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Zusammenfassung

Diese Arbeit befasst sich mit der Theorie von Atomen, die an das Quan-
tenlichtfeld eines optischen Resonators koppeln und durch Laser getrieben
werden. Die Untersuchungen behandeln einen Bereich, in dem die Atome
oberhalb eines kritischen Wertes der Laserintensität spontan regelmäÿige
räumliche Strukturen bilden, die durch die mechanischen E�ekte des Lichtes
stabilisiert werden. Die Dynamik, die zu selbstorganisierten Mustern führt,
wird systematisch und im semiklassischen Grenzfall beschrieben, wohingegen
das Resonatorfeld als Quantenvariable behandelt wird. Die Eigenschaften
im Gleichgewicht und auÿerhalb des Gleichgewichtes werden untersucht,
die experimentellen Observablen werden charakterisiert. Es wird gezeigt,
dass diese Systeme eine eindrucksvolle Plattform bilden, um Kritikalität in
getriebenen dissipativen Systemen mit langreichweitigen Wechselwirkungen
zu untersuchen, die in diesem Fall durch mehrfache Photonenstreuung zwis-
chen den Atomen hervorgerufen werden. Die Anwendbarkeit auf eine groÿe
Anzahl an Atomen bei ultrakalten Temperaturen wird im Kontext andauern-
der Experimente diskutiert.
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Abstract

This work deals with the theory of atoms coupled to the quantum light �eld
of an optical resonator and driven by lasers. The studies address a regime
where, above a critical value of the laser intensity, the atoms spontaneously
form regular spatial structures, stabilized by the mechanical e�ects of the
light. A systematic description of the dynamics leading to self-organized
patterns is provided in the semiclassical limit, whereas the resonator �eld
is treated as a quantum variable. The equilibrium and out-of-equilibrium
properties are determined, the experimental observables are characterised.
It is shown that these systems constitute a formidable platform to study
criticality in driven-dissipative systems characterized by long-range interac-
tions, which here arise from multiple photon scattering between the atoms.
Applications for large atomic samples at ultralow temperatures are discussed
in the context of ongoing experiments.
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Introduction

Research context

The control of mechanical e�ects of light on matter is the basis of several
techniques for manipulating the quantum state of physical systems in the
microsopic (and also in the mesoscopic) realm [1, 2]. This is a result of the
astonishing achievements in cooling and trapping atoms with laser light
[3, 4, 5] at the end of the 20th century, being awarded by the Nobel Prize in
Physics [6, 7, 8]. Prominent examples are the creation and manipulation of
crystalline structures of atoms due to the interaction with a light �eld [9, 10]
that shows, for instance, a periodically modulated intensity (optical lattice)
[11]. Recently, the strong coupling of atoms and molecules to the �eld of a
resonator (cavity) has been achieved, opening novel perspectives of control
[12, 13, 14, 15, 16, 17]. In this scenario, usually, the quantum light �eld can
not be considered as an independent component of the dynamics, as it is
strongly a�ected by the presence of the atoms. Vice versa, the cavity �eld
acts back on the atomic motion by the mechanical e�ects of the light (cavity
backaction). This, in total, constitutes a prototype of an optomechanical
system [18, 19, 20]. This thesis aims at providing a theoretical framework
for studying those dynamics, that is based on the e�ective interactions
between atoms, mediated by a common atomic coupling to the �eld inside
the resonator [14, 21].

The optomechanical dynamics of photons and atoms in a cavity is
known to give rise to intriguing pheonomena, such as bistability [22, 23, 24],
synchronization [25, 26] and self-ordering [27, 28, 29, 30]. Those e�ects
are mostly triggered by the long-range interactions [31] that are mediated
by multiple photon scattering and which induce collective phenomena. By
this means, atom-cavity setups can be shown to share several analogies
with extensively studied long-range interacting systems [32, 33, 34], such
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as gravitational clusters, plasmas or coupled oscillators [35, 36]. In fact, in
certain limits, the observed collective e�ects in cavities can be reduced to a
long-range Hamiltonian which re�ects the observed phenomenon [37, 38].
Nevertheless, in general, one deals with an open system, as cavity photons
are lost via the mirrors [39]. For instance, dissipation can be used to tailor
processes in which kinetic energy is extracted from the atoms and by this
cool matter, known as cavity cooling [40, 41, 42, 43, 44]. Photon losses can
be compensated for by an external laser pumping on the system. This might
be realized by driving the atoms and/or the cavity by laser light. Here, the
strength of the drive can determine whether strong collective e�ects emerge
or not. Indeed, in several scenarios, there exists a critical value of the
pump strength which separates two distinct phases of matter (and/or the
light �eld), for instance non-synchronized (unordered) from synchronized
(ordered), reminiscent of a phase transition [27, 45, 46, 47, 48].
One of the main questions that arises in such a driven-dissipative long-range
interacting many-body quantum system is related to the characterization
of the steady state that the system adopts, in particular, whether it can
be described by thermal equilibrium [49, 50, 51, 52]. Further interest
is dedicated to the aspects of relaxation towards steady state [53]. In
long-range interacting (Hamiltonian) systems it is known that long-lived
metastable states may emerge, in which the system may reside for a long
time before reaching the steady state [35, 54, 55, 56, 57, 58]. Recent studies
investigate the robustness of these out-of-equilibrium states and the possible
modi�cations of the relaxation processes in such systems in the presence of
noise and dissipation or speci�c perturbations [59, 60, 61, 62, 63]. The atom-
cavity setup, discussed in the following and mainly considered throughout
this thesis, constitutes a driven long-range interacting system, in which
dissipation and noise are intrinsically present. It therefore represents a
remarkable platform to study the out-of-equilibrium dynamics of long-range
interacting systems in a noisy environment [64].

Self-organization and state-of-the-art

In this thesis, we consider the interaction of N atoms with the elec-
tric �eld of a cavity mode, see Fig. 1. Individual processes of atom-photon
interactions rely on the absorption/emission or virtual scattering of photons
by the atoms. Each photon (elementary bosonic excitations of the light
�eld) carries a momentum of the amount ~k [65] which is exchanged with the
atom, with ~ Planck's constant and k the wavevector of the light �eld. Here,
we restrict to a regime in which this �eld is far-detuned from any atomic
dipolar transition (dispersive regime), giving rise to an e�ective optome-
chanical atom-�eld coupling [18], in which the atoms redistribute photons
by virtual scattering. The setup includes an additional far-o�-resonance
transverse laser drive (frequency ωL) for the atoms (dipole-�eld coupling
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Figure 1: Atoms in a single-mode standing-wave cavity and driven by a trans-
verse laser can spontaneously form ordered patterns when the laser intensity Ω
exceeds the rate of photon losses, here due to cavity decay at rate κ. In this regime
the atoms experience a long-range interaction mediated by the cavity photons and
their motion becomes strongly correlated. Taken from Ref. [64].

Ω) [45, 66]. Those sustain the intracavity �eld by scattering photons from
the laser into the cavity mode (with frequency ωc , ωL ≈ ωc) by Rayleigh
scattering. This gain in cavity photons competes with photon losses (with
rate 2κ) due to a �nite transmittivity of the cavity mirrors. Those processes
characterize the presented system as a driven-open one. Some of the central
aspects, addressed in this thesis, concern the out-of-equilibrium dynamics
and the thermodynamical properties of this system, including detailed
studies on the spatial structure that the atoms adopt due to the forces
associated with the mechanical e�ects of the light [14].

In the setup of Fig. 1, for a homogeneous atomic distribution along
the cavity axis, the mean intracavity �eld vanishes (destructive interference
of the scattered photons) and with it the mean force: force �uctuations
arise from �nite density �uctuations and the quantum �uctuations of the
light �eld [67]. When the atoms, instead, form atomic Bragg gratings
(interparticle distance of multiples of the cavity wavelength λ = 2π/k)
at the antinodes of the cavity mode (positions of maximal coupling), the
scattered photons constructively interfere. Those con�gurations can be
stabilized by the mechanical e�ects of the cavity light �eld, provided that
the laser drive Ω exceeds a threshold value, such that collective atomic
photon scattering overcomes the photon losses. The atoms organize in the
scattered potential [68]. This phenomenon is referred to as self-organization.

Self-organization has been theoretically predicted in [45], with �rst
experimental evidence found in [69]. These �ndings set the starting
point for many subsequent theoretical and experimental studies on self-
organization, for both a thermal cloud of atoms [43, 48, 66] and atomic
ensembles in the ultracold realm [37, 38, 39, 47, 50, 67, 70, 71, 72, 73]. This
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thesis provides theoretical results on self-organization for thermal atoms �
and thus in the semiclassical regime of atomic motion [74] � delivering new
insight and results which concern, amongst others, the following points:
(i) Several theoretical studies impose a semiclassical limit or mean-�eld
description on the cavity �eld, valid for large photon numbers [43, 45, 66, 75].
The present work delivers an approach in which the cavity �eld is treated
fully quantum-mechanically [74]. This allows for consistent results also in
the homogeneous phase, in which �eld �uctuations can not be discarded,
see Chapter 1 (Ref. [74]). (ii) The transition to spatially ordered patterns
has often been regarded as a second-order phase transition, conjectures were
mostly drawn with mean-�eld treatments or methods of stability analysis
[43, 66]. We con�rm this hypothesis by an explicit mapping of the free
energy to a Landau model at steady state [76, 77], which is analysed in
detail, see Chapter 3 (Ref. [77]). (iii) The long-range character for the
atom-atom interactions, mediated by the cavity �eld, is well-known [18].
We draw explicit connections to studies in long-range interacting systems
[54] and show related relaxation dynamics by performing quenches across
the phase transition [64, 78]. Our �ndings reveal the emergence of long-lived
metastable states which are out-of-equilibrium, go beyond a mean-�eld
description, and, surprisingly, are induced by dissipation [79], as discussed
in Chapter 6.

Outline of the thesis and internal context

Chapter 1 (Ref. [74]) describes the nonlinear atom-�eld dynamics
for laser-driven atoms in an optical cavity in a regime for which a time-scale
separation between �eld and atomic dynamics applies (κ � ωr, the latter
being the recoil frequency). In this regime, the cavity �eld can be eliminated
quasi-adiabatically, the atomic motion is treated semiclassically by using a
consistent perturbative expansion in

√
ωr/κ. The resulting time evolution

for the atomic phase-space distribution function [80] for N atoms adopts
the form of a Fokker-Planck Equation (FPE) [81], that can be simulated
by numerically integrating equivalent Stochastic Di�erential Equations
(SDEs) [82, 83]. In the regime of low laser drive, the cooling rate and �nal
temperature for the atomic ensemble are studied, comparing the results
with �ndings in the literature [43]. This optomechanical cooling mechanism
[12, 16, 43, 75, 84, 85] is denoted as cavity cooling and is, in general,
applicable to any polarizable particles, including molecules [86].
Chapter 2 (Ref. [64]) contains the analysis of the FPE for the atomic
motion, derived in Chapter 1, for arbitrary pump intensities and thus in both
phases (homogeneous and ordered). In particular, it provides an analytical
solution for the (thermal) steady state in the regime far from bistability
(small cavity shifts). Furthermore, the e�ective atom-atom long-range
interactions are identi�ed [35, 54], while the observed out-of-equilibrium
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dynamics (prethermalization) will be further studied in Chapter 6.
Chapter 3 (Ref. [77]) analyses the steady state, presented in the previous
chapter, in more detail. On the one hand, the stability of the Bragg gratings
is investigated by numerical simulations. On the other hand, the properties
of the cavity light �eld are determined, including the mean intracavity
photon number, the photon statistics and the spectrum at the cavity output
[67, 72]. This chapter contains an explicit mapping of the free energy of the
atoms to a Landau model (that describes a second-order phase transition)
for a convenient order parameter Θ [66], identifying the two stable (equally
probable) Bragg con�gurations [Θ ≈ 1 (even) and Θ ≈ −1 (odd)] with a
magnetization.
An imbalance in the emergence of those even and odd patterns can be
induced by an additional (horizontal) laser drive of the cavity mode, which
is only taken into account and discussed in Chapter 4 (Ref. [87]). These
studies include a temporal change of the phase of the cavity laser drive, al-
lowing for a switching between the two con�gurations and deterministically
choosing one desired pattern ('pattern seeding').
Chapter 5 (Ref. [88]) contains a mean-�eld description for laser-driven
atoms in optical cavities (see Fig. 1) that imposes a factorization ansatz for
the atomic N -particle distribution function of the previous chapters (Chap-
ter 1-3). The transition to spatially ordered patterns is well reproduced
within this formalism. We show that the latter, instead, fails in correctly
predicting all the dynamical features that are observed after performing
a quench (sudden temporal change of the control parameter) across the
driven-dissipative phase transition.
Chapter 6 (Ref. [78]) focuses on such quenches from the disordered (Θ ≈ 0)
to the ordered (|Θ| ≈ 1) phase and, by this, on the onset of self-organization
due to the interplay of dispersive and dissipative long-range forces. We
verify that the mean-�eld approach of the previous chapter is (only) suitable
for describing the short-time dynamics. Indeed, several dynamical stages are
identi�ed and analysed, drawing analogy to long-range interacting systems
[35, 54], in which long-lived prethermalized states are found [58]. While
in many recent studies those metastable states have been veri�ed to being
destroyed by noise [59, 62, 63], it is shown that, in our case, the peculiar
long-range character of the intrinsically present noise [89] can further extend
the prethermalized stage and substantially modify relaxation [90].
Chapter 7 (Ref. [91]) deals with studies on a setup, in which the coherent
laser drive is replaced by an incoherent drive, allowing for population inver-
sion in the e�ective two-level atomic spins with an ultranarrow transition.
In fact, the internal atomic degrees are crucial for the discussed phenomena
in this chapter: dipole-dipole interactions, induced by the common coupling
to a lossy cavity mode [46, 92], can lead to synchronization [36] among the
dipoles. Associated mechanical e�ects have been studied [93, 94, 95], but
still are to some extent unexplored and especially addressed in this chapter:
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we report on giant frictional forces on the atoms due to cavity-induced
spin-spin correlations.

This thesis is closed by the conclusions, providing a summary and an
outlook with open questions that could be addressed in future studies.

Contributions of the author of this dissertation

This cumulative thesis contains 7 manuscripts/publications, organized
in chapters. The following list solely aims at specifying the aspects to
which the author of this dissertation contributed in the manuscripts, it
does not imply that the other authors had no contribution to these points.
A more detailed statement, describing the contributions to the respective
manuscript of all the authors, can be found on the �rst page of the respective
chapters.

Chapter 1 (Ref. [74])
development of theoretical model; design and performance of numerical
simulations; derivation of analytical results; checking, discussing and
analysing the calculations and results; writing of the article

Chapter 2 (Ref. [64])
development of theoretical model; design and performance of numerical
simulations; checking, discussing and analysing the calculations and
results; writing of the article

Chapter 3 (Ref. [77])
development of theoretical model; performance of analytical calcula-
tions; design and performance of numerical simulations; checking, dis-
cussing and analysing the calculations and results; writing of the article

Chapter 4 (Ref. [87])
checking, discussing and analysing the calculations and results

Chapter 5 (Ref. [88])
development of the theoretical model; performance of numerical simu-
lations; checking, discussing and analysing the calculations and results;
writing of the article

Chapter 6 (Ref. [78])
development of the theoretical model; performance of analytical and
numerical calculations; checking, discussing and analysing the calcula-
tions and results; writing of the article

Chapter 7 (Ref. [91])
development of the theoretical model; checking, discussing and
analysing the calculations and results



CHAPTER 1

Cooling of atomic ensembles in optical cavities: Semiclassical

limit

Cooling of atomic ensembles in optical cavities:
Semiclassical limit

PHYSICAL REVIEW A 88, 033427 (2013)
c©2013 American Physical Society � published 30 September 2013
DOI: 10.1103/PhysRevA.88.033427

Authors: Stefan Schütz,1,∗ Hessam Habibian,1,2,3 and Giovanna Morigi1

1Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
2Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra,

Spain
3ICFO � Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860

Castelldefels (Barcelona), Spain
∗stefan.schuetz@physik.uni-saarland.de

With kind permission of the American Physical Society.

Author Contributions:

The theoretical model was developed by S. Schütz, H. Habibian, and
G. Morigi. Numerical simulations were designed and performed by
S. Schütz. Analytical results were derived by S. Schütz. The calculations
and results were checked, discussed and analysed by all three authors. The
article was majorly written by G. Morigi and S. Schütz.

Abstract:

The semiclassical dynamics of atoms, when the atoms are con�ned inside a

standing-wave high-�nesse resonator, is theoretically studied. The atoms are
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cooled by scattering processes in which the photons of a transverse laser are

coherently scattered into the cavity mode. We derive a Fokker-Planck equation

for the atomic center-of-mass variables which allows us to determine the equations

of motion in the semiclassical limit for any value of the intensity of the laser �eld.

We extract its prediction for the dynamics when the resonator is essentially in

the vacuum state and the atoms are cooled by scattering photons into the cavity

mode, which then decays. Its predictions for the stationary atomic distribution

are compared with the ones of the Fokker-Planck equation by Domokos et al. [J.

Phys. B 34, 187 (2001)], which has been derived under di�erent assumptions. We

�nd full agreement in the considered parameter regime.
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The semiclassical dynamics of atoms, when the atoms are confined inside a standing-wave high-finesse
resonator, is theoretically studied. The atoms are cooled by scattering processes in which the photons of a
transverse laser are coherently scattered into the cavity mode. We derive a Fokker-Planck equation for the atomic
center-of-mass variables which allows us to determine the equations of motion in the semiclassical limit for any
value of the intensity of the laser field. We extract its prediction for the dynamics when the resonator is essentially
in the vacuum state and the atoms are cooled by scattering photons into the cavity mode, which then decays. Its
predictions for the stationary atomic distribution are compared with the ones of the Fokker-Planck equation by
Domokos et al. [J. Phys. B 34, 187 (2001)], which has been derived under different assumptions. We find full
agreement in the considered parameter regime.
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I. INTRODUCTION

The possibility of cooling and trapping the atomic motion
by means of electromagnetic radiation has been remarkably
advanced in atomic physics and quantum optics, which was
officially recognized with the Nobel Prize in physics in 1997
[1]. In a nutshell, radiative scattering can cool the motion
of atoms by means of the mechanical effects of atom-photon
interactions. This is achieved by scattering processes, in which
the transition rate to states with lower mechanical energy is
enhanced by suitably driving an atomic transition, so that the
frequency of the absorbed photon is, on average, smaller than
that of the emitted one [2,3]. In the presence of high-finesse
optical resonators, these processes can be tailored using the
strong coupling with the cavity field [4–9].

A remarkable property of the mechanical effects of light
inside a high-finesse resonator is the collective phenomena
due to multiple scattering of photons, which mediate an
effective interaction between the atoms. They give rise
to nonlinear dynamics, such as bistability induced by the
nonlinear coupling with the motional degrees of freedom
[10], synchronization [11], and collective-atomic recoil lasing
[12]. In single-mode standing-wave cavities, they can lead
to the formation of spatially ordered structures [13–17]. This
phenomenon is found in a setup, such as the one sketched in
Fig. 1, where the atoms are confined inside a resonator and are
driven by a transverse laser. It exhibits a threshold, which
is mainly determined by the intensity of the laser. Above
threshold, ordered atomic structures (Bragg gratings) form,
which coherently scatter photons into the cavity resonator
and, vice versa, the cavity field stably traps the atoms in the
grating [14,15,17].

The theory of self-organization in laser-cooled atomic
ensembles coupled to cavities has been pioneered by Ritsch
and coworkers [18], who derived a Fokker-Planck equation
describing the coupled dynamics of cavity field and atoms

*stefan.schuetz@physik.uni-saarland.de

in the limit in which the atomic and field variables can
be treated semiclassically [19]. On this basis, the self-
organization threshold has been determined [17] and numerical
simulations of the system dynamics were performed [18]. This
theoretical model does not describe, however, the properties
of the cavity field, which is treated in the semiclassical
limit. The semiclassical approximation, in fact, breaks down
when the intracavity field is small, namely, below and close to
the self-organization threshold. Close to threshold, when the
patterns are formed, in particular, fluctuations are expected to
become larger and larger [13,17]. This calls for developing a
unifying theoretical formalism which allows one to describe
the coupled atom-field dynamics below, at, and above the
self-organization threshold.

In this work, we derive the Fokker-Planck equation gov-
erning the atomic dynamics, which is valid for any value of
the intracavity field amplitude. This is obtained by following
the procedure developed in Refs. [20–22], which allows us
to derive an effective Fokker-Planck equation for the atomic
motion, in which the cavity field is treated quantum mechan-
ically. This treatment leads to equations of motion which can
be simulated by means of stochastic differential equations
[19,23,24]. The numerical simulations allow for a reliable
description of the dynamics without further assumptions on
the state of the intracavity field. As an example, we determine
the momentum distribution when the loss rates are much larger
than the pump rate, so that the intracavity field is essentially
in the vacuum. We then compare the predictions of our
model on the atomic distribution with the predictions extracted
with the model in Refs. [19,25]. This article is organized as
follows. In Sec. II, the theoretical model is introduced and the
effective master equation, describing the coupled dynamics
of cavity and atoms, is obtained after eliminating the excited
state of the atoms in second-order perturbation theory. The
Fokker-Planck equation for the atomic dynamics is derived in
Sec. III, and the numerical simulations of the center-of-mass
motion dynamics are reported and discussed in Sec. IV. The
conclusions are drawn in Sec. V. The appendices report details
of the calculations in Secs. III and IV.

033427-11050-2947/2013/88(3)/033427(13) ©2013 American Physical Society
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FIG. 1. (Color online) A gas of atoms is confined within a
standing-wave resonator and is illuminated by a transverse laser. A
dipolar transition of the atoms couples quasiresonantly with the fields
and scatters photons from the laser into the cavity. We analyze the
dynamics of the atomic center-of-mass motion and steady state in the
semiclassical regime.

II. THEORETICAL MODEL

In this section, we derive the master equation which is
at the basis of the semiclassical treatment in Sec. III. This
effective master equation is obtained for a system of atoms
inside the cavity and illuminated by a transverse pump, in the
limit in which the atomic transition is driven below saturation.
It thus describes the coupled dynamics of atomic center-of-
mass motion and cavity field.

A. The system

The physical system is illustrated in Fig. 1: N atoms
are confined inside a resonator and their dipolar transitions
scatter photons of a transverse laser and of the mode of a
standing-wave cavity. The atoms are sufficiently hot to be
considered distinguishable. For the sake of generality, we also
assume that they can be of different species. We denote by
mj the mass of atom j = 1, . . . ,N , and by |g〉j and |e〉j we
denote the ground and excited state of the corresponding
dipolar transition, whose frequency ωj is quasiresonantly
coupled with the laser and with the cavity field (the position
dependence of the transition frequency also takes into account
possible spatial inhomogeneities). The laser is here assumed to
be a classical standing-wave field with frequency ωL and wave
vector perpendicular to the cavity axis, while the cavity mode
is a quantum field of frequency ωc and wave vector k. The
cavity and laser field have the same linear polarization, so that
they both drive the atomic dipolar transitions. We denote by â

and â† the annihilation and creation operators, respectively, of
a cavity photon, with [â,â†] = 1.

The center-of-mass motion of the atoms is restricted to
the cavity axis, which here corresponds to the x axis. The
position and canonically conjugated momentum of atom j are
given by the operators x̂j and p̂j , such that [x̂j ,p̂k] = ih̄δjk ,
with δjk as the Kronecker delta. Internal and external degrees
of freedom of the atoms couple via the mechanical effects
of atom-photon interactions. Our purpose is to provide a

theoretical description of the scattering dynamics leading to
cooling of the atomic motion.

We start with the master equation for the density matrix ρ̂

for the cavity and for the atoms’ internal and external degrees
of freedom, which reads

∂

∂t
ρ̂ = − i

h̄
[Ĥ,ρ̂] + Lκ ρ̂ + Lγ ρ̂ (1)

≡ Lρ, (2)

whereL is the corresponding Lindbladian. Master equation (1)
is reported in the reference frame rotating at the laser
frequency ωL. Here, the coherent dynamics are governed by
the Hamiltonian

Ĥ =
N∑

j=1

p̂2
j

2mj

− h̄�câ
†â −

N∑
j=1

h̄�j σ̂
†
j σ̂j

+
N∑

j=1

h̄gj (x̂j )(â†σ̂j + σ̂
†
j â) +

N∑
j=1

h̄
j (σ̂ †
j + σ̂j ), (3)

where σ̂j = |g〉j 〈e| and σ̂
†
j is its adjoint, �c = ωL − ωc

and �j = ωL − ωj are the detunings of the laser frequency
from the cavity frequency ωc and from the atomic transition
frequency ωj , respectively; 
j is the real-valued coupling
strength of atom j with the laser, and gj (x̂j ) = gj cos(kx̂j ) is
the real-valued coupling of the atomic transition, with gj the
vacuum Rabi frequency for the atom j and cos(kx) the spatial
mode function.

The incoherent dynamics is assumed to be due to cavity
losses, at rate κ , and to radiative decay of the atoms excited
states, at rate γj . They are described by the superoperators

Lκ ρ̂ = −κ(â†âρ̂ + ρ̂â†â − 2âρ̂â†), (4)

Lγ ρ̂ = −
N∑

j=1

γj

2
(σ̂ †

j σ̂j ρ̂ + ρ̂σ̂
†
j σ̂j ) + J ρ̂ , (5)

where

J ρ̂ =
N∑

j=1

γj

∫ 1

−1
duNj (u)|g〉〈e|j e−ikj ux̂j ρ̂eikj ux̂j |e〉〈g|j .

(6)

This term describes the jump from |e〉j to |g〉j due to
spontaneous decay and takes into account the momentum
transfer along the cavity axis to the atom due to spontaneous
emission [26]. Here, the dipole radiation pattern Nj (u) is
normalized and symmetric about u = 0. For later convenience,
we define its second moment by (u2)j , such that∫ 1

−1
duNj (u)u2 = (u2)j . (7)

B. Adiabatic elimination of the excited state

We now proceed in deriving the master equation for
the cavity field and atoms’ center-of-mass motion when the
occupation of the atomic excited states can be neglected. Let
us first assume that the particles do not move. In this case,
their coupling gj with the cavity field is fixed, and the excited
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state can be eliminated in second order in an expansion in
the parameter 1/|�j |, assuming that |�j | � γj/2,
j and
|�j | � |�c|,κ,gj

√
n̄, with n̄ is the mean photon number in the

cavity. For N atoms, the condition on the coupling strengths
becomes |�j | � √

N
j,
√

N (gj

√
n̄); see [27]. When the

center-of-mass motion is considered, on the other hand, the
coupling strength gj varies as a function of time. Moreover,
atoms with different velocities experience different Doppler
shifts, which modify the resonance condition. These effects
can be neglected when the corresponding time scales are
longer than the typical time scale in which the excited state
is occupied, i.e., when kp̄j /mj � |�j | (with p̄j =

√
〈p2

j 〉),
which is satisfied when the atomic gas has previously been
Doppler cooled [3,28].

Formally, the effective master equation describing the
dynamics of cavity field and atoms’ center-of-mass motion
is obtained by deriving a closed equation of motion for
the reduced density operator v̂ when the atoms are all in
the internal ground state |g〉 = |g1,g2, . . . ,gN 〉. The reduced
density operator v̂ is defined as v̂ = P ρ̂, where

v̂ = P ρ̂ = |g〉〈g|〈g|ρ̂|g〉, (8)

such that ρ̂ = v̂ + ŵ with

ŵ = Qρ̂, (9)

where P and Q = 1 − P are projectors (P 2 = P , Q2 = Q,
P † = P , Q† = Q) and (P + Q)ρ̂ = ρ̂. In order to adiabati-
cally eliminate the excited state, we rewrite the Lindbladian as
L = (P + Q)L(P + Q) and introduce the decomposition

L = LA + LF + J + Lint, (10)

where

LF ρ̂ = − i

h̄

[
N∑

j=1

p̂2
j

2mj

− h̄�câ
†â,ρ̂

]
+ Lκ ρ̂, (11)

with LF P = PLF . Term

LAρ̂ =
N∑

j=1

[
i�j [|e〉j 〈e|,ρ̂] − γj

2
(|e〉〈e|j ρ̂ + ρ̂|e〉j 〈e|)

]

(12)

is such that QLAQ = LA andLAP = PLA = 0, whileJP =
0 and PJ = PJQ. Finally, PLintP = 0, with

Lintρ̂ = −i

N∑
j=1

[{|e〉〈g|j [
j + gj (x̂j )â] + H.c.},ρ̂]. (13)

The master equation (1) is thus rewritten in terms of coupled
differential equations for the time evolution of v̂ and ŵ defined
in Eqs. (8) and (9). The formal solution for ŵ reads

ŵ(τ ) =
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLintŵ(τ ′)

+
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLintv̂(τ ′), (14)

where we have assumed ŵ(0) = 0, namely, all atoms are in the
internal ground state at t = 0. Using Eq. (14) in the differential
equation for v̂ leads to an integrodifferential equation of

motion,

∂

∂t
v̂ = PLF v̂ + P (J + Lint)

×
∫ t

0
dτeQ(LA+LF )(t−τ )QLint[v̂(τ ) + V̂ (τ )] , (15)

with

V̂ (τ ) =
∫ τ

0
dτ ′eQ(LA+LF )(τ−τ ′)QLint[v̂(τ ′) + ŵ(τ ′)].

Equation (15) can be brought to the form of an effective
Born-Markov master equation by performing a perturbative
expansion to the second order in the small parameters

εint ∝ √
N

g
√

n̄

|�a | ,
√

N 

|�a | and εF ∝ |�c|

|�a | ,
κ

|�a | , which consists in

neglecting terms such as (Lint)3, (Lint)2LF , Lint(LF )2, (LF )3,
and higher. In this approximation, the master equation for the
reduced density matrix v̂, given by Eq. (15), is reduced to the
form
∂

∂t
v̂ = − i

h̄
[Ĥeff,v̂] − κ(â†âv̂ + v̂â†â − 2âv̂â†)

−
N∑

j=1

γ ′
j

2

{
B̂

†
j B̂j v̂ + v̂B̂

†
j B̂j − 2

∫ 1

−1
duNj (u)B̂j v̂B̂

†
j

}
,

(16)

where γ ′
j = γjg

2
j /(�2

j + γ 2
j /4) is the rate of incoherent photon

scattering via spontaneous decay, while operator

B̂j = e−ikj ux̂j

[
cos(kx̂j )â + 
j

gj

]
(17)

describes the mechanical effect associated with absorption of
a laser or a cavity photon and followed by a spontaneous
emission. The effective Hamiltonian Ĥeff reads

Ĥeff =
N∑

j=1

p̂2
j

2mj

− h̄

[
�c −

N∑
j=1

Uj cos2(kx̂j )

]
â†â

+ h̄

N∑
j=1

Sj cos(kx̂j )(â + â†). (18)

It contains the shift of the cavity frequency due to the
interaction with the atoms, which scales with the frequency

Uj = �jg
2
j

�2
j + γ 2

j /4
, (19)

and the pump on the cavity field due to coherent scattering into
the cavity mode, which scales with the amplitude

Sj = �j

gj
j

�2
j + γ 2

j /4
. (20)

The corresponding terms in Eq. (18) depend on the atomic
positions and give rise to mechanical forces on the atoms. We
remark that the master equation in Eq. (16) has been reported,
for instance, in Refs. [17,19], where the internal dynamics is
eliminated by setting σ̂z ≈ −1 and ultimately expressing σ̂j

and σ̂
†
j in terms of cavity field operators. Here, we have given

its detailed derivation using second-order perturbation theory
by means of projectors acting on density operators [29].
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III. SEMICLASSICAL MODEL

In this section, we analyze the predictions of Eq. (16) under
the assumption that the atoms’ center-of-mass motion can be
treated semiclassically. For this purpose, we first consider
the dynamics of the atoms in Wigner representation and
denote by Ŵt (x, p) the operator for the cavity field degrees
of freedom, where the subscript t indicates the time. Operator
Ŵt (x, p) is related to the reduced density operator v̂ by the
equation

Ŵt (x, p) = 1

(2πh̄)N

∫ ∞

−∞
dξe− i

h̄
p·ξ

〈
x + 1

2
ξ |v̂|x − 1

2
ξ

〉
,

(21)

with y = (y1, . . . ,yN ), where y = x, p,ξ . It is a scalar func-
tion of the atoms’ positions xj and canonically conjugated
momenta pj of the atoms. Note that p · ξ = ∑N

j=1 pjξj and∫∞
−∞ dξ = ∏N

j=1

∫∞
−∞ dξj . The Wigner function for the atoms

is denoted by f (x, p,t) and is defined as

f (x, p,t) = Tr{Ŵt (x, p)}. (22)

From the density operator in Eq. (21), one can find the
combined atom-field Wigner function W (x, p,α,α∗) used in
Ref. [19] by means of the relation

Wt (x, p,α,α∗) =
∫

d2η

π2
eη∗α−ηα∗

Tr{Ŵt (x, p)D̂(η)}, (23)

where α and α∗ are the variables for the cavity field amplitude
and D̂(η) = exp(ηâ† − η∗â) is the displacement operator for
the cavity field, with η complex variables.

Let us now discuss the conditions under which the motion
can be treated as a semiclassical variable. This is possible
when the typical width of the momentum distribution, which
we denote by �pj for the atom j , is much larger than the

photon momentum h̄k,

h̄k � �pj . (24)

In this limit, the momentum changes due to emission and
the absorption of a photon are very small. In addition, the
uncertainty in the atomic position, �xj , is larger than the value
set by the Heisenberg uncertainty relation, �xj > h̄/�pj .
These conditions are met when the atoms are at the stationary
state of Doppler cooling, such that �p2

j /(2mj ) ∼ h̄γj /4 when

γj � ωr , with ωr = h̄k2

2m
the recoil frequency [3,28]. In this

work, we derive a Fokker-Planck equation starting from this
assumption, and then check that the corresponding stationary
state fulfills the conditions under which the Fokker-Planck
equation is valid.

A. Semiclassical model below the self-organization threshold

We now derive equations of motion for the atomic degrees
of freedom by eliminating the cavity degrees of freedom. This
is possible provided the cavity degrees of freedom evolve on
a faster time scale than the atomic motion, namely, when

k�pj/mj � |κ + i�c|. (25)

As one can easily check, this condition is consistent with
Eq. (24), provided that ωr � κ . The following treatment
extends the method applied in Ref. [20] to the dynamics of
atoms coupled to a resonator. We start with the master equation
in Eq. (16) in Wigner representation for the atomic degrees of
freedom and consider the reference frame moving with the
atoms and defined by the relation

ˆ̃Wt (x, p) = Ŵt (x + v(t − t0), p), (26)

where v = (p1/m1, . . . ,pN/mN ), Ŵt (x, p) is defined in
Eq. (21), and ˆ̃Wt (x, p) is given in the reference frame moving
with the atoms, with t0 an initial time. Its time evolution reads

∂

∂t
ˆ̃Wt

(
x

p

)
= L′

0
ˆ̃Wt

(
x

p

)
+ Lγ ˆ̃Wt

(
x

p

)
− i

2

∑
j

Sj

{
(â + â†)

[
e
ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/(2mj )

p − h̄k j/2

)

+ e
−ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/(2mj )

p + h̄k j/2

)]
−
[
e
ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/(2mj )

p + h̄k j/2

)

+ e
−ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/(2mj )

p − h̄k j/2

)]
(â + â†)

}

− i

4

∑
j

Uj

{
â†â

[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/mj

p − h̄k j

)
+ e

−2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/mj

p + h̄k j

)
+ 2 ˆ̃Wt

(
x

p

)]

−
[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x − τh̄k j/mj

p + h̄k j

)
+ e

−2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τh̄k j/mj

p − h̄k j

)
+ 2 ˆ̃Wt

(
x

p

)]
â†â

}
, (27)

where ˆ̃Wt (x, p) ≡ ˆ̃Wt (
x
p ), τ = t − t0, and (k j )� = kδ�,j , while

L′
0

ˆ̃Wt

(
x

p

)
= i�c

[
â†â, ˆ̃Wt

(
x

p

)]
+ κ

[
2â ˆ̃Wt

(
x

p

)
â† − â†â ˆ̃Wt

(
x

p

)
− ˆ̃Wt

(
x

p

)
â†â

]
. (28)
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The effects of spontaneous emission are included inLγ ˆ̃Wt (
x
p ),

whose detailed form is reported in Appendix A. After
performing a Taylor expansion up to second order in the
parameters ε1 = h̄k/�p and ε2 = k�p

mκ
, Eq. (27) can be cast

in the form

∂

∂t
ˆ̃Wt (x, p) = [L0 + L1(t) + L2(t)] ˆ̃Wt (x, p), (29)

whereLj is of the j th order in ε1,ε2 and we have assumed ε1 ∼
ε2 ∼ ε, which is correct provided that ωr � κ . Now, operators
ˆ̃Wt (x, p) appear all at the same positions and momenta x, p, so

that we omit writing the argument explicitly. Superoperators
Lj are defined as

L0
ˆ̃Wt = L′

0
ˆ̃Wt − i

∑
j

Uj [â†â, cos2(kxj ) ˆ̃Wt ]

− i
∑

j

Sj [(â + â†), cos(kxj ) ˆ̃Wt ] + Lγ ′
0

ˆ̃Wt, (30)

L1
ˆ̃Wt = + i

h̄
τ
∑

j

[
pj

mj

F̂j ,
ˆ̃Wt

]

− 1

2

∑
j

[(
∂

∂pj

− τ

mj

∂

∂xj

)
ˆ̃Wt,F̂j

]
+

+ Lγ ′
1

ˆ̃Wt,

(31)

L2
ˆ̃W = ih̄

8

∑
j

[
∂2

∂p2
j

ˆ̃Wt,
∂

∂xj

F̂j

]
+ Lγ ′

2
ˆ̃Wt, (32)

with F̂j the force operator on the j th atom [29], which is
defined as

F̂j = h̄kSj sin(kxj )(â + â†) + h̄kUj sin(2kxj )â†â

− i(â† − â)h̄k
γ ′

j

2
sj sin(kxj ),

with sj = 
j/gj . The terms Lγ ′
0

ˆ̃W, Lγ ′
1

ˆ̃W , and Lγ ′
2

ˆ̃W are due
to spontaneous emission and their explicit form is given in
Appendix A. Note that L2 is evaluated at τ = 0 since this term
is already of the second order in ε.

We rewrite the operator ˜̂Wt as

W̃t (x, p) = f̃ (x, p,t)σs(x) + χ̃ (x, p,t), (33)

where σs(x) is the density matrix for the field, which
solves equation L0σs(x) = 0 for N atoms fixed at positions
xj , while f̃ (x, p,t) is the Wigner function of Eq. (22)
in the reference frame moving with the atom. Therefore,
f̃ (x, p,t)σs(x) corresponds to the solution in which the cavity
field adiabatically follows the external atomic motion, while
the nonadiabatic terms are contained in the (traceless) operator
χ̃ = W̃ − Tr{W̃ }σs . When condition (25) is fulfilled, this
contribution is expected to be a small correction and reads

χ̃ (t) =
∫ t

t0

dt ′eL0(t−t ′)[L1(t ′)f (x, p,t ′)σs

− Tr{L1(t ′)f (x, p,t ′)σs}σs], (34)

where the value at t = t0 is taken to be zero, as is consistent
with the assumption that when the transverse laser is switched
on, there are no correlations between field and atoms. Under

this assumption, we use Eq. (33) in Eq. (29) and consider a
coarse-grained dynamics. Applying the Markov approxima-
tion after tracing over the cavity degrees of freedom, we obtain
the equation governing the time evolution of the Wigner
function f̃ (x, p,t), which is valid up to second order in ε:

∂

∂t
f̃ (x, p,t)

∣∣∣∣
t=t0

= Tr{[L1(x, p,t0) + L2(x, p,t0)] · f̃ (x, p,t0)σs(x)}
+ Tr

{
L1(x, p,t0)

∫ t0

−∞
dt ′eL0(t0−t ′)[L1(x, p,t ′)

· f̃ (x, p,t0)σs(x)

− Tr[L1(x, p,t ′) · f̃ (x, p,t0)σs(x)]σs(x)]

}
. (35)

The equation in the original reference frame is found by using
the relation f̃ (x, p,t0) = f (x, p,t0) together with equation

∂

∂t
f̃ |t=t0 = ∂

∂t
f |t=t0 + v · ∂

∂x
f |t=t0 .

After observing that the trace over the term containing operator
L2 (neglecting Lγ ′

2 ) vanishes, we cast Eq. (35) in the form

∂

∂t
f (x, p,t)|t = −

N∑
j=1

∂

∂xj

pj

mj

f (x, p,t)

−
N∑

j=1

∂

∂pj

(
�j −

N∑
�=1

γj� p�

)
f (x, p,t)

+
N∑

j,�=1

∂2

∂pj∂p�

Dj�f (x, p,t)

+
N∑

j,�=1

∂

∂pj

ηj�

∂

∂x�

f (x, p,t), (36)

where the derivatives are now explicitly reported. This
equation has the form of a Fokker-Planck equation for the
atomic center-of-mass variables, while the field enters in the
coefficients through the expectation values of field variables
taken over the density matrix σs(x). In particular, �j =
Tr{σs(x)F̂j } is the mean dipole force over the j atom due to
the cavity field, and γj� are the friction coefficients which read

γj� = γ ′
j� + Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ )

iτ

h̄m�

[F̂�,σs(x)]

}
,

where γ ′
j� is the contribution due to spontaneous emission,

while the second term arises from the coupling with the
cavity. Coefficients Dj� are the diffusion matrix coefficients;
they include the contribution due to spontaneous decay (D′

j�)
and the contribution to diffusion due to the cavity field,

Dj� = D′
j� + Tr

(
F̂j

∫ ∞

0
dτ exp(L0τ )

{
1

2
[σs(x),F̂�]+

− Tr[σs(x)F̂�]σs(x)

})
.

Finally, the Fokker-Planck equation exhibits cross derivatives
between position and momentum of the particles with
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coefficients

ηj� = η′
j� + Tr

(
F̂j

∫ ∞

0
dτ exp (L0τ )

τ

m�

{
1

2
[σs(x),F̂�]+

− Tr[σs(x)F̂�]σs(x)

})
,

where the first term η′
j� is due to spontaneous emission. This

term can be rewritten as
N∑

j,�=1

∂

∂pj

ηj�

∂

∂x�

f =
N∑

j,�=1

∂

∂pj

[
∂

∂x�

(ηj�f ) −
(

∂ηj�

∂x�

)
f

]
,

where the second term in the brackets gives a contribution to
the force of higher order in ε and can thus be discarded [21,22].
The other term can also be neglected well below the
self-organization threshold, when the spatial distribution has
a width which largely exceeds the cavity wavelength λ [20].
It must be taken into account, nevertheless, at and above
the self-organization threshold, when spatial structures with
periodicity λ form.

We note that the explicit form of the coefficients due to
spontaneous emission, γ ′

j�,D
′
j�,η

′
j�, is reported in Appendix A.

These coefficients characterize the dynamics also in the
absence of the resonator. In the limit which we will consider
here, where the laser and cavity fields are far detuned from
the atomic resonance, they are of higher order and their
contribution to the dynamics can often be discarded.

We finally give the form of the field density matrix σs(x).
By solving L0σs(x) = 0, we find σs(x) = |α(x)〉〈α(x)|, with
|α(x)〉 the coherent state of amplitude

α(x) =
∑

j Sj [1 − i(γj/2�j )] cos(kxj )

[�c − ∑
j Uj cos2(kxj )] + iκ ′ , (37)

with

κ ′ = κ +
∑

j

g2
j

(γj/2)

(
γj

2�j

)2 �2
j

�2
j + γ 2

j /4
cos2(kxj ).

Operators of the form F(a,a†), which are a function of the
field variables, have expectation value

〈F〉 =
∫

dxd pTr{Wt (x, p)F}, (38)

where Wt is found from Eq. (33) using the nonadiabatic term
in Eq. (34) after applying the Markov approximation.

B. Comparison with the semiclassical model in Ref. [19]

We now consider the Fokker-Planck equation derived in
Ref. [19]. This is based on the assumption that both the atomic
motion and cavity field can be treated semiclassically. With
respect to the previous treatment, hence, here one also assumes
that the mean-field amplitude is large, 〈â〉 = |α0| � 1, so that
one can perform an expansion in the quantum fluctuations
about the mean value α0. This allows one to discard higher
derivatives in the field and atomic variables, thereby obtaining
a Fokker-Planck equation.

In this regime, it is convenient to consider the Wigner
function for field and atomic motion in Eq. (23), whose
time evolution is given by master equation (16) in Wigner

representation. The corresponding Fokker-Planck equation in
the semiclassical limit is obtained by performing an expansion
up to second order in the small parameters ε1,j = h̄k

(�p)j
and

ε2 = 1
|α0| , where it is assumed that ε1,j and ε2 are approximately

of the same order. The resulting time evolution reads

∂

∂t
Wt = − ∂

∂αr

⎡
⎣−�′

cαi − κ ′αr −
N∑

j=1

sj�j cos(kxj )

⎤
⎦Wt

− ∂

∂αi

⎡
⎣�′

cαr − κ ′αi −
N∑

j=1

sjUj cos(kxj )

⎤
⎦Wt

−
N∑

j=1

h̄
∂

∂pj

∇j [−Uj |α|2 cos2(kxj )

− sjUj cos(kxj )(2αr ) + (2αi)sj�j cos(kxj )]Wt

−
N∑

j=1

∂

∂xj

[
pj

mj

]
Wt + 1

4

(
∂2

∂α2
r

+ ∂2

∂α2
i

)
κ ′Wt

+
N∑

j=1

h̄k

2
�j sin(2kxj )

∂

∂pj

(
αi

∂

∂αr

− αr

∂

∂αi

)
Wt

+
N∑

j=1

(h̄k)2�j

∂2

∂p2
j

{|α|2[sin2(kxj ) + (u2)j cos2(kxj )]

+ sj (u2)j [2αr cos(kxj ) + sj ]}Wt, (39)

where αr = Re{α}, αi = Im{α}, while sj = 
j/gj , �j =
γ ′

j /2, with

γ ′
j = γj

g2
j

�2
j + γ 2

j /4

as the effective rate of spontaneous emission. Moreover, κ ′ =
κ + ∑N

j=1 �j cos2(kxj ) is the rate at which cavity photons are
lost (via both cavity decay and spontaneous emission), and

�′
c = �c −

N∑
j=1

Uj cos2(kxj )

is the effective detuning between cavity and laser, which
includes the dynamical Stark shift due to the coupling with
the atoms.

Equation (39) is a Fokker-Planck equation for the variables
x, p, αr , and αi . We note that its derivation does not require
one to explicitly assume a time-scale separation between
the cavity field and atomic motion. On the other hand, its
derivation consists of neglecting derivatives corresponding to
orders ε1,j ε

2
2 , ε2

1,j ε2, which is motivated under the assumption
that the semiclassical limit for the field amplitude applies. Such
approximation becomes invalid for small photon numbers and
thus, for instance, below and close to the self-organization
threshold. Nevertheless, this equation is used in the literature
for studying the dynamics of the system below threshold
[17,25].
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IV. DYNAMICS FOR LOW PUMP INTENSITIES

We now analyze the predictions of Eq. (36) for low pump
intensities 
, such that the cavity field is essentially in the
vacuum state. We first solve Eq. (36) at the asymptotics of
the dynamics and find an explicit form for the stationary
distribution; we then extract numerical predictions based on
stochastic differential equations that we will define below. In
the following discussion, we will assume, for simplicity, that
all atoms are identical and set mj = m, Sj = S, Uj = U , and
γj = γ .

A. Fokker-Planck equation for small intracavity
photon numbers

We assume that the low effective pumping rate S is
small compared with the cavity decay rate κ (more precisely,√

NS � κ). Consequently, the mean number of intracavity
photons is close to zero, |α|2 � 1. In this limit, we can
analytically evaluate σs by reducing the Hilbert space of the
photon field to zero- and one-photon states. The coefficients
can be then analytically determined in lowest order in |α|, and
Eq. (36) can be cast in the form

∂

∂t
f (x, p,t)

= −
N∑

n=1

∂

∂xn

pn

m
f

− 2h̄kS2
N∑

�,n=1

∂

∂pn

�′
c

�′2
c + κ2

sin(kxn) cos(kx�)f

− 4h̄k2

m
S2

N∑
�,n=1

∂

∂pn

�′
cκ(

�′2
c + κ2

)2 sin(kxn) sin(kx�) p�f

+ h̄2k2S2
N∑

�,n=1

∂2

∂pn∂p�

κ

�′2
c + κ2

sin(kxn) sin(kx�)f,

(40)

where we have additionally assumed that s = 
/g =
S/U � 1.

In Eq. (40), we did not report the cross derivative between
position and momentum, since we assume that the atoms’
spatial density nat is uniform: In fact, the pump intensity is
taken to be well below the self-organization threshold, the
mean intracavity photon number is close to zero, and we expect
that the intracavity optical lattice does not confine the atoms.
We will check the consistency of this hypothesis later on.

We have also neglected spontaneous emission, since we
choose |�| � γ /2 and consider large cooperativity, C =
g2/(κγ /2) [30]. This can be checked when comparing the
contribution to the diffusion coefficient due to spontaneous
decay to the one due to the coupling with the cavity field.
Their ratio reads

u2

〈sin2(kxn)〉
(

κγ

2g2

)
�2

c + κ2

κ2

�2 + γ 2/4

�2
∼= 2u2

1

C

�2
c + κ2

κ2
,

where we have used that |�c| � N |U | and that 〈sin2(kxj )〉 =
1/2 when the atoms are not spatially localized inside the vol-
ume of the cavity mode. Therefore, the effect of spontaneous

decay can be neglected when C � 1 (and �c is of the order of
κ), which are the conditions we consider in the following. In the
other regime, when the atoms are localized at the points where
their coupling with the field is maximum (the self-organized
phase), then 〈sin2(kxj )〉 ≈ 0 and diffusion is mainly due to
spontaneous emission.

1. Stationary state

We first analyze the predictions of the Fokker-Planck
equations under plausible assumptions, which we then verify
numerically later on. We extract, in particular, the cooling rate
and steady-state momentum distribution. In the following, we
assume N |U | � |�c|, which is consistent with uniform spatial
distributions, as shown in the following.

Let us first define the momentum distribution at time t ,
which is the integral of the Wigner function over the positions:

F ( p,t) =
∫

dxf (x, p,t).

Under the assumption of uniform spatial distribution,
f (x, p,t) ≈ F ( p,t)nat, where we denote the spatial density by
nat. We then integrate Eq. (40) over x and obtain an equation
for the momentum distribution of the form

∂

∂t
F ( p,t) ≈ −4ωr

N∑
n=1

∂

∂pn

S2 �cκδ1(
�2

c + κ2
)2 pnF ( p,t)

+ h̄mωr

N∑
n=1

∂2

∂p2
n

S2 κδ2

�2
c + κ2

F ( p,t), (41)

which has been obtained assuming N |U | � |�c|, with

δ1 = 1 + 3�2
c − κ2

�2
c + κ2

NU/2

�c

2N − 1

2N
,

δ2 = 1 + 2�2
c

�2
c + κ2

NU/2

�c

2N − 1

2N
.

We note that the assumption N |U | � |�c| is consistent with
uniform spatial distributions. In Eq. (41), there are no terms
which mix variables from different atoms: In fact, for uniform
spatial distributions, they vanish after integrating over the
positions. In this limit, the equations for the momentum
of each atom can be decoupled using the ansatz F ( p,t) =∏N

j=1 Fj (pj ,t), which delivers the equation of motion for the
momentum distribution Fj (pj ,t) for atom j :

∂

∂t
Fj (pj ,t)|t = − ∂

∂pj

ApjFj (pj ,t) + ∂2

∂p2
j

BFj (pj ,t), (42)

with

A = 4ωrS
2 �cκδ1(

�2
c + κ2

)2 ,

B = 1

2
(h̄k)2S2 κδ2

�2
c + κ2

.

A stationary solution exists for A < 0, which is verified
when �c < 0. In this case, one can make the ansatz that the
momentum distribution of one atom is a Gaussian of width
�pj . From Eq. (42), we find that �pj = �p(t), which is given
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by the equation

�p(t) = {
�p(0)2e2At + (1 − e2At )�p2

∞
}1/2

, (43)

with �p(0) the width at t = 0 and �p∞ = √−B/A the
width of the stationary state. Since the momentum distribution
is a Maxwell-Boltzmann distribution, we can associate a
temperature T to the width, with kBT = �p2

∞/m, whereby

kBT = h̄
�2

c + κ2

−4�c

δ2

δ1
. (44)

The steady state is reached with rate �cool = −2A, which we
denote by the cooling rate and reads

�cool = 8ωrS
2 |�c|κδ1(

�2
c + κ2

)2 .

The cooling rate thus scales with the square of the scattering
amplitude S and with the recoil frequency ωr and is indepen-
dent of the number of atoms. In fact, when the atoms spatial
distribution is uniform, superradiant effects are negligible
and the atoms can be considered as independent scatterers.
Minimum temperature and faster rate are found for �c = −κ .
For this choice, kBT = h̄κ/2 and �cool = 2ωr (S/κ)2δ1. It is
interesting to observe that, also in the case when the cavity
is driven, the final temperature of the atomic ensemble is
determined by the cavity linewidth, and it is minimal for
�c ≈ −κ [31].

2. Limits of validity

On the basis of the results we just derived, we are now able
to identify the parameter regime for which the semiclassical
description of the atomic motion we applied is valid at the
final stages of the cooling dynamics. It is simple to check using
Eq. (44) that both conditions (24) and (25) are verified provided
that |�c| ∼ κ and ωr � κ . In particular, the requirement that
the motion evolves more slowly than the cavity field, given by
Eq. (25), leads to the restriction that the detuning between the
cavity field and pump cannot be either much larger or much
smaller than the cavity linewidth.

Let us now consider the assumption that the atoms’ spatial
distribution is uniform in space. This assumption shall be
checked, since the atoms are subject to the dispersive potential
due to the mechanical effects of the cavity field on their motion.
Using a uniform spatial distribution in Eq. (37), one finds
that the mean-field amplitude vanishes. The mean intracavity
photon number is found using Eq. (38) for F = a†a, and
reads

ncav ≈ NS2/2

�2
c + κ2

, (45)

which discards the higher-order contribution due to nona-
diabatic effects. This value is much smaller than unity
provided that

√
NS � |�c + iκ|. The corresponding potential

depth is U0 = Uncav, and it is much smaller than the mean
kinetic energy (thus, the atoms are not spatially confined
by the potential) when U0 � κ/2, which corresponds to the
condition

√
NS � κ

√
κ

U
. (46)

When S or N are such that this inequality is not fulfilled,
the assumption of spatial flat distribution becomes invalid.
Correspondingly, the cavity field starts to establish correlations
between the atoms which ultimately lead to the formation of
ordered structures.

B. Numerical results

In this section, we evaluate the dynamics predicted by the
Fokker-Planck equation obtained in the semiclassical limit by
adiabatically eliminating the cavity degrees of freedom. Our
aim is to get an insight in the dynamics of the system by
analyzing the trajectories of the atoms. For this purpose, we
use Ito-type stochastic differential equations (SDE) [19,23,24],
which we extract from Eq. (36). They read

dxj = pj

m
dt + dXj , (47)

dpj = 2h̄kS2
N∑

i=1

�′
c

�′2
c + κ2

cos(kxi) sin(kxj )dt,

+
N∑

i=1

8ωrS
2 �′

cκ(
�′2

c + κ2
)2 sin(kxi) sin(kxj )pidt + dPj ,

(48)

where j = 1, . . . ,N labels the atoms and dPj denotes the
noise term, which is simulated by means of a Wiener process.
In particular, 〈dPj 〉 = 0 and 〈dPidPj 〉 = 2Dijdt , with

Dij = (h̄k)2S2 κ

�′2
c + κ2

sin(kxi) sin(kxj ) (49)

as the element of the diffusion matrix, while 〈dPjdX�〉 =
ηj�dt , with

ηj� = 2h̄ωrS
2 sin(kxj ) sin(kx�)

κ2 − �′2
c(

�′2
c + κ2

)2 . (50)

When one includes spontaneous emission, the elements of
the diffusion matrix read

Dij = (h̄k)2

{
S2κ

�′2
c + κ2

sin(kxi) sin(kxj ) + δij

γ ′

2
s2u2

}
,

(51)

which reports the dominant contributions [the rescattering of
a cavity photon by the atom is neglected here; see Eq. (A6)].
The analytical estimate of the steady-state momentum width
for homogeneous spatial distribution increases accordingly,

�p∞ =
√

−B/A

{
1 + 2u2

�2 + γ 2/4

�2

�2
c + κ2

κ2Cδ2

}1/2

. (52)

The simulations are performed considering a gas of 85Rb
atoms, whose D2 line, namely, the hyperfine transition
52S1/2 ↔ 52P3/2 at wavelength λ = 780 nm and linewidth
γ /2 = 2π × 3 MHz, couples with the mode of the resonator
and with the transverse laser. The laser frequency is assumed to
be detuned from the atomic frequency by �a = −500γ /2 and
from the cavity frequency by �c, with N the number of atoms
and κ = 0.5γ /2. The dynamics and steady state of the atoms
are studied, assuming that initially the atoms are at a steady
state of Doppler cooling with kBT = h̄γ /2. The initial state is
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a Gaussian distribution (the initial momentum is generated by
means of Gaussian-distributed random numbers) with uniform
density (the initial positions of the atoms are given by means of
uniformly distributed random numbers in the interval [0,λ]).

In the calculations, we neglect spontaneous emission, which
is plausible under the assumption that the cavity is far-off
resonance from the atomic transition. We have checked for
a sample of values when this assumption is justified by
comparing the simulations including spontaneous emission
with the simulations in which spontaneous decay was not
included (see Fig. 4 and related discussion). We further
discard the cross correlations, setting 〈dPjdX�〉 = 0, after
verifying that this assumption is justified for the considered
parameter choice [32]. We first check that the parameters
are chosen so that the number of intracavity photons is
sufficiently close to zero. We choose �c = −κ , for which one
expects the minimum value from Eq. (44). Using Eq. (38) and
setting ncav = 0.1, we obtain

√
N
 ∼ 0.6|�a|κ/g. For the

parameters that we chose and NU/�c = 0.05, 
 ∼ 45γ /2.
We set 
 ∼ 21γ /2, which corresponds to ncav ∼ 0.02. In this
regime, we evaluate the density matrix of the field in the
reduced Hilbert space, where the photon states are truncated
up to n = 2; see Sec. IV A.

On the basis of this result, we evaluate the time evolution
of the width �p of the momentum distribution for each atom
taking N = 5 atoms. If we take identical particles with the
same initial temperature, the momentum distribution of each
atom will be the same at all times. We then focus on the
momentum distribution averaged over all the atoms,

F0(p) = 1

N

N∑
j=1

∫ ∞

−∞
dpjδ(p − pj )Fj (pj ).

Figure 2 displays the width of the momentum distribution as
a function of time: The points are obtained from 5000 trajec-
tories for an initial momentum distribution corresponding to
a Maxwell-Boltzmann distribution with kBT = h̄γ /2 for each
atom. The dashed line is the function given in Eq. (43), which
has been obtained by assuming that all atoms are independently
cooled and show excellent agreement with the numerics. The
lower panels show the momentum distribution at given instants
of times, t = (0.1,1,9) ms. The dashed line corresponds to the
prediction extracted from Eq. (42), which gives a Gaussian at
all times.

We now analyze the dependence of the final temperature on
the detuning �c. In order to perform a systematic comparison
with the predictions of the Fokker-Planck equation in Ref. [25],
we express the pumping strength 
 of the laser in units of the
self-organization threshold defined as [25]

|
c| = κ2 + δ2

2|δ|√N

|�a|
g

,

with δ = �c − NU/2. This value scales with the number of
atoms and the detuning �c. We fix 
 = 0.3 
c, for which the
mean photon number, given by Eq. (38), takes the form

ncav ≈
(





c

)2
�2

c + κ2

8�2
c

.

This equation shows that when |�c| becomes too small, the
number of intracavity photons increases like ncav ∝ 1

�2
c
.

Figure 3 displays the momentum distribution at the asymp-
totics of the dynamics, which is found by integrating the SDE
after several ms, for three values of �c. The curves are fitted by
Gaussian of width given in Eq. (43): The stationary momentum
distribution is thus a Gaussian with width �p∞ = √

mkBT ,
with T given in Eq. (44).

Figure 4 shows the stationary momentum width as a
function of �c, which has been extracted by numerically
integrating the SDE (see blue circles). The curve exhibits a
minimum at �c = −κ and is in excellent agreement with
Eq. (43), evaluated at t → ∞ at the corresponding value of �c

(see blue dashed line). We have compared the predictions of the
Fokker-Planck equation, given by Eq. (36), with the ones of the
Fokker-Planck equation in Eq. (39), based on the assumption
that the cavity field can be treated semiclassically. The
simulations are performed by integrating the SDE reported in
Ref. [19], which for completeness are reported in Appendix B
(see red stars). Agreement between the predictions of the two
Fokker-Planck equations is found: This is remarkable since the
cavity field in this regime is in the vacuum, and thus outside
the formal limits of validity of Eq. (39). In order to check the
effect of spontaneous emission, we have integrated Eqs. (47)
and (48) using Eq. (51). The result is shown by the black
circles. The black dashed line corresponds to �p∞ in Eq. (52)
and fits the numerical data. We observe an increase of �p∞
by about 15% with respect to the case in which spontaneous
emission is not included.

We finally comment on the type of momentum distribution
we find. In [25], by studying the equation of motion of
atoms inside a resonator and driven well below threshold,
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FIG. 2. (Color online) Time evolution of the momentum distribu-
tion F0(p,t) evaluated from 5000 trajectories simulated by integrating
Eqs. (47) and (48) for N = 5 atoms. The top panel gives �p(t)
in units of the momentum recoil h̄k (circles). The dashed line
corresponds to Eq. (43). Lower panels: Momentum distribution at
t = (0.1,1,9) ms (circles) compared to a Gaussian of width �p(t)
given by Eq. (43) (dashed line). The parameters are κ = 0.5γ /2,
NU/�c = 0.05, 
 ∼ 21γ /2, and �c = −κ . The initial momentum
distribution is a Gaussian with kBTin = h̄γ /2 for each atom.
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it was argued that the steady-state momentum distribution
for the atoms far below threshold can obey a q-Gaussian
distribution with q = 1 + ωr/|δ|, where δ = �c − NU/2 and
N |U | � |�c|. This calculation was performed by neglecting
spontaneous decay. In our model, we do find Gaussian
distributions (q ≈ 1), whose steady-state temperature, given
by Eq. (44), is comparable with the result in [25]. Indeed,
our model can only allow for regular Gaussian distribution. In
fact, this is consistent with the limits of validity of the Fokker-
Planck equation we derive, which requires the separation of the
time scales between cavity field and atoms dynamics, namely,
|�c| ≈ κ � ωr .

V. DISCUSSION AND CONCLUSIONS

In this article, we have derived a Fokker-Planck equation
which describes the dynamics of atoms which are cooled by
radiative processes, where laser photons are scattered into the
mode of a high-finesse resonator. The derivation is based on
the assumption that the time scale of the atomic center-of-mass
motion dynamics is much larger than the cavity field typical
time scales, and thus holds for resonators whose linewidth
κ is much larger than the atomic recoil frequency ωr . It
cannot be applied, thus, to the setup in Ref. [33]. In this limit,
κ � ωr , we eliminate the cavity field from the atomic motion
dynamics using a perturbative expansion up to second order
in the retardation effects and derive a Fokker-Planck equation
for the atomic variables. The equation we derive constitutes
an alternative theoretical description for the cavity cooling
dynamics of atomic ensembles in high-finesse resonators.
In particular, our model provides a description which is not
restricted by the value of the laser intensity.

We have analyzed the predictions when the laser intensity
is well below the self-organization threshold. In this limit,
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0
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−40 −30 −20 −10 0 10 20 30 40
0

0.05

−40 −30 −20 −10 0 10 20 30 40
0

0.05

FIG. 3. (Color online) Steady-state momentum distribution (cir-
cles) for �c = −0.3κ (top), �c = −κ (middle), and �c = −1.5κ

(bottom). The points are extracted from 5000 trajectories evaluated
for each value �c by integrating the SDE in Eqs. (47) and (48).
The dashed line is a Gaussian whose width is given by Eq. (43).
The parameters are κ = 0.5γ /2, NU/�c = 0.05, 
/
c = 0.3, and
N = 5. The initial momentum distribution is a Maxwell Boltzmann
with mean kinetic energy kBTin = h̄γ /2 for each atom.
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FIG. 4. (Color online) Width of the steady-state momentum
distribution as a function of �c. The blue circles correspond to the
result of numerically integrating 5000 trajectories using Eqs. (47) and
(48) for each value of �c, together with Eq. (49). The blue dashed line
plots Eq. (43). The red stars correspond to the result of numerically
integrating 5000 trajectories corresponding to the Fokker-Planck
equation (39), where the cavity field is treated in the semiclassical
limit (details are reported in Appendix B). The results are obtained by
neglecting spontaneous emission. Spontaneous emission is included
in the results reported by the black circles, which have been obtained
by integrating Eqs. (47) and (48) with Eq. (51) for 200 trajectories.
The black dashed line gives the corresponding analytical estimate
according to Eq. (52). The deviations of the simulation data from the
fit originate from statistical noise. The parameters are κ = 0.5γ /2,
NU/�c = 0.05, 
/
c = 0.3, and N = 5.

collective effects can be discarded and there is no spatial
localization of the atoms by the light forces: at the steady state
of the dynamics, the atoms are uniformly distributed inside
the cavity and their momenta obey a Maxwell-Boltzmann
distribution, whose width is determined by the cavity linewidth
[34]. This result is in agreement with previous studies based on
other approaches [17,25]. In future studies, we will apply this
formalism to the dynamics of atoms and field when the laser
intensity is close to threshold. This will allow us to investigate
the onset of self-organization and to predict, among others, the
coherence properties of the light emitted by the resonator.
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APPENDIX A: SPONTANEOUS EMISSION

In this appendix, we report the Lindbladian in Eq. (27)
and the coefficients of Fokker-Planck (36) which are due
to spontaneous decay. For simplicity, we assume kj = k.
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The Lindbladian in Eq. (27) reads

Lγ ˆ̃Wt

(
x
p

)
= −

∑
j

γ ′
j

2
s2
j

[
2 ˆ̃Wt

(
x
p

)
− 2

∫ 1

−1
duNj (u) ˆ̃Wt

(
x − τ

mj
h̄k ju

p + h̄k ju

)]

−
∑

j

γ ′
j

8

{
â†â

[
e

2ik(xj + pj

mj
τ ) ˆ̃Wt

(
x + τ

mj
h̄kj

p − h̄k j

)
+ e
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mj
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(
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mj
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(
x − τ
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h̄kj
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)
+ e
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mj
τ ) ˆ̃Wt

(
x + τ

mj
h̄kj

p − h̄k j

)]
â†â

+ 2

[
â†â, ˆ̃Wt

(
x
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)]
+

− 2
∫ 1

−1
Nj (u)â

[
e
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mj
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(
x − τ
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(
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−
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τ ) ˆ̃Wt

(
x − τ

mj
h̄k j

(
u − 1

2

)
p + h̄k j

(
u − 1

2

)
)]

â†
)

du

}
. (A1)

This superoperator is expanded in power of ε, such that the zeroth-order term in Eq. (30) reads

Lγ ′
0

ˆ̃W =
∑

j

γ ′
j

2
sj [(â − â†), cos(kxj ) ˆ̃W ] −

∑
j

γ ′
j

2
cos2(kxj )(â†â ˆ̃W + ˆ̃Wâ†â − 2â ˆ̃Wâ†), (A2)

while the first- and second-order terms, given in Eqs. (31) and (32), respectively, take the form

Lγ ′
1

ˆ̃W = −
∑

j

γ ′
j

2
(h̄k)

∂

∂pj

−i

2
sin(2kxj )[â†â, ˆ̃W ] −

∑
j

γ ′
j

2
(h̄k)

1

2

τ i

mj

sin(2kxj )

[
â†â,

∂

∂xj

ˆ̃W

]

+
∑

j

γ ′
j

2

kpj

mj

τ sin(2kxj )(â†â ˆ̃W + ˆ̃Wâ†â − 2â ˆ̃Wâ†), (A3)

Lγ ′
2

ˆ̃W =
∑

j

γ ′
j

2
s2
j (h̄k)2(u2)j

∂2

∂p2
j

ˆ̃W −
∑

j

γ ′
j

2

1

8
(h̄k)2

[
2 cos(2kxj )

(
â†â

∂2

∂p2
j

ˆ̃W + ∂2

∂p2
j

ˆ̃Wâ†â

)

− 4â
∂2

∂p2
j

ˆ̃Wâ† − 2(u2)j [2 cos(2kxj ) + 2]â
∂2

∂p2
j

ˆ̃Wâ†
]

+
∑

j

γ ′
j

2
sj (h̄k)2(u2)j cos(kxj )

(
â

∂2

∂p2
j

ˆ̃W + ∂2

∂p2
j

ˆ̃Wâ†
)

. (A4)

Finally, the coefficients appearing in Eq. (36) and due to spontaneous emission are given by the expressions

γ ′
j� = γ ′

�

2

k

m�

sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ ) τ [â†âσs(x) + σs(x)â†â − 2âσs(x)â†]

}
, (A5)

D′
j� = −γ ′

�

2
(h̄k)

i

2
sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp(L0τ )[â†â,σs(x)]

}

+ δj�(h̄k)2
γ ′

j

2

{
〈â†â〉σs (x)[sin2(kxj ) + (u2)j cos2(kxj )] + sj (u2)j [〈â + â†〉σs (x) cos(kxj ) + sj ]

}
, (A6)

η′
j� = γ ′

�

2

−ih̄k

2m�

sin(2kx�)Tr

{
F̂j

∫ ∞

0
dτ exp (L0τ ) τ [â†â,σs(x)]

}
. (A7)
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APPENDIX B: FOKKER-PLANCK EQUATION FOR LARGE PHOTON NUMBERS

For the Fokker-Planck equation (39), the SDE take the form [19]

dxj = pj

mj

dt, (B1)

dpj = −h̄∇j [Uj |α|2 cos2(kxj ) + sjUj cos(kxj )(2αr ) − (2αi)�jsj cos(kxj )]dt + dPj , (B2)

dαr =
⎡
⎣−�′

cαi − κ ′αr −
∑

j

�j sj cos(kxj )

⎤
⎦ dt + dAr, (B3)

dαi =
⎡
⎣�′

cαr − κ ′αi −
∑

j

sjUj cos(kxj )

⎤
⎦ dt + dAi, (B4)

where the noise terms dPj , dAr , and dAi are simulated by means of Wiener processes,⎛
⎜⎜⎜⎜⎜⎝

dAr

dAi

dP1

· · ·
dPN

⎞
⎟⎟⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎜⎜⎝

dW1

dW2

dW3

· · ·
dWN+2

⎞
⎟⎟⎟⎟⎟⎠ , (B5)

where BBT = D′. The diffusion matrix now reads (39)

D′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 −b1αi −b2αi · · · −bNαi

0 a b1αr b2αr · · · bNαr

−b1αi b1αr c1 0 · · · 0

−b2αi b2αr 0 c2
. . .

...
...

...
...

. . .
. . . 0

−bNαi bNαr 0 · · · 0 cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a = κ ′/2, bj = −(h̄k/2)�j sin(2kxj ), and

cj = 2(h̄k)2�j {|α|2[sin2(kx) + (u2)j cos2(kxj )] + sj (u2)j [2αr cos(kxj ) + sj ]}.
When we integrate these stochastic differential equations, we assume that the initial state of the cavity field is a coherent state
with 〈αr〉 = 5 and 〈αi〉 = 0. This ensures the validity of the semiclassical description for the cavity field at t = 0, which has to
be verified for all later times.
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Abstract:

Atoms can spontaneously form spatially ordered structures in optical resonators

when they are transversally driven by lasers. This occurs when the laser intensity

exceeds a threshold value and results from the mechanical forces on the atoms

associated with superradiant scattering into the cavity mode. We treat the atomic

motion semiclassically and show that, while the onset of spatial ordering depends

on the intracavity-photon number, the stationary momentum distribution is a

Gaussian function whose width is determined by the rate of photon losses. Above
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threshold, the dynamics is characterized by two time scales: after a violent relax-

ation, the system slowly reaches the stationary state over time scales exceeding the

cavity lifetime by several orders of magnitude. In this transient regime the atomic

momenta form non-Gaussian metastable distributions, which emerge from the

interplay between the long-range dispersive and dissipative mechanical forces of

light. We argue that the dynamics of self-organization of atoms in cavities o�ers a

test bed for studying the statistical mechanics of long-range interacting systems.



Prethermalization of Atoms Due to Photon-Mediated Long-Range Interactions

Stefan Schütz and Giovanna Morigi
Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

(Received 29 July 2014; published 14 November 2014)

Atoms can spontaneously form spatially ordered structures in optical resonators when they are
transversally driven by lasers. This occurs when the laser intensity exceeds a threshold value and results
from the mechanical forces on the atoms associated with superradiant scattering into the cavity mode. We
treat the atomic motion semiclassically and show that, while the onset of spatial ordering depends on the
intracavity-photon number, the stationary momentum distribution is a Gaussian function whose width is
determined by the rate of photon losses. Above threshold, the dynamics is characterized by two time scales:
after a violent relaxation, the system slowly reaches the stationary state over time scales exceeding the
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Long-range interactions characterize the dynamics of
systems from microscopic to macroscopic scales, ranging
from nuclear to astrophysical distances [1]. In these systems
the individual components can interact with a long-range
potential that decays with the interparticle distance r slower
than r−d in d dimensions. This property leads, to mention
some, to ensemble inequivalence and to the existence of
quasistationary states, i.e., metastable states with nonthermal
distributions [1].
Cold atoms driven by laser light constitute a promising

laboratory realization of long-range interacting systems
[2–5]. Here, multiple scattering of photons by atoms gives
rise tomechanical forces that are infinitely long rangedwhen
the atoms couple to a single-mode high-finesse cavity [6]. In
the overdamped regime this long-ranged potential lies at the
origin of synchronization [7] and collective atomic recoil
lasing [8]. When the cavity mode is a standing wave and the
atoms are transversally pumped, as in the setup sketched in
Fig. 1, spontaneous ordering in spatially periodic structures
occurs [3,9–11]. The phenomenon can be described in terms
of formation of atomic gratings that maximize coherent
scattering of laser photons into the cavity mode. These
“Bragg gratings” are stably trapped by themechanical effects
of the light they scatter, provided that the laser compensates
the cavity losses so that the number of intracavity photons is
sufficiently large. This takes place when the strength of the
laser coupling exceeds a threshold value Ωc depending,
amongst others, on the rate of photon losses and the number
of atoms N that couple with the cavity mode [12,13]. This
spatial self-organization was first predicted in Refs. [4,9] and
then reported in a series of experiments at laser-cooling
temperatures [10,14] and in the ultracold regime [11,15].
In this Letter we theoretically analyze the dynamics

leading to the formation of spatial structures and their

stationary properties in one dimension. For this purpose we
resort to a Fokker-Planck equation (FPE) derived when the
atoms are classically polarizable particles; their center-of-
mass motion is treated semiclassically, while the cavity
field is a full quantum variable [16]. This semiclassical
limit can be applied when the cavity linewidth κ (which
determines the scattering cross section) exceeds the recoil
energy ωr ¼ ℏk2=ð2mÞ, scaling the exchange of mechani-
cal energy between an atom of mass m and a photon of
wave number k. Our approach complements the one
applied in Refs. [9,12,13,17], based on the assumption
that the cavity field is a semiclassical variable. By treating
the cavity field quantum mechanically, we determine its
state for any value of the laser amplitude and, in particular,
at threshold, where quantum fluctuations are important.
This information is extracted provided that retardation

FIG. 1 (color online). Atoms in a standing-wave cavity and
driven by a transverse laser can spontaneously form ordered
patterns when the laser intensity Ω exceeds the rate of photon
losses, here due to cavity decay at rate κ. In this regime the atoms
experience a long-range interaction mediated by the cavity
photons and their motion becomes strongly correlated.
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effects in the scattering processes are perturbations, such
that at leading order the field is determined by the
instantaneous atomic distribution [18]. Thus, for N iden-
tical atoms confined in one dimension along the cavity axis,
the total scattering amplitude depends on their positions
x1;…; xN within the cavity standing wave cosðkxÞ and the
cavity electric field at time t is EcðtÞ ∝

ffiffiffiffiffiffiffi

Nn̄
p hΘit. Here, n̄

is the maximum intracavity-photon number per atom, and
is thus controlled by the strength of the external laser pump
[19], while the order parameter

Θ ¼
X

N

j¼1

cosðkxjÞ=N

characterizes spatial ordering in the cavity [12]. The field
reaches its maximum when jΘj ¼ 1, namely, when the
atoms form a Bragg grating. The corrections to Ec due to
the atomic motion are systematically included in the
following as perturbation, assuming that the Doppler shifts
of the atoms are smaller than the cavity linewidth κ [16].
The averages h·it are taken over the normalized distri-

bution fðx1; p1;…; xN; pN ; tÞ at time t, where p1;…; pN
are the atomic momenta and f obeys the FPE [16]

∂tf þ ff;Hg

≃ −n̄Γ
X

i

sinðkxiÞ∂pi

1

N

X

j

sinðkxjÞ
�

pj þ
m
β
∂pj

�

f:

ð1Þ

Here, the left-hand side (LHS) contains the Poisson
brackets with the Hamiltonian H governing the coherent
dynamics, that originate from the conservative mechanical
forces of light. The right-hand side (RHS) contains the
friction coefficient due to retardation and the diffusion,
due to fluctuations of the cavity field because of photon
losses [20]: These terms are scaled by n̄ and by the rate
Γ ¼ 8ωrκΔc=ðΔ2

c þ κ2Þ, with Δc ¼ ωL − ωc the detuning
between laser and cavity-mode frequencies, such that n̄Γ is
the maximum damping rate of a single atom (N ¼ 1). In
addition, ℏβ ¼ −4Δc=ðΔ2

c þ κ2Þ. The Hamiltonian

H ¼
X

j

p2
j

2m
þ ℏΔcn̄NΘ2 þOðUÞ ð2Þ

contains the cavity-mediated potential, which scales with n̄
and is attractive when Δc is negative. Hence, this detuning
determines whether the formation of Bragg gratings is
energetically favored. Equation (2) summarizes in a com-
pact way a property that was observed in several previous
works [9,10,12]. It is reported at leading order in jNU=Δcj,
where U is the dynamical Stark shift due to the coupling
with the cavity field [19], and whose effect is systematically
included in the numerical simulations.

Remarkably, at leading order in jNU=Δcj, Eq. (2) allows
one to draw a direct connection with the Hamiltonian Mean
Field (HMF)model, theworkhorse of the statisticalmechan-
ics of systems with long-range interaction, which in a
canonical ensemble exhibits a second-order phase transition
from a paramagnetic to a ferromagnetic phase controlled by
the temperature [1]. This analogy becomes explicit, writing
Θ2¼P

i;jfcos½kðxiþxjÞ�þ cos½kðxi−xjÞ�g=ð2N2Þ, which
shows thatH is extensive as it satisfies the Kac prescription
[1], and suggests to identify Θ with the x component of a
two-dimensional magnetization.
Differing from the HMF model, the term cos½kðxi þ xjÞ�

originates from the underlying cavity standing-wave
potential that breaks continuous translational invariance.
Moreover, the cavity coupling at higher order in jNU=Δcj
gives rise to deviations from the Hamiltonian dynamics due
to further terms in the LHS of Eq. (1) (see, e.g., [21]) which
are responsible for bistable behavior [22]. Retardation
effects and cavity losses, in addition, can establish long-
range correlations between the atoms, as visible by inspect-
ing the RHS. In fact, diffusion is here due to global
quenches of the cavity potential. Similarly, retardation
effects modify the cavity potential [23]. When the density
is uniform, the terms in the RHS reduce to the Langevin
terms of a FPE, which fulfills detailed balance and the
model is analogous to the Brownian mean field model [24].
However, this is valid at all times only well below the self-
organization threshold. Indeed, the stationary density is
here controlled by n̄, and thus by the laser intensity,
which scales both the strength of the long-range coherent
and incoherent forces. This becomes evident when
studying the dynamics at the asymptotics: A solution of
∂tf∞ ¼ 0 is the thermal distribution f∞ ¼ f0 expð−βHÞ
for Δc < 0, with f0 normalizing factor. The temperature is
independent of the laser intensity and its minimum
kBTmin ¼ ℏκ=2 is achieved for Δc ¼ −κ, as also found
in Refs. [12,13,25] using different approaches. In [13] the
self-organization threshold n̄c ¼ ð1þ κ2=Δ2

cÞ=4 was esti-
mated by means of a kinetic theory based on treating the
cavity field semiclassically. This value is consistent with
our results.
We first discuss the predictions of Eq. (1) at the

asymptotics. Figure 2(a) displays the stationary distribution
of the magnetization, PðΘ0Þ ¼ hδðΘ0 − ΘÞi∞, for different
values of n̄. For n̄ < n̄c, PðΘ0Þ is approximately a Gaussian
centered at zero. At threshold it broadens and becomes
increasingly localized at the values �1 as n̄ grows. The
width of this distribution is determined by the fluctuations
of the trajectories ΘðtÞ: the larger n̄ is, the more localized
are the atoms at a Bragg grating, while the probability of a
jump between gratings vanishes accordingly. Typical
trajectories ΘðtÞ at the asymptotics of the dynamics are
shown in Fig. 2(b): They are obtained by integrating the
stochastic differential equations (SDE) derived from Eq. (1)
[16]. While below threshold ΘðtÞ fluctuates about zero
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(corresponding to a uniform spatial distribution), as n̄ is
increased above threshold it takes either positive or
negative values, in which it remains trapped for time
intervals which grow with n̄. Jumps between the two
values correspond to quenches of the intracavity-photon
number following losses, as shown in (c) for n̄ ¼ 1.1n̄c,
and take place over time intervals approximately scaling
with the recoil frequency. Note that these jumps correspond
to a simultaneous jump of all atomic trajectories out of the
Bragg gratings [9,12]. For n̄ ¼ 4n̄c the residence time is
infinite: photon losses give rise to small fluctuations of the
potential depth and the atoms remain locked in a Bragg
grating. These features determine the light amplitude at the
cavity output, the jumps correspond to jumps of the field
phase and can be measured by heterodyne detection
[10,26]. Additional information is contained in the power
spectrum of the light intensity, which is the Fourier
transform SðωÞ of the correlation function gð1ÞðτÞ ¼
limt→∞hΘðτ þ tÞΘðtÞi=hjΘðtÞji2 and is displayed in
Fig. 2(d) for different values of n̄. SðωÞ exhibits a narrow
peak at the laser frequency as the threshold is approached,
and is associated with the creation of Bragg gratings
coherently scattering light into the resonator. The broad
background spectrum is progressively suppressed, corre-
sponding to a suppression of fluctuations of the order
parameter as the atoms become localized in Bragg
gratings. Moreover, at threshold two broad sidebands
appear whose maximum moves away from ω ¼ ωL as n̄
increases from n̄c. A qualitative analysis shows that the
sidebands width decreases as n̄ is increased from n̄c.
Similar features have been observed in the ultracold
[15,26,27] and have been interpreted in terms of density
waves that drive the instability. Figure 2(e) displays the
second-order correlation function of the emitted light at

zero-time delay gð2Þð0Þ as a function of n̄, where
gð2ÞðτÞ ¼ limt→∞hΘðτ þ tÞ2ΘðtÞ2i=hΘðtÞ2i2. Below thres-
hold gð2Þð0Þ → 3. This value is also found analytically after
discarding correlations between the atoms. It monotoni-
cally decreases with n̄ and reaches unity above threshold,
gð2Þð0Þ → 1, corresponding to a coherent state inside the
resonator [28]. The crossover between these two regimes
narrows as the number of atoms is increased, suggesting a
jump at n̄c in the thermodynamic limit (here consisting of
keeping n̄c constant as N → ∞ [12,21]).
These features are consistent with the conjecture that

self-organization is a second-order phase transition con-
trolled by n̄. This is also supported by the behavior of the
susceptibility χ ¼ hΘðtÞ2i − hjΘðtÞji2 as a function of n̄,
which suggests a divergence at n̄c for N → ∞. We remark
that the typical understanding of spatial domain formation
at a second-order phase transition is here meaningless
due to the nonadditivity of the energy: mesoscopic
Bragg gratings with Θ ¼ �1 cannot stably coexist in
space, since the resulting cavity field vanishes and with
it the interatomic potential.
We now turn to the dynamics leading to self-organization.

We assume that the initial distribution is spatially
uniform, while the momentum distribution is Gaussian
with 1=β ¼ ℏκ=2. For Δc ¼ −κ, at n̄ ≪ n̄c this distribution
is stationary [16]. At t ¼ 0 the transverse field is quenched
to a value corresponding to n̄ above threshold. Figure 3
displays a sample of 500 trajectories of ΘðtÞ as a function
of time when n̄ ¼ 4n̄c and N ¼ 200. The trajectories are
bunched and their behavior can be ordered into three
regimes, characterized by different time scales. First, a
fast relaxation occurs over the time scale of dozens cavity
lifetimes τc ¼ 1=κ, in which the magnetization reaches an
intermediate value of about 0.6 [Fig. 3(b)], where it remains

FIG. 2 (color online). (a) Distribution PðΘÞ of the magnetization Θ at steady state for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1, 4 (see box for color
code). (b) Typical trajectories at the asymptotics for N ¼ 200 atoms are shown in (b) as a function of time (in units of 1=κ) and for
n̄=n̄c ¼ 0.1, 1, 1.1, 4. Note that the cavity field amplitude is proportional toΘ. (c) Mean intracavity-photon number as a function of time
for the trajectory at n̄ ¼ 1.1n̄c. (d) Spectrum SðωÞ of the intensity of the emitted light (in arbitrary units) as a function of ω (in units of κ)
for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1 (from top to bottom). (e) gð2Þð0Þ as a function of n̄ for different atom numbers. The dots correspond to
numerical results obtained by integrating the SDE. The cavity parameters are rescaled with N so that n̄c is independent on N and finite
(see [21]). The atomic transition is theD2 line of 85Rb at half linewidth γ ¼ 2π × 3 MHz. The laser detuning from the atomic frequency
is Δa ¼ −500γ. Here, Δc ¼ −κ with κ ¼ 0.5γ.
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for a time scale exceeding τc by 4 orders of magnitude.
During the relaxation the spatial density is almost uniform,
therefore cross-correlations due to noise and mechanical
forces are almost negligible. After this relaxation, part of the
atoms form a Bragg grating [Fig. 3(c)] while the momentum
distribution is non-Gaussian [Fig. 3(d)]. We denote this
regime by prethermalization. Then, the magnetization
slowly grows to the stationary value over time scales which
are 6 orders of magnitude of the cavity lifetime.
Remarkably, for times of the order of t ∼ 105τc the
momentum distribution exhibits clear deviations from a
Gaussian, and, hence, from a thermal state, even though the
spatial distribution is very close to the asymptotic one. This
behavior can be understood considering that the diffusion is
a function of the spatial distribution: As visible in the RHS
of Eq. (1), the strength of noise (and thus the relaxation rate)
decreases the more the atoms are localized in the Bragg
gratings, and thus at the nodes of the sinðkxÞ function. In the
prethermalization time scale we verified that spatial diffu-
sion follows a power law according to hxðtÞ2i ∝ t2α, where
α is monotonically decreasing as n̄ increases. In particular, it
is superdiffusive (α > 1=2) below n̄c, while above n̄c it
becomes increasingly subdiffusive. In this latter case, in the
long tails of relaxation it becomes normal again, α → 1=2.
Figure 3(e) displays gð2ÞðτÞ for different values of n̄. Below
threshold it rapidly decays from 3 to unity on a time scale of
the order of cavity decay; at threshold its relaxation is orders
of magnitude slower and exhibits damped oscillations,
which can be associated with the density waves that become
unstable and determine the Bragg grating [cf. Fig. 2(d)].
Well above threshold, instead, it remains locked to unity,
corresponding to coherent light.
The prethermalization behavior, followed by the slow

rate at which the steady state is approached, is typical above
the self-organization threshold. We argue that it is a
manifestation of the long-range correlations mediated by

the cavity photons, and is analogous to observations made in
studies of nonequilibrium stochastic long-range-interacting
systems [29]. We further note that similar prethermalization
features have been observed in quantum spin models with
spatially correlated noise [30]. Differing from these latter
models, here the stationary state exhibits long-range spatial
correlations. On the other hand, we do not find signatures of
quasistationary states, whose relaxation times increase with
Nδ, with δ > 1 and whose existence is intrinsically related
to the long-range nature of the interaction [1]. We believe
this is due to the effect of the external environment,
consistently with studies showing that its action can make
these states dynamically unstable [31,32].
In this work we discarded the effect of spontaneous

decay, assuming it is negligible as the laser field is far off
resonance. Its role is expected to become more important as
n̄ is increased above threshold, and thus to enforce the
dynamical instability of quasistationary states. Our model
is also valid for any optically polarizable particles which
can be confined within the resonator [33]. It is also valid for
n̄ ≫ n̄c, when the atoms are tightly trapped in the poten-
tials, as long as the effective trap frequency ν of the
resulting lattice is smaller than the cavity linewidth [34].
The description breaks down for ν≃ κ, when quantum
mechanical coherence between the motional levels can be
observed [35,36].
In view of these results, one shall consider the self-

organization transition observed in the ultracold regime by
quenching the laser intensity [11] in terms of an intrinsi-
cally out-of-equilibrium phenomenon. Indeed, our results
predict that Hamiltonian solutions that possess the spatial
modulation of the Bragg gratings will experience very
small noise, even if they do not correspond with the
stationary state. This raises the need to develop a kinetic
theory for these systems as in Ref. [29]. Preliminary studies
in this direction have appeared in [13,25,37,38]. To

FIG. 3 (color online). Dynamics of the order parameter above threshold: (a)Θ as a function of time (in units of κ−1) forN ¼ 200 atoms
and 500 trajectories at n̄ ¼ 4n̄c and Δc ¼ −κ, for an initially spatially uniform distribution at temperature kBT ¼ ℏκ=2. PðΘÞ at the
transient and at the asymptotics is shown in panel (b). The position (c) and momentum (d) distributions are displayed at the times
indicated by (1), (2), and (3) in panel (a). The dashed lines correspond to the initial distributions [which overlaps to (1) in (c)].
(e) Intensity-intensity correlations of the light at the cavity output, gð2ÞðτÞ as a function of τ (in units of κ−1) for n̄=n̄c ¼ 0.1, 0.9, 1, 1.1, 4,
(same color code as in Fig. 2) evaluated after the system has reached the stationary state.
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conclude, our study shows that photonic systems offer
a promising platform to study the statistical mechanics
of long-range interacting systems, thus gaining insight
into the dynamical properties of non-neutral plasmas and
self-gravitating clusters [1].
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of the spatial density between two ordered patterns: We characterize the statistical properties of this temporal
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the light at the cavity output. The results of our analysis are in full agreement with previous studies; we extend
them by deriving a self-consistent theory which is valid also when the cavity field is in the shot-noise limit and
elucidate the nature of the self-organization transition.

DOI: 10.1103/PhysRevA.92.063808 PACS number(s): 37.30.+i, 42.65.Sf, 05.65.+b, 05.70.Ln

I. INTRODUCTION

There is ample experimental evidence that electromagnetic
fields can cool matter to ultralow temperatures [1–3]. This
is achieved by tailoring scattering processes, so that the
frequency of the emitted photon is, on average, larger than that
of the absorbed one, the energy balance being warranted by
the mechanical energy which is exchanged between matter and
light [4,5]. When atoms or molecules interact with high-finesse
optical resonators, these processes can be tailored using the
strong coupling with the cavity field [6–13].

A peculiar aspect of light-matter interaction inside optical
cavities consists of the long-range interactions between the
atoms, which are mediated by multiple scattering of photons
[14,15]. The onset of this behavior is observed when the system
is driven by external pumps, whose strength overcomes the loss
rate. Some prominent examples are optomechanical bistability
[16,17], synchronization [18], and spontaneous spatial order-
ing [12,19–23]. Among several setups, spontaneous pattern
formation in standing-wave and single-mode cavities has been
the object of several theoretical and experimental studies [12].
This phenomenon occurs when the atoms are confined within
the resonator and are transversally driven by a laser and
consists of the formation of atomic gratings that maximize
coherent scattering of laser photons into the cavity mode,
as sketched in Figs. 1(a) and 1(b). These “Bragg gratings”
are stably trapped by the mechanical effects of the light
they scatter, provided that the laser compensates the cavity
losses so that the number of intracavity photons is sufficiently
large. It takes place when the laser intensity, pumping the
atoms, exceeds a threshold value depending on, among other
things, the rate of photon losses and the number of atoms
[12,21]. This behavior was first predicted in Ref. [21] and
experimentally demonstrated in several settings, which differ
majorly from the initial temperature of the atomic ensemble:
In Refs. [22,24] the atoms were cooled by the mechanical

effects of the photons scattered into the resonator, while
in Refs. [23,25] the atoms initially formed a Bose-Einstein
condensate, and the mechanical effects of light were giving
rise to conservative forces. As a consequence, matter-wave
coherence was preserved during the experiment. In this regime,
the transition to self-organization can be cast in terms of the
Dicke phase transition [26].

In this work we theoretically analyze the dynamics leading
to the formation of spatial structures and their properties at the
asymptotics. Our analysis is based on a semiclassical treatment
and specifically on a Fokker-Planck equation (FPE) derived
when the atoms are classically polarizable particles and their
center-of-mass motion is along one dimension [27]. The cavity
field, instead, is a full quantum variable, which makes our
treatment valid also in the shot-noise limit [27] and describes
parameter regimes that are complementary to those of the
model in Ref. [28], where the field is a semiclassical variable.
Our formalism permits us, in particular, to consistently
eliminate the cavity variables from the equations of motion
of the atoms, and to analyze the properties of the cavity field
across the self-organization threshold, where the intracavity
field is characterized by large fluctuations.

This work extends and complements the study presented
in Ref. [29]. In particular, we perform a detailed analysis of
the stationary state and obtain an analytic expression, which
allows us to determine the phase diagram of the transition
as a function of the relevant parameters. Drawing from this
result, in addition, we show that the onset of self-organization
in spatially ordered patterns is a second-order phase transition,
associated with a symmetry breaking in the phase of the
intracavity field. This allows us to verify conjectures on the
nature of the self-organization transition, previously discussed
in Refs. [30–32]. We further analyze in detail the effects of the
nature of the long-range interactions mediated by the photons
and report on several features which are analogously found
in the Hamiltonian Mean Field (HMF) model, the workhorse
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SCHÜTZ, JÄGER, AND MORIGI PHYSICAL REVIEW A 92, 063808 (2015)

FIG. 1. (Color online) (a) Atoms in a standing-wave cavity and driven by a transverse laser can spontaneously form ordered patterns (b)
when the laser intensity � exceeds a threshold value �c, which depends on the rate of photon losses, here due to cavity decay at rate κ . In this
regime the atoms experience a long-range interaction mediated by the cavity photons and their motion becomes strongly correlated. (c) Spatial
ordering of atoms is described by the parameter �, which characterizes the localization of the atoms within the standing-wave mode of the
cavity and is proportional to the cavity field. This parameter undergoes a bifurcation at � = �c, corresponding to two different stable patterns.
The values it takes are the minima of an effective Landau potential, displayed in (d) for some values of �, demonstrating that self-organization
is a second-order phase transition. See text for details.

of the statistical physics with long-range interactions [33].
This article is the first of a series of works devoted to the
semiclassical theory of self-organization.

In the present work we analyze the thermodynamics of
self-organization and the dynamics at the asymptotics, while
in following articles we investigate the dynamics following
sudden quenches across the phase transition [34] and compare
our analysis with a mean-field model that discards some
relevant effects of the long-range correlations [35]. This paper
is organized as follows. In Sec. II the FPE at the basis of our
analysis is reported and discussed. In Sec. III the stationary
properties of the distribution function are characterized both
analytically and numerically. In Sec. IV the correlation
functions of the light at the cavity output are determined. The
conclusions are drawn in Sec. V, while the Appendixes report
details of analytical calculations and of the numerical program
that is used to simulate the FPE.

II. MODEL

The dynamics of N atoms or molecules of mass m inside
a single-mode standing-wave cavity is analyzed when the
particles are transversally illuminated by a laser field, as
illustrated in Fig. 1(a). Laser and cavity couple to a dipole
transition of the scatterers and are assumed to be sufficiently
far-off resonance so that the coupling with the internal degrees
of freedom is described by the particles polarizability. From
now on we assume that the particles are atoms, but the
treatment in this paper can be extended to any ensemble of

linearly polarizable particle that can be confined within the
optical resonator [36].

In this regime the atoms scatter all coherently and the cavity
field Ec is the sum of the fields that each atom scatters. We
assume that the atoms’ center-of-mass motion is confined
along the cavity axis, which coincides with the x axis (we
disregard their motion in the transverse plane), and that the
atoms are uniformly illuminated by the laser field. Denoting
the atomic position by xj and the cavity-mode function by
cos(kx), with k the wave number, then Ec ∝ N�, where

� = 1

N

∑
j

cos(kxj ) (1)

measures the ordering of the atoms within the cavity standing
wave. For N � 1, when the atoms are uniformly distributed,
� ∼ 0 and the field within the cavity vanishes. The intra-
cavity intensity is maximal when the positions are such that
cos(kxj ) = 1 (even pattern) or cos(kxj ) = −1 (odd pattern),
namely, when the atoms form Bragg gratings; see Fig. 1(b).
These gratings are the two possible stable configurations the
atoms can form when the laser pump is above threshold, as
shown in Fig. 1(c).

The formation and stability of the Bragg gratings is
determined by the mechanical effects of photon scattering
on the atoms. In this section we report the basic equations
describing the dynamics of the coupled systems, as well as the
assumptions that lead to a FPE governing the semiclassical
trajectories of N atoms inside the single-mode resonator [27].
The FPE is derived under the assumption that the atomic
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motion is at all times in the semiclassical regime, while the
cavity field adjusts quasi-instantaneously to the atomic density
distribution. In this limit, using a perturbative treatment, the
cavity field can be eliminated by the equations of motion of the
atoms’ external degrees of freedom [37]. Readers interested in
the detailed derivation of the FPE from the full quantum master
equation of atoms and cavity are referred to Refs. [27,37]. An
alternative FPE, where fluctuations of the intracavity field are
treated semiclassically but no time-scale separation between
atoms and cavity dynamics is assumed, is derived in Ref. [28].

A. The cavity field

In our treatment the cavity field is a quantum variable. We
report its equation of motion in the limit in which the atoms
constitute a nonsaturated medium and their internal atomic
transitions are described by the polarizability. Our starting
point is the Heisenberg-Langevin equation for operator â(t),
which annihilates a cavity photon at frequency ωc and wave
number k. The equation is reported in the reference frame
rotating at the laser frequency ωL and reads [38]

∂

∂t
â(t) = −{κ − i[�c − NU B̂(t)]}â(t) − iNS�̂(t) + ξ̂ (t),

(2)

where �c = ωL − ωc is the detuning of the laser from the
cavity frequency, ξ̂ (t) is the Langevin force with 〈ξ̂ (t ′)ξ̂ †(t)〉 =
2κδ(t − t ′), and κ is the cavity decay rate. The cavity field is
a function of the two operators B̂(t) and �̂(t), which, in turn,
are functions of the atomic positions x̂j at time t . In detail,
U is a frequency, U = g2/�a , where g is the vacuum Rabi
frequency at the antinodes of the cavity mode, �a = ωL − ωa

is the detuning of the laser frequency from the atomic transition
resonance ωa , and operator B̂ is defined as

B̂ = 1

N

∑
j

cos2(kx̂j ) (3)

and takes on values between 0 and 1. Its expectation value
B = 〈B̂〉 is the so-called bunching parameter [12]. Operator
�̂(t) is the quantum variable corresponding to the order
parameter in Eq. (1). In Eq. (2) it is scaled by the frequency
S = �g/�a , which is proportional to the laser Rabi frequency
� and corresponds to the scattering amplitude of a laser
photon into the cavity mode by an atom at an antinode, with
S/U = �/g. Equation (2) shows that the pump on the cavity
is maximum when 〈�̂〉 = ±1, corresponding to the situation
in which the atoms form Bragg gratings. Self-organization
occurs when these gratings are mechanically stable, namely,
when the mechanical effects of the scattered light stabilize the
atoms in ordered structures, which, in turn, generate the field.
In order to determine these dynamics one would need to solve
the coupled equations of cavity and atomic motion.

We can further simplify the problem by considering the
regime in which the time scale over which the atomic motion
evolves is much larger than the time scale determining the
evolution of the cavity field. This is typically fulfilled when
kp̄/m � |κ + i�c|, where p̄ =

√
〈p̂2〉 is the variance of the

atomic momentum (the mean value vanishes), under the
condition that the coupling between cavity and atomic motion

is sufficiently weak. This latter condition requires that [39]

√
ωr

√
N |S| � |�c + iκ|3/2, (4)

where ωr = �k2/(2m) is the recoil frequency, scaling the
exchange of mechanical energy between photons and atoms.
At zero order in this expansion the cavity field operator
depends on the instantaneous density and reads

âad(t) = NS�̂(t)

�̂′
c(t) + iκ

, (5)

where the subscript indicates the adiabatic limit and we omitted
to report the noise term. Operator �̂′

c is defined as

�̂′
c = �c − UN B̂. (6)

Its mean value vanishes for certain density distributions,
giving rise to resonances. For |NU | > κ small changes of
�c about the resonance can induce large variations of the
field, resulting in the appearance of optomechanical bistable
behavior [16,17,40]. In this paper we focus on the regime in
which |NU | � κ , and treat this as a small parameter on the
same footing as the retardation term. In this limit, the field,
including the diabatic corrections, reads

â(t) = NS�̂(t)

�c + iκ

[
1 + NU

�c + iκ
B̂(t)

]
+ âret(t), (7)

where

âret(t) = iNS

(i�c − κ)2
˙̂� (8)

accounts for retardation effects and depends on the time
derivative of operator �̂, Eq. (1). The derivative, in particular,
takes the form

˙̂� = − 1

2N

∑
j

{
sin[kx̂j (t)]

kp̂j (t)

m
+ kp̂j (t)

m
sin[kx̂j (t)]

}

and shows that the diabatic correction scales with
(kp̄/m)/|κ + i�c|. When this parameter is small, then one
can perform a coarse graining for the atomic motion, over
which the cavity field fast relaxes.

It is also useful to discuss the mean number of photons
inside the resonator. In the adiabatic limit it is given by

〈n̂〉t,ad = Nn̄〈�̂2〉t , (9)

which is valid in zero order in the delay time. For later
convenience, we introduced the dimensionless quantity

n̄ = NS2

�2
c + κ2

, (10)

such that Nn̄ gives the maximum intracavity photon number,
corresponding to the value 〈�2〉t = 1, namely, when the atoms
form a perfectly ordered Bragg grating. The average photon
number can be different from zero also when the field inside
the resonator has vanishing mean expectation value, since in
this case it is proportional to the fluctuations of the order
parameter.
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B. Fokker-Planck equation for N atoms

An equation for the motion of the N atoms within the
resonator is derived under the assumption that at all times
the atomic momentum distribution has width �p = p̄, which
is much larger than the quantum of linear momentum �k

that the atom exchanges with the individual photons (but
sufficiently small so that the atoms are within the velocity
capture range [11]). This assumption is valid for cavities whose
decay rate κ exceeds the recoil frequency ωr : ωr � κ . In fact,
we show that κ determines the minimum stationary width
of the momentum distribution. This regime is encountered in
several existing experiments [17,22,24]. We note that, with this
assumption, the requirement of time-scale separation between
cavity and motion is fulfilled, since the inequality kp̄/m � κ

is consistent with ωr � κ after using p̄2/2m = �κ/2.
Reference [27] reports the detailed steps that lead to the

derivation of a FPE for the distribution f (x, p,t) of the N

atoms positions and momenta x = (x1,x2, . . . ,xN ) and p =
(p1,p2, . . . ,pN ). The FPE can be cast in the form

∂f

∂t
= −

∑
i

pi

m

∂

∂xi

f + S2Lf, (11)

where f ≡ f (x, p,t). The right-hand side (RHS) separates the
ballistic motion from the term proportional to the scattering
rate S and describes the dynamics due to the mechanical effects
of light. This latter term specifically reads

Lf = −
∑

i

∂

∂pi

F0(x) sin(kxi)f

−
∑
i,j

∂

∂pi


0(x) sin(kxi) sin(kxj )pjf

+
∑
i,j

∂2

∂pi∂xj

η0(x) sin(kxi) sin(kxj )f

+
∑
i,j

∂2

∂pi∂pj

D0(x) sin(kxi) sin(kxj )f

+ γ ′

2

∑
i

∂2

∂p2
i

Dsp(xi)f. (12)

Here the first term on the RHS describes the dispersive force
associated with scattering of laser photons into the resonator,
where

F0(x) = (�k)
2�′

c

�′2
c + κ2

(1 + δF )N�. (13)

Its amplitude is proportional to the order parameter � [Eq. (1)],
which is the Wigner representation of operator �̂ [27]. Its
sign is also determined by the frequency shift of the cavity
frequency �′

c(x) from the laser, which takes the same form
as in Eq. (6), now with the corresponding Wigner form
for operator B̂. Coefficient δF is a small correction for the
parameter regime we consider; its general form is given
in Appendix A. The same applies for the coefficients δj

(j = 
,η,D) appearing in the other terms we specify below.
The second term on the RHS of Eq. (12) describes the

damping force due to retardation between the scattered field

and the atomic motion. It depends on the atomic momentum
and is scaled by the function


0(x) = ωr

8�′
cκ(

�′2
c + κ2

)2 (1 + δ
). (14)

The third summand is due to the anharmonicity of the cavity
optical lattice. The function scaling this term has the form

η0(x) = 2�ωr

(−�′2
c + κ2

)
(
�′2

c + κ2
)2 (1 + δη) (15)

and vanishes when �′
c = ±κ .

The last two terms describe diffusion. In particular, the one
scaled by the function

D0(x) = (�k)2 κ

�′2
c + κ2

(1 + δD) (16)

corresponds to the diffusion associated with global fluctua-
tions of the cavity field and is characterized by long-range
correlations, while the term with coefficient Dsp(xi) is instead
due to spontaneous emission of a photon outside the resonator
with γ ′ = γg2/�2

a , where γ is the decay rate of the excited
state. It is the sole term which acts locally, and the dynamics it
implies does not establish correlations between the atoms. Its
explicit form is reported in Appendix A.

C. Dynamics away from the bistable regime

Equation (11) describes the coherent and dissipative dy-
namics associated with the mechanical effects of light on the
atomic motion. In this work we assume that γ ′ is much smaller
than the other rates and discard the effect of spontaneous decay
in the dynamics, so that losses are due to cavity decay. As far as
it concerns the terms due to the cavity, we note their nonlinear
dependence on the bunching parameter, which appears in
the denominator of all coefficients and gives rise to bistable
behavior. Here we focus on the regime in which |NU | � κ .
In this regime the dispersive forces due to the mechanical
effects of light in leading order are due to scattering of laser
photons into the cavity. In this limit, we choose detunings
|�c| ∼ κ so that the motion is efficiently cooled, as we show
below. Correspondingly, the coefficients of the functional in
Eq. (12) are modified so that �′

c � �c and the functions
δF ,δη,δ
,δD ≈ 0. More precisely, we perform an expansion
in first order in N |U |/κ . In this limit, the FPE, Eq. (11), can
be cast in the form

∂tf + {f,H } + n̄
NU

�c

L1f

= −n̄

∑

i

sin(kxi)∂pi

1

N

×
∑

j

sin(kxj )

(
pj + m

β
∂pj

+ η̄

β
∂xj

)
f, (17)

where all terms due to the coupling with the light scale with n̄,
given in Eq. (10). In detail, the left-hand side (LHS) collects
the Hamiltonian terms, expressed in terms of Poisson brackets
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with Hamiltonian

H =
∑

j

p2
j

2m
+ ��cn̄N�2, (18)

as well as the terms scaling with U , summarized in the
functional L1, whose detailed form is given in Appendix A.
The RHS reports terms of different origin, which can be
classified as damping, diffusion, and a third term which scales
cross derivatives in position and momentum. In the order of
this list, they are scaled by the coefficients


 = 8ωrκ�c/
(
�2

c + κ2
)
, (19)

β = −4�c/�/
(
�2

c + κ2
)
, (20)

η̄ = κ2 − �2
c

κ
(
�2

c + κ2
) . (21)

We remark that the term in the FPE scaled by parameter η̄ was
already found in the derivation of Ref. [37]. While its effect is
to date not well understood, we checked that for the parameters
we consider it gives rise to small corrections in the quantities
we evaluate. In the mean-field treatment it can be cast in terms
of a correction of the effective mean-field potential the atoms
experience. In that limit it induces a shift to the critical value
of the pump strength at the self-organization transition [35].

D. Long-range correlations

Let us now make some preliminary remarks on the FPE
discussed this far. We first focus on the Hamiltonian term,
Eq. (18). In addition to the kinetic energy this contains
the cavity-mediated potential, which has been obtained in
zero order in the retardation time. Its sign is determined by
the sign of the detuning �c: When �c < 0, the formation
of Bragg gratings, which maximizes the value of |�|, is
energetically favored. Thus, Eq. (18) summarizes in a compact
way a property which was observed in several previous works
[21,22,29,30].

We note that the Hamiltonian in Eq. (18) exhibits several
analogies with the HMF model [33], whose Hamiltonian reads

HMF =
∑

j

p2
j

2m
+ J

2N

∑
i =j

[1 − cos(θi − θj )], (22)

where θi are angle variables that in our case would correspond
to θi = kxi . The analogy becomes explicit in Eq. (18) by using

�2 =
∑
i,j

{cos[k(xi + xj )] + cos[k(xi − xj )]}/(2N2).

Like Hamiltonian HMF, also Hamiltonian H is extensive as
it satisfies the Kac prescription [33] for the thermodynamic
limit we choose, which keeps n̄ fixed for N → ∞ (see the
next section). In a canonical ensemble, for J > 0 the HMF
exhibits a second-order phase transition from a paramagnetic
to a ferromagnetic phase controlled by the temperature, where
the order parameter is the magnetization M = (Mx,My), with
Mx = ∑

j cos θj /N and My = ∑
j sin θj /N . This suggests

that � identifies with the x component of a two-dimensional
magnetization and creates an expectation of a transition to

order for negative values of the detunings, �c < 0, for which
a nonvanishing interaction potential term tends to minimize
the energy (we mention that the dynamics for �c > 0 has
been recently studied in Ref. [41]).

Differing from the HMF model, the term cos[k(xi + xj )] in
�2 originates from the underlying cavity standing-wave poten-
tial that breaks continuous translational invariance. Moreover,
the cavity coupling at higher order in |NU/�c| gives rise to
deviations from the Hamiltonian dynamics due to further terms
in the LHS of Eq. (17), which for larger values are responsible
for bistable behavior [40] and only in certain limits can be cast
in the form of conservative forces.

We further highlight that long-range correlations can also
be established by the terms on the RHS of the FPE in Eq. (17),
which are usually associated with incoherent processes. In fact,
retardation effects in the scattering of one atom modify the
intracavity potential which traps the whole atomic ensemble.
Photon losses, in addition, give rise to sudden quenches of the
global potential [11,42]. When the density is uniform, the terms
in the RHS can be reduced to a form [27] which is analogous to
the Brownian Mean Field model [43]. However, this mapping
applies only when the system is deep in the paramagnetic
phase. When the atoms form a Bragg grating, instead, damping
and diffusion become smaller, the atoms being localized at the
points where sin(kxj ) ∼ 0. Moreover, when several atoms are
trapped in a Bragg grating, also damping and diffusion of
atoms which are away from the nodes become smaller. These
properties share some analogies with models constructed to
simulate correlated damping [44] and suggest that incoherent
dynamics can endorse coherent effects for transient but long
times [29,34].

III. PROPERTIES AT EQUILIBRIUM

We now discuss the existence and the form of the stationary
state, namely, of the solution of Eq. (17) satisfying

∂tfS = 0.

It is simple to verify that the function of the form

fS = f0 exp(−βH ) (23)

is a stationary solution in zero order in the parameter
UN/κ and η̄, where f0 warrants normalization. Equation
(23) describes a thermal state whose temperature T is solely
controlled by the detuning �c:

kBT = 1/β = �
(
�2

c + κ2
)

−4�c

. (24)

We mention that this result has been reported in Ref. [29] and
was also found in Refs. [30,31,45] using different theoretical
approaches.

In this section, starting from Eq. (23) we analyze the
properties of the system at steady state. We show that Eq. (23)
makes it possible to identify the transition to self-organization
and the corresponding critical value at which it occurs. By
deriving the single-particle free energy in an appropriate
thermodynamic limit, we demonstrate that the transition to
self-organization is a second-order phase transition, whose
order parameter is �. We point out that the treatment here
presented applies concepts of equilibrium thermodynamics
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and is strictly valid at the steady state, because it is a thermal
distribution.

This section contains analytical results, extracted from
Eq. (23), and data of numerical simulations, obtained by
integrating the stochastic differential equations (SDEs) which
simulate the dynamics of Eq. (17). These equations have been
reported in Ref. [27] and for completeness are also detailed
in Appendix B . A single trajectory for N atoms corresponds
to integrating the set of coupled equations (B1) and (B2) for
the variables {x�(t); p�(t)} with � = 1, . . . ,N and for a given
initial condition. From this calculation, for instance, we find

�(t) =
N∑

�=1

cos[kx�(t)]/N.

The mean values are numerically computed by taking the
average over n such trajectories, which statistically satisfy
the initial conditions, and deliver quantities such as 〈�2〉t =∑n

i=1 �i(t)2/n, where i now labels the trajectory, i = 1, . . . ,n.
In the simulations we assume an ensemble of 85Rb

atoms with transition wavelength λ = 780 nm (D2 line).
This gives the recoil frequency ωr = 2π × 3.86 kHz. The
transition linewidth is γ = 2π × 6 MHz and the linewidth
of the resonator is κ = 2π × 1.5 MHz. These parameters
correspond to the ones of the experiment of Ref. [23]; they
warrant the validity of our semiclassical treatment based on a
time-scale separation.

A. Self-organization as second-order phase transition

In order to characterize the thermodynamic properties of the
self-organization transition, we first determine the free energy
per particle. Our starting point is the definition of the free
energy F = −kBT lnZ , where Z is the partition function,

Z = 1

�N

∫
x
dx

∫
p
d p exp(−βH ), (25)

and � is the unit phase space volume. For convenience,
we have introduced the notation

∫
x dx ≡ ∫ λ

0 dx1 · · · ∫ λ

0 dxN

and
∫

p d p ≡ ∫ ∞
−∞ dp1 · · · ∫ ∞

−∞ dpN . After integrating out the
momentum variables, Eq. (25) can be cast in the form

Z = (Z0λ/�)N
∫ 1

−1
d�Ω(�) exp(−Nβ�n̄�c�

2). (26)

Here Z0 = (2πm/β)1/2 is a constant which depends on the
temperature. The functional Ω(�) is the density of states at a
given magnetization � and is defined as

Ω(�) =
∫

x

dx
λN

δ

[
� − 1

N

N∑
i=1

cos(kxi)

]
. (27)

For identifying the transition to order, we consider N � 1.
This requires an adequate thermodynamic limit. We choose
a thermodynamic limit for which the amplitude n̄ [Eq. (10)]
remains constant as N increases and warrants that Hamiltonian
in Eq. (18) is extensive. In detail, it corresponds to scale the
vacuum Rabi frequency as g ∼ 1/

√
N , which is physically

equivalent to scale up the cavity mode volume V linearly
with N , being the vacuum Rabi frequency g ∝ 1/

√
V . It

follows that the scattering rates characterizing the dynamics

scale as S ∼ 1/
√

N and U ∼ 1/N as N → ∞ (moreover,
S2η0 ∼ 1/N , but this contribution is here neglected). Such
scaling has been applied in a series of theoretical works
[30,38,40].

With this definition in mind, we determine an explicit form
of the free energy as a function of � by using the method of
the steepest descent. We identify the fixed point �∗, which is
given by the equation

�∗ = I1(y�∗)

I0(y�∗)
, (28)

with y = 2n̄/n̄c and n̄c > 0, while I1 and I0 are modified
Bessel functions of the first kind [46] (the details of the
calculations are reported in Appendix C). Depending on y,
and thus on n̄, Eq. (28) allows for either one or three solutions,
where the two regimes are separated by the value n̄ = n̄c, with

n̄c = κ2 + �2
c

4�2
c

. (29)

Using this result, the free energy per particle in the thermody-
namic limit takes the form

F(�) ≈ F0 + 1

β

[(
1 − n̄

n̄c

)
�2 + 1

4
�4

]
, (30)

with F0 = −kBT ln(Z0λ/�). Equation (30) has the form of
the Landau free energy [47], and shows that the transition to
self-organization is continuous and of second order. Its form
close to threshold for different values of the pump strength,
and thus of n̄, is sketched in Fig. 1(d), where (�/�c)2 = n̄/n̄c.
For n̄ < n̄c, thus, the order parameter vanishes: The atoms
are uniformly distributed in space and one can denote this
phase as paramagnetic invoking the analogy between �

and a magnetization. For n̄ > n̄c, on the contrary, the order
parameter takes a value different from zero, as shown in
Fig. 1(c). By setting the first derivative of the free energy
[Eq. (30)] to zero we also find an analytic expression for
the order parameter above but close to the threshold: � =
±√

2(n̄/n̄c − 1).
We remark that in Ref. [30] it was conjectured that

self-organization in a standing-wave cavity is a second-order
phase transition. In this section we have demonstrated that
this conjecture is correct by performing an explicit mapping
of the free energy into the form of a Landau model [47].
Our theoretical model demonstrates that the steady-state
distribution is thermal; it further naturally delivers the steady-
state temperature and the value of the critical pump strength,
here cast in terms of the quantity n̄c. We observe that the critical
value n̄c is in agreement with the value determined in Ref. [30]
by means of a mean-field model based on a phenomenological
derivation. [This is visible after considering the definition in
Eq. (10), which gives the critical pump strength value �c after
using Sc = g�c/�a as a function of the critical value n̄c of
Eq. (29).] In Ref. [31] the self-organization threshold was
estimated by means of a kinetic theory based on treating the
cavity field semiclassically, finding a value consistent with our
result.

We remark that the typical concept in second-order phase
transition of spatial domains, whose average size increases
with a power-law behavior as the critical value is approached,
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FIG. 2. (Color online) (a) Order parameter |�| and (b) steady-
state temperature as a function of n̄ and �c (in units of κ). The red
line denotes the value n̄c as a function of �c, as reported in Eq. (29).

becomes now invalid: Their energetic cost scales with the
system size due to the long-range cavity-mediated potential.
This is simply understood as two domains with 〈�〉 = +1
and 〈�〉 = −1 generate fields which interfere destructively,
resulting in a vanishing intracavity photon number. This
example illustrates the nonadditivity of long-range interacting
systems. We now analyze more in detail the behavior of the
magnetization.

B. Phase diagram

The magnetization of our model [Eq. (1)] is intrinsically
related to the spatial order of the atoms within the cavity and
thus determines the properties of the signal at the cavity output.
Its stationary value depends on the various physical quantities,
which can be summarized in terms of the single parameter n̄ in
Eq. (10). The detuning �c, which also enters in the definition of
n̄c, determines the temperature of the steady state; see Eq. (24).

Figure 2(a) displays the phase diagram of the magnetization
as a function of n̄ and �c: The white region is the paramagnetic
phase, the dark region the ferromagnetic one, and the scale
of gray indicates the value of |�|. We note that the lines at
constant �c correspond to constant asymptotic temperatures
and to a well-defined threshold value of n̄c(�c). Following
one such line, the value of |�| is zero for n̄ < n̄c, while
above n̄c it grows monotonically until unity as n̄ → ∞. The

magnetization as a function of n̄ and at �c = −κ is shown in
Fig. 1(c).

Keeping n̄ fixed and varying �c instead consists of varying
the temperature. However, not for all values of n̄ there
is a temperature at which the transition to ferromagnetism
is observed. In fact, if n̄ < min(n̄c) = 1/4, the phase is
paramagnetic for all values of �c. For n̄ > 1/4, instead,
there exists a critical value of �c(n̄) at which the transition
to self-organization occurs. In this case, above threshold the
magnetization monotonically grows with �c. The temperature
of the atoms is shown in Fig. 2(b): Here it is clearly visible that
the temperature is independent on n̄ and is solely a function of
�c. In particular, it reaches a minimum at �c = −κ , as one can
verify using Eq. (24). The corresponding minimal temperature
is kBTmin = �κ/2.

C. Dynamics of the magnetization at steady state

The mapping of the free energy to the Landau model
allows one to draw an analogy between self-organization and
ferromagnetism. Due to the long-range interactions, however,
the symmetry-breaking transition does not occur through
the spatial formation of magnetized domains of increasing
size, rather through the observation of Bragg gratings during
long periods of time, whose mean duration increases as the
pump strength is increased above threshold. This property was
already reported in Refs. [21,30] and is also found in the HMF
[33]. The behavior close to threshold is instead to large extent
unexplored, as it is characterized by large fluctuations of the
cavity field and thus requires a theoretical model that treats
the cavity field as a quantum variable, which our model does.
Our analysis focuses on the statistical properties of these time
intervals and, more generally, of the autocorrelation function
of the magnetization across the transition. In this section
we discuss this temporal behavior by analyzing trajectories
of the magnetization evaluated by means of the SDE as in
Appendix B . We set �c = −κ and N |U |/κ = 0.05.

1. Stationary magnetization for finite N

In order to perform the numerical analysis, we first
benchmark the statistical properties for a finite number of
trajectories. Typical trajectories at the steady state are shown
in Fig. 3 for different values of n̄.

They show �(t), obtained by averaging over the instanta-
neous positions of 50 atoms within the resonator. Fluctuations
about the mean value are visible: Their size increases below
threshold as n̄ is increased and depends on the number of
atoms, as one can see in Fig. 4 (see below). In order to extract
the order parameter from the numerical data, we thus need to
estimate the size of the fluctuations about the mean value as a
function of N . For this purpose we determine the probability
distribution PN (�0) of finding � = �0 at the stationary state,
which we define as

PN (�0) = P0

∫ 1

−1
d�δ(� − �0)Ω(�) exp(−β��cn̄N�2),

(31)

where Ω(�) is given in Eq. (27) and the parameter P0 =
(Z0λ/�)N/Z warrants normalization:

∫ 1
−1 d�0PN (�0) = 1.
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FIG. 3. (Color online) Order parameter as a function of time (in
units of κ−1) at the asymptotics of the dynamics and for different
values of n̄ (see inset). Each trajectory corresponds to a numerical
simulation with N = 50 atoms.

For a given detuning �c this probability distribution depends
on n̄ and on the atom number N . We determine PN (�0) using
our analytical model and performing the integral by means of
the Metropolis algorithm [48].

The results are displayed in Fig. 4 for different atom
numbers N and pumping strengths n̄. The curves clearly show
that the size of the fluctuations about the mean value decrease
with N . We also observe that, for N fixed, the fluctuations
about the mean value increase with n̄ as it approaches the
threshold value from below. For atom numbers of the order
of 50 and larger we verified that PN (�0) converges to the
form exp(−N �4

0/4) for n̄ = n̄c, in agreement with the result
found in the thermodynamic limit. Above threshold, on the
contrary, the distribution exhibits two peaks whose centers
converge towards the asymptotic values of Eq. (28) for large
N and whose widths decrease as n̄ is increased. We compare
these results with the data obtained after integrating the SDE

(circles) and verify the convergence of the numerical results
with increasing N to the predictions at the thermodynamic
limit.

Figure 5(a) displays �(t) as a function of time obtained
by integrating the SDE for N = 20 atoms and n̄ = 0.01 n̄c,
thus well below threshold. The distribution PN (�0) that we
extract after averaging over the time and over 100 trajectories
of this sort is given by the circles in Fig. 5(b). The curve is in
excellent agreement with a Gaussian distribution centered at
�0 = 0 (dashed curve) whose explicit derivation is reported
in Appendix D and which reads

P theo
N (�0) = 1√

2πσ 2
N

exp

(
− �2

0

2σ 2
N

)
, (32)

with

σN = 1/
√

2N. (33)

From this result we identify the width σN with the statistical
uncertainty in determining the value of �0. Figure 5(c)
displays a trajectory �(t) for n̄ = 1.4 n̄c, thus above threshold;
the corresponding distribution PN (�0) is given by the circles in
Fig. 5(d). The trajectory exhibits jumps between the two values
of the Bragg gratings, the duration of the time intervals during
which the atoms are trapped in a Bragg grating determines the
size of the fluctuations about the two peaks of the probability
distribution, and the finite rate at which these jumps occur
is the reason for the nonvanishing value of the probability at
�0 ∼ 0.

2. Autocorrelation function

We now analyze the autocorrelation function for the
magnetization,

C(τ ) = lim
t→∞〈�(t)�(t + τ )〉, (34)

FIG. 4. (Color online) Probability distribution for the order parameter at steady state, PN (�0) as in Eq. (31), for N = 5,8,20 atoms with
�c = −κ and n̄/n̄c = 0.01, 0.7, 1, 1.4 (from left to right). The dots correspond to the probability distribution PN (�0) extracted from numerical
simulations at steady state, performed by means of the SDE. The dashed vertical lines in (d) indicate the asymptotic value �0 = ±�∗ [Eq. (28)]
for n̄ = 1.4 n̄c.
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FIG. 5. (Color online) (Top panels) Magnetization � as a func-
tion of time (in units of κ−1), obtained from a simulation of the SDE
for N = 20, �c = −κ , and n̄ = 0.01 n̄c (a) and n̄ = 1.4 n̄c (c). The
black dashed lines are located at ±σN = ±√

1/(2N ) and indicate the
statistical uncertainty in the determination of the value of �0. Subplots
(b) and (d) display the corresponding probability distribution PN (�0)
obtained after averaging over time and over 100 trajectories �(t)
(circles). The dashed line in (b) is the theoretical prediction in Eq. (32).
The dashed line in (d) corresponds to the distribution obtained by
numerically integrating Eq. (31) using a Metropolis algorithm [48].

which we extract from the trajectories evaluated using the
SDE. Figure 6 displays C(τ ) for different values of n̄. For
all values of the pump strength a fast decaying component is
always present whose temporal width seems to be independent
of n̄. One also notices the contribution of a slowly decaying
component whose decay rate decreases as n̄ increases.

In order to gain insight, we first analyze the autocorrelation
function below threshold for n̄ = 0.01 n̄c. For this case we
can reproduce the numerical result by means of an analytical
model, reported in Appendix D . This model assumes that
the atoms are homogeneously distributed in space and form a
thermal distribution at the temperature determined by Eq. (20),
which corresponds to the stationary solution of the FPE in
Eq. (17) well below threshold [27]. Starting from this state,
their motion is assumed to be ballistic and is thus calculated
after setting n̄ = 0 in Eq. (17). The resulting autocorrelation
function reads

Cfree(τ ) = σ 2
N exp

[−(
τ/τ free

c

)2]
, (35)

where the correlation time is

τ free
c =

√
�β/ωr . (36)

FIG. 6. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 [Eq. (34)] as a function of the time τ (in
units of κ−1) for N = 20 atoms, �c = −κ , and various values of n̄

(see inset). The curves are obtained by determining �(t) with the
numerical data (SDE).

Its excellent agreement with the numerics is visible in Fig. 7.
This result shows that below threshold the fluctuations are
mostly due to thermal motion, while the effect of the cavity
forces, which tend to localize the atoms, is negligible. By
considering the analogy between the different curves in Fig. 6,
we conjecture that thermal fluctuations are responsible for the
short-time behavior of the autocorrelation function.

We now turn to the long-time behavior of the autocorrela-
tion function for increasing values of n̄. Inspection of typical
trajectories close and above threshold, shown in Figs. 3 and
5(c), shows that this is related to the time scales over which the
atomic ensemble forms a Bragg grating. The system can take
on values for the collective parameter � clearly exceeding the
value of σN for times which are orders of magnitude larger than

FIG. 7. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 as a function of the time τ (in units of κ−1)
for N = 20 and N = 50 atoms (see inset). The circles correspond to
numerical simulations performed with n̄ = 0.01 n̄c and �c = −κ .
The line shows the analytical estimate using Eq. (35).
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the correlation time τc characteristic of thermal fluctuations, as
visible in Fig. 5(c). We call these finite time intervals trapping
times, corresponding to configurations in which (part of) the
atoms are trapped in Bragg gratings.

In order to analyze the statistics of the trapping times, we
first introduce the following criterion: the atoms are forming
a Bragg grating when |�(t)| > σN . This criterion alone,
however, also includes fluctuations that can also happen well
below threshold, as visible in Fig. 5(a). For this reason we
set an infrared cutoff for the trapping times, such that they
shall exceed τ free

c . Herewith, we thus find a trapping time
of length τtrap with starting point t and end point t + τtrap

if |�(t + t ′)| > σN for t ′ ∈ [0,τtrap] and τtrap > 10 τ free
c . It is

important to note that this sets a rather strict criterion on the
trapping times as we explain now. In Fig. 5(c), one can see
that even if the atoms seem to be trapped in a grating, the
order parameter can take on values |�(t)| < σN for times of
the order of τ free

c . We choose to ignore these events when they
are not associated with a sign change of �. We perform the
statistics of the trapping times by evaluating the probability
density Ptrap(τ ) of finding a trapping time of length τ , and then
using this quantity to determine the cumulative distribution
F (τtrap), defined as

F (τtrap) =
∫ ∞

τtrap

dτ ′Ptrap(τ ′). (37)

Distribution F (τtrap) thus gives the probability that the trapping
time is larger than τtrap. Figure 8 displays F (τtrap), as we
extracted it for N = 20 atoms and different values of n̄: It
is clearly visible that the trapping times are shifted towards
higher values as n̄ increases. The distribution exhibits long
tails, which suggests that this dynamics is characterized by
the existence of rare events with very long trapping times.
In order to better understand this behavior, we determine the
mean trapping time 〈τtrap〉n. This is numerically found for a
given interval of time ttot, in which n trapping intervals of
length τ

(i)
trap are counted (i = 1, . . . ,n), and reads

〈τtrap〉n =
n∑

i=1

τ
(i)
trap/n. (38)

In Fig. 8(b) we plot 〈τtrap〉n as a function of the number of
counts for N = 20 and various values of n̄ above threshold.
The mean trapping time 〈τtrap〉n, in particular, seems to
converge to a finite value for sufficiently long integration times.
We argue, however, that this can be an artifact of the finite
integration time ttot, which we choose to be ttot ≈ 106κ−1:
This conjecture is supported by the rather steep decay of
the cumulative distribution at t > 105κ−1 visible in Fig. 8(a).
Hence, our results do not exclude the existence of a power-law
decay of the distribution F (τ ). This discussion clearly shows,
nevertheless, that the trapping times are responsible for the
long tails of the autocorrelation function.

We now study the statistics of the events which lead to
jumps between two Bragg gratings. These events are visible,
for instance, in Fig. 5(c) and are characterized by a time
scale which we now analyze. We denote these finite times
by jumping times. More precisely, we define a jump of time
length τjump as the interval of time [0,τjump] within which
|�(t + t ′)| < σN for t ′ ∈ [0,τjump]. We further impose that

FIG. 8. (Color online) Statistics of the trapping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , and total evolution time ttot ≈ 106κ−1. The curves correspond
to different values of n̄ above threshold (see inset). (a) Cumulative
distribution F (τtrap) for the trapping times [Eq. (37)]. Higher pumping
strengths lead to longer trapping times. Subplot (b) displays the mean
trapping time 〈τtrap〉n [Eq. (38)] as a function of the number of counts
n. The inset shows the values of 〈τtrap〉 as a function of n̄, which we
extrapolate from the curves, like the ones shown in the onset.

at the starting and the end points of the jumps the order
parameter � has a different sign, such that the configuration
has switched, for instance, from an even pattern (� > σN ) to an
odd one (� < −σN ). We identify jump events in Fig. 5(c) with
the green segments. An exception is the event at κt ∼ 3000,
which does not fulfill the criteria we impose and thus does not
qualify. We numerically determine the probability distribution
Pjump(τjump) for the jumping times at a given value of n̄ > n̄c.
Figure 9(a) displays the probability distribution Pjump(τjump)
for n̄ = 1.4 n̄c. We observe that it exhibits the features of
exponential decay with time. Further information is extracted
from the mean jumping time 〈τjump〉n, which we evaluate as

〈τjump〉n =
n∑

i=1

τ
(i)
jump/n, (39)

with τ
(i)
jump the jumping time for the ith jump and i = 1, . . . n.

Figure 9(b) displays 〈τjump〉n for different pumping strengths.
The mean values 〈τjump〉n do not differ much for different
pumping strengths, in agreement with the conjecture that ther-
mal fluctuations are responsible for the short-time behavior of
the autocorrelation function. Nevertheless, we see indications
that the mean jumping time decreases as n̄ increases; thus, at
large pump strengths the atoms reorganize in Bragg gratings
over shorter time scales.

Insight into the dynamics underlying a jump in the order
parameter can be gained by considering the corresponding
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FIG. 9. (Color online) Statistics of the jumping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , total evolution time ttot ≈ 106κ−1. (a) Probability distribution
Pjump(τjump) for n̄ = 1.4 n̄c. (b) Mean jumping time 〈τjump〉n [Eq. (39)]
as a function of the number of counts n and for several values of n̄

above threshold (see inset).

individual atomic trajectories. A simulation for N = 5 atoms
is shown in Fig. 10(a) for the choice of a pump strength
above threshold n̄ = 1.4 n̄c. At a given instant of time, the
atomic positions are, in general, at distances which are integer
multiples of the cavity wavelength, thus localized either at the
even or the odd sites of the spatial mode function, thus forming
one of the two possible Bragg gratings. When this occurs,
the atoms perform oscillations about these positions. The
amplitude of these oscillations does not remain constant, and
one can observe an effective exchange of mechanical energy
among the atoms. This can lead to a change of the potential
that can untrap atoms. The onset of this behavior seems to be
the precursor of the instability of the whole grating, as one
can observe by comparing these dynamics with the one of the
corresponding order parameter in subplot (b). The oscillations
about the grating minima, moreover, are responsible for the
damped oscillation observed in the autocorrelation function in
Fig. 6 for values of n̄ above threshold.

3. Power spectrum

Complementary information to the temporal behavior of the
autocorrelation function can be gained by studying its Fourier
transform. We thus numerically compute the power spectrum
of �(t), which we define as

S̃(ω) = 〈|�(ω)|2〉, (40)

where

�(ω) =
∫ t

0
dτ exp(−iωτ )�(τ ) (41)

FIG. 10. (Color online) (a) Individual atomic trajectories and (b)
corresponding order parameter as a function of time (in units of
κ−1) for N = 5 atoms, �c = −κ , and n̄ = 1.4 n̄c. The black dashed
horizontal lines in (a) indicate the position of the even sites of the
cavity spatial mode function. The trajectories have been numerically
evaluated taking the stationary state as the initial distribution.

is the Fourier transform of the order parameter. Figure 11
displays the spectrum of the autocorrelation function for
different values of n̄ (a) below and (b) above threshold.

One clearly observes two different kinds of behavior,
depending on whether n̄ is below or above threshold: For
n̄ < n̄c we observe a rather broad spectrum about ω = 0,
whose breadth increases as n̄ approaches the critical value
from below. The emergence of a flat broad structure can
be associated with the creation of (unstable) Bragg gratings
and is related to the broadening of the distribution PN (�0)
visible in Figs. 4(b) and 4(c). Above threshold, for n̄ > n̄c, the
width of the component centered at zero frequency becomes
dramatically narrower and narrows further with n̄, indicating
that the atoms become increasingly localized in a Bragg
pattern. The width of this frequency component is determined
by the inverse of the mean trapping time, namely, the rate at
which jumps between different Bragg gratings occur.

Above threshold sidebands of the central peak appear,
which correspond to the damped oscillations of the autocor-
relation function. The central frequency of these sidebands
increases for higher pumping strength, while their width
decreases. We understand these features as the onset of oscil-
lations about the minima of the Bragg grating, which one can
also observe in the trajectories of Fig. 10(a). This conjecture is
supported by a simple calculation of the oscillation frequency
as a function of n̄, assuming that the potential about their
minima is approximated by harmonic oscillators. Even though
the estimated frequency is higher, this estimate qualitatively
reproduces the dependence of the sidebands’ central frequency
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FIG. 11. (Color online) Spectrum of the autocorrelation function
S̃(ω) [Eq. (40)] and in arbitrary units, as a function of the frequency
(in units of κ) for different n̄, and evaluated from the numerical data of
�(t) for 100 trajectories of N = 50 atoms, �c = −κ , and evolution
time ttot = 104κ−1. The subplots show the spectrum for n̄ below (a)
and above (b) threshold (see insets).

with n̄ above threshold, as visible in Fig. 12. This plot further
shows that the behavior between the two parameter regions,
below and above threshold, are qualitatively very different. The
results of our simulations suggest that the transition in Fig. 12
at n̄c becomes sharper as the atom number is increased.

IV. PHOTON STATISTICS AND COHERENCE OF THE
FIELD AT THE CAVITY OUTPUT

Since the photons scattered by the atoms into the resonator
carry the information about the density of the atoms within the
cavity spatial mode function, then detection of the light at the
cavity output allows to monitor the state of the atoms during
the dynamics. This is an established method in experiments
with atoms and ions in cavities [22,49–52], and it is at the
basis of proposals for detecting nondestructively the quantum
phase of ultracold atoms [53,54].

Formally, the field at the cavity output âout(t) is directly
proportional to the intracavity field â via the relation âout(t) =√

2κâ − âin(t), where âin(t) is the input field, with zero mean
value and [âin(t),âin(t ′)†] = δ(t − t ′) [55]. The intracavity field
is, in turn, given by the solution of the coupled atoms-field
dynamics, and under the assumption of time-scales separation
it can be cast in the form given in Eq. (7), which expresses an
effective operator resulting from the coarse-grained dynamics.
Equation (7) shows that in leading order the intracavity field is

FIG. 12. (Color online) Contour plot of the spectrum of the
autocorrelation function S̃(ω) [Eq. (40)] as a function of n̄ and of
the frequency (in units of κ). The other parameters are the same as
in Fig. 11. The red dashed line corresponds to an estimate deep in
the organized regime assuming the atoms are trapped in a harmonic
potential with frequency ω̃ = √

2ωrκn̄/n̄c.

proportional to the magnetization �(t); therefore, the features
of the magnetization we identified thus far shall be visible
also in the photon statistics at the cavity output. In addition,
there is a retardation component, which gives rise to cooling
and that in our parameter regime is a small correction. We
now report the analysis of the intracavity photon number,
and of the first- and second-order correlation functions as a
function of the pump strength n̄. Throughout this analysis
we consider that the system has reached the stationary state
at �c = −κ , corresponding to the minimum temperature of
the atoms. Analytically, all averages are taken assuming the
atomic distribution is stationary. Numerically, this consists of
assuming that the trajectories are evolved starting from the
stationary distribution.

A. Intracavity photon number

The intensity of the emitted light is proportional to the mean
intracavity photon number

ncav = lim
t→∞〈â†(t)â(t)〉. (42)

Figure 13(a) displays ncav as a function of n̄ for different atom
numbers. The circles correspond to the mean photon number
evaluated by numerical simulations using Eq. (7), whereas the
dot-dashed lines show the adiabatic solution, Eq. (9), evaluated
with the steady-state solution of Eq. (23). For n̄ < n̄c the mean
photon number is below unity: Therefore, in this regime shot
noise is dominant. Above threshold, ncav rapidly increases with
N and n̄. For the parameters we choose its value is essentially
determined by the adiabatic component of the cavity field,
while the contribution due to retardation is negligible (it is
less than 0.1%). Thus, the intracavity photon number provides
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FIG. 13. (Color online) (a) The mean intracavity photon number
ncav at steady state is displayed as a function of the pump strength
n̄ (in units of n̄c) and for different atom numbers (see inset). The
circles correspond to the numerical data obtained by using Eq. (7)
and integrating the SDE. The dot-dashed lines correspond to the
adiabatic limit ncav|ad = Nn̄ limt→∞〈�(t)2〉, where the average is
performed over the stationary state in Eq. (23). (b) Contour plot of
ncav|ad as a function of N and n̄. The color code is in logarithmic scale.
The horizontal lines correspond to the dot-dashed curves shown in
subplot (a).

direct access to the autocorrelation function at zero-time delay,
〈�2〉. The numerical data, represented by the circles, follow
very closely the curves corresponding to the adiabatic solution
ncav|ad = Nn̄ limt→∞〈�(t)2〉. The difference between the two
curves is indeed small and due to the effect of the dynamical
Stark shift scaling with the parameter U , which in the numerics
is systematically taken into account. This nonlinear shift of the
cavity frequency is maximum when the atoms are localized in
a grating and for the chosen sign (U < 0) it tends to increase
the value of ncav.

Figure 13(b) displays the contour plot of ncav as a function
of n̄ and N using the adiabatic solution [Eq. (9)] and the
steady-state solution in Eq. (23). We observe that well below
threshold ncav depends solely on n̄ and is independent of N . In
this regime, in fact, the atoms are homogeneously distributed;
there is no collective effect in photon scattering and thus no
superradiance. Using the assumption of a homogeneous spatial
distribution and n̄ � n̄c we can derive an analytical estimate
of ncav which is independent of N (see Appendix D ):

ncav|n̄�n̄c
≈ n̄/2.

As n̄ approaches and then exceeds the threshold value, instead,
the dependence of the mean intracavity photon number on N

becomes evident.

B. Spectrum of the emitted light

We now turn to the first-order correlation function at steady
state, g(1)(τ ) = limt→∞〈â†(t + τ )â(t)〉. At zero-time delay,
τ = 0, it corresponds to the intracavity photon number. For
finite delays τ it is proportional to the power spectrum of the
autocorrelation function. In addition, it contains the nonlinear
contribution of the cavity frequency shift and the retarded
component of the cavity field. We discuss here the spectrum
of g(1)(τ ),

S(ω) = lim
t→∞

1

2π

∫ ∞

−∞
dτe−iωτ 〈â†(t + τ )â(t)〉, (43)

which we then compare with the result obtained for the power
spectrum of the magnetization. The spectrum S(ω) is displayed
in Fig. 14 for N = 50 atoms and different values of the
pumping strength.

The behavior is very similar to the spectrum of the
autocorrelation function of the magnetization in Fig. 11. Below
threshold [Fig. 14(a)] we observe a broad frequency spectrum,
while above threshold [Fig. 14(b)] we notice the emergence
of sidebands whose frequency increases with n̄. In general,
the spectrum of the emitted light has the same form as the
power spectrum of the magnetization and thus allows to extract
information about the thermodynamics of self-organization.
The contour plot is very similar to the corresponding one
of the autocorrelation function, Fig. 12. A distinct feature is
found in a small asymmetry between the red (ω < ωL) and the
blue (ω > ωL) sidebands in Fig. 14(b). The asymmetry seems
to be due to the contribution of the diabatic component of
the cavity field, given in Eq. (8). Remarkably, the spectrum
qualitatively agrees with the one observed in experiments
analyzing self-organization of ultracold atoms in single-mode
standing-wave resonators [52], thus outside the regime of
validity of the semiclassical treatment. In particular, sideband
asymmetry above threshold was also reported in Ref. [52].

C. Intensity-intensity correlations

The intracavity photon number below and close to threshold
is smaller than unity, and is thus characterized by large photon
fluctuations. We now study the properties of these fluctuations
by determining the intensity-intensity correlation function,

g(2)(τ ) = lim
t→∞

〈â†(t)â†(t + τ )â(t + τ )â(t)〉
〈â†(t)â(t)〉2

. (44)

with t → ∞ indicating the steady-state, and focus on its value
at zero-time delay, g(2)(0), as a function of n̄ for gaining
insight in the photon statistics. Figure 15(a) displays the
correlation function g(2)(0) as a function of n̄ and for different
atom numbers. The circles show g(2)(0) extracted from
numerical simulations using Eq. (7), while the dot-dashed lines
correspond to the adiabatic solution g(2)(0)|ad = 〈�4〉/〈�2〉2

using the steady-state solution in Eq. (23). Both curves are in
good agreement. We observe a crossover from g(2)(0) ≈ 3 to
g(2)(0) ≈ 1 when tuning the pumping strength from below to

063808-13

45
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FIG. 14. (Color online) Spectrum of the intracavity field inten-
sity S(ω) [Eq. (43)] and in arbitrary units at steady state. In (a) the
curves correspond to values of n̄ � n̄c and in (b) they correspond
to values of n̄ > n̄c. The data have been numerically evaluated for
N = 50 atoms and over the interval of time (−104 : 1 : 104) κ−1.

above the threshold, which sharpens as N grows. The value
above threshold is associated with coherent radiation, which is
what one expects when the atoms are locked in a Bragg grating.
The behavior below threshold can be reproduced by means of
an analytical model valid for n̄ � n̄c, in the limit in which the
atoms form a homogeneous distribution. In Appendix D we
show that in this limit we can write

g(2)(0) = 3 − 3/(2N ), (45)

which asymptotically tends to 3 as N increases. This result
qualitatively agrees with experimental measurements with
ultracold atoms performed below threshold [52]. While this
value is also found for squeezed states, in our case we could not
find any squeezing in the field quadratures and thus attribute
the behavior of g(2)(0) below threshold to thermal fluctuations.

Figure 15(b) displays g(2)(0) for different pumping
strengths and number of atoms, evaluated using the adiabatic
solution g(2)(0) = 〈�4〉/〈�2〉2 and the steady state in Eq. (23).
The dashed horizontal cuts correspond to the dot-dashed

FIG. 15. (Color online) (a) The intensity-intensity correlation at
zero-time delay g(2)(0) [Eq. (44)] is shown as a function of the
pump strength n̄ (in units of n̄c) and for different atom numbers
N (see inset). The circles correspond to the data extracted from
numerical simulations, the dot-dashed lines are evaluated using the
steady state in Eq. (23) and the adiabatic solution, where the field
is proportional to the instantaneous value of the magnetization:
g(2)(0)|ad = 〈�4〉/〈�2〉2. (b) Contour plot of the adiabatic component
of the intensity-intensity correlation function at zero-time delay
g(2)(0)|ad vs n̄ and N . The horizontal cuts correspond to the dot-dashed
lines in subplot (a).

curves shown in subplot (a). One clearly observes the crossover
from g(2)(0) ≈ 3 to g(2)(0) ≈ 1 when n̄ exceeds n̄c, while the
transition sharpens for increasing atom numbers.

V. CONCLUSIONS

Atoms can spontaneously form spatially ordered structures
in optical resonators when they are transversally driven by
lasers. In this paper we have characterized the stationary
solution, which emerges from the interplay between the
coherent dynamics due to scattering of laser photons into the
resonator and the incoherent effects associated with photon
losses due to cavity decay. We assumed that these dynamics
are characterized by a time-scale separation, such that the
cavity field relaxes on a faster time scale to a local steady
state depending on the atomic density. This assumption is
valid when the cavity loss rate κ exceeds the recoil energy
ωr scaling the mechanical effects of light, and it is fulfilled
in several existing experiments [17,22,24]. Retardation effects
are small, but important in order to establish the stationary
state.
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Starting from a FPE, which has been derived by means of
an ab initio theoretical treatment [27], we have shown that the
stationary state is thermal, with a temperature that is solely
determined by the detuning between cavity and laser. From
this result, we could determine the free energy and thus show
that atomic self-organization in a standing-wave cavity mode
is a second-order transition of Landau type. Our model allows
us to determine the phase diagram for the self-organization
transition and delivers the critical value of the pump strength in
a self-consistent way. This value is in agreement with previous
estimates [30,31]. An interesting further step is to connect this
theory with quantum-field theoretical models which analyze
self-organization in the ultracold regime [32,45,56], thus
extending the validity of our model to the regime in which
quantum fluctuations in the atomic motion cannot be treated
within a semiclassical model.

We further remark that, while our analysis focuses on a one-
dimensional model, we expect that from our predictions we can
extrapolate the stationary behavior in two spatial dimensions.
This can be calculated by means of a straightforward extension
of the treatment in Ref. [27] to two dimensions. Differing from
one dimension, in the symmetry-broken phase the atoms will
form a checkerboard pattern as found in Ref. [23], as long
as the atomic gas is uniformly illuminated by the laser and
the coupling with the resonator can be treated in the paraxial
approximation. The effect of the dimensionality can modify
the specific form of friction and diffusion. Moreover, in two
dimensions the effect of correlations is expected to be more
relevant, so that the statistical properties will be modified.

Photodetection of the emitted light allows one to reveal the
thermodynamic properties of the atoms. Our results show that
they exhibit several remarkable analogies with experimental
results obtained with ultracold atomic ensembles inside of
resonators [52]. While our theory is not generally applicable
to these systems, it is not surprising that the field at the cavity
output does not depend on the presence (or absence) of matter-
wave coherence, as it solely depends on the atomic density.
Nevertheless, it would be interesting to identify observables
for the cavity field output, if possible, that provide information
about quantum coherent properties of matter, in the spirit of
matter-wave homodyne detection discussed in Ref. [57]. This
could be possible when the cavity spectroscopically resolves
the many-body excitations, as is verified in the parameter
regime of the experimental setup reported in Ref. [58].

This work is the first of a series analyzing the effect of the
long-range cavity-mediated interaction. Here we focused on
the dynamics at steady state. In Ref. [35] we will compare
the results here reported with a mean-field solution, which
is systematically derived from this treatment after making a
mean-field ansatz, and discuss its validity in the perspective of
developing a BBGKY hierarchy for self-organization in optical
resonators [33]. In Ref. [34] we will analyze the dynamics of
the full distribution after quenches across the phase transition,
expanding on the results presented in Ref. [29].
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APPENDIX A: PARAMETERS OF THE
FOKKER-PLANCK EQUATION

In this Appendix we give the explicit form of the parameters
appearing in the coefficients of Eq. (12):

δF = NU�

�′
c

cos(kxi), (A1)

δ
 = cos(kxj )
NU�

�′
c

3�′2
c − κ2

�′2
c + κ2

+ cos(kxi)
NU�

�′
c

+ 4 cos(kxi) cos(kxj )
(NU�)2

�′2
c + κ2

,

(A2)

δη = (2NU�)2

�′2
c + κ2

cos(kxi) cos(kxj )

+ 2NU��′
c

−�′2
c + κ2

{
3κ2 − �′2

c

�′2
c + κ2

cos(kxj ) − cos(kxi)

}
, (A3)

δD = 4NU�

�′2
c + κ2

cos(kxj )[�′
c + cos(kxi)NU�]. (A4)

The diffusion coefficient for the spontaneous decay term reads

Dsp(xi) = (�k)2

{
N2S2�2

�′2
c + κ2

[sin2(kxi) + u2 cos2(kxi)]

+ su2

[
2NS��′

c

�′2
c + κ2

cos(kxi) + s

]}
,

where s = �/g and u2 determines the momentum diffusion
due to spontaneous emission recoils projected on the cavity
axis (dipole pattern of radiation).

Finally, the correction scaling with NU/κ in Eq. (17) reads

L1f = 2�k�c�
∑

i

sin(kxi)

[
�2

c − κ2

�2
c + κ2

B + � cos(kxi)

]
∂pi

f

(A5)

and is systematically taken into account in our calculations.

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATIONS

The FPE given in Eq. (17) for |NU | � |�c| can be
simulated by SDEs, which in our case read

dxj = pj

m
dt + dXj , (B1)

dpj = �k
2S2�c

�2
c + κ2

sin(kxj )

[
N∑

i=1

cos(kxi)

]
δUdt

+ 8ωrS
2�cκ(

�2
c + κ2

)2 sin(kxj )

[
N∑

i=1

sin(kxi)pi

]
dt + dPj ,

(B2)
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with

δU = 1 + NU

�c

[
�2

c − κ2

�2
c + κ2

B + � cos(kxj )

]
, (B3)

where j = 1, . . . ,N labels the atoms and dPj denote the
momentum noise terms, which are simulated by means of
Wiener processes. In particular, 〈dPj 〉 = 0 and 〈dPidPj 〉 =
2Dijdt , with

Dij = (�k)2S2 κ

�2
c + κ2

sin(kxi) sin(kxj ) (B4)

the element of the diffusion matrix when spontaneous emission
is neglected.

For �c = −κ , we additionally take into account position
noise dXi , which shows cross-correlations with momentum
diffusion 〈dPjdX�〉 = ηj�dt , with

ηj� = 2�ωrS
2 sin(kxj ) sin(kx�)

κ2 − �2
c(

�2
c + κ2

)2 . (B5)

These terms can only be simulated when adding terms as
〈dXidXj 〉 = 0 to the FPE.

For the numerical simulations, we use the Heun method
[59], which is a second-order Runge-Kutta scheme with a
Euler predictor.

APPENDIX C: DETERMINATION OF THE FREE ENERGY

The equilibrium state reads

f (x, p) = 1

Z�N
exp(−βH ), (C1)

where Z is the partition function, � is the unit phase space
volume, and Hamiltonian H is given in Eq. (18). The canonical
partition function Z takes the form

Z =
(

λ

�

)N ∫ 1

−1
d�Ω(�)

∫ ∞

−∞
dp1 · · ·

∫ ∞

−∞
dpN exp(−βH )

=
(

Z0λ

�

)N ∫ 1

−1
d�Ω(�) exp(−β��cn̄N�2), (C2)

with Z0 = √
2mπ/β and

Ω(�) = N

2π

∫ ∞

−∞
dω exp (iωN�)J0(ω)N, (C3)

where Jn(w) = 1/(inλ)
∫ λ

0 dx cos(nkx) exp[iω cos(kx)] is the
nth-order Bessel function [46]. In order to compute Eq. (C3),
we rewrite it as

Ω(�) = N

2π

∫ ∞

−∞
dω exp [Nh(ω)], (C4)

where we introduced the function

h(ω) = iω� + ln [J0(ω)]. (C5)

We can now compute the integral in Eq. (C4) using the method
of steepest descent. For this purpose, we derive the stationary
condition for Eq. (C5). This reads

i� − J1(ω0)

J0(ω0)
= 0,

which we can rewrite as

� = q(γ0) = I1(γ0)

I0(γ0)
(C6)

after defining ω0 = iγ0 and using that J1(ω0)
J0(ω0) = i

I1(γ0)
I0(γ0) . The

function q : R → (−1,1) with y �→ I1(y)
I0(y) is bijective, such that

there is a unique solution satisfying the equation

γ0 = q−1(�). (C7)

With the method of steepest descent, we get

Ω(�) ∼ N

2π

√
2π

N |h′′(ω0)| exp[Nh(ω0)]

=
√

N

2π
C(�) exp(N{ln[I0(q−1(�))]−q−1(�)�}),

(C8)

with

C(�) =
∣∣∣∣�2 − I0(q−1(�)) + I2(q−1(�))

2I0(q−1(�))

∣∣∣∣
− 1

2

.

Using Eq. (C8) in Eq. (C2), at leading order in N we can cast
the canonical partition function into the form

Z =
(

Z0λ

�

)N ∫ 1

−1
d�

√
N

2π
C(�) exp[−βNF(�)],

where F(�) is the free energy per particle,

β[F(�) − F0] = β��cn̄�2 + q−1(�)� − ln[I0(q−1(�))],

(C9)

and −βNF0 = N ln(Z0λ/�). After performing a Taylor
expansion of Eq. (C9) for small values of the order parameter,
close to � = 0, we obtain

β[F(�) − F0] ≈ (1 − n̄/n̄c)�2 + 1
4�4, (C10)

which shows that close to the instability the free energy can be
cast into the form of a Landau potential [47]. This shows that
the system undergoes, in the considered limit, a second-order
phase transition at the critical value n̄ = n̄c with

n̄c = κ2 + �2
c

4�2
c

. (C11)

We use the method of steepest descent to minimize F(�) in
Eq. (C9) and find that the free energy is stationary if the order
parameter solves the equation

� = q

(
2

n̄

n̄c

�

)
. (C12)

APPENDIX D: ANALYTICAL ESTIMATES

Several quantities of relevance can be analytically deter-
mined in the limit of small pumping strength, specifically
when n̄ � n̄c. In this limit we assume that the atoms move
ballistically and their spatial distribution is homogeneous. The
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steady state then reads

fs(x, p) = 1

λN

(
β

2πm

)N/2

exp

(
−β

∑
i

p2
i

2m

)
,

which is a homogeneous distribution for the atoms, while the
momentum distribution is thermal with β defined in Eq. (20).
The mean value of the order parameter for this distribution
vanishes 〈�〉 = 0, while fluctuations scale as

〈�2〉 =
∫

dx
∫

d pfs(x, p)�2 = 1

2N
. (D1)

Here we used that the cross terms in �2 =∑
i,j cos(kxi) cos(kxj )/(N2) vanish for a homogeneous

distribution. For the standard deviation �� =
(〈�2〉 − 〈�〉2)1/2 we thus find

�� =
√

1

2N
, (D2)

which shows that the width ��0 for the distribution function
PN (�0) in Eq. (31) decreases with N−1/2 for very low
pumping strengths. We checked that for n̄ � n̄c the Gaussian
assumption is a good approximation for low values of |�0|
and sufficiently large atom number. This result is reported in
Eq. (32).

In Sec. IV cavity field properties such as mean photon
number 〈â†â〉 and intensity-intensity correlations at zero-time
delay g(2)(0) are discussed. By adiabatically eliminating the
cavity field, i.e., using Eq. (9), and neglecting the dynamical
Stark shift, we can give the following estimate for the mean
photon number

〈â†â〉 = Nn̄〈�2〉 = n̄/2 = n̄c

2

n̄

n̄c

(D3)

under the assumption of a homogeneous spatial distribution.
As long as the spatial distribution remains homogeneous,
the mean photon number thus scales with the ratio n̄/n̄c

independent on the atom number N . This result is discussed

in Sec. IV A and gets evident in Fig. 13(b). Under the same
conditions, far below threshold, we get

〈�4〉 =
∫

dx
∫

d pfs(x, p)

[∑
i

cos(kxi)/N

]4

= 1

N4

[
N

I(4)

2π
+ 3N (N − 1)

I 2
(2)

(2π )2

]
= 3(N − 1)

8N3
,

(D4)

with I(2) = ∫ 2π

0 dx̃ cos2(x̃) and I(4) = ∫ 2π

0 dx̃ cos4(x̃). For the
intensity-intensity correlations at zero-time delay

g(2)(0) = 〈�4〉/〈�2〉2, (D5)

using Eqs. (D1) and (D4), we thus find

lim
n̄→0

g(2)(0) = 3 − 3

2N
. (D6)

This function tends towards the value of 3 for increasing atom
numbers, as can be seen in Fig. 15.

When assuming ballistic expansion, which is justified
whenever the forces on the atoms due to cavity backaction are
small, i.e., far below threshold, we can also derive an analytical
estimate for the correlation function C(τ ) = 〈�(t)�(t + τ )〉
at steady state,

lim
n̄→0

〈�(t)�(t + τ )〉

= 〈�2〉t
(

β

2πm

)1/2 ∫
dp exp

(
−β

p2

2m

)
cos

(
k

p

m
τ
)

= 〈�2〉t exp

(
− ωr

�β
τ 2

)
= 〈�2〉t exp

[−(
τ/τ free

c

)2]
, (D7)

with τ free
c = √

(�β/ωr ), where β is the inverse temperature
defined in Eq. (20) and 〈�2〉t = 1

2N
according to Eq. (D1).

The result is reported in Eq. (35).
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[9] V. Vuletić and S. Chu, Phys. Rev. Lett. 84, 3787 (2000).

[10] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse,
and G. Rempe, Nature (London) 428, 50 (2004).

[11] P. Domokos and H. Ritsch, J. Opt. Soc. Am. B 20, 1098
(2003).

[12] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).

[13] T. Kampschulte, W. Alt, S. Manz, M. Martinez-Dorantes, R.
Reimann, S. Yoon, D. Meschede, M. Bienert, and G. Morigi,
Phys. Rev. A 89, 033404 (2014).

[14] D. H. J. O’Dell, S. Giovanazzi, and G. Kurizki, Phys. Rev. Lett.
90, 110402 (2003).

[15] P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G.
Rempe, Phys. Rev. Lett. 84, 4068 (2000).
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[34] S. Schütz, S. B. Jäger, and G. Morigi (unpublished).
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When atoms scatter photons from a transverse laser into a high-finesse optical cavity, they form crystalline
structures which maximize the intracavity light field and trap the atoms in the ordered array. Stable organization
occurs when the laser field amplitude exceeds a certain threshold. For planar single-mode cavities there exist
two equivalent possible atomic patterns, which determine the phase of the intracavity light field. Under these
premises, we show that the effect of an additional laser pumping the cavity makes one pattern more favorable
than the other and that it can dynamically force the system into a predetermined configuration. This is an instance
of pattern formation and seeding in a nonlinear quantum-optical system.
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I. INTRODUCTION

Pattern formation is a remarkable phenomenon of nonlin-
ear dynamics, which characterizes the physical behavior of
complex systems [1]. Among several realizations encountered
in the quantum world, one interesting example, on which we
will focus in this work, is the formation of self-organized
Bragg gratings by particles scattering photons in a high-
finesse optical resonator [2,3]. This behavior is due to the
mechanical effects of atom–photon interactions and emerges
from coherent light scattering by an atomic gas into a single
mode of the electromagnetic field inside the cavity. The light
scattered by a spatially homogeneous particle distribution
cannot significantly excite the cavity mode due to destructive
interference of the electric fields stemming from different
atoms since they have random phases. Above a certain critical
intensity of the transverse pump laser, however, the atomic
density undergoes a transition to a periodic distribution for
which the intracavity light field is maximized. Vice versa, the
field gives rise to a mechanical potential, which confines the
atoms in the very same pattern. In a single-mode standing-wave
cavity there exist two equivalent such configurations, each
corresponding to an intracavity field of the same amplitude but
of opposite phase. This behavior was first predicted in Ref. [2]
and experimentally confirmed shortly afterwards [4]. Several
theoretical [5–9] and experimental studies [10–14] have
analyzed various aspects of the self-organization phenomenon,
including extensions to multimode resonators [15–19].

Studies of dynamics of pattern formation in other systems
have shown that these dynamics can be significantly modified
in the presence of further pumping fields [20], which can im-
pose an auxiliary phase favoring a certain pattern. In this work
we theoretically study the interplay between longitudinal and
transverse laser pump fields in determining spatial ordering
inside a single-mode standing-wave resonator. We consider a
setup as in Fig. 1 and show that, when the two lasers driving the
cavity and the atoms are resonant, the laser pumping the cavity
can act as a seed for the dynamics of pattern formation. We
identify the conditions on the longitudinal laser for which the

*Helmut.Ritsch@uibk.ac.at

phase of Bragg gratings can be predetermined, and for which
one can even dynamically force a Bragg grating of atoms to
jump into another pattern.

This paper is organized as follows. In Sec. II the theoretical
model is introduced, from which semiclassical stochastic
differential equations are derived. These equations are the basis
of the numerical simulations presented in Sec. III, where the
dynamics of self-organization are studied in the presence of a
laser pumping the cavity and as a function of its relative phase
and amplitude. Finally, in Sec. IV the conclusions are drawn.

II. THEORETICAL MODEL

We consider a cloud of N cold atoms of mass m whose
motion is confined along the axis of a linear standing-wave
cavity as sketched in Fig. 1. The atoms are directly illuminated
by a transverse laser beam whose frequency ωp is far detuned
from any internal atomic transition, but close to a single cavity
resonance such that the particles can scatter photons from the
driving laser into this resonator mode. A second laser at the
same frequency ωp directly drives the resonator mode through
one of the cavity mirrors. In this limit the external and cavity
degrees of freedom undergo a coupled dynamics. We denote by
xj and pj the canonically conjugated position and momentum
of the j th atom, while a and a† are the bosonic annihilation and
creation operators of a cavity photon. The coherent dynamics
are then described by the Hamiltonian [5]

H =
N∑

j=1

[
p2

j

2m
+ h̄U0a

†a sin2(kxj )

]
− h̄�ca

†a

+
N∑

j=1

h̄η(a + a†) sin(kxj ) − ih̄(η∗
pa − ηpa

†), (1)

where k denotes the cavity wave number. The parameter U0 <

0 is the light shift per photon and η ∈ R is the effective cavity
pump strength stemming from the light scattered from the
transverse laser into the mode by the atom cloud. In addition,
we also consider a longitudinal cavity pump of strength ηp ∈
C, including the possibility of a different phase with respect
to the transverse laser. The Hamiltonian is reported in the
reference frame rotating at the transverse frequency ωp, which
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FIG. 1. (Color online) Sketch of the system. Atoms are confined
inside a cavity with decay rate κ and illuminated by a transverse
laser beam of strength η. When |η| exceeds a certain threshold value
the atoms self-organize in stable Bragg gratings which maximize
scattering into the cavity mode. Here, we study how these dynamics
are modified when the cavity mode is additionally driven by a
longitudinal laser of strength ηp.

is assumed to be resonant with the laser pumping the cavity. In
particular, �c := ωp − ωc is the detuning between the pump
lasers and the bare cavity resonance frequency.

Owing to the nonperfect mirrors photons leak out of the
resonator. These processes are taken into account in the master
equation for the joint atom–field density matrix ρ,

ρ̇ = 1

ih̄
[H,ρ] + Lρ, (2)

where the Liouvillean

Lρ = κ(2aρa† − a†aρ − ρa†a) (3)

describes cavity decay at rate κ [21]. Dissipation effects due
to atomic spontaneous emission are here neglected under
the assumption that the atomic transition is driven far-off
resonance. Note that the effective model in Eq. (1) is generally
valid for any kind of linearly polarizable particles which can
be confined within an optical resonator [3].

When the thermal energy kBT of the atoms is much
larger than the recoil energy ER ≡ h̄ωR := h̄2k2/2m, i.e.,
kBT � ER, the system dynamics can be described within a
semiclassical approximation and the master equation (2) can
be mapped onto the following set of coupled Itō stochastic
differential equations (SDEs) [5,21,22],

dxj = pj

m
dt, (4a)

dpj = −∂U (xj ,α)

∂xj

dt, (4b)

dα =
[
i

(
�c − U0

N∑
j=1

sin2(kxj )

)
− κ

]
α dt + ηp dt

− iη

N∑
j=1

sin(kxj )dt +
√

κ

2
(dW1 + i dW2), (4c)

with the single-particle potential

U (x,α) = h̄U0|α|2 sin2(kx) + h̄η(α + α∗) sin(kx). (5)

The term (dW1 + i dW2)/
√

2 describes a complex Wiener
process [23] accounting for cavity input noise. In this work
we numerically investigate the dynamics and steady state of
this coupled system as a function of the cavity drive ηp.

III. PATTERN FORMATION AND SEEDING

The coupled system of atoms and cavity photons is known
to exhibit self-organized patterns in the absence of any
longitudinal laser (ηp = 0) when the transverse laser intensity
exceeds a certain threshold value [2–5]. The intracavity field
is maximized when the atoms order in one of two equivalent
(nonhomogeneous) configurations. The phase of the former,
however, depends on the specific pattern realized, i.e., the
particles either gather at lattice sites where sin(kx) = 1 or
where sin(kx) = −1 (denoted by “even” and “odd” sites,
respectively).

It has been argued that the occurrence of self-organization
is a symmetry-breaking process, where the symmetry between
the two configurations is spontaneously broken by initial par-
ticle fluctuations and cavity input noise [5]. Microscopically,
one pattern is chosen for each trajectory, to which one can as-
sociate an order parameter, here identified with the quantity [5]

	 := 1

N

N∑
j=1

sin(kxj ). (6)

Below threshold, where the atoms are homogeneously
distributed, 	 = 0, while in the perfectly self-organized phase
the order parameter adopts values 	 = +1 (	 = −1) for even
(odd) patterns. At this point we have to distinguish between the
instantaneous temperature-dependent critical pump strength
ηcrit [5], i.e., the minimal laser power required for triggering
the self-organization process of a thermal gas of temperature
kBT , and the temperature-independent self-consistent
threshold ηc, above which the phase transition sets in on a
long-time scale as a result of dissipation (cooling) [7].

The process of self-organization is exemplified in Fig. 2.
Figure 2(a) displays the initial average particle distribution
when the transverse laser is switched on. The distribution after
a sufficiently long time has elapsed such that the system has
reached its steady state is shown in Fig. 2(b); one observes
localization at the even and odd sites; for each trajectory only
one of the two configurations is reached. Finally, Fig. 2(c)
shows 	 as a function of time.

In summary, organization of the atoms in spatially ordered
patterns corresponds to the light-induced formation of Bragg
gratings. The atoms elastically scatter photons into the cavity
and the intracavity field is maximized when all atoms scatter
in phase, which here corresponds to arrays with interparticle
distance equal to the cavity mode wavelength λ = 2π/k.
The intracavity light field gives rise to a potential which has
minima at either the even or odd sites, which form from initial
fluctuations with equal probability. If the cavity is directly
pumped as well, the scenario drastically changes. In this case,
in fact, the cavity field is the coherent superposition of the
scattered and of the directly injected field as seen in Eq. (4c).
Clearly, the phase of the injected field plays a role by favoring
one pattern over the other, depending on which one maximizes
the depth of the intracavity potential. This allows one to “seed”
the emergence of a specific spatial pattern above threshold,
provided that the cavity drive |ηp| is sufficiently strong.

The effect of a “seeding” field on the atomic spatial
distribution is shown in Fig. 3. We choose the dipole potential
associated with the cavity pump to be sufficiently shallow so
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FIG. 2. (Color online) Simulation of self-organization of atoms
driven by a laser and coupled to a high-finesse cavity for ηp = 0,
i.e., without additional longitudinal pump. (a) Spatial distribution at
t = 0 and (b) after reaching the steady state at t = 104ω−1

R . The time
evolution of the order parameter 	 is displayed in (c). The curves have
been obtained by numerically integrating the SDEs (4). Parameters:
N = 1000,

√
Nη = 500ωR, NU0 = −100ωR, κ = 100ωR, and �c =

NU0/2 − κ . Ensemble average over 50 × 10 trajectories, i.e., 50
initial conditions and 10 realizations of the white noise process. The
critical pump strength for the considered parameters and initial gas
temperature kBT = 2h̄κ is

√
Nηcrit = 200ωR.

that the atoms remain spatially uniformly distributed when the
transverse laser is off; cf. Fig. 3(a). Starting from this situation,
a transverse laser (atom pump) is switched on at time t = 0.

FIG. 3. (Color online) Spatial distribution of the atoms after
reaching the steady state at t = 104ω−1

R (a) when the transverse
laser is switched off (η = 0) and the cavity is pumped by a laser of
intensity ηp = 500ωR, corresponding to a potential depth V0 ∼ 2ER.
Subplots (b) and (c) show the spatial distribution in the presence of
both longitudinal and transverse pump, with ηp = −500ωR and ηp =
500ωR, respectively. Ensemble average over 20 × 10 trajectories. The
other parameters are the same as in Fig. 2.

FIG. 4. (Color online) Order parameter 	 (for all trajectories)
as a function of time for the parameters corresponding to the three
subplots of Fig. 3, respectively.

Figures 3(b) and 3(c) display the two configurations which are
obtained after a transient time when the relative phase between
the two lasers is set either equal to 0 or π . We observe that
the symmetry between the two patterns is broken compared
to Fig. 2(b); cf. also the corresponding order parameter in
Fig. 4. The atoms are with a high probability either localized
in the even or in the odd sites, respectively, depending on
the phase difference between the two driving lasers. We see
though in Figs. 3(b) and 4(b) that the second pattern is only
strongly suppressed and not impossible; there roughly 10% of
the trajectories ended up in the “wrong” configuration. This
specific number is an artifact of the relatively small ensemble
considered, just like the fact that all trajectories ended up in
an odd pattern for positive ηp in Figs. 3(c) and 4(c). These two
cases thus already suggest a large statistical error of the seeding
efficiency and the necessity of averaging over much larger
ensembles. As can be seen in Fig. 5 for a large ensemble the
probability that a certain configuration is dynamically realized

FIG. 5. (Color online) Probability that the atoms organize in an
odd pattern as a function of the longitudinal pump strength ηp � 0.
The second pattern occurs with a small, but finite probability which
decreases as ηp is increased. This figure was obtained by integrating
the SDEs (4) for a short time (t = 1ω−1

R ) and computing the ratio of
the number of trajectories for which 	 < 0 and the ensemble size.
Ensemble average over 5000 × 5 trajectories. The other parameters
are the same as in Fig. 2.
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approaches 100% for sufficiently large values of the cavity
drive |ηp|.

A. Stationary patterns

Pattern seeding by means of a longitudinal field can be
understood in terms of interference between the electric fields
scattered by the atoms and directly injected by the cavity pump.
This determines the intracavity field amplitude and therefore
the depth of the sin(kx) component of the potential (5), which
is proportional to the field’s real part. Neglecting noise, the
steady-state solution of Eq. (4c) for the intracavity field reads

αss = −iηN	 + ηp

κ − i�
, (7)

with the effective detuning � := �c − NU0B < 0 and the
bunching parameter B := 1

N

∑
j sin2(kxj ) [5]. This result is

valid for kvT � κ , where vT := √
2kBT/m is the thermal

velocity. Let us assume for simplicity that also ηp ∈ R. Then,
for a given sign of 	—i.e., whether the atoms form an even or
odd pattern—the sign of ηp determines whether |Reα| becomes
larger and hence the potential deeper. For instance, for ηp > 0
we expect that odd patterns (	 < 0) will be energetically
favored and therefore occur with larger probability as visible
from Fig. 5.

We now analyze the steady-state order parameter 	 as a
function of the atom pump amplitude η for a chosen value
of the phase and magnitude of the cavity pump ηp. Figure 6
displays this quantity for ηp � 0 as obtained by numerically
integrating Eqs. (4) for long times. For completeness we
also report the analytical predictions of [7] valid at ηp = 0
in the weak-coupling regime (N |U0| � |�c|). Indeed, whilst
we observe the expected bifurcation at the self-consistent
threshold without cavity drive, only one branch is selected

FIG. 6. (Color online) Order parameter 	 evaluated in steady
state (at t = 20Nω−1

R ) for ηp = 0 (red dots), ηp = −500ωR (blue
squares), and ηp = −5000ωR (blue diamonds). For ηp < 0 the order
parameter is always positive when driving the cavity. The black-dotted
lines are the asymptotic steady-state predictions from kinetic theory in
the weak-coupling limit [7]. Inset: corresponding bunching parameter
B. Ensemble average of 5 × 5 trajectories. The other parameters are
the same as in Fig. 2.

when the latter is sufficiently strong. For larger ensembles,
however, the behavior suggested by Fig. 5 is expected to
become visible, i.e., a finite number of trajectories ending
up in the opposite pattern. In particular, finite probabilities
of finding odd patterns are expected at larger values of η. At
the same time the sharp transition is smeared out to a smooth
crossover—the value of 	 increases monotonously to unity.
This behavior becomes more enhanced as |ηp| is increased by
one order of magnitude.

A special case is realized when the longitudinal pump is
sufficiently strong to give rise to a deep intracavity lattice
even in the absence of the transverse laser. This is found,
for instance, when ηp = −5000ωR. In this regime, at η = 0
the atoms are localized at the minima of the sin2(kx) part
of the cavity optical lattice (5) which is reflected by a high
value of the bunching parameter B, as visible in the inset of
Fig. 6. A small value of η then already gives rise to a finite
probability of finding the atoms in the even pattern. We have
checked that the observed steady-state value of 	 is mainly due
to the mechanical potential associated with the longitudinal
laser. For ηp = −500ωR, on the other hand, collective photon
scattering plays a crucial role in the formation of even
patterns.

B. Dynamical buildup of the organized phase

We now analyze the formation of a seeded pattern (e.g.,
the even one) considering two situations. First, when the
atoms’ initial spatial distribution is uniform, and second when
the initial distribution corresponds to the opposite pattern.
Figure 7 shows the onset of a seeded pattern for an initially
uniform distribution, i.e., how the order parameter in Fig. 6
is dynamically established. We observe that the time scale
over which the pattern forms decreases as the amplitude of
the seeding field is increased. This behavior is particularly
pronounced below threshold.

Let us now assume that ηp = 0 and that the atoms
are pumped by a transverse laser with η > 0 above the

FIG. 7. (Color online) Order parameter 	 for 5 × 5 trajectories
simulated using Eqs. (4) as a function of time for ηp = 0 (red), ηp =
−500ωR (blue), and ηp = −5000ωR (green). From top to bottom
(left to right) the value of η is

√
Nη = (0,90,120,180)ωR. The other

parameters are the same as in Fig. 2.
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(instantaneous) threshold. After some time the system reaches
a stationary configuration which can be, for instance, an
even pattern. An intense longitudinal pump field is then
switched on. If its amplitude ηp is chosen to be real, the
particles remain in the even pattern since, according to Eq. (7),
the number of intracavity photons—and hence the potential
depth—increases. Instead, when for instance the relative phase
of the longitudinal pump differs from the transverse laser field
by π/2, then the scattered and the injected field can interfere.
This situation can lead to a pattern flip in the case that the phase
of the scattered field gives rise to destructive interference. We
expect that the scattered field vanishes and thus the atoms
reorganize in the pattern for which the two field contributions
add up coherently. We thus choose the relative phase π/2 and
|ηp| about 40 times larger than the maximum scattering rate
into the resonator by the atoms (

√
Nη).

Figure 8 shows the order parameter, mean number of
intracavity photons, and the real and imaginary part of the
intracavity field amplitude as a function of time for a single
trajectory. When the strong longitudinal pump is switched on,
one observes that the system readjusts in an odd pattern which
augments the intracavity photon number. The order parameter,
however, remains smaller than unity, representing a situation in
which several defects, namely atoms trapped at even sites, are

FIG. 8. (Color online) Example of dynamically flipping patterns
with a longitudinal pump. The system behavior is shown as a function
of time for a sequential change of the cavity drive by plotting
(a) the order parameter, (b) the intracavity photon number, and the
real (c) and imaginary (d) part of the field amplitude. First, ηp = 0 and√

Nη = 500ωR. At t = 2000ω−1
R the longitudinal laser is switched

on with ηp = 2i × 104ωR in order to compensate for the scattered
field for a short time. Finally, at t = 2100ω−1

R the external laser is
reduced to ηp = 500ωR. The other parameters are the same as in
Fig. 2.

present. This can be understood through the SDE (4c) for the
field and its approximate steady-state value (7): the intracavity
field is overcompensated by the external driving such that its
real part becomes positive, i.e., the odd sites become deeper
than the even ones according to Eq. (5). Due to the external
pump the latter, however, remain sufficiently deep to confine
a considerable fraction of the particles on the considered
short time scale. Afterwards, the longitudinal laser intensity
is reduced to ηp = 500ωR, for which the intracavity optical
lattice is shallow, and the particles are now again trapped by
their own scattered light, i.e., after a transient time, in which
the atoms first form a uniform distribution, the order parameter
becomes again close to unity. Its sign, however, is the opposite
of the initial one prior to the pulse sequence. Alternatively, one
could also envisage a scheme where the longitudinal pump
power is continuously reduced after the flip. This behavior is
exemplary for understanding how the system reacts to external
perturbations.

IV. CONCLUSIONS AND OUTLOOK

In this work we presented a model and a numerical study
of the effect of a longitudinal pump on self-organization of
cold atoms in an optical resonator. We have focused on the
situation in which both the transverse laser, pumping the
atoms, and the longitudinal laser, driving the cavity mode,
are resonant. The system exhibits a stationary state which
can be an ordered pattern even below the self-organization
threshold, provided that the longitudinal pump is sufficiently
strong. The phase of the pump is crucial in determining the
pattern which self-organizes. The longitudinal field, hence,
acts as a seed, breaking the symmetry between the even and odd
patterns, which are otherwise equivalent. The relative phase
between longitudinal and transverse pump is thus a control
handle for determining the configuration in which the atoms
self-organize, to the point that it can be used to force the atoms
to flip patterns.

Our analysis has so far focused on resonant external fields,
which allow one to reduce the dynamics to a time-independent
problem by moving to the reference frame rotating at the laser
frequency. The situation is going to be dramatically modified
when the two lasers are detuned one from the other. In this
case the equations of motion are explicitly time dependent
and exhibit an intrinsic period determined by the frequency
mismatch between the two lasers. Chaotic behavior could here
emerge at sufficiently low levels of noise.

An extension to the multimode case, e.g., ring cavities—
where a continuous symmetry is broken—might also be
interesting.
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New J. Phys. 14, 085011 (2012).
[9] F. Piazza, P. Strack, and W. Zwerger, arXiv:1305.2928.

[10] A. T. Black, J. K. Thompson, and V. Vuletić, J. Phys. B 38, S605
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Fokker-Planck equation for su�ciently short times, and are in good agreement

with existing theoretical approaches based on �eld-theoretical models. Mean-�eld,

on the other hand, predicts thermalization time scales which are at least one
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Photons mediate long-range optomechanical forces between atoms in high finesse resonators, which
can induce the formation of ordered spatial patterns. When a transverse laser drives the atoms, the
system undergoes a second order phase transition, that separates a uniform spatial density from a
Bragg grating maximizing scattering into the cavity and is controlled by the laser intensity. Starting
from a Fokker-Planck equation describing the semiclassical dynamics of the N -atom distribution
function, we systematically develop a mean-field model and analyse its predictions for the equilibrium
and out-of-equilibrium dynamics. The validity of the mean-field model is tested by comparison
with the numerical simulations of the N -body Fokker-Planck equation and by means of a BBGKY
hierarchy. The mean-field theory predictions well reproduce several results of the N -body Fokker-
Planck equation for sufficiently short times, and are in good agreement with existing theoretical
approaches based on field-theoretical models. Mean-field, on the other hand, predicts thermalization
time scales which are at least one order of magnitude shorter than the ones predicted by the N -body
dynamics. We attribute this discrepancy to the fact that the mean-field ansatz discards the effects
of the long-range incoherent forces due to cavity losses.

PACS numbers: 37.30.+i, 42.65.Sf, 05.65.+b, 05.70.Ln

I. INTRODUCTION

Optically-dense atomic ensembles offer a formidable
framework to study collective effects induced by atom-
photon interactions [1–3]. Correlations are established by
multiple photon scattering [4, 5], which can give rise to
phenomena such as synchronization [6, 7], optomechan-
ical bistability [8, 9], and spontaneous spatial ordering
[2, 3, 10–12]. Envisaged applications for these systems
range from sensors [13], to quantum-enhanced metrology
[14] and quantum simulators [12, 15].

Single-mode cavities, furthermore, mediate strong
long-range interactions between the atoms [16–18], sim-
ilarly to gravitational and Coulomb potential in two or
more dimensions [19]. In view of this analogy, it is rele-
vant to study the dynamics of these systems at and out-
of-equilibrium so to test in a laboratory conjectures and
predictions, such as ensemble inequivalence and the ex-
istence of quasi-stationary states [16]. The realization
in quantum optical setups, like the one sketched in Fig.
1(a), brings additional peculiar features. In fact, these
systems are intrinsically lossy, so that non-trivial dynam-
ics can be observed only in presence of a pump. On the
one hand, the conservative potential mediated by the cav-
ity photons shares several analogies with the one of the
Hamiltonian-Mean-Field model [17, 19–21], of which sev-
eral features are well reproduced by a mean-field descrip-
tion [19, 20]. On the other hand, cavity losses give rise to
damping and diffusion, which are characterized by a spa-
tial structure, thus establishing long-range correlations
between the atoms [17, 22]. These correlations, in turn,
cannot be captured by a mean-field description.

In this work we systematically develop a mean-field
model for cold atoms in a standing-wave resonator, in
the setup illustrated in Fig. 1(a), and test its valid-
ity by comparing its predictions with the ones of the

Fokker-Planck equation for the full atoms distribution
[22]. This work completes a series of papers, which anal-
yse the equilibrium and out-of-equilibrium dynamics of
spatial self-organization of atomic ensembles in a single-
mode resonator. Our analysis is based on a semiclassi-
cal treatment, and specifically on a Fokker-Planck equa-
tion (FPE) for the N -atom distribution, derived when
the atoms are classically polarizable particles and their
center-of-mass motion is confined to one dimension [22].
The cavity field, instead, is a full quantum variable. This
makes our treatment applicable also in the shot-noise
limit [22] and gives access to regimes that are comple-
mentary to those based on the model in Ref. [23], where
the field is a semiclassical variable.
Our formalism permits us to consistently eliminate the
cavity variables from the equations of motion of the
atoms and to investigate the properties of the cavity field
across the self-organization threshold, where the intra-
cavity field is characterized by large fluctuations. Start-
ing from this model in Ref. [21] we analysed the station-
ary state of the N -body FPE, and showed that (i) this is
a thermal state whose temperature is determined by the
linewidth of the resonator, and (ii) that the transition
to self-organization is a Landau-type second-order phase
transition, as illustrated in Fig. 1(b)-(c). In Ref. [21]
we also determined the corresponding phase diagram as
a function of the physical parameters and predicted the
corresponding features in the light emitted by the res-
onator. In Ref. [24] we investigated the dynamics fol-
lowing sudden quenches across the phase transition, and
found that the interplay between long-range conservative
and dissipative forces gives rise to prethermalization dy-
namics, where the long-range nature of dissipation plays
an essential role.
In this work we derive a mean-field treatment from our
N -atom FPE. We then benchmark the limits of valid-

61



2

FIG. 1: (Color online) (a) Atoms in a standing-wave cavity
and driven by a transverse laser can spontaneously form or-
dered patterns when the amplitude of the laser coupling Ω,
exceeds a threshold value Ωc, which depends on the rate of
photon losses, here due to cavity decay at rate κ. In this
regime the system undergoes a second-order phase transition
which is characterised by the parameter Θ, indicating spa-
tial ordering of the atoms in Bragg gratings and defined in
Eq. (4). Its expectation value in the mean-field description is
denoted as ΘMF, see subplots (b) and (c), which display the
thermodynamic potential below and above threshold. The
lower panels are schematic pictures of the single-particle den-
sity distribution f1(x, p) in phase space with x in units of
the inverse wavenumber k−1 and p in units of the width ∆p
of the momentum distribution. In (b) the atomic density is
uniform, in (c) it is localized at the even or odd sites of the
cavity standing wave, (cos(kx) = 1 or −1, respectively). In
this work we derive and discuss a mean-field theory for the
dynamics of f1(x, p).

ity of the mean-field ansatz by means of numerical sim-
ulations using the full N -body FPE and by means of
a BBGKY hierarchy. The results we obtain are com-
pared with existing literature on spatial self-organization
in single-mode cavities, both for the semiclassical treat-
ment [25–28], as well as for the case in which the atomic
quantum statistics is assumed to be relevant [15, 28–33].

This work is organized as follows. In Sec. II the
Fokker-Planck Equation at the basis of our analysis is
reported and the corresponding mean-field equation is
derived. In Sec. III the stationary properties of the
mean-field FPE distribution function are analytically de-
termined. The mean-field predictions are compared with
the ones of the N -body FPE and with further existing
theoretical works. In Sec. IV the Vlasov equation, which

describes the short time dynamics of the mean-field FPE,
is derived. Its predictions are then determined by means
of a stability analysis and the analytical results are com-
pared with the numerical simulations of the mean-field
FPE. Section V reports a critical analysis of the limits of
validity of the mean-field treatment. In Sec. VI the con-
clusions are drawn, while in the Appendix A calculations
are reported that complement the material presented in
Sec. III.

II. DERIVATION OF THE MEAN-FIELD
MODEL

In this section we derive the mean-field model starting
from the Fokker-Planck equation (FPE) describing the
dynamics of an atomic ensemble in the optical potential
of a high-finesse resonator of Ref. [22]. The atoms are
N , have mass m, their motion is assumed to be confined
along the x-axis, which also coincides with the axis of a
high-finesse cavity and within whose mirrors the atoms
are spatially trapped. In the following we denote their
canonically-conjugated positions and momenta by xj and
pj (j = 1, . . . , N). The atomic dipole strongly couples to
one cavity mode and is transversally driven by a laser,
as sketched in Fig. 1(a). The parameter regime is such
that the atoms coherently scatter photons into the cavity
mode and their external motion is determined by the
light forces associated with these processes. The light
forces are periodic, and their period is determined by the
cavity mode standing wave, whose spatial mode function
is cos(kx), with k the cavity-mode wave number.

A. Basic assumptions

Before reporting the FPE which governs the dynam-
ics of the N -body distribution function, we summarize
the main approximations behind its derivation and the
corresponding physical parameters.

One basic assumption of our model is that the only rel-
evant scattering processes are coherent. This regime can
be reached when the cavity mode and laser frequencies
are tuned far off resonance from the atomic transition
[34, 35]. We denote by ∆a = ωL − ω0 the detuning be-
tween laser (ωL) and atomic frequency (ω0), and assume
that this is the largest parameter of the problem. It is
thus larger than the coupling strengths for the interac-
tion between dipole and fields. It is also larger than the
detuning ∆c = ωL − ωc between laser and cavity mode
frequency, whose wave numbers are to good approxima-
tion denoted by the same parameter k. This allows us to
eliminate the internal degrees of freedom of the atoms by
a perturbative expansion in the lowest order of the small
parameter 1/|∆a|.

The cavity field is treated as a quantum mechani-
cal variable and the dynamics can be cast as an opto-
mechanical coupling between atomic motion and cavity
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field [10, 23]. The parameter regime we assume gives rise
to a time-scale separation, such that the cavity degrees
of freedom evolve on a faster time-scale than the motion.
This is warranted when the cavity line width κ, which
determines the relaxation rate of the resonator state, is
much larger than the recoil frequency ωr = ~k2/(2m),
which scales the exchange of mechanical energy between
light and atoms. In this limit the cavity field is elimi-
nated from the equations of motion of the atomic exter-
nal degrees of freedom in a perturbative expansion to first
order in the small parameter 1/κ, implementing a pro-
cedure first applied in Ref. [36]. The hierarchy of time
scales is set by the inequalities |∆a| � κ � ωr. This is
also consistent with a semiclassical treatment, since the
kinetic energy of the atoms at steady state scales with
~κ thus warranting that the width ∆p of the single-atom
momentum distribution is large in comparison to the lin-
ear momentum ~k carried by each photon [10, 17, 21].

B. Collective motion of N atoms in a cavity field

The approximations above discussed are at the ba-
sis of the theoretical procedure which connects the
master equation of atoms in a quantized cavity
field with the FPE for the Wigner function fN =
fN (x1, . . . , xN ; p1, . . . , pN ; t), describing the positions
and momenta of the N atoms at time t. The derivation
is detailed in Ref. [22] and the resulting FPE reads

∂fN
∂t

=−
N∑

i=1

∂

∂xi

pi
m
fN + S2L[fN ] , (1)

where the second summand on the right-hand side (RHS)
is due to mechanical effects of the cavity field on the
atoms and scales like S2. Here S = Ωg/∆a is the scat-
tering amplitude between laser and cavity mode, it is
proportional to the laser strength Ω and to the cavity
vacuum Rabi frequency g, which scale the interaction
between dipole and laser and between dipole and cavity,
respectively. Operator L[fN ] takes the form

S2L[fN ] =
∂fN
∂pi

∂V (x1, . . . , xN )

∂xi
(2a)

− S2
∑

i,j

∂

∂pi
Γ0 sin(kxi) sin(kxj)pjfN (2b)

+ S2
∑

i,j

∂2

∂pi∂pj
D0 sin(kxi) sin(kxj)fN (2c)

+ S2
∑

i,j

∂2

∂pj∂xi
η0 sin(kxi) sin(kxj)fN .

(2d)

Each line on the RHS of Eq. (2) has a physical mean-
ing. The first term describes the dynamics due to the

conservative potential

V (x1, . . . , xN ) =
~∆c

κ2 + ∆2
c

S2N2Θ(x1, . . . , xN )2 , (3)

where

Θ(x1, . . . , xN ) =
1

N

N∑

j=1

cos(kxj) , (4)

so that the potential mediates long-range interactions
between the atoms. Parameter 〈|Θ|〉N is the order pa-
rameter of self-organization, where 〈·〉N denotes the ex-
pectation value taken over the normalized distribution
fN . Specifically, when the atoms form Bragg grating,
then 〈|Θ|〉N → 1 and the potential depth is maximal.
When the atoms are instead uniformly distributed in
space, then 〈|Θ|〉N ' 0 and the potential vanishes. We
note that the Bragg gratings minimize the potential when
∆c < 0, otherwise the uniform distribution is energeti-
cally favoured. We will here denote 〈|Θ|〉N by magneti-
zation, due to the mapping of the self-organization tran-
sition to a ferromagnetic model [21].
For later convenience, we define the parameter

F0 = (~k)
2∆c

κ2 + ∆2
c

, (5)

such that V = F0(NSΘ)2/(2k).
The second term on the RHS, Eq. (2b), describes a

dissipative force and is scaled by the coefficient Γ0:

Γ0 = ωr
8∆cκ

(κ2 + ∆2
c)

2
. (6)

This term is due to non-adiabatic corrections in the dy-
namics of the cavity field.

Term in the line (2c) corresponds to diffusion due to
fluctuations of the cavity field associated with losses.
The diffusion matrix is the dyadic product of the vec-
tor (sin(kx1), ..., sin(kxN )) with itself and scales with the
coefficient

D0 = (~k)2 κ

κ2 + ∆2
c

. (7)

Therefore, beside the diffusion due to the diagonal ele-
ments, which is a single-particle effect, we also expect
that term (2c) establishes long-range correlations.

The last line (2d) contains cross-derivatives and scales
with the coefficient

η0 = 2~ωr
κ2 −∆2

c

(κ2 + ∆2
c)

2
, (8)

whose sign depends on whether the ratio |∆c/κ| is smaller
or larger than unity, while it vanishes for |∆c/κ| = 1.
An analogous term has also been reported in the semi-
classical description of cold atoms in optical lattices [36],
where it has been then neglected under the assumption
of uniform spatial densities. Such assumption cannot
be applied in the self-organized regime, nevertheless we
will show that this term can be consistently discarded in
the thermodynamic limit we apply, which warrants Kac’s
scaling [19].
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C. Mean-field ansatz

To derive a mean-field FPE we assume that the Wigner
function is factorized into single-particle distribution
functions according to the prescription

fN (x1, . . . , xN ; p1, . . . , pN ; t) =
N∏

i=1

f1(xi, pi; t) , (9)

where f1(xi, pi; t) denotes the distribution for the particle
i at time t and is thus defined on the phase space of
this particle. We use then Eq. (9) in the FPE (1) and
integrate out all particles’ variables but one. In this way
we derive the mean-field FPE, which reads

∂f1

∂t
= − ∂

∂x

p

m
f1 + S2L[f1] , (10)

and has same structure as the FPE in Eq. (1). Operator
L describes, as L, the mechanical effects of light. How-
ever, it is now a nonlinear operator of f1 and takes the
form

L[f1] =− ∂

∂p
F0 (cos(kx) + (N − 1)ΘMF[f1]) sin(kx)f1

(11a)

− ∂

∂p
Γ0 (sin(kx)p+ (N − 1)ΞMF[f1]) sin(kx)f1

(11b)

+
∂2

∂2p
D0 sin2(kx)f1 (11c)

+
∂2

∂p∂x
η0 sin2(kx)f1 , (11d)

where we have introduced the functionals

ΘMF[f1] =
1

λ

∫ λ

0

dx

∫ ∞

−∞
dp cos(kx)f1 , (12)

ΞMF[f1] =
1

λ

∫ λ

0

dx

∫ ∞

−∞
dp sin(kx)pf1 . (13)

The mean-field order parameter ΘMF is the expectation
value 〈cos(kx)〉, where 〈.〉 indicates the average taken
over the single-particle distribution function f1(x, p).
The terms on the RHS contained in lines (11a) and (11b)
have a different origin but a similar structure, which can
be recognized by analysing the form of the two summands
within the respective inner brackets. The first summand
in each line describes the interaction of the atom with it-
self, mediated by the cavity field. The second summand
in each line emerges from the interaction between the
atom and all other N − 1 atoms.

We further notice that the term in line (11a) can be
cast in terms of a conservative force originated from the
potential

V1[f1](x) =
F0

2k
S2
(
cos2(kx) + 2(N − 1)ΘMF[f1] cos(kx)

)

+
Γ0

k
(N − 1)S2ΞMF[f1] cos(kx) , (14)

and contains a term, whose corresponding term in Eq.
(1) has dissipative nature (see line (2b)). Using this re-
sult, we can rewrite Eq. (11) in the compact form

L[f1] =
∂V1

∂x

∂f1

∂p
− ∂

∂p

(
Γ0p−

∂

∂p
D0 −

∂

∂x
η0

)
sin2(kx)f1 ,

which allows us to simply read out the physical meaning
of the other terms, they are in fact the diagonal com-
ponent of friction, diffusion, and cross-derivative term in
Eq. (1).

III. STATIONARY STATE OF THE
MEAN-FIELD EQUATION

The stationary properties of the mean-field distribu-
tion are analysed by means of the single-particle distri-
bution fst(x, p) that solves Eq. (10) with

∂tfst(x, p) = 0 . (15)

In the following we determine fst(x, p) and then analyse
its predictions for relevant physical quantities.

A. Derivation of the steady state solution

In order to solve Eq. (15) we consider the ansatz

fst(x, p) = f0 exp(a(x) + b(p)) ,

where a(x) and b(p) are functions which only depend
on position and momentum, respectively, and f0 is the
normalization constant. Using this ansatz in Eq. (10)
we obtain differential equations for a(x) and b(p), whose
solutions read b(p) = −βp2/(2m) and

a(x) = (Y/2− 1) ln(1 + Z sin2(kx)) (16)

− (N − 1)YΘMF[fst]

√
Z

1 + Z
arctanh

(√
Z

1 + Z
cos(kx)

)
,

with Y = F0/(kη0), Z = βη0S
2, and

β = −Γ0m

D0
=

−4∆c

~ (κ2 + ∆2
c)
. (17)

Therefore,

fst(x, p) = F(cos kx) exp

(
−β p

2

2m

)
, (18)

with F(cos kx) = f0 exp(a(x)). Equation (18) describes
a thermal distribution provided that ∆c < 0: In this
limit parameter β, Eq. (17), plays the role of an inverse
temperature at steady state. This temperature coincides
with the value found by solving the steady state of the
N -body FPE, Eq. (1), as shown in Refs. [17, 21].
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We note that the function F(cos kx) depends on
ΘMF[fst], which leads to the fixed-point equation

ΘMF ≡ 〈cos(kx)〉 =

√
2πm

β

1

λ

∫ λ

0

dx cos(kx)F(cos kx) .

(19)

Its solution is in general not transparent, but it gets sim-
pler in an appropriately defined thermodynamic limit.
This consists in scaling the coupling strength g ∼ 1/

√
N

as the number of atoms is increased, leading to the scal-
ing relation S ∝ 1/

√
N [37, 38]. In this limit function

a(x), Eq. (16), can be cast into the form

a(x) = 2
n̄

n̄c
ΘMF cos(kx) (20)

with

n̄ =
NS2

κ2 + ∆2
c

, (21)

and

n̄c =
κ2 + ∆2

c

4∆2
c

. (22)

This leads to a compact form of the stationary distribu-
tion in the mean-field limit:

fst(x, p) = f0 exp

(
−β
(
p2

2m
+ ~∆cn̄ΘMF cos(kx)

))
,

(23)

with

f−1
0 =

√
2mπ

β
I0

(
2
n̄

n̄c
ΘMF

)
,

and Ij is the modified Bessel function of j-th order [39].
We thus see that in the thermodynamic limit the effect

of the cross derivatives vanishes. For finite N , parameter
η0 is small but finite and in the stationary state it gives
rise to a correction to the effective potential term, as
visible in Eq. (16).

B. Stationary properties in the thermodynamic
limit

The mean-field distribution, Eq. (23), allows one to
analytically determine several properties of the steady
state. First, functional ΘMF in the exponent has to be
determined self-consistently. Using Eq. (20) in Eq. (19)
gives the relation

ΘMF = q

(
2
n̄

n̄c
ΘMF

)
, (24)

where q is the function of the form

q

(
2
n̄

n̄c
ζ

)
=
I1

(
2 n̄
n̄c
ζ
)

I0

(
2 n̄
n̄c
ζ
) , (25)

FIG. 2: (Color online) Onset: Plot of q(2n̄ζ/n̄c), Eq. (25), as
a function of ζ and for different values of n̄. The intersection
points with the curve y = ζ (dashed line) give the solutions of
Eq. (24). Stable points are at the crossing where q′ < n̄c/(2n̄)
and are the equilibrium values of the order parameter ΘMF.
Inset: The resulting stable solution Θ̄ ≥ 0 as a function of n̄
(in units of n̄c).

and is plotted in Fig. 2 for values of n̄ below, at, and
above n̄c. The solutions of Eq. (24) are the crossing
between the curve y = ζ and y = q (2n̄ζ/n̄c), see Eq.
(25). For n̄ < n̄c this equation allows for one solution,
corresponding to ΘMF = 0. For n̄ > n̄c, the solutions
are three, of which two are stable and one is unstable.
The stable solutions give ΘMF = ±Θ̄, with 0 ≤ Θ̄ < 1,
and correspond to the self-organized state. Close, but
above, the critical point the value Θ̄ can be analytically
determined and reads

Θ̄ =
√

2(n̄/n̄c − 1) . (26)

The value n̄ = n̄c, with n̄c defined in Eq. (22), deter-
mines hence a critical point, at which the transition to
self-organization occurs, and is controlled by the detun-
ing from the cavity field and the cavity loss rate, for the
thermodynamic limit we chose. The results we obtained
so far for the stationary mean-field distribution are in full
agreement with the ones found for the stationary distri-
bution of Eq. (1), see Ref. [21]. The stationary mean-
field distribution in Eq. (23) corresponds to the one that
is found from the stationary N -particle distribution after
integrating out the other N − 1 position and momentum
variables, and then taking the thermodynamic limit. The
equation for the order parameter, Eq. (24), agrees with
the one obtained for the N -particle case and obtained by
means of a saddle-point approximation. This agreement
is found also for the critical value of Eq. (22) and for the
temperature of Eq. (17). Hence, the mean-field model
predicts the same phase diagram as the N -body FPE.

It is also instructive to consider the value of the bunch-
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ing parameter B as a function of n̄. This is defined as

B =
〈
cos2(kx)

〉
, (27)

and gives a measure of localization of the particles at the
minima of the mechanical potential [21, 25]. Using Eq.
(20) we obtain

B =

{
1/2 , n̄ ≤ n̄c,
1− n̄c/(2n̄) , n̄ > n̄c ,

(28)

in the stationary state. Therefore, below threshold the
atoms are uniformly distributed, while above threshold
they increasingly localize at the minima of the Bragg po-
tential. In particular, when the atoms are tightly-bound
at the minima, the above-threshold expression in Eq.
(28) delivers the amplitude of the fluctuations, namely,

k2〈x2〉 ≈ n̄c
2n̄

, (29)

showing that these are inversely proportional to the laser
intensity.

C. Comparison with existing literature

The results obtained so far by means of the mean-field
model show a remarkable agreement with the predictions
of the stationary solution of the N -particle FPE, Eq. (1).
It is further worthwhile to compare the results here de-
rived with the results obtained in the literature by means
of different approaches.

We first discuss Ref. [25], where, amongst other stud-
ies, a mean-field approach is developed based on plausible
conjectures. Here, the mean-field potential is calculated
and the threshold of self-organization is determined by
(i) assuming that the stationary state is thermal, with
temperature given by the linewidth of the cavity, and (ii)
performing a stability analysis of the uniform density dis-
tribution. By means of this study a threshold value for
self-organization is identified, which agrees with the pre-
diction in Eq. (22), as it becomes evident after defining
the threshold amplitude Sc such that

NS2
c

∆2
c + κ2

≡ n̄c .

In particular, the quantity η∗ in [25] is in our notations
Sc∆a/g calculated for the case ∆c = −κ.

The stationary state of self-organization has been first
derived in the following works [26, 27] by means of a FPE
as a function of the atomic and field variables. This de-
scription assumes that the field fluctuations are small,
and thus cannot reliably reproduce the field correlation
functions below and at threshold. It predicts, neverthe-
less, that the atoms steady state is thermal and its tem-
perature coincides with the inverse of Eq. (17), apart
for corrections of the order ωr/κ, that are systematically

neglected in our approach because they are of higher or-
der. It further predicts the same behaviour of the order
parameter as in Eq. (26) above, but close, to threshold.

It is also interesting to compare our results with a
series of other theoretical studies, which focus on self-
organization of ultracold atomic ensembles in cavities but
discard retardation effects: In these works only the con-
servative part of the cavity potential is considered, while
the temperature at steady state is due to the coupling
to an external heat bath [15, 28–33]. Even though the
conditions seem quite different from our case, remarkable
agreement is found in the appropriate limits. References
[15, 29] analyse the self-organization transition of an ul-
tracold gas of bosonic atoms and derive the mapping to
the Dicke model. Here, the recoil energy plays an anal-
ogous role as the temperature, and the threshold which
is derived agrees with the threshold in Eq. (22) after
setting

NS2
c =

1

β

κ2 + ∆2
c

−∆c
, (30)

with β = 4/~ωr. By means of this prescription, the
threshold also agrees with the one calculated in Ref. [28].
Furthermore, it also coincides with the one evaluated in
Ref. [33] when using the Boltzmann distribution for the
atoms statistics.
Another quantity which has been determined in these
works is the photon flux, which corresponds to the intra-
cavity photon number in our treatment. In Refs. [28–
31] the photon flux scales as 1/|n̄− n̄c| below threshold,

while at threshold it diverges as
√
N . These predictions

are in perfect agreement with the results we find tak-
ing the stationary distribution of Eq. (1), see Appendix
A, Eqs. (A4) and (A5). In particular, the intracavity
photon number at threshold, Eq. (A5), coincides with
the one calculated in Ref. [28] after substituting in their
equation ωz = (ω2

0 + κ2)/ω0 for the temperature, with
ω0 = −∆c. The result for the intensity-intensity correla-
tions at zero-time delay and below threshold, Eq. (A11),
further agrees with the result derived in Ref. [30, 31].

IV. MEAN-FIELD DYNAMICS

We now study the dynamics predicted by the mean-
field FPE. We focus on the Vlasov equation, which we
derive from Eq. (10) by taking the thermodynamic limit,
according to our prescription. The Vlasov equation for
our problem reads

∂f1

∂t
+

p

m

∂f1

∂x1
− ∂V0[f1](x)

∂x

∂f1

∂p
= 0 (31)

with

V0[f1](x) =2~∆cn̄ cos(kx)ΘMF[f1]

− ~2k

m
n̄βκ cos(kx)ΞMF[f1] , (32)
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and it corresponds to the potential in Eq. (14) after ne-
glecting the self-reaction term, which is of order 1/N .
Therefore, the validity of the predictions we will extract
are limited to sufficiently short time scales for which the
corrections can be discarded. We will quantify this state-
ment in the next section.

A. Preliminary considerations: energy conservation

We first analyse whether Eq. (31) warrants energy
conservation. We consider a class of functions for which
ΞMF[f1] = 0. This includes the stationary solution of Eq.
(23). For these solutions, the energy of one particle takes
the form

ε(t) =

〈
p2
〉

2m
+ ~∆cn̄Θ2

MF . (33)

In order to determine ε̇(t) we thus calculate Θ̇MF and
˙〈p2〉. This gives

Θ̇MF = − k
m

ΞMF ,

˙〈p2〉
2m

= 2
~
m
n̄ (k∆cΘMF − ωrκβΞMF) ΞMF ,

and therefore we get for the derivative of the energy

ε̇ = −2
~
m
n̄ωrκβΞ2

MF .

These derivatives hence vanish when ΞMF = 0, and thus
for the class of distribution fulfilling this condition, en-
ergy, with the potential term given in Eq. (33), is con-
served. Fluctuations, on the other hand, can give rise to
finite values of ΞMF. The purpose of the next section is
to analyse the stability and short-time dynamics of solu-
tions of the Vlasov equation, Eq. (31), after quenches of
the laser parameters.

B. Stability analysis of spatially homogeneous
distributions

We now analyse the short-time dynamics described
by Eq. (31), assuming that at t = 0 the distribu-

tion is thermal and with uniform spatial density, thus
f1(x, p, 0) = f1(p, 0) and ΘMF|t=0− = 0, with

f1(p, 0) =

(
2mπ

β0

)− 1
2

exp

(
−β0

p2

2m

)
, (34)

where β0 is the inverse temperature. This distribution
is a stable solution of the Vlasov equation after setting
n̄ = 0. At t = 0 the laser strength is quenched above
threshold so that parameter n̄ takes a finite value larger
than n̄c. We then let evolve the distribution of Eq. (34)
by taking this value n̄ in Eq. (31). Figure 3 shows the
results of the numerical integration of Eq. (31) for dif-
ferent value of n̄. We analyse these results, keeping in
mind that they are strictly valid for short times since the
Vlasov equation discards effects, such as diffusion, which
are crucial in determining the stationary state. In (a) the
order parameter evolves from 0 to a finite value, about
which it oscillates. This value is smaller than the one pre-
dicted by the stationary solution of the mean-field FPE.
It is reached after an initial dynamics characterized by
an exponential increase, whose slope is steeper the larger
is n̄. Subplots (b) and (c) display the corresponding evo-
lution of the quantities Ξ2

MF, see Eq. (13). This quantity
emerges from the retardation effects of the dynamics, it is
thus a signature of memory effects, and mathematically
corresponds to the build up correlations between momen-
tum and position that cannot be factorized. The initial
distribution, Eq. (34), is chosen so that ΞMF = 0, and
we observe that the dynamics give rise to a build up of
a finite value of Ξ2

MF, with an exponential increase that
leads to a maximum where the curve for ΘMF reaches the
plateau. Then, it oscillates like ΘMF (one can well under-
stand the behaviour of these oscillations observing that
ΞMF is proportional to the time derivative of ΘMF) and
is exponentially damped to zero. In the initial phase, the
exponential growth of Ξ2

MF increases with n̄, similarly in
the second phase of the dynamics, where ΘMF oscillates
about a finite mean value, the amplitude of the oscilla-
tions of Ξ2

MF are also larger the larger is n̄.

We now analyse the initial exponential increase, which is in the regime where the Vlasov equation is a reliable
approximation to the full dynamics, as we also verified in Ref. [24]. In order to do so, we use a standard procedure,
which is also detailed in Ref. [19, 40]. For short times t after the quench, we write the distribution as

f1(x, p, t) = f1(p, 0) + δf1(x, p, t) , (35)

where δf1 describes small fluctuations which can be due to the finite size of the system, and thus scale with 1/
√
N .

Using Eq. (35) into the Vlasov equation (31) and neglecting the terms of order 1/N we obtain the linearized Vlasov
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FIG. 3: (Color online) Time evolution of (a) the order parameter ΘMF, Eq. (12), and (b)-(c) parameter Ξ2
MF, Eq. (13),

calculated by numerical integration of the Vlasov equation (31) for different values of n̄ and for ∆c = −κ. The initial
distribution is given in Eq. (34) with β0 = 2/(~κ).

equation

∂δf1

∂t
+

p

m

∂δf1

∂x
− ∂δV

∂x

∂f1(p, 0)

∂p
= 0 , (36)

where δV = V [δf1(x, p, t)] and we dropped the argument of function δf1. We seek for solutions of Eq. (36) by means
of the ansatz of Fourier waves with frequency ω and wave number k:

δf1 = g1(p)ei(ωt−kx) + g−1(p)ei(ωt+kx), (37)

δV = 2A cos(kx)eiωt , (38)

where A ∝ 1/
√
N is some constant and the amplitudes g1(p) and g−1(p) are sole functions of the momentum p. The

dispersion relation ω = ω(k) can be derived after using Eqs. (37) and (38) in the linearized Vlasov equation, Eq.
(36). By equating the coefficients of exp(ikx) and exp(−ikx) we get expressions for the functions g1(p) and g−1(p).
With those expressions one finds the dispersion relation by using the definition δV = V [δf1] and Eqs. (32) and (38):

0 = 1 +

(
~∆c + i

~κ
2
~ωβ

)
n̄

1

2

∫ ∞

−∞
dp

(
−k

pk
m + ω

+
−k

pk
m − ω

)
∂pf1(p, 0) . (39)

This relation holds for any initial distribution that describes a uniform spatial density. We now use the Gaussian
distribution in Eq. (34) and obtain

0 = 1 +

(
~∆c + i

~κ
2
~ωβ

)
n̄β0

(
1− ā exp(−ā2)

(
i
√
π − 2

∫ ā

0

du exp(u2)

))
, (40)

where we defined ā =
√
β0/(2m)(mω/k). We then introduce b̄ = iā and

γ = iω ,

and cast Eq. (40) into the form:

0 = 1 +

(
~∆c +

~κ
2
~γβ

)
n̄β0

(
1− b̄ exp

(
b̄2
)
(
√
π −

∫ b̄

−b̄
du exp(−u2)

))
, (41)

where b̄ ∝ γ. It can be shown that parameter γ, which
solves Eq. (41), is a real number. Therefore, ω is an
imaginary number. In particular, if γ < 0 both Eqs. (37)
and (38) describe fluctuations which are exponentially
damped and therefore f1(x, p, t) will tend to the initial

distribution, which is stable. If instead the solution of
Eq. (40) gives γ > 0, the initial distribution is unstable
against fluctuations. The value γ = 0 separates the two
regimes. After setting γ = 0 in Eq. (41) we thus get the
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FIG. 4: (Color online) Slope γ of the initial increase of ΘMF.
The dots are extracted by fitting the curve obtained from
the numerical simulations in Fig. 3, the dashed line is the
value predicted by Eq. (43), which well agrees with Eq. (41)
(solid line). For these parameters the threshold for the Vlasov
stability, Eq. (42), reads 1 = n̄/n̄c.

critical condition

1 = −~∆cn̄β0 , (42)

which connects ∆c, n̄, and the initial temperature 1/β0,
which is an external parameter. If β0 coincides with the
value in Eq. (17), then Eq. (42) corresponds to the
same relation as in Eq. (22), which defines the critical
value of n̄ for self-organization. For the values of the
parameters, for which γ > 0, the uniform distribution is
unstable and tends to form a grating at the wave vector k
of the resonator with exponential increase, giving rise to
a violent relaxation. Parameter γ gives the rate at which
the amplitude of this density modulation grows.

Figure 4 compares the value of γ extracted by fitting
the exponential increase of ΘMF in the first phase of the
dynamics of Fig. 3 and for different values of n̄, with the
one determined by Eq. (41), showing very good agree-
ment. In particular, we note that in the limit |∆c| � |γ|
Eq. (41) can be reduced to the form [41]

γ = ω0 (1− pχ)
ln
(

χ
1.135

)
− ln (1− pχ)

1.4 (1− pχ) + ~κβω0/(2|∆c|)
, (43)

with χ = ~|∆c|n̄β0 = (n̄/n̄c)(β0/β), ω0 =
√

2ωr/(~β0)
and p = 27/227.

V. VALIDITY OF THE MEAN-FIELD ANSATZ

The mean-field treatment is based on the assumption
that the distribution function for the N particle can be
approximated by the product of the single-particle dis-
tribution. This ansatz thus discards interparticle cor-
relations which emerge from the photon-mediated inter-
actions: the factorized ansatz is very different from the

form of the distributions one obtains from the full N -
particle FPE [17, 21]. Nevertheless, the assumption still
captures essential features of the short-time dynamics of
distributions, which have initially the form of Eq. (9).
We will follow the procedure illustrated in Ref. [19, 42]
and study the validity of the mean-field ansatz within a
BBGKY hierarchy, which we derive from the N -particle
FPE, Eq. (1). We will particularly focus on the dynamics
of two-particle correlations and determine the character-
istic time scale of their dynamics.
For convenience, we introduce the vectors x =
(x1, ..., xN )T and p = (p1, ..., pN )T , and define
fN (x;p; t) ≡ fN (x1, ..., xN ; p1, ..., pN ; t).

A. BBGKY hierarchy of the photon-mediated
Fokker-Planck equation

For the derivation of the BBGKY hierarchy we assume
that the energy of the system is finite. This corresponds
to assume that the limit holds:

lim
|p|→∞

fN (x;p; t) = 0, (44)

where |p| =
√∑N

i=1 p
2
i , and that expectation values of all

moments exist. Furthermore fN is periodic with wave-
length λ in every xi, which implies

fN (x + λz;p; t) = fN (x;p; t), (45)

for every z ∈ ZN . Distribution function fN is invariant
under particle exchange, which we can express by means
of the permutation matrix P, such that:

fN (Px;Pp; t) = fN (x;p; t), (46)

where each row and column of P contain only one entry
different from zero and equal to 1.
In order to derive the BBGKY hierarchy of the FPE in
Eq. (1) we first define the l-particle distribution function:

fl =

∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 . . .

∫ λ

0

dxN
λ

∫ ∞

−∞
dpNfN ,

(47)

where fl inherits the three properties in Eqs. (44), (45)
and (46) from fN . Index l takes the value l = 1, . . . , N ,
such that for l = 1 the distribution fl is the single-particle
phase-space function, and for l = N it describes the N
particle state. The evolution of fl is found from Eq. (1)
after integrating out the other N − l particle variables,
and can be cast in the form

∂fl
∂t

=

l∑

j=1

(
L(l)
j fl + G(l)

j [fl+1]
)
, (48)
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FIG. 5: Illustration of the order of magnitude of the correc-
tions of the Vlasov and of the Lenard-Balescu equations, and
of which type of correlations they include.

where the first operator on the RHS solely depends on
the variables of the l particles and reads

L(l)
j fl = − ∂

∂xj

pj
m
fl (49)

−S2 ∂

∂pj

l∑

i=1

(F0 cos(kxi) + Γ0 sin(kxi)pi) sin(kxj)fl

+S2 ∂

∂pj

l∑

i=1

(
D0

∂

∂pi
+ η0

∂

∂xi

)
sin(kxi) sin(kxj)fl .

The second operator, instead, depends nonlinearly on the
(l+ 1)-particle distribution function. This term vanishes
when l = N , while for l < N it describes the dynamics
of correlations, which are established by the interparticle
potential. It reads

G(l)
j [fl+1] = −S2(N − l) ∂

∂pj
sin(kxj)

× (F0Θl[fl+1] + Γ0Ξl[fl+1]) , (50)

where

Θl[fl+1] =

∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 cos(kxl+1)fl+1 (51)

Ξl[fl+1] =

∫ λ

0

dxl+1

λ

∫ ∞

−∞
dpl+1 sin(kxl+1)pl+1fl+1 ,

(52)

while Θ0[f1] = ΘMF and Ξ0[f1] = ΞMF. Note that when
the factorization ansatz of Eq. (9) holds, then Θ1[f2] =
ΘMFf1 and Ξ1[f2] = ΞMFf1. A closed set of equations
for fl can be thus strictly obtained for l = N , giving Eq.
(1), or for S = 0, hence in absence of the cavity field.

B. The Lenard-Balescu equation

For l = 2 we can generally decompose the distribution
function into two terms:

f2(x1, x2, p1, p2) = f1(x1, p1)f1(x2, p2) + g2(x1, x2, p1, p2) ,
(53)

where the first term on the RHS is the mean-field term
and the second term describes all corrections beyond
mean field. When at t = 0 the distribution function
is factorized in a form like Eq. (9), the dynamics beyond
mean field will tend to build correlations which are de-
scribed by g2. We obtain the mean-field FPE, Eq. (10)

by performing the approximation G(1)
1 [f2] → G(0)

1 [f1]f1.
In the following we analyse the regime in which this ap-
proximation is justified by studying the equation describ-
ing the evolution of the function g2 under some approx-
imation, which permits us to truncate the BBGKY hi-
erarchy till second order. This equation is known in the
literature as Lenard-Balescu equation [19], and it will
allow us to identify a time-scale where the mean-field
treatment provides reliable predictions.

In order to derive the Lenard-Balescu equation we first consider the distribution function for l = 3. Using the same
type of decomposition as in Eq. (53), this can be written as

f3(x1, x2, x3, p1, p2, p3) = f1(x1, p1)f1(x2, p2)f1(x3, p3)

+

3∑

i,j,k=1

|εijk|f1(xi, pi)g2(xj , pj , xk, pk)

+ g3(x1, x2, x3, p1, p2, p3),

where εijk is the Levi-Civita tensor and g3 describes all three-body correlations which cannot be written as a function
of f1 and/or f2. We assume now that g3 is of higher order (from the treatment below we will see that g3 ∝ 1/N2)
and drop g3 in the equation describing the dynamics of f2, Eq. (48). By means of this assumption we obtain two
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coupled equations for f1 and f2, which can be then cast into the Lenard-Balescu equations for f1 and g2 using Eq.
(53) and which read

∂f1

∂t
=L(1)f1 + G(1)[f1]f1 + G(1)[g2] (54a)

∂g2

∂t
=− ∂

∂x1

p2

m
g2 −

∂

∂x2

p1

m
g2 (54b)

− S2
2∑

j=1

∑

i 6=j

∂

∂pj
F0 sin(kxj) (cos(kxi)−ΘMF[f1]) f1f1

− S2
2∑

j=1

∑

i 6=j

∂

∂pj
Γ0 sin(kxj) (sin(kxi)pi − ΞMF[f1]) f1f1

+ S2
2∑

j=1

∑

i 6=j

∂

∂pj
sin(kxj)

(
D0

∂

∂pi
+ η0

∂

∂xi

)
sin(kxi)f1f1

−NS2F0

2∑

j=1

∑

i 6=j

∂

∂pj
sin(kxj) (Θ1[g2]if1(xj , pj) + ΘMF[f1]g2)

−NS2Γ0

2∑

j=1

∑

i 6=j

∂

∂pj
sin(kxj) (Ξ1[g2]if1(xj , pj) + ΞMF[f1]g2) ,

where we specified the arguments when necessary, and introduced the notation Θ1[g2]i and Ξ1[g2]i to indicate that
these are functions of (xi, pi).

The validity of the mean-field FPE, Eq. (10), relies on whether one can discard term G(1)[g2] in the RHS of Eq.
(54a). Let us recall the thermodynamic limit for which S2 ∼ 1/N . If we now assume that g2 is of order 1/N with
respect to f1, then the term G(1)[g2] is of order 1/N with respect to G(1)[f1]f1. A detailed analysis of Eq. (54b) shows
that, if g2 ∼ 1/N at t = 0, this scaling is preserved by the dynamics. In fact, (i) the first line on the RHS of Eq. (54b)
gives a scaling with 1/N because it is proportional to g2, while all other quantities are independent of N , (ii) the second,
third, and fourth lines are all proportional to S2 ∼ 1/N , (iii) the last two lines scale with NS2g2 ∼ 1/N . Therefore,
for sufficiently short times the contribution of g2 to the dynamics in the mean-field equation can be neglected.

We note that in Eq. (54a) the term L(1)f1 has also components which scale with 1/N . If one consistently neglects
all terms scaling with 1/N , then Eq. (54a) reduces to the Vlasov equation, Eq. (31), and therefore also neglects the
diffusion processes leading to equilibrium. Figure 5 illustrates the order of magnitude of the corrections to the Vlasov
and Lenard-Balescu equations, as well as the type of correlations that these describe.

C. Mean-Field versus full N-atom dynamics

In order to complete our analysis of the limits of valid-
ity of the mean-field ansatz, we now compare its predic-
tions with the ones obtained by numerical simulations of
the N -particle FPE of Eq. (1). The latter are performed
by means of stochastic differential equations (see Refs.
[21, 22] for details). We focus now on the evolution of
the expectation value of Θ2, which explicitly depends on
two-particle correlations and scales the strength of the
conservative many-body potential. We recall the defi-
nition 〈.〉N in order to indicate the mean value of a N -
particle observable taken over the N -particle distribution
fN .
Figure 6 compares the N -particle description where the
evolution of fN is governed by FPE (1) (solid line)
and the mean-field description, where fN (x;p; t) =
f1(x1, p1; t)...f1(xN , pN ; t) and the evolution of f1 is gov-
erned by the mean-field FPE (10) (dashed-dotted line).

The curves are plotted as a function of time and for dif-
ferent particle numbers, N = 20, 50, 200, where the pa-
rameter S2 has been rescaled according to our thermo-
dynamic limit so to warrant a threshold n̄c which is inde-
pendent on N . The parameters have been fixed so that
initially the distribution is spatially uniform, while the
momentum distribution is a Gaussian whose width coin-
cides with the asymptotic temperature of the dynamics,
Eq. (17). The strength of the field is such that n̄ = 2n̄c,
therefore the asymptotic spatial distribution is a Bragg
grating with |ΘMF| ∼ 0.83. The dynamics we observe is
the one which leads to the formation of the Bragg grat-
ings starting from a uniform spatial distribution, and ex-
hibit three stages, which have been extensively discussed
in Ref. [24]: a violent relaxation, a prethermalized phase,
and a slow approach to equilibrium. The solid lines are
simulations of the full FPE, the dashed-dotted lines the
corresponding mean-field prediction, which indeed qual-
itatively reproduces the three-stage dynamics.

The violent relaxation is a stage of the dynamics where
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FIG. 6: (Color online) Time evolution of the squared order pa-
rameter evaluated by numerically simulating (dashed-dotted
lines) the mean-field FPE, Eq. (10) and (solid lines) the N -
particle FPE of Eq. (1). The curves correspond to different
particle numbers N = 20 (brown, upper two curves), N = 50
(green, middle two curves) and N = 200 (blue, lower two
curves) and are calculated taking ∆c = −κ and n̄ = 2n̄c.
The number T of trajectories taken for the N -body FPE is
T = 1000 for N = 20, T = 500 for N = 50, T = 100
for N = 200 (see Ref. [21, 22] for details on the simula-
tions). The horizontal dotted line indicates the asymptotic
value of the squared order parameter. The inset shows the
curves of the onset with the time axis rescaled by N . Note
that the initial distribution of the full N -body FPE is the
one which statistically corresponds to a spatially uniform dis-
tribution with the same temperature as the asymptotic one.
Therefore, the value of 〈Θ2〉N at t = 0 does not vanish due
to finite size effects. In order to compare these dynamics
with the mean-field FPE, we have taken into account these
finite-size effects in the initial mean-field distribution given
by f̃0(x, p) = (1 + δN cos(kx))f1(p, 0) where f1 is given in Eq.
(34) and δN is a spatial modulation depending on N .

there is a good agreement between mean-field and N -
body FPE. This is the short-time regime where the
Vlasov equation, Eq. (31), is valid, and the behaviour of
the N -body FPE is reproduced by the one observed nu-
merically integrating the Vlasov equation, see Fig. 3(a).
This has been also verified in Ref. [24]. The prether-
malized regime is also predicted by the Vlasov equation,
see Fig. 3(a). The mean-field FPE, however, provides a
more accurate description and qualitatively reproduces
the N -body FPE. Nevertheless, a clear difference be-
tween mean-field and N -body dynamics is found at the
onset of the prethermalized stage: In fact, the oscilla-
tions are damped at a faster rate in the N -body FPE.
Apart from this difference, there is a qualitative agree-
ment between mean-field and N -body FPE also for this
stage.

While both mean-field and N -body FPE agree in the
asymptotic value, we observe a striking difference be-
tween the two results in the relaxation to equilibrium

after prethermalization. This is the stage where the role
of dissipation and diffusion becomes relevant, as shown
in Ref. [24] by comparing this behaviour with the one,
where the dynamics is only due to the Hamiltonian term.
In particular, the relaxation time scale predicted by the
full simulation is about one-order of magnitude longer
than the corresponding mean-field prediction. This be-
comes even more evident by plotting the curves rescaling
the time axis with N , as visible in the inset. The curves
of the mean-field FPE collapse to one curve, whereby
the ones of the N -body FPE collapse to a significantly
different curve.

Let us now summarize these results. First, the short
time behaviour of the fluctuations of the order param-
eter are well described by the mean-field equation, and
in particular by the Vlasov equation. This is well un-
derstood in terms of the typical contributions to the dy-
namics: For short times the dominant contributions are
indeed the terms of Eq. (31) and interparticle correla-
tions are small, as we argued in the previous section.
Discrepancies are due to finite size effects. The prether-
malized regime, moreover, exhibits a good agreement be-
tween mean-field and full dynamics. This regime is domi-
nated by the Hamiltonian dynamics, and the results show
that Hamiltonian dynamics with long-range interactions
is well reproduced by the mean-field description. Big de-
viations instead appear for long times, where the mean
field ansatz is expected to fail and at the time scales
dominated by relaxation to the stationary state.

VI. CONCLUSIONS

In this work we have systematically developed a mean-
field description of the self-organization dynamics of
atoms in a high-finesse cavity. The predictions of the
mean-field model have been explored at equilibrium and
out-of-equilibrium, its limits of validity have been tested
by comparing them with the ones of the N -body FPE.
We have found that the mean-field equation provides
an excellent description of the dynamics when this is
prevailingly Hamiltonian. It further describes the equi-
librium properties of single-particle observables, includ-
ing the asymptotic temperature and the order parame-
ter. It fails, however, to reproduce the long-time out-of-
equilibrium dynamics.

Despite these differences, this analysis shows that from
the mean-field model one can analytically extract sev-
eral predictions on the system dynamics. It is indeed
remarkable that several predictions reproduce in the cor-
responding limits the ones obtained by means of other
theoretical treatments, some of which start from a fully
quantum mechanical treatment for the atoms. This on
the one hand leads us to conjecture that quantum fluc-
tuations play a marginal role in determining the steady
state properties of the cavity field. It further urges one to
develop a full quantum kinetic theory, analogous to the
full N -body semiclassical theory, which shall overcome
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all limitations of simplifying theoretical assumptions per-
formed so far. Only such a model, in fact, can give full
access to the dynamical interplay between matter waves
and cavity photons.
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Appendix A: Cavity field correlation function at
steady state

Experimentally accessible quantities are the correla-
tion functions of the field at the cavity output, which al-
lows one to monitor the atoms state and is proportional
to the intracavity field. In our formalism, the intracavity
field is closely connected to the atomic state by the rela-
tion Ecav ∝

√
Nn̄Θ, therefore the correlation functions of

the cavity field are proportional to the correlation func-
tions of the magnetization Θ [21, 22]. In the following we
determine the autocorrelation function of the magnetiza-
tion, which can be detected by means of the first-order
correlation function of the field, and the fourth-moment
of the magnetization 〈Θ4〉N . As we showed in Ref. [21],
in fact, 〈Θ4〉N delivers the value of the intensity-intensity
correlation of the field at zero-time delay and at zero or-
der in the retardation effects.

1. Field intensity across the transition

We first determine the intracavity photon number ncav

at steady state for n̄ below, at, and above threshold. For
this purpose we use the relation [21, 22]

ncav = Nn̄〈Θ2〉N , (A1)

which, by introducing α = n̄/n̄c, can be cast in the form
(see also the Appendix A 3)

ncav =
1

2
n̄c + n̄

∂

∂α
G(α) , (A2)

where

G(α) = ln

(∫ ∞

−∞
dy exp

[
−N

(
αy2 − ln(I0(2αy))

)])
.

(A3)
We then analyse the prediction of this expression close to
threshold, for n̄ ∼ n̄c and thus α ∼ 1. For this purpose
we expand the exponent of G(α) about the value y = 0
and consider the behaviour of ncav for α → 1−, hence
for n̄ < n̄c but sufficiently close to the transition point,

so that the truncation of the expansion is valid. In this
limit we find

ncav ≈
n̄2
c/2

n̄c − n̄
, (A4)

where the details of the derivation are reported in the
Appendix A 3. The value at the transition point is re-
ported at leading order in N and reads (see Appendix
A 3):

ncav ≈ 2
√
Nn̄c

Γ
[

3
4

]

Γ
[

1
4

] , (A5)

where Γ[x] denotes the Gamma function [39].
The value of the intracavity photon number above

threshold is found after observing that the exponent of
function G(α) has two minima that are given by the
non vanishing solutions of the fixed-point equation (24),
which we denote by ΘMF = ±Θ̄, with Θ̄ given in Eq.
(26). Therefore it holds

ncav = Nn̄Θ̄2 ≈ 2N(n̄− n̄c) ,
sufficiently close to the critical point. In particular,
the mean number of photons increases linearly with
n̄. We analyse now some properties of the first order
correlation function of the intracavity field, g(1)(τ) =
limt→∞Re〈Ecav(t+ τ)Ecav(t)〉N . This function has been
extensively studied in Ref. [21] by numerically solving
the N -particle FPE. Here, we will use the mean-field
ansatz in order to better understand the two sidebands
of its Fourier transform, at which it exhibits maxima
above threshold. For this purpose we first notice that
the correlation function is proportional to the autocorre-
lation function C(τ) of the magnetization by the relation
g(1)(τ) = Nn̄C(τ), and

C(τ) = lim
t→∞
〈Θ(t)Θ(t+ τ)〉N . (A6)

We want to derive C(τ) in mean-field and hence the mean
value has now to be taken over the factorized distribution
as in Eq. (9) with the stationary mean-field distribution
given in Eq. (23). We calculate C(τ) by solving the
equations of the mathematical pendulum

ẋ =
p

m
ṗ = 2~k∆cn̄Θ̄ sin(kx) , (A7)

with initial conditions x(0) = x0 and p(0) = p0. The
value Θ̄ is here the positive stable solution of Eq. (24).
In the limit of small oscillations, these equations describe
harmonic motion at the frequency

ω0 =
√
−4ωr∆cn̄Θ̄ . (A8)

The mean frequency, however, is the result of the possible
trajectories of the mathematical pendulum weighted by
the probability density function fst(x0, p0). For x0 6= 0
and p0 6= 0 the oscillation period results to be larger than
2π/ω0 and this prediction fits quite well the maximum
found numerically by integrating the coupled equations
of N particles, as shown in Fig. 7.
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FIG. 7: (Color online) Contour plot of the spectrum of the

autocorrelation function S̃(ω) as a function of n̄ and of the
frequency (in units of κ) evaluated from the numerical data
of Θ(x1, . . . , xN ), Eq. (4), by integrating the N -particle FPE,
Eq. (1), for 100 trajectories of N = 50 atoms, ∆c = −κ, and
evolution time ttot = 104κ−1, see Ref. [21]. The lines are an-
alytical estimates of the spectrum maximum for n̄ > n̄c. The
dashed line corresponds to the frequency of the correspond-
ing harmonic oscillator in Eq. (A8). The solid line is at the
frequency extracted by solving Eqs. (A7) for a mathematical
pendulum and in good agreement with the peaks position of
the numerically evaluated spectra.

2. Intensity-intensity correlations at zero-time
delay

The intensity-intensity correlation function at zero
time delay, g(2)(0), provides a direct measurement of the
fourth moment of the magnetization when retardation
effects are sufficiently small [21]:

g(2)(0) =
〈
Θ4
〉
N
/〈Θ2〉2N . (A9)

Above threshold 〈Θn〉N = Θ̄n + O(1/N), with Θ̄ the
solution of Eq. (24). Therefore, for n̄ > n̄c we obtain

g(2)(0)n̄>n̄c = 1 , (A10)

which corresponds to coherent light and is valid at lead-
ing order, with an error that scales with 1/N . In mean-
field for the factorized distribution, Eq. (9), we get

〈
Θ2
〉
N

=
1

N
B +

N − 1

N
Θ̄2

and

〈
Θ4
〉
N

=
N(N − 1)(N − 2)(N − 3)

N4
Θ̄4

+
6N(N − 1)(N − 2)

N4
Θ̄2B +

3N(N − 1)

N4
B2

+
4N(N − 1)

N4
Θ̄〈cos3(x)〉+

N

N4
〈cos4(x)〉.

Notice that above threshold for Θ̄ 6= 0 we can again write〈
Θ4
〉
N

= Θ̄4 +O(1/N). Hence we get the same value for

g(2)(0) = 1 (above threshold) in the thermodynamic limit
N →∞. Below threshold, in Appendix A 3 we show that
the expression takes the value

g(2)(0)n̄<n̄c
= 3 , (A11)

which corresponds to super-Poissonian light. Corrections
scale with 1/N . The same holds for the calculation with
the factorized ansatz. Below threshold we get

〈
Θ2
〉
N

=
1

N
B

and

〈
Θ4
〉
N

=
3

N2
B2 + O

(
1

N

)

and therefore the same value of g(2)(0) = 3 (below thresh-
old) as for the N -particle description. Finally, at thresh-
old we obtain

g(2)(0)n̄=n̄c ≈
1

4

(
Γ
[

1
4

]

Γ
[

3
4

]
)2

, (A12)

with corrections scaling with 1/
√
N , thus giving a slower

convergence than the one found for the values above and
below threshold. We want to mention here that the
mean-field description cannot reproduce the value in Eq.
(A12). Figure 8 displays the mean-field predictions for
the g(2)(0) at the thermodynamic limit and as a function
of n̄. These curves are compared with the mean-field cal-
culation at finite N and with the corresponding one of
the N -particle FPE. Even though the mean-field curve at
finite N is tendentially closer to the thermodynamic limit
than the N -particle FPE prediction, they both converge
to the values of Eqs. (A10), (A12) (A11), depending on
whether n̄ <,=, > n̄c, for N →∞.
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FIG. 8: (Color online) Intensity-intensity correlation function

at zero time delay g(2)(0), Eq. (A9), as a function of n̄ for (a)
N = 50 atoms and (b) N = 200 atoms. The solid blue (light
gray) lines are the curves evaluated using in Eq. (A9) the
mean-field steady state (23). The dashed lines are calculated
for the corresponding full N -particle distribution given in [17].
The horizontal black solid lines are the values at the thermo-
dynamic limit given at n̄ < n̄c by Eq. (A11) and at n̄ > n̄c by
Eq. (A10). The point at n̄ = n̄c is at the value of Eq. (A12).
The discrepancy between the mean-field curve and the full
N -particle predictions decreases as N →∞, where they both
converge to the value given by the thermodynamic limit.

3. Useful relations

In order to demonstrate Eq. (A2) we first consider the relation

∫ ∞

−∞
dy exp


−αN

(
y − 1

N

N∑

i=1

cos(kxi)

)2

 =

√
π

αN
,

and cast it into the form

∫ ∞

−∞
dye−αNy

2

exp

(
2αNy

1

N

N∑

i=1

cos(kxi)

)
=

√
π

αN
exp

(
αNΘ(x)2

)
.
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From these relations, it follows

ln

(
1

λN

∫
dx exp

(
αNΘ(x)2

))
=

1

2
ln

(
N

π
α

)
+ ln

(∫ ∞

−∞
dy exp

[
−N

(
αy2 − ln(I0(2αy))

)])
.

We use it for evaluating expression (A1) and obtain

ncav = n̄
∂

∂α
ln

(
1

λN

∫
dx exp

(
αNΘ(x)2

))
= n̄

(
1

2α
+

∂
∂α

∫∞
−∞ dy exp

[
−N

(
αy2 − ln(I0(2αy))

)]
∫∞
−∞ dy exp [−N (αy2 − ln(I0(2αy)))]

)
, (A13)

that leads to Eq. (A2) by using definition (A3).
In order to determine the intracavity photon number close to threshold, we expand the exponent of Eq. (A3) about

y = 0 till fourth order:

αy2 − ln(I0(2αy)) = α(1− α)y2 +
α4

4
y4 + O(y6) .

For n̄ < n̄c, the coefficient of the quadratic term is positive and we thus discard the fourth order term. Expression
(A2) takes the form

ncav ≈n̄
(

1

2α
+

∂
∂α

∫∞
−∞ dy exp

[
−Nα(1− α)y2

]
∫∞
−∞ dy exp [−Nα(1− α)y2]

)

=n̄

(
1

2α
+

2α− 1

2α(1− α)

)
=

n̄

2(1− α)
.

Using the explicit value of α, then

ncav =
n̄n̄c

2(n̄c − n̄)
≈ n̄2

c/2

n̄c − n̄
, (A14)

which thus gives Eq. (A4).
At the transition point n̄ = n̄c the integral in Eq. (A2) diverges in the limit N → ∞. We determine its value

for finite N , and keep the leading order. Moreover, since the coefficient of the quadratic term in the expansion in y
vanishes, we include the fourth order and evaluate the integral at α = 1, obtaining:

ncav ≈ n̄c
(

1

2
+

∫∞
−∞ dy

(
Ny2 −Ny4

)
exp

[
−N4 y4

]
∫∞
−∞ dy exp

[
−N4 y4

]
)
≈ n̄c

2
√
NΓ

[
3
4

]

Γ
[

1
4

] ,

which is the expression in Eq. (A5).
To calculate g(2)(0) below and at threshold we notice that

N2
〈
Θ4
〉
N
−N2

〈
Θ2
〉2
N

=
∂2

∂α2
ln

(
1

λN

∫
dx exp

(
αNΘ(x)2

))
= N

∂

∂α

〈
Θ2
〉
N

holds. Below threshold for α < 1 we calculated in leading order that

∂

∂α

1

2(1− α)
=

1

2(1− α)2
,

which then delivers expression

g(2)(0)n̄<n̄c =

1
2(1−α)2 + 1

4(1−α)2

1
4(1−α)2

= 3 ,

and thus Eq. (A11). In order to calculate the value at threshold we use

N2〈Θ4〉N −N2
〈
Θ2
〉2
N
≈N − 4N

(
Γ
[

3
4

]

Γ
[

1
4

]
)2

, (A15)

which is valid in leading order and which gives Eq. (A12).
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We theoretically characterize the semiclassical dynamics of an ensemble of atoms

after a sudden quench across a driven-dissipative second-order phase transition.
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long-range forces mediated by the photons of a single-mode cavity. These forces

can cool the motion and, above a threshold value of the laser intensity, induce

spatial ordering. We show that the relaxation dynamics following the quench
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exhibits a long prethermalizing behaviour which is �rst dominated by coherent

long-range forces, and then by their interplay with dissipation. Remarkably,

dissipation-assisted prethermalization is orders of magnitude longer than prether-

malization due to the coherent dynamics. We show that it is associated with the

creation of momentum-position correlations, which remain nonzero for even longer

times than mean-�eld predicts. This implies that cavity cooling of an atomic

ensemble into the selforganized phase can require longer time scales than the

typical experimental duration. In general, these results demonstrate that noise and

dissipation can substantially slow down the onset of thermalization in long-range

interacting many-body systems.
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We theoretically characterize the semiclassical dynamics of an ensemble of atoms after a sudden
quench across a driven-dissipative second-order phase transition. The atoms are driven by a laser
and interact via conservative and dissipative long-range forces mediated by the photons of a single-
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induce spatial ordering. We show that the relaxation dynamics following the quench exhibits a
long prethermalizing behaviour which is first dominated by coherent long-range forces, and then
by their interplay with dissipation. Remarkably, dissipation-assisted prethermalization is orders
of magnitude longer than prethermalization due to the coherent dynamics. We show that it is
associated with the creation of momentum-position correlations, which remain nonzero for even
longer times than mean-field predicts. This implies that cavity cooling of an atomic ensemble into
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general, these results demonstrate that noise and dissipation can substantially slow down the onset
of thermalization in long-range interacting many-body systems.
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The quest for a systematic understanding of non-
equilibrium phenomena is an open problem in theoretical
physics for its importance in the description of dynamics
from the microscopic up to astrophysical scales [1–3]. As-
pects of these dynamics are studied in the relaxation of
systems undergoing temporal changes (quenches) of the
control field across a critical point [4–6]. Quenches across
a non-equilibrium phase transition provide further in-
sight into the interplay between noise and external drives
on criticality and thermalization [7, 8]. In this context
photonic systems play a prominent role, thanks to their
versatility [9–15].

Polarizable particles in a high-finesse cavity, like in
the setup illustrated in Fig. 1(a), offer a unique sys-
tem to study relaxation in long-range interacting sys-
tems. Here, multiple photon scattering mediates particle-
particle interactions whose range scales with the system
size in a single-mode cavity [15–18]. In this limit, atomic
ensembles in cavities are expected to share several fea-
tures with other long-range interacting systems such as
gravitational clusters and non-neutral plasmas in two or
more dimensions [3, 16, 19]. The equilibrium thermody-
namics of these systems can exhibit ensemble inequiva-
lence [3, 20], while quasi-stationary states (QSS) typically
characterise the out-of-equilibrium dynamics [3, 21–23].
QSS are metastable states in which the system is ex-
pected to remain trapped in the thermodynamic limit,
they are Vlasov-stable solutions and thus depend on the
initial state. So far, however, evidence of QSS has been
elusive. It has been conjectured that noise and dissipa-
tion can set a time scale that limits the QSS lifetime
[24–27], and possibly gives rise to dynamical phase tran-
sitions [25]. In Ref. [28] it was shown that, in presence
of dissipation due to viscous damping or local inelastic
collisions, the relaxation dynamics of long-range interact-
ing systems can be cast in terms of so-called scaling QSS,

which are solutions of the kinetic mean-field equation and
asymptotically tend to a unique QSS [28]. Accordingly,
one would expect to observe QSS in cavity systems [19].
In Ref. [16], however, we found no evidence of the typ-
ical superlinear dependence on N of the QSS time scale
[3], which we attributed to the effect of noise and dissi-
pative processes. Nonetheless, the dissipative dynamics
is here due to retardation effects in the coupling between
the atoms and a global variable, the cavity field, and
can also establish long-range correlations [29, 30] whose
influence on the relaxation dynamics is still unexplored.

FIG. 1. (Color online) (a) Atoms interact with the standing-
wave mode of a cavity and are transversally driven by a laser.
The laser amplitude (Ω) and/or frequency (∆c) are suddenly
quenched across the threshold, above which the atoms orga-
nize in regular spatial patterns at steady state. The coher-
ent scattering amplitude per atom, S, is tuned by the laser,
S ∝ Ω, the resonator dissipates photons at rate κ. (b) Phase
diagram of the second-order self-organization transition as a
function of n̄ (proportional to S2) and ∆c/κ (that determines
the asymptotic temperature). The black line separates the
homogeneous phase (with order parameter Θ = 0) from the
self-organized one (with Θ → ±1). The red dashed lines
A and B illustrate the initial and final values of the sudden
quenches we analyse.
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In this work we characterise the interplay between dis-
sipative and conservative long-range forces in the semi-
classical dynamics of N polarizable particles (atoms)
confined within a high-finesse single-mode cavity and
transversally driven by a laser [16, 31–33] (see Fig. 1(a)).
The particles motion is along the cavity axis (x-axis),
and the dynamics results from their opto-mechanical cou-
pling with the cavity mode at wave number k and spa-
tial mode function cos(kx). We focus on the regime
where the laser frequency ωL is smaller than the cav-
ity frequency ωc, such that ∆c = ωL − ωc < 0. Here,
the dynamics is characterised by a thermal stationary
state, which can exhibit a second-order driven-dissipative
phase transition (spatial selforganization) as a function
of the laser intensity and of ∆c [31]. This transition
is due to the interplay between the dispersive and the
dissipative forces: The dispersive forces tend to order
the atoms in gratings for which the order parameter
Θ =

∑N
j=1 cos(kxj)/N → ±1, with xj the particles po-

sitions, and the intracavity photon number is maximum.
The dissipative forces, instead, are due to retardation ef-
fects in the dynamics of atoms and field: For ∆c < 0
they cool the atoms into a thermal state whose effec-
tive temperature Teff is determined by ∆c and by the
cavity loss rate κ: kBTeff = ~(∆2

c + κ2)/(−4∆c), with
kB Boltzmann constant [30–32, 34–37]. Teff determines
the threshold Sc of the coherent laser scattering ampli-
tude S per atom at which spatial self-organization occurs,
such that

√
NSc = 2kBTeff/~ [31, 34, 38] and separates

the regime where the spatial distribution is uniform and
Θ ' 0 from the symmetry broken phase in which the
atoms form Bragg gratings, as shown in Fig. 1(b).

We analyse the semiclassical dynamics of the atoms
after a quench across the transition using a Fokker-
Planck equation (FPE) for the phase space distribution
f(x1, . . . , xN ; p1, . . . , pN ; t) at time t and as a function of
the atoms positions xj and the momenta pj . The FPE is
valid when the cavity linewidth κ exceeds the recoil fre-
quency ωr = ~k2/(2m) and the width of the momentum
distribution ∆p is larger than the photon linear momen-
tum ~k [30]. It reads [31, 39]

∂tf = {H, f}+ n̄Lβf + O(U0), (1)

where Hamiltonian H =
∑N
j=1 p

2
j/(2m) + ~∆cn̄NΘ2 de-

termines the coherent dynamics and is a realization of the
anisotropic Hamiltonian Mean Field model (HMF) [16,
21, 40]. The dimensionless parameter n̄ = NS2/(κ2+∆2

c)
scales the depth of the conservative potential. It also
scales the dissipator Lβ , describing the effective long-
ranged friction and diffusion [30, 31]:

Lβf =
N∑

i

Γ

N

N∑

j

sin(kxi)∂pi sin(kxj)

(
pj +

m

β
∂pj

)
f ,

(2)

with Γ = 2ωr~κβ and β = (kBTeff)−1. For ∆c < 0 the
incoherent dynamics drives the system into the station-
ary state fS(β, n̄) = f0 exp(−βH), where f0 warrants
normalization. This state is well defined in the thermo-
dynamic limit we choose, according to which as N is in-
creased, the quantity NS2 (and thus n̄) is kept constant.
This choice warrants that the Hamiltonian satisfies Kac’s
scaling [3].

The relaxation dynamics following a sudden quench
at t = 0 is numerically evaluated by means of stochas-
tic differential equations (SDE). Averages are taken over
several trajectories, sampling the dynamics of N atoms
according to the given initial distribution [30, 41]. Be-
fore the quench is performed (t < 0), we assume that the
system has reached the equilibrium solution fS(β, n̄i) of
the FPE at a given value of n̄ = n̄i and ∆c. At t = 0 the
value of n̄ is quenched from n̄i < n̄c, deep in the disor-
dered phase, to n̄f > n̄c, well inside the ordered phase.
This corresponds to the horizontal path A of Fig. 1(b),
keeping ∆c, and hence the asymptotic temperature, con-
stant. We evolve the initial state setting n̄ = n̄f in Eq.
(1). In what follows we focus on quenches from the dis-
ordered to the ordered phase along path A, nevertheless
the essential features of the dynamics we will report on
characterize also the quenches in the opposite direction
as well as along paths of type B, which connects points
with different asymptotic temperatures (see Supplemen-
tal Material, SM, [42]).

The time evolution of the modulus of the order pa-
rameter 〈|Θ|〉 is displayed in Fig. 2(a) for different val-
ues of n̄f : 〈|Θ|〉 tends towards an asymptotic value, that
is closer to unity the larger is n̄f . Before reaching the
steady state the dynamics go through different stages,
which we classify as: (i) a fast relaxation towards an
intermediate value of the magnetization with time scale
t . 102κ−1; this time scale decreases with n̄f . (ii) A
transient regime where 〈|Θ|〉 seems to grow logarithmi-
cally with time. (iii) Finally, the dissipation becomes
dominant and brings the system to the asymptotic value,
which is exponentially approached over time scales of the
order of 106κ−1. These time scales are illustrated in Fig.
2(a) and here reported for N = 50 particles but generally
depend on N , as we discuss later on.

We first observe that, being ∆c negative, the growth
of 〈|Θ|〉, Fig. 2(a), corresponds to a monotonic decrease
of the potential energy, V = ~∆cn̄NΘ2. In the fast re-
laxation stage (i), this decrease is well-fitted by an expo-
nential, and is associated with a corresponding decrease
of the relative fluctuations (see inset), indicating that the
cavity field exponentially grows and creates a mechani-
cal potential, which increasingly localizes the atoms at
its minima. The exponential potential depth growth is
due to this nonlinearity: the more the atoms become
localized in the Bragg grating the larger is the scatter-
ing amplitude, and thus the potential depth. The in-
creasing localization correspondingly augments the ki-
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FIG. 2. (Color online) Numerical simulation of the dynam-
ics following a sudden quench along path A using the SDE
[31]. At t = 0 the atoms are in the stationary state of Eq.
(1) for n̄i = 0.01n̄c with ∆c = −κ and n̄ is quenched to
the value n̄f > n̄c (see legenda in (a)). (a) The modulus of
the order parameter 〈|Θ|〉 and (b) the single-particle kinetic
energy 〈p2/(2m)〉 (in units of ~ωr) as a function of time (in
units of κ−1) for N = 50. The corresponding insets display
the time evolution of the relative localization δΘ/〈|Θ|〉, where

δΘ =
√
〈Θ2〉 − 〈|Θ|〉2, and of the Kurtosis K. The initial val-

ues 〈|Θ|〉t=0 ' 1/
√
πN ≈ 0.08 in (a) are due to finite N [31].

Here, κ ≈ 390ωr and N |U0| = 0.05κ. The three relaxation
stages are indicated by the labels (i),(ii),(iii).

netic energy, as visible in Fig. 2(b). In this regime,
thus, the total energy is conserved, the dynamics is co-
herent and consists in a transfer of energy from spa-
tial into momentum fluctuations. Correspondingly, the
single-particle momentum distribution becomes increas-
ingly non-thermal, as visible by inspecting the time-
evolution of the Kurtosis, K = 〈p4〉/〈p2〉2, shown in
the inset of Fig. 2(b): K exponentially deviates from
the value of the initial Gaussian (”thermal”) state, for
which Kgauss = 3. We have verified that this dynam-
ics is well described by a Vlasov equation for the single-
particle distribution f1(x, p; t), which we derive assum-

ing f(x1, . . . , xN ; p1, . . . , pN ; t) =
∏N
j=1 f1(xj , pj ; t), inte-

grating out the N − 1 variables from Eq. (1) for the ini-

tial uniform distribution and taking the thermodynamic
limit (see SM [42] and [43]). Figure 3(a) compares the
result of the FPE with the predictions of the Vlasov equa-
tion (red curve), showing an excellent agreement in the
fast relaxation regime. Numerical and analytical results
show that the time scale of this dynamics depends on N
only through the parameter n̄ (and is thus constant when
Kac’s scaling applies), see also SM [42].

After this fast relaxation, the growth in the order pa-
rameter and in the kinetic energy seems logarithmic in
time. This transient regime (ii) is of Hamiltonian origin:
It exhibits damped oscillations, which can be understood
as oscillations of the atoms at the minima. Energy is pe-
riodically transferred from the kinetic to the potential
energy. Since the potential energy depends on a global
variable, energy is exchanged between the particles by
means of elastic collisions, hence damping the oscilla-
tions. Correspondingly, the Kurtosis starts to increase
towards the Gaussian value, showing that the sample
starts to equilibrate. In order to verify this hypothesis, in
Fig. 3(a) we compare the predictions of the full simula-
tion (black curves) for order parameter and Kurtosis with
the ones obtained after setting Γ = 0 in Eq. (1) (blue
curves): in the transient regime the curves nearly overlap
for t . 104κ−1. Noise and dissipation, however, lead to a
discrepancy between the predictions of the Hamiltonian
and of the full FPE. This discrepancy becomes increas-
ingly evident at longer time scales: When the dynamics is
solely Hamiltonian, in fact, the Kurtosis increases mono-
tonically towards the Gaussian value. Due to the analogy
with the Hamiltonian dynamics, some of the features of
the transient regime are reminiscent of the HMF, where
for a similar quench a violent relaxation is observed, then
followed by prethermalization in a QSS [21, 40]. In our
case, for Γ 6= 0, as in Ref. [16], we do not find evidence
of a superlinear scaling with N of the QSS lifetime. The
QSS lifetime, in fact, is limited by the dissipative effects,
which have the same physical origin as the long-range
conservative forces and whose characteristic time scale is
linear in N (see SM, [42], and Ref. [43]). Note that at
the end of this stage the atoms are localised, but their
temperature is hotter than Teff .

In stage (iii), when the effect of dissipation becomes
relevant, the atoms are cooled and further localised at
the minima. The Kurtosis, however, further decreases till
reaching a minimum, before increasing again towards the
Gaussian value. We first compare this behaviour with the
predictions of a mean-field (MF) model, which we extract
from Eq. (1) by means of the factorization ansatz, see
SM [42]. The grey lines in Fig. 3(a) and its inset show the
MF predictions as a function of time and indicate that,
even though MF reproduces qualitatively the dynamical
features, it fails to give the correct time scale by at least
one order of magnitude. Further insight is provided by
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the observable for QSS [28], which we here define as:

φ11 =
〈| sin(kx)p|〉
〈| sin(kx)|〉〈|p|〉 − 1 . (3)

When φ11 6= 0, the distribution is not factorizable into
a kinetic and a potential term. Figure 3(b) displays the
time evolution of φ11 for the Hamiltonian, mean-field,
and full dynamics. In stages (i) and (ii) the three models
predict approximately the same behaviour. Instead, in
stage (iii), φ11 evolves differently: For both MF and full
FPE it exhibits a minimum, however reached at differ-
ent times, which possesses features typical of a scaling
QSS, namely, a sequence of QSS with identical correla-
tions [28]. Its nature could be understood in terms of the
onset of collective oscillations which are (almost) decou-
pled from noise and dissipation. Analogous behaviours
have been reported for the case of atomic arrays in a cav-
ity [29, 44]. Since the trajectories of φ11 are different for
the three types of simulations, the corresponding QSS
are expected to not be the same. In particular, the dis-
crepancy between full FPE and MF in stage (iii) remains
of the same order when scaling up the system, while in-
stead Hamiltonian prethermalization tends towards the
corresponding mean-field prediction. Figure 4 displays
the relaxation time scales for the MF and the full FPE:
the two curves suggest a linear increase with N for both
cases, nevertheless they run parallel thus showing that
the discrepancy is a scalable effect. We deduce that this
discrepancy is due to the momentum-position correla-
tions due to noise, which are otherwise discarded in the
MF treatment.

This prethermalization is not related to the critical
slowing down observed in Ref. [45], but is due to the
creation of correlations between momentum and posi-
tion, and is reminiscent of kinetic-stop dynamics [46].
It implies that cavity-cooling of a large sample of atoms
into the self-organized phase, corresponding to a sudden
quench along path B, can be very slow and thus ineffi-
cient (see also Ref. [34]). Our analysis sets the stage for
the development of a kinetic equation that is valid in the
full quantum regime [47–51].
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sare Nardini, and Stefano Ruffo, and support by the Ger-
man Research Foundation (DFG, DACH project ”Quan-
tum crystals of matter and light”) and by the German
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Supplemental Material for
Dissipation-assisted prethermalization in long-range interacting atomic ensembles

Mean-Field equation and Vlasov limit

The mean-field equation is derived from Eq. (1) in the main text by assuming f (x1, . . . , xN ; p1, . . . , pN ; t) =
∏N

j=1 f1(x j, p j; t),
and integrating out the N − 1 variables. It reads

∂t f1 ={HMF[ f1], f1} + n̄Lβ,MF f1 (S1)

where the mean-field Hamiltonian HMF[ f1] is given by

HMF[ f1] =
p2

2m
+

2~∆cn̄
N

(
1
2

cos(kx) + (N − 1)〈cos(kx′)〉 f1 −
~kβκ
2m∆c

(N − 1)〈p′ sin(kx′)〉 f1

)
cos(kx) ,

with 〈A(x′, p′)〉 f1 =
λ∫

0
dx′

∞∫
−∞

dp′A(x′, p′) f1(x′, p′) and A a phase space function. Furthermore the mean-field dissipator Lβ,MF

is defined as

Lβ,MF f1 =
Γ

N
sin2(kx)∂p

(
p +

m
β
∂p

)
f1 .

The dissipator Lβ,MF is responsible for the relaxation of the system to the thermal stationary state with temperature β−1 =

kBTeff = ~(∆2
c + κ2)/(−4∆c) [S1–S3]. Since the dissipator decreases with N−1 (for increasing N), the mean-field predicts a

relaxation timescale that extends linearly with N. Although the relaxation for the full FPE, Eq. (1) in the main text, is orders of
magnitudes slower (see Fig. 4 in the paper), the corresponding growth of the timescale with N is almost indistinguishable from
a linear one.
In order to make some statements for the short time dynamics we derive the Vlasov equation. This equation is derived from Eq.
(S1) after performing the limit N → ∞ with NS 2 =const. and reads

∂t f1 +
p
m
∂x f1 − ∂xV[ f1]∂p f1 = 0 , (S2)

where the Vlasov potential V[ f1] is

V[ f1] = 2~∆cn̄
(
〈cos(kx′)〉 f1 −

~kβκ
2m∆c

〈p′ sin(kx′)〉 f1

)
cos(kx) .

The stability analysis of Eq. (S2) shows that a spatially homogeneous distribution is unstable against small fluctuations δ f when
n̄ f > n̄c. The fluctuations exhibit exponential growth at rate γ, which monotonously increases with n̄ f and is a solution of the
equation

[
1 − 2κγ/(∆2

c + κ2)
]
F(γ)n̄ f /n̄c = 1 , (S3)

with F(γ) = 1 − √πb exp(b2)erfc(b), b2 = ~γ2β/(4ωr) and erfc is the complementary error function. The solution (red line in
Fig. 3(a) in the main text for a fixed value of n̄ f ) well fits the numerical result in the fast relaxation regime. Thus, this initial
behaviour is analogous to the violent relaxation observed in the HMF and has mainly Hamiltonian origin.

Quenches along path B

Figure S1 displays a sudden quench in the detuning ∆c while keeping Ω, hence the laser amplitude, constant. This quench
corresponds to path B of Fig. 1(b) in the paper and alters both n̄ and β in Eq. (1), namely both the asymptotic order and
temperature. We consider quenches from the disordered (with ∆c = −4κ) to the ordered phase (with ∆c = −κ), and vice versa,
assuming that the initial state is the asymptotic state of the parameter choice before the quench. Also in this case the three
regimes can be identified. Remarkably, for the quench from the ordered to the disordered phase, the system remains for long
times trapped in an ordered pattern. The pattern stays stable due to the long-range forces. This transient is further accompanied
by a momentum distribution that is narrower than the initial and the asymptotic value, as visible in the inset of subplot (b). On
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FIG. S1: Numerical simulation of the dynamics for N = 50 atoms following a sudden quench along path B, where ∆c is varied but the laser
intensity is kept fixed. The black line corresponds to the results for the evolution when the value of the detuning is suddenly quenched from
∆c = −4κ with n̄i ≈ 0.44 n̄c to ∆c = −κ with n̄ f = 2 n̄c. The grey line displays the case where initial and final points are swapped. (a) and (b):
Time evolution of 〈|Θ|〉 and ∆p (inset) as a function of time (in units of κ−1). Subplot (c) displays the behaviour of the kurtosis K .

the other hand, the momentum distribution is markedly non-Gaussian, as visible in (c). This behaviour shows that, even if the
final value of the parameter n̄ is well below threshold and the asymptotic number of intracavity photons 〈â†â〉 ≈ Nn̄〈Θ2〉 is small,
yet there is a metastable regime in which the number of intracavity photons is significantly larger, due to the metastable atomic
patterns which support superradiant scattering of photons into the resonator until they decay.
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The discovery of laser cooling [1] has enabled new
areas of quantum gas physics and quantum state engineer-
ing [2]. Laser cooling is an essential technology in
many fields, including precision measurements, quantum
optics, and quantum information processing [3–5].
Doppler laser cooling [6,7] relies on repeated cycles of
electronic excitation by lasers followed by spontaneous
relaxation, reaching temperature limits determined by
the atomic linewidth. Only specific atomic species can
be Doppler cooled because they should possess an
internal level structure that allows for closed cycling
transitions.
Cavity-assisted laser cooling [8,9] utilizes the decay of an

optical resonator instead of atomic spontaneous emission for
energy dissipation. It is based on the preferential coherent
scattering of laser photons into an optical cavity [10,11].
Temperatures that can be achieved in this way are limited by
the cavity linewidth. Since the particle properties enter only
through the coherent scattering amplitude, cavity-assisted
cooling promises to be applicable to any polarizable object
[12–20], including molecules [17,18] and even mesoscopic
systems such as nanoparticles [19,20].
The many-atom effects of cavity-assisted cooling were

theoretically discussed by Ritsch and collaborators [21]
and experimentally reported [22,23]. The cavity-mediated
atom-atom coupling typically leads to a cooling rate that is
faster for an atomic ensemble than for a single atom. Self-
organization may occur and is observed as patterns in the
atomic distribution that maximize the cooperative scatter-
ing. Recently, it has been shown that the long-range nature
of the cavity-mediated interaction between atoms gives
rise to interesting prethermalization behavior [24]. In spite
of the intrinsic many-body nature, the underlying cooling
mechanism shares much with the single-atom case, and
indeed the final temperature observed in these systems is
limited by the cavity linewidth.

In this Letter, we demonstrate that the mechanical action
of the atom-cavity coupling takes on a dramatically new
character for atoms in the regime of steady-state super-
radiance [25–30]. Specifically, the frictional force on a
single atom is significantly enhanced, and the final temper-
ature is much lower than the temperature that can be
achieved in cavity-assisted cooling [10,11]. Furthermore,
as the atom number increases, the cooling may become
faster due to the increasing rate of superradiant collective
emission. We show that ability to achieve much lower
temperatures than for single-atom cavity-assisted cooling
derives from the emergence of atom-atom dipole correla-
tions in the many-body atomic ensemble.
Steady-state superradiant laserswereproposed inRef. [25]

as possible systems for generatingmilliHertz linewidth light,
and demonstrated in a recent experiment using a two-photon
Raman transition [27]. In steady-state superradiance, the
cavity decay ismuch faster than all other processes and plays
the role of a dissipative collective coupling for the atoms that
leads to the synchronization of atomic dipoles [29,30]. The
emergence of a macroscopic collective dipole induces an
extremely narrow linewidth for the generated light [25,30].
The optimal parameters are in the weak-coupling regime of
cavity QED [31], which is opposite to the strong-coupling
situation usually considered in cavity-assisted cooling [8,9].
Superradiant lasers require weak-dipole atoms (e.g., using
intercombination lines or other forbidden transitions) con-
fined in a high-finesse optical cavity.
We consider an ensemble of N pointlike two-level

atoms with transition frequency ωa and natural linewidth
γ, interacting with a single-mode cavity with resonance
frequency ωc and linewidth κ, as shown in Fig. 1. The
atoms are restricted to move freely along the direction
of the cavity axis (x axis) and are tightly confined in the
other two directions. The atom-cavity coupling is given
by g cosðkxÞ, where g is the vacuum Rabi frequency at the
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field maximum, and cosðkxÞ describes the one-dimensional
cavity mode function [32]. The atoms are incoherently
repumped at rate w, providing the photon source.
The Hamiltonian in the rotating frame of the atomic

transition frequency is given by

Ĥ ¼ ℏΔâ†âþ
XN
j¼1

p̂2
j

2m
þ ℏ

g
2

XN
j¼1

ðâ†σ̂−j þ σ̂þj âÞ cosðkx̂jÞ;

ð1Þ
where Δ ¼ ωc − ωa. We have introduced the bosonic
annihilation and creation operators, â and â†, for cavity
photons. The jth atom is represented by Pauli pseudospin
operators, σ̂zj and σ̂

−
j ¼ ðσ̂þj Þ†, and position and momentum

x̂j and p̂j, respectively.
In the presence of dissipation, the evolution of the system

is described by the Born-Markov quantum master equation
for the density matrix ρ̂ for the cavity and atoms,

d
dt
ρ̂¼ 1

iℏ
½Ĥ; ρ̂� þ κL½â�ρþw

XN
j¼1

Z
1

−1
duNðuÞL½σ̂þj eiuk0x̂j �ρ;

ð2Þ
where L½Ô�ρ̂ ¼ ð2Ô ρ̂ Ô† − Ô†Ô ρ̂−ρ̂Ô†ÔÞ=2 is the
Linbladian superoperator describing the incoherent proc-
esses. The term proportional to κ describes the cavity decay.
The repumping is the term proportional to w and is modeled
by spontaneous absorption with recoil [33]. The recoil is
parametrized by the normalized emission pattern NðuÞ and
wave vector k0. We neglect free-space spontaneous emission,
since the natural linewidth γ is assumed to be extremely small
for atoms with an ultraweak-dipole transition.

In the regime of interest, the cavity linewidth is much
larger than other system frequencies, and the cavity field
can be adiabatically eliminated, resulting in phase locking
of the cavity field to the collective atomic dipole [26,29,30].
In order to correctly encapsulate the cavity cooling mecha-
nism, the adiabatic elimination of the cavity field must
be expanded beyond leading order. This includes retarda-
tion effects between the cavity field and atomic variables.
As shown in the Supplemental Material [34], in the large κ
limit [35],

âðtÞ ≈ −i g
2
Ĵ−

κ=2þ iΔ
þ

d
dt ði g2 Ĵ−Þ

ðκ=2þ iΔÞ2 −
2i

ffiffiffiffiffiffi
ΓC

p
g

ξ̂ðtÞ þO½κ−3�;

ð3Þ

where Ĵ− ¼ P
N
j¼1 σ̂

−
j cosðkx̂jÞ is the collective dipole

operator, ΓC ¼ g2κ=4ðκ2=4þ Δ2Þ is the spontaneous emis-
sion rate through the cavity, and ξ̂ðtÞ is the quantum noise
originating from the vacuum field entering through the
cavity output.
The dipole force on the jth atom is given by the gradient

of the potential energy, which takes the form

Fj ¼
d
dt

p̂j ¼ −∇jĤ ¼ 1

2
ℏkg sinðkx̂jÞðσ̂þj âþ â†σ̂−j Þ: ð4Þ

We maximize the single-atom dissipative force by working
at the detuning Δ ¼ κ=2 [34], and in that case by
substituting Eq. (3) into Eq. (4), we find

d
dt
p̂j ≈−

1

2
ℏkΓC sinðkx̂jÞðð1þ iÞσ̂þj Ĵ− þ ð1− iÞĴþσ̂−j Þ

−
1

2
ηΓC sinðkx̂jÞ

XN
l¼1

ðσ̂þj σ̂−l þ σ̂þl σ̂
−
j Þ

1

2
½sinðkx̂lÞ; p̂l�þ

þ N̂ j: ð5Þ

Here the anticommutator is ½Â; B̂�þ ¼ Â B̂þB̂ Â. We have
defined η ¼ 4ωr=κ, which characterizes the likelihood that
a photon emission into the cavity mode will be in the same
direction as the motion, in terms of the recoil frequency
ωr ¼ ℏk2=2m. The three terms on the right-hand side of
Eq. (5) can be interpreted as the conservative force, the
friction, and the noise-induced momentum fluctuations,
respectively.
For temperatures above the recoil temperature, the

motion is well described by a semiclassical treatment.
A systematic semiclassical approximation, to make the
mapping hx̂ji → xj and hp̂ji → pj, where xj and pj are
classical variables, is based on the symmetric ordering of
operator expectation values. In order to accurately incor-
porate the effects of quantum noise, we match the equations
of motion for the second-order moments of momenta
between the quantum and semiclassical theories so that

FIG. 1. Atoms with ultranarrow transition jgi ↔ jei are con-
fined to the axis of a standing-wave mode of an optical cavity.
Different implementations of pumpingmay be considered [25,27].
In the simplest scenario shown, a transition is driven from the
ground state jgi to an auxiliary state jai that rapidly decays to the
excited state jei. In this way jai can be adiabatically eliminated
and a two-state pseudospin description in the fjgi; jeig subspace
used, with repumping corresponding to an effective ratew from jgi
to jei. If the repumping laser is directed normal to the cavity axis,
the absorption does not modify the momentum.Momentum recoil

is induced by the on-axis component of the wave vector ~k0 of the
dipole radiation pattern for the jai ↔ jei transition.
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we obtain the correct momentum diffusion [34]. This
procedure yields Ito stochastic equations,

d
dt

pj ≈ ℏkΓC sinðkxjÞðIm½hσ̂þj Ĵ−i� − Re½hσ̂þj Ĵ−i�Þ

− ηΓC sinðkxjÞ
XN
l¼1

Re½hσ̂þj σ̂−l i� sinðkxlÞpl þ ξpj ;

ð6Þ
where ξpj is the classical noise and hξpj ðtÞξpl ðt0Þi ¼
Djlδðt − t0Þ with diffusion matrix

Djl ¼ ℏ2k2ΓC sinðkxjÞ sinðkxlÞRe½hσ̂þl σ̂−j i�
þ ℏ2k02wū2hσ̂−j σ̂þl iδjl; ð7Þ

involving the geometrical average ū2 ≡ R
1
−1 u

2NðuÞdu and
Kronecker delta δjl. The momentum evolution is paired
with the usual equation for xj,

d
dt

xj ¼
pj

m
: ð8Þ

We first consider the case in which the effect of recoil
associated with the repumping is neglected; i.e., we set
k0 ¼ 0. This determines the ultimate temperature limit imp-
osed by the vacuum noise due to the cavity output. For the
one-atom case, we can then find the friction (α) and diffusion
(D) coefficient from Eq. (6) and Eq. (7). The steady-state
temperature T for the single atom (labeled by 1) is

kBT ¼ hp2
1i
m

¼ D
2mα

¼ ℏκ
4
; ð9Þ

since

D ¼ ℏ2k2ΓCsin2ðkx1Þhσ̂þ1 σ̂−1 i;
α ¼ ηΓCsin2ðkx1Þhσ̂þ1 σ̂−1 i: ð10Þ

Note that this is precisely the same temperature limit
previously found in the cavity-assisted cooling case where
the system is operating in the strong coupling cavity-QED
region. Here the rate of the decay into the cavity mode is
proportional to ΓChσ̂þ1 σ̂−1 i, which is applicable to the weak
coupling regime of cavity QED [31]. In Fig. 2(a), we show a
numerical simulation of the cooling trajectory of a single
atom as a function of time.As expected, the final temperature
kBT asymptotes to ℏκ=4 and the cooling rate is well
approximated by RS ¼ ηΓChσ̂þ1 σ̂−1 i.
The cooling in the many-atom case exhibits a

distinctly different character. A feature of this model is
the pseudospin-to-motion coupling of the atoms. In order to
close the evolution equations of the atomic motion as
described by Eq. (6) and Eq. (8), it is necessary to solve the
pseudospin dynamics. For this purpose, we derive in the
Supplemental Material [34] the quantum master equation
for the pseudospins,

d
dt

ρ̂ ¼ 1

iℏ
½Ĥeff ; ρ̂� þ ΓCL½Ĵ−�ρ̂

þ w
XN
j¼1

Z
1

−1
duNðuÞL½σ̂þj eiuk0x̂j �ρ; ð11Þ

where the effective Hamiltonian Ĥeff ¼ −ℏΓCĴ
þĴ−=2

describes the coherent coupling between atoms, and the
collective decay [term proportional to ΓC in Eq. (11)]
leads to dissipative coupling. It is the dissipative coupling
that gives rise to dipole synchronization and steady-state
superradiance [25–30]. The full pseudospin Hilbert space
dimension scales exponentially with the atom number.
To solve Eq. (11), we employ a cumulant approximation
that is applicable to many atoms [26,29,30]. All nonzero
observables are expanded in terms of hσ̂þj σ̂−j i and hσ̂þj σ̂−l i
(j ≠ l), describing the population inversion and spin-spin

FIG. 2. Time evolution of the average momentum square (red
dots) evaluated from 4000 trajectories simulated by integrating
Eqs. (6) and (8) for 1 (a), 20 (b), and 60 atoms (c). The blue solid
line is a fit to an exponential decay. The parameters are
Δ ¼ κ=2 ¼ 100, ΓC ¼ 0.1, and ωr ¼ 0.25. The repumping rates
are chosen such that the average atomic population inversion in
all cases is the same [w ¼ 0.15 (a), 0.28 (b), 1.3 (c)]. Insets show
the momentum statistics. The blue solid line is a fit to a Gaussian
distribution.
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correlations, respectively. Their equations of motion are
derived in the Supplemental Material [34].
Simulations of the cooling dynamics for many atoms are

shown in Figs. 2(b) and 2(c). Remarkably, we find the
collective atomic effects lead to a more rapid cooling
rate, and, simultaneously, to a lower final temperature.
Figure 3 shows the cooling rate (a) and the final momentum
width (b) as a function of the atom number. We note that the
cooling rate exhibits two kinds of behavior, hinting towards
the existence of an N-dependent threshold; see Fig. 3(a).
For N ≲ 20, the cooling rate is independent of N, while for
N ≳ 20, it increases monotonically. Correspondingly, in
this regime, the momentum width reaches a minimum
independent ofN; see Fig. 3(b). When the final temperature
gets closer to the recoil temperature, the momentum
distribution is no longer Gaussian, rendering the notion
of temperature invalid. The semiclassical treatment predicts
a uniform distribution in the momentum interval [−ℏk,ℏk]
corresponding to the recoil limit, as shown in the inset of
Fig. 2(c). We note that sub-Doppler temperatures for a
similar setup have been reported in Refs. [36–38], where
spontaneous decay was assumed to be the fastest incoher-
ent process. Differing from that regime, the recoil limit is
here reached thanks to the small spontaneous decay rate.
When the temperature approaches the recoil temperature,
however, the validity of the semiclassical treatment of
atomic motion is questionable and a full quantum model is
necessary in order to determine the asymptotic energy.
These results demonstrate that not only is the cooling more
efficient due to the rapid rate of superradiant light emission,
but also the final temperature is determined by the
relaxation rate ΓC of the atomic dipole, and not by the
cavity linewidth.
The principal new feature is that spin-spin correlations

between atoms develop due to the cavity-mediated coupling.
In order to measure the extent of this effect, we introduce
hσ̂þσ̂−iE defined as averaged spin-spin correlations,

hσ̂þσ̂−iE ¼
�
hĴþĴ−i −

XN
j¼1

hσ̂þj σ̂−j icos2ðkxjÞ
�
=½NðN − 1Þ�:

ð12Þ

Figure 3(b) shows hσ̂þσ̂−iE as a function of the atomnumber.
The equilibrium temperature decreases as the collective spin-
spin correlation emerges. This is reminiscent of the linewidth
of the superradiant laser, where the synchronization of spins
leads to a significant reduction of the linewidth to the order of
ΓC [25,30]. The establishment of spin-spin correlations is a
competition between dephasing due to both cavity output
noise and repumping, and the dissipative coupling between
atoms which tends to synchronize the dipoles [30]. Since the
coupling strength scales withN, a sufficient atom number is
required to establish strong spin-spin correlations [30].
Further characterizing the ultimate temperature limits,

Fig. 4(a) shows the final momentum width as a function of
ΓC. We see that as ΓC is decreased, the final temperature
reduces in proportion to ΓC until it hits the recoil limit. This
effect is consistent with a significantly increased friction
coefficient providing a reduction of the order of the final
temperature from the one to many atom case from κ to ΓC.
So far our discussion has neglected the recoil associated

with repumping. We have done that because its effect on the
final temperature will depend crucially on specifics of its
implementation, including factors such as the polarizations
and directions of repump lasers, the atomic system, and the
transitions used. However, in the specific repumping model
shown in Fig. 1, the magnitude of k0 controls the recoil
effect of the repumping on the momentum diffusion.
Figure 4(b) shows the final momentum width as a function
of repumping for k0 ¼ 0 and k0 ¼ k. Again, in the region of
small and large repumping, where spin-spin correlations
are very small, the final temperature is high. When the
recoil due to repumping is included, the final temperature
becomes higher and is eventually determined by wū2.
However, for weak repumping, with w not significantly
larger then ΓC it is still possible to achieve temperatures not
much higher than that predicted when pump recoil was
neglected. This is especially promising for the implemen-
tation of supercooling in realistic experimental systems.
Note that k ¼ k0 is more or less a worst case scenario, since
by using a dipole allowed transition for the relaxation from
the auxiliary state to the excited state, one could, in

FIG. 3. (a) Cooling rate (in units of the single atom cooling rate
RS) as a function of atom number. (b) Final momentum width
(Δp ¼

ffiffiffiffiffiffiffiffiffi
hp2i

p
, blue squares) and spin-spin correlation (red dots)

as a function of atom number. The parameters are the same as
those in Fig. 2.

FIG. 4. (a) Final momentum width as a function of ΓC for
40 atoms. The parameters are Δ ¼ κ=2 ¼ 200, w ¼ NΓC=4, and
ωr ¼ 0.25. (b) Final momentum width as a function of repumping
strength for 40 atoms without (k0 ¼ 0, blue squares) and
with recoil associated with repumping (k0 ¼ k, red dots). The
parameters are Δ ¼ κ=2 ¼ 200, ΓC ¼ 0.5, and ωr ¼ 0.25.
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principle, use a much reduced frequency with correspond-
ingly small recoil.
In conclusion, we have proposed supercooling of the

atomic motion along the axis of an optical cavity. The
superradiant emission was observed to lead to an enhanced
cooling rate and extremely low final temperature. The
ultimate temperatures were constrained by the relaxation of
the atomic dipole, and may be orders of magnitude lower
than for single atom cooling where temperatures are limited
by the cavity linewidth. From a broader viewpoint, we have
demonstrated an example of many-body laser cooling in
which all motional degrees of freedom of a collective
system are simultaneously cooled, and in which macro-
scopic spin-spin correlations are essential and must develop
for the cooling mechanism to work.
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1

Supplemental Material for
Supercooling of Atoms in an Optical Resonator

I. ADIABATIC ELIMINATION OF THE CAVITY MODE

The regime of steady-state superradiance is defined by a timescale separation between the single cavity mode and the atomic
degrees of freedom. The typical relaxation time of the cavity mode is of the order of TC ∼ |κ + i∆|−1, while the one of the atoms
is given by TA ∼

(
max

{√
Nn̄g,w, k

√〈
p2〉/m

})−1
, where n̄ is the mean photon number in the cavity. In order to eliminate the

cavity field quasiadiabatically we need the relaxation time of the cavity to be much shorter than the timescale on which the atoms
are evolving, namely TA ≫ TC . To this end, we start with the quantum Langevin equation for the cavity field according to the
quantum master equation [Eq. (2) in the paper],

d
dt

â = − κ
2

â − i∆â − i
g
2

Ĵ− +
√
κξ̂(t) , (S1)

where ξ̂(t) is the quantum white noise and 〈ξ̂(t)ξ̂†(t′)〉 = δ(t − t′). The formal solution to Eq. (S1) is

â(t) = e−(κ/2+i∆)∆tâ(t0) − i
g
2

∫ ∆t

0
dse−(κ/2+i∆)s Ĵ−(t − s) + F̂ (t) , (S2)

where F̂ (t) =
√
κ
∫ ∆t

0 dse−(κ/2+i∆)sξ̂(t − s) is the noise term and ∆t = t − t0. Under the approximation of coarse grain-
ing (TA ≫ ∆t ≫ TC), the first term on the right-hand side (RHS) of Eq. (S2) vanishes, and it can be shown that

〈F̂ (t)F̂ †(t′)〉 ≈ e−κ|t
′−t|/2−i∆(t−t′) ≈ κ

κ2/4 + ∆2 δ(t − t′) . (S3)

It would be convenient to choose F̂ (t) = −i
√
ΓC

g/2 ξ̂(t), with

ΓC =
g2κ/4
κ2/4 + ∆2 . (S4)

Furthermore, the integral in Eq. (S2) can be expanded in powers of 1/(κ/2 + i∆). As a result we obtain

â(t) ≈ −i g
2 Ĵ−

κ/2 + i∆
−

d
dt (−i g

2 Ĵ−)
(κ/2 + i∆)2 + F̂ (t) + O[(κ/2 + i∆)−3] . (S5)

As can be seen from Eq. (S5), the retardation effects between the cavity field and atomic variables are included.

II. EXTERNAL MOTION OF ATOMS

In this section we derive the force for the external degrees of freedom, including friction and noise. We will end up with
a classical description of the particles’ external degrees of freedom and derive a Langevin equation for the momenta of the
particles.

The force on the j-th atom F̂ j is given by

F̂ j =
d
dt

p̂ j = ~k sin(kx̂ j)
g
2

(σ̂+j â + â†σ̂−j ) + N̂pump
j , (S6)

where N̂pump
j represents the random force due to recoil of the incoherent pumping process.

Substituting Eq. (S5) into the above equation , we have

d
dt

p̂ j ≈ ~k sin(kx̂ j)
ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j

)
− ~k sin(kx̂ j)

Γ∆

2

N∑

l=1

cos(kxl)
(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j − β1σ̂

+
j

d
dt
σ̂−l − β∗1

d
dt
σ̂+l σ̂

−
j

)

− sin(kx̂ j)
ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β

∗
2σ̂
+
l σ̂
−
j

)
+ N̂ j ,

(S7)
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where
[
Â, B̂

]
+
= ÂB̂ + B̂Â is the anticommutator and the coefficients are

Γ∆ =
g2∆/2
κ2/4 + ∆2 , β1 =

κ

κ2/4 + ∆2 + i
κ2/4 − ∆2

∆(κ2/4 + ∆2)
, β2 = i

κ2/4 − ∆2

κ∆
, η =

4ωr∆

κ2/4 + ∆2 . (S8)

Here N̂ j = N̂cav
j + N̂pump

j is the sum of the noise processes originating from the cavity output N̂cav
j and repumping N̂pump

j .
In the first line of equation (S7) we neglect β1 because in the steady state superradiance regime it holds that |β1|〈σ̂+j d

dt σ̂
−
l 〉 ∼

w
κ 〈σ̂+j σ̂−l 〉 ≪ 〈σ̂+j σ̂−l 〉. This has also been checked numerically. Therefore we get

d
dt

p̂ j =
d
dt

p̂0
j + N̂ j , (S9)

where we define the force without noise as

d
dt

p̂0
j ≈ ~k sin(kx̂ j)

ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j

)
− ~k sin(kx̂ j)

Γ∆

2

N∑

l=1

cos(kxl)
(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j

)

− sin(kx̂ j)
ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β

∗
2σ̂
+
l σ̂
−
j

)
.

(S10)

We work at the detuning ∆ = κ/2 so that η is maximized and β2 vanishes. As a result we obtain

d
dt

p̂0
j ≈ ~k sin(kx̂ j)

ΓC

2

(
−iσ̂+j Ĵ− + iĴ+σ̂−j − σ̂+j Ĵ− − Ĵ+σ̂−j

)
− sin(kx̂ j)

ΓC

2

N∑

l=1

η

2
[
sin(kx̂l), p̂l

]
+

(
σ̂+j σ̂

−
l + σ̂

+
l σ̂
−
j

)
. (S11)

The first term on the RHS of Eq. (S11) represents forces originating from the adiabatic component of the cavity field, while
the second term represents the frictional force arising from retardation effects. The noise term N̂ j in equation (S9) gives rise to
momentum diffusion due to quantum noises associated with incoherent processes. So we derive the equations of motion for the
second moments of momenta,

d
dt

〈
p̂ j p̂l

〉
=

〈
p̂0

j

dp̂0
l

dt

〉
+

〈dp̂0
j

dt
p̂0

l

〉
+ ΓC~

2k2〈sin(kx̂ j) sin(kx̂l)σ̂+j σ̂
−
l 〉 + wδ jl~

2k′2u2〈σ̂−j σ̂+l 〉 , (S12)

where δ jl is the Kronecker delta, and u2 is the second moment of the dipole radiation pattern, i.e.,

u2 =

∫ 1

−1
duN(u)u2 =

2
5
, (S13)

where we have taken the dipole pattern N(u) = 3
2 |u|
√

1 − u2.
We treat the external atomic motion classically under the assumption that the momentum width of the particles

√〈
p2〉 is larger

than the single photon recoil ~k. So we make the mapping 〈p̂ j〉 → p j and 〈x̂ j〉 → x j. As a result this leads to

d
dt

p j =
d
dt

p0
j + ξ

p
j , (S14)

with

d
dt

p0
j = ~k sin(kx j)ΓC

(
Im[〈σ̂+j Ĵ−〉] − Re[〈σ̂+j Ĵ−〉]

)
− sin(kx j)ΓC

N∑

l=1

ηRe[〈σ̂+j σ̂−l 〉] sin(kxl)pl , (S15)

where ξp
j is the classical noise acting on the momentum of j-th atom and 〈ξp

j (t)ξp
l (t′)〉 = D jlδ(t − t′). The diffusion matrix D jl

can be computed by making quantum-classical correspondence for the second moments. According to Eq. (S14),

d
dt
〈p j pl〉 =

〈
p0

j

dp0
l

dt

〉
+

〈dp0
j

dt
p0

l

〉
+ D jl . (S16)

We use symmetric ordering of quantum operators for the quantum-classical correspondence, i.e., 1
2

〈[
p̂ j,

dp̂l
dt

]
+

〉
→

〈
p j

dpl
dt

〉
.

Matching Eq. (S12) and Eq. (S16), we get

D jl = ΓC~
2k2 sin(kx j) sin(kxl)Re[〈σ̂+l σ̂−j 〉] + wδ jl~

2k′2u2〈σ̂−j σ̂+l 〉 . (S17)
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Therefore, we could simulate the external motion of atoms with Eq. (S14) and the equation of motion for x j

d
dt

x j =
p j

m
. (S18)

The classical noises ξp
j with diffusion matrix D jl make sure that we have the right second order moments for momenta.

III. INTERNAL DYNAMICS OF ATOMS

For the complete simulation of the atomic variables we also need to derive an equation for the internal degrees of freedom.
In this section we will derive the equations of motions for the spins in which we drop third-order cumulants. For the internal
dynamics of atoms in a superradiant laser, it is sufficient to keep the first order term in Eq. (S5),

â(t) ≈ −i
ΓC

g
Ĵ− − Γ∆

g
Ĵ− + F̂ (t) . (S19)

Here, retardation effects are not included because they give rise to corrections that are of higher order and their contribution is
negligible. This was also checked numerically. The adiabatic elimination of the cavity field leads to an effective quantum master
equation for the atomic spins only

d
dt
ρ =

1
i~

[Ĥeff , ρ] + ΓCL[Ĵ−]ρ + w
N∑

j=1

∫ 1

−1
duN(u)L[σ̂+j ei~k′·~x j]ρ , (S20)

where the Hamiltonian Ĥeff = − ~Γ∆2 Ĵ+ Ĵ− describes the coherent coupling between each pair of atoms, and the collective decay
[term ΓCL[Ĵ−] in Eq. (S20)] leads to dissipative coupling. We want to emphasize that this atomic master equation is not sufficient
for the external degrees of freedom, which are treated in section II separately, and for which retardation effects are not negligible.

The spin degrees of freedom of atoms scale exponentially with the number of atoms. To solve Eq. (S20), we thus use a
semiclassical approximation that is applicable to large atom numbers in the steady-state superradiance [S1, S2]. Cumulants for
the expectation values of spin operators are expanded to second order. Because of the U(1) symmetry, 〈σ̂±j 〉 = 0. Therefore, all
nonzero observables are expanded in terms of 〈σ̂+j σ̂−j 〉 and 〈σ̂+j σ̂−l 〉 ( j , l). Their equations of motion can then be found from
the effective master equation,

d
dt
〈σ̂+j σ̂−j 〉 = w(1 − 〈σ̂+j σ̂−j 〉) −

1
2

(ΓC + iΓ∆) cos(kx̂ j)〈Ĵ+σ̂−j 〉 −
1
2

(ΓC − iΓ∆) cos(kx̂ j)〈σ̂+j Ĵ−〉,
d
dt
〈σ̂+j σ̂−l 〉 = −w〈σ̂+j σ̂−l 〉 +

1
2

(ΓC + iΓ∆) cos(kx̂ j)〈Ĵ+σ̂−l σ̂z
j〉 +

1
2

(ΓC − iΓ∆) cos(kx̂l)〈σ̂z
l σ̂
+
j Ĵ−〉

≈ −
(
w + (ΓC + iΓ∆) cos2(kx̂ j)〈σ̂+j σ̂−j 〉 + (ΓC − iΓ∆) cos2(kx̂l)〈σ̂+l σ̂−l 〉

)
〈σ̂+j σ̂−l 〉

+
1
2

(ΓC + iΓ∆) cos(kx̂ j)(2〈σ̂+j σ̂−j 〉 − 1)〈Ĵ+σ̂−l 〉 +
1
2

(ΓC − iΓ∆) cos(kx̂l)(2〈σ̂+l σ̂−l 〉 − 1)〈σ̂+j Ĵ−〉,

(S21)

describing the population inversion and spin-spin correlation respectively. In deriving Eq. (S21), we have dropped the third-order
cumulants. In the simulations we integrate (S14), (S18) and (S21) simultaneously.

[S1] D. Meiser and M. J. Holland, Phys. Rev. A 81, 033847 (2010); ibid. 81, 063827 (2010).
[S2] Minghui Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014).
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Conclusions & outlook

Summary of results

This thesis investigates long-range interactions, acting on atomic ex-
ternal and/or internal degrees of freedom. Those interactions are induced
by a common coupling to a lossy cavity mode. The major part of this
thesis considers atoms that are exposed to a transverse coherent laser
drive (Chapters 1-6), while the latter is replaced by an incoherent drive in
Chapter 7. These setups represent driven-dissipative long-range interacting
systems, realized in cavity quantum electrodynamics.

For the case of laser-driven atoms in an optical cavity, this work con-
tains the explicit derivation of a self-consistent theory that treats the cavity
�eld fully quantum-mechanically [74]. Such an approach is crucial below
the self-organization threshold, when the atoms form a homogeneous spatial
distribution and the scattered photons destructively interfere, such that the
cavity �eld is close to the vacuum1 [67].
The treatment in this thesis relies on a semiclassical limit for the atomic
motion, in which a time-scale separation between the dynamics of atomic
motion and cavity �eld can be identi�ed [74, 96]. This is consistent when
the rate of photon losses κ is much larger than the recoil frequency ωr

of the atoms, κ � ωr. This approach delivers a Fokker-Planck equation
for the atomic motion only, the intracavity (quantum) �eld being elim-
inated quasiadiabatically and in a consistent manner. Inspection of the
steady state of this Fokker-Planck equation2 shows that the �nal atomic
momentum distribution is a Gaussian whose width can be identi�ed with

1Therefore, it complements several theoretical studies that assume a large intracavity
photon number (semiclassical limit for the cavity �eld) [43, 45, 66], which is arguable in
this regime.

2The steady state is determined analytically only in the limit NU � κ [64, 77, 88],
with N the number of atoms and U the dynamical Stark shift.
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a temperature, in accordance to former treatments [43]. It is worth to
point out that, in the present approach, temperature is not an external
parameter [66], but the result of photon scattering processes associated to
the driven-dissipative dynamics in the long-time limit. The steady state,
interestingly, obeys the form of a canonical distribution, characterized by
a long-range interacting Hamiltonian and a temperature [64, 77]. This
implies that the driven-dissipative dynamics, in the long-time limit, drives
the system to thermal equilibrium, allowing for the appliance of standard
concepts of statistical mechanics. By de�ning a convenient order parameter
Θ [66] and an explicit mapping of the free energy to a Landau model
[76], the transition to spatially ordered patterns has been identi�ed as a
second-order phase transition [77].

The dynamics at steady state has been studied by numerical simula-
tions3 [36, 82, 83]. On the one hand, those studies have focused on the
stability of the Bragg gratings [77]. The statistics of its residence time
(trapping times [75]) has been analysed, including the characterization of
the time scale (jumping times) required for the dynamical switching [45]
between Bragg gratings. While this switching between spatial patterns for
laser-driven atoms is induced by thermal �uctuations, we have shown that
a deterministic (desired) switching can be tailored by a proper phase choice
of an additional cavity laser drive [87]. On the other hand, for the case of
laser-driven atoms, the properties of the light �eld, which give information
on the spatial density [67, 97], have been analysed in detail. This analysis
includes the intracavity photon number, the photon statistics and spectrum
of the cavity output [64, 77, 88]. For the considered setup, remarkable
similarities can be identi�ed in observations with atoms in the ultracold
regime [67, 72, 98, 99].

This thesis further provides new insight in the onset of self-organization,
observed after a quench (sudden change in the laser intensity, for instance)
from the homogeneous into the ordered phase in the driven-dissipative
system [64, 78]. The long-range character of the intrinsically present
dissipative forces [89] is crucial for the features that we observe in the
long-term dynamics. First, after a fast relaxation, that can be well de-
scribed by a Vlasov instability [35, 88, 100, 101], the system evolves into a
prethermalized stage, being characterized by a non-Gaussian (non-thermal)
momentum distribution. This initial dynamics can be well approximated by
a mean-�eld dynamics, derived from a mean-�eld treatment [78, 88]. Even
though this mean-�eld description well captures both the initial dynamics
and the steady state (for large atomic ensembles), it fails in predicting the
long-term behavior in the relaxation dynamics towards steady state. It
has been veri�ed that the peculiar long-range character of the dissipative

3In this thesis, numerical simulations have mainly been performed with MATLAB.
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dynamics can push the system even further away from equilibrium, ulti-
mately leading to larger relaxation time scales than those of the mean-�eld
approach [78, 88]. Furthermore, we have shown that, in a properly de�ned
thermodynamic limit [64], these features persist and even longer relax-
ation times are expected when increasing the size of the atomic ensemble [78].

On the basis of these �ndings we identify several questions, which we
discuss in the following.

Open questions & Outlook

Besides the assumption of thermal atoms in a bad cavity, summarized
by the condition κ � ωr, the steady state of self-organization has been
derived in the regime far from optical bistability, |NU | � κ. While e�ects
of those virtual scattering processes scaling with U have been discarded
in the derivation of the analytical steady state, they have been taken into
account in a consistent manner in the numerical simulations, at the same
footing as retardation e�ects [77]. Taking into account further corrections
in this optomechanical coupling (in the adiabatic cavity limit) results
in cavity-mediated forces which can not be derived from a conservative
potential [18]. The resulting nonlinear dynamics might result in a steady
state that does not ful�ll detailed balance, thus being out-of-equilibrium.
Optical bistability [24] is expected to be observable for large �eld intensities
and can result in oscillatory behavior. Similar observations have been made
in theoretical studies for a laser-driven BEC in the regime |NU | ' κ [73].

Indeed, a series of experiments for an ensemble of laser-driven atoms
has been realized in the ultracold regime, loading a Bose-Einstein conden-
sate into a resonator [37, 47, 67, 70, 72, 102]. Here, the transition to a
grating can be mapped to a Dicke model and with it to a second-order
phase transition [37, 38, 47]. In comparison to the model of thermal atoms
in this thesis, remarkable qualitative (and to some extent quantitative)
agreement is found, for instance, for the intracavity photon number, the
photon statistics or the spectrum at the cavity output [67, 72]. At least,
this implies the question in how far matter-wave coherence is crucial for the
observed phenomena [103]. The analogies are indeed surprising, since the
semiclassical model is outside the regime of validity in the ultracold realm
[74]. Nevertheless, in the experiments performed in Refs. [37, 47, 67, 72]
at the ETH in Zürich, the condition κ � ωr, for which the semiclassical
model predicts thermal equilibrium in the long-time limit, is met. In
this treatment and for such a large atomic ensemble (N ≈ 105), however,
relaxation times towards steady state in the order of several seconds are
expected [78]. Such experimental time scales are hardly accessible due
to other loss processes which have not been accounted for in this model.
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This arises the question in how far the steady state, predicted by the
semiclassical model and due to the dissipative dynamics, can be reached
in those experiments. Furthermore, phase diagrams are often recorded by
(slow) ramps in the intensity (or detuning) [37, 104]. In the semiclassical
regime, as has been shown, (sudden) changes in the control parameter
usually result in the creation of metastable states that, only in the long-time
limit, evolve towards steady state [78]. Evidence of such metastable states
might play a role in recently measured hysteresis behaviors [104]. We remind
that the dynamics is governed by the interplay of long-range dispersive and
dissipative forces, the latter scaling the rate for reaching the ultimate steady
state. The semiclassical model reveals that both dispersive and dissipative
forces scale with the laser intensity, while the dissipative ones can be
suppressed by large laser detunings (|∆c| � κ [104]), resulting in even more
prolonged relaxation times. In this regime, it would be interesting to verify
whether prethermalization due to conservative (dispersive) forces might be
dominant.
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