83 700 180 564 78 667 159 
 Older adults 
Group 2 848 181 1020 244 712 112 805 156 663 100 735 133 651 93 715 111 
Group 3 1110 280 1329 373 997 245 1155 333 903 197 1033 273 855 209 979 267 
Group 4 866 198 1119 329 777 192 952 365 705 124 828 221 688 123 798 221 
Group 5 1104 223 1440 247 968 179 1251 233 888 160 1080 210 847 154 1056 243 

Table 16 Percentage of correct trials (%) as a function of Session (1, 2, 3, 4), Age 
(younger adults, older adults), Group (Group 2, Group 3, Group 4, Group 5) and Trial 
(stay, switch) 

 Session 
 Training 1 Training 2 Training 3 Training 4 
 Stay Switch Stay Switch Stay Switch Stay Switch 

Training 
Group 

M SD M SD M SD M SD M SD M SD M SD M SD 

 Younger adults 
Group 2  96 3.39 91 5.71 95 3.73 93 5.95 96 3.09 94 4.78 95 3.47 93 6.73 
Group 3 96 2.92 91 5.75 96 2.61 93 3.60 95 2.92 95 3.85 95 3.13 95 2.92 
Group 4 96 3.36 90 5.29 95 3.22 93 4.34 95 4.09 93 4.80 95 5.02 92 4.74 
Group 5 95 4.24 91 6.55 97 2.25 94 3.82 96 2.74 94 3.31 95 2.97 94 4.05 
 Older adults 
Group 2 99 1.04 96 2.95 99 0.98 97 2.18 99 0.63 97 1.48 99 0.83 97 2.06 
Group 3 94 8.14 92 8.60 98 1.23 95 4.05 99 1.10 96 2.74 99 1.51 97 2.99 
Group 4 98 2.84 95 3.81 99 1.03 97 3.33 99 0.62 97 2.36 100 0.51 98 2.26 
Group 5 95 4.01 92 4.93 97 2.90 95 4.25 98 1.88 96 2.66 98 1.66 97 1.73 
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Table 17 Mean reaction times (M) and standard deviations (SD) of the Color Stroop test 
for each trial type (neutral, incongruent) for each training group at pretest and posttest. 

 Pretest Posttest 
 Neutral Incongruent Neutral Incongruent 
Group M SD M SD M SD M SD 
 Younger adults 
Group 1 (n = 16) 618 80 657 101 584 83 611 88 
Group 2 (n = 16) 602 65 630 99 585 116 604 120 
Group 3 (n = 16) 616 93 629 117 565 82 601 90 
Group 4 (n = 16) 598 89 635 97 601 104 624 110 
Group 5 (n = 16) 621 107 648 94 600 86 616 88 
 Older adults 
Group 1 (n = 17) 862 122 984 139 829 142 934 152 
Group 2 (n = 17) 947 175 1032 203 860 120 966 167 
Group 3 (n = 14) 836 146 909 154 809 122 870 121 
Group 4 (n = 16) 959 118 1071 179 928 121 1015 153 
Group 5 (n = 16) 894 128 1005 171 877 99 1008 137 

 

Table 18 Mean reaction times (M) and standard deviations (SD) of the Number Stroop 
test for each trial type (neutral, incongruent) for each training group at pretest and 
posttest. 

 Pretest Posttest 
 Neutral Incongruent Neutral Incongruent 
Group M SD M SD M SD M SD 
 Younger adults 
Group 1 (n = 16) 638 84 651 79 599 67 614 67 
Group 2 (n = 16) 659 92 679 114 616 79 624 80 
Group 3 (n = 16) 613 71 649 80 583 75 596 85 
Group 4 (n = 16) 650 148 661 159 611 91 635 111 
Group 5 (n = 16) 628 68 655 79 593 69 606 73 
 Older adults 
Group 1 (n = 17) 979 136 985 124 923 143 956 156 
Group 2 (n = 17) 1051 153 1084 152 945 137 977 130 
Group 3 (n = 14) 953 120 957 113 906 113 939 139 
Group 4 (n = 16) 1011 138 1043 146 973 162 978 165 
Group 5 (n = 16) 962 134 1010 148 929 115 943 127 
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Table 19 Mean percentage correct trials (M) and standard deviations (SD) of the Color 
Stroop test for each trial type (neutral, incongruent) for each training group at pretest and 
posttest. 

 Pretest Posttest 
 Neutral Incongruent Neutral Incongruent 
Group M SD M SD M SD M SD 
 Younger adults 
Group 1 (n = 16) 97 3.59 95 6.44 95 3.78 93 5.34 
Group 2 (n = 16) 96 4.25 95 5.19 92 6.91 92 7.56 
Group 3 (n = 16) 97 2.85 95 4.38 95 4.56 94 4.11 
Group 4 (n = 16) 96 6.24 94 3.86 92 5.35 93 6.63 
Group 5 (n = 16) 97 2.34 96 3.76 96 2.99 94 6.56 
 Older adults 
Group 1 (n = 17) 97 3.90 91 9.18 98 3.75 95 7.33 
Group 2 (n = 17) 97 5.05 90 16.77 99 2.23 97 4.75 
Group 3 (n = 14) 98 1.91 97 4.42 99 2.33 98 2.33 
Group 4 (n = 16) 99 2.25 92 8.54 98 2.27 96 5.19 
Group 5 (n = 16) 97 3.46 93 7.72 98 2.77 95 5.47 
 

Table 20 Mean percentage correct trials (M) and standard deviations (SD) of the Number 
Stroop test for each trial type (neutral, incongruent) for each training group at pretest and 
posttest. 

 Pretest Posttest 
 Neutral Incongruent Neutral Incongruent 
Group M SD M SD M SD M SD 
 Younger adults 
Group 1 (n = 16) 96 4.49 92 5.70 96 3.76 93 6.43 
Group 2 (n = 16) 96 6.45 89 7.39 94 5.10 91 6.94 
Group 3 (n = 16) 97 7.56 93 12.60 95 3.61 90 6.68 
Group 4 (n = 16) 97 8.30 92 10.27 93 5.17 89 7.99 
Group 5 (n = 16) 97 3.86 95 4.49 94 4.82 95 5.17 
 Older adults 
Group 1 (n = 17) 97 4.06 90 8.61 97 2.81 92 7.31 
Group 2 (n = 17) 96 4.21 91 6.72 97 2.68 95 4.00 
Group 3 (n = 14) 98 3.71 91 8.92 97 3.77 93 7.60 
Group 4 (n = 16) 96 4.82 92 8.22 97 4.34 94 7.13 
Group 5 (n = 16) 96 3.99 94 5.13 96 4.60 94 6.24 
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Table 21 2-back mean (M) scores and standard deviations (SD) for younger and older 
adults separately for each training group at pretest and posstest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 13.38 (6.96) 12.27 (8.05) 11.14 (7.13) 10.94 (8.55) 15.53 (5.26) 
Older adults 11.00 (7.32) 12.25 (7.57) 10.79 (7.68) 12.50 (6.92) 12.40 (8.44) 
 Posttest 
Younger adults 15.75 (5.32) 14.13 (5.08) 13.47 (6.78) 12.19 (7.49) 16.33 (5.43) 
Older adults 13.24 (6.86) 14.13 (5.60) 13.21 (6.00) 10.69 (7.99) 15.00 (4.10) 

Table 22 3-back mean (M) scores and standard deviations (SD) for younger adults 
separately for each training group at pretest and posstest. 

Training group 
Group 1 

single task – 
bivalent stimuli 

n=(14) 

Group 2 
cued switching – 
univalent stimuli 

n=(13) 

Group 3 
cued switching – 
bivalent stimuli 

n=(15) 

Group 4 
uncued switching 
– univalent stimuli 

n=(16) 

Group 5 
uncued switching 
– bivalent stimuli 

n=(14) 
M (SD) M (SD) M (SD) M (SD) M (SD) 

Pretest 
1.07 (7.77) 4.46 (3.45) 1.80 (5.88) 2.31 (7.10) 6.14 (5.07) 

Posttest 
4.36 (8.47) 6.08 (4.37) 4.13 (5.72) 3.94 (7.53) 6.29 (4.34) 

Table 23 Working Memory aggregated scores (M) and standard deviations (SD) for 
younger and older adults separately for each training group at pretest and posttest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 5.02 (.74) 4.92 (1.12) 4.83 (1.27) 5.03 (1.01) 4.77 (1.09) 
Older adults 4.79 (.99) 4.59 (.81) 4.44 (1.07) 4.22 (1.26) 4.43 (.95) 
 Posttest 
Younger adults 4.98 (.80) 5.27 (1.01) 4.86 (.93) 5.12 (.92) 5.17 (1.27) 
Older adults 4.50 (1.11) 4.57 (1.12) 4.25 (.92) 4.30 (.97) 4.47 (.92) 
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Table 24 Raven mean (M) scores and standard deviations (SD) for younger and older 
adults separately for each training group at pretest and posstest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 10.93 (2.43) 11.25 (3.19) 11.44 (2.16) 11.47 (2.37) 11.63 (2.66) 
Older adults 5.28 (2.32) 5.27 (2.22) 5.33 (2.26) 4.69 (2.68) 4.88 (2.55) 
 Posttest 
Younger adults 11.00 (1.56) 9.81 (3.23) 11.50 (1.79) 10.00 (2.76) 10.50 (2.58) 
Older adults 5.33 (2.20) 5.00 (2.04) 4.67 (1.76) 4.38 (1.15) 5.00 (2.13) 

Table 25 BOMAT mean (M) scores and standard deviations (SD) for older adults 
separately for each training group at pretest and posstest. 

Training group 
Group 1 

single task – 
bivalent stimuli 

n=(18) 

Group 2 
cued switching – 
univalent stimuli 

n=(16) 

Group 3 
cued switching – 
bivalent stimuli 

n=(15) 

Group 4 
uncued switching 
– univalent stimuli 

n=(16) 

Group 5 
uncued switching 
– bivalent stimuli 

n=(17) 
M (SD) M (SD) M (SD) M (SD) M (SD) 

Pretest 
5.17 (2.64) 4.63 (3.44) 5.80 (2.54) 5.56 (2.03) 5.65 (2.40) 

Posttest 
6.67 (2.95) 6.81 (2.20) 5.80 (2.65) 6.94 (2.11) 5.29 (3.04) 
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Table 26 Counting span mean percentage of correct trials (M) and standard deviations 
(SD) for younger and older adults separately for each training group at pretest and 
posttest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 82 (9) 82 (14) 81 (13) 82 (11) 78 (12) 
Older adults 76 (15) 72 (12) 77 (17) 74 (13) 69 (11) 
 Posttest 
Younger adults 83 (12) 86 (14) 80 (14) 81 (11) 80 (12) 
Older adults 73 (15) 76 (19) 77 (11) 81 (11) 74 (16) 

 

Figure 27 Counting span mean performance (% correct) as a function of age group 
(younger adults, older adults), Training group (single, switch) and Session (pretest, 
posttest). Error bars refer to the standard errors of the mean. 
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Table 27 Reading span mean percentage of correct trials (M) and standard deviations 
(SD) for younger and older adults separately for each training group at pretest and 
posttest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 81 (10) 76 (14) 78 (13) 76 (18) 76 (15) 
Older adults 74 (14) 73 (15) 73 (14) 77 (12) 72 (16) 
 Posttest 
Younger adults 77 (12) 78 (15) 78 (16) 79 (15) 82 (10) 
Older adults 66 (16) 71 (14) 71 (17) 71 (14) 70 (19) 

 

Figure 28 Reading span mean performance (% correct) as a function of age group 
(younger adults, older adults), Training group (single, switch) and Session (pretest, 
posttest). Error bars refer to the standard errors of the mean. 
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Table 28 Digit backwards mean (M) scores and standard deviations (SD) for younger and 
older adults separately for each training group at pretest and posstest. 

  Training group 
  Group 1 

single task – 
bivalent stimuli 

Group 2 
cued switching – 
univalent stimuli 

Group 3 
cued switching – 
bivalent stimuli 

Group 4 
uncued switching 
– univalent stimuli 

Group 5 
uncued switching 
– bivalent stimuli 

Age group M (SD) M (SD) M (SD) M (SD) M (SD) 
 Pretest 
Younger adults 8.75 (2.18) 8.53 (1.68) 8.67 (2.55) 8.29 (2.62) 8.67 (1.95) 
Older adults 7.17 (1.62) 6.00 (2.88) 6.27 (1.94) 5.25 (2.11) 6.94 (2.86) 
 Posttest 
Younger adults 9.87 (2.22) 8.87 (1.88) 9.67 (2.23) 8.76 (2.95) 10.07 (3.92) 
Older adults 7.50 (2.38) 6.73 (2.66) 6.73 (1.83) 6.00 (2.13) 7.06 (2.51) 

 

Figure 29 Digit backward mean performance (correct trials) as a function of age group 
(younger adults, older adults), Training group (single, switch) and Session (pretest, 
posttest). Error bars refer to the standard errors of the mean. 
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