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I Theoretical Part 

1. Introduction 

One of the most remarkable achievements of evolution is the human’s ability to learn:  

Learning is an enduring change in the mechanisms of behaviour involving specific 

stimuli and/or responses that results from prior experience with those or similar stimuli and 

responses. (Domjan, 2003, p. 14).  

As becomes evident from this definition, learning allows an organism to flexibly adapt 

to changing environmental conditions. In doing so, an individual has to continuously monitor 

their performance to detect discrepancies between intended and actual responses (i.e., 

errors) and to adjust behaviour accordingly. Experience- (or feedback-) based learning thus 

requires the ability to evaluate the outcomes of one’s behaviour. The motivational and 

affective significance of action outcomes, however, can vary considerably. For instance, 

some errors place the individual in serious danger or threaten a person’s self-worth whilst 

others have virtually no consequences. In order to meet specific situational demands, an 

efficient performance monitoring system should take into account the affective and 

motivational context of an action. Nevertheless, the question of how motivational and 

affective processes interact with performance monitoring has received surprisingly little 

attention thus far (Pessoa, 2008, 2009). Evidence from electrophysiological research 

suggests that the motivational and affective value of on-going events has a substantial 

impact on error- and feedback processing (Falkenstein, Hoormann, Christ & Hohnsbein, 

2000; Gehring, Goss, Coles, Meyer, & Donchin, 1993; Hajcak, Moser, Yeung, & Simons, 

2005; Olvet & Hajcak, 2011; Wiswede, Münte, Goschke, & Rüsseler, 2009a; Wiswede, 

Münte, & Rüsseler, 2009b). However, it remains largely unknown from the existing literature 

how these context-specific modulations in error- and feedback processing relate to flexible 

behavioural adaptation. The present thesis addressed this essential question by utilizing the 

high temporal resolution of event-related potentials (ERPs) to track the impact of motivational 

and affective manipulations on the neural mechanisms of error and feedback processing 

during reinforcement learning. 
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This thesis compromises a theoretical and an empirical part. The theoretical part first 

gives an overview of contemporary accounts on reinforcement learning and its neural 

underpinnings. This overview is followed by a chapter highlighting the role of emotional and 

motivational processes in reinforcement learning and action selection. Afterwards, I will 

review empirical evidence indicating how theoretical approaches to performance monitoring 

and learning are informed by electrophysiological research. I conclude with a summary of the 

general aims of this thesis and an outline of the three experiments it includes. The empirical 

part starts with a formulation of the specific research goals of Experiments 1 and 2, followed 

by the deduction of the research hypotheses and a description of study design and methods. 

The results will be presented consecutively for Experiment 1 and 2. After an interim 

discussion of the combined findings of Experiment 1 und 2, I will give an outline of 

Experiment 3, including the corresponding research goals and hypotheses. The description 

of design and methods is followed by a presentation of the results and a discussion of the 

findings of Experiment 3. The empirical part closes with a general discussion of the main 

findings from the three experiments in the context of the relevant literature. 
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2. Review of Literature 

Overview 

The literature review is structured into five main parts: In the first part, I will introduce 

basic theoretical concepts and theories of reinforcement learning. The second part 

addresses the neural underpinnings of reinforcement learning, particularly the role that has 

been attributed to dopaminergic mechanisms in coding a learning signal that is referred to as 

“reward prediction error”. In the third section, I will summarize theoretical considerations and 

empirical findings emphasising the significance of motivational and affective processes in 

learning and adaptive decision making. Part four describes components in the event-related 

potential (ERP) that are thought to reflect the activity of a generic performance monitoring 

system: the error negativity (Ne), the feedback-related negativity (FRN), and the error 

positivity (Pe). As will be outlined in the fifth section, integrative neurocomputational models 

on performance monitoring conceptualize the Ne and the FRN in terms of learning or conflict 

signals mediating goal-directed behavioural adjustments. 

Theoretical Accounts on Reinforcement Learning 

Towards a Definition of Reinforcement Learning 

Imagine a child coming home from kindergarten and showing their mother a picture 

painted by themselves. The mother will most likely praise the child and this makes them feel 

proud and happy. A few days later, however, the child is painting the wall of the living room 

with crayons while the mother is preparing dinner. Probably to the child’s surprise, the 

mother’s reaction to their work will now be less pleasant. Obviously, the consequences of the 

child’s action are more or less desirable, depending upon the specific situation in which the 

behaviour occurs. Thus, in order to satisfy their needs and desires as well as to avoid harm 

and punishment, an individual has to learn which action to select in a given situation. This 

fundamental process is commonly referred to as reinforcement learning (RL). 

The foundations of modern theories on RL were laid by the pioneering work of E. L. 

Thorndike. On the basis of his laboratory studies on “animal intelligence”, Thorndike 
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formulated the “Law of Effect” (Thorndike, 1911). According to this “law”, the association 

between a situation and a certain behaviour is strengthened if the behaviour is followed by a 

satisfying state. By comparison, if the behaviour is followed by discomfort, the association 

between situation and behaviour is weakened. Although Thorndike’s assertion that behaviour 

is controlled by the association between situation and response has been challenged by later 

studies, the Law of Effect highlights two key characteristics of RL (Sutton & Barto, 1998). 

First, it states that RL involves the selection of a particular behaviour, that is, the subject has 

to discover rewarding responses by trial and error, enabling them to adapt to unknown 

situations. Second, the Law of Effect implies that RL is associative in nature. The 

associationistic view is still inherent to most neurophysiological models of RL. On the neural 

level, synaptic plasticity is widely assumed to be a substrate of associative learning (Stefan 

et al., 2000). In the following sections, I will provide essential information about the basic 

elements of RL and the different types of associations that can be learned. Then I will 

introduce the contemporary computational theories of RL this thesis relies on. 

States, Actions, and Reinforcements 

The associative structure of RL comprises relations between states, actions1, and 

outcomes. In the RL framework, the term ‘state’ refers to the representation of the current 

situation (e.g., Sutton & Barto, 1998). It should be noted that the state potentially involves a 

broad range of relevant information that are not restricted to a specific set of sensory stimuli. 

Specifically, states may include motivational and emotional aspects of the situation. Given a 

particular state, an individual has to choose between several potential actions, each of which 

is usually followed by specific consequences and hence results in a new state. If the 

outcome of an action increases the future probability for the same action to be performed, it 

is called a reinforcer2

                                                 
1 The term ‘action’ refers to intentional, goal-directed behaviours, whereas the term ‘response’ emphasizes that a 

certain behaviour is elicited by a stimulus. 

 (Skinner, 1953) or reward. Note that this definition includes both the 

occurrence of pleasant states (positive reinforcement) and the avoidance or termination of 

2 While early researchers thought of reinforcers as specific stimuli, the term has been expanded to responses that 

have been assigned a specific role in the adaptation to environmental constraints. 
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unpleasant states (negative reinforcement). Conversely, an outcome that decreases the 

future probability for the action to be performed is termed a punisher (Azrin & Holz, 1966), 

either denoting the occurrence of an unpleasant outcome (positive punishment) or the 

withdrawal of pleasant consequences (negative punishment). 

Instrumental vs. Classical Conditioning 

Learned associations have traditionally been divided into two basic categories: (1) 

associations between different stimuli or events and (2) associations between stimuli/events 

and behaviour. This distinction is closely related to the investigation of learning processes 

using the paradigms of classical vs. instrumental conditioning. In classical (or Pavlovian) 

conditioning two types of stimuli are distinguished based on the behavioural response they 

elicit on first presentation, that is, without prior learning (cf. Domjan, 2003). The 

unconditioned stimulus (US) effectively evokes a specific response called unconditioned 

response (UR). Hence, the association between US and UR is an innate reflex (Pavlov, 

1927). The second class of stimuli is referred to as conditioned stimuli (CSs). In contrast to 

the US, the CS does not evoke a specific behavioural reaction on first presentation, but 

comes to do so after repeated pairing with the US. This reaction upon presentation of the 

previously “neutral” CS is called the conditioned response (CR). For conditioning to occur the 

CS has to be predictive of the US, that is, the CS has to be presented before the US or 

simultaneously with it (e.g., Bower & Hilgard, 1981). Crucially, learning about the relation 

between stimuli allows the subject to predict future events and to engage in anticipatory 

responses. 

However, successful behavioural adaptation in a changing environment does not only 

require the ability to predict an event but also to control the results of one’s own behaviour 

(cf. Balleine, 2001). This latter form of behaviour is usually called goal-directed or 

instrumental. Instrumental conditioning includes three basic components: (1) a response, (2) 

a response outcome (or reinforcer), and (3) a relation between response and outcome, also 

termed response-reinforcer (or instrumental) contingency (cf. Domjan, 2003). The 

instrumental contingency denotes the extent to which a particular reinforcer is more likely to 
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occur if it is preceded by the instrumental response. In case of a perfect contingency, the 

reinforcer is not delivered unless the instrumental response is made. Thus, in contrast to UR 

and CR in classical conditioning, the instrumental response is controlled by its consequences 

(Grindley, 1932). Yet, Thorndike already emphasized the importance of the situation or 

stimulus context for determining which instrumental response should occur. As will be 

pointed out below, evidence has accumulated for the notion that stimulus context, 

instrumental response, and response outcome are connected in instrumental conditioning. In 

particular, the expectation of future reinforcements has been ascribed a pivotal role in 

motivating instrumental behaviour. Contemporary theories of RL thus rely on research from 

the field of both classical and instrumental conditioning. 

Motivational Mechanisms in Instrumental Learning 

Goal-Directed Actions vs. Habits 

Early theories of learning were inspired by the study of animal behaviour and focused 

mainly on the establishment of stimulus-response (S–R) associations, thereby implying that a 

specific behaviour is directly elicited by a stimulus. This notion contrasts with the commonly 

held view that instrumental behaviour is controlled by its consequences. Indeed, evidence 

from outcome devaluation studies has strongly suggested that instrumental conditioning also 

results in the learning of response-outcome (R-O) associations (for a review, see Dickinson 

& Balleine, 1995). In these studies, the instrumental conditioning procedure is followed by a 

manipulation of the outcome value. For example, a food- and water-deprived rat is trained to 

press a lever to obtain food pellets and to pull a chain to obtain a sucrose solution (or vice 

versa). Subsequently, the rat gains direct access to either the food or the liquid and a taste 

aversion is conditioned by injecting the animal with a toxic substance. In the final test phase, 

the rat is exposed to the two response devices again, but pressing the button or pulling the 

chain does result in any outcome. Despite the fact that the outcome devaluation should not 

affect the previously learned S-R association, the rat produces fewer lever presses if the 

pellets have been associated with illness, but pulls the chain less often if the liquid has been 

associated with illness (Colwill & Rescorla, 1985). This finding clearly indicates that the 



 7 

animal has learned to associate the action with its specific consequences. Similarly, 

instrumental behaviour is generally sensitive to degrading the response-outcome 

contingency and vanishes if it is no longer followed by the reinforcing outcome (extinction; 

e.g., Domjan, 2003). Even in case of unchanged reward probability, instrumental behaviour 

has been shown to become less frequent if the contingency between response and reinforcer 

is reduced (Hammond, 1980). Behaviour that is (a) guided by the knowledge of the relation 

to some outcome and (b) susceptible to alterations in the value of those outcomes is called 

goal-directed (cf. Balleine, Liljeholm, & Ostlund, 2009). 

Devaluation studies have also shown that instrumental conditioning can result in the 

learning of S-R associations that are insensitive to changes in outcome value (Dickinson, 

1985). These associations arise, for example, from extensive overlearning as behaviour 

becomes more and more habitual (Adams, 1981) and thus are commonly referred to as 

habits. In contrast to goal-directed actions, habits are relatively unaffected by changes in the 

response-outcome contingency (e.g., Dickinson, Squire, Varga, & Smith, 1998) and may 

persist even if followed by negative consequences, as illustrated by drug seeking behaviour 

(Nelson & Killcross, 2006; Schoenbaum & Setlow, 2005). Importantly, accumulating evidence 

indicates that habitual and goal-directed learning constitute distinct processes that are 

dissociable at both the functional and the neural level (Balleine et al., 2009; Redgrave et al., 

2010; Yin & Knowlton, 2002). This distinction is critical for the current study because the 

learning task applied has been shown to recruit both the habitual and the goal-directed 

system (Doll et al., 2009; Huys & Dayan, 2009). 

Expectancy of Outcomes: The Role of S-O Associations or Pavlovian-Instrumental Transfer 

 Given the principles of learning that have been inferred from classical conditioning, it 

is reasonable to assume that the associative structure in instrumental learning is not 

restricted to S-R and R-O associations, but also includes the development of stimulus-

outcome (S-O) associations. Indeed, it has been suggested that an organism learns to 

predict a particular outcome during instrumental conditioning by means of an association 

between a situation and an outcome (Hull, 1930; Spence, 1956). The two-process theory 
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(Rescorla & Solomon, 1967) states that the predictive stimulus (cue) induces the 

instrumental response by eliciting an outcome-specific affective state such as hope for food 

or fear of pain. Alternatively, it has been suggested that an S-(O)-R association is formed 

(Trapold & Overier, 1972). According to this view, the expectancy of the outcome acts as an 

internal stimulus and hence becomes directly associated with the response. Research on 

Pavlovian-instrumental transfer has provided ample evidence for the notion that instrumental 

performance depends on S-O associations (Domjan, 1993). There is also evidence, 

however, that this may only be the case if the cue conveys reliable information about the 

upcoming outcome (e.g., Delamater, 1995). More recently, Berridge (2001) posited that the 

cue does not only trigger the process of “wanting” the outcome, but in itself acquires an 

incentive value as well. It has been shown that this kind of Pavlovian incentive value of the 

cue can be distinguished from a more complex cognitive expectation of the incentive value of 

the outcome, i.e., “the desire for the outcome” (Berridge, 2001). 

Competition and Cooperation of Goal-directed and Habitual Control 

 From our every-day life we know that there are many instances in which the goal-

directed action-outcome (A-O) system and the S-R habit system compete to gain control of 

behaviour. For example, if a deer suddenly jumps out in front of your car you have to 

suppress the habitual tendency to swerve. Instead, you should switch to a goal-directed 

mode of control that enables you to straighten the steering wheel, to brake firmly, and to take 

the foot off the brake as you impact. The relative dominance of habitual vs. goal-directed 

control has been found to depend on several conditions. As I pointed out above, habits are 

established as a result of overlearning. The stronger the S-R association grows, the more 

likely the stimulus becomes to guide response selection, particularly under time pressure and 

other stressful conditions (Schwabe, Wolf, & Oitzl, 2010). Furthermore, acute and chronic 

stress has been found to favour the habit learning system over the goal-directed learning 

system (Dias-Ferreira et al., 2009; Schwabe & Wolf, 2009). Conversely, the goal-directed 

system can quickly exert control over habitual response tendencies in the face of unexpected 

events, i.e., if habitual control turns out to be inappropriate (Hikosaka & Isoda, 2010). 
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 In most cases, however, the two learning systems appear to work in a complementary 

rather than competitive fashion. Under stable environmental conditions, habitual control can 

be highly efficient, as it requires only few processing resources and thus allows for the 

simultaneous execution of several behavioural routines. Indeed, it has been suggested that 

action selection is a multi-step process in which stimulus-response associations (including O-

R associations) largely determine the initial choice of a response option and thereby initiate 

the evaluation of this option through the retrieval of the corresponding response-outcome 

association. Feed-forward response selection and feedback evaluative processes finally 

converge in the supra-threshold activation of a specific response representation (Balleine et 

al., 2009). This raises the question how disambiguation is accomplished if the two action 

controllers generate conflicting response tendencies. Adopting a computational RL 

framework, Daw, Niv, and Dayan (2005, 2006) proposed that the relative uncertainty of the 

predictions of the two learning systems determines whether habitual or goal-directed control 

is favoured. While habits are assumed to be implemented by a computational simple but 

inflexible model-free RL algorithm, the goal-directed system is assumed to instantiate a 

flexible and adaptive but computationally costly model-based algorithm. Both RL methods 

are discussed in more detail below. 

Computational Models of Reinforcement Learning 

 Computational approaches to RL where first considered in the 50s of the last century 

and have proven to be powerful tools for both explaining and predicting behavioural and 

neural correlates of learning over the last decades (Niv & Montague, 2008). Within the 

framework of RL algorithms, behavioural choice relies on the establishment of an optimal 

policy that maps a particular state s on the optimal action a, i.e., the action that leads to the 

largest expected sum of future rewards (Maia, 2009). A policy p(s,a) indicates the probability 

of choosing action a in state s and hence represents the strength of the S-R association. The 

learning of optimal policies can be accomplished via either model-free or model-based 

approaches. Model-based RL involves the development of an experience-based internal 

model of how the environment changes upon an agent’ s actions. Specifically, the agent 
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learns the conditional probability that an initial state s1 is followed by a state s2 when 

performing an action a (transition function,  T(s1, a, s2)) as well as the conditional probability 

of the corresponding reinforcements (reward function,  R(s1, a, s2)). The knowledge and 

continuous updating of the environmental dynamics do not only allow the agent to select 

appropriate actions, i.e., to find an optimal policy, but also enable them to flexibly adapt to 

changes in outcome value or transition contingencies (Dayan & Niv, 2008). In model-free RL, 

an optimal policy is estimated via trial-and-error, that is, without prior learning of an 

environmental model. Instead, behavioural choice relies on a recency-weighted average 

across successive “samples” of state-action-state sequences (Maia, 2009). Since transition 

probabilities and reward function are not explicitly learned, model-free RL does not allow for 

flexible adjustments to outcome revaluation or dynamic contingencies (Dayan & Niv, 2008). 

Model-free methods of behavioural choice involve error-correcting learning mechanisms that 

operate on inconsistencies between what has been predicted and what is actually 

happening. This concept can be traced back to the influential model of animal learning by 

Robert Rescorla and Allan Wagner (Rescorla & Wagner, 1972). 

The Rescorla-Wagner Model and the Importance of Expectancy in Learning 

 The Rescorla-Wagner model (Rescorla & Wagner, 1972) significantly advanced 

theoretical accounts on learning in highlighting the importance of expectancy. Specifically, 

Rescorla and Wagner suggested that learning only occurs if an event differs from what has 

been expected. More formally, the model states that changes in the associative strength V of 

a CS can be described by the following rule (Niv & Montague, 2008): 

Δ𝑉(𝐶𝑆𝑖) =  𝜂(𝐶𝑆𝑖,𝑈𝑆) �𝜆(𝑈𝑆) −�𝑉(𝐶𝑆𝑖
𝑖

)�. 

 According to this equation, learning only occurs if a difference exists between the 

prediction of the US due to all conditioned stimuli present in the situation (∑ V(CSii )) and the 

maximal associative strength possible with the given US (λ(US)). The parameter  η(CSi, US) 

denotes the learning rate that depends on the salience of both CS and US (η ≤ 1). Although 

the Rescorla-Wagner model made an important contribution to the field of RL by assuming 
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that expectancy deviations are necessary for learning to take place, some findings are 

difficult to reconcile with its assumptions (for examples, see Domjan, 2003). In particular, the 

model does not address the critical aspect of temporal factors in conditioning. This decisive 

drawback led to the proposal of the so-called temporal-difference learning rule (Sutton & 

Barto, 1988) that extended the Rescorla-Wagner model to the time domain. 

Temporal Difference Learning and Prediction Errors 

 In temporal-difference (TD) learning, the agent estimates the value of states, i.e., the 

average sum of future rewards that can be obtained when choosing appropriate actions in 

the given state. The standard TD learning principle can be described by the following 

equation (Niv & Montague, 2008): 

Δ𝑉(𝑆𝑡) =  𝜂 �𝑟(𝑡) + 𝛾 � 𝑉�𝑆𝑘,𝑡+1� − 
𝑆𝑘,𝑡+1

�𝑉�𝑆𝑗,𝑡�
𝑆𝑗,𝑡

�. 

 In contrast to the Rescorla-Wagner model, each time point t within a trial constitutes a 

specific state for which a value  V(St) is learned. Moreover, the stimuli Sj present at time  t  

are assumed to predict not only the immediate reward  r(t) but also the value of the following 

state  V(St+1), i.e., future rewards that are themselves predicted by the stimuli Sk present at 

 t + 1. The parameter  γ ≤ 1 denotes a discounting factor. Learning progresses as 

differences are evident between predicted (∑ V(Sj,t)Sj,t ) and actually obtained (r(t) +

γ∑ V�Sk,t+1�Sk,t+1 ) rewards. Therefore, the term  r(t) + γ∑ V�Sk,t+1�  − Sk,t+1 ∑ V�Sj,t�Sj,t  is also 

referred to as prediction error (PE)  δ(t). Note that the PE reflects both the reinforcement 

obtained at time t as well as the difference in value between state  St and the subsequent 

state St+1. Hence, a positive PE can indicate either the unexpected occurrence of a reward 

or the transition to a state with a higher value than was predicted. That is, external 

reinforcement signals are not necessary for the PE to be different from zero. Conversely, a 

negative PE simply means that an event is “worse than expected”. At the beginning of 

learning  V(St) is set to some initial value and then iteratively improved or “updated” across 

successive trials (≙ samples) according to (Niv & Montague, 2008): 
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V(St)new =  V(St)old + ηδ(t). 

 Thus, the PE is zero and no further learning occurs if both the immediate 

reinforcement and the value of V(St)new =  V(St)old + ηδ(t) are predicted exactly. In order to 

select optimal actions, however, the agent needs to know not only the value of a particular 

state but also what subsequent states the available actions lead to. In model-free RL, these 

transition probabilities remain unknown. One solution to this fundamental problem was 

provided by actor-critic methods that used the PE to improve both state value predictions and 

policies (Barto, 1995; Barto, Sutton, & Anderson, 1983). 

 

Figure 1: Schematic illustration of the actor/critic architecture. The critic computes the PE (δ(t)) based on 

information about the state (St) and the reward (r(t)). The PE is used by the critic to improve its own state value 

predictions V(St) and by the actor to improve the policy p(s,a). Figure adapted from Niv (2009). 

The Actor-Critic Architecture 

 The actor-critic consists of two basic units: the “adaptive critic” learns the state-value 

function according to TD principles and the “actor” learns action preferences for a given 

state, i.e., the policy (Maia, 2009). The critic calculates a PE that is used by the actor to 

improve action selection. A positive PE increases the probability of a recently chosen action 

a to be performed in state St, whereas a negative PE decreases this probability. The 

updating of the policy can be described as follows (Niv & Montage, 2008), 
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p(a|St)new =  p(a|St)old + ηpδ(t), 

with the parameter ηp ≤ 1  denoting the policy-specific learning rate. As can be seen from the 

equation, the actor applies the same TD rule to improve the policy as the critic does to 

update value estimation. Figure 1 illustrates the basic principles underlying actor-critic 

architectures. 

Computational Accounts of Model-based Reinforcement Learning 

 The computational principles underlying goal-directed action selection in model-based 

RL have been explored far less extensively than model-free methods, such as the TD 

algorithms described above (Botvinick & An, 2009; Hasselmo, 2005). As Daw and colleagues 

(Daw, Niv, & Dayan, 2005) have pointed out, model-based RL requires the agent to estimate 

the parameters of both the transition function and the reward function that in conjunction with 

the corresponding sets of states and actions constitute a model of the environment. Action 

selection is then achieved through exploring the model, i.e., searching for the optimal path in 

a complex tree-like structure of possible successor states (Dayan & Niv, 2008). The 

acquisition and application of this knowledge can be modelled within a Bayesian framework 

in which experience about transitions and rewards is used to update prior distributions over 

the parameters of the functions T and R (Tenenbaum, Griffiths, & Kemp, 2006; Toussaint & 

Storkey, 2006). The posterior distribution over T and R for any parameter values within the 

defined range indicates how likely they are to represent the true parameter values given the 

data observed so far. In the next iteration, this posterior distribution serves as the prior 

distribution and is updated again. Since prior and posterior distributions converge very 

quickly, the Bayesian approach provides appropriate estimates of transition and reward 

probabilities even in case of unstable environments. 
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Summary and Implications for the Present Study 

Research on both classical and instrumental conditioning has indicated that 

individuals rely on expectancies about the potential outcomes of situations in the course of 

RL. According to the Rescorla-Wagner model (Rescorla & Wagner, 1972) these 

expectancies are of primary importance as only surprising events that defy expectations can 

lead to successful learning. Modern computational accounts of RL have extended this basic 

claim to the time domain by invoking TD learning rules that define learning more broadly in 

terms of evaluating differences between predicted and actual values of subsequent states. 

Unexpectedly rewarding outcomes or high state values lead to a positive PE whereas a 

negative PE indicates that an outcome was worse than expected. Actions associated with a 

positive PE will consequently be performed more frequently in the future while the likelihood 

of actions corresponding to a negative PE decreases. 

 The present thesis is largely based on a neurocomputational model, has establishes 

a link between the PE and an ERP-components that are elicited when participants make 

mistakes and are presented with error feedback during RL tasks (Holroyd & Coles, 2002). 

Specifically, the model asserts that these components directly reflect negative PEs, making 

them suitable tools to examine the time-course of RL. 

Reinforcement Learning in the Brain 

 Computational models of RL have gained increasing popularity among 

neuroscientists during the last two decades, as the brain appears to implement some of the 

basic mechanisms and elements of these normative models (Niv & Montague, 2008). Most 

notably, electrophysiological recordings in non-human primates have revealed that phasic 

activity of midbrain dopamine (DA) neurons seems to code a PE signal during classical and 

instrumental conditioning (for reviews see Schultz, 2000, 2006, 2007, 2010). Moreover, 

functional neuroimaging studies in humans have provided evidence for PE signals in main 

cortical and subcortical projection areas of the midbrain DA system such as the prefrontal 

cortex (PFC) and the basal ganglia (BG) (O’Doherty et al., 2004; Pessiglione et al. 2006; 

Schönberg et al., 2007). The objective of the following section is to give an overview of the 
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dopamine reward prediction error hypothesis (Montague et al., 1996; Schultz et al., 1997) 

and how it relates to the neural implementation of RL. 

 
The Dopamine Reward Prediction Error Hypothesis 

The dopamine reward prediction error (DA-RPE) hypothesis was largely inspired by 

the work of Wolfram Schultz and colleagues that demonstrated a striking similarity between 

the phasic firing patterns of single dopaminergic neurons in the ventral tegmental area (VTA) 

of monkeys and the characteristics of TD prediction errors (Schultz et al. 1997). After the 

presentation of unexpected primary rewards or reward-predicting stimuli these neurons 

typically show a phasic increase in activation. Importantly, the response of these DA neurons 

does not appear to primarily relate to general processes of attention or arousal since it 

differentiates between rewards and salient non-rewarding events such as aversive stimuli 

(e.g., Mirenowicz & Schultz, 1996). The most striking finding, however, was that the 

dopaminergic firing pattern changed systematically over the course of learning in simple 

Pavlovian or instrumental conditioning tasks. 

 

Figure 2: Firing patterns of DA neurons from the VTA during instrumental learning. Top: Phasic increase in activity 

of DA neurons after an unpredicted reward (R). Middle: After learning, the phasic increase in activity of DA 

neurons occurs after the presentation of reward-predicting stimulus (CS), whereas DA neurons are no longer 

activated by the reward (R) itself. Bottom: If the predicted reward is not delivered (no R), activity of DA neurons is 

phasically depressed at the same time the reward should have occurred. (Figure adapted from Schultz, 1997). 
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Figure 2 illustrates that during the initial stages of instrumental learning the 

unpredicted reward elicits a phasic burst of DA neurons. After some practise with the task, 

cells respond to both the reward and the reward-predicting cue. Once learning is completed, 

DA neurons are only activated by the cue and no longer by the fully predicted reward. 

Instead, dopaminergic activity transiently drops below baseline if the predicted reward is 

unexpectedly omitted. This shift of the phasic DA response from the primary reward to the 

reward-predicting cue exactly mirrors the properties of a TD reward prediction error in that 

phasic increases and decreases code whether states are “better or worse than expected” 

(see also Bayer & Glimcher, 2005; Bayer, Lau, & Glimcher, 2007). Learning-related phasic 

dopaminergic signals have been shown to occur with latencies of less than 100 ms and 

durations of less than 200 ms (for reviews, see Schultz, 2007, 2010) and are thought to be 

functionally distinct from slower changes in tonic levels of extra-synaptic DA (e.g., Niv, 2007; 

Seamans & Yang, 2004). More recent studies have provided additional support for the DA-

RPE hypothesis by showing that the dopaminergic response reflects the magnitude and 

probability of expected rewards (Fiorillo et al. 2003, Tobler et al. 2005) as well as temporal 

discounting of delayed rewards (Roesch et al. 2007), and is consistent with behavioural 

phenomena like the blocking effect (Waelti et al., 2001). 

In humans, most evidence for the existence of a dopaminergic RPE signal has been 

inferred from functional magnetic resonance imaging (fMRI) studies on reward learning. 

Correlates of RPEs have been found in areas that constitute major targets of dopaminergic 

afferents, such as the ventral and dorsal striatum (O’Doherty et al., 2004; Tanaka et al., 

2006) and prefrontal areas, including the orbitofrontal, dorsolateral, and ventrolateral cortex 

(Cohen, 2007; McClure et al., 2003; Rolls, McCabe, & Redoute, 2008). Moreover, it has 

been shown that RPE-related activity in the striatum correlates with learning performance 

(Schönberg et al., 2007) and that both the RPE-signal in the striatum and behavioural 

choices are modulated by the administration of DA agonists and antagonists (Pessiglione, 

Seymour, Flandin, Dolan, & Frith, 2006). Recent advances in imaging techniques have also 

revealed RPE-like activity directly in the human midbrain dopaminergic nuclei (D’Ardenne, 

McClure, Nystrom, & Cohen, 2008) However, dopaminergic signals have been shown to 

subserve dissociable functions not only at different time-courses but also in different target 
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areas (Schultz, 2000; 2007), with distinct roles for phasic DA input to the PFC and the BG 

(Cools & D’Esposito, 2011; van Schouwenburg, Aaarts, & Colls, 2010). 

Dissociable Roles of Dopamine in the Basal Ganglia and the Prefrontal Cortex 

Midbrain dopaminergic activity is thought to influence neural processing through three 

major pathways (Björklund & Dunnett, 2007). The nigrostriatal pathway arises from DA cells 

in the zona compacta of the substantia nigra (SNc) that project mainly to the dorsal striatum. 

The mesolimbic and mesocortical pathways denote projections from the VTA to limbic 

regions, including the nucleus accumbens (ventral striatum), amygdala, and hippocampus 

(mesolimbic system) and frontal cortical regions, including the medial prefrontal, cingulate, 

and perirhinal cortex (mesocortical system).  

The Basal Ganglia and Action Selection 

Research on RL largely focused on dopaminergic projections to the striatum that is 

considered one of the two main input structures of the BG. The BG are a group of subcortical 

nuclei that have been assigned a pivotal role in action selection, specifically in the acquisition 

and expression of habits (for reviews, see Redgrave et al., 2010; Seger & Spiering, 2011; Yin 

& Knowlton, 2006). Indeed, early accounts assumed that the BG and reward-related 

dopaminergic input directly implement S-R learning as described by the Law of Effect, with 

reward-related information conveyed by dopaminergic input (e.g., Mishkin, Malamut, & 

Bachevalier, 1984). One of the most influential views on the BG architecture and function 

holds that the intrinsic connectivity pattern of the nuclei comprises a ‘direct’, a ‘indirect’, and a 

‘hyperdirect’ pathway (Albin, Young, & Penney, 1989). Crucially, it has been suggested that 

the ‘direct’ pathway facilitates the execution of appropriate actions in a given state, whereas 

the ‘indirect’ pathway inhibits inappropriate actions. Dopaminergic signals from VTA and SNr 

are thought to control the relative dominance of the two pathways (Albin et al., 1989; 

Redgrave et al., 2010). Recent computational models established a direct link between the 

‘gating’ function of the BG and the DA-RPE hypothesis in proposing that phasic DA bursts 
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and dips mediate RL in the BG circuits by strengthening or weakening synaptic plasticity 

within the ‘direct’ and ‘indirect’ pathway, respectively (Maia & Frank, 2011). 

Different Cortico-Basal Ganglia-Cortical Loops Contribute to Reinforcement Learning 

The BG are connected with the cerebral cortex through parallel albeit partly 

overlapping cortico-basal ganglia-cortical loops, constituting functionally distinct networks 

processing motivational and affective (limbic network), cognitive (associative network), and 

sensorimotor-related information (Alexander, DeLong, & Strick, 1986; Draganski et al., 2008; 

see Figure 3). In the limbic network, the orbitofrontal cortex (OFC), ventral PFC, and anterior 

cingulate cortex (ACC) project to more ventromedial regions of the striatum. The associative 

network involves projections from the prefontal and parietal association cortices (most 

notably the dorsolateral prefrontal cortex, dlPFC) to the dorsomedial striatum, whereas the 

dorsolateral striatum receives major input from sensorimotor cortices (Draganski et al., 2008; 

Postuma & Dagher, 2006; Saint-Cyr, 2003). 

 

 

 

Figure 3: Corticobasal ganglia-cortical loops. Left: Schematic illustration of the parallel loops, conveying limbic 

(red), associative (yellow-green), and sensorimotor (blue-white) information. Right: The ring shows limbic (red), 

associative (yellow-green), and sensorimotor (blue-white) cortical regions. Within the ring the subdivisions of the 

striatum are depicted. Colors code subregions that receive the strongest input from the corresponding cortical 

regions. (Figure adapted from Redgrave et al., 2010). 
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In line with this structural organization, sensorimotor and associative systems are 

thought to mediate habitual S-R learning and goal-directed A-O learning, respectively (Yin & 

Knowlton, 2006). The limbic network has been implicated mainly in the learning of Pavlovian 

state values and is assumed to mediate motivational influences on both types of learning via 

inputs to the sensorimotor and associative loop (Balleine & O’Doherty, 2010). According to a 

related view (Ito & Doya, 2011), the ventral and dorsomedial striatum are critically involved in 

implementing model-based RL, while the dorsolateral striatum is considered a primary locus 

in mediating model-free RL. 

In support of this notion, human fMRI studies have revealed increased activation of 

the dorsomedial striatum, the OFC, and the medial prefrontal cortex (mPFC) for training on 

schedules promoting goal-directed responding (high A-O contingency) compared to training 

on schedules promoting habitual responding (low A-O contingency) (Hampton, Bossaerts, & 

O’Doherty, 2006; Tanaka, Balleine, & O’Doherty, 2008). Moreover, Valentin and colleagues 

(2007) demonstrated that activity in the OFC exhibited sensitivity to outcome devaluation in 

instrumental learning, which is consistent with the presumed role of this region in 

representing the value of goals and action outcomes (Kringelbach et al., 2003; O’Doherty et 

al., 2001; Plassmann et al., 2007). Conversely, activity in the dorsolateral striatum has been 

shown to track the progression from goal-directed to habitual responding (Tricomi et al., 

2009).  

Within the framework of actor-critic architectures, the dorsolateral striatum has been 

assigned the role of the actor that learns the policy (S-R associations). The critic, which 

learns state values (S-O associations) and calculates the RPE has been associated with the 

ventral striatum (O’Doherty et al., 2004), possibly working in tandem with the OFC and the 

amygdala (Maia, 2009) - two structures that are closely connected to both the ventral 

striatum and the midbrain DA system (Rempel-Clower, 2007). This implies that ventral and 

dorsolateral striatum should be differentially engaged in Pavlovian and instrumental 

conditioning, as only the latter involves outcome-guided action selection. In support of the 

assertion that the ventral and dorsal striatum are concerned with outcome prediction and 

instrumental responding, respectively, a number of fMRI studies found RPE-like signals in 

the ventral striatum during both types of learning whereas RPE-like signals in the dorsal 
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striatum arose only during instrumental learning (O’ Doherty et al., 2004; Tricomi, et al., 

2009; Valentin & O’Doherty, 2009). Moreover, recent evidence indicated that the ventral 

striatum was involved in both reward-based and punishment-based RL (Robinson et al., 

2010, Delgado, Jou, & Phelps, 2011). Although the actor/critic RL model implies that the 

computational function of dopaminergic signals is confined to habit learning, the involvement 

of the dorsomedial striatum in action-outcome learning as well as the strong dopaminergic 

projections to the PFC suggest that DA also contributes to goal-directed behavioural control. 

The Role of Dopamine in the Prefrontal Cortex 

The PFC is comprised of a collection of heterogeneous structures that have been 

assigned distinct functional roles in RL. Cytoarchitecturally, the PFC can be divided into the 

following subregions (Ridderinkhof, van Wildenberg, Segalowitz, & Carter, 2004): (1) the 

OFC, (2) the lateral PFC, including the dorsolateral PFC (BA3

It should be noted that DA-mediated effects on PFC neurons have been shown to be 

relatively long-lasting and thus do not appear to match the functional properties of a PE 

signal (Seamans & Yang, 2004). Theoretical and empirical work has instead indicated 

complementary functions for DA in the BG and the PFC (Frank & Claus, 2006; Hazy, Frank; 

& O’Reilly, 2006; Leber, Turk-Browne, & Chun, 2008; McNab & Klingberg, 2008). 

Specifically, it has been suggested that striatal DA may promote flexible updating of mental 

9/46, 46, and 8a), and (3) 

medial frontal cortex (MFC), including the ACC (BA 24, 25 and 32). The PFC, including 

orbitofrontal, dorsolateral, and anterior cingulate regions, is richly innervated by midbrain DA 

neurons via the mesocortical pathway (for reviews, see Arnsten, 1998; Floresco & Magyar, 

2006; Cools & D’Esposito, 2011). Dopamine neurotransmission in prefrontal regions has 

been shown to exert strongly modulatory influences on a variety of cognitive and executive 

functions such as working memory, behavioural flexibility, decision making, and attentional 

control (for reviews, see Cohen, Braver, & Brown, 2002; & D’Esposito, 2011; Floresco & 

Magyar, 2006). 

                                                 
3 Brodmann Area 
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representations in the PFC, whereas frontal DA has been linked to stable maintenance of 

current representations (Cools & D’Esposito, 2011). 

 Substantial evidence for a role of frontal DA in the stabilization of working memory 

representations has been provided by human fMRI studies which demonstrated that 

functionally selective improvements and impairments of working memory performance due to 

DA agonists and antagonists are accompanied by activity changes in dlPFC, cingulate 

cortex, and insula (e.g., Gibbs & D’Esposito, 2005). At the cellular level, DA receptor 

stimulation in the PFC has been proposed to increase the signal-to-noise ratio in terms of 

attenuating neuronal firing associated with all but the most strongly activated memory states 

(Seamans & Yang, 2004; Thurley, Senn, & Luscher, 2008; Williams & Goldman-Rakic, 

1995). DA transmission to the PFC might hence support the stable maintenance of task-

relevant information, protecting those representations from interference by task-irrelevant 

distractors. In support of this notion, the Val/Met polymorphism in the catechol-O-

methyltransferase (COMT) gene, which is thought to determine prefrontal DA levels in 

humans, has been shown to predict individual differences in working memory performance. 

Met-allele carriers which are characterized by low COMT activity and high prefrontal DA 

levels perform better in tasks requiring the persistent stabilization of task-relevant 

presentations than Val-allele carriers characterized by high COMT activity and low prefrontal 

DA (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007a; Meyer-Lindenberg et al., 2005).  

As I pointed out earlier, the BG are thought to subserve a dynamic gating function for 

information flow to the cortex via cortico-basal ganglia-cortical loops. In particular, phasic 

bursts and dips in DA are assumed to increase and decrease the likelihood of an action 

being performed through modulations of plasticity in the direct and indirect pathway, 

respectively (Frank, 2005). The described architecture of the cortico-basal ganglia-cortical 

circuits renders it likely that the BG gate not only motor programs (sensorimotor loop), but 

also cognitive information (associative loop) to the PFC (Frank, 2005). In line with this view, 

increased striatal activation has been observed during tasks requiring rapid updating of 

cognitive representations such as reversal learning and task switching (Leber, Turk-Browne, 

& Chun, 2008; Cools, Clark, & Robbins, 2004). Notably, performance in those tasks is also 

susceptible to DA agonists and antagonists that appear to selectively influence BG activity 
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during flexible updating in response to new input and PFC activity during active maintenance 

(Cools et al., 2007; Dodds et al., 2009). Consistent with the proposed functional dichotomy, a 

reciprocal relationship has been observed between DA levels in the striatum and the PFC 

(Meyer-Lindenberg et al., 2005). 

Alternatively, it has been suggested that the balance between stable maintenance 

and appropriate updating of task-relevant representations may be regulated by phasic vs. 

tonic dopaminergic activity (Cohen, Braver, & Brown, 2002). According to this view, phasic 

increases in DA trigger the transient gating of new information into the PFC and thereby also 

provide a RL signal for learning when to update, whereas DA dips rapidly deactivate the PFC 

and thus “clear” working memory contents. By comparison, tonic DA levels are assumed to 

stabilize currently active working memory representations. Biophysically sophisticated 

models, however, have challenged this account by emphasizing the prevalence of tonic DA 

in PFC functioning (Brunel & Wang, 2001; Durstewitz & Seamans, 2002). In particular, 

several researchers have posited that the kinetics of DA transmission in the mesocortical 

pathway do not match the requirements of a phasic learning signal that triggers rapid 

updating of PFC representations4

Either way, the PFC has been strongly implicated in model-based learning and is 

assumed to exert a top-down biasing influence on the activity of the model-free RL system, 

possibly mediated by hierarchical interactions between dorsomedial and dorsolateral cortico-

striatal loops (Daw et al., 2005; 2006a; Frank et al., 2007a; Miller & Cohen, 2001). This is in 

line with the observation that value-related signals in OFC and MFC vary as a function of 

response-outcome contingencies and outcome devaluation (Hampton et al., 2006; Tanaka et 

al., 2008). Moreover, it has been suggested that the PFC, most notably the ACC, is not only 

a recipient of phasic dopaminergic effects but also drives phasic activity of the midbrain DA 

 (Jocham & Ullsperger, 2009; Seaman & Yang, 2004). 

                                                 
4 In an attempt to resolve these inconsistencies, Cohen and colleagues (2002) argued that two distinct receptor 

types mediate phasic and tonic effects of DA in the PFC. The authors associated the tonic maintenance effects 

with the slow acting D1 receptor type and the phasic updating and RL effects with the more rapidly acting D2 

receptor type (Seamans, Gorelova, Durstewitz, & Yang, 2001; Semans & Yang, 2004). Given that the number of 

D2 receptors is much larger in the striatum than in the PFC (Seamans & Yang, 2004), however, it seems 

reasonable to assign a pivotal role in updating PFC representations to the cortico-striatal circuits rather than the 

“direct” mesocortical DA pathway. 
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system (Frank et al., 2005; Jocham & Ullsperger, 2009; Strafella, Paus, Barrett, & Dagher, 

2001). The following section summarizes some compelling demonstrations of how activity in 

the PFC might impact RL in a top-down (or model-based) manner. 

Rapid Trial-To-Trial Learning in the Hippocampus-Prefrontal Cortex System 

 On the basis of the theoretical and empirical work that has established a close link 

between the PFC and adaptive action selection, Frank and colleagues (Doll, Jacobs, Sanfey, 

& Frank, 2009; Frank & Claus, 2006) suggested that the active maintenance of task-relevant 

information in the PFC is likely to exert a top-down influence on response selection mediated 

by the more slowly learning BG system. Specifically, they proposed that the OFC maintains 

information concerning the magnitude of recent response outcomes in working memory, 

thereby biasing behavioural adaptation on a trial-by-trial basis. By comparison, the dlPFC is 

usually assigned a key role in the maintenance of task set, particularly in the implementation 

of behavioural goals and rules (Miller & Cohen, 2001; Tanji & Hoshi, 2008). 

In several genetics studies, Frank and colleagues demonstrated that COMT genotype 

determined trial-to-trial behavioural adjustments in probabilistic reinforcement learning tasks 

(Frank et al., 2007a; Frank, D’Lauro, & Curran, 2007b; Frank et al., 2009). For example, Met-

allele carriers, which are characterized by higher prefrontal DA levels, showed a greater 

tendency to slow down and switch their response after negative feedback than did Val-allele 

carriers with lower prefrontal DA levels (Frank et al., 2007a). The authors explained this 

finding in terms of Met-allele carriers being able to better maintain the outcome of a particular 

response across several intervening trials. Furthermore, a recent study used spectral 

Granger causality analyses to demonstrate a stronger top-down-directed functional 

connectivity between the MFC, most likely the ACC, and the ventral striatum when rewards 

were anticipated compared to a no-reward condition (Cohen et al, 2011). The notion of a top-

down biasing influence of the PFC is also consistent with reports of performance deficits 

during early stages of probabilistic learning in patients with OFC lesions (Chase et al., 2008). 

Rapid behavioural adaptation after the reversal of the response-outcome contingencies is 

assumed to rely strongly on robust working memory representations of recent outcomes. 
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Nonetheless, the OFC-lesioned patients were able to respond appropriately after extensive 

training on the new rule, suggesting that the habitual learning system is spared. 

A similar dissociation has been observed for patients with lesions of the medial 

temporal lobe (MTL) memory system (Bayley, Frascino, & Squire, 2005; Shohamy, Myers, 

Kalanithi, & Gluck, 2008). The hippocampus and the surrounding MTL have been extensively 

studied within the framework of episodic memory (Eichenbaum & Cohen, 2001) and are 

thought to be significantly involved in explicit, non-incremental learning processes (Shohamy 

et al., 2008; Shohamy & Adcock, 2010). In particular, the MTL memory system supports the 

rapid (“one-trial”) formation of conjunctive representations linking multiple aspects of an 

event. Interestingly, hippocampal function also appears to be directly modulated by 

dopaminergic input, reflected in a DA-dependent facilitation of episodic memory formation 

(Adcock et al., 2006; Krebs et al., 2009). In RL tasks, hippocampus and MTL might thus 

support explicit memorizing of correct and incorrect choices after a single trial in which a 

certain stimulus-response pairing is followed by a rewarding vs. non-rewarding outcome. 

Indeed, several findings have indicated that during early stages of learning the MTL memory 

system contributes to the development of explicit rules for responding (Frank et al., 2004; 

Frank, O’Reilly, & Curran, 2006; Poldrack et al., 2001). 

Whereas hippocampus and MTL have been associated with the encoding and 

storage of these rules, the PFC is assumed to be critically involved in the retrieval and active 

maintenance of abstract rules and explicit contingencies5

                                                 
5 Note, however, that the PFC has also been implicated in other aspects of episodic memory, e.g. during 

encoding (for review, see Paller & Wagner, 2002). 

 (Badre, Kayser, & D’Esposito, 

2011; Bunge & Souza, 2008). Combining computational modelling with analyses of genetic 

variants of dopaminergic neurotransmission, Doll and colleagues (Doll et al. 2009; Doll, 

Hutchison, & Frank, 2011) showed that rule-like representations in the PFC might lead to a 

confirmatory bias, so that rule-consistent evidence is overweighed, whereas rule-inconsistent 

evidence is discounted by the BG system. Moreover, these cognitive strategies are 

accompanied by systematic changes in striatal activity in reward-based learning (Delgado, 

Gillis, & Phelps, 2008). In line with the above findings, recent evidence from human 
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neuroimaging indicated that the PE signal in the ventral striatum reflected not only model-

free but also model-based evaluation (i.e., learned rules) indicating close interactions 

between the different learning systems (Daw et al., 2011). 

In sum, potential dopaminergic influences on RL are apparently not restricted to PE 

signalling in the striatum and model-free habitual behavioural control. Instead, DA also 

modulates working memory functions and explicit rule learning and acts on regions like the 

PFC and the hippocampus that have been associated with model-based, goal-directed 

control. Moreover, a highly integrated architecture underlies RL, implemented by 

corticostriatal interactions through hierarchical spiraling connections between corticostriatal 

loops from ventromedial (limbic) via dorsomedial (associative) to dorsolateral (sensorimotor) 

subregions (Haber, Fudge, & MacFarland, 2000). 

The Integration of Cognition, Emotion, and Action in the Anterior Cingulate Cortex 

 Alongside the BG, the ACC is considered one of the key structures implementing RL 

and adaptive decision-making. One of the most characteristic features of this brain region is 

its involvement in a broad range of functions, including emotion and motivation, autonomic 

control, pain, and action selection (for reviews, see Bush, Luu, & Posner, 2000; Rushworth & 

Behrens, 2008; Paus, 2001; Shackman et al., 2011). Neuroanatomically, the ACC is ideally 

positioned to synthesize behaviourally relevant information from multiple sources through its 

reciprocal interconnections with OFC, ventral striatum, hippocampus, amygdala, insula, and 

the midbrain DA nuclei. In addition, the ACC’s strong connectivity with the lateral PFC, 

premotor and motor cortices implies that this information can be directly integrated with 

current behavioural goals in order to guide instrumental behaviours. Indeed, it is increasingly 

acknowledged that the ACC uses reinforcement information to implement adaptive 

behavioural control (Rushworth & Behrens, 2008; Holroyd & Coles, 2002; Holroyd & Yeung, 

2011; Shackman et al., 2011). 

 Considerable evidence for an evaluative function of the ACC has been inferred from 

human electrophysiological studies on performance monitoring and learning. In particular, 

significant insight has been gained from examining two components in the scalp-recorded 
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electroencephalogram (EEG), sometimes termed the error negativity (Falkenstein, 

Hohnsbein, & Hoormann, 1990) and feedback-related negativity (Miltner et al., 1997), that 

are elicited when participants make mistakes and are presented with error feedback, 

respectively. Both components are thought to be generated in the ACC (Debener et al., 

2005) and might reflect PE-like signals that are used to flexibly adjust behaviour after 

response errors or negative feedback (Chase et al., 2011; Cohen & Ranganath, 2007; 

Holroyd & Coles, 2002; van der Helden, Boksem, & Blom, 2010). The ACC thus appears to 

be critically involved in the detection and correction of discrepancies between the intended or 

anticipated and the actual outcomes of an action – a key component of cognitive control that 

is commonly referred to as performance (or action) monitoring. 

The Anterior Cingulate Cortex Encodes Action Values 

 Theoretical accounts on ACC functioning, however, disagree with respect to what 

exactly is monitored, with proposals including errors, error likelihood, response conflict, and 

several other phenomena (Brown, 2009; Holroyd & Coles, 2002; Yeung, Botvinick, & Cohen, 

2004). Moreover, there is some debate as to whether the functional role of the ACC is 

restricted to detecting the need for control that is mediated by other brain regions, e.g., the 

dlPFC (Gehring & Knight, 2000; Yeung et al., 2004) or directly involves the implementation of 

control in order to optimize behavioural choice (Holroyd & Coles, 2002; Holroyd & Yeung, 

2011; Mansouri, Tanaka, & Buckley, 2009). The latter view is supported by the ACC’s dense 

connectivity with motor areas as well as human neuroimaging and lesion studies indicating 

its fundamental contribution to voluntary action generation (Paus, 2001). Notably, the ACC 

has been proposed to provide the neural substrate for uncertainty-based arbitration between 

model-free and model based control (Daw et al., 2005) and high-level behavioural option 

selection (Holroyd & Yeung, 2011). 

 These controversies notwithstanding, previous research demonstrated that the ACC 

encodes a type of PE signal in a variety of learning tasks in both humans and monkeys 

(Amiez, Joseph, & Procyk, 2006; Hester, Barre, Murphy, Silk, & Mattingley, 2008; Jocham, 

Neumann, Klein, Danielmeier, & Ullsperger, 2009; Kennerley, Walton, Behrens, Buckley, & 
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Rushworth, 2006; Matsumoto, Matsumoto, Abe & Tanaka, 2007; Schiller, Levy, Niv, LeDoux, 

& Phelps, 2008). In support of this notion, human fMRI studies showed that error-related 

ACC activation predicted future performance in an associative learning task (Hester et al., 

2008). Moreover, negative PE-related activity in the ACC was directly related to learning rate, 

i.e., to the weight of the PE in updating action values (Jocham et al., 2009). Interestingly, 

faster learning rates have been observed in rapidly changing environments, when subjects 

had to rely more strongly on recent response outcomes (Rushworth & Behrens, 2008). In 

addition, Behrens and colleagues (2007) observed a correlation between individual estimates 

of this environmental volatility and outcome-related ACC activation. Hence, the ACC might 

encode the behavioural impact or informative value of a given action outcome in accordance 

with the specific environmental demands. 

Further evidence for a specific link between the PE-like activity in the ACC and action 

selection comes from studies comparing the effects of OFC vs. ACC lesions on Pavlovian vs. 

instrumental reversal-learning (Kennerley & Walton, 2011). In one of these studies, 

Rudebeck and colleagues (2008) found that ACC-lesioned animals were severely impaired in 

learning instrumental reversals but showed virtually no deficits when the task required an 

update of stimulus-reward associations. By contrast, animals with OFC lesions showed the 

opposite pattern in that their performance was unaffected when action-reward associations 

were to be learned but strongly disrupted in the stimulus-reinforcement reversal-learning 

task. These findings substantiate the notion that ACC and OFC differentially contribute to 

adaptive decision-making: whereas the ACC appears to be more strongly involved in linking 

action-reinforcement history to future action selection, the OFC seems to be critical for the 

representation of the expected value of stimuli (Rushworth, Behrens, Rudebeck, & Walton, 

2007). In line with the cited animal research, ACC lesions in humans are generally 

accompanied by deficits in error detection and error-related remedial actions (Di Pellegrino, 

Ciaramelli, & Làdavas, 2007; Stemmer, Segalowitz, Witzke, & Schonle, 2004; Swick & 

Turken, 2002). Patients with OFC damage, in contrast, are principally impaired in detecting 

changes in the reward value of stimuli (Hornak et al., 2004). However, recent evidence from 

human neuroimaging indicated that the medial OFC also encodes action-related value 
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representations and is involved in action-based reversal learning, suggesting a general role 

for this structure in goal-directed behaviour (Gläscher, Hampton, & O’Doherty, 2009). 

The above section has highlighted the ACC’s potential contribution to reinforcement-

guided action selection. Yet, this region is also known to play an important part in emotion 

and motivation. In the following section I will first sketch a highly influential account on 

functional segregation within the ACC. Then I will discuss the ‘adaptive control hypothesis’ 

that has been formulated by Shackman and colleagues (2011) in an attempt to provide an 

integrative account on the ACC’s activity based on recent challenges to the segregationist 

view. 

The Anterior Cingulate Cortex Contributes to Emotional and Motivational Processing 

The ACC is not a homogeneous cortical structure, but can be divided into different 

subdivisions with distinct cytoarchitectural properties and connectivity patterns (Vogt et al., 

1992). A prominent view on functional segregation within the ACC holds that the rostral-

ventral division (rACC) is mainly involved affective processing, whereas the dorsal division 

(dACC) subserves cognitive functions (Bush, Luu, & Posner, 2000; Devinsky et al., 1995; 

see Figure 4). 

 

 

Figure 4: The segregationist model of ACC functioning: cognitive division (red) vs. the affective division (blue) 

(Figure adapted from Bush et al., 2000) 
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The segregationist model draws on neuroanatomical and functional neuroimaging 

evidence. As Bush and colleagues (2000) pointed out, the rostral ‘affective’ subdivision 

receives massive input from limbic regions, including associated structures like the OFC and 

the ventral striatum, and projects to the autonomic and visceral system. Hence, the rACC is 

well positioned to process the affective and motivational salience of an event and to regulate 

emotional responses. By comparison, the dACC has been suggested to maintain only few 

connections to “affect- and motivation-related” brain regions and instead is richly 

interconnected with lateral prefrontal, parietal, and motor regions. Accordingly, the dACC is 

assumed to subserve a variety of executive control functions, including performance 

monitoring, working memory, and effort-related decision-making. Bush and colleagues 

(2000) reviewed several fMRI findings and meta-analyses that support their proposal. More 

recently, two fMRI studies reported increased phasic rACC activation in response to errors 

that were financially penalized compared to errors that did not result in monetary losses, 

whereas phasic dACC activation did not differentiate between these error types (Simões-

Franklin, Hester, Shpaner, Foxe, & Garavan, 2010; Taylor et al., 2006). 

Using the advanced technique of coordinate-based meta-analysis, Shackman and 

colleagues (2011), however, provided evidence for a considerable overlap of neural 

activation foci for a large database including 192 imaging studies of cognitive control, 

negative affect, and pain. The identified cluster of activation overlap roughly corresponded to 

the rostral cingulate zone (RCZ), a premotor area lying in the vicinity of the cingulate sulcus 

(Morecraft & Tanji, 2009). Note that the RCZ belongs to the ‘cognitive’ division of the ACC 

according to the segregationist model of Bush and coworkers (2000). Shackman and 

colleagues (2011) reviewed neuroanatomical and functional evidence indicating that the 

ACC, including the RCZ, is a ‘hub-like’ convergence zone in which affectively and 

motivationally relevant information is linked to motor areas involved in implementing and 

synchronizing instrumental motor output. Specifically, their ‘adaptive control hypothesis’ 

holds that the ACC implements a domain-general function of integrating punishment-related 

information in order to bias instrumental responding and to arbitrate between competing 

motor controllers, particularly in unstable and threatening environments when habitual control 

fails to effectively guide behaviour. Consistent with this notion, the ACC has been found to 
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encode a PE signal in several studies using aversive learning procedures (Menon et al., 

2007; Schiller et al., 2008; Seymour et al., 2004). Considerable evidence, however, points to 

an additional involvement of the ACC in reward-related processing and positive affect (for 

reviews, see Haber & Knutson, 2010; Liu, Hairston, Schrier, & Fan, 2010), encouraging the 

view that this structure might contribute to the evaluation of both positive and negative 

response outcomes in the service of signalling the need for behavioural change (cf. Magno, 

Simões-Franklin, Robertson, & Garavan, 2008). 

Summary and Implications for the Present Study 

The DA-RPE hypothesis posits that phasic activity of midbrain DA neurons code a PE 

signal during classical and instrumental conditioning (Schultz, 2000; 2006; 2007; 2010). 

Functional neuroimaging research in humans corroborated the notion that activity in a 

network of cortical and subcortical dopaminergic systems reflects RL mechanisms involved 

in the estimation and utilization of PE. Whereas sensorimotor and associative cortico-striatal 

loops are thought to mediate habitual S-R learning and goal-directed A-O learning (Yin & 

Knowlton, 2006), the ventral striatum and the OFC have been implicated in the learning of 

Pavlovian state values and the computation of PEs (O’Doherty et al., 2004; Tricomi, et al., 

2009; Valentin & O’Doherty, 2009). It has been suggested that phasic dopaminergic 

transmission to the BG promotes flexible updating of mental representations in the PFC, 

whereas frontal DA has been linked to stable maintenance of current representations (Cools 

& D’Esposito, 2011). Moreover, prefrontal and MTL regions have been associated with 

explicit rule learning (model-based learning) and are thought to exert a top-down biasing 

influence on model-free incremental RL in the BG (Daw et al., 2005; Doll, Jacobs, Sanfey, & 

Frank, 2009; Frank & Claus, 2006). In particular, neuroimaging and electrophysiological 

research has indicated a prominent role for the ACC in RL, which acts as an interface 

between affective/motivational and cognitive processing and can thus mediate the flexible 

adjustment of behaviour in response to errors and/or negative feedback according to specific 

situational demands. Of note, the ACC is also thought to underlie the generation of the ERP-

correlates of error and feedback processing this thesis focuses on. 
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On the Significance of Affective and Motivational Context in Learning and Adaptive 

Decision Making 

 The above discussion on the functional properties of the ACC underlines the need to 

explore the performance-monitoring system in terms of both cognitive and motivational-

emotional mechanisms. Indeed, researchers have increasingly acknowledged the close 

interaction between cognitive, motivational, and emotional processes in mediating adaptive 

behavioural control (Etkin & Egner, & Kalisch, 2010; Pessoa, 2008; 2009; Pessoa & 

Engelmann, 2010). Moreover, it has been suggested that there is no clear distinction 

between cognition and emotion at both the functional and the neuroanatomical level 

(Pessoa, 2008; Salzman & Fusi, 2008). In the following sections, I will briefly introduce the 

concepts of ‘motivation’ and ‘emotion’. This overview is followed by a sketch of how 

motivational and emotional processes are incorporated into cognitive control and learning. 

Basic Concepts 

 The terms ‘emotion’ and ‘motivation’ denote two closely linked, complex constructs 

referring to abstract inner states of an individual (LeDoux, 2002; Roseman, 2008). Emotions 

are commonly thought to provide an evaluation of the relationship between an organism and 

its environment whereas motivation concerns temporal aspects (initiation, maintenance, 

stopping), intensity, and direction of behavioural responses (LeDoux, 2002; Pessoa, 2009; 

Roseman, 2008; Rothermund & Eder, 2011). Emotions have been assigned a critical role in 

the regulation of motivated behaviours and are assumed to activate specific behavioural 

tendencies, most notably appetitive and aversive motivational circuits (Lang & Bradley, 

2008). Hence, emotions themselves appear to be ‘motivators’. Since it has been proven 

difficult to find clear definitions of both motivation and emotion and to distinguish these 

concepts from cognition, I will use the terms for partly overlapping processes in the following. 

Concepts of Motivation and their Relevance for Learning 

 Early theories of motivation were intimately linked to the concepts of drive and 

homeostasis (Berridge, 2004; Rothermund & Eder, 2011). According to these theoretical 
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accounts, unspecific internal states of tension (drives) push an organism to engage in 

behaviours that results in the reduction of this tension (drive reduction), thereby restoring a 

state of physiological equilibrium that has survival value. Drives are thought to arise from 

specific, biologically determined needs (physiological depletion states) and are perceived as 

aversive by an organism, whereas drive reduction is associated with satisfaction and 

pleasure. Learning theorists soon recognized the usefulness of the drive concept as an 

intervening “organism” variable in S-R explanations of behaviour (e.g., Hull, 1943; Tolman, 

1932). For instance, Hull’s motivation theory (1943) proposed that frequency and intensity of 

a behavioural response to a specific stimulus depend on both the association strength and 

the drive strength. In later versions of the model, the concept of incentive expectations, i.e., 

learned expectations of hedonic reward, was additionally incorporated as a motivational 

component (Hull, 1952). Hull assumed that drives only have an unspecific energizing 

function, whereas the learned S-R association determines the direction of behaviour. 

However, some kind of motivation is still necessary for RL to occur. Thorndike (1913) already 

introduced the concept of “preparedness” to explain the observation that food does not 

support the establishment of new S-R associations, unless the animal has been deprived of 

nutrition. As I have pointed out above, learned S-O expectations play a critical role in 

motivating instrumental behaviour. Modern concepts of incentive motivation suggest that 

physiological depletion states specifically increase the incentive value of the corresponding 

rewards and reward-predicting stimuli (e.g., Toates, 1986).  

 Incentive motivation is closely related to the concept of valence that can be traced 

back to Lewin’s Field Theory of Learning (Lewin, 1942). According to Lewin, behaviour is a 

function of both the person and the environment in which learning takes place. Objects in the 

environment gain affordance character - or positive valence - if they have the potential to 

satisfy psychological needs. Conversely, elements of the environment can also repel an 

individual and hence have negative valence. This dichotomy roughly corresponds to the 

fundamental distinction of approach vs. avoidance motivation thought to underlie adaptive 

decisions (Elliott, 2008). The concepts of valence and expectancy have been integrated in 

expectancy-value theories of motivation (Atkinson, 1957; Eccles et al., 1983; Wigfield, 1994). 

A common denominator of these cognitive-rational accounts is the assumption that the 
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resulting behavioural tendency is a function of (1) the value an individual assigns to the 

predicted outcome of an action, including the perceived instrumentality of an action to attain 

current and future goals, and (2) the subjective degree of confidence that the action will 

actually lead to the predicted outcome. These and similar ideas highlight the close relation 

between contemporary theories of motivation and goal-directed, model-based learning. 

Emotions as Dispositions for Actions 

 Several attempts have been made to distinguish emotions from other affective 6

 The cognitive component of emotions refers directly to the information they convey 

about the specific value that is assigned to any object, including states and actions (Clore & 

Huntsinger, 2007). Hence, it signifies the critical role of emotions in guiding instrumental 

behaviours. Moreover, affective states have been proposed to promote specific modes of 

information processing (Clore & Huntsinger, 2007; Gray, 2004). For instance, the ‘affect-as-

information’-hypothesis posits that positive affect signals the absence of threat and hence 

results in more heuristic or global processing, whereas negative affect promotes more 

careful, analytic processing (Clore & Huntsinger, 2007; Mitchell & Philipps, 2007). 

 

phenomena, such as feelings, mood, and affect dispositions (Rothermund & Eder, 2011; 

Scherer, 2005). Central to these efforts are so-called ‘component-process’ definitions that 

conceptualize emotions as multi-dimensional constructs (e.g., Scherer, 2005). Specifically, it 

has been suggested that emotion episodes include (1) a cognitive component (appraisal), (2) 

a neurophysiological component (body states), (3) a motivational component (behavioural 

tendencies), (4) a motor expression component, and (5) a subjective feeling component 

(emotional experience) (Scherer, 2005). According to this view, feelings constitute only a 

specific subcomponent of emotions, whereas moods refer to rather diffuse and enduring 

affective states that cannot be directly associated with specific appraisals and usually affect 

cognition rather than action (e.g. Davidson, 1994). Affect disposition denotes an individual’s 

tendency to react with certain emotions to an eliciting event or to preferentially experience 

particular kinds of moods, as will be discussed in more detail below. 
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Importantly, the component-process definition implies striking similarities of emotion 

and motivation at a functional level. Adopting a phylogenetic perspective, Lang and Bradley 

(2008) described emotions as “survival-based dispositions to actions”. According to this, 

emotions are elicited by the activation of appetitive motivational circuits, promoting positive 

affect, and defensive motivational circuits, promoting negative affect. These motivational 

systems have been hypothesized to directly enhance attention and perceptual processing as 

well as influence motor output systems. This becomes particularly evident in the automatic 

engagement and/or modulation of somatic and autonomic reflexes, such as orienting and 

startle reflexes, upon the presentation of rewarding or threatening stimuli in both animals and 

humans (e.g., Bradley et al., 2001; Lang et al., 1997). In complex organisms, the adaptive 

value of emotion-mediated automatic evaluation is complemented by more deliberate, 

rational processing (Frank, Cohen, & Sanfey, 2009; Miller & Cohen, 2001). 

Specifically, it has been suggested that emotion and motivation are integrated with 

cognitive control processes so as to bias information processing and behaviour selection 

according to specific situational demands (Gray, 2004; Pessoa, 2009). Affective and 

motivational significance are thought to influence competition between limited processing 

resources and to arbitrate between multiple conflicting modes of information processing and 

response tendencies, i.e., to resolve control dilemmas. This may be reflected in prioritized 

processing of emotional stimuli (see also Vuilleumier, 2005) and enhanced engagement of 

effortful control mechanisms, e.g., leading to improved error or conflict detection and 

resolution. However, task-irrelevant emotional distractors typically have a negative effect on 

task performance (e.g., Blair et al., 2007; Verbruggen & De Houwer, 2007). Task-irrelevant 

affect-related processing is thought to consume limited resources, resulting in a reduction in 

available cognitive capacity (e.g., Seibert & Ellis, 1991). Moreover, intense emotional 

reactions prompt down-regulatory mechanisms that are thought to strongly rely on brain 

areas associated with cognitive control functions (Gross & Thompson, 2007; Ochsner & 

Gross, 2005), which may result in further depletion of shared resources (Inzlicht & Gutsell, 

2007). Motivational and affective significance can hence either improve or impair behavioural 

                                                                                                                                                         
6 The term ‘affect’ is used to denote several states involving relatively rapid valence appraisals and thus share 
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performance, depending on several factors, such as task-relevance and intensity of affective-

motivational content (Pessoa, 2009; Pessoa & Engelmann, 2010). 

Personality Traits Related to Motivation and Emotion 

 Dispositional concepts of motivation and emotion have been considered useful in 

explaining interindividual variability in behaviour in the face of identical external stimuli 

(Berridge, 2004; Heckhausen & Heckhausen, 2006). Motivation and affect dispositions (or 

traits) refer to the relatively stable tendency of an individual to show particular motivations 

and emotions in particular situations (Asendorpf, 2007; Heckhausen & Heckhausen, 2006). 

In the following sections I will discuss the neurophysiological underpinnings of approach and 

avoidance (or withdrawal) that do not only regulate appetitive and aversive motivation, but 

also form the substrate of human personality (for review, see Carver, Sutton, & Scheier, 

2000). 

The Reinforcement Sensitivity Theory of J.A. Gray: A Framework for Individual Differences in 

Reinforcement Processes 

In an influential account, Gray (1972) suggested that traits reflect interindividual 

differences in two complementary motivational systems: sensitivity to rewards and 

punishments (for similar proposals, see Cloninger, 1987; Davidson, 1998; Depue & Colllins, 

1999; Fowles, 1980). Gray’s Reinforcement Sensitivity Theory (RST; Gray, 1982) originally 

proposed that the so-called behavioural approach system (BAS) is activated by conditioned 

appetitive stimuli, i.e., signals of reward or omission/termination of punishment, and 

promotes reward-directed approach behaviour. By comparison, sensitivity to punishment is 

mediated by two behavioural systems. First, the behavioural inhibition system (BIS) is 

activated by conditioned aversive stimuli, i.e., signals of punishment or non-reward, as well 

as extreme novelty, and high-intensity stimuli. It thus supports the inhibition of on-going 

behaviour in the service of avoidance or extinction. Second, the fight-flight system (FFS) is 

activated by unconditioned aversive stimuli and facilitates defensive behaviours. According to 

                                                                                                                                                         
certain (e.g. attentional) processes (cf. Scherer, 1984). 
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Gray (1982), there are several behavioural systems underlying reactivity to different classes 

of unconditioned appetitive stimuli. Crucially, the RST states that the BAS is related to trait 

impulsivity and gives rise to state positive affect, whereas the BIS is associated with trait 

anxiety and elicits fear (Gray, 1990). Moreover, activation of the BIS is thought to result in 

increased arousal and enhanced attention and information processing. Activity in the FFS is 

thought to underlie the trait dimension of psychoticism (Eysenck & Eysenck, 1976), and to 

trigger state negative affect as well as panic and rage7. 

 Gray conceptualized BAS, FFS, and BIS as fundamental emotion systems to be 

specified at the behavioural, neural, and computational (or “cognitive”) level (e.g., Gray, 

1990). Although Gray did not fully detail the neural substrate of the BAS, he strongly linked it 

to activity in the nigrostriatal and mesolimbic DA system as well as the cortico-striatal loops 

(Gray, 1987). Specifically, he suggested that the ventral (limbic) striatum – with major inputs 

from amygdala and the hippocampal formation – mediates incentive motivation, whereas the 

dorsal (sensorimotor) striatum is concerned with more specific sensorimotor aspects of 

behaviour. The BIS has been hypothesized to include the septo-hippocampal system, 

including its projections to the frontal lobe and its afferents from the brainstem. Importantly, 

the ACC is thought to be a core component of the BIS as well. According to RST, the PFC 

maintains overarching plans and goals and exerts top-down control on both BAS and BIS. 

The neural basis of the FFS remains mostly unknown. Candidate regions include the medial 

hypothalamus and the periaqueductal grey, a midbrain region that has been implicated in the 

modulation of defensive behaviour (Watt, 2000). 

 Empirical tests of the RST provided only partial support for some of its basic claims. 

For instance, Gallagher & Hall (1992) compared the performance of participants who were 

particularly sensitive to reward or punishment cues in a proof-reading task under either 

reward (potential gain) or punishment (potential loss) conditions. Consistent with the 

predictions of the RST, punishment-sensitive individuals identified significantly more errors 

                                                 
7 In a revised version of the RST, Gray & McNaughton (2000) hypothesized that the BAS is sensitive to all classes 

of appetitive stimuli (conditioned and unconditioned). Moreover, the revised RST postulated a fight-flight-freeze 

system (FFFS), mediating responses to all classes of aversive stimuli, whereas the BIS is thought to solve 
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than did reward-sensitive individuals in the punishment condition. Contrary to the predictions 

of the RST, however, both groups showed comparable performance in the reward condition. 

Moreover, the authors found no evidence that reward- and punishment sensitive participants 

experienced different emotional reactions in the two incentive conditions. 

Other studies confirmed a higher emotional reactivity of punishment-sensitive individuals to 

aversive stimuli (e.g., Corr et al., 1995). Available evidence on reward-mediated emotional 

reactivity is similarly inconclusive (for a review, see Corr, 2004). 

In particular, Gray’s model implies that high sensitivity to aversive stimuli should lead 

to enhanced learning from punishments. In line with this notion, it has been shown that high 

punishment sensitivity improved implicit learning in a punishment compared to a control 

condition. In contrast, low punishment sensitivity was associated with impaired learning 

under punishment and improved learning in the control condition (Corr, Pickering, & Gray, 

1997). Still, less consistent findings have been reported in studies using explicit learning 

tasks (e.g., Zinbarg & Revelle, 1989). Interestingly, a recent study found that individuals who 

were highly sensitive to punishment showed improved probabilistic learning from negative 

feedback (punishment learning) and impaired probabilistic learning from positive feedback 

(reward learning) when under social evaluative stress compared to a neutral condition 

(Cavanagh, Frank, & Allen, 2011a). By contrast, in less punishment sensitive individuals, 

stress was associated with impaired punishment learning and improved reward learning. 

Moreover, stress-induced negative affect reliably predicted superior punishment learning 

performance in participants characterized by high punishment sensitivity, but poor 

punishment learning performance in less sensitive participants.  

 Thus, the theoretical conceptualization of the BIS has received comparatively more 

empirical support, whereas findings concerning the BAS remain controversial. Nonetheless, 

the RST has proven a useful framework for exploring the neurophysiological basis of 

personality. 

  
                                                                                                                                                         
conflicts between BAS and FFFS. Accordingly, the FFFS is associated with fear, whereas the BIS is associated 

with anxiety as well as worry and rumination. 
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Trait-Level Positive and Negative Affect 

 The RST defines BIS and BAS as emotion systems underlying both aversive vs. 

appetitive behaviour and negative vs. positive affective states. Indeed, many theoretical 

models of personality structure involve the basic trait dimensions of positive and negative 

emotionality. Most notably, Watson and Tellegen (1985) identified two orthogonal dimensions 

in factor analytic studies of self-rated mood: Positive Affect (PA) refers to the cross-

situationally consistent tendency to experience pleasant affective states, such as pride, 

delight, and enjoyment. Whereas high PA is associated with activity and optimistic 

engagement, low PA is characterized by sadness and lack of energy. By comparison, 

negative affect (NA) denotes the extent to which individuals are prone to experience various 

unpleasant affective states, such as anger, disgust, guilt and fear. Accordingly, high NA 

related to distress and aversively motivated engagement, while low NA was associated with 

calmness (Watson, Clark, & Tellegen, 1988). 

Consistent with the proposed link to reward and punishment sensitivity, measures of 

PA and NA correlated moderately with measures of BAS and BIS, respectively (Heubeck, 

Wilkinson, & Cologon, 1998). On the basis of those findings, it has been proposed that the 

neural substrate of BAS and BIS might also underlie PA and NA (e.g., Carver, Sutton, & 

Scheier, 2000). Furthermore, NA predicted measures of state anxiety, depression, and 

general psychological distress. In contrast, PA was inversely related to these variables 

(Watson, Clark, & Tellegen, 1988). Similarly, intra-individual variations in perceived stress 

were related to fluctuations in NA but not PA, whereas intra-individual variations in social 

activity were primarily associated with fluctuations in PA (Watson, 1988). 

Importantly, individuals differed not only in the propensity to experience positive and 

negative affect, but also in the ability to regulate these affective responses (Gross & 

Thompson, 2007). As I have outlined above, affective reactions can interfere with task-

relevant processing. A prominent example is the detrimental effect of uncontrollable failure 

experiences on subsequent instrumental learning (Mikulincer, 1994; Seligman, 1975; 

Wortman & Brehm, 1975). Notably, the ability to cope with failure-induced negative affect 
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(Kuhl, 1981) has been shown to moderate the consequences of failure on learning 

performance. This finding will be discussed in more detail below. 

Uncontrollable Failure Experiences and Learning – A Special Case of a Deficit in Motivation 

or Affect Regulation? 

 How failure experiences affect subsequent performance has been a subject of 

intense debate in psychological research for several decades (Brunstein & Gollwitzer, 1996). 

Much of this work has been inspired by the learned helplessness theory (Seligman, 1975), 

which focuses on deficits in learning performance after the exposure to uncontrollable failure. 

According to helplessness researchers (e.g., Mikulincer, 1994; Seligman, 1975), the 

repetitive experience of uncontrollable aversive stimuli, such as inescapable painful stimuli or 

repeated failure feedback, results in a motivational deficit that is associated with impaired 

task performance, and generalizes to new tasks and environments (Hiroto & Seligman, 1975; 

Maier & Watkins, 2005; Roth & Kubal, 1975). Moreover, uncontrollable failure is typically 

followed by a heightened state of negative affect that is typically associated with reduced 

reward responsivity or ‘anhedonia’ (Bogdan & Pizzagalli, 2006; Henn & Vollmayer, 2005). 

The learned-helplessness effect is thus assumed to involve a cognitive, motivational and 

affective component (Pryce et al., 2011). 

The notion that a motivational deficit underlies the cognitive effects of uncontrollable 

failure has received considerable support from animal research. These studies showed that 

the exposure to inescapable electric shocks appeared to specifically reduce the amount of 

effort rats were willing to exert in an instrumental learning task with high response demands, 

while memory acquisition and retrieval in a spatial learning task were not affected (e.g. 

Vollmayer et al., 2004). Moreover, this view is consistent with expectancy-value theories (see 

above) that predict a failure-related decrease in motivation as a consequence of reduced 

outcome expectancies. A purely ‘motivational helplessness’ hypothesis of failure 

experiences, however, has been challenged:  (1) Trait and state variations in action- vs. state 

orientation (i.e., the capacity to regulate the affective reaction to failure, see below) 

moderated the effects of failure on subsequent task performance (e.g., Kuhl, 1981) and (2) 
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failure may also result in increased motivation, particularly in initial attempts to cope with the 

aversive event (e.g., Wortmann & Brehm, 1975). Furthermore, several findings point to the 

importance of self-relevance in determining the effects of failure on subsequent task 

performance (Brunstein, 2000). Brunstein and Gollwitzer (1996) demonstrated that 

participants exposed to failure feedback on a task critical for their self-definition subsequently 

showed improved performance on another identity-relevant task but impaired performance 

on an unrelated task. 

The concepts of action- vs. state orientation refer to individual differences in the ability 

to control affect and thought in the service of goal-directed behaviour, especially under high 

cognitive demands (Kuhl, 1994). State-orientation is characterized by unintended rumination, 

prolonged preoccupation with the aversive event, and hesitation. In a state-oriented mode, 

individuals hence are unlikely to change their current mental state and to implement action 

plans. Action orientation, in contrast, refers to efficient affect-regulation, resulting in an 

improved detachment from thoughts about the aversive event and a focus on task execution 

and goal implementation. Thus, highly action-oriented individuals are expected to show 

superior task performance following failure experiences or changes in task settings. 

Accordingly, Kuhl (1981) showed that failure-related performance decrements can primarily 

be attributed to state-oriented cognitions. Participants exposed to an unsolvable cognitive 

task reported reduced outcome expectations regarding the unsolvable training task - but not 

an unrelated test task. Nonetheless, the experimental induction of state orientation after the 

failure-experience resulted in performance deficits on a subsequent concentration test (d-2; 

Brickenkamp, 1962). Likewise, participants characterized by a disposition for state 

orientation performed worse after failure than action-oriented participants. Based on these 

findings, Kuhl (1981) concluded that valence and outcome expectancy – as proposed by 

expectancy-value theories of motivation – cannot fully predict the consequences of failure 

experiences. Instead, he argued that the dimensions of action- vs. state orientation have to 

be considered as well. 

Furthermore, recent findings from studies examining the effects of social-evaluative 

stress on instrumental learning indicated that stress had an impact on learning strategies 

rather than on overall accuracy (Petzold, Plessow, Goschke, & Kirschbaum, 2010; Schwabe 
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et al., 2007; Schwabe & Wolf, 2009). Interestingly, stress appeared to promote habitual (S-R) 

learning in detriment of (a) more explicit hippocampus-dependent spatial learning strategies 

(Schwabe et al., 2007) and (b) goal-directed instrumental learning (Schwabe & Wolf, 2009). 

Interestingly, in the latter study, the stress-related strategy effect was also reflected in 

reduced explicit knowledge about the S-R mappings (Schwabe & Wolf, 2009). Indeed, it has 

been suggested that stress selectively impairs explicit learning and memory systems, while 

implicit, habitual learning is not affected (Schwabe & Wolf, 2011). It should be noted, 

however, that mild stress has also been shown to improve explicit learning, presumably 

mediated by moderately increased arousal (Roozendaal et al., 2009; Wolf, 2009). Moreover, 

Petzold and colleagues (2010) reported that stress exposure selectively lessened the ability 

to efficiently use negative feedback during subsequent feedback-based learning. The authors 

suggested that stress might induce an attentional bias towards positive and away from 

negative, threatening information. Yet, findings by Cavanagh and colleagues (2011a) 

strongly suggested that individual differences in punishment sensitivity determine whether 

acute stress results in impaired vs. improved learning from negative feedback. In this study, 

only the participants reporting low punishment sensitivity showed stress-induced impairments 

in punishment learning, while the opposite pattern was observed for highly sensitive 

participants. Given that both failure experiences and social-evaluative stress are thought to 

elicit strong negative affect, their effects on learning may bear some similarities. 

In sum, the induction of failure is associated with complex changes in cognitive, 

affective and motivational processes. Although the specific mechanisms underlying the 

impact of failure experiences on subsequent task performance are not entirely clear, most 

researchers agree that failure outcomes are experienced aversively and trigger negative 

affective states that individuals have to cope with. Moreover, acute failure feedback has been 

shown to promote reactive engagement in a subsequent task, possibly reflecting 

compensatory efforts. 
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Brain Mechanisms Underlying the Interaction of Motivation, Emotion, and Cognition 

Traditionally, motivational and emotional processes have been distinguished from 

cognitive processes both on a functional and a neuroanatomical level. The amygdala and the 

PFC are two prominent examples for structures that have been associated with emotional 

and cognitive processing, respectively (LeDoux, 2000; Miller & Cohen, 2001; Ochsner & 

Gross, 2005). Considerable evidence, however, indicated that this modular view is no longer 

tenable. Previous research demonstrated a close interaction between brain regions 

supposedly involved in emotional and cognitive functions (for reviews, see Davidson, 

Pizzagalli, Nitschke, & Kalin, 2003; Pessoa, 2008; Phelps, 2006; Salzman & Fusi, 2010). 

Moreover, it has been suggested that emotional and cognitive parameters are integrated 

within dynamic brain networks, involving limbic and prefrontal structures (Pessoa, 2008; 

Salzman & Fusi, 2010). The next paragraph summarizes several critical findings this 

suggestion is based on. 

The amygdala is structurally heterogeneous group of nuclei within the anterior medial 

temporal lobe. It has been described as a core affective region that is critically involved in 

fear conditioning (Antoniadis, Winslow, Davis, & Amaral, 2009; Pessoa, 2010), the 

representation of a reinforcer’s value (Murray & Izquierdo, 2007), and the processing of 

emotional valence and intensity (LeDoux, 2007; Machado, Kazama, & Bachevalier, 2009). In 

particular, amygdala activation is related to vigilance and arousal, which lead some 

researchers to suggest that this region acts as a “detector” for the biological relevance of on-

going events (Sander, Grafman, & Zalla, 2003). In line with this notion, the amygdala has 

been shown to support the prioritized processing of affectively significant stimuli (Phelps & 

LeDoux, 2005). Moreover, Salzman and Fusi (2010) posited that the amygdala might encode 

the value of the current state that is used to regulate the engagement of appetitive and 

aversive behavioural systems. In support of this view, Prevost and colleagues (2011) showed 

that the basolateral and centromedial complexes of the amygdala played important roles in 

instrumental reward and avoidance learning, respectively. Importantly, these findings 

demonstrated that the amygdala contributed not only to affective but also to cognitive 

functions, such as associative learning, attention, and decision making (Pessoa, 2010). 
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The representation of state value has also been associated with the OFC that is 

strongly interconnected with the amygdala. Indeed, there is ample evidence for a functional 

overlap between the two structures (Murray & Izquierdo, 2007). However, the OFC is not the 

only prefrontal subregion engaged in affective processing. Further regions include the ACC, 

the ventromedial prefrontal cortex (vmPFC) and parts of the inferior frontal gyrus, i.e., 

structures that are on the top of the hierarchy of the limbic cortico-basal ganglia network. 

Notably, emotion and cognition also appear to be integrated in regions that have been 

characterized as purely cognitive, such as the dlPFC (Pessoa, 2010). For instance, Savine 

and Braver (2010) showed that performance-contingent reward incentives increased 

behavioural efficiency during task-switching. Importantly, the reward-related performance 

modulations were associated with interactive incentive effects on switch-related activity in the 

dlPFC. The incentive manipulation also affected cue-related preparatory activity, which in 

turn predicted performance. These findings suggest that motivational influences on task 

performance are unlikely to reflect an unspecific “energizing“ of behaviour, as would be 

indicated by “simple” additive effects of reward manipulations. Instead, motivation appears to 

sharpen and/or enhance task-specific processing in the service of behavioural optimization 

(cf. Pessoa & Engelmann, 2010). 

Central to the integration of affective and motivational information are key nodes 

occupying a “hub-position” within the neural networks, i.e., regions on which inputs from 

multiple brain areas converge. The ACC has already been characterized as a suitable 

candidate for the implementation of this function. This was further corroborated by the 

observation that the recruitment of the ACC directly relates to task-engagement and effortful 

control (Boksem, Meijman, & Lorist, 2006a; Paus, Koski, Caramanos, & Westbury, 1998). 

Another potential mechanism for mediating affective and motivational influences on task 

performance is the neuromodulatory influence of DA. Drawing on the crucial role of DA in 

reward processing and approach motivation (Schultz, 2007), dopaminergic dynamics have 

also been hypothesized to underlie the impact of affective state on goal-directed behaviour 

and adaptive control (Aarts, Custers, & Veltkamp, 2008; Ashby, Isen, & Turken, 1998). 

However, there are several findings indicating that reward and positive affect exert 

dissociable effects on cognitive functioning (Chiew & Braver, 2011). The precise nature of 
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the relationships between affect, motivation, and dopaminergic activity thus remains to be 

determined. 

The Neurophysiological Effects of Failure 

 In human neuroimaging studies, the exposure to uncontrollable, aversive stimuli has 

consistently been shown to engage the ACC (Pryce et al., 2011). In line with this, the ACC 

was typically found to be activated in response to acute stress (Dedovic, D’Aguiar, & 

Pruessner, 2009). Moreover, evidence from human and animal research suggested that 

multiple neurochemical systems are involved in the response to uncontrollable failure and 

other stressors (Joels & Baram, 2009; Maier & Watkins, 2005). First of all, stress exposure is 

associated with activation of the hypothalamus-pituitary adrenal (HPA) axis (de Kloet, Joëls, 

& Holsboer, 2005), resulting in an increased release of cortisol. Acute stress-induced 

enhancement of cortisol levels is accompanied by improved associative learning (e.g., fear 

conditioning) and declarative memory consolidation, particularly for emotionally arousing 

material (Roozendaal et al., 2009; Wolf, 2009). 

These effects are most likely mediated by the regulatory influence of the amygdala on 

other brain regions implicated in associative learning and memory formation, such as the 

hippocampus. Specifically, cortisol has been suggested to facilitate the effects of 

noradrenaline that is released into the amygdala during aversive and stressful events 

(Roozendaal et al., 2009). Interestingly, there is also evidence indicating that stress 

hormones like cortisol might directly and indirectly affect dopaminergic activity and hence RL 

(e.g., Minton et al., 2009). In addition, the exposition to aversive events typically results in a 

short-lived increase of DA release in the ventral striatum (e.g., Cabib & Puglisi-Allgra, 1994). 

 Notably, the PFC, including the ACC, showed the highest density of stress hormone 

receptors (e.g., Pathel et al., 2000). Accumulating evidence indicated that the ACC might 

control the stress-induced activation of the HPA-axis (Herman et al., 2003) as well as the DA 

response in the ventral striatum (Pascucci et al., 2007). Specifically, Pascucci and 

colleagues showed that acute stress triggered a short-lived increase of DA and 

noradrenaline in the medial PFC of rats. Whereas prefrontal noradrenaline enhancement 
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determined the increase of DA release in the ventral striatum, continued mesocortical DA 

transmission due to sustained stressor exposition inhibited DA release in the ventral striatum. 

The opposing effects of prefrontal DA and noradrenaline on striatal DA are likely to reflect 

adaptive mechanisms supporting active coping or withdrawal as a function of perceived 

controllability of an event, which in turn is crucially dependent on the ACC (Amat et al., 

2005). 

Summary and Implications for the Present Study 

Adaptive behavioural control is mediated by the interaction of cognitive mechanisms 

with motivational and emotional processes. The concepts of emotion and motivation are 

closely interrelated and both appear to govern RL by affecting information processing as well 

as instrumental behaviours. Interactions between motivation, emotion, and cognition can be 

integrated within dynamic brain networks involving limbic and prefrontal structures, 

particularly the ACC, the amygdala as well as multiple neurochemical systems. In line with 

this notion, the ACC is activated by aversive stimuli and appears to evaluate the 

controllability of stressors, thereby determining stress-related neurochemical responses, e.g. 

DA responses in the striatum. By comparison, the amygdala has been hypothesized to 

mediate prioritized processing of affectively significant stimuli and to regulate the 

engagement of appetitive and aversive behavioural systems. The amygdala is also believed 

to exert regulatory influence on other brain regions implicated in associative learning and 

memory formation, e.g. in response to stressors such as failure experiences and exposure to 

social-evaluative stress that have been shown to significantly impact RL mechanisms. 

Crucially, recent evidence suggests that stress-related variations in negative affect influence 

neural learning mechanisms (e.g. reflected in an enhanced sensitivity to errors) rather than 

overall performance (Cavanagh et al., 2011a; Petzold et al., 2010; Schwabe & Wolf, 2009). 

Importantly, the effects of stress- and failure-induced negative affective states on behavioural 

indices of learning appear to be modulated by interindividual differences in sensitivity to 

reward (BAS) and punishments (BIS) (Gray, 1972) as well as the disposition towards action 

vs. state orientation (Kuhl, 1981). 
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Electrophysiological Correlates of Reinforcement Learning 

 Studies measuring scalp recorded event-related potentials (ERPs) to examine neural 

processes underlying performance monitoring have greatly advanced our knowledge on how 

the brain implements RL. In particular, two components associated with the processing of 

response errors and performance feedback, respectively, have been hypothesized to track 

learning-related changes in the evaluation and utilization of information about action 

outcomes (e.g., Holroyd & Coles, 2002). First, the error negativity (Ne; Falkenstein et al., 

1991) or error-related negativity (ERN; Gehring et al., 1993) has been linked to the activity of 

an internal error monitoring system. Second, a morphologically and functionally similar 

component can be observed in response to error-feedback stimuli and is commonly referred 

to as the feedback-related negativity (FRN; Miltner et al., 1997). Furthermore, the Ne is 

usually followed by a positive-going deflection, termed the error positivity, which is assumed 

to reflect error-related processes that are functionally dissociable from the Ne (Falkenstein, 

Hohnsbein, & Hoorman, 1990). In the subsequent sections, I will review a number of key 

experimental findings concerning the three ERP-components (Ne, FRN, Pe), with a specific 

focus on the neural underpinnings of learning. 

The Error Negativity (Ne) 

 The Ne is a negative deflection in the ERP that starts shortly before an individual’s 

erroneous response and peaks within 100 ms thereafter. The Ne has been observed in 

broad range of speeded-response tasks involving several stimulus and response modalities 

(for reviews, see Falkenstein, 2004; Falkenstein et al., 2000; Nieuwenhuis, Holroyd, Mol, & 

Coles, 2004). As can be seen in Figure 5, the scalp distribution of the Ne is maximal at 

fronto-central recording sites. Converging evidence from EEG source localizing, 

magnetoencephalographic, and fMRI studies in humans (for reviews, see Hester, 

Fassbender, & Garavan, 2004; Olvet & Hajcak; 2008; Ridderinkhof, Ullsperger, & Crone, 

2004; Taylor, Stern, & Gehring, 2007) as well as from intracranial recordings in primates 

(Emeric et al., 2008; Ito, Stuphorn, Brown, & Schall, 2003) indicates that the Ne originates in 

the ACC. Although the source of the Ne is most consistently localized within the dorsal ACC, 
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considerable variation between different studies indicates that alternative and/or additional 

regions might contribute to Ne generation, most notably, the pre-supplementary motor area 

(pre-SMA) and the rostral ACC (Brazdil, Roman, Daniel, & Rektor, 2005; Luu, Tucker, 

Derryberry, Reed, & Poulson, 2003; Ridderinkhof et al., 2004). Given that the Ne has also 

been characterized as part of on-going theta and delta rhythms (Luu & Tucker, 2001; Trujillo 

& Allen, 2007; Yordanova, Falkenstein, Hohnsbein, & Kolev, 2004), it is interesting to note 

that error-related theta-band activity over the MFC predicted white matter connectivity with 

the ventral striatum, ventrolateral PFC, and motor cortex (Cohen, 2011). Available evidence 

thus suggests that a widespread network underlies action monitoring. 

  

Figure 5: Left: The Ne peaks roughly within 100 ms after an individula’s erroneous response and is typically 

followed by a positive-going deflection, termed the error positivity (Pe). Right: The topographical map 

demonstrates a fronto-central maximum of the Ne (red focus). The red diamant corresponds to the estimated 

source of the Ne in the dACC (dipole model). (Figures adapted from Falkenstein et al., 2000 and Taylor et al., 

2007) 

 One of the earliest findings with respect to the Ne is its sensitivity to speed vs. 

accuracy instructions (Falkenstein et al., 1990; Gehring et al. 1993). Gehring and colleagues 

(1993) instructed participants to respond as quickly as possible (speed emphasis) or to make 

as few errors as possible (accuracy emphasis). The accuracy emphasis resulted in larger Ne 

amplitudes and more efficient post-error compensatory behaviour, including post-error 

slowing, and error correction rate. Although the comparison relied on error trials matched for 

response latency, the finding remains somewhat ambiguous because the speed-accuracy 

manipulation triggered a different weighting of what exactly is considered an error: slow 
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responses or wrong button presses. Moreover, the accuracy instruction by definition implies 

lower error rates. Studies examining the relation between accuracy and Ne amplitude have 

typically found larger Ne amplitudes when participants show better performance (e.g., 

Amodio, Jost, Master, & Yee, 2007; Hajcak, McDonald, & Simons, 2003; but see Falkenstein 

et al., 2000; Mathewson, Dywan, & Segalowitz, 2005). Interestingly, previous studies using 

probabilistic learning paradigms suggested that individual differences in accuracy related to 

ERPs on correct trials rather than the Ne (Eppinger et al., 2008; Eppinger, Mock, & Kray, 

2009). Either way, one should consider performance differences when interpreting variations 

in Ne amplitude across experimental conditions (cf. Yeung, 2004). 

 An association between Ne magnitude and overall task performance would be 

consistent with the idea that the Ne reflects the activity of an internal performance monitoring 

system. More specifically, one might expect a direct link between Ne magnitude and error-

related behavioural adjustments (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Gehring 

et al., 1993; Holroyd & Coles, 2002). Although this issue has been addressed by several 

studies, no consistent picture has emerged so far. Most reports focused on post-error 

slowing, i.e., strategic adjustments in reaction time (RT) on trials following an error, thought 

to reflect the increased recruitment of cognitive control processes (Botvinick et al., 2001). 

Using a single-trial measure of the Ne, Debener and colleagues (2005) demonstrated a 

significant relation between the Ne amplitude and the amount of post-error slowing (see also 

Gehring et al., 1993). However, a number of further studies – mostly using cross-trial 

averaging to quantify the Ne – failed to observe this kind of association (e.g., Dudschig & 

Jentzsch; 2009; Gehring & Fencsik, 2001), suggesting that more fine-grained analyses at a 

single-trial level might be critical. Supporting this notion, Cavanagh and colleagues (2009) 

showed that single-trial dynamics in error-related theta-power over the posterior MFC reliably 

predicted post-error slowing. Alternatively, it has been suggested that post-error RT changes 

might reflect processes other than control, such as sustained error processing interfering with 

stimulus-related processing on the next trial (cf. Gehring et al., in press). Research that 

aimed to establish a relation between Ne and immediate error correction has yielded similarly 

inconclusive findings (e.g., Burle et al., 2008; Falkenstein et al., 1996; Fiehler et al., 2005; 

Gehring et al., 1993). 
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Surprisingly few studies have examined whether the Ne relates to error-related 

behavioural adaptation in RL. Findings by Frank and colleagues (2005) point to a link 

between inter-individual differences in the Ne amplitude and a bias to avoid responses that 

have been learned to result in unfavourable outcomes (see also Cavanagh et al., 2011a; 

Frank et al., 2007b). Intriguingly, a recent study showed that state-level negative affect and 

inter-individual differences in punishment sensitivity modulated the tendency to learn more 

from errors or to correct choices as well as error-related neural processing (Cavanagh et al., 

2011a). This is in line with ample evidence for affective and motivational influences on action 

monitoring reflected in the Ne, as detailed in one of the following sections. 

The Feedback-Related Negativity (FRN) 

While the Ne occurs around the time of an erroneous response, the FRN is a 

negative deflection elicited ~250-300 ms following the presentation of a feedback stimulus in 

a wide variety of experimental paradigms (Gehring & Willoughby, 2002; Miltner et al., 1997; 

for a review, see Nieuwenhuis, Holroyd, Mol, & Coles, 2004) (see Figure 6). As noted by 

Miltner and coworkers (1997), the FRN shares several characteristics with the response-

locked Ne, which led some researchers to conclude that they might reflect the same 

cognitive and neural process (Holroyd & Coles, 2002; Nieuwenhuis, Yeung, Holroyd, 

Schurger, & Cohen, 2004). 

 

Figure 6: Left: The FRN can be oberserved as a relatively more negative-going deflection ~250-300 ms following 

the presentation of a feedback stimulus Right: Topographical map and estimated source in the dACC (dipole 

model). (Figure adapted from Gehring & Willoughby, 2002) 
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Similar to the Ne, the FRN has a fronto-central scalp distribution, suggesting that 

neural sources of the two components overlap. Indeed, the ACC and adjacent MFC have 

been identified as most likely generators of the FRN (Doñamayor et al., 2011; Holroyd et al., 

2004; Ruchsow, Grothe, Spitzer, & Kiefer, 2002), along with the posterior cingulate cortex 

(Müller et al., 2005; Nieuwenhuis et al., 2005) and the right frontal cortex (Christie & Tata, 

2009). 

Several studies showed that the FRN is more pronounced after negative compared to 

positive feedback, indicating the component is sensitive to the valence of an outcome (e.g., 

Gehring & Willoughby, 2002; Nieuwenhuis, Yeung, et al., 2004; Sato et al., 2005; Yeung & 

Sanfey, 2004). Moreover, it has been suggested that the FRN may reflect a coarse 

evaluative mechanism that classifies on-going events in a binary manner as “good” or “bad” 

(e.g., Hajcak, Moser, Holroyd, & Simons, 2006; Sato et al., 2005; Toyomaki & Murohashi, 

2005). For instance, Yeung and Sanfey (2004) applied a gambling task to examine whether 

the magnitude (small vs. large) of gains and losses affects the FRN amplitude. While the 

FRN differentiated only between gains and losses, independently of their magnitude, a later-

occurring positive slow wave known as the P300 showed sensitivity to the magnitude but not 

the valence of outcomes. Although this finding has been confirmed by a number of other 

reports (e.g., Hajcak et al., 2006; Holroyd, Hajcak, & Larsen, 2006), there are also 

demonstrations that the FRN is sensitive to the magnitude of the outcome (e.g., Goyer, 

Woldorff, & Huettel, 2008; Kreussel et al., 2011). 

In addition, there is evidence supporting of the notion that the evaluative process 

reflected in the FRN might operate in a context-dependent fashion (Holroyd, Larsen, & 

Cohen, 2004). When the task included a range of possible outcomes, the FRN appeared to 

track their relative rather than absolute value. Accordingly, in the Holroyd et al.’s study 

(2004), a zero outcome elicited a larger FRN if it was the worst possible outcome (i.e., in the 

context of potential gains), but a smaller FRN if it was the best possible outcome (i.e., in the 

context of potential losses). Furthermore, a study by Nieuwenhuis and colleagues (2004) 

revealed that monitoring processes associated with the FRN rely on the most salient 

information the feedback stimulus conveys. In this study, participants’ choices on each trial in 

a gambling task either resulted in winning or losing 5 vs. 25 Cent. The authors showed that 
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the modulation of the FRN depended on whether colour coding emphasized the utilitarian 

(gain vs. loss) or performance aspect (correct vs. incorrect) of feedback information. 

Interestingly, a recent study indicated that feedback salience can facilitate learning, 

particularly if the feedback was partially ambiguous (Herbert, Eppinger, & Kray, 2011). 

Although the relation between FRN and learning has rarely been directly tested, various 

findings point to a functional link between the FRN and the utilization of feedback information 

for behavioural adaptation (e.g., Cavanagh, Klein, Frank, & Allen, 2010a; Holroyd & Coles, 

2008; Santesso et al., 2008). Most notably, van der Helden and colleagues (2010) 

demonstrated that the FRN amplitude predicted whether a mistake was repeated or learned 

from, implying that this component might reflect a PE. Further support for this notion comes 

from a study by Cohen and Ranganath (2007) showing that the FRN was larger on trials 

preceding behavioural switches, which is consistent with the magnitude of the negative PE 

derived from a computational RL model. A subsequent study that aimed to disentangle the 

PE-related mechanism and explicit rule-based decision-making only found an association 

between FRN and PE, whereas rule-based behavioural switches were related to P300 

amplitude (Chase et al., 2011). On the basis of their findings, the authors conclude that the 

FRN reflects the activity of an incremental habitual (model-free) RL system, while the P300 

relates to fast model-based RL mediating rule-based behavioural adjustments. 

It is a matter of current debate whether the FRN represents PEs monotonically, 

combining magnitude and valence into a single scalar. Some reports suggested that the FRN 

varies as a function of expectancy deviation rather than feedback valence and hence 

represents the magnitude but not the direction of the PE (Chase et al., 2011; Oliveira, 

McDonald, & Goodman, 2007). Alternatively, variations in FRN amplitude have been 

characterized as positive deflections that scale with the magnitude of positive PEs (Foti, 

Weinberg, Dien, & Hajcak, 2011; Holroyd, Pakzad-Vaezi, Krigolson, & Krigolson, 2008). 

Furthermore, some researchers have argued against a monotonic representation of the PE 

in the FRN and instead proposed a sequential and spatially distributed processing of 

feedback information (Philastides, Biele, Vavatzanides, Kazzer, & Heekeren, 2010). 

According to this notion, an early ‘good-bad’ categorization is followed by a more fine-grained 

outcome evaluation that incorporates both PE valence and magnitude. 
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In summary, Ne and FRN are two morphologically and topographically similar ERP 

components thought to reflect the activity of a generic performance monitoring system. In 

particular, these components have been hypothesized to evaluate on-going events in the 

service of behavioural adaptation. Although a number of studies provided empirical support 

for a specific link between Ne and FRN and RL, this relation has rarely been addressed 

explicitly and so far remains under-explored. Importantly, the evaluative process underlying 

Ne and FRN appears to be sensitive to the specific context of behaviour. Indeed, several 

findings suggest that the two components reflect the motivational significance of response 

outcomes rather than their objective value, as detailed below. 

The Error Positivity (Pe) 

 The Pe is a positive slow wave in the response-locked ERP that reaches its maximum 

between 200 and 400 ms after response-onset (Falkenstein et al., 1990; for a review, see 

Overbeek, Nieuwenhuis, & Ridderinkhof, 2005; see Figure 6). The Pe is more pronounced 

after erroneous compared to correct responses and exhibits a centroparietal scalp 

distribution. Accumulating evidence, however, indicated that two dissociable subcomponents 

occur in the time-range of the Pe: (1) an early frontocentrally distributed subcomponent (early 

Pe) and (2) a later centroparietally distributed subcomponent (late or ‘classic’ Pe) (Arbel & 

Donchin, 2009; van Boxtel, van der Molen, & Jennings, 2005; van Veen & Carter, 2002). The 

early Pe may originate from brain regions in the MFC that are also thought to underlie the Ne 

generation, suggesting that this component is actually part of the oscillatory process 

underlying the Ne (Arbel & Donchin, 2009; Falkenstein et al., 1991; O’Connell et al., 2007). 

However, the early Pe shows a somewhat more central scalp distribution, possibly indicating 

that different albeit neighbouring regions of the ACC contribute to Ne and early Pe. By 

contrast, the late Pe8 has been associated with two distinct neural sources in the rACC and 

in the vicinity of the posterior cingulate and the precuneus (O’Connell et al., 2007). The latter 

region has been implicated in consciousness, self-related processing, and the experience of 

agency (Cavanna & Trimble, 2006). This nicely fits the finding that the Pe – as opposed to 

                                                 
8 The present thesis focuses exclusively on the late Pe. 
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the Ne – varies as a function of error awareness (Endrass, Reuter, & Kathmann, 2007; 

Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; O’Connell et al., 2007). Likewise, the 

Pe is increased for cognitively or affectively more salient errors (Leutholt & Sommer, 1999; 

Stemmer, Witzke, & Schönle, 2001). Importantly, O’Connell and colleagues (2007) observed 

the early Pe for both aware and unaware errors, but the late Pe for aware errors only. These 

findings strongly indicate that the late Pe is associated with the conscious recognition of an 

error. This view is further corroborated by a recent study that demonstrated a strong link 

between the Pe and error detection (Steinhauser & Yeung, 2010). 

 Studies relating the Pe amplitude to task performance yielded inconsistent findings. 

Some investigators reported a smaller Pe for low-performing compared to high-performing 

participants (Dywan, Mathewson, & Segalowitz, 2004; Falkenstein, Hoormann, Christ, & 

Hohnsbein, 2000) which has been considered evidence that this component reflects the 

affective appraisal of an error or its consequences. Other studies, however, did not find a 

relation between accuracy and Pe magnitude (Hajcak, McDonald, & Simons, 2003; 

Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 2004). Mixed evidence has also been 

obtained regarding the association between Pe and post-error behavioural adjustments. For 

instance, Hajcak and coworkers (2003) found that larger Pe amplitudes predicted the degree 

of post-error slowing (see also Nieuwenhuis et al, 2001). Nevertheless, most studies failed to 

show an association between the Pe and immediate error-corrective behaviour (Falkenstein 

et al., 2000; Fiehler et al., 2005; Ullsperger & von Cramon, 2006). Hence, there is no clear-

cut support for a ‘behavioural-adaptation hypothesis’ of the Pe. Nonetheless, the observed 

functional dissociations between Ne and (late) Pe suggest that a more slowly operating, 

deliberative performance monitoring system that is triggered by salient errors might underlie 

the Pe (cf. Overbeek et al., 2005). 

 In addition, several researchers have noted that the Pe bears strong resemblance to 

the stimulus-locked P300, which is thought to reflect the stimulus-inherent motivational or 

emotional significance (e.g., Keil et al., 2007; Nieuwenhuis, Aston-Jones, & Cohen, 2005; 

Yeung & Sanfey, 2004). According to this view, the Pe may indicate the updating of the 

representation of task-context in response to errors (Leutholt & Sommer, 1999) or the 

mobilization of resources for task-relevant processing in the service of immediate, i.e., within-
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trial, remedial actions (Nieuwenhuis et al., 2005). The latter hypothesis is consistent with the 

observation that both the Pe and the P300 correlate with arousal (O’Connell et al. 2007). 

Moreover, the Pe has been shown to increase with learning and feedback validity in a 

probabilistic RL task (Eppinger et al., 2009). In contrast, the Ne did not change over the 

course of learning, supporting the notion that Pe and Ne reflect dissociable processes. The 

finding that the Pe grows larger as participants are better able to represent the correctness of 

their responses is compatible with accounts linking this component to conscious aspects of 

error processing as well as context updating. 

The Susceptibility of Error Negativity, Feedback-Related Negativity, and Error Positivity to 

Affective and Motivational Influences 

 Given that the consequences of an action can remarkably depend on the specific 

situation, one should expect the evaluative functions underlying Ne, FRN, and Pe to be 

sensitive to the motivational and affective significance of an on-going event. Much evidence 

in support of this notion comes from (1) studies with patients suffering from affective and 

other neuropsychiatric disorders that are characterized by negative emotionality and (2) 

studies investigating state and trait variations in affect and motivation. 

Deviant Performance Monitoring and Learning in Neuropsychiatric Populations 

 Patients with Major Depressive Disorder (MDD) typically show increased sensitivity to 

performance errors and negative feedback (Eshel & Roiser, 2010; Steffens, Wagner, Levy, 

Horn, & Krishnan, 2001). Accordingly, increased Ne and FRN amplitudes have been 

observed for moderately depressed compared to healthy individuals, particularly when errors 

are penalized (Chiu & Deldin, 2007; Hajcak & Foti, 2009; Holmes & Pizzagalli, 2008; 

Santesso et al., 2008; Tucker et al., 2003; but see Ruchsow et al., 2004, 2006). Although 

such an increase on the level of neurophysiological correlates of error processing should be 

associated with more efficient error-related behavioural adaptation (Holroyd & Coles, 2002; 

Frank et al., 2005; van der Helden et al., 2010), depressed subjects typically show poor 

performance following mistakes in response competition task (Compton et al., 2008; Holmes 
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& Pizzagalli, 2007). However, two recent studies using probabilistic RL paradigms failed to 

obtain any performance impairments in depressed participants (Cavanagh, Bismark, Frank, 

& Allen, 2011b; Chase et al., 2010). Instead, in the Cavanagh et al.’s study, the association 

between error-related ACC activity (reflected in FRN amplitude and error-related theta 

power) and avoidance learning was stronger for MDD patients, suggesting that the ACC 

might mediate specific behavioural effects of increased affective reactivity to negatively 

valenced events in depression. Moreover, Holmes and Pizgalli (2008b) found increased 

error-related rACC and medial prefrontal cortex (mPFC) responses in patients with MDD 

compared to controls, but failure to subsequently recruit regions implementing control 

(dlPFC). In contrast, rACC, mPFC, and dlPFC activation was positively correlated in healthy 

participants, suggesting a dynamic interplay between these regions in adaptive behaviour 

regulation. 

 Studies examining the Pe in depressed patients yielded mixed results. While some 

researchers observed diminished Pe amplitudes in depressed individuals compared to 

healthy controls (Schrijvers et al., 2008, 2009), others failed to obtain significant differences 

(Chiu & Deldin, 2007; Holmes & Pizzagalli, 2008). As Schrijvers and colleagues (2009) point 

out, the divergent findings might be partly due to differences in symptom severity. Whereas 

increased levels of negative affect might account for enhanced Ne amplitudes in mild 

depression, this effect might be attenuated by extreme levels of anhedonia and apathy in 

more severely depressed patients, which in turn are characterized by decreased Pe 

amplitudes. 

 Hyperresponsivity to response errors and increased Ne amplitudes has also been 

found in patients suffering from obsessive compulsive disorder (OCD) (Endrass, Klawohn, 

Schuster, & Kathmann, 2008; Gehring, Himle, & Nisenson, 2000; Johannes et al., 2001). 

This finding is consistent with the notion that excessive concerns and repetitive behaviour of 

these individuals are associated with deviant action monitoring. However, recent evidence 

indicated that the OCD-related Ne modulation was task-specific, with non-patients suffering 

from high OC-symptomatology showing enhanced amplitudes in response competition tasks 

but not in RL tasks (Gründler, Cavanagh, Figueroa, Frank, & Allen, 2009). On the basis of 

this task-specific dissociation, the authors concluded that dissociable neural systems 
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underlie adaptive decision making in learning and speeded response competition tasks. 

Moreover, OC symptomatology selectively affected the Ne amplitude, whereas the FRN did 

not vary as a function of symptom score (Gründler et al., 2009). Likewise, no differences in 

Pe amplitude have been reported for OCD patients compared to controls (Endrass et al., 

2008; Ruchsow et. al, 2005). 

 Despite some inconsistencies, the overall pattern of findings supports the notion that 

psychopathological changes in affective processing are accompanied by deviant action 

monitoring as reflected in Ne, FRN, and Pe. In particular, the observed dissociation between 

Ne and Pe suggests that the two components reflect different aspects of error processing. 

Influence of Affective and Motivational States and Traits on Performance Monitoring 

 Consistent with the idea that healthy individuals who are particularly concerned with 

the correctness or social appropriateness of their actions should be characterized by a 

hyperactive performance monitoring system, the Ne amplitude has been shown to relate to 

trait differences in negative emotionality and anxiety (Dennis & Chen, 2009; Hajcak, 

McDonald, & Simons, 2003; 2004; Tops, Boksem, Wester, Lorist, & Meijman, 2006; Vocat, 

Pourtois, & Vuilleumier, 2008). Likewise, individuals with high levels of negative affectivity 

exhibited larger FRN amplitudes to negative – but not positive – feedback than those with 

low levels of negative affectivity (Santesso et al., 2011; Sato, Yasuda, & Ohiro, 2005). 

Studies focusing on the relation between negative affect and Pe are scarce. However, there 

is evidence indicating that higher negative affectivity was associated with decreased Pe 

amplitudes (Hajcak et al., 2004). 

Interestingly, the Ne has been found to correlate with punishment sensitivity, whereas 

reward sensitivity correlates with the Pe (e.g., Boksem, Tops, Kostermans, & De Cremer, 

2008; Boksem, Tops, Wester, Meijman, & Lorist, 2006a). In addition, the relation between 

punishment vs. reward sensitivity and Ne amplitude was modulated by the motivational 

context. Individuals that were highly sensitive to punishment showed larger Ne amplitudes on 

errors associated with losses compared to those associated with omissions of gain. In 

contrast, individuals that were highly sensitive to reward showed the opposite pattern. 
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Moreover, high reward sensitivity was related to greater Pe amplitudes in gain omission 

compared to loss conditions (Boksem et al., 2008). Similarly, highly punishment sensitive 

individuals showed larger FRN amplitudes in response to external performance feedback 

(Balconi & Crivelli, 2010; De Pascalis, Varriale, & D’Antuono, 2010) and monetary losses 

(Santesso, Dzyundzyak, & Segalowitz, 2011). It should be noted, however, that other studies 

have failed to obtain a difference in the Ne, FRN or Pe as a function of punishment or reward 

sensitivity (Cavanagh & Allen, 2008; Van den Berg, Franken, & Muris, 2011). 

Drawing on previous research showing that the Ne was affected by mental fatigue 

(Boksem, Meijman, & Lorist, 2006b; Tops et al., 2006), Tops and Boksem (2010) recently 

proposed that the relation between Ne and personality measures, such as punishment 

sensitivity or negative affectivity, might be mediated by the motivational trait persistence. The 

authors demonstrated that high levels of constraint predicted less pronounced decreases in 

both behavioural measures and Ne amplitude during prolonged task performance, 

suggesting that trait-related differences in task engagement may underlie variations of the Ne 

amplitude.  

 An important drawback of studies using an individual differences approach is that 

they cannot exclude that non-affect related, a priori group differences account for the 

observed differences in error- and feedback-related ERP components. Therefore, it is 

important to test the degree to which experimental manipulations of affective and 

motivational states are accompanied by modulations of ERP-correlates of action monitoring 

and learning. Several studies indicated that the Ne was related to the salience or significance 

of an error. For instance, larger Ne amplitudes have been observed when accuracy is 

emphasized over speed (Falkenstein et al., 2000; Gehring et al., 1993). Furthermore, Hajcak 

and colleagues (2005) showed in two independent experiments that the Ne was increased 

on incorrect trials associated with high monetary value and under conditions of social 

evaluation. In the first experiment, the motivational significance of errors in a Flankers task 

was manipulated on a trial-to-trial basis by means of high vs. low monetary incentive cues. 

While high-value errors were associated with a greater Ne than low-value errors, participants 

showed comparable overall performance in both conditions. In the second experiment, 

participants were told that an experimenter would monitor and evaluate their performance. 
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Similar to the first study, the Ne amplitude was increased in the evaluation condition 

compared to a control condition, without any differences in overall performance. However, 

the design of the Hajcak et al.’s study did not differentiate between the consequences of 

error-related loss and error-related failure to gain. This distinction might be of special 

importance given that according to a commonly held view losses loom larger than gains 

(“loss aversion”; Kahneman & Tversky, 1979). Indeed, a recent report found larger Ne 

amplitudes for errors associated with monetary losses compared to errors associated with 

failure to obtain monetary rewards (Potts, 2011). Furthermore, Pailing and Segalowitz (2004) 

demonstrated that personality variables moderated the relation between motivational 

manipulations and Ne amplitude. In their study, high neuroticism scores predicted larger 

incentive-related modulations in Ne amplitude, whereas high conscientiousness predicted 

smaller incentive effects. 

Studies that induced short-term positive and negative affect yielded mixed findings. In 

one report, pleasant, unpleasant, or neutral pictures were presented prior (700 ms) to each 

imperative stimulus in a flankers task (Wiswede, Münte, Goschke, & Rüsseler, 2009a). While 

the Ne amplitude was larger in the unpleasant than in the neutral condition, no difference 

was found between the pleasant and the neutral condition. In contrast, Larson and 

colleagues (2006) reported increased Ne amplitudes to flanker stimuli that were 

superimposed on pleasant pictures but no difference between neutral and unpleasant 

backgrounds. In a further study, Wiswede and coworkers (2009b) investigated how 

encouraging or derogatory feedback that was based on participants’ reaction time influenced 

performance monitoring during a flanker task. The authors found larger Ne amplitudes in 

subjects that were provided derogatory feedback compared to encouraging feedback, 

whereas the Pe was unaffected by the feedback manipulation. However, a subsequent study 

using the same paradigm failed to obtain differences in Ne amplitude between the two 

feedback groups (Clayson, Clawson, & Larson, 2011), leading the authors to suggest that 

alterations in affective state do not influence action monitoring as reflected in the Ne. Yet, the 

results of the latter study raised some doubts regarding the effectiveness of the feedback 

manipulation in eliciting negative affect. First, the two groups reported equal levels of 

negative affect after the experiment, suggesting that the affect-induction was not effective. 
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Second, in contrast to the Wiswede et al.’s study, reaction times did not differ between the 

two feedback conditions, that is, participants in the derogatory-feedback group did not 

increased their response speed over the course of the task. Instead, they made more errors 

over time and hence performed worse than the encouraging-feedback group, making the 

interpretation of the null findings for the Ne (which has been shown to decrease with reduced 

accuracy) difficult. Clearly, further research is needed to clarify the relation between affective 

states and action monitoring indices. Importantly, the Pe was unaffected by the feedback 

manipulation in both studies. 

Summary and Implications for the Present Study 

ERP studies investigating the electrophysiological correlates of reinforcement 

learning have yielded important insights into the neural processes underlying error and 

feedback processing. In the context of the present study, three ERP components are of 

particular interest: The Ne and the FRN, assumed to reflect activity of a generic error-

processing system (Falkenstein et al., 1990; Gehring et al., 1993; Holroyd & Coles, 2002; 

Miltner et al., 1997), and the Pe (error positivity), which has been associated with the 

conscious recognition and affective/motivational appraisal of errors. Of major importance for 

this study are demonstrations that the Ne (and potentially also the FRN and the Pe) is 

susceptible to affective and motivational influences, indicating that the significance of on-

going events has a substantial impact on action monitoring. Yet, most of the studies cited 

above used response competition or gambling tasks to examine the influence of affective 

and motivational variables on error- and feedback-related ERP components. Reports of task-

specific dissociations in Ne amplitude (e.g. Gründler et al., 2009) suggest that the described 

findings cannot readily be generalized to studies of RL. 

Integrative Theoretical Accounts on Performance Monitoring 

A number of theories have been put forward to account for the ERP-correlates of 

error- and feedback processing. Most theories primarily addressed the functional significance 

of the Ne. An intense debate has emerged as to whether the Ne reflects the detection of a 
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mismatch between the actual and the required response (Falkenstein et al., 1990; Gehring et 

al. 1993), conflict arising from simultaneous activation of multiple response tendencies 

(Yeung, et al., 2004), differences between expected and obtained action outcomes (Holroyd 

& Coles, 2002), or the affective and motivational evaluation of an error (Hajcak & Foti, 2008; 

Luu et al., 2003). Importantly, these accounts are neither mutually exclusive nor can one of 

them fully explain the majority of empirical data. However, two computational models have 

largely dominated action monitoring research during the last decade: the Reinforcement-

Learning (R-L) theory (Holroyd & Coles, 2002) and the conflict monitoring theory (Botvinick et 

al., 2001). 

The Reinforcement Learning Theory of Holroyd and Coles – An Integrative Theoretical 

Account on Error Processing and Learning 

 The reinforcement learning (R-L) theory (Holroyd & Coles, 2002) provides a 

computational model that accounts for both the Ne and the FRN by integrating the DA-RPE 

hypothesis with the action selection functions attributed to the ACC. The R-L theory 

conceptualizes the Ne and FRN in terms of negative RPE signals indicating that the outcome 

of an action is “worse than expected”. Accordingly, the model posits that the Ne is elicited on 

the basis of internal response representations, whereas the FRN is elicited by external 

feedback stimuli. The ACC was proposed to use these learning signals to update 

associations between states, actions, and outcomes. Hence, the model directly links the two 

ERP components to the acquisition and optimization of goal-directed behaviour. 

Drawing on the work of Schultz and colleagues as well as on computational models of 

RL, Holroyd & Coles (2002) suggested an actor-critic architecture in which the TD PE is 

coded by the phasic activity of the mesencephalic DA system (see Figure 7). More 

specifically, the authors assumed that transient pauses in DA firing (i.e., negative PEs) 

disinhibit motor neurons in the ACC, leading to the generation of Ne and FRN. In accordance 

with previous research on the neural basis of RL (cf. Dayan & Niv, 2008; Maia, 2009; Niv & 

Montague, 2008), the R-L theory assigns the role of the adaptive critic to the basal ganglia. 

Additionally, the model suggests that multiple actors operate in parallel, including dlPFC, 
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OFC, and amygdala, each of which might use the PE to improve action selection. 

Importantly, the ACC is thought to act as a “supervisor” at the top of the hierarchy that uses 

the dopaminergic PE signal to arbitrate between the different motor controllers. In a way, the 

ACC thus learns a “controller-policy”, mapping states to actors, which in turn learn their own 

policies. 

 

Figure 7: Schematic illustration of the R-L theory. (Figure adapted from Holroyd & Coles, 2002) 

Given that feedback-based learning is accompanied by a transition from an external 

to an internal reference for action evaluation, a core prediction of the R-L theory concerns 

modulations of Ne and FRN over the course of learning. Specifically, the theory postulates 

that the Ne should increase with learning, reflecting the development of an internal 

representation of the correct response. In contrast, the FRN should decrease with learning, 

indicating reduced reliance on external feedback to determine the correctness of a response. 

Note that negative feedback after an erroneous response is fully expected once an individual 

has learned the response-outcome contingencies and hence does not result in a PE. 

Instead, the PE is computed around the time of the response, reflected in the Ne. Another 

important prediction following from the R-L theory is that larger PEs, i.e., larger Ne/FRN 

amplitudes, should be associated with a stronger tendency to subsequently avoid the same 
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maladaptive response. In the following section, I will review evidence on the central claim 

that both the Ne and the FRN are neural manifestations of a dopaminergic PE signal and 

hence indicators of a RL mechanism. 

Evaluation of the Reinforcement-Learning Theory. Consistent with the proposed 

involvement of the DA system, the Ne is sensitive to changes in dopaminergic transmission. 

For instance, altered Ne amplitudes have been reported in neuropsychiatric disorders that 

are characterized by altered DA levels, including Parkinson’s disease (Falkenstein, et al., 

2001; Stemmer, Segalowitz, Dywan, Panisset, & Melmed, 2007; Willemsen, Müller, Schwarz, 

Hohnsbein, & Falkenstein, 2008) and Huntington’s disease (Beste et al., 2007, 2008). 

Furthermore, the Ne amplitude is increased following the administration of a DA agonist 

compared to a placebo (de Bruijn et al., 2004), whereas DA antagonists lead to an 

attenuation of the Ne (de Bruijn et al., 2004; Zirnheld et al., 2004). Notably, a recent study 

reported impaired reward learning and more negative FRN amplitudes to reward feedback 

for participants receiving a DA agonist compared to a control group (Santesso et al., 2009). 

In contrast, the Pe is typically unaffected by modulations of the dopaminergic activity 

(Overbeek et al., 2005). Examining genetic polymorphisms of the COMT gene, which 

determines DA levels in the PFC, Frank and coworkers (2007b) found no difference in Ne 

amplitude between met/met and val/val carriers. Another study, however, reported larger Ne 

amplitudes for individuals homozygous for a certain allele of the DA D4 receptor gene that 

determines prefrontal receptor responsiveness to DA (Krämer et al., 2007). 

 Although these findings are mostly consistent with the R-L theory, substantial 

evidence indicates that other neurotransmitters, such as serotonin, noradrenaline, and 

GABA, are additionally involved in the generation of the Ne and the FRN (cf. Jocham & 

Ullsperger, 2009). Moreover, it has been argued that DA plays a different role in RL than 

originally proposed by Holroyd and Coles (2002). As was discussed in the context of the DA-

RPE hypothesis, several researchers have pointed out that the effects of phasic DA activity 

in the PFC take seconds or even minutes to resolve and are therefore unlikely to fulfil the 

requirements of a PE signal and to underlie rapid electrophysiological responses such as Ne 

and FRN (Durstewitz & Seamans, 2002; Jocham & Ullsperger, 2009). Instead, it has been 



 63 

suggested that the performance monitoring functions of the ACC might exert a top-down 

modulatory influence on the DA system (Frank et al., 2005; Jocham & Ullsperger, 2009). 

 If Ne and FRN are neural manifestations of PEs, they should reflect response-

outcome contingency (reward probability) and valence. Convergent evidence indicates that 

both the Ne and the FRN are sensitive to feedback validity. Consistent with PEs derived from 

TD learning rules, learning conditions involving deterministic response-outcome 

contingencies (valid feedback) were associated with larger Ne and smaller FRN amplitudes 

than those involving probabilistic contingencies (partly invalid feedback) (Eppinger et al., 

2008, 2009; Holroyd & Coles, 2002; Nieuwenhuis et al., 2002). Although the R-L theory does 

not explicitly specify to which degree expectancy and value are jointly represented by the 

FRN, the original proposal suggests a scalar value, i.e., the more unexpected and 

unfavourable the outcome, the more negative the amplitude. Unfortunately, the empirical 

evidence is still inconclusive. While some findings suggested that the FRN is sensitive to 

expectancy deviation rather than feedback valence (Chase et al., 2011; Oliveira, McDonald, 

& Goodman, 2007), others indicated that the FRN is unaffected by expectancy violations 

(Hajcak et al., 2007). Similarly, it remains unclear whether the feedback value is coded in a 

binary (Holroyd et al., 2004; 2006) or more graded fashion (Bellebaum et al., 2010; Goyer et 

al., 2008; Kreussel et al., 2011). 

Furthermore, the R-L theory has been challenged by reports of dissociations between 

Ne and FRN. For instance, the Ne appears to be modulated by affective and motivational 

variables, whereas very few studies reported corresponding effects for the FRN. Crucially, 

studies that measured both the Ne and the FRN found distinctive influences of factors such 

as OC symptomatology (Gründler et al., 2009) and age (Eppinger et al., 2008). A related 

problem concerns learning-related changes of the two components. In line with the 

predictions of the R-L theory, a number of studies showed that the Ne increases with 

learning (Eppinger et al., 2008, 2009; Holroyd & Coles, 2002; Morris et al., 2008; 

Nieuwenhuis et al., 2002; Pietschmann et al., 2008). The pattern of findings for the FRN, 

however, is less consistent. Several studies failed to obtain the predicted decrease of the 

FRN over the course of learning (e.g., Cohen & Ranganath, 2007; Holroyd & Coles, 2002; 

Pietschmann et al., 2008). Importantly, Eppinger and colleagues (2008, 2009) showed 
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pronounced learning-related changes in the ERPs to correct feedback and responses rather 

than in the ERPs to incorrect feedback and errors. A similar result was reported by Cohen 

and Ranaganath (2007). On the basis of their findings, Eppinger and coworkers (2008) 

concluded that the so-called ‘response/feedback-locked positivity’ might reflect dopaminergic 

modulations of ACC activity, possibly associated with a positive PE. The idea of a reward-

related positivity has also been put forward by Holroyd and coworkers (2008, 2011). Notably, 

a recent attempt to isolate to reward-related positivity by means of principal component 

analysis yielded promising results (Foti et al., 2011). 

 Surprisingly few studies have tested whether Ne and FRN magnitude predict 

behavioural adjustments during learning – as should be expected if the two components 

reflect a PE. Consistent with a RL framework, previous studies demonstrated that the 

magnitude of the FRN predicted strategic action selection (Cohen & Ranganath, 2007). Yet, 

in this study participants played a strategic game in which feedback was based on an 

algorithm that ensured equal distribution of wins and losses. Hence, there was no learnable 

response-outcome contingency. A subsequent study provided more compelling evidence for 

a link between FRN amplitude and learning-related behavioural changes (van der Helden, 

Boksem, & Blom, 2010). In a feedback-based sequence learning task, the FRN amplitude 

was more negative on incorrect trials that were corrected on the next encounter of the same 

item compared to those that were not corrected. Moreover, findings by Frank and coworkers 

point to a link between individual differences in Ne amplitude and a bias to avoid responses 

that have been learned to result in unfavourable outcomes (Cavanagh et al., 2011a; Frank et 

al., 2005, 2007b). 

Alternative Accounts on the Error Negativity and Related ERP-Components 

The Error/Mismatch Detection Theory. Early accounts have discussed the Ne in 

terms of an error detection mechanism (Coles et al., 2001; Falkenstein et al., 1991; Gehring 

et al., 1993). According to this view, the processing of the imperative stimulus activates a 

representation of the correct (or intended) response, which is compared with an efference 

copy of the outgoing motor command, i.e., the executed response. The Ne reflects an error 

signal that indicates a mismatch between the two representations. Most variants of the error 
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detection account agree on the assumption that the mechanism underlying the Ne gives rise 

to remedial actions such as immediate error correction. The error detection account directly 

implies that greater deviations of the actual response from the intended one should result in 

larger Ne amplitudes. Studies testing the effects of response and stimulus similarity on the 

Ne, however, yielded inconclusive results (e.g., Bernstein et al, 1995; Falkenstein et al., 

1996; Gehring & Fencsik, 2001; Yeung et al., 2007). For instance, Falkenstein and 

coworkers (1996) reported larger Ne amplitudes for dissimilar response representations, 

whereas Gehring and Fencsik (2001) found larger Ne amplitudes for similar response 

representations. However, these studies defined response similarity only based on effector 

side, which might be an inappropriate or insufficient characterization on a conceptual level. 

Moreover, the effects of stimulus and response similarity were often confounded with 

performance differences, rendering definitive conclusions difficult. 

The Conflict-Monitoring Theory. Another prominent computational approach to the Ne 

holds that this component reflects a monitoring process in the ACC that tracks the degree to 

which mutually incompatible responses are co-activated9 (Botvinick et al., 2001; Yeung, 

Botvinick, & Cohen, 2004). According to the conflict monitoring theory, the Ne reflects post-

error conflict due to the simultaneous activation of incorrect and correct responses, the latter 

arising from continued processing of the target stimulus after the erroneous response. The 

conflict signal is thought to be conveyed to the dlPFC which implements top-down control by 

recruiting task-set related attentional mechanisms in order to bias information processing. A 

central claim of the conflict monitoring account is that higher degrees of response conflict are 

associated with larger Ne amplitudes. However, empirical tests provided only limited (or no) 

support for this assertion (e.g., Burle et al., 2008; Carbonnell & Falkenstein, 2006; Yeung et 

al., 2004), possibly reflecting an inappropriate modelling of motor representations in these 

studies and/or the conflict monitoring theory itself (cf. Gehring et al., in press). In addition, the 

conflict monitoring theory refers to another medial frontal negativity: The N200, a stimulus-

locked ERP-component that is typically larger on incompatible compared to compatible trials 

                                                 
9 Response conflict is quantified as the Hopfield (1982) energy of simultaneously activated response units, i.e., 

the product of the activation of each unit, weighted by the strength of the inhibitory connections between the units. 
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in conflict tasks. Given that high response conflict does not necessarily result in errors, the 

N200 reflects pre-response conflict on correct trials. Indeed, there is evidence indicating that 

Ne and N200 bear strong resemblance both morphologically and functionally (Ferdinand, 

Mecklinger, & Kray, 2008; Folstein & Van Petten, 2008). However, dissociations of Ne and 

N200 have been reported as well (e.g., Davies et al., 2001; Ridderinkhof et al., 2002; but see 

Yeung & Cohen, 2006). 

Of note, recent modelling work suggests that both conflict monitoring in the ACC and 

reinforcement learning in the BG can be integrated within a single model that accounts not 

only for the Ne but also for the FRN (Cockburn & Frank, 2011). This is of particular 

importance as the conflict monitoring theory presumes instructed task rules and does not 

explain how task-specific response mappings are acquired. 

Affective/Motivational Theories. An important omission of the above-discussed 

models on ACC functioning is that they do not explicitly account for the susceptibility of the 

Ne (and potentially the FRN and Pe) to affective and motivational variables. Although those 

influences are not denied, a commonly held – but usually implicit notion – is that higher 

affective and motivational significance leads to an increased recruitment of cognitive control 

mechanisms (cf. Yeung, 2004). Considerable evidence suggested that the affective and 

motivational significance of on-going events has a substantial impact on action monitoring. 

However, the existing computational models do not specify how these effects are 

implemented in the brain. 

Luu and colleagues (2003) addressed this issue by assuming that the Ne might 

reflect the joint activity of several structures in a broader corticolimbic circuit. In line with the 

segregationist view on ACC functioning (Bush et al., 2000), the authors stated that distinct 

subregions of the ACC differentially contribute to action regulation with the dorsal part 

(dACC) being more strongly implicated in cognitive aspects of action monitoring and the 

rostral part (rACC) primarily processing the affective significance of a response outcome (see 

also van Veen & Carter, 2002). Interestingly, Luu et al. (2003) found that both the dACC and 

the rACC contributed to the Ne, whereas only the dACC contributed to the FRN. Although 

the functional segregation of the ACC into a cognitive and an affective subdivision has been 
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seriously challenged (Shackman et al., 2011), a large number of studies pointed to a 

functional dissociation between rACC and dACC in error processing and learning (e.g., 

Cavanagh, Gründler, Frank, & Allen, 2010b; Simões-Franklin, Hester, Shpaner, Foxe, & 

Garavan, 2010; Taylor et al., 2006). 

Furthermore, Boksem and coworkers (2006b) posited that there is a strong 

correspondence between the BIS (Gray, 1987) and the sensitivity of the Ne to mistakes, 

punishment, and negative affect. They further reasoned that the Ne might reflect aversively 

motivated, reactive engagement aimed at avoiding punishment. In line with this view, the Ne 

has been directly linked to defensive behaviours. Hajcak and Foti (2008) showed that the Ne 

amplitude predicted the potentiation of the startle reflex following error trials. On the basis of 

this finding, the authors reasoned that the Ne is associated with an error detection 

mechanism. The outcome of this mechanism serves to trigger defensive reactions in order to 

protect the organism against potential dangers. Moreover, Boksem and colleagues (2006a) 

found a correlation between the Pe and reward sensitivity BAS. From their findings, the 

authors concluded that high BIS scores and enhanced Ne amplitudes reflect a bias towards 

reactive control, denoting the tendency to recruit control processes after a (negative) event 

has occurred (Braver, Gray, & Burgess, 2007; Tops, Boksem, Luu, & Tucker, 2010). By 

contrast, high BAS scores and large Pe amplitudes are thought to indicate a bias towards 

proactive control, i.e., the tendency to engage in preparatory attention to maintain context 

and goal representations and to allocate resources in order to obtain rewards and to prevent 

negative events. 

Integrative Accounts. Recently, several attempts have been made to integrate the 

empirical findings on the Ne and related components into a more comprehensive view on 

performance monitoring and adaptive control (Alexander & Brown, 2010; Taylor, Stern, & 

Gehring, 2007; Tops et al., 2010). The prediction of response-outcome (PRO) theory 

(Alexander & Brown, 2010) synthesizes core ideas and mechanisms of existing models. 

Similar to the R-L theory, action monitoring is conceptualized within a RL framework. 

However, the PRO model is thought to learn R-O associations rather than S-R or S-O 

associations. Specifically, the PRO-model involves two functional components, implemented 
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by the mPFC: the first component is trained by a RL mechanism to predict the potential 

outcomes of an action, whereas the second component compares predicted and actually 

obtained outcomes. The first component subsequently uses detected discrepancies to 

improve its own predictions. In contrast to the R-L theory, the PRO model states that the 

mPFC signals discrepancies, i.e., PEs, for both positive and negative outcomes and allows 

for encoding of multiple PEs. Moreover, the PRO model does not presume that the mPFC is 

trained by a dopaminergic PE signal. 

Tops and coworkers (Tops et al., 2010; Tops & Boksem, 2011) provided an even 

more comprehensive and general scheme of behavioural systems underlying psychological 

processes. Drawing on the basic distinction between proactive and reactive behavioural 

programs (e.g., Braver, Gray, & Burgess, 2007; Koolhaas et al., 2007) the model proposes 

four distinct behavioural control systems: proactive approach, proactive avoidance, reactive 

approach, and reactive avoidance. Crucially, these systems are hypothesized to be under 

dopaminergic (reactive approach), cholinergic (reactive avoidance), noradrenergic (proactive 

approach), and serotonergic (proactive avoidance) neuromodulatory control. Moreover, the 

proactive and reactive systems are linked to a dorsomedial and ventrolateral cortical system, 

respectively. The authors reviewed evidence in support of the notion that proactive control is 

more adaptive in stable environments, in which behaviour is guided by context models 

whereas reactive control is more adaptive in unstable, rapidly changing environments that 

require fast, feedback-driven behavioural adjustments. 

 
Summary and Implications for the Present Study 

The R-L theory (Holroyd & Coles, 2002) provides a neurocomputational model of 

error processing that accounts both for the Ne and the FRN. It integrates the DA-RPE 

hypothesis with the action selection functions attributed to the ACC and implies a direct link 

between both ERP-components and learning-related behavioural adaptation. Specifically, it 

is assumed that negative PE signals are used by the ACC to update associations between 

states, actions, and outcomes. Other theories have also linked the Ne to remedial actions, 

but discussed the Ne in terms of a “mere” error/mismatch detection mechanism and a conflict 
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signal indicating the need for enhanced cognitive control. In addition, a few recent 

frameworks have aimed at accounting for the susceptibility of action monitoring to affective 

and motivational variables. However, these affective/motivational “theories” clearly lack the 

computational specificity of the R-L and conflict monitoring models, which in turn are more or 

less ignorant to the role of motivational and affective variables in performance monitoring. In 

particular, surprisingly little is known on how affect- and motivation-related modulations of 

ERP-correlates of performance monitoring relate to adaptive behavioural changes during RL. 
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3. Statement of Problem and Overview of Studies 

Despite considerable differences in their conceptualization of the ERP-correlates of 

error and feedback processing, most theories on performance monitoring assert a functional 

link between the neural mechanisms underlying these components and flexible behavioural 

adjustments. Most notably, the R-L theory (Holroyd & Coles, 2002) states that Ne and FRN 

are neural manifestations of PEs, which train the ACC to select appropriate motor controllers, 

i.e., to learn adaptive response rules for the task at hand. Although this claim has not 

thoroughly been supported by the literature, previous studies showed that the FRN amplitude 

predicts subsequent strategic choices and (Cohen & Ranganath, 2005) and learning-related 

behavioural adjustments (van der Helden et al., 2010). In addition, the Ne amplitude relates 

to interindividual variations in a bias to avoid responses that have been learned to result in 

unfavourable outcomes (Frank et al., 2005).  

At the same time, the evidence reviewed above strongly suggests that performance 

monitoring – as reflected in the Ne – is sensitive to the affective and motivational context of 

an action. The susceptibility of the FRN and the Pe to those influences is much less 

substantiated. Yet, recent findings indicate that highly punishment sensitive individuals are 

characterized by larger FRN amplitudes (Balconi & Crivelli, 2010; De Pascalis, Varriale, & 

D’Antuono, 2010; Santesso et al., 2011). So far, research focused almost exclusively on 

conflict and gambling paradigms to examine affective-motivational modulations of Ne and 

FRN, respectively. To my knowledge, only one prior study has explicitly tested how affective-

manipulations influence the activity of medial prefrontal performance monitoring system 

during reinforcement learning. Cavanagh and colleagues (2011a) found that social-

evaluative stress leads increased response-related mediofrontal EEG theta power but 

decreased theta power to negative feedback. Interestingly, the changes in mPFC activity 

were associated with relatively better punishment and worse reward learning in highly 

punishment sensitive individuals, but worse punishment learning and improved reward 

learning in less punishment sensitive individuals. These findings suggest that trait 

vulnerability to punishment significantly moderates the impact of stress-induced negative 

affect on action monitoring and learning. 
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Given that Ne, FRN, and Pe have been proposed to reflect neural signals that are 

used to guide subsequent behavioural adjustments, the main goals of this thesis were to 

determine (1) the degree to which manipulations of motivational-affective state result in 

modulations of the Ne, FRN, and Pe during reinforcement learning, (2) how these 

modulations are reflected in the ability to use error signals for learning-related behavioural 

adaptation, and whether the impact of the affective-motivational manipulations on the 

electrophysiological and behavioural indices of action monitoring changes (3) over the 

course of learning and (4) as a function of affect-related traits. 

A further aim of this thesis was to address the on-going debate as to whether the Ne 

is an index of deviant error processing associated with trait – but not state – variations in 

negative affect (e.g., Clayson et al., 2011). Indeed, it has been suggested that variations in 

Ne amplitude might reflect an ‘endophenotype’ for internalizing and externalizing disorders, 

respectively (Olvet & Hajcak, 2008). Such a conclusion appears premature for two important 

reasons: First, thus far, only a very small number of studies used experimental manipulations 

to examine the impact of motivational and affective factors on performance-monitoring 

processes. Second, employing an individual difference approach, one cannot exclude that 

non-affect-related variables account for the observed differences in Ne amplitude. Moreover, 

it remains to be determined whether experimentally induced state variations in negative 

affect and trait level negative affect are accompanied by similar changes in the functioning of 

the action monitoring system. 

These issues were addressed in three experiments. The first experiment was 

designed to investigate how an episode of self-relevant failure affects adaptive behavioural 

adjustments and ERP-correlates of performance monitoring during a subsequent feedback-

based learning task. To this end, two phases (pre- and posttest) of a probabilistic learning 

task were applied. Between pre- and posttest, participants performed a visual search task 

that was described as diagnostic of intellectual abilities. In this task, participants were 

assigned to one of two conditions in which they received either failure feedback (failure-

feedback-group) or no feedback (no-feedback-group). 

Failure experiences are associated with prominent affective and motivational 

consequences. First of all, failure is an acute stressor that triggers negative affective states 
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(Westermann, Spies, Stahl, & Hesse, 1996). Crucially, recent evidence suggests that stress-

related variations in negative affect influence learning strategy rather than overall 

performance (Cavanagh et al., 2011a; Petzold et al., 2010; Schwabe & Wolf, 2009). In 

particular, it has been shown that stress-manipulations affect the processing of response 

errors and negative feedback information. Moreover, personality traits such as punishment 

sensitivity might be important factors in mediating the specific behavioural consequences of 

these manipulations. The first experiment thus specifically aimed to determine (1) whether 

failure affects the reliance on internal vs. external cues for action evaluation during the time-

course of learning, reflected in learning-related dynamics of Ne vs. FRN, (2) the degree to 

which failure promotes a bias towards enhanced processing of errors/negative feedback or 

correct responses/positive feedback, and (3) whether affect-related traits moderate the 

effects of failure. 

Uncontrollable failure experiences also induce significant motivational changes 

(Brunstein, 2000; Kuhl, 1987; Seligmann, 1975). Previous research has demonstrated that 

self-relevance of the task and individual differences in action vs. state orientation are critical 

in determining whether failure leads to motivational deficits or reactive engagement. 

Importantly, the Ne has been shown to be sensitive to task engagement in that high 

persistence is associated with smaller reductions in Ne amplitude across the course of the 

task (Boksem et al., 2006a; Tops & Boksem, 2010). However, individual differences in 

negative affectivity appear to modulate the time course of motivational engagement during 

prolonged task performance. Luu and colleagues (2000) demonstrated that individuals 

characterized by high negative affectivity showed increased motivational engagement at the 

beginning of the task but impaired engagement during later stages of the task, reflected in 

initially enhanced but subsequently attenuated Ne amplitudes compared to individuals low in 

trait negative affect. Hence, motivational disengagement might disguise more specific 

consequences of failure on performance monitoring and learning (e.g., alterations in learning 

strategy).  

In an attempt to disentangle the effects of failure induction and motivational 

disengagement due to prolonged task performance, two experimental conditions were 

realized in the first and the second experiment. In the first experiment, the posttest was 
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described as indicative of intellectual abilities to ensure high self-relevance. By contrast, in 

the second experiment, the posttest was described in neutral terms. In both experiments, 

pre-task questionnaires assessed individual differences in punishment sensitivity, trait 

negative and positive affect, and action vs. state orientation. 

While Experiments 1 and 2 induced self-relevant failure to examine the 

consequences of short-term changes in affective and motivational state on performance 

monitoring and learning, the third experiment had a slightly different focus. Building up on 

previous demonstrations that the Ne tracks trial-by-trial variations in motivational significance 

(Hajcak et al., 2005; Potts, 2011), Experiment 3 aimed to determine whether manipulations 

of appetitive vs. aversive motivation by means of monetary incentives modulate error and 

feedback processing – as reflected in the Ne, FRN, and Pe – and how these modulations 

relate to behavioural adaptations during reinforcement learning. Given that a number of 

studies point to a functional dissociation between rACC and dACC in error processing (e.g., 

Cavanagh et al., 2010b; Simões-Franklin, et al., 2010, Taylor et al., 2006), a further goal was 

to explore whether the two cingulate subregions differentially contribute to error processing 

and error-related behavioural adjustments, depending on the motivational significance of an 

error. 
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II Empirical Part 

4. Research Goals: Experiment 1 and 2 

In Experiment 1 and 2, participants were exposed to self-relevant failure during a 

visual search task that was linked to participants’ intellectual capability. The main goal of the 

two experiments was to examine the extent to which failure-induction influences the 

participants’ ability to use error signals for behavioural adaptation in a subsequent feedback-

based learning task and whether these differences in performance monitoring are reflected in 

modulations of the Ne, FRN, and Pe. In order to avoid that motivational disengagement due 

to prolonged task performance disguises the effect of failure-induction, different posttest 

instructions were given to manipulate participants’ motivation. In Experiment 1, the posttest 

was linked to intelligence, whereas a neutral instruction was given in Experiment 2. 

Previous research showed that the induction of negative affect due to derogatory 

feedback (Wiswede et al., 2009) or social-evaluative stress (Cavanagh et al., 2011a) leads to 

increased responsivity to internal indicators of performance errors, reflected in enhanced Ne 

amplitudes and mediofrontal theta power, respectively. Given the implication of the R-L 

theory (Holroyd & Coles, 2002) that larger prediction errors, i.e., larger Ne and FRN 

amplitudes, are associated with a stronger tendency to avoid the same maladaptive 

response subsequently, it would be predicted that failure-induced negative affective states 

are accompanied by improved learning from errors and negative feedback.  

However, available evidence indicates that personality may be an important factor in 

mediating behavioural manifestations of failure-induction. In particular, the findings by 

Cavanagh et al. (2011a) suggest that high and low punishment sensitivity mediates different 

biases towards punishment vs. reward learning. Moreover, individual differences in action vs. 

state orientation that have been linked to the ability to cope with failure-induced negative 

affect (Kuhl, 1987), might explain why stress has sometimes been found to compromise the 

use of negative feedback for learning-related behavioural adjustments (e.g. Petzold et al., 

2010). Thus, a specific aim of Experiment 1 and 2 was to test for moderating influences of 
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individual differences in punishment sensitivity, trait level negative and positive affect as well 

as action vs. state orientation on failure-induced changes in RL. 

Given that social-evaluative stress has been shown to differentially affect habitual 

learning and goal-directed learning as well as explicit knowledge of response rules, it is 

furthermore conceivable that the effects of failure-induction differ for deterministic and 

probabilistic A-O-contingencies, promoting explicit and implicit learning strategies, 

respectively. Therefore, the employed learning task included a deterministic and a 

probabilistic condition. 

A last issue concerned the on-going debate as to whether the response- and 

feedback-locked positivity are primary determinants of experimental variations in Ne and 

FRN, respectively (Eppinger et al., 2008; Foti et al., 2011; Holroyd et al., 2008). In particular, 

Eppinger and coworkers (2008; 2009) found more pronounced learning-related dynamics in 

the ERPs on correct trials, possibly reflecting neural activity associated with positive PEs. If 

this was the case, one might reason that failure affects the ERPs to correct responses and 

feedback rather than the ERPs to errors and negative feedback. 
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5. Experiment 1 

Study Design 

The experiment involved two consecutive phases (pre- and posttest) of a feedback-

based probabilistic learning task. In order to investigate whether the effects of failure 

induction are sensitive to response-outcome contingency, the learning task included three 

different conditions of feedback validity: in the deterministic learning condition feedback was 

always valid, in the probabilistic learning condition feedback was valid in 80% of trials but 

invalid in 20% of trials, and in the chance condition, which served as control condition, 

feedback was delivered randomly. After the pretest, subjects performed a visual search task 

that they were informed was diagnostic of their intellectual abilities. This was incorporated in 

order to enhance self-relevance, which is assumed to be an essential feature of efficient 

failure induction techniques (cf. Brunstein, 2000). One half of the subjects were exposed to 

failure feedback (failure-feedback group) while the other half received no feedback during 

this task (no-failure-feedback group). Subsequently, both groups performed the posttest, 

which tested for the effects of prior failure manipulation. While the learning task was 

described in neutral terms at pretest, it was linked to intellectual abilities at posttest. In 

addition, to assess individual differences in cognitive as well as motivational and affective 

variables, a number of psychometric tests and questionnaires were administered at the start 

of the experiment that included measures of fluid and crystallized intelligence, working 

memory capacity, punishment and reward sensitivity, positive and negative affect as well as 

action and state orientation. 

Research Predictions 

 The outline of research predictions is structured into three parts. The first part 

addresses learning-related effects in Ne, FRN, and Pe. Although the present study did not 

focus on the impact of learning per se, the analysis of these modulations is important for the 

interpretation of failure-related effects. Moreover, the present research aimed to replicate 

findings by Eppinger and colleagues (2008, 2009) indicating that learning does not only 
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affect the processing of errors and negative feedback, but also the processing of correct 

responses and positive feedback. The second part contains hypotheses concerning the 

impact of failure on error and feedback processing, including the implications for learning-

related behavioural adaptation. The third part subsumes predictions regarding the role of 

personality in determining the failure-related effects. 

Learning-related Modulations in Ne, FRN, and Pe 

The R-L theory (Holroyd & Coles, 2002) asserts that the Ne increases as learning 

progresses, whereas the FRN should decrease with learning, reflecting the transition from 

reliance on internal vs. external feedback to evaluate the outcome of an action. Several 

studies have reported a learning-related increase in Ne amplitude (Eppinger et al., 2008, 

2009; Holroyd & Coles, 2002; Morris et al., 2008; Nieuwenhuis et al., 2002; Pietschmann et 

al., 2008), whereas the evidence for learning-related modulations of the FRN is mixed 

(Cohen & Ranganath, 2007; Holroyd & Coles, 2002; Pietschmann et al., 2008; Walsh & 

Anderson, 2011a). Importantly, recent findings by Eppinger and colleagues (2008, 2009) 

suggest that learning-related changes occur in the ERPs to correct responses and positive 

feedback, rather than in the ERPs to incorrect feedback and errors. 

Moreover, the R-L theory predicts that both the Ne and the FRN should be sensitive 

to action-outcome-contingency as the PE tracks deviations from “cached” estimates of 

expected value stored by the actor-critic (Maia, 2009; Niv & Montague, 2008). The expected 

value of an action, hence, is smaller if this action does not consistently lead to favourable 

outcomes. Consistent with this prediction, the Ne and the FRN have been shown to be 

smaller and larger, respectively, when partly invalid feedback interferes with learning 

(Eppinger et al., 2008; 2009; Holroyd & Coles, 2002; Nieuwenhuis et al., 2002). According to 

the R-L theory, Ne and FRN reflect teaching signals that train the ACC to learn adaptive 

response rules. In support of this notion, previous studies demonstrated a link between the 

magnitude of the FRN and subsequent behavioural adjustments (Cohen & Ranganath, 2007; 

van der Helden et al., 2010). In addition, the Ne amplitude has been shown to predict 
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individual differences in learning from errors and negative feedback (Frank et al., 2005). On 

the basis of these findings, the following predictions were made: 

Prediction 1: (a) The Ne increases over the course of learning in the deterministic and 

probabilistic learning condition, but not in the chance condition. However, when correct and 

erroneous responses are analysed separately, more pronounced learning-related 

modulations are evident in the ‘correct response-related positivity’. (b) The Ne amplitude is 

sensitive to feedback validity and should increase from the chance condition over the 

probabilistic to the deterministic learning condition. As for the learning-related changes, this 

effect should be present both in the ERPs to correct and incorrect responses. (c) The Ne 

amplitude predicts error-related behavioural adjustments, i.e., higher Ne amplitudes are 

associated with higher post-error accuracy. 

Prediction 2: (a) The FRN decreases over the course of learning, mainly reflected in 

modulations in the ERPs to positive feedback. (b) The FRN is sensitive to feedback validity 

and decreases from the chance condition over the probabilistic to the deterministic learning 

condition10. 

The Pe is not assumed to reflect a PE and has not consistently been implicated in 

learning-related behavioural adaptation. Nonetheless, most theories on the functional 

significance of this component such as the ‘error awareness-hypothesis’ and the ‘context-

updating hypothesis’ imply that the Pe should grow larger with learning (cf. Overbeek et al., 

2005). To my knowledge, only one study examined learning-related modulations in Pe 

amplitude thus far. In line with accounts that conceptualize the Pe in terms of conscious 

aspects of error processing as well as context updating, Eppinger and cowokers (2009) 

demonstrated that the Pe increased as participants became better able to represent the 

correctness of their responses. Thus, the prediction was: 

                                                 
10 In contrast to the Ne, the FRN amplitude was not expected to correlate with post-error accuracy. According to 

the R-L theory, larger FRN amplitudes should predict more efficient learning from negative feedback only in the 

very beginning of learning. With the development of an internal representation of the correct responses, the FRN 

is assumed to decrease and the Ne should predict behavioural adjustments. During later stages of the task, larger 

FRN amplitudes hence are thought to reflect poor learning. 
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Prediction 3: The Pe increases (a) over the course of learning and (b) with feedback 

validity. 

Effects of Failure on Behavioural and Electrophysiological Indices of Learning 

The impact of uncontrollable failure experiences on subsequent performance has 

been shown to depend on motivational characteristics both of the failure-induction and the 

subsequent training task (Brunstein & Gollwitzer, 1996). Helplessness research suggested 

that a motivational deficit underlies the negative effects of failure on instrumental learning 

(Mikulincer, 1994; Seligmann, 1975; Vollmayer et al., 2004). Brunstein and Gollwitzer (1996), 

however, demonstrated that participants exposed to self-relevant failure showed improved 

performance on a subsequent self-relevant task but impaired performance on an unrelated 

task. At the same time, it has been suggested that the need to cope with failure-induced 

negative emotions depletes limited control resources and hence leads to performance 

impairments on tasks relying on the same resources (Inzlicht & Gutsell, 2007). 

Moreover, social-evaluative stress has been found to affect learning strategies rather 

than overall learning performance (Cavanagh et al., 2011a; Petzold et al., 2010, Schwabe & 

Wolf, 2009). Findings by Schwabe and colleagues (2011) suggested that stress specifically 

promotes implicit, habitual learning at the expense of explicit learning and memory 

strategies. Given the contradictory pattern of findings regarding behavioural effects of 

uncontrollable failures, the following hypotheses are more tentative: 

Prediction 4: (a) Participants in the failure-feedback group should be more motivated 

to perform well at posttest than those in the no-failure-feedback group. The increased 

motivation should counteract the potentially detrimental effects of resource-consuming 

emotion regulation demands. Hence, both groups were expected to show similar overall 

posttest performance. (b) Given that stress has been shown to promote slow, habitual 

learning, failure-induction may differentially affect learning of deterministic and probabilistic 

contingencies. Thus, if anything, failure should affect performance in the deterministic 

learning condition in which explicit strategies are more helpful. In addition, a failure-induced 

bias towards habitual control should be reflected in a slower time course of learning. 
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Critically, available evidence on whether stress alters the ability to learn from past 

mistakes is inconclusive. While Petzold and colleagues (2010) reported stress-related 

impairments in the ability to use negative feedback for behavioural adaptation, others found 

stress-related improvements in punishment learning in highly punishment sensitive 

individuals (Cavanagh et al., 2011a). However, both studies assessed the stress-related 

effects in a test phase, which followed the actual learning phase. This test phase required 

participants to select the ‘best option’ among different pairs of stimuli that were associated 

with different reward probabilities in the previous learning phase. In choosing this indirect 

approach, the studies did not directly track error- and feedback-related behavioural 

adjustments during learning. 

Previous findings indicated that the Ne is sensitive to the motivational and affective 

significance of an error (Falkenstein et al., 2000; Gehring et al., 1993; Hajcak et al., 2005; 

Potts, 2011). Moreover, the induction of short-term negative affect has been shown to be 

associated with an increase in Ne amplitude (Wiswede et al., 2009a,b). Similarly, Cavanagh 

and colleagues (2011a) showed that the exposure to social evaluative stress lead to 

heightened response-related mediofrontal theta-power. However, others failed to obtain 

negative affect-related enhancements in Ne amplitude (Clayson et al., 2011; Larson et al., 

2006). So far, the effects of affective/motivational manipulations on performance monitoring 

have been examined using response competition or gambling tasks with known response 

contingencies. There is evidence indicating that the processing of ‘errors of commission’ 

during these tasks and suboptimal choices during probabilistic learning might be differentially 

influenced by affective variables (Gründler et al., 2009; Cavanagh et al., 2010b). Since most 

researchers agree that uncontrollable failure gives rise to strong negative feelings, the 

following predictions concerning the Ne and post-error behavioural adjustments were made: 

Prediction 511: (a) Failure-induction leads to an increase of the Ne at posttest. (b) This 

affect-related enhancement was expected to be more pronounced if participants were better 

able to represent the correctness of their responses, i.e., the pre-post Ne differences should 

                                                 
11 As was already stated above, this study specifically focused on differential modulations of ERPs to 

error/negative feedback vs. correct responses/positive feedback. 
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be larger towards the end compared to the beginning of the learning process. (c) In addition, 

dissociations in Ne amplitude between tasks with fixed response rules and probabilistic 

learning tasks suggest that the effects of failure may be sensitive to feedback validity. This 

could be reflected in a more pronounced failure-related Ne modulation in the deterministic 

compared to the probabilistic learning condition. 

Prediction 6: Although previous research indicated that social-evaluative stress alters 

the processing of errors and feedback, no study has explicitly examined the impact 

affective/motivational manipulations on behavioural adjustments during learning. Yet, the R-L 

theory implies that affect-related modulations in the Ne (see Prediction 5) should be reflected 

in adaptive action selection. Therefore, the failure-related enhancement in Ne amplitude was 

expected to be associated with higher post-error accuracy. 

The susceptibility of FRN and Pe to motivational and affective influences is less 

substantiated. In neuropsychiatric disorders such as major depression and OCD, the Pe is 

often unaffected (Overbeek et al., 2005). Reduced Pe amplitudes in severely depressed 

patients have been linked to apathy rather than negative affect (Schrijvers et al., 2009). 

However, Hajcak and colleagues (2004) reported that high trait level negative affect was 

associated with a reduced Pe. Larger FRN amplitudes have been found in moderately 

depressed patients (Cavanagh et al., 2011b; Santesso et al., 2008; Tucker et al., 2003). 

Furthermore, recent findings point to a positive relationship between punishment sensitivity 

and FRN magnitude (Balconi & Crivelli, 2010; De Pascalis, Varriale, & D’Antuono, 2010; 

Santesso et al., 2011). Yet, reduced mediofrontal theta-power in response to negative 

feedback has been found when participants were exposed to stress (Cavanagh et al., 

2011a). The described pattern of findings made a clear prediction regarding failure-related 

effects on the FRN and the Pe difficult: 

Prediction 7: (a) Given the findings that the FRN is enhanced in depressed and highly 

punishment sensitive individuals, failure-induction may result in larger FRN amplitudes. This 

prediction also seems consistent with the R-L theory, which states that Ne and FRN reflect 

basically the same process. However, no prior study has examined the impact of 
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experimental manipulations of affective/motivational variables on the FRN. Moreover, stress 

has been found to reduce sensitivity to negative feedback, making a straightforward 

prediction difficult. (b) According to the R-L theory, Ne and FRN track the reliance on internal 

and external feedback, respectively, over the course of learning. It was reasoned that the 

experience of uncontrollable self-relevant failure might affect the dynamics of learning-related 

changes in Ne and FRN. Specifically, participants in the failure-feedback group were 

expected to rely more strongly on external feedback. This should be reflected in a less 

pronounced reduction in FRN amplitude as learning progressed. 

Prediction 8: Given the limited number of studies that experimental manipulations of 

affective and motivational variables to examine later stages of error processing as reflected 

in the Pe, the susceptibility of this component to failure-induction remains an open question. 

The Modulatory Role of Personality 

Individual differences in the disposition towards state vs. action orientation have been 

shown to moderate the effect of uncontrollable failure on subsequent performance (Kuhl, 

1981). Thus, it follows that: 

Prediction 9: State-orientated participants perform worse after failure-induction than 

action-oriented participants. 

Moreover, high punishment sensitivity predicted better implicit learning in a 

punishment compared to a control condition (Corr, Pickering, & Gray, 1997) as well as 

improved probabilistic learning from negative feedback and impaired learning from positive 

feedback under stress (Cavanagh et al., 2011a). The opposite pattern has been observed in 

low punishment sensitive individuals. Yet, less consistent findings have been reported in 

studies using explicit learning tasks with deterministic contingencies (e.g., Zinbarg & Revelle, 

1989) and the effects in Cavanagh et al.’s study were observed after but not during learning. 

Nonetheless the findings suggest: 
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Prediction 10: (a) Punishment sensitivity moderates the effects of failure on 

subsequent learning performance. (b) The influence of individual differences in punishment 

sensitivity may differ for the deterministic and probabilistic learning condition. 

Pailing and Segalowitz (2004) demonstrated that high neuroticism scores predicted 

larger incentive-related modulations in Ne amplitude, whereas high conscientiousness 

predicted smaller incentive effects. In the study by Cavanagh and colleagues (2011a), 

however, stress-induced negative affect predicted higher response-related but reduced 

negative feedback-related mediofrontal theta power both in highly and less punishment 

sensitive individuals12. To my knowledge, no further study has investigated to what extent 

personality factors moderate the effect of affective/motivational manipulations on 

electrophysiological correlates of error and feedback processing. Nonetheless, the sensitivity 

of the Ne and - albeit to a lesser extent - of Pe and FRN to motivation- and affect-related 

traits suggests that: 

Prediction 11: Individuals differences in state vs. action orientation and punishment 

sensitivity moderate the impact of failure on the Ne. It is an open issue to what extent trait 

variables determine failure-related modulations in FRN and Pe. 

Methods 

Participants 

Forty-two undergraduate students with normal or corrected to normal vision, free of 

neurological or psychological disorder and free from psychoactive medication use, completed 

pre- and posttest. A further 22 participants had to be excluded after the pretest because they 

did not commit enough errors to obtain reliable ERP-measures (>14 error trials in both halves 

of pre- and posttest). Data from seven participants were discarded due to poor learning 

performance13 (3), excessive artifacts (2), and technical problems during EEG recording (2). 

                                                 
12 Yet, the neural responses differentially predicted behavioural indices of punishment learning in the low vs. high 

BIS group. 
13 Less than 55% correct trials in the deterministic learning condition 
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The effective sample thus consisted of 17 participants (12 women; mean age = 22.6 years; 

age range = 19 to 33 years) in the failure feedback group and 18 participants (13 women, 

mean age = 21.7 years; age range = 19 to 27 years) in the no-failure-feedback group. They 

were paid 8 Euros per hour or received course credit. Informed written consent was required 

in accordance with the protocols approved by the local ethics committee of Saarland 

University, and participants were thoroughly debriefed after the experiment. 

Overview of the Experimental Procedure 

 

Figure 8: Schematic illustration of the experimental procedure. 

A schematic overview of the experimental procedure is outlined in Figure 8. After a 

brief description of the experiment, participants filled out a consent form and a short 

demographic questionnaire. Then they completed the psychometric tests and personality 

scales.  The following experiment involved three consecutive phases: the first probabilistic 

learning phase (pretest), failure manipulation (visual search task), and the second 

probabilistic learning phase (posttest). After completion of the pretest, one half of the 

participants were assigned to the no-failure-feedback group, and the other half were 

assigned to the failure-feedback group. Both groups were matched for performance in the 

pretest. In order to test the effect of failure manipulation, participants’ mood state was 

assessed with a short questionnaire immediately after the visual search task. At posttest, 

participants were informed that they were going to perform the probabilistic learning task 

again. In contrast to the pretest, it was now stressed that the task was indicative of 

intellectual abilities. At the end of the experiment, participants were given a brief final 
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questionnaire that focused on the motivational involvement and the emotional experience 

associated with performing the two learning phases and the visual search task (see 

Appendix). Afterwards, participants were informed of the actual purpose of the study and the 

nature of the experimental manipulations. Particularly, participants in the failure feedback 

group were told that the negative feedback in the visual search task was totally independent 

of their actual performance. 

Stimuli and Tasks 

Probabilistic learning task (Pre- and posttest). The stimulus material consisted of 24 

colored images of objects (Snodgrass & Vanderwart, 1980). On a given trial participants 

were presented with a target stimulus and had to press one of two response keys. Following 

the response either the word “RICHTIG” (“correct”), “FALSCH” (“incorrect”) or “ZU 

LANGSAM” (“too slow”) was presented. Participants were instructed to infer the correct 

stimulus-response mappings on the basis of the feedback. In order to maintain motivation 

throughout the experiment, participants were also told that they would gain a point for each 

correct answer and lose a point for each incorrect or too slow response. At the end of the 

experiment a monetary bonus of up to 10 Euros was awarded based upon the total amount 

of points. Stimuli were associated with three different conditions of feedback validity (100%, 

80 %, and 50%). Four stimuli were assigned to each condition, yielding a total of 12 different 

target stimuli. In the deterministic learning condition, feedback was always valid (100% 

validity). Two stimuli were mapped to the left and the right response key, respectively. In the 

probabilistic learning condition, feedback was valid in 80% of the trials. For the two stimuli 

that were mapped to the left response key, participants thus received ‘Correct’ feedback in 

80% and ‘Incorrect’ feedback in 20% of left button presses (and vice versa for right button 

presses and the other two stimuli mapped to the right response key). In the chance condition, 

‘Correct’ and ‘Incorrect’ feedback was delivered at random (50% validity). Each of the 12 

target stimuli were presented 50 times in pseudo-randomized order throughout the task, 

resulting in a total of 600 trials. The same individual stimulus appeared at most three times in 

a row and within a block of 60 trials the number of stimuli associated with the three learning 
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conditions was equal. The assignment of stimuli to learning condition and response key was 

counterbalanced across participants. 

Each trial started with a central fixation cross presented on a light gray background 

for a variable interval of 250 to 500 ms, followed by the centrally presented target stimulus 

that was displayed for 500 ms. In order to obtain a sufficient number of error trials, we 

applied an adaptive response deadline ranging from a minimum value of 400 ms to a 

maximum value of 1000 ms (for a similar procedure, see Eppinger et al., 2008). At the 

beginning of the task, the response time window was set to an initial value of 800 ms. After 

the completion of the first 100 trials, the response window was individually adjusted on a trial-

to-trial basis, depending on the proportion of time out trials, i.e., the total number of time-out 

trials divided by the total number of trials performed up to that point. If the proportion of time-

outs was less than two (or more than eight) percent, the response time window was 

decremented (incremented) by 200 ms. If the proportion of time-outs varied between two and 

four (six and eight) percent, the response deadline was decremented (incremented) by 100 

ms. In the interval from four to six percent of time-outs, the response deadline remained 

unchanged. After the response, a blank screen was presented for 500 ms, followed by the 

feedback displayed for 500 ms. A randomly jittered 1250- to 2000-ms interval separated 

each trial. Participants first worked through 60 practice trials. Pre- and posttest consisted of 

20 blocks of 30 trials. During the breaks, they received feedback about the total amount of 

points they had collected up to that point. 

Visual search task (Failure manipulation). Ten pairs of natural-scene pictures served 

as stimuli for the failure manipulation task. Each picture pair comprised the “original” and a 

modified “copy” of a colored photograph that were presented on the left (original) and right 

(copy) side of the screen. The “copies” were created by changing six to ten subtle details in 

each picture (see Figure 9 for an example stimulus pair). All photographs were scaled to 9 × 

12 cm. The task was described as a mental speed test predictive of intelligence. This was 

incorporated to enhance self-relevance, which is assumed to be an essential feature of 

efficient failure induction techniques (cf. Brunstein, 2000). Each picture pair was presented 

for 60 s, and participants were asked to indicate by mouse-click all differences in the 
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modified picture as quickly as possible. Participants in the failure feedback group received 

predominantly negative feedback indicating the number of differences that have not been 

detected. Feedback was delivered according to a fixed schedule that has been shown to 

induce a strong failure experience (Brunstein & Olbrich, 1985). An initial sequence of 

success and failure (0 − 2 − 0 − 3) was followed by continuous failure (4 − 4 − 3 − 5 − 4 − 6). 

Thereafter, a brief protocol was presented which provided participants in the failure feedback 

group with a spurious evaluation of their performance: The total number of differences 

missed by the individual (31) and the average number of differences missed by other 

participants (19). In the no-failure feedback group no feedback was provided. 

 

Figure 9: Example stimulus pair presented in the visual search task. Differences are marked in the rightmost 

picture. 

Questionnaires. The participants performed two psychometric tests assessing fluid 

intelligence (Digit-Symbol Substitution test, DSS; adapted from Wechsler, 1981), and 

crystallized intelligence (Spot-a-Word test; adapted from Lehrl, 1977). A modified version of 

the Digit Ordering Test (Cooper, Sagar, Jordan, Harvey, & Sullivan, 1991) was used to 

measure working memory capacity. Participants also completed German versions of the 

following questionnaires: The Positive Affect Negative Affect Scale (PANAS; Watson, Clark, 

& Tellegen, 1988; Krohne, Egloff, Kohlmann, & Tausch, 1996), the Carver and White (1994) 
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Behavioral Inhibition Scale/Behavioral Activation Scale (BIS/BAS), and the Action Control 

Scales (ACS-90, Kuhl, 1994). The PANAS assesses the predisposition to experience 

positive or negative affective state. The BIS/BAS scales were used as measures of 

punishment and reward sensitivity. The ACS-90 was used to assess the general tendency 

toward action- vs. state-oriented behaviour after failure experiences (HOM). The final 

questionnaire focused on the motivational involvement and the emotional experience 

associated with performing the learning tasks and the visual search task (see Appendix). To 

check the effect of failure manipulation we administered the German questionnaire 

“Befindlichkeitsskala” (BfS). The BfS (von Zerssen, 1976) comprises 28 pairs of opposite 

adjectives (e.g., “self-confident/insecure”). For each pair, subjects are required to indicate the 

adjective that better represents their current feelings. 

EEG Recording 

The electroencephalogram (EEG) was recorded with Ag/AgCl electrodes from 59 

sites according to the extended 10-20 system, referenced to the left mastoid, at a sampling 

rate of 500 Hz (filtered online from DC to 70 Hz). The horizontal and vertical 

electrooculograms were recorded from electrodes placed on the left and right canthi of both 

eyes and at the infra- and supra-orbital ridges of the left eye. Electrode impedances were 

kept below 5 kΩ. 

Data Analyses 

Behavioural data analyses. Response latencies of less than 244 ms (> 2SD) or 

exceeding the response deadline were excluded from further analyses14. Mean accuracy 

rates were computed separately for each learning condition in pre- and posttest by averaging 

the data into six bins of 100 trials each, i.e., Bin 1 contained Trials 1-100, Bin 2 contained 

                                                 
14 The deadline was exceeded by 2.2% (no-failure-feedback group) and 2.1% (failure-feedback group) of the 

responses. At pretest, mean RTs on correct and incorrect trials were 421 ms (SD = 25 ms) and 417 ms (SD = 30 

ms) for the no-failure feedback group and 422 ms (SD = 26 ms) and 416 ms (SD = 29 ms) for the failure feedback 

group. At posttest, mean RTs on correct and incorrect trials were 405 ms (SD = 30 ms) and 398 ms (SD = 31 ms) 

for the no-failure feedback group and 396 ms (SD = 32 ms) and 388 ms (SD = 31 ms) for the failure feedback 

group. 
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Trials 101-200, and so on. Note that for the probabilistic learning condition only valid trials 

were included. To examine error-related behavioural changes, I additionally computed post-

error accuracy, i.e., the proportion of correct choices on the next presentation of a particular 

item, separately for each learning condition and test phase. 

ERP data analyses. Offline, the data were re-referenced to the linked mastoid and 

band-pass filtered from 0.05 to 30 Hz. Eye movement artefacts were removed using 

independent component analysis from the BrainVision Analyzer Software Package (Brain 

products); remaining artefacts were eliminated with a semiautomatic artefact rejection 

procedure (amplitudes over ± 100 µV, changing more than 50 µV between samples or more 

than 200 µV within single epochs, or containing baseline drifts). Artefact-free EEG data were 

segmented relative to response and feedback onset to extract response-related and 

feedback-related ERPs. The response-locked and feedback-locked epochs were baseline 

corrected with respect to the average voltage during a -200 to -50-ms-pre-response interval 

and a 100-ms-pre-stimulus interval, respectively. 

Following previous studies using probabilistic learning tasks (e.g., Eppinger et al., 

2008; Frank, et al., 2005), the Ne was quantified after 15 Hz low-pass filtering at electrode 

FCz as the peak-to-peak difference in voltage between the most negative peak between -50 

and 100 ms and the largest positive peak in the prior 100 ms. Peak-to-peak voltage was 

measured to determine baseline-independent amplitudes and to minimize distortions due to 

the positivity on which the Ne is superimposed. Since a negative peak could not be reliably 

determined for correct trials, mean amplitudes in a 0-100 ms post-response time window at 

electrode FCz were computed to analyse the positivity following correct responses. I decided 

to analyse correct and incorrect responses separately rather than to compute difference 

waves (error-correct), because former studies revealed larger learning-related modulations in 

the positivity on correct trials than in the Ne (e.g., Eppinger et al., 2008), whereas affective-

motivational manipulations have been shown to specifically affect the Ne (e.g., Hajcak et al., 

2005). 

The FRN was quantified twofold. In a first step, I determined the FRN as peak-to-

peak voltage difference between the most negative peak in a 200 to 400 ms time window 
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after feedback onset and the preceding positive peak in a 150 to 300 ms post-feedback 

interval at electrode FCz (see Frank et al., 2005; Yeung & Sanfey, 2004). However, as 

participants learned quickly, the ERP-averages contained relatively few trials for negative 

feedback, particularly in the deterministic learning condition. Whereas just six trials are 

necessary to obtain stable averages for the Ne (Olvet & Hajcak, 2009b), 20 trials are needed 

to ensure a reliable FRN (Marco-Pallares et al., 2011). Of note, peak-amplitude measures 

are more sensitive to noise-induced fluctuations than average amplitude measures (Luck, 

2005). Therefore, in a second step, the FRN was defined as mean amplitude in a 50-ms-

time-window centered on the individual negative peaks of the FRN. As in previous studies 

(Hajcak et al., 2004; Wiswede et al., 2009), the Pe was measured as the mean amplitude 

between 200 and 400 ms after the response at electrode Pz. 

To examine learning-related changes in Ne, FRN, and Pe, ERP averages were 

computed for each learning condition, separately for the first and second half of pre- and 

posttest. Thus, Bin 1 (first half) of the ERP analysis comprised Bins 1-3 of the behavioral 

analysis, and Bin 2 (second half) of the ERP analysis comprised Bins 4-6 of the behavioral 

analysis. 

Statistical analyses. Accuracy and ERP data were analyzed using repeated measures 

analyses of variance (ANOVAs). In a further step, each personality measure (BIS, BAS, NA, 

and HOM) was included as a continuous moderator in the ANOVAs to examine the 

modulatory role of trait variables. Separate analyses of covariance (ANCOVAs) were 

conducted for each of the four variables. Whenever necessary, the Geisser−Greenhouse 

correction was applied (Geisser & Greenhouse, 1958) and corrected p values are reported 

together with the uncorrected degrees of freedom and the epsilon values (ε). Pearson’s 

correlations were calculated to examine the relation between Ne amplitude and post-error 

accuracy. In order to check for a-priori group differences in personality measures (control 

analyses) as well as group differences in post-manipulation mood rating and final 

questionnaire (manipulation check), the corresponding measures were analyzed using 

multivariate analysis of variance (MANOVA). 
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Results 

Control Analyses/Manipulation Check 

Table 1 shows the results of the psychometric tests and the questionnaires for the no-

feedback and the failure feedback group.  

Tabelle 1. Results of the psychometric measures, the mood scale (BfS), self-evaluation for 

the visual search task and motivational involvement/rumination at posttest (means and 

standard deviations) for the no-failure feedback group and the failure feedback group 

(Experiment 1) 

Measure No-failure feedback group Failure feedback group 

Cognitive variables   

DSS 063.67 (10.62) 62.18 (9.70) 

Spot-a-word 18.56 (6.61) 18.76 (4.89) 

Digit ordering 09.33 (2.06) 08.94 (1.92) 

Affect & action control   

PA 34.28 (4.38) 34.47 (5.51) 

NA 23.17 (6.30) 20.06 (5.93) 

BIS 02.87 (0.45) 02.91 (0.49) 

BAS 02.99 (0.49) 03.11 (0.33) 

HOMa 04.50 (3.01) 03.82 (3.36) 

Mood (post-manipulation)   

BfSb 09.72 (3.56) 18.47 (3.34) 

Final questionnaire   

Self-evaluation 03.47 (0.74) 02.71 (0.44)  

Involvement 03.33 (0.78) 03.80 (0.61) 

Rumination 02.03 (1.01) 02.06 (0.92) 

a Note that higher scores indicate action orientation while lower scores indicate state-orientated behavior. 

b Higher scores indicate more negative feelings. 
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Importantly, the two groups did not differ significantly with respect to psychometric 

measures (all p-values > .14). There were, however, differences in current mood state after 

failure manipulation. The failure feedback group reported more negative feelings, as 

indicated by a higher BfS score, [F (1,33) = 56.07, p < .001]. Moreover, participants’ self-

reports on the final questionnaire showed that they were less satisfied with their performance 

on the visual search task as compared to the no-failure feedback group [F (1,33) = 15.78, p < 

.001], and also tended to indicate higher posttest involvement [F (1,33) = 3.90, p < .058]. 

Accuracy Data 

Accuracy data (see Figure 10) were analysed using an ANOVA with the between-

subjects factor feedback group (failure feedback vs. no feedback), and the within-subject 

factors test phase (pretest vs. posttest), learning condition (deterministic, probabilistic and 

chance condition), and bin (Bins 1-6). As expected, the analysis yielded a significant main 

effect of learning condition [F(2,66) = 231.26, p < .001, ε = .80]. Contrasts revealed accuracy 

to be higher for the deterministic and probabilistic learning condition compared to the chance 

condition, as well as for the deterministic compared to the probabilistic learning condition (p-

values < .01). 

Learning-related effects. The analysis yielded a reliable main effect of bin [F(5,165) = 

22.81, p < .001, ε = .66] that was qualified by significant interactions between learning 

condition and bin [F(10,330) = 4.83, p < .001, ε = .82], and test phase, learning condition, 

and bin [F(10,330) = 3.28, p < .01, ε = .85] suggesting that the course of learning differed 

between pre- and posttest as a function of feedback validity. To decompose the interaction, 

separate analyses were conducted for pre- and posttest. At pretest, polynomial contrasts 

showed that accuracy increased over the course of the task following a linear trend for the 

deterministic as well as the probabilistic learning condition (p-values < .001; see Figure 12). 

At posttest, a significant linear trend across bins was obtained only for the probabilistic 

learning condition (p < .01). In contrast, a predominantly cubic trend for the deterministic 

learning condition (p < .001) reflected that after an initial enhancement, accuracy dropped 

and finally increased again. 
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Effects of failure manipulation. Visual inspection of the posttest data suggested that 

the transient decrease in accuracy emerged for the failure feedback group only (see Figure 

10). However, the four-way interaction of feedback group, test phase, learning condition, and 

bin failed to reach significance (p = .10). 

 

 

Figure 10: Mean accuracy learning curves for the three learning conditions displayed separately for the no-failure 

feedback group and failure feedback group at pretest (left) and posttest (right). Error bars indicate standard error. 
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Post-error Accuracy Data 

In order to determine whether failure induction affects the ability to learn from past 

mistakes and thus modulates error-related behavioural changes, post-error accuracy rates 

were subjected to an ANOVA with the between-subjects factor feedback group, and the 

within-subject factors test phase, and learning condition. Consistent with the results for the 

total accuracy, a significant main effect of learning condition was obtained [F(2,66) = 78.80, p 

< .001], indicating that post-error accuracy was lowest in the chance condition and highest in 

the deterministic learning condition (all p-values < .001) (see Figure 11). 

 

Figure 11: Mean post-error accuracy rates for the three learning conditions at pretest and posttest displayed 

separately for the no-failure feedback group (left) and failure feedback group (right). Error bars indicate standard 

error. 

Effects of failure manipulation. The analysis revealed a reliable main effect of test 

phase [F(1,33) = 4.27, p < .05] that was qualified by a significant interaction between 

feedback group and test phase [F(1,33) = 5.53, p < .05], and a marginally significant 

interaction between feedback group, test phase, and learning condition [F(2,66) = 2.85, p = 

.065]. Separate analyses for the two groups showed that post-error accuracy increased from 

pre- to posttest for the failure feedback group (p < .01) but not for the no-failure feedback 

group (p = .85). To examine whether the post-error accuracy differences are due to the 

failure feedback group adopting a more conservative response strategy, i.e., more accurate 
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at the expense of slower post-error responding, post-error correct vs. incorrect reaction times 

(RT) were analyzed (see Appendix). This analysis did not reveal significant interactions 

involving the factor feedback group and test phase (p-values > .15). Thus, the failure-related 

change in post-error accuracy does not appear to reflect a speed-accuracy trade-off. 

Does Personality Moderate the Effects of Failure on Error Processing and Learning? 

To investigate whether personality differences modulates the effects of failure-

induction on learning, accuracy rates were averaged across the six bins of pre- and posttest, 

respectively. Mean accuracy rates were subjected to 2 (feedback group) × 2 (test phase) × 3 

(learning condition) ANCOVAs with the trait measures as continuous moderators. The 

analyses focused on interaction terms involving the continuous moderator variable and the 

factors feedback group and test phase. 

High punishment sensitivity predicts failure-induced learning impairments. The 

analysis of the moderating influence of punishment sensitivity yielded a marginally significant 

four-way-interaction of feedback group, test phase, learning condition, and BIS [F(2,62) = 

2.67, p = .089, ε = .82]. Follow-up ANCOVAs that were split by test phase revealed a 

significant interaction of feedback group, learning condition, and BIS for posttest [F(2,62) = 

3.14, p = .05] but not for pretest (p = .29). Of note, a marginally significant interaction of 

learning condition and bin was found in the failure-feedback-group only [F(2,30) = 3.14, p = 

.058]. In the failure-feedback-group, higher BIS-scores predicted worse learning performance 

in the deterministic learning condition at posttest [r(17) < −.54, p < .05]. Furthermore, a 

marginally significant negative correlation between BIS and overall posttest performance was 

obtained for the probabilistic learning condition [r(17) < −.44, p = .077]. There was, however, 

no evidence for influences of punishment sensitivity on failure-related differences in post-

error accuracy (F-values < 1.7, p-values > .20). No further trait variable reliably modulated 

the effects of failure-induction on learning performance (F-values < 2.1, p-values > .16). 
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Summary of Behavioural Findings 

Not surprisingly, accuracy was found to increase with feedback validity. Moreover, 

accuracy increased in a linear function over the course of pretest for both learning conditions, 

but this was only the case for the probabilistic learning condition at posttest. For the 

deterministic learning condition considerable learning occurred at the beginning of posttest, 

but accuracy decreased with time on task. As participants were likely to become quickly 

aware of the response contingencies in the deterministic learning condition, this finding 

suggests a higher amount of “slips” in cognitive control resulting in motor errors of 

commission – rather than weak reinforcement learning – during later stages of posttest. 

Consistent with this notion, RT decreased from pre- to posttest, and erroneous responses 

were faster in the deterministic compared to the probabilistic learning condition (p-values < 

.001) (see Appendix). There were no between-group differences in overall performance at 

either pretest or posttest. However, high punishment sensitivity predicted worse posttest 

performance in the failure-feedback group. By contrast, punishment sensitivity did not appear 

to affect learning in the no-failure-feedback group. Furthermore, I did not obtain pre-post 

changes in overall accuracy for either of the two feedback groups. Instead, participants in the 

failure feedback group were more likely to correct their errors on the next repetition of a given 

stimulus, as was shown by an increase in post-error accuracy from pre- to posttest. 

ERP data 

Error Negativity 

As illustrated in Figure 12, the Ne was evident as a fronto-centrally distributed 

negative deflection in the deterministic and probabilistic learning condition for both groups at 

pre- and posttest. Correct responses were followed by a pronounced positivity that, unlike 

the negativity on incorrect trials, clearly increased over the course of learning. To test for 

group differences in the peak-to-peak amplitude of the Ne and the mean amplitude of the 

correct response-related positivity, I used separate 2 (feedback group: failure feedback vs. 

no feedback) × 2 (test phase: pretest vs. posttest) × 3 (learning condition: deterministic, 

probabilistic and chance condition) × 2 (bin: Bin 1 vs. Bin 2) ANOVAs. Both the Ne and the 
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correct response-related positivity increased with feedback validity [F(2,66) = 49.14 and 

49.50, p < .001 and .01, respectively]. Below, I will first report the failure- and learning-related 

effects for the Ne, followed by the results for correct responses. 

 

Figure 12: Response-locked ERPs to correct (solid lines) and incorrect responses (dashed lines) displayed 

separately for the no-failure feedback group and failure feedback group and the two halves of pretest (left) and 

posttest (right). The upper panels show the ERPs in the deterministic learning condition at electrode sites Fz, 

FCz, and Cz. Small boxes highlight the Ne effect at electrode FCz. The lowest panel shows the ERPs in the 

probabilistic learning condition at FCz. Note that the Ne amplitude was quantified peak-to-peak. 
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General effects of failure on the Ne. The analysis yielded a reliable main effect of 

feedback group [F(1,33) = 8.30, p < .01] and significant interactions between feedback group 

and test phase [F(1,33) = 10.01, p < .01] and feedback group, learning condition and test 

phase [F(2,66) = 4.29, p < .05, ε = .75]. A follow-up ANOVA that was split by test phase 

confirmed that there were no group differences at pretest (p-values > .34), whereas the Ne 

amplitude was larger for the failure feedback group than for the no-failure feedback group at 

posttest [F(1,33) = 15.26, p < .001]. As illustrated in Figures 12 and 13, the failure-related Ne 

modulation was more pronounced in the deterministic and probabilistic learning condition 

than in the chance condition, reflected in an interaction between feedback group and learning 

condition [F(2,66) = 5.64, p < .01, ε = .80]. Nonetheless, separate analyses revealed 

significant differences for the deterministic (p < .01) and probabilistic learning condition (p < 

.001) as well as for the chance condition (p < .05). Figure 13 also shows that the Ne 

increased from pre- to posttest for the deterministic and probabilistic learning condition in the 

failure feedback group (p < .05 and .01, respectively), but not in the no-failure feedback 

group (p-values >.17). 

Learning-related effects of failure on the Ne. The analysis of learning-related changes 

in the Ne revealed significant interactions between learning condition and bin [F(2,66) = 7.18, 

p < .01] and feedback group, learning condition, and bin [F(2,66) = 5.29, p < .01], as well as 

a marginally significant interaction between test phase, feedback group, learning condition, 

and bin [F(2,66) = 2.88, p = .065]. Follow-up ANOVAs for the two test phases yielded a 

reliable interaction between feedback group, learning condition, and bin for posttest [F(2,66) 

= 9.66, p < .001], but not for pretest (F < 1), indicating group differences in the modulation of 

the Ne across posttest only. Decomposing the interaction within each group revealed a 

significant main effect of bin [F(1,17) = 11.57, p < .01] and a significant interaction between 

learning condition and bin [F(2,34) = 7.72, p < .01, ε = .70] for the no-failure feedback group 

as well as for the failure-feedback group [F(1,16) = 4.66, p < .05 and F(2,32) = 7.97, p < .01, 

respectively]. Figure 13 illustrates that the Ne decreased from the first to the second half of 

posttest for the deterministic learning condition in the no-failure feedback group (p < .01) but 
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increased for deterministic and probabilistic learning condition in the failure feedback group 

(p-values < .05). 

It should be noted that there was no evidence for learning-related changes in the Ne 

for either deterministic or probabilistic learning condition at pretest (p-values > .61). However, 

more negative Ne amplitudes reliably predicted higher post-error accuracy for the 

deterministic and probabilistic learning condition at both pretest [r(35) < −.46 and −.36, p < 

.01 and .05, respectively] and posttest [r(35) < −.52 and −.44, respectively, p-values < .01].15 

 

Figure 13: Bar graphs show the mean Ne amplitude at electrode FCz, separately for the three learning conditions 

within each group at pretest (left) and posttest (right). Error bars indicate standard error. Note that the amplitude 

difference in comparison to the waveforms shown in Figure 4 is due to the latency jitter across participants 

causing a reduction of the Ne in the grand average ERP. 

                                                 
15 At posttest, significant correlations between Ne amplitude and post-error accuracy were found for the failure-

feedback group (r-values > −.65, p-values < .01) but not for the no-failure-feedback group (r-values < −.16, p-

values > .52). In contrast, at pretest, (marginally) significant correlations were found for the no-failure-feedback 

group (r-values > −.44, p-values < .07) but not for the failure feedback group (r-values < −.39, p-values > .12). 

Importantly, the correlation coefficients did not significantly differ between the two feedback groups at pretest (z-

values < .80, p-values > .21), whereas the coefficients were significantly larger in the failure feedback group 

compared to the no-failure-feedback group at posttest (z-values > 1.8, p-values < .07). These findings further 

support the notion that failure induction promoted aversively motivated behavioural control. 
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Learning-related effects in the correct response-related positivity. The analysis of the 

positivity following correct responses yielded reliable main effects of bin [F(1,33) = 97.03, p < 

.001] and test phase [F(1,33) = 21.77, p < .001], indicating that the correct response-related 

positivity increased across the two bins and from pre- to posttest. As shown in Figure 13, the 

pre-post difference was greater in Bin 1 than in Bin 2, reflected in a significant interaction 

between test phase and bin [F(1,33) = 18.88, p < .001]. No main effect or interaction 

involving the factor feedback group approached significance (p-values > .20). 

Moderating Influences of Personality on the Failure-related Ne Increase  

To examine the role of personality, peak-to-peak amplitudes of the Ne were averaged 

across the two bins of pre- and posttest, respectively, and subjected to 2 (feedback group) × 

2 (test phase) × 3 (learning condition) ANCOVAs with the trait measures as continuous 

moderators. 

State orientation attenuates the failure-related differences in Ne amplitude. A 

marginally significant interaction of feedback group, test phase, learning condition, and HOM 

was obtained [F(2,62) = 2.69, p = .076]. Follow-up ANCOVAs that were split by test phase 

revealed a significant interaction of feedback group, learning condition, and HOM only for the 

posttest [F(2,62) = 3.28, p < .05] but not for the pretest (p = .20). Separate analyses for the 

three learning conditions found a marginally reliable interaction of feedback group and HOM 

for the probabilistic learning condition only (p = .085). State orientation16 was associated with 

relatively larger Ne amplitudes in the no-failure-feedback group (action orientation: -2.13 µV, 

state orientation: -4.71 µV) but not in the failure-feedback-group (action orientation: -5.39 µV, 

state orientation: -5.01 µV). No significant correlation between HOM and Ne amplitude was 

found (p-values > .12). Similar ANCOVAs for BIS, BAS, and NA did not yield reliable 

moderating effects of the personality measures (F-values < 2.8, p-values > .10). 

  
                                                 
16 Action and state orientation were defined by means of a median-split of HOM. 



 101 

Summary of Ne Findings 

As predicted, failure induction was accompanied by an increase of the Ne for the 

deterministic and probabilistic learning condition. Moreover, the Ne increased across posttest 

both in the deterministic and probabilistic learning condition for the failure feedback group, 

but decreased in the deterministic learning condition for the no-failure feedback group. The 

failure-related Ne enhancement was not modulated by interindividual differences in 

punishment sensitivity or trait negative affect. State-orientation was associated with reduced 

between-group differences in Ne amplitude in the probabilistic learning condition at posttest. 

This effect primarily reflected larger Ne amplitudes for state- compared to action-oriented 

participants in the no-failure-feedback group. Importantly, the failure manipulation did not 

reliably affect the positivity following correct responses. 

Error Positivity 

 There was a pronounced amplitude difference between erroneous and correct 

responses in the Pe time window for the deterministic and probabilistic learning condition 

with a maximum at centro-parietal sites (see Figure 15). The Pe amplitudes were analyzed 

using an ANOVA with the factors feedback group (failure feedback vs. no feedback), test 

phase (pretest vs. posttest), learning condition (deterministic, probabilistic, and chance 

condition), bin (Bin 1 vs. Bin 2), and correctness (correct vs. incorrect responses). 

The ANOVA revealed significant main effects of feedback type [F(1,33) = 65.31, p < 

.001] and learning condition [F(2,66) = 28.92, p < .001] that were qualified by a significant 

interaction of feedback type and learning condition [F(2,66) = 38.13, p < .001]. As illustrated 

in Figure 16, these findings reflect that the Pe was evident as a more positive-going slow 

wave following erroneous compared to correct responses in the deterministic and 

probabilistic learning condition, but not in the chance condition. Contrasts confirmed that the 

Pe was greater in the deterministic compared to the probabilistic learning condition (p < .05) 

and in the two learning conditions compared to the chance condition (p < .001). Furthermore, 

the analysis yielded a reliable main effect of test phase [F(1,33) = 27.14, p < .001] and 

significant interactions of test phase and feedback type [F(1,33) = 8.43, p < .01] and test 
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phase, feedback type and learning condition [(2,66) = 3.51, p < .05]. Separate analyses for 

each learning condition revealed significant interactions of test phase and feedback type for 

the deterministic and probabilistic learning condition only (p-values < .05). Although the 

ERPs to both erroneous and correct responses were more positive-going at posttest (p-

values < .01), these interactions indicated that the increase was more pronounced for 

erroneous responses (see Figure 14). 

 

Probabilistic and Chance Condition 
 

Pe Amplitude in µV 
 

No-Failure-Feedback Group 
 

Failure-Feedback Group No-Failure-Feedback Group Failure-Feedback Group 

    

Figure 14: The upper panel shows the response-locked ERPs in the deterministic learning condition at electrode 

Pz. Grey bars highlight the time window used for Pe analysis. The lower panel shows the mean Pe amplitdes (in 

µV) in the probabilistic learning and chance condition, separarely for correct and incorrect trials. 
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Learning-related effects in the Pe. The analysis yielded a reliable main effect of bin 

[F(1,33) = 113.32, p < .001] and significant interactions of bin and feedback type [F(1,33) = 

40.47, p < .001] and bin, feedback type, and learning condition [F(2,66) = 10.45, p < .001]. 

Decomposing the interaction within each learning condition revealed that the Pe increased 

with learning in the deterministic (p < .001) and probabilistic learning condition (p < .001) but 

not in the chance condition (p = .66) (see Figure 14). However, there was no significant 

relationship between the Pe and post-error accuracy at either pre- or posttest (rs < .14, p-

values > .44). 

Summary of Pe findings 

The Pe increased both with feedback validity and learning. Furthermore, the Pe 

increased from pre-to posttest. Most critically, however, no effects of failure-induction on the 

Pe were obtained. Moreover, ANCOVAs for BIS, BAS, NA, and HOM indicated that failure-

related effects did not rely on influences of personality (F-values < 2.4, p-values > .13). 

 
Feedback-related Negativity 

 Figure 15 shows the feedback-locked ERPs in the three learning conditions at pre- 

and posttest, separately for the two experimental groups. At pretest, the FRN was clearly 

evident as a fronto-centrally distributed negative-going deflection that was larger following 

positive compared to negative feedback. This difference between correct and incorrect-

feedback trials was most pronounced in the chance condition. Both the peak-to-peak 

amplitude and the mean amplitude measures of the FRN were subjected to an ANOVA with 

the factors feedback group (failure feedback vs. no feedback), test phase (pretest vs. 

posttest), learning condition (deterministic, probabilistic, and chance condition), bin (Bin 1 vs. 

Bin 2), and feedback type (positive vs. negative feedback). Below, I will first report the results 

for the peak-to-peak measures, followed by the results for the mean amplitudes measures. 
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Peak-to-peak Analysis of the FRN 

The analysis revealed a significant main effect of feedback type [F(1,33) = 46.15, p < 

.001] that was qualified by an interaction of learning condition and feedback type [F(2,66) = 

4.53, p < .05], suggesting that the amplitude difference between positive and negative 

feedback was the larger the more invalid the feedback (see Figure 15). However, contrasts 

of deterministic vs. probabilistic learning condition as well as deterministic and probabilistic 

learning condition vs. chance condition failed to obtain significant differences (p-values > 

.17). No further effects approached significance. 

 

Figure 15: Feedback-locked ERPs to correct (solid lines) and incorrect responses (dashed lines) displayed 

separately for the no-failure feedback group and failure feedback group and the two halves of pretest (left) and 

posttest (right). 
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Mean Amplitude Analysis of the FRN 

Similar to the peak-to-peak amplitudes, the analysis of mean amplitudes revealed a 

reliable main effect of learning condition [F(2,66) = 20.97, p < .001], a reliable main effect of 

feedback type [F(1,33) = 46.15, p < .001], and a significant interaction between learning 

condition and feedback type [F(2,66) = 9.12, p < .01, ε = .64]. Contrasts showed that the 

amplitude difference between positive and negative feedback, i.e., the FRN, was larger for 

the probabilistic compared to the deterministic learning condition [F(1,33) = 5.02, p < .05] as 

well as for the chance condition compared to deterministic and probabilistic learning 

condition [F(1,33) = 14.27, p < .01]. Follow-up ANOVAs that were split by feedback type 

yielded a significant main effect of learning condition for positive (p < .001) but not for 

negative feedback (p = .12). 

General effects of failure on the FRN. A significant interaction between feedback 

group, feedback type, and test phase [F(1,33) = 5.60, p < .05] indicated that the FRN was 

affected by the failure-manipulation. As could be seen from Figure 15, at posttest, the 

difference between FRN and feedback-locked positivity was larger for the failure-feedback 

group than for the no-failure-feedback-group. Separate analyses for the two test phases, 

however, failed to obtain a significant interaction between feedback group and feedback type 

both at pretest (p = .89) and posttest (p = .12). In addition, decomposing the interaction 

within each group did not reveal significant interactions of test phase and group for either 

positive (p = .13) or negative feedback (p = .75). 

Learning-related effects of failure on the FRN. The analysis yielded a significant main 

effect of bin [F(1,33) = 4.68, p < .05] and a significant interaction between learning condition 

and bin [F(2,66) = 10.23, p < .001, ε = .80], reflecting a more pronounced amplitude 

reduction in the ERPs to positive and negative feedback across the two bins in the 

deterministic learning condition (see Figure 15). This was confirmed by contrasts that 

revealed a significant larger difference between Bin 1 and 2 in the deterministic compared to 

the probabilistic learning condition [F(1,33) = 14.88, p < .01] as well as in the two learning 

conditions compared to the chance condition [F(1,33) = 5.45, p < .05]. Moreover, marginally 
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significant interactions between learning condition, bin, and test phase [F(2,66) = 2.48, p = 

.092] and feedback group, learning condition, bin, and test phase [F(2,66) = 3.04, p = .054] 

suggested that the amplitude modulation across bins was affected by failure-manipulation. A 

follow-up ANOVA that was split by test phase yielded a significant interaction between 

feedback group, learning condition, and bin for the posttest [F(2,66) = 3.71, p < .05] but not 

for the pretest (p = .87). Figure 15 illustrates that only the failure-feedback-group showed a 

marked amplitude decrease across bins in the deterministic learning condition at posttest, 

reflected in a significant interaction between learning condition and bin (p < .01). This 

interaction was not observed for the no-failure-feedback group (p = .37), which instead 

showed reduced amplitudes in both halves of posttest. It should be noted that the learning-

related effects did not differ for positive and negative feedback. Moreover, in contrast to the 

Ne, the FRN did not reliably predict post-error accuracy posttest (rs < .27, p-values > .12). 

Summary of FRN Findings 

The mean amplitude analysis of the FRN suggested that failure-induction resulted in 

enhanced sensitivity to feedback, reflected in relatively larger amplitude differences between 

the ERPs to positive and negative feedback in the failure-feedback group at posttest. 

Moreover, amplitude of the ERPs to both feedback types was larger in the failure-feedback-

group compared to the no-failure-feedback-group in the deterministic learning condition 

during the first half of posttest. The latter finding possibly indicates that participants in the 

failure-feedback-group paid relatively more attention to the feedback at the beginning of 

learning. ANCOVAs with BIS, BAS, NA, and HOM as continuous moderator did not reveal 

significant influences of personality on failure-related changes in feedback processing17 (F-

values < 2.7, p-values > .11). 

Summary Experiment 1 

The first experiment revealed two main findings concerning the failure feedback group 

and the no-failure feedback group. First, it was found that failure induction resulted in an 

                                                 
17 ANCOVAs were conducted both for peak-to-peak and mean amplitude measures of the FRN. 
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increase of the Ne for the deterministic and probabilistic learning condition at posttest. 

Importantly, the amplitude enhancement was not accompanied by higher overall accuracy 

and therefore cannot simply be explained by changes in error expectancy. Instead, the Ne 

increase was associated with higher post-error accuracy, that is, the participants were more 

likely to correct an erroneous response on the next presentation of a stimulus. Thus, failure 

induction appears to increase the impact of error signals on behavioral adaptation during 

subsequent feedback-based learning. Furthermore, punishment sensitivity moderated the 

effects of failure on subsequent learning performance. High punishment sensitivity predicted 

reduced posttest accuracy in the failure-feedback group. By contrast, no significant 

relationship between punishment sensitivity and posttest performance was found in the no-

failure-feedback group. There was also no evidence that punishment sensitivity modulated 

the impact of failure on neural mechanisms of error processing as reflected in the Ne. 

Second, a pronounced decrease in Ne amplitude was observed in the second half of 

posttest in the deterministic learning condition for the no-failure-feedback group. At the same 

time, there was no significant pre-post accuracy decrease for either learning condition in this 

group. The latter result suggests that linking posttest performance to intelligence successfully 

motivated participants to maintain task engagement. Moreover, the present data indicate that 

lower responsivity of the error monitoring system – as reflected in the decrease of the Ne 

from the first to the second half of posttest – is not necessarily associated with performance 

deficits. 

In addition, the analysis of mean-amplitude measures of the FRN indicated that 

failure-induction lead not only to an increase of the Ne but also to enhanced sensitivity to 

external performance feedback, reflected in a relative increase in the FRN, i.e., a more 

pronounced differentiation between positive and negative feedback. By contrast, no failure-

related modulations in Pe amplitude were observed. Moreover, the analyses did not reveal 

clear evidence in support of the notion that individual differences in trait level punishment 

sensitivity, negative affect, and action vs. state orientation moderate the effects of the failure 

manipulation on error- and feedback processing. 
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6. Experiment 2 

The results of Experiment 1 show that failure induction results in an enhanced 

responsivity to internal indicators of errors as well as external performance feedback during a 

subsequent learning task. However, it remains unknown to what extent the observed effects 

reflect the increased self-relevance of posttest that was linked to intelligence. To explore this 

issue, the second experiment used a different posttest instruction: participants were simply 

told that they were going to perform the same task as in pretest. 

Research Predictions 

Based on the findings by Boksem and colleagues on mental fatigue due to sustained 

task performance (Boksem et al., 2006a; Tops and Boksem, 2010), it was predicted that 

subjects in the no-failure-feedback group disengage from task over the course of posttest. 

Thus: 

Prediction 1: In contrast to Experiment 1, accuracy as well as Ne amplitude was 

expected to decrease from pre- to posttest in the no-failure-feedback group, since the 

cognitive system becomes less efficient in monitoring ongoing behavior.  

It seemed plausible to assume that motivational disengagement also results in less 

differentiated processing of positive and negative feedback, i.e., in a decrease in FRN 

amplitude. Yet, impaired learning should be associated with larger feedback-related PEs. 

According to the R-L theory this would lead to a larger FRN. 

Prediction 2: If disengagement affects the FRN, this should be particularly evident in 

the chance condition, which is not subject to learning-related changes. 

Boksem and colleagues (2006a) did not report whether the Pe is affected by mental 

fatigue, but they found an increase in latency of the stimulus-locked P300 with time on task. 

Given that the Pe has been proposed to reflect a response-related P300 (cf. Overbeek et al., 

2005), one might reason that the Pe is also sensitive to disengagement. This prediction is 
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consistent with other theoretical accounts that link the Pe to the motivational significance or 

conscious recognition of an error. 

Prediction 3: It is conceivable that the Pe decreases from pre-to posttest in the no-

failure-feedback group. 

  Although Luu et al. (2000) reported a relationship between negative affect and 

motivational disengagement, threatening participants’ self-worth by self-relevant failure 

appears to result in an “inherent” motivational boost at posttest (Brunstein, 2000). Hence, 

action monitoring should be less affected by motivational disengagement in the failure 

feedback group than in the no-failure feedback group: 

Prediction 4: (a) At posttest, the failure-feedback group shows better performance 

and larger Ne amplitudes than the no-failure-feedback group. (b) The hypotheses concerning 

the FRN and Pe were more tentative. Generally, effects of disengagement on the FRN and 

the Pe (see Predictions 2 and 3) should be less pronounced in the failure-feedback group 

compared to the no-failure-feedback group.  

Moreover, the findings from Experiment 1 suggest that failure feedback specifically 

promotes a reactive, error-driven motivational engagement. It remains an open question, 

however, whether there are also pre-post increases in Ne amplitude, FRN amplitude, and 

post-error accuracy when posttest is described in neutral terms. 

Personality did not appear to moderate the impact of failure on the ERP-measures in 

Experiment 1. However, personality measures, such as punishment sensitivity, have been 

shown to preserve task engagement (Tops & Boksem, 2010). Thus, the corresponding 

predictions are:  

Prediction 6: (a) High punishment sensitivity is associated with less pronounced pre-

post-decreases in performance and Ne amplitudes in the no-failure-feedback group. (b) As in 

Experiment 1, high punishment sensitivity should predict worse performance in the failure-

feedback group. 
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Methods 

Participants 

Sixty-five undergraduate students were recruited for participation in this study by 

applying the same criteria as in Experiment 1. None of them had participated in the first 

experiment. Twenty-three participants quit the experiment after the pretest because they did 

not commit enough errors to obtain reliable ERP-measures (>14 error trials in both halves of 

pre- and posttest). Data from a further 9 participants had to be excluded because of poor 

performance in the learning task (4), excessive artifacts (1), and technical problems during 

EEG recording (4). The final sample thus consisted of 16 participants (11 women, mean age 

= 21.0 years; age range = 19 to 28 years) in the failure feedback group and 17 participants 

(12 women, mean age = 22.4 years; age range = 18 to 29 years) in the no-failure feedback 

group. 

Stimuli, Tasks, and Procedure 

Stimuli and tasks were the same as in the first experiment. Procedural details were 

also identical to those in Experiment 1, except for one important difference: Before starting 

with the learning task at posttest participants received the same instruction as at pretest, i.e., 

the task was not linked to intelligence, but was described in neutral terms. 

Results 

Control Analyses/Manipulation Check 

Table 2 shows the results of the psychometric tests and the questionnaires for the no-

feedback and the failure feedback group. There were no group differences with respect to 

the psychometric measures (all p-values > .37). As in Experiment 1, participants in the failure 

feedback group reported more negative feelings [F (1,31) = 14.49, p < .002] and were less 

satisfied with their performance on the visual search task [F (1,31) = 13.28, p < .002].  
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Tabelle 2. Results of the psychometric measures, the mood scale (BfS), self-evaluation for 

the visual search task and motivational involvement/rumination at posttest (means and 

standard deviations) for the no-failure feedback group and the failure feedback group 

(Experiment 2) 

Measure No-failure feedback group Failure feedback group 

Cognitive variables   

DSS 61.59 (9.01) 61.88 (8.41) 

Spot-a-word 21.06 (4.49) 19.81 (3.31) 

Digit ordering 08.53 (2.43) 08.94 (2.05) 

Affect & action control   

PA 36.29 (4.78) 37.38 (4.76) 

NA 21.47 (4.61) 23.19 (7.83) 

BIS 02.88 (0.49) 02.84 (0.41) 

BAS 03.16 (0.29) 03.18 (0.31) 

HOMa 04.12 (2.00) 04.75 (2.65) 

Mood (post-manipulation)   

BfSb 010.71 (5.55) 18.06 (5.54) 

Final questionnaire   

Self-evaluation 03.53 (0.82) 02.59 (0.64)  

Involvement 03.43 (0.62) 03.32 (0.69) 

Rumination 02.09 (0.92) 01.59 (0.73) 

a Note that higher scores indicate action orientation while lower scores indicate state-orientated behaviour. 

b Higher scores indicate more negative feelings. 
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Accuracy Data 

Response latencies faster than 256 ms (> 2SD) or exceeding the response deadline 

were excluded from further analyses18. Accuracy data were analysed using the same 

ANOVA design as in Experiment 1. As can be seen from Figure 16, a significant main effect 

of learning condition [F(2,62) = 250.66, p < .001] indicated that accuracy was highest for the 

deterministic learning condition and lowest for the chance condition (p-values < .001). 

Learning-related effects. The analysis yielded a significant main effect of bin [F(5,155) 

= 26.30, p < .001, ε = .68] that was qualified by an interaction between learning condition and 

bin [F(10,310) = 4.38, p < .001]. Moreover, an interaction between test phase and bin 

[F(5,155) = 4.29, p < .01, ε = .82] and a marginally significant interaction between test phase, 

bin, and learning condition [F(10,310) = 1.83, p = .088, ε = .66] indicated that the course of 

learning differed between pre- and posttest. Polynomial contrasts revealed linear increases 

in accuracy for both learning conditions across pretest only (p-values < .01). At posttest, 

accuracy varied across the bins following a predominantly cubic (p < .001) and quadratic (p < 

.01) trend for the deterministic and probabilistic learning condition, respectively (see Figure 

16). 

Effects of failure manipulation. In contrast to Experiment 1, a significant interaction 

between feedback group and test phase was obtained [F(1,31) = 8.32, p < .01]. Separate 

analyses for the two groups revealed that accuracy significantly decreased from pre- to 

posttest in the no-failure feedback group [F(1,16) = 9.85, p < .01], whereas no pre-post 

difference in accuracy was found for the failure feedback group (p = .23). 

                                                 
18 The deadline was exceeded by 2.2% (no-failure feedback group) and 2.3% (failure feedback group) of the 

responses. At pretest, mean RTs on correct and incorrect trials were 446 ms (SD = 33 ms) and 440 ms (SD = 30 

ms) for the no-failure feedback group and 427 ms (SD = 23 ms) and 423 ms (SD = 22 ms) for the failure feedback 

group. At posttest, mean RTs on correct and incorrect trials were 404 ms (SD = 32 ms) and 393 ms (SD = 26 ms) 

for the no-failure feedback group and 411 ms (SD = 27 ms) and 403 ms (SD = 26 ms) for the failure feedback 

group. 
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Figure 16: Mean accuracy learning curves for the three learning conditions displayed separately for the no-failure 

feedback group and failure feedback group at pretest (left) and posttest (right). Error bars indicate standard error. 
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Post-error Accuracy Data 

As in Experiment 1, post-error accuracy rates were subjected to an ANOVA with the 

factors feedback group, test phase, and learning condition. Figure 17 shows that post-error 

accuracy increased with feedback validity [F(2,62) = 82.86, p < .001]. 

 

Figure 17: Mean post-error accuracy rates for the three learning conditions at pretest and posttest displayed 

separately for the no-failure feedback group (left) and failure feedback group (right). Error bars indicate standard 

error. 

Effects of failure manipulation. The analysis yielded a significant interaction between 

feedback group and test phase [F(1,31) = 11.14, p < .01]. Decomposing the interaction 

revealed that post-error accuracy reliably decreased from pre- to posttest for the no-failure 

feedback group [F(1,16) = 5.05, p < .05], but increased for the failure feedback group 

[F(1,15) = 6.25, p < .05] (see Figure 18). In contrast to Experiment 1, the analysis of post-

error RT revealed a significant interaction between feedback group and test phase [F(1,31) = 

9.46, p < .01], reflecting a smaller pre-post decrease in post-error RT for the failure feedback 

group than for the no-failure feedback group. Although there were no reliable between-group 

differences at pre- or posttest (p-values > .10), this finding suggests that the failure feedback 

group increased post-error accuracy at the cost of relatively longer post-error RT. 
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Summary of Behavioural Findings 

Whereas the no-failure feedback group showed worse performance at posttest, 

overall accuracy did not differ between pre- and posttest in the failure feedback group. 

Similar to Experiment 1, non learning-related dynamics of performance became prevalent for 

both groups at posttest. While these findings are likely to reflect reduced task engagement 

towards the end of posttest in the no-failure feedback group, the pattern of performance in 

the failure feedback group suggests that participants produced relatively more errors of 

commission during posttest, particularly in the deterministic learning condition. In support of 

this, RTs decreased from pre- to posttest and were faster in the deterministic than in the 

probabilistic learning condition on error trials (p-values < .001). Consistent with Experiment 1, 

failure induction was specifically associated with increased error-correction rates. Whereas 

failure-induction was associated with learning impairments in highly punishment sensitive 

individuals in Experiment 1, trait variables did not reliably moderate the effects of failure on 

overall or post-error accuracy in Experiment 2 (F-values < 2.6, p-values > .12). 

ERP data 

Error Negativity 

Figure 18 shows the ERPs to correct and incorrect responses, separately for both 

feedback groups in the first and second half of pre- and posttest (see also Figure 20). The 

peak-to-peak measures of the Ne and the mean amplitude of the correct response-related 

positivity were analyzed using the same ANOVA design as in Experiment 1. Consistent with 

Experiment 1, both the Ne and the correct response-related positivity increased with 

feedback validity [F(2,62) = 47.89 and 61.42, respectively, p-values < .001]. Below, the 

failure-related effects on the Ne are reported first, followed by the results for the correct-

response related positivity. 
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Figure 18: Response-locked ERPs to correct (solid lines) and incorrect responses (dashed lines) displayed 

separately for the no-failure feedback group and failure feedback group and the two halves of pretest (left) and 

posttest (right). The upper panels show the ERPs in the deterministic learning condition at electrode sites Fz, 

FCz, and Cz. Small boxes highlight the Ne effect at FCz. The lowest panel shows the ERPs in the probabilistic 

learning at electrode FCz. 

General effects of failure. The analysis revealed a reliable main effect of feedback 

group [F(1,31) = 4.74, p < .05] that was qualified by a significant interaction between 

feedback group and test phase [F(1,31) = 17.41, p < .001]. As illustrated in Figure 18 (see 
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also Figure 19), the Ne decreased from pre- to posttest for the no-failure feedback group 

[F(1,16) = 10.97, p < .01], but increased from pre- to posttest for the failure feedback group 

[F(1,15) = 6.14, p < .05]. 

Learning-related effects of failure. Similar to Experiment 1, I found significant 

interactions between learning condition and bin [F(2,62) = 11.88, p < .001] and test phase, 

feedback group, learning condition, and bin [F(2,62) = 3.34, p < .05]. Separate pre- and 

posttest analyses yielded a significant interaction between feedback group, learning 

condition, and bin for posttest [F(2,62) = 4.93, p < .05, ε = .84] but not for pretest (F < 1). At 

posttest, a significant interaction between learning condition and bin was obtained for the 

failure feedback group only [F(2,30) = 6.56, p < .01; no-failure feedback group: p = .30]. 

Figure 19 shows that the Ne increased over the course of posttest for the deterministic and 

probabilistic learning condition (p-values < .05) but tended to decrease for the chance 

condition (p = .056). 

Consistent with Experiment 1, greater Ne amplitudes predicted higher post-error 

accuracy for deterministic and probabilistic learning condition at both pretest [r(33) = −.38 

and −.40, respectively, p-values< .05] and posttest [r(33) = −.54 and −.67, respectively,  p-

values< .01]19. 

Effects of learning on the correct response-related positivity. The positivity on correct 

trials increased from Bin 1 to Bin 2 [F(1,31) = 70.61, p < .001] and from pre- to posttest 

[F(1,31) = 16.13, p < .001]. As was indicated by a significant interaction between bin and test 

                                                 
19 However, separate analyses for the two groups and the two test phases revealed a more inconsistent pattern 

than in Experiment 1. For the no-failure-feedback group, (marginally) significant correlations between Ne and 

post-error accuracy were found both at pre- and posttest in the deterministic learning condition, [r(17) = −.48 and 

−.67, p = .053 and <.01, respectively], but only at posttest in the probabilistic learning condition [r(17) = −.32 and 

−.53, p = .21 and <.05, respectively]. For the failure-feedback group, in contrast, no reliable correlation between 

Ne and post-error accuracy was found at either pre- or posttest in the deterministic learning condition [r(16) = −.07 

and −.36, p = .80 and .17, respectively], but there were (marginally) significant relations both at pre- and posttest 

in the probabilistic learning condition [r(16) = −.49 and −.77, p = .056 and <.001, respectively]. Notably, the 

correlation coefficients did not significantly differ between the two feedback groups at either pre- or posttest (z-

values < 1.19, p-values > .23). 
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phase [F(1,31) = 20.83, p < .001], the amplitude difference between the two bins was larger 

at pretest (see Figure 18). No effect of failure manipulation was found (p-values > .18). 

 

Figure 19: Bar graphs show the mean Ne amplitude at electrode FCz, separately for the three learning conditions 

within each group at pretest (left) and posttest (right). Error bars indicate standard error. Note that the amplitude 

difference in comparison to the waveforms shown in Figure 7 is due to the latency jitter across participants, 

resulting in a reduction of the Ne in the grand average ERP. 

Summary of Ne Findings 

In line with Experiment 1, these findings demonstrate that failure feedback resulted in 

an enhancement of the Ne. Moreover, there was an increase in Ne amplitude over the 

course of posttest for the deterministic and probabilistic learning condition in the failure 

feedback group. In contrast, the Ne decreased from pre- to posttest for the no-failure 

feedback group. This decrease was much more pronounced than in Experiment 1, where the 

no-failure group showed a reduced Ne for the deterministic learning condition in the second 

half of posttest only. In contrast to Experiment 1, no evidence for a moderating role of state 

orientation (or any other trait variable) was found (F-values < 2.4, p-values > .10). 
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Error Positivity 

 Figure 20 shows the ERPs to correct and incorrect responses at electrode Pz, 

separately for the three learning conditions and the two feedback groups at pre- and posttest. 

The Pe was clearly evident as a centro-parietally distributed slow-wave that was more 

positive-going after erroneous compared to correct responses in the deterministic and 

probabilistic learning condition. The Pe was analyzed using the same ANOVA design as in 

Experiment 1. The analysis yielded reliable main effects of feedback type [F(1,31) = 51.17, p 

< .001] and learning condition [F(2,62) = 47.90, p < .001, ε = .87]. Similar to Experiment 1, a 

significant interaction of feedback type and learning condition [F(2,62) = 42.50, p < .001, ε = 

.70] indicated that the Pe was sensitive to feedback validity. Contrasts showed that the Pe 

was larger in the deterministic compared to the probabilistic learning condition [F(1,31) = 

4.38, p < .05] and in the two learning conditions compared to the chance condition [F(1,31) = 

51.78, p < .001], in which no Pe was observed (see Figure 21). Moreover, a marginally 

significant interaction of feedback type, learning condition, test phase, and feedback group 

was obtained [F(2,62) = 2.88, p = .075, ε = .82]. Decomposing the interaction within each 

group revealed a marginally significant interaction of feedback type, learning condition, and 

test phase in the failure-feedback group only [F(2,30) = 2.61, p = .090]. As can be seen from 

Figure xx, this finding reflects that the Pe tended to increase from pre- to posttest in the 

failure-feedback group. 

Learning-related effects of failure. Figure 20 illustrates that the Pe increased over the 

course of pretest in the deterministic and probabilistic condition (but not in the chance 

condition) in both feedback groups. At posttest, however, a learning-related increase in Pe 

amplitude was only observed for the failure-feedback group. Accordingly, the analysis 

revealed a significant main effects of bin [F(1,31) = 66.53, p < .001] as well as significant 

interactions of bin and feedback type [F(1,31) = 25.63, p < .001], bin, feedback type, and 

learning condition [F(2,62) = 4.49, p < .05, ε = .85], bin, feedback type, learning condition, 

and feedback group [F(2,62) = 5.94, p < .01, ε = .85], bin, feedback type, learning condition, 

feedback group, and test phase [F(2,62) = 3.81, p < .05]. Follow-up ANOVAs that were split 
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by test phase revealed a significant interaction of bin, feedback type, learning condition, 

feedback group for the posttest [F(2,62) = 10.14, p < .01, ε = .78], but not for the pretest (p = 

.77). Decomposing the interaction within each group yielded a significant interaction of bin, 

feedback type, and learning condition for the failure-feedback group only [F(2,30) = 10.14, p 

< .01, ε = .71]. As shown in Figure 20, this interaction indicates that the Pe increases over 

the course of posttest in the two learning conditions for the failure-feedback group. As in 

Experiment 1, there were no significant correlations between Pe amplitude and post-error 

accuracy at pre- or posttest (rs < .18, p-values > .30). 

 

Probabilistic and Chance Condition 
 

Pe Amplitude in µV 
 

No-Failure-Feedback Group 
 

Failure-Feedback Group No-Failure-Feedback Group Failure-Feedback Group 

    

Figure 20: The upper panel shows the response-locked ERPs in the deterministic learning condition at electrode 

Pz. Grey bars highlight the time window used for Pe analysis. The lower panel shows the mean Pe amplitudes (in 

µV) in the probabilistic learning and chance condition, separately for correct and incorrect trials. 
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Summary of Pe Findings 

 In line with Experiment 1, the Pe increased with feedback validity. Moreover, the Pe 

increased with learning in both groups at pretest, but this was only the case for the failure-

feedback group at posttest. As in Experiment 1, trait variables did not moderate the effects 

on Pe-amplitude (F-values < 2.1, p-values > .14). 

Feedback-related Negativity 

 Feedback-locked ERPs are presented in Figure 21. The FRN was evident as a more 

negative-going deflection following negative compared to positive feedback at fronto-central 

sites and decreased with feedback validity. Similar to the first experiment, visual inspection 

suggested that there was an overall amplitude reduction in the feedback-locked ERPs over 

the course of learning as well as from pre- to posttest, particularly in the deterministic 

learning condition. However, Figure 21 also shows that the amplitude of the feedback-locked 

ERPs was generally reduced in the no-failure-feedback group both at pre- and posttest. As in 

Experiment 1, I will first report the analyses of peak-to-peak amplitudes, followed by the 

results for the mean amplitude measures of the FRN. 

Peak-to-peak Analysis of the FRN 

Failure-related effects. The analysis of peak-to-peak amplitudes yielded a reliable 

main effect of feedback type [F(1,31) = 66.32, p < .001], and marginally significant 

interactions of feedback type and test phase [F(1,31) = 3.68, p = .064] and feedback type, 

test phase and feedback group [F(1,31) = 3.86, p = .058]. Separate analyses for each group 

yielded a significant interaction of feedback type and test phase for the no-failure-feedback 

group [F(1,17) = 17.09, p < .01], whereas no effect was found for the failure-feedback group 

(p = .98). Figure 21 illustrates that the FRN – defined as the difference between positive and 

negative feedback20 – decreased from pre- to posttest in the no-failure-feedback group. 

Moreover, the analysis revealed a significant interaction of feedback group, test phase, 

                                                 
20 Separate analyses failed to obtain significant pre-post differences both for ERPs to positive (p = .25) and 

negative feedback (p = .10). 
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learning condition, feedback type, and bin [F(2,62) = 3.49, p < .05]. Follow-up ANOVAs 

within each group yielded a significant interaction of test phase, learning condition, feedback 

type, and bin for the no-failure-feedback group only [F(2,32) = 4.97, p < .05]. As can be seen 

from Figure 22, this interaction indicated that for the chance condition, the pre-post decrease 

in FRN amplitude was more pronounced in Bin 2. 

 

Figure 21: Feedback-locked ERPs to correct (solid lines) and incorrect responses (dashed lines) displayed 

separately for the no-failure feedback group and failure feedback group and the two halves of pretest (left) and 

posttest (right). 

Mean Amplitude Analysis of the FRN 

 The analysis yielded reliable main effects of feedback type [F(1,31) = 24.15, p < .001] 

and learning condition [F(2,62) = 20.36, p < .001] that were qualified by an interaction of 
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feedback type and learning condition [F(2,62) = 5.55, p < .01]. Contrasts showed that the 

FRN was smaller in the two learning conditions compared to the chance condition [F(1,31) = 

7.63, p < .05], whereas the difference between deterministic and probabilistic learning 

condition failed to reach significance (p = .22). Separate analyses for each feedback type 

yielded a significant main effect of learning condition both for positive feedback (p < .001) 

and negative feedback (p < .05). Positive feedback elicited more negative amplitudes in the 

deterministic compared to the probabilistic learning condition and in the two learning 

conditions compared to the chance condition (p-values < .001). By comparison, for negative 

feedback, a significant difference was found between deterministic and probabilistic learning 

condition (p < .05) but not between the two learning conditions and the chance condition (p = 

.23). In addition, the analysis yielded a reliable main effect of test phase [F(1,31) = 8.89, p < 

.01], reflecting a general attenuation of ERP amplitudes from pre- to posttest. Moreover, a 

marginally significant main effect of feedback group [F(1,31) = 3.16, p = .085], indicated an 

overall difference in ERP amplitude between the two groups. As can be seen from Figure 22, 

the ERPs were more positive-going both at pre- and posttest in the failure-feedback group. 

Learning-related effects. A significant main effect of bin [F(1,31) = 8.74, p < .01] and a 

significant interaction of bin and learning condition [F(2,62) = 10.90, p < .001] were obtained. 

As illustrated in Figure 22, these effects reflect a learning-related decrease in the amplitude 

of the feedback-locked ERPs that was more pronounced in the deterministic compared to the 

probabilistic learning condition [F(1,31) = F(1,31) = 12.20, p < .01] and in the two learning 

conditions compared to the chance condition [F(1,31) = 7.52, p < .05]. Of note, neither the 

mean amplitude measures nor the peak-to-peak measures of the FRN were significantly 

correlated with post-error accuracy at pre- or posttest (rs < .27, p-values > .14). 

Summary of FRN Findings 

For the peak-to-peak measures, the analysis showeda decrease of the FRN from pre- 

to posttest in the no-failure-feedback group. In contrast, the mean-amplitude analysis 

revealed an overall pre-post attenuation of ERP amplitude only. In line with Experiment, no 
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evidence was obtained to indicate a modulatory role of trait variables for either mean 

amplitude measures or peak-to-peak amplitudes of the FRN (F-values < 2.0, p-values > .18). 

Summary Experiment 2 

The results of Experiment 2 confirmed the prediction that prolonged task performance 

results in motivational disengagement for the no-failure feedback group and provide further 

support for the notion that failure feedback amplifies sensitivity to internal indicators of errors. 

First, in contrast to Experiment 1, participants in the no-failure feedback group showed worse 

performance at posttest. Consistent with former studies (Boksem et al., 2006b; Tops & 

Boksem, 2010), the performance impairments were accompanied by a decrease of the Ne in 

the deterministic learning condition. However, in contrast to previous suggestions (Tops & 

Boksem, 2010), there was no evidence that traits such as punishment sensitivity and 

negative affectivity interact with the effects of task duration on behavioural and 

electrophysiological indices of engagement. In line with Experiment 1, the Pe increased with 

learning in both groups at pretest, but this was only the case for the failure-feedback group at 

posttest. This finding further supports the notion that participants in the no-failure-feedback 

group disengaged from task towards the end of posttest. Moreover, the analysis of peak-to-

peak amplitudes revealed a decrease in the FRN from pre- to posttest in the no-failure-

feedback group. Yet, the mean amplitude analysis of the FRN only yielded an overall pre-

post decrease in ERP amplitude that was evident in both groups. This finding may reflect that 

participants generally paid less attention to the feedback at posttest. 

Second, the results for the failure feedback group replicated the findings from 

Experiment 1. In both experiments, failure induction was associated with an increase in Ne 

amplitude as well as higher post-error accuracy in the deterministic and probabilistic learning 

condition. In contrast to Experiment 1, however, the failure manipulation did not affect the 

FRN nor were there influence of punishment sensitivity of posttest learning performance. 
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7. Discussion of Experiment 1 and 2 

The following section is divided into three parts. The first part summarizes the main 

findings of the two experiments. In the second part, learning-related changes of the 

response- and feedback-locked ERPs are discussed. The third part focuses on the most 

important findings of the present research – the effects of the failure manipulation. 

Summary of Main Results 

The aim of the present experiments was to examine how exposure to self-relevant 

failure influences performance monitoring – as reflected in the Ne, FRN, and Pe – and 

behavioural adaptation during subsequent feedback-based learning. Two phases (pre- and 

posttest) of a learning task were applied that included three different conditions of feedback 

validity (100%, 80%, and 50%). Between pre- and posttest, participants were assigned to 

one of two groups receiving either failure feedback or no feedback during a visual search 

task that was described as diagnostic of intellectual abilities. To disentangle the effects of 

failure and motivational disengagement due to prolonged task performance, the posttest was 

linked to intelligence (Experiment 1) or described in neutral terms (Experiment 2). 

Consistent with previous research that has established a link between the Ne and the 

evaluation of the affective and motivational significance of an error (e.g., Gehring et al., 1993; 

Hajcak et al., 2005; Luu et al., 2003), the results of both experiments revealed that exposure 

to uncontrollable failure led to an increase of the Ne in the subsequent learning task. These 

findings were extended by the observation that the failure-induced Ne amplitude 

enhancement was accompanied by more efficient error-related behavioural adjustments 

during learning. Crucially, the increase in Ne amplitude at posttest was not associated with 

better overall performance, but higher post-error accuracy, i.e., a higher proportion of correct 

choices on the next presentation of the target on which an erroneous response occurred. It is 

important to note that this error-related change in behaviour is unlikely to reflect an unspecific 

increase of attention or arousal since stimuli were presented in random order. Instead, the 

behavioural adjustment appears to specifically relate to a higher impact of negative 

reinforcement learning signals at posttest (Frank et al., 2005; Holroyd & Coles, 2002). In line 
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with this view, the failure-induced Ne increase was more pronounced in the second half of 

posttest when the participants were better able to internally represent an incorrect response. 

Moreover, failure feedback affected the Ne amplitude in the two learning conditions but not in 

the chance condition. In Experiment 1, the analysis of mean-amplitude measures of the FRN 

revealed a relatively larger difference between positive and negative feedback in the failure-

feedback group compared to the no-failure-feedback group at posttest. This finding suggests 

that failure-induction did not only result in a heightened responsivity to internal indicators of 

errors but also increased the sensitivity to external performance feedback. However, the 

results of Experiment 2 failed to confirm a failure-related FRN modulation. Instead, the peak-

to-peak amplitude analysis revealed a reduced difference between positive and negative 

feedback in the no-failure-feedback group at posttest. Furthermore, the mean-amplitude 

analysis showed that the ERPs generally decreased from pre- to posttest. No failure-related 

modulations in Pe amplitude were observed in Experiments 1 and 2. Yet, there was a lack of 

learning-related changes in Pe amplitude across posttest in the no-failure-feedback group in 

Experiment 2. 

Corroborating prior findings concerning the effects of prolonged task performance on 

action monitoring (Boksem et al., 2006a; Tops & Boksem, 2010), Ne amplitude and accuracy 

decreased with time on task for the no-failure feedback group in Experiment 2. In contrast, 

both groups in Experiment 1 as well as the failure feedback group in Experiment 2 showed 

comparable overall performance at pre- and posttest. Thus, increasing the motivational 

significance of posttest by linking the learning task to intelligence (Experiment 1) or giving 

prior negative feedback as to participants’ intellectual abilities (Experiment 1 and 2) 

preserved task engagement. However, we observed different fluctuations of the Ne across 

posttest: the Ne amplitude decreased for the deterministic learning condition in the no-failure 

feedback group, but increased for deterministic and probabilistic learning condition in the 

failure feedback groups. 

Furthermore, the results of the two experiments did not reveal clear evidence in 

support of the notion that individual differences in trait level punishment sensitivity, negative 

affect, and action vs. state orientation modify the effects of the failure manipulation on error- 

and feedback processing. Only in Experiment 1, punishment sensitivity moderated the 
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effects of failure on subsequent learning performance. High punishment sensitivity predicted 

reduced posttest accuracy in the failure-feedback group but not in the no-failure-feedback 

group. There was no evidence that punishment sensitivity modulated the impact of failure on 

neural mechanisms of error processing as reflected in the Ne and FRN. 

Learning-related Changes in the Response- and Feedback-locked ERPs 

There were two main reasons for examining ERP modulations over the course of 

pretest. First, they provided a baseline that was potentially relevant for the interpretation of 

failure-related effects. Second, the present research aimed to replicate findings by Eppinger 

and colleagues (2008, 2009) indicating learning-related effects on the processing of correct 

responses and positive feedback. 

 Learning-related changes in the Ne. In line with previous studies (e.g., Eppinger et al., 

2008, 2009; Holroyd & Coles, 2002; Nieuwenhuis et al., 2002), the analysis of the response-

locked ERPs showed that the Ne was the larger the more valid the feedback. Moreover, the 

present study confirmed prior findings (Eppinger et al., 2008; 2009), which demonstrated that 

not only the Ne but also the correct response-related positivity is sensitive to response-

outcome contingency. Yet contrary to the predictions of the R-L theory (Holroyd & Coles, 

2002), the Ne did not increase with learning in either group. Instead, consistent with the 

studies by Eppinger and coworkers, there was a pronounced learning-related enhancement 

in the ERPs to correct responses. 

On the first glance, the observed pattern of learning-related modulations in the 

response-locked ERPs contradicts the predictions of the R-L theory. Instead, the data appear 

to speak in favour of more recent proposal that focus on variations in the ERPs to correct 

responses (e.g., Eppinger et al., 2008, 2009; Foti et al., 2011; Holroyd et al., 2008). Yet, 

there are several reasons to suggest that caution is warranted in drawing this conclusion 

based on the current data. First, the bins in the present experiments contained a quite large 

number of trials. Given that accuracy reached asymptote within the first bin (see Figures 11 

and 17), averaging across the first vs. second half of the learning task might have obscured 

an early increase in Ne amplitude. In support of this notion, learning-related changes in the 
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Ne have been found if the learning task contained a fewer number of item repetitions (e.g. 

Eppinger & Kray, 2011) or involved more than two response options and hence was more 

difficult (Pietschmann et al., 2008). 

Second, it has been demonstrated the action monitoring as indexed by the Ne is 

susceptible to mental fatigue due to prolonged task performance (Boksem et al., 2006a; 

Tops & Boksem, 2010). Of note, in the Boksem et al.’s (2006a) study, the Ne amplitude 

showed the most pronounced reduction after the first 20 minutes of task performance. This 

approximately matches the duration of one bin of the learning task in the present 

experiments. Thus, it is conceivable that the effects of fatigue on Ne amplitude have 

attenuated those of learning. 

Third, the correct response-related positivity increased not only in the deterministic 

and probabilistic learning condition but also in the chance condition. Furthermore, the 

positivity increased from pre- to posttest. At the same time, accuracy did not change or even 

decreased from the first to the second learning phase. This finding seems hard to reconcile 

with the idea of a reward-related learning signal. It should be noted, however, that the 

variance in the response-locked positivity might partly reflect stimulus-evoked P300 activity 

(Hajcak, Vidal, & Simons, 2004; Vidal, Burle, Bonnet, Grapperon, & Hasbroucq, 2003). 

Indeed, Eppinger and coworkers (2008, 2009) reported that the stimulus-evoked P300 

increased across the bins in each of the three conditions, including the chance condition. In 

contrast to the present study, the authors did not find an increase in the response-locked 

positivity in the chance condition, suggesting that this component is dissociable from the 

stimulus-evoked P300. Nonetheless, component overlap is a serious problem in interpreting 

learning-related modulations in Ne and correct response-related positivity. 

It might be of particular interest, therefore, that a similar investigation failed to obtain 

differential learning-related modulations in the ERPs to correct and erroneous responses 

(Pietschmann et al., 2008). Importantly, the learning task used in this study involved four 

(instead of two) possible S-R mappings. Since no response deadline was applied, this 

manipulation resulted in comparatively long response latencies (about 900 ms) and probably 

in a less substantial overlap with the stimulus-evoked P300. Although the mean accuracy 

rates in the study were comparable to those obtained in the present experiments, the authors 
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observed moderate learning-related changes in the ERPs to correct as well as erroneous 

responses. In addition, Pietschmann and coworkers found a pronounced correct-response 

negativity (CRN) – rather a response-related positivity – that decreased as learning 

progressed. As the CRN has been linked to response uncertainty (Coles et al., 2001; 

Scheffers & Coles, 2001), the authors suggested that their findings reflect the learning-

related reduction in uncertainty about the correctness of a response. 

Thus both the null finding for the Ne and the pronounced learning-related modulations 

in the correct response-related positivity need to be interpreted with caution. 

Learning-related changes in the FRN. Similar to the Ne, the FRN varied as a function 

of response-outcome contingency in both experiments. As predicted, the FRN was the 

smaller the more valid the feedback. In addition, analyses showed that feedback validity 

affected the ERPs to positive feedback rather than those to negative feedback, which is in 

line with previous data (Cohen et al., 2007; Eppinger et al., 2008, 2009; Holroyd & Coles, 

2002; Nieuwenhuis et al., 2002). However, the present study did not find evidence for 

learning-related modulations in FRN amplitude. Instead, the ERPs to both positive and 

negative feedback became less positive as participants learned the mappings rules. In 

particular, this finding contrasts with the results of Eppinger and colleagues (2008, 2009), 

who reported a learning-contingent amplitude reduction in the ERPs to positive feedback 

only. This discrepancy was somewhat surprising, given that basically the same learning 

paradigm was applied. The most obvious difference to the Eppinger et al.’s studies was the 

longer temporal extension of the bins created to examine effects of learning21. Thus, it seems 

plausible to assume that differential learning-related modulations of positive vs. negative 

feedback trials occurred within the first bin only. By contrast, the overall amplitude reduction 

in the second bin was likely to reflect an attenuation of the feedback-evoked P300. In line 

with this view, visual inspection suggested that the effect was maximal at posterior sites. The 

feedback-evoked P300 shows sensitivity to the motivational salience of an outcome (Yeung 

                                                 
21 Pre- and posttest contained only 600 trials (as opposed to 1500 trials in the Eppinger et al.’s studies) and were 

divided in two bins only (instead of four). Moreover, the learning blocks contained a larger number of stimuli (12 

vs. 6) and a longer inter-trial-interval was applied. 
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& Sanfey, 2004) and is smaller if feedback does not provide response-related information 

(Walsh & Anderson, 2011; Yeung, Holroyd, & Cohen, 2005). A feasible explanation of the 

amplitude reduction in the second bin, then, is that participants paid less attention to the 

feedback stimulus after they have developed an internal representation of the correct 

response. 

Yet, the lack of learning-related variations in the ERPs to positive feedback contrasts 

with the findings for the response-locked positivity. If the two components are neural 

manifestations of a positive PE, as was suggested by Eppinger and coworkers (2008, 2009), 

they would be expected to show complementary changes over the course of learning. There 

is no obvious reason why reward prediction indicated by the response-related positivity 

should continue to increase, while the evaluation of the actual reward indicated by the 

feedback-locked positivity remains unaltered. 

Although the bins in the present study may have been too large to reveal learning-

related modulations in the FRN, the current findings further substantiate the notion that 

expectancy of rewards vs. non-rewards affects the neural responses to positive feedback, 

while leaving unaffected the processing of negative feedback (Cohen et al., 2007; Eppinger 

et al., 2008, 2009; Holroyd et al., 2008). Indeed, this idea has received considerable support 

from a recent study using temporospatial principal components analysis to identify a positive 

deflection underlying the ERP difference between positive and negative feedback in the FRN 

time window (Foti et al., 2011). Crucially, the study clearly distinguished the reward-related 

positivity from the feedback-evoked P300. This is particularly important as the P300 overlaps 

with the FRN in time and has also been shown to vary as a function of outcome expectancy 

(Hajcak, Holroyd, Moser, & Simons, 2005; Johnson & Donchin, 1980). 

Taken together, the FRN was sensitive to feedback validity but did not change with 

learning, possibly reflecting that the bins were too large to assess learning-related dynamics. 

Learning-related changes in the Pe. In line with the findings by Eppinger et al. (2009), 

the analysis revealed that the Pe increased with learning and feedback validity. Although the 

ERPs to erroneous as well as correct responses became more positive as learning 

progressed, the amplitude enhancement was more pronounced on error trials. The sensitivity 
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of the Pe to feedback validity and learning is consistent with most theoretical accounts on 

this component such as the ‘error-awareness hypothesis’ and the ‘error-salience hypothesis’ 

(cf. Overbeek et al., 2005; Steinhauser & Yeung, 2010). If the Pe reflects conscious error 

recognition, it should grow larger with the development of an internal representation of the 

correct response. Similarly, the cognitive or affective salience of errors should increase with 

advanced learning. 

The learning-related change in the Pe is also in line with proposals that stress the 

similarity to the P300 (Leutholt & Sommer, 1999). In particular, the P300 has been proposed 

to reflect the updating of an internal model of the current environmental context in response 

to events signalling a mismatch with this model (Donchin & Coles, 1988). This directly 

implies that the Pe should vary over the course of learning, reflecting the incorporation of the 

response rules into the context model (cf. Overbeek et al., 2005). Yet, the current findings 

are not thoroughly consistent with a ‘P300 account’ of the Pe. According to more recent 

views, the P300 signifies the motivational significance of the eliciting event and is linked to 

processes that support goal-directed behavioural adjustments (Nieuwenhuis et al., 2005). In 

line with this notion, Chase and coworkers (2010) showed that the P300 to negative 

feedback predicted rule detection and explicit rule-based behavioural adjustments in a 

reversal learning task. The present experiments, however, did not provide evidence for a 

relationship between the Pe and error-related behavioural adaptation. In contrast to the Ne, 

the Pe did not significantly correlate with post-error accuracy. Of course, this finding does not 

exclude that the Pe may relate to other forms of remedial actions, such as for example 

immediate error correction (Nieuwenhuis et al., 2005). 

Interestingly, the pattern of results for the Pe bears striking resemblance to that for 

the correct response-related positivity both morphologically and functionally. The two 

components were maximal at midline centro-parietal electrode sites and showed pronounced 

changes over the course of learning and from pre- to posttest. This finding further 

corroborates the view that highly similar neural processes underlie the Pe, the correct 

response-related positivity, and the stimulus-evoked P300. 
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In sum, most pronounced learning-related modulations were observed for the correct 

reponse-related positivity and the Pe. By contrast, Ne and FRN increased with feedback 

validity only. While the latter the latter finding presumably reflect that the bins were too large 

to track learning-related dynamics, the effects in the correct response-related positivity might 

have been partially caused by component overlap with the stimulus-evoked P300.  

Effects of Failure on Performance Monitoring and Learning 

Of central interest for the present thesis were the effects of failure on behavioural and 

electrophysiological indices of performance monitoring and learning. Consistent with the 

findings by Brunstein and Gollwitzer (1996), self-relevant failure did not result in learning 

impairments. Specifically, the results of Experiment 2 indicate that failure exposure 

prevented motivational disengagement at posttest. However, enhancing the motivational 

significance of posttest in Experiment 1 was not associated with an additional performance 

benefit in the failure-feedback group. By contrast, Brunstein and Gollwitzer (1996) reported 

better performance in a subsequent task relevant to the self-aspect threatened through prior 

failure. Yet in their study, the task was very simple and short in duration (< 10 minutes). In 

the present study, the learning task took about 45 min und was cognitively more demanding. 

Thus, one possible explanation for the lack of performance improvements is that the need to 

cope with failure-related negative affect depleted control resources the learning task relied on 

(Inzlicht & Gutsell, 2007). 

This view is in line with the suggestion that participants made more “errors of 

commission” in the deterministic learning condition during later stages of posttest, particularly 

in Experiment 1. As I have pointed out earlier, these errors were likely to reflect lapses in 

focused attention. From visual inspection (see Figure 11), it appears that the corresponding 

drop in accuracy was more prevalent in the failure-feedback-feedback group than in the no-

failure-feedback group. Although the effect failed to reach significance in the overall ANOVA, 

a separate posttest analysis revealed a significant interaction of feedback group, learning 

condition, and bin [F(10,330) = 2.13, p < .05]. The interaction indicated that the course of 

performance differed between the groups in the deterministic learning condition (p < .05) but 
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not in the probabilistic and chance condition (p-values > .77). This finding may suggest that 

participants in the failure-feedback group allocated less attentional resources to stimuli in the 

deterministic learning condition after they have learned the contingencies. 

Furthermore, selective failure-related performance impairments in the deterministic 

learning condition seem to fit previous findings that stress primarily affects explicit learning 

and memory strategies (Schwabe et al., 2011; Schwabe & Wolf, 2009). However, failure 

exposure did not appear to undermine the acquisition of the correct response mappings. If 

anything, subsequent retrieval and maintenance of the response rules was compromised. 

There was also no evidence that failure-induction promoted habitual, incremental learning. 

Although the overall ANOVA on mean accuracy rates might have been insensitive to subtle 

changes in learning rate, visual inspection of the learning curves did not suggest that 

learning progressed more slowly at posttest. Instead, participants in the failure feedback 

group showed numerically higher performance scores at the beginning of posttest. It should 

be noted, however, that habitual control was not directly tested in the current study. Thus, it 

is conceivable that failure-induction resulted in relative insensitivity to contingency degrading 

and reduced explicit knowledge of the mapping rules. Future studies may probe this 

possibility. 

The Ne is sensitive to prior failure. Most strikingly, the results of Experiment 1 and 2 

showed that failure-induction led to an increase in the Ne that was accompanied by more 

efficient error-related behavioural adjustments during subsequent learning. Importantly, the 

failure-related modulations in Ne amplitude are not attributable to pre-experimentally existent 

individual differences in trait-level negative affect or punishment sensitivity which have been 

related to increased reactivity of the error monitoring system (e.g., Boksem et al., 2006a; 

Hajcak et al., 2004; Luu et al., 2000). Instead, the results are based on direct manipulations 

of affective-motivational state. As was indicated by participants’ self-reports, the experimental 

manipulation was successful in inducing self-relevant failure, and by this, negative feelings. 

Importantly and as expected, there was no evidence for between-group differences in Ne 

amplitude at pretest in either experiment, whereas clear group differences were obtained at 

posttest. Furthermore, the observed Ne modulations cannot simply be explained by within- or 
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between-group differences in overall performance (cf. Yeung, 2004). The findings thus 

provide strong evidence that the functioning of the ACC, as reflected by the Ne, is sensitive 

to the affective and motivational context of an action (Luu et al., 2003; Olvet & Hajcak, 2008). 

In particular, the present study confirms and extends the finding by Wiswede and 

colleagues (2009a,b) that short-term manipulations of negative affect are reflected in 

modulations of the Ne. Whereas in the study by Wiswede et al. (2009b) the Ne was 

measured during the affective manipulation, the present data show that the effects of failure 

feedback generalized to a different task. This is an important new finding suggesting that 

failure-induced negative affective state can bias information processing at a broader task-

unspecific level. Moreover, the failure-related increase in Ne amplitude challenges the view 

that the Ne is a state-independent marker of an endophenotype for internalizing (increased 

amplitude) vs. externalizing (reduced amplitude) psychopathology (Clayson et al., 2011; 

Olvet & Hajcak, 2008). Instead, the present results suggest that state and trait variations in 

negative affect might be associated with similar changes in the functioning of the internal 

error monitoring system (Boksem et al., 2006a; Hajcak et al., 2003, 2004). However, this 

does not imply that state and trait variables operate in an independent fashion. Although the 

present study did not find evidence for a moderating role of personality, findings by 

Cavanagh and coworkers (Cavanagh & Allen, 2008; Cavanagh et al., 2011a) suggest that 

influences of negative affective state and trait vulnerability to stress jointly modulate stress-

related activity of the medial prefrontal performance monitoring system in an inverted-U type 

fashion. This might explain why affective-motivational manipulations have not consistently 

been found to affect error monitoring as reflected in the Ne. 

Recently, it has been argued that variations in Ne amplitude due to experimental 

manipulations of motivational and affective significance “merely” reflect changes in the 

allocation of attentional resources (Clayson et al, 2011). In particular, Clayson and 

colleagues proposed that the conflict monitoring theory could easily account for Ne 

modulations that have been observed in conjunction with motivational/affective manipulations 

(Botvinick et al., 2001; Yeung, Botvinick, & Cohen, 2004). The conflict monitoring theory 

posits that the Ne reflects post-error conflict due to the simultaneous activation of incorrect 

and correct response, with the latter arising from continued processing of the target stimulus 
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after the erroneous response is produced. Given that participants in the failure feedback 

group were likely to be highly motivated to perform well at posttest, larger Ne amplitudes 

might indicate an increased post-error activation of the correct response as a consequence 

of enhanced target processing (cf. Yeung, 2004). Similarly, it seems plausible to assume that 

more efficient continued processing of the imperative stimulus would facilitate the detection 

of mismatch between the actual and the intended response, as suggested by the error 

detection/mismatch theory (Bernstein, Scheffers, & Coles, 1995; Falkenstein, et al., 1990; 

Gehring et al., 1993).  

However, increased attention to task-relevant information should be associated with 

improved task performance. Contrary to this prediction, both groups showed comparable 

overall performance in Experiment 1. Similarly, RT data analyses did not reveal reliable 

between-group differences in response speed at pre- and posttest (see Appendix). This is 

important, since Yeung and Nieuwenhuis (2009) showed that fast responses are associated 

with low conflict and smaller Ne amplitudes, whereas slower responses are associated with 

high conflict and larger Ne amplitudes. In the present study, there was no evidence indicating 

that the failure-related Ne modulations reflected a speed-accuracy trade-off. Thus, although 

attentional mechanisms are likely to play a key role in mediating the effects of 

motivational/affective variables, the current findings do not support a ‘pure’ conflict-

monitoring account of the failure-related Ne modulation22. 

Rather, the present study suggests that failure induction results in a strategic shift 

towards reactive control, denoting the tendency to recruit control processes when an 

(negative) event has already occurred (Braver et al., 2007; Tops et al., 2010). Consistent 

with the notion that a reactive mode of behaviour control is highly adaptive in uncertain 

                                                 
22 Moreover, the conflict monitoring theory states that high conflict triggers increased recruitment of cognitive 

control mechanisms on the next trial. By contrast, the present results revealed that the Ne enhancement was 

accompanied by delayed, i.e., learning-related, rather than immediate behavioural adjustments. Supplementary 

analyses did not yield significant correlations between the Ne and accuracy on the immediately following trial (p-

values > .24). Yet, it should also be noted that the predictions of the conflict-monitoring theory primarily apply to 

response conflict tasks that usually involve one fixed mapping rule for all trials. It seems reasonable to assume, 

then, that information processing was biased according to target-specific response rules in the present learning 

task (for instance, the conflict signal may trigger an update of the correct S-R mapping in working memory). In 
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environments, failure feedback thus appears to induce a state in which participants are 

particularly vigilant to potential threats and negative response outcomes. This is in line with 

previous research that has established a relation between the activity of the medial prefrontal 

performance monitoring system and sensitivity to negative stimuli and events. In particular, 

larger Ne amplitudes have been linked to punishment sensitivity (e.g., Boksem et al., 2006a; 

2008), trait differences in negative emotionality and anxiety (e.g., Hajcak, McDonald, & 

Simons, 2003; 2004; Tops, Boksem, Wester, Lorist, & Meijman, 2006), learning from errors 

(Frank et al., 2005), and defensive motivation (Hajcak & Foti, 2008). Similarly, social stress 

reactivity has been found to increase the sensitivity to internal indicators of error and conflict 

(Cavanagh, et al., 2011a).  

In contrast to the Ne, the correct response-related positivity was not affected by the 

failure manipulation. This dissociation seems at odds with a recent proposal according to 

which the correct response-related positivity rather than the negativity on incorrect trials is 

subject to experimentally induced change (e.g., Holroyd et al., 2008), and instead suggests 

that both components reflect separable processes. Holroyd and colleagues (2008) largely 

draw on findings from animal research that phasic increases in dopaminergic activity in 

response to unpredicted rewards are typically larger than phasic decreases in response to 

unpredicted negative events (e.g., Schultz, 2002) and thus may have stronger effects on 

target structures23 (for a similar suggestion, see Eppinger et al., 2008). However, this leaves 

open the question why failure substantially changed the impact of negative events on neural 

processing while apparently leaving unaffected the response to positive events. 

Although the present findings highlight the need to explore the performance 

monitoring system in terms of both cognitive and affective/motivational mechanisms, the 

precise nature of the processes that mediate the observed effects of failure feedback 

remains to be determined. As was already pointed out by Yeung (2004), cognitive and 

affective accounts on the Ne are not necessarily mutually exclusive. Nevertheless, 

arguments similar to that made by Clayson and colleagues (2011) (see above) show that a 

                                                                                                                                                         
support of this notion, Egner and coworkers (2007) demonstrated that different types of conflict (Flanker vs. 

Simon conflict) recruited distinct conflict resolution mechanisms in an independent fashion. 
23 Note, however, that the magnitude of the negative PE has been shown to be coded by the duration of DA dips 
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sharp distinction is often drawn between influences of affective/motivational states and 

attention on performance monitoring. As I have outlined in the theoretical part of this thesis, 

emotional and motivational processes are thought to bias information processing and 

behaviour selection according to specific situational demands (Gray, 2004; Pessoa, 2008, 

2009). Specifically, emotion and motivation systems have been suggested to selectively 

enhance attentional and perceptual processing and to influence the recruitment of effortful 

control mechanisms (e.g. Clore & Hunziker, 2007; Pessoa & Engelman, 2010; Savine & 

Braver, 2010). Hence, it is conceivable that the impact of emotion, motivation, and attention 

on performance monitoring relies on similar mechanisms in a highly integrated neural 

architecture (Pessoa, 2008). The critical question, then, is not whether these findings reflect 

changes in affective/motivational state or attentional processing but how affective and 

motivational influences are integrated with task-specific processing. 

Minor influences of failure on the FRN. Importantly, the R-L theory (Holroyd & Coles, 

2002) asserts that Ne and FRN reflect activity of the same generic error processing system. 

The proposed functional similarity implies that if one component is affected by a certain 

experimental manipulation, so is the other as well. Indeed, the first experiment provided 

some evidence for a failure-related relative increase not only of the Ne but also of the FRN. 

However, the FRN did not differ significantly between the two groups at posttest, suggesting 

that the effect was rather weak. Critically, the findings of Experiment 2 did not confirm the 

failure-related FRN modulation. Instead, the analysis of peak-to-peak amplitudes revealed a 

decrease in the FRN from pre- to posttest in the no-failure-feedback group. Thus, failure-

induction appeared to increase the responsivity to performance feedback in Experiment 1, 

but to prevent diminished processing of feedback cues in Experiment 2. 

Previous studies found greater FRN amplitudes in individuals with depression, 

elevated negative affectivity, and higher punishment sensitivity, possibly reflecting increased 

concern about negative action outcomes (Balconi & Crivelli, 2010; Santesso et al., 2008, 

2011a,b; Sato et al., 2005). However, these groups showed heightened neural responses to 

negative feedback, while failure-induction was associated with enhanced differentiation 

between positive and negative feedback in the present study. Notably, the effect of failure 
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was independent of feedback validity and hence seemed insensitive to the information the 

feedback provided for appropriate responding. Although the accuracy data and Ne findings 

indicate that participants in the failure-feedback were not impaired in representing the 

correctness of their responses, the FRN modulation suggests that they were more reluctant 

to disengage from feedback over the course of the task. This might reflect that the prior 

failure experience reduced the participants’ reliance on internal cues for action evaluation 

and promoted the use of external feedback cues to validate the internal judgments. 

According to this view, heightened vigilance to internal and external feedback – as reflected 

in increases in Ne and FRN – would indicate an attempt to “recalibrate” the performance 

monitoring system that was challenged through uncontrollable failure. 

At first glance, the heightened neural response to external feedback seems to 

contrast with findings of the Cavanagh et al.’s (2011a) study, which demonstrated a stress-

related shift towards diminished processing of external punishment cues. Yet, in this study, 

participants were exposed to uncontrollable evaluative stress during concurrent learning. In 

addition, the study did not differentiate between valid and invalid negative feedback. This 

distinction might be critical as reduced vigilance to invalid negative feedback, would be an 

adaptive strategy to cope with uncontrollable stressors. By contrast, in the present study, 

heightened sensitivity to external feedback might reflect participants’ efforts to regain control 

after the stressful experience. 

It seems plausible to explain the decrease of the FRN in the no-failure-feedback 

group in Experiment 2 by reduced attention to feedback stimuli. However, the analysis also 

revealed an overall pre-post attenuation in ERP amplitude for both groups. As I already have 

outlined above, this effect is likely to reflect a decrease of the feedback-evoked P300, 

indicating that participants in both groups paid less attention to the feedback at posttest. 

Notably, the decrease in FRN amplitude in the no-failure-feedback group parallels the Ne 

findings and hence might indicate alterations in ACC functioning due to mental fatigue 

(Boksem et al., 2006a; Lorist et al., 2005). Indeed, the ACC has been shown to be critically 

involved in effort-related decision making (Schweiber, Saft, & Hauber, 2005; Walton, 

Bannerman, Alterescu, & Rushworth, 2003; Winterer, Adams, Jones, & Knutson, 2002). 

Specifically, Boksem and Tops (2008) proposed that a network involving ACC, amygdala, 
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ventral striatum, and insula integrates information about the anticipated costs and benefits of 

behaviour with information on current physiological state and available resources to guide 

adaptive action selection. According to this view, mental fatigue is an adaptive mechanism to 

abandon behaviours that have an unfavourable cost-benefit ratio. Hence, the observed group 

differences in Ne and FRN could also be explained by failure-related shifts in cost-benefit 

analyses. One might argue that the failure experience was likely increase the subjective 

value participants place on high performance during posttest. As a consequence, participants 

should continue to invest mental effort to maintain high accuracy levels throughout the task, 

reflected in sustained engagement of the ACC in response to behaviourally relevant events. 

Although this account is compatible with the findings of Experiment 2, it cannot easily explain 

why enhanced recruitment of cognitive control resources in the failure-feedback group in 

Experiment 1 did result in improved performance. 

Given the lack of robustness of effects, the failure-related FRN modulations should be 

interpreted with caution. In either case, the present results indicate that failure has distinct 

effects on Ne and FRN. First, pronounced failure-related changes in Ne amplitude were 

evident in both experiments. Second, these effects were specific for erroneous responses 

and varied as a function of learning. The findings thus add to a growing number of studies 

that reported Ne/FRN dissociations, for example, in neuropsychiatric disorders (e.g., Borries 

et al., 2010; Gründler et al., 2009), trait level anxiety (Hajcak et al., 2003), and different age 

groups (Eppinger et al., 2008, 2009). 

Failure does not affect the Pe. Consistent with previous studies (Clayson et al., 2011; 

Wiswede et al., 2009b), the first experiment did not reveal failure-related changes in the Pe. 

Furthermore, the second experiment demonstrated only a lack of learning-related changes in 

Pe amplitude in the no-failure-feedback group towards the end of posttest. As comparatively 

little is known about the functional significance of the Pe, the interpretation of the latter 

finding is difficult. It is tempting to attribute the absence of learning-related modulations to 

motivational disengagement; yet, no prior study has explicitly examined the effects of 

prolonged task performance on the Pe. Critically, visual inspection of the ERP waveforms in 

the Lorist et al.’s (2005) study suggests that the Pe did not change with time on task, 
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although the Ne reduction may have disguised modulations in Pe amplitude. Nonetheless, a 

relative attenuation in the Pe due to mental fatigue seems consistent with the notion that this 

component reflects the allocation of resources for remedial actions (cf. Overbeek et al., 

2005). Further support for the susceptibility of the Pe to mental fatigue comes from source 

localization studies indicating that the ACC contributes to Pe generation (O’Connell et al., 

2007). 

Certainly, the present findings are hard to reconcile with conceptualizations of the Pe 

in terms of the affective appraisal of an error (Falkenstein et al., 2000). However, the present 

results also contrast with reports of attenuated Pe amplitudes for subjects with high trait level 

negative affect (Hajcak et al., 2004) and severe depression (Schrijvers et al., 2009). Hajcak 

and colleagues (2004) suggested that high-NA individuals were less aware of making 

mistakes or found their errors less salient. Yet, an important restriction of their finding is that 

the amplitude was reduced on error and correct trials. Moreover, the amplitude differences 

between high- and low-NA subjects were more pronounced at fronto-central compared to 

posterior sites, raising some doubts about the true nature of processes underlying the effect. 

Within the framework of the ‘error-awareness hypothesis’ (cf. Overbeek et al., 2005), 

the present findings suggest that although participants were more vigilant to internal 

indicators of maladaptive performance after failure exposure, conscious error recognition did 

not vary as a function of the affective and motivational context of an action. In line with the 

observation that that only the Pe but not the Ne correlates with error awareness (Endrass et 

al., 2007; Nieuwenhuis et al., 2001), this result implies that the processes reflected in the Ne 

are functionally distinct from those leading to conscious error recognition. 

Failure enhances the impact of errors on learning-related behavioural adaptation. 

According to the R-L theory, the Ne constitutes a predictive error signal that is used by the 

ACC to select and reinforce appropriate actions (Holroyd & Coles, 2002). The finding that the 

failure-related Ne enhancement was accompanied by higher post-error accuracy supports 

this view. Similar conclusions have been drawn from previous studies demonstrating that 

activity in the medial prefrontal error processing system predicted the correctness of future 

responses (Hester, Barre, Murphy, Silk, & Mattingley, 2008; van der Helden, Boksem, & 
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Blom, 2010). Moreover, findings by Frank and colleagues (2005) suggest a specific relation 

between Ne amplitude and a bias to learn more from bad than from good choices. Applied to 

the present study, this idea implies that individuals exposed to self-relevant failure use error 

signals more efficiently to determine which response to avoid on subsequent presentations of 

a stimulus. In line with these findings, the current data challenge the view that positive events 

generally have a stronger impact on ACC functioning and learning-related behavioural 

adaptation than do negative events (Eppinger et al., 2008; Holroyd et al., 2008). 

Still, the failure-related increase in post-error accuracy seems inconsistent with the 

results of the study by Petzold and coworkers (2010), which revealed stress-related 

impairments in the ability to use negative feedback for behavioural adaptation. However, an 

apparent difference between their study and the present experiments might account for the 

divergent findings. Petzold and coworkers applied an indirect measure of feedback-based 

learning. In their study stress-related effects were assessed in a test phase designed to 

assess the outcomes of slow habitual, putatively BG-mediated learning (Frank et al., 2004). 

By contrast, rapid trial-to-trial adjustments during learning, as examined in the current study, 

have been shown to rely on the PFC and DA levels therein (Frank et al., 2007a,b). 

Specifically, Frank and colleagues (2007a,b) suggested that high prefrontal DA levels 

support rapid model-based learning by stabilizing working memory representations of 

negative response outcomes. 

Of note, acute stressors have been shown to trigger DA release in the ACC, which is 

thought to evaluate the controllability of the stressor and to regulate subsequent mesocortical 

and mesolimbic DA transmission accordingly (Amat et al., 2005; Pascucci et al., 2007). 

Increased DA levels have been linked to active behavioural coping with aversive events 

(Cabib & Puglisi-Allegra, 1996; Horvitz, 2000). Hence, failure-related modulations in ACC 

functioning, possibly reflecting the attempt to regain behavioural control after the stressful 

experience, might have contributed to the present findings. Contrary to the predictions of the 

R-L theory, however, the above reasoning suggests that the ACC is not only a passive 

recipient of dopaminergic learning signals from the BG, but also actively biases learning-

related striatal processing and mediates behavioural adjustments in a model-based fashion 

(Doll et al., 2009; Frank et al., 2005; Huys & Dayan, 2009). 
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The involvement of the ACC in regulating the response to stressors might also 

explain why no evidence for a failure-induced shift towards habitual control was found in the 

present study. Ample evidence indicates that stress-related effects on instrumental behaviour 

are mediated by effects of glucocorticoids and noradrenaline in the amygdala, which then 

biases processing in brain circuits involved goal-directed control such as the mPFC, the 

hippocampus, and the dorsomedial striatum (Schwabe & Wolf, 2011). Crucially, one of the 

control functions implemented by the ACC is to inhibit such stress-related activity (Amat et 

al., 2005). Thus, the putative failure-related change in ACC functioning might have prevented 

a strong bias towards habitual learning. 

 A related aim of this study was to examine whether failure differentially affects error 

processing in the deterministic and probabilistic learning condition. Building upon on findings 

of task-specific dissociations in Ne amplitude as a function of OCD symptomatology, 

Gründler and colleagues (2009) proposed that dissociable neural systems might underlie 

responsivity to errors on conflict task with fixed response rules and maladaptive choices in 

probabilistic learning tasks. The present results did not reveal distinct influences of failure 

manipulation for the two learning conditions. However, there was other evidence to suggest 

that participants’ ability to represent the correctness of their responses did play a role for 

failure-related effects on error processing. Whereas no learning-related changes in Ne 

amplitude were found at pretest, failure-induction was associated with an increase of the Ne 

across posttest in the deterministic and probabilistic learning condition. This finding confirms 

the prediction that the impact of failure on error processing grows larger as participants are 

better able to represent the correctness of their responses. Understood in the above context, 

this may reflect that participants in the failure-feedback group were more vigilant to 

(negative) performance cues throughout the posttest. Thus, failure feedback appeared to 

amplify learning-related changes of the Ne, possibly reflecting more efficient reactive 

monitoring during later stages of learning. 

 Taken together, the present findings further corroborate the view that the Ne is 

closely linked to behavioural adaptation. Importantly, the Ne magnitude predicted delayed 

but not immediate behavioural adjustments, suggesting that the neural mechanisms 

underlying the Ne are implicated in associative learning. This is in line with a large body of 
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research indicating that the ACC – which is thought to contribute to the generation of the Ne 

– integrates information about reinforcements to guide adaptive action selection (Rushworth 

& Behrens, 2008; Shackman et al., 2011). Although the R-L theory (Holroyd & Coles, 2002) 

most explicitly frames the Ne in terms of a teaching signal, alternative theories such as the 

conflict monitoring theory or the error detection/mismatch theory (Bernstein et al., 1995; 

Botvinick et al., 2001; Falkenstein et al., 1990; Gehring et al., 1993) are not incompatible with 

a relationship between the Ne and learning-related behavioural adjustments. The conflict-

monitoring theory asserts that error-related activity in the ACC serves an alerting function, 

signalling the need to engage additional control. Originally, the conflict-induced control 

enhancement was conceptualized as a uniform top-down biasing mechanism, strengthening 

task-specific processing according to the current task set (Botvinick et al., 2001). However, 

the current study indicates that the adaptive control mechanism operates in an item-specific 

fashion. Rather than triggering processes that are relevant to all reinforcement 

contingencies, such as an unspecific increase in attention, the error signal appears to 

strengthen a particular S-R mapping only. This in in line with evidence indicating that multiple 

independent control loops may operate in parallel to resolve different types of conflict (Egner, 

2008). 

Dissociable effects of failure and self-relevance on the Ne. In an attempt to 

disentangle the effects of failure and prolonged task performance on error and feedback 

processing, the present study manipulated the self-relevance of the learning task at posttest. 

Although behavioural and ERP data in the first half of posttest suggest that the initial effects 

of the experimental manipulations were comparable for the no-failure feedback group in 

Experiment 1 and the failure feedback group in Experiment 2, the two groups were 

characterized by distinct changes in Ne amplitude in the second half of posttest. Notably, a 

pattern of results similar to that observed for the no-failure feedback group, i.e., large initial 

Ne amplitudes followed by fast reductions, has been reported for individuals characterized by 

high habitual intrinsic engagement (Tops & Boksem, 2010). The susceptibility of intrinsic 

engagement to increasing boredom during prolonged performance of monotonous tasks fits 

the present finding that the Ne decreased in the deterministic but not in the more challenging 
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probabilistic learning condition. In contrast, the pattern of sustained monitoring in the failure 

feedback groups parallels findings for individuals scoring high on constraint (Tops & Boksem, 

2010). From this perspective, the Ne enhancement across posttest might reflect negatively 

motivated engagement resulting from worry and concerns about mistakes that become more 

salient with learning. 

Somewhat surprisingly, the decrease of the Ne in the no-failure-feedback group in 

Experiment 1 was not accompanied by performance decrements. Still, a previous study by 

Lorist and coworkers (2005) also found an attenuation of the Ne in conjunction with stable 

error rates across prolonged task performance. Importantly, the latter effect was not 

confounded by changes in RT, at least within the first 90 minutes of the task. Certainly, it 

remains an issue for further research to precisely determine the factors that have 

counteracted the potentially deteriorating effects of compromised error monitoring on overall 

accuracy in the present study. It might be revealing, however, that the Ne decreased in the 

deterministic learning condition only. Given that the mapping rules were most apparent in this 

condition, overall performance might have been less crucially dependent on the integrity of 

the medial prefrontal action monitoring system during later stages of learning. This would be 

consistent with the finding that overtraining promotes the development of habitual (i.e., 

automatic) responding (e.g., Yin & Knowlton, 2006). 

When does personality matter? Although an increasing number of studies have 

described influences of personality traits on error- and feedback processing (e.g., Balconi & 

Crivelli, 2010; Boksem et al., 2006a, 2008; De Pascalis et al., 2010; Santesso et al., 2011a; 

Tops & Boksem, 2010), the present study failed to obtain evidence for punishment 

sensitivity, trait negative affect, or action vs. state orientation to moderate the impact of 

failure. Only in Experiment 1, there was a small piece of evidence to suggest punishment 

sensitivity moderated the effects of failure on subsequent learning performance. While 

participants in both groups showed comparable overall performance, punishment sensitivity 

predicted poorer learning performance in the failure-feedback group. In the no-failure-

feedback group, by contrast, no relationship between punishment sensitivity and accuracy 

was found. Critically, the impact of failure on Ne and FRN was not modulated by punishment 
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sensitivity, making the behavioural finding difficult to interpret. In the study by Cavanagh and 

colleagues (2011a), high punishment sensitivity was associated with better punishment 

learning under stress. However, in this study punishment learning was defined as loss-

related learning rate. A computational RL algorithm was used to estimate this parameter, 

which obviously provided different information than overall accuracy rates and post-error 

accuracy. Further differences that may have contributed to the disparate findings include the 

nature of the experimental manipulation (social-evaluative stress vs. self-relevant failure), the 

learning paradigm, and the conditions for the assessment of the effects of stressors (during 

stress manipulation vs. after failure induction). 

Moreover, it is important to note that the effect was not replicated in Experiment 2. On 

the one hand this might indicate that self-relevance of the learning task acted as an 

additional stressor that triggered the influence of trait vulnerability on performance. On the 

other hand, it might simply reflect that the effect in Experiment 1 was an artefact. Rather than 

punishment sensitivity, state orientation was expected to moderate the behavioural effects of 

failure (Kuhl, 1981). Contrary to this prediction, however, state orientation modulated the 

posttest Ne amplitude in the no-failure-feedback group in Experiment 1. State-orientation has 

been associated with unintended rumination and prolonged preoccupation with an aversive 

event (Kuhl, 1994). Thus, it is conceivable that state-oriented participants became more 

vigilant to internal error cues when the task was linked to intelligence. In support of this view, 

state-oriented individuals are characterized by heightened levels of negative affect, particular 

in response to challenges (Brunstein & Olbrich, 1985) and are more vulnerable to depressive 

symptoms (Rholes, Michas, & Shroff, 1989), both of which have been associated with 

enhanced Ne amplitudes. 

No further modulatory influence of personality was obtained. Unexpectedly, trait 

measures did also not moderate the susceptibility to mental fatigue. This is inconsistent with 

previous research demonstrating that traits, such as punishment sensitivity, are related to 

persistence thus preserve task engagement (Tops & Boksem, 2010). However, most of the 

studies that found a relationship between personality and electrophysiological markers of 

performance monitoring used response conflict tasks such as the flanker task. In these tasks, 

accuracy typically accounts for a comparatively small proportion of variance in the Ne 
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amplitude. By contrast, in the present learning task, performance differences contributed to a 

considerable amount of variance in the Ne (mean R2 = .16). Critically, the mean accuracy 

rates as well as Ne amplitudes in the present study were likely to represent a composite 

score, intermingling effects of learning and disengagement. So even if there were effects of 

personality, these effects were probably small and therefore difficult to obtain. Other factors 

that may have caused the lack of reliable findings include the potentially reduced reliability of 

the ERP components due to the relatively few number of error trials, the homogeneous 

sample, and the small sample size. Hence, it is clearly premature to discard the hypothesis 

that personality may play an important role in determining the impact of affective/motivational 

challenges on error and feedback processing during subsequent learning. 
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8. Experiment 3 

Statement of Problem and Research Goals 

The first experiments suggested that self-relevant failure triggered heightened 

vigilance to internal indicators of performance errors, possibly reflecting a shift towards a 

reactive, error-driven mode of behaviour control. Experiment 3 further explored the impact of 

motivational/affective context by investigating the extent to which the effects of negatively 

motivated reactive engagement differ from those of positively valenced motivational 

manipulations. Specifically, the study aimed to determine the impact of trial-by-trial variations 

of appetitive vs. aversive motivation on error processing and learning. 

Reward incentives have been shown to enhance executive control processes and to 

improve behavioural efficiency (Hübner & Schlösser, 2010; Krawczyk, Gazzaley, & 

D’Esposito, 2007; Pessoa & Engelmann, 2010; Savine, Beck, Edwards, Chiew, & Braver, 

2010). Yet, only comparatively few studies have investigated the effects of punishment (or 

avoidance) motivation on executive control (Engelmann & Pessoa, 2007; Savine et al., 2010; 

Small et al., 2005). Available evidence indicates that punishment incentives can be as 

effective as reward incentives in promoting cognitive performance. However, it has been 

proposed that distinct brain regions/mechanisms might mediate the motivational effects of 

rewards vs. punishments on control processes (Davidson, Ekman, Saron, Senulis, & Friesen, 

1990; Gray, Braver, & Raichle, 2002; Higgins, 1997; Harmon-Jones, Lueck, Faern, & 

Harmon-Jones, 2006; Small et al., 2005). 

An important aspect in examining the effects of appetitive vs. aversive motivation on 

learning mechanisms obviously concerns the processing of performance feedback. As was 

already discussed in the theoretical part of this thesis, several studies addressed the 

question of how outcome value affects feedback processing. Most studies indicated that the 

FRN evaluates outcomes in a binary fashion as good or bad (e.g., Gehring & Willoughby, 

2002; Hajcak, et al., 2006; Sato et al., 2005; Toyomaki & Murohashi, 2005) and tracks their 

relative rather than absolute value (Holroyd et al., 2004). By contrast, the feedback-evoked 

P300 appears to be sensitive to the magnitude (but not valence) of the outcome (Yeung & 
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Sanfey, 2004). Interestingly, recent findings suggest that feedback processing might proceed 

from an earlier coarse evaluation of the outcome as good or bad to a more fine-grained 

analysis incorporating both valence and magnitude (e.g., Goyer, et al., 2008; Kreussel et al., 

2011, Philastides et al., 2010). In the cited studies, however, the feedback stimulus itself 

carried the motivational information. Thus, it remains unknown whether the processing of 

feedback stimuli indicating “only” the appropriateness of the response is sensitive to 

motivational/affective manipulations. 

Another relevant question concerns the influence of reward vs. punishment motivation 

on monitoring of internal performance cues. Previous research suggested that the specific 

impact of appetitive vs. aversive motivational cues on the activity of the medial prefrontal 

performance monitoring system is largely determined by individual differences in reward vs. 

punishment sensitivity. For instance, Boksem and coworkers (2008) demonstrated that highly 

punishment sensitive individuals showed a larger Ne to errors associated with monetary 

losses compared to those associated with reward omission. By contrast, highly reward 

sensitive individuals showed a larger Ne in the reward omission condition compared to the 

loss condition. The authors explained their findings by assuming that highly punishment and 

reward sensitive individuals experienced errors as more or less aversive in the two 

conditions. Another study compared to effects of punishment (errors were followed by 

unpleasant tones) and reward motivation (correct responses resulted in monetary gains) in 

high- vs. low-socialized individuals (Dikman & Allen, 2000). Whereas the Ne did not differ 

between the two conditions in high-socialized individuals, low-socialized participants 

exhibited reduced Ne amplitudes in the punishment condition. 

However, there are several factors that may have limited the generalizability of the 

described findings. First, the findings of Dikman and Allen (2000) were potentially 

confounded by the fact that rewarding and punishing cues differed on several dimensions, 

such as modality and quality. Second, in the Boksem et al.’s (2008) study appetitive vs. 

aversive motivation was manipulated in a between-subjects design. Therefore, the critical 

contrasts involved different subjects. A further problem was the small sample size of only 14 

participants in the punishment and reward condition, respectively. Moreover, a closer 

inspection of their data suggests that the reported effects were mainly driven by differences 
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in the punishment condition, whereas personality differences did not appear to modulate the 

amplitudes in the reward condition. In the punishment condition, high punishment and low 

reward sensitivity were associated with a larger Ne than low punishment and high reward 

sensitivity. This was further corroborated by the observation that the Ne significantly 

correlated with punishment sensitivity24 in the punishment condition only, whereas no reliable 

correlations were found between the Ne and either reward or punishment sensitivity in the 

reward condition. 

Notably, Potts (2011) recently reported larger Ne amplitudes for errors resulting in 

monetary losses compared to errors resulting in failure to obtain monetary rewards, 

indicating that appetitive and aversive motivation differentially engage the medial prefrontal 

performance monitoring system. Given that gain and loss anticipation is associated with the 

induction of positive and negative affective states, respectively, this view is also in line with 

findings by Wiswede et al. (2009a) discussed earlier. The authors showed that the 

presentation of negative but not positive affective pictures led to an increase in Ne amplitude.  

Similarly, a recent study demonstrated that the induction of positive affect was associated 

with an attenuation of the Ne in a subsequent working memory task (van Wouwe, Band, & 

Ridderinkhof, 2011). 

It should be noted, however, that incentive manipulation has not consistently been 

found to affect the Ne (Chiu & Deldin, 2007; Potts, George, Martin, & Barratt, 2006b). 

Critically, two studies that failed to show Ne modulations, suffered from potential 

methodological weaknesses. Chiu and Deldin (2007) used a block design to compare 

reward, punishment, and neutral condition. The experiment started with a neutral block, 

followed by reward and punishment block that were counterbalanced across participants. 

Hence, it cannot be ruled out that the effects of incentive manipulation were distorted by 

disengagement25 (Tops & Boksem, 2010) and context effects (Holroyd et al., 2004). Further 

potential confounding factors in a block design include habituation, attentional, strategic or 

                                                 
24There was also a marginally significant negative correlation between reward sensitivity and Ne amplitude in the 

punishment condition. The (unexpected) effects of reward sensitivity on the Ne in the punishment condition were 

potentially driven by a negative correlation between punishment and reward sensitivity obtained in this study. 
25 Indeed, largest Ne amplitudes were found in the neutral condition. Moreover, the findings by Luu et al. (2000) 

suggest that reward and punishment block might have been differentially affected by disengagement. 
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anticipatory effects. In the study by Potts and colleagues (2006b), incentive value was coded 

by the identity of the center letter in a flankers task (T or N). Thus, on each trial, the reward 

(punishment) cue was flanked by four punishment (reward) cues. It is also arguable whether 

the incentive information was available early enough to effectively bias early error processing 

as reflected in the Ne. Furthermore, in both studies, the monetary rewards and punishments 

were relatively small (5 Cent) and hence rather unlikely to have a strong 

motivational/affective consequences. 

Additional evidence for a differential impact of appetitive and aversive motivation on 

performance monitoring comes from human fMRI studies. In particular, Taylor and 

colleagues (2006) found greater activation of the rACC in response to errors associated with 

losses compared to those associated with failure to gain. By contrast, both error types 

elicited larger activation of the dACC than did errors in a neutral condition. From their 

findings, the authors concluded that the loss-related activation of rACC reflected the affective 

appraisal of more costly errors, whereas the incentive-related activation of the dACC 

indicated increased motivation. Moreover, Simões-Franklin and coworkers (2010) showed 

that motivational influences modulate tonic activity in the dACC but phasic error-related 

activity in the rACC. The authors suggested that the tonic activity in the dACC reflected more 

cautious performance and increased proactive control, whereas the phasic activity in the 

rACC was linked to reactive control in conjunction with affectively more salient errors. These 

findings are broadly consistent with the idea that both the rACC and the dACC contribute to 

Ne generation, with activity in the rACC reflecting the “affective” component of error 

processing (Luu et al., 2003; van Veen & Carter, 2002). 

In fact, electrophysiological studies provided some evidence for functional 

dissociations between rACC and dACC in error and feedback processing. Holmes and 

Pizzagalli (2008) found increased error-related rACC and mPFC responses in the Ne time-

window for depressed participants compared to healthy controls. Another study investigated 

dissociations in error processing as a function of OC-symptomatology using a flankers task 

and a probabilistic learning task (Cavanagh et al., 2010b). In the flankers task, individuals 

with high OC-symptomology exhibited larger Ne amplitudes than those with low 

symptomatology. Source analysis revealed comparable error-related dACC power in both 
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groups, but greater error-related rACC power in the High-OC group. This result is in line with 

the notion that greater rACC activation underlies the larger Ne amplitude in high OC 

individuals. By contrast, the Ne was smaller in the High-OC compared to the Low-OC group 

during probabilistic learning. Moreover, the Low-OC group showed relatively increased error-

related rACC activation and decreased error-related dACC activation. On the basis of these 

findings, the authors concluded that dissociable medial prefrontal systems may support 

performance monitoring in the two types of tasks. Furthermore, Santesso and colleagues 

(2011a) showed that the increase in FRN amplitude to negative feedback in individuals with 

high trait level negative affect was associated with greater rACC but not dACC activation. 

Although important insights have been gained from these studies, critical questions 

on the role of motivational-affective processes in performance monitoring remain unsolved. 

On the one hand, ERP studies examining the influences of reward and punishment 

motivation rarely reported how the putative motivation-related differences in error processing 

relate to flexible behavioural adaptation. Interestingly, an early study by Gehring and 

colleagues (1993) found larger Ne amplitudes in conjunction with more pronounced error-

related behavioural adjustments (response squeeze, post-error slowing, error correction rate) 

for errors resulting in higher monetary losses. This finding, however, remains somewhat 

ambiguous because the incentive manipulation was confounded with error probability and a 

different weighting of speed vs. response errors. On the other hand, neither of the 

electrophysiological studies focusing on differential contributions of rACC and dACC involved 

an experimental manipulation of affective-motivational significance. Therefore, they did not 

provide a straightforward test of the putative involvement of the rACC in processing the 

affective salience of an error. Furthermore, due to the relatively low temporal resolution of the 

BOLD signal, it remains unclear whether the pattern of error-related activity in the rACC 

observed by Taylor et al. (2006) and Simões-Franklin et al. (2010) indeed reflects processes 

in the latency range of the Ne. 

Thus, Experiment 3 examined whether manipulations of incentive value modify error 

and feedback processing – as reflected in the Ne, FRN, and Pe – and how these 

modulations relate to behavioural adaptations during reinforcement learning. Specifically, the 

study aimed to determine (1) whether penalizing errors in terms of losing vs. not winning 
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money differentially affects Ne, FRN, and Pe over the course of learning, (2) how error-

related neural activities in dorsal and rostral ACC are affected by this incentive manipulation, 

and (3) whether incentive-related modulations in Ne amplitude and underlying source activity 

predict goal-directed behavioural adjustments during learning. EEG source localization was 

performed using standardized Low-Resolution Electromagnetic Tomography (sLORETA, 

Pascual-Marqui, 2002). 

Study Design 

 A feedback-based learning task was applied that included three different incentive 

conditions. In the gain condition, correct responses were rewarded with a win (50 Cent), 

whereas incorrect responses led to a neutral outcome (0 Cent). In the loss condition, 

incorrect responses were penalized with a loss (50 Cent), whereas correct responses 

resulted in a neutral outcome (0 Cent). In the neutral condition, both correct and incorrect 

responses led a neutral outcome (0 Cent). Gain, loss, and neutrals trials were presented in a 

pseudo-random order throughout the learning task. In order to minimize strategic 

adjustments in response speed across the incentive conditions, that is, more accurate but 

slower responding on gain and loss compared to neutral trials, the same adaptive response 

deadline algorithm as in Experiment 1 and 2 was used. Responses that exceeded the 

deadline were handled as errors in terms of monetary pay-off. Since the first experiments 

showed that participants learned very quickly, the number of stimulus repetitions within a 

learning block was considerably reduced. 

Research Predictions 

 The rationale for the incentive manipulation used in this study was to alter the 

motivational and affective salience of erroneous and correct responses. Although one would 

intuitively expect monetary rewards and penalties to improve task performance, the empirical 

evidence on this issue is mixed (Bonner, Hastie, Sprinkle, & Young, 2000; Camerer & 

Hogarth, 1999). In fact, a meta-analysis by Bonner and coworkers (2000) found beneficial 

effects of incentives only in about half of the studies. Notably, Dambacher and colleagues 
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(2011) showed that in speeded response tasks punishing slow responses rather than 

punishing erroneous responses resulted in performance improvements. In addition, Chiew & 

Braver (2011) suggested that preparatory cues are critical for advantageous incentive-related 

effects to occur. However, it remains unclear whether the cue has to contain response-

relevant information to be effective. For instance, Hajcak and coworkers (2005) presented 

cue indicating the value of points that could be won on the next trial but did no find incentive-

related performance improvements. Thus: 

Prediction 1: (a) Applying a deadline procedure and penalizing errors emphasized 

both accuracy and speed in the current study. Therefore, given the findings by Dambacher et 

al. (2011), accuracy should be moderately improved in the gain and loss condition compared 

to the neutral condition. (b) It has been suggested that losses have a higher impact on 

behavioural decisions than do gains of equivalent magnitude (Kahneman & Tversky, 1979). 

Still, evidence in support of the notion that penalties have more pronounced influences on 

cognitive performance than rewards is scarce. Hence, it is unclear whether participants put 

more emphasis on avoiding losses than obtaining rewards. (c) Furthermore, it is an open 

question whether the impact of the incentive manipulation changes with learning. However, 

as the task is more challenging at the beginning of learning, it conceivable that limited 

resources are allocated more efficiently to loss and gain trials during early stages of learning. 

The results of Experiment 1 and 2 suggested that participants learned quickly. Thus, 

the large number of trials contained in the bins as well as motivational disengagement might 

have disguised the effects of learning on Ne and FRN. As the number of stimulus repetition 

was considerably smaller in the present study, the predictions were: 

Prediction 2: (a) The Ne increases as learning progresses. (b) The FRN decreases 

over the course of learning. 

Previous research showed that motivationally and affectively more salient errors are 

associated with a larger Ne than less salient errors (Gehring et al., 1993; Hajcak et al., 

2005). Specifically, it has been demonstrated that the Ne is greater for errors resulting in 

monetary losses compared to those resulting in reward omission (Potts, 2011). Moreover, 
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the results of the first study point to a relationship between the neural processes underlying 

the Ne and learning-related behavioural adaptation and indicate that the Ne may be a marker 

of aversively motivated reactive control. Moreover, the first study showed that the effects of 

failure were more pronounced the better participants were able to represent the correctness 

of their responses. It is unclear, however, whether failure to gain leads to changes in Ne 

amplitude compared to a neutral condition. Whereas a reduction of the Ne has been found 

after the induction of positive affect (van Wouwe et al., 2011), others failed to obtain such an 

effect for trial-by-trial manipulations of affective state (Wiswede et al., 2009a). Therefore, the 

predictions were: 

Prediction 2: (a) The Ne is larger for errors resulting in losses compared to those 

resulting in failure to gain or neutral outcomes. (b) The Ne for errors resulting in failures to 

gain is smaller or comparable to the Ne on neutral trials. (c) The Ne magnitude predicts 

error-related behavioural adjustments, i.e., post-error accuracy. (d) The relationship between 

Ne amplitude and post-error accuracy is more pronounced for errors resulting in monetary 

losses than those resulting in neutral outcomes. (e) The effects of incentive motivation on the 

Ne amplitude are more pronounced during later stages of learning. 

To my knowledge, no prior study explicitly addressed the question of how the 

motivational/affective significance of a cognitive task per se influences the processing of 

performance feedback. Yet, larger FRN amplitudes have been found in individuals scoring 

high on punishment sensitivity and trait level negative affect (e.g., Balconi & Crivelli; 

Santesso et al., 2011b). However, Experiment 1 and 2 revealed only little evidence for an 

influence of self-relevant failure on feedback processing. 

Although previous research suggested that the FRN classifies outcome value in a 

binary and context-dependent fashion, more recent evidence indicates that the FRN might 

also code aspects related to the magnitude of an outcome (e.g., Hoyer et al., 2008; Kreussel 

et al., 2011). In particular, it has been shown that larger losses and smaller gains are 

associated with relatively larger FRNs. However, more pronounced learning-related 

modulations have been found in the ERPs to positive feedback (e.g., Eppinger et al., 2008, 

2009). Therefore, it was reasoned that the effects of reward and punishment motivation on 
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feedback processing might differ for positive and negative feedback. Hence, the predictions 

were: 

Prediction 3: (a) The FRN in terms of the difference between positive and negative 

feedback is larger in the gain and loss condition compared to the neutral condition. (b) The 

FRN to positive and negative feedback is differentially modulated in gain vs. loss condition. 

(c) The effects of incentive motivation on the FRN change over the course of learning. 

 Furthermore, previous research and the findings of Experiment 1 and 2 suggest that 

the Pe is rather unaffected by motivational/affective manipulations. Nonetheless, the Pe has 

been associated with conscious error detection (Nieuwenhuis et al., 2001; Steinhauser & 

Yeung, 2010) and the motivational significance of an error (Overbeek et al., 2005). In 

particular, the Pe is thought to reflect activity of a more slowly operating deliberate error 

monitoring system that complements neural processes underlying the Ne (Overbeek et al., 

2005). Thus, it was difficult to formulate a well-founded hypothesis on the impact of the 

present incentive manipulation on the Pe:  

Prediction 4: (a) The Pe increases with learning. (b) It is an open question whether 

the Pe is sensitive to incentive value. 

It has been proposed that the rACC is involved in affective aspects of error 

processing and contributes to variations of the Ne due to affective/motivational 

manipulations. Source localisation studies have established a link between enhanced error-

related activity in the rACC and increased Ne amplitudes in OCD and depression (Cavanagh 

et al., 2010b; Holmes & Pizzagalli, 2008). At the same time, evidence from fMRI studies 

points to a link between enhanced activity in the dACC and incentive-related increases in 

effort and between increased activity in the rACC and affective salience of errors. Thus: 

Prediction 5: (a) Errors in the loss condition are associated with greater activity in the 

rACC during the Ne time window than errors in the gain or neutral condition. (b) Errors in 

gain and loss condition are associated with greater activity in the dACC during the Ne time 
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window compared to errors in the neutral condition. (c) Error-related activity in dACC and 

rACC differentially predict behavioural adjustments in the three incentive conditions. 

Methods 

Participants 

Twenty-two undergraduate students volunteered to participate in this study for 

payment (8 Euro per hour) or course credit. Participants had normal or corrected-to-normal 

vision, no self-reported history of neurological or psychiatric diseases and were free from 

psychoactive medication or drug use. Two participants were excluded because they did not 

commit enough errors to obtain reliable measures of Ne (at least 15 error trials in each 

condition). Data from two additional participants had to be discarded due to technical 

problems during EEG recording. The effective sample thus included 18 subjects (11 females; 

mean age 24.83 years; age-range 19 to 33 years). All gave informed written consent in 

accordance with the protocols approved by the local ethics committee of Saarland University 

prior to the start of the experiment. 

Stimuli and Task 

During the learning task, participants were presented with different coloured images 

of objects (Snodgrass & Vanderwart, 1980) and were required to press one of two response 

keys, after which either the word “RICHTIG” (“correct”), “FALSCH” (“incorrect”) or “ZU 

LANGSAM” (“too slow”) was shown. Participants had to infer the correct stimulus-response 

mappings by trial and error on the basis of the feedback information. Stimuli were assigned 

to one of three incentive conditions (gain, loss, and neutral outcome). Each imperative 

stimulus was preceded by a cue that indicated the incentive value of the upcoming target. 

The gain cue informed participants that they would win 50 Euro Cents if they responded 

correctly but 0 Euro Cents if they responded incorrectly or missed the response deadline 

(see Trial Procedure). Conversely, the loss cue indicated that participants would lose 0 Euro 

Cent if they responded correctly but 50 Euro Cents if the response was incorrect or too slow. 

On neutral trials, there was no chance to gain or lose money (see Table 3). Participants were 
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instructed to use the cue information in order to maximize their profit. At the end of the 

experiment, all received the same monetary bonus (7.50 Euro). 

Tabelle 3. Overview of the three incentive conditions 

  
Payoff 

Incentive Condition Correct Incorrect 

Gain Condition +50 Cent ±0 Cent 

Loss Condition ±0 Cent −50 Cent 

Neutral Condition ±0 Cent ±0 Cent 

 

Trial Procedure 

On each trial the incentive cue appeared in the center of the screen for 400 ms. After 

a 400 ms delay, a central fixation cross was displayed for a randomly jittered interval of 250 

to 500 ms, followed by the presentation of the target stimulus for 500 ms. Stimuli were 

presented on a light gray background. As in Experiment 1 and 2, an adaptive response 

deadline was applied. Based on the proportion of time-out trials, the response window was 

individually adjusted in steps of 100 ms within an overall range of 400 to 1000 ms. After the 

key press, a blank screen was displayed for 500 ms and then visual feedback was provided 

for again 500 ms. The next trial started after a randomly jittered 500 to 800 ms interval (see 

Figure 22 for a schematic overview of the trial procedure). 

 

Figure 22: Schematic overview of trial procedure 
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Experimental Procedure 

Prior to the learning task, participants completed a short questionnaire about 

demographics and health. The learning task consisted of a short practice block (45 trials) and 

ten experimental blocks, with self-paced breaks every 30 trials. During the breaks, 

participants were presented with a screen displaying two vertical bars. Participants were told 

that the height of the left bar represented the maximum amount of money that theoretically 

could be earned up to that point, whereas the height of the right bar represented the amount 

of money they had actually earned. They were further told that it was impossible to choose 

correctly on every trial and that therefore the right bar was always smaller than the left one. 

Within one block, two stimuli were assigned to each incentive condition, yielding a total of six 

new stimuli per learning block. Within one block, two stimuli were assigned to each incentive 

condition, yielding a total of six new stimuli per learning block. For all three incentive 

conditions, one stimulus was mapped to the left response key and the other one to the right 

response key. Each stimulus was presented 15 times in pseudo-randomized order 

throughout the learning block, with the same stimulus appearing not more than two times in a 

row. The assignment of stimuli to incentive condition and response key was randomized 

across participants. To avoid ceiling effects in learning, invalid feedback was provided on 12 

trials within each block. Only valid trials were included in the analyses. 

Electrophysiological Recording 

The EEG was recorded from 58 Ag/AgCl electrodes arranged according to the 

extended 10-20 system, referenced to the left mastoid, using Brain Amp DC Recorder 

(BrainVision recorder acquisition software). Data were sampled at 500 Hz in DC mode with a 

low-pass filter at 70 Hz. Impedances were kept below 5 kΩ. Electrodes placed on the outer 

canthi of the two eyes and on the infra- and supra-orbital ridges of the left eye recorded the 

horizontal and vertical electrooculograms. The data were re-referenced offline to the linked 

mastoids and band-pass filtered from 0.1 to 30 Hz. The impact of blinks and eye movements 

was corrected using an independent component analysis algorithm implemented in the 

BrainVision Analyzer Software Package (Brain products, Gilching, Germany). Trials 
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containing EEG activity exceeding ± 100 µV, changing more than 50 µV between samples or 

containing DC drifts were eliminated by a semiautomatic artefact inspection procedure. 

Data Analyses 

Behavioural data analyses. Responses exceeding the adaptive deadline were 

excluded from further analyses (gain: M = 0.05, SD = 0.01; loss: M = 0.05, SD = 0.01; 

neutral: M = 0.06, SD = 0.01). Mean RTs were 440 ms (SD = 45 ms) in the gain condition, 

437 ms (SD = 43 ms) in the loss condition, and 444 ms (SD = 46 ms) in the neutral condition. 

Neither the proportion of time-out trials nor the RTs did significantly differ between the 

incentive conditions (p-values > .16), suggesting that the adaptive response deadline 

successfully prevented more accurate at the expense of slower responding in gain and loss 

condition. To examine the course of learning, each block was split into five bins. The bins 

were created according to the number of stimulus repetitions, i.e., Bin 1 contained 

presentations 1-3 of the respective stimuli, Bin 2 presentations 4-6, and so on. Within each 

bin, mean accuracy rates were computed for the three incentive conditions. To analyse trial-

to-trial behavioural adjustments, post-error accuracy (“incorrect-switch” performance) was 

determined by calculating mean accuracy rates for the next presentation of a given stimulus 

after an erroneous response, separately for each incentive condition. In addition, post-correct 

accuracy (“correct-stay” performance) was determined as mean accuracy rate for the next 

presentation of a given stimulus after a correct response. 

ERP analyses. The response-locked and feedback-locked epochs were baseline 

corrected with respect to the average voltage during a -200 to -50-ms-pre-response interval 

and a 100-ms-pre-stimulus interval, respectively. As in Experiment 1 and 2, the Ne was 

quantified after 15 Hz low-pass filtering at electrode FCz as the peak-to-peak difference in 

voltage between the most negative peak between -50 and 100 ms and the largest positive 

peak in the prior 100 ms. Similar to the first study, there was no clear negative peak following 

correct responses. Since visual inspection of the waveforms clearly indicated that the correct 

response-related positivity did not differ between the there incentive conditions, in a second 

step, difference waveforms were created by subtracting the activity on correct trials from the 
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activity on error trials (∆Ne). The ∆Ne was defined as the mean amplitude in a 20 to 60 ms 

post-response time window covering the peak of the difference wave in each incentive 

condition and each bin. Analogous to Experiment 1 and 2, the Pe was measured as the 

mean amplitude between 200 and 400 ms after the response at electrode Pz. Similarly to the 

Ne, the FRN was quantified twofold. In a first step, the FRN was defined as peak-to-peak 

voltage difference between the most negative peak in a 200 to 400 ms time window after 

feedback onset and the preceding positive peak in a 150 to 300 ms post-feedback interval at 

electrode FCz, separately for positive and negative feedback. In a further step, ∆FRN 

amplitude was determined by subtracting the activity after correct feedback from the activity 

after negative feedback. Because reliable peak detection proved to be difficult for the 

difference waveforms, mean voltage in the period from 280 to 320 ms post-feedback was 

calculated to define the ∆FRN amplitude. This time window was chosen based on the 

average peak latency of the FRN (300 ms). To examine learning-related changes in Ne, 

FRN, and Pe, EEG epochs were averaged separately for each incentive condition for the first 

(Bin 1) and the second half of trials within each block (Bin 2).  

In addition, although cue-related preparatory processes were not the focus of this 

investigation, the cue-locked P300 as well as the contingent negative variation (CNV) that 

precedes task-relevant stimuli were evaluated. Importantly, both components have been 

associated with changes in voluntary and effortful control of performance (e.g., Falkenstein, 

Hoormann, Hohnsbein, & Kleinsorge, 2003; Gevins et al., 1990). To analyse cue-related 

processing during the foreperiod, epochs covering the cue-target interval were created and 

baseline-corrected with respect to a 100 ms pre-cue interval. The analysis of the P300 and 

CNV amplitude in the cue-target interval included a grid of 4 × 5 electrodes over frontal, 

central, and parietal regions (5 rows from frontal to parietal, each including the midline and 

two inner/outer left and right electrodes: F7, F3, Fz, F4, F8; FC5, FC3, FCz, FC4, FC6; C5, 

C3, Cz, C4, C6; CP5, CP3, CPz, CP4, CP6; P5, P3, Pz, P4, P6). The P300 was quantified 

as mean amplitude measure in a 300 to 600 post-cue interval. The CNV amplitude was 

calculated as the mean voltage within a 200 ms time window before target onset. I chose to 

evaluate the terminal (target-locked) CNV to avoid confounding influences of the preceding 

P300. 
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sLORETA analysis. Standardized intra-cerebral current density power underlying the 

response- and feedback-related ERPs were computed using sLORETA (Pascual-Marqui, 

2002). This EEG source localization technique provides a solution to the inverse problem by 

assuming similar activation of adjacent neuronal clusters, without a priori specification of the 

number of active neural sources. The solution space is limited to cortical gray matter and 

hippocampi and consists of 6239 voxels (voxel size: 5 mm3). sLORETA calculates the 

current density power (in amperes per square meter, A/m2) at each voxel, expanding the 

minimum norm inverse solution by taking into account the variance of the actual sources and 

measurement noise (Hämäläinen & Ilmoniemi, 1984). Before statistical testing, current 

density power was subject-wise normalized to a total power of 1 and log-transformed at each 

sampling point. Activity was then averaged within a 20 ms time interval centered on the peak 

of the Ne (24-44 ms). Within each of the three incentive conditions, error-correct contrasts 

(voxel-by-voxel) were calculated and subjected to non-parametric permutation tests as 

implemented in the sLORETA software package. Following Cavanagh and colleagues 

(2010b), Region of Interest (ROI) analyses were performed for the rostral and dorsal 

subdivision of the ACC. Voxels were assigned to the dACC (BA 24’ and 32’) and rACC (BA 

24 and 32) based on their (x,y,z)- coordinates in the Montreal Neurological Institute (MNI) 

space according to the following rule: dACC if z > 15 and y < 35, else rACC (for illustration, 

see Figure 23). The log-transformed standardized current density values were averaged 

across all voxels within the two ROIs. 

 

Figure 23: Illustration of the definition of rACC and dACC ROIs (displayed on the sLORETA template) 
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Statistical analyses. Accuracy and ERP data were analysed using repeated measures 

analyses of variance (ANOVAs). Whenever necessary, the Geisser-Greenhouse correction 

was applied (Geisser & Greenhouse, 1958) and corrected p-values are reported together 

with uncorrected degrees of freedom and the epsilon-values (ε). Pearson’s correlations were 

calculated to examine the relation between Ne amplitude and behavioural measures. 

Fisher’s z tests were used to test the difference between Pearson’s correlation coefficients. 

Results 

Behavioural Data 

Overall accuracy. Figure 24 illustrates how mean accuracy rates increased across 

learning in each of the three incentive conditions. This was confirmed by an incentive 

condition (gain, loss, and neutral) × bin (Bins 1-5) ANOVA that yielded a significant main 

effect of bin [F(4,68) = 76.60, p < .001, ε = .45]. Moreover, a significant main effect of 

incentive condition was obtained [F(2,34) = 6.90, p < .01], indicating that mean accuracy 

rates differed as a function of trial value. Contrasts revealed accuracy to be higher on gain 

and loss trials compared to neutral trials [F(1,17) = 7.94, p < .05], as well as on loss trials 

compared to gain trials [F(1,17) = 5.18, p < .05]. 

 

Figure 24: Mean accuracy learning curves for the three incentive conditions. Error bars indicate standard errors. 
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Trial-to-trial behavioural adaptations. An ANOVA with the factors correctness (correct-

stay vs. incorrect-switch) and incentive condition (gain, loss, and neutral) yielded significant 

main effects of correctness [F(1,17) = 143.58, p < .001] and incentive condition [F(2,34) = 

10.24, p < .001] that were qualified by a significant interaction between correctness and 

incentive condition [F(2,34) = 4.10, p < .05]. Separate analyses for correct and incorrect 

choices revealed a significant effect of incentive condition for incorrect-switch performance 

[F(2,34) = 8.86, p < .01], but not for correct-stay performance [F(2,34) = 2.26, p = .12]. 

Contrasts showed that participants were more likely to switch the response key following 

incorrect choices in the loss condition compared to gain and neutral condition [F(1,17) = 

17.73, p < .01], whereas there was no significant difference in incorrect-switch performance 

between gain and neutral condition (F < 1) (see Figure 25). 

 

Figure 25: Correct-stay and incorrect-switch performance for the three incentive conditions. Error bars indicate 

standard errors 

In summary, participants showed highest accuracy in the loss condition, followed by 

gain and neutral condition. This finding indicates that they were able to improve their 

performance in order to maximize their profit, with being even more motivated to avoid 

potential losses than to obtain potential rewards. A stronger bias to avoid negative outcomes 

was also evident from trial-to-trial adjustments in behavioural choices. Participants switched 

more often to the correct response key when incorrect choices were associated with 

monetary losses, whereas correct-stay performance was not affected by trial incentive value. 
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ERP data 

Cue-target interval 

Figure 26 shows the cue-locked grand-average ERP waveforms for the three 

incentive conditions at electrode Pz. Motivationally relevant (gain, loss) cues were followed 

by a larger centro-parietal positivity (P300) than neutral cues. An ANOVA with the factors 

incentive condition (gain, loss, neutral) and site on the P300 amplitude revealed a significant 

main effect of site [F(14,238) = 49.80, p < .001, ε = .17], indicating that the P300 was largest 

at centro-parietal midline sites. Moreover, a reliable main effect of incentive condition 

[F(2,34) = 54.00, p < .001, ε = .80] showed that the P300 amplitude was greater for the gain 

and loss condition compared to the neutral condition [F(1,17) = 71.97, p < .001, ε = .80], 

whereas no differences were found between gain and loss condition (F < 1). The effect of 

incentive condition was most pronounced at centro-parietal sites, reflected in a significant 

interaction between incentive condition and site [F(28,476) = 4.40, p < .01, ε = .17]. 

Figure 27 presents the target-locked ERP waveforms in the cue-target-interval at 

electrode Cz. As illustrated in the Figure, a negative slow wave (tCNV) developed about 600 

ms after cue onset at fronto-central recording sites. Visual inspection suggested that the 

tCNV amplitude did not differ for the three incentive conditions. This was confirmed by the 

statistical analysis that yielded a significant main effect of site only [F(14,238) = 19.11, p < 

.001, ε = .21]. 

 

Figure 26: Cue-target-interval: Cue-locked ERPs for the three incentive conditions at electrode Pz 
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Figure 27: Cue-target-interval: Target-locked ERPs for three incentive conditions in the cue-target-interval at 

electrode Cz. Note that the difference between neutral condition and gain/loss condition reflects the P300 effect 

(see Figure 27) that is temporally smeared due to the jittered cue-target-interval.  

Response-locked ERPs 

Incentive-related modulations in the Ne. Figure 28 presents the ERPs to correct and 

incorrect responses in Bin 1 and Bin 2 for the three incentive conditions at electrode site 

FCz. Following incorrect responses the Ne was evident as a negative deflection that 

increased over the course of learning and appeared larger for loss trials than gain or neutral 

trials. The peak-to-peak measures of the Ne were subjected to an ANOVA with the factors 

incentive condition (gain, loss, neutral) and bin (Bin 1 vs. Bin 2). A significant main effect of 

bin [F(1,17) = 6.74, p < .05] confirmed the learning-related increase in Ne amplitude from Bin 

1 to Bin 2. Moreover, the analysis yielded a significant main effect of incentive condition 

[F(2,34) = 7.63, p < .01]. Contrasts revealed the Ne to be larger on loss trials compared to 

gain und neutral trials [F(1,17) = 11.30, p < .01], whereas no amplitude difference was found 

between gain and neutral condition (F < 1). 

Analysis of difference waves (∆Ne) corroborated these findings. The ∆Ne amplitude 

reliably varied across bins [F(1,17) = 27.95 , p < .001] and incentive conditions [F(1,17) = 

4.35 , p < .05]. Consistent with the peak-to-peak measure, the ∆Ne was significantly greater 

on loss trials compared to gain and neutral trials [F(1,17) = 8.04 , p < .05], but did not differ 

between gain and neutral condition (F < 1). Thus, error processing was specifically affected 

by outcome valence, reflected in larger Ne amplitudes for errors associated with losses but 
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not for failures to obtain rewards. For reasons of parsimony, only analyses involving peak-to-

peak measures are reported in the following sections. 

 

Figure 28: Response-locked ERPs at electrode FCz to correct (solid lines) and incorrect (dashed lines) responses 

displayed separately for the three incentive conditions and the two bins. Dotted lines represent difference waves 

(error minus correct) 

Loss-related Ne increase does not reflect differences in overall performance. To 

ensure that the larger loss-related Ne amplitude was not a simple consequence of 

differences in overall accuracy, a second analysis was run after removing four subjects who 

clearly performed better in the loss than in the gain condition. The remaining sample showed 

higher accuracy in gain and loss compared to neutral condition [F(1,13) = 5.13, p < .05], but 

performed equally well in gain (M = 0.78, SD = .06) and loss condition (M = 0.78 SD = .07) (F 

< 1). Nonetheless, the Ne was significantly larger in the loss condition compared gain and 

neutral condition [F(1,13) = 6.18, p < .05], whereas no amplitude difference was found 

between the latter two conditions (p-values > .12). 
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Ne amplitude predicts loss avoidance. The analyses of the accuracy and ERP data 

indicate that loss but not gain anticipation specifically modulates error processing and error-

induced learning as reflected in larger Ne amplitude and better incorrect-switch performance. 

In order to examine the relation between Ne and error-related behavioural adaptations in 

more detail, correlation analyses between Ne amplitude (averaged across the two bins) and 

performance scores (overall accuracy, correct-stay and incorrect-switch performance) were 

conducted, separately for the three incentive conditions (see Figure 29). Reliable correlations 

were obtained between the Ne on loss trials and incorrect-switch performance in the loss 

condition [r = −.59, p < .05] as well as in the gain condition [r = −.49, p < .05]. The magnitude 

of the loss-related Ne did not predict correct-stay performance or overall accuracy in any 

incentive condition (p-values > .14), demonstrating the specificity of the above findings. 

Furthermore, there were no significant correlations between Ne amplitude in gain or neutral 

condition and any performance score (p-values > .18). Separate analyses for the two bins, 

however, revealed a significant correlation between Ne amplitude and incorrect-switch 

performance during later stages of learning (Bin 2) in the gain condition [r = −.47, p < .05]26. 

By contrast, no reliable relationships between Ne amplitude and performance measures 

were found for the neutral condition (p-values > .54). Importantly, the correlation between Ne 

and incorrect-switch performance was significantly larger significantly in the loss condition 

compared to the neutral condition [z = −2.12, p < .05]. Yet, the correlation coefficients did not 

significantly differ between gain and neutral condition27 [z = −1.20, p = .23] or gain and loss 

condition [z = 1.12, p = .26]. 

Summary of Ne findings. To summarize, the Ne was larger the loss condition 

compared to gain and neutral condition. This effect did not change as a function of learning 

and did not reflect differences in overall performance. Importantly, the Ne reliably predicted 

error-related behavioural adjustments in the loss condition only. These findings strongly link 

the neural processes underlying the Ne to aversively motivated behavioural control. 

                                                 
26 In the loss condition, the Ne correlated significantly with incorrect-switch performance in Bin 1 and 2 (p-values < 

.05). 
27 However, in Bin 2, the correlation between Ne and incorrect-switch performance differed significantly between 

gain and neutral (p < .05). 
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Figure 29: Correlation between Ne amplitude at electrode FCz (averaged across the bins) and incorrect-switch 

performance, separately for the loss condition (r = -.59, p < .05), the gain condition (r = -.27, n.s.), and the neutral 

condition (r = .09, n.s.). 
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 Error Positivity. The Pe amplitudes (see Figure 30) were subjected to an ANOVA with 

the factors incentive condition (gain, loss, neutral), bin (Bin 1 vs. Bin 2) and feedback type 

(positive vs. negative). The analysis yielded a reliable main effect of incentive condition 

[F(2,34) = 3.94, p < .05], indicating that the ERPs were more positive-going in the gain and 

loss condition compared to the neutral condition [F(1,17) = 4.56, p < .05]. There was also a 

trend towards larger amplitudes in the loss compared to the gain condition [F(1,17) = 3.30, p 

= .087]. Furthermore, the analysis showed that the Pe increased with learning, reflected in 

significant main effects of feedback type [F(1,17) = 13.03, p < .01] and bin [F(1,17) = 7.35, p 

< .05] and an interaction of feedback type and bin [F(1,17) = 11.95, p < .01]. Follow-up 

analyses that were split by feedback type showed that the positivity on error trials (p < .001) 

but not on correct trials (p = .90) became larger as learning progressed. 

  

Figure 30: Response-locked ERPs at electrode Pz to correct (solid lines) and incorrect (dashed lines) responses 

displayed separately for the three incentive conditions and the two bins. Dotted lines represent difference waves 

(error minus correct) 
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Thus, the Pe increased with learning. In addition, there was a larger positivity on both 

erroneous and correct responses in the gain and loss condition compared to the neutral 

condition. 

Feedback-locked ERPs 

Feedback-related negativity. The ERPs to positive and negative feedback in the three 

incentive conditions are presented in Figure 31. From visual inspection, it appeared that 

there were only small amplitude differences between positive and negative feedback. 

Irrespective of feedback valence, largest FRN amplitudes were elicited in the neutral 

condition. The peak-to-peak measures of the FRN were analyzed using an ANOVA with the 

factors incentive condition (gain, loss, neutral), bin (Bin 1 vs. Bin 2) and feedback type 

(positive vs. negative). The analysis yielded a reliable main effect of feedback type, indicating 

that the was larger FRN after negative compared to positive feedback [F(1,17) = 5.24, p < 

.05]. Furthermore, a significant main effect of incentive condition was obtained [F(2,34) = 

6.54, p < .01]. Contrasts revealed that the FRN was greater in the neutral condition 

compared to gain and loss condition [F(1,17) = 13.41, p < .01], but did not differ between 

gain and loss condition (p = .41). The analysis of the ∆FRN amplitude produced qualitatively 

similar results to the analysis of the original waveforms and is not reported here. 

Control analysis of the P300. Figure 31 illustrates that the FRN amplitude may have 

been confounded by differences in the feedback-evoked P300. Therefore, mean amplitudes 

in a 300 to 400 ms post-feedback interval at electrode Pz were analysed using the same 

ANOVA design as for the FRN amplitudes. The analysis yielded reliable main effects of 

feedback type [F(1,17) = 7.94, p < .05] and learning condition [F(2,34) = 5.64, p < .01] that 

were qualified by an interaction of feedback type and learning condition [F(2,34) = 3.93, p < 

.05]. Separate analyses showed that the P300 to positive feedback did not differ between the 

three incentive conditions (p = .72). By contrast, negative feedback elicited larger P300 

amplitudes in the gain condition compared to loss and neutral condition (p < .01), whereas no 

differences were found between the latter two conditions (p = .38). Furthermore, the analysis 

revealed a significant main effect of bin [F(1,17) = 5.70, p < .05] and an interaction of bin and 
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feedback type [F(1,17) = 14.05, p < .01]. Separate analyses showed that the P300 

decreased from Bin1 to Bin 2 for positive feedback (p < .001) but not for negative feedback 

(p = .75). Hence, if anything, the P300 might have attenuated the FRN after negative 

feedback in the gain condition. As can be seen from Figure 31, this would decrease rather 

than increase the differences between the incentive conditions28. 

 Thus, better learning in the motivationally significant gain and loss conditions did not 

appear to be accompanied by more differentiated monitoring of positive and negative 

feedback as reflected in the FRN. 

 

Figure 31: Feedback-locked ERPs at electrode FCz to positive (solids lines) and negative (dashed lines) 

displayed separately for the three incentive conditions and the two bins. 

  
                                                 
28 In a further control analysis, feedback-locked epochs were transformed to current source density (CSD) 

estimates (Kayser & Tenke, 2006). CSD acts as a spatial filter that amplifies the representation of local potentials 

and attenuates broadly distributed/distal activities, thereby removing spatial redundancy caused by volume 

conduction and by this attenuating the influence of overlapping ERP components. However, this analysis yielded 

a qualitatively similar pattern of findings for the FRN as the analysis of the original waveforms. 
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sLORETA Analysis 

Whole-brain analysis. Figure 32 shows sLORETA images for the error-correct 

contrast, separately for the three incentive conditions. Whole-brain analysis revealed that 

parts of the posterior cingulate and precuneus were less active on incorrect than correct 

trials, particularly in gain condition. Moreover, in the loss condition, greater error-related 

activity was found for a large cluster of voxels in the midcingulate and the adjacent SMA and 

pre-SMA. By comparison, on neutral trials, errors were mainly characterized by greater rACC 

activity (all p-values < .05, corrected for multiple comparisons). 

Gain Condition Loss Condition Neutral Condition 

   

Figure 32: Voxel-by-voxel sLORETA statistical threshold images (x = -4) for the error > correct contrast in the 

three incentive conditions displayed on the MNI templates. Hotter colours indicate relatively higher activity for 

errors; cooler colours indicate relatively lower activity for errors. 

ROI analysis29. Standardized current density power for dACC and rACC ROI were 

subjected to an ANOVA with the factors incentive condition (gain, loss, and neutral), 

correctness (correct vs. incorrect), and ROI (dACC vs. rACC) yielded a reliable main effect of 

ROI [F(1,17) = 12.94 , p < .01] as well as significant interactions between correctness and 

ROI [F(2,34) = 5.72, p < .05, ε = .70] and incentive condition, correctness, and ROI [F(2,34) = 

4.25, p < .05]. Separate ANOVAs for the two ACC subregions revealed a significant 

interaction between incentive condition and correctness for the dACC ROI only [F(2,34) = 

4.24, p < .05]. Contrasts showed that the error-correct difference in dACC activity was 

                                                 
29 As the whole-brain analysis identified error-related source activity in areas other than the ACC for the loss 

condition, additional analyses were conducted that included further areas such as the BA6, BA8, and BA9. These 

analyses yielded findings that were qualitatively similar to the reported results of for the ACC ROIs. 
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significantly larger in the loss condition than in gain and neutral condition [F (1,17) = 9.70, p < 

.05], but did not differ between gain and neutral condition (p = .28) (see Figure 32). Indeed, 

dACC power was significantly enhanced following errors on loss trials only [t(17) = 3.38, p < 

.01]. Thus, the pattern of dACC activation largely reflected the modulation of the Ne 

amplitude across the incentive conditions, whereas no evidence for incentive-related 

differences in rACC reactivity was found. The latter result appears somewhat discrepant with 

the whole-brain analysis that revealed phasically increased rACC activation in the neutral 

condition but not in the gain or loss condition. Given that the significant cluster in the whole-

brain contrast contained a much smaller number of voxels than the rACC ROI, it is likely that 

non-responsive voxels attenuated the differences between the incentive conditions in the 

ROI analysis. 

Incentive-specific relations between ROI activity, Ne amplitude, and behavioural 

adaptation. To examine the relationship between subregional cingulate activation and Ne 

amplitude more specifically, multiple regression analyses were conducted for the three 

incentive conditions with error-related rACC and dACC power as predictors. On gain trials, 

both error-related dACC and rACC activation reliably predicted larger (i.e., more negative) 

Ne amplitudes (ß = −.42 and −.68, t = −2.67 and −4.35, p < .05 and .01, respectively; R2 = 

.64). Similarly, greater rACC activation was positively related to Ne magnitude in the neutral 

condition. There was, however, only a marginally significant relation between dACC activity 

and Ne on neutral trials (ß = −.53 and −.38, t = − 2.88 and −2.11, p < .05 and .054, 

respectively; R2 = .56). In the loss condition, only dACC power reliably predicted Ne 

amplitude (ß = −.71, t = −3.93, p < .01; R2 = .52). Importantly, when the effect of dACC/rACC 

activation during correct trials was partialled out, the same pattern of correlations between 

residual error-related ROI values and Ne amplitude emerged. 

In a second step, incorrect-switch performance was regressed on error-related rACC 

and dACC power. In the gain condition, greater error-related rACC activity predicted more 

efficient post-error behavioural adjustments (ß = .62, t = 3.12, p < .01, R2 = .41). Similarly, 

rACC power scaled with incorrect-switch performance in the neutral condition (ß = .48, t = 

2.13, p = .05). Interestingly, there was also a significant negative relation between dACC 
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activation and incorrect-switch performance (ß = −.57, t = − 2.57, p < .05), indicating that 

reduced dACC power during errors was accompanied by higher error correction rates on 

neutral trials (R2 = .36). In contrast, neither rACC nor dACC power were significantly related 

to error-related behavioral adjustments in the loss condition (ß = .25 and .30, t = 1.06 and 

1.24, p = .30 and .23, respectively; R2 = .16). However, including gain-related dACC power 

into the equation increased the predictive power of loss-related dACC activation. Greater 

dACC power predicted better incorrect-switch performance in the loss condition when dACC 

power on gain trials was controlled for (ß = .84, t = 2.28, p < .05, R2 = .33). Thus, it appeared 

that dACC power in the gain condition suppressed criterion-irrelevant variance of dACC 

power in the loss condition. This “error” variance might reflect a valence-independent effect 

of motivation on dACC reactivity. No other suppressor effects were obtained in this analysis. 

The pattern of findings did not change when the effect of dACC/rACC activation during 

correct trials was accounted for30. 

Summary of findings. To summarize, dACC activation was larger following errors than 

correct responses and predicted Ne amplitude in the loss condition. Moreover, when 

accounting for dACC power on gain trials, loss-related dACC reactivity predicted incorrect-

switch performance. Although the whole-brain analysis failed to reveal reliable differences in 

ACC activation between incorrect and correct trials in the gain condition, both error-related 

rACC and dACC power predicted Ne magnitude. Moreover, greater rACC power was 

associated with better incorrect-switch performance. For the neutral condition, sLORETA 

contrasts revealed higher rACC power following errors compared to correct responses. In 

line with this, error-related rACC activity predicted Ne amplitude as well as incorrect-switch 

performance. In contrast to the loss condition, dACC activity was inversely related to 

incorrect-switch performance. 

Taken together, these findings indicate that the contribution of different cingulate 

subregions to error processing and learning-related behavioural adaptation varied as a 

                                                 
30 No significant relations were found between correct-stay performance and dACC/rACC activity following correct 

responses. 
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function of the specific task context. However, there was no evidence to suggest that greater 

rACC activation underlies the larger Ne amplitude for errors resulting in monetary losses. 

Instead, differences in dACC power appeared to underlie the increase of the Ne in the loss 

condition compared to gain and neutral condition. Conversely, for the latter two conditions, 

rACC power was associated with larger Ne amplitudes and more efficient error-related 

behavioural adjustments, possibly reflecting a complementary role of this brain region when 

action monitoring functions subserved by the dACC are less dominant. 
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9. Discussion of Experiment 3 

The main goal of this study was to investigate the impact of appetitive and aversive 

motivation on performance monitoring and goal-directed behavioural adjustments during 

feedback-based learning. To this end, the study examined modulations in the amplitude of 

Ne, FRN, and Pe across different incentive conditions, in which errors led to (1) failure to 

gain, (2) losses or (3) neither of both. In particular, the present research aimed to determine 

whether larger Ne amplitudes for motivationally and affectively more salient errors reflect a 

differential involvement of dorsal and rostral cingulate subregions in error processing and the 

initiation of subsequent behavioural changes. To this end, an EEG source localization 

technique known as standardized Low-Resolution Electromagnetic Tomography (sLORETA, 

Pascual-Marqui, 2002) was employed. 

Summary of Main Findings 

The present findings show that participants performed better in the loss condition than 

in the gain condition and worst in the neutral condition. These differences in overall accuracy 

were largely driven by a higher tendency to adjust responses after errors associated with 

monetary losses, whereas trial value did not affect correct-stay performance. In the loss 

condition, errors elicited a larger Ne compared to gain and neutral condition. By contrast, no 

differences in Ne amplitude were found between gain and neutral condition. Importantly, the 

incentive-related Ne modulation was not a mere consequence of differences in overall 

performance and hence improved error detection (cf. Yeung, 2004), as enhanced loss-

related Ne amplitudes were also found for a subsample of participants who performed 

equally well in gain and loss condition. Notably, inter-individual differences in Ne amplitude 

on loss trials correlated with incorrect-switch performance, suggesting a functional link 

between the loss-related Ne enhancement and aversively motivated behavioural 

adjustments. In contrast to previous fMRI findings, source localization revealed greater error-

related dACC reactivity on loss trials but greater rACC reactivity on neutral trials. While 

phasical dACC activation scaled to the size of the Ne in each of the three incentive 

conditions, greater phasical rACC activation predicted larger Ne amplitudes and improved 
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error-related behavioral adjustments in the gain and neutral condition only. Rather than a 

functional distinction between “cognitive” vs. “affective” aspects of error processing, these 

findings point to a more complex interplay among the cingulate subdivisions in mediating 

adaptive behaviour control. 

Learning-related Changes in Ne, FRN, and Pe 

 Learning-related changes in the Ne. Importantly, the present study demonstrated that 

the Ne increased with learning. This finding is line with previous research indicating that 

learning-related modulations in the Ne can be observed when learning blocks are relatively 

short and hence include a small number or trials (e.g., Eppinger & Kray, 2011). Hence, in 

simple two-choice decisions, the Ne appears to grow larger during early stages of learning 

only. By contrast, the learning-related increase in the correct response-related positivity was 

much less pronounced than in Experiment 1 and 2. Together, these findings corroborate the 

notion that the two components reflect dissociable processes, possibly both related to 

behavioural adaptation but operating at more rapid vs. slower time-scales (Eppinger et al., 

2008, 2009). 

 However, an alternative view on the putative positivity on correct trials has been put 

forward as well. Ridderinkhof and cowokers (2003) observed that error-preceding correct 

trials are characterized by faster responses and an increased positivity in the time range of 

the Ne. The authors concluded that these phenomena indicate deficient performance 

monitoring processes, increasing the error probability on the next trial. Using CSD 

transformation, Allain and colleagues (2004) showed that the error-preceding positivity 

actually reflects an attenuation of the CRN, which they assumed is functionally similar to the 

Ne. Indeed, fMRI studies showed an error-preceding activation increase in default mode 

regions of the brain and a concurrent decrease of activation in brain regions supporting 

effortful task-related processing, including pMFC and OFC (Eichele et al., 2008). In the 

current study, similar to the findings by Allain et al. (2004), response-locked current source 

density (CSD) ERPs revealed a clear Ne-like wave on correct trials. This negativity 

decreased with learning in the gain and neutral condition. Thus, the learning-related increase 
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in the correct response-related positivity in these conditions might also reflect the reduced 

engagement of effortful monitoring processes, possibly related to a decrease in task 

demands. By contrast, in the loss condition, the amplitude of the Ne-like wave did not change 

across bins, but appeared generally somewhat smaller than in gain and neutral condition. In 

sum, the current findings indicate that it remains a challenging task for future research to 

disentangle the different influences contributing to learning-related changes in the response-

locked ERPs. 

The FRN does not change with learning. Unexpectedly, the changes in the Ne over 

the course of learning were not accompanied by modulations in the FRN. This finding is in 

sharp contrast with the predictions of the R-L theory (Holroyd & Coles, 2002). Moreover, the 

present results are inconsistent with previous studies that showed pronounced changes in 

the FRN to positive feedback as learning progressed (Cohen et al., 2007; Eppinger et al., 

2008, 2009). Notably, the lack of learning-related modulations of the FRN in the present 

study did not appear to reflect influences of reward or punishment motivation on feedback 

processing, as it was also evident in the neutral condition. One might argue that the learning 

blocks were too short to obtain reliable effects of learning on the FRN. However, at least two 

factors render this unlikely. First, there was a marked increase in Ne amplitude in the present 

experiment. Second, in the Eppinger et al.’s studies (2008, 2009) the most pronounced 

reduction in the ERPs to positive feedback occurred very early in learning, i.e., from first to 

second bin. Still, visual inspection of the feedback-locked ERPs in the study of Eppinger and 

colleagues suggests that the feedback-evoked P300 decreased with learning for positive 

and, albeit less clearly, for negative feedback. By contrast, in the present study, the P300 

decreased with learning only for positive but not for negative feedback. Hence, differential 

effects in the feedback-evoked P300 might account for the disparate findings. In sum, 

however, the current data are difficult to reconcile with the literature. 

Learning-related changes in the Pe. Consistent with the results of Experiment 1 and 

2, the Pe became larger as participants were better able to represent the correctness of their 

responses. As opposed to the first study, however, the current analyses revealed an 

increasing positivity for erroneous responses only. This finding parallels the less pronounced 
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increase in the correct response-related positivity and might indicate a stronger confounding 

effect of the stimulus-evoked P300 on the response-locked ERPs in Experiment 1 and 2. 

Effects of Appetitive and Aversive Motivation on Error Processing and Learning 

Monetary incentives improve learning performance. In line with previous findings 

(Hübner & Schlösser, 2010; Pessoa & Engelmann, 2010; Savine et al., 2010), the accuracy 

data showed that monetary incentives in gain and loss condition enhanced task 

performance. Furthermore, mean accuracy rates were higher in the loss condition than in the 

gain condition, indicating that participants were more strongly motivated to avoid losses than 

to obtain rewards. This is consistent with the often observed phenomenon that losses have a 

higher impact on decision making than do gains of equivalent magnitude, commonly referred 

to as ‘loss aversion’, (e.g., Ariely, Huber, & Wertenbroch, 2005). Moreover, participants made 

use of the incentive cues from very early stages of learning, suggesting that higher trial value 

promoted the mobilization of processing resources, most notably attentional effort (Sarter, 

Gehring, & Kozak, 2006), thereby enabling a faster establishment of adequate S-R-

mappings. 

In support of this notion, gain and loss cue elicited larger P300 amplitudes than 

neutral cue, which is consistent with other reports showing that this ERP component is 

sensitive to the stimulus-inherent motivational or emotional significance (e.g., Keil et al., 

2003; Yeung & Sanfey, 2004; Nieuwenhuis et al., 2005). Given that the P300 has been 

linked to the encoding and updating of task context (Donchin & Coles, 1988), the amplitude 

modulation is likely to reflect a more convenient representation of the current task-specific 

environment on gain and loss trials compared to neutral trials. Alternatively, it has been 

proposed that the neural processes underlying the P300 optimize goal-directed information 

processing by amplifying the neural response to motivationally significant events 

(Nieuwenhuis, Aston-Jones, & Cohen, 2005). However, this increase in selective attention is 

thought to facilitate encoding and maintenance of the eliciting stimulus, i.e., the incentive 

cue. Therefore, in order to promote learning, a larger P300 should also be elicited by the 
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imperative stimulus. Yet, no differences between the incentive conditions were found for the 

target-locked P30031. 

In addition, the beneficial effects of gain and loss cues on learning performance might 

reflect more deliberative, strategic allocation of processing resources, such as the 

preferential use of rehearsal strategies for motivationally more significant items. Although the 

CNV is thought to reflect voluntary mobilization of resources for task-relevant processes 

(Falkenstein et al., 2003), no amplitude differences were found between the incentive 

conditions. Still, it should be noted that the study by Falkenstein and coworkers (2003) used 

a speeded-response task that did not require participants to learn the mapping rules. Thus, in 

their study, the incentive-related CNV increase was likely to reflect effortful stimulus, 

cognitive, and motor preparatory processes in the service of fast and accurate responding. 

By contrast, in the current learning task, incentive cues might have promoted mnemonic 

processes more strongly32. Indeed, it appears from visual inspection of the learning curves 

that accuracy differences between the loss conditions were most pronounced at the 

beginning of learning. This would be consistent with the view that the impact of incentives on 

task performance decreased with a reduction of working memory demands. However, the 

effect was statistically not reliable, possibly due to the fact that incentive-related effects were 

generally small compared to the more pronounced learning-related changes in accuracy. 

Aversive motivation increases the behavioural impact internal error cues. Notably, a 

more fine-grained analysis of accuracy data in terms of trial-to-trial behavioural changes 

revealed influences of incentive condition on incorrect-switch performance only, whereas 

correct-stay performance was not affected by incentive value. Participants were most likely to 

change their responses after errors that resulted in monetary losses. No differences in error-

related behavioural adjustments were found between gain and neutral condition. Crucially, 

the effects of incentive value on trial-to-trial behavioural adjustments were mirrored by 

                                                 
31 Of note, the lack of differences in the target-locked P300 suggests that the differences in Ne amplitude were 

unlikely to reflect unspecific effects of arousal or orienting. 
32 However, when participants were explicitly asked for their experiences with the learning task during debriefing, 

they did not report the purposeful use of those strategies. In fact, most of them indicated that they did not pay 

much attention due the incentive cues but rather focused on learning the mapping rules. 
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modulations in Ne amplitude. Consistent with previous research (Gehring et al., 1993; Hajcak 

et al., 2005; Potts, 2011), the Ne was enhanced for motivationally and affectively more 

salient errors. Crucially, the Ne was sensitive to punishment but not to reward omission, 

reflected in larger Ne amplitudes on loss trials compared to gain and neutral trials, whereas 

the Ne did not differ between gain and neutral condition. This pattern of findings is in line with 

a number of recent reports (Holmes & Pizzagalli; Potts, 2011; Wiswede et al., 2009a). 

Similar to the present study, Potts (2011) found larger Ne amplitudes for errors 

resulting in monetary losses compared to those resulting in reward omission during a 

flankers task. Thus, by avoiding potential confounding effects inherent in a block design and 

assuring sufficient motivational/affective relevance of the incentive manipulation, the present 

study was able to demonstrate robust effects of punishment motivation on error processing 

and error-related behavioural adjustments. In particular, the current data fit the results of 

Experiment 1 and 2 and provide strong evidence for the view that appetitive and aversive 

motivation differentially bias performance monitoring. One of the most striking findings of the 

present study, however, was the close resemblance of the experimental effects on Ne and 

incorrect-switch performance. This further substantiates the notion of a specific functional link 

between the neural processes underlying Ne generation and subsequent strategic 

behavioural adjustments (Cavanagh et al., 2009; Debener et al. 2005; Frank et al., 2005, 

Holroyd & Coles, 2002). 

Extending these findings, the present data show that aversive motivation specifically 

enhances the relationship between the neural processes underlying the Ne and behavioural 

adaptation. This was indicated by a significant correlation between Ne amplitude and 

incorrect-switch performance in the loss condition. By contrast, no significant relation 

between Ne and error-related behavioural adjustments was seen in the neutral condition. 

Interestingly, the Ne also predicted incorrect-switch performance during later stages of 

learning in the gain condition. On the one hand, these results are consistent previous 

research that closely links ACC functioning to aversively motivated behaviour control (Frank 

et al., 2005; Hajcak & Foti, 2008; Shackman et al., 2011; Tops & Boksem, 2010). On the 

other hand, they support the idea that motivational/affective influences on cognitive 

performance are not restricted to an unspecific “energizing” function, but are associated with 



 182 

a sharpening of task-related neural processing (Pessoa & Engelmann, 2010, Savine & 

Braver, 2010). On this view, the correlation between Ne amplitude and incorrect-switch 

performance during later stages of learning in the gain condition might indicate that 

motivational impact of rewards evolves more slowly, possibly not until a certain performance 

level in the loss condition has been established. However, the Ne is thought to reflect 

reactive, evaluative control. Hence, the current findings do not preclude the possibility that 

appetitive motivation may trigger other forms of neural enhancement or optimization. For 

instance, some researchers proposed an explicit link between reward motivation and 

proactive control (Braver et al., 2007; Harmon-Jones et al., 2006; Savine et al., 2010). In the 

present study, the analysis of cue-related ERPs did not appear to provide much support for a 

reward-related increase in proactive control. Yet, this might reflect insensitivity of the 

measurements to such processes33. 

In contrast to aversive motivation, reward motivation did not result in an increase of 

the Ne. This is consistent with a study by Holmes and Pizzagalli (2010) that also failed to 

obtain reliable Ne differences between reward and non-reward trials in a Stroop task. 

Moreover, the finding fits demonstrations that short-term induction of negative but not 

positive affect on a trial-by-trial level is associated with an increase in Ne amplitude 

(Wiswede et al., 2009a). Yet, van Wouwe and coworkers (2011) found that the induction of 

positive affect by presenting short movie clips led to a subsequent reduction of the Ne 

compared to the induction of neutral affect. A similar effect has been reported for embodied 

positive affect (Wiswede, Münte, Krämer, & Rüsseler, 2009c). 

The discrepant findings might reflect differences in the nature of the specific affective 

manipulations. In the latter two studies, the reduction in Ne amplitude was attributed to 

positive affect-related increases of tonic DA in the striatum, which is thought to effectively 

reduce the error-related phasic dips in dopaminergic activity and hence to attenuate the Ne 

(Frank et al., 2004; Frank & O’Reilly, 2006). By contrast, the successive presentation of 

motivationally and affectively salient cues is assumed to result in phasic changes of DA 

(Schultz, 2002; 2006; 2007). These cue-related phasic increases in dopaminergic activity are 

                                                 
33 Indeed, Harmon-Jones and cowokers (2006) demonstrated that high levels of approach motivation were 
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likely to exert modulatory effects on prefrontal working memory function such as enhanced 

maintenance and stabilization of task-relevant information during subsequent processing of 

the imperative stimulus (Cools & D’Esposito, 2011; Durstewitz & Seamans, 2002). 

Importantly, the beneficial effects of increased prefrontal DA have been shown to improve 

error processing as reflected in the Ne (De Bruijn et al., 2004; Tieges, Ridderinkhof, Snel, & 

Kok, 2004; van Wouwe et al., 2011). Hence, the different susceptibility of the Ne to positive 

affect-related manipulations might be due to distinct characteristics of dopaminergic activity 

in the striatum and the PFC. 

In any case, the lack of differences in Ne magnitude between gain and neutral 

condition is noteworthy since theoretical accounts that relate the Ne to the significance of an 

error would predict a larger amplitude on gain trials (Luu et al., 2003; Olvet & Hajcak, 2008). 

The observed incentive-related modulations of the Ne are also not readily accommodated by 

a conceptualization in terms of a “pure” reward prediction error (Holroyd & Holes, 2002) or 

increased conflict (Botvinick et al., 2001). According to TD RL algorithms, the magnitude of 

the PE should be the same for (1) a zero outcome when a gain has been expected and (2) a 

loss when a zero outcome has been expected (e.g. Schultz, 2002). Thus, while a 

dopaminergic reward prediction error signal might constitute one determinant of the Ne, it is 

conceivable that interactions between ACC and other neural systems involved in the 

representation of specific reinforcer value (e.g., the amygdala and the OFC; Frank & Claus, 

2006; Pessoa, 2008; Tremblay & Schultz, 1999, 2000) are reflected in the measured scalp 

potential as well. The conflict monitoring theory also cannot fully account for the present 

findings, largely for the same reasons as in Experiment 1 and 2. According to the conflict 

monitoring theory the larger Ne in the loss condition reflects increased post-error conflict due 

to enhanced processing of the target stimulus after the production of the erroneous 

response. However, the analyses of performance-matches subgroups showed that the 

putative strengthening of attentional focus in the loss condition is not necessarily 

accompanied by better performance. Instead the present findings suggest that aversive 

                                                                                                                                                         
primarily associated with increased relative frontal activity asymmetry (RFA). 
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motivation led to heightened vigilance to internal performance cues, possibly resulting in an 

“amplification” of the conflict signal but not higher conflict per se. 

Interestingly, the incentive-related Ne modulation did not change as a function of 

learning, that is, errors in the loss condition elicited a larger Ne, irrespective of whether they 

occurred during earlier or later stages of learning. Thus, even in case of uncertain responses, 

error processing differed considerably between loss trials on the one hand and gain and 

neutral trials on the other. By contrast, in Experiment 1 and 2, the effect of failure on the Ne 

was more pronounced during later phases of learning, that is, as participants were better 

able to represent the correctness of their responses. However, it is difficult to directly 

compare these experiments with the current study. First, in Experiment 1 and 2, the learning 

task involved a greater number of stimulus repetitions. Therefore, the two bins represented 

other phases of learning than in Experiment 3. Indeed, the Ne did not change across pretest 

in Experiment 1 and 2, whereas a pronounced learning-related increase was observed in the 

present study. Hence, it is possible that the amplitude differences would have become larger 

with prolonged learning in Experiment 3. Second, the results of Experiment 1 and 2 are 

based on a comparison between two different test phases (pre- and posttest), whereas 

incentive value was manipulated within the same learning phase in the current study. 

However, the current finding of an early reactivity of the medial prefrontal 

performance monitoring system to punishment cues seems consistent with other research 

that showed enhanced ACC activation in conjunction with pain avoidance when response 

uncertainty was high (Diener, Kuehner, & Flor, 2010). Similarly, unpredictable threat has 

been found to evoke stronger activity in the ACC than predictable threat (Alvarez, Cen, 

Bodurka, Kaplan, & Grillon, 2011). Thus, the present data are in line with the notion that a 

core function of the ACC is to enable appropriate behaviour in the face of threat and 

uncertainty (Shackman et al., 2011). 

In sum, the data discussed in this section showed that aversive but not appetitive 

motivation is associated with a heightened responsivity to internal error cues and more 

efficient error-related behavioural adjustments. The findings further corroborate the notion of 

a close link between performance monitoring – as reflected in the Ne – and aversively 

motivated instrumental control. Importantly, the accuracy data as well as the cue-locked 
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ERPs showed that the sensitivity of the Ne to losses was unlikely to reflect unspecific 

motivational factors such as higher effort or arousal. Instead, the pattern of results appeared 

to indicate a highly specific processing bias towards the avoidance of losses, i.e., the most 

aversive response outcomes. 

Monetary incentives do not clearly affect the FRN. As was the case for the failure 

manipulation in Experiment 1 and 2, trial-by-trial manipulations of appetitive and aversive 

motivation did not appear to substantially affect feedback processing as reflected in the FRN. 

The analysis only revealed that the FRN was larger in the neutral condition compared to gain 

and loss condition, for both positive and negative feedback. Thus, the present data are in line 

with previous studies indicating that the processes underlying the FRN encode outcome 

valence but not magnitude and operate in a context-dependent fashion (Hajcak et al., 2006; 

Holroyd et al., 2004; Yeung & Sanfey, 2004). Nevertheless, more recent findings suggested 

that the FRN might also be sensitive to the magnitude of rewards (Goyer et al., 2008; 

Kreussel et al., 2011). However, in these studies, the feedback stimulus itself provided 

information about the magnitude of wins or losses, whereas in the present study the 

feedback indicated only the correctness of the response. Therefore, the “magnitude-aspect” 

was much less salient. Importantly, it has been shown that the FRN appears to be sensitive 

to the most salient information the feedback stimulus provides (Nieuwenhuis et al., 2004). 

Consistent with this notion, only feedback type (correct vs. incorrect) affected the FRN in the 

present study. 

A related but somewhat different explanation for the lack of specific incentive-related 

modulations in FRN amplitude concerns the participants’ ability to maintain the cue-related 

information in working memory. Note that participants had to relate the feedback information 

about the correctness of their response to the representation of item-specific incentive value. 

This was a quite complex operation that presumably took longer time than the rapid 

evaluation of feedback information as reflected in the FRN. One might predict that individual 

differences in working memory capacity would play a decisive role in determining the ability 

to perform these computations. However, no evidence for such a modulatory influence of 

working memory capacity (assessed by a modified version of the Digit Ordering Test; Cooper 
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et al., 1991) was found in the present study. Nonetheless, a closer inspection of individual 

ERP waveforms revealed a remarkable variability in the FRN effects, suggesting that other 

variables moderated the effects of appetitive vs. aversive motivation on feedback processing. 

Given that the FRN has been suggested to reflect the value of an outcome relative to the 

specific task goal (Holroyd et al., 2006), interindividual differences in the definition of this task 

goal could account for some variance. While some participants may have primarily focused 

on the information the feedback provided for learning, others may have focused more 

strongly on wins and losses. In the latter case, the FRN would be expected to differentiate 

less clearly between positive feedback in the loss condition and negative feedback in the 

gain condition. 

Though incentive cues did not differentially affect the processing of positive vs. 

negative feedback, the FRN was generally larger in the neutral condition compared to gain 

and loss condition. A similar pattern of more negative amplitudes to both positive and 

negative feedback has been found in highly punishment sensitive individuals (Balconi & 

Crivelli, 2010) as well as in children compared to young adults (Hämmerer, Li, Müller, & 

Lindenberger, 2011) and has been proposed to indicate heightened sensitivity to feedback. 

On this view, the present finding would reflect reduced vigilance to feedback in the 

motivationally more significant gain and loss condition, which seems counterintuitive. In 

addition, previous research established a link between a more negative FRN on correct 

feedback trials and diminished processing of positive feedback (Cohen et al., 2007; Eppinger 

et al., 2008, 2009). Given that the neutral condition was motivationally less salient, it would 

make sense to assume that participants were less vigilant to positive feedback. However, the 

same logic would imply that participants were more sensitive to negative feedback in the 

neutral condition. Hence, the present finding is difficult to integrate with previous data and 

warrants further investigation. 

Taken together, the current results are in line with Experiment 1 and 2 as well as 

other studies reporting dissociations between FRN and Ne (Eppinger et al., 2008; 2009; 

Gründler et al., 2009; Hajcak et al., 2003) and provide a further challenge to the assumptions 

of the R-L theory (Holroyd & Coles, 2002). 
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Monetary incentives do not clearly affect the Pe. Similar to the FRN, the Pe was 

largely unaffected by the incentive manipulation. Errors that were more costly in terms of 

monetary loss or failure to gain did not elicit a larger Pe compared to errors without those 

consequences. As was discussed with respect to the lack of failure-related effects in the first 

study, this finding is hard to reconcile with an ‘affective-processing’ hypothesis (Falkenstein 

et al., 2000). At the first glance, this finding seems also inconsistent with notion that the Pe 

reflects the motivational significance of an error and is functionally related to the stimulus-

evoked P300 (Overbeek et al., 2005). Yet, it should be mentioned that the analysis revealed 

a larger positivity after correct and incorrect responses in the loss condition compared to gain 

and neutral condition. Thus, one might argue that both correct and incorrect responses were 

more salient on loss trials. Overbeek and colleagues (2005) proposed that Pe might reflect 

the activity of a more slowly operating deliberate performance evaluation system. Analogous 

to what has been suggested for the medial prefrontal performance monitoring system and 

the CRN on correct trials (Allain et al., 2004; Ridderinkhof et al., 2003), the enhanced 

positivity in the time range of the Pe might indicate a stronger recruitment of this putative 

parallel system in the loss condition. Interestingly, this would also imply that the two parallel 

systems are differentially engaged by correct and erroneous responses as only the Ne but 

not the correct response-related positivity was affected by incentive value. 

The Contribution of Cingulate Subregions to Error Processing 

A specific aim of the present study was to determine whether larger Ne amplitudes for 

motivationally and affectively more salient errors reflect a differential involvement of dACC 

and rACC in error processing and the initiation of subsequent behavioural adjustments. It has 

been suggested that the rACC evaluates the affective and motivational significance of an 

error, thereby directly accounting for variations in the scalp-recorded Ne (Luu et al., 2003; 

van Veen & Carter, 2002). Although this assumption has received some support from fMRI 

studies (e.g., Taylor et al., 2006, Simões-Franklin et al., 2010), it has not explicitly been 

tested utilizing the high temporal resolution of ERPs. 
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Notably, the present data speak against a direct contribution of the rACC to the loss-

related Ne enhancement. Only in the neutral condition, the rACC was more active following 

errors than correct responses, whereas in the loss condition, errors were followed by greater 

phasical activity in parts of the dACC and the neighboring SMA and pre-SMA. On gain trials, 

no significant activation differences were obtained between correct and incorrect responses 

for either of the cingulate subregions. Thus, the Ne enhancement on loss trials appears to 

reflect a stronger recruitment the dorsal rather than rostral ACC. Further corroborating this 

notion, only dACC power but not rACC power predicted the magnitude of the Ne in the loss 

condition. Yet, there was no reliable correlation between error-related dACC activation and 

incorrect-switch performance. This was somewhat surprising, given the relationship between 

Ne and error-related behavioural adjustments in the loss condition. Interestingly, when dACC 

activation on gain trials was included as an additional regressor, the predictive power of 

dACC activation on loss trials was substantially increased. Thus, it appeared that dACC 

power in the gain condition suppressed irrelevant variance of dACC power in the loss 

condition. Given that this effect was not observed for error-related dACC power in the neutral 

condition, it might be related to non-specific motivational influences on dACC reactivity in 

gain and loss condition that are not directly reflected in Ne amplitude. In any case, the lack of 

a direct relationship between error-related phasic dACC activity and incorrect-switch 

performance in the loss condition suggests that a more complex action-regulation circuitry 

underlies Ne generation. 

By contrast, on gain and neutral trials, both error-related dACC and rACC reactivity 

were related to Ne amplitude, a finding that has also been reported by studies combining 

ERP and fMRI measures (e.g., Mathalon, Whitfield, & Ford, 2003). Furthermore, rACC 

activation predicted incorrect-switch performance in these two conditions. This finding 

suggests two important conclusions. First, it indicates that not only the dorsal but also the 

rostral ACC is critically involved in implementing adaptive behaviour control. This view is 

consistent with previous studies demonstrating increased coupling between rACC and lateral 

PFC after errors or high conflict (e.g., Etkin, Egner, Peraza, Kandel, & Hirsch, 2006; Holmes 

& Pizzagalli, 2008). Second, the fact that the relationship between error-related rACC 

activation and incorrect-switch performance was observed in the gain and neutral condition 
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but not in the loss condition suggests that it was not driven by higher affective or motivational 

salience. In particular, these results contrast with previous fMRI studies that report increased 

rACC activation in response to more costly errors (Simões-Franklin et al., 2010; Taylor et al., 

2006). Given the comparatively low temporal resolution of the BOLD signal, however, it 

cannot be ruled out that the activation differences in these investigations did not reflect 

neural mechanisms underlying the Ne but resulted from later phases in error processing 

(e.g., conscious appraisal of an error) or even feedback processing. Furthermore, in the 

current study, participants performed a reinforcement learning task, whereas the above 

mentioned fMRI studies employed a response competition task (Taylor et al., 2006) and a 

Go-NoGo task (Simões-Franklin et al., 2010). Given that the nature of task has been shown 

to play a pivotal role in determining the differential recruitment of cortical systems within the 

mPFC (Cavanagh et al., 2010b), varying task demands might account to some extent for the 

divergent pattern of findings. 

Taken together, the current findings indicate that the extent to which the Ne amplitude 

reflects the engagement of dorsal and rostral ACC differs as a function of task context. 

However, rather than reflecting the “cognitive” vs. “affective” component of error processing, 

the two cingulate subdivisions may subserve complementary functions in the adaptive 

regulation of cognition and emotion (Mohanty et al., 2007; Pizzagalli, 2011). In particular, the 

present data are consistent with the recent suggestion that dorsal parts of ACC and mPFC 

might also support affective appraisal processes (Etkin, Egner, & Kalisch, 2011) and that the 

rACC mediates behavioural adaptation (e.g., Etkin et a., 2006; Holmes & Pizzagalli, 2008; 

Mohanty et al., 2007). Although the rapid affective appraisal of on-going performance 

certainly plays a key role in error processing and might also be highly relevant for learning 

(Phelps & Le Doux, 2005; Sander, Grafman, & Zalla, 2003), the present findings do not 

support the notion that the Ne directly indicates an affective or motivational monitoring 

function of the ACC. Instead, they emphasize the ACC’s sensitivity to discrepancies between 

on-going behaviour and current task goals and its involvement in implementing adaptive 

behavioural change. 
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10. General Discussion 

The aim of the present thesis was to investigate the impact of the motivational and 

affective context of an action on the neural mechanisms of error and feedback processing 

during reinforcement learning. This question was addressed in three experiments by utilizing 

the high temporal resolution of event-related potentials (ERPs). In particular, this thesis 

focused on three ERP-components thought to reflect neural signals that are used to guide 

goal-directed behavioural adjustments: the error negativity (Ne), the feedback-related 

negativity (FRN), and the error positivity (Pe). Experiment 1 and 2 examined how self-

relevant failure performance monitoring processes – indexed by Ne, FRN, and Pe – and the 

ability to use error signals for behavioural adaptation in a subsequent feedback-based 

learning task. To this end, two phases (pre- and posttest) of a probabilistic learning task were 

applied. Between pre- and posttest, participants performed a visual search task described as 

diagnostic of intellectual abilities. In this task, participants were assigned to one of two 

conditions in which they received either failure feedback (failure-feedback-group) or no 

feedback (no-feedback-group). In order to disentangle the effects of failure exposure and 

motivational disengagement over the course of posttest, Experiment 1 and 2 used different 

posttest instructions. In the first experiment, the posttest was described as indicative of 

intellectual abilities to ensure high self-relevance. By contrast, in the second experiment, the 

posttest was described in neutral terms. Experiment 3 aimed to determine whether 

manipulations of appetitive vs. aversive motivation by means of monetary incentives 

modulate performance monitoring and learning-related behavioural adjustments. A further 

goal was to explore whether dorsal and rostral subregions of the anterior cingulate cortex 

(ACC) differentially contribute to error processing, depending on the motivational significance 

of an error. 

The following general discussion is divided into three parts. In the first part, I will 

discuss implications of the present findings on learning-related changes in Ne, FRN, and Pe. 

The second part focuses on the most central issues of the present research, namely the 

impact of failure manipulation and appetitive vs. aversive motivation on the mechanisms of 

performance monitoring and learning. In the third part, I will summarize the limitations if the 
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present study, followed by the outline of directions for future research and a general 

conclusion. 

Learning-related Changes in the ERP-correlates of Error- and Feedback Processing 

A specific aim of this thesis was to replicate and extend findings by Eppinger and 

colleagues (2008, 2009) indicating that learning does not only affect the processing of errors 

and negative feedback, but also the processing of correct responses and positive feedback. 

These and similar findings gave rise to an on-going debate on the question as to whether 

response- and feedback-locked positivities are primary determinants of experimental 

variations in Ne and FRN, respectively (Eppinger et al., 2008; Foti et al., 2011; Holroyd et al., 

2008). In particular, Eppinger and coworkers (2008, 2009) showed the correct response-

related positivity increased as learning progressed, whereas the feedback-locked positivity to 

positive feedback decreased with learning. In order to integrate these findings with the R-L 

theory (Holroyd & Coles, 2002), Eppinger and colleagues suggested that the positive 

potentials may reflect phasic increases in midbrain dopaminergic activity, i.e., positive PEs, 

that inhibit the ACC. According to this view, phasic increases rather than dips in midbrain 

dopaminergic activity drive learning in the ACC. 

Does the correct response-related positivity reflect a learning signal? Consistent with 

the findings by Eppinger and colleagues (2008, 2009), the correct response-related positivity 

increased over the course of learning in each of the present studies. However, this increase 

was much more pronounced in Experiment 1 and 2 compared to Experiment 3. Interestingly, 

the opposite pattern was observed for the Ne. Whereas the Ne did not change with learning 

in Experiment 1 and 2, a pronounced learning-related enhancement in Ne amplitude was 

found in Experiment 3. Given that the learning blocks included much more trials in first two 

experiments compared to the third experiment, these findings indicate that the Ne changes 

on rapid time-scales at the beginning of learning only, while the correct response-related 

positivity demonstrates a slower, continuous increase over the course of learning. Thus, the 

two components are unlikely to reflect neural manifestations of the same dopaminergic PE 

signal. If this would be the case, continuously increasing reward prediction as reflected in the 
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correct response-related positivity should be associated with a similarly increasing negative 

PE indexed by the Ne (e.g., Niv & Montague, 2008; Schultz, 2002). Importantly, the notion 

that the two components reflect dissociable processes was further corroborated by their 

different susceptibility to affective/motivational manipulations. Only the Ne – but not the 

correct response-related positivity – was modulated by the experience of self-relevant failure 

(Experiment 1 and 2) and the motivational/affective significance of an error in terms of 

monetary losses (Experiment 3). 

Yet, this could simply mean that the Ne does not reflect a negative PE. As was also 

noted by Eppinger et al. (2008, 2009), considerable evidence indicates that the ACC is 

critically involved not only in monitoring for negative events, but also in reward-motivated 

behaviour (Amiez et al., 2005; Liu, Hairston, Schrier, & Fan, 2010; Magno, Simões-Franklin, 

Robertson, & Garavan, 2008; Matsumoto et al., 2007). Indeed, it has been suggested that 

the ACC’s basic function is to signal the need for behavioural change, irrespective of whether 

things are going better or worse than expected (Magno et al., 2008). Nonetheless, the 

current data raise some doubt on the assumption that the response-related positivity reflects 

a dopaminergic learning signal. In Experiment 1 and 2, the correct response-related positivity 

increased not only in the two learning conditions but also in the chance condition, as well as 

from pre- to posttest. Critically, the amplitude modulations were not accompanied by 

performance improvements. Although these changes might have reflected stimulus-evoked 

P300 activity, they underscore that component overlap constitutes a major obstacle when 

isolating the learning-related part of the response-locked positivity. In fact, it seems plausible 

to assume that stimulus-locked components could be responsible for the effects in the 

response-locked ERPs. For instance, a gradually increasing positivity over midline central 

sites has been demonstrated for successive stimulus presentations in an extended 

continuous recognition memory task (e.g., van Strien, Hagenbeek, Stam, Rombouts, & 

Barkhof, 2005). This repetition effect has been suggested to reflect memory strength. Similar 
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effects have been attributed to increasing decision confidence (e.g., Finnigan, Humphreys, 

Dennis, & Geffen, 2002)34. 

Several analysis techniques have been developed to deal with the problem of 

component overlap. One of these methods is known a current source density (CSD) 

transformation (Kayser & Tenke, 2006). CSD acts as a spatial filter that amplifies the 

representation of local neuroelectric activity and attenuates broadly distributed and/or distal 

activities. Applying this technique on response-locked ERPs in Experiment 3 revealed a Ne-

like wave on correct trials that decreased with learning in the gain and neutral condition, 

whereas in the loss condition, this negativity was already diminished in the first bin. Even 

more pronounced learning-related decreases in the negativity on correct trials were observed 

when transforming the ERPs in Experiment 1 and 2. This finding is consistent with the 

proposal that a decreasing negativity contributes to the learning-related dynamics in the 

ERPs to correct responses (Allain et al., 204; Ridderinkhof et al., 2003). In the context of the 

present study, this effect could reflect the reduced need to engage effortful monitoring 

processes as the representations of the mapping rules become increasingly robust. 

Consistent with this view, it has been shown that the ACC is more strongly involved in early 

stages of learning, whereas other regions such as the posterior cingulate contribute to action 

selection during later stages of learning (Gabriel, Burhans, Talk, & Scalf, 2002). Moreover, 

the findings by Pietschmann et al. (2008) discussed earlier bear close resemblance to the 

CSD-transformed data of Experiment 3 and support the idea that higher learning demands 

require a stronger engagement of the medial prefrontal performance monitoring system. 

                                                 
34 Another potentially relevant factor directly concerns the impact of response latencies on ERP activity. As 

Makeig and Onton (2011) pointed out, the P300 is time-locked to the response rather than the stimulus. Crucially, 

the authors showed that a more distinct (i.e., less temporally “smeared”) P300 follows the response by about 100 

ms and that this positivity is much stronger with short RTs. A closer inspection of response latencies in 

Experiment 1 and 2 revealed that the amplitude of the correct response-related positivity was significantly 

correlated with RT in each of the three learning conditions (r-values > −.31, p-values < .08). By contrast, no 

significant correlation was found between Ne amplitude and RT (r-values < −.22, p-values > .22). Although 

Eppinger and colleagues (2008, 2009) did not report RT data, it is conceivable that response latencies also 

decreased as a function of learning in their studies and hence might have contributed to the pronounced 

response-locked positivity in the deterministic and probabilistic learning condition. Clearly, this issue warrants 

further investigation. 
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To summarize, the present data strongly suggest that dissociable neural processes 

underlie the Ne and the response-locked positivity on correct trials. However, the current 

studies failed to substantiate the view that the correct response-related positivity reflects a 

reward-related learning signal. Future studies should combine sophisticated analysis 

techniques such as principal component analysis (PCA) or independent component analysis 

(ICA) with computational modelling to provide stronger tests of this proposal. 

The FRN does not change with learning. In contrast to the ERP-correlates of internal 

error processing, the FRN did not vary with learning in any of the three experiments included 

in this thesis. This is consistent with the findings by Eppinger and colleagues (2008, 2009) for 

negative feedback trials. Yet, the current studies also failed to obtain learning-related 

modulations in the ERPs to positive feedback. This was somewhat surprising, given that the 

learning paradigm in Experiment 1 and 2 was very similar to that used by Eppinger and 

colleagues (2008, 2009). One explanation of this discrepancy is that the learning bins in 

Experiment 1 and 2 contained a larger number of trials and might have been insensitive to 

modulations in the FRN at the beginning of learning. However, the lack of learning-related 

changes in the FRN in Experiment 3 questions this assumption. Instead, similar to the 

response-locked ERPs, a direct comparison of the three experiments points to a potentially 

confounding effect of the stimulus-evoked P300. In Experiment 1 and 2, the ERPs to both 

positive and negative feedback became less positive as learning progressed, presumably 

reflecting a reduction of the stimulus-evoked P300 (Walsh & Anderson, 2011; Yeung, 

Holroyd, & Cohen, 2005; Yeung & Sanfey, 2004). This effect was most pronounced in the 

deterministic learning condition, supporting the notion that participants paid less attention to 

the feedback stimulus after they have developed an internal representation of the correct 

response (see Figures 16 and 22). In Experiment 3, the amplitude reduction was less 

prominent and limited to positive feedback trials (see Figure 32). Thus, the stimulus-evoked 

P300 appears to show a different time-course of changes over the course of learning for 

positive and negative feedback that may have contributed to the learning-related decrease in 

‘feedback-related positivity’ observed in former studies (Cohen et al., 2007; Eppinger et al., 

2008, 2009). 
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However, a number of studies have supported the notion of a reward-related positivity 

in the feedback-locked ERP (Foti et al., 2011; Potts et al., 2006a). For instance, Foti and 

colleagues (2011) applied principal component analysis to dissociate a reward-specific 

positivity from the P300. As for the response-locked ERPs it might be a promising avenue for 

future research to test whether this positive component changes with learning and other 

experimental manipulations in a way consistent with a positive PE signal. 

Importantly, the current data contradict some of the core predictions of the R-L theory 

(Holroyd & Coles, 2002) by showing that the FRN does not change with learning, whereas 

the Ne increases during early stages of learning only. These findings add to a growing 

number of previous studies indicating that Ne and FRN reflect dissociable neural processes 

(e.g., Eppinger et al., 2008; Gründler et al., 2009; Hajcak et al., 2003; Pietschmann et al., 

2008). Further research is needed to explore more recent ideas according to which reward-

related learning signals are the primary determinant of learning-related variations in the two 

ERP components. 

Affective and Motivational Influences on Performance Monitoring and Learning 

 Of most interest for the present thesis were the effects of the failure manipulation 

(Experiment 1 and 2) and incentive manipulation (Experiment 3) on the neural mechanisms 

of error and feedback processing and the ability to use internal and external performance 

cues for behavioural adaptation. Consistent with previous findings (Brunstein & Gollwitzer, 

1996; Hübner & Schlösser, 2010; Krawczyk, et al., 2007; Pessoa & Engelmann, 2010; 

Savine, et al., 2010), the behavioural data indicated that the motivational/affective 

manipulations led to an enhancement in task performance in the three experiments. 

Experiment 1 and 2 showed that the experience of self-relevant failure prevented 

motivational disengagement at posttest. However, the lack of additional performance 

improvements in the failure-feedback group in Experiment 1 possibly reflected some 

detrimental effects of the need to cope with the stressful event. In addition, monetary 

incentives resulted in higher accuracy rates in gain and loss condition of Experiment 3. 

Importantly, a closer inspection of the behavioural data in terms of trial-to-trial behavioural 
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adjustments revealed that rather than inducing unspecific motivational effects such as 

increased effort, the motivational/affective manipulations gave rise to strategic changes in 

task performance. Both failure feedback (Experiment 1 and 2) and loss anticipation 

(Experiment 3) were associated with more efficient error-related adjustments, reflected in 

higher post-error accuracy (i.e., incorrect-switch performance). Notably, no incentive-related 

differences were found for correct-stay performance in Experiment 3, demonstrating the 

specificity of the effects. Thus, self-relevant failure and risk of losing money appeared to 

promote negatively motivated engagement directed towards the avoidance of threat and 

punishment. 

In case of the failure manipulation, this result is in line with a number of previous 

findings concerning the influence of social-evaluative stress on learning and memory 

(Cavanagh et al., 2011a; Petzold et al., 2010; Roozendaal et al., Schwabe & Wolf, 2011). 

Typically, these studies reported stress-induced alterations in learning strategies rather than 

overall learning performance. Moreover, the observed strategy shift points to a possible 

explanation for the inconsistent findings regarding the impact of monetary incentives on 

cognitive performance (Bonner et al., 2000; Camerer & Hogarth, 1999), if one assumes that 

the manipulation can trigger both adaptive and maladaptive strategic changes. In support of 

this notion, Dambacher and coworkers (2011) demonstrated that the efficiency of monetary 

incentives in speeded perceptual decision tasks depends on the emphasis on speed vs. 

accuracy, with beneficial effects confined to payoff schemes emphasising speed over 

accuracy. The authors suggested that this might reflect differential contributions of two 

parallel processing routes to decision making, supporting rapid but less precise vs. more 

accurate but slow responses (Trimmer et al., 2008). An interesting possibility following from 

this view is that failure manipulation and loss anticipation could have promoted the 

recruitment of the “accurate-but-slow” decision making system. The efficiency of this 

strategic adjustment, however, was presumably limited by the adaptive response deadline 

that forced participants to respond quickly. Indeed, one reason for the application of the 

response deadline algorithm was to prevent influences of a speed-accuracy-tradeoff. 

Thus, the behavioural findings strongly suggest that the affective/motivational 

manipulations employed in the present experiments did not merely result in an enhanced or 
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reduced recruitment of cognitive resources but also in a differential weighting of the involved 

processing systems, i.e., a redistribution of available resources according to the prevalent 

behavioural goals.  

Failure experiences and loss aversion promote reactive control. Crucially, the Ne 

findings from each of the three experiments involved in this thesis strongly supported the 

notion that self-relevant failure and risk of losing money resulted in a strategic shift towards a 

reactive-defensive orientation to the environment (Braver et al., 2007; Tops et al., 2010). As 

was shown by a failure-related increase in Ne amplitude in Experiment 1 and 2 as well as a 

larger Ne in the loss condition in Experiment 3, aversive motivation was associated with a 

heightened responsitivity to internal cues indicating performance failures. Most strikingly, 

these differences in the processing of internal error information predicted subsequent 

behavioural adjustments, i.e., participants were more likely to learn from past mistakes. 

Reactive behaviour control has been described as adaptive response to the perception of 

threat and discrepancies between intended/predicted and actual states (Tops et al., 2010). In 

particular, this mode of control is thought to strengthen the attentional focus on the current 

situation, to enhance analytic, self-referential processing, and to facilitate rapid behavioural 

adaptation to environmental demands (Tops et al., 2010). Such a strategic change in 

behavioural control appears adequate to overcome the experience of uncontrollable failure 

that challenged participants’ self-definition and presumably induced uncertainty regarding the 

appropriateness of their own actions. Similarly, loss anticipation was likely to establish a 

threatening environmental context in which heightened vigilance to internal indictors of errors 

and discrepancies supported rapid behavioural adjustments in order to avoid harm and 

punishment. 

The results of the present studies are in line with previous research indicating that the 

monitoring processes underlying the Ne reflect interindividual differences in the sensitivity to 

negative and threatening events (e.g., Boksem et al., 2006a; 2008; Frank et al., 2005; 

Hajcak, McDonald, & Simons, 2003; 2004; Tops, Boksem, Wester, Lorist, & Meijman, 2006). 

However, the present data clearly argue against the view that the Ne is a state-independent 

marker of an endophenotype for internalizing and externalizing psychopathology (Clayson et 
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al., 2011; Olvet & Hajcak, 2008). Instead, they corroborate the notion that the medial 

prefrontal performance monitoring system is flexibly recruited depending on how much 

emphasis the individual places on avoiding negative response outcomes (Boksem et al., 

2008; Falkenstein et al., 2000; Gehring et al., 1993; Hajcak et al., 2005; Potts; 2011; 

Wiswede et al., 2009b). Extending these latter findings, the current study established a direct 

link between aversively motivated changes in performance monitoring and the ability to use 

internal error signals for goal-directed behavioural adaptation. 

 Interestingly, the present experiments did not yield clear evidence for increased 

sensitivity to external punishment cues in response to the motivational/affective challenges. 

Only in Experiment 1, failure-related modulations of the FRN suggested a more differentiated 

processing of positive and negative feedback. Experiment 2 failed to replicate this finding 

and rather suggested that the failure experience prevented diminished feedback processing 

due to motivational disengagement. Although the effect was rather subtle and has to be 

interpreted with caution, it might underline an important difference between the impact of 

failure feedback and loss aversion. As was already discussed above, the larger amplitude 

difference between positive and negative feedback could reflect that participants in the 

failure-feedback group relied more strongly on external feedback, possibly reflecting a higher 

need to validate the outcomes of internal monitoring processes. On this view, the failure-

related enhancement in Ne and FRN would indicate an attempt to restore the integrity of the 

performance monitoring system that was challenged through uncontrollable failure. By 

contrast, in Experiment 3, participants’ ability to control aversive consequences was not 

constrained. Thus, there was no reason to “mistrust” the internal judgements of the action 

evaluation system. In this case, aversive motivation appeared to trigger a heightened 

vigilance to internal error information only. 

 The present findings have important implications for theoretical accounts on 

performance monitoring (Bernstein et al., 2005; Botvinick et al., 2001; Falkenstein et al., 

1991; Gehring et al., 1993; Holroyd & Coles, 2002). In particular, the lack of learning-related 

changes in FRN amplitude and the different susceptibility of Ne and FRN to the 

affective/motivational manipulations question the assumption of the R-L theory (Holroyd & 

Coles, 2002) that both the Ne and the FRN are neural manifestations of dopaminergic PEs. 
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Yet, the latter result might be explained within the framework of the R-L theory by assuming 

that aversively motivated reactive-defensive engagement selectively amplifies the magnitude 

and/or impact of negative PEs arising from mismatch detection on the basis of internal 

representations of action value. Nonetheless, the pattern of findings in Experiment 1 and 2 

suggested that the ACC is not only a passive recipient of dopaminergic learning signals. 

Rather, the failure-related modulations in Ne amplitude appeared to reflect altered ACC 

functioning in conjunction with active behavioural coping and systematically changed cost-

benefit analyses in response to the stressful experience (Amat et al., 2005; Pascucci et al., 

2007; Boksem & Tops, 2008). This is in line with ample evidence for a top-down biasing, 

model-based influence of the ACC and other prefrontal structures on neural circuits 

mediating habitual, model-free control (Daw et al., 2005; Doll et al., 2009; Frank et al., 2005; 

Huys & Dayan, 2009; Miller & Cohen, 2001). Specifically, it has been suggested that the 

ACC determines the degree to which the outcome of an action guides learning and future 

behaviour (Behrens & Rushworth, 2008), fitting the specific link between Ne amplitude and 

behavioural adjustments observed in the current study. 

Thus, the current data are consistent with proposals that the ACC and the 

surrounding mPFC - the proposed source(s) of the Ne - are critically involved in the 

processing of mismatch and punishment and the initiation of behavioural change (Blair et al., 

2006; Cavanagh et al., 2009; Magno et al., 2008; Shackman et al., 2011; Wrase et al., 2007). 

Indeed, the detection of mismatch or conflict may be a common functional characteristic of all 

midfrontal negativities thought to originate from mPFC, including FRN, CRN, and N200 (cf. 

Cavanagh et al., 2010a; Folstein & van Petten, 2008). The idea that the Ne reflects some 

kind of a mismatch signal is shared by most of the major theoretical accounts on the Ne. 

Importantly, the present findings emphasize that theories such as the error/mismatch 

detection hypothesis (Bernstein et al., 1995; Falkenstein et al., 1991; Gehring et al., 1993) 

and the conflict monitoring theory (Botvinick et al., 2001) have to incorporate the notion that 

the mismatch signal can be used to adapt future behaviour in a way that is unlikely to reflect 

an unspecific increase of attentional effort (Sarter et al., 2006). Instead, the present findings 

indicate a highly specific processing bias towards the avoidance future failure, possibly 

reflecting a differential weighting of negative response outcomes in the computation of action 
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values (Rushworth & Behrens, 2008; Cavanagh et al., 2010a; Frank et al., 2005; Jocham et 

al., 2009). 

In contrast to neurocomputational models of performance monitoring such as the R-L 

theory and the conflict monitoring theory, affective/motivational proposals (Luu et al., 2003; 

Olvet & Hajcak, 2008) are less specified, making competitive tests more complicated. 

However, the present data argue against the notion that the Ne merely reflects an affective 

response in terms of a subjective emotional experience, such as distress or regret. Given 

that participants showed better performance in the gain condition compared to the neutral 

condition in Experiment 3, on would expect the higher motivational and affective significance 

of reward omission to result in larger Ne amplitudes. This was not observed. In fact, a 

conceptualization of the Ne in terms of a subjective affective experience appears hard to 

reconcile with findings suggesting that the occurrence of the Ne does not depend on 

conscious error recognition (Endrass et al., 2007; Nieuwenhuis et al., 2001). In particular, the 

present study failed to confirm the assumption that the rACC evaluates the affective and 

motivational significance of an error, whereas the dACC is involved in more “cognitive” 

aspects of error processing (Luu et al., 2003; van Veen & Carter, 2002). Importantly, the 

proposal of Luu and colleagues (2003) largely relied on the identification of a rACC source 

for the Ne. Yet, the source localization results of Experiment 3 did not reveal greater rACC 

activation for affectively more significant errors. Instead, the findings suggested that the 

cingulate subdivisions may subserve complementary functions in the adaptive regulation of 

cognition and emotion (Mohanty et al., 2007; Pizzagalli, 2011).  

Potential mechanisms mediating the effects of failure and loss aversion. Although the 

present findings highlight the need to explore the performance monitoring system in terms of 

both cognitive and affective/motivational mechanisms, the precise nature of the processes 

that mediate the observed effects of failure feedback and loss aversion remains to be 

determined. 

Pessoa and Engelmann (2010) proposed three abstract ways of how 

motivational/affective influences may interact with task-specific cognitive processes. A first 

scenario suggests that cognition and motivation/affect are segregated both at a functional 
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and neuroanatomical level and influence task performance independently through parallel 

routes. Given the ample evidence against a clear-cut segregation of affective and cognitive 

processes, it may prove difficult to provide evidence for this notion (Pessoa 2008; Pessoa & 

Engelmann, 2010; Salzman & Fusi, 2010). Nonetheless, some studies suggested that under 

certain conditions influences of attention and motivation/affect might be dissociable 

(Bendiksby & Platt, 2006; Vuilleumier, Armony, Driver, & Dolan, 2001). Hence, it remains a 

challenge for future research to test whether “non-cognitive” mechanisms affect performance 

monitoring and learning. 

Second, it was proposed that the effects of motivational/affective variables are 

mediated by cognitive processes. On this view, self-relevant failure and loss aversion would 

have led to an increase in attentional effort, resulting in more efficient target processing 

(Clayson et al., 2011; Sarter et al., 2006; Yeung, 2004). As outlined above, there were 

several reasons to suggest that the present findings did not exclusively reflect higher effort or 

focused attention. Most importantly, the observed effects pointed to aversively motivated 

strategic changes in task performance rather than an unspecific performance improvement. 

By contrast, appetitive motivation was not associated with altered functioning of the medial 

prefrontal performance monitoring system as reflected in Ne and FRN, emphasising the 

specificity of the effects. However, non-specific motivational effects clearly played a role in 

mediating the effects of failure and incentive manipulation. This was indicated by the findings 

that (1) self-relevant failure effectively preserved task engagement (Experiment 2) and (2) 

monetary incentives improved overall accuracy (Experiment 3). 

The third proposal on the nature of the relationship between cognition and 

affect/motivation assumes that they constitute highly integrated processes that are not clearly 

decomposable (Pessoa & Engelmann, 2010). Indeed, the ACC is considered a central hub in 

which affectively and motivationally relevant information is linked to motor areas (Bush et al., 

2000; Shackman et al., 2011), fitting the notion that this structure was critically involved in 

mediating the effects of failure and loss aversion on task performance. Consistent with recent 

suggestions (Shackman et al., 2011), the present work did not yield evidence in support of a 

segregationist view of ACC functioning, with the dorsal and rostral ACC involved in cognitive 

and affective aspects of error processing, respectively. Instead, greater error-related dACC 
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activation was observed in the loss condition, whereas the rACC was more active following 

errors compared to correct responses in the neutral condition only. However, given the 

limited number of studies that analysed source activity underlying the Ne, it is difficult to fully 

interpret the pattern of subregional activation differences. 

Further candidate regions for the integration of motivational and affective influences 

with task-specific processing include the OFC and the amygdala. In support of this notion, 

Wrase and coworkers (2007) showed that not only ACC activation but also activity in lateral 

OFC predicted behavioural adaptation following punishing outcomes in a monetary incentive 

delay task. This is in line with the suggestion that the OFC contributes to rapid learning-

related adaptations on a trial-to-trial basis, possibly reflecting the active maintenance of 

negative reinforcement values in working memory (Frank & Claus, 2006; Frank et al., 

2007a). Note, the OFC is functionally and anatomically closely connected to the amygdala 

(Murray & Izquierdo, 2007) and has been strongly implicated in the representation of the 

reward value of stimuli (Kringelbach et al., 2003; O’Doherty et al., 2001; Plassmann et al., 

2007; Rushworth et al., 2007). Furthermore, both amygdala and OFC are closely connected 

to both the ventral striatum and the midbrain DA system, which led some researchers to 

suggest that the two structures are critically involved in the computation of the PE (Maia, 

2009). Specifically, the amygdala has been shown to encode a PE during avoidance learning 

(Prevost et al., 2011; Yacubian et al.; 2006). Together with the current finding that aversive 

motivation was specifically associated with more efficient trial-to-trial behavioural 

adjustments following errors, the above evidence suggests that structures like the OFC and 

the amygdala might have contributed to the observed effects of failure and loss aversion. 

Moreover, given that the present effects were specifically linked to aversive 

motivation, it seems worth noting that the amygdala has been hypothesized regulate the 

engagement of appetitive and aversive behavioural systems (Pessoa, 2008; Prevost et al., 

2011; Salzman & Fusi, 2010). In fact, accumulating evidence suggested that dissociable 

albeit overlapping neural circuits might be involved in the control of behaviour by appetitive 

and aversive cues (Gray et al., 2002; Small et al., 2005; Tops et al., 2010; Wrase et al., 

2007; Yacubian et al., 2006). The present research suggests a close link between aversive 

motivation and the activity of the medial prefrontal performance monitoring system as 
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reflected in the Ne. However, there was no evidence for influences of the 

motivational/affective manipulations on the response- and feedback-locked positivities on 

correct trials. Future studies may probe the relationship between these putatively reward-

related components and appetitive motivation using more sophisticated EEG analysis 

techniques. 

Finally, cognitive and motivational/affective processes might be integrated by the 

activity of neuromodulator systems (Pessoa, 2008; Pessoa & Engelmann, 2010; Tops et al., 

2010). In particular, it has been suggested that affect- and motivation related DA dynamics 

lead to sharpening of task-specific processing by improving the neuronal signal-to-noise ratio 

in target structures (Durstewitz & Seamans, 2002; Pessoa & Engelmann, 2010). On this 

view, gain and loss cues in Experiment 3 might have triggered heightened dopaminergic 

activity, possibly mediated by valuation regions such as the amygdala and the OFC. 

Enhanced prefrontal DA levels could in turn support working memory functions of OFC and 

dlPFC, whereas enhanced striatal DA levels could support flexible updating of task-relevant 

contents (Cools & D’Esposito, 2011; Frank et al., 2007a). Moreover, DA has been shown to 

promote rapid memory formation in hippocampus and surrounding MTL regions (Shohamy & 

Adcock, 2010). Still, one could argue that the DA system responds to reward but not 

punishment cues (Schultz, 2000, 2006, 2007), making dopaminergic mechanisms unlikely to 

facilitate task-related processing in the loss condition. However, recent studies demonstrated 

even greater activation in valuation regions, including VTA and ventral striatum, when 

participants learned to avoid losses than when they learned to attain gains, supporting the 

notion that motivational/affective relevance of an event might determine activity in reward-

related regions (McKell Carter, MacInnes, Huettel, & Adcock, 2009; Niznikiewicz & Delgado, 

2011). In addition, down-regulation of mesolimbic and mesocortical DA transmission is 

thought to play a central role in mediating the effects of mental fatigue (Chaudhuri & Behan, 

2000, 2004; Sarter, et al., 2006). Specifically, the ACC it has been assigned a pivotal role in 

determining the changes in dopaminergic activity based on cost-benefit analyses (Boksem & 

Tops, 2008). Thus, dopaminergic mechanisms were likely to contribute to the differential 

effects of prolonged task performance in the failure-feedback and no-failure-feedback groups 

in Experiment 1 and 2.  
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Of note, there is evidence indicating that the activity of the midbrain DA system is 

strongly affected by modulations in cholinergic activity (Zhou, Wilson, & Dani, 2003). Indeed, 

a bias towards reactive avoidance has been primarily associated with cholinergic 

mechanisms (Tops et al., 2010). In particular, acetylcholine has been implicated in the 

expectancy of uncontrollability and uncertainty, suggesting that cholinergic mechanisms – 

possibly working in tandem with DA - might have mediated the failure-induced shift towards 

reactive control.  

A parallel error evaluation mechanism underlying the Pe? One of the most robust 

findings of the present research was that the Pe increased with learning. Thus, in contrast to 

the Ne and the FRN, the Pe appeared to be sensitive to gradual changes in the strength of 

response representations. Nonetheless, the Pe was largely unaffected both by the failure 

induction and the incentive manipulation employed in the present thesis. Moreover, the Pe 

did not predict learning-related trial-to-trial behavioural adjustments. The current findings thus 

corroborate the view that distinct aspects of error processing are reflected in Ne and Pe. 

Thus far, however, a detailed theory on the functional significance of the Pe is lacking. Most 

notably, Overbeek and coworkers (2005) proposed that the Pe might signify the activity of a 

slower more deliberate system that evaluates the motivational significance of salient errors 

and operates in parallel to the rapid preconscious system underlying the Ne (see also 

Ridderinkhof et al., 2009). Although this evaluative system is also thought to mediate post-

error adaptation, these effects might differ from the learning-related behavioural adjustments 

the present study focused on. First, Ridderinkhof and colleagues (2009) stated that errors 

have to be sufficiently salient to trigger the adaptation mechanisms associated with the Pe. 

Thus, it is conceivable that errors in the feedback-based learning task were simply not salient 

enough. In support of this view, Pe amplitudes were considerably smaller in the current 

experiments than those observed in other studies using response conflict tasks. Second, the 

proposed functional similarity between Pe and P300 suggests a relationship to the 

mobilization of processing resources for immediate error correction rather than strategic 

changes in post-error behaviour (cf. Overbeek et al, 2005). Nonetheless, the present data 

are consistent with previous studies that also failed to obtain modulations in Pe amplitude 
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due to motivational/affective manipulations (Clayson et al., 2011; Wiswede et al., 2009b). In 

sum, available evidence thus seems somewhat inconsistent with the idea that the Pe is 

related the evaluation of the motivational significance of an error. Indeed, it has been 

demonstrated that the Pe might reflect a delayed stimulus-related P300 rather than response 

monitoring processes per se (Shalgi, Barkan, & Deouell, 2009). As was the case for the 

correct response-related positivity, the latter finding could also explain why the Pe increased 

with learning and further highlights the problems arising from component overlap in 

interpreting response-locked ERPs. 

Limitations of the Present Study and Directions for Future Research 

Though the present thesis provided important new insights in the neural mechanisms 

of performance monitoring and learning, some limitations should be addressed that have to 

be taken into account when interpreting the results. A basic shortcoming inherent to the ERP 

approach is the need to average across a relatively large number of trials to obtain reliable 

measures of the ERP components. This results in very long experimental sessions and 

makes the data susceptible to effects of fatigue. This effect is even more problematic when a 

pre-post-design is applied - as was clearly evident from the data of the no-failure-feedback 

group in Experiment 2. However, as was discussed above, the additional motivational 

manipulation proved extremely helpful in disentangling the effects of the failure manipulation 

and fatigue in the two experiments. 

Moreover, the pre-post design limited the absolute number of trials in pre- and 

posttest. Therefore, the bins might have been too large to adequately represent learning-

related dynamics of Ne and FRN in Experiment 1 and 2. Indeed, the findings of Experiment 3 

showed that the Ne exhibited learning-related modulations when the learning blocks included 

a reduced number of trials. Yet, the FRN did not increase over the course of learning in 

either experiment, indicating that methodological problems were not the primary reason for 

the lack of findings. In addition, it should be noted that the core findings of the present study 

did not critically depend on the modulation of Ne and FRN over the course of learning. In 
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fact, the findings of Experiment 1 and 2 mainly reflected pre-post amplitude differences. 

Similarly, in Experiment 3, no interaction of incentive condition and learning was obtained. 

Another potentially critical point was the use of a between-subjects-design in 

Experiment 1 and 2. Therefore, one cannot definitely preclude the possibility that the present 

findings were attributable to pre-experimentally existent group differences, particularly in view 

of the fact that the sample sizes were relatively small. To control for confounding influences 

of baseline differences in learning performance, participants in the experimental groups were 

matched for overall accuracy at pretest. Moreover, the experimental groups did not differ with 

respect to the personality measures. Nonetheless, the analysis of the feedback-locked ERPs 

in Experiment 2 suggested that some group differences were present already at pretest. It 

was all the more important that Experiment 2 largely replicated the findings of Experiment 1, 

thereby considerably increasing the trustworthiness of the experimental effects. 

However, the small sample sizes might have been particularly problematic for the 

analysis of interindividual differences. Though previous studies also included relatively small 

samples (e.g., Boksem, 2006a; 2008), the present design was complex and involved 

additional sources of variance such as learning performance that were likely to disguise the 

effects of trait differences. Thus, an increase in statistical power would be desirable. 

Nevertheless, it should be mentioned that in the present study the relationship between 

personality measures and ERP correlates of error and feedback processing was also weak 

when the pretest data of all participants were collapsed. Yet, one may criticize that the 

present study used a very homogeneous sample. Indeed, the sample included a high 

proportion of first-year psychology students. Nonetheless, the descriptive statistics of the 

covariates for the total sample did not reveal deviations from the norms (means and standard 

deviations). Therefore, limited variance was unlikely to account for the lack of significant 

findings. 

A further limitation of the present study was the use of between-subject analyses to 

test for relationships between the ERP components and behavioural adjustments. Although it 

would be highly desirable to analyse the effects of motivational/affective manipulations, ERP 

measures and behavioural adjustments in an intra-subject design, the current experiments 
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did not include a sufficient number of trials to perform those contrasts. Future studies may 

include multiple sessions to ensure larger numbers of error trials. 

Furthermore, the comparatively low spatial resolution (~1-2 cm) of the sLORETA 

source localization technique potentially limits the conclusions that can be drawn from the 

analysis of subregional ACC activity in Experiment 3 (Pizzagalli, 2007). It should be noted, 

however, that the validity of the algorithm has been confirmed by a number of studies using 

fMRI (e.g., Mulert et al., 2004), PET (Zumsteg, Friedman, Wennberg, & Wiesner, 2005), and 

intracranial recordings (Zumsteg, Wennberg, Treyer, Buck, & Wiesner, 2006). Specifically, 

the ACC has been shown to be localized correctly by this method (Pizzagalli et al., 2004). 

In addition, the Ne has been characterized as part of an ongoing theta oscillation 

underlying the joint functioning of a distributed action monitoring network (Luu et al. 2004, 

Trujillo & Allen, 2007). There is considerable evidence indicating that non-phase-locked 

spectral perturbations rather than the phase-locked ERP might correspond to the blood-

oxygen-level-dependent (BOLD) signal measured by fMRI (Engell, Huettel, & McCarthy, 

2011). Hence, the discrepancies between the current localization results and previous fMRI 

findings regarding the sensitivity of the rACC to the motivational and affective salience of an 

error may be reflective of non-phase locked dynamics in the activity of the medial prefrontal 

action monitoring circuitry. Future studies using functional connectivity analyses of fMRI data 

or combing blind source separation (independent component analysis) and time-frequency 

analyses of EEG data should be helpful tools in elucidating the functioning of this network. 

Finally, it should be noted that the present study did not fit the behavioural data to a 

computational RL model. On the one hand, the estimation of parameters such as learning 

rate or PE would allow more stringent tests of theoretical accounts like the R-L theory 

(Holryod & Coles, 2002). On the other hand, computational modelling is a promising tool to 

shed light on the specific mechanism of motivational/affective influences on cognitive 

performance. 
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Conclusions 

Taken together, the present experiments provided the first evidence that modulations 

in error processing due to motivational/affective manipulations are associated with 

corresponding changes in the ability to use these error signals for learning-related 

behavioural adjustments. Consistent with previous research that has established a link 

between the Ne and the evaluation of the affective and motivational significance of an error 

(e.g., Gehring et al., 1993; Hajcak et al., 2005; Luu et al., 2003), exposure to uncontrollable 

failure (Experiment 1 and 2) and risk of losing money (Experiment 3) led to an increase of the 

Ne during a feedback-based learning task. These findings were extended by the observation 

that the Ne amplitude enhancement was accompanied by more efficient error-related 

behavioural adaptation. Crucially, the increase in Ne amplitude was not a mere consequence 

of better overall performance but was specifically accompanied by higher post-error 

accuracy. Therefore, the effect is unlikely to reflect an unspecific increase of attention or 

arousal. Instead, it indicated a shift towards reactive-defensive control, denoting the 

tendency to recruit control processes when a negative event has already occurred (as 

opposed to ‘proactive control’; Braver, Gray, & Burgess, 2007; Tops, Boksem, Luu, & Tucker, 

2010). Failure feedback and loss anticipation thus appear to induce an environmental context 

in which participants are particularly vigilant to potential threats and negative response 

outcomes, presumably facilitating rapid behavioural adaptation to emergent demands (Tops 

et al., 2010). This is line with previous research that has established a relation between the 

activity of the medial prefrontal action monitoring system and sensitivity to negative stimuli 

and events (Boksem et al., 2006b; Cavanagh et al., 2011a; Frank et al., 2005; Hajcak & Foti, 

2008). 

In summary, the present findings offer support for the notion that the Ne constitutes 

an aversive teaching signal mediating adaptive behavioural changes after maladaptive 

decisions. Although the engagement of the underlying medial prefrontal system is dependent 

on the motivational and affective context of an action, the Ne does not appear to directly 

reflect the affective appraisal of an error. Instead, a threatening context in terms of monetary 

losses specifically strengthened the relationship between Ne amplitude and error-related 
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behavioural adjustments. In particular, source localization of the Ne suggested that the 

extent to which rostral parts of the ACC contribute to Ne generation is not determined by the 

motivational and affective salience of an error. Rather than reflecting the “cognitive” vs. 

“affective” component of error processing, dorsal and rostral cingulate subregions might 

subserve complementary and partially overlapping control functions in the service of adaptive 

regulation of cognition and emotion. The results of the current investigation are consistent 

with a more recent view according to which the common denominator of ACC activation in 

studies of cognitive control, negative affect, and pain is the need to guide action selection in 

the face of uncertainty and threat (Shackman et al., 2011).  
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12. Appendix 

RT Data Analyses 

Experiment 1 

 RT data (see Table 4) were subjected to an ANOVA with the between-subject factor 

feedback group (no-failure feedback vs. failure feedback), and the within-subjects factors test 

phase (pre- vs. posttest), learning condition (deterministic, probabilistic, and chance 

condition), and correctness (correct vs. incorrect). The analysis yielded a significant main 

effect of test phase [F(1,33) = 60.29, p < .001], indicating that response latencies decreased 

from pre- to posttest. Moreover, we found reliable main effects of learning condition [F(2,66) 

= 23.51, p < .001] and correctness [F(1,33) = 23.68, p < .001] that were qualified by 

interactions between learning condition and correctness [F(2,66) = 7.19, p < .002], and test 

phase, learning condition, and correctness [F(2,66) = 7.28, p < .002]. Follow-up ANOVAs 

yielded a significant interaction between learning condition and correctness for posttest 

[F(2,66) = 23.13, p < .001, ε = .76] but not for pretest (F < 1). At posttest, responses were 

faster on incorrect than correct trials (p < .001). Contrasts revealed that this difference 

increased with feedback validity (p-values < .001). No main effect or interaction involving the 

factor feedback group approached significance (p-values > .10).  
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Tabelle 4. Mean RT (Standard deviation) in the three learning conditions for the no-failure 

feedback group and the failure feedback at group pre- and posttest (Experiment 1). 

RT No-failure feedback group Failure feedback group 

 Correct Incorrect Correct Incorrect 

Pretest     

Deterministic learning 432 (28) 425 (45) 442 (27) 440 (39) 

Probabilistic learning 441 (29) 441 (49) 449 (33) 448 (38) 

Chance condition 439 (27) 436 (39) 449 (29) 445 (35) 

Posttest     

Deterministic learning 406 (28) 382 (33) 395 (33) 377 (31) 

Probabilistic learning 406 (31) 394 (37) 400 (33) 390 (29) 

Chance condition 406 (33) 406 (30) 395 (33) 396 (33) 

 

Post-error RT data analyses. Post-error RT data (see Table 5) were analyzed using 

an ANOVA with the factors feedback group, test phase, learning condition, and correctness. 

The analysis yielded a reliable main effect of test phase [F(1,33) = 60.96, p < .001], 

indicating that post-error RT decreased from pre- to posttest. Moreover, we found significant 

interactions between test phase and learning condition [F(2,66) = 5.22, p < .019, ε = .76] and 

test phase, learning condition, and correctness [F(2,66) = 3.81, p < .028]. Follow-up analyses 

showed that the decrease in post-error RT was more pronounced for the deterministic and 

probabilistic learning condition compared to the chance condition on incorrect trials [F(1,33) = 

20.13, p < .001] but not correct trials (F < 1). In addition, a reliable interaction between 

feedback group, correctness, and learning condition was obtained [F(2,66) = 4.54, p < .015]. 

Separate ANOVAs revealed a significant interaction between feedback group and 

correctness only for the deterministic learning condition [F(1,33) = 6.52, p < .017], reflecting 

that response latencies were relatively shorter on incorrect trials in the no-failure feedback 

group. No further effect of feedback group was found to be reliable (p-values > .12). 
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Tabelle 5. Mean post-error RT (Standard deviation) in the three learning conditions for the 

no-failure feedback group and the failure feedback at group pre- and posttest (Experiment 1). 

Post-error RT1 No-failure feedback group Failure feedback group 

 Correct Incorrect Correct Incorrect 

Pretest     

Deterministic learning 446 (42) 437 (58) 451 (37) 468 (68) 

Probabilistic learning 448 (41) 449 (52) 455 (34) 456 (47) 

Chance condition 438 (40) 434 (40) 449 (30) 446 (34) 

Posttest     

Deterministic learning 403 (30) 385 (44) 394 (38) 387 (37) 

Probabilistic learning 408 (32) 397 (41) 399 (35) 385 (40) 

Chance condition 405 (33) 410 (30) 394 (36) 396 (32) 
1Note that post-error RT refers to the next repetition of a given stimulus after a variable number of intervening 

items. 

Experiment 2 

 Consistent with Experiment 1, RT decreased from pre- to posttest [F(1,31) = 76.30, p 

< .001] (see Table 6). As was indicated by a significant interactions between feedback group 

and test phase, [F(1,31) = 12.46, p < .002] and feedback group, test phase and learning 

condition [F(2,62) = 3.28, p < .045], this decrease was more pronounced for the no-failure 

feedback group, particularly in the probabilistic and chance condition compared to the 

deterministic learning condition [F(1,31) = 5.90, p < .022]. Furthermore, the analysis yielded 

significant main effects of learning condition [F(2,62) = 51.05, p < .001, ε = .87] and 

correctness [F(1,31) = 42.26, p < .001] that were qualified by an interaction between learning 

condition and correctness [F(2,62) = 38.11, p < .001, ε = .87]. Follow-up analyses revealed 

that erroneous responses were faster than correct responses in the deterministic and 

probabilistic learning condition [F(1,31) = 53.50 and 18.04, respectively, p-values < .001] but 

not in the chance condition [F < 1]. 
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Tabelle 6. Mean RT (Standard deviation) in the three learning conditions for the no-failure 

feedback group and the failure feedback at group pre - and posttest (Experiment 2). 

RT No-failure feedback group Failure feedback group 

 Correct Incorrect Correct Incorrect 

Pretest     

Deterministic learning 442 (31) 411 (30) 424 (25) 402 (21) 

Probabilistic learning 449 (36) 439 (31) 430 (20) 423 (29) 

Chance condition 452 (37) 451 (37) 429 (25) 430 (22) 

Posttest     

Deterministic learning 407 (34) 378 (26) 408 (28) 380 (30) 

Probabilistic learning 404 (29) 394 (25) 414 (25) 401 (24) 

Chance condition 403 (35) 399 (30) 411 (31) 412 (28) 

 

Post-error RT data analyses. Post-error RT (see Table 7) decreased from pre- to 

posttest [F(1,31) = 62.61, p < .001]. A significant interaction between feedback group and 

test phase [F(1,31) = 9.46, p < .005], reflected a greater pre-post difference in post-error RT 

for the no-failure feedback group. Furthermore, we found significant main effects of learning 

condition [F(2,62) = 8.04, p < .002] and correctness [F(1,31) = 26.72, p < .001], as well as an 

interaction between learning condition and correctness [F(2,62) = 51.05, p < .001, ε = .87]. 

Follow-up analyses showed that response latencies were shorter on incorrect than correct 

trials in the deterministic and probabilistic learning condition [F(1,31) = 19.50 and 15.56, 

respectively, p-values < .001] but not in the chance condition [F < 1]. 
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Tabelle 7. Mean post-error RT (Standard deviation) in the three learning conditions for the 

no-failure-feedback group and the failure-feedback group at pre- and posttest (Experiment 2) 

RT No-failure feedback group Failure feedback group 

 Correct Incorrect Correct Incorrect 

Pretest     

Deterministic learning 439 (33) 419 (43) 429 (25) 412 (33) 

Probabilistic learning 454 (41) 445 (38) 431 (23) 431 (33) 

Chance condition 453 (41) 450 (36) 428 (24) 430 (22) 

Posttest     

Deterministic learning 405 (31) 390 (38) 415 (34) 391 (31) 

Probabilistic learning 402 (30) 384 (25) 419 (27) 391 (27) 

Chance condition 401 (33) 399 (29) 411 (33) 414 (31) 
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13. Abbreviations 

 

A-O action-outcome 

ACC anterior cingulate cortex 

ACS-90 Action Control Scale 

ANCOVA analysis of covariance 

ANOVA analysis of variance 

BAS behavioural approach system 

BfS Befindlichkeitsskala 

BG basal ganglia 

BIS behavioural inhibition system 

COMT catechol-O-methyltransferase 

CR conditioned response 

CS conditioned stimulus 

CSD current source density 

DA dopamine 

DA-RPE dopamine reward prediction error 

dACC dorsal anterior cingulate cortex 

DC direct current 

ERP event-related potential 

dlPFC dorsolateral prefrontal cortex 

FFS fight-flight system 

fMRI functional magnetic resonance imaging 

FRN feedback-related negativity 

HPA hypothalamus-pituitary adrenal 

MANOVA multivariate analysis of variance 

MDD Major depressive disorder 

MFC medial frontal cortex  
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MNI Montreal Neurological Institute 

mPFC medial prefrontal cortex 

ms millisecond 

MTL medial temporal lobe 

NA negative affect 

Ne error negativity 

OCD obsessive compulsive disorder 

OFC orbitofrontal cortex 

PA positive affect 

PANAS Positive Negative Affect Scale 

Pe error positivity 

PE prediction error 

PFC prefrontal cortex 

PRO prediction of response-outcome 

R-O response-outcome 

rACC rostral anterior cingulate cortex 

RCZ rostral cingulate zone 

RL reinforcement learning 

RST reinforcement sensitivity theory 

RT reaction time 

S-O stimulus-outcome 

S-R stimulus-response 

sLORETA standardized low-resolution electromagnetic tomography 

SMA supplementary motor area 

SNc zona compacta of the substantia nigra 

(t)CNV (terminal) contingent negative variation 

TD temporal difference 

UR unconditioned response 
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US unconditioned stimulus 

vmPFC ventromedial prefrontal cortex 

VTA ventral tegmental area 
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14. Annotation 

Some oft the data reported in this thesis are also included in the following manuscripts: 

Unger, K., Kray, J., & Mecklinger, A. (2012). Worse than feared? Failure induction modulates 

the electrophysiolgical signature of error monitoring during subsequent learning. 

Cognitive, Affective, and Behavioral Neuroscience, 12, 34-51. 

Unger, K., Heintz, S., & Kray, J. (2012). Punishment sensitivity modulates feedback 

processing but not error-induced learning. Frontiers in Human Neuroscience, 6:186. 

Unger, K. & Kray, J. (submitted). Differential effects of gain vs. loss anticipation on 

performance monitoring and error-induced learning. 
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