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We must suppose a very delicate adjustment whereby the circulation follows the needs of

the cerebral activity. Blood very likely may rush to each region of the cortex according as

it is most active, but of this we know nothing.

William James, The Principles of Psychology (1890)

Cognitive neuroscience can move forward with greater confidence in the knowledge that

changes in blood flow and oxygen levels do represent definable alterations in neuronal ac-

tivity.

Marcus E. Raichle, Nature, 412 (2001)
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Abstract

The existence of two separate learning and memory systems has been proposed in experi-

mental psychology and cognitive neuroscience (Chapter 1), specialized for complementary

functions, namely (1) fast learning unique episodes (first system; Chapter 2) and (2) grad-

ual learning regularities across multiple episodes (second system; Chapter 3). The present

thesis aimed at specifying the neural and cognitive bases of the second system. Within

the framework of this thesis, the term ‘regularity learning’ was introduced to define the

learning process associated with the second system, namely the extraction of regularities,

i.e. overlapping, invariant features of multiple episodes.

The neural and cognitive processes underlying regularity learning were investigated in

three experiments. Two brain regions were of main interest, the hippocampus and the

prefrontal cortex, PFC (Chapter 4). Functional magnetic resonance imaging (fMRI) was

used as the main method (Chapter 5). In all experiments, volunteers had to learn object-

position conjunctions in several experimental trials and blocks. The design of the exper-

iments included two conditions, a context-specific (CS) and an invariant learning (IL)

condition (Chapter 6). In the CS condition, objects and positions were variably mapped

across trials. In contrast, in the IL condition positions (Experiment 1A and 3B) or objects

(Experiment 1B, 2, and 3A) were held constant within blocks, enabling subjects to extract

regularities across trials, i.e. invariant positions or objects in object-position conjunctions,

respectively.

In Experiment 1A (Chapter 7) and Experiment 1B (Chapter 8), performance increased

across trials within blocks of the IL condition, but not in the CS condition. In both ex-

periments, hippocampal activity decreased as a function of learning in the IL condition.

Conversely, the hippocampus was activated continuously in the CS condition. In contrast

to a right-lateralized hippocampal activation decrease during learning spatial regularities

(Experiment 1A), learning object regularities (Experiment 1B) was associated with a de-

crease of bilateral hippocampal activity. In both experiments, left lateral prefrontal and

right striatal brain regions showed an increase of activity as a function of learning in the

IL condition. In Experiment 2 (Chapter 9), the cognitive processes underlying learning

object regularities were investigated in more detail. In six behavioral studies, the influence

of object distinctiveness (Experiment 2A-2B), memory load and learning duration (Exper-

iment 2C-2E), and the effect of simultaneous object-position bindings (Experiment 2F) on

learning invariant objects in object-position conjunctions was examined. The behavioral
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data indicate that the increase of object distinctiveness mainly affects overall memory per-

formance, whereas manipulation of the learning duration and the memory load affects the

learning process. Moreover, a dissociation of two learning mechanisms could be observed:

a process operating within learning blocks and a process operating across blocks. Finally,

Experiment 3 (Chapter 10) aimed at specifying whether separable brain regions mediate

these two learning mechanisms. In contrast to Experiment 1A and 1B, trials were blocked

by condition to minimize the probability that subjects based their judgment on a com-

mon strategy for both conditions. On a behavioral level, subjects showed a performance

increase within and across learning blocks in an object IL condition (Experiment 3A)

and in a spatial IL condition (Experiment 3B), but not in the respective CS conditions.

On a neural level, within-block learning was associated with a learning-related decrease

of hippocampal and a learning-related increase of prefrontal-striatal activity in both ex-

periments, by this replicating the results of Experiment 1A and 1B. In contrast, distinct

prefrontal-striatal regions were selectively involved in across-block learning.

To summarize, on a cognitive level regularity learning within the framework of the present

thesis can be characterized by the following criteria: (1) the extraction of regularities

across input pattern, (2) the gradual nature of the extraction process, (3) the robust

maintenance of extracted regularities over time, and (4) the aggregated representational

format of the extracted information. Furthermore, the distinction between a within-block

and an across-block learning effect might indicate that the former effect is associated with

an instance-based learning process, whereas the latter effect might reflect a rule-based

learning process, i.e. the transfer of knowledge of invariant features to new instances. On

a neural level, regularity learning was associated with a decrease of hippocampal and an

increase of prefrontal-striatal activity. The reduced learning-related hippocampal activa-

tion presumably reflects lower binding requirements in the IL condition, since variable

objects can be bound to invariant positions (Experiment 1A and 3) or vice versa (Experi-

ment 1B, 2, and 3). Furthermore, the imaging results of Experiment 1A and 1B suggest a

domain-specific hemispheric specialization of the hippocampus during regularity learning,

reflecting hippocampal sensitivity to perceptual stimulus attributes of invariant episodic

features (bottom-up mechanism). The learning-related prefrontal modulation seems to re-

flect the requirement to extract and maintain regularities across trials and the adjustment

of object-position conjunctions on the basis of the extracted knowledge, possibly mediated

by rule-like prefrontal representations (top-down mechanism). Finally, the striatum might

encode the increased predictability of invariant features as a function of learning and pos-

sibly provides an internal reinforcement signal to the PFC.

In conclusion, the present results provide new insights into the neural basis of regularity

learning and point to a transition of the relative roles of distinct neural systems dur-

ing the time-course of regularity learning, i.e. learning is accompanied by a shift from a

hippocampal to a prefrontal-striatal brain system.
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Chapter 0

Overview

The structure of this thesis is as follows: In Part I (Introduction; Chapter 1), the aim

of the present thesis will be outlined. In particular, the distinction of two separate

learning and memory systems, i.e. fast learning unique episodes vs gradual learning

regularities across multiple episodes, will be introduced. In Part II (Theory; Chapter

2-4), the principles of the two learning and memory systems are highlighted from the

perspective of experimental psychology, animal studies, cognitive neuroscience, and

computational neuroscience. Chapter 2 is concerned with the first system, i.e. learn-

ing unique episodes. Here, the crucial role of the hippocampus for this kind of

learning will be described. Evidence from single cell recording and lesion studies in

animals as well as from amnesia research and from electrophysiological and imaging

studies in humans will be resumed. Furthermore, two influential theories about hip-

pocampal function will be described in more detail, namely the Eichenbaum model

(Eichenbaum, 2000) and the O’Reilly model (O’Reilly & Norman, 2002). Chapter 3

deals with the second learning and memory system, i.e. regularity learning. Results

from studies using different learning tasks will be described. The basic principles

and the neural basis of reinforcement learning, category learning, sequence learning,

and artificial grammar learning will be addressed in more detail. The theoretical

part ends with a brief introduction to the neuroanatomy of the medial temporal

lobe, the prefrontal cortex and the main anatomical interconnections between both

structures (Chapter 4). The subject of Part III (Methods; Chapter 5) is the basis

1
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of functional magnetic resonance imaging (fMRI). Here, an overview of the physical

principles of magnetic resonance imaging, the BOLD signal, the analysis of fMRI

time series, and the designing of fMRI experiments will be given.

In Part IV (Experiments), the three experiments of this thesis will be described.

First, Chapter 6 is concerned with the rationale of the present experiments. More

precisely, the aim of the present thesis and the core paradigm will be described.

Furthermore, the main hypotheses and predictions will be outlined. Experiment 1A

(Chapter 7) addresses the question which brain structures support regularity learn-

ing in the spatial domain. In the critical condition of Experiment 1A, spatial regu-

larities across episodes were introduced. To investigate, whether regularity learning

is based on domain-specific or domain-general neural mechanisms, in Experiment

1B (Chapter 8) the same experimental procedures were used as in Experiment 1A,

with the critical exception that object regularities, not spatial regularities were in-

troduced. The topic of Chapter 9 (Experiment 2) is the cognitive basis of regularity

learning. In a series of six behavioral studies, learning mechanisms were investigated

in more detail. Based on the behavioral results of Experiment 2, the final fMRI

study (Experiment 3; Chapter 10) aimed at specifying whether two separate mecha-

nisms involved in regularity learning are based on distinct brain structures. Using a

modified paradigm, the neural correlates of learning object regularities (Experiment

3A) and spatial regularities (Experiment 3B) were investigated. This thesis ends

with a General Discussion. Here, the experimental findings will be discussed and a

tentative model of regularity learning will be outlined (Part V, Chapter 11).
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This thesis contains the following articles/manuscripts:1

Doeller C. F., Opitz B., Krick, C. M., Mecklinger, A., & Reith, W. (in press).

Prefrontal-hippocampal dynamics involved in learning regularities across episodes.

Cerebral Cortex.2

Doeller C. F., Opitz B., Krick, C. M., Mecklinger, A., & Reith, W. (in preparation).

Domain-specific hemispheric specialization of the hippocampus during learning

regularities across episodes.3

Doeller, C. F. & Opitz, B. (2004). Cognitive and neural mechanisms subserving

regularity learning. In A. Mecklinger, H. Zimmer, & U. Lindenberger (Eds.),

Bound in memory: insights from behavioral and neuropsychological studies

(pp. 129-157). Aachen: Shaker Verlag.4

Doeller C. F., Opitz B., Krick, C. M., Mecklinger, A., & Reith, W. (in preparation).

Differential hippocampal and prefrontal-striatal contributions to instance-based

and rule-based learning.5

1Please note that this thesis was submitted in October 2004.

2Experiment 1A (Chapter 7).

3Experiment 1B (Chapter 8).

4Experiment 2 (Chapter 9). Please note that the six behavioral experiments described in this

article are referred to as Experiment 2A-2F in the following.

5Experiment 3 (Chapter 10). Please note that the two fMRI experiments described in this

manuscript are referred to as Experiment 3A and 3B in the following.
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Chapter 1

Introduction

Remembering personally experienced events is a hallmark of cognition. To exemplify

this, imagine the situation when you met a particular friend in a bar last Wednesday,

watching a football game on television. A few days later you can recollect specific

details of this episode, e.g. the location (a specific bar in your city), the date and

time (Wednesday, 8.30-11.00 p.m.), the persons (your friend and other people), the

football match (Bayern Munich vs Real Madrid), Roberto Carlos’ free kick goal,

your drinks (two glasses of beer), and so forth. Encoding and retrieval of such spe-

cific, unique episodes depends on the integrity of the hippocampus (Squire, 1992).

But how does the brain represent repeated overlapping features of episodes, i.e. reg-

ularities across episodes? Think about similar episodes like the one described above.

For instance, watching another UEFA Champions League match (VfB Stuttgart vs

Manchester United), a specific German Bundesliga match, or the match Portugal

vs England in the quarter final of the European Championships at different dates

and times. In some situations you drunk water or wine instead of beer. In some

situations you were in the bar together with your wife, in other situations you met

colleagues from your lab. But you were always in the same bar watching a football

match. All these situations comprise distinct episodes, however they also share some

common features, i.e. regularities across multiple episodes, namely the specific bar

and watching a football match. The present thesis aims at specifying the neural cor-

5
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relates of learning such overlapping features of episodes, i.e. the gradual acquisition

of knowledge of regularities across multiple episodes.

In the above scenario, two fundamentally different learning and memory processes

were described. First, learning a unique episode, including its singular episodic fea-

tures and second, the gradual acquisition of knowledge of regularities across multiple

episodes. In experimental psychology and cognitive neuroscience, a large number

of researchers have proposed different distinctions between two separable learning

and memory systems, such as declarative vs non-declarative/procedural (Squire,

1992; Squire & Zola, 1996, cf. Cohen & Eichenbaum, 1993), fast vs slow (McClel-

land, McNaughton & O’Reilly, 1995; O’Reilly & Norman, 2002), memory vs habit

(Mishkin, Malamut & Bachevalier, 1984), locale vs taxon (O’Keefe & Nadel, 1978),

and System II vs System I (Sherry & Schacter, 1987, see also Packard & Knowlton,

2002; Poldrack & Packard, 2003; Rolls, 2000; White & McDonald, 2002, for other

multiple memory/learning systems approaches).1 Despite several differences between

these theories (e.g. with respect to the research field [experimental psychology, neu-

ropsychology, animal neuroscience, imaging neuroscience] and the proposed neural

basis of both systems), on a broad level these taxonomies have in common that

both learning and memory systems are supposed to be specialized for complemen-

tary functions: learning unique episodes and learning regularities across episodes

(i.e. the acquisition of knowledge about generalities), respectively. Thus, different

kinds of information are acquired by both systems. These models further assume

that both systems differ with respect to operational characteristics, i.e. the first and

second system are characterized by fast vs gradual learning processes, respectively.

Moreover, it is assumed that the first system is more flexible than the second system,

i.e. in contrast to the second system, knowledge acquired by the first system could

be expressed by multiple response systems (Squire & Zola, 1996). Finally, some au-

1Some of these models put the main emphasis on learning processes, whereas others mainly

stress memory operations. In the following, both systems will be referred to as “first learning

and memory system (first system)” and “second learning and memory system (second system)”,

respectively.
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thors argue that the information acquired by the first system is explicit, whereas

the acquired knowledge of the second system is mainly not accessible to awareness,

i.e. implicit (Squire, 1992). In the present thesis, the term ‘regularity learning’ will

be used to refer to the learning process underlying the second system (see Chapter

3).

In general, the knowledge acquired by the first system is referred to as episodic

memory (Tulving, 1983). The importance of the hippocampus during the formation

of episodic memories has been highlighted by studies using a variety of neuroscien-

tific methods in animals (Fortin, Agster & Eichenbaum, 2002; Huxter, Burgess &

O’Keefe, 2003, Wirth et al., 2003; Zola et al., 2000) and humans (Davchi, Mitchell

& Wagner, 2003; Fell et al., 2001; Fernández et al., 1999; Yonelinas et al., 2002).

Two influential models of hippocampal function have been proposed in the last

years (Eichenbaum, 2000; O’Reilly & Norman, 2002). In his relational memory the-

ory based on rodent studies, Eichenbaum (2000) suggests that the hippocampus is

critically involved in binding different features and events that compose episodic

memories (see also Eichenbaum, Otto & Cohen, 1994; Eichenbaum, Schoenbaum,

Young & Bunsey, 1996; Eichenbaum, 1997; Eichenbaum, Dudchenko, Wood, Shapiro

& Tanila, 1999). For example, it has been shown that hippocampal cells in the rat

bind singular conjunctions of episodic features, such as a specific odor occurring at

a particular position (Wood, Dudchenko & Eichenbaum, 1999). Consistent with the

Eichenbaum model, the hippocampus is involved in representing the temporal order

of events (Dusek & Eichenbaum, 1997; Fortin, Agster & Eichenbaum, 2002; Wallen-

stein, Eichenbaum & Hasselmo, 1998).

In the last years, O’Reilly and coworkers have developed an influential computa-

tional model of learning and memory, the complementary learning systems approach

(McClelland, McNaughton & O’Reilly, 1995; Norman & O’Reilly, 2003; O’Reilly &

Munakata, 2000; O’Reilly & Rudy, 2000, 2001; O’Reilly & Norman, 2002). This

model assumes two qualitatively different learning systems, a fast hippocampal and

a slow learning system associated with the rhinal and parahippocampal cortex (the

MTL cortex system in the model of O’Reilly and Norman, 2002). It is assumed

that the hippocampus is involved in learning conjunctions of features and events of



8

episodes by means of pattern-separated representations, an essential prerequisite for

the avoidance of interference between distinct episodes.

However, less is known about the role of the hippocampus during learning regular-

ities across multiple episodes, i.e. overlapping features of episodes, the core func-

tion of the second learning and memory system. In the O’Reilly model (O’Reilly

& Norman, 2002), the rhinal and parahippocampal cortex is assumed to represent

regularities in the environment by assigning overlapping distributed representations

to similar stimuli. Here, a sharpening mechanism selectively strengthens represen-

tations of frequent stimuli. In contrast, Eichenbaum (2000) posits that particular

hippocampal neurons are specialized to represent features that are common across

many experiences. By this, overlapping episodes could be linked together and seman-

tic knowledge structures gradually evolve (see also Agster, Fortin & Eichenbaum,

2002; Eichenbaum, in press).

In the last decades, the cognitive mechanisms associated with the second learning

and memory system have gained considerable interest. A variety of learning tasks

have been developed, such as artificial grammar learning (Gomez & Schvaneveldt,

1994; Meulemans & Van der Linden, 1997; Perruchet & Pacteau, 1990; Reber, 1967),

category learning (Ashby & Perrin, 1988; Erickson & Kruschke, 1998; Nosofsky,

1986; Posner & Keele, 1968, 1970), and sequence learning tasks (Cleeremans & Mc-

Clelland, 1991; Cohen, Ivry & Keele, 1990; Nissen & Bullemer, 1987; Stadler, 1995).

Taken together, despite the differences between tasks, there is converging evidence

that humans acquire a (fragmentary) knowledge of regularities across input pattern

in these learning tasks.

Tightly coupled with the debate about the exact nature of the learning process is

the question which brain structures might subserve regularity learning. In the last

years, functional imaging studies in humans and single cell recordings in monkeys

have begun to unravel the network of brain areas involved in regularity learning,

using mainly the aforementioned learning tasks (Aizenstein et al., 2004; Bischoff-

Grethe, Goedert, Willingham & Grafton, 2004; Fletcher, Büchel, Josephs, Friston

& Dolan, 1999; Freedman, Riesenhuber, Poggio & Miller, 2001; Hazeltine, Grafton

& Ivry, 1997; Opitz & Friederici, 2003, 2004; Reber, Gitelman, Parrish & Mesulam,
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2003; Schendan, Searl, Melrose & Stern, 2003; Strange, Henson, Friston & Dolan,

2001). Despite differences in experimental procedures, a consistent pattern of results

is beginning to emerge. Overall, these studies converge to suggest that the lateral

prefrontal cortex plays a pivotal role during learning task-relevant regularities in the

environment.

In this thesis, the neural and cognitive processes underlying regularity learning were

investigated in several fMRI and behavioral experiments. A paradigm was developed

which allowed to separate (1) learning unique episodes (the core function of the first

system) and (2) learning regularities across multiple episodes (the core function

of the second system). By this, two main research fields in cognitive neuroscience,

namely episodic memory and rule learning research, were integrated.
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2.1 Introduction

As outlined in Chapter 1, a dichotomous distinction between two separable learn-

ing and memory systems has been proposed by several influential models (McClel-

land et al., 1995; Mishkin et al., 1984; O’Keefe & Nadel, 1978; O’Reilly & Nor-

man, 2002; Sherry & Schacter, 1987; Squire, 1992; Squire & Zola, 1996, cf. Packard

& Knowlton, 2002; Poldrack & Packard, 2003; Rolls, 2000; White & McDonald,

2002): learning unique episodes (first system) vs learning regularities across multi-

ple episodes (second system). In the present chapter, the cognitive and neural basis

of the first system will be described. The cognitive and neural processes underlying

the second system will be outlined in Chapter 3.

According to the aforementioned taxonomy, episodic memory formation is the core

function of the first system. Episodic memory refers to the ability to remember spe-

cific personally experienced events set in a spatio-temporal context (Tulving, 1983).1

This ability includes the formation of new, stable memory traces during encoding

and processes involved in recollecting these memory traces. During encoding, rep-

resentations of incoming stimuli are build. Subsequently, these representations are

bound together into enduring memory traces (Paller & Wagner, 2002). During re-

trieval, partial elements of the episode lead to a reinstantiation of the original mem-

ory trace, i.e. the interaction between a retrieval cue and a memory representation

entails the reactivation of the past episode (Tulving, 1983).

The formation of episodic memory critically depends on the integrity of the hip-

pocampus. The hippocampal formation is comprised of the hippocampus proper

(hippocampal cell fields and the dentate gyrus), the subicular complex and the en-

torhinal cortex (Amaral & Insausti, 1990, see Chapter 4 for a detailed neuroanatom-

ical description of the hippocampus). Damage to the hippocampus and adjacent

medial temporal lobe (MTL) structures produces an episodic memory loss (Scov-

ille & Milner, 1957). In the recent years, supporting evidence for the crucial role of

the hippocampus during episodic memory formation has been provided by studies

1It should be noted that several authors use the term context-specific memory instead of episodic

memory. In the following these terms will be used as equivalent.
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using a wide variety of neuroscientific methods. For instance, converging evidence

comes from lesion studies (Fortin, Agster & Eichenbaum, 2002, Zola et al., 2000) and

single cell recordings (Wirth et al., 2003; Wood, Dudchenko & Eichenbaum, 1999)

in animals. Furthermore, the view that the hippocampus plays an essential role

during episodic memory formation has been substantiated by studies with amnesics

(Mishkin, Vargha-Khadem & Gadian, 1998, Yonelinas et al., 2002), intracranial EEG

studies (Fell et al., 2001; Fernández et al., 1999), and functional imaging studies in

humans (Brewer, Zhao, Desmond, Glover & Gabrieli, 1998; Davachi, Mitchell &

Wagner, 2003; Eldrige, Knowlton, Furmanski, Bookheimer & Engel, 2000; Gabrieli,

Brewer, Desmond & Glover, 1997; Otten, Henson & Rugg, 2001). These studies fur-

ther indicate that the hippocampus is involved during encoding as well as during

retrieval of episodic memories.

Several prominent theories of hippocampal function have been proposed (e.g. Aggle-

ton & Brown, 1999; Eichenbaum, 2000; McClelland, McNaughton & O’Reilly, 1995;

Nadel, Samsonovich, Ryan & Moscovitch, 2000; Norman & O’Reilly, 2003; O’Keefe

& Nadel, 1978; Shastri, 2002; Squire, 1992). In the scope of the present thesis, two

models are most important, namely the Eichenbaum model (Eichenbaum, 2000)

and the O’Reilly model (O’Reilly & Norman, 2002), since both models make clear

predictions about hippocampal involvement during learning unique episodes and

learning regularities across episodes, respectively. The O’Reilly model is a computa-

tional neuroscience model, whereas the Eichenbaum model is based on findings from

rodent lesion and single cell recording studies. Both models address hippocampal

memory operations and storage principles of the hippocampus. In brief, both models

assume that the hippocampus is involved in binding different features that compose

episodic memories. This aspect of the models will be described in more detail in the

following Section 2.2. Evidence for this view will be provided in Section 2.3. Here,

results of neurophysiological, lesion, human electrophysiological, and neuroimaging

studies investigating the role of the hippocampus during episodic memory forma-

tion will be reviewed. With respect to the scope of the present thesis, Section 2.4

will outline the assumptions of both models of how the brain represents regularities

across episodes.
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2.2 Relational Binding and the Hippocampus: The

Eichenbaum Model and the O’Reilly Model

2.2.1 The Eichenbaum Model

In his relational memory theory, Eichenbaum (2000) suggests that the hippocampus

is critically involved in binding (cf. Zimmer, Mecklinger & Lindenberger, in press)

of different features and events that compose episodic memories (Eichenbaum, Otto

& Cohen, 1994; Eichenbaum, Schoenbaum, Young & Bunsey, 1996; Eichenbaum,

1997, in press, see also Cohen et al., 1999). In contrast, it is assumed that the

parahippocampal region is involved in representing single stimuli or single features

of complex stimuli. Moreover, the parahippocampal region is associated with the

maintenance of single stimuli in task situations without interference and represents

an index of stimulus familiarity. The hippocampus is supposed to bind together those

parahippocampal representations to form an enduring representation of an episode.

For example, it has been shown that hippocampal cells in the rat bind singular

conjunctions of episodic features, such as a specific odor occurring at a particular

position (Wood et al., 1999). Moreover, Eichenbaum proposes that the hippocam-

pal binding processes are relational by nature. Mathematically, a relation is defined

for instance by the characteristics of symmetry and transitivity. Eichenbaum and

coworkers (Bunsey & Eichenbaum, 1996; Dusek & Eichenbaum, 1997) could demon-

strate that rats with hippocampal lesions show no evidence for symmetry and tran-

sitivity in inferential tasks. In contrast, rats with intact hippocampi could infer

symmetry and transitivity in these tasks. For instance, in the Dusek and Eichen-

baum (1997) study, both groups of rats learned to prefer on odor over another (e.g. A

> B, B > C) in a learning phase. In a subsequent test phase, these pairs of odors and

new pairs (e.g. A > C) were presented. Rats with intact hippocampi showed transi-

tive inference, i.e. these rats selected odor A over C, whereas rats with hippocampal

lesions showed no capacity for transitive inference. Further supporting evidence for

relational binding in the hippocampus is provided by the aforementioned study of

Fortin et al. (2002). This study demonstrated that the hippocampus is involved in
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representing the orderliness of events (see also Eichenbaum, in press; Wallenstein,

Eichenbaum & Hasselmo, 1998). In addition, Eichenbaum argues that the hippocam-

pus links representations of episodes to representations of already stored episodes,

thus providing a network of memories (Agster et al., 2002; Eichenbaum, 2000, in

press, cf. Section 2.4). To summarize, the Eichenbaum model assumes that the hip-

pocampus binds features and events of complex episodes, reflecting the temporal

and spatial order of these events and is involved in linking these representations to

stored representations of other episodes and by this mediates associations between

distinct episodes (Eichenbaum, 2000, in press).

2.2.2 The O’Reilly Model

In the last years, O’Reilly and coworkers have developed an influential computational

model of learning and memory, the complementary learning systems approach (Mc-

Clelland et al., 1995; Norman & O’Reilly, 2003; O’Reilly & Munakata, 2000; O’Reilly

& Rudy, 2000, 2001; O’Reilly & Norman, 2002). This model proposes two qualita-

tively different learning systems, a fast hippocampal and a slow learning system

associated with the adjacent MTL cortex, comprising the perirhinal, entorhinal,

and parahippocampal cortex. It is assumed that the hippocampus is involved in

learning conjunctions of features and events defining specific episodes. In contrast,

the MTL cortex represents statistical summaries of multiple input pattern. O’Reilly

and coworkers implemented both systems in different networks (Figure 2.1). The

MTL cortex network has an input and a hidden layer (see Figure 2.1a). The ar-

chitecture of the hippocampal network takes into account the neuroanatomy of the

medial temporal lobe (see Chapter 4). Accordingly, the network has different layers

representing the entorhinal cortex, the dentate gyrus, and hippocampal fields CA1

and CA3 (see Figure 2.1c). In accordance with the neuroanatomical projections,

different connections between layers exist. The input layer projects to the entorhi-

nal layer which projects to the dentate gyrus, CA1, and CA3 layer. The CA3 layer

projects back to the entorhinal output layer via the CA1 layer.

O’Reilly and coworkers implemented two different learning principles in the MTL



2.3. STUDIES FROM DIFFERENT AREAS OF BEHAVIORAL AND
COGNITIVE NEUROSCIENCE 16

cortex and the hippocampal model, respectively. The hippocampal system repre-

sents episodes by means of pattern-separated, sparse representations which have the

advantage of minimizing interference between representations of different episodes.

It is assumed that these non-overlapping pattern-separated representations are build

during encoding in hippocampal region CA3. During retrieval, partial cues lead to

a reinstantiation of the original CA3 representation by means of pattern completion

(see O’Reilly & McClelland, 1994, for a detailed description of pattern separation

and pattern completion). A pattern-separated representation of specific episodes is

a necessary prerequisite for successful episodic memory encoding and storage, since

representations of unique episodes have to be kept separate from other episodes to

avoid interference between distinct episodes (O’Reilly & Rudy, 2000). In a similar

way, this pattern separation mechanisms has to be fast, since episodes have to be

encoded directly when they occur. Moreover, the O’Reilly model assumes that the

hippocampal representation is sparse and conjunctive (O’Reilly & Rudy, 2001). The

sparseness entails fast encoding as well as minimizing interference between represen-

tations of distinct episodes. A conjunctive representation is the result of binding of

different features defining a unique episode (O’Reilly & Rudy, 2000). This conjunc-

tive unitary representation is later reinstated by the hippocampus upon presentation

of a retrieval cue (see Nakazawa et al., 2002, for a possible molecular mechanism).

The MTL cortex model, in contrast, represents the general statistical structure of

multiple episodes (see Section 2.4).2

2.3 Studies from Different Areas of Behavioral

and Cognitive Neuroscience

A large number of studies using different neuroscientific methods in animals as well

as in humans suggests that the hippocampus plays a crucial role during the forma-

2Based on these different learning operations it is proposed that the hippocampus supports

recollection-based recognition, whereas the MTL cortex is involved in familiarity-based recognition

(see Section 2.3.2 for a description of recollection-based and familiarity-based recognition).
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Figure 2.1. Network Architecture of the MTL Cortex and the Hippocampal Model (Com-
plementary Learning Systems Approach; O’Reilly & Norman, 2002). (a) The MTL cortex
network with the input and hidden MTL cortex layer. (b) The dynamics of the sharpening
mechanism implemented in the MTL cortex model. In an early phase, the representation
of an input is unspecific (left). After multiple presentations of overlapping input pattern,
the sharpening mechanism entails more differentiated representation (right). (c) The hip-
pocampal network. The different layers constitute the input, the entorhinal (EC), the
dentate gyrus (DG), the CA1, and CA3 layer. Arrows denote projections between differ-
ent layers. [Adapted from Norman and O’Reilly (2003). Copyright (2003) American Psychological

Association, Inc. (Psychological Review).]

tion of episodic memory. In this section an overview about findings from single cell

recordings and lesion studies in animals (2.3.1), neuropsychological investigations

in amnesic patients (2.3.2), and electrophysiological (2.3.3) and functional imaging

experiments (2.3.4) in humans will be given.

2.3.1 Single Cell Recordings and Lesion Studies in Animals

In the following, some core memory studies in animals using single cell recording

techniques and different lesion approaches will be reviewed. To give a broad overview,

I will focus on earlier studies using the delayed nonmatch to sample task (DNMS),

on studies investigating spatial memory in rodents, as well as on recent studies us-

ing more complex memory paradigms. For a more detailed review of the animal
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literature, please see Aggleton and Brown, 1999, Eichenbaum, Dudchenko, Wood,

Shapiro, and Tanila, 1999, Eichenbaum, Alvarez, and Ramus, 2000, O’Keefe and

Nadel, 1978, O’Keefe, 1999, and Suzuki, 1999.

Early studies in monkeys revealed ambiguous results with respect to hippocampal

involvement during memory formation. In these studies, effects of hippocampal le-

sions on memory performance have been widely investigated using the DNMS task.

In each trial of this task, the animal is presented with a sample stimulus. After a

delay, the sample stimulus is presented along with a new stimulus and the choice of

this new stimulus is rewarded (nonmatch). Several studies could show that monkeys

with lesions including the hippocampus and the surrounding MTL cortex are im-

paired in the DNMS task, especially in the trial-unique version of this task, in which

new, unfamiliar items are used in each trial (e.g. Mishkin, 1978; Zola-Morgan, Squire

& Mishkin, 1982; Zola-Morgan & Squire, 1985, see also the reviews of Aggleton and

Brown, 1999, and Eichenbaum et al., 2000). A review of monkey lesion data pro-

vides evidence for the notion that memory impairments in the DNMS task depend on

the extent of the medial temporal lobe lesion (Zola-Morgan, Squire & Ramus, 1994).

Lesions restricted to the hippocampus proper and the subicular complex were associ-

ated with mild memory impairments, whereas severe memory impairments could be

observed in monkeys with lesions also including the surrounding entorhinal, perirhi-

nal, and parahippocampal cortex. In line with this observation, selective damage to

the hippocampus using modern ablation techniques revealed no impairments or only

impairments after long delays in the DNMS task (Alvarez, Zola-Morgan & Squire,

1995; Murray & Mishkin, 1998). Based on these results, it has been proposed that

object recognition, as measured in the DNMS task does not depend on an intact

hippocampus, but rather on an intact MTL cortex, most of all on the perirhinal

cortex (Aggleton & Brown, 1999; Brown & Aggleton, 2001), specialized for famil-

iarity/recency discrimination (see Section 2.3.2). Brown and Aggleton (2001) argue

further that the hippocampus is crucial for representing associations between stimuli

(see Wan, Aggleton & Brown, 1999, for a direct test of the model).

The role of the rodent hippocampus in memory has been examined using tests of

allocentric spatial memory, e.g. the Morris water maze task and the radial maze
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task (see Eichenbaum et al., 1999, for a review). In these tasks, rats have to learn

routes in an experimental environment. Rats with selective hippocampal lesions

showed impaired memory performance in these tasks (e.g. Morris, Garrud, Rawlins

& O’Keefe, 1982). In addition, single cell recording studies in rats revealed special-

ized hippocampal neurons, the so-called place cells (O’Keefe & Dostrovsky, 1971, see

Muller, 1996, for a review) which provide a representation of the current location of

an animal by encoding topological information of the environment (Muller, Kubie &

Ranck, 1987; O’Keefe & Dostrovsky, 1971; O’Keefe & Burgess, 1996). Based on such

findings, it has been proposed that the hippocampus represents a cognitive map of

the environment (O’Keefe & Nadel, 1978; O’Keefe, 1999).

In addition, there is a growing number of single cell recording and lesion studies

in rodents (Bunsey & Eichenbaum, 1996; Ferbinteanu & Shapiro, 2003; Hampson

et al., 1999; Wood et al., 1999, 2000) and monkeys (Brasted, Bussey, Murray &

Wise, 2003, Wirth et al., 2003; see Suzuki, 1999, for a review of the monkey liter-

ature and possible explanations for the ambiguous results of single unit recordings

in monkeys) showing hippocampal involvement in memory for non-spatial stimuli.

For instance, in a study by Wood et al. (1999) rats performed a DNMS task while

neuronal activity was recorded from cells in hippocampal fields CA1 and CA3. In

this experiment, different odors could appear at different locations and the rat was

rewarded when selecting the odor that was different from that in the previous trial

(nonmatch). Wood et al. (1999) observed hippocampal neurons that encode single

features of episodes, e.g. a specific position, and more interestingly cells representing

specific conjunctions of episodic features, such as a specific odor occurring at a par-

ticular position as a match trial. These data indicate that beyond the representation

of single episodic features, the hippocampus is critically involved in binding of differ-

ent spatial and non-spatial features that compose episodic memories (Eichenbaum,

2000).

Supporting evidence for this view is provided by a recent lesion study (Fortin et al.,

2002). In a first trial phase different odors were presented in temporal sequence with

a 2.5 min delay between presentations. In a second phase after a 3-min delay either

a sequential order or a recognition test was conducted (see Figure 2.2a). In the se-
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quential order task, rats had to select one of two presented odors which occurred

earlier in the previous sequence. In the recognition task, rats were required to indi-

cate the odor not presented in the sequence. For one group of rats the hippocampus

was removed using radiofrequency lesions. In the recognition task, no performance

differences could be observed between the lesion group and a healthy control group

(Figure 2.2c), i.e. both groups of rats correctly selected roughly 80-90% of the new

odors. In contrast, performance significantly decreased for lesioned rats in the se-

quential order task as compared to the controls (Figure 2.2b). These results show

that the hippocampus represents the sequential order of events, an essential prereq-

uisite for building episodic memories (cf. Dusek & Eichenbaum, 1997).

Taken as a whole, the lesion and single unit recording studies reviewed here are

consistent with the idea that the hippocampus plays an important role in represent-

ing spatial and non-spatial features (especially object and temporal information) of

episodes (Eichenbaum et al., 1999, see Huxter, Burgess, and O’Keefe, 2003, for a

possible neurophysiological explanation) and by this provides a basis for building

episodic memories (Eichenbaum, 2000).

2.3.2 Amnesia Research

Bilateral removal of the medial temporal lobe, including the hippocampus results in

severe anterograde amnesia (Scoville & Milner, 1957). Patients suffering from antero-

grade amnesia are not able to learn new information after the onset of the disease.

Retrograde amnesia refers to impairments of memories acquired before the onset

of the disease (Squire, Clark & Knowlton, 2001). Episodic memory impairments in

amnesics following medial temporal lobe lesions have been described extensively in

the last decades, while other cognitive functions like working memory and language

skills are preserved (see Aggleton & Brown, 1999; Gabrieli, 1998; Spiers, Maguire

& Burgess, 2001; Squire, 1992; Squire & Zola, 1997, for an overview). Due to space

limitations, in the following only a few particularly influential recent studies with

amnesic patients will be described in more detail. These studies were selected, since

they address three main topics in memory research, namely the distinction between
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Figure 2.2. Design and Results of the Fortin et al. (2002) Study. (a) Different odors A-
E are presented in sequential order (left). After a 3-min delay either a sequential order
or a recognition task is presented (right). (b) Results for the sequential order task. For
all probes and lags (i.e. the number of intervening odors) hippocampal lesioned animals
(grey) showed reduced performance as compared to controls (white). (c) Results for the
recognition task revealed no significant differences between both groups. [Adapted from Fortin

et al. (2002). Copyright (2002) Macmillan Magazines Ltd (Nature Neuroscience).]

episodic vs semantic memory, recollection vs familiarity, and single item vs associa-

tive memory, respectively.

Vargha-Khadem et al. (1997) described three patients with anterograde amnesia.

All three patients had selective bilateral hippocampal pathology since early child-

hood, i.e. approximately 50% hippocampal volume reduction. Neuropsychological

tests revealed that verbal, pictorial, and episodic memory performance was signif-

icantly reduced as compared to controls. Most interestingly, all three patients had

normal intelligence and normal semantic memory. This study gives evidence for the

notion that only episodic memory and not semantic memory crucially depends on

intact hippocampi (but see Manns, Hopkins & Squire, 2003b). It is still contro-

versial, whether the hippocampus also subserves semantic memory (Squire & Zola,

1998; Tulving & Markowitsch, 1998). Squire and Zola (1998, see also Squire, 1992)
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suggest that the hippocampus and the surrounding MTL cortex is crucial for episodic

and semantic memory (declarative memory) but not for non-declarative memory.3

In contrast, Tulving and Markowitsch (1998) argue that the acquisition of episodic

memory and semantic memory can occur independently. Furthermore, Tulving pro-

poses that episodic memory depends on the integrity of the hippocampus, whereas

the acquisition of semantic memory is based on the rhinal and parahippocampal

cortex.

Furthermore, it is a topic of current interest whether the hippocampus mediates

recollection-based or familiarity-based recognition memory. In recent years, several

memory researchers have proposed that recognition memory is based on two inde-

pendent, qualitatively different processes, recollection-based and familiarity-based

recognition (so-called dual-process models; e.g. Aggleton & Brown, 1999; Brown &

Aggleton, 2001; Mecklinger, 2000; O’Reilly & Norman, 2002; Rugg & Yonelinas,

2003; Yonelinas, 2001). These models assume that the hippocampus is crucial for

recollection-based recognition but not for familiarity-based recognition.4 The influ-

ence of hippocampal damage on recollection and familiarity measures of recognition

memory was investigated in a recent study with amnesic patients (Yonelinas et al.,

2002). In the study of Yonelinas et al. (2002), memory performance was measured

in a hypoxic-ischemic patient group. The patients had severe atrophy limited to

3Following Squire’s taxonomy of memory, declarative memory refers to the conscious recollec-

tion of episodes (episodic memory) and general facts (semantic memory), whereas non-declarative

memory denotes different types of implicit memory, like procedural memory, priming, classical

conditioning, and non-associative memory (cf. Squire, 1992; Squire & Zola, 1996).

4These models suggest that recollection is based on the retrieval of specific details of the study

episode, whereas familiarity describes an unspecific memory signal, indicating the prior occur-

rence of an item without recollecting specific details of the episode, e.g. the context. Familiarity

is supposed to be faster than recognition, but also to decrease faster. Furthermore, recollection

but not familiarity seems to be independent of changes to the stimulus domain between study

and test phase (see Yonelinas, 2002, for a detailed description of familiarity and recollection). Fur-

thermore, it is assumed that recollection-based recognition memory depends on the hippocampus,

whereas familiarity-based recognition is associated with the surrounding MTL cortex, especially

the perirhinal cortex (Brown & Aggleton, 2001)
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the hippocampi. Patients showed greater deficits in free recall than in recognition,

indicating that recollection but not familiarity was impaired.5 Furthermore, using

structural covariance modeling the authors could show that the degree of hypoxic

severity was correlated with recognition performance, but not with measures of fa-

miliarity. In an additional experiment using the remember know procedure (Tulving,

1985, see Section 2.3.4), the hypoxic-ischemic patient group showed solely recol-

lection deficits. In contrast, a group with extensive medial temporal lobe lesions,

including the hippocampus and the parahippocampal gyrus, showed pronounced

recollection and familiarity deficits. Taken together, the results of this study indi-

cate that recollection-based, but not familiarity-based recognition memory requires

an intact hippocampus (however, see Manns et al., 2003a, for a different view).

Another topic of current interest is whether the hippocampus subserves memory for

single items or memory for associations of items. Supporting evidence for the notion

that the hippocampus is important for associative memory, i.e. binding different

features of an episode was provided by a recent neuropsychological investigation of

patient YR, who suffered a bilateral lesion of the hippocampus (Mayes et al., 2004).

Results of several recognition tests revealed preserved single item memory and pre-

served recognition memory for intra-item associations (e.g. composite words), but

impaired recognition memory for inter-item associations in patient YR. For instance,

the patient’s memory performance was significantly reduced for associations between

objects and locations, the temporal order of items, and picture-sound associations.

Taken together, these patient studies with amnesic patients suggest that episodic

memory, recollection-based memory, and associative memory crucially depends on

the integrity of the hippocampus.

2.3.3 Electrophysiological Studies in Humans

In recent years, the neural correlates of episodic memory have also been investi-

gated using intracranial recordings in humans (Cameron et al., 2001; Fell et al.,

5It is assumed that free recall is based on recollection, whereas recognition is based on both

recollection and familiarity.



2.3. STUDIES FROM DIFFERENT AREAS OF BEHAVIORAL AND
COGNITIVE NEUROSCIENCE 24

2001; Fernández et al., 1999, 2002; Fried et al., 1997; Grunwald et al., 2003).6 For

instance, Fernández and coworkers (Fell et al., 2001; Fernández et al., 1999, 2002)

recorded event-related potentials (ERP) directly from the human medial temporal

lobe using intracerebral electrodes in patients suffering from pharmacoresistant tem-

poral lobe epilepsy. In these studies, patients performed a free recall task for words.

ERPs were measured in the study phase allowing signals to be classified based on

subjects’ subsequent memory performance (subsequent memory paradigm). In com-

parison to later forgotten words, correctly remembered words elicited a negativity

between 400 and 500 ms after stimulus onset in the anterior parahippocampal gyrus

(rhinal cortex; AMTL-N400) in the Fernández et al. (1999) study. In a time window

between 500 and 2000 ms, ERPs measured in the hippocampus were more posi-

tive for subsequently remembered than forgotten items. These data suggest that

both MTL structures, the rhinal cortex and the hippocampus, are important for

the formation of episodic memories. Furthermore, the authors argue that memory

formation seems to be subdivided into two sequential processes, an early rhinal and

a late hippocampal process. To investigate these subprocesses in more detail, Fell

et al. (2001) analyzed phase synchronization in the γ-frequency range between rhi-

nal and hippocampal electrodes in a similar study. Subsequently remembered words

elicited an early increase (100-300 and 500-600 ms after stimulus onset) and a late

decrease (1000-1100 ms) in phase synchronization between both MTL structures as

opposed to later forgotten items (cf. Figure 2.3a,b). These data indicate that success-

ful memory encoding seems to be based on a coupling between the rhinal cortex and

the hippocampus. In another depth EEG study, Fernández et al. (2002) presented

either high frequency or low frequency words in the study phase. Recall performance

was greater for high frequency than for low frequency words. The hippocampal sub-

sequent memory effect, i.e. more positive ERPs for subsequently remembered than

6It is noteworthy that the Fried group (e.g. Cameron et al., 2001; Fried et al., 1997) directly

records single cell activity (action potentials) by means of microelectrodes (see Fried et al., 1997, for

recording details), whereas the Fernández group (e.g. Fell et al., 2001; Fernández et al., 1999, 2002)

measures local field potentials by means of multicontact depth electrodes (see Fernández et al.,

1999, for recording details).



2.3. STUDIES FROM DIFFERENT AREAS OF BEHAVIORAL AND
COGNITIVE NEUROSCIENCE 25

forgotten items, was similar for both low and high frequency words. However, the

rhinal AMTL-N400 was solely observed for high frequency words but not for low

frequency words. The authors argue that the rhinal cortex is involved in semantic

processing of to be remembered items, by this strengthening the memory represen-

tation indirectly as reflected in more effective memory formation for high frequency

as compared to low frequency words. In contrast, Fernández and colleagues propose

that the hippocampus seems to be characterized by exclusively mnemonic processes.

Taken together, the results of the Fernández studies indicate that episodic memory

formation depends on both MTL structures, the rhinal cortex and the hippocampus

with temporal and functional specializations of either structure.

Single cell activity in the medial temporal lobe of epilepsy patients was recorded by

Fried and colleagues (Cameron, Yashar, Wilson & Fried, 2001; Fried, MacDonald

& Wilson, 1997). In the study by Fried et al. (1997), patients had to encode and

recognize pictures of faces and objects. MTL neurons responded differentially to

specific items as well as to specific feature conjunctions, i.e. a specific face with a

specific facial expression during encoding and retrieval. These data indicate that the

hippocampus and associated MTL cortices are involved in encoding conjunctions of

stimulus features. In the Cameron et al. (2001) study, the authors investigated single

cell activity during encoding and retrieval of word paired associates. In accordance

with the results of Fernández et al. (1999), hippocampal cell activity predicted later

memory performance.

A single case scalp ERP study with one of the patients with early hippocampal

damage in the aforementioned study (Vargha-Khadem et al., 1997) was conducted

by Düzel, Vargha-Khadem, Heinze, and Mishkin (2001). The authors investigated

ERP old-new effects associated with recognition memory, i.e. more positive ERP

waveforms for correctly classified old items (hits) as compared to correctly rejected

new items during a recognition phase. An early (frontal) old-new effect is asso-

ciated with familiarity-based recognition, whereas a late (parietal) old-new effect

reflects recollection-based recognition (Mecklinger, 2000). In this recognition mem-

ory study, the patient showed a normal early ERP old-new effect (300 - 500 ms

after stimulus onset), but the late (500 - 700 ms) old-new effect was absent. These



2.3. STUDIES FROM DIFFERENT AREAS OF BEHAVIORAL AND
COGNITIVE NEUROSCIENCE 26

data parallel the behavioral data of Vargha-Khadem et al. (1997), suggesting that

episodic memory and recollection-based recognition depends on the integrity of the

hippocampus, whereas an intact parahippocampal region (perirhinal, entorhinal,

and parahippocampal cortex) is crucial for the formation of semantic memory as

well as for familiarity-based recognition.

Taken together, these single cell recording and ERP studies in humans provide fur-

ther, converging evidence for the notion that the hippocampus is crucial for memory

binding. These studies further indicate hippocampal-rhinal interactions during mem-

ory formation and underscore the importance of the hippocampus for recollection-

based recognition.

2.3.4 Imaging Studies

In the last years functional neuroimaging research has begun to study the neural

correlates of episodic memory (e.g. Alkire et al., 1998; Brewer et al., 1998; Gabrieli

et al., 1997; Wagner et al., 1998, for a review see Brewer and Moghekar, 2002).

Research concerning encoding-related neural processes revolved mainly around the

issue whether neural processes are modulated by the specific material of the items to

be remembered, e.g. verbal vs pictoral material (cf. Paller & Wagner, 2002). Studies

using the subsequent memory paradigm could show a material-specific lateraliza-

tion in the hippocampus/MTL. Subsequent memory for incidentally learned items

was associated with left hippocampus/MTL activation for verbal material (Golby

et al., 2001; Kirchhoff et al., 2000; Otten et al., 2001; Wagner et al., 1998, but

see Fernández et al., 1998), with bilateral hippocampus/MTL activation for figural

material (Golby et al., 2001; Kelley et al., 1998, see also Stern et al., 1996), and

with right (and bilateral) activation for spatial material (Golby et al., 2001; Kelley

et al., 1998; Kirchhoff et al., 2000). Furthermore, recent fMRI studies reported right

hippocampal involvement during spatial navigation and spatial memory (Burgess,

Maguire, Spiers & O’Keefe, 2001; Grön, Wunderlich, Spitzer, Tomczak & Riepe,

2000; Hartley, Maguire, Spiers & Burgess, 2003; Iaria, Petrides, Dagher & Bohbot,

2003, Maguire et al., 1998; Maguire, Valentine, Wilding & Kapur, 2003; see Burgess,
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Figure 2.3. Results of the Fell et al. (2001) and Davachi et al. (2003) Study. (a) Changes
of phase synchronization between rhinal cortex and hippocampal electrode sites for subse-
quently recalled (black) and unrecalled (gray) words in the γ-frequency range (32-48 Hz)
in the Fell et al. (2001) study. These data show early coupling (100-300 and 500-600 ms
after stimulus onset) and late decoupling (1000-1100 ms) between both MTL structures.
(b) Graphical depiction of the difference phase synchronization values (synchronization
of the recalled minus synchronization of the unrecalled words) from (a) as a function of
the frequency range and time after stimulus onset. (c) Peak BOLD signal change and
activated subregions of the MTL during the encoding phase in the Davachi et al. (2003)
study. Signal change is plotted for subsequently recognized (green) and forgotten (white)
items (upper row). Signal change for recognized items is subdivided into signal change for
correctly recognized item and source information (red) and item information only (yellow)
(middle row). [(a-b) adapted from Fell et al. (2001). Copyright (2001) Macmillan Magazines Ltd

(Nature Neuroscience). (c) adapted from Davachi et al. (2003). Copyright (2003) National Academy

of Sciences, USA (Proceedings of the National Academy of Sciences of the United States of America).]
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Maguire, and O’Keefe, 2002, for a recent review). For instance, Golby et al. (2001)

could show that encoding of words produced a left lateralized MTL activation, en-

coding of scenes and faces was associated with a bilateral MTL activation pattern,

whereas the right MTL was involved during encoding abstract visuo-spatial pat-

tern (see Kelley et al., 1998, for similar findings). These results indicate that hip-

pocampal memory operations during encoding are sensitive to the specific domain

of the to-be-remembered items. Several fMRI and PET studies have observed hip-

pocampus/MTL involvement during retrieval from episodic memory (Cabeza et al.,

2001; Gabrieli et al., 1997; Heckers et al., 2002; Ryan et al., 2001; Schacter et al.,

1996; Tsukiura et al., 2002, see the review of Schacter and Wagner, 1999), indicating

that the hippocampus is also involved during the reinstantiation of prior memory

representations.7

Recent imaging studies investigated hippocampal memory operations in more de-

tail (Davachi & Wagner, 2002; Düzel et al., 2003; Giovanello, Schnyder & Verfael-

lie, 2004; Henke, Buck, Weber & Wieser, 1997; Jackson & Schacter, 2004; Pre-

ston, Shrager, Dudukovic & Gabrieli, 2004; Ranganath, Cohen, Dam & D’Esposito,

2004a; Zeineh, Engel, Thompson & Bookheimer, 2003). Results of these studies

converge to suggest that the hippocampus is specialized for associative and partic-

ularly relational memory binding. For instance, Henke et al. (1997) could show that

the hippocampus exhibits more pronounced activity during encoding and retrieval

of associations between items (photographs of the interior/exterior of houses and

persons) as compared to single items. Davachi and Wagner (2002) presented word

triplets and contrasted two verbal encoding conditions. In an item-based condition,

subjects rehearsed the three items in the order presented on the screen, whereas in a

relational condition subjects were required to internally reorder the items as a func-

tion of desirability. Encoding-related activity in the hippocampus was greater in the

relational as compared to the item-based condition, whereas the reversed compar-

ison revealed activation in the entorhinal and parahippocampal cortex. Moreover,

7However, it should be noted that the evidence for hippocampal involvement during retrieval

is not as consistent as for encoding (e.g. Henson et al., 1999b; see Rugg, Otten & Henson, 2002,

for a discussion).
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subsequent memory effects in the hippocampus were restricted to stimuli encoded in

a relational manner. In a similar vein, in the study by Jackson and Schacter (2004),

hippocampal activation during encoding word pairs predicted subsequent memory

for associations of words (in contrast to memory for single items). In another asso-

ciative memory study (Giovanello et al., 2004), subjects had to encode word pairs.

In comparison to single items, the retrieval of word-pairs was associated with hip-

pocampal activity (see also Düzel et al., 2003; Ranganath et al., 2004a, for further

examples for hippocampal involvement during associative memory retrieval). Using

new fMRI analysis methods, Zeineh and colleagues (Zeineh et al., 2003) could fur-

ther disentangle hippocampal subregions during associative memory encoding and

retrieval of face-name pairs. Encoding of face-name conjunctions was associated with

enhanced activity in hippocampal cell fields CA2 and CA3 and the dentate gyrus,

whereas pronounced activity in the subiculum could be observed during retrieval

of conjunctions. In a further associative memory study (Preston et al., 2004), sub-

jects had to learn sets of face-house (sets A-B and C-B) and face-face pairs (D-E).

Critically, the two sets of face-house pairs comprised the same houses, i.e. different

faces (A and C) were associated with the same houses (B). During retrieval, the hip-

pocampus showed stronger BOLD responses for related face-face pairs (A-C) than

for initially learned face-face pairs (D-E). These data indicate that the hippocam-

pus is critically involved in the formation of relations between episodes, i.e. linking

together separated episodes (cf. Bunsey & Eichenbaum, 1996, for similar results in

rats). To summarize, the results of these studies indicate that the hippocampus is

preferentially involved in memory for associations and relations among elements of

episodes (Cohen & Eichenbaum, 1993; Cohen et al., 1999; Eichenbaum, 2000) by

means of a conjunctive representation of episodes (Davachi, 2004; O’Reilly & Rudy,

2001).

Another topic of current interest is whether the hippocampus is differentially in-

volved during familiarity-based and recollection-based recognition. Eldrige and col-

leagues (Eldrige, Knowlton, Furmanski, Bookheimer & Engel, 2000) used the remem-

ber know procedure (Tulving, 1985). In a first phase, subjects studied words outside

the scanner. Subsequently, old and new items were presented during fMRI measure-



2.3. STUDIES FROM DIFFERENT AREAS OF BEHAVIORAL AND
COGNITIVE NEUROSCIENCE 30

ments and subjects performed a recognition memory task. After their recognition

judgment, subjects had to indicate whether they remembered the item (remember

judgment) or whether their judgment was solely based on familiarity (know judg-

ment). As mentioned before, dual-process models of recognition memory assume

that recognition memory is supported by two independent processes, recollection

and familiarity (Brown & Aggleton, 2001; Mecklinger, 2000; O’Reilly & Norman,

2002; Rugg & Yonelinas, 2003; Yonelinas, 2001). It is supposed that remember

judgments are associated with recollection, whereas know judgments are based on

familiarity (Tulving, 1985). Only correctly recognized items which were classified as

remembered were associated with bilateral hippocampal activation.

Furthermore, functional imaging studies addressed the question whether the hip-

pocampus subserves source memory. Source memory is a specific form of associative

memory which requires building of associations between an item and a particular

source (e.g. a specific color background, a specific voice associated with an item).

For instance, Davachi, Mitchell, and Wagner (2003) investigated the function of the

hippocampus during the encoding phase of a source memory task. In this study,

subjects either had to encode items based on mental imagery or solely through

reading. Subsequently, subjects performed a recognition memory task. After clas-

sifying items as new or old, subjects had to indicate the encoding task associated

with old items, i.e. imagery or reading encoding (source memory task). The bilat-

eral hippocampus and the left parahippocampal cortex showed greater activity for

remembered items, when also the source (encoding task) was remembered (source

memory) relative to remembered items, for which subjects could not correctly indi-

cate the source (item memory). In contrast, perirhinal cortex activity predicted later

item but not source memory (see Figure 2.3c). In accordance with these results, two

recent fMRI studies observed retrieval-related hippocampal activation for items with

correct source judgments (Cansino, Maquet, Dolan & Rugg, 2002; Dobbins, Rice,

Wagner & Schacter, 2003). By combining a source memory task with confidence

ratings, Ranganath et al. (2004b) could disentangle encoding-related activity in the

rhinal cortex and the hippocampus, respectively. Rhinal cortex activity was asso-

ciated with subsequent familiarity-based recognition, whereas hippocampal activity
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was associated with subsequent recollection-based recognition. The results of these

studies are compatible with a dual-process account of recognition memory and un-

derscore the importance of the hippocampus during recollection-based recognition.

Combining findings from the reviewed functional imaging studies, it appears that the

hippocampus plays a critical role during encoding and retrieval of episodic memo-

ries. More precisely, the hippocampus is preferentially involved when relations among

items have to be bound in memory, i.e. associations between distinct stimuli and

associations between an item and a source. These hippocampal memory operations

seem to be a prerequisite for recollection-based recognition of prior episodes.

But what about the representation of regularities across multiple episodes? Both,

the Eichenbaum as well as the O’Reilly model propose that medial temporal lobe

structures are involved in this function. The assumptions of both models will be

outlined in the next section.

2.4 Representation of Regularities across Multi-

ple Episodes

2.4.1 Assumptions of the Eichenbaum Model

Eichenbaum (2000, in press) posits that particular hippocampal neurons are spe-

cialized to represent features that are common across many experiences. By this,

overlapping episodes could be linked together and semantic knowledge structures

gradually evolve (see also Wallenstein et al., 1998). Eichenbaum argues that the

hippocampus is involved in detecting overlapping features of distinct episodes and

in binding these overlapping features into a common representation. Importantly,

Eichenbaum proposes that “(. . .) (t)he representation of these general regularities

constitutes semantic ‘knowledge’ that is not bound to the particular episode or

context in which the information was encoded” (Eichenbaum, 2004, p. 5). These

mechanisms entail the development of context-free generalized knowledge structures.

Representations of context-specific memories are linked to these generalized knowl-

edge structures and provide a relational memory network (Eichenbaum, in press).
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Evidence for this notion is provided by a recent lesion study (Agster et al., 2002). In

this study rats with hippocampal lesions and rats with intact hippocampi (control

group) learned two odor sequences in separate sessions. These odor sequences com-

prised six pair-wise odor choices. Both sequences shared two common odor choices in

the middle of both sequences. In a test phase, where both sequences were presented

in randomized order, rats in the control group could disambiguate both sequences,

whereas rats in the lesion group showed impaired performance. Based on these re-

sults, the authors argue that the hippocampus is involved in learning overlapping

odor choice sequences and in disambiguating these sequences. Moreover, it has re-

cently been shown (Wood et al., 1999) that in addition to hippocampal cells which

encode specific feature conjunctions of unique episodes, particular hippocampal cells

increase their firing rate selectively for events that are common across many episodes.

Based on these results, Eichenbaum (2000, in press) argues that the hippocampus

is also involved in the representation of overlapping features of multiple episodes.

2.4.2 Assumptions of the O’Reilly Model

In the O’Reilly model (Norman & O’Reilly, 2003; O’Reilly & Norman, 2002), the

rhinal and parahippocampal cortices are assumed to represent regularities in the en-

vironment by assigning overlapping distributed representations to similar stimuli.8

As outlined above, the MTL cortex model is composed of an input and a hidden layer

(Figure 2.1a). The hidden layer corresponds to the MTL cortex, whereas the input

layer represents neocortical input into the MTL cortex. The input layer projects

to the MTL cortex layer. During learning these connections are strengthened or

weakened via Hebbian learning mechanisms. A sharpening mechanism selectively

strengthens representations of frequent stimuli (see Figure 2.1b). More precisely,

8It is noteworthy that in earlier versions of this model (especially McClelland, McNaughton

& O’Reilly, 1995), this function, i.e. the representation of regularities/generalities across multiple

episodes was ascribed to the neocortex. In the most recent version of the model (Norman &

O’Reilly, 2003; O’Reilly & Norman, 2002) which is more precise in neuroanatomical terms, the

medial temporal lobe cortex (comprising the rhinal and parahippocampal cortices) is supposed to

mediate this function.
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when stimuli are presented for the first time they are represented in an unspecific

way by a large number of weakly activated MTL cortex layer units. After repetition

of familiar items, the number of activated units decreases but the activity of these

few units is increased. O’Reilly and coworkers argue that the MTL cortex system

is a slow learning system, since this systems encodes “(. . .) the general statistical

structure of the environment, abstracted away from the specifics of individual events

which enables generalization to novel situations” (O’Reilly & Rudy, 2000, p. 390). To

summarize, the O’Reilly model proposes that the rhinal and parahippocampal cor-

tices are crucial for the representation of repeated overlapping features of episodes.

2.4.3 Concluding Remarks

Both models, the O’Reilly model (based on computational modeling) and the Eichen-

baum model (based on rodent lesion and single unit recording studies) propose that

the hippocampus plays a crucial role during the formation of episodic memories.

Both models assume that the hippocampus is involved in relational memory bind-

ing, i.e. the hippocampus binds together features defining a unique episode. Both

models make different predictions how regularities across episodes, i.e. overlapping

features of multiple episodes are represented in the brain. O’Reilly assumes that

the parahippocampal and the rhinal cortex represent these regularities, whereas

Eichenbaum posits that specialized hippocampal neurons support the representa-

tion of overlapping features. Especially the O’Reilly model proposes that learning

unique episodes vs learning regularities across episodes comprise two fundamentally

different functions. However, it is not clear which learning mechanisms exactly sup-

port the representation of regularities across episodes. In the scope of the framework

of two distinct learning and memory systems, learning unique episodes is the core

function of the first system, whereas learning regularities across multiple episodes

is supported by the second system. The term ‘regularity learning’ was introduced

to describe the learning process of the second system to emphasize the importance

of regularities across multiple episodes during learning. In the last three decades,

the learning mechanisms associated with the second learning system have gained
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considerable interest. Several learning tasks investigated regularity learning, e.g. re-

inforcement learning, category learning, artificial grammar learning, and sequence

learning tasks. Moreover, neuroscientific studies have begun to unravel the network

of brain areas involved during regularity learning. Consequently, in the following

Chapter 3 the basic principles and neural mechanisms underlying learning regulari-

ties across multiple episodes will be outlined in more detail.
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3.1 Introduction

According to the taxonomy of two separable learning and memory systems (McClel-

land et al., 1995; Mishkin et al., 1984; O’Keefe & Nadel, 1978; O’Reilly & Norman,

2002; Sherry & Schacter, 1987; Squire, 1992; Squire & Zola, 1996, cf. Packard &

Knowlton, 2002; Poldrack & Packard, 2003; Rolls, 2000; White & McDonald, 2002),

in this chapter the second learning system associated with learning regularities across

multiple episodes will be outlined. This chapter starts with a brief introduction of re-

inforcement learning (3.2). Subsequently, relevant aspects of category learning (3.3),

artificial grammar learning (3.4), and sequence learning research (3.5) will be re-

viewed. In each of this sections, the basic principles and the neural mechanisms of

these forms of learning will be outlined.

It is proposed that these different learning tasks - on a broad level - have three main

characteristics in common. First, subjects extract regularities across multiple input

pattern, i.e. overlapping features of episodes. Second, given the feature overlap during

reinforcement learning, category learning, artificial grammar learning, and sequence

learning it is proposed that learning in these tasks is supported by the detection

of contingencies between elements of episodes, i.e. relations among the elements are

build due to the co-occurrence of the elements (cf. Shanks, 1995). Third, learning

in these different tasks is incremental by nature, since learning evolves across mul-

tiple episodes. The purpose of the present chapter is to review important aspects

of the different types of learning (tasks) and to discuss them according to the three

characteristics.1 As mentioned above, the generic term ‘regularity learning’ will be

used to describe the learning process underlying the second learning system. It is

supposed that this term is appropriate to characterize learning in these distinct

tasks which will be reviewed in the present chapter. More precisely, the existence

1See the ‘Summary’ in the following sections.



3.1. INTRODUCTION 37

of regularities across multiple episodes is supposed to be the critical component

which allows learning to occur. It is noteworthy that the term ‘regularity learning’

is not intended to substitute terms like reinforcement learning, artificial grammar

learning, category learning, sequence learning, implicit learning, gradual learning,

or incremental learning. In fact, the term ‘regularity learning’ is introduced as a su-

perordinate concept which emphasizes the importance of regularities across multiple

episodes during learning in distinct learning tasks.

It is worth noting that it is a topic of current interest whether learning in these tasks

is implicit or explicit.2 For instance, Cleeremans et al. (1998) argues that especially

artificial grammar learning and sequence learning is mainly based on implicit pro-

cesses. In contrast, others (e.g. Shanks & St. John, 1994) challenge the existence

of implicit learning. Shanks and St. John (1994) define critical criteria for implicit

learning (cf. Reingold & Merikle, 1988) and cannot find evidence for implicit learning

in a wide variety of learning tasks, including classical and instrumental condition-

ing, category learning, artificial grammar learning, and sequence learning. Thus, it

appears that a clear distinction between pure implicit and pure explicit processes

is rather difficult. It is beyond the scope of the present work to investigate the im-

plicit/explicit basis of learning. Thus, this issue will not be further addressed in the

present thesis.

2Different definitions of implicit learning have been proposed by several authors. On a broad

level, implicit learning is defined as the “(. . .) ability to learn without awareness (. . .)” (Cleeremans,

Destrebecqz & Boyer, 1998, p. 406), whereas during explicit learning subjects are (fully) aware of

the learning process and the contents of learning. However, there is still controversy with respect

to the exact nature and an overall definition of implicit learning and the best-suited methods to

investigate implicit learning (Cleeremans et al., 1998; Frensch, 1998; Reingold & Merikle, 1988;

Shanks & St. John, 1994).
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3.2 Reinforcement Learning

3.2.1 Basic Principles

Classical Conditioning During Pavlovian or classical conditioning, an uncondi-

tioned stimulus (US) which produces an unconditioned reaction (UR) is paired with

a conditioned stimulus (CS). After learning, the CS on its own is able to produce

a response, the conditioned reaction (CR) which is highly similar to the original

UR (Pavlov, 1927). For instance, in Pavlov’s (1927) original experimental proce-

dure, a tone (CS) was paired with the presentation of food (US). When food was

presented, the dog salivated (UR). After sufficient CS-US pairings, the dog started

to salivate immediately after hearing the tone before the food was delivered, i.e. an

initial neutral stimulus became a conditioned stimulus after learning.

The Rescorla-Wagner Model Learning during classical conditioning can be

described by means of the Rescorla-Wagner formula (Rescorla & Wagner, 1972).

An experimental procedure is defined in terms of several cues C0, . . . , Cn and an

outcome O (cf. Danks, 2003). The change of associative strength ∆Vi between a cue

Ci and an outcome O is defined by

∆Vi = αiβ(λ −

n
∑

j=1

Vj) (3.1)

In Equation 3.1,
∑n

j=1 Vj denotes the associative strength of all available cues n, λ

represents the maximal associative strength, and α and β are learning parameters

associated with the cue and the outcome, respectively.3 As apparent from Equation

3.1, learning (∆Vi) is a function of the discrepancy between the actual outcome (λ)

and the expected outcome (
∑n

j=1 Vj). At the beginning of learning, the outcome is

highly unexpected, i.e. unpredicted by the cue, thus ∆Vi increases. In subsequent

learning trials (suppositional that the outcome follows the cue), unexpectedness

decreases, i.e. the degree of predictability of the outcome increases. As a result, the

3The parameter α denotes the salience of the cue Ci, whereas β is a measure of the salience of

the learning situation.
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learning increase is reduced and even diminishes during later learning phases, when

the outcome is fully predicted by the cue.

The Temporal Difference Model The temporal difference (TD) model (Sutton

& Barto, 1990, cf. Sutton & Barto, 1981) is an extension of the Rescorla-Wagner

model. Similar to the Rescorla-Wagner model, the TD model proposes that reinforce-

ment learning can be formalized by means of the difference between the expected

and the actual outcome, the so-called prediction error (PE). In extension of the

Rescorla-Wagner model, the TD model assumes that within a single learning trial,

the sum of all future rewards is computed (see Schultz, Dayan & Montague, 1997).

Moreover, in contrast to the Rescorla-Wagner model the TD model accounts for the

intratrial temporal structure of classical conditioning. To put it simply, imagine a

learning experiment where a specific cue is followed by a reward. In each learning

trial, the PE represents the difference between the actual outcome (presentation or

absence of a reward) and the expected outcome. During initial learning trials, a

reward following a cue is highly unexpected, i.e. the PE is positive. After several

experiences of a specific cue-reward pairing the PE decreases, since the expectation

of reward delivery increases for a specific cue. Thus, the PE converges to zero, since

the cue becomes a valid predictor of the reward. When the cue-reward contingency

is changed, e.g. no reward is delivered after cue presentation (extinction), the PE

becomes negative (reward expected, no reward delivered).

3.2.2 Neural Mechanisms

Animal Studies In accordance with the assumptions of the TD model (Sutton

& Barto, 1990), it has been proposed that midbrain dopamine neurons represent

predictions of future reward delivery and by this drive learning associations between

stimuli (Schultz, Dayan & Montague, 1997; Schultz, 2000, 2002). In more formal

terms, the activity of dopamine neurons reflects the PE, i.e. the difference between

the actual and the predicted outcome. As apparent from Figure 3.1a, activity of a

single dopamine neuron increases after unexpected reward delivery (top panel). Here,

according to the TD model, the PE is high. After the stimulus-reward association
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has been learned, the reward becomes highly predictive. Thus, the dopamine re-

sponse during reward delivery (and the PE) decreases (middle panel). Interestingly,

the dopamine response is shifted backwards in time from the primary reward to the

stimulus predicting future reward delivery (middle panel; cf. Schultz et al., 1997).

When reward delivery is omitted, the dopamine response is depressed (and the PE

becomes negative; bottom panel). For instance, Hollerman and Schultz (1998) could

show that dopamine responses to a rewarding stimulus gradually decrease during

the time course of learning as a function of reward predictability.

Recently, further evidence for neuronal coding of reward prediction errors was pro-

vided by a seminal study (Waelti, Dickinson & Schultz, 2001). The authors recorded

activity from single midbrain dopamine neurons of macaques (neurons in the sub-

stantia nigra and the ventral tegmental area, VTA). The animals performed a classi-

cal conditioning experiment (blocking paradigm). In a first phase of the experiment

(pretraining), two different types of visual stimuli were presented, one stimulus pre-

dicted reward delivery (A+), whereas another stimulus was never followed by a

reward (B−). Subsequently, stimuli A and B were paired with two novel stimuli X

and Y , resulting in pairs AX and BY (compound learning). Both compounds were

rewarded. In terms of formal learning theories, stimulus Y becomes a valid predictor

of the reward, since reward delivery following the presentation of the stimulus pair

BY generates a positive PE. In contrast, stimulus X does not generate a PE, since

stimulus A already fully predicts reward delivery. During a subsequent test phase,

stimuli X and Y were presented alone. The authors observed learning (duration of

licking behavior) in Y trials, but not in X trials, indicating that X was blocked

relative to Y . Neuronal activity of dopamine neurons during stimulus processing

paralleled the behavioral results and the assumptions of formal learning theories.

Dopamine neurons showed enhanced activity for stimulus A+ (positive PE), but not

for stimulus B− (no PE) during pretraining. In the compound learning phase, both

compounds elicited increased neuronal activity (positive PE). Crucially, during the

test phase increased neuronal activity could only be observed in Y , but not in X

trials (blocking effect).

Several other target regions of midbrain dopamine neurons are involved in reward-
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related learning (Schultz, 2000, 2002, cf. Figure 3.1b). Both the orbitofrontal cortex

and the basal ganglia are associated with reward expectation (Schultz, Trembley

& Hollerman, 2000). It has been shown that the orbitofrontal cortex is specifically

involved in the discrimination between different rewards according to the prefer-

ence of the animal (Tremblay & Schultz, 1999), whereas basal ganglia structures

have been implicated in reinforcement learning by means of including reward expec-

tations into the preparation of actions (Lauwereyns, Watanabe, Coe & Hikosaka,

2002b; Schultz, Tremblay & Hollerman, 2003). In a similar manner, reward-related

dorsolateral prefrontal activity has been associated with the preparation and exe-

cution of goal-directed behavior (Leon & Shadlen, 1999; Watanabe, 1996). Further-

more, the anterior cingulate cortex (Shidara & Richmond, 2002) and the amygdala

(Schoenbaum, Chiba & Gallagher, 1998) also process reward-related information.

Schultz (2002) argues that different brain regions contribute to specialized aspects

of reward processing and by this might interact in the service of goal-directed be-

havior (see Figure 3.1b). For instance, Schultz proposes that basic mesolimbic rein-

forcement signals provided to the prefrontal cortex might play a crucial role in an

efficient response execution towards rewarded stimuli in the environment (cf. Cohen,

Braver & Brown, 2002; Miller, 2000).

Imaging Studies The neural basis of reinforcement learning in humans was inves-

tigated in several recent fMRI studies (Berns, McClure, Pagnoni & Montague, 2001;

Gottfried, O’Doherty & Dolan, 2003; McClure, Berns & Montague, 2003; O’Doherty,

Kringelbach, Rolls, Hornak & Andrews, 2001; O’Doherty, Deichmann, Critchley &

Dolan, 2002; O’Doherty, Dayan, Friston, Critchley & Dolan, 2003; Pagnoni, Zink,

Montague & Berns, 2002, see Braver & Brown, 2003). In accordance with the afore-

mentioned evidence provided by animal studies, O’Doherty et al. (2001) demon-

strated a preferential role of the orbitofrontal cortex in reward discrimination. The

authors could show that separable orbitofrontal regions code the magnitude of re-

ward and punishment. Furthermore, it has been shown that the orbitofrontal cortex,
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Figure 3.1. Learning-related Activity of a Dopamine Neuron and Brain Regions Involved
in Reward Processing. (a) Prediction error-related activity of a single midbrain dopamine
neuron. CS, conditioned stimulus, R, reward. (b) Brain regions associated with reward-
related learning. See text for details. [(a) Adapted from Schultz (1997). Copyright (1997) American

Association for the Advancement of Science (Science). (b) Adapted from Schultz (2000). Copyright

(2000) Macmillan Magazines Ltd (Nature Reviews Neuroscience).]

the amygdala, the striatum,4 and dopaminergic midbrain regions are involved dur-

ing the anticipation of reward (Gottfried et al., 2003; O’Doherty et al., 2002). Two

recent studies provide evidence for prediction error-related brain responses in the

human striatum (putamen). McClure et al. (2003) and O’Doherty et al. (2003) used

visual cues and juice rewards in a classical conditioning paradigm (see Seymour

et al., 2004, for recent evidence for striatal involvement in aversive conditioning).

McClure et al. (2003) manipulated the delay between the cue and reward delivery.

After presenting 50 trials with a constant cue-reward delay of 6 s (learning phase),

6 catch trials with a 10 s delay were introduced (test phase). First, a comparison

4It should be noted that most animal researchers use the term dorsal striatum to describe the

caudate nucleus and the putamen, whereas the ventral striatum comprises the nucleus accum-

bens and portions of the olfactory tubercle (Packard & Knowlton, 2002). In contrast, others (e.g.

O’Doherty et al., 2003, 2004) use the term dorsal striatum to refer to the caudate nucleus and the

term ventral striatum to refer to the putamen.
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between reward delivery in the test phase with reward delivery in the training phase

revealed activation of the putamen. The authors argue that this striatal activation

pattern is due to a positive PE elicited by unexpected reward delivery in the test

phase (vs no PE for expected reward in the learning phase). Moreover, the authors

contrasted brain activity during time windows of no reward delivery in both exper-

imental phases, i.e. a time window in the (1) test phase, where juice was normally

delivered in the learning phase (6 s after cue offset) and (2) a time window around

10 s after cue offset in the learning phase (the time window in which reward was de-

livered in the test phase). Based on the experience in the learning phase, during (1)

reward was expected, but not delivered, whereas during (2) reward was not expected

and not delivered. A deactivation of the putamen could be observed for (1) relative

to (2), indicating that the putamen also codes a negative PE in situations when an

expected reward is omitted. These results are compatible with the assumptions of

formal learning theories.

In the O’Doherty et al. study (2003), assumptions of the TD learning model were

tested directly by incorporating the output of a TD algorithm into the fMRI regres-

sion model. The authors modeled two critical events in their classical conditioning

study, the presentation of the CS and the UCS (reward), respectively. In brief, the

TD model output predicted the activation pattern in several brain regions, especially

the striatum (putamen) and the orbitofrontal cortex. In these regions, PE-related

neural activity could be observed, i.e. when unexpected reward was delivered, the

BOLD signal increased (positive PE), whereas a negative BOLD signal could be

observed when an expected reward was omitted (negative PE). Most interestingly,

the authors could observe a learning-related backward shift of activity from the re-

ward to the reward-predicting CS in the striatum, i.e. in initial trials activity was

most pronounced during reward delivery, whereas in later stages of learning, striatal

activity was restricted to the CS (cf. Schultz et al., 1997).

Moreover, the human striatum is also involved in instrumental conditioning, where

subjects learn to select appropriate actions to increase the probability of reward de-

livery. Most recently, O’Doherty et al. (2004) could disentangle the contributions of
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separate striatal regions during instrumental conditioning.5 Activity in the putamen

correlated with the PE signal during both, classical and instrumental conditioning.

In contrast, correlation between caudate nucleus activity and the PE signal was re-

stricted to instrumental conditioning (see also Tricomi, Deldgado & Fiez, 2004, for

functional imaging evidence for caudate nucleus involvement during reinforcement

of actions by means of coding action-reward contingencies).

To summarize, single unit activity and BOLD responses in several brain regions,

especially the ventral tegmental area, the substantia nigra, the striatum, and the

orbitofrontal cortex are crucially involved in classical and instrumental conditioning.

Furthermore, activity in these regions comply with the assumptions of the temporal

difference learning model.

Probabilistic Learning Beyond conditioning tasks, several recent studies used

probabilistic learning tasks to examine the neural basis of reinforcement learning. In

these tasks, specific cues are followed by specific outcomes in a probabilistic man-

ner. During learning, subjects acquire knowledge about cue-outcome relations. In

one study (Fletcher et al., 2001), subjects learned associations between artificial

drugs and syndromes on the basis of a trial-by-trial feedback. Fletcher et al. (2001)

directly tested several predictions of the Rescorla-Wagner theory. In brief, activity

in the dorsolateral PFC complied with the predictions of the formal learning theory,

e.g. an initial activation increase was followed by a decrease after cue-outcome pairs

have been learned. Moreover, the introduction of violations of learned expectations

exhibited increased dorsolateral PFC activity.

In another study (Poldrack et al., 2001), subjects performed a feedback-based prob-

abilistic categorization task (weather prediction), i.e. specific visual pattern were

associated with ‘sunshine’ or with ’rain’, respectively. Here, subjects classified items

in each trial and learned cue-outcome relations on the basis of the provided feedback.

This task was contrasted with a paired associate task, in which subjects encoded

5The authors used the output of a computational model, the so-called actor-critic model (cf.

Dayan & Balleine, 2002), a two-process account of instrumental conditioning to model learning-

related activation pattern.
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stimuli and corresponding categories for a later classification task (stimuli and cat-

egory labels were presented simultaneously). In the feedback-based task, learning

was accompanied by a shift from a medial temporal lobe to a striatal brain system.

The MTL was involved at the beginning of learning. Subsequently, MTL activity

decreased, whereas an activation increase of the caudate nucleus could be observed

during the time course of the experiment. The comparison between the feedback-

based task and the paired associate task revealed stronger BOLD responses in the

MTL for the latter task, whereas in the reversed comparison pronounced activity

in the caudate nucleus could be observed. The authors argue that the activation

pattern in the basal ganglia and the MTL is due to the differential recruitment of

declarative and non-declarative memory processes in both tasks. The feedback-based

task requires non-declarative memory processes (basal ganglia), whereas the paired

associate task is based on declarative memory processes (MTL). These fMRI results

are in accordance with earlier reports of functional dissociations during probabilis-

tic learning in patients with MTL and striatal dysfunction, respectively (Knowlton,

Mangels & Squire, 1996). Amnesic patients with MTL dysfunction exhibited pre-

served learning, however their memory performance for specific details of the train-

ing phase (e.g. information about the cues and the layout of the computer screen)

was impaired. Parkinsonian patients (midbrain/striatal dysfunction) showed the re-

versed pattern, i.e. impaired probabilistic learning, but intact memory (cf. Squire

& Zola, 1996). These data demonstrate a complementary involvement of MTL and

striatal regions during the time-course of feedback-based learning (see the reviews

of Packard & Knowlton, 2002; Poldrack & Packard, 2003). In a follow-up study with

patients showing striatal dysfunction (Parkinson disease), Poldrack and colleagues

(Shohamy et al., 2004) could show that patients were impaired in a feedback-based

version of a probabilistic categorization task, but not in a non-feedback version of

the task, thus providing further evidence for the notion that the basal ganglia play

a crucial role during feedback-based learning. In sum, the results of these studies

suggest that the lateral PFC and especially the basal ganglia subserve probabilistic

learning.
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3.2.3 Summary

Taken together, during classical/instrumental conditioning and probabilistic learn-

ing subjects are exposed to regularities across learning episodes. Here, regularities

comprise cue-outcome pairings which are repeated several times. Learning in these

tasks is based on the detection of contingencies between specific cues and specific

outcomes (Shanks, 1995). Moreover, learning is gradual since several contingent

cue-outcome pairings are required to establish robust learning effects. Finally, the

reviewed studies suggest that reinforcement learning is mainly supported by the

midbrain dopamine system, the striatum as its main target area and the lateral

prefrontal cortex.

3.3 Category Learning

3.3.1 Basic Principles

With respect to regularity learning, another learning task seems to be highly im-

portant, namely category learning. According to Ashby (Ashby & Ell, 2001; Ashby

& Casale, 2003), there are three main experimental tasks used in category learning

research: (1) rule-based tasks, (2) information-integration tasks, and (3) prototype-

distortion tasks. In rule-based category learning tasks features are presented on sev-

eral dimensions, e.g. circles and squares (object form) in small and large size (object

size) in red and blue color (object color) and subjects have to extract the relevant

rule for correct responses, e.g. to respond ‘true’, if large objects are presented, and

‘false’ in all other cases. Rules in information-integration category learning tasks are

more complex. Here, a rule is defined according to a specific feature conjunction,

e.g. to select objects that are small and red and circles. In contrast to rule-based

tasks, in information-integration tasks subjects normally cannot describe the rule

explicitly. The most prevalent category learning task is the prototype-distortion task

(Posner & Keele, 1968, 1970). In this task, distortions of a prototype random dot

pattern are presented in a study phase (see Figure 3.2c). In a subsequent test phase,

the prototype or several distortions of the prototype and random pattern not be-
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longing to the prototype category are presented. Subjects are required to classify the

test items as category members or non-members and normally their classification

performance lies above chance.

Two major accounts have been proposed for human categorization processes: (1)

exemplar-based theories, e.g. the Generalized Context Model (Nosofsky, 1986) or

the connectionistic model ALCOVE (attention learning covering map; Kruschke,

1992) and (2) rule-based theories6 (e.g. the General Recognition Theory, Ashby

& Townsend, 1986; Ashby & Perrin, 1988). According to exemplar-based models,

subjects represent category exemplars and their categorization decision is based on

a comparison process between the current stimulus and the stored exemplars. In

contrast, rule-based models assume that subjects respond to stimuli according to

decision rules which partition the potential decision space. In addition, prototype

models (e.g. Posner & Keele, 1970) have been proposed which posit that subjects

create prototypes representing the average member of a specific category (cf. Homa,

Dunbar & Nohre, 1981; Metcalfe & Fisher, 1986).

Rouder and Ratcliff (2004) directly compared both exemplar-based and rule-based

models using a probabilistic assignment task, in which category membership of

stimuli follows a probability distribution. The results of this study indicate that

exemplar-based models account for tasks in which stimuli are distinct, whereas rule-

based models can explain subjects’ performance when stimuli are confusable. In a

similar vein, recent models, e.g. ATRIUM (attention to rules and instances in a

unified model; Erickson & Kruschke, 1998, 2002) suggest that category learning

depends on a continuous interplay between both exemplar-based and rule-based

learning processes.

3.3.2 Neural Mechanisms

Based on a review of the neuropsychological and neuroimaging literature on category

learning, Ashby (Ashby & Ell, 2001; Ashby & Casale, 2003) proposes that there are

different category learning systems in the human brain. Ashby suggests that cate-

6Also referred to as decision-bound models.
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gory learning in rule-based tasks is subserved by the prefrontal cortex and the basal

ganglia. Moreover, the basal ganglia are involved in information-integration tasks.

Furthermore, patient and neuroimaging data suggest that the medial temporal lobe

is crucial for learning categories in information-integration tasks with few categories.

Finally it is proposed that the visual cortex is involved in prototype-distortion cat-

egory learning. In the following, an overview of findings from single-unit recordings

in monkeys and human amnesia and imaging studies will be given.

Animal Studies By measuring single cell activity in the prefrontal cortex, Freed-

man and colleagues (Freedman, Riesenhuber, Poggio & Miller, 2001, 2002) inves-

tigated the neurophysiological basis of category learning in monkeys. The authors

used three species of cats and dogs respectively as prototype stimuli and applied a

morphing algorithm to generate several linear blends between prototype pairs (Fig-

ure 3.2a). This procedure resulted in a continuum along the categories ‘cat’ and

‘dog’. In each trial, a sample stimulus was presented, followed by a delay and a

probe stimulus. The monkeys’ task was to decide whether the probe belongs to the

same or a different category as compared to the sample. Neuronal activity in the

lateral prefrontal cortex was sensitive to the category of the stimuli, i.e. specific neu-

rons responded selectively to the category ‘cat’, whereas other neurons encoded the

category ‘dog’ even when stimuli were located near the category boundary (Figure

3.2b). Most surprisingly, after retraining one monkey using the same stimulus set

but defining new category boundaries orthogonal to the original boundary the same

neurons which represented the original categories now encoded the new categories.

These data indicate that the lateral PFC subserves flexible category learning in

monkeys.

Amnesia Research Category learning was also examined in amnesic patients

(Knowlton & Squire, 1993; Squire & Knowlton, 1995). In these studies, the authors

could demonstrate preserved classification ability in patients using the prototype

distortion task. However, patients’ recognition performance of specific training ex-

emplars was severely impaired. Based on these results, Squire argues that “(. . .)
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Figure 3.2. Stimuli and Results of the Freedman et al. (2001) Study and Example Stimuli
of the Prototype Distortion Task. (a) Examples of six prototype morphs from ’100% cat’
(left) to ‘100% dog’ (right). (b) Lateral prefrontal single cell activity for six different
morph blends. (c) Example stimuli from the prototype distortion paradigm. Dot patterns
belonging to a category are presented in the upper row, non-category members in the
lower row. [(a-b) Adapted from Freedman et al. (2001). Copyright (2001) American Association for

the Advancement of Science (Science). (c) Adapted from Ashby and Ell (2001). Copyright (2001) by

Elsevier Science Ltd (Trends in Cognitive Sciences).]

declarative memory can be acquired and retained about each of the training items,

and this ability depends on the medial temporal lobe and diencephalic structures

that are damaged in amnesia and that are essential for declarative memory. (. . .)

(R)epeated experience leads to knowledge about the category to which the training

items belong. Category-level knowledge might be acquired by abstracting informa-

tion across encounters with specific training exemplars, (. . .) independently of and in

the absence of normal declarative memory for the items presented during learning”

(Squire & Zola, 1996, p. 13517).

Imaging Studies In several fMRI studies, Reber and colleagues (Reber, Stark

& Squire, 1998a,b; Reber, Gitelman, Parrish & Mesulam, 2003) identified brain re-
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gions involved in category learning using the prototype distortion task. In one study

(Reber et al., 1998b), categorial stimuli during the test phase elicited an activation

decrease in occipital areas, whereas activity in anterior and inferior lateral prefrontal

regions increased. The authors suggest that the occipital activation pattern reflects

facilitated processing of learned categories. In contrast, the anterior and lateral PFC

seems to be involved during retrieval of exemplars of learned categories. In another

study (Reber et al., 1998a), brain activity during categorization and recognition was

contrasted. In the categorization task, subjects had to judge whether items belong

to the same category as the study items, whereas in the recognition task participants

had to indicate whether the test item was presented during the study phase. Similar

to the aforementioned study, categorization was associated with decreased occipital

cortex activity, whereas prefrontal regions (middle and superior frontal gyrus) were

involved during recognition. Moreover, contrary to the categorization task occipital

cortex activity increased in the recognition task. Recently, Reber et al. (2003) exam-

ined the neural correlates of implicit and explicit category learning. Subjects studied

items either incidentally or intentionally. Processing of categorial stimuli was asso-

ciated with decreased occipital activity in the implicit condition and with increased

activity in the hippocampus and the anterior PFC in the explicit condition (see

Aizenstein et al., 2000, for similar results). The authors argue that implicit category

learning relies on brain regions associated with non-declarative memory processes

(e.g. occipital cortex), whereas explicit category learning is subserved by brain re-

gions involved during declarative memory formation (e.g. hippocampus, PFC).

Rule- and exemplar-based categorization was examined in a recent fMRI study

(Strange, Henson, Friston & Dolan, 2001). During the experiment, subjects had

to indicate whether four-letter strings follow abstract rules defining category mem-

bership (e.g. ‘The first two letters are always identical’). During experimental blocks,

rule changes and exemplar changes were introduced. In contrast to exemplar changes,

subjects’ performance significantly decreased immediately after rule changes. These

rule changes were associated with an increase of bilateral anterior prefrontal cortex

activity, whereas exemplar changes modulated activity in the left anterior hippocam-

pus. These data support the notion that prefrontal regions are involved in abstract
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rule learning. Moreover, the authors propose that the hippocampus is recruited dur-

ing similarity-based categorization (cf. Section 3.4.2).

Taken as a whole, these data indicate that category learning is subserved by lat-

eral prefrontal brain regions, is associated with facilitated processing of category

members in occipital areas, and seems to be (partially) independent of the medial

temporal lobe memory system.

3.3.3 Summary

With respect to the characteristics proposed above, during category learning regular-

ities comprise the repeated members of particular categories. The reviewed studies

suggest that learning seems to be based on the detection of contingencies between

category members and the respective category (Shanks, 1995). Similar to reinforce-

ment learning, several exposures of category exemplars are required to entail learn-

ing. Finally, category learning seems to be mainly supported by lateral prefrontal

(and occipital) brain regions.

3.4 Artificial Grammar Learning

3.4.1 Basic Principles

In the last two decades, artificial grammar learning (AGL) has become one of the

most intensively investigated learning tasks. Typically there are two phases in AGL

tasks. First, during an incidental phase subjects are exposed to a set of letter strings

which, unknown to the subjects, follow the rules of a finite-state grammar (Chom-

sky & Miller, 1958, see Figure 3.3a). In a second phase, subjects are required to

classify letter strings as grammatical or non-grammatical. Finite state grammars

can be described in terms of a graph representation (Figure 3.3a). Grammatical

strings are valid transitions from the start to the end node of the graph, whereas

non-grammatical strings violate the transition rules. Reber (1967) first observed

that performance in the test phase lies above chance, suggesting that participants

learned the principles of the grammar.
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What are the underlying learning mechanisms? In recent years, several accounts have

been developed. Reber (1989) proposes that subjects learn abstract rules of the arti-

ficial grammar system (rule-based learning). More precisely, he argues that learning

is implicit and yields an abstract knowledge base, i.e. the grammatical rules are not

accessible to awareness.7 In the same vein, Dulany, Carlson, and Dewey (1984, 1985)

argue that performance in AGL tasks is based on the acquisition of a set of micro-

rules, approximations of the rules underlying the finite-state grammar. Moreover,

supporting evidence for rule-based learning is provided by studies using AGL trans-

fer tests (Gomez & Schvaneveldt, 1994; Mathews et al., 1989). After subjects had

studied a set of letter strings generated from a finite-state grammar, in both studies

a transfer test was conducted. Test items were constructed with a different set of

strings, however the transition rules remained unchanged between study and transfer

period. Subjects’ grammaticality judgments in the Gomez and Schvaneveldt (1994)

and Mathews et al. (1989) study were above chance in the transfer test. Thus, these

findings suggest that participants acquire knowledge of the artificial grammar rules.

In contrast, models of fragment-based learning (or chunk-based learning) propose

that learning is based on knowledge of fragments/chunks of grammatical strings,

e.g. letter bigrams and trigrams and not on the acquisition of an abstract rule

system. For instance, Servan-Schreiber and Anderson’s (1990) theory of competi-

tive chunking assumes that every input string is parsed into hierarchical organized

chunks. Servan-Schreiber and Anderson (1990) define chunks as “(. . .) traces in long

memory, hierarchical structures whose elements are themselves chunks” (Servan-

Schreiber & Anderson, 1990, p. 600). The bottom level comprises the letters of the

string. Further levels are proposed: word, sentence, and phrase chunks. One criti-

cal parameter in the theory of competitive chunking is the chunk strength which

reflects the activation strength of a specific chunk. How is the hierarchical chunks

system build during learning? Servan-Schreiber and Anderson (1990) argue that the

perception of incoming strings is a recursive process. In more detail, “(. . .) (t)he ele-

7Others (e.g. Dienes, Broadbent & Berry, 1991) have shown that subjects could acquire frag-

mentary explicit knowledge of the grammar.
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mentary percept is formed by matching elementary chunks to the stimulus. Then the

next percept is formed by elaborating on the elementary percept with more complex

chunks. Then the next percepts are formed by elaborating on the current percept

with increasingly complex chunks until no more chunks are available to elaborate

on the current percept” (Servan-Schreiber & Anderson, 1990, p. 601). A measure of

the complexity at the final stage is the variable nchunks, reflecting the number of

chunks required to process a current input pattern. This parameter decreases during

learning, i.e. a more dense, complex knowledge base is build. To summarize, the the-

ory of competitive chunking defines learning as the organization of an input pattern

into compact chunks. During the test phase, the grammaticality judgment is based

on this chunk knowledge, i.e. if a test string can be parsed by the learned chunk

structure it will be judged as grammatical. Furthermore, results from Perruchet and

Pacteau (1990, cf. Perruchet, 1994) are in agreement with a fragment-based learning

account. The authors could show that the presentation of bigrams in the learning

phase of an AGL experiment revealed the same learning effects as the presentation

of whole strings, suggesting that knowledge about (the overall distribution of) frag-

ments of strings is sufficient to account for subjects’ performance.

An integration of both rule- and fragment-based learning theories was provided by

Meulemans and Van der Linden (1997). The results of their study revealed one

critical parameter which determines whether subjects’ gramaticality judgments are

mainly based on knowledge of fragments or on abstract knowledge of the grammat-

ical rules: the duration of the learning phase. More precisely, when participants are

exposed only to a few grammatical strings during learning, fragment-based perfor-

mance is dominant. In contrast, when learning duration is increased, i.e. most of

the legal strings of a grammar are presented during learning, subjects seem to ac-

quire abstract rule knowledge.8 In the same vein, previous studies suggest that both

mechanisms, abstract rule learning as well as concrete exemplar learning are crucial

for the acquisition of artificial grammars (Gomez & Schvaneveldt, 1994; Knowlton

8But see Johnstone and Shanks, 1999, who provided an alternative interpretation. These au-

thors suggest that Meulemans and Van der Lindens’ (1997) subjects do not aquire abstract rule

knowledge, but rather knowledge about the distribution of chunk locations.
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& Squire, 1996)

Figure 3.3. Finite State Grammar and Sequence Learning. (a) In the graph representation
of a finite state grammar arrows denote valid transitions between nodes. A grammatical
string is generated by traversing from the ‘in’ to the ‘out’ node. (b) The structured sequence
of positions in sequence learning tasks also follows a finite-state grammar. Small black
squares represent stimulus positions, white squares denote corresponding response buttons.
The current stimulus-response pair is denoted in red. [Adapted from Cleeremans et al. (1998).

Copyright (1998) Elsevier Science Ltd (Trends in Cognitive Sciences).]

3.4.2 Rule-based vs Similarity-based Learning

As outlined above, contrary accounts of learning exist. These theories mainly dif-

fer with respect to the form of knowledge acquired during artificial grammar and

category learning. Several authors propose that learning is based on the acquisition

of abstract rules, generating structured sequences of stimuli (Reber, 1989) or mi-

crorules, approximations of the original rules (Dulany et al., 1984, 1985). Evidence

for this notion was provided by studies using transfer tests (Gomez & Schvaneveldt,

1994; Mathews, Buss, Stanley, Blanchard-Fields, Cho & Druhan, 1989). Here, sub-

jects showed above-chance classification even for novel artificial strings. Supporting

evidence also comes from studies which show that rule knowledge acquired in one

domain (e.g. visual) can be expressed in another domain (e.g. auditory; Altmann,

Dienes & Goode, 1995). In a similar manner, rule-based accounts of category learn-

ing assume that subjects learn rules which define category membership (Ashby &

Perrin, 1988).
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In contrast to these rule abstraction accounts, exemplar-based/instance-based (Vokey

& Brooks, 1992, 1994) and fragment-based models (Perruchet & Pacteau, 1990; Per-

ruchet, 1994) assume that learning is based on the comparison between specific

training exemplars and test items and learning about the frequency of item frag-

ments, respectively (cf. exemplar-based categorization models for similar arguments,

e.g. Nosofsky, 1986). These latter accounts have been denoted similarity-based, since

learning is supposed to be due to the detection of superficial similarities between

stimuli (Pothos & Bailey, 2000; Pothos, in press).

To overcome this apparent discrepancy, Pothos (in press) proposed a unitary view of

human learning. On the basis of categorization, he proposes that rule-based learning

is prevalent, when learning “(. . .) is determined by a small subset of the relevant

object properties (. . .)” (Pothos, 2004, p. 4). Contrary, similiarity-based learning pro-

cesses are involved when “(. . .) most of the relevant object properties (are) broadly

equally weighted (. . .)” (Pothos, 2004, p. 4). In conclusion, Pothos argues that rule-

based learning can be understood as special case of similarity-based learning.

3.4.3 Neural Mechanisms

Amnesia Research In several behavioral studies, Knowlton and Squire (Knowl-

ton, Ramus & Squire, 1992; Knowlton & Squire, 1994, 1996) examined artificial

grammar learning in amnesic patients. In accordance with their research on cat-

egory learning, patients’ accuracy was greater than chance and their performance

was similar to healthy controls in these experiments. However, when patients were

required to recognize specific training exemplars (Knowlton et al., 1992) or letter

chunks (bigrams and trigrams from the training exemplars; Knowlton & Squire,

1996), their performance was impaired relative to control subjects. Thus, Knowlton

and Squire argue that artificial grammar learning is based on non-declarative mem-

ory processes, i.e. independent of the hippocampal memory system (cf. Squire &

Zola, 1996). In contrast, correct recognition of items depends on intact (hippocam-

pal) declarative memory operations (but see Kinder & Shanks, 2001).
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Imaging Studies In the last years, several functional imaging studies tried to

elucidate the neural correlates of artificial grammar learning. For example, it has

been shown that lateral prefrontal regions are differentially involved in item and rule

learning (Fletcher, Büchel, Josephs, Friston & Dolan, 1999). In this study, subjects

were required to judge the grammatical status of four-letter strings. Whereas the

right middle frontal gyrus was associated with learning individual items in an early

stage of the experiment, the left middle frontal gyrus was sensitive to rule learning

across experimental blocks. Furthermore, effective connectivity analyses revealed an

increase in left fronto-parietal and a decrease in right fronto-parietal connectivity

during the time-course of rule learning. In accordance with these data, Tettamanti

and colleagues (2002) showed that Broca’s area in the left inferior frontal gyrus

was activated during the time-course of learning artificial grammar rules. Moreover,

subjects who had a higher proficiency in grammatical rule usage showed greater

activation in Broca’s areas as compared to participants with lower proficiency.

In contrast to the aforementioned studies, Opitz and Friederici (2003) used an artifi-

cial grammar system that mimics structures of natural languages (see Figure 3.4a).

The authors observed a learning-related increase of activity in Broca’s area and a

learning-related decrease of left hippocampal activation during learning (see Figure

3.4b,c). Opitz and Friederici (2003) argue that the left hippocampus is involved at

an early stage of learning based on superficial features of strings, whereas the left

prefrontal cortex mediates rule-based learning at a later stage of the acquisition of

the finite state grammar. In a follow-up study, Opitz and Friederici (2004) could

show that the left hippocampus is selectively engaged when superficial changes of

grammatical sentences are introduced and that solely the left prefrontal cortex sub-

serves learning new grammatical rules, supporting the notion that the hippocampus

is associated with similarity-based learning and the left prefrontal cortex with ab-

stract rule-learning.

Although not an AGL study, a recent fMRI experiment (Musso et al., 2003) pro-

vides new insights into the neural basis of grammar learning. The authors examined

second language acquisition. In two experiments, subjects had to learn grammat-

ical rules of either Italian or Japanese, respectively (both groups of participants
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were unfamiliar with Italian or Japanese). In addition, both groups learned artificial

rules of unreal languages which resulted from selectively manipulating Italian and

Japanese grammatical rules, respectively. In contrast to the unreal languages, Ital-

ian and Japanese follow the principles of an universal grammar. Left inferior frontal

gyrus (Broca’s area) activity increased as a function of learning real languages. In

contrast, no modulation of inferior frontal gyrus activity could be observed during

learning grammatical rules of the unreal languages. These data indicate that the left

inferior frontal gyrus subserves learning natural language rules, “(. . .) suggesting a

universal syntactic specialization of this area among ‘real’ languages” (Musso et al.,

2003, p. 778). To summarize, the reviewed fMRI studies indicate a preferential role

of the lateral prefrontal cortex, especially Broca’s area during artificial (and natural)

grammar learning.

3.4.4 Summary

During artificial grammar learning, elements of grammatical strings are repeated

several times, i.e. these repeated string elements comprise the regularities across

learning episodes. Similar to reinforcement and category learning, the contingency

between elements of artificial grammar strings is an important aspect of artificial

grammar learning. The contingent sequence of grammatical strings is defined by

the finite state grammar. Furthermore, the presentation of several exemplars of the

grammar is a prerequisite of learning. On a neural level, artificial grammar learning

seems to be mediated mainly by the left lateral PFC.

3.5 Sequence Learning

3.5.1 Basic Principles

With respect to regularity learning, another learning task seems to be relevant: se-

quence learning. Nissen and Bullemer (1987) first introduced the serial reaction time

(SRT) task to investigate learning complex sequential structures. In this task, stim-

uli are presented at different locations and subjects are required to press a particular
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Figure 3.4. The Finite State Grammar and Results of the Opitz and Friederici (2003)
Study. (a) Graph representation of the finite state grammar BROCANTO. (b) Subjects’
performance for grammaticality judgements increases as a function of time. (c) Learning-
related decrease in left hippocampus (A) and learning-related increase of activation in
Broca’s area (C). [Adapted from Opitz & Friederici, 2003. Copyright (2003) Elsevier Science Ltd

(NeuroImage).]

button corresponding to a specific location (Figure 3.3b). Unknown to the subjects,

the sequence of locations (and responses) follows a fixed rule. In comparison to a

random sequence9 the rule sequence leads to decreased reaction times during the

experiment, indicating that subjects learn temporal contingencies between stimuli

defining a sequence (Cleeremans & McClelland, 1991). Similar to artificial grammar

learning, the transition between stimuli defining a structured sequence can be de-

scribed by a finite-state grammar (cf. Figure 3.3), i.e. a structured sequence is a legal

transition form the start to the end node of the finite state grammar. In the follow-

ing, two topics of main interest in sequence learning research, namely the attentional

vs non-attentional and the stimulus vs response distinction will be reviewed.

Several studies addressed the question whether attention is a prerequisite for the

9Normally, several task blocks with the structured sequence are followed by a few (1-3) blocks

including random sequences. Mostly, the SRT experiment ends with a few blocks of structured

sequences. Learning is quantified by comparing reaction times (RT) in the random sequence blocks

with the RT in the last structured sequence block(s) before and/or after the random block(s).
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acquisition of sequence knowledge. It has been shown that learning effects diminish

when subjects are required to perform a tone-counting task concurrently (Nissen

& Bullemer, 1987). Based on these results, Nissen and Bullemer (1987) assumed

that sequence learning requires attention. However, there is empirical evidence that

sequence learning is preserved even under dual-task conditions depending on the

specific structure of the underlying sequence (Cohen, Ivry & Keele, 1990). More

precisely, when each element in a sequence has a unique association with the follow-

ing sequence element, subjects exhibit decreased RT for structured sequences when

performing an attentional demanding second tone-counting task in parallel. This

was not the case for ambiguous sequences, i.e. each sequence element was followed

by different elements at different positions in the sequence. Cohen et al. (1990) argue

that sequence learning may depend on two mechanisms, a non-attentional mecha-

nism which is responsible for building associations between sequential stimuli, and a

second mechanism which is involved in the representation of hierarchical structures

of input pattern. This latter mechanism is supposed to require attention. Another

sequence learning study (Frensch, Buchner & Lin, 1994) investigated the influences

of short term memory processes on sequence learning in more detail (cf. Frensch &

Miner, 1994). The data of Frensch et al. (1994) indicate that subjects are able to

learn ambiguous sequences under dual-task conditions when they have enough time

to retain sequence elements in working memory.

Extending the aforementioned results (Cohen et al., 1990), Curran and Keele (1993)

introduced a dual-process model of sequence learning (cf. Keele, Ivry, Mayr, Hazel-

tine & Heuer, 2003). This model proposes two independent and parallel learning

modules, namely an attentional and a non-attentional module. The authors could

show that subjects benefit from full awareness of the sequential structure (in con-

trast to unawareness) and from full attention (in contrast to divided attention) in

an initial phase of learning, respectively. However, when the same task has to be

performed subsequently under dual-task conditions, participants could not trans-

fer their knowledge to the new experimental situation. Moreover, when the task

structure was reversed, i.e. participants first learned under dual-task conditions and

under single-task conditions afterwards, no improvement could be observed in the
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second phase of the experiment. These results suggest that “(. . .) the attentional

form of learning seems to require attention for its expression as well its learning.

When distraction was added following such learning, expression of the attentionally

dependent knowledge disappeared” (Curran & Keele, 1993, p. 199). Finally, Curran

and Keele (1993) argue that “(. . .) non-attentional learning operated primarily by

simple associations, whereas attentional learning has a mechanism for encoding the

position of an event within the sequence” (Curran & Keele, 1993, p. 200), possibly

based on hierarchical chunking operations (cf. Cohen et al., 1990).

In contrast, an alternative interpretation of dual-task interference effects on sequence

learning was given by Stadler (1995). Stadler’s results suggest that the consistent

temporal organization of input sequences and not the attentional capacity is dis-

rupted under dual task conditions (see Frensch & Miner, 1994, for similar findings).

Briefly, in this study a SRT task was paired with (a) a tone-counting task, (b) a

tone-counting task in a so-called inconsistent grouping condition, or (c) a memory

retention task under dual task conditions. In condition (a), a constant response-to-

stimulus interval (RSI) was used, whereas in condition (b) either a short or a long

RSI was used. Importantly, “(. . .) the probability of a long RSI was matched to the

probability of a high (target) tone in the tone-counting task” (Stadler, 1995, p. 676),

leading to an inconsistent grouping of the sequence elements. In this condition the

temporal organization of input sequences was disrupted, but attentional capacity

remained unaffected. In contrast, in condition (c) attentional demands where in-

creased, but temporal organization of input pattern was unaffected. Performance

decrease in the typical tone-counting dual-task situation (a) resembled the impair-

ments in the inconsistent grouping condition (b), but not the impairments in the

condition including the memory retention task as a second task (c). These data in-

dicate that the temporal organization of serial transitions seems to be the critical

mechanism during sequence learning (see Dominey, 1998, for a computational model

simulating the temporal organization process).

Another topic of current interest is whether sequence learning is based on the rep-

resentation of stimulus features or on the representation of responses (cf. Clegg, Di-

Girolamo & Keele, 1998). One study (Mayr, 1996) provides evidence for a stimulus-
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based account. The author presented different objects at different positions and

subjects had to discriminate the objects by button press in each trial. The succes-

sion of objects as well as of positions followed a structured sequence (Experiment

1). Both sequences were uncorrelated. In contrast to the object sequence, the spatial

sequence was independent of response requirements. Interestingly, both sequences

were learned simultaneously, as indexed by a significant increase in reaction times

when a random sequence was introduced. These data indicate that knowledge about

response-unrelated sequential structures can be acquired. Furthermore, Mayr (1996)

could show that simultaneous learning both sequences is as effective as learning both

sequences separately (Experiment 2), thus providing evidence for independent spa-

tial and non-spatial sequence learning modules. In extending these results, Koch

and Hoffmann (2000) demonstrated that both stimulus and response sequences are

learned. Most importantly, the learning effect was noticeably more pronounced for

spatial than for symbolic regularities. The authors systematically manipulated stim-

ulus and response sequences. Sequences were presented in four conditions: (1) spatial

stimulus and spatial response sequence, (2) spatial stimulus and object response se-

quence, (3) object stimulus and object response sequence, and finally, (4) object

stimulus and object response sequence.10 Koch and Hoffmann (2000) argue that the

cognitive mechanisms responsible for sequence learning are best suited for extract-

ing spatial rather than symbolic regularities, irrespective whether the structured

sequence refers to stimuli or responses.

To summarize, the behavioral literature reviewed so far suggests that subjects are

able to learn structured sequences. Furthermore, sequence learning seems to be (par-

tially) independent from attentional resources and from the selection of motor re-

sponses.

10Digits were used as objects in this study. Subjects in both object response conditions reported

digits verbally.
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3.5.2 Neural Mechanisms

In recent years, functional neuroimaging provided useful insights into the functional

neuroanatomy of sequence learning. Results from studies using the serial reaction

time task and other sequence learning tasks will be reviewed in the following.

Results from the Serial Reaction Time Task In their PET study, Hazeltine,

Grafton, and Ivry (1997) used both a spatial and a color version of the SRT task.

In the spatial condition, the critical sequence was defined by means of the tempo-

ral succession of locations, whereas in the color condition a fixed sequence of six

colors was repeated during the sequence blocks. Moreover, these two tasks were pre-

sented under single-task as well as under dual-task conditions. Subjects were aware

of the sequence in the single-task (explicit learning), but not in the dual-task con-

dition (implicit learning). In the latter condition, subjects were required to perform

a tone-counting task concurrently. In brief, in the condition with attentional inter-

ference activation of the supplementary motor area (SMA) and the basal ganglia

was observed for both the color and spatial version of the task. In contrast, under

single task conditions ventrolateral (color version) and dorsolateral (spatial version)

prefrontal regions were activated. Based on these results, the authors argue that

implicit and explicit sequence learning relies on different neural systems. Several re-

cent fMRI studies also contrasted implicit and explicit sequence learning (Aizenstein

et al., 2004; Schendan et al., 2003; Willingham et al., 2002). For instance, Schendan

et al. (2003) found a network of medial temporal lobe (hippocampus), basal ganglia

(putamen, caudate nucleus), and dorsolateral prefrontal regions during both implicit

and explicit sequence learning. The exact activation foci differed only slightly be-

tween both learning conditions. Hippocampal activation was more pronounced at

the beginning of learning, whereas lateral prefrontal cortex activity increased dur-

ing the time course of learning. In line with the relational memory account (Cohen

& Eichenbaum, 1993; Eichenbaum, 2000), Schendan and colleagues argue that the

hippocampus is involved in the acquisition of higher-order associations, i.e. rela-

tions among temporally discontiguous events, most pronounced at the beginning of

learning. In accordance with these results, Willingham et al. (2002) observed highly
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overlapping brain regions during implicit and explicit sequence learning (basal gan-

glia, lateral prefrontal, and parietal brain regions). Moreover, dorsolateral prefrontal

activity increased as a function of learning in the explicit condition. Learning-related

increase of lateral PFC activity during explicit sequence learning has also been re-

ported in two recent fMRI studies (Aizenstein et al., 2004; Bischoff-Grethe et al.,

2004).

Finally, sequence learning within the SRT framework has been studied in amnesic

patients (Curran, 1997; Reber & Squire, 1994, 1998). In brief, these studies revealed

preserved sequence learning in patients in the implicit version of the SRT task, in-

dicating that learning occurs independently of (hippocampal) declarative memory

operations (cf. Squire & Zola, 1996). However, declarative knowledge of learned se-

quences (Reber & Squire, 1994), sequence learning in an explicit version of the SRT

task (Reber & Squire, 1998), and higher-order associative learning (Curran, 1997,

see Curran and Keele, 1993 and Section 3.5.1) was impaired in amnesics, suggest-

ing that the hippocampus is presumably involved in sequence learning, whenever

relational binding of stimuli is required (cf. Schendan et al., 2003; see Chapter 2).

Results from Other Sequence Learning Tasks Beyond the SRT task, different

learning tasks have been used to investigate the brain network involved during learn-

ing structured sequences (Bor, Duncan, Wiseman & Owen, 2003; Huettel, Mack &

McCarthy, 2002; Koechlin, Danek, Burnod & Grafman, 2002; Rose, Haider, Weiller

& Büchel, 2002). For instance, in the Bor et al. (2003) study, subjects were required

to encode and recall a sequence of positions in each trial. In one condition, the

sequences followed structured visuo-spatial configurations (e.g. square), whereas in

a control condition, sequences were unstructured. In contrast to the unstructured

sequence condition, performance increase in the structured sequence condition was

paralleled by an increase of lateral prefrontal activity. Based on these results, the

authors propose that the lateral PFC is involved in integrating regular input pattern

into higher level chunks. Further evidence for the role of the lateral PFC in sequence

learning has been provided by a recent fMRI study (Huettel et al., 2002), showing

activation of lateral prefrontal (and basal ganglia) brain regions whenever a regular
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sequence of visual stimuli (and responses) was violated. In another study, Koechlin

et al. (2002) contrasted brain activation during cognitive and motor sequence learn-

ing. Similar to studies using the SRT task, subjects had to respond to specific visual

color stimuli by pressing corresponding buttons in the motor sequence condition. In

the cognitive sequence condition, subjects performed a sequence of cognitive tasks,

depending on the presence of specific color cues (e.g. green stimulus: ‘Is the letter the

same as the previous one?’, blue stimulus: ‘Is the letter a T?’). In both conditions,

either structured or random sequences were presented. The striatum was associated

with motor sequence learning, whereas the anterior medial PFC was involved in

learning cognitive sequences. Finally, in the study by Rose and colleagues (2002),

subjects were required to learn stimulus-response sequences explicitly. Unknown to

the subjects, a hidden structure was embedded in the task (the so-called number

reduction task). Participants learned this hidden rule implicitly. The authors could

dissociate medial temporal and striatal brain regions during explicit and implicit

learning, respectively. A learning-related activation increase in the striatum (puta-

men) could be observed during explicit learning, whereas implicit learning the hidden

rule was associated with perirhinal cortex activation.

Learning behavioral sequences has also been examined in macaques. A recent study

revealed intriguing findings. Fujii and Graybiel (2003) recorded neuronal activity

in the prefrontal cortex of macaques during a sequential saccade task. The authors

observed a phasic neuronal signal, time-locked to the end of learned oculomotor se-

quences. This signal was not related to other task-relevant responses (e.g. visual and

motor) or the duration of the sequence. Fujii and Graybiel (2003) argue that these

phasic neuronal signals “(. . .) could represent a neural correlate of action-sequence

chunking, a segmentation of complex behavior into action subsets (. . .)” (Fujii &

Graybiel, 2003, p. 1249).

To summarize the reviewed literature of sequence learning, including research within

the framework of the serial reaction time task as well as other sequence learning

tasks, sequence learning seems to be mainly subserved by lateral prefrontal and

basal ganglia structures. Evidence for medial temporal lobe involvement during se-

quence learning is less consistent.
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3.5.3 Summary

Taken as a whole, the critical sequences in a SRT task are defined by means of a finite

state grammar, similar to grammatical strings in artificial grammar learning. During

sequence learning, the repeated elements of the critical regular sequence comprise

the regularities across learning episodes. Similar to artificial grammar learning, the

elements of the sequence are characterized by a contingent relationship. In agreement

with all reviewed learning tasks, sequence learning requires the exposure of multiple

repetitions of the regular sequence. On a neural level, the lateral PFC as well as

basal ganglia structures play an important role during sequence learning.
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In the scope of this thesis, two brain structures are of main interest, the hippocampus

as part of the medial temporal lobe (MTL) and the prefrontal cortex (PFC).1 In the

following chapter, a brief overview of the neuroanatomy of the medial temporal lobe

1Is is noteworthy that additional brain structures, e.g. the basal ganglia, are important with

respect to regularity learning. However, due to space limitations, the neuroanatomy of the basal

ganglia will not be described in this chapter. The interested reader can find a detailed neuroanatom-

ical description of the basal ganglia in Ohye, Kimura, and McKenzie (1996).
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(4.1) and the prefrontal cortex (4.2), and the main projections of both structures

will be given. Finally, the main pathways between the medial temporal lobe and the

prefrontal cortex will be described (4.3).

4.1 Medial Temporal Lobe

4.1.1 Main Structures

The hippocampus, the amygdala, the entorhinal cortex, the perirhinal cortex, the

parahippocampal cortex, and the fusiform gyrus constitute the main components

of the human medial temporal lobe (see Amaral, 1999; Insausti, Herrero & Witter,

1997; Suzuki & Amaral, 2003; Swanson & Petrovich, 1998, for reviews and detailed

cytoarchitectonic analysis of these MTL structures). The amygdala or amygdalar

complex refers to a set of several cell groups and makes up the most anterior por-

tion of the MTL superior to the anterior hippocampus (Figure 4.1e). The amygdalar

complex consists of the basolateral complex, the adjacent olfactory cortex, the me-

dial amygdalar nucleus, the central amygdalar nucleus, and the bed nuclei of the

stria terminalis (Swanson & Petrovich, 1998).

The hippocampus proper comprises the hippocampal cell fields and the dentate

gyrus (see Figure 4.1). The term hippocampal formation (Amaral & Insausti, 1990)

refers to the hippocampus proper, the subicular complex (the subiculum, the pre-

subiculum, and the parasubiculum), and the entorhinal cortex.2 In the long-axis of

the hippocampus, the parahippocampal gyrus makes up the inferior boundary of the

hippocampus (Amaral, 1999). The collateral sulcus makes up the border between

the parahippocampal gyrus and the fusiform gyrus. The entorhinal and perirhi-

nal cortices constitute the rostral part of the parahippocampal gyrus whereas the

parahippocampal cortex makes up the caudal portion of the parahippocampal gyrus

2Some authors introduced the term hippocampal region which comprises the cell fields of the

hippocampus proper, the dentate gyrus, and the subicular complex (Squire & Zola-Morgan, 1991).

According to Squire and Zola-Morgan (1991), the term hippocampal system normally refers to the

hippocampal region and the surrounding entorhinal, perirhinal, and parahippocampal cortices.



4.1. MEDIAL TEMPORAL LOBE 68

(Amaral, 1999). Furthermore, a medial-lateral distinction within the anterior infe-

rior MTL can be made. The entorhinal cortex is located on the medial aspect of the

anterior inferior MTL, whereas the perirhinal cortex constitutes the lateral portion

of the anterior inferior MTL (Figure 4.1b and 4.1c).

Figure 4.1. Neuroanatomy of the Medial Temporal Lobe (MTL). (a) Coronal MR section
through the anterior hippocampus (HC), the perirhinal cortex (PRC, inferior-lateral) and
the entorhinal cortex (EC, inferior-medial). (b) Coronal section through the anterior MTL,
comprising hippocampal cell fields CA1, CA2, and CA3 (CA, cornu ammonis), the dentate
gyrus (DG), the subiculum (Sub), the PRC, the ERC, and the collateral sulcus (CoS). (c)
Coronal section through the posterior MTL, showing the replacement of the PRC and
ERC with the parahippocampal cortex (PHC); in addition the fusiform gyrus (FG) is
shown. (d) Reconstruction of the MTL, showing the folded surface of the MTL. (e-h) Nissl-
stained coronal sections of the human MTL along the rostral-caudal axis (A, amygdala).
[(a) Adapted from Brewer and Moghekar (2002). Copyright (2002) Elsevier Science Ltd (Trends in

Cognitive Sciences). (b-c) Adapted from Zeineh et al. (2001). Copyright (2001) Wiley Liss, Inc. (The

Anatomical Record (New Anat.)). (d) Adapted from Zeineh et al. (2003). Copyright (2003) American

Association for the Advancement of Science (Science). (e-h) Adapted from Amaral (1999). Copyright

(1999) Wiley Liss, Inc. (Hippocampus).]

4.1.2 Main Pathways

Both the parahippocampal and perirhinal cortices receive inputs from several uni-

modal and polymodal areas (Suzuki & Amaral, 1994a). The main input to the

perirhinal cortex comes from visual areas (Murray & Bussey, 1999). In addition, the

perirhinal cortex receives projections from the insula, the superior temporal gyrus,

the cingulate cortex, and the orbitofrontal cortex (Murray & Richmond, 2001), and

has interconnections with the amygdala (Murray & Richmond, 2001; Suzuki, 1996)

and the medial dorsal thalamic nucleus (Brown & Aggleton, 2001). The parahip-
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pocampal cortex, in contrast, receives inputs from caudal visual areas, the retros-

plenial cortex, the inferior parietal lobule, several prefrontal areas (Suzuki & Ama-

ral, 1994a, cf. Section 4.3), and is interconnected with the amygdaloid complex

(Stefanacci, Suzuki & Amaral, 1996). Both cortices provide the main input to the

entorhinal cortex (Suzuki & Amaral, 1994b) which projects to several structures,

e.g. frontal, temporal, parietal, occipital, insular, cingulate, and retrosplenial cor-

tices (Insausti, Herrero & Witter, 1997). The entorhinal cortex constitutes the main

gateway of input to the hippocampus proper (Suzuki & Amaral, 1994b, see Figure

4.3b). It projects to the dentate gyrus and the CA3 region via the perforant path.

Moreover, the CA3 region receives input from the dentate gyrus via mossy fibers.

Via the Schaffer collateral pathway the CA3 field in turn projects to the CA1 region

which projects back to the entorhinal cortex via the subiculum (see Lisman, 1999, for

a detailed description of the hippocampal circuitry). In addition, the hippocampus

projects to the anterior thalamic nuclei and the mammillary bodies via the fornix

(Aggleton & Brown, 1999, see Lavenex and Amaral, 2000, for a detailed description

of medial temporal-neocortical projections).

4.2 Prefrontal Cortex

4.2.1 Main Structures

The human prefrontal cortex (PFC) can be subdivided into the following substruc-

tures (approximate Brodmann area [BA] given in parentheses; see Figure 4.2 and

4.3): the dorsolateral PFC (9/46), the ventrolateral PFC (44/45/47), the ante-

rior/frontopolar PFC (10), the medial PFC (25/32), and the orbitofrontal PFC

(11/12/14).

The dorsolateral PFC comprises roughly Brodman areas 9 and 46. Area 9 is lo-

cated at the middle portion of the superior frontal gyrus (SFG), extending into the

middle frontal gyrus (MFG; Rajkowska & Goldman-Rakic, 1995a,b). Area 46 covers

the central portion of the MFG. Based on cytoarchitectonic and myeloarchitectonic

studies, Petrides and Pandya (1994, 1999) subdivided area 9 into area 9 and area
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9/46. Area 9/46 occupies the MFG and is bordered ventrally by areas 44, 45, and

47, dorsally by area 9, caudally by area 8,3 and rostrally by areas 46 and 10. Fur-

thermore, area 9/46 was divided into a ventral (9/46v) and dorsal (9/46d) portion

(Petrides & Pandya, 1994, 1999). Area 9 lies on the superior frontal gyrus. Areas

44, 45, and 47 make up the ventrolateral part of the PFC. Area 44 is located on

the opercular part of the inferior frontal gyrus (IFG) and is bordered caudally by

the ascending branch of the Sylvian fissure. Area 45 is located on the triangular

part of the IFG (cf. Amunts et al., 1999; Goldman-Rakic, 1987). In the classification

of Petrides and Pandya (1994), area 45 is subdivided into an anterior (45A) and

posterior part (45B). Finally, area 47 is equivalent to the orbital part of the IFG.

Area 10 at the frontal pole is bordered laterally by areas 9, 9/46, 46, and 47 and

medially by areas 9, 32, and 14 (Petrides & Pandya, 1994) and comprises anterior

parts of the SFG, the frontopolar gyrus, and the frontomarginal gyrus. Areas 24,

25, and 32 comprise the medial PFC. Area 24 occupies the anterior cingulate gyrus,

and is surrounded by area 32 which lies on the paralimbic gyrus. Area 25 is located

on the subcallosal gyrus (Petrides & Pandya, 1994). Finally, areas 11 and 12 can be

subsumed to the orbitofrontal PFC. Petrides and Pandya (1994) designated areas

11 and 12 as area 14 which lies on the gyrus rectus and the orbital gyrus.

4.2.2 Main Pathways

Following the excellent review of Petrides and Pandya (2002), in this section the

main projections of the prefrontal cortex will be briefly described. First, it should

be emphasized that almost all PFC subregions have bidirectional projections to all

other parts of the PFC (Simons & Spiers, 2003). The frontal lobe is linked with the

parietal cortex by the superior longitudinal fasciculus (SLF). Petrides and Pandya

(2002) subdivided the SLF in three different projection pathways. In brief, (1) the

superior parietal lobe (SPL) is reciprocally interconnected with the (pre)frontal areas

3For the sake of completeness, area 8 lies on the posterior parts of the SFG and MFG and can

further be subdivided (cf. Petrides & Pandya, 1994, 1999) into area 8A (MFG; including a ventral

[8Av] and a dorsal [8Ad] portion) and 8B (SFG).
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Figure 4.2. Cytoarchitectonic Maps of the Prefrontal Cortex (PFC) According to the
Notation of Petrides and Pandya (1999). (a) Lateral and (b) medial view the PFC. [Adapted

from Petrides and Pandya (1999). Copyright (1999) European Neuroscience Association (European

Journal of Neuroscience).]

6, 8, and the cingulate sulcus, the premotor area, and the supplemenentary motor

area (SMA). Furthermore, (2) the inferior parietal lobule has interconnections with

the (pre)frontal areas 6, 8, and 46. Finally, (3) the supramarginal gyrus projects to

the (pre)frontal regions 6, 44, and 9/46 (Petrides & Pandya, 2002).

Furthermore, the (a) arcuate fasciculus, the (b) extreme capsule, and the (c) uncinate

fasciculus link the superior temporal cortex with prefrontal areas. More precisely,

these fiber bundles originate in the (a) caudal, (b) middle, and (c) rostral portion

of the superior temporal gyrus (STG) and terminate mainly in (a) prefrontal area

8, (b) areas 8, 9, 45, 46, 10, and (c) orbitofrontal areas 11,12 and medial areas 25

and 32.

Finally, two main pathways interconnect the occipital cortex with the prefrontal

cortex: First, dorsal and medial regions of the occipital lobe project directly to pre-

frontal regions 8 and 9/46 via the occipitofrontal fasciculus. Second, the orbitofrontal

and medial PFC receive projections indirectly from occipital BA 19 via two fiber

bundles, the inferior longitudinal fasciculus which interconnects BA 19 with the in-

ferotemporal cortex, and the uncinate fasciculus, originating in the most anterior
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part of the inferotemporal cortex which projects to the orbitofrontal and medial

PFC (see above).

4.3 Medial Temporal-prefrontal Interconnections

The medial temporal lobe and the prefrontal cortex are heavily interconnected (Si-

mons & Spiers, 2003, cf. Figure 4.3b).4 The medial and orbitofrontal PFC, especially

areas 10, 11, and 13 receive inputs from anterior parts of the parahippocampal re-

gion via the uncinate fasciculus (Petrides & Pandya, 2002). In contrast, a caudal

pathway, originating in the caudal portion of the parahippocampal region projects

to dorsolateral PFC regions 9, 46, and 9/46 via the extreme capsule. These path-

ways constitute the ventral limbic pathway (Petrides & Pandya, 2002). In contrast,

the dorsal limbic pathway comprises parts of the cingulum bundle, originating in

both anterior (BA 24) and posterior (BA 23) cingulate cortex and the retrosple-

nial cortex (BA 30). This fiber bundle mainly projects to dorsolateral PFC areas 9,

46, and 9/46, area 32 as part of the medial PFC, as well as parts of orbitofrontal

area 11 (Petrides & Pandya, 2002).5 More precisely, the hippocampal cell field CA1

and the subiculum project mainly to medial and orbitofrontal aspects of the PFC

(Thierry, Gioanni, Dégénétais & Glowinski, 2000). In contrast, cell fields CA2 and

CA3 and the dentate gyrus do not innervate the PFC (Laroche, Davis & Jay, 2000).

Furthermore, the entorhinal cortex receives inputs mainly from the orbitofrontal

PFC (Lavenex & Amaral, 2000) and projects to dorsolateral and orbitofrontal PFC

areas (Insausti, Herrero & Witter, 1997). Finally, the perirhinal cortex has efferent

projections to medial and orbitofrontal PFC regions (mainly areas 11 and 12) and is

innervated by prefrontal regions 45, 46, 11, 12, and 13, whereas the parahippocam-

4See particularly the Special Issue of Hippocampus, 2000, “The Nature of Hippocampal-Cortical

Interaction: Theoretical and Experimental Perspectives”, Hippocampus, 10, pp. 351-499.

5Although the posterior cingulate cortex and the retrosplenial cortex are not part of the me-

dial temporal lobe, both areas are heavily interconnected with several regions of the MTL (see

Section 4.1). Accordingly, both structures are proposed to pertain to the extended hippocampal

diencephalic system (Aggleton & Brown, 1999).
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pal cortex has reciprocal projections with the dorsolateral (9, 46), ventrolateral (45),

and orbitofrontal (11, 12) PFC (Lavenex, Suzuki & Amaral, 2002).

Figure 4.3. Medial Temporal-prefrontal Interconnections. (a) Lateral and medial view of
the human brain. (b) Main projections within and between the medial temporal lobe and
the prefrontal cortex. See text for further details. [Adapted from Simons and Spiers (2003).

Copyright (2003) Macmillan Magazines Ltd (Nature Reviews Neuroscience).]
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Functional Neuroimaging
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In this chapter, the basics of functional neuroimaging will be briefly reviewed. More

precisely, in Section 5.1 the physical principles of magnetic resonance imaging will

be described. Section 5.2 deals mainly with the physical and physiological basis of
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the BOLD response. The subject of Section 5.3 is the analysis of fMRI time series,

including spatial preprocessing, modeling hemodynamic responses, and statistical

inference. Finally, in Section 5.4 important aspects of event-related functional imag-

ing and design efficiency will be outlined.1

5.1 Principles of Magnetic Resonance Imaging

This section comprises a brief introduction to MR physics and is mainly based on

the excellent reviews by Cohen (1996), Mandeville and Rosen (2002), and especially

Liang and Lauterbur (2000). It gives a brief overview of the nuclear spin system

(5.1.1) and the basics of the excitation of the spin system (5.1.2), the principles of

magnetic resonance imaging (5.1.3), and the main imaging parameters and imaging

sequences (5.1.4).

5.1.1 Nuclear Spin Systems in the Magnet

A biological sample is composed of atoms and molecules which in turn are assemblies

of protons, neutrons, and electrons. The electrons orbit a nucleus which includes

protons and neutrons. Nuclei with odd atomic weights and/or odd atomic numbers

exhibit the fundamental property of an angular momentum ~J , termed spin (cf. Liang

& Lauterbur, 2000). Due to this angular velocity the nucleus (which has electrical

charges) creates a magnetic field around it (Figure 5.1a). The nuclear magnetic

dipole moment or magnetic moment ~µ is related to the angular momentum by

~µ = γ ~J (5.1)

where γ is the gyromagnetic ratio. The total or bulk magnetization of a spin system

is given by

~M =
Ns
∑

n=1

~µn (5.2)

1Please note that the behavioral methods of this thesis will be described in more detail in

Chapter 6.
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where ~µn represents the magnetic moment of the nth nuclear spin and Ns denotes

the total number of spins in the measured object. When exposing the object to a

magnetic field with strength B0, the protons can have two possible states, a low or

high energy state. Accordingly, the spin vectors line up in tow possible orientations,

with or against the magnetic field (Figure 5.1b). The net polarization of the sample

depends upon the small orientation-dependent energy splitting of a magnetic dipole

moment (cf. Liang & Lauterbur, 2000). In a 1.5 Tesla (T) magnet, the net polar-

ization is about 10−5, i.e. for every 1 million protons there will be about 10 more in

the lower than in the higher energy state. Moreover, the nuclear magnetic moment

vectors ~µn exhibit the important property of precession around the B0 field. This

angular frequency, the Larmor frequency is given by the Larmor equation

ω0 = γB0 (5.3)

describing the natural frequency of a spin system (cf. Liang & Lauterbur, 2000).

As apparent from Equation 5.3, the Larmor frequency ω0 is a function of the gyro-

magnetic ratio γ and the field strength B0. At a field strength of 1.5 T, the Larmor

frequency constitutes roughly 63.8 MHz. Each spinning vector can be considered

as a magnetic dipole precessing about the applied magnetic field. Due to the net

polarization, the alignment of the spins results in a longitudinal magnetization M0,

pointing along the direction of the external magnetic field B0 (cf. Liang & Lauterbur,

2000).

5.1.2 Excitation of the Spin System

The acquisition of MRI data is based on the emission of radio frequency (RF) pulses

in the presence of the B0 field (normally defined as z-axis).

RF Pulse The RF pulse generates an oscillating B1(t) field in the x-y-direction

perpendicular to the B0 field. It is important to note that the spin system can only be

excited at certain frequencies. More specifically, the RF pulse must be applied at the

Larmor frequency of the precessing spins, i.e. the magnetic resonance phenomenon

critically depends on an exact match between the excitation frequency and the



5.1. PRINCIPLES OF MAGNETIC RESONANCE IMAGING 78

Figure 5.1. Nuclear Spin Systems in the Magnet. (a) The nuclear spin phenomenon. (b)
Spins align parallel or anti-parallel to an external magnetic field. [Adapted from Liang and

Lauterbur (2000). Copyright (2000) Institute of Electrical and Electronics Engineers, Inc..]

proton spin frequency of the excited spin system. After excitation, the spin system

will return to its thermal equilibrium according to the laws of thermodynamics by

precession of ~M about the B0 field (free precession; cf. Liang & Lauterbur, 2000).

This phenomenon is characterized by tow subprocesses. The longitudinal relaxation

describes the recovery of the longitudinal magnetization Mz, whereas the destruction

of the transverse magnetization Mxy is denoted transverse relaxation (cf. Liang &

Lauterbur, 2000). As apparent from Figure 5.2, both processes follow an exponential

function.

Longitudinal Relaxation The spin system exchanges energy with the lattice.

The time constant which describes how Mz returns to its equilibrium value is called

the longitudinal relaxation or spin-lattice relaxation time T1 and is given by

Mz = M0
z (1 − e−t/T1) (5.4)

where M0
z denotes the longitudinal magnetization at thermal equilibrium.

Transverse Relaxation After excitation, the spins precess at slightly different

rates. This leads to a dephasing of the spins and by this to the decay of the transverse

magnetization Mxy. The time constant which describes the return to equilibrium of

the transverse magnetization Mxy is called the transverse relaxation or spin-spin
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relaxation time T2 and is given by

Mxy = Mxy(0)e−t/T2 (5.5)

Both time parameters are not defined as the times when Mz is fully recovered and

Mxy has reached maximal equilibrium, respectively, but rather at the follwing cut-off

points

Mz(T1) ≈ 63%M0
z (5.6)

and

Mxy(T2) ≈ 37%Mxy (5.7)

Figure 5.2. T1 and T2 Relaxation Curves. (a) The spin-lattice relaxation time T1 describes
the recovery of the longitudinal magnetization, whereas (b) the spin-spin relaxation time
T2 describes the decay of the transverse magnetization after an RF perturbation. Both
processes follow an exponential function. [Adapted from Liang and Lauterbur (2000). Copyright

(2000) Institute of Electrical and Electronics Engineers, Inc..]

In addition to the longitudinal relaxation T2 based on spin-spin dephasing, an-

other component contributes to the destruction of the transverse magnetization

Mxy, namely the T ′
2 component which results from factors such as magnetic field in-

homogeneity and magnetic susceptibility variations (cf. Liang & Lauterbur, 2000).

The combined time constant is called T ∗
2 and is given by

1

T ∗
2

=
1

T2

1

T ′
2

(5.8)

The time constant T ∗
2 constitutes the critical parameter with respect to fMRI (see

Section 5.2.1 for more details).

In summary, after a spin system has been disturbed from its thermal equilibrium

state by conducting a RF pulse, the time-dependent behavior of ~M can be described
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by the Bloch equation2

d ~M

dt
= γ ~M × ~B −

Mx
~i + My

~j

T2
−

(Mz − M0
z )~k

T1
(5.9)

5.1.3 Magnetic Resonance Imaging

The purpose of MRI is the acquisition of 3D images. Spatial encoding of MR signals

requires slice-selection, phase encoding, and frequency encoding gradients (cf. Liang

& Lauterbur, 2000).

Slice Selection Gradient As apparent from Equation 5.3, the Larmor frequency

is proportional to the magnetic field strength B0. Moreover, excitation is only pos-

sible using the specific Larmor frequency of the spin system. To selectively excite

the slice of interest, the RF pulse is transmitted at a narrow band of frequencies in

the presence of a z-gradient during the excitation period, the slice-selection gradient

which makes the Larmor frequency position-dependent.

Phase Encoding Gradient After slice-selection, the introduction of an y-gradient

results in different phases of the spins in y-direction. These phase differences depend

on the duration and strength of the y-gradient and on the position of the spin. By

this, each row within an excited slice can be identified by its phase.

Frequency Encoding Gradient The final step in spatial encoding includes the

application of an x-gradient used for frequency encoding along the x-axis. Frequency

encoding makes the oscillation frequency ω of the spins linearly dependent on its

position in the x-direction.

k-Space Images are yielded by the two-dimensional Fourier transform of the signal

from a selected slice, encoded by phase and frequency encoding gradients. The two-

dimensional Fourier transform yields an image of the location of the MR signal.

The space in which the signal is measured at discrete coordinates (kx, ky) is denoted

2Felix Bloch was awarded the Nobel Prize in physics in 1952 for discovering the magnetic

resonance phenomenon.
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k-space. It is the mathematical space in which the Fourier transform of a spatial

function is represented.

5.1.4 Imaging Parameters and Sequences

Several critical parameters affect the acquisition of MR images.

TR, TE, Flip Angle The time between two successive RF pulses is called repe-

tition time (TR) and controls the effect of T1 relaxation, whereas the time between

excitation and readout of the MR signal is termed echo time (TE). The flip angle is

the amount of rotation of the bulk magnetization vector produced by an RF pulse.

All three parameters determine the image contrast. The choice of the flip angle de-

pends on TR and T1 of the tissue of interest.3 More precisely, when TR >> T1, a flip

angle of 90◦ entails the maximal signal (Mandeville & Rosen, 2002). However, at

small TR
T1

ratios, the flip angle should be reduced appropriately to the Ernst angle

given by

cos(αE) = e
−TR

T1 (5.10)

Image Contrasts Three parameters influence the MR image: spin density and the

time parameters T1 and T2. Thus, three main different contrasts exist: T1-weighted

contrasts are characterized mainly by a short TE, whereas a long TR is used for

T2-weighted contrasts (see Figure 5.3 for examples). Finally, spin density-weighted

contrasts are mainly characterized by a short TE and a long TR (cf. Liang & Lauter-

bur, 2000).

T1-weighted Sequences In this thesis, a Siemens SONATA MR scanner (Erlan-

gen, Germany) operating at 1.5 T with a standard circularly polarized whole head

coil was employed to acquire both T1-weighted structural images and T ∗
2 -weighted

BOLD-sensitive functional images. In Experiment 1A (Chapter 7), Experiment 1B

3At a field strength of 1.5 T, T1 and T2 parameters [ms] for different brain tissues are as

follows: white matter: T1 = 510, T2 = 67; gray matter: T1 = 760, T2 = 77; cerebrospinal fluid:

T1 = 2650, T2 = 280 (cf. Liang & Lauterbur, 2000).
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(Chapter 8), and Experiment 3 (Chapter 10), high-resolution structural images were

acquired using an isometric magnetization-prepared rapid gradient-echo (3-D MP-

RAGE) sequence (TR = 1900 ms, TE = 3.93 ms, IT = 1100 ms, flip angle = 8◦, slice

thickness = 1 mm, in-plane resolution = 1 × 1 mm, FoV = 256 mm2, 176 slices;

Mugler & Brookeman, 1990, cf. Figure 5.3a). An additional T1-weighted structural

sequence was used in Experiment 3 to improve the normalization procedure during

preprocessing (cf. Section 5.3). This structural sequence (TR = 600 ms, TE = 13 ms,

flip angle = 80◦, slice thickness = 4 mm, interslice gap = 1 mm, in-plane resolution

= 0.9 × 0.9 mm, FoV = 224 mm2, 20 axial slices parallel to AC-PC plane) was

measured in-plane with respect to the functional sequence and applied during the

coregistration procedure (see Chapter 10).

Figure 5.3. Examples of MR Sequences. Axial MR sections from an individual brain
measured with (a) a T1-weighted, (b) a T2-weighted, and (c) an EPI sequence.

Echo-planar Imaging Mansfield4 (1977) first introduced echo-planar imaging

(EPI), a fast MR scan technique which performs all spatial encoding procedures

following a single RF excitation. EPI allows image acquisition in less than 100 ms.

After excitation of a selected slice, a rapidly switched field gradient is applied. By

this, a series of MR echoes is generated which are phase-encoded by a second field

gradient (cf. Cohen, 2000; Howseman & Bowtell, 1999). Several EPI contrast variants

4Sir Peter Mansfield and Paul C. Lauterbur were awarded the Nobel Prize in medicine in 2003

for their discoveries concerning magnetic resonance imaging.
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exist. The most common variant is the spin-echo sequence, i.e. a 90◦ pulse is followed

by a 180◦ echo-forming pulse. This second pulse entails a Hahn echo during the

readout period. Another variant is the gradient-echo EPI. Here the second 180◦

echo-forming pulse is omitted and the signal is refocussed only by the gradients (cf.

Howseman & Bowtell, 1999). In contrast to spin-echo EPI which is widely applied in

clinical settings, gradient-echo EPI has the advantage of a shorter TR and therefore

is commonly used in basic research (see Figure 5.3c). In Experiment 1A, 1B, and 3,

T ∗
2 -weighted BOLD-sensitive functional images were acquired using a gradient-echo

EPI pulse sequence, with the following parameters: TR = 1.8 s, TE = 50 ms, flip

angle = 85◦, slice thickness = 4 mm, interslice gap = 1 mm, in-plane resolution =

3.5 × 3.5 mm, FoV = 224 mm2, 20 axial slices parallel to AC-PC plane.

5.2 The BOLD Signal

The blood oxygen level dependent (BOLD) effect was first described by Ogawa and

coworkers in 1990 (Ogawa & Lee, 1990; Ogawa, Lee, Nayak & Glynn, 1990a; Ogawa,

Lee & Tank, 1990b). BOLD fMRI employs hemoglobin as an endogenous contrast

agent, relying on the magnetization differences between oxy- and deoxyhemoglobin.

In the following section, first the physical (5.2.1) and physiological (5.2.2) basis of the

BOLD signal will be described. Second, a brief overview of the main characteristics

(5.2.3) of the BOLD signal, particularly the spatial and temporal resolution will be

given.

5.2.1 Physical Basis

Introducing any substance into a magnetic field alters this field to some extent.

The degree of this effect is referred to as magnetic susceptibility χ (Cohen, 1996).

Deoxygenated hemoglobin has a greater susceptibility effect relative to oxygenated

hemoglobin. This fact is based on the observation that deoxygenated hemoglobin is

more paramagnetic than oxygenated hemoglobin (Pauling & Coryell, 1936). During

neuronal activation, regional cerebral blood flow (rCBF) increases and is accompa-

nied by a relative smaller increase in oxygen extraction (Fox & Raichle, 1986; Fox,
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Raichle, Mintun & Dence, 1988, see Section 5.2.2). As a result, the net deoxyhe-

moglobin (dHb) content of venous blood decreases and the susceptibility of the

capillary contents becomes closer to that of the surrounding neural parenchyma

(Cohen, 1996). According to its paramagnetic properties, the dHb concentration af-

fects the T ∗
2 value by inducing a local magnetic field inhomogeneity (Howseman &

Bowtell, 1999). It is assumed that the susceptibility difference is maximal for fully

deoxygenated blood vessels. Ugurbil et al. (2000) formally described the influence

of the magnetization susceptibility difference ∆χ between the interior and exterior

of a dHb-containing blood vessel on the T ∗
2 parameter:

1

T ∗
2

= α(∆χω)(1 − Y )bv (5.11)

where α is a constant, ω the Larmor frequency as defined in Equation 5.3, Y the

fraction of oxygenated blood and bv the local cerebral blood volume in which dHb

is present. As apparent from Equation 5.11, if the frequency shift (caused by the

susceptibility difference) increases, the T ∗
2 value decreases (Figure 5.4b). In contrast,

when the fraction between oxygenated and deoxygenated blood increases as during

brain activation, T ∗
2 increases. Thus, during neuronal activity (associated with a

decrease of the net dHb content) the intensity of the BOLD-sensitive MR signal

increases. To summarize, the BOLD contrast originates from the local magnetic

field inhomogeneity induced by paramagnetic dHb.

5.2.2 Physiological Basis

During the initial phase of brain activity, oxygen consumption is increased (Vanzetta

& Grinvald, 1999; Thompson, Peterson & Freeman, 2003). During neuronal activity,

the fractional change in rCBF is at least twice as large as the fractional change in oxy-

gen metabolism (Heeger & Ress, 2002). This results in an oversupply of oxygenated

blood. This increased fraction between oxy- and deoxyhemoglobin is the basis of

the BOLD effect. An explanation of the neurophysiological origins of the BOLD

effect is given by Heeger and Rees (2002): There is empirical evidence that neuronal

activity results in increased blood flow. It is assumed that blood flow is related

to glucose consumption. Furthermore, neuronal activity is associated with glucose
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metabolism. More specifically, increased neuronal activity is supported by glycoly-

sis (Fox & Raichle, 1986; Fox et al., 1988), i.e. non-oxidative glucose metabolism.

In particular, astrocytes, involved in transmitter recycling rely on glycolysis during

clearing glutamate from the extracellular space and the conversion of glutamate

to glutamin. These processes account for the oversupply of oxygenated blood dur-

ing neuronal activity (Figure 5.4a).5 Despite the fact that BOLD fMRI measures

neuronal activity indirectly via hemodynamic correlates, in a recent seminal study

(Logothetis, Pauls, Augath, Trinath & Oelterman, 2001) combining intracortical

recordings and fMRI measurements simultaneously from the macaque visual cortex,

it has been shown that the BOLD response directly reflects an increase in neuronal

activity. More precisely, the BOLD signal is correlated with local field potentials

(LFP) which represent a weighted average of synchronized synaptic inputs of a neu-

ral population.6

5.2.3 Main Characteristics

Figure 5.4c shows the BOLD response. At high field strengths, the BOLD signal

shows a slight decrease after neuronal activity (initial dip), possibly due to an un-

coupling of blood flow and oxygen consumption (Röther et al., 2002, but see Bux-

ton, 2001). Following the oversupply of oxy- relative to deoxyhemoglobin described

in Section 5.2.2, the hemodynamic response increases and shows a pronounced peak

between 6 and 10 s after stimulus onset. Furthermore, the response takes a con-

5According to Heeger and Rees (2002), an alternative explanation exists for the uncoupling of

rCBF increase and oxygen metabolism (Buxton & Frank, 1997). Buxton and Frank (1997) suggest

that the decrease of the oxygen extraction fraction during increased blood flow is due to the fact

that extraction (by passive diffusion) is less efficient at high flow rates (see Magistretti and Pellerin,

1999, for a detailed description of the neurophysiological processes underlying the BOLD response

and particularly the cellular mechanism of coupling synaptic activity with energy metabolism).

6In should be noted that several influential mathematical models of the origins of the BOLD

response have been described, namely the Balloon model (Buxton, Wong & Frank, 1998), the Wind-

kessel model (Mandeville et al., 1999), and the Volterra hemodynamic model (Friston, Mechelli,

Turner & Price, 2000b; Friston, 2002a).
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Figure 5.4. The Physiological Basis and the Main Characteristics of the BOLD Response.
(a) Neurophysiological processes at the synapse. Astrocytes are involved in neurotrans-
mitter recycling by means of non-oxidative glycolysis (uptake of glucose from blood and
release of lactate). (b) Deoxyhemoglobin (dHb) entails faster dephasing of nuclear spins
and by this entails a reduction of the T ∗

2 -weighted MR signal. (c) Main characteristics
of the BOLD function. [(a-b) Adapted from Heeger and Rees (2002). Copyright (2000) Macmillan

Magazines Ltd (Nature Reviews Neuroscience). (c) Adapted from Henson (in press). Copyright (2004)

Elsevier.]

siderable amount of time to reach baseline at roughly 20 s. Often, a post-stimulus

undershoot below baseline can be observed between 15 and 20 s after stimulation.

Spatial Resolution In most human fMRI studies at 1.5-3 T, the spatial resolu-

tion is between 2 and 5 mm in-plane with 3-10 mm slice thickness. In contrast, other

non-invasive imaging techniques, e.g. positron emission tomography (PET) or sin-

gle photon emission computerized tomography (SPECT) have a significantly poorer

spatial resolution. In fMRI studies at higher field strengths, a spatial resolution
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of roughly 150 × 150 µm in-plane is possible. For example, at 9.4 T it is possi-

ble to map iso-orientations columns in the primary visual cortex of the cat (Kim,

Duong & Kim, 2000a). However, the spatial specificity depends on the size of the

local vasculature supplying the activated neuronal assembly (capillaries: < 10 µm,

venules/draining veins: a few mm; Menon & Kim, 1999, see also Turner, 2002). The

advantage of high magnetic fields mainly originates from two observations. First, at

higher field strengths an increased contrast-to-noise ratio results in an increase of

task-induced signal changes (Kim, Lee, Goodyear & Silva, 2000b). Second, at field

strengths between of 1.5-3 T large vessels mostly contribute to the measured BOLD

signal. In contrast, the contribution of small vessels in the generation of the BOLD

signal increases at a field strength > 3 T. Hence, the spatial resolution increases

substantially (Bandettini, 2000; Ugurbil, 2002), however at the cost of increased

susceptibility to artifacts (see Norris, 2003, for a recent review of high field MRI).

Temporal Resolution As described in Section 5.2.3, the BOLD response peaks

between 6 and 10 s after stimulus onset due to the sluggish changes in local vascula-

ture. However, reliable relationships between stimulus properties and BOLD signal

parameters exist. For example, it has been shown that stimulus duration correlates

with the duration of the BOLD response and the contrast of a visual stimulus cor-

relates with the magnitude of the BOLD signal in human primary visual cortex

(Boynton, Engel, Glover & Heeger, 1996). Moreover, BOLD onset latencies corre-

late with behavioral parameters such as reaction times in a visuomotor task (Menon,

Luknowsky & Gati, 1998). However, differences in the local vascular architecture

provide constraints in comparing timing parameters between different brain areas

(Miezin, Maccotta, Ollinger, Petersen & Buckner, 2000; Robson, Dorosz & Gore,

1998). Despite these limitations, several procedures for analyzing temporal prop-

erties of the BOLD signal have been developed. For instance, Henson et al. (2002)

used the temporal derivative of the canonical hemodynamic response function (HRF)

to estimate statistical parametric maps of HRF latency differences. These latency

differences were estimated by the ratio of derivative and canonical parameter esti-

mates. A similar approach was introduced using optimally chosen basis functions



5.3. ANALYSIS OF FMRI TIME SERIES 88

(Liao et al., 2002).

Most recently, Belgovan, Saad, and Bandettini (2003) used a modeling approach

based on a convolution of a γ-function with a function of varying onset and dura-

tion to estimate delay and width of the BOLD response in different brain regions.

The authors presented words rotated 0◦, 60◦, or 120◦ during a lexical decision task

and showed prolonged BOLD latencies in the inferior frontal gyrus as a function of

rotation degree. In summary, these studies underscore the importance of integrating

latency measures into conventional fMRI analysis.

5.3 Analysis of fMRI Time Series

The analysis of fMRI time series is the topic of this section.7 In more detail, this sec-

tion includes several aspects of spatial preprocessing of fMRI data (5.3.1), a brief in-

troduction to modeling hemodynamic responses in terms of the general linear model

(5.3.2), and finally statistical inference (5.3.3). In this thesis, all time series analyses

were performed with Statistical Parametric Mapping (SPM2; Wellcome Department

of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm/spm2.html),

implemented in Matlab6 (The Mathworks, Inc., U.S.A.).

5.3.1 Spatial Preprocessing

Spatial preprocessing usually comprises the following steps: slice timing, realign-

ment, coregistration, normalization, and smoothing. Spatial transformations of im-

ages are an essential prerequisite for statistical analysis of fMRI time-series, e.g. move-

7It is noteworthy that it is also possible to model effective connectivity between brain regions

involved in a particular cognitive task, so-called psychophysiological interactions (Friston et al.,

1997). Several accounts have been developed for this purpose, e.g. techniques based on structural

equation modeling (Büchel & Friston, 1997; Büchel, Coull & Friston, 1999), Volterra series approx-

imations (Friston & Büchel, 2000), and Dynamic Causal Modelling, a new technique to examine

effective connectivity based on a nonlinear input-state-output model within a Bayesian framework

(Friston, Harrison & Penny, 2003). Due to space limitations, these accounts will not be reviewed.

The interested reader will find a detailed description of connectivity analysis techniques in Friston

(2002b) and especially in Frackowiak et al. (in press).
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ments of the subject have to be corrected and individual brain images have to be

transformed into a common standard space. In brief, registering two images together

comprises two main steps: determining the warping parameters that map a source

image into a target image and the transformation of the source image according to

the set of warping parameters (Ashburner & Friston, 2000).

To account for the different sampling times of the slices, voxel time series have to

be corrected. For example, when acquiring an EPI sequence with n slices in an as-

cending direction the top slice is measured n−1
n

TR later than the bottom slice.8 In

this thesis, the following slice timing procedure was applied to the fMRI data. Time

series were (1) corrected using sinc interpolation and (2) resampled using the middle

slice as a reference point.9

Time series are often confounded by subjects’ movements during an experiment.

Therefore, functional volumes have to be motion-corrected to reduce the error vari-

ance of the time series. During the realignment procedure (cf. Experiment 1A, 1B,

and 3), first realignment parameters are estimated using a least squares approach and

a 6-parameter rigid body spatial transformation. According to these determined pa-

rameters, all volumes are resliced to the first volume of the time-series using B-spline

interpolation. Beyond the aforementioned realignment procedure, an additional un-

warping algorithm (Andersson, Hutton, Ashburner, Turner & Friston, 2001) was ap-

plied to the time-series in Experiment 3 to account for movement-by-magnetization

inhomogeneity interactions and by this to minimize the movement-related residual

variance (see Andersson et al., 2001, for details).

After slice timing and adjustment for movement-related effects, all scans have to

be transformed into a stereotactical space, normally the Talairach-space (Talairach

& Tournoux, 1988) or the MNI-space (Cocosco, Kollokian, Kwan & Evans, 1997)10

8To be more exact, n−1

n
TA with the acquisition time TA given by TA = TR − TR/n.

9An alternative approach was introduced by Henson et al. (Henson, Büchel, Josephs & Friston,

1999) using a Fourier basis set to account for different BOLD onset latencies.

10The MNI-space is used as reference brain in SPM2. In all imaging experiments of this thesis,

MNI-coordinates have been transformed to the canonical Talairach space (see http://www.mrc-

cbu.cam.ac.uk/imaging/mnispace.html).
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to allow for between-subject and between-study comparisons. During coregistration,

anatomical images (3D MP-RAGE in Experiment 1A and 1B) are coregistered to

the mean functional image using a normalized mutual information cost function and

a trilinear reslice interpolation method. In Experiment 3, coregistration included two

steps. First, images of the 2D T1-weighted sequence which was measured in-plane

with respect to the EPI sequence were coregistered to the mean functional image.

Second, images of the 3D MP-RAGE sequence were coregistered to the images of

the resliced 2D T1-weighted sequence.

During normalization, coregistered anatomical images (3D MP-RAGE) are then nor-

malized (Ashburner & Friston, 1999) to the standard T1 template based on the MNI

reference brain (Cocosco et al., 1997), using a 12-parameter affine transformation

along with a nonlinear transformation (cosine basis functions). Based on the de-

termined parameters, the normalization algorithm is then applied to the functional

volumes. Finally, the normalized images are resampled into 2 mm isotropic voxels

and spatially smoothed with an isotropic 8-mm (Experiment 1A and 1B) and 7-mm

FWHM Gaussian kernel (Experiment 3), respectively to compensate for residual

between-subject variability after spatial normalization and to permit application of

Gaussian random field theory (smoothing).

5.3.2 Modeling Hemodynamic Responses

The GLM is the basis for statistical analysis of fMRI time-series (see Friston et al.,

1995c; Friston, in press; Henson, in press; Josephs et al., 1997; Josephs & Henson,

1999).11 It provides unbiased parameter estimates and enables statistical inference

by means of Gaussian random field theory (see Section 5.3.3).

11Alternatively, an approach for statistical analysis of neuroimaging data based on an empiri-

cal Bayesian framework (parametrical empirical Bayes, PEB) has been developed (Friston et al.,

2002a,b). In brief, the PEB procedure estimates the posterior probability distribution of the pa-

rameters given the data p(θ|y) ∝ p(y|θ)p(θ), where p(y|θ) is the likelihood for the data given

the parameters θ, whereas p(θ) denotes the Gaussian priors. These priors are parameterized via

estimating hyperparameters from the data.



5.3. ANALYSIS OF FMRI TIME SERIES 91

The General Linear Model The general linear model (GLM) at each voxel is

given by (cf. Henson, in press; Josephs et al., 1997; Josephs & Henson, 1999)

Y(t) = X(t)β + ε(t) (5.12)

or in matrix formulation
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(5.13)

The data vector Y for each image m = 1, . . . , M can be expressed as the product of

X, the M × N design matrix, and β, the N -dimensional parameter vector plus the

error vector ε. X has one column for every modeled effect and one row for each image.

It represents the explanatory variables. The error vector is normally distributed with

ε ∼ N(0, σ2Σ). Σ denotes the noise autocorrelation matrix. If (XTX) is invertible,

i.e. X is of full rank, least-squares parameter estimates b for β in Equation 5.12 are

given by (cf. Henson, in press; Josephs et al., 1997; Josephs & Henson, 1999)

b = (XTX)−1XTY (5.14)

Following the notation of Henson (in press), the modeling of stimulus occurrence,

neuronal activity, and hemodynamic responses will be briefly described.

Stimulus Function The stimulus function s(t) represents the occurrence of stim-

uli as a function of time for each experimental condition and is modeled as a Kro-

necker δ function.12 For i = 1, . . . , C experimental conditions, each consisting of

j = 1, . . . , T onset times oij the stimulus model is given by

si(t) =
T

∑

j=1

δ(t − oij) (5.15)

12In addition, the δ function can be weighted by a scaling factor, representing a parametric

modulation of a particular condition, e.g. a learning function (cf. Henson, in press). See Experiment

1A (Chapter 7), Experiment 1B (Chapter 8), and Experiment 3 (Chapter 10) for applications.
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Neural Activation Function For each experimental condition, the neural ac-

tivation ui can be expressed as a function of si. The neural activation function

(Henson, in press) is given by

ui(t) = si(t) ⊗ r(t) (5.16)

with

r(t) =

B
∑

b=1

βbgb(τ) (5.17)

for epoch designs,13 where gb denotes the b = 1, . . . , B temporal basis functions and

τ a finite peri-stimulus time (PST). In SPM, several temporal basis functions can

be selected for modeling neural activity in epoch designs, e.g. boxcar, half-sine, and

discrete cosine transform (DCT; cf. Henson, in press).

Hemodynamic Response Function According to Henson (in press), the hemo-

dynamic response xi(t) can be modeled by convolving the neural activation function

ui(t) with a hemodynamic response function h(τ) (HRF; Friston et al., 1998a)

xi(t) = ui(t) ⊗ h(τ) (5.18)

Equation 5.18 is based on the assumption that the BOLD signal is the output of

a linear time-invariant system (LTI; Boynton et al., 1996; Dale & Buckner, 1997),

i.e. the hemodynamic response summates in a roughly linear fashion over time.14

The canonical HRF in SPM is composed of two γ functions (Friston, Jezzard &

Turner, 1994). Beyond the canonical HRF, it is possible to span the space of likely

responses using p = 1, . . . , P temporal basis functions gp (Friston, Frith, Turner &

Frackowiak, 1995a; Josephs, Turner & Friston, 1997) given by

h(τ) =

P
∑

p=1

βpgp(τ) (5.19)

13In event-related designs ui(t) := si(t) (cf. Henson, in press).

14When stimuli are delivered at high frequency (interstimulus interval, ITI < 2 s), departures

from linearity can be observed (Friston, Josephs, Rees & Turner, 1998b, cf. Friston, Mechelli,

Turner, and Price, 2000b; Friston, 2002, providing a nonlinear input-output model based on

Volterra series as one possibility to deal with nonlinearities).
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Examples of temporal basis functions implemented in SPM are depicted in Figure

5.5: FIR basis set, Fourier basis set, and γ functions (for further explanations see

Friston et al., 1998a; Henson, in press).

Figure 5.5. Modeling the BOLD Response by Different Temporal Basis Functions. (a)
Canonical HRF (red) and its temporal (blue) and dispersion (green) derivatives. (b) FIR
basis set. (c) Fourier basis set. (d) γ functions. [(Adapted from Henson (in press). Copyright

(2004) Elsevier.]

5.3.3 Statistical Inference

After estimating the parameters, a priori hypotheses can be tested using contrasts,

i.e. the design matrix X is weighted with a matrix C containing each contrast vector

c. Under the normality assumption (cf. Petersson, Nichols, Poline & Holmes, 1999a)

cTb ∼ N (cT β, cT(XTX)−1c) (5.20)

the significance of each contrast can be assessed with the t-statistic (i.e. Student’s t

distributed under the null hypothesis) at each voxel resulting in a statistical para-

metric map SPM{t} which is usually transformed into a Gaussian SPM{z}. Alterna-

tively, the omnibus F -statistic can be used (see http://www.fil.ion.ucl.ac.uk/ wpenny

/publications/rik anova.pdf for examples).

Theory of Gaussian Random Fields This voxel-by-voxel hypothesis testing

results in a huge amount of statistical tests, giving rise to the so-called multiple

comparison problem. Thus, it is necessary to control the false-positive rate. A stan-

dard method is the Bonferroni correction which adjusts the significance level α to

α
k
, assuming that k statistical tests are independent. However, this procedure is too

conservative with respect to fMRI time-series analysis, because the z scores at each
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voxel are spatially correlated. In contrast, an approach based on Gaussian random

field theory (Friston, Frith, Liddle & Frackowiak, 1991; Worsley, Evans, Marrett &

Neelin, 1992) controls the false positive rate of activated regions. The search vol-

ume is expressed in terms of resolution elements, i.e. the number of independent

observations in a volume (Worsley et al., 1996). In brief, this method assesses the

probability that the maximum z score exceeds a given threshold u (Brett, Penny &

Kiebel, in press). This is equivalent to the probability of getting one region above

u (Friston et al., 1995b). This probability is approximated by the expected Euler

characteristic. For high thresholds, the Euler characteristic approximately equals

the number of local maxima in the statistical field (Worsley et al., 1996, see Brett

et al., in press; Friston, 2003, and Petersson et al., 1999b for a detailed overview of

random field approaches).

Alternative Approaches Several alternative approaches for statistical inference

have been developed. A method for controlling the false discovery rate (FDR) was

introduced by Genovese, Lazar, and Nichols (2002). The FDR is defined as the ratio

between the number of false-positive tests and the total amount of tests, for which

the null hypothesis is rejected. The advantage of this method is that it is adaptive,

i.e. the statistical thresholds are automatically determined from the data.

Classical statistical inference assumes that the data are normally distributed. More-

over, the distribution of the test statistic under the null hypothesis is well known. In

contrast, non-parametric approaches (Statistical Non-Parametric Mapping, SnPM)

determine the distribution under the null hypothesis empirically by creating all

possible permutations of experimental conditions (randomization tests; cf. Holmes,

Blair, Watson & Ford, 1992; Nichols & Holmes, 2001).

5.4 Designing

This section deals with the concept of event-related fMRI (5.4.1) and several aspects

of design efficiency (5.4.2). Two main design types are used in fMRI studies: blocked
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designs and event-related designs. In blocked designs, several trials of one condition

are presented sequentially in one block. In contrast, event-related fMRI allows the

analysis of single trial-related activity.

5.4.1 Event-related Functional Imaging

Statistical analysis of fMRI time series on a trial-by-trial basis was introduced by

Boynton et al. (1996) and Buckner et al. (1996, see also Zarahn, Aguirre, and

D’Esposito, 1997). Buckner and colleagues (1996) showed that activation maps de-

rived from a single trial analysis resembled those derived from blocked runs. A

prerequisite for modeling the hemodynamic response in event-related designs is the

assumption that the BOLD response is the output of a linear time-invariant sys-

tem, i.e. it is linearly related to the underlying neuronal activity (Boynton et al.,

1996; Dale & Buckner, 1997). However, this assumption is violated when stimuli are

delivered at high rate (ISI < 2 s; Friston et al., 1998b) or stimuli are presented at

short durations (Vazquez & Noll, 1998).15

In their seminal study, Dale and Buckner (1997, cf. Buckner, 1998; Rosen, Buck-

ner & Dale, 1998), showed that the BOLD response for multiple rapidly presented

trials (ISI ≥ 2 s) adds in a roughly linear fashion. The authors presented one-trial,

two-trial, and three-trial clusters. For example, by subtracting the two-trial clus-

ter from the one-trial cluster the estimated BOLD signal to the second trial could

be derived. As apparent from Figure 5.6, the estimated signals for all three trials

are almost identical, irrespective of the trials presented before (see Friston et al.,

1998a; Josephs et al., 1997, for mathematical formulations and Josephs and Henson,

1999, for an excellent overview of event-related fMRI). Event-related designs have

several advantages over blocked designs (see Chein & Schneider, in press; Josephs

& Henson, 1999):

• Trials pertaining to different conditions can be presented in randomized order,

e.g. maintenance vs manipulation trials in a working memory paradigm (e.g.

15Moreover, the nonlinearities of the BOLD response have a spatial dependence (Birn, Saad &

Bandettini, 2001; Pfeuffer, McCullough, Van de Moortele, Ugurbil & Hu, 2003).
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Figure 5.6. Results of the Dale and Buckner (1997) Study. (a) The three different types
of trial clusters used in the study of Dale and Buckner (1997). (b) BOLD signals for one
trial, two trial, and three trial clusters. (c) Hemodynamic responses for one trial clusters
and estimated BOLD signals for two trial and three trial clusters. [Adapted from Dale and

Buckner (1997). Copyright (1997) National Academy of Sciences, USA (Proceedings of the National

Academy of Sciences of the United States of America).]

Postle, Berger & D’Esposito, 1999).

• It is possible to categorize conditions post hoc, e.g. in the subsequent memory

paradigm, where the fMRI signal is measured during an encoding task and then

classified based on subjects’ memory performance during a later recognition

phase (e.g. Wagner et al., 1998).

• In some experimental procedures, it is convenient to use event related designs,

e.g. the oddball paradigm, where infrequent, deviant stimuli are presented

among frequent, standard stimuli (Doeller et al., 2003; Opitz et al., 2002).

• In event-related designs, it is possible to model properties of the BOLD signal

explicitly, e.g. the onset latency (Liao et al., 2002, see Section 5.2.3).

• Event-related fMRI allows the separation of subcomponents of trials, e.g. en-

coding, delay, and retrieval-related activity in complex working memory stud-

ies (Aguirre & D’Espositio, 1999; D’Esposito, Postle, Jonides & Smith, 1999,

see Ollinger et al., 2001a, 2001b, for an estimation method).

• Finally, event-related designs allow for a direct comparison (and integration)

with other trial-based methods (e.g. single cell recordings, MEG, ERP, behav-

ioral measures; Dale & Halgren, 1999; Luck, 1999, see Doeller et al., 2003, and

Opitz et al., 2002, for examples of integrating ERP and fMRI measures by

means of dipole analysis).
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5.4.2 Design Efficiency

The inherent temporal limitations of fMRI (with TR normally ranging from 1-4

s, see Section 5.1) result in a low sampling rate. However, the effective sampling

rate can be simply improved by using an interleaved procedure, i.e. by varying

the relationship between the onset of stimuli and image acquisition (Miezin et al.,

2000). Furthermore, given the temporal characteristics of the BOLD signal (i.e. it’s

extended time course; see Section 5.2.3), the HRF can be considered as a low-pass

filter (Chein & Schneider, in press; Friston et al., 2000a; Josephs & Henson, 1999).

Therefore, it is important to determine timing parameters appropriately in event-

related designs (namely the distribution of the stimulus onset asynchrony, SOA)

to maximize the variance of the experimental task passing the HRF. By this, it is

possible to increase the signal-to-noise ratio. For instance, it has been shown that the

efficiency of an event-related design (see Chein & Schneider, in press; Donaldson &

Buckner, 2001, for an overview of design efficiency) is higher if the SOA is temporally

jittered or randomized during the time course of the experiment as compared to a

fixed SOA (Dale, 1999). Josephs and Henson (1999) formally defined an event-related

design by the SOA and a Nm × N transition matrix T , describing the probability

of an event given m previous events. N denotes the number of different event types.

Based on this definition, several design types can be distinguished (Friston, Zarahn,

Josephs, Henson & Dale, 1999b). Designs with events occurring at a prespecified

time are termed deterministic designs and the probability pe of each event type e

is given by pe ∈ [0, 1]. Furthermore, in nonstationary stochastic designs pe changes

over time (pe < 1), whereas in stationary stochastic designs pe is given by pe =

1
N
∀e, e = 1, . . . , N .

Optimizing an experimental design is equivalent to minimizing the covariance of a

contrast c of a parameter estimate b (Friston et al., 1999b, 2000a, see also Section

5.3.2, in particular Equation 5.12-5.14) which is given by

cov{cTb} = σ2cT (XTX)−1c (5.21)
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Therefore, the efficiency E (Friston et al., 1999b) of a design matrix can be defined

as

E(X) ∝ trace{cT (XTX)−1c}−1 (5.22)

As apparent from Equation 5.21 and 5.22, maximizing the variance of the design

matrix yields increased efficiency. Is it also important to note that the efficiency of a

design critically depends on the specified contrast, e.g. a main effect or a differential

effect. Simulation studies (Josephs & Henson, 1999) suggest that stationary stochas-

tic designs with short SOAs (2-4 s) result in high efficiency for differential effects,

whereas for main effects the optimal SOA is roughly 18 s. As pointed out by Liu,

Frank, Wong, and Buxton (2001), a distinction should be made between detection

power, i.e. the ability to detect activated voxels and estimation efficiency, i.e. the

ability to estimate the shape of the response. Recent simulation studies have shown

that estimation efficiency is highest for rapidly alternating stimuli, whereas blocked

stimulus presentation reveals the best detection power (Birn, Cox & Bandettini,

2002). Moreover, it has been shown that exponentially distributed SOAs seem to be

a good compromise, leading to high estimation efficiency as well as high detection

power (Hagberg, Zito, Patria & Sanes, 2001, see Experiment 1A, 1B, and 3).
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Chapter 6

Rationale of the Present

Experiments
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6.1 The Aim of the Present Studies

The distinction between two separable learning and memory systems provides a

theoretical starting point for the present thesis. It appears that one system is spe-

cialized for rapid learning unique episodes (first system), whereas the other system

is best suited for gradual learning regularities across multiple episodes (second sys-

tem) (cf. Chapter 2 and 3). This thesis aimed at specifying the neural and cognitive

processes underlying the second learning and memory system. The term ‘regularity

learning’ was introduced to characterize the learning process of the second sys-

tem. The following main questions were addressed: (1) Which brain structures sub-

serve regularity learning (and also which brain structures mediate learning unique

episodes)? (2) Are these regions preferentially recruited during separate phases of

100
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the learning process, i.e. which regions support regularity learning during the ini-

tial and later phases of the learning process, respectively? (3) Finally, is regularity

learning affected by specific stimulus and task parameters, e.g. is regularity learning

a domain-specific or a domain-general mechanism? For that purpose, a task was

developed which allowed to disentangle both learning systems.

To be more precisely, evidence coming from different fields of cognitive neuroscience

indicates that the hippocampus seems to play a crucial role during episodic mem-

ory formation (see Chapter 2). Both the Eichenbaum (Eichenbaum, 2000) and the

O’Reilly model (O’Reilly & Norman, 2002) propose that the hippocampus subserves

episodic memory formation by means of a specific memory function, namely rela-

tional binding of different episodic features (cf. Zimmer et al., in press). However,

only a few imaging studies directly tested this claim in humans (Davachi & Wagner,

2002; Giovanello et al., 2004; Preston et al., 2004). Thus, one aim of the present

thesis - even though not the core aim - was to investigate the role of the hippocam-

pus during relational memory binding in more detail by implementing a task which

requires binding of several episodic features in each trial.

The main purpose of the present thesis was to elucidate the neural basis of regular-

ity learning. As outlined in Chapter 3, in numerous studies using different learning

tasks, e.g. reinforcement learning, category learning, artificial grammar learning, and

sequence learning tasks, regularities across episodes are introduced and I proposed

that the existence of these regularities is one crucial factor which allows learning

to occur. However, none of these studies directly tested the influence of regularities

across multiple complex episodes by means of selectively manipulating the binding

requirements (in comparison to a condition which does not include any regulari-

ties and hence entails constant binding requirements; see below). Thus, the present

experiments investigated regularity learning by means of a design including two con-

ditions, one condition with regularities (and hence decreasing binding requirements)

and one condition without any regularities (and hence constant binding require-

ments).

Another purpose of the present thesis was to examine the learning process, and es-

pecially brain regions involved during the time course of learning in more detail. As
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mentioned in Chapter 3, in several imaging studies a learning condition was solely

compared with a visuomotor control condition. In contrast, in the present fMRI

experiments the neural correlates of regularity learning were examined by means of

parametric fMRI analyses which allow to investigate learning-related activation pat-

tern on a trial-by-trial level during the entire learning process (cf. Opitz & Friederici,

2003; Poldrack et al., 2001).

Finally, the present thesis aims at specifying whether regularity learning is a domain-

general or a domain-specific process and most importantly, whether particular brain

regions support learning in a domain-general or a domain-specific manner. For that

purpose, regularities were introduced on two separable domains (see Section 6.2).

Several recent imaging studies suggest a domain-specific lateralization of both medial

temporal and lateral prefrontal regions during memory formation (cf. Burgess et al.,

2002; Paller & Wagner, 2002; Wagner, 2002, see Chapter 2 for further details). The

present experiments tried to elucidate, whether such a hemispheric specialization

also holds during learning.

6.2 The Paradigm

Experimental Procedures In all experiments reported in this thesis, 16 different

objects were used as stimulus material. Within one experimental trial, stimuli were

presented within a 4×4 grid, i.e. there were sixteen possible positions. As appar-

ent from Figure 6.1, in each trial several stimuli were presented sequentially during

a sample phase with a constant interstimulus interval (ISI).1 After a short delay,

a probe stimulus was presented at a particular position within the grid. Partici-

pants had to indicate whether or not the probe stimulus was identical to one of

the object-position combinations seen before during the sample phase. Responses

were delivered by a button press with the right or left index finger. Response-to-

hand mappings were counterbalanced across subjects. Probes in each experimental

block (see below) comprised 50% old (old object at old position) and 50% new

1In Experiment 2F (Chapter 9), objects were presented simultaneously in each trial.
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object-position conjunctions (3 equally distributed categories: old object/new po-

sition, new object/old position, and new object/new position). In all experiments,

visual feedback was given for 500 ms by means of the color of a fixation cross (green

= correct, red = false, yellow = timeout). Stimulus type, number of stimuli pre-

sented in the sample phase, stimulus duration, ISI, delay duration, probe duration,

intertrial interval (ITI), block length, and the number of blocks per condition were

selectively manipulated in the experiments (see Chapters 7, 8, 9, and 10, for details).

Each experimental session comprised several blocks. Each of these blocks included

16-36 trials. The design of a single experiment comprised two conditions (see be-

low). In Experiment 1A (Chapter 7), Experiment 1B (Chapter 8), and Experiment

2A and 2B (Chapter 9), blocks of both conditions were presented in randomized

order with the constraint that participants had to perform at most two blocks of the

same condition in succession. The sequence of blocks was balanced across subjects.

In Experiment 2C-2F (Chapter 9) and Experiment 3A and 3B (Chapter 10), trials

were blocked by condition. Participants were informed about the beginning of a new

block.

Experimental Conditions Two conditions, a context-specific condition (CS)

and an invariant learning condition (IL) were used in the experiments (Figure 6.2).

In each experiment, the CS condition was paired with one version of the IL condi-

tion, either a spatial (Experiment 1A and 3B) or an object IL condition (Experiment

1B, 2, and 3A).2 Two versions of the IL condition were used to investigate whether

regularity learning is differentially modulated by a specific stimulus domain (see

below). The sequence of several object-position conjunctions in the sample phase of

each trial was defined as an ‘episode’ in the experimental framework of the present

thesis. This definition meets the aforementioned criteria of an episode (Eichenbaum,

2000, see Chapter 2), i.e. including several temporally disparate episodic features.

This structure of an episode requires relational binding of the episodic features

(Eichenbaum, 2000) to entail an exhaustive, pattern-separated representation of the

episode (O’Reilly & Norman, 2002). In the CS condition, object-position conjunc-

2In Experiment 2C-2F (Chapter 9), subjects solely performed blocks in the IL condition.
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Figure 6.1. Session, Block, and Trial Structure of the Experiments. One session comprised
several blocks which in turn comprised several trials. In each trial, different objects were
presented at different positions of a 4×4 grid during the sample phase (grid not shown in
the Figure). After a short delay, a probe stimulus was presented and subjects were required
to indicate whether or not the probe is identical to one of the object-position conjunctions
presented during the sample phase. Feedback was given by means of the color of a fixation
cross.

tions were unique in each trial, i.e. objects were variably mapped to positions. Here,

each object-position conjunction in each trial and each block was selected randomly

from the set of objects and positions. In this condition, processing of unique episodes

was required. Thus, an involvement of the first learning system was expected. In con-

trast, in the IL condition, either positions or objects were held constant across trials

within blocks. In the spatial IL condition, variable objects were presented at constant

positions. Accordingly, in the object IL condition, constant objects were presented

at variable positions. By this, processing of regularities across multiple episodes was

induced in this condition. Thus, an involvement of the second learning system was

expected. The number of invariant positions and objects, respectively, resembled the
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number of object-position conjunctions presented during the sample phase. Objects

or positions were held constant across all trials of one experimental block. The fixed

configuration of invariant objects and positions held constant across all trials of one

experimental block changed from block to block, i.e. when a new block starts, a new

set of positions or objects in object-position conjunctions was introduced.

Figure 6.2. Experimental Conditions. Examples of the block structure, separately for
the CS condition (left panel), the spatial IL condition (middle panel), and the object IL
condition (right panel). In this example one trial comprises four sequential object-position
conjunctions (from left to right in each panel). In the CS condition, each trial comprised
unique object-position conjunctions. Importantly, in the spatial and object IL condition,
positions and objects, respectively were held constant across all trials of one block. For
illustration, one invariant position and one invariant object is highlighted by circles in the
blocks of the spatial and object IL condition, respectively.

6.3 Hypotheses and Predictions

Behavioral Predictions On a behavioral level, a performance increase across

trials within blocks was expected in the IL conditions. Here, subjects should ben-

efit from object and spatial regularities in object-position conjunctions during the

time-course of the blocks. In contrast, in the CS condition constant performance

was expected within blocks, since variable objects at variable positions have to be

encoded and retrieved in each trial of this condition. Furthermore, a modulation of

the within-block learning effects across experimental blocks was expected in the IL

condition (cf. Fletcher et al., 1999).
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Imaging Predictions All fMRI analyses were restricted to the sample phase. It

was assumed that learning-related neural activity should be optimally reflected in the

sample phase, when subjects encode and maintain four object-position conjunctions.

In agreement with the O’Reilly model (O’Reilly & Norman, 2002) and the Eichen-

baum model (Eichenbaum, 2000), constant hippocampal activity was expected in

the CS condition. Here, each trial comprised a unique episode, since variable objects

have to be bound to variable positions in each trial. In accordance with both models,

it is assumed that the hippocampus is crucial for building pattern-separated rep-

resentations of episodes by means of relational feature binding. A corollary of this

view is that the relational binding requirements are approximately constant across

trials in the CS condition, since object-position conjunctions are trial-unique. In the

IL condition, reduced hippocampal activation was expected during the time-course

of experimental blocks. Here, the relational binding requirements of each episode

should decrease across trials, since the probability for specific object-position con-

junctions is substantially increased, whereas the probability for other object-position

conjunctions is reduced to zero.

Importantly, a learning-related modulation of activity in the lateral prefrontal cortex

was predicted in the IL condition. As mentioned in Chapter 3, there is converging ev-

idence from studies using artificial grammar learning (Fletcher et al., 1999; Opitz &

Friederici, 2003), sequence learning (Aizenstein et al., 2004; Schendan et al., 2003)

and category learning tasks (Freedman et al., 2001; Reber et al., 1998b; Strange

et al., 2001) that the lateral prefrontal cortex is involved in learning task-relevant

regularities. Based on these results it is proposed that the lateral PFC - beyond the

hippocampus - supports regularity learning in the IL condition.

6.4 Methods

The functional MRI methods have been described in Chapter 5. In the following, a

brief overview of the behavioral methods will be given. In all experiments, Pr values

were used as the main behavioral measure. The discrimination index Pr is a non-

parametric equivalent of d’ and refers to the proportion of hits (correct responses to
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old probes) minus the proportion of false alarms (false responses to new probes). In

contrast to d’ which is defined by means of the signal detection theory, Pr is based

on a two-high threshold model (see Feenan & Snodgrass, 1990; Snodgras & Corwin,

1988). To evaluate learning/performance across trials, Pr values were calculated for

different time steps within experimental blocks by averaging Pr values across several

consecutive trials. Furthermore, to investigate performance modulations across trials

in more detail, different types of false alarms were analyzed, i.e. false alarms to probes

comprising an old object at a new position, a new object at an old position, and a

new object at a new position.



Chapter 7

Experiment 1A:

Prefrontal-Hippocampal Dynamics

Involved in Learning Regularities

across Episodes1
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In the present Experiment 1A, fMRI was used to investigate the neural basis of

regularity learning in the spatial domain. Subjects performed several blocks in the

1This Chapter contains the following article: Doeller C. F., Opitz B., Krick, C. M.,

Mecklinger, A., & Reith, W. (in press). Prefrontal-hippocampal dynamics involved in

learning regularities across episodes. Cerebral Cortex. For stylistic reasons the format was

adapted. Thus, this version differs in minor ways from the final published version. In the following,

this study will be referred to as Experiment 1A. This work was supported by grants from the

German Research Foundation (DFG; Research Group FOR-448). The authors wish to thank Ben

Eppinger, Patric Meyer, and Markus Werkle for helpful comments and stimulating discussions.
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CS condition and in the spatial version of the IL condition as outlined in Chap-

ter 6. A performance increase within blocks of the IL condition was predicted,

whereas performance should be constant across trials in the CS condition. More-

over, constant hippocampal activity was expected within blocks of the CS condition.

In contrast, a learning-related decrease of hippocampal activity and a learning-

related increase of lateral prefrontal activity was predicted in the IL condition.

Abstract Using fMRI the neural correlates of context-specific memories and invariant

memories about regularities across episodes were investigated. Volunteers had to learn con-

junctions between objects and positions. In an invariant learning condition, positions were

held constant, enabling subjects to learn regularities across trials. In contrast, in a context-

specific condition object-position conjunctions were trial unique. Performance increase in

the invariant learning condition was paralleled by a learning-related increase of inferior

frontal gyrus activation and ventral striatal activation and a decrease of hippocampus acti-

vation. Conversely, in the context-specific condition hippocampal activation was constant

across trials. We argue that the learning-related hippocampal activation pattern might be

due to reduced relational binding requirements once regularities are extracted. Further-

more, we propose that the learning-related prefrontal modulation reflects the requirement

to extract and maintain regularities across trials and the adjustment of object-position

conjunctions on the basis of the extracted knowledge. Finally, our data suggest that the

ventral striatum encodes the increased predictability of spatial features as a function of

learning. Taken together, these results indicate a transition of the relative roles of distinct

brain regions during learning regularities across multiple episodes: regularity learning is

characterized by a shift from a hippocampal to a prefrontal-striatal brain system.

7.1 Introduction

Episodic memory refers to the ability to remember specific events set in a spatio-

temporal context (Tulving, 1983). A large number of lesion studies (Zola et al., 2000)

and single cell recordings in animals (Fortin et al., 2002), as well as neuropsycholog-
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ical investigations (Yonelinas et al., 2002), intracranial EEG data (Fernández et al.,

1999) and functional imaging data in humans (Davachi et al., 2003) suggest that the

hippocampus as part of the medial temporal lobe memory system plays a crucial role

in encoding and retrieval of episodic memories. One influential view on hippocampal

function suggests that this brain region is critically involved in binding of different

features and events that compose episodic memories (Eichenbaum, 2000). For exam-

ple, it has been shown that hippocampal cells in the rat bind singular conjunctions

of episodic features, such as a specific odor occurring at a particular position (Wood

et al., 1999). Furthermore, the hippocampal binding mechanism has to prevent in-

terference between distinct episodes. One seminal framework (Norman & O’Reilly,

2003; O’Reilly & Norman, 2002) proposes that the hippocampus assigns distinct

(pattern-separated) representations to different episodes to minimize interference.

In a similar vein, Shastri (2002) proposes two levels of hippocampal binding: (1)

entities occurring in the event are bound to the roles they fill in the event, and (2)

all role-entity bindings defining an event are grouped together in order to separate

them from role-entity bindings of other events. To exemplify the first binding type

imagine the situation when a person paints a picture in a studio. In the representa-

tion of this specific episode the role ‘painter’ is bound to this particular person, the

role ‘location’ is bound to studio, and the role ‘object’ is bound to picture. Given

the episode that this person watches television in his apartment, the second level of

binding is required to distinguish both episodes.

How does the brain represent repeated overlapping features of episodes? In addition

to context-specific memories about particular episodes, individuals are able to ac-

quire knowledge about regularities across such specific episodes (Shanks & St. John,

1994). Several recent models have addressed this issue. For instance, it has been as-

sumed that this knowledge about regularities comprises a measure of the probability

that certain types of entities are bound to a certain role (Shastri, 2002). Moreover,

Eichenbaum (2000) assumes that particular hippocampal neurons are specialized

to represent features that are common across many episodes. In contrast, O’Reilly

and Norman (2002) suggest that the rhinal and parahippocampal cortices represent

regularities in the environment by assigning overlapping distributed representations
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to similar stimuli.

Recent neuroscientific research has begun to study the neural correlates of learning

regularities across specific episodes. For instance, studies using category learning

tasks in humans (Reber et al., 1998b; Strange et al., 2001) and monkeys (Freedman

et al., 2001) have identified the lateral prefrontal cortex (PFC) as a core structure in

mediating this kind of learning. In a study by Strange et al. (2001) subjects had to

learn abstract rules that define category membership of four-letter strings (e.g. ‘The

first two letters are always identical’). The lateral PFC was selectively engaged fol-

lowing rule change. Furthermore, Freedman et al. (2001) found category-sensitive

neurons in the monkey’s lateral PFC. After defining new categories based on the

same stimulus set, the same neurons then adaptively represented the new categories,

indicating that the lateral PFC is involved in the flexible detection of regularities in

this task.

Another line of evidence for prefrontal involvement in learning regularities comes

from artificial grammar learning research, where subjects acquire abstract knowl-

edge about the rules of a finite-state grammar (Cleeremans et al., 1998). Recent

functional imaging studies have implicated the lateral PFC in artificial grammar

learning (Fletcher et al., 1999; Opitz & Friederici, 2003). The lateral PFC also sup-

ports sequence learning, as indicated by findings from several fMRI studies (Aizen-

stein et al., 2004; Schendan et al., 2003). In these studies, subjects acquire knowledge

about a regular sequence of stimulus events. Moreover, the lateral PFC is associ-

ated with causal associative learning (Fletcher et al., 2001) and with the detection

of abstract sequence violations (Huettel, Mack & McCarthy, 2002). It also shows

learning-related activity during arbitrary rule learning (Toni et al., 2001; Wallis

et al., 2001). Despite the different tasks used in the above mentioned studies, taken

as a whole, these latter findings underscore the importance of the lateral PFC in

learning task-relevant regularities across different episodes, leading to the acquisi-

tion of abstract knowledge structures. However, it should be noted that the exact

location of lateral PFC activation varies between studies, depending on stimulus

properties and task requirements.

Using fMRI we investigated the neural correlates of context-specific and invariant
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memories, i.e. memory for invariant features of episodes, thereby bringing together

two research fields in cognitive neuroscience, episodic memory and rule learning.

More specifically, we were interested in brain areas responsible for the acquisition

of invariant memories by regularity learning. In each trial subjects were required to

learn four sequential object-position conjunctions (see Methods section and Figure

7.1). Subsequently, they had to indicate whether or not a probe stimulus was iden-

tical to one of the four object-position conjunctions (i.e. whether or not there is an

exact match of both stimulus features, the object and the position). In an invariant

learning condition, the positions were invariant within a block. That is, different

objects were presented at the same four positions in each trial of an experimental

block, thereby enabling the extraction of spatial regularities and the formation of

invariant memories. In a context-specific condition, in contrast, objects and posi-

tions were variable within experimental blocks, i.e. there were no spatial regularities

across trials, requiring the processing of unique object-position combinations from

trial to trial.

We expected enduring hippocampal activity in the context-specific condition, since

variable objects have to be bound to variable positions in each trial of the blocks

(constant binding requirements). In the invariant learning condition, in contrast, we

hypothesized reduced hippocampal activation as a function of time within blocks.

Here, variable objects have to be bound to invariant positions (reduced binding re-

quirements). Moreover, we expected a hippocampal-prefrontal shift of activity in

the invariant learning condition. More precisely, we assumed that the lateral PFC is

involved in the extraction of invariant spatial features and the flexible adjustment

of the extracted knowledge to the requirements of the ongoing task block. Thus, we

expected increased PFC activity in the invariant learning condition.

7.2 Materials and Methods

Subjects Ten subjects participated in the study (aged 21-32, mean age 27 years,

6 males). All subjects were right-handed with normal or corrected-to-normal vision

and were paid for participating. Informed consent was obtained before scanning. All
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participants reported to be in good health with no history of neurological disease.

One subject had to be excluded from further analysis due to technical problems

during fMRI acquisition.

Stimuli, Task, and Design Sixteen stimuli which consisted of basic shapes

(e.g. square, circle) were used as stimulus materials and were presented within a

4×4 grid, i.e. there were sixteen possible positions. Stimuli were back projected onto

a translucent screen that participants viewed through a mirror during fMRI acqui-

sition.

Within one experimental trial four different stimuli were presented sequentially at

four different positions. Each stimulus was delivered for 800 ms with a 500 ms in-

terstimulus interval (Figure 7.1a). After a short delay of 1300 ms a probe stimulus

was presented for 2000 ms at a particular position within the grid. Participants

had to indicate whether or not the current object-position conjunction (the probe

stimulus) was identical to one of the four object-position combinations seen before.

Responses were delivered by a button press with the right or left index finger (2000

ms response window) by means of MR-compatible response keys. Response-to-hand

mappings were counterbalanced across subjects. Visual feedback (500 ms) was given

by means of the color of a fixation cross (green = correct, red = false, yellow = time-

out), immediately after probe offset. Probes in each block (see below) comprised 50%

old (old object at old position) and 50% new object-position conjunctions (3 equally

distributed categories: old object/new position, new object/old position, and new

object/new position). An exponentially distributed intertrial interval (ITI) of 4-9 s

(mean: 5 s) which was varied in steps of 1 s was used in order to get an optimal

tradeoff between detectability and estimation efficiency of the BOLD response (Birn

et al., 2002; Hagberg et al., 2001).

After subjects had practiced 20 trials outside and ten trials in the scanner, they per-

formed 224 trials during the whole experiment. One experimental session comprised

seven blocks (16 trials each) in the context-specific condition and seven blocks in the

invariant learning condition. Blocks of both conditions were presented in random-

ized order with the constraint that participants had to perform at most two blocks
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of the same condition in succession. Subjects were informed about the beginning

of a new block. The sequence of blocks was balanced across subjects. In the invari-

ant learning condition, four positions were held constant within one experimental

block whereas in the context-specific condition, objects and positions were variable

across trials (Figure 7.1b). Within one invariant learning block the temporal order

of the four positions was randomized across trials. The fixed configuration of four

positions changed from block to block in the invariant learning condition. All other

parameters were held constant across both conditions. Before scanning, participants

were instructed that the detection and application of a rule would make the task

more easy and that this rule could change when a new block starts. Participants

were unaware of the experimental manipulation, i.e. the existence of two different

conditions.

Behavioral Analysis To get a first estimate for learning, mean Pr values (pro-

portion hits - proportion false alarms) (Feenan & Snodgrass, 1990) were computed.

Additional analyses were conducted for hits and false alarms. Furthermore, the false

alarms were broken down by the type of false alarm committed. In all behavioral

analyses, mean performance measures in the first and the last eight trials of each

block (i.e. the two halfs of the blocks) were averaged across all blocks separately for

both conditions.

Imaging Parameters A Siemens SONATA MR scanner (Erlangen, Germany)

operating at 1.5 Tesla with a standard circularly polarized whole head coil was

employed to acquire both T1-weighted structural images and T ∗
2 -weighted BOLD-

sensitive functional images. High-resolution (1 mm3 voxel size) structural images

were acquired using a 3-D MP RAGE sequence. Functional data were acquired using

a gradient-echo EPI pulse sequence, with the following parameters: TR = 1.8 s, TE

= 50 ms, flip angle = 85◦, slice thickness = 4 mm, interslice gap = 1 mm, in-plane

resolution = 3.5 × 3.5 mm, FoV = 224 mm, 20 axial slices parallel to AC-PC plane.

The first four volumes were discarded to allow for T1 equilibration.
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Figure 7.1. Trial and Block Structure of the Experiment. (a) Trial structure of the experi-
ment. Subjects learned four sequential relations among objects and positions within a 4 ×
4 matrix (grid not shown in the figure). Each stimulus was presented for 800 ms at a par-
ticular position with an interstimulus interval (ISI) of 500 ms. Subsequently, subjects were
probed and had 2000 ms to determine whether the probe stimulus was identical to one of
the four object-position combinations (i.e. an exact match of both stimulus features, the
object and the position). Visual feedback was given for 500 ms. In the present example,
the probe comprised an old object at a new position, therefore requiring a ‘new’ response.
(b) Block structure of the experiment. In the invariant learning condition, positions were
invariant in each trial of an experimental block, whereas in the context-specific condition,
objects and positions were variable in each trial. For illustration, one invariant position is
highlighted by circles. One experimental block comprised 16 trials. [Adapted from Doeller et

al. (in press). Copyright Oxford University Press (Cerebral Cortex).]
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Data Preprocessing FMRI time-series analysis was performed with Statistical

Parametric Mapping (SPM2; Wellcome Department of Imaging Neuroscience, Lon-

don, UK; http://www.fil.ion.ucl.ac.uk/spm/spm2.html). To account for the different

sampling time of the slices, voxel time series were corrected using sinc interpolation

and resampled using the middle slice as a reference point. All functional volumes

were motion corrected. Using a least squares approach and a 6-parameter rigid body

spatial transformation, realignment parameters were estimated. According to these

determined parameters all volumes were resliced to the first volume using B-spline

interpolation. After coregistering anatomical images to the mean functional image,

the resulting images were normalized (Ashburner & Friston, 1999) to the standard

T1 template based on the MNI reference brain (Cocosco et al., 1997), using a 12-

parameter affine transformation along with a nonlinear transformation (cosine basis

functions). Based on the determined parameters the normalization algorithm was

then applied to the functional volumes. Finally, the normalized images were resam-

pled into 2 mm isotropic voxels and spatially smoothed with an isotropic 8-mm

FWHM Gaussian kernel.

Basic Statistical Analysis Statistical analysis was performed in two stages in

a mixed-effects model. For each subject, neural activity in each trial for both con-

ditions was modeled by convolving a stimulus function, representing the onset of

each sample phase with a canonical hemodynamic response function (HRF) (Friston

et al., 1998a) (duration = 4.7 s) to cover the whole sample phase (epoch-related).

The sample phase comprised the four sequential object-position conjunctions in

each trial, including the interstimulus interval. To increase the power of our model,

we additionally modeled neural activity for the probe stimulus in each trial for

both conditions, using an event-related canonical HRF. For this purpose, an event

train of δ-functions, time-locked to the onset of each probe stimulus was convolved

with the canonical HRF. We assumed that learning-related neural activity should

be optimally reflected in the sample phase, when subjects encode and maintain

four object-position conjunctions. Thus, all analyses were restricted to the sample

phase. The time series in each voxel were high-pass filtered to 1
128

Hz to remove
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low-frequency noise and proportionally scaled to a grand mean of 100 over voxels

to remove effects due to global intensity fluctuations. Parameters for each covariate

were estimated by a least-mean-squares fit of the model to the time series using

a subject-specific fixed-effects model within the general linear model. During the

estimation procedure serial correlations were estimated with a restricted maximum

likelihood (ReML) algorithm using an AR(1) plus white noise model. In SPM2, the

ReML estimates (hyperparameters) are then used to correct for non-sphericity (Fris-

ton et al., 2002b). Parameter estimates for the linear contrasts of interest (i.e. the

direct contrasts of the invariant learning condition vs the context-specific condition

and vice versa) entered into a second-level analysis treating subject as a random ef-

fect, using a one-sample t-test against a contrast value of zero at each voxel (Holmes

& Friston, 1998). MNI-coordinates (Cocosco et al., 1997) of all reported activations

have been transformed to the canonical Talairach space (Talairach & Tournoux,

1988) (see http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html). In the direct

contrasts between both conditions, statistical parametric maps (SPMs) were thresh-

olded at p < 0.0005, uncorrected for multiple comparisons. In addition, an extent

threshold of 5 voxels was used to emphasize coherent activation.

Learning-Related Modeling In a second analysis step, we conducted a con-

dition × time interaction analysis and two parametric fMRI analyses to directly

investigate learning-related modulations of brain activity. To get a first estimate of

a differential learning-related activation pattern in both conditions, we conducted a

2 × 2 ANOVA with the factors condition and time (mean BOLD activity for trials

1-8 and 9-16 of the experimental blocks, separately for both conditions). This analy-

sis was restricted to the brain regions showing a main effect of condition in the basic

statistical analysis (p < 0.05, small volume corrected; see below). Given our a priori

hypotheses with respect to the hippocampus, this analysis was also conducted for

both hippocampi (p < 0.05, small volume corrected; see below).

In two subsequent parametric fMRI analyses, we examined learning-related acti-

vation pattern in more detail by incorporating subjects’ individual performance

and learning functions on a trial-by-trial level into the imaging analysis. In the
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first parametric analysis, we tested our a priori hypotheses that (a) the hippocam-

pus shows a learning-related decrease in activity in the invariant learning condi-

tion and (b) constant activity in the context-specific condition. In this analysis

subject-specific time series of each experimental block were weighted with subjects’

behavioral performance measure. To increase the sampling rate of the learning func-

tions, mean Pr values for four consecutive trials in each block (i.e. trials 1-4, 5-8,

9-12, and 13-16, respectively; see Figure 7.4d, upper panel for examples) were av-

eraged across all blocks, separately for both conditions, resulting in four time bins

for each subject and condition. The model functions were derived from each indi-

vidual’s learning curve by fitting a logarithmic function y = a · ln(ti) + b separately

for both conditions (see Figure 7.4d, lower panel for examples). The two original

condition-specific stimulus functions were multiplied by these parametric modula-

tion functions, leading to additional regressors (Büchel, Holmes, Rees & Friston,

1998), either reflecting learning-related increase or decrease in the invariant learn-

ing condition or continuously enduring hemodynamic activity in the context-specific

condition. Linear contrasts of the parameter estimates for each regressor were cal-

culated for each subject and brought to the second level random effects analysis. To

test our specific hypothesis about the differential hippocampal involvement in both

conditions, we performed a conjunction analysis (Friston, Holmes, Price, Büchel

& Worsley, 1999a) across subjects. Here, we used linear contrasts of the param-

eter estimates for the respective regressors in both conditions, i.e. the regressor

including a decreasing model function in the invariant-learning condition and the

regressor including a constant model function in the context-specific condition. This

analysis was restricted to the hippocampus proper. Hippocampal regions of inter-

est were determined a priori according to a detailed neuroanatomy atlas (Warner,

2001). An appropriate mask image was generated using the software package MRIcro

(http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html). Statistical tests

were corrected for multiple comparisons (p < 0.05, small volume corrected) (Wors-

ley et al., 1996). Statistical tests were corrected for multiple comparisons (p < 0.05),

using appropriate small volume corrections (Worsley et al., 1996). In a second para-

metric analysis, we examined whether brain regions showing a main effect of con-
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dition in the direct comparisons also exhibit learning-related changes of activation

in the invariant learning condition. Thus, learning-related increase and decrease of

activity in this condition was modeled. In this analysis, SPMs from the invariant-

learning > context-specific contrast and the context-specific > invariant-learning

contrast served as mask images, respectively (p < 0.05, small volume corrected).

7.3 Results

Behavioral Results Figure 7.2a shows mean Pr values (proportion hits - propor-

tion false alarms) (Feenan & Snodgrass, 1990), separately for the context-specific

and invariant learning condition, collapsed across experimental blocks and subjects.

In the invariant learning condition, Pr values increased within task blocks. This was

not the case in the context-specific condition. This observation was confirmed by a

two-way repeated-measure ANOVA with the factors condition (context-specific vs

invariant learning) and time (2 levels: mean Pr values for eight consecutive trials

each). This analysis revealed a main effect of time, F (1, 8) = 6.88, p < 0.05, and a

condition × time window interaction, F (1, 8) = 24.66, p < 0.005. Additional one-

way ANOVAs separately for both conditions showed a significant effect of time in

the invariant learning condition, F (1, 8) = 20.58, p < 0.005, but not in the context-

specific condition, F (1, 8) = 5.27, p < 0.1.

To elucidate in more detail the learning mechanisms and performance pattern in

both condition, additional analyses were conducted separately for the mean hit and

false alarm rates (Figure 7.2b-c). There was a condition × time window interaction

for hits, F (1, 8) = 7.04, p < 0.05, and false alarms, F (1, 8) = 5.85, p < 0.05. Fur-

thermore, a marginally significant increase of hits, F (1, 8) = 3.48, p < 0.1, and a

decrease of false alarms, F (1, 8) = 6.83, p < 0.05, within blocks could be observed in

the invariant learning condition. In contrast, in the context-specific condition, mean

hit rate, F (1, 8) = 1.27, p > 0.2, and mean false alarm rate, F (1, 8) < 1, remained

constant within blocks.

In our task, subjects can commit a false positive response by classifying as old an

old object at a new position, a new object at an old position, and a new object at
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a new position. Given this, we assumed that learning, i.e. the extraction of spatial

regularities, should be most clearly revealed by a reduction of false alarms to trials

that include new positions, since subjects could reject these probes solely on the

basis of their knowledge about the invariant positions. To examine this, the false

alarms in both conditions were broken down by the three types of errors described

above (Figure 7.2d-f). These supplementary analyses revealed a main effect of con-

dition, F (1, 8) = 38.95, p < 0.001, and a condition × time window interaction,

F (1, 8) = 7.69, p < 0.05, for false alarms to old objects at new positions (Fig-

ure 7.2d), but neither for false alarms to new objects at old positions (main effect:

F (1, 8) = 1.31, p > 0.2; interaction: F (1, 8) < 1; Figure 7.2e) nor for false alarms to

new objects at new positions (main effect and interaction: F (1, 8) = 2.29, p > 0.1;

Figure 7.2f). Note that the latter type of errors was rarely committed, causing this

non-significant effect (floor effect). Moreover, an analysis separately for both condi-

tions revealed that the false alarm rate to old objects at new positions decreased in

the invariant learning condition, F (1, 8) = 10.36, p < 0.05, but not in the context-

specific condition, F (1, 8) = 2.72, p > 0.1. This differential modulation of the false

alarm rates within the invariant learning condition confirms our initial hypothesis

that learning takes place in the form of strengthening the representation of invariant

positions within blocks.

Imaging Results: Basic Contrasts In a first step, we calculated direct con-

trasts between the context-specific and the invariant learning condition (Figure 7.3;

Table 7.1). In the direct comparisons, only regions that survived a statistical thresh-

old of p < 0.0005 (uncorrected) were considered significant. Regions that exhibited

greater activation for invariant learning trials than for context-specific trials were

considered to be sensitive for the formation of invariant memories. Several prefrontal

regions, including the inferior portion of the left middle frontal gyrus (Brodmann

Area [BA] 46; peak Talairach coordinates x, y, z: −40, 30, 24), the opercular part of

the right inferior frontal gyrus (BA 45; 40, 28, 19), the triangular part of the left

inferior frontal gyrus (BA 45; −57, 20, 17), and the right inferior frontal sulcus (BA

9; 36, 21, 25) were activated in the invariant learning relative to the context-specific
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Figure 7.2. Behavioral Results. Performance measures (± s.e.m.) are plotted as a function
of time within experimental blocks for the invariant learning (solid) and context-specific
condition (dashed), collapsed across all blocks and subjects. (a) Mean Pr values, (b) mean
hit rate, (c) mean false alarm rate. (d)-(f) The false alarms are further divided in three
categories, depending on the specific probe type, i.e. the mean false alarm rate for probes
including (d) an old object at a new position, (e) a new object at an old position, and
(f) a new object at a new position, respectively. The performance measure was averaged
across trials 1-8 and 9-16, respectively. [Adapted from Doeller et al. (in press). Copyright Oxford

University Press (Cerebral Cortex).]

condition. In addition to this lateral prefrontal pattern this contrast also revealed

activation in the right ventral striatum (26, 2,−7), the right inferior parietal lobule

(BA 40; 51,−42, 44 / 42,−56, 45), and the right lingual gyrus (22,−47, 2).

The comparison between the context-specific and the invariant learning condition re-

vealed enhanced activity in the left posterior cingulate cortex (BA 31; −20,−33, 48)

and along the right superior occipital sulcus (BA 19; center activity: 34,−75, 28). All

experimental trials were included in this analysis. When solely considering correct

responses in the analysis, a highly similar pattern for both contrasts could be ob-

served, with the exception that the left inferior parietal lobule additionally showed

a significant activation in the contrast between the invariant learning condition and

the context-specific condition (see Table 7.2 for details).
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Figure 7.3. Direct Comparisons between Conditions. SPMs superimposed on coronal sec-
tions of the MNI T1-weighted MRI template showing activated regions for the contrasts
comparing the invariant learning and the context-specific condition. Talairach y-coordinate
is given below each image, respectively. (a) Trials in the invariant learning condition re-
vealed greater hemodynamic activity than trials in the context-specific condition in the
left middle frontal gyrus (MFG), the opercular part of the right inferior frontal gyrus
(IFG), the triangular part of the left IFG, the right inferior frontal sulcus (IFS), the
right ventral striatum (VS), the right inferior parietal lobule (IPL), and the right
lingual gyrus (LG). (b) The left posterior cingulate cortex (PCC) and the right supe-
rior occipital sulcus (SOS) showed stronger BOLD responses in the context-specific
condition as compared to the invariant learning condition (for further details see Ta-
ble 7.1). [Adapted from Doeller et al. (in press). Copyright Oxford University Press (Cerebral Cortex).]

Imaging Results: Learning-Related Activity In accordance with the behav-

ioral analysis, we conducted a 2 × 2 ANOVA with the factors condition and time

(BOLD activity for trials 1-8 and trials 9-16 of the experimental blocks, separately

for both conditions) to get a first estimate of differential learning-related activa-

tion pattern in both conditions. This analysis was restricted to the hippocampus
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Table 7.1
fMRI Activation Foci: Direct Contrasts (All Trials). Regions activated in the direct con-
trasts between the context-specific and invariant learning condition (from anterior to pos-
terior), described in terms of Brodmann areas (BA), hemisphere (L, left; R, right), Ta-
lairach coordinates (mm; transformed from the MNI-space), and peak Z-score. All regions
pass the statistical threshold of p < 0.0005 (uncorrected). All trials were included in this
analysis.

Region BA Hemisphere Talairach Z -score

x y z

(1) Invariant Learning > Context-Specific

Inferior middle frontal gyrus 46 L -40 30 24 3.66

Inferior frontal gyrus (opercular part) 45 R 40 28 19 3.50

Inferior frontal gyrus (triangular part) 45 L -57 20 17 3.86

Inferior frontal sulcus 9 R 36 21 25 4.30

Ventral striatum – R 26 2 -7 3.67

Inferior parietal lobule 40 R 51 -42 44 3.58

40 R 42 -56 45 4.02

Lingual gyrus 30 R 22 -47 2 3.81

(2) Context-Specific > Invariant Learning

Posterior cingulate cortex 31 L -20 -33 48 4.11

Superior occipital sulcus 19 R 34 -74 28 3.76

and to the activation foci found in the direct comparisons between conditions (see

Methods). A subset of the regions showing a main effect of condition in the direct

comparisons also exhibited a significant condition × time interaction, including the

triangular part of the left inferior frontal gyrus (−57, 20, 17; zmax = 1.75), the left

posterior cingulate cortex (−16,−29, 47; zmax = 2.70), the right inferior parietal lob-

ule (48,−46, 48; zmax = 3.12), and the right lingual gyrus (24,−47, 1; zmax = 2.48).

Moreover, this analysis revealed a significant interaction between condition and

time in the right (24,−8,−10; zmax = 2.70 / 38,−20,−14; zmax = 2.53) and left

(−18,−10,−13; zmax = 3.41 / − 26,−18,−16; zmax = 4.46) hippocampus.

On the basis of the interaction between condition and time, suggesting a differen-

tial involvement of several brain regions in both conditions as a function of time, we
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Table 7.2
fMRI Activation Foci: Direct Contrasts (Correct Trials). Regions activated in the direct
contrasts between the context-specific and invariant learning condition. Only correct trials
were included in this analysis (for further details see Table 7.1 legend).

Region BA Hemisphere Talairach Z -score

x y z

(1) Invariant Learning > Context-Specific

Inferior middle frontal gyrus 46 L -40 28 24 3.75

Inferior frontal gyrus (opercular part) 45 R 40 28 19 3.66

Inferior frontal gyrus (triangular part) 45 L -55 26 19 3.88

Inferior frontal sulcus 9 R 36 21 25 4.22

Ventral striatum – R 28 4 -5 3.83

Inferior parietal lobule 40 R 54 -41 44 3.45

40 L -42 -45 41 3.77

40 R 40 -56 45 4.10

Lingual gyrus 30 R 22 -47 2 3.82

(2) Context-Specific > Invariant Learning

Posterior cingulate cortex 31 L -18 -35 46 4.06

Superior occipital sulcus 19 R 34 -74 28 3.70

further examined learning-related activation pattern in more detail by means of para-

metric fMRI analyses. For this purpose we weighted the fMRI time series separately

for both conditions with individually fitted logarithmic learning functions. Thereby

learning-related changes in hemodynamic activation could be modeled explicitly (see

Methods). All individual learning functions were well approximated by a logarithmic

function (mean functions and goodness of fit: y = 0.10 · ln(ti) + 0.67; R2 = 0.72

[invariant learning condition]; y = −0.07 · ln(ti) + 0.72; R2 = 0.71 [context-specific

condition]). In a first parametric analysis, we tested our a priori hypotheses about a

differential learning-related hippocampal activation pattern for both conditions. For

this purpose, we conducted the following conjunction analysis (Friston et al., 1999a),

restricted to both hippocampi (p < 0.05, small volume corrected): learning-related

decrease in the invariant learning condition and constant activity in the context-
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specific condition. This conjunction analysis revealed an activation of the right

hippocampus (34,−12,−16; Figure 7.4a; Table 3). As apparent from Figure 7.4a

(middle panel), the hippocampus showed continuously enduring activation within

blocks of the context-specific condition. To further control whether the hippocam-

pus was responsive across all trials in the context-specific condition, we conducted

a t-test against the null-hypothesis of no activation for the peak BOLD response of

the hippocampus. For each subject, the peak BOLD response was determined for

each trial of the blocks and subsequently averaged across all trials. This analysis

revealed a significant activation of the hippocampus, t(8) = 3.84, p < 0.01.

A second parametric analysis tested whether brain regions showing a main effect of

condition in the direct comparisons also exhibit a learning-related activation pattern

in the invariant learning condition. Thus, this analysis was restricted to the activa-

tion foci found in the direct comparisons between conditions (p < 0.05, small volume

corrected; see Methods). The triangular part of the left inferior frontal gyrus (BA

45; −53, 24, 19) and the right ventral striatum (28, 2,−7) showed learning-related

increases of activity within the experimental blocks (Figure 7.4b). In contrast, right

inferior parietal lobule (BA 40; 38,−56, 47) activity decreased as a function of learn-

ing within blocks (Figure 7.4c). Moreover, a learning-related decrease of activation

could be observed in the superior occipital sulcus (BA 19; 34,−76, 26). None of the

additional regions found in the direct comparison between both conditions exhibited

a learning-related activation pattern in this analysis.

7.4 Discussion

Our behavioral data show that subjects learned spatial regularities across trials

and did benefit from this knowledge in the invariant learning condition. This was

reflected in increased Pr values, due to increasing correct detection and decreasing

false alarm behavior relative to the context-specific condition during the time-course

of experimental blocks. The data also indicate that learning is based on reducing

false alarm responses to those probes that include new positions. Here, subjects

benefit most of all from learning spatial regularities, probably based on an enhanced
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Please see next page for Figure legend.
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Figure 7.4. Brain Regions Showing a Learning-related Activation Pattern. (a) Results of
the conjunction analysis. The right hippocampus (HC) showed constant activity in the
context-specific condition and decreased activity during the time course of learning in the
invariant learning condition. (b) Regions demonstrating increased learning-related activity
in the invariant learning condition included the opercular part of the left IFG and the
right VS. (c) Furthermore, the parametric analysis revealed a learning-related activation
decrease in the right IPL. Time courses of the best-fitting parametric BOLD response
relative to grand mean over voxels, time-locked to the sample phase onset against post-
stimulus time (PST) are plotted across trials of the experimental blocks. The response is
collapsed across experimental blocks and averaged across participants. For the conjunction
analysis (a), parametric BOLD responses are plotted for the hippocampus separately for
the context-specific (middle panel) and invariant-learning condition (right panel). For (b)
and (c), parametric responses are depicted on the left and right side of the structural scan,
respectively (for further details see Table 7.3). (d) Examples of learning functions (upper
panel) and model functions (lower panel) from three selected subjects (black, red, blue),
separately for the invariant learning (solid) and the context-specific condition (dashed).
Learning functions were derived by averaging mean Pr values for four consecutive trials
across all blocks separately for both conditions. The model functions were derived from
the individual learning functions by fitting a logarithmic function y = a · ln(ti)+b. [Adapted

from Doeller et al. (in press). Copyright Oxford University Press (Cerebral Cortex).]

Table 7.3
fMRI Activation Foci: Learning-related Activity. Regions showing a learning-related ac-
tivation pattern. (1) Conjunction analysis: learning-related decrease (invariant learning
condition) and constant activity (context-specific condition). (2-3) Regions with a learning-
related (2) increase and (3) decrease in the invariant learning condition. SPMs were thresh-
olded at p < 0.05 (corrected), using small volume corrections (for further details see Table
7.1 legend).

Region BA Hemisphere Talairach Z -score

x y z

(1) Conjunction Analysis

Hippocampus – R 34 -12 -16 1.73

(2) Learning-Related Increase

Inferior frontal gyrus (triangular part) 45 L -53 24 19 2.06

Ventral striatum – R 28 2 -7 1.88

(3) Learning-Related Decrease

Inferior parietal lobule 40 R 38 -56 47 2.37

Superior occipital sulcus 19 R 34 -76 26 2.34
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selectivity of the spatial representations (Yeshurun & Carrasco, 1998).

The fMRI results point to dissociable neural correlates for context-specific and in-

variant memories. In the parametric analysis the right hippocampus showed contin-

uously enduring activity in the context-specific condition, in which subjects encode

variable objects at variable positions. Importantly, when subjects benefit from learn-

ing invariant spatial features across trials right hippocampal activity decreased in the

invariant learning condition. Furthermore, we could dissociate a prefrontal-striatal-

parietal network supporting learning regularities. The lateral prefrontal cortex and

the ventral striatum showed a learning related increase of activity, whereas activity

in the inferior parietal lobule decreased as a function of learning.

Hippocampus and pattern-separated, relational representation It has been

proposed that the hippocampus uses sparse, pattern-separated representations to

encode arbitrary conjunctions or bindings of features defining an episode (O’Reilly

& Norman, 2002). This mechanism results in highly distinct, non-overlapping rep-

resentations of episodes and minimizes interference between episodes. In a similar

vein, Eichenbaum (2000) argues that the hippocampus is responsible for binding

multiple inputs and by this optimally represents the relations between temporally

and spatially disparate features comprising a complex episode (relational memory

framework) (Cohen & Eichenbaum, 1993; Cohen et al., 1999). Accordingly, in our

task four different objects have to be bound to four different positions and these

four object-positions bindings have further to be bound together in each trial to

provide a complete, relational representation of each episode. In accordance with

both frameworks (Eichenbaum, 2000; O’Reilly & Norman, 2002), in the present ex-

periment the hippocampus was activated continuously across experimental blocks in

the context-specific condition. Here, each trial comprised a unique episode, i.e. the

probability of each possible object-position conjunction was constant across trials,

resulting in highly variable feature conjunctions in each trial. Consequently, constant

hippocampal relational binding operations were required to encode unique episodes

into separated memory representations.

In the invariant learning condition, in contrast, there were four invariant positions in
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each block. Here, the relational binding requirements of each episode decreased dur-

ing the time-course of each block, since the probability for specific object-position

conjunctions was substantially increased (e.g. a specific object presented at one of

the four positions held constant in a block), whereas the probability for other object-

position conjunctions was reduced to zero (e.g. an object presented at one of the

remaining 12 positions never occurring in one block). Thus, invariant positions in

object-position conjunctions might cause a reduced relational representation of the

current episode. As the objects can be bound to the same positions within a block,

learning presumably results from facilitated object-position binding. The decreasing

hippocampal activation in the invariant learning condition may thus reflect these

lower relational binding requirements. It is important to note that in the invariant

learning condition a singular object-position conjunction is presented only once in

each block, i.e. is not repeated within one block. By this, our experimental manip-

ulation did not entail the repetition of a specific object-position conjunction. Thus,

the decrease of hippocampal activation cannot be attributed to a higher amount of

repetition of object-position conjunctions in the invariant learning condition.

This line of arguments is confirmed by previously observed decreased hippocam-

pal activity during the time-course of probabilistic cue-outcome learning (Poldrack

et al., 2001), associative learning (Zeineh et al., 2003), artificial grammar learning

(Opitz & Friederici, 2003), and sequence learning (Grafton et al., 1995; Schendan

et al., 2003). For instance, Schendan et al. (2003) could show a learning-related mod-

ulation of hippocampal activity using a serial reaction time task. Subjects learned

complex sequential structures of stimuli and responses. The authors observed activa-

tion of the hippocampus that was more pronounced during initial phases of learning

than in the final phase of learning. In line with the relational memory account (Co-

hen & Eichenbaum, 1993; Eichenbaum, 2000), Schendan and colleagues argue that

the hippocampus is involved in the acquisition of higher-order associations, i.e. re-

lations among temporally discontiguous events, most pronounced at the beginning

of learning. It is conceivable that in the Schendan et al. study as well as in our

study, relational representations of episodes get reduced due to overlapping episodic

features and by this less hippocampal relational processing is required.
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Moreover, the hippocampal activation was right-lateralized in the present study. Nu-

merous studies have demonstrated that the hippocampus mediates the processing of

spatial relationships (Burgess et al., 2002; Eichenbaum et al., 1999). Neuroimaging

and neuropsychological studies suggest a preferential role of the right hippocampus

in spatial memory (Maguire, Valentine, Wilding & Kapur, 2003; Smith & Milner,

1981) and spatial navigation (Burgess et al., 2001; Grön et al., 2000; Maguire et al.,

2000). Consistent with these findings, the present right hippocampal activation de-

crease in the invariant learning condition may reflect the lower spatial processing

requirements as compared to the context-specific condition, i.e. the processing of

invariant spatial features from trial to trial.

Given the small set of 16 objects and 16 positions used in the present study, it could

be argued that learning was not restricted to the invariant learning condition but

also took place in the context-specific condition. To test this hypothesis, we con-

ducted a post-hoc analysis, contrasting mean performance (Pr values) in blocks 1-3

with mean performance in blocks 5-7 for the context-specific condition. This anal-

ysis revealed no differences between both blocks (t(8) < 1; mean Pr: 0.65 ± 0.05

[block 1-3]; 0.66 ± 0.06 [block 5-7]). Furthermore, in an additional fMRI analysis

we contrasted hemodynamic responses in block 1-3 with block 5-7 (and vice versa)

in the context-specific condition. Hippocampal activation did not differ significantly

between the first and the last blocks (p < 0.05, small-volume corrected). These sup-

plementary analyses suggest that learning was absent or negligible and hippocampal

activation did not change across blocks in the context-specific condition.

Brain regions exhibiting greater activity for context-specific as compared to invari-

ant learning trials include the posterior cingulate cortex (PCC) and the superior

occipital sulcus (SOS). The PCC is part of the extended hippocampal diencephalic

system (Aggleton & Brown, 1999). The integrity of this system is a prerequisite

for successful memory operations. However, the precise function of the PCC is an

issue of current debate. Furthermore, the SOS as part of the dorsal visual processing

stream (Ungerleider & Mishkin, 1982) might be recruited due to processing variable

spatial features from trial to trial in the context-specific relative to the invariant

learning condition. In accordance with this view, SOS activity decreased during the
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time course of experimental blocks in the invariant learning condition, since spatial

processing requirements get reduced.

Lateral prefrontal cortex and learning regularities As predicted, lateral pre-

frontal regions were activated in the invariant learning relative to the context-specific

condition. Moreover, the triangular part of the left inferior frontal gyrus showed an

activation increase as a function of learning in the invariant learning condition.

Based on these results, we propose that the increase of lateral PFC activity in the

invariant learning condition reflects (1) the extraction and the maintenance of the

invariant positions across trials and (2) the adjustment of object-position conjunc-

tions in each trial on the basis of the extracted information, resulting in an efficient

encoding strategy.

First, we argue that the lateral PFC is involved in extracting task-relevant invariant

spatial features during the initial trials. After regularities are successfully extracted,

these regularities have to be actively maintained during the whole experimental

block. This view receives support from numerous studies demonstrating that the

lateral PFC plays a crucial role in active maintenance of information against dis-

traction (Miller, Erickson & Desimone, 1996; Sakai, Rowe & Passingham, 2002) and

in suppressing interference from varying sources (Bunge, Ochsner, Desmond, Glover

& Gabrieli, 2001; Mecklinger, Weber, Gunter & Engle, 2003). These processes are an

important prerequisite for rule extraction and formation and by this might mediate

rule-based learning (Ashby & Ell, 2001).

Second, during the time-course of the experimental blocks object-position conjunc-

tions could be reorganized in light of the representations of the extracted regularities.

Supporting evidence is provided by a recent fMRI study (Bor et al., 2003). When

subjects could integrate items into higher-level chunks, performance as well as lat-

eral prefrontal activity increased. In the same vein, lateral prefrontal regions showed

increased activity, when information is stored in a bound, rather than in a separated

representation (Prabhakaran, Narayanan & Gabrieli, 2000). In both studies, subjects

benefit from a reorganization of items during encoding. Lateral PFC involvement

has been consistently found during episodic memory tasks (Wagner, 2002). The lat-
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eral PFC has been posited to subserve specific control operations during memory

encoding, like the reorganization, evaluation, and manipulation of the items to be

memorized (Fletcher & Henson, 2001; Simons & Spiers, 2003). In a recent computa-

tional model of prefrontal memory control, Becker and Lim (2003) could show that

the PFC represents internal mnemonic codes, rapidly adjusted to current task re-

quirements. Furthermore, Becker and Lim’s simulations reveal that these mnemonic

codes evolve via reinforcement mechanisms during the time-course of the experi-

ment. In accordance with these accounts, we propose that the PFC is involved in

the adjustment of representations of incoming object-position conjunctions on the

basis of the extracted regularities, i.e. the knowledge of four invariant positions in

one block. It could be argued that the extracted regularities are represented as an

internal mnemonic code (Becker & Lim, 2003). In light of this mnemonic code,

object-position conjunctions are encoded more efficiently, as reflected in increased

PFC activity in the invariant learning as compared to the context-specific condition.

Moreover, the learning-related increase of lateral PFC activity indicates that this

process evolves across trials and by this entails increased task performance in the

invariant learning condition. Taken together, the dynamic PFC activation pattern

seems to reflect the implementation of an efficient encoding strategy in the face of

task-relevant regularities. These data underscore the special importance of the lat-

eral prefrontal cortex during regularity learning.

Beyond the lateral prefrontal cortex right ventral striatum activity increased as a

function of learning. The ventral striatum as part of the basal ganglia has been asso-

ciated with habit learning, the gradual acquisition of stimulus-stimulus and stimulus-

response associations (Jog et al., 1999; Packard & Knowlton, 2002), e.g. during

probabilistic classification learning (Knowlton et al., 1996; Poldrack et al., 2001)

and sequence learning (Schendan et al., 2003; Willingham et al., 2002). It has

been proposed that the striatum and the hippocampus comprise interactive mem-

ory systems, specialized for distinct memory processes, namely relational binding of

features defining episodes (hippocampus) and the acquisition of stimulus-stimulus

associations (striatum), respectively (Packard & Knowlton, 2002; Poldrack et al.,

2001; Poldrack & Packard, 2003). This is in accordance with the complementary
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learning-related activation pattern observed in the hippocampus and the ventral

striatum, respectively. Hippocampal activity decreased, whereas ventral striatal ac-

tivity increased as a function of learning.

Another line of neurophysiological (Lauwereyns et al., 2002a; Waelti et al., 2001) and

neuroimaging research (McClure et al., 2003; O’Doherty et al., 2003) suggests that

the mesolimbic dopamine system and its main target areas, especially the striatum,

play a pivotal role during classical conditioning. Based on assumptions of formal

reinforcement learning theories (Rescorla & Wagner, 1972; Sutton & Barto, 1990),

it has been proposed that these brain regions represent predictions of future reward

delivery and by this drive learning of associations between stimuli (Schultz, 2002).

In accordance with these views, it is conceivable that the observed learning-related

activation of the right ventral striatum might reflect the processing of increased pre-

dictability of spatial features during the time-course of learning. It could further be

argued that these modified expectations of positions serve as internal reinforcement

signals supporting regularity learning (Koechlin et al., 2002; Schultz, 2002). More-

over, it has been proposed that mesolimbic reinforcement signals provided to the

PFC play a crucial role in maintaining and updating of prefrontal memory represen-

tations (Cohen, Braver & Brown, 2002; Miller, 2000). Thus, it could be speculated

that bottom-up reinforcement signals from mesolimbic and striatal dopamine neu-

rons, sensitive to the predictability of spatial features might modulate processing in

higher-level brain structures like the PFC (Schultz, 2002). On the basis of these re-

inforcement signals the PFC might implement an efficient encoding strategy (Becker

& Lim, 2003).

The right inferior parietal lobule (IPL) showed stronger BOLD responses in the in-

variant learning as compared to the context-specific condition. However, in contrast

to the PFC, the IPL activation decreased as a function of learning. The parietal

cortex is assumed to be a core structure for attentional-based selection and repre-

sentation of spatial features (Gottlieb, 2002). In addition, the right lingual gyrus

was activated in the invariant learning condition. Similar to the IPL, this region

has been associated with attentional feature processing (Hopfinger, Buonocore &

Mangun, 2000). In light of these findings, we assume that the IPL is involved in
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the allocation of attention to upcoming positions and in maintaining an attentional

set (Corbetta & Shulman, 2002) across trials and by this supports the extraction

of spatial regularities. During the time-course of experimental blocks, attentional

maintenance requirements get reduced as reflected in a decrease of IPL activity.

To summarize, the present results point to a dynamic interplay between medial tem-

poral, striatal, and lateral prefrontal brain regions during the formation of invari-

ant memories. During initial trials, the right hippocampus is involved, since unique

object-position conjunctions require hippocampal relational binding processes. After

regularities are extracted, hippocampal activation decreases as a function of learn-

ing due to the reduced relational binding requirements. In contrast, both the lateral

PFC and the ventral striatum showed a learning-related increase of activity. How-

ever, further studies will be required in order to examine the differential involvement

of the hippocampus, the striatum, and the lateral PFC in other forms of regular-

ity learning. In conclusion, these data indicate a transition of the relative roles of

distinct neural systems during the time-course of learning, i.e. learning is accompa-

nied by a shift from a hippocampal to a prefrontal-striatal brain system (Opitz &

Friederici, 2003; Poldrack et al., 2001).
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In Experiment 1A, regularity learning in the spatial domain was accompanied by a

transition from a hippocampal to a prefrontal striatal brain system. In the present

Experiment 1B, the question was addressed whether the observed behavioral and

neural pattern could be replicated for regularity learning in another domain. More

precisely, is regularity learning a domain-general or a domain-specific mechanism?

1This Chapter contains the following manuscript: Doeller C. F., Opitz B., Krick, C. M.,

Mecklinger, A., & Reith, W. (in preparation). Domain-specific hemispheric special-

ization of the hippocampus during learning regularities across episodes. For stylistic

reasons the format was adapted. In the following, this study will be referred to as Experiment

1B. This work was supported by grants from the German Research Foundation (DFG; Research

Group FOR-448). The authors wish to thank Patric Meyer for comments on an earlier version of

this manuscript.
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Therefore, invariant objects in object-position conjunctions were introduced in the

IL condition. All other task and design parameters were held constant as compared to

Experiment 1A.

Abstract It is a widely held view that the hippocampus plays a crucial role during

building episodic memories. However, it is still controversial which brain regions subserve

the representation of regularities across episodes. In a recent study (Doeller et al., in

press2), in which subjects had to learn object-position conjunctions in several trials, learn-

ing spatial regularities across episodes was accompanied by a shift from a hippocampal to a

prefrontal-striatal brain system. Based on the evidence for a domain-specific lateralization

of the hippocampus during memory encoding, the present fMRI study aimed at specifying

whether a hemispheric specialization also holds for regularity learning. Thus, in contrast to

invariant positions in our previous study we introduced invariant objects in object-position

conjunctions across trials in the present study. In showing a learning-related increase of

prefrontal-striatal activity and a decrease of hippocampal activity, the present findings

resembled the results of our previous study. Most notably, relative to a right-lateralized

activation decrease during learning invariant spatial features, learning invariant objects

was associated with a decrease of bilateral hippocampal activation. These data indicate a

domain-specific hemispheric specialization of the hippocampus during regularity learning,

possibly reflecting hippocampal sensitivity to perceptual attributes of invariant episodic

features.

8.1 Introduction

The formation of episodic memory critically depends on the integrity of the hip-

pocampus within the medial temporal lobe, MTL (Squire, 1992). The importance of

this brain region for memory processes has been highlighted by studies using a wide

variety of neuroscientific methods in animals (Fortin et al., 2002, 2004; Wirth et al.,

2003) as well as in humans (Davachi et al., 2003; Fernández et al., 1999). Recent neu-

roimaging research provides evidence for a domain-specific lateralization within the

2Experiment 1A
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human MTL during memory encoding (cf. Paller & Wagner, 2002). Later successful

memory performance has been associated with left hippocampus/MTL activation

during encoding in the verbal domain (Golby et al., 2001; Kirchhoff et al., 2000; Ot-

ten et al., 2001), with bilateral hippocampus/MTL activation in the figural domain

(Golby et al., 2001; Kelley et al., 1998, see also Stern et al., 1996), and with right

(and bilateral) activation in the spatial domain (Golby et al., 2001; Kelley et al.,

1998; Kirchhoff et al., 2000). Furthermore, recent imaging studies reported right

hippocampal involvement during spatial navigation and spatial memory (Maguire

et al., 1998, 2003, cf. Burgess et al., 2002).

In his relational memory account, Eichenbaum (2000) proposes that the hippocam-

pus is involved in binding different features defining episodes (see Giovanello et al.,

2004; Preston et al., 2004, for recent fMRI evidence for hippocampal involvement in

relational memory binding). However, less is known about the role of MTL struc-

tures in learning invariant episodic features, i.e. regularities across multiple episodes.

In a recent fMRI study, we investigated the neural correlates of learning spatial regu-

larities across episodes (Doeller et al., in press). In each trial of several experimental

blocks, subjects had to learn object-position conjunctions. The design of the exper-

iment comprised two conditions, a context-specific (CS) and an invariant learning

(IL) condition. In the CS condition, objects and positions were variably mapped

across trials. In contrast, in the IL condition positions were held constant in each

trial of the experimental blocks, enabling subjects to extract spatial regularities

across trials, i.e. invariant positions in object-position conjunctions. The introduc-

tion of invariant spatial features entailed increased performance across trials. Our

imaging results indicate that this performance increase is mediated by a shift from a

hippocampal to a prefrontal-striatal brain system. Left prefrontal and right striatal

(ventral putamen) brain regions showed a learning-related activation increase across

trials, whereas right hippocampal activation decreased as a function of learning. We

argued that the learning-related right hippocampal activation pattern reflects re-

duced relational binding requirements once spatial regularities are extracted. Given

the evidence for right hippocampus’ preferential role in spatial memory, these data

further indicate that the right-lateralized hippocampal activation decrease is pre-
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sumably due to reduced binding of spatial features in object-position conjunctions.

In contrast to invariant positions (Doeller et al., in press), in the present study

we examined the role of the hippocampus in learning invariant objects in object-

position conjunctions in the same task. Given the aforementioned domain-specific

hemispheric asymmetry of the hippocampus during memory formation, we addressed

the question, whether this hemispheric specialization of the hippocampus also holds

for learning regularities across episodes. Stimuli, task, and design parameters were

identical as in the previous experiment, with the following critical exception: In

contrast to Doeller et al., in press, objects, not positions were held constant within

experimental blocks in the IL condition. No changes were made in the CS condition

(see Figure 8.1a and Methods).

8.2 Materials and Methods

Eight right-handed subjects participated in the study (aged 22-29, mean age 25

years, 4 females). Informed consent was obtained before the experiment. Sixteen ob-

jects (basic shapes, e.g. square, circle, trapeze; black and white, filled and unfilled)

were used as stimulus material. As shown in Figure 8.1a, in the sample phase of

each trial four different objects were presented sequentially at four different posi-

tions within a 4×4 grid (grid not shown in the figure). Stimuli were presented for

800 ms with a 500 ms interstimulus interval. After a brief delay (1300 ms), subjects

were probed for 2000 ms and had to indicate whether or not the probe stimulus

was identical to one of the four object-position conjunctions presented in the sample

phase, followed by a variable intertrial interval (4-9 s; mean = 5 s; including visual

feedback for 500 ms). The whole experiment included seven blocks in the CS and

seven blocks in the IL condition, which in turn comprised 16 trials. In the IL con-

dition, the four objects presented in each trial were held constant across all trials

of one block, i.e. the same four objects were presented in each trial of one block.

In contrast, in the CS condition objects and positions were variably mapped across

trials. Blocks of both condition were presented in randomized order.

BOLD-sensitive, T ∗
2 -weighted functional images and T1-weighted structural images
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(MPRAGE) were acquired at 1.5 T (Siemens Sonata; TR = 1.8 s, TE = 50 ms, flip an-

gle = 85◦; 20 slices; voxel size: 3.5 × 3.5 × 4 mm). Analysis was performed with SPM2

(http://www.fil.ion.ucl.ac.uk/spm/spm2.html). Standard preprocessing procedures

were applied, including correction for slice acquisition time and motion, coregis-

tration of anatomical to functional images, normalization to the MNI T1 standard

template, resampling into 2 mm isotropic voxels, and spatial smoothing (FWHM =

8 mm). Time-series were analyzed with a two-stage random effects analysis. At a

first level, for each trial of both conditions trial-specific effects were modeled using

a canonical HRF for the sample phase (epoch-related; duration = 4.7 s) and the

probe phase (event-related), respectively. Additional parametric analyses were con-

ducted. Here, subject-specific time series of each experimental trial were weighted

with logarithmic fitted individual learning functions (Pr values for four consecutive

trials, averaged across all blocks), separately for both conditions. Linear contrasts

of the parameter estimates for each regressor were calculated for each subject and

brought to the second level random effects analysis. Data were high-pass filtered to

1
128

and scaled for global activity. All analyses were restricted to the sample phase.

MNI-coordinates of all reported activations have been transformed to the canoni-

cal Talairach space (http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html). See

Doeller et al., 2004, for a detailed description of the methods.

8.3 Results

In the behavioral analysis, a repeated-measures ANOVA with the factors condition

(IL vs CS) and time (trials 1-8 vs 9-16 within blocks) revealed constant Pr values

(hits - false alarms) in the CS condition across trials within blocks, F (1, 7) < 1,

whereas Pr values tended to increase across trials in the IL condition, F (1, 7) =

4.25, p < 0.08 (Figure 8.1b). Furthermore, the mean hit rate increased in the IL

condition, F (1, 7) = 7.02, p < 0.05, but not in the CS condition, F (1, 7) = 2.67, p >

0.1. Finally, separate analyses of false alarms for probes including (a) a new object

at an old position and (b) an old object at a new position revealed a marginally

significant condition × time interaction for (a), F (1, 7) = 5.17, p < 0.06, but not
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for (b), F (1, 7) < 1. Thus, relative to the CS condition the false alarm rate in the IL

condition selectively diminished for probes including a new object at an old position,

since subjects could reject these specific probes solely on the basis of the knowledge

of invariant objects. In summary, these data indicate that learning occurred only in

the IL condition.

Figure 8.1. Experimental Procedure and Behavioral/Imaging Results. (a) Trial and block
structure of the experiment. In each trial (horizontal), four objects were presented sequen-
tially at four positions during the sample phase. Upon probe presentation, subjects had to
indicate whether or not the probe stimulus was identical to one of the four object-position
conjunctions seen before. Each block comprised 16 trials (vertical). In the blocks of the IL
condition (shown in the Figure), objects were held constant in each trial of one block. For
illustration, one invariant object is highlighted by circles. In contrast, in the CS condition
object-position conjunctions were trial-unique. (b) Mean Pr values (hits - false alarms; ±
s.e.m.) are plotted as a function of trial within experimental blocks for the IL condition
(solid) and the CS condition (dashed), collapsed across all blocks. Pr values were averaged
across trials 1-8 and 9-16, respectively. (c) The left hippocampus (−24,−29,−2) and the
right hippocampus (30,−31,−7) showed weaker BOLD responses in the IL relative to the
CS condition. The SPM is superimposed on a coronal section of the MNI T1-weighted MRI
template.

On the basis of our a priori hypothesis and the results of our previous study (Doeller

et al., in press), in the imaging analysis specific regions of interest sensitive to regu-

larity learning were selected a priori: the hippocampus, the putamen, and the lateral

inferior/middle frontal gyrus. Statistical tests were corrected for multiple compar-

isons, using appropriate small volume corrections (SVC; p < 0.05; Worsley et al.,

1996). To get a first estimate of differential hippocampal involvement in both condi-

tions, we contrasted activity in the CS with activity in the IL condition (related to

the sample phase, see Methods). As apparent from Figure 8.1c, the left hippocampus

(−24,−29,−2; zmax = 2.84) and the right hippocampus (30,−31,−7; zmax = 2.03)
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showed a deactivation in the IL relative to the CS condition. In addition, in this

contrast a higher amount of deactivated voxels could be observed in the left as com-

pared to the right hippocampus (29 vs 10).

In a next analysis step, regions showing a learning-related activation pattern in

the IL condition were identified using a parametric analysis. For this purpose, we

weighted the fMRI time series with individual learning functions (see Methods).

This analysis revealed a learning-related activation decrease in the left hippocam-

pus (−24,−30,−9; zmax = 1.95) and in the right hippocampus (38,−24,−6; zmax =

2.09). As apparent from Figure 8.2a, the BOLD response in both hippocampi de-

creased across trials. This observation was confirmed by a t-test contrasting the mean

peak BOLD response elicited by the first trial of the blocks with the hemodynamic

signal associated with the last trial of the blocks, separately for both hippocampi

(left: t(7) = 4.31, p < 0.005; right: t(7) = 5.54, p < 0.001). It is noteworthy, that

the bilateral hippocampal activation decrease could be observed in every subject

(Figure 8.2b), emphasizing the robustness of this effect. To investigate differential

hemispheric involvement in more detail, we compared the effect size (parameter esti-

mate of the above parametric analysis) observed for the left and right hippocampus,

separately for the present experiment (object regularities) and our previous study

(spatial regularities; Doeller et al., in press). This analysis revealed no differences

between hemispheres during learning object regularities (p > 0.9), however we found

higher effect sizes for the right as compared to the left hippocampus during learning

spatial regularities (p < 0.05; Figure 8.3).

In accordance with the results of our previous study (Doeller et al., in press), in

the parametric analysis the right putamen (−28,−1, 13; zmax = 3.11) and the left

middle frontal gyrus (BA 8; −46, 12, 38; zmax = 3.01) showed a learning-related

activation increase across trials in the IL condition.

8.4 Discussion

In this study, we investigated the neural correlates of learning invariant objects

in object-position conjunctions across multiple trials. In showing a learning-related
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Figure 8.2. Learning-related Activation Pattern of the Hippocampus. (a) For the left
(−24,−30,−9) and right (38,−24,−6) hippocampus, time courses of the best-fitting para-
metric BOLD response are plotted across trials of the experimental blocks in the IL con-
dition, relative to grand mean over voxels and time-locked to the sample phase onset
against post-stimulus time (PST). (b) Single subject data showing learning-related tem-
poral changes of left and right hippocampal activity. Peak signals of individual parametric
BOLD responses are plotted across the first and the last trials of the experimental blocks
in the IL condition, separately for subjects #1-#8.

increase of activity in lateral prefrontal and striatal regions and a learning-related

decrease of hippocampal activity, we could replicate the results of our previous study

(Doeller et al., in press). Whereas the left prefrontal and right striatal activity re-

sembled the activation pattern found during learning spatial regularities (Doeller

et al., in press), a hemispheric asymmetry could be observed in the hippocampus for

learning spatial relative to object regularities. In contrast to the right-lateralized ac-
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Figure 8.3. Across Experiment Comparison. Mean effect size (parameter estimate) of the
parametric analysis (± s.e.m.), separately for both hippocampi (L vs R) and experiments
(left: object regularities [the present study]; right: spatial regularities [Doeller et al., in
press]).

tivation in our previous study, the hippocampus showed a bilateral learning-related

activation pattern in the present experiment.

In terms of the relational memory framework (Eichenbaum, 2000), in each trial of

the present task four objects have to be bound sequentially to four positions. Fur-

thermore, an exhaustive representation of the whole episode (i.e. the four object-

position conjunctions in one trial) requires pattern separation of the specific conjunc-

tions defining this episode (O’Reilly & Norman, 2002). We argue that the learning-

related decrease of hippocampal activation reflects lower binding requirements in

the IL condition, since invariant objects could be bound to variable positions. It

might be possible, that long-term potentiation in the hippocampus (cf. Malenka

& Nicoll, 1999) could serve as the molecular mechanism underlying the reduction

of relational binding and by this might support regularity learning. Conversely, in

the CS condition, trial-unique object-position bindings have to be encoded. Thus,

relational binding requirements remain constant across episodes, as indicated by en-

hanced hippocampal activity in the CS relative to the IL condition.

In addition to the aforementioned fMRI studies, supporting evidence for a domain-

specific lateralization is provided by patient studies, suggesting a preferential role

of the left hippocampus for verbal memory (Frisk & Milner, 1990) and of the right
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hippocampus for spatial memory (Smith & Milner, 1981). Furthermore, in patients

with Alzheimer’s disease left hippocampal volume is correlated with verbal memory

recall, whereas right hippocampal volume is correlated with spatial memory recall

(de Toledo-Morrell et al., 2000, but see Helmstaedter, Brosch, Kurthen, and Elger,

2004, and Richardson, Strange, Duncan, and Dolan, 2003, for recent evidence for

a hemispheric reorganization of verbal memory function following left hippocam-

pal pathology). One possible explanation for the hippocampal lateralization during

memory formation was provided by Golby et al., 2001. The authors argue that the

lateralization depends on the availability of verbal codes. Moreover, an influential

theory proposes that memory encoding is subserved by two independent subsystems,

a verbal and a non-verbal processing system (Paivio, 1986). In accordance with these

views, it could be speculated that objects, in contrast to positions, could be more

easily transformed into verbal codes and that these verbal codes are more easily

accessed for objects than for positions. Consequently, objects might induce both

verbal and non-verbal codes, whereas the representation of spatial features might be

predominantly based on non-verbal codes. Thus, the observed bilateral hippocam-

pal activation decrease during learning object relative to spatial regularities might

be due to reduced binding of verbally and non-verbally coded object features in

object-position conjunctions. However, future work is required to address this issue

in more detail.

The domain-specific hippocampal specialization during regularity learning is consis-

tent with the hemispheric asymmetry during memory encoding (e.g. Golby et al.,

2001), thus indicating that the hippocampal contribution to regularity learning and

memory encoding might be based on highly similar mechanisms. Furthermore, this

hemispheric asymmetry might suggest that the hippocampus operates in a stimulus-

driven processing mode, sensitive to perceptual attributes of invariant episodic fea-

tures. This stimulus-driven processing mode is possibly mediated by projections

from distinct visual brain regions via the rhinal cortex, providing information about

various stimulus attributes to the hippocampus (cf. Murray & Bussey, 1999).

Similar to the hippocampus, there is also evidence for a domain-specific lateralization

in the prefrontal cortex (PFC) during memory formation (Golby et al., 2001; Kelley



8.4. DISCUSSION 145

et al., 1998), i.e. left PFC regions have been associated with phonological memory

operations, whereas right PFC areas have been implicated in visuo-spatial memory

processes (cf. Wagner, 2002). Interestingly, we could not observe any hemispheric

differences between our experiments with respect to the PFC. During learning ob-

ject regularities as well as during learning spatial regularities (Doeller et al., in

press), prefrontal activation foci were left-lateralized. Thus, prefrontal operations

involved during regularity learning seem to be, at least partially different from those

supporting memory formation. In contrast to the bottom-up, stimulus-driven hip-

pocampal operations, the prefrontal cortex might mediate regularity learning in

a top-down manner by means of more abstract, rule-driven operations (Opitz &

Friederici, 2003, 2004; Strange et al., 2001; Wallis et al., 2001). However, it is note-

worthy that two recent fMRI studies (Dobbins, Simons & Schacter, 2004; Mitchell,

Johnson, Raye & Greene, 2004) indicate that PFC laterality during memory re-

trieval rather depends on the type of retrieval process than on the domain of the

material being retrieved. In both studies, the left lateral PFC was recruited during

monitoring specific memory contents, whereas the right lateral PFC was preferen-

tially engaged during heuristic memory retrieval operations. However, beyond the

area of memory further research is required to investigate whether distinct learning

operations might differentially rely on the left and the right PFC, respectively.

In summary, the present findings suggest a domain-specific hemispheric specializa-

tion of the hippocampus during regularity learning, thus indicating that the hip-

pocampus is sensitive to invariant perceptual stimulus features defining regularities

across multiple episodes.
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In Experiment 1A and 1B, regularity learning was reflected in an increase of perfor-

mance across trials within blocks in the invariant learning condition. On a behavioral
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level, differences could be observed between regularity learning in the spatial and ob-

ject domain, especially with respect to a selective decrease of false alarms for probes

including new positions and objects, respectively. The aim of the present series of be-

havioral experiments was to investigate the cognitive processes involved in regularity

learning in more detail.

Abstract It is an issue of current debate which brain structures support regularity

learning. In a previous fMRI study2 we could show that prefrontal-striatal brain regions

are involved in learning spatial regularities across episodes, whereas hippocampal activity

decreased as a function of learning. In a follow-up study,3 we examined the neural corre-

lates of learning object regularities. In comparison to our previous study we found neural

and behavioral differences between both stimulus domains. Based on these results, we con-

ducted six behavioral experiments investigating the cognitive processes underlying object

regularity learning in more detail which will be described in this chapter. In each trial of

the experiments, subjects had to learn object-position conjunctions. Crucially, objects in

object-position conjunctions were held constant across trials of experimental blocks, en-

abling subjects to learn regularities across episodes. More precisely, we investigated the in-

fluence of object distinctiveness (Experiment 2A-2B), memory load and learning duration

(Experiment 2C-2E), and the effect of simultaneous object-position bindings (Experiment

2F) on learning object regularities in object-position conjunctions. Our data indicate that

the increase of object distinctiveness mainly affects overall memory performance, whereas

manipulation of the learning duration and the memory load affects the learning process.

9.1 Introduction

In Experiment 1A (Chapter 7), subjects showed increased performance across trials

in the invariant learning condition, but not in the context-specific condition. Dur-

ing learning spatial regularities, lateral prefrontal and striatal activity increased,

whereas hippocampal activity decreased. In Experiment 1B (Chapter 7), the behav-

2Experiment 1A

3Experiment 1B
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ioral and imaging results of Experiment 1A could be replicated. In contrast to the

context-specific condition, increased performance could be observed in the invari-

ant learning condition. Moreover, learning object regularities was accompanied by

a learning-related activation increase of prefrontal-striatal brain regions and by a

learning-related decrease of hippocampal activity. In contrast to a right-lateralized

hippocampal dynamic during learning spatial regularities, learning object regular-

ities was associated with a more bilateral (left-pronounced) hippocampal activa-

tion decrease. However, learning effects were slightly more pronounced in Exper-

iment 1A as compared to Experiment 1B. When contrasting performance in the

invariant learning condition of both experiments, separately for the first and the

last half of the experimental blocks, performance did not differ in the first half

(t(15) = 1.01, p > 0.3; mean Pr values: 0.70 ± 0.03 [Experiment 1A], 0.64 ± 0.04

[Experiment 1B]), but in the second half (t(15) = 2.12, p < 0.06; mean Pr values:

0.81 ± 0.03 [Experiment 1A], 0.72 ± 0.03 [Experiment 1B]). Several explanations

of these findings remain possible. For instance, these data might suggest that learn-

ing object regularities evolves slower as compared to learning spatial invariances. It

might also be possible that objects and by this object regularities are less distinc-

tive as compared to positions. Consequently, the behavioral experiments described

in this chapter aimed at specifying in more detail the cognitive processes underlying

learning object regularities.

In a series of six behavioral studies the effect of object distinctiveness on learning

effects were investigated by means of using different object features (Experiment

2A) and different object types (Experiment 2B). By this, the detection of regulari-

ties should be facilitated. Furthermore, several critical changes of the core paradigm

were made, especially increased memory load (increased number of object-position

bindings) in each trial and increased block length to cover the learning phase more

widely (Experiment 2C and 2D). Finally, the interaction of object distinctiveness

and learning phase (Experiment 2E) and the effect of simultaneous object-position

bindings (Experiment 2F) on regularity extraction was investigated in more detail.
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9.2 General Methods

Stimuli, Task, and Design In all six behavioral experiments described in this

chapter, 16 different objects were used as stimulus material. Stimuli in Experiment

2A consisted of basic shapes, presented in four different colors. In Experiment 2B-2D,

pictures denoting real-life objects were used as stimulus material. Abstract objects

were used in Experiments 2E and 2F. Within one experimental trial, stimuli were

presented within a 4 × 4 grid, i.e. there were sixteen possible positions. In each

trial, four (Experiment 2A-2B) or six stimuli (Experiment 2C-2F) were presented

sequentially (Experiment 2A-2E) or simultaneously (Experiment 2F) during a sam-

ple phase (cf. Figure 6.1). After a short delay a probe stimulus was presented at

a particular position within the grid. Participants had to indicate whether or not

the probe stimulus was identical to one of the object-position combinations seen be-

fore during the sample phase. Responses were delivered by a button press with the

right or left index finger. In all experiments, visual feedback was given for 500 ms.

Stimulus type, number of stimuli presented in the sample phase, stimulus duration,

interstimulus (ISI) interval, delay duration, and probe duration were selectively ma-

nipulated in the experiments (see Table 9.1). Each experimental session comprised

several blocks in the invariant learning condition. Each of these blocks comprised

16-36 trials. In these blocks, objects were held constant across trials, i.e. in each trial

of one block, the same objects were presented. In contrast, positions were selected

randomly from trial to trial. The temporal order of the invariant objects was ran-

domized across trials of one block. The configuration of objects held constant across

trials of one block changed from block to block. Participants were informed about the

beginning of a new block. In Experiment 2A and 2B, in addition to the invariant

learning condition, the design comprised a second condition, the context-specific

condition. Here, object-position conjunctions were unique in each trial, i.e. there

were no object regularities across trials. Blocks of both conditions were presented in

randomized order in Experiment 2A and 2B. The sequence of blocks was balanced

across subjects. Volunteers were paid or were given course credit for participating.

Informed consent was obtained before the measurements (see also Methods sections
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for each experiment).

Table 9.1
Task and Design Parameters of Experiment 2A-2F

Exp. Stimuli Stimuli/ Stimulus Presen- ISI Delay Probe Trials/ Blocks Subjects Age
sample duration tation [ms] [ms] duration blocks
phase [ms] format [ms]

2A basic 4 800 sequ. 500 1300 2000 16 7 (per 16 (11 17-35
shapes cond.) female) (24)

2B real-life 4 800 sequ. 500 1300 2000 16 7 (per 16 (10 19-33
objects cond.) female) (23)

2C real-life 6 800 sequ. 500 1300 2000 36 6 16 (8 19-27
objects female) (22)

2D real-life 6 500 sequ. 0 2000 1000 36 6 16 (13 19-28
objects female) (24)

2E abstract 6 500 sequ. 0 2000 1000 36 6 16 (13 19-33
objects female) (22)

2F abstract 6 2000 simult. 0 1000 1000 36 8 16 (10 18-26
objects female) (22)

Note. sequ. = sequential presentation, simult. = simultaneous presentation of object-
position conjunctions in the sample phase.

Data Analysis To have a more sensitive index for object regularity extraction, Pr

values (proportion hits - proportion false alarms; Feenan & Snodgrass, 1990) were

used as performance measure in all behavioral experiments. Instead of the false

alarm rate to all new probes only false alarms to probes comprising new objects

were included, i.e. probes comprising a new object at an old or a new position, re-

spectively. Based on results of Experiment 1A (Chapter 7), we assumed that learning

should be most clearly revealed by a reduction of false alarms for these probe types,

since subjects could reject these probes solely on the basis of their knowledge of the

invariant objects. In the following, this performance measure will be referred to as

‘corrected Pr’.

In Experiment 2A and 2B, in a first analysis step two-way repeated-measure ANOVAs

with the factors condition (context-specific vs invariant learning) and time (four lev-

els: mean corrected Pr values for four consecutive trials each, i.e. mean performance

in the four quarters of the blocks) were conducted. In a subsequent step, separately

for each condition one-way repeated-measure ANOVAs with the factor time were

conducted.

In Experiment 2C-2F, in a first analysis step one-way repeated-measure ANOVAs

with the factor time (six levels: mean corrected Pr values for six consecutive trials
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each, i.e. mean performance in the six sixth parts of the blocks) were conducted. In

a subsequent step, one-way repeated-measure ANOVAs with the factor time were

conducted separately for block 1-3 (block 1-4, Experiment 2F) and block 4-6 (block

5-8, Experiment 2F). Finally, two-way repeated-measure ANOVAs with the factor

block (two levels: block 1-3 vs block 4-6 [block 1-4 vs block 5-8 in Experiment 2F])

and time (six levels: mean Pr values for six consecutive trials each) were conducted.

Corrections for multiple contrasts were used where appropriate. Uncorrected de-

grees of freedom and corrected p values are reported. In all experiments, post-hoc

contrasts between specific levels of the factor time and tests for linear trends were

calculated.

9.3 Experiment 2A: Distinctiveness of Objects I:

Object Features

9.3.1 Introduction

The stimuli used in Experiment 1A and 1B comprised six basic shapes. By ad-

ditionally presenting some of these stimuli rotated and in a filled and an unfilled

version, the study comprised 16 stimuli. A possible explanation for the slightly less

pronounced learning effects for object regularities in Experiment 1B could be that

the 16 stimuli used in this study were not distinctive enough and by this object

regularities were harder to detect as compared to spatial regularities. Accordingly,

Experiment 2A addresses the question whether more distinctive objects and by this

more distinctive object regularities would lead to increased performance within ex-

perimental blocks in the invariant learning condition. For this purpose, the same

stimuli used in Experiment 1B were presented in four different colors. Importantly,

the subsets of objects which were held constant across trials of experimental blocks in

the invariant learning condition were made more distinctive (see below). By this, the

extraction of object regularities should be facilitated. A performance increase within

task blocks in the invariant learning condition was predicted, whereas performance

in the context-specific condition should be constant across trials.
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9.3.2 Experimental Procedures

Stimuli, Task, and Design Sixteen stimuli which consisted of basic shapes

(e.g. square, circle) were used as stimulus material (the same stimuli were used

in Experiment 1A and 1B), with the exception that an additional object feature,

color, was introduced (see Figure 9.1a). Four colors were used, blue, green, red, and

yellow, i.e. four objects were presented in the same color, respectively. The four col-

ors were systematically assigned to objects of the same shape (four sets consisting

of four triangles, circles/ellipses, trapezes, squares/rhomboids, respectively), e.g. all

four triangles were blue.

Each experimental block comprised 16 trials. One experimental session comprised

seven blocks in the context-specific condition and seven blocks in the invariant learn-

ing condition. Blocks of both conditions were presented in randomized order with

the constraint that participants had to perform at most two blocks of the same

condition in succession. Subjects were informed about the beginning of a new block.

The sequence of blocks was balanced across subjects.

In the invariant learning condition, four objects were held constant within one block,

whereas in the context-specific condition, object-to-position assignment was random-

ized. In contrast to Experiment 1A and 1B, the seven subsets of the four stimuli

which were held constant in the seven experimental blocks in the invariant learning

condition, were not selected randomly. In fact, to make the regularities more distinc-

tive each of the seven subsets contained each color, each basic shape, and consisted

of either four filled or four unfilled objects. Moreover, an intertrial interval (ITI)

of 2000 ms was used. All other task and design parameters were held constant as

compared to Experiment 1A and 1B.

9.3.3 Results

Figure 9.1b shows mean corrected Pr values for both conditions. Subjects showed

better performance in the invariant learning as compared to the context-specific

condition. This observation was confirmed by a main effect of condition, F (1, 15) =

21.36, p < 0.001. Furthermore, the ANOVA revealed a main effect of time, F (3, 45) =
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7.80, p < 0.001. However, in contrast to our predictions no condition × time inter-

action was observed, F (3, 45) < 1. A main effect of time in the invariant learning

condition was marginally significant, F (3, 45) = 2.75, p < 0.07. This was how-

ever partially due to a performance increase at the end of the blocks, as reflected

in a significant performance increase between the third and the fourth quarter of

the blocks, F (1, 15) = 8.23, p < 0.05. Critically, a contrast between the first and

last quarter revealed no performance difference in the invariant learning condition,

F (1, 15) < 1. Contrary to the predictions, performance in the context-specific condi-

tion was not constant across trials (main effect of time: F (3, 45) = 3.70, p < 0.05),

mainly caused by a decrease of performance between the first and second quarter of

the blocks, F (1, 15) = 7.58, p < 0.05. A comparison of the first and the last quarter

revealed a significant decrease of performance within blocks in the context-specific

condition, F (1, 15) = 4.83, p < 0.05.

Figure 9.1. Stimuli and Results in Experiment 2A. (a) The modified 16 stimuli used
in the study. (b) Mean corrected Pr values (proportion hits - proportion false alarms to
new objects; ± s.e.m.) plotted as a function of trial number within experimental blocks
for the invariant object learning (solid) and context-specific (dashed) condition collapsed
across all blocks. The performance measure was averaged across four consecutive trials,
respectively. [Adapted from Doeller and Opitz, 2004. Copyright (2004) Shaker Verlag.]

9.3.4 Discussion

Subjects showed better task performance in the invariant learning condition than

in the context-specific condition. However, we could not observe any performance
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increase in the invariant learning condition, when comparing performance at the

beginning and the end of the blocks (a performance increase was observed only at the

end of the blocks). Moreover, contrary to our predictions, performance decreased in

the context-specific condition. One possible explanation of the present results could

be that the color stimuli are still not distinctive enough to facilitate the proposed

extraction process. The following Experiment 2B will test this hypothesis by using

more distinctive objects.

9.4 Experiment 2B: Distinctiveness of Objects II:

Object Types

9.4.1 Introduction

The aim of the present study was to test the hypothesis that object distinctiveness

would facilitate detecting object regularities and by this would lead to a perfor-

mance increase within task blocks in the invariant learning condition. It could be

argued that objects used in Experiment 2A per se are too similar to each other. For

this purpose highly distinctive line-drawings denoting real-life objects were used as

stimulus materials. We expected increasing performance in the invariant learning

condition and constant performance across trials in the context-specific condition.

9.4.2 Experimental Procedures

Stimuli, Task, and Design In this experiment, the stimulus set comprised 16

real-life objects (see Figure 9.2a). The stimulus set contained eight living and eight

non-living objects. The subsets of objects which were held constant within the in-

variant object learning blocks were randomly selected from the stimulus set with

the constraint that each subset comprised two living and two non-living objects. All

other task and design parameters were held constant as compared to Experiment

2A.
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9.4.3 Results

Figure 9.2b shows mean corrected Pr values for both conditions. The two-way

repeated-measure ANOVA revealed a condition × time window interaction, F (3, 45)

= 5.21, p < 0.01. Moreover, a marginally significant main effect of condition,

F (1, 15) = 4.17, p < 0.06, and time, F (3, 45) = 2.57, p < 0.08, was observed.

Contrary to the predictions, ANOVAs performed separately for both conditions

revealed a significant effect of time in the context-specific condition, F (3, 45) =

6.40, p < 0.01, but not in the invariant learning condition, F (3, 45) = 1.88, p >

0.1. A (marginally) significant linear trend was observed in the context-specific

condition, F (1, 15) = 7.12, p < 0.05, and in the invariant learning condition,

F (1, 15) = 4.32, p < 0.06. Corrected Pr values in the first and fourth quarter

of the invariant learning condition differed at a more liberal statistical threshold,

F (1, 15) = 3.42, p < 0.09. Finally, an additional ANOVA contrasting the first and

fourth quarter in both conditions revealed a significant condition × time interaction,

F (1, 15) = 8.25, p < 0.05.

Figure 9.2. Stimuli and Results in Experiment 2B. (a) The 16 real-life stimuli used in
the study. (b) See Figure 9.1 legend for more details. [Adapted from Doeller and Opitz, 2004.

Copyright (2004) Shaker Verlag.]



9.5. EXPERIMENT 2C: MEMORY LOAD AND LEARNING PHASE I 157

9.4.4 Discussion

Similar to Experiment 2A, subjects were better in the invariant learning as com-

pared to the context-specific condition and a marginally significant linear trend was

observed in the invariant learning condition, indicating that participants did benefit

from constant objects across trials. Moreover, a significant condition x time window

interaction was observed when considering the first and last quarter of the blocks

in both conditions. These data indicate that increased distinctiveness facilitated

learning regularities across trials. However, these effects were small. Moreover, no

significant increase in performance during the time-course of the invariant learning

blocks was observed. Three explanations for these results remain possible. First, as

compared to Experiment 1B overall performance was extremely high in Experiment

2A and 2B. Given this high performance level, even at the beginning of the blocks, it

could be argued that a performance increase across trials is hardly detectable (ceiling

effect). Second, especially in Experiment 2A a slight increase of performance was ob-

served at the end of the blocks, indicating that extracting object regularities might

be a slower mechanism as compared to the extraction of spatial regularities. Finally,

the pseudorandom sequence of blocks in the invariant learning and the context-

specific condition, respectively could have entailed that subjects performed the task

by a common strategy for both conditions. More precisely, the task allowed subjects

to succeed with a solely ‘context-specific strategy’ in both conditions, i.e. not to

extract regularities. The following experiments aim at specifying these hypotheses.

9.5 Experiment 2C: Memory Load and Learning

Phase I

9.5.1 Introduction

The goal of the present study was to investigate the influence of memory load and

the duration of the learning phase on performance measures. Given the high overall

performance in the previous experiments, even at the beginning of the blocks, mem-
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ory load was increased by increasing the number of object-position bindings per trial

from four to six. By this manipulation, a lower performance baseline in the first trials

of the experimental blocks was expected. In addition, block length was substantially

increased in Experiment 2C from 16 to 36 trials. By increasing the learning dura-

tion, we allowed subjects to reach a maximum performance level. Moreover, based

on the observation that performance increase in Experiment 2A occurred at the end

of the block, it might be possible that the process of extracting object regularities is

slower than spatial regularity extraction. To minimize the probability that subjects

based their judgment on a common strategy for both conditions, trials were blocked

by condition.

9.5.2 Experimental Procedures

Stimuli, Task, and Design The same stimuli as in Experiment 2B were used. As

compared to the previous experiments we modified the following trial and block pa-

rameters. In each trial six different stimuli were presented sequentially at six different

positions within the grid. Moreover, one experimental block comprised 36 instead

of 16 trials. Each subject performed a total of six blocks in the invariant learning

condition, including a 10 min brake after 3 consecutive blocks. No context-specific

condition was measured.4 In contrast to Experiment 2A and 2B, an exponential

distributed ITI was used (mean ITI: 5 s).5 In order to increase the reliability of the

Pr values, the performance measure was averaged across six consecutive trials which

comprised three old and three new responses. Finally, the subsets of objects which

were held constant within the invariant learning blocks were randomly selected from

4The focus of the present and the following behavioral experiments was to investigate regularity

extraction in more detail. Therefore the number of blocks in the invariant learning condition was

maximized, however at the cost of excluding the context-specific condition.

5In this and the following experiments, the same ITI was used as in the fMRI experiments to

minimize the task differences between behavioral and imaging experiments. In a similar vein, a

10 min brake after three experimental blocks was introduced since in the following fMRI stud-

ies (Experiments 3A and 3B, Chapter 10), in the middle of the experiment the structural MRI

measurements were conducted (approx. 10 min).
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the stimulus set with the constraint that each subset comprised three living and

three non-living objects. In contrast to the previous experiments, the subsets were

variable across subjects.

9.5.3 Results

When analyzing mean corrected Pr values collapsed across all six blocks, neither a

main effect of time, F (5, 75) = 1.74, p > 0.1, nor a significant difference between

the first and last sixth part, F (1, 15) = 3.07, p > 0.1, was observed (see Figure

9.3a). However, ANOVAs separately for the first three and the last three blocks

of the experiment (see Figure 9.3b) revealed a main effect of time in blocks 1-3,

F (5, 75) = 2.38, p < 0.05, but not in blocks 4-6, F (5, 75) = 1.66, p > 0.1. This was

confirmed by a block × time interaction, F (5, 75) = 2.36, p < 0.05. Moreover, a

significant difference between the first and last sixth part was observed in blocks 1-3,

F (1, 15) = 8.25, p < 0.05, but not in blocks 4-6, F (1, 15) < 1. Similarly, the trend

analysis revealed a significant linear trend in blocks 1-3, F (1, 15) = 10.36, p < 0.01,

but not in blocks 4-6, F (1, 15) < 1. Finally, t-tests were conducted to compare

performance in Experiment 2A and 2C. Performance was better in the first quarter

of Experiment 2A (first 4 trials across blocks) as compared to the first sixth part of

Experiment 2C (first 6 trials across blocks), t(30) = 2.12, p < 0.05. Performance at

the end of the blocks of both experiments did not differ significantly (last quarter

in Experiment 2A and last sixth part of Experiment 2C), t(30) < 1.

9.5.4 Discussion

As predicted, the increased memory load in each trial entailed reduced Pr values at

the beginning of experimental blocks as compared to Experiment 2A. Furthermore,

a performance increase and a linear trend across trials was observed in the first

three blocks, but not in blocks 4-6. The main experimental manipulations were

successful. The increased memory load and the prolonged learning phase entailed

learning effects, however only in the first three blocks. These data indicate that the

learning maximum is reached earlier in the last as compared to the first blocks. This
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dissociation between both halves of the experiment might indicate that regularity

extraction across episodes is based on two distinct mechanisms: a process operating

within blocks and a process operating across blocks. It could be speculated that the

former extraction process might be involved in the detection of feature invariances

and the latter, higher-order process might be involved in transferring the extraction

mechanism to new exemplars.

Figure 9.3. Results in Experiment 2C. Mean corrected Pr values (± s.e.m.) plotted as
a function of trial number within experimental blocks for the invariant object learning
condition collapsed across (a) all blocks (solid) and (b) separately across blocks 1-3 (solid)
and blocks 4-6 (dashed). The performance measure was averaged across six consecutive
trials, respectively. [Adapted from Doeller and Opitz, 2004. Copyright (2004) Shaker Verlag.]

9.6 Experiment 2D: Memory Load and Learning

Phase II

9.6.1 Introduction

Experiment 2C revealed a learning effect across trials in the first half of the experi-

ment. Overall performance at the beginning of the blocks was reduced as compared

to Experiment 2A, however it could be hypothesized that the learning effect might

be further enhanced if the task would be more difficult, driving the need for learn-

ing to succeed in the task. By this, reduced performance in the first phase of the

experimental blocks was expected. Based on this manipulation subjects may benefit

to a higher degree from extracting regularities in a late phase of the blocks. A final
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aim of the following experiment was to replicate the dissociation between blocks 1-3

and blocks 4-6 observed in Experiment 2C.

9.6.2 Experimental Procedures

Stimuli, Task, and Design In contrast to Experiment 2C, we increased task dif-

ficulty by modifying the timing parameters in the experimental trials. The stimulus

duration was reduced to 500 ms and the interstimulus interval to 0 ms. The probe

was presented for 1000 ms instead of 2000 ms. Accordingly, the response window

was reduced to 1000 ms. Finally, the delay between sample and probe presentation

was increased from 1300 to 2000 ms. All other task and design parameters were held

constant as compared to Experiment 2C.

9.6.3 Results

As apparent from Figure 9.4a, performance increased across trials when collaps-

ing performance across all six blocks. This impression was confirmed by a main

effect of time, F (5, 75) = 5.00, p < 0.001, and a significant performance differ-

ence between the first and the last sixth part of the blocks, F (1, 15) = 22.71, p <

0.001. Moreover, a significant linear trend was observed when considering all blocks,

F (1, 15) = 17.98, p < 0.001. Figure 9.4b shows mean corrected Pr values across tri-

als separately for the first and last three blocks. Performance increased in blocks 1-3,

F (5, 75) = 2.82, p < 0.05, but not in blocks 4-6, F (5, 75) < 1. In accordance with

this observation, performance in the first and last sixth part differed significantly in

blocks 1-3, F (1, 15) = 4.99, p < 0.05, but not in blocks 4-6, F (1, 15) = 1.40, p > 0.2.

In addition, corrected Pr values in both halves of the experiment differed sig-

nificantly, F (1, 15) = 22.13, p < 0.001. The trend analysis separately for both

halves of the experiment revealed a marginally significant linear trend in blocks 1-3,

F (1, 15) = 4.45, p < 0.06, but not in blocks 4-6, F (1, 15) < 1. When comparing the

first and last sixth part of Experiment 2C and 2D, a marginally significant difference

was observed at the beginning of experimental blocks, t(30) = 1.78, p < 0.09, but

not at the end of the blocks, t(30) < 1.
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Figure 9.4. Results in Experiment 2D. See Figure 9.3 legend for more details. [Adapted

from Doeller and Opitz, 2004. Copyright (2004) Shaker Verlag.]

9.6.4 Discussion

Similar to Experiment 2C, the analyses revealed a dissociation between the first and

second half of the experiment, i.e. increased performance across trials in blocks 1-3

and constant performance across trials in the last three blocks. This pattern of results

underscores the existence of two distinct mechanisms involved in regularity extrac-

tion. Furthermore, the task difficulty manipulation was successful. Performance was

reduced at the beginning but not at the end of the blocks and by this the learning

effect was slightly more pronounced as compared to Experiment 2C.

9.7 Experiment 2E: Distinctiveness of Objects Re-

visited

9.7.1 Introduction

The main design modifications in Experiments 2C and 2D, i.e. increased memory

load and increased block length, were successful. Learning-effects were found, most

pronounced in the first three blocks. However, based on the previous findings it

could not be ruled out that the learning effects were, at least partially due to the

distinctiveness of the real-life objects. Thus, the present experiment was designed to

investigate the influence of less distinctive objects on performance by using six ab-
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stract geometrical stimuli instead of real-life objects (see Figure 9.5a). If the learning

effect solely depends on the modified task parameters (increased memory load and

prolonged learning phase), similar effects as in the two previous experiments were

expected. If regularity extraction and by this increased performance across trials de-

pends on the distinctiveness of the objects, diminished learning effects for abstract

geometrical stimuli were expected.

9.7.2 Experimental Procedures

Stimuli, Task, and Design In this study, 16 abstract geometrical objects derived

from the Microsoft Windows font Klinzhai (‘Klingon letters’) were used as stimulus

material (see Figure 9.5a; cf. Mecklinger, Bosch, Gruenewald, Bentin & von Cramon,

2000). All other task and design parameters were held constant as compared to

Experiment 2D.

9.7.3 Results

In Figure 9.5b and 9.5c, subjects performance is plotted as a function of time within

experimental blocks collapsed across all blocks and separately for blocks 1-3 and

blocks 4-6, respectively. The statistical analysis of all blocks revealed a marginally

significant effect of time, F (5, 75) = 2.17, p < 0.07. However, neither the first and

last sixth part differed significantly, F (1, 15) < 1, nor a significant linear trend was

observed, F (1, 15) = 1.12, p > 0.3. Similar to Experiment 2C and 2D, a significant

effect of time was found in the first three blocks, F (5, 75) = 3.63, p < 0.05, but not

in blocks 4-6, F (5, 75) = 1.34, p > 0.2. When comparing performance in the first

and last sixth part of the blocks, neither in blocks 1-3, F (1, 15) = 1.66, p > 0.2,

nor in blocks 4-6, F (1, 15) < 1, performance differed significantly. Finally, the trend

analysis separately for both halves of the experiment revealed a significant linear

trend in blocks 1-3, F (1, 15) = 9.00, p < 0.01, but not in blocks 4-6, F (1, 15) < 1.
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Figure 9.5. Stimuli and Results in Experiment 2E. (a) The 16 abstract geometrical objects
used in the study. (b,c) See Figure 9.3 legend for more details. [Adapted from Doeller and

Opitz, 2004. Copyright (2004) Shaker Verlag.]

9.7.4 Discussion

The observed results are consistent with the learning pattern of Experiment 2C and

2D. A dissociation between both halves of the experiment was found, i.e. increased

performance across trials in the first blocks and constant performance across trials

in the last blocks. Thus, these findings are compatible with the interpretation that

regularity extraction is based on two distinct mechanisms, one operating within

and one operating across blocks. Furthermore these data suggest that mainly the

modifications of the task parameters (in particular increased memory load and block

length) entailed the observed learning effects and not object distinctiveness per se.

9.8 Experiment 2F: Simultaneous Object-Position

Bindings

9.8.1 Introduction

The present experiment was designed to investigate the influence of simultaneously

presenting the six object-position conjunctions in each trial in contrast to the succes-

sive presentation in all previous experiments. If regularity extraction is independent

of the presentation form and the presentation duration, similar learning effects were

expected, most pronounced in the first blocks comparable to Experiments 2C, 2D,

and 2E. An additional motivation of this study was an efficiency consideration. By

simultaneously presenting all objects within one trial, trial duration could be re-
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duced significantly. This gives rise to an increased trial number and by this to more

reliable sampling of the learning functions.

9.8.2 Experimental Procedures

Stimuli, Task, and Design In this study, the same 16 abstract geometrical ob-

jects as in Experiment 2E were used as stimulus material. In contrast to the previous

studies, we modified the trial structure of the experiment. In each trial, six different

stimuli were presented simultaneously at six different positions within the grid for

2000 ms. By this the total presentation time for all six stimuli within one trial was

reduced from 3000 ms to 2000 ms as compared to Experiment 2D and 2E. After the

presentation of a mask for 500 ms and a fixation cross for 500 ms the probe stimulus

was presented for 1000 ms. Thus, the delay between sample and probe presentation

was reduced from 2000 ms to 1000 ms (mask and fixation presentation) as compared

to Experiments 2C-2E. The experiment comprised eight experimental blocks in the

invariant learning condition, including a 10 min brake after four blocks. All other

task and design parameters were held constant as compared to Experiment 2E.

9.8.3 Results

A marginally significant main effect of time was observed when considering corrected

Pr values for all eight blocks, F (5, 75) = 2.01, p < 0.1 (Figure 9.6a), but neither in

blocks 1-4, F (1, 15) = 1.40 =, p > 0.2, nor in blocks 5-8, F (1, 15) < 1, performance

across trials increased significantly (Figure 9.6b). Similarly, the contrast between the

first and the last sixth part revealed no significant differences when considering all

blocks, F (1, 15) = 3.33, p < 0.09, and separately blocks 1-4, F (1, 15) = 2.05, p <

0.1, and blocks 5-8, F (1, 15) < 1. The trend analysis revealed a significant linear

trend when considering all blocks, F (1, 15) = 5.06, p < 0.05. However the trend

analysis separately for both halves of the experiment did not reach significance in

blocks 1-4, F (1, 15) = 2.43, p > 0.1, and blocks 5-8, F (1, 15) = 3.70, p < 0.08.



9.9. GENERAL DISCUSSION 166

Figure 9.6. Results in Experiment 2F. See Figure 9.3 legend for more details. Note, this
experiment comprised eight blocks. [Adapted from Doeller and Opitz, 2004. Copyright (2004)

Shaker Verlag.]

9.8.4 Discussion

Contrary to Experiment 2C-2E, the learning effects did not reach significance neither

in the first half nor in the second half of the experiment. However, a linear trend was

observed within blocks. It could be speculated that the evolvement of the extraction

process might be hampered when stimulus presentation time falls below a critical

threshold. An alternative explanation remains possible. It could be argued that

the detection of invariant objects initially requires a clear separated representation

of the single objects defining the critical regularity. The strength of such ‘entity

representations’ might be diminished when objects are presented simultaneously for

a brief period.

9.9 General Discussion

In six behavioral experiments the cognitive mechanisms underlying the extraction

of object regularities were investigated. When positions were held constant within

learning blocks, a performance increase across trials was observed (Experiment 1A).

Using similar design and task parameters, performance increase was slightly less

pronounced during learning object regularities (Experiment 1B). In the present se-

ries of behavioral experiments, several hypotheses for these findings were tested. In

Experiment 2A and 2B, distinctiveness of objects was increased. However, we could
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not find pronounced learning effects in both experiments. Neither the introduction

of additional, distinctive but redundant object features (color) in Experiment 2A,

nor the application of distinct, real-life objects in Experiment 2B entailed substan-

tial learning effects across trials. One explanation for these results could be that

learning was hardly detectable in these experiments, since overall performance was

on a high level. Therefore we increased task difficulty in the following experiments

by increasing memory load and by decreasing stimulus duration. Furthermore, we

found a slight learning effect at the end of the learning blocks in Experiment 2A.

Based on this observation, it could be further hypothesized that object regularity

extraction is a slow process as compared to spatial regularity extraction. There-

fore, the learning phase was substantially augmented in Experiment 2C-2F. These

experimental manipulations succeeded. In Experiment 2C and 2D we observed pro-

nounced learning effects. Furthermore, the sustained learning increase, at least in

the first blocks of Experiment 2C and 2D indicates that regularity extraction seems

to be a gradual process evolving across multiple experiences. Furthermore, Exper-

iment 2E, also employing an augmented learning phase similar to Experiment 2C

and 2D revealed a small learning effect even though abstract, less distinctive objects

were used as compared to Experiments 2C and 2D. These data provide supporting

evidence for the view that an extended learning phase is a necessary and sufficient

prerequisite for regularity extraction (if performance is on a marginal level at the

beginning of learning, as in Experiment 2C-2E where memory load was increased as

compared to Experiment 2A and 2B). Given the more robust learning effects in Ex-

periments 2C and 2D, where salient real-life objects were used as stimulus material

it could be argued that object distinctiveness might be a factor that additionally

enhances the proposed extraction process. In line with this, the diminished learning

effects in Experiment 2F indicate that the extraction process might further depend

on separated, distinct instead of simultaneous representations of the object-position

conjunctions. Finally, the analyses of Experiments 2C and 2D revealed a clear time-

sensitive dissociation of the learning effects. Learning effects were pronounced in

the first half of the experiments, but diminished in the second half, indicating that

learning was faster in the second as compared to the first half of the experiments.
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Taken together, the results of the present behavioral experiments indicate that in

comparison to Experiment 1B the increase of object distinctiveness mainly affects

overall memory performance, whereas manipulation of the learning duration and the

memory load affects the learning process. The results of the present six behavioral

experiments will be discussed in more detail in the General Discussion of the present

thesis (Chapter 11).



Chapter 10

Experiment 3: Differential

Hippocampal and

Prefrontal-striatal Contributions

to Instance-based and Rule-based

Learning1

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . 173

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

1This Chapter contains the following manuscript: Doeller C. F., Opitz B., Krick,

C. M., Mecklinger, A., & Reith, W. (in preparation). Differential hippocampal and

prefrontal-striatal contributions to instance-based and rule-based learning. For stylistic

reasons the format was adapted. In the following, Experiment 1 and Experiment 2 of this study

will be referred to as Experiment 3A and Experiment 3B, respectively. This work was supported

by grants from the German Research Foundation (DFG; Research Group FOR-448). The authors

wish to thank Lea Meyer and Henning Loebbecke for their assistance during data acquisition.

169



170

Experiment 2 revealed a dissociation of two learning mechanisms, namely within-

block learning and across-block learning. The learning asymptote within blocks was

reached earlier in the final blocks as compared to the initial blocks. The present

Experiment 3 aimed at specifying whether separable brain regions are specialized for

either mechanism. In two experiments either an object IL condition (Experiment 3A)

or a spatial IL condition (Experiment 3B) was paired with a respective CS condition.

In both experiments, blocks of both conditions were presented in separate sessions to

minimize the probability that subjects based their judgment on a common strategy

for both conditions.

Abstract It is a topic of current interest whether learning in humans relies on the

acquisition of abstract rule knowledge (rule-based learning) or whether it depends on

superficial item-specific information (instance-based learning). Here we identified brain

regions that mediate either of the two learning mechanisms by combining fMRI with an

experimental protocol shown to be able to dissociate both learning mechanisms. Sub-

jects had to learn object-position conjunctions in several trials and blocks. In a learning

condition, either objects (Experiment 1) or positions (Experiment 2) were held constant

within blocks. In contrast to a control condition in which object-position conjunctions

were trial-unique, a performance increase within and across blocks was observed in the

learning condition of both experiments. We argue that within-block learning mainly relies

on instance-based processes, whereas across-block learning might depend on rule-based

mechanisms. A within-block parametric fMRI analysis revealed a learning-related increase

of lateral-prefrontal and striatal activity and a learning-related decrease of hippocampal

activity in both experiments. Across-block learning was associated with an activation in-

crease of distinct lateral prefrontal brain regions, whereas striatal activation decreased

as a function of learning across blocks. Finally, a modulation of within-block learning-

related activation pattern across blocks was observed in the anterior prefrontal cortex and

the striatum. These data indicate that hippocampal and prefrontal-striatal brain regions

differentially contribute to instance-based and rule-based learning.
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10.1 Introduction

Learning regularities across multiple episodes is a core cognitive ability. In the last

decades, controversy currently surrounds whether humans learn the surface struc-

ture of regular input pattern based on the superficial similarity between learning

instances or whether humans acquire abstract rule knowledge. Three main learn-

ing tasks have been used extensively in experimental psychology: artificial grammar

learning, category learning, and sequence learning tasks. Results of several studies

provide evidence for the notion that learning in these tasks is mainly based on the

knowledge of (fragments of) learning instances (Nosofsky, 1986; Perruchet, 1994). In

contrast, rule-based accounts assume that subjects acquire a set of abstract rules,

defining an input pattern as grammatical, as a category member, and as a regu-

lar sequence, respectively (Ashby & Perrin, 1988; Reber, 1989). Alternative views

posit that learning is subserved by both instance-based and rule-based mechanisms

(Dominey et al., 1998; Erickson & Kruschke, 1998; Knowlton & Squire, 1996; Meule-

mans & Van der Linden, 1997; Shanks & St. John, 1994; Shanks, 1995). However,

it is still not clear whether instance-based and rule-based processes could be exper-

imentally separated (cf. Pothos, in press).

Tightly coupled with the debate about instance-based vs rule-based learning is the

question which brain structures might subserve either mechanism. However, only a

few studies examined the neural basis of instance-based vs rule-based learning. In an

artificial grammar learning study, Fletcher et al. (1999) demonstrated that learning

within experimental blocks is mediated by the right lateral prefrontal cortex (PFC),

whereas the left lateral PFC subserves learning across the entire experiment. The

authors argue that within-block learning effects mainly rely on the explicit retrieval

of individual items based on the surface structure of items. In contrast, the authors

propose that across-block learning is based on the acquisition of abstract rule knowl-

edge. In another study (Strange et al., 2001), subjects were required to learn rules

which define the category membership of four-letter strings. Changes in abstract

rules were associated with an increase of anterior PFC activity, whereas hippocampal

activation was modulated by the introduction of new instances. Results of patient
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studies and computational models have implicated the basal ganglia in instance-

based learning, whereas lateral prefrontal regions seem to be involved in rule-based

learning (Dominey, Lelekov, Ventre-Dominey & Jaennerod, 1998). Contrary, a recent

fMRI study of artificial grammar learning revealed that the basal ganglia subserve

rule-based learning and that the hippocampus is associated with instance-based

learning, respectively (Lieberman, Chang, Chiao, Bookheimer & Knowlton, 2004).

In the present fMRI study, we sought to distinguish brain regions subserving instance-

based and rule-based learning. We adopted the experimental logic of the Fletcher et

al. (1999) study, however using a more conventional learning paradigm (cf. Doeller

et al., in press). In two experiments, subjects were required to encode and recognize

six object-position conjunctions in each trial of several experimental blocks. Both

experiments included two conditions, a control condition (context-specific condition,

CS) and a learning condition (invariant learning condition, IL). In the CS condition,

object-position conjunctions were trial-unique, whereas in the IL condition either

objects (Experiment 1) or positions (Experiment 2) were held constant in each trial

of the experimental blocks, by this introducing regularities across episodes. We ex-

pected that the introduction of invariant objects and positions in object-position

conjunctions entails increased task performance across trials within blocks of the

IL condition. These within-block learning effects were supposed to reflect mainly

instance-based learning, since subjects’ judgments could rely solely on similarity

processes. Critically, the set of invariant objects and positions changed from block

to block in the IL condition. By this, subjects were able to transfer their knowledge

about regularities to new instances when a new block starts. This transfer has been

implicated as a possible experimental test to dissociate instance-based and rule-

based learning (e.g. Gomez & Schvaneveldt, 1994; Mathews et al., 1989). If subjects

acquire abstract rule knowledge, they should be able to transfer this knowledge to

new instances. Thus, a performance modulation across learning blocks was assumed

to be a main index of rule-based learning. Based on previous results (Doeller et al.,

in press), we predicted a learning-related decrease of hippocampal and an increase

of prefrontal-striatal activation as a function of learning within blocks. In contrast,

we expected a modulation of distinct prefrontal-striatal regions during across-block
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learning (cf. Fletcher et al., 1999; Lieberman et al., 2004).

10.2 Materials and Methods

Subjects Twenty-four subjects participated in the study, 12 subjects in Experi-

ment 1 (aged 22-33, mean age 24.6 years, 6 females) and 12 subjects in Experiment

2 (aged 22-29, mean age 24.3 years, 5 females). All subjects were right-handed with

normal or corrected-to-normal vision and were paid for participating. Informed con-

sent was obtained before scanning. All participants reported to be in good health

with no history of neurological disease.

Stimuli, Task, and Design Sixteen line drawings denoting real-life objects were

used as stimulus material in both experiments. The stimulus set contained eight liv-

ing and eight non-living objects. Stimuli were presented within a 4×4 grid. In each

experimental trial (Figure 10.1), six different objects were presented sequentially at

six different positions (sample phase). Each object was presented for 600 ms, followed

by a 100 ms interstimulus interval. After a 2000 ms delay (fixation cross), subjects

were shown a probe stimulus for 1000 ms. Participants were required to indicate

whether or not the current object-position conjunction (the probe stimulus) was

identical to one of the six object-position conjunctions presented during the sample

phase. Responses were delivered by a button press with the right or left index fin-

ger (1000 ms response window). Response-to-hand mappings were counterbalanced

across subjects. Probes in each block (see below) comprised 50% old (old object

at old position) and 50% new object-position conjunctions (3 equally distributed

categories: old object/new position, new object/old position, and new object/new

position). Visual feedback was provided for 500 ms immediately after probe offset.

An exponentially distributed intertrial interval (ITI) of 2.5-7.5 s (mean: 3.5 s) was

used (cf. Doeller et al., in press, for a detailed description of the experimental pro-

cedures).

The design of both experiments included two conditions, a control condition (context-

specific condition, CS) and a learning condition (invariant learning condition, IL).
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To minimize the probability that subjects based their judgment on a common strat-

egy for both conditions, trials were blocked by condition. In contrast to our previous

study (Doeller et al., in press), in which blocks of both conditions were presented

in randomized order, subjects performed four blocks in sequence in each condition

in the present study. In both conditions, participants were informed about the be-

ginning of a new block. Each experimental block comprised 36 trials. The temporal

order of conditions was balanced across subjects. The 3D structural MR sequence

(see below) was measured in the middle of the experiments to separate the sessions

of both conditions. Participants were unaware of the experimental manipulation,

i.e. the existence of two different conditions. In the CS condition, object-position

conjunctions were unique in each trial. Here, each object-position conjunction in

each trial and each block was selected randomly from the set of objects and po-

sitions. In contrast, in the IL condition either objects (Experiment 1) or positions

(Experiment 2) were held constant in each trial of the experimental blocks. In the IL

condition of Experiment 1, invariant objects were presented at variable positions (ob-

ject regularities). Accordingly, in the IL condition of Experiment 2, variable objects

were presented at invariant positions (spatial regularities). The number of invariant

objects and positions, respectively resembled the number of object-position conjunc-

tions presented during the sample phase, i.e. the same six objects or positions were

presented in each trial of one block. Objects or positions were held constant across

all trials of one experimental block. The fixed configuration of invariant objects and

positions changed from block to block, i.e. when a new block starts, a new set of

objects or positions in object-position conjunctions were replicated. All other task

parameters were held constant across conditions and experiments. In particular, the

CS condition was identical in Experiment 1 and 2. Subjects were given a training

session immediately before the experiment, including 36 training trials.

Behavioral Analysis For each subject, Pr values (proportion hits - proportion

false alarms; Feenan & Snodgrass, 1990) were used as performance measure in both

experiments. Instead of the false alarm rate to all new probes only false alarms

to probes comprising new objects (Experiment 1) and new positions (Experiment
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Figure 10.1. Session, Block, and Trial Structure. Subjects performed four blocks in each
experimental condition. Each block comprised 36 trials. During the sample phase of the
trial, six different objects were presented sequentially at six different positions within
a 4 × 4 grid (grid not shown in the Figure). Upon presentation of a probe stimulus,
participants were required to indicate whether the probe is identical to one of the six
object-position conjunctions presented during the sample phase. In the present example,
the probe comprised an old object at a new position, therefore requiring a “new” response.
Duration (in seconds) of the respective trial phases are depicted at the bottom of the figure.
ITI, intertrial interval.

2), respectively were included, i.e. probes comprising a new object at an old or a

new position (Experiment 1) and probes comprising a new or an old object at a

new position (Experiment 2). Based on previous results (Doeller & Opitz, 2004;

Doeller et al., in press), we assumed that learning should be most clearly revealed

by a reduction of false alarms to these specific probe types, since subjects could

reject these probes solely on the basis of the knowledge of invariant objects and

positions, respectively. In the following, this performance measure will be referred

to as ‘corrected Pr’. In the CS condition of Experiment 1 and 2, corrected Pr values

were computed in the same manner as in the corresponding IL condition. To analyze
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within-block learning effects, mean performance measures in nine consecutive trials

(i.e. trials 1-9, 10-18, 19-27, and 28-36) were averaged across all blocks separately for

both conditions. To evaluate across-block learning effects, mean corrected Pr values

for each entire block of both conditions were averaged separately for blocks 1-2 and

3-4, respectively.

Imaging Parameters BOLD-sensitive, T ∗
2 -weighted functional images and T1-

weighted structural images (3D MP-RAGE) were acquired at 1.5 T (Siemens Sonata,

Siemens AG, Erlangen, Germany). Functional data were acquired using a gradient-

echo EPI pulse sequence, with the following parameters: TR = 1.8 s, TE = 50 ms,

flip angle = 85◦, slice thickness = 4 mm, interslice gap = 1 mm, in-plane resolution

= 3.5 × 3.5 mm, FoV = 224 mm2, 20 axial slices parallel to AC-PC plane. The

first four volumes were discarded to allow for T1 equilibration. Both conditions were

conducted in separate functional sessions. An additional 2D T1-weighted structural

sequence (TR = 600 ms, TE = 13 ms, flip angle = 80◦, slice thickness = 4 mm,

interslice gap = 1 mm, in-plane resolution = 0.9 × 0.9 mm, FoV = 224 mm2, 20

axial slices parallel to AC-PC plane) was measured in-plane with respect to the

functional sequence and applied during the coregistration procedure (see below).

Imaging Preprocessing Imaging analysis was performed with SPM2 (http://

www.fil.ion.ucl.ac.uk/spm/spm2.html). FMRI time series were sinc-interpolated in

time to correct for differences in slice acquisition time and motion-corrected, using a

6-parameter rigid body spatial transformation and a B-spline interpolation. An addi-

tional unwarping procedure was applied to account for movement-by-magnetization

inhomogeneity interactions and by this to minimize the movement-related residual

variance (Andersson et al., 2001). Coregistration included two steps. First, images

of the 2D T1-weighted sequence, which was measured in-plane with respect to the

EPI sequence were coregistered to the mean functional image. Second, images of

the 3D MP-RAGE sequence were coregistered to the images of the resliced 2D T1-

weighted sequence. Subsequently, resliced 3D anatomical images were normalized

to the standard T1 template (MNI reference brain). Based on the determined pa-
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rameters, the normalization algorithm was then applied to the functional volumes.

Finally, the normalized functional images were resampled into 2 mm isotropic voxels

and spatially smoothed with an isotropic 7-mm FWHM Gaussian kernel.

Statistical Analysis of fMRI Time Series Time series were analyzed using a

two-stage random effects analysis. At a first level, for each trial of both conditions

trial-specific effects were modeled using the canonical HRF (Friston et al., 1998a)

separately for the sample phase (epoch-related; duration = 4.1 s) and the probe

phase (event-related). Additional parametric analyses were conducted (see below).

Data were high-pass filtered to 1
128

and scaled for global activity. Parameters for each

covariate were estimated by a least-mean-squares fit of the model to the time series

using a subject-specific fixed-effects model within the general linear model. During

the estimation procedure, serial correlations were estimated with a restricted maxi-

mum likelihood (ReML) algorithm using an AR(1) plus white noise model. In SPM2,

the ReML estimates (hyperparameters) are then used to correct for non-sphericity

(Friston et al., 2002b). Linear contrasts of the parameter estimates for each re-

gressor were calculated for each subject and brought to the second level random

effects analysis. All analyses were restricted to the sample phase. MNI-coordinates

of all reported activations have been transformed to the canonical Talairach space

(http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html).

Given our a priori hypotheses and our previous results (Doeller et al., in press), all

fMRI analyses were restricted to the lateral prefrontal cortex, the striatum, and the

hippocampus. To investigate brain regions involved during regularity learning, we

conducted parametric fMRI analyses to explicitly model learning-related activation

pattern (see Doeller et al., in press, for details). For this purpose, individual fMRI

time series (associated with each sample phase) were weighted with parametric mod-

ulation functions, separately modeling (1) within-block learning (Figure 10.4), (2)

across-block learning (Figure 10.5), and (3) the modulation of within-block learning

effects across blocks (Figure 10.6). The first set of model functions was derived by

averaging the individual within-block learning functions (mean corrected Pr values

for nine consecutive trials, collapsed across all blocks; see above) across subjects,
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separately for both experiments. A second set of model functions was used to ana-

lyze across-block learning effects. Here, performance measures (corrected Pr values)

were collapsed across all trials, separately for each block and averaged across sub-

jects (separately for each experiment). Finally, modulations of within-block learning

effects across blocks were evaluated in a separate model, using the slope of the mean

fitted learning functions separately for each entire block as model function. The

model function was derived from the mean learning functions (corrected Pr values)

for each block by fitting a logarithmic function y = a · ln(ti) + b. To increase the

model fit, mean learning functions were derived by averaging individual learning

functions for each block collapsed across all 24 subjects of both experiments.

Significant activated regions were identified using a statistical threshold of p <

0.0005 (uncorrected; cluster size: 5 contiguous voxels). Given our previous results

with respect to the within-block learning effects (Doeller et al., in press), additional

region-of-interest (ROI) analyses were conducted for the striatum and the hippocam-

pus in the within-block fMRI analysis (p < 0.01, small volume corrected, SVC; Wors-

ley et al., 1996). Striatal and hippocampal ROIs were determined according to a de-

tailed neuroanatomy atlas (Warner, 2001). Appropriate mask image was generated

using MRIcro (http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html).

10.3 Results

Behavioral Results: Within-block Learning In a first step, within-block learn-

ing effects were analyzed (Figure 10.2). As in our previous behavioral study (Doeller

& Opitz, 2004), we used corrected Pr values as behavioral measures (see Methods).

A two-way repeated measures ANOVA with the factors condition (CS vs IL) and

trial (mean corrected Pr values for trials 1-9, 10-18, 19-27, and 28-36 within blocks,

collapsed across all blocks) revealed a main effect of condition, F (1, 11) = 21.84, p <

0.001, in Experiment 1 (Figure 10.2a, left panel). Further comparisons between the

first (trials 1-9) and last (trials 28-36) quarter of trials within blocks were con-

ducted to examine changes of performance during the time course of the blocks.

Mean corrected Pr values increased from the first to the last quarter of trials within
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blocks in the IL condition, F (1, 11) = 4.86, p < 0.05, but not in the CS condition,

F (1, 11) < 1. Accordingly, performance was better in the IL condition as compared

to the CS condition in the last quarter of trials, F (1, 11) = 16.12, p < 0.005, but not

in the first quarter of trials, F (1, 11) = 2.95, p > 0.1. A marginally significant linear

trend across trials was restricted to the IL condition, F (1, 11) = 4.32, p < 0.07 (CS

condition: F (1, 11) = 1.50, p > 0.2).

The analyses in Experiment 2 revealed similar results (Figure 10.2a, right panel).

Here, an increase of corrected Pr values between the first and last quarter of trials

was observed in the IL condition, F (1, 11) = 5.40, p < 0.05, but not in the CS con-

dition, F (1, 11) = 1.29, p > 0.2. In contrast to the first quarter of trials, F (1, 11) =

1.28, p > 0.2, performance between conditions differed at a marginally significant

level in the last quarter of trial, F (1, 11) = 4.05, p < 0.07. Moreover, mean corrected

Pr values increased linearly in the IL condition, F (1, 11) = 5.70, p < 0.05, but not

in the CS condition, F (1, 11) = 1.38, p > 0.2. Thus, these data indicate that an

increase of performance across trials within blocks was restricted to the IL condition

in both experiments.

For both experiments, additional statistical analyses were conducted separately for

false alarms to probes including new objects and new positions, respectively. A disso-

ciation between both experiments was expected with respect to the two types of false

alarms. In Experiment 1 (object regularities), a reduction of false alarms to probes

including new objects was predicted, whereas in Experiment 2 (spatial regularities),

we hypothesized a selective reduction of false alarms to probes including new po-

sitions, since subjects could reject these specific probes solely on the basis of their

knowledge of invariant objects and positions, respectively (denoted as “critical probe

category” in Figure 10.2). In Experiment 1, the false alarm rate to probes including

new objects (Figure 10.2b, left) was significantly reduced in the IL condition relative

to the CS condition, F (1, 11) = 22.71, p < 0.001. Additional comparisons between

both conditions of Experiment 1 revealed no differences with respect to this false

alarm type in the first quarter of trials, F (1, 11) < 1. However, both conditions dif-

fered significantly in the last quarter of trials, F (1, 11) = 9.12, p < 0.05. By contrast,

no differences between conditions were observed for false alarms to probes including
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new positions (Figure 10.2c, left), neither for all trials, F (1, 11) = 1.25, p > 0.2, nor

for the first, F (1, 11) = 3.53, p > 0.08, and the last quarter of trials, F (1, 11) < 1. In

Experiment 2, a reversed pattern was observed. Analyses of false alarms to probes

including new objects (Figure 10.2b, right) revealed no differences between both con-

ditions, neither for all trials, F (1, 11) < 1, nor for the first, F (1, 11) = 1.36, p > 0.2,

and the last quarter of trials, F (1, 11) < 1. Contrary, the false alarm rate to probes

including new positions (Figure 10.2c, right) tended to be reduced in the last quarter

of trials in the IL as compared to the CS condition, F (1, 11) = 4.49, p < 0.06. No dif-

ferences between conditions were observed for the first quarter of trials, F (1, 11) < 1.

Accordingly, false alarms of this type significantly decreased between the first and

last quarter of trials selectively in the IL condition, F (1, 11) = 5.71, p < 0.05 (CS

condition: F (1, 11) < 1). Furthermore, a significant linear trend across trials was re-

stricted to the IL condition, F (1, 11) = 5.76, p < 0.05 (CS condition: F (1, 11) < 1).

Behavioral Results: Across-block Learning In a second analysis step, across-

block learning effects were examined (Figure 10.3). A two-way repeated measures

ANOVA with the factors condition (CS vs IL) and block (mean corrected Pr value

for blocks 1-2 vs 3-4) revealed a main effect of condition in Experiment 1, F (1, 11) =

21.83, p < 0.001 (Figure 10.3a, left), but not in Experiment 2, F (1, 11) < 1 (Figure

10.3a, right). Moreover, mean corrected Pr values increased across blocks in both

experiments in the IL condition (Experiment 1: F (1, 11) = 13.90, p < 0.005; Ex-

periment 2: F (1, 11) = 6.50, p < 0.05), but not in the CS condition (F (1, 11) < 1

in both experiments).

Similar to the within-block learning effects, we conducted additional analyses of

false alarms to probes including new objects and new positions, respectively (Figure

10.3). In Experiment 1, the ANOVA revealed a main effect of condition for probes

including new objects, F (1, 11) = 22.70, p < 0.001 (Figure 10.3b, left). Accordingly,

false alarms of this type were reduced in blocks 1-2, F (1, 11) = 10.03, p < 0.01, and

blocks 3-4, F (1, 11) = 14.43, p < 0.005, in the IL relative to the CS condition. The

false alarm rate to probes including new positions (Figure 10.3c, left) did not differ

between conditions, F (1, 11) = 1.25, p > 0.2, neither in blocks 1-2, F (1, 11) < 1,



10.3. RESULTS 181

Figure 10.2. Behavioral Results: Within-block Learning. (a) Mean corrected Pr values,
(b) mean false alarm rate to probes including new objects, and (c) mean false alarm rate
to probes including new positions. The performance measures are averaged across trials
1-9, 10-18, 19-27, and 28-36, respectively and collapsed across all blocks, separately for
the the invariant learning condition (solid) and the context-specific condition (dashed) in
Experiment 1 (object regularities; left panels) and Experiment 2 (spatial regularities; right
panels).
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nor in blocks 3-4, F (1, 11) < 1. In accordance with the results of the within-block

learning effects, a dissociation between experiments was observed. In Experiment

2, the false alarm rate to probes including new objects (Figure 10.3b, right) was

similar in the IL and CS condition (F (1, 11) < 1, for the analysis of all blocks and

separate analyses for blocks 1-2 and 3-4, respectively). By contrast, subjects showed

a reduced false alarm rate to probes including new positions (Figure 10.3c, right)

in the IL relative to the CS condition (all blocks: F (1, 11) = 7.85, p < 0.05; blocks

1-2: F (1, 11) = 1.91, p > 0.1; blocks 3-4: F (1, 11) = 5.87, p < 0.05).

To evaluate the across-block modulation of the within-block learning effects, we

calculated performance differences (corrected Pr values) between the last quarter

of blocks and the first quarter of blocks, separately for blocks 1-2 and blocks 3-

4. These difference values were considered as a measure of learning within blocks.

Difference values entered into an ANOVA with the factors condition (CS vs IL)

and block (difference values for blocks 1-2 and blocks 3-4, respectively). Given the

decreased number of datapoints in this analysis as compared to the above analy-

ses, we increased the power of this analysis by including data from Experiment 1

and 2. This analysis revealed a marginally significant condition × block interaction,

F (1, 23) = 4.19, p < 0.06. Moreover, difference values were higher in the IL relative

to the CS condition in blocks 1-2, F (1, 23) = 4.28, p < 0.05, but not in blocks

3-4, F (1, 23) < 1, indicating that the performance increase within blocks in the IL

condition was attenuated across blocks relative to the CS condition.

Imaging Results: Within-block Learning According to the behavioral analy-

sis, in a first step within-block learning was evaluated in a parametric fMRI analysis

(Figure 10.4; Table 10.1). For this purpose, fMRI time series were weighted with

mean within-block learning functions, separately for both experiments (see Meth-

ods). All fMRI analyses were restricted to the IL condition, since we were interested

in learning-related activation pattern. In Experiment 1, a learning-related increase

of activity within blocks was observed in the left superior frontal gyrus (SFG; Brod-

mann Area [BA] 9; peak Talairach coordinates x, y, z: −8, 54, 32) and the left middle

frontal gyrus (MFG; BA 8; −24, 31, 33). Furthermore, the left putamen (−24,−1, 9)
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Figure 10.3. Behavioral Results: Across-block Learning. (a) Mean corrected Pr values,
(b) mean false alarm rate to probes including new objects, and (c) mean false alarm rate
to probes including new positions. The performance measures are averaged across blocks
1-2 and 3-4, respectively and collapsed across all trials, separately for the the invariant
learning condition (solid) and the context-specific condition (dashed) in Experiment 1
(object regularities; left panels) and Experiment 2 (spatial regularities; right panels).
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showed a learning-related increase within blocks. A similar prefrontal-striatal pattern

was observed in Experiment 2. Right MFG (BA 8; 24, 15, 32) and bilateral putamen

(left: −26, 4, 3; right: 26, 1, 11) activity increased as a function of learning within

blocks. By contrast, the right hippocampus showed a learning-related decrease of

activation within blocks (Experiment 1: 26,−22,−6; Experiment 2: 28,−24,−9).2

Table 10.1
Imaging Results: Within-block Learning. Brain regions showing a learning-related activa-
tion pattern within blocks, separately for Experiment 1 and 2 (from anterior to posterior),
described in terms of Brodmann areas (BA), hemisphere (L, left; R, right), Talairach coor-
dinates (mm; transformed from the MNI-space), and peak Z-score. SPMs were thresholded
at p < 0.0005 (uncorrected), 5 voxel extent, except for ∗p < 0.01 (small volume corrected).

Region BA Hemisphere Talairach Z-score

x y z

Experiment 1: Object Regularities

(1) Learning-related increase

Superior frontal gyrus (SFG) 9 L -8 54 32 3.89

Middle frontal gyrus (MFG) 8 L -24 31 33 4.36

Putamen (PUT) – L -24 -1 9 ∗2.66

(2) Learning-related decrease

Hippocampus (HC) – R 26 -22 -6 ∗3.87

Experiment 2: Spatial Regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 8 R 24 15 32 3.69

Putamen (PUT) – L -26 4 3 ∗3.23

– R 26 1 11 ∗2.70

(2) Learning-related decrease

Hippocampus (HC) – R 28 -24 -9 ∗2.71

Imaging Results: Across-block Learning In a second analysis step, neural

correlates of across-block learning were investigated (Figure 10.5; Table 10.2). Mean

2When analyzing learning-related activation pattern in the IL condition relative to the CS

condition, the bilateral hippocampus (Experiment 1) and the right hippocampus (Experiment 2),

respectively showed a learning-related decrease of activation (p < 0.05, small volume corrected).
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Figure 10.4. Imaging Results: Within-block Learning. Model functions and imaging results
are depicted separately for Experiment 1 (object regularities; left panels) and Experiment
2 (spatial regularities; right panels). (a) Model functions for block 1 (trials 1-36), block
2 (trials 37-72), block 3 (trials 73-108), and block 4 (trial 109-144). (b) Learning-related
increase of activity within blocks in the superior frontal gyrus (SFG), middle frontal gyrus
(MFG), and putamen (PUT). (c) Learning-related decrease of activity within blocks in
the hippocampus (HC). SPMs are superimposed on coronal or axial sections of the MNI
T1-weighted MRI template. Talairach y-coordinate or z-coordinate is given below each
image.

performance functions of each entire block were used as model functions in the fMRI

analysis (see Methods). This analysis revealed a learning-related increase of activity

across blocks in the left anterior MFG (BA 46; −22, 43, 2) in Experiment 1 and in

the left posterior MFG (BA 8; −30, 9, 35) in Experiment 2. In contrast, the left puta-

men showed a learning-related decrease of activity in Experiment 1 (−18, 13,−9)

and Experiment 2 (−20, 12,−1).
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Finally, modulations of the within-block learning effects across blocks were analyzed

in a separate model, using the slope of the mean fitted block-specific learning func-

tions collapsed across both experiments as model function (see Methods; Figure

10.6; Table 10.2). The mean slope decreased across blocks and we suppose that this

gradual decrease of the slope reflects the across-block modulation of the within-

block learning effect. This analysis revealed activations in the left SFG (BA 10;

−28, 53, 14), the bilateral putamen (left: −22, 11,−4; right: 24, 13,−6), and the left

caudate nucleus (−14, 8, 5).

Table 10.2
Imaging Results: Across-block Learning. Brain regions showing a learning-related activa-
tion pattern across blocks (for further details see Table 10.1 legend). SPMs were thresh-
olded at p < 0.0005 (uncorrected), 5 voxel extent.

Region BA Hemisphere Talairach Z-score

x y z

Experiment 1: Object Regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 46 L -22 43 2 4.46

(2) Learning-related decrease

Putamen (PUT) – L -18 13 -9 3.60

Experiment 2: Spatial Regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 8 L -30 9 35 4.94

(2) Learning-related decrease

Putamen (PUT) – L -20 12 -1 3.53

Experiment 1/2: Slope Analysis

Superior frontal gyrus (SFG) 10 L -28 53 14 3.72

Putamen (PUT) – R 24 13 -6 4.87

– L -22 11 -4 3.81

Caudate nucleus (CN) – L -14 8 5 4.38
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Figure 10.5. Imaging Results: Across-block Learning. Model functions and imaging results
are depicted separately for Experiment 1 (object regularities; left panels) and Experiment
2 (spatial regularities; right panels). (a) Model functions separately for blocks 1-4. (b)
Learning-related increase of activity across blocks in the MFG. (c) Learning-related de-
crease of activity across blocks in the putamen. See Figure 10.4 for details.

10.4 Discussion

The present study aimed at specifying the neural basis of instance-based and rule-

based learning. The first learning-process should be reflected in a performance in-

crease within experimental blocks (within-block learning), whereas the latter learn-

ing process should entail a performance increase across learning blocks (across-block

learning). The introduction of object regularities (Experiment 1) and spatial reg-

ularities (Experiment 2) gave rise to both within-block and across-block learning.
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Figure 10.6. Imaging Results: Slope-related Activation Pattern. (a) Model functions sepa-
rately for blocks 1-4. (b) Slope-related activity in the SFG, the putamen, and the caudate
nucleus (CN). See Figure 10.4 for details.

In both experiments, within-block learning was associated with a decrease of hip-

pocampal and an increase of middle frontal gyrus and putamen activity, whereas

across-block learning was reflected in an increase of middle frontal gyrus activity and

an attenuation of superior frontal gyrus and putamen/caudate nucleus activation.

The behavioral data indicate that learning was restricted to the IL condition in both

experiments. Here, performance increased within and across blocks. Contrary, in the

CS condition performance remained constant within and across blocks. Furthermore,

the analysis of false alarms revealed a dissociation between both experiments. During

learning object regularities (Experiment 1), solely false alarms to probes including

new objects decreased within and across blocks, whereas in Experiment 2 (spatial

regularities), this selective decrease of false alarms was restricted to probes including

new positions. Here, subjects benefit most of all from regularity learning since they

can reject the probes solely on the basis of the knowledge of invariant objects and

positions, respectively. A possible explanation for this differential domain-specific
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reduction of false alarms might be an enhanced selectivity of object and spatial

representations, respectively (cf. Yeshurun & Carrasco, 1998).

Hippocampal Contribution to Instance-based Learning The learning-related

decrease of hippocampal activity within blocks in Experiment 1 and 2 is consistent

with our previous study (Doeller et al., in press). In accordance with models of hip-

pocampal function (Eichenbaum, 2000; Norman & O’Reilly, 2003), we argue that re-

lational binding requirements gradually decrease in the IL condition, since invariant

objects are bound to variable positions or vice versa. As a consequence, hippocampal

involvement diminishes as a function of learning. This learning-related hippocam-

pal activation pattern is in agreement with previous studies showing hippocampal

decrease as a function of sequence learning (Schendan et al., 2003), probabilistic

learning (Poldrack et al., 2001), and artificial grammar learning (Opitz & Friederici,

2003, 2004; Strange et al., 2001). Interestingly, the introduction of new exemplars

(Strange et al., 2001) and changes of superficial features of sentences (Opitz &

Friederici, 2004) entailed a phasic increase of hippocampal activation which rapidly

attenuated as a function of learning (cf. Strange et al., 1999). In contrast, in both

studies (Opitz & Friederici, 2004; Strange et al., 2001) hippocampal activation was

not affected by the introduction of new grammatical rules. In line with these find-

ings, hippocampal activity decreased as a function of learning within blocks. At the

beginning of each new block, the set of invariant objects and positions was changed.

Consequently, these changes of instances gave rise to hippocampal involvement at

the beginning of the blocks with its activity gradually decreasing as a function of

increasing performance within blocks.

Prefrontal-striatal Contributions to Rule-based Learning Distinct lateral

prefrontal and striatal brain regions exhibited a learning-related modulation of ac-

tivity within and across blocks in both experiments. In showing a prefrontal-striatal

activation increase as a function of learning within blocks in both experiments,

we could replicate our previous findings (Doeller et al., in press). Accordingly, we

argue that the lateral PFC contributes to learning by means of mnemonic codes
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(Becker & Lim, 2003), representing regularities of invariant episodic features. It is

supposed that these rule-like aggregated representations facilitate encoding of new

object-position conjunctions and give rise to increased performance across trials by

providing a more efficient encoding strategy. The lateral PFC has been implicated

in the acquisition and the implementation of task-relevant rules (Freedman et al.,

2001; Miller, 2000; Wallis et al., 2001). Given the across-block modulation of mid-

dle frontal and superior frontal gyrus activity, it is conceivable that such rule-like

representations are flexibly adapted to new task requirements, such as a new set

of invariant episodic features at the beginning of a new block (cf. Duncan, 2001).

Fletcher et al. (1999) observed an virtually identical increase of left middle frontal

gyrus activity across blocks during artificial grammar learning. The authors argue

that this incremental activation pattern reflects the “implementation of semantic

knowledge” (Fletcher et al., 1999, p. 176) of abstract grammar rules. In accordance

with this view, we argue that rule-like representations of task-relevant regularities

in object-position conjunctions gradually evolve across blocks, since information is

aggregated across multiple episodes (cf. O’Reilly & Norman, 2002).

The putamen exhibited a learning-related activation increase within blocks and a

learning-related activation decrease across blocks. In addition, putamen and cau-

date nucleus activity correlated with the across-block attenuation of the slope of

the within-block learning functions. The striatum has been implicated in stimulus-

reward and stimulus-stimulus learning by representing predictions of future reward

delivery (O’Doherty et al., 2003, 2004; Schultz, 2002; Schultz et al., 2003). Based

on this evidence and assumptions of formal learning theories (Rescorla & Wagner,

1972; Sutton & Barto, 1990), the learning-related increase of striatal activity within

blocks might indicate that the striatum codes the increased predictability (cf. Koech-

lin et al., 2002) of invariant episodic features and by this implements a statistical

model of the task environment (Dayan, Kakade & Montague, 2000). The across-

block attenuation of these striatal processes might reflect the facilitated update of

this statistical model.

Finally, it could be speculated that there is a cooperative functional interaction be-

tween lateral prefrontal and striatal structures during learning within and across
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blocks. Recent computational models (Braver & Cohen, 2000; Frank et al., 2001)

support this view by showing a crucial role of the striatum in providing a gating

mechanism which controls the flexible update of prefrontal representations by means

of a reinforcement signal. Thus, striatal reinforcement signals, coding the predictive

relationships among invariant episodic features might be involved in updating in-

formation about regularities maintained in the PFC, hence stabilizing prefrontal

rule-like representations.

In summary, the present results suggest that instance-based and rule-based learn-

ing presumably depend on different brain regions. The hippocampus seems to be

solely involved during instance-based learning, whereas distinct lateral prefrontal

and striatal structures subserve both instance-based and rule-based learning.
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In the last decades, the existence of separate learning and memory systems has

been proposed in experimental psychology and cognitive neuroscience (McClelland

et al., 1995; Mishkin et al., 1984; O’Keefe & Nadel, 1978; O’Reilly & Norman,

2002; Sherry & Schacter, 1987; Squire, 1992; Squire & Zola, 1996, cf. Packard &
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Knowlton, 2002; Poldrack & Packard, 2003; Rolls, 2000; White & McDonald, 2002).

In general, it has been proposed that two distinct systems are specialized for com-

plementary functions, namely (1) fast learning unique episodes (first system) and

(2) gradual learning regularities across multiple episodes (second system). In several

fMRI and behavioral experiments, the present thesis aimed at specifying the neural

and cognitive basis of the second system. In the present experimental framework,

the general term ‘regularity learning’ was introduced to describe the learning pro-

cess underlying the second system. Regularity learning was defined as the gradual

extraction of overlapping, invariant features of multiple episodes. The main results

of the present experiments indicate that regularity learning is accompanied by a

shift from a hippocampal to a prefrontal-striatal brain system.

After summarizing the theoretical background and the results of the present thesis

(11.1), the main characteristics of both learning and memory systems will be sum-

marized (11.2). Furthermore, several criteria will be proposed to provide theoretical

and empirical constraints for a definition of regularity learning in the scope of the

present experimental framework (11.3). Moreover, a tentative model of regularity

learning will be outlined, describing the functional roles of the hippocampus, the

striatum, and the lateral prefrontal cortex and possible functional interactions be-

tween these structures during regularity learning (11.4). Finally, open issues and

future directions will be described (11.5).

11.1 Summary

The formation of episodic memory is supposed to be a core function of the first

proposed learning and memory system. In Chapter 2, an overview about the role

of the hippocampus during the formation of episodic memories was given. Results

from single cell recording and lesion studies in animals, neuropsychological studies

with amnesic patients, single cell recordings, ERP studies and imaging studies in

humans suggest that the hippocampus is critically involved during building episodic

memories. Two influential models of hippocampal function, namely the Eichenbaum

model (Eichenbaum, 2000) and the O’Reilly model (O’Reilly & Norman, 2002) were
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described. The Eichenbaum model assumes that the hippocampus contributes to the

formation of episodic memory by means of relational binding, i.e. binding of differ-

ent features defining episodes. The O’Reilly model proposes that the hippocampus

is characterized by a specific representational format, namely a sparse, pattern-

separated, conjunctive representation, making the hippocampus best suited for en-

coding and retrieval of episodic memories. Both models make different predictions

how regularities across episodes, i.e. overlapping features of multiple episodes are

represented in the brain. Eichenbaum has pointed out that specific hippocampal

neurons represent regularities across episodes, whereas O’Reilly assumes that the

surrounding rhinal and parahippocampal cortex is specialized for this operation.

In Chapter 3, the cognitive and neural basis of the second learning and memory

system was described. The term ‘regularity learning’ was introduced to describe the

learning process associated with the second system. Regularity learning was defined

as the gradual extraction of overlapping, invariant features of multiple episodes. In

this chapter, results from studies investigating reinforcement learning mechanisms,

e.g. classical and instrumental conditioning and probabilistic learning, as well as

studies using artificial grammar learning, category learning, and sequence learning

tasks were reported. On a cognitive level, the mechanisms underlying learning in

these tasks have in common that subjects acquire a (fragmentary) knowledge of reg-

ularities across multiple episodes. On a neural level, reinforcement learning is mainly

based on the mesolimbic dopamine system, especially the ventral tegmental area and

the substantia nigra, and its main target areas, the striatum and the orbitofrontal

cortex. The lateral prefrontal cortex has been identified as the core structure in

mediating artificial grammar, category, and sequence learning. Evidence for medial

temporal lobe and striatal involvement in these learning tasks is less consistent.

Two brain regions were of main interest in the scope of the present thesis, namely

the hippocampus and the prefrontal cortex. The neuroanatomy of both brain struc-

tures was described in Chapter 4. In the main experiments of the present thesis,

functional magnetic resonance imaging (fMRI) was used to investigate the neural

correlates of regularity learning. An overview of the physical principals of MRI, the

main characteristics of the BOLD signal, and important aspects of the analysis of
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fMRI time series and the designing of fMRI experiments was given in Chapter 5.

The topic of Chapter 6 was the rationale for the present experiments. In the ex-

periments described in this thesis, subjects had to learn several object-position con-

junctions during the sample phase of the experimental trials. Upon presentation of

a probe stimulus, participants had to indicate whether or not the current object-

position conjunction (the probe stimulus) was identical to one of the object-position

conjunctions presented in the sample phase. In the current experimental framework,

an episode was defined as the set of object-position conjunctions in the sample phase.

The design of the experiments comprised two conditions, a context-specific (CS) and

an invariant learning (IL) condition. The CS condition should tap processes associ-

ated with the first proposed learning and memory system. Therefore, episodes were

defined trial-unique, i.e. objects and positions were variably mapped across trials.

In contrast, the IL condition should elicit the involvement of the second learning

and memory system. Here, either positions or objects in object-position conjunc-

tions were held constant across trials of experimental blocks. By this, regularities

across episodes were introduced. The IL condition was of main interest in the scope

of the present thesis, thus the CS condition was designed as a control condition with

respect to regularity learning. Each condition included several experimental blocks.

On a behavioral level, an increase of performance was expected within blocks of

the IL condition, since subjects should benefit from the introduction of invariant

objects and positions, respectively. In contrast, in the CS condition a constant per-

formance level was expected across trial. On a neural level, constant hippocampal

activation was expected in the CS condition, since variable objects have to be bound

to variable positions in each trial (constant binding requirements). In the IL condi-

tion, reduced binding requirements were expected during the time-course of learning.

Thus, a learning-related decrease of hippocampal activity was predicted. Conversely,

a learning-related increase of lateral prefrontal activity was hypothesized in the IL

condition.

In Experiment 1, the introduction of invariant positions (Experiment 1A; Chapter

7) and invariant objects (Experiment 1B; Chapter 8) in object-position conjunctions

entailed increased performance in the IL condition. As predicted, performance in the
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CS condition was constant across trials. In both experiments, regularity learning in

the IL condition was associated with a learning-related decrease of hippocampal

activity. In contrast to a right hippocampal decrease during learning spatial regular-

ities (Experiment 1A), bilateral hippocampal activation decreased as a function of

learning object regularities (Experiment 1B). Lateral prefrontal and striatal activity

increased as a function of learning in both experiments.

In Chapter 9, several behavioral experiments investigated learning object regularities

in more detail (Experiment 2). In brief, the influence of object distinctiveness (Ex-

periment 2A-2B), memory load and learning duration (Experiment 2C-2E), and the

effect of simultaneous object-position bindings (Experiment 2F) on learning invari-

ant objects in object-position conjunctions was examined. The behavioral data indi-

cate that object distinctiveness mainly affects overall memory performance, whereas

manipulation of the learning duration and the memory load affects the learning pro-

cess. Moreover, the analyses revealed a dissociation of two learning mechanisms: a

process operating within learning blocks and a process operating across blocks.

Finally, Experiment 3 (Chapter 10) aimed at specifying whether separable brain

regions mediate these two learning mechanisms. In contrast to Experiment 1A and

1B, trials were blocked by condition to minimize the probability that subjects based

their judgment on a common strategy for both conditions. On a behavioral level,

subjects showed a performance increase within and across learning blocks in an ob-

ject IL condition (Experiment 3A) and in a spatial IL condition (Experiment 3B),

but not in the respective CS conditions. On a neural level, within-block learning was

associated with a learning-related increase of lateral prefrontal and striatal activ-

ity and a learning-related decrease of hippocampal activity, by this replicating the

results of Experiment 1A and 1B. In addition, distinct prefrontal-striatal regions

were involved in across-block learning. Thus, these data might indicate that regu-

larity learning in the present experimental framework is subserved by instance-based

and rule-based learning mechanisms, as indexed by within-block and across-block

learning, respectively. The hippocampus seems to be preferentially involved during

instance-based learning, whereas distinct lateral prefrontal and striatal structures

subserve both instance-based and rule-based learning.
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Taken together, the results of the present experiments indicate that regularity learn-

ing is accompanied by a gradual transition from a hippocampal to a prefrontal-

striatal brain system.

11.2 Two Separate Learning and Memory Sys-

tems: Fast Trial-unique vs Gradual Regular-

ity Learning

The two separate learning and memory systems can be distinguished from each other

along several characteristics which are summarized in Table 11.1. Each of these

characteristics will be addressed in the following Section 11.3 and Section 11.4.1

In summary, the first system is specialized for the rapid representation of unique

episodes (O’Reilly & Norman, 2002; Squire, 1992) which comprise non-predictive re-

lationships among stimuli. In contrast, the second system is best suited for learning

regularities across multiple episodes, where predictive relationships among stimuli

exist. Furthermore, the first system is characterized by fast encoding of episodes

by means of pattern-separated representations (O’Reilly & Norman, 2002), whereas

the second system is involved in gradual, incremental learning regularities across

multiple episodes, i.e. this system integrates over many experiences, by this provid-

ing aggregated information (O’Reilly & Norman, 2002; Sherry & Schacter, 1987).

The first system might store information by means of weight-based representations,

whereas the storage principle of the second system might be best characterized by

activation-based representations (cf. Frank et al., 2001). On a molecular level, infor-

mation processing and storage might be mediated by LTP and dopamine in the first

and second system, respectively. Finally, it is proposed that the hippocampus is the

neural structure associated with the first system, whereas the striatum and the pre-

frontal cortex are best suited to meet the functional demands of the second system

(Poldrack & Packard, 2003; Squire & Zola, 1996; White & McDermott, 2002).

1The relevant characteristics will be highlighted in the text, e.g. [C1].
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Table 11.1
Two Separate Learning and Memory Systems: Main Characteristics and Differences.

Characteristics First System Second System

[C1] Learned information Unique episodes Regularities across episodes

[C2] Relationship among Stimuli Non-predictive Predictive

[C3] Processing Speed Fast Slow

[C4] Representational Format Pattern-separated Aggregated

[C5] Storage Principle Weight-based Activation-based

[C6] Molecular Mechanism LTP Dopamine

[C7] Brain Structure Hippocampus Striatum, prefrontal cortex

See text for further details.

First, by providing four criteria I will describe the cognitive mechanisms underlying

regularity learning (11.3). Second, a tentative model will be outlined, addressing the

neural basis of regularity learning (11.4).

11.3 A Definition of Regularity Learning

I propose four criteria to provide constraints for a definition of regularity learning

in the current experimental framework: (a) the extraction of regularities, i.e. the

detection of overlapping features across multiple episodes, (b) the gradual nature

of the learning process, (c) the maintenance of these regularities over time, and (d)

the aggregated representational format of the extracted information. Each criterium

is concerned with a different aspect of learning, namely the information which is

learned (criterium a), temporal properties (criterium b) and ‘cognitive control’ prop-

erties (criterium c) of the learning process, and the representational format of the

learned information (criterium d). In the following, the results of the present thesis

will be discussed according to these criteria.
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11.3.1 Regularity Extraction across Multiple Episodes

The first criterium describes the information which is learned and the properties of

the learning environment. The essential prerequisite for learning is the existence of

regularities across multiple episodes, i.e. overlapping features of episodes [C1]. As

a consequence, structured, predictive relationships between episodic features grad-

ually evolve, i.e. subjects gradually detect contingencies between episodic features

[C2]. In the present experiments, either objects or positions in object-position con-

junctions were held constant. Hence, regularities, i.e. overlapping features across

multiple episodes were introduced. It is assumed that this feature overlap allows

learning to occur. In the present experiments, subjects benefit from the presence

of spatial or object regularities across trials. The decision upon the probe stimulus

is facilitated in the presence of learned regularities across episodes as reflected in

increased performance across trials in the IL condition. In contrast, in the CS condi-

tion each trial comprised a unique episode, i.e. no regularities were introduced and

by this no predictive relationships among episodic features exist. Thus, learning was

absent or negligible in the CS condition.

The existence of regularity learning is supported by analyses of false alarms commit-

ted by subjects in the present experiments. When spatial regularities are introduced

(Experiment 1A and 3B), a selective reduction of false alarms to probes including

new positions was observed within learning blocks. In contrast, object regularities in

object-position conjunctions (Experiment 1B and 3A) entailed a selective decrease

of false alarms for probes including new objects. Here, subjects benefit most of all

from learning regularities, since they can reject the probes solely on the basis of the

knowledge of invariant objects and positions, respectively. A possible explanation

for this differential domain-specific reduction of false alarms might be an enhanced

selectivity of object or spatial representations (cf. Yeshurun & Carrasco, 1998). In

agreement with this view, the distinct hemispheric specialization during learning ob-

ject and spatial regularities, respectively indicates that the hippocampus is sensitive

to the specific domain of invariant episodic features. Taken together, these data sug-

gest that in contrast to the CS condition the performance increase in the IL condition
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is driven by the successful extraction of regularities across multiple episodes. In a

similar vein, in artificial grammar learning tasks, subjects are exposed to repeating

overlapping sequences of grammatical strings, in category learning tasks, subjects

are exposed to repeating overlapping category-defining features (e.g. dot patterns),

and in sequence learning tasks, subjects are exposed to repeating overlapping stim-

ulus and/or response sequences. In all these tasks, regularities are extracted and

entail better task performance.

The present fMRI experiments and especially the behavioral data in Experiment 2C

and 2D (and partially Experiment 2E) further indicate that distinctiveness of invari-

ant features facilitates the extraction of regularities, possibly by further strength-

ening the selectivity of object and spatial representations. In the spatial invariant

learning conditions (Experiment 1A and 3B), invariant positions were highly distinc-

tive. Stimuli were presented in a grid, by this positions were highly salient. Moreover,

the grid was presented permanently for the whole trial phase. However, in Experi-

ment 2A and 2B, although feature distinctiveness was increased, no learning effects

were observed. When both feature distinctiveness and learning phase (together with

higher memory load) were increased, learning occurred (Experiment 2C and 2D).

Importantly, the observation of more pronounced learning effects in Experiment 2C

and 2D (prolonged learning phase and highly distinctive features) than in Experi-

ment 2E (prolonged learning phase and less distinctive features), provides evidence

for the notion that feature distinctiveness is an additional factor which affects reg-

ularity extraction. Accordingly, the diminished learning effects in Experiment 2F

suggest that regularity extraction might depend on separated, distinct representa-

tions of the features defining the critical regularities.

11.3.2 The Gradual Nature of the Extraction Process

The second criterion is concerned with temporal properties of the learning process.

It is assumed that learning has to be gradual, since the extraction process integrates

over many experiences (cf. O’Reilly & Norman, 2002) [C3]. Similar to the present

experiments, in which performance increases across several trials, in all aforemen-

tioned learning tasks learning evolves across multiple experiences with the structured
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stimulus material. Several presentations of artificial grammar strings, members of

a specific category, or sequential structures are required to entail robust learning

effects. The importance of this criterion is elucidated by the comparison between

performance in Experiment 2A and 2B (short learning phase) with performance in

Experiment 2C-2E (long learning phase). Learning occurred when learning blocks

comprised 36 trials (Experiment 2C-2E), but less learning occurred when learning

blocks comprised 16 trials (Experiment 2A and 2B). These results indicate that the

extraction process is gradual in nature, similar to the mechanisms involved in learn-

ing artificial grammars, categories, and sequences.

With regard to this criterion, the time-sensitive dissociation of the learning effects in

Experiments 2C-2E and Experiments 3A and 3B seems to be relevant. Here, learn-

ing effects were pronounced in the first half of the experiments, but diminished in

the second half. These data indicate that the learning asymptote is reached earlier

in the last as compared to the first blocks. Accordingly, the across-block distribution

of the learning functions follows a step function, i.e. learning becomes faster in the

final phase of the experiment (cf. Fletcher et al., 1999, 2001), where the predictabil-

ity of invariant episodic features increases and by this uncertainty diminishes faster

(cf. Rescorla & Wagner, 1972; Sutton & Barto, 1990). This dissociation between

both halves of the experiment indicates that regularity extraction across episodes in

the present experimental framework might be based on two distinct mechanisms: a

process operating within blocks and a process operating across blocks. It could be

speculated that the former extraction process might be responsible for detecting fea-

ture invariances (instance-based learning) and the latter, higher-order process might

be involved in transferring the extraction mechanism to new exemplars (rule-based

learning). Experiment 3 aimed at disentangling both mechanisms. The results of

Experiment 3 indicate that distinct lateral prefrontal and striatal brain structures

mediate both within-block and across-block learning, whereas the hippocampus is

preferentially involved in within-block learning. Furthermore, an across-block modu-

lation of within-block learning effects was observed. Most interestingly, the striatum

(putamen and caudate nucleus) showed a striking correspondence with the interac-

tion of both learning mechanisms as indexed by the gradual across-block decrease
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of the slope of the within-block learning functions.

11.3.3 Maintenance of Extracted Regularities

After subjects have successfully extracted the set of invariant positions or objects in

the present task, this set has to be maintained across the remaining block. This issue

was not tested in the behavioral studies of Experiment 2. One possibility would be

to concurrently present a second, interfering task. Learning should diminish when

this second task hampers the maintenance processes. Interestingly, constraints of

these processes could be provided by selectively manipulating the onset of the sec-

ondary task. More precisely, it could be speculated that the interfering influence of

a secondary task is restricted to a critical time window. Supporting evidence is pro-

vided by sequence learning research, indicating that learning is preserved even under

dual-task conditions when subjects have enough time to retain sequence elements in

working memory (Frensch et al., 1994). Support for the relevance of this criterion

might be provided by the imaging data (Experiment 1 and 3). During learning spa-

tial and object regularities, the lateral prefrontal cortex showed a learning-related

increase of activity across trials within experimental blocks in both experiments.

One of the core cognitive control functions of the PFC is the active maintenance of

task-relevant information and the protection of this information against distraction

(Miller et al., 1996; Sakai et al., 2002; Smith & Jonides, 1999). Accordingly, the re-

sults of Experiment 1 and 3 highlight the importance of the lateral prefrontal cortex

for the maintenance of extracted regularities (see below).

11.3.4 Abstract Knowledge Base

Which kind of knowledge is acquired in the present task? In the artificial grammar

and category learning literature, one core controversy revolves around two contrary

concepts: rule vs similarity (cf. Pothos, in press). Is learning mainly based on abstract

rules or on the superficial similarity between items to be learned? For instance, sev-

eral artificial grammar learning models posit that subjects learn the abstract rules

of the artificial grammar system (Dulany et al., 1984, 1985; Reber, 1989), whereas

others argue that learning is based on knowledge of fragments/chunks of gram-
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matical strings, e.g. letter bigrams and trigrams and not on the acquisition of an

abstract rule-system (Perruchet & Pacteau, 1990; Perruchet, 1994; Servan-Schreiber

& Anderson, 1990). In a similar vein, a distinction could be made between exemplar-

based (Kruschke, 1992; Nosofsky, 1986) and rule-based models (Ashby & Townsend,

1986; Ashby & Perrin, 1988) of category learning. According to exemplar-based

models, subjects represent category exemplars and their categorization decision is

based on a comparison between the current stimulus and the stored exemplars. In

contrast, rule-based models assume that subjects respond to stimuli according to

decision rules which partition the potential decision space.

It is not in the scope of the present framework to provide a solution for this contro-

versy. However, it might be argued that both rule-based and similarity-based models

(at least with regard to the chunk-based account in artificial grammar learning) are

based on a common denominator, namely the idea that learning is characterized

by the successful aggregation of information over time. For instance, chunk-based

accounts posit that learning is driven by the aggregation or organization of the in-

put pattern into compact chunks (e.g. Servan-Schreiber & Anderson, 1990). This

form of knowledge is abstract in the sense that it is independent of a specific learn-

ing episode, in fact it evolves over multiple experiences. In line with this, in the

present task subjects extract regularities over time, i.e. spatial or object invariances

in object-position conjunctions. These invariances resemble the aggregated chunks

in the model mentioned above (Servan-Schreiber & Anderson, 1990). The prefrontal

cortex seems to be best suited for representing such aggregated, rule-like information

(Bor et al., 2003; Strange et al., 2001; Wallis et al., 2001, see below) [C4].

A possible way to provide empirical constraints regarding the representational for-

mat of the knowledge acquired during learning regularities is to investigate different

domains. More precisely, is regularity extraction a domain-general or a domain-

specific neural mechanism? Comparisons between Experiment 1A (spatial regular-

ities) and Experiment 1B (object regularities) indicate that similar prefrontal re-

gions support regularity learning in the spatial and object domain, thus indicat-

ing the domain-general nature of these processes. Interestingly, a domain-specific

hemispheric specialization of the hippocampus was observed. Relative to a right-
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lateralized activation pattern during learning spatial regularities (Experiment 1A),

bilateral hippocampus activity decreased as a function of learning object regulari-

ties (Experiment 1B). This domain-specific hemispheric specialization might suggest

that the hippocampus is sensitive to the perceptual properties of invariant features,

indicating the bottom-up character of this mechanism.

11.4 A Tentative Model of Regularity Learning

Based on the results of the present thesis, in the following a tentative model of regu-

larity learning will be outlined (see Figure 11.1). In all imaging experiments, regular-

ity learning was mediated by a specific brain network, including the hippocampus,

the striatum, and the prefrontal cortex. A consistent relationship between learning

and activation in these three brain regions was observed: hippocampal activation

decreased across trials as a function of learning, whereas the striatum and the pre-

frontal cortex showed a learning-related activation increase. But what is the exact

division of labor between the hippocampus, the striatum, and the prefrontal cortex

during regularity learning? Is there a time-limited role of one region during a par-

ticular phase of learning? What are the functional roles of these brain regions and

how do they interact in the service of regularity learning? Is there a functional spe-

cialization, i.e. are there neuronal and computational constraints making one region

appropriate for meeting specific functional demands?

The present model proposes that the hippocampus is crucial for relational bind-

ing of unique episodic features (11.4.1) that the striatum subserves coding of the

predictability of invariant episodic features (11.4.2), and that the prefrontal cortex

exhibits active maintenance of regularities by means of rule-like representations in

favor of flexible task control (11.4.3). Finally, the model proposes possible functional

interactions between the hippocampus, the striatum, and the prefrontal cortex dur-

ing the time-course of learning (11.4.4).
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Figure 11.1. A Tentative Model of Regularity Learning. During the time-course of regu-
larity learning, the hippocampus (HC) is involved in relational binding of unique episodic
features. The striatum (ST) encodes the increased predictability of invariant episodic fea-
tures. The lateral prefrontal cortex (PFC) subserves the active maintenance of regularities
by means of rule-like representations. Based on these representations, the PFC might
implement an efficient encoding strategy. Arrows denote possible functional interactions
between the three brain regions. (1) and (2): Complementary functional interaction be-
tween the hippocampus and the striatum during encoding of structured input pattern.
Hippocampal relational binding requirements decrease, once regularities are detected. In
contrast, the striatum codes the increased predictability of invariant episodic features and
provides a reinforcement signal to the PFC (3). Based on rule-like representations, the
PFC modulates hippocampal binding operations (4). See text for further details.

11.4.1 Hippocampus and Relational Binding

The hippocampus has been implicated in relational memory binding, i.e. binding of

distinct features of unique episodes (Cohen et al., 1999; Eichenbaum, 2000, in press)

[C1]. The preferential role of the hippocampus for relational memory processing

has been elucidated by several recent single cell recording (Bunsey & Eichenbaum,

1996; Dusek & Eichenbaum, 1997; Fortin et al., 2002) and imaging studies (Davachi

& Wagner, 2002; Giovanello et al., 2004; Preston et al., 2004). It has been argued

that a specific, pattern-separated representational format is required to avoid or to

minimize interference between representations of different episodes, i.e. represen-

tations of unique episodes have to be kept separate from representations of other

episodes (Norman & O’Reilly, 2003; O’Reilly & Rudy, 2000) [C4]. Another core abil-
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ity of a neural system specialized for representing unique episodes is a high learning

rate (Norman & O’Reilly, 2003) [C3]. The pattern separation mechanisms has to

be fast, since episodes have to be encoded directly when they occur. Moreover, it is

assumed that the hippocampal representation is sparse and conjunctive (O’Reilly &

Rudy, 2001). The sparseness entails fast encoding as well as minimizing interference

between representations of distinct episodes. A conjunctive representation is the re-

sult of binding different features of unique episodes (O’Reilly & Rudy, 2000).

In the present experimental framework, the sample phase of each trial (i.e. a set of

sequential object-position conjunctions) is defined as an ‘episode’. In each trial, spe-

cific objects have to be bound to specific positions (first-order binding). Moreover,

in each trial several object-position bindings have to be bound together to entail

an exhaustive, pattern-separated (O’Reilly & Norman, 2002) representation of the

whole episode (second-order binding). In the CS condition of the present task, these

relational binding requirements remain approximately constant across trials, since

objects are variably mapped to positions. Hence, the probability for each possible

object-position conjunction is approximately constant within one block. In contrast,

in the IL condition relational binding requirements become reduced as a function of

time within experimental blocks, since invariant objects are bound to variable posi-

tions or vice versa. By this, the probability of specific object-position conjunctions is

substantially increased (e.g. a specific object presented at one of the positions held

constant in a block [spatial IL condition] or one of the invariant objects presented at

a specific position [object IL condition], respectively), whereas other object-position

conjunctions never occur in one block, i.e. the probability for these object-position

conjunctions is reduced to zero (e.g. a specific object presented at one of the re-

maining positions never occurring in a block [spatial IL condition] or one of the

remaining objects never occurring in a block presented at a specific position [object

IL condition], respectively). It is conceivable that the learning-related decrease of

hippocampal activity is due to these reduced relational binding requirements during

the experimental blocks, leading to a reduced hippocampal conjunctive representa-

tion. These results concur with several imaging studies investigating probabilistic

cue-outcome learning (Poldrack et al., 2001), associative learning (Zeineh et al.,
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2003), sequence learning (Grafton et al., 1995; Schendan et al., 2003), and artificial

grammar learning (Opitz & Friederici, 2003). Similar to the present task, the reduc-

tion of binding requirements is associated with decreased hippocampal involvement

in these studies.

Furthermore, the material-specific hemispheric specialization observed in the present

imaging experiments might suggest that the hippocampus is characterized by a

stimulus-driven processing mode, sensitive to perceptual attributes of invariant epi-

sodic features. Consistent with this view, in an artificial grammar learning study

Opitz and Friederici (2004) showed that hippocampal activation was modulated

by changes of superficial features of grammatical sentences, whereas prefrontal cor-

tex activity was sensitive to the introduction of new grammatical rules. Moreover,

in showing highly stimulus-specific learning-related modifications in activation pat-

tern of single hippocampal neurons in monkeys during associative learning, Wirth

et al. (2003) further support the view that hippocampal processing is sensitive to

perceptual attributes of the to-be-learned stimuli. This stimulus-driven bottom-up

processing mode is possibly mediated by projections from distinct visual brain re-

gions via the rhinal cortex, providing information about various stimulus attributes

to the hippocampus (cf. Murray & Bussey, 1999). Finally, the results of Experi-

ment 3 indicate that the hippocampus is preferentially involved in instance-based

learning as indexed by a learning-related decrease of activity within learning blocks.

These data are consistent with the view that the hippocampus is characterized by

a stimulus-driven bottom-up processing mode, since instance-based learning mech-

anisms have been supposed to rely on the superficial similarity between learning

instances (Opitz & Friederici, 2004; Pothos, in press).

The shift from a hippocampal to a prefrontal brain system in the present thesis is

in line with models of memory consolidation that postulate a gradual reorganiza-

tion of the neural substrates of memory representations in the course of learning

(e.g. Alvarez & Squire, 1994; McClelland, McNaughton & O’Reilly, 1995; Squire &

Alvarez, 1995, but see Káli and Dayan, 2004, and Nadel et al., 2000, for alternative

views). According to these models, the learning process is accomplished by means

of an interaction between the hippocampal system and the neocortex in establishing
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permanent cortical representations, thereby gradually losing their dependence of the

hippocampus (see Haist, Gore & Mao, 2001; Hoffman & McNaughton, 2002; Maviel,

Durkin, Menzaghi & Bontempi, 2004, for recent neuroimaging and neurophysiolog-

ical evidence for the cortical consolidation hypothesis). Based on this evidence, it

might be speculated that regularity learning in the present experimental framework

might be a first step towards the consolidation of memory traces of invariant episodic

features, thereby becoming independent of the hippocampus as reflected in reduced

hippocampal involvement as a function of time. Furthermore, LTP (cf. Malenka

& Nicoll, 1999), especially in the hippocampus, has been widely considered as a

molecular mechanism of memory consolidation (McGaugh, 2000). Thus, it could be

argued, though highly speculative that LTP might serve as a molecular mechanism

underlying the learning-related reduction of relational binding requirements in the

hippocampus and by this might support regularity learning [C6]. Taken together,

the hippocampus seems to be best suited to meet the functional demands of the

first learning and memory system (cf. McClelland et al., 1995; O’Reilly & Norman,

2002; Packard & Knowlton, 2002; Poldrack & Packard, 2003; Squire, 1992) [C7].

11.4.2 Striatum and Predictability Coding

In the present fMRI experiments, the striatum exhibited a robust learning-related

increase of activation during the experimental blocks. One influential view posits

that the midbrain dopamine system (in particular the ventral tegmental area and

the substantia nigra, zona compacta) and its main target areas, especially the stria-

tum (nucleus accumbens, putamen, and caudate nucleus), play a pivotal role during

reward-related learning (Schultz et al., 1997; Schultz, 2000, 2002; Schultz et al.,

2003). Based on assumptions of formal reinforcement learning theories (Rescorla &

Wagner, 1972; Sutton & Barto, 1990), it has been proposed that these brain regions

represent predictions of future reward delivery and by this drive learning the predic-

tive relationship between stimuli in the environment (Schultz et al., 1997; Schultz,

2002). Schultz argues that the activation pattern of dopamine neurons reflects a pre-

diction error (PE), i.e. a measure of the difference between the actual reward and the

expected reward. During initial learning, rewards are highly unexpected. As a con-
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sequence, the PE and the neuronal dopamine response is high. With experience of

the specific stimulus-reward associations, the PE-related neuronal signal shifts back-

ward in time to stimuli that predict reward (Mirenowicz & Schultz, 1994; O’Doherty

et al., 2003; Schultz et al., 1997), i.e. learning chains backward in time. Thus, the

striatum is involved in building expectations of upcoming reward delivery and by

this supports the acquisition of stimulus-reward (McClure et al., 2003; O’Doherty

et al., 2003), stimulus-response-reward (Lauwereyns et al., 2002b; O’Doherty et al.,

2004) and higher-order associations (Seymour et al., 2004; Tanaka et al., 2004).

Based on this evidence, it could be argued that the striatum codes the increased

predictability of invariant objects and positions, respectively and by this provides

a measure of the increased probability of specific object-position conjunctions in

the present experiments [C2], possibly mediated by projections from midbrain

dopamine neurons [C6]. These striatal operations coding stimulus predictability

evolve during the time-course of learning as reflected in a learning-related increase

of activity within learning blocks. Interestingly, this learning-related striatal activa-

tion pattern is further modulated across learning blocks in Experiment 3, reflecting

the adaption of predictability coding operations and hence learning across blocks.

In contrast, no striatal involvement was observed in the CS condition of the present

imaging experiments. This is due to the fact that a sequence of unique episodes

(as in the CS condition) includes no predictive relationships among stimuli [C2].

It could be argued that the striatum is involved in learning predictive relationships

of task-relevant features (i.e. invariant objects and positions) and by this is crucial

for building a statistical model of the task environment (Dayan et al., 2000), coding

the contingencies between episodic features. These operations are gradual in nature,

since an integration across many experiences is required to establish a valid statisti-

cal model [C3]. In sum, the striatum seems to be one core structure subserving the

main functions of the second learning and memory system (cf. Packard & Knowlton,

2002; Poldrack & Packard, 2003; Squire & Zola, 1996; White & McDermott, 2002)

[C7].
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11.4.3 Prefrontal Cortex and the Representation of Rule-

like Information

Several influential theories of prefrontal function have been proposed in the last years

(Duncan, 2001; Miller & Cohen, 2001; Shimamura, 2000; Wood & Grafman, 2003,

see Wood and Grafman, 2003, for a detailed overview of PFC theories). In general,

these theories converge to suggest that the PFC is essential for implementing cog-

nitive control operations in the service of goal-directed behavior (cf. Koechlin, Ody

& Kouneiher, 2003). It is assumed that the PFC is characterized by several general

key functions subserving cognitive control, namely the selection of task-relevant in-

formation (e.g. Rowe et al., 2000), the maintenance of the selected information (cf.

Smith & Jonides, 1999), the protection of information against distraction (Meck-

linger et al., 2003; Miller et al., 1996; Sakai et al., 2002), and the flexible updating

of representations (e.g. Badre & Wagner, 2004, see Braver and Cohen, 2000, Frank,

Loughry, and O’Reilly, 2001, for computational models implementing these control

mechanisms).

Another major function of the PFC is the acquisition and the implementation of

task-relevant rules (Miller, 2000; Miller & Cohen, 2001; Miller & Asaad, 2002, see

Freedman et al., 2001, Wallis et al., 2001, for intriguing findings in monkeys support-

ing this notion). Miller argues “(. . .) that the PFC represents not specific episodes

but the regularities across them that describe task rules (. . .)” (Miller, 2000, p. 63).

The flexible acquisition of task rules entails an appropriate goal-directed behavior.

In line with this, it has been further proposed that the PFC is characterized by a spe-

cific processing mode, namely adaptive coding (Duncan, 2001). That is, prefrontal

neurons have the core ability to rapidly code task-relevant information, an essential

prerequisite for the flexible adaption of behavior. In computational neuroscience,

the PFC has been characterized by activation-based representations, whereas the

hippocampus is usually ascribed weight-based representations (Frank et al., 2001)

[C5]. In contrast to weight-based representations, activation-based representations

can be rapidly updated and maintained information can directly affect processing

in other parts of the brain (Frank et al., 2001). Furthermore, the lateral PFC has
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been posited to subserve specific control operations during memory encoding and

retrieval, like the reorganization, evaluation, and manipulation of the items to be

memorized and the monitoring of reinstated memory traces (Fletcher & Henson,

2001; Simons & Spiers, 2003).

Based on these findings, I argue that the PFC contributes to regularity learning

by means of the (1) extraction and the (2) maintenance of the set of invariant

episodic features. In a recent computational model of prefrontal memory control,

Becker and Lim (2003) could show that the PFC represents internal mnemonic

codes, rapidly adjusted to current task requirements. Thus, it could be further ar-

gued that the extracted regularities in the present experiments are represented as

an internal mnemonic code (Becker & Lim, 2003) and that the PFC (3) imple-

ments an efficient encoding strategy on the basis of these mnemonic codes. These

task-relevant regularities are supposed to be temporarily stored in an aggregated,

rule-like abstract representational format in the prefrontal cortex (Cer & O’Reilly,

in press; Miller, 2000, see Bor et al., 2003, for recent fMRI evidence for informa-

tion aggregation by the PFC) [C4]. In the present experiments, the representation

of regularities, aggregated across many experiences, is abstract in the sense that it

is independent of a specific learning episode. Accordingly, lateral prefrontal regions

showed a learning-related modulation across blocks in Experiment 3, presumably re-

flecting the preferential role of the lateral PFC during rule-based learning (Fletcher

et al., 1999; Opitz & Friederici, 2004; Strange et al., 2001). In summary, the lateral

PFC seems to be appropriate in meeting specific functional demands of the second

learning and memory system [C7], especially extraction, maintenance, and strategic

encoding of regularities.

11.4.4 Possible Functional Interactions between the Hip-

pocampus, the Striatum, and the Prefrontal Cortex

In the following section, functional interactions between the hippocampus, the stria-

tum, and the prefrontal cortex which might subserve regularity learning will be

outlined.
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Hippocampal-Striatal Interactions In all present fMRI experiments, a comple-

mentary activation pattern was observed in the hippocampus and the striatum. The

hippocampus showed a learning-related activation decrease, whereas striatal activity

increased as a function of learning. This differential involvement of the hippocam-

pus and the striatum is in accordance with the view that the hippocampus and the

basal ganglia comprise interactive memory systems, specialized for distinct memory

processes, namely declarative memory (hippocampus) and the acquisition of habits

(striatum), respectively (Poldrack et al., 2001; Packard & Knowlton, 2002; Poldrack

& Packard, 2003, cf. White & McDermott, 2002) [C7]. As mentioned in Chapter

3, a wide variety of neuropsychological, neuroimaging, and animal lesion studies

support this view. For instance, using a feedback-based probabilistic categoriza-

tion task, Knowlton et al. (1996) showed that patients with striatal dysfunction

(Parkinson’s disease) showed impaired probabilistic learning, however they exhib-

ited intact memory for specific details of the training phase. In contrast, patients

with MTL dysfunction (amnesic patients) showed preserved probabilistic learning

but impaired memory performance. In agreement with and in extension of these

patient data, in a recent fMRI study Poldrack and colleagues (2001) showed that

hippocampal activation decreased as a function of probabilistic learning, whereas

caudate nucleus activity increased as a function of learning. Contrary, in an addi-

tional paired associate task the hippocampus showed stronger BOLD responses as

compared to the probabilistic categorization task. The authors argue that the dis-

sociable impairments of patients as well as the complementary activation pattern of

the MTL and the striatum are due to a differential recruitment of declarative and

non-declarative memory processes: the paired associate task (Poldrack et al., 2001)

as well as the memory task in the Knowlton et al. (1996) study requires declarative

memory operations, whereas learning in the probabilistic classification task is based

on non-declarative memory processes.

Further support for this notion is provided by animal studies. For example, in a

series of studies Packard and colleagues (e.g. Packard & McGaugh, 1996; Packard,

1999) trained rats to perform a plus-maze task, i.e. the animals learned routes from

a start arm (e.g. south) to a goal arm (e.g. west; here the animals received food).
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Start and goal positions were held constant during the first days of training. In a sec-

ond phase of the experiments, rats were placed in a new start position (e.g. north).

The authors distinguished between ‘response learners’ and ‘place learners’. Response

learners select the west-goal arm, whereas place learners select the east goal-arm af-

ter a new start box was introduced. According to Packard, response learners learn a

response tendency, whereas place learners build a cognitive map of the environment

in memory, e.g. representations of the start and goal position and there relationships

(O’Keefe & Nadel, 1978).

In the study of Packard and McGaugh (1996), normal rats exhibited place learning

in initial probe trials, whereas in later probe trials response learning was predomi-

nant, thus suggesting a shift from a place-based to a response-based strategy with

extended training. For rats receiving either intra-caudate and intra-hippocampal

infusions of local anesthetic lidocaine before the second phase of the experiment,

a double dissociation was observed (control rats received intra-hippocampal and

intra-caudate infusion of saline). Rats with intra-caudate infusions of lidocaine ex-

hibited place learning in the early as well as in the late trials, whereas place learning

was blocked in initial trials for rats with intra-hippocampal lidocaine injections.

In contrast, these rats showed response learning in late trials. These data suggest

that place learning is associated with the hippocampus, whereas response learning

seems to be mediated by the caudate nucleus (see Hartley et al., 2003, for similar

findings in humans). Most interestingly, learning is accompanied by a shift from a

(fast) hippocampal-based learning system to a (slow) caudate-based learning system

[C3,C7].

In a follow-up study, Packard (1999) could show that the posttraining infusion of

glutamate in the hippocampus and the caudate nucleus selectively strengthens a

specific learning system. Glutamate infusions in the hippocampus blocked the shift

from a place to a response learning strategy, whereas rats with glutamate infusions

in the caudate nucleus exhibited an accelerated shift to the response learning ten-

dency.

Taken together, the results from different areas of behavioral and cognitive neu-

roscience suggest that separate brain systems mediate learning during differential
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phases of learning, i.e. a fast hippocampal system at the beginning of learning and a

slow striatal system at the end of learning. These results are in accordance with the

findings from the present studies. Whereas hippocampal relational binding require-

ments diminish, striatal operations coding stimulus predictability evolve during the

time-course of regularity learning in the IL condition.

Prefrontal-Hippocampal Interactions The results of the present thesis point

to a dynamic interplay between medial temporal and lateral prefrontal brain regions

during regularity learning. As described in Chapter 4, there is neuroanatomical ev-

idence that the PFC and the MTL are interconnected by bidirectional projections

(Laroche et al., 2000). Simons and Spiers (2003) propose that prefrontal control oper-

ations influence hippocampal processing during memory encoding and retrieval. For

instance, the reorganization and selection of episodic features could bias hippocam-

pal binding operations during encoding. During retrieval, an appropriate retrieval

cue specification mediated by the PFC might support the reinstantiation of prior

episodes by the hippocampus (Simons & Spiers, 2003). In the computational model

of prefrontal memory control referred to above (Becker & Lim, 2003), the authors

showed that the prefrontal cortex represents internal mnemonic codes. Becker and

Lim’s (2003) simulations reveal that “(t)hese self-organized mnemonic codes act as

selective retrieval cues to the medial temporal lobe memory system” (p. 822). Evi-

dence for this notion was provided by a study combining single-cell recordings and

lesions in monkeys (Tomita et al., 1999). These data suggest that the PFC provides

top-down signals to MTL structures during memory retrieval. Moreover, rats with

PFC lesions are less able to suppress irrelevant spatial cues and thereby place fields

of hippocampal place cells become less stable (Kyd & Bilkey, 2003). These results

support the relevance of PFC-MTL interactions during memory formation. Based

on these findings it could be speculated that the PFC modulates hippocampal pro-

cessing by means of rule-like representations of task-relevant regularities (possibly

in the form of mnemonic codes), leading to facilitated hippocampal binding.
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Prefrontal-Striatal Interactions In the fMRI experiments of the present the-

sis, the lateral PFC and the striatum showed a strikingly similar learning-related

activation pattern. Activity in both regions increased as a function of learning.

This parallel pattern might suggest a cooperative functional interaction during the

time-course of regularity learning. It has been argued that the striatum is involved

in coding the increased predictive relationship among invariant episodic features,

whereas the PFC represents these task-relevant regularities by means of an internal

mnemonic code and by this facilitates the encoding of the current episode (i.e. a spe-

cific set of object-position conjunctions). It could be speculated that these predictive

codes represented in the striatum serve as internal reinforcement signals (Koechlin

et al., 2002; Schultz, 2002) provided to the PFC. It has been suggested that such

(dopaminergic) reinforcement signals play a crucial role in maintaining and updat-

ing of prefrontal memory representations (Cohen, Braver & Brown, 2002; Miller,

2000; Miller & Cohen, 2001). Thus, it is conceivable that the PFC might implement

a rule-like representation of regularities and by this an efficient encoding strategy on

the basis of these reinforcement signals. Two recent computational models (Braver

& Cohen, 2000; Frank et al., 2001) provided evidence for this notion. Both models

showed that the PFC maintains task-relevant information in the face of interference.

In both models, the basal ganglia (Frank et al., 2001) and the dopamine system

(Braver & Cohen, 2000) contributed a gating mechanism. This gating mechanism

entailed the flexible updating of PFC representations in the service of ongoing per-

formance. In one model (Braver & Cohen, 2000), the gating signal is triggered by a

reward prediction error, thus suggesting that basic dopaminergic signals are involved

in updating prefrontal representations and by this might modify prefrontal control

operations.2 Braver and Cohen argue that dopamine “(. . .) plays a unified role in

motivation and cognition by regulating cognitive processes to increase the frequency

with which rewards are obtained.” (Braver & Cohen, 2000, p. 730) [C6]. Taken to-

gether, these simulations might indicate that the parallel learning-related activation

pattern in the striatum and the PFC is due to a functional interaction. Striatal

2It is noteworthy that the authors used the same temporal difference learning algorithm as in

the studies referred to above, e.g. O’Doherty et al., 2003, 2004.
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reinforcement signals might be involved in updating information about regularities

maintained in the PFC, by this stabilizing prefrontal rule-like representations.

11.5 Conclusions and Open Issues

In conclusion, the present thesis identified a hippocampal-striatal-prefrontal brain

network supporting learning regularities across multiple episodes. A learning-related

decrease of activation was observed in the hippocampus, whereas striatal and pre-

frontal activity increased as a function of learning. The hippocampus mediates reg-

ularity learning by means of relational binding of episodic features. During the time-

course of learning, these binding requirements get reduced as reflected in decreased

hippocampal activation. In contrast, the striatum seems to code the increased pre-

dictability of invariant episodic features and by this contributes to the development

of a statistical model of the environment. Moreover, the present data indicate that

the prefrontal cortex is involved in active maintenance of task-relevant regularities,

possibly by means of rule-like aggregated representations. Based on these repre-

sentations, the PFC might implement an efficient encoding strategy which entails

increased performance.

The current model has important limitations. For instance, the issue of awareness

was not directly addressed in the present experiments. It is still controversially dis-

cussed whether artificial grammar, category, or sequence learning is predominantly

implicit or explicit in nature (Cleeremans et al., 1998; Frensch, 1998; Kinder &

Shanks, 2003; Reber, 1989, 2002; Shanks & St. John, 1994) and whether distinct

or overlapping brain networks might subserve either mechanism (Aizenstein et al.,

2004; Chun & Phelps, 1999; Reber & Squire, 1998; Reber et al., 2003; Schendan

et al., 2003). Are there differences with respect to the learning process and the

underlying brain network, when subjects are (1) explicitly informed about the task-

relevant regularities at the beginning of the experiment or when (2) an additional

attentional demanding interference task is introduced, making an explicit learning

strategy rather unlikely? It could be speculated that prefrontal operations involved

in learning might be either facilitated (1) or hampered (2) by these experimental
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manipulations, respectively.

Furthermore, future research should address the role of feedback and reward during

regularity learning in more detail, e.g. by selectively manipulating the magnitude

and salience of reward as well as the status of feedback, e.g. no feedback or mislead-

ing feedback (cf. Shohamy et al., 2004; Zink et al., 2004).

Moreover, the proposed functional interactions between the hippocampus, the stria-

tum, and the prefrontal cortex are based on the comparison between differential

learning-related activation pattern in these regions. To validate these assumptions

experimentally, further analysis of functional connectivity are necessary (e.g. Dy-

namic Causal Modelling, DCM; Friston et al., 2003; Friston, in press). In the same

vein, studies with neurological patients would provide new insights into the underly-

ing brain network. Patients with selective damage the hippocampus (amnesics), the

basal ganglia (Parkinson’s, Chorea Huntington), and the prefrontal cortex should

exhibit differential impairments during regularity learning, possibly restricted to

specific phases of learning. With respect to such a lesion approach, it is conceivable

that one region might compensate for the damage in another system (cf. Packard &

Knowlton, 2002; Voermans et al., 2004).

Finally, beyond the learning functions used as regressors in the parametric fMRI de-

signs of the present thesis, more fine-grained parameters derived from computational

models simulating the underlying learning process could provide new insights into

the neural basis of regularity learning (cf. O’Doherty et al., 2004; Seymour et al.,

2004).

Even in the light of the limitations of the current model, it provides an account

for the dynamic interaction between hippocampal, striatal, and prefrontal brain

structures, specialized for distinct and even complementary functions during the

time-course of learning. Thus, the current model may lead to significant challenges

for further theoretical and experimental work.
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ing. In L. Jiménez (Ed.), Attention and implicit learning (pp. 109–141). Amsterdam:

John Benjamins Publishing Company.

Ashby, F. G. & Ell, S. W. (2001). The neurobiology of human category learning. Trends

in Cognitive Sciences, 5, 204–210.

Ashby, F. G. & Perrin, N. A. (1988). Toward a unified theory of similarity and recognition.

Psychological Review, 95, 124–150.

Ashby, F. G. & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological

Review, 93, 154–179.

Badre, D. & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: assess-

ing the nature and generality of prefrontal cognitive control mechnisms. Neuron, 41,

473–487.

Bandettini, P. A. (2000). The temporal resolution of functional MRI. In C. T. W. Moonen

& P. A. Bandettini (Eds.), Functional MRI (pp. 205–220). Berlin: Springer.

Becker, S. & Lim, J. (2003). A computational model of prefrontal control in free recall:

strategic memory use in the California Verbal Memory Task. Journal of Cognitive

Neuroscience, 15, 821–832.

Bellgowan, P. S. F., Saad, Z. S., & Bandettini, P. A. (2003). Understanding neural system

dynamics through task modulation and measurement of functional MRI amplitude,

latency, and width. Proceedings of the National Academy of Sciences of the United

States of America, 100, 1415–1419.

Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability

modulates human brain response to reward. The Journal of Neuroscience, 21, 2793–

2798.



References 221

Birn, R. M., Cox, R. W., & Bandettini, P. A. (2002). Detection versus estimation in

event-related fMRI: choosing the optimal stimulus timing. Neuroimage, 15, 252–264.

Birn, R. M., Saad, Z. S., & Bandettini, P. A. (2001). Spatial heterogeneity of the nonlinear

dynamics in the fMRI BOLD response. Neuroimage, 14, 817–826.

Bischoff-Grethe, A., Goedert, K. M., Willingham, D. T., & Grafton, S. T. (2004). Neural

substrates of response-based sequence learning using fMRI. Journal of Cognitive

Neuroscience, 16, 127–138.

Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate

prefrontal activity from working memory demand. Neuron, 37, 361–367.

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems

analysis of functional magnetic resonance imaging in human V1. The Journal of

Neuroscience, 16, 4207–4221.

Brasted, P. J., Bussey, T. J., Murray, E. A., & Wise, S. P. (2003). Role of the hippocampal

system in associative learning beyond the spatial domain. Brain, 126, 1202–1223.

Braver, T. S. & Brown, J. W. (2003). Principles of pleasure prediction: specifying the

neural dynamics of human reward learning. Neuron, 38, 150–152.

Braver, T. S. & Cohen, J. D. (2000). On the control of control: the role of dopamine

in regulating prefrontal function and working memory. In S. Monsell & J. Driver

(Eds.), In control of cognitive processes: Attention and performance XVIII (pp. 713–

737). Cambridge: MIT Press.

Brett, M., Penny, W., & Kiebel, S. (in press). An introduction to random field theory. In

R. S. J. Frackowiak, K. J. Friston, C. Frith, R. J. Dolan, C. J. Price, J. Ashburner,

W. D. Penny & S. Zeki (Eds.), Human brain function (2nd ed.). San Diego: Elsevier.

Brewer, J. B. & Moghekar, A. (2002). Imaging the medial temporal lobe: exploring new

dimensions. Trends in Cognitive Sciences, 6, 217–223.

Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1998). Making

memories: brain activity that predicts how well visual experience will be remembered.

Science, 281, 1185–1187.

Brown, M. W. & Aggleton, J. P. (2001). Recognition memory: what are the roles of the

perirhinal cortex and hippocampus? Nature Reviews Neuroscience, 2, 51–61.
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tial contribution of frontal and temporal cortices to auditory change detection: fMRI

and ERP results. Neuroimage, 15, 167–174.

O’Reilly, R. C. & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage,

and recall: avoiding a tradeoff. Hippocampus, 4, 661–682.



References 241

O’Reilly, R. C. & Munakata, Y. (2000). Computational explorations in cognitive neu-

roscience: understanding the mind by simulating the brain. Cambridge, MA: MIT

Press.

O’Reilly, R. C. & Norman, K. A. (2002). Hippocampal and neocortical contributions

to memory: advances in the complementary learning systems approach. Trends in

Cognitive Sciences, 6, 505–510.

O’Reilly, R. C. & Rudy, J. W. (2000). Computational principles of learning in the neocortex

and hippocampus. Hippocampus, 10, 389–397.

O’Reilly, R. C. & Rudy, J. W. (2001). Conjunctive representations in learning and memory:

principles of cortical and hippocampal function. Psychological Review, 108, 311–345.

Otten, L. J., Henson, R. N. A., & Rugg, M. D. (2001). Depth of processing effects on

neural correlates of memory encoding: relationship between findings from across- and

within-task comparisons. Brain, 124, 399–412.

Packard, M. G. (1999). Glutamate infused posttraining into the hippocampus or caudate-

putamen differentially strengthens place and response learning. Proceedings of the

National Academy of Sciences of the United States of America, 96, 12881–12886.

Packard, M. G. & Knowlton, B. (2002). Learning and memory functions of the basal

ganglia. Annual Review of Neuroscience, 25, 563–593.

Packard, M. G. & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nu-

cleus with lidocaine differentially affects expression of place and response learning.

Neurobiology of Learning and Memory, 65, 65–72.

Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity in human

ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5, 97–

98.

Paivio, A. (1986). Mental representations: a dual coding approach. Oxford: Oxford Uni-

versity Press.

Paller, K. A. & Wagner, A. D. (2002). Observing the transformation of experience into

memory. Trends in Cognitive Sciences, 6, 93–102.

Pauling, L. & Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin,

oxyhemoglobin and carbonmonoxy-hemoglobin. Proceedings of the National Academy

of Sciences of the United States of America, 22, 210–216.

Pavlov, I. P. (1927). Conditioned reflexes. Oxford: Oxford University Press.

Perruchet, P. (1994). Defining the knowledge units of a synthetic language: commentary on

Vokey and Brooks (1992). Journal of Experimental Psychology: Learning, Memory,

and Cognition, 20, 223–228.



References 242

Perruchet, P. & Pacteau, C. (1990). Synthetic grammar learning: implicit rule abstraction

or explicit fragmentary knowledge. Journal of Experimental Psychology: General,

119, 264–275.

Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999a). Statistical limi-

tations in functional neuroimaging I: Non-inferential methods and statistical models.

Philosophical Transactions of the Royal Society, London, B, Biological Sciences, 354,

1239–1260.

Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999b). Statistical

limitations in functional neuroimaging II: Signal detection and statistical inference.

Philosophical Transactions of the Royal Society, London, B, Biological Sciences, 354,

1261–1281.

Petrides, M. & Pandya, D. N. (1994). Comparative architectonic analysis of the human

and the macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Handbook of

neuropsychology (pp. 17–57). Amsterdam: Elsevier Science.

Petrides, M. & Pandya, D. N. (1999). Dorsolateral prefrontal cortex: comparative cy-

toarchitectonic analysis in the human and the macaque brain and corticocortical

connection patterns. European Journal of Neuroscience, 11, 1011–1036.

Petrides, M. & Pandya, D. N. (2002). Association pathways of the prefrontal cortex and

functional observations. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal

lobe function (pp. 31–50). Oxford: Oxford University Press.

Pfeuffer, J., McCullough, J. C., Van de Moortele, P.-F., Ugurbil, K., & Hu, X. (2003).

Spatial dependence of the nonlinear BOLD response at short stimulus duration. Neu-

roimage, 18, 990–1000.
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Zusammenfassung

Einleitung

Zahlreiche experimentalpsychologische und neurowissenschaftliche Modelle nehmen an,

dass qualitativ unterschiedliche Lern- und Gedächtnissysteme existieren (McClelland et al.,

1995; Mishkin et al., 1984; O’Keefe & Nadel, 1978; O’Reilly & Norman, 2002; Sherry &

Schacter, 1987; Squire, 1992; Squire & Zola, 1996, vgl. Packard & Knowlton, 2002; Pold-

rack & Packard, 2003; Rolls, 2000; White & McDonald, 2002). Diese Modelle gehen davon

aus, dass ein System für das schnelle Lernen uniquer Episoden spezialisiert ist (erstes

System). Ein weiteres System ist für das graduelle Lernen episoden-übergreifender Regu-

laritäten verantwortlich (zweites System). Die vorliegende Arbeit untersuchte in mehreren

fMRT- und behavioralen Experimenten die neuronalen und kognitiven Grundlagen des

hier skizzierten zweiten Systems, d.h. des Erwerbs episoden-übergreifender Regularitäten.

Eine Kernfunktion des ersten Systems ist die Bildung episodischer Gedächtniseinträge

(Tulving, 1983). Zahlreiche Tierläsionsstudien (Fortin et al., 2002; Zola et al., 2000)

und tierphysiologische Studien (Wirth et al., 2003; Wood et al., 1999), Patientenstudi-

en (Mishkin et al., 1998; Yonelinas et al., 2002) und elektrophysiologische (Fell et al.,

2001; Fernández et al., 1999) und Bildgebungsstudien am Menschen (Brewer et al., 1998;

Davachi et al., 2003; Eldrige et al., 2000; Gabrieli et al., 1997; Otten et al., 2001) haben

gezeigt, dass der Hippocampus eine zentrale Rolle bei Enkodierung und Abruf episodischer

Erinnerungen spielt. Zwei einflussreiche Theorien über die Rolle des Hippocampus wur-

den in den letzten Jahren aufgestellt, das Eichenbaum-Modell und das O’Reilly-Modell.

Basierend auf zahlreichen tierexperimentellen Befunden geht Eichenbaum (Eichenbaum

et al., 1994, 1996; Eichenbaum, 1997, in press, vgl. Cohen et al., 1999) davon aus, dass der

Hippocampus wesentlich an einer Reihe von gedächtnisrelevanten relationalen Bindungs-

prozessen beteiligt ist, z.B. der Bindung von Objekt- und Rauminformationen zu einem

kohärenten Ereignis und dem Binden von Ereignissen in ihrer zeitlichen Sequenz (Bunsey

& Eichenbaum, 1996; Dusek & Eichenbaum, 1997; Fortin et al., 2002; Wood et al., 1999,

vgl. Davachi & Wagner, 2002; Giovanello et al., 2004; Preston et al., 2004). In ihrem com-

putationalen Modell nehmen O’Reilly und Mitarbeiter (McClelland et al., 1995; Norman

& O’Reilly, 2003; O’Reilly & Munakata, 2000; O’Reilly & Rudy, 2000, 2001; O’Reilly &

Norman, 2002) an, dass der Hippocampus durch ein spezielles Repräsentationsformat cha-

rakterisiert ist: ein sparsames, merkmals-separierendes Format (pattern-separated). Dieses
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Format ermöglicht das schnelle Enkodieren und den schnellen Abruf von Einzelepisoden.

Weiterhin gewährleistet dieses spezielle hippocampale Repräsentationsformat, dass Ein-

zelepisoden separat von anderen Episoden repräsentiert werden können, um dadurch die

Gefahr von Interferenzeffekten zu verringern. Beide Modelle haben unterschiedliche An-

nahmen bzgl. der neuronalen Grundlagen des Lernens von episoden-übergreifenden Regu-

laritäten. Eichenbaum nimmt an, dass spezielle hippocampale Neurone Repräsentationen

distinkter Episoden binden, um episoden-übergreifende Merkmale zu extrahieren (Agster

et al., 2002; Eichenbaum, in press; Wallenstein et al., 1998). Auf der anderen Seite geht

O’Reilly davon aus, dass der rhinale und parahippocampale Kortex überlappende Merk-

male multipler Episoden repräsentiert.

Die Lernprozesse, die dem oben skizzierten zweiten Lern- und Gedächtnissystem zugrun-

de liegen, wurden in zahlreichen experimentalpsychologischen Studien und Experimenten,

die sich moderner Bildgebungsmethoden bedienen untersucht. Drei zentrale Paradigmen,

die verschiedene Aspekte des Lernens untersuchen, spielen in diesem Zusammenhang eine

zentrale Rolle: Das Lernen künstlicher Grammatiken (Gomez & Schvaneveldt, 1994; Meu-

lemans & Van der Linden, 1997; Reber, 1967; Perruchet & Pacteau, 1990), Kategori-

enlernen (Ashby & Perrin, 1988; Erickson & Kruschke, 1998; Nosofsky, 1986; Posner &

Keele, 1968, 1970) und Sequenzlernen (Cleeremans & McClelland, 1991; Cohen et al.,

1990; Nissen & Bullemer, 1987; Stadler, 1995). In diesen Paradigmen lernen Versuchs-

personen (VP) überlappende Merkmale vieler Einzelepisoden, z.B. Buchstabenfolgen, die

grammatikalischen Regeln folgen, überlappende Exemplare, die einer gleichen Kategorie

angehören oder sich wiederholende Sequenzen von Stimuli (und Reaktionen). Es herrscht

eine rege Diskussion, ob das Lernen in diesen Aufgaben auf dem Erwerb abstrakter Regeln

oder relativ einfacher Oberflächeneigenschaften basiert (Ashby & Perrin, 1988; Dulany

et al., 1984, 1985; Kruschke, 1992; Nosofsky, 1986; Perruchet & Pacteau, 1990; Perru-

chet, 1994; Pothos, in press; Reber, 1989; Servan-Schreiber & Anderson, 1990; Shanks

& St. John, 1994). In Studien mit Amnestikern konnte gezeigt werden, dass das Ler-

nen künstlicher Grammatiken, Kategorienlernen und Sequenzlernen weitestgehend un-

abhängig von mesiotemporalen Strukturen (einschließlich des Hippocampus) stattfindet

(Curran, 1997; Knowlton & Squire, 1993, 1994, 1996; Reber & Squire, 1994, 1998; Squi-

re & Knowlton, 1995). Zahlreiche Bildgebungsstudien zeigen zudem, dass der präfrontale

Kortex (prefrontal cortex, PFC) eine entscheidende Rolle bei diesen Aufgaben spielt (Ai-

zenstein et al., 2004; Bischoff-Grethe et al., 2004; Fletcher et al., 1999; Freedman et al.,

2001; Hazeltine et al., 1997; Opitz & Friederici, 2003, 2004; Reber et al., 2003; Schendan

et al., 2003; Strange et al., 2001).
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Experimente

Zentrale Fragestellung

Die Experimente der vorliegenden Arbeit hatten zum Ziel, die neuronalen und kogniti-

ven Grundlagen des Lernens episoden-übergreifender Regularitäten zu untersuchen. Zu

diesem Zweck wurde ein Paradigma entwickelt, welches es gestattet, diese Lernprozesse

abzubilden. Es wurde davon ausgegangen, dass hippocampale Bindungsprozesse initial

zum Lernen benötigt werden. Im späteren Verlauf des Lernens sollten hippocampale Pro-

zesse an Bedeutung verlieren, wohingegen die präfrontale Aktivierung als Funktion des

Lernens ansteigen sollte. Es wird angenommen, dass der präfrontale Kortex sowohl an

der Extraktion von Regularitäten als auch an der effizienten Enkodierung von Stimuli im

Lichte der extrahierten Regularitäten beteiligt ist.

Methode

Procedere und Versuchsplan der Experimente In jedem Durchgang der Ex-

perimente mussten die VP sequentiell verschiedene Objekte an verschiedenen Positionen

enkodieren (Sample-Phase; Mit Ausnahme von Experiment 2F; hier wurden die Objekt-

Positions-Verknüpfungen in der Sample-Phase simultan präsentiert.). Objekte wurden in

einer 4×4 Matrix präsentiert. Nach einer kurzen Pause wurde ein Objekt an einer Posi-

tion präsentiert (Probe-Stimulus) und die VP mussten angeben, ob genau dieses Objekt

an genau dieser Position in der Sample-Phase gezeigt wurde. Visuelles Feedback wurde

direkt nach der Darbietung des Probe-Stimulus präsentiert (500 ms; grün = korrekt, rot =

falsch, gelb = zu langsam). Probes waren zu 50% alte und zu 50% neue Objekt-Positions-

Verknüpfungen (3 gleichhäufige Kategorien: altes Objekt/neue Position, neues Objekt/alte

Position, neues Objekt/neue Position). Verschiedene Parameter, wie Stimulus-Typ, Anzahl

an Objekt-Positions-Verknüpfungen in der Sample-Phase, Dauer der Stimulus-Präsenta-

tion, Inter-Stimulus Intervall (ISI), Dauer des Delays zwischen Sample- und Probe-Phase,

Dauer der Probe-Präsentation, Inter-Trial Intervall (ITI), Anzahl der Durchgänge pro

Block und Anzahl der Blöcke pro Bedingung wurden in den Experimenten selektiv mani-

puliert (siehe Tabelle S1).

Im vorliegenden experimentellen Ansatz wurde die Menge an sequentiellen Objekt-Posi-

tions-Verknüpfungen in der Sample-Phase als eine ”Episode” definiert (vgl. Eichenbaum,

2000; O’Reilly & Norman, 2002). Das experimentelle Design umfasste 2 Bedingungen, eine

kontext-spezifische Bedingung (context-specific, CS) und eine invariante Lern-Bedingung

(invariant learning, IL). Mit Ausnahme der Experimente 2C-2F wurden in allen übrigen

Experimenten Blöcke der CS-Bedingung und Blöcke der IL-Bedingung zusammen in einer

Sitzung präsentiert. In der IL-Bedingung wurden Regularitäten innerhalb von experimen-

tellen Blöcken eingeführt. Zwei Varianten der IL-Bedingung wurden verwendet. In einer

räumlichen IL-Bedingung wurden innerhalb eines experimentellen Blocks variable Objekte

an invarianten Positionen präsentiert, d.h. Objekte wurden immer an denselben Positionen
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präsentiert. In einer Objekt IL-Bedingung hingegen wurden invariante Objekte an varia-

blen Positionen präsentiert. Im Gegensatz zu diesen konstanten Positionen bzw. Objekten

in der IL-Bedingung wurden in der CS-Bedingung sowohl Positionen als auch Objekte

variabel gehalten.

Tabelle S1.
Design-Parameter der Experimente

Exp. Reg. Stimuli Stimuli/ Stimulus- ISI Delay Probe- ITI Durch- Anzahl VP
Sample- Dauer [ms] [ms] Dauer [ms] gänge/ Blöcke/
Phase [ms] [ms] Block Bed.

1A Raum geom. 4 800 500 1300 2000 5000 16 7 9
(fMRT) Formen (var.)
1B Obj. geom. 4 800 500 1300 2000 5000 16 7 8
(fMRT) Formen (var.)

2A Obj. geom. 4 800 500 1300 2000 2000 16 7 16
(behav.) Formen (const.)
2B Obj. konkrete 4 800 500 1300 2000 2000 16 7 16
(behav.) Objekte (const.)
2C Obj. konkrete 6 800 500 1300 2000 5000 36 6 16
(behav.) Objekte (var.)
2D Obj. konkrete 6 500 0 2000 1000 5000 36 6 16
(behav.) Objekte (var.)
2E Obj. abstrakte 6 500 0 2000 1000 5000 36 6 16
(behav.) Objekte (var.)
2F Obj. abstrakte 6 2000 0 1000 1000 5000 36 8 16
(behav.) Objekte (var.)

3A Obj. konkrete 6 600 100 2000 1000 4000 36 4 12
(fMRT) Objekte (var.)
3B Raum konkrete 6 600 100 2000 1000 4000 36 4 12
(fMRT) Objekte (var.)

Abkürzungen: Bed. = Bedingung; behav. = behavioral; const. = constant; Exp. = Experiment; fMRT =
funktionelle Magnetresonanz-Tomographie; geom. = geometrisch; ms = Millisekunden; Obj. = Objekt; Reg. =
Regularität; var. = variabel.; VP = Versuchspersonen

Behaviorale Methoden Zur Analyse der Performanz- und Lernleistung der Proban-

den wurden Pr-Werte berechnet. Der Diskriminationsindex Pr ist ein nicht-parametrisches

Äquivalent des Parameters d’ (vgl. Feenan & Snodgrass, 1990; Snodgras & Corwin, 1988)

und bezeichnet die Differenz von Treffern (richtige Antworten auf alte Probes) und falschen

Alarmen (falsche Antworten auf neue Probes). Pr-Werte wurden jeweils über einige aufein-

anderfolgende Durchgänge gemittelt, um den Lernverlauf innerhalb von Blöcken zu ana-

lysieren. Weiterhin wurden neben Pr-Werten auch die verschiedenen Arten von falschen

Alarmen analysiert (d.h. falsche Alarme auf Probes, die entweder ein neues Objekt an

einer alten Position, ein altes Objekt an einer neuen Position oder ein neues Objekt an

einer neuen Position umfassten.

Funktionelle Bildgebung In den zentralen Experimenten der vorliegenden Arbeit

wurde die Methode der funktionellen Magnetresonanz-Tomographie (fMRT) verwendet.

Die fMRT macht sich die unterschiedlichen magnetischen Eigenschaften von sauerstoffrei-

chem Hämoglobin (Oxyhämoglobin) und sauerstoffarmem Hämoglobin (Deoxyhämoglo-
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bin) zunutze (der sog. BOLD-Effekt [blood oxygen level dependent]; vgl. Ogawa et al.,

1990a,b; Ogawa & Lee, 1990). Deoxyhämoglobin ist im Gegensatz zu Oxyhämoglobin pa-

ramagnetisch. Neuronale Aktivierung zieht eine Erhöhung des regionalen Blutflusses nach

sich. Dieser Blutflussanstieg ist von einem vergleichsweise geringen Anstieg der Sauerstoff-

extraktion begleitet (Fox & Raichle, 1986; Fox et al., 1988). Dieser Effekt resultiert in

einer Netto-Abnahme des Deoxyhämoglobin-Anteils am venösen Blut. Als Folge zeigt sich

ein Signal-Anstieg in T ∗
2 -gewichteten MR-Bildern (BOLD-Effekt). Es scheint mittlerweile

gesichert, dass das BOLD-Signal neuronale Aktivierung widerspiegelt, insbesondere den

synchronisierten synaptischen Input einer Neuronen-Population (Logothetis et al., 2001,

siehe Heeger und Ress, 2002, für einen detaillierten Überblick über die physiologischen

Grundlagen des BOLD-Signals).

Die vorliegenden fMRT-Experimente wurden an einem Siemens Sonata Gerät bei einer

Feldstärke von 1.5 Tesla durchgeführt. Zur strukturellen Messung wurde eine T1-gewichtete

MPRAGE-Sequenz (Mugler & Brookeman, 1990) mit folgenden Parametern verwendet:

TR = 1900 ms, TE = 3.93 ms, IT = 1100 ms, Flip-Winkel = 8◦, Schicht-Dicke = 1 mm,

Auflösung innerhalb einer Schicht = 1 × 1 mm, FoV = 256 mm2, 176 Schichten). In Ex-

periment 3 wurde eine zusätzliche T1-gewichtete strukturelle Sequenz verwendet (TR =

600 ms, TE = 13 ms, Flip-Winkel = 80◦, Schicht-Dicke = 4 mm, interslice gap = 1 mm,

Auflösung innerhalb einer Schicht = 0.9 × 0.9 mm, FoV = 224 mm2, 20 axiale Schichten).

BOLD-sensitive, T ∗
2 -gwichtete, funktionelle MR-Bilder wurden mit folgender Sequenz ge-

wonnen: TR = 1.8 s, TE = 50 ms, Flip-Winkel = 85◦, Schicht-Dicke = 4 mm, interslice gap

= 1 mm, Auflösung innerhalb einer Schicht = 3.5 × 3.5 mm, FoV = 224 mm2, 20 axiale

Schichten.

Die Daten-Vorverarbeitung und statistische Auswertung der fMRT-Daten erfolgte mit dem

Software-Paket SPM2 (http://www.fil.ion.ucl.ac.uk/spm/spm2.html). In den vorliegenden

fMRT-Experimenten wurde eine Kombination zwischen einer epochen- und ereigniskorre-

lierten Modellierung des BOLD-Signals durchgeführt. In beiden Fällen wurde zur Model-

lierung die sog. kanonische HRF (hemodynamic response function; Friston et al., 1998a)

verwendet. Aktivierung während der Sample-Phase wurde als Epoche (entsprechend der

Dauer der Sample-Phase), Aktivierung während der Probe-Phase als Ereignis modelliert.

Die Auswertung beschränkte sich ausschließlich auf die Sample-Phase. Die Koordinaten

der Aktivierungsfoci wurden in den kanonischen Talairach-Raum transformiert (Talairach

& Tournoux, 1988, vgl. http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html). Zentra-

ler Bestandteil der fMRT-Auswertung war eine sog. parametrische Analyse (siehe Henson,

in press; Opitz & Friederici, 2003; Poldrack et al., 2001). Zu diesem Zweck wurden Perfor-

manzdaten der VP (Pr-Werte; Feenan & Snodgrass, 1990) als parametrische Regressoren

in der fMRT-Auswertung berücksichtigt. Der Vorteil einer solchen Auswertungsstrategie

besteht in der Möglichkeit, lernrelatierte Aktivierungsverläufe von Gehirnstrukturen ab-

zubilden.

268



Experiment 1A

Fragestellung Ziel dieser Studie war es zu untersuchen, ob das Lernen von räumlichen

Regularitäten und das Lernen uniquer Episoden auf separaten Gehirnstrukturen basiert.

Zu diesem Zweck wurden in Experiment 1A Blöcke der CS-Bedingung mit Blöcken in

der räumlichen IL-Bedingung kontrastiert (siehe Tabelle S1 für weitere Details des ex-

perimentellen Designs). Auf behavioraler Ebene wurde ein Performanz-Anstieg innerhalb

von Blöcken der IL-Bedingung erwartet, wohingegen konstante Performanz innerhalb von

Blöcken der CS-Bedingung vorhergesagt wurde. Auf neuronaler Ebene wurde konstan-

te hippocampale Aktivierung in der CS-Bedingung erwartet, da VP in dieser Bedingung

in jedem Durchgang unique Episoden enkodieren mussten. Im Gegensatz dazu wurde ei-

ne Abnahme hippocampaler Aktivierung in der IL-Bedingung als Funktion des Lernens

erwartet, da die Einführung von räumlichen Regularitäten eine Reduktion relationaler

Verarbeitungsanforderungen nach sich ziehen sollte. Eine zunehmende Beteiligung des

präfrontalen Kortex wurde als Funktion des Lernens in der IL Bedingung vorhergesagt.

Ergebnisse Im Gegensatz zur CS-Bedingung zeigten VP in der IL-Bedingung einen

signifikanten Anstieg der Performanz (Pr-Werte) innerhalb experimenteller Blöcke. Auf

behavioraler Ebene konnte weiterhin eine Dissoziation der False-Alarm-Rate (FA) in der

IL-Bedingung beobachtet werden. Die FA-Rate für bestimmte Probe-Kategorien (neues

Objekt an alter Position, neues Objekt an neuer Position) unterschied sich weder für

beide Bedingungen, noch zeigte sich ein Abfall der FA-Rate für diese Probes in der IL-

Bedingung. Im Gegensatz dazu zeigte sich ein signifikanter Abfall der FA-Rate für Probes,

die ein altes Objekt an einer neuen Position umfassten. Weiterhin war die FA-Rate für

diese Probe-Kategorie in der IL-Bedingung im Vergleich zur CS-Bedingung signifikant re-

duziert.

Die fMRT-Auswertung umfasste 2 Schritte: In einem ersten Schritt wurden direkte Kon-

traste zwischen beiden Bedingungen berechnet (p < 0.0005, unkorrigiert). In einem zwei-

ten Schritt wurden parametrische, lernrelatierte Auswertungen durchgeführt. Diese para-

metrischen Analysen wurden auf die im ersten Schritt identifizierten Areale beschränkt

(p < 0.05, SVC [small volume corrected]; Worsley et al., 1996). Entsprechend der Vor-

hersagen zeigte der rechte Hippocampus einen lernrelatierten Aktivierungsabfall in der

IL-Bedingung und konstante Aktivierung in der CS-Bedingung. Weiterhin ergab sich ein

lernrelatierter Aktivierungsanstieg des linken gyrus frontalis inferior (pars triangularis)

und des rechten Striatums (ventrales Putamen) und einen lernrelatierten Aktivierungsab-

fall des linken lobus parietalis inferior und des rechten sulcus occipitalis superior.

Diskussion Die Ergebnisse dieser Studie zeigen, dass das Lernen von räumlichen Regu-

laritäten durch einen Übergang von einem hippocampalen zu einem präfrontal-striatalen

System begleitet wird. Eine Reduktion hippocampaler Aktivierung konnte als Funktion

des Lernens beobachtet werden, wohingegen ein lernrelatierter Aktivierungsanstieg im la-

teralen PFC (gyrus frontalis inferior) und im Striatum auftrat. Konstante hippocampale
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Aktivierung konnte in der CS-Bedingung beobachtet werden. Es wird argumentiert, dass

dieses konstante Aktivierungsmuster auf die gleichbleibenden relationalen Bindungsan-

forderungen zurückzuführen ist (Eichenbaum, 2000), da in der CS-Bedingung in jedem

Durchgang variable Objekte und variable Positionen gebunden werden müssen. In der IL-

Bedingung hingegen nehmen diese relationalen Bindungsanforderungen über die Zeit hin-

weg ab, da variable Objekte und invariante Positionen gebunden werden. Dies zeigt sich

an der lernrelatierten Abnahme hippocampaler Aktivierung. In Gegensatz dazu scheint

das Striatum die erhöhte Vorhersagbarkeit invarianter räumlicher Merkmale innerhalb der

Blöcke zu kodieren (Koechlin et al., 2002, vgl. Schultz, 2002). Wie vorhergesagt zeigte

der laterale PFC eine Aktivierungszunahme als Funktion des Lernens. Zahlreiche fMRT-

Studien konnten eine Beteiligung des lateralen PFC in Lernexperimenten zeigen, z.B. beim

Lernen künstlicher Grammatiken (Opitz & Friederici, 2003), beim Kategorienlernen (Re-

ber et al., 1998b) und beim Sequenzlernen (Schendan et al., 2003). Es wird angenommen,

dass der laterale PFC extrahierte Regularitäten in Form eines Gedächtniscodes (Becker

& Lim, 2003) repräsentiert und diese Repräsentationen aktiv gegen Distraktion aufrecht-

erhält (Sakai et al., 2002). Neu zu enkodierende Episoden werden dann anhand dieser

Gedächtniscodes reorganisiert, was zu einer effektiveren Enkodierstrategie und folglich zu

einer erhöhten Aktivität des präfrontalen Kortex führt.

Experiment 1B

Fragestellung In dieser Studie wurde die Fragestellung untersucht, ob das beobach-

tete differentielle hippocampal-striatal-präfrontale Aktivierungsmuster während des Ler-

nens von räumlichen Regularitäten auch dem Lernen von Objekt-Regularitäten zugrunde

liegt. Zu diesem Zweck wurden Blöcke in der CS-Bedingung mit Blöcken einer Objekt-

IL-Bedingung kontrastiert (siehe Tabelle S1 für weitere Details des experimentellen Desi-

gns). Im Gegensatz zu Experiment 1A wurden hier Objekte, nicht Positionen in Objekt-

Positions-Verknüpfungen innerhalb experimenteller Blöcke konstant gehalten. Alle ande-

ren experimentellen Parameter blieben unverändert gegenüber Experiment 1A.

Ergebnisse Analog zu Experiment 1A zeigten VP einen Anstieg der Performanz (Pr-

Werte und insbesondere Treffer-Rate) innerhalb der experimentellen Blöcke in der IL-

Bedingung, aber nicht in der CS-Bedingung. Die Auswertung der FA-Rate für spezifische

Probe-Kategorien ergab ein komplementäres Muster im Vergleich zu Experiment 1A. In

der IL-Bedingung (relativ zur CS-Bedingung) zeigte sich eine Reduktion der FA-Rate

für Probes, die ein neues Objekt an einer alten Position umfassten. Keine Bedingungs-

unterschiede der FA-Rate konnten für Probes beobachtet werden, die ein altes Objekt

beinhalteten.

Die lernrelatierte fMRT-Auswertung wurde hypothesengetrieben auf den Hippocampus,

das Striatum, und den lateralen PFC beschränkt (p < 0.05, SVC). Im Gegensatz zu ei-

nem rechts-lateralisierten Aktivierungsabfall im Hippocampus in Experiment 1A konnte
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ein bilateraler Abfall hippocampaler Aktivierung in der IL-Bedingung von Experiment

1B beobachtet werden. Weiterhin zeigten der linke gyrus frontalis medius und das rechte

Striatum eine Aktivierungszunahme als Funktion des Lernens.

Diskussion In diesem Experiment wurde die Frage der Domänenspezifität von Lern-

prozessen untersucht. Im Gegensatz zu einem rechts-lateralisierten Aktivierungsabfall des

Hippocampus beim Lernen von räumlichen Regularitäten konnte beim Lernen von Objekt-

Regularitäten eine bilaterale Aktivierungsabnahme des Hippocampus beobachtet werden.

Diese Ergebnisse deuten auf eine domänenspezifische hemisphärische Spezialisierung hip-

pocampaler Bindungsprozesse hin, wie sie für episodische Gedächtnisleistungen bereits be-

schrieben wurden (Golby et al., 2001; Kelley et al., 1998). Die Sensitivität gegenüber den

Reizmerkmalen der episoden-übergreifenden Regularitäten unterstützt die Annahme rela-

tionaler Verarbeitung im Hippocampus auf Basis der perzeptuellen Charakteristika einer

Episode. Im Gegensatz dazu zeigte sich bzgl. der Aktivierungsfoci im lateralen PFC und

im Striatum keine Hemisphären-Unterschiede zwischen Experiment 1A und 1B. Aufgrund

dieser Daten kann angenommen werden, dass der laterale PFC Lernen von Regularitäten

im Sinne eines domänen-übergreifenden Top-down Prozesses auf der Basis abstrakter Re-

gularitäten unterstützt (Strange et al., 2001; Wallis et al., 2001).

Experiment 2

Fragestellung Experiment 2 hatte zum Ziel, die kognitiven Grundlagen des Lernens

von Objekt-Regularitäten zu untersuchen. In 6 behavioralen Studien wurde der Effekt

der Objekt-Distinktheit (Experiment 2A, 2B), der Lerndauer und der Gedächtnisbela-

stung (Experiment 2C, 2D, 2E) und der simultanen Präsentation von Objekt-Positions-

Verknüpfungen in der Sample-Phase (Experiment 2F) aud das Lernen von Objekt-Regula-

ritäten untersucht (siehe Tabelle S1 für weitere Details des experimentellen Designs).

Ergebnisse In allen 6 Untersuchungen wurden Objekte innerhalb von experimentellen

Blöcken konstant gehalten. Neben den Blöcken in der IL-Bedingung wurden in Expe-

riment 2A und 2B zusätzlich Blöcke in der CS-Bedingung präsentiert. In den übrigen

Experimenten 2C-2F wurden Blöcke der IL-Bedingung sequentiell präsentiert und auf die

Präsentation von Blöcken der CS-Bedingung verzichtet. In Experiment 2A wurden diesel-

ben geometrischen Formen wie in Experiment 1A und 1B als Stimulusmaterial verwendet.

Zur Erhöhung der Distinktheit der Objekte wurden jeweils 4 Objekte in derselben Farbe

präsentiert (insgesamt wurden 4 unterschiedliche Farben verwendet). In Experiment 2B

wurden Farbzeichnungen von konkreten Objekten des Alltagslebens als Stimulusmateri-

al verwendet. Eine Erhöhung der Objektdistinktheit relativ zu Experiment 1A und 1B

hatte einen geringen Effekt auf die Lernleistung in Experiment 2A und 2B (gemessen als

Verbesserung der Performanz innerhalb von Lernblöcken). Relativ zu Experiment 1A und

1B (geometrische Formen) zeigte sich jedoch eine Erhöhung der Gesamtgedächtnisleistung
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(gemessen als mittlere Performanz über alle Blöcke).

In Experiment 2C-2E wurde einerseits die Gedächtnisbelastung durch die Präsentation

von 6 (statt 4) Objekt-Positions-Verknüpfungen in der Sample-Phase und andererseits die

Lerndauer durch die Einführung von 36 (statt 16) Durchgängen pro Block erhöht. Die Ma-

nipulation von Gedächtnisbelastung und Lerndauer hatte einen Einfluss auf die Lerndyna-

mik. In allen drei Experimenten konnten Lerneffekte innerhalb der experimentellen Blöcke

beobachtet werden. Diese Effekte waren am stärksten ausgeprägt in der ersten Hälfte des

Experiments; in späteren Blöcken wurde die Lernasymptote hingegen schneller erreicht. In

Experiment 2D wurde gegenüber Experiment 2C die Gedächtnisbelastung weiter erhöht,

indem die Stimuluspräsentationszeit, das ISI und die Darbietungsdauer verkürzt wurden

(vgl. Tabelle S1). Diese Manipulation führte zu einer weiteren Verstärkung des Lernef-

fekts bei gleichbleibender Gesamtgedächtnisleistung. In Experiment 2E wurden anstelle

von konkreten Objekten abstrakte Objekte verwendet. Alle anderen Design-Parameter

wurden im Vergleich zu Experiment 2D konstant gehalten. Die Lerneffekte blieben weitest-

gehend unbeeinflusst von dieser experimentellen Manipulation, wohingegen ein Abfall der

Gesamtgedächtnisleistung beobachtet werden konnte. Gegenüber Experiment 2E wurde

in Experiment 2F das Präsentationsformat modifiziert. Anstelle sequentieller Darbietung

wurden die Objekt-Positions-Verknüpfungen in der Sample-Phase simultan präsentiert.

Sowohl eine Verringerung des Lerneffekts als auch eine Reduktion der Gesamtgedächtnis-

leistung konnte beobachtet werden.

Diskussion Die behavioralen Daten zeigen, dass die Manipulation der Objekt-Distinkt-

heit insbesondere einen Einfluss auf die Gedächtnisleistung hatte. Relativ zu Experiment

1B zeigte sich ein Anstieg der Gesamtperformanz in Experiment 2A und 2B. Weiterhin

führte die Erhöhung der Gedächtnisbelastung und der Lerndauer zu einer Vergrößerung

des Lerneffekts (Experiment 2C-2E). Der Vergleich zwischen Experiment 2C-2D (erhöhte

Lerndauer und distinkte Objekte) mit Experiment 2E (erhöhte Lerndauer und nicht-

distinkte Objekte) deutet darauf hin, dass Objekt-Distinktheit einen modulierenden Effekt

auf die Lerndynamik hat, wenn die Lerndauer ausreichend groß ist. Die Daten von Expe-

riment 2F zeigen, dass das Lernen episoden-übergreifender Regularitäten vermutlich das

Vorhandensein distinkter Repräsentationen von Objekt-Positions-Verknüpfungen voraus-

setzt. Schließlich deuten insbesondere die Ergebnisse von Experiment 2C und 2D darauf

hin, dass zwei separate Lernprozesse unterschieden werden können: Ein Prozess innerhalb

von Lernblöcken und ein Prozess über Blöcke hinweg. Der erste Prozess scheint mit der

Extraktion von Regularitäten assoziiert zu sein, wobei der zweite Prozess eher den Transfer

des ersten Prozesses auf neue Exemplare widerzuspiegeln scheint.

Experiment 3

Fragestellung In Experiment 3 wurde der Frage nachgegangen, ob unterschiedliche

Gehirnstrukturen dem Lernen von Regularitäten innerhalb von Lernblöcken und dem Ler-
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nen über Lernblöcke hinweg zugrunde liegen. Die in Experiment 2 beobachtete Dissozia-

tion, d.h. spätes Erreichen der Lernasymptote in den initialen Blöcken bzw. das frühe

Erreichen der Lernasymptote in den finalen Blöcken, scheint dafür zu sprechen, dass dem

Lernen innerhalb von Blöcken und dem Lernen über Blöcke hinweg unterschiedliche Pro-

zesse zugrunde liegen. Blöcke in der CS-Bedingung wurden mit Blöcken in einer Objekt-

IL-Bedingung (Experiment 3A) bzw. mit Blöcken einer räumlichen IL-Bedingung (Experi-

ment 3B) kontrastiert. Im Gegensatz zu Experiment 1A und 1B wurden die Blöcke beider

Bedingungen getrennt voneinander präsentiert. Als weitere Modifikationen gegenüber Ex-

periment 1A und 1B wurden konkrete Objekte als Stimulusmaterial verwendet und sowohl

die Gedächtnisbelastung als auch die Lerndauer erhöht (siehe Tabelle S1 für weitere De-

tails des experimentellen Designs). Ein Performanzanstieg innerhalb von Blöcken sollte

ähnlichkeitsbasiertes Lernen widerspiegeln, wohingegen Lernen über Blöcke hinweg auf

regelbasierten Prozessen beruhen sollte (vgl. Opitz & Friederici, 2004).

Ergebnisse Auf behavioraler Ebene konnte sowohl für die Objekt-IL-Bedingung (Ex-

periment 3A) als auch für die räumliche IL-Bedingung (Experiment 3B) ein Performan-

zanstieg (Pr-Werte) innerhalb von Lernblöcken beobachtet werden. In der entsprechen-

den CS-Bedingung in beiden Experimenten blieb die Performanz konstant innerhalb der

Blöcke. Analog zu Experiment 1A und 1B zeigte sich eine Dissoziation der FA-Rate in

Abhängigkeit von der spezifischen Probe-Kategorie für die jeweilige IL-Bedingung relativ

zur entsprechenden CS-Bedingung. In Experiment 3A (Objekt-Regularitäten) verringerte

sich die FA-Rate für (1) Probes, die ein neues Objekt beinhalteten, nicht hingegen die

FA-Rate für (2) Probes, die eine neue Position beinhalteten. In Experiment 3B zeigte

sich ein inverses Muster: Eine Verringerung der FA-Rate für Probe-Kategorie (2), nicht

aber für Probe-Kategorie (1). In beiden Experimenten zeigte sich auch ein Lerneffekt über

Blöcke hinweg (gemessen als Veränderung der gemittelten Performanz [Pr-Werte] der er-

sten beiden Blöcke gegenüber den letzten beiden Blöcken). Ein Anstieg der Pr-Werte

konnte in der Objekt-IL-Bedingung (Experiment 3A) und der räumlichen IL-Bedingung

(Experiment 3B) von Block 1-2 zu Block 3-4 beobachtet werden. Im Gegensatz dazu blieb

die Performanz über Blöcke konstant in den entsprechenden CS-Bedingungen. Die fMRT-

Auswertung zeigte einen lernrelatierten Abfall hippocampaler und einen Anstieg lateral-

präfrontaler und striataler Aktivierung innerhalb von Lernblöcken in der IL-Bedingung

beider Experimente. Weiterhin konnte eine Aktivierungsmodulation distinkter präfrontal-

striataler Areale in der IL-Bedingung beider Experimente über Lernblöcke hinweg beob-

achtet werden.

Diskussion Die Ergebnisse dieser Studie legen eine Dissoziation von zwei Lerneffekten

nahe: Das Lernen innerhalb von Blöcken und das Lernen über Blöcke hinweg. Sowohl in

Experiment 3A als auch in Experiment 3B zeigten sich beide Lerneffekte, nicht jedoch

in den entsprechenden CS-Bedingungen. Weiterhin konnte eine Dissoziation der FA-Rate

in beiden Experimenten beobachtet werden. Diese Daten sprechen für eine Zunahme der
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Verarbeitungssensitivität für invariante episodische Merkmale als Funktion des Lernens.

Der erste Lerneffekt war mit einem lernrelatierten Abfall hippocampaler und einem An-

stieg lateral-präfrontaler und striataler Aktivierung verknüpft. Dieses Muster steht im

Einklang mit den Ergebnissen aus Experiment 1A und 1B. Weiterhin scheint der Lern-

effekt über Blöcke hinweg mit distinkten präfrontal-striatalen Arealen assoziiert zu sein.

Dieses Ergebnismuster deutet darauf hin, dass der Hippocampus eine spezifische Rolle

beim ähnlichkeitsbasierten Lernen spielt, wohingegen präfrontal-striatale Strukturen so-

wohl ähnlichkeitsbasiertes als auch regelbasiertes Lernen unterstützen (Opitz & Friederici,

2004; Lieberman et al., 2004).

Allgemeine Diskussion

Theorien aus der Experimentalpsychologie und der tierexperimentellen, kognitiven und

computationalen Neurowissenschaft legen nahe, dass qualitativ unterschiedliche Lern- und

Gedächtnissysteme existieren (McClelland et al., 1995; Mishkin et al., 1984; O’Keefe &

Nadel, 1978; O’Reilly & Norman, 2002; Sherry & Schacter, 1987; Squire, 1992; Squire

& Zola, 1996, vgl. Packard & Knowlton, 2002; Poldrack & Packard, 2003; Rolls, 2000;

White & McDonald, 2002). Ein erstes System scheint für das schnelle Lernen uniquer

Episoden verantwortlich sein, wohingegen ein zweites System für den graduellen Erwerb

von episoden-übergreifenden Regularitäten spezialisiert ist. Die hier beschriebenen Expe-

rimente hatten zum Ziel, die neuronalen und kognitiven Mechanismen zu untersuchen, die

dem Lernen von episoden-übergreifenden Regularitäten zugrunde liegen (d.h. dem hier

skizzierten zweiten Lern- und Gedächtnissystem).

In mehreren fMRT- und behavioralen Experimenten mussten VP mehrere Objekt-Positions-

Verknüpfungen in einer Sample-Phase enkodieren und bei anschließender Präsentation ei-

ner Objekt-Positions-Verknüpfung (Probe-Stimulus) entscheiden, ob diese Verknüpfung in

der Sample-Phase präsentiert wurde. Im hier vorgestellten experimentellen Ansatz wur-

de die Menge an Objekt-Positions-Verknüpfungen der Sample-Phase als ‘Episode’ defi-

niert. In einer Bedingung wurden entweder Objekte (Experiment 1B, 2 und 3A) oder

Positionen (Experiment 1A, 3B) in Objekt-Positions-Verknüpfungen innerhalb experi-

menteller Blöcke hinweg konstant gehalten (IL-Bedingung). Durch die Einführung invari-

anter episodischer Merkmale sollte das Lernen von Regularitäten ermöglicht werden. In

einer weiteren Bedingung wurden hingegen in jedem Durchgang unique Objekt-Positions-

Verknüpfungen präsentiert, d.h. es existierten keine episoden-übergreifenden Regularitäten

(CS-Bedingung). Die behavioralen Ergebnisse der Experimente legen nahe, dass VP von

der Einführung invarianter Merkmale profitieren, d.h. einen Performanzanstieg innerhalb

von experimentellen Blöcken in der IL-Bedingung, jedoch nicht in der CS-Bedingung zei-

gen. Die fMRT-Daten sprechen für einen graduellen Übergang von einem hippocampa-

len zu einem präfrontal-striatalen System während des Lernens episoden-übergreifender
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Regularitäten, wohingegen das Lernen uniquer Episoden mit konstanter hippocampaler

Aktivierung assoziiert war.

Zwei Separate Lern- und Gedächtnis-Systeme: Schnelles Ler-

nen Uniquer Episoden vs Graduelles Lernen episoden-über-

greifender Regularitäten

Das erste System ist spezialisiert für das Lernen uniquer Episoden (O’Reilly & Norman,

2002; Squire, 1992). Diese Episoden sind charakterisiert durch nicht-prädiktive Beziehun-

gen zwischen episodischen Merkmalen. Das zweite System ist verantwortlich für das Ler-

nen episoden-übergreifender Regularitäten. Hier existieren prädiktive Beziehungen zwi-

schen episodischen Merkmalen. Das erste System zeichnet sich durch eine hohe Verarbei-

tungsgeschwindigkeit aus, um merkmals-separierte (pattern-separated) Repräsentationen

(O’Reilly & Norman, 2002) uniquer Episoden zu speichern. Das zweite System hinge-

gen ist verantwortlich für den graduellen Erwerb von Regularitäten, die möglicherwei-

se in einem aggregierten Repräsentationsformt gespeichert werden (O’Reilly & Norman,

2002; Sherry & Schacter, 1987). Auf computationaler Ebene scheint Informationsspeiche-

rung im ersten System in einer gewichts-basierten, im zweiten System hingegen in einer

aktivations-basierten Form stattzufinden (vgl. Frank et al., 2001). Auf molekularer Ebe-

ne basiert Informationsverarbeitung und -speicherung im ersten System vermutlich auf

Langzeit-Potenzierung und im zweiten System auf dopaminergen Mechanismen (Malenka

& Nicoll, 1999; Schultz, 2002). Schließlich legen u.a. die Daten der vorliegenden Arbeit na-

he, dass das erste System v.a. mit der Hippocampusformation, das zweite System hingegen

mit dem Striatum und dem PFC assoziiert ist.

Eine Definition des Lernens episoden-übergreifender Regula-

ritäten

Es wurden mehrere Kriterien aufgestellt, um das Lernen episoden-übergreifender Regula-

ritäten zu beschreiben. (1) Grundlage von Lernen in den hier beschriebenen Experimenten

ist das Vorhandensein überlappender Merkmale multipler Episoden. (2) Lernen episoden-

übergreifender Regularitäten ist ein gradueller Prozess. Die Aggregation von Wissen er-

folgt langsam über viele Einzelepisoden hinweg. (3) Im Verlauf eines Lernblocks müssen

extrahierte Regularitäten aktiv aufrechterhalten werden. (4) Schließlich wird davon aus-

gegangen, dass die episoden-übergreifenden Regularitäten in einem aggregierten Format

repräsentiert werden (im Gegensatz zu einer episoden-spezifischen Repräsentation).
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Ein vorläufiges Modell des Lernens episoden-übergreifender

Regularitäten

Der Hippocampus und relationales Binden episodischer Merkmale Die

hier beschriebenen Experimente legen nahe, dass der Hippocampus am Lernen episoden-

übergreifender Regularitäten beteiligt ist. In der CS-Bedingung zeigte sich konstante hip-

pocampale Aktivierung. Dies kann auf weitestgehend konstante relationale Bindungspro-

zesse zurückgeführt werden. In der CS-Bedingung müssen in jedem Durchgang variable

Objekte und variable Positionen gebunden werden. In der IL-Bedingung nehmen diese

relationalen Bindungsanforderungen als Funktion des Lernens ab, da variable Objekte

und invariante Positionen bzw. vice versa gebunden werden. Diese Abnahme relationaler

Bindungsanforderungen zeigt sich in einer Reduktion hippocampaler Aktivierung im Ver-

lauf des Lernens. Dieses Datenmuster ist konsistent mit Befunden von fMRT-Studien, die

probabilistisches Lernen (Poldrack et al., 2001), assoziatives Lernen (Zeineh et al., 2003),

Sequenzlernen (Schendan et al., 2003) und Lernen künstlicher Grammatiken (Opitz &

Friederici, 2003) untersuchten. In diesen Studien scheint eine Abnahme hippocampaler

Aktivierung ebenfalls an eine Reduktion relationaler Bindungsanforderungen gekoppelt

zu sein. Schließlich legt die hemisphärische Spezialisierung beim Lernen von räumlichen

im Vergleich zum Lernen objektrelatierter Regularitäten nahe, dass der Hippocampus

sensitiv ist für die spezifische Domäne invarianter episodischer Merkmale (Bottom-up Me-

chanismus), eine Voraussetzung für ähnlichkeitsbasierte Lernprozesse.

Das Striatum und die Kodierung der Vorhersagbarkeit episodischer Merk-

male Das Striatum zeigte innerhalb von Blöcken einen lernrelatierten Anstieg an Ak-

tivierung. Die Basalganglien als Zielregion dopaminerger Projektionen aus dem ventralen

Tegmentum sind beteiligt am Verstärkunglernen (Schultz et al., 1997; Schultz, 2000, 2002;

Schultz et al., 2003) und am Stimulus-Response Lernen (Poldrack et al., 2001; Packard &

Knowlton, 2002; Poldrack & Packard, 2003; White & McDermott, 2002). Zahlreiche Stu-

dien mit Einzelzellableitungen (Lauwereyns et al., 2002b) und fMRT-Experimente (Mc-

Clure et al., 2003; O’Doherty et al., 2003, 2004) konnten zeigen, dass v.a. das Putamen

(klassisches Konditionieren) bzw. der nucleus caudatus (operantes Konditionieren) einen

sog. Vorhersagefehler kodieren und damit die neuronale Grundlage für Lernen darstellen.

Der Vorhersagefehler reflektiert die Differenz zwischen dem vorhergesagten Belohnungs-

reiz (Erwartung) und dem tatsächlich erhaltenen Reiz. Basierend auf diesen Ergebnissen

kann davon ausgegangen werden, dass das Striatum die erhöhte Vorhersagbarkeit inva-

rianter episodischer Merkmale kodiert und damit am Aufbau eines statistischen Modells

der Umgebung beteiligt ist (Dayan et al., 2000). Weiterhin kann angenommen werden,

dass diese striatalen Prozesse ein Verstärkungssignal an den PFC senden, das maßgeblich

an der Bildung anhaltender präfrontaler Repräsentationen der episoden-übergreifenden

Regularitäten beteiligt ist (vgl. Cohen et al., 2002; Braver & Cohen, 2000; Frank et al.,

2001; Koechlin et al., 2002; Miller, 2000; Miller & Cohen, 2001).
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Der präfrontale Kortex und die Repräsentation regel-basierter Informati-

on Distinkte präfrontale Areale zeigten einen Aktivierungsanstieg als Funktion des Ler-

nens innerhalb von Blöcken und über Blöcke hinweg. Der PFC spielt eine zentrale Rolle bei

verschiedenen kognitiven Kontrollfunktionen (Duncan, 2001; Miller & Cohen, 2001; Shima-

mura, 2000; Wood & Grafman, 2003), z.B. der Selektion aufgabenrelevanter Information

(Rowe et al., 2000), der Aufrechterhaltung selektierter Information (vgl. Smith & Jonides,

1999), dem Schutz dieser Information vor interferierenden Stimuli (Miller et al., 1996; Sa-

kai et al., 2002) und dem flexiblen Aktualisieren von Repräsentationen (Badre & Wagner,

2004). Das vorliegende Datenmuster legt nahe, dass der PFC eine wesentliche Rolle bei

der Extraktion episoden-übergreifender Regularitäten und der Aufrechterhaltung dieser

Regularitäten spielt. In Übereinstimmung mit anderen Studien (Becker & Lim, 2003)

wird angenommen, dass diese Regularitäten in Form von Gedächtniscodes repräsentiert

sind. Neu zu enkodierende Episoden werden dann anhand dieses Gedächtniscodes reorga-

nisiert, was zur Realisierung einer effektiveren Enkodierstrategie und damit einhergehend

zu erhöhter präfrontaler Aktivierung führt (Top-down Mechanismus). Man kann davon

ausgehen, dass der PFC zum Lernen episoden-übergreifender Regularitäten in Form von

regel-basierten Repräsentationen der kritischen invarianten episodischen Merkmale bei-

trägt (vgl. Bor et al., 2003; Cer & O’Reilly, in press; Miller, 2000; Opitz & Friederici,

2003; Strange et al., 2001; Wallis et al., 2001).

Zusammengefasst konnten die vorliegenden Experimente zeigen, dass das Lernen episoden-

übergreifender Regularitäten von einem graduellen Übergang von einem hippocampalen

zu einem präfrontal-striatalen System begleitet ist.
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