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ABSTRACT 

 
Protein interactions play major roles in many biological processes. This thesis is composed of 
three projects. Using five datasets, we explored the characteristics and composition of 
overlapping protein-protein (PP) and protein-ligand (PL) interfaces. Overall, characteristics of 
PP contacts and overlapping PL contacts are highly similar. Second study was designed to 
identify transcription factor binding site motifs in promoter regions of STIM and ORAI genes, 
to gain knowledge of their regulation and relation with breast cancer. Our findings form an 
important basis of predictive interactions between transcription factors targeting STIM and 
ORAI genes and underline roles of these genes in breast cancer. Thirdly, we evaluated the 
performance of seven protein prediction tools on a dataset of protein-ligand complexes. 
Although the tools predicted pockets of various sizes and shapes, we found comparable 
performance amongst the predictions of five tools. We trained a random forest model to output 
a list of suitable tools for a given protein structure. This classifier should be useful for 
prioritizing the tools to be used for unknown proteins. 
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ZUSAMMENFASSUNG 

 
Wechselwirkungen zwischen Proteinen spielen in biologischen Prozessen eine wesentliche 

Rolle. Diese Dissertation ist in drei Projekte aufgegliedert. Unter Zuhilfenahme von fünf 

Datensätzen aus drei unterschiedlichen Datenbanken wurden die Eigenschaften und die 

Zusammensetzung von überlappenden Protein-Protein (PP) und Protein-Ligand (PL) 

Bindestellen untersucht. Statistisch gesehen sind sich die Eigenschaften von PP Kontakten und 

überlappenden PL Kontakten sehr ähnlich. Die zweite Studie diente dazu Motive von 

Transkriptionsfaktor-Bindestellen in bestimmten Promotor-Regionen der STIM und ORAI 

Gene zu identifizieren als auch Erkenntnisse über deren Regulation und Zusammenhang mit 

Brustkrebs zu gewinnen. Unsere Ergebnisse stellen eine wichtige Grundlage für die 

Vorhersage der Wechselwirkungen zwischen Transkriptionsfaktoren, welche an die beiden 

Gene STIM und ORAI binden, dar. Darüber hinaus konnten wir die Rolle dieser Gene in 

Zusammenhang mit Brustkrebs herausstellen. Im dritten Teil werteten wir die Performance von 

sieben verschiedenen Tools anhand eines Datensatzes von PL Komplexen aus. Obwohl die 

Tools von der Größe und Form her unterschiedliche Bindetaschen vorhersagten, konnten wir 

dennoch ein vergleichbares Verhalten zwischen fünf Tools feststellen. Wir trainierten ein 

Random-Forest Modell, welches, gegeben eine Proteinstruktur, eine Reihe von geeigneten 

Tools vorhersagt. Dieses Modell kann dazu dienen Vorhersagemodelle anhand unbekannter 

Proteine zu priorisieren. 
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Chapter 1 
 

Introduction 
 

1.1  Introduction  

Protein interactions play a major role in many biological processes. Numerous important 

applications benefit from the identification of protein-protein and protein-ligand interactions 

such as drug design, protein mimetics engineering, elucidation of molecular pathways, and 

understanding of disease mechanisms. Nowadays, a wide range of high-throughput 

experimental approaches are available for identification of protein-protein and protein-ligand 

interactions. For that reasons, many publicly accessible databases stores the high-quality 

information about protein-protein and protein-ligand complexes. Moreover, for almost three 

decades, gene expression was recognized to be mainly regulated at the transcriptional level and 

protein known as transcription factors functions in regulating the expression of a gene. Any 

changes of protein interactions can lead to mutations and diseases by affecting the functions of 

protein complexes or by affecting gene regulations.  

 

1.2 Motivation 

This thesis addresses three problems which related mostly to protein interactions and gene 

regulation. Nowadays, many efforts and studies have analyzed protein-protein and protein-

ligand interactions, however a detailed of protein interfaces composition is remain elusive as 

targeting protein-protein interactions is challenging because usually no convenient natural 

substrates are available as starting point for small-molecule design. Hence, by using five 

datasets from three different databases, our aim was to explore the characteristics and 

composition of overlapping protein-protein and protein-ligand interfaces.  

On the other hand, many studies have been done on STIM and ORAI genes as they play 

important roles in calcium signals and involved in store-operated Ca2+ entry (SOCE) in cells. 

STIM1 and STIM2 are needed for the development and functioning of various cell types such 

as lymphocytes, skeletal and smooth muscle myoblast, adipocytes and neurons [1,2]. In 

addition, previous studies stated that STIM and ORAI genes are associated with differentiation 

processes and linked to several diseases such as Alzheimers, Parkinsons diseases and cancer 

(e.g. breast cancer and prostate cancer) [3–6]. Today, cancer is a major public health problem 

worldwide which breast cancer is one of the most common and predominant cancer types that 

affects 1.3 million people and causes thousands of death annually [7,8]. In the United States of 
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America, 30.4% of women are diagnosed with breast cancer yearly [7]. However, only few 

studies addressed the involvements of STIM and ORAI genes to breast cancer. In addition, the 

discovery of transcription factor binding sites (TFBS) motifs in specific locations in the 

promoter regions of STIM and ORAI genes is remain elusive. Our aim was to find the 

interacting transcription factors bound to the particular promoter regions of STIM1, STIM2, 

ORAI1, ORAI2, and ORAI3 and their regulation and relation with normal and breast invasive 

carcinoma (BRCA) samples.  

Identification of binding pockets is often a prerequisite step for structure-based drug 

design. However, the characterization of these sites is a main challenge in computational 

biology. Defining the correct pockets on protein surfaces is not an easy task. Recently, many 

protein pocket identification tools have been developed by using different strategies and 

approaches. So far apparently, none of the existing approaches performed in a way which can 

set as a standard or that is widely accepted as benchmarking method to identify protein pockets 

accurately. Hence, it is great of interest to evaluate and compare the performances of these 

tools. By using seven different protein pocket identification tools and tested on a dataset of 

protein-ligand complexes, our aim was to evaluate and compare their performances and suggest 

a set of the best tool which can identify protein pockets accurately. 

 

1.3  Contributions 

Most of the results chapters of this thesis are based on manuscripts that either published or 

ready for submissions as follow: 

 

Chapter 3: Ruzianisra Mohamed, Jennifer Degac, and Volkhard Helms. Composition of 

Overlapping Protein-Protein and Protein-Ligand Interfaces. PloS One. 2015 Oct 

30;10(10):e0140965. doi: 10.1371/journal.pone.0140965. 

 

Chapter 4: Ruzianisra Mohamed, Riccha Sethi, Mohamed Hamed, and Volkhard Helms. STIM 

and ORAI Genes, Interactions with Transcription Factors, Differential Gene Expression and 

Co-expression Analysis on Breast Invasive Carcinoma Dataset (In preparation for submission 

to peer reviewed journal). 
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Chapter 5: Zhao Yuan, Rahmad Akbar, Volkhard Helms, and Ruzianisra Mohamed. Evaluation 

of Protein Pocket Identification Tools on Protein-Ligand Complexes (In preparation for 

submission to peer reviewed journal). 

 

1.4  Thesis Organization 

The structure of the thesis is as follows: 

 Chapter 2 provides general introduction to biological background and computational 

methods such as proteins, protein-protein and protein-ligand interactions, protein pocket 

identification algorithms, transcription factors, promoters, gene expressions, differential 

gene expression analysis and co-expression analysis. 

 Chapter 3 will discuss the topic on compositions of overlapping protein-protein and 

protein-ligand interfaces. 

 Chapter 4 will show the study on STIM and ORAI genes, interactions with transcription 

factors and differential gene expression and co-expression analysis on a dataset of breast 

invasive carcinoma. 

 Chapter 5 will discuss the topic of evaluation of seven protein pocket identification tools 

on a dataset of 167 protein-ligand complexes. 

 Chapter 6 summarizes the results of the projects and provides conclusions with regard to 

the aims of the studies and contributions made and present the future works. 
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Chapter 2 

 

Biological Background and Computational Methods 
 

In this chapter, we present the background on the biological concepts and computational 

methods relevant to this thesis. We also briefly describe the publicly accessible biological 

databases, tools, and packages that were used in this thesis. 

 

2.1 The Nature of Protein  

Proteins rarely act by themselves and in most cases in order to function in biological systems, 

they work in groups which known as protein complexes. Protein complexes perform many 

important tasks within biological cells such as catalyzing metabolic reactions, replicating DNA, 

and transporting molecules from one place to another. Being workhorses that assist many 

biological processes, their detection is needed to increase our knowledge about cellular 

organizing and function. Generally, a protein consists of a sequence of 20 amino acids (also 

known as residues) which are linked together through peptide bonds, forming a polypeptide 

chain known as the primary structure. The primary structure forms secondary structural 

elements, for example alpha helices and beta sheets through hydrogen bonds, which interact to 

form the tertiary structure via protein folding. The tertiary structure may combine with another 

to construct a quaternary structure. 

 

2.2 Protein-Protein Interactions, Protein-Ligand Interactions, and Protein Interfaces 

As mentioned above, proteins play major roles in almost all biological functions. Most of the 

molecular processes are based on molecular machines which are composed of a large number 

of proteins and bind to each other through protein-protein interactions. The interactions of 

proteins are determined and usually mediated by their interfaces [9]. Protein interfaces are 

defined as binding sites of certain patches on each of the two protein’s surface, which enables 

the interaction between two proteins. The characteristics of the protein-protein and protein-

ligand interfaces are important to describe binding principles and provide clues about 

algorithms for binding site prediction. One of the most important aims in interface studies is to 

identify properties which may distinguish residues at binding sites from the rest of the protein 

surfaces. A few studies showed that interfaces are rather large, planar or well packed depending 

on the type of the interactions [10,11]. 
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Due to the importance of protein interfaces in mediating protein-protein and protein-

ligand interactions, various studies have analyzed protein interfaces. The analysis of three 

dimensional (3D) protein structures revealed that protein interfaces are composed of buried 

cores which are surrounded by partially accessible rims [12,13]. Additionally, the size of the 

interface patches ranges between 400 and 1600Å2 [12]. 

Interestingly, PPI interfaces contain small regions called “hot spots” that contribute the 

most to the total binding energy [10,14,15]. A powerful experimental approach named alanine 

scanning mutagenesis is used to identify hot spot regions by successively mutating each 

interface residue to alanine. Those residues are termed hot spots where mutation into alanine 

leads to a decrease in binding free energy by more than 2.0 kcal/mol [16]. Since hot spots by 

definition make up the largest contribution to the binding energy, the ability to predict hot spots 

is important to identify, analyze and lead to targets for drug binding sites. To circumvent the 

required time and costs and the experimental uncertainty whether protein mutants will properly 

express and purify, several computational methods have been designed and used to predict hot 

spots. They typically either use energy based methods to calculate the energetic contributions 

of residues [17,18], solvent accessible surface area (SASA) [19], and sequence conservation 

based approaches [20].  

 

2.3 Types of Protein Interactions 

Studies  showed that many factors are influencing the classification of protein interactions into 

different types of interactions [10,21]. The most basic classification of interactions is based on 

the composition of the protein complex. For example a complex consisting of identical proteins 

is termed homo-oligomer (e.g. homodimer complex). Usually, homo-oligomers are very stable 

permanent protein structures such as in the case of homodimer (two proteins) complexes [10]. 

On the other hand, a complex made of non-identical proteins is defined as hetero-oligomers 

(e.g. heterodimer complex) [22]. Then, protein interactions can be further grouped into obligate 

or non-obligate depending on the lifetime of the interactions [22,23]. Obligate complexes only 

exist in the bound form. Components of non-obligate complexes such as antibodies are also 

stable in the unbound form. Based on their binding affinity, the interaction can be considered 

to be permanent or transient. Generally, all obligate interactions are permanent, however not 

all permanent interactions are obligate. Non-obligate and transient protein interactions usually 

have lower binding affinities. The transient interactions are subdivided into weak and strong 

transient. The strong transient ones include protein interactions that shift from an unbound or 

weakly bound state to a strongly bound state. This is frequently stimulated by an effector 
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molecule. Figure 2.1 shows the classification of protein interactions. The protein interaction 

types depend on the situation and cellular process. Therefore, it is importance to understand 

protein-protein interaction types and the effects they have on certain biological processes.  

 

 

Figure 2.1 Classification of different types of protein interactions.  

 

2.4 The Protein Data Bank (PDB) 

The 3D coordinates of protein structures are generally deposited in The Protein Data Bank 

(PDB) [24], the globally recognized primary depository for experimentally determined 

atomistic structure of 3D biological macromolecules. The PDB was developed in 1971 at the 

Brookhaven National Laboratories containing a set of seven protein structures. Then, in 1998, 

the PDB moved under management of the Research Collaboratory for Structural 

Bioinformatics (RCSB) at the Rutgers University, New Jersey (http://www.rcsb.org/pdb/). 

Since early 1990’s, the number of 3D structures deposited in the PDB has been increasing 

exponentially. As for 16 May 2016, the PDB stores 118748 structure of biological 

macromolecules of which more than 92% are proteins, 2% nucleic acid complexes, 4% protein-

nucleic acid complexes and 0.02% other complexes. 99% of the structures were determined by 

X-ray crystallography (89%) and by Nuclear Magnetic Resonance (NMR) Spectroscopy 

(10%). 1022 structures were solved with electron microscopy, 95 hybrid and 196 by other 

methods.  The PDB also stores 20955 ligands which interact with the proteins (protein-ligand 

complexes).  

The PDB is the primary resource to study the diversity of protein-protein (PP) and 

protein-ligand (PL) interactions. Thus,  some secondary databases have been developed to 

http://www.rcsb.org/pdb/


7 
 

assist the research on  PP interactions such as the Biological General Repository for Interaction 

Datasets BioGRID (thebiogrid.org) [25,26] which stores data of small molecules modulating 

protein–protein complexes, the Molecular INTeraction database (MINT) 

(mint.bio.uniroma2.it/mint/Welcome.do) [27], the Biomolecular Interaction Network Database 

(BIND) (http://bind.ca) [28], the Database of Interacting Proteins (DIP: http://dip.doe-

mbi.ucla.edu) [29], the IntAct molecular interaction (IntAct) database (www.ebi.ac.uk/intact/) 

[30], the ABC database (http://service.bioinformatik.uni-saarland.de/ABCSquareWeb/) [31], 

and the database of structurally defined protein interfaces named PIBASE 

(http://pibase.janelia.org/pibase2010/queries.html) [32].  

On the other hand, the high-quality databases of PL interactions can assist the field of 

structure-based drug design to develop the best computational tools. There are several publicly 

available databases such as the Timbal database (http://mordred.bioc.cam.ac.uk/timbal) [33], 

the Mother of All Database (MOAD) (http://bindingmoad.org) [34,35], the 2P2I database 

(http://2p2idb.cnrs-mrs.fr) [36], the PDBbind 

(http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp) [37], the BindingDB database 

(www.bindingdb.org) [38,39], and Relibase 

(http://relibase.ccdc.cam.ac.uk/account_utilities/login_form.php) [40]. The ABC and PIBASE 

databases also stored data on PL interactions. 

 

2.5 Protein Pockets 

The accurate prediction of protein pockets from a 3D protein structure is an important issue for 

structure-based drug design [41,42] which can elucidate protein functions [43]. The basic 

principle of molecular interactions was proposed by Emil Fischer in 1894, who stated that 

ligand binding to proteins follows a “lock and key” mechanism [44]. These interactions often 

occur in particular sites on protein surfaces (binding sites). These binding sites can be 

distinguished from other parts of the protein surface by their unique characteristics as such the 

electrostatic properties and the size of a cavity on the protein surface [45]. Additionally, in a 

single protein there can be many pockets and the sizes of ligands are varying. They can be as 

small as ions or large polymers. Figure 2.2 shows an example of a pocket identified by the 

protein pocket identification tool GHECOM, that overlap with the ligand dysiherbaine bound 

to human glutamate receptor, GluR5 (PDB ID: 3FV1). 

Generally, clinically approved drugs are classified into two broad classes (i) small 

molecules which typically comprise of <100 atoms with a molecular mass of <1,000 Da and 

(ii) biologics such as antibodies, modified nucleic acids, peptides, and vaccines [46]. The small 

http://mordred.bioc.cam.ac.uk/timbal
http://bind.ca/
http://dip.doe-mbi.ucla.edu/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact/
http://service.bioinformatik.uni-saarland.de/ABCSquareWeb/
http://pibase.janelia.org/pibase2010/queries.html
http://mordred.bioc.cam.ac.uk/timbal
http://bindingmoad.org/
http://2p2idb.cnrs-mrs.fr/
http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp
http://www.bindingdb.org/
http://relibase.ccdc.cam.ac.uk/account_utilities/login_form.php
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molecules usually traverse cellular membranes before they can reach intracellular target 

molecules and work on a relatively limited surface area. On the other hand, biologics generally 

interact with a large surface area that contains multiple interaction sites. They are also larger in 

sizes which restrict their mode of delivery and pose more challenges in drug design.  

 
Figure 2.2 Pocket (orange sphere) identified by the protein pocket identification tool 

GHECOM that overlaps with the ligand dysiherbaine (red sticks) bound to human glutamate 

receptor, GluR5 (PDB ID: 3FV1). The figure was generated using PyMOL Molecular Graphics 

System [47].  

 

2.6 Computational Methods for Identification of Protein Pockets 

As the experimental identification of a binding site is not always feasible, as alternative 

computational protein pocket identification methods are required. Nowadays, many 

computational approaches for protein pocket identification have been developed which greatly 

accelerate drug discovery and protein designs. These protein pocket identification tools and 

algorithms fall into five different categories according to the methods applied (i) geometry 

based, (ii) energy based, (iii) evolution based, (iv) blind docking, and (v) combined approaches 

[48]. Geometry based methods can be grouped into three subcategories (i) grid system 

scanning, (ii) probe sphere filling, and (iii) based on the alpha shape theory [49,50]. In the 

following sections these methods are introduced in more details.  

 

2.6.1 Geometry based Methods 

Geometry based methods aim to identify solvent accessible regions that are located in surface 

cavities and clefts by the analysis of geometric criteria [48]. These approaches have been 

popular for years because they appear to exhibit good performance in the identification protein 

pockets. They were reported to predict almost 95% of the known binding sites. At a fast 

computational speed and they are robust in handling cases of structural variations or missing 

atoms/residues in the protein complexes [51]. Generally, geometry based methods are based 
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on the hypothesis that the ligand binding site are represented by the largest pocket [52–54]. 

Although these methods only considered the largest pocket, in reality this is not always the 

cases. Therefore, these methods have been further improved and new algorithms of prediction 

have been developed. In the following subsections the subcategories of geometry based 

methods are introduced in more detail. 

 

2.6.1.1 Grid System Scanning  

Grid based methods are a subcategory of geometry based methods that use a grid to define the 

molecular surface. These methods typically focus on the buriedness of grid points and the 

protein surface [54,55]. For example, DogSiteScorer is a grid based method. When tested on a 

dataset of 1069 structures, it achieved prediction accuracies more than 80% [56]. Generally, 

the initial step in the DoGSiteScorer process is the prediction of pockets on the protein surface 

based on the coordinates of the protein heavy atoms. A grid is spanned around the protein and 

grid points are labelled according to their spatial overlap with protein atoms. Then, the 

difference of Gaussian (DoG) filter is applied to the grid to identify the position of a cavity on 

the protein surface. Next, these positions are clustered to potential subpockets based on a 

density threshold. Finally, pockets are identified as the collection of merged neighbouring 

subpockets [48,56]. On the other hand, DEPTH [57,58], GHECOM [49], PocketDepth [59], 

and PocketPicker [55] also implement grid system scanning methods.  

 

2.6.1.2 Probe Sphere Filling Methods 

Probe sphere filling methods identify protein pockets by generating a set of probe spheres to 

fill cavities in a protein. Those regions containing the largest number of spheres are defined as 

pockets. In addition, these approaches use different types of probes such as (i) gap sphere [60], 

(ii) rotating probe, (iii) multiscale probe [49], (iv) the combination of big and small probes 

[61], and (v) probes placed tangential to triplets of protein atoms [62]. For example, SURFNET 

[60] and IsoMif [63] are representatives of these methods.  
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2.6.1.3 Alpha Shape Methods 

In the1990s, the studies by Edelsbrunner and co-workers led to the development of new 

methods based on the alpha-shape theory [64,65]. The accuracy of the alpha-shape methods is 

influenced by the alpha values. The Automatic Protein Pocket Search (APROPOS) [66], the 

Computed Atlas of Surface Topology (CAST) [67], and Fpocket [68] are tools that implement 

alpha shape methods. For instance, CAST applied alpha shape methods to compute a 

triangulation of the protein surface atoms. This tool uses the discrete flow concept by allowing 

the small triangle flow to the neighbouring bigger triangles which act as “sinks” that later 

collect excess flow from neighbouring empty triangles. The collection of empty triangles is 

defined as the protein pocket [67].  

 

2.6.2 Energy based Methods 

Energy based methods rely on the assumption that the potential binding sites are characterized 

by binding energies which are different from the rest of the protein surface. Usually, these 

methods uses simple van der Waals (vdW) probes to locate the grid points around the protein 

surfaces and calculate interaction energies between the probe and a protein. The protein pockets 

are defined only by the energetic features. For examples, ProACT2 [69,70] and Q-SiteFinder 

[71] are tools that apply energy based methods to predict protein pockets. 

 

2.6.3 Evolution based Methods 

Evolution based methods also known as sequence based evolutionary conservation methods, 

are based on the assumption that functionally important residues of proteins are typically 

conserved during the evolution because of natural selection and these functional areas are 

mainly the protein pockets. Generally, the degree of conservation at each amino acid site is 

divided into two categories (i) slowly evolving sites which refer to evolutionarily conserved 

and (ii) rapidly evolving sites [72]. Based on this, several tools have been developed such as 

ConSeq [73], ConSurf [72], and a new version of ConSurf called Consurf 2010 [74] to identify 

the functional areas of unknown proteins by comparing their amino acid sequences to the 

already known amino acid sequences of proteins. These methods are fast, robust, and require 

only a protein sequence to predict the binding sites. Exceptions to this are the methods by de 

Rinaldis et al. 1998 [75] and siteFINDER|3D [76]. 
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2.6.4 Blind Docking and Molecular Dynamic Methods 

In addition to methods mentioned above, molecular dynamics (MD) and blind docking 

algorithms are also considered as useful methods to identify protein pockets. These approaches 

are most practical in cases where the ligand that binds in the target protein is known, but the 

binding site is unknown and requires the 3D-structure of the protein. Generally, MD 

calculations use two different approaches which are based on two situations (i) mobility of 

water molecules and (ii) long scale MD simulations to find the correct binding site of an already 

known active ligand. For example, a representative for this methods is molecular-docking 

binding site finding (MolSite) [77]. On the other hand, blind docking methods work by 

scanning the entire surface of the protein target to identify binding sites and modes of peptide 

ligands [78]. AnchorDock [79] is a representative of blind docking methods. 

 

2.6.5 Combined Approaches 

So far, apparently none of the methods described above performed in a way which can set as a 

standard or that is widely accepted as benchmarking method to identify protein pockets 

accurately. Several of the existing methods are often unsuccessful in certain types of cases, in 

which the algorithms are not able to take into account correctly or adequately all properties of 

the target site and did not work for all the entries in the dataset [80,81]. Furthermore, improving 

the existing algorithms does not necessarily can produce better predictions results. Thus the 

idea of extending the methods in other ways which aim to reduce the weaknesses of other 

algorithm appears promising. Consequently, the combination of two or more methods seems 

to be a good solution to improve the identification of protein pockets. 

The first attempt of combined approaches was started by a study of Del Sol Mesa and 

co-workers (2003) [82]. They combined three separate evolution based methods but did not 

combine different types of approaches. Later, a study by Huang B et al., 2009 [83] introduced 

the MetaPocket tool which uses and combines the four methods LIGSITEcs [84], PASS [62], 

Q-SiteFinder [71], and SURFNET [60] to predict protein pocket binding sites. The method was 

tested on two different datasets of 48 unbound/bound structures and 210 bound structures. The 

results showed a success rate of 70 to 75%. Two years later, Zhang et al. and co-workers 

introduced MetaPocket2.0 [85].  By applying these combined approaches to the same datasets, 

the results increased by 5% compared to the previous study.  
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2.7 Transcription Factors, Promoters, Motifs, and Position Weight Matrix (PWM) 

2.7.1 Transcription Factors and Promoters  

The information within a gene is expressed by the cellular processes of transcription and 

translation. Transcription factors are regulatory DNA-binding proteins which play major roles 

in the regulation of gene expression. Previous studies noted that the larger total number of 

transcription factors reflects the larger number of genes in the genome of an organism which 

results in a larger size of the genome [86,87]. Single transcription factor or transcription factor 

complexes bind to the promoter region of the coding sequence which influencing RNA 

transcription. In addition, transcription factors can regulate gene expression by either activating 

or repressing gene transcription.  

On the other hand, promoters are defined as the genomic regions that are located 

5’upstream of the transcription start site (TSS) of genes. Promoters are the important element 

of expression vectors as they control the attachment of RNA polymerase and required to recruit 

the transcription initiation complexes and initiate transcription. There is no accurate definition 

of promoter length. Promoter binding is different in bacteria compared to eukaryotes as in 

bacteria RNA polymerase only needs the association of protein sigma factor to bind to the 

promoter. In contrast, eukaryotes require several transcription factors for the binding of RNA 

polymerase II to the promoter. Usually the complex consists of specific TFs, general TFs, co-

factors, and RNA polymerase II [88]. Transcription does not only depend on co-factors and 

TFs and their ability to work together, but also on the structure of the chromatin. Additional 

mechanisms that also control gene expression are RNA interference, methylation and 

acetylation. The EPDnew database is one of the several publicly available resources of species-

specific databases of experimentally validated promoters [89].  

 

2.7.2 Motifs and position weight matrix (PWM)  

Transcription factor binding sites (TFBSs) are the specific recognition sites in the DNA 

sequence for a given transcription factor. These binding sites are often referred to as 

occurrences of the motif for the corresponding TF. Nowadays, there are several approaches for 

the genome-wide detection of TFBSs such as (i) computational approaches which are based on 

the DNA sequence-based analysis and (ii) experimental approaches, which are nowadays based 

on chromatin immunoprecipitation (ChIP) and DNaseI HS-based technologies.  

A position weight matrix (PWM) is a common way of representing patterns in 

biological sequences. It consists of a stack of letters representing each nucleotide at each 

position and the height of each letter is proportional to its value in the PWM. In addition, the 
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sequence logos are regularly used to visualize count or frequency matrices. Figure 2.2 shows 

an example formation of PWM and the resulting sequence motif for eight known genomic 

binding sites in three genes HEM13, ANB1 and ROX1 from Saccharomyces cerevisiae. PWMs 

and sequence logos are available in several databases such as the JASPAR [90], HOCOMOCO 

[91], and TRANSFAC [92]. In this thesis, we identified the putative TFBS in the promoter 

regions of human STIM and ORAI genes. The description of STIM and ORAI genes are 

discussed in the Introduction section (4.1) of Chapter 4.   

 

Figure 2.3 Example of formation of position weight matrix (PWM) and sequence motif. (A) 

Shown are eight known genomic binding sites in three Saccharomyces cerevisiae genes 

(HEM13, ANB1 and ROX1). (B) Frequencies matrix of nucleotides at each position. (C) 

Sequence logo used to visualize count at each position. (D) Sequence logo to represent the 

frequencies scaled relative using the information content at each position. (E) Energy 

normalized logo using relative entropy to adjust the GC content in S.cerevisiae. The figures 

were taken from [93,94]. 

GC content, guanine-cytosine content.  

 

2.8 Gene Expression, Differential Gene Expression, and Co-expression Analysis 

2.8.1 Gene Expression 

The high-throughput sequencing technologies (HTS) are the most common approaches used in 

genomic studies which later involve statistical analysis to measure quantitative differences 

between experiments. It is important to analyze RNA expression levels (also known as RNA-

seq data) to detect which genes that are differentially expressed across a group of samples. 
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Nowadays, there have been active efforts due to the advent of sequencing technologies with 

reduced costs that produce detailed profiling of gene expression levels, which are  important in 

life sciences fields and clinical use [95]. Furthermore, the RNA-seq technology has been used 

to study complex transcriptomes and has assisted identification of levels of transcripts and 

isoforms, translocation events, sequence variations (for example SNPs) in the transcribed 

regions and post-transcriptional base modification.  

Hence, various statistical approaches and tools have been developed such as differential 

expression analysis, random effects, gene set enrichment, gene set testing, and co-expression 

analysis to analyze the large datasets of genome-wide gene expression experiments. In this 

thesis, the differential gene expression analysis, co-expression analysis and differential 

interactions networks was performed using a dataset of breast invasive carcinoma (BRCA) 

obtained from the online data portal, The Cancer Genome Research (TCGA) (see Chapter 4).   

 

2.8.2 Differential Gene Expression Analysis 

The rapid growth of high-throughput technologies and publicly available datasets of RNA 

expression levels has motivated many studies to develop statistical algorithms that implement 

various approaches for normalization and differential gene expression analysis such as edgeR 

[96], DESeq [97], DESeq2 [98], PoisssonSeq, baySeq, and linear models for microarray data 

(limma). Generally, differential gene expression analysis of RNA-Seq data consists of three 

steps such as normalization of counts, parameter estimation of the statistical model and 

statistical tests for different expression.  

 

2.8.2.1 DESeq, DESeq2, and edgeR Packages  

DESeq, DESeq2 the extendable version of successful DESeq method and digital gene 

expression in R (EdgeR) are widely used Bioconductor packages for differential expression 

analysis of RNA-Seq and ChIP-Seq count data. These packages are very popular among user 

with biological background because they are easy to use, well documented and perform the 

best in replicated experiments. Generally, these statistical methods are based on the negative 

binomial distribution. Moreover, these packages have similar steps to perform differential 

analysis for count data. However they differ in several aspects such as (i) their look and feel, 

(ii) default normalization for example, edgeR applies the trimmed mean of M values and 

DESeq applies a relative log expression approach, and (iii) the application of dispersion 

estimate [99]. Typically, edgeR uses moderates individual dispersion estimates toward a 

trended-by-mean estimation [96]. A study by Dillies et al. 2013 [100] showed that the 
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normalization methods of edgeR and DESeq2 packages outperforms other approaches either 

in the case of expressed RNA repertoires that vary across biological conditions or in the 

presence of highly expressed genes. On the other hand, for the quality control step, clustering 

and Principal Component Analysis (PCA) can be used to assess the structure of the dataset.  

In differential gene expression analysis, the False Discovery Rate (FDR) was used as a 

multiple testing correction approach. This was introduced by Benjamini and Hochberg (BH) in 

1995 [101]. Multiple testing corrections adjust the p-values obtained from a large number of 

hypotheses testing to correct the occurrence of false positives. The FDR is defined as the 

expected proportion of falsely rejected null hypotheses among all rejected null hypotheses.  

   𝐹𝐷𝑅 = 𝐸 (
number of falsely rejected null hypotheses

number of rejected null hypotheses
)                              (2.1) 

 

For example, a threshold of 0.02 FDR indicates that only two false positives are expected in 

100 predictions. DESeq2 computes a q-value (FDR adjusted p-value) for each gene and uses it 

as the threshold to identify differentially expressed genes.  

 

2.8.3 Co-expression Analysis 

Generally, gene co-expression analysis is used to detect gene pairs that are coordinated in their 

expression profiles and to explore network characteristics of complex traits. In addition, gene 

co-expression network differential analysis is designed to assist biologists in many applications 

such as discovering protein-protein interaction relationships, predicting new gene functions, 

pathways, and identifying disease biomarkers or genes. In this network nodes represent genes 

and edges link two genes to show to what degree this pair of genes is co-expressed across 

several samples. The edges are based on correlation coefficients between each gene pair, where 

higher correlation means a higher probability of existing co-functionality between them. 

Recently, several computational approaches have been developed for the co-expression 

analysis and networks such as the Average Specific Connection, Differential Coexpression 

profile (DCp) [102], Differential Coexpression enrichment (DCe) [102], Differential 

Correlation in Expression for meta-module Recovery (DICER) [103], DiffCoEx [104], Log 

Ratio of Connections [105], and the Weighted Gene Co-Expression Network Analysis 

(WGCNA) [106]. For example, the popular R-package WGCNA has been used to analyze high 

dimensional data, distinct biological states and complex diseases. This approach identifies 

candidate genes relevant to a particular process of interest, construction of networks, module 

identifications, calculation of topological properties and visualizations [106]. The WGCNA 
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package does not only concentrate on the individual gene expression, but it also focuses on 

modules of the genes which provide the relationships between modules [107]. In this thesis, 

we applied the WGCNA package for our co-expression analysis and differential interaction 

networks analysis. 
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Chapter 3 

Composition of Overlapping Protein-Protein  

and Protein-Ligand Interfaces 

 

This chapter is based on the following publication: 

Ruzianisra Mohamed, Jennifer Degac, and Volkhard Helms. Composition of Overlapping 

Protein-Protein and Protein-Ligand Interfaces. PloS One. 2015 Oct 30;10 (10):e0140965. doi: 

10.1371/journal.pone.0140965 [108]. 

 

My contribution was to write the manuscript, designed the research project and analyzed the 

results together with the co-authors Jennifer Degac and Volkhard Helms. The calculations were 

performed by me and Jennifer Degac.   

 

Abstract 

Protein-protein interactions (PPIs) play a major role in many biological processes and they 

represent an important class of targets for therapeutic intervention. However, targeting PPIs is 

challenging because often no convenient natural substrates are available as starting point for 

small-molecule design. Here, we explored the characteristics of protein interfaces in five non-

redundant datasets of 174 protein-protein (PP) complexes, and 161 protein-ligand (PL) 

complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the 

PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the 

small molecule ligands must bind at the respective PP interface. We observed similar amino 

acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and 

overlapping PL contacts are highly similar. 

 

Keywords: Atomic contact, protein interface, protein-ligand interaction, protein-protein 

interaction, and amino acid composition. 
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3.1 Introduction  

Protein-protein interactions (PPIs) play major roles in many biological processes such 

as bioenergetics, immune response, signal transduction, structural organization, and apoptosis 

[10,109]. Recently, PPIs also became a promising new target for therapeutic intervention. 

Unlike established pharmaceutical efforts that are directed, for example, at enzymes, G-protein 

coupled receptors (GPCR), or ion-channels, PPIs are challenging subjects because there are 

usually no convenient natural substrates that can be exploited as starting points for small-

molecule design. Moreover, the lack of information about particular interface residues 

determining the affinities and specificities at such interfaces makes it quite hard to design 

compounds that are capable of interfering with PPIs. Hence, there is a strong need to 

characterize the properties of protein interfaces that may also bind small-molecule ligands and 

the underlying molecular principles of contacts they are involved in.  

The Protein Data Bank (PDB) [24] is the primary resource for elucidating the diversity 

of atomic contacts in protein-protein (PP) and protein-ligand (PL) interactions. Many statistical 

analyses of molecular interactions have been done based on this resource [1, 4–6]. Furthermore, 

some secondary databases that are derived from the PDB have been created to assist the 

integrated research on PP and PL interactions. Examples for this are the Timbal database 

(http://mordred.bioc.cam.ac.uk/timbal) which stores data of small molecules modulating 

protein–protein complexes [33], the Mother of All Database (MOAD) which contains data on 

ligand-protein binding (http://bindingmoad.org) [8-9], the 2P2I database of structures of PP 

complexes with known small molecule inhibitors (http://2p2idb.cnrs-mrs.fr) [36], the 

Analysing Biomolecular Contacts (ABC) database (http://service.bioinformatik.uni-

saarland.de/ABCSquareWeb/) [31], and the database of structurally defined protein interfaces 

named PIBASE (http://pibase.janelia.org/pibase2010/queries.html) [32]. One important aim in 

interface analysis is to identify properties which may distinguish binding residues from the rest 

of the protein surfaces.  

Although protein-protein interfaces are rather large, planar and well packed depending 

[10,11], some parts of these interfaces termed overlap or bifunctional regions may bind both to 

small-molecule ligands and to proteins. The remaining regions of the interface which bind only 

to either protein or ligand are called non-overlap or monofunctional regions. Davis and Sali 

[113] found that bifunctional regions were enriched in tyrosine and tryptophan residues and 

depleted from alanine, isoleucine, leucine and valine when compared to monofunctional 

positions. Walter et al. [114] found for a different dataset that the overlap regions were mostly 

http://mordred.bioc.cam.ac.uk/timbal
http://bindingmoad.org/
http://2p2idb.cnrs-mrs.fr/
http://pibase.janelia.org/pibase2010/queries.html
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found in pockets and some of their surfaces were exposed to the solvent. Koes and Camacho 

[115] used Small Molecular Inhibitor Starting Points (SMISPs) from PL and PP complexes in 

the PDB to train statistical classifiers for predicting such SMISPs.  

In this study, we analyzed the residue-residue and atomic contact frequencies and 

propensities of five non-redundant datasets i) 174 protein-protein and ii) 161 protein-ligand 

complexes from Walter [114], iii) 436 protein-protein and iv) 196 protein-ligand complexes 

from the PIBASE database [32], and v) a dataset of 89 protein-ligand complexes from the 

Timbal database [33]. Our main research question was to find out whether small molecule 

ligands have similar physio-chemical features as protein binding interfaces when they bind at 

overlapping PP/PL binding interfaces and this was indeed found to be the case. 

 

3.2 Material and Methods 

3.2.1 Datasets 

Non-redundant datasets from three different databases were used to investigate the composition 

of protein interfaces. The first pair of datasets consists of 174 PP complexes and 161 PL 

complexes compiled by Walter et al. [114] from the ABC database [31] (see Tables A and B in 

Supplementary Information Table 3.1). 25 entries of this PL dataset had been updated in the 

PDB in the meantime. We changed 22 previous ligand names to the current ligand names in 

the PDB files and removed 14 PDB files because they contain modified residues that were 

wrongly recognized as ligands before [114]. As described by Walter et al. [114], these 

complementary PP and PL datasets fulfill the following criteria: (i) PP: PL pairs represent pairs 

of complexes, where one protein may bind either a second protein or a small molecule ligand 

at the same interface, (ii) every pair of the dataset is represented as (Pi1, Pi2): (Pi3, Lj), where 

Pi1, Pi2 and Pi3 are three proteins and Lj is a small molecule ligand, (iii) Pi1 and Pi3 share at 

least 40% sequence identity, and (iv) the aligned positions in the binding interfaces of Pi1–Pi2 

and Pi3 – Lj have at least two residues in common.  

The same criteria of (Pi1, Pi2):( Pi3, Lj) pairs of PP and PL complexes from Walter et 

al., were then applied to the datasets of PP and PL complexes from the PIBASE database [32]. 

To avoid redundancy among these complexes, we clustered the PL complexes using the CD-

Hit program [116,117] with the same sequence identity cut-off of 40%. Within a cluster, we 

selected the representative PP:PL pair with the highest identity score of the interface residues. 

Additionally, we discarded clusters which contained only sequences with fewer than 40 amino 

acids. The final pair of datasets comprises 436 PP complexes (Table C in Supplementary 
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Information Table 3.1) and 196 PL complexes (Table D in Supplementary Information Table 

3.1).  

Interactions where both interacting chains have > 90% sequence identity are defined as 

homodimer complexes and the remainder as heterodimer complexes. As a result, the PP 

complexes from the ABC dataset comprised 94 homodimer complexes and 80 heterodimer 

complexes (see Tables A and B in Supplementary Information Table 3.2). The PP complexes 

from the PIBASE dataset were grouped into 335 homodimer complexes and 101 heterodimer 

complexes (see Tables A and B in Supplementary Information Table 3.3). 

The fifth dataset was extracted from the table of PDB entries in the Timbal database 

(see Table E in Supplementary Information Table 3.1). First, the 1695 entries in the current 

version of the Timbal database were filtered by removing complexes containing ligands that 

are annotated to act as stabilizers. Then, the CD-Hit program was applied to remove 

redundancy among the protein chains of the complexes with the sequence identity cut-off of 

40%. We also eliminated clusters of proteins with fewer than 40 amino acids. This gave a final 

dataset of 89 protein-small molecule complexes.  

Data from the ABC, PIBASE, and Timbal databases was retrieved by using MySQL 

queries, Java, Biojava [118] and analyzed with the R software (http://www.R-project.org).  

 

3.2.2 Surface and Interface Residues 

The solvent accessible surface area (SASA) was calculated using the NACCESS program 

[119]. As surface residues we considered those residues with a SASA value larger than zero. 

Labeled as interface residues were those residues that are within a radius of either 3 Å, 4 Å or 

5 Å of any residue of the binding partner. Figure 3.1 shows a schematic diagram how we 

determined the interface and the remaining surface of PL complexes.  

 

 

Figure 3.1 Schematic illustration of a PL complex illustrating the interface (black border) and 

the remaining surface regions. PL, protein-ligand. 

http://www.r-project.org/
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3.2.3 Classification of the Amino Acids 

The standard classification according to the Eisenberg hydrophobicity scale [120] was used to 

classify amino acids into four categories: hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Val), 

charged (Arg, Asp, Glu, Lys), polar (Cys, Asn, Gln, His, Ser, Thr, Trp, Tyr), and Gly. 

 

3.2.4 Interface Residue Propensities 

Residue interface propensities were calculated for the homodimeric and heterodimeric protein-

protein complexes of the ABC and PIBASE datasets and for the protein-ligand complexes of 

the ABC, PIBASE and Timbal datasets. These propensities give a measure of the relative 

importance of different amino acid residues in the interface, compared with the surface as a 

whole. The propensities were calculated with the following formula: 

 

𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝐴𝑗 = (
∑ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑗

∑ 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
) (

∑ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑗

∑ 𝑎𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
)⁄          (3.1) 

 

An interface residue propensity of >1.0 indicates that a residue type occurs more frequently in 

interfaces than on the protein surface in general.  

 

3.2.5 Contacts between Amino Acids of the Two Proteins  

For every PP complex, we counted the observed number of contacts between amino acids of 

the first protein and amino acids of the second protein. A contact exists between two residues 

of these proteins if any residue of the first protein is within a distance threshold of 5.0 Å from 

the other protein. This was represented in a 20 x 20 table. From the 400 observed counts of 

amino acid pairs in the two datasets of protein-protein complexes, we derived normalized pair 

frequencies with the following formula:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
(

∑ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑎𝑖𝑟 𝑋𝑌

∑ 𝑎𝑙𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠
)

(
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

∑ 𝑎𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
)(

∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

∑ 𝑎𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
)
       (3.2) 

 

Here, XY is the number of observed contact pairs between residues X and Y across the 

interface, X is the count of amino acid X in the first protein and Y is the count of amino acid Y 

in the second protein.  
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3.2.6 Atom Contacts in Protein-protein and Protein-ligand Complexes 

In protein-protein and protein-ligand complexes, we considered two surface atoms belonging 

to separate molecules to be in contact and labeled them as interface atoms if the distance 

between them is less than 5.0 Å. We counted contacts between all pairs of carbon (C), fluorine 

(F), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S) atoms resulting in 36 contact 

pairs. Then, the absolute counts were normalized as follows: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
(

∑ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑝𝑎𝑖𝑟 𝐴𝐵

∑ 𝑎𝑙𝑙 𝑎𝑡𝑜𝑚 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠
)

(
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

∑ 𝑎𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑡𝑜𝑚 𝑜𝑓 𝑙𝑖𝑔𝑎𝑛𝑑 𝑜𝑟 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
)(

∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐵 𝑜𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

∑ 𝑎𝑙𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑡𝑜𝑚 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
)
              (3.3) 

 

where A is the count of atom type A in the first protein (PP complexes) or protein (PL 

complexes), B is the count of atom type B in the second protein (PP complexes) or ligand (PL 

complexes) and, AB is the number of observed contact pairs between atom types A and B across 

the interface.  

According to Higueruelo et al. [121], atom type contacts were grouped into polar and 

apolar contacts as follows: For protein-protein complexes, apolar contacts exist between C…C, 

C…S and S…S (not in Cys-Cys bridges). Polar contacts involve the pairs N…O, O…O, N…N, 

O…S and N…S (from Cys). For protein-ligand complexes, apolar contacts are C…C, and 

C…S pairs whereas polar contacts are formed by the pairs N…O, O…O, N…N, O…S, N…S, 

N…F, O…F, and S…F (from Cys). 

 

3.2.7 Calculation of Polarity Ratio and Interface Atom Ratio 

The polarity ratio (PR) is a simple measure of the polarity of the interface [122]. It was defined 

as the ratio of the number of polar atoms N, O, S at the interface to the sum of all C, N, O, S at 

the interface. 

The interface atom ratio (IR) is a measure for the fraction of surface atoms that are 

located at the interface. It was calculated for the interfaces of protein-protein and protein-ligand 

complexes. Only the six heavy atom types C, N, O, S, P and F were considered in the 

calculation. IR is the ratio of the sum of all atoms at the interface to the sum of all atoms at the 

surface. 
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3.3 Results and Discussion  

PPI interfaces are known to possess particular geometric and physicochemical characteristics, 

see e.g. [10,123–125]. Comparing these features of protein interfaces to those of overlapping 

protein-ligand interfaces should aid in targeting protein-protein interaction sites. Here, we used 

the ABC, PIBASE and Timbal databases as data sources for protein interfaces and surfaces. All 

three databases are secondary database that are derived from the PDB. However, due to the 

different way of identifying overlapping PP/PL pairs, the direct overlap between the three non-

redundant datasets derived from them is fairly small. We believe that this may have resulted 

from the clustering with the CD-Hit program that selected different cluster representatives in 

each case. We found only the following redundant PP complexes 1AB8 (B-A), 1AZZ (A-C), 

1BMF (F-B), 1EYS (H-M), 1RQ8 (A-E), 1SGF (G-B) from the ABC dataset and 1AB8 (A-B), 

1AZZ (C-A), 1BMF (C-D), 1EYS (M-C), 1RQ8 (E-A), 1SGF (G-Z) from the PIBASE dataset. 

Furthermore, both datasets share the following lists of PDB IDs with same chain interactions 

1DPJ (A-B), 1P0S (H-E), and 2G2U (A-B). Similarly, there are few redundancies between 

datasets of PL complexes from ABC and PIBASE, namely 1C50 (A-CHI), 1KYN (A-KTP), 

1LBC (A-CYZ) and 1M2Z (A-BOG), respectively. There is also one overlapping member 

between the datasets of PL complexes from PIBASE and Timbal, namely the PDB ID 1AB8 

(A-FOK). Figure 3.2 summarizes the workflow of the analysis of the five datasets. The fraction 

of homodimers and heterodimers in the datasets derived from ABC and PIBASE are 54%: 46% 

and 77%: 23%, respectively. 

 

Figure 3.2 Flow chart summarizing the compilation of contacts between amino acids of the 

first protein (Pi1) and amino acids of the second protein (Pi2), atom contacts in PP and PL 

complexes, and the calculation of PR and IR.  

PP, protein-protein; PL, protein-ligand; PR, polarity ratio; IR, interface atom ratio. 
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3.3.1 Amino Acid Composition and Protein Interfaces Propensity 

Figures 3.3 and 3.4 show the percentage frequencies and propensities of amino acids at the 

interfaces of homodimeric and heterodimeric PP complexes from the ABC and PIBASE 

datasets, respectively. Figure 3.5 shows the percentage frequencies and propensities of amino 

acids at the protein interfaces of the PL complexes from the ABC, PIBASE and Timbal 

datasets, respectively. Previous studies showed that protein-protein interfaces have unique 

characteristics that distinguish them from non-interface portions of protein surfaces 

[123,126,127].  

By grouping the amino acids according to the Eisenberg hydrophobicity scale (see 

methods) we found that, hydrophobic amino acids account for 38.06% (ABC-P1-homo), 

38.87% (ABC-P2-homo), 38.81% (PIB-P1-homo) and 38.75% (PIB-P2-homo) at interfaces of 

homodimeric PP complexes compared to 35.60% (ABC-P1-hetero), 36.11% (ABC-P2-hetero), 

37.94% (PIB-P1-hetero) and 36.38% (PIB-P2-hetero) at interfaces of heterodimeric PP 

complexes (Figures 3.3A and 3.4A). This matches the general finding e.g. of Jones and 

Thornton who stated that homodimer complexes are more hydrophobic [10].  

At interfaces of both homodimeric and heterodimeric PP complexes from the ABC and 

PIBASE datasets, alanine, valine, and lysine residues are underrepresented with propensities 

lower than 1.0 (Figures 3B and 4B). One hydrophobic amino acid (leucine), one charged amino 

acid (lysine) and two polar amino acids (glutamine and threonine) have higher propensities at 

interfaces of homodimer complexes than at interfaces of heterodimer complexes of the ABC 

dataset. In the PIBASE dataset, four hydrophobic amino acids (alanine, leucine, proline and 

valine), one polar amino acid (threonine) and glycine have higher propensities in homodimer 

complexes than in heterodimer complexes.  
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Figure 3.3 Percentage frequencies and propensities of amino acid residues at protein interfaces 

of PP complexes from the ABC dataset. (A) Percentage frequencies of amino acid residues at 

protein interfaces. (B) Propensities of amino acid residues at protein interfaces.  

PP, protein-protein; ABC, ABC dataset; homo, homodimeric PP interface; hetero, 

heterodimeric PP interfaces; P1, protein interface of the first protein (Pi1); P2, protein interface 

of the second protein (Pi2).  
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Figure 3.4 Percentage frequencies and propensities of amino acid residues at protein interfaces 

of PP complexes from the PIBASE dataset. (A) Percentage frequencies of amino acid residues 

at protein interfaces. (B) Propensities of amino acid residues at protein interfaces.  

PP, protein-protein; PIB, PIBASE dataset; homo, homodimeric PP interface; hetero, 

heterodimeric PP interfaces; P1, protein interface of the first protein (Pi1); P2, protein interface 

of the second protein (Pi2).  

 

As expected, hydrophobic and polar residues make up the largest portion of protein 

interfaces. In fact, this is one of the challenges for targeting PPIs with small molecules as the 

contact surfaces between proteins typically involve many hydrophobic and polar interactions 

distributed over a large interface with buried area of ~1500 – 3000 Å2 [128]. According to the 

classification by Eisenberg, the fractions of hydrophobic, polar, charged and glycine residues 

are 36.95%, 33.38%, 22.11%, 7.56% for the first protein (Pi1), 37.70%, 32.48%, 22.35%, 

7.46% for the second protein (Pi2) of the PP complexes from the ABC dataset, 38.60%, 

30.93%, 24.09%, 6.38% for the first protein (Pi1), and 38.20%, 31.35%, 24.22%, 6.23% for 

the second protein (Pi2) of the PP complexes from the PIBASE dataset. Although there are 

minor differences between the two datasets (slightly more charged and fewer glycine residues 

in the PIBASE dataset), we found the composition to be overall remarkably similar.  
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 At the interfaces of both homodimeric and heterodimeric PP complexes from the ABC 

and PIBASE datasets, the frequencies of methionine and tryptophan at protein interfaces are at 

most 3.07%. However, both amino acids have normalized interface propensities clearly larger 

than one, suggesting that these residues play important roles and thus occur more frequently at 

protein interfaces rather than elsewhere on the protein surface. Overall, tryptophan, tyrosine 

and arginine each have propensities above 1.0 at both protein interfaces of homodimeric and 

heterodimeric PP complexes from the ABC and PIBASE datasets. This reflects that aromatic 

amino acids and arginine play important roles in protein interfaces, which is a well-known fact. 

For example, Bogan and Thorn [129] reported that hotspot regions at protein interfaces are 

enriched in tryptophan, tyrosine and arginine. Also, Jones, Marin and Thornton [130] found 

that hydrophobic residues including tryptophan and tyrosine as well as arginine are moderately 

enriched at protein interfaces compared to the whole surface. Jones and Thornton [10] reported 

that with the exception of methionine, all hydrophobic residues show a greater preference for 

the interfaces of homodimers than for those of heterocomplexes. Based on our analysis, only 

leucine is clearly enriched at homodimer interfaces. Janin, Bahadur and Chakrabarti [125] 

wrote that relative to the accessible protein surface, the interfaces are depleted in glutamic acid, 

aspartic acid, and lysine, and enriched in methionine, tyrosine and tryptophan. Our findings are 

in good agreement with this. In our case, the enriched category also includes phenylalanine, 

histidine and arginine. The underrepresented category also includes alanine, proline and valine. 

Talavera et al. [131] provided a rather recent compilation of amino acid frequencies and 

propensities, separately for homomeric and heterodimeric PP complexes. A possible concern 

about their work is that they applied a rather generous homology threshold of 80% identity. 

They found tyrosine, tryptophan, methionine, cysteine, phenylalanine, leucine, valine and 

isoleucine to be enriched at the interfaces of homo-complexes. In the case of hetero-complexes, 

cysteine fell out from this list. On the other hand, lysine, asparagine, aspartic acid and glutamic 

acid were underrepresented in homo-complexes. The same ones plus serine and glycine were 

found for hetero-complexes. 

 The distributions of the percentage frequencies and propensities of amino acids at the 

protein interfaces of the PP datasets derived from ABC and PIBASE were compared with the 

non-parametrical Friedman test as the datasets do not have a normal distribution. As suggested 

by the graphical representation of Figures 3.3 and 3.4, the ABC and PIBASE datasets do not 

differ significantly (percentage frequencies, p-value = 0.99 and propensities, p-value = 0.97).  
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 The fractions of hydrophobic, polar, charged and glycine residues at protein binding 

interfaces of PL complexes are 34.08%, 36.97%, 20.31%, 8.64% (ABC dataset), 38.25%, 

35.39%, 18.12%, 8.24% (PIBASE dataset) and 42.32%, 32.61%, 18.60%, 6.47% (Timbal 

dataset), see Figure 3.5A. Compared to PP interfaces, the ligand-contacting protein interfaces 

of the Timbal dataset contain about 5% more hydrophobic residues, and about 5% fewer 

charged residues. In contrast, the ligand-contacting protein interfaces from the ABC and 

PIBASE datasets contain 3-4% more polar residues than PP interfaces and 3-4% less charged 

residues. 

In the PL complexes of the ABC dataset, the five amino acids with the highest 

propensities found at protein interfaces are cysteine (2.20), tryptophan (2.18), histidine (1.75), 

tyrosine (1.74), and phenylalanine (1.47). In the PL complexes of the PIBASE dataset, the most 

enriched ones are tryptophan (2.25), tyrosine (1.93), phenylalanine (1.92), histidine (1.89), and 

methionine (1.66). In the PL complexes of the Timbal dataset, methione has the highest 

propensity of 1.85, followed by phenylalanine (1.78), tryptophan (1.78), histidine (1.54) and 

tyrosine (1.53), respectively. In all datasets of PL complexes, tryptophan, phenylalanine, 

histidine, and tyrosine are found most often at the protein interfaces (Figure 3.5B) 

complemented by either cysteine (ABC) or methionine (PIBASE, Timbal).  

The distributions of percentage frequencies and propensities of amino acids acids at the 

protein interfaces in the datasets derived from ABC, PIBASE and Timbal did not differ 

significantly (percentage frequencies, p-value = 0.86 and propensities, p-value = 0.96, 

Friedman rank sum test).  
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Figure 3.5 Percentage frequencies and propensities of amino acids residues at protein 

interfaces of PL complexes from the ABC, PIBASE and Timbal datasets. (A) Percentage 

frequencies of amino acids residues at protein interfaces. (B) Propensities of amino acids 

residues at protein interfaces. PL, protein-ligand; PL-ABC, PL complexes from the ABC 

dataset; PL-PIBASE, PL complexes from the PIBASE dataset; PL-Timbal, PL complexes from 

the Timbal dataset. 

 

3.3.2 Amino Acid Contacts 

The propensities of amino acid contacts in PP complexes between amino acids of the first 

protein (Pi1) and amino acids of the second protein (Pi2) were obtained by counting the 

absolute number of contacts and normalizing this number against the appearance probability 

of the two involved residues at the surface. In Figures 3.6 and 3.7, the propensity values were 

log2 transformed to ensure a balanced view of over- and under-representation. Contacts with 

high propensities were observed among residues pairs of different polarity types. In PP 

complexes from the ABC dataset, the five most over-represented interactions were found 

between the pairs of tryptophan (6.32), cysteine (4.66), phenylalanine (3.61) and histidine 

(3.50) as well as between tryptophan and phenylalanine (3.36), see Figure 3.6. In PP complexes 

from the PIBASE dataset, the five most over-represented interactions were pairs of tryptophan 

(7.50), methionine (4.34), phenylalanine (3.96), tyrosine (3.57), and cysteine (3.43), see Figure 

3.7. These results are consistent with previous studies of protein-protein interfaces that reported 
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an enrichment of contacts between cysteine, hydrophobic contacts and aromatic contacts [123, 

126, 132-134]. Further studies noticed that besides disulfide bonds and hydrophobic 

interactions, also salt-bridges contribute to stabilizing protein-protein interactions [126,132–

134]. In our analysis, contacts between lysine and negatively charged amino acids (Asp, Glu) 

are only mildly enriched (propensity 1.23 on average), whereas those between arginine and 

either Asp or Glu are about two-fold enriched (2.06), see Tables A and B in S5 File, what 

reflects the enriched of arginine at protein interfaces. The propensities of amino acid contacts 

between amino acids of the first protein (Pi1) and amino acids of the second protein (Pi2) in 

PP complexes between datasets from the ABC and the PIBASE did not differ statistically 

significantly (p-value = 0.76, Wilcoxon signed rank test).  

 

 
Figure 3.6 Amino acid pairing propensities (in log2-format) for interfaces of PP complexes 

from the ABC dataset.  

PP, protein-protein. 
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Figure 3.7 Amino acid pairing propensities (in log2-format) for interfaces of PP complexes 

from the PIBASE dataset.  

PP, protein-protein. 

 

Based on the counts of amino acids, we computed the average number of amino acid 

residues at the interfaces of the two proteins Pi1 and Pi2 of PP complexes and the Pi3 protein 

of PL complexes using three different atom distances (3Å, 4Å and 5Å). At the distance 

threshold of 3Å, both interfaces at Pi1 and Pi2 contain less than 10 amino acids on average. 

For thresholds of 4Å and 5Å, the average size of the protein interfaces is 26.22 (ABC dataset) 

and 38.69 amino acids (PIBASE dataset) (Table 3.1).  

Table 3.1 The average number with standard deviation of amino acid residues at the interfaces 

of PP complexes in the ABC and PIBASE datasets. 

 PP complexes 

 ABC dataset PIBASE dataset 

Atom distance Pi1 Pi2 Pi1 Pi2 

3 Å 7.67 ± 6.68 7.49 ± 6.85 9.61 ± 15.62 9.53 ± 15.52 

4 Å 27.17 ± 19.18 26.22 ±19.7 31.13 ± 24.53 30.76 ± 24.61 

5 Å 34.52 ± 23.31 32.8 ± 24.11 38.69 ± 27.97 38.09 ± 27.94 
PP, protein-protein; Pi1, first protein; Pi2, second protein. 
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Table 3.2 shows the average number of residues at the interfaces of Pi3 in PL complexes 

from the ABC, PIBASE and Timbal datasets. At the distance threshold of 3 Å, the average size 

of the interfaces is less than 3 amino acids for all datasets. At 4 Å and 5 Å atom distances, the 

average sizes of the interfaces are between 6.31 amino acids (ABC dataset) and 13.54 amino 

acids (Timbal dataset). Although the PL interfaces from the ABC dataset are clearly smaller 

than those from the PIBASE and Timbal datasets, the average ligand size in the ABC dataset 

(20.48 atoms without hydrogen atoms) is only slightly smaller than the average ligand size in 

the Timbal dataset (21.53 atoms) and in the PIBASE dataset (21.42 atoms), respectively. 

Table 3.2 The average number with standard deviation of amino acid residues at the interfaces 

of PL complexes in the ABC, PIBASE and Timbal datasets. 

 PL complexes 

Atom distance ABC dataset PIBASE dataset Timbal dataset 

3 Å 1.64 ± 1.93 2.58 ± 2.08 2.54 ± 2.52 

4 Å 6.31 ± 4.66 10.04 ± 4.39 9.99 ± 6.32 

5 Å 8.84 ± 5.79 13.43 ± 5.63 13.54 ± 8.06 
PL, protein-ligand. 

 

3.3.3 Atomic Contacts in Protein-protein and Protein-ligand Complexes 

In this section, we analyzed the atomic contacts in the datasets of PP and PL complexes. For 

atom pairs between the first and second proteins (Pi1–Pi2) in PP complexes and between 

protein and ligand (Pi3 – Lj) in PL complexes, we counted contacts of less or equal to 5 Å 

between six types of heavy atoms, namely carbon (C), flourine (F), nitrogen (N), oxygen (O), 

phosphorus (P) and sulfur (S). This resulted in 36 atomic pair contacts. Table 3.3 lists the 

appearance frequency of these 36 atomic contact types in PP and PL complexes from the ABC, 

PIBASE and Timbal datasets. In all datasets, the most frequent contacts are C…C (> 41%), 

O…C (> 10%), C…O (> 8%), and C…N (>7%).  

Chen and Kurgan [135] previously characterized the binding interfaces of proteins with 

small molecules, irrespective of whether they also bind to other proteins. As expected, 

interactions with organic molecules are dominated by van der Waals contacts, hydrogen bonds, 

and covalent contacts, whereas those with charged species also involve electrostatic 

interactions. Hakulinen et al. [136] argued that small molecules frequently contact 

phenylalinine, histidine, tyrosine and tryptophan residues of proteins because their aromatic 

ring carbons prefer other aromatic carbons. Both findings match well with the results of this 

analysis. The atomic contacts in PP complexes of the ABC and PIBASE datasets did not differ 
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significantly (p-value = 0.76, Wilcoxon signed rank test). Also the frequencies of the atomic 

contacts between the PL complexes of the ABC, PIBASE and Timbal datasets did not differ 

significantly (p-value = 0.11, Friedman rank sum test). 

Tables 3.4 and 3.5 list the percentage frequencies and normalized propensities of apolar, 

polar and other atomic contacts in PP complexes and PL complexes, respectively. The content 

of apolar contacts (45.52% for the PP complexes in the ABC dataset and 45.25% for the 

PIBASE dataset) and of polar contacts (13.85% vs 13.70%) is highly similar between the two 

PP datasets. In contrast, the PL complexes of the PIBASE dataset (46.45%) contained more 

apolar contacts than the Timbal dataset (44.84%) and the ABC dataset (43.04%). Concerning 

polar contacts in PL complexes, the Timbal dataset (14.71%) and the ABC dataset (14.48%) 

contain more such contacts than the PIBASE dataset (12.95%). Overall, the differences of the 

normalized propensities seem minor, among the PP and PL datasets, as well as between PP and 

PL datasets, which agrees with the findings of [135]. In all datasets, C-C contacts are slightly 

overrepresented (1.04 to 1.11 times the randomly expected number of contacts). N-N contacts 

are always more frequent (1.07 to 1.32) than O-O contacts (0.70 to 0.95). 
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Table 3.3 The percentage frequencies of the 36 atomic contact types in PP and PL complexes.  

  PP complexes PL complexes 

  
ABC 
dataset 

PIBASE 
dataset 

ABC 
dataset 

PIBASE 
dataset 

Timbal 
dataset 

Atom1a Atom2b %  %  %  %  %  

C C 44.08 44.20 41.24 44.57 43.49 

C N 10.82 10.95 8.50 9.03 7.05 

C O 10.42 10.68 12.63 11.85 8.88 

C S 0.85 0.57 0.90 0.88 1.00 

C P 0.00 0.00 0.00 0.00 0.00 

C F 0.00 0.00 0.00 0.00 0.00 

N C 8.29 8.12 5.81 5.16 5.51 

N N 2.76 2.70 1.58 1.25 1.30 

N O 2.85 2.83 2.18 1.77 1.57 

N S 0.14 0.08 0.17 0.09 0.13 

N P 0.00 0.00 0.00 0.00 0.00 

N F 0.00 0.00 0.00 0.00 0.00 

O C 10.93 11.17 13.87 12.78 15.03 

O N 4.48 4.40 4.89 4.38 6.58 

O O 3.37 3.45 4.79 4.43 4.60 

O S 0.17 0.14 0.18 0.25 0.22 

O P 0.00 0.00 0.00 0.00 0.00 

O F 0.00 0.00 0.00 0.00 0.00 

S C 0.56 0.47 0.90 1.00 0.35 

S N 0.14 0.10 0.26 0.26 0.08 

S O 0.11 0.12 0.31 0.23 0.04 

S S 0.03 0.02 0.04 0.04 0.01 

S P 0.00 0.00 0.00 0.00 0.00 

S F 0.00 0.00 0.00 0.00 0.00 

P C 0.00 0.00 0.59 0.45 1.64 

P N 0.00 0.00 0.50 0.28 1.18 

P O 0.00 0.00 0.19 0.22 0.40 

P S 0.00 0.00 0.02 0.01 0.00 

P P 0.00 0.00 0.00 0.00 0.00 

P F 0.00 0.00 0.00 0.00 0.00 

F C 0.00 0.00 0.32 0.77 0.75 

F N 0.00 0.00 0.04 0.11 0.09 

F O 0.00 0.00 0.08 0.15 0.10 

F S 0.00 0.00 0.01 0.04 0.00 

F P 0.00 0.00 0.00 0.00 0.00 

F F 0.00 0.00 0.00 0.00 0.00 

Total 100.00 100.00 100.00 100.00 100.00 
PP, protein-protein; PL, protein-ligand.  
aFor PP complexes, atom1 belongs to the first protein and for PL complexes, atom1 belongs to 

the protein. 
bFor PP complexes, atom2 belongs to the second protein and for PL complexes, atom2 belongs 

to the ligand. 
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Table 3.4 Percentage frequencies (with normalized propensity values in parentheses) of apolar, 

polar and other atomic contacts of PP complexes from the ABC and PIBASE datasets. 

 

    PP complexes 

  
  

ABC 
dataset 

PIBASE dataset 

Apolar 
contacts: 

C…C 
44.08 
(1.10) 

44.20 (1.10) 

  C…S 0.85 (2.53) 0.57 (1.91) 

  S...C 0.56 (1.82) 0.47 (1.63) 

  
S…S (not in Cys-Cys bridge) 

0.03 
(10.94) 

0.01 (6.60) 

  Total 45.52 45.25 

Polar 
contacts: 

N…O 2.85 (0.91) 2.83 (0.90) 

  O…N 4.48 (1.40) 4.40 (1.40) 

  O…O 3.37 (0.70) 3.45 (0.73) 

  N…N 2.76 (1.31) 2.70 (1.29) 

  O…S 0.16 (1.40) 0.14 (1.38) 

  S…O 0.11 (1.05) 0.12 (1.24) 

  N…S (from Cys) 0.05 (0.68) 0.02 (0.35) 

  S…N (from Cys) 0.07 (0.93) 0.03 (0.50) 

  Total 13.85 13.7 

Other 
contacts: 

C…N 
10.83 
(1.19) 

10.95 (1.20) 

  N…C 8.28 (0.91) 8.12 (0.88) 

  
C…O 

10.42 
(0.76) 

10.68 (0.78) 

  
O…C 

10.93 
(0.78) 

11.17 (0.81) 

  N…S (S not from Cys) 0.09 (1.14) 0.06 (0.86) 

  S…N (S not from Cys) 0.08 (1.08) 0.07 (1.05) 

  
S…S (in Cys-Cys bridge) 

0.002 
(0.84) 

0.003 (1.39) 

  C…P/P…C 0.00 (0.00) 0.00 (0.00) 

  C…F/F…C 0.00 (0.00) 0.00 (0.00) 

  N…P/P…N 0.00 (0.00) 0.00 (0.00) 

  N…F/F…N 0.00 (0.00) 0.00 (0.00) 

  O…P/P…O 0.00 (0.00) 0.00 (0.00) 

  O…F/F…O 0.00 (0.00) 0.00 (0.00) 

  S…P/P…S 0.00 (0.00) 0.00 (0.00) 

  S…F/F…S 0.00 (0.00) 0.00 (0.00) 

  P…P 0.00 (0.00) 0.00 (0.00) 

  P…F/F…P 0.00 (0.00) 0.00 (0.00) 

  F…F 0.00 (0.00) 0.00 (0.00) 

  Total 40.63 41.05 

  Grand Total 100 100 

PP, protein-protein. 
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Table 3.5 Percentage frequencies (with normalized propensity values in parentheses) of apolar, 

polar, and other atomic contacts of PL complexes from the ABC, PIBASE, and Timbal 

datasets. 

    PL complexes 

    ABC dataset PIBASE dataset Timbal dataset 

Apolar 
contacts: 

C…C 41.24 (1.04) 44.57 (1.04) 43.49 (1.11) 

  C…S 0.90 (2.86) 0.88 (2.82) 1.00 (2.60) 

  S…C 0.90 (1.26) 1.00 (1.14) 0.35 (0.99) 

  Total 43.04 46.45 44.84 

Polar 
contacts: 

N...O 2.18 (1.20) 1.77 (1.02) 1.57 (0.94) 

  O…N 4.89 (1.31) 4.38 (1.39) 6.58 (1.68) 

  O…O 4.79 (0.85) 4.43 (0.95) 4.6 (0.80) 

  N…N 1.58 (1.32) 1.25 (1.07) 1.30 (1.14) 

  O…S 0.18 (1.45) 0.25 (2.50) 0.22 (1.33) 

  S…O 0.31 (1.22) 0.23 (0.77) 0.04 (0.36) 

  N…S 0.17 (4.07) 0.09 (1.24) 0.13 (2.75) 

  S…N 0.26 (1.59) 0.26 (1.30) 0.08 (0.97) 

  N…F 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  F…N 0.04 (0.56) 0.11 (0.46) 0.09 (0.88) 

  O…F 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  F…O 0.08 (0.80) 0.15 (0.43) 0.10 (0.70) 

  S…F (S from Cys) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  F…S (S from Cys) 0.00 (0.00) 0.02 (3.21) 0.00 (0.00) 

  Total 14.48 12.95 14.71 

Other 
contacts: 

C…N 8.50 (0.93) 9.03 (0.91) 7.05 (0.77) 

  N…C 5.81 (1.12) 5.16 (1.03) 5.51 (1.13) 

  C…O 12.63 (0.91) 11.85 (0.81) 8.88 (0.66) 

  O…C 13.87 (0.86) 12.78 (0.94) 15.03 (0.90) 

  C…P 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  P…C 0.59 (0.57) 0.45 (0.94) 1.64 (1.07) 

  C…F 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  F…C 0.32 (1.14) 0.77 (0.77) 0.75 (1.77) 

  N…P 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  P…N 0.50 (2.08) 0.28 (2.52) 1.18 (3.30) 

  O…P 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  P…O 0.19 (0.51) 0.22 (1.33) 0.40 (0.77) 

  S…S 0.04 (6.30) 0.04 (6.34) 0.01 (2.09) 

  S…P 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  P…S 0.02 (2.18) 0.01 (2.90) 0.00 (0.00) 

  S…F (S not from Cys) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  F…S (S not from Cys) 0.01 (5.40) 0.01 (1.84) 0.00 (0.00) 

  P…P, P…F/F…P and F...F 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  Total 42.48 40.6 40.45 

  Grand Total 100 100 100 



37 
 

3.3.4 Polarity Ratio and Interface Atom Ratio  

Then, we analyzed the polarity ratio (PR), namely the fraction of polar N, O, S atoms at the 

interface areas of both PP and PL complexes. The interface atom ratio (IR) indicates the fraction 

of surface atoms that are involved in protein contacts at the interface. As mention before, the 

interface areas were defined as those residues that are closer than 3 Å (or 4 Å and 5 Å) to at 

least one residue from the binding partner. Both IR and PR were computed for the datasets of 

PP and PL complexes from the ABC, PIBASE, and Timbal datasets. 

At 3 Å distance threshold, the differences in IR and PR ratios are not representative 

because only the shortest-distance contacts are considered. For example, when a 3 Å cut-off is 

used, most carbon atoms are not considered as part of the interfaces as this short distance is 

shorter than twice the van der Waals radius of carbon (1.7 Å) [137]. Table 3.6 shows that, as 

expected, only very small differences were observed when computing PR and IR of PP 

complexes between the first protein (Pi1) and the second protein (Pi2), as both of them exhibit 

similar characteristics at binding interfaces. For the larger cut-off distances (4 Å and 5 Å), the 

polarity ratio (PR) decreases quickly because now all carbon atoms at the surface are included. 

On the other hand, the interface atom ratio (IR) of 8.0% (4 Å) and 14.0% (5 Å) shows that, 

expectedly, only a small fraction of the protein surface atoms are included in the interface.  

 

Table 3.6 Interface atom ratio (IR) and polarity ratio (PR) (with standard deviations in 

parentheses) for interfaces of PP complexes from the ABC and PIBASE datasets.  

        

  PP complexes from the PP complexes from the 

  ABC dataset PIBASE dataset 

  Atom distance Atom distance 

  3 Å 4 Å 5 Å 3 Å 4 Å 5 Å 

IR        

 Pi1 0.01 (±0.01) 0.08 (±0.05) 0.14 (±0.08) 0.01 (±0.07) 0.08 (±0.08) 0.13 (±0.09) 

 Pi2 0.01 (±0.01) 0.09 (±0.08) 0.15 (±0.13) 0.01 (±0.07) 0.08 (±0.08) 0.13 (±0.10) 

PR        

 Pi1 0.87 (±0.22) 0.38 (±0.07) 0.34 (±0.06) 0.72 (±0.20) 0.37 (±0.06) 0.34 (±0.05) 

 Pi2 0.85 (±0.22) 0.37 (±0.06) 0.34 (±0.05) 0.71 (±0.20) 0.37 (±0.06) 0.34 (±0.05) 
IR, interface atom ratio; PR, polarity ratio; PP, protein-protein; Pi1, first protein; Pi2, second 

protein. 

Table 3.7 lists the IR and PR ratios of 161 PL complexes from the ABC dataset, 196 

PL complexes from the PIBASE dataset, and 89 PL complexes from the Timbal dataset. At the 

distance threshold of 3 Å, almost no ligands atoms are considered as interfacial atoms whereas 

the opposite is the case for 5 Å where 93% (PIBASE) and 94% (Timbal) of the ligand atoms 

are considered as interfacial atoms compared to 78% for ABC. This is suggesting that the 
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PIBASE and Timbal ligands bind more flat on the protein surfaces and/or bind deeper into 

pockets on the protein surface than the ABC ligands. Finally, the polarity ratios of the proteins 

in the PL dataset are comparable to the proteins in the PP dataset.  

 

Table 3.7 Interface atom ratio (IR) and polarity ratio (PR) (with standard deviations in 

parentheses) for interfaces of PL complexes from the ABC, PIBASE, and Timbal datasets.  

 

  PL complexes from the PL complexes from the PL complexes from the 

  ABC dataset PIBASE dataset Timbal dataset 

  Atom distance Atom distance Atom distance 

  3 Å 4 Å 5 Å 3 Å 4 Å 5 Å 3 Å 4 Å 5 Å 

IR Pi3 
0.002 

(±0.004) 
0.01 

(±0.02) 
0.03 

(±0.03) 
0.003 

(±0.003) 
0.02 

(±0.01) 
0.03 

(±0.02) 
0.003 

(±0.003) 
0.02 

(±0.02) 
0.03 

(±0.03) 

 Lj 
0.11 

(±0.14) 
0.55 

(±0.27) 
0.78 

(±0.25) 
0.13 

(±0.17) 
0.74 

(±0.25) 
0.93 

(±0.20) 
0.16 

(±0.14) 
0.75 

(±0.21) 
0.94 

(±0.19) 

PR Pi3 
0.83 

(±0.45) 
0.38 

(±0.20) 
0.35 

(±0.14) 
0.85 

(±0.36) 
0.38 

(±0.14) 
0.34 

(±0.12) 
0.86 

(±0.38) 
0.36 

(±0.16) 
0.32 

(±0.12) 

 Lj 
0.76 

(±0.45) 
0.38 

(±0.23) 
0.35 

(±0.18) 
0.79 

(±0.38) 
0.33 

(±0.17) 
0.31 

(±0.18) 
0.84 

(±0.41) 
0.38 

(±0.25) 
0.36 

(±0.20) 
IR, interface atom ratio; PR, polarity ratio; PL, protein-ligand; Pi3, protein; Lj, ligand. 

3.4 Conclusions 
In this study, we characterized the residue and atom composition of overlapping protein-protein 

and protein-ligand interfaces from the ABC and PIBASE databases and compared these to a 

dataset derived from the Timbal database. According to the statistics, both interface types have, 

in general, a very similar composition. Among the three datasets of PL complexes, the protein 

interfaces of the Timbal dataset contain more hydrophobic residues and fewer polar residues 

than the two other datasets. The ligands in the PIBASE and Timbal datasets bind more flat on 

the protein surfaces or bind deeper into pockets on the protein surface than ABC ligands. 

Depending on the respective application in a ligand design project, researchers may consider 

to bias their principal dataset in one or the other direction. Selecting the appropriate set of 

reference data may slightly affect the physiochemical characteristics of designed ligands.  
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Chapter 4 
STIM and ORAI Genes, Interactions with Transcription 

Factors, Differential Gene Expression and Co-expression 

Analysis on Breast Invasive Carcinoma Dataset 

 
My contribution was to design the research project together with the co-authors Riccha Sethi, 

Mohamed Hamed, and Volkhard Helms. The analysis of transcription factors and STIM and 

ORAI genes was done by me and the differential gene expression, and co-expression analysis 

was done by Riccha Sethi. I and Volkhard Helms wrote the manuscript. 

 

Abstract 

Store-operated calcium (Ca2+) entry (SOCE) is ubiquitous mechanism for Ca2+ entry in 

eukaryotic cells, which regulates diverse cellular functions.  SOCE is achieved primarily by 

the gating of the plasma membrane (PM)-localized-channel, ORAI, by the ER-localized Ca2+-

sensing protein, STIM. The discovery of transcription factor binding site (TFBS) motifs in 

specific locations on the STIM and ORAI promoters remains elusive. Moreover, the knowledge 

of the defects of STIM and ORAI genes expression and/or function linked to disease such as 

breast cancer is still obscured. Here, we used the HOCOMOCO and EPDnew databases to 

obtain a set of position weight matrix (PWM) and promoter sequences of STIM and ORAI, 

respectively, and mapped the possible binding motifs proteins using the FIMO tool. The results 

were then mapped with the set of transcription factors (TFs) targeting STIM and ORAI gene 

which were retrieved from the CheA database. We found ten predictive interactions between 

transcription factors bound to promoter regions of STIM and ORAI genes based on predictions 

using the STRING, prePPI, and mentha databases. Then, the collection of 63 TFs was used as 

gene of interest for co-expression and differential expression analysis on breast invasive 

carcinoma (BRCA) dataset. There, we found ORAI genes to be up-regulated, in contrast 

STIM1 and STIM2 were down-regulated. Unveiling the predicted transcription factors bound 

to the promoter regions of STIM and ORAI genes, the regulations of these genes and 

differential networks properties may suggest putative interactions for experimental studies and 

allows us to gain knowledge relation with breast cancer. 

 

Keywords: STIM, ORAI, breast invasive carcinoma, promoters, transcription factors. 
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4.1 Introduction 

Calcium (Ca2+) signals control many cellular functions ranging from short-term responses such 

as muscle contraction, impulse transmission and secretion to longer-term regulation of 

transcription, growth, and cell division. Store-operated Ca2+ entry (SOCE), the main Ca2+ 

influx mechanism in non-excitable cells, typically is activated in response to depletion of 

endoplasmic reticulum (ER)-Ca2+ stores [138,139]. SOCE is controlled by the ER-localized 

Ca2+ sensing proteins, STIM1 and STIM2 [140–142]. Recently, SOCE and the function of Ca2+ 

released-activated Ca2+ (CRAC) channels were shown to involve the ORAI1 or CRACM1 

[143,144] and two homologs, ORAI2 and ORAI3 [145,146]. 

In mammals, the stromal interaction molecule (STIM) family has two members STIM1 

(Figure 4.1) and STIM2 (Figure 4.2). They share a sequence identity almost 65%, they have 

diverse properties what results in different functions [147]. Both STIM are single spanning 

transmembrane (TM) proteins containing an N-terminal EF-hand domain responsible for 

calcium store sensing and a COOH terminal cytoplasmic domain [141,148–151]. STIM1 is a 

ubiquitously expressed, protein of 77 kDa and consists of 13 exons, located at chromosome 11, 

in 11p15.5. The STIM2 gene contains 148 amino acids residues (aa) longer than STIM1 (105-

115 kDa) and also consists of 13 exons located at chromosome 4, in 4p15.1 [148].  

The human ORAI family includes three members: ORAI1, ORAI2 and ORAI3 (Figure 

4.3). They share a high sequence similarity of almost 89% and are broadly expressed with 

different expression levels depending on the cell type. These ORAI members are localized on 

the plasma membrane (PM) and consists of four transmembrane domains that are flanked by 

cytosolic NH2 and COOH termini [152–155]. Many studies have shown that ORAI1 functions 

together with STIM1 to initiate CRAC currents [156,157]. On the other hand, previous studies 

showed that STIM1 and STIM2, are linked to several diseases such as Alzheimers disease 

(AD), Parkinson’s and autoimmune diseases, brain and breast cancer, ischemia and, 

neurodegeneration diseases [158–164]. Moreover, a few studies found that ORAI1 and ORAI3 

are linked to breast cancer migration and metastasis [165–168]. However, only few studies 

addressed the relation of STIM and ORAI genes to breast cancer. 
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Figure 4.1 Molecular structure of STIM1 (A) STIM1 domain organization. (B) Cartoon 

depicting a possible model of the STIM1 monomer in the resting state. The figure 4.1(B) was 

taken from [147]. 

N, N terminus; Ca2+ , calcium; cEF, canonical EF-hand motif; nEF, non-canonical EF-hand 

motif; SAM, steril alpha motif; CC, coiled-coil domain; CAD, CRAC activation domain also 

called SOAR or CCb9; ER, endoplasmic reticulum; TM, transmembrane domain; S, serine-

rich domain; S/P, serine- and proline-rich domain; K, poly-K and C, C terminus. 

 

 

 
 

Figure 4.2 Molecular structure of STIM2 (A) STIM2 domain organization. (B) Cartoon 

depicting a possible model of the STIM2 monomer in the resting state. The figure 4.2(B) was 

taken from [147].  

N, N terminus; Ca2+ , calcium; cEF, canonical EF-hand motif; nEF, non-canonical EF-hand 

motif; SAM, steril alpha motif; CC, coiled-coil domain; CAD, CRAC activation domain also 

called SOAR or CCb9; ER, endoplasmic reticulum; TM, transmembrane domain; S, serine-

rich domain; S/P, serine- and proline-rich domain; K, poly-K and C, C terminus. 
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Figure 4.3 Molecular structure of ORAI1, ORAI2, and ORAI3 (A) Domain organization of 

ORAI genes. (B) Cartoon depicting a possible model of ORAI in the resting state and sequence 

alignments. The figure 4.3(B) was taken from [169]. 

N, N terminus; P, Proline-rich; R, Arginine-rich; R/K, Arginine/Lysine-rich; TM, 

transmembrane domain; CC, coiled-coil domain and C, C terminus. 

 

The binding of transcription factors (TFs) to specific locations in the genome is 

important for the coordination of transcriptional regulation in cells. Hence, the identification 

and accurate predictions of TF binding sites (TFBS) throughout genomes is a prerequisite to 

understanding of gene regulation and their networks [170]. Often, TFBSs are identified by 

using a set of target promoter sequences to characterize the binding properties for a particular 

TF that is known or assumed to bind these sequences. The position weight matrix (PWM) are 
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computed from an alignment of these DNA sequences. Various databases are available which 

store TF targets such as the TRANSFAC [92] which contains experimentally verified TF target. 

There are also CheA [171] and Factorbook.org [172] which includes the resources of ChIP-seq 

and ChIP-chip data from the ENcyclopedia of DNA Element (ENCODE) project [173], 

HOCOMOCO [91], and JASPAR [90,174] databases. On the other hand, a number of online 

databases that store physical protein-protein interactions (PPIs) and networks have been 

developed such as the IntNetDB [175], mentha [176], OPHID [177], prePPI [178], Predictome 

[179], PIPs [180], and STRING [181,182]. Note that STRING also contains functional protein-

protein (PP) interactions in additional to physical PPIs. These databases are the main resources 

of currently used for integrated research on PP interactions. 

Here, by using publicly available databases and computational tools, we perform 

predict the transcription factors (TFs) responsible for the regulation of human STIM and ORAI 

genes, and perform differential gene expression and co-expression analysis for breast invasive 

carcinoma (BRCA) datasets. First, we created a dataset of transcription factors targeting 

STIM1, STIM2, ORAI1, ORAI2, and ORAI3 genes from the ChEA database and mapped them 

to the promoter regions of STIM and ORAI genes. Next, we searched for the predicted physical 

protein-protein interactions of TFs using the STRING, prePPI, and mentha databases. Then, 

the interacting TFs and bridge proteins were used for differential gene expression and co-

expression analysis on datasets of level 3 RNASeqV2 breast invasive carcinoma (BRCA) from 

the TCGA database. Our main research question was to find the interacting transcription factors 

bound to the promoter regions of STIM1, STIM2, ORAI1, ORAI2, and ORAI3 and to assess 

how the regulation by these transcription factors may affect differential expression and co-

expression analysis for breast invasive carcinoma datasets. The acquired knowledge should 

enhance our understanding of STIM and ORAI genes binding sites on promoters, their TF 

interactions and their regulations in differential expression gene and co-expression analysis.  

 

4.2 Material and Methods 

4.2.1 Transcription Factors Targeting STIM and ORAI Genes 

We used the ChIP Enrichment Analysis (ChEA) database (amp.pharm.mssm.edu/chea) version 

1 [171] to obtain the list of transcription factors (TF) targeted to STIM1, STIM2, and ORAI1-

ORAI3 genes. We focused on transcription factors in human (Homo sapiens) only. The 

network of transcription factors targeting STIM1, STIM2, and ORAI1-ORAI3 genes was 
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visualized using the open-source platform for network analysis and visualization, Cytoscape 

(http://www.cytoscape.org/) [183].   

 

4.2.2 Transcription Factors Binding Models 

The dataset of transcription factor binding site (TFBS) models was obtained from the Homo 

sapiens Comprehensive Model Collection (HOCOMOCO) database version 9 

(autosome.ru/HOCOMOCO/) [91]. We downloaded the probability matrices of AD curated 

collection in MEME text format (HOCOMOCOv9_AD_MEME.txt) which are derived against 

a uniform nucleotide background. 

 

4.2.3 Sequence of Promoter Regions 

A set of promoter regions of the STIM1, STIM2, ORAI1, ORAI2, and ORAI3 genes was 

downloaded on April 2016 from The Eukaryotic Promoter Database (EPDnew, epd.vital-

it.ch/EPDnew_database.php) [89,184]. The EPDnew is a database of species-specific 

databases of experimentally validated promoters. The searched was filtered to Homo sapiens, 

and the default setting for the range from -499 to 100 bp relative to the transcription start site 

(TSS).  

 

4.2.4 Motif Over-representation Analysis 

A dataset of known binding motifs was obtained from the Find Individual Motif Occurrences 

(FIMO, meme-suite.org/tools/fimo) tool [185]. The FIMO tool is part of the Motif-Based 

Sequence Analysis Tools, the MEME Suite version 4.11.2 [186]. This tool searches a database 

of sequences for occurrences of known motifs and treats the motifs independently.  The motif 

input from the HOCOMOCO database (HOCOMOCOv9_AD_MEME.txt) was uploaded in 

the “input the motifs” section of the FIMO tool. On the other hand, the promoter sequences of 

STIM1, STIM2, ORAI1, ORAI2, and ORAI3 were uploaded respectively each time in the 

“input the sequences” option.   

 

4.2.5 Transcription Factors Predicted by CheA Mapped with the FIMO Results 

We mapped 426 models from the HOCOMOCO database to our results of transcription factors 

targeted to STIM1, STIM2, and ORAI1-ORAI3 genes obtained from the ChEA database. Then 

the results were mapped according to their base pair (bp) location to each of the corresponding 

promoter regions.  

 

http://www.cytoscape.org/
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4.2.6 Prediction of Physical Interactions of Protein-protein Complexes 

Three different databases were used to obtain predicted physical interactions of protein-protein 

complexes, (i) the Search Tool for the Retrieval of Interacting Genes (STRING) database 

(http://string-db.org) downloaded in April 2016  [181,182], (ii) the prePPI database version 

1.2.0 (https://bhapp.c2b2.columbia.edu./PrePPI) [178], and (iii) the mentha database 

(mentha.uniroma2.it/about.php) downloaded in April 2016 [176]. For the STRING database, 

the minimum required interaction score was set to the default cut-off of medium confidence 

(0.4).  For the prePPI database, the probability ≥0.5 indicates true interaction. Next, we grouped 

the interactions according to (i) direct interactions which contain no bridge protein and (ii) 

indirect interactions which require bridge protein/s. 

 

4.2.7 TCGA BRCA Dataset 

Publicly accessible RNA-Seq datasets version 2, level 3 of breast invasive carcinoma (BRCA) 

was downloaded in May 2016 from the online data portal, The Cancer Genome Atlas (TCGA; 

http://tcga-data.nci.nih.gov) [8]. We downloaded two separate datasets of 113 normal samples 

(n= 113) and 1102 tumor samples (n=1102), respectively. Each of them contains gene 

expression profiles. The datasets were pre-processed using python programming language and 

R software (http://www.R-project.org).  

 

4.2.8 Computing Differential Gene Expression 

We applied the widely used Bioconductor package DESeq2 version 1.12.3 [187] to identify 

genes showing differential expression in the TCGA dataset of breast invasive carcinoma. A 

false discovery rate (FDR) threshold of 0.1 after Benjamini and Hochberg multiple hypothesis 

correction was used for statistical significance genes. We used the pheatmap package to create 

a heatmap of the differentially expressed genes which used the normalized counts as the input.  

 

4.2.9 Weighted Gene Co-expression Network Analysis 

The co-expression analysis network was performed using the Weighted Gene Expression 

Network Analysis (WGCNA) [106] package version 1.51 for R version 3.2.0. We analyzed the 

results separately for normal and tumor samples. The clustering and principal-components 

analysis (PCA) was performed to identify outliers. In normal samples, 39 outlier samples were 

omitted. The cut-height was set to 8 and the soft-thresholding power parameter was set to 7. In 

tumor samples, 455 outlier samples were removed and the cut-height was set to 12 and the soft-

thresholding power parameter was set to 4. 

http://string-db.org/
https://bhapp.c2b2.columbia.edu./PrePPI
http://tcga-data.nci.nih.gov/
http://www.r-project.org/
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The significant modules obtained from normal and tumor samples were used to identify 

the differential interactions for all selected genes. The differential interactions were computed 

as following: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = (𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑡𝑢𝑚𝑜𝑟) + (𝑡𝑢𝑚𝑜𝑟 − 𝑛𝑜𝑟𝑚𝑎𝑙)                (4.1) 

 

where (normal-tumor) are the interactions that are (edges) included in modules of the normal 

network which are not present in the tumor network modules and (tumor-normal) is vice versa. 

The edge weights greater than 0.02 obtained from the WGCNA were visualized by Cytoscape 

[183]. Edges with higher score are represented by thicker lines.  

  

4.2.10 Flowchart 

Figure 4.4 summarizes the workflow of the analysis of this study. 

 

 
Figure 4.4 Flowchart summarizing the workflow of the analysis. 
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4.3 Results and Discussion 

4.3.1 Transcription Factors Targeting STIM and ORAI Genes 

Generally, high-throughput ChIP-seq data was used together with PWMs to identify the 

putative TF binding sites in the promoter regions of human STIM and ORAI genes. Thus, 

firstly we created a dataset of TFs targeting STIM and ORAI genes. These were downloaded 

from the ChEA database which contains gene lists of TFs obtained from ChIP-seq and ChIP-

chip studies. We found a set of 23 TFs targeting STIM1, 29 (STIM2), 15 (ORAI1), 11 

(ORAI2), and 13 (ORAI3), respectively. Overall, there are 48 non-redundant TFs targeting 

STIM and ORAI genes (Figure 4.5). Supplementary Information Table 4.1 lists the 

transcription factors targeted to STIM1, STIM2, and ORAI1-ORAI3, together with Pubmed 

ID (PMID), technique of experiments and cell types.  

 

 
Figure 4.5 Dynamic graphical representations of 48 transcription factors targeting STIM and 

ORAI genes. The figure drawn using Cytoscape [183]. 
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4.3.2 Promoter Sequences of STIM and ORAI Genes from the EPDnew Database  

Two sets of promoter sequences each of STIM1 (named STIM1_1 and STIM1_2), and STIM2 

(STIM2_1 and STIM2_2), and one promoter sequence for each ORAI1, ORAI2, and ORAI3 

were retrieved from the EPDnew database. Supplementary Information Table 4.2 lists the 

promoter sequences for STIM1, STIM2, ORAI1, ORAI2, and ORAI3 genes. We used rather 

short promoter sequence region from -499 to 100 bp relative to the transcription start site (TSS) 

to focus on putative physical interactions between TFs targeted to these selected regions rather 

than longer promoter regions which may contain many unreliable interactions.  

 

4.3.3 HOCOMOCO and FIMO Results 

The STIM and ORAI promoter sequences were searched for occurrences of known motifs 

using the FIMO tool. This tool scans a sequence database for individual matches to each of the 

motifs provided in the HOCOMOCO dataset (HOCOMOCOv9_AD_MEME.txt) which 

contains 426 non-redundant curated binding models for 401 human TFs. In total, we found 411 

known motifs in the promoter of STIM1_1, 79 for (STIM1_2), 276 for (STIM2_1), 83 for 

(STIM2_2), 304 for (ORAI1), 571 for (ORAI2), and 262 for (ORAI3), respectively.   

Then, the respective motifs were mapped to the 91 transcription factors targeting STIM 

and ORAI genes obtained from the ChEA database. In total, there are 13 non-redundant 

transcription factors (E2F1, E2F4, EGR1, ELF1, ELK3, GATA1, HNF4A, MITF, MYC, 

PPARD, RUNX1, SOX2, and SPI1) that were found targeted STIM and ORAI genes. Table 

4.1 lists the motifs found targeting STIM and ORAI genes. On the other hand, only one 

transcription factor was found in the promoters of STIM1_1, STIM1_2, and STIM2_2, 

respectively. Moreover, 12 TFs were found in the promoter of STIM2_1, 4 TFs in the 

promoters ORAI1 and ORAI2, and 5 TFs in the promoter ORAI3. 
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Table 4.1 Motifs found targeting STIM and ORAI genes based on the CheA database and 

FIMO tool. 

 
Promoter 
Name Motif Strand Start End p-value q-value Matched Sequence 

STIM1_1 
ELK3_f1 + 494 505 4.05e-05 0.0361 GCCTGGAAGCCG 

STIM1_2 
SOX2_f1 + 443 458 2.14e-05 0.0238 CTATGCATCAGAAAAG 

STIM2_1 
ELK3_f1 + 154 165 5.54e-05 0.0528 CTCAGGATGTGG 

E2F1_f2 - 256 269 5.86e-06 0.00441 AGGAGGCGGGGAAG 

E2F4_do - 256 269 4.41e-05 0.0372 AGGAGGCGGGGAAG 

GATA1_si - 290 299 7.73e-05 0.0914 GCTGATAACG 

EGR1_f2 + 339 349 9.25e-05 0.0115 GGCGGGGCTGG 

EGR1_f2 - 354 364 8.56e-06 0.00306 CGCGTGCGCGG 

E2F1_f2 + 404 417 8.14e-05 0.0204 GGGAGGCGGGGGAT 

EGR1_f2 + 489 499 5.1e-06 0.00306 GGAGGGGGCGG 

E2F1_f2 + 491 504 3.92e-05 0.0147 AGGGGGCGGGGGGA 

EGR1_f2 + 510 520 1.94e-05 0.00361 CGCGGCGGCGG 

EGR1_f2 + 513 523 1.23e-05 0.00306 GGCGGCGGCGG 

EGR1_f2 + 516 526 7.86e-05 0.0115 GGCGGCGGCGC 

STIM2_2 
SOX2_f1 - 304 319 5.86e-05 0.0544 TTTTACAAAATAATGA 

ORAI1 
E2F4_do + 67 80 2.48E-005 0.0183 AGTGGGCGCCAAAT 

E2F4_do + 280 291 6.29E-005 0.0231 GGTGGGCGGGGAGC 

ELK3_f1 - 387 400 3.68E-005 0.0338 TCCTGGAAGCGC 

PPARD_f1 + 396 409 3.91E-005 0.0446 CGGGGCACAGGTGG 

ORAI2 
RUNX1_f1 + 121 130 8.89E-005 0.101 TCTGTGGGTA 

PPARD_f1 + 519 532 1.41E-005 0.0161 TGGGCCACAGGCCA 

MYC_f1 + 528 538 2.47E-005 0.0114 GGCCACGCGGC 

MYC_f1 - 529 539 5.66E-005 0.0131 GGCCGCGTGGC 

ORAI3 
HNF4A_f1 + 38 50 5.71e-06 0.0063 GGACCAAAGGCCG 

MITF_f1 + 466 475 6.78e-05 0.0589 ATCATGTGGC 

SPI1_si - 496 512 5.55e-07 0.000628 CAAAACAGGAACTGGGA 

ELF1_f1 - 499 508 8.68e-05 0.0473 ACAGGAACTG 

ELF1_f1 - 583 592 5.74e-05 0.0473 CCAGGAAGAG 

 

We prepared two diagrams to illustrate the transcription factors targeting STIM and 

ORAI on their promoter regions within the range of -499 to 100 bp, where 0 bp defines as the 

transcription start site (TSS) (Figure 4.6). We are assuming that possible physical interactions 

may occur between overlapping and neighbouring or adjacent transcription factors within ≤ 

50bp in the promoter regions. We identified nine such possible physical protein-protein 

interactions E2F1:E2F4, E2F1:EGR1, E2F1:GATA1, and E2F4:GATA1 in the promoter 

region of STIM2_1 and PPARD: E2F4 in the promoter region of ORAI1, PPARD: MYC 

(promoter region of ORAI2), MITF: SPI1, MITF: ELF1, and SPI1:ELF1 (promoter region of 

ORAI3) (Table 4.2). However, no putative interaction was found on promoter regions of 
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STIM1_1, STIM1_2 and STIM2_2 because only one transcription factor bound at each of 

them. In addition, an experimental study by Eylenstein et al. 2012 [188], found that NFKB1 

are related to STIM1 and ORAI1. The FIMO tool predicted NFKB1 to targeted STIM1 and 

ORAI2, but these were not found in the CheA database. Though, we considered the interactions 

between NFKB1 and RUNX1 in the promoter region of ORA12. 

 

 

 
Figure 4.6 Schematic illustration of transcription factors binding motifs in the promoters of 

the genes STIM1, STIM2, ORAI1, ORAI2, and ORAI3. (A) Transcription factor binding 

motifs in the promoters of genes STIM1 and STIM2. (B) Transcription factors binding motifs 

in the promoters of genes ORAI1, ORAI2, and ORAI3. 

TSS, transcription start site; Promoter STIM1_1, first promoter of STIM1; Promoter STIM1_2, 

second promoter of STIM1; Promoter STIM2_1, first promoter of STIM2; Promoter STIM2_2, 

second promoter of STIM2; Promoter ORAI1, promoter of ORAI1; Promoter ORAI2, 

promoter of ORAI2; Promoter ORAI3, promoter of ORAI3.  
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Table 4.2 List of ten predicted physical transcription factor interactions, location in the 

promoter and their overlap or gap by base pair. 

 

   Location on promoter  
Promoter Name TF1 TF2 TF1 TF2 Overlap/gap by bp 

STIM2_1 E2F1 E2F4 -245 to -230 overlap by 15bp 

  EGR1 E2F1 -145 to -135 -95 to -82 gap by 40bp 

    -10 to 0 -8 to 5 overlap by 8bp 

  *E2F1 EGR1 -8 to 5 11 to 21 gap by 6bp 

    -8 to 5 14 to 24 gap by 9bp 

    -8 to 5 17 to 27 gap by 12bp 

  E2F1 GATA1 -245 to -230 -209 to -200 gap by 21bp 

  E2F4 GATA1 -245 to -230 -209 to -200 gap by 21bp 

ORAI1 PPARD E2F4 -112 to -99 -103 to -90 overlap by 4bp 

ORAI2 NFKB1 RUNX1 -430 to -420 -378 to -369 overlap by 42bp 

    -397 to -387 -378 to -369 overlap by 9bp 

  PPARD MYC 20 to 30 29 to 40 overlap by 1bp 

      20 to 30 30 to 40 gap by 0bp 

ORAI3 MITF SPI1 -33 to -24 -3 to 13 gap by 21bp 

  MITF ELF1 -33 to -24 0 to 9 gap by 24bp 

  SPI1 ELF1 -3 to 13 0 to 9 overlap by 9bp 

*The interaction between EGR1:E2F1 is assumed to be the same as interaction between 

E2F1:EGR1. 

bp, base pair; TF1, first transcription factor and TF2, second transcription factor. 

 

4.3.4 Physical Protein-protein Interactions 

We used three well known databases STRING, prePPI, and mentha, to search for putative 

physical protein-protein interactions between transcription factors targeting STIM and ORAI 

genes on their promoter regions. Generally, these databases will search for possible physical 

protein-protein interactions either as direct or indirect interactions involving further bridge 

protein/s. Every database presented different results, scores, outputs, and networks.  

Table 4.3 lists the results obtained from the STRING database. Figure 4.7 shows the 

network of interactions between 13 TFs targeting STIM and ORAI genes generated by the 

STRING database. The STRING database predicted eight possible protein-protein interactions 

either direct or involving bridge protein/s. The interactions of node1 and node2 which have a 

score of ≥0.5 suggest true interactions (Supplementary Information Table 4.3). In total, three 

direct interactions were observed between E2F1:E2F4, E2F4:GATA1 in the promoter of 

STIM2_1, and MITF:SPI1 in the promoter of ORAI3. Additionally, besides being direct 

interactions, E2F1:E2F4 was also connected by the bridge protein MYC and E2F4:GATA1 by 

MYC and EGR1.  
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Table 4.3 List of the predicted interactions between transcription factors obtained from the 

STRING database. 

 

Promoter 
name 

Putative 
Interactions 

Type of 
interaction 

Bridge 
Proteins Interactions 

STIM2_1 E2F1:E2F4 Direct   

  E2F1:E2F4 Bridge protein MYC E2F1>MYC>E2F4 

STIM2_1 E2F1:EGR1 Bridge protein SPI1 E2F1>SPI1>EGR1 

  E2F1:EGR1 Bridge protein E2F4 E2F1>E2F4>EGR1 

  E2F1:EGR1 Bridge protein MYC E2F1>MYC>EGR1 

STIM2_1 E2F1:GATA1 Bridge protein ELF1 E2F1>ELF1>GATA1 

  E2F1:GATA1 Bridge protein SPI1 E2F1>SPI1>GATA1 

  E2F1:GATA1 Bridge protein MYC E2F1>MYC>GATA1 

STIM2_1 E2F4:GATA1 Direct   

  E2F4:GATA1 Bridge protein MYC E2F4>MYC>GATA1 

  E2F4:GATA1 Bridge protein EGR1 E2F4>EGR1>GATA1 

ORAI1 PPARD:E2F4 Bridge protein EGR1 PPARD>EGR1>E2F4 

ORAI2 NFKB1:RUNX1 Bridge protein EGR1 NFKB1>EGR1>RUNX1 

  NFKB1:RUNX1 Bridge protein MYC NFKB1>MYC>RUNX1 

  NFKB1:RUNX1 Bridge protein SPI1 NFKB1>SPI1>RUNX1 

ORAI2 PPARD:MYC Bridge protein EGR1 PPARD>EGR1>MYC 

  PPARD:MYC Bridge protein HNF4A PPARD>HNF4A>MYC 

ORAI3 MITF:ELF1 Bridge proteins SPI1, E2F1 MITF>SPI1>E2F1>ELF1 

  MITF:ELF1 Bridge proteins SPI1, 
GATA1 

MITF>SPI1>GATA1>ELF1 

ORAI3 MITF:SPI1 Direct   

ORAI3 SPI1:ELF1 Bridge protein GATA1 ELF1>GATA1>SPI1 

  SPI1:ELF1 Bridge protein E2F1 ELF1>E2F1>SPI1 

 

 
Figure 4.7 Network of 14 transcription factors targeting STIM and ORAI genes. Evidence 

view of the STRING database output depicting the transcription factors targeting STIM and 

ORAI genes obtained from http://string-db.org/. 

http://string-db.org/
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The prePPI database results include prePPI LR, database LR, final probability and 

prediction code. The prediction code was labelled as S, T, G, E, M, C, and P to represent their 

sources of evidence used in the prediction. In our cases, the code of S was found which referred 

to structural modelling between the interactions of E2F1:E2F4, E2F1:GATA1, and 

NFKB1:RUNX1, T represents protein-peptide modelling (PPARD:E2F2 and PPARD:MYC) 

and G means GO term similarity (function similarity) (E2F1:EGR1 and MITF:SPI1). 

Generally, the prePPI database predicts only direct interactions. In total, four putative physical 

protein-protein interactions are predicted true by the prePPI database with a final probability 

≥0.5. This includes the interactions between E2F1:E2F4 (final probability of 1.00), E2F:EGR1 

(final probability of 0.68), MITF:SPI1 (final probability of 1.00), and SPI1:ELF1 (final 

probability of 0.99), respectively (Table 4.4).  

 

Table 4.4 List of predicted interactions between transcription factors obtained from the prePPI 

database. 

 

Promoter 
name 

Predicted 
Interactions 

prePPI 
LR 

Database LR 
Final 
Probability 

Prediction 
Code 

STIM2_1 E2F1:E2F4 109392.00 957.82 1.00 S 

STIM2_1 E2F1:EGR1 1268.49 Not available 0.68 G 

STIM2_1 E2F1:GATA1 31.17 Not available 0.05 S 

STIM2_1 E2F4:GATA1 Not found Not found Not found Not found 

ORAI1 PPARD:E2F4 23.76 Not available 0.04 T 

ORAI2 NFKB1:RUNX1 388.29 Not available 0.39 S 

ORAI2 PPARD:MYC 61.64 Not available 0.09 T 

ORAI3 MITF:ELF1 Not found Not found Not found Not found 

ORAI3 MITF:SPI1 47.73 4625.64 1.00 G 

ORAI3 SPI1:ELF1 60755.6 Not available 0.99 S 
LR, likelihood ratio; G, GO term similarity; S, structural modelling and T, protein-peptide 

modelling. 

 

Generally, the mentha database can predict direct and indirect interactions. Table 4.5 

lists the predicted interactions obtained from the mentha database. In total, three interactions 

with bridge proteins are predicted between E2F1:EGR1, PPARD:E2F4, PPARD:MYC, and 

one direct interaction between E2F1:E2F4. We identified one bridge protein (HDAC1) in the 

NFKB1:RUNX1 interaction, three bridge proteins (HDAC1, HDAC3, and NCOR2) in 

PPARD:E2F4 interactions, four bridge proteins (CDKN2A, CREBBP, EP300, and SP1) 

associate with E2F1:EGR1 interactions, and five bridge proteins (EP300, HDAC1, HDAC2, 

HDAC3, and KDM1A) with PPARD:MYC interactions, respectively. However, interactions 
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between E2F1:GATA1, E2F4:GATA1, MITF:SPI1, MITF:ELF1, and SPI1:ELF1 were not 

found in mentha. 

 

Table 4.5 List of the predicted interactions between transcription factors obtained from the 

mentha database. 

Promoter 
name 

Putative 
Interactions 

Type of 
interaction 

Bridge 
Proteins TF1 TF2 Score PMID 

STIM2_1 E2F1:E2F4 Direct NULL E2F4 E2F1 0.126 16357170 

STIM2_1 E2F1:EGR1 Bridge protein CDKN2A CDKN2A E2F1 0.507 11314038 

     CDKN2A EGR1 0.623 19057511 

  E2F1:EGR1 Bridge protein SP1 E2F1 SP1 0.902 
10547281, 8657141, 
10409740, 8657142 

     EGR1 SP1 0.523 20121949 

  E2F1:EGR1 Bridge protein CREBBP CREBBP E2F1 0.523 12748276, 8932363 

     CREBBP EGR1 0.623 9806899 

  E2F1:EGR1 Bridge protein EP300 EP300 E2F1 0.507 
24112038, 15123636, 
23001041 

     EP300 EGR1 0.93 
9806899, 15225550, 
20089040, 20018936 

STIM2_1 E2F1:GATA1             

  Not found        

STIM2_1 E2F4:GATA1             

  Not found        

ORAI1 PPARD:E2F4 Bridge protein NCOR2 NCOR2 PPARD 0.454 11867749 

     NCOR2 E2F4 0.376 22508987 

  PPARD:E2F4 Bridge protein HDAC1 HDAC1 PPARD 0.569 18037904, 11867749 

     E2F4 HDAC1 0.523 
9724731, 23060449, 
9858615 

  PPARD:E2F4 Bridge protein HDAC3 PPARD HDAC3 0.454 11867749,12943985 

     E2F4 HDAC3 0.376 22508987 

ORAI2 NFKB1:RUNX1 Bridge protein HDAC1 NFKB1 HDAC1 0.91 

25241761 16319923 
24448807 12972430 
17827154 11931769 
17962807  

     HDAC1 RUNX1 0.73 
22498736, 16652147, 
21059642 

ORAI2 PPARD:MYC Bridge protein HDAC3 PPARD HDAC3 0.454 11867749, 12943985 

     MYC HDAC3 0.692 
22002311,18483244, 
23079660 

  PPARD:MYC Bridge protein KDM1A PPARD KDM1A 0.49 23455924 

     MYC KDM1A 0.332 23455924 

  PPARD:MYC Bridge protein HDAC2 HDAC2 PPARD 0.309 25241761, 11867749 

     HDAC2 MYC 0.472 
17314511, 20195357, 
22286234 

  PPARD:MYC Bridge protein HDAC1 HDAC1 PPARD 0.569 18037904, 11867749 

     HDAC1 MYC 0.911 

22286234, 18003922, 
26496610, 17314511, 
18271930, 24951594 
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  PPARD:MYC Bridge protein EP300 EP300 PPARD 0.309 16930961 

     EP300 MYC 0.911 
17157259, 15616592, 
16287840, 16126174 

ORAI3 MITF:SPI1             

  Not found        

ORAI3 MITF:ELF1             

  Not found             

ORAI3 SPI1:ELF1             

  Not found             

PMID, Pub Med ID. 

 

Table 4.6 summarizes the type of interactions either as direct interaction or using bridge 

protein/s predicted from the STRING, prePPI, and mentha databases. If one of these databases 

predicts any interaction; which the first TF (TF1) interact with the second TF (TF2), we labelled 

“YES” in “Consider as TFs pair?” column. Overall, 14 non-redundant TFs are found to act as 

bridge proteins predicted by the STRING and mentha databases. Next, we used these 63 non-

redundant genes (including 48 TFs predicted by the ChEA database and STIM1, STIM2, 

ORAI1, ORAI2, and ORAI3 genes itself) as genes of interest for differential expression gene 

analysis and co-expression analysis of the breast invasive carcinoma dataset (Table 4.7).  

 

Table 4.6 List of predicted interactions between transcription factors obtained from the 

STRING, prePPI, and mentha databases. 
Promoter 
name TF1 TF2 

Type of 
Interaction STRING prePPI mentha 

Consider 
as TF pair? 

STIM2_1 E2F1 E2F4 Direct YES YES YES YES 

    Bridge Protein YES    
  E2F1 EGR1 Direct  YES   YES 

    Bridge Protein YES  YES   

  E2F1 GATA1 Direct      

    Bridge Protein YES   YES 

  E2F4 GATA1 Direct YES    YES 

      Bridge Protein YES       

ORAI1 PPARD E2F4 Direct         

      Bridge Protein YES   YES YES 

ORAI2 NFKB1 RUNX1 Direct         

    Bridge Protein YES  YES YES 

  PPARD MYC Direct      

      Bridge Protein YES   YES YES 

ORAI3 MITF ELF1 Direct      

    Bridge Protein YES   YES 

  MITF SPI1 Direct YES YES  YES 

    Bridge Protein      

  SPI1 ELF1 Direct  YES  YES 

      Bridge Protein YES       
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Table 4.7 List of 63 non-redundant genes of interest obtained from the CheA, STRING, 

prePPI, and mentha databases.  

 

AR FOXA1 HNF4A PAX3-FKHR STIM1 

BCL6 FOXA2 HOXB7 PHF8 STIM2 

CDKN2A FOXP1 KDM1A POU3F2 TFAP2C 

CREBBP FOXP2 KLF5 PPARD TFEB 

CUX1 GABP MITF RBPJ TOP2B 

E2F1 GATA1 MYC RUNX1 TP63 

E2F4 GATA2 MYCN RUNX2 TRIM28 

EBNA2 GATA3 NCOR1 SCL TTF2 

EGR1 GATA4 NCOR2 SMAD4 VDR 

ELF1 GATA6 *NFKB1 SOX11 WT1 

ELK3 HDAC1 ORAI1 SOX2 ZNF217 

EP300 HDAC2 ORAI2 SP1  
FLI1 HDAC3 ORAI3 SPI1   

* NFKB1 was found to be related to STIM and ORAI genes by experimental study and was 

predicted by the FIMO tool. 

 

4.3.5 Differential Gene Expression Analysis 

To identify specific genes that were differentially expressed in breast invasive carcinoma 

dataset, we used DESeq2 packages. This dataset contains 113 normal and 1102 tumor samples. 

Aforementioned, we used a set of 63 genes of interest (Table 4.7) for differentially expressed 

analysis with STIM and ORAI genes as the main focus. By setting the p-value ≤0.05 and FDR 

value of 0.1, DESeq2 analysis identified 45 out of 63 genes that were differentially expressed 

with 26 genes being significantly up-regulated and 19 genes are down-regulated (Table 4.8). 

The ten most significantly differentially up-regulated genes were E2F1, ORAI2, CDKN2A, 

SOXII, GATA3, TRIM28, RUNX2, FOXA1, HDAC1, and KDM1A. On the other hand, the 

ten most significantly down-regulated genes were EGR1, FLI1, FOXP2, BCL6, TP63, MITF, 

SMAD4, STIM2, RBPJ, and ELK3. The ORAI1, ORAI2, and ORAI3 genes were found up-

regulated. This agrees with the results of several studies stating that the expression of ORAI1 

[167,189,190] and ORAI3 [168,190] genes increased in primary human breast cancer cells or 

tissues. On the other hand, we found STIM1 and STIM2 to be down-regulated genes.  

Following data pre-processing, a total of 59 genes were identified. Four genes EBNA2, 

GABP, PAX3-FKHR, and SCL were not found in both normal and tumor samples of the breast 

invasive carcinoma dataset. Based on principal component analysis (PCA) for the gene 

expression profile data, it was found that the gene expression level in tumor (breast invasive 

carcinoma) samples was dissimilar to that in normal samples, thus the two groups were 

distinguished absolutely at the gene expression level (Figure 4.8). 
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Table 4.8 List of differentially expressed genes in the dataset of breast invasive carcinoma 

(BRCA). 

 

  
Log fold 
change p-value 

FDR-
adjusted   

Log fold 
change p-value 

FDR-
adjusted 

(a) Up-regulated genes (b) Down-regulated genes 

E2F1 2.81 5.29E-132 2.81E-130 EGR1 -2.68 7.75E-84 2.05E-82 

ORAI2 1.05 2.78E-63 4.92E-62 FLI1 -1.22 3.04E-55 3.22E-54 

CDKN2A 2.95 8.34E-63 1.10E-61 FOXP2 -2.38 5.07E-50 4.48E-49 

SOX11 3.06 2.24E-43 1.19E-42 BCL6 -1.12 2.54E-49 1.92E-48 

GATA3 1.87 5.02E-42 2.42E-41 TP63 -2.56 6.32E-45 4.19E-44 

TRIM28 0.83 3.19E-40 1.41E-39 MITF -1.21 1.55E-44 9.12E-44 

RUNX2 1.28 6.42E-38 2.62E-37 SMAD4 -0.53 1.13E-28 4.00E-28 

FOXA1 1.86 3.20E-33 1.21E-32 STIM2 -0.50 1.56E-28 5.16E-28 

HDAC1 0.59 1.51E-27 4.70E-27 RBPJ -0.49 2.32E-25 6.83E-25 

KDM1A 0.52 1.80E-22 5.02E-22 ELK3 -0.69 2.40E-21 6.07E-21 

MYCN 1.75 8.31E-22 2.20E-21 MYC -0.90 7.03E-16 1.49E-15 

ZNF217 0.72 1.02E-18 2.45E-18 SP1 -0.25 4.66E-12 9.14E-12 

HDAC2 0.61 6.77E-17 1.56E-16 KLF5 -0.82 4.02E-08 6.45E-08 

TTF2 0.57 2.97E-16 6.55E-16 NCOR1 -0.31 1.637E-06 2.55E-06 

ORAI1 0.55 4.46E-13 9.10E-13 TFAP2C -0.47 2.00E-05 2.87E-05 

SPI1 0.67 7.14E-12 1.35E-11 STIM1 -0.26 3.01E-05 4.10E-05 

VDR 0.47 2.44E-11 4.45E-11 EP300 -0.18 0.0009369 0.0011822 

PHF8 0.36 3.40E-11 6.01E-11 GATA6 -0.33 0.006 0.007 

PPARD 0.39 1.52E-10 2.59E-10 FOXP1 -0.17 0.013 0.015 

ORAI3 0.46 1E-09 1.69E-09      

CUX1 0.30 3.87E-06 5.86E-06      

GATA2 0.68 5.90E-06 8.69E-06      

NCOR2 0.22 2.66E-05 3.71E-05      

HDAC3 0.17 3.45E-05 4.57E-05      

RUNX1 0.25 0.0004872 0.0006298      

TOP2B 0.11 0.023 0.027         

FDR, False Discovery Rate. 
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Figure 4.8 Plot of principal component analysis of 113 normal samples and 1102 tumor 

samples.  

PC, principal component. 

 

4.3.6 Results of Gene Co-expression Analysis 

The analysis of gene co-expression of 113 normal samples and 1102 tumor samples was done 

separately using the WGCNA program.  

 

4.3.6.1 Normal Samples 

By observing the result obtained from the clustering dendogram and the topological overlap 

matrix (TOM) heatmap for all genes in normal samples (Figure 4.9), we found two significant 

modules. The blue module contains 15 genes (including ORAI2) and the turquoise module 

contains 18 genes (Table 4.9).  
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Figure 4.9 Topological overlap matrix (TOM) heatmap corresponding to the two co-

expression modules in normal samples. Each row and column of the heatmap represents a 

single gene. Red indicates high levels of co-expression genes. The dendograms on the upper 

and left sides show the hierarchical clustering tree of genes. 

 

4.3.6.2 Tumor Samples 

In the tumor samples, we identified three significant modules. The brown module contains 

eight genes, the blue module 11 genes, and the turquoise module 13 genes, respectively (Figure 

4.10). On the other hand, we found STM2 in brown module and ORAI1 in blue module. Table 

4.9 summarizes all genes found in normal and tumor samples. The expression patterns of the 

individual modules will provide some clue about their functions. 
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Figure 4.10 Topological overlap matrix (TOM) heatmap corresponding to the three co-

expression modules in tumor samples. Each row and column of the heatmap represents a single 

gene. Red indicates high levels of co-expression genes. The dendograms on the upper and left 

sides show the hierarchical clustering tree of genes. 

 

Table 4.9 Number of genes and gene name of the significant modules obtained from the normal 

and tumor samples identified by the WGCNA program. 

 

Module 
No. of 
genes Gene Name Module 

No. of 
genes Gene Name 

(a) Normal samples (b) Tumor samples 

Blue 15 FOXP1 TOP2B CUX1 Blue 11 SMAD4 PHF8 CREBBP 

  SMAD4 ORAI2 AR    ELF1 SP1  

  FOXA1 PHF8 EP300    NCOR1 CDKN2A  

  TTF2 SP1 GATA3    TOP2B AR  

    NCOR1 CDKN2A CREBBP     ORAI1 EP300   

Turquoise 18 FOXP2 NCOR2 HOXB7 Turquoise 13 FOXP2 NFKB1 RUNX1 

  HDAC1 TP63 VDR    HDAC1 TRIM28  

  HDAC3 RBPJ GATA6    MITF GATA6  

  KDM1A KLF5 GATA2    TP63 E2F1  

  MITF TRIM28 ELK3    EGR1 RUNX2  

    HDAC2 FLI1 TFAP2C     KLF5 ELK3   

     Brown 8 FOXA1 ZNF217 GATA3 

        STIM2 FLI1 E2F4 

              SPI1 TFEB   
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4.3.7 Differential Interaction Networks 

Following the analysis with the WGCNA package, we extracted all the genes differentially 

expressed from the significant modules of the TOM plot to construct networks of differential 

interactions using the Cytoscape [183]. The differential interactions were computed to observe 

which interactions are not in normal samples (labelled as normal-tumor) and vice versa for 

tumor samples (tumor-normal).  We used the edges scores of the threshold ≥0.02. This resulted 

in 83 differential interactions in normal-tumor samples and 61 interactions in tumor-normal 

samples (Supplementary Information Table 4.4). The differential interactions networks 

suggesting that one of our focus genes, ORAI2 interacts with the SP1 and SMAD4 genes in 

normal-tumor, while STIM2 interacts with the ELK3, FOXP2 and FLI1 in tumor-normal 

(Figure 4.11). In the normal-tumor network, the three highest scored edges are the interactions 

between EP300:CREBPP (0.2822), NCOR1:EP300 (0.2343), and SP1:EP300 (0.2093), 

respectively. In the tumor-normal network, the three highest scored edges are the interactions 

between FOXP2:ELK3 (0.1546), MITF:RUNX2 (0.1528), and FOXA1:GATA3 (0.1112), 

respectively. On the other hand, genes with the highest number of edges which known as hubs 

play centred roles in the analysis of the networks. Thus, we identified two genes CREBBP and 

ELK3 as hub genes in the normal-tumor network which contains eight edges (Figure 4.11 (A)) 

while in the tumor-normal network, ELK3 is the hub gene which contains 12 edges (Figure 

4.11 (B)).  
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Figure 4.11 Differential Interaction Networks (A) Differential interactions network of normal-

tumor. (B) Differential interactions network of tumor-normal. 

Red edges indicate interactions that found in differential interactions and black edges indicate 

the interactions which were not found in differential interactions. Blue nodes indicate the genes 

found in the blue module, brown (blue module), and turquoise (turquoise module), 

respectively. 

 

 

 

A 

B 
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4.3.8 Regulation of STIM and ORAI Genes on Normal and Tumor Breast Cancer Tissue 

As mentioned above, we identified ten putative interactions of transcription factors bound to 

promoter region of STIM and ORAI. There, five of the interactions involving E2F1 and E2F4 

on promoter regions of STIM2 and ORAI1 (Table 4.6). Previous studies showed that the 

transcription factors of E2F family (E2F1-8) is recognized to regulate many important genes 

and involved in many biological processes such as apoptosis, cell proliferation, differentiation, 

and DNA damage response [191,192]. Furthermore, we identified E2F1 was up-regulated gene 

in tumor samples and interact with RUNX1 in differential interaction of tumor-normal network. 

Moreover, our results show that E2F1 and E2F4 are found co-expressed in tumor samples. We 

speculate that E2F1 and E2F4 are regulating STIM2 and ORAI1 genes which also show 

relation to breast cancer. In addition, we identified an interaction of NFKB1:RUNX1 on the 

promoter region of ORAI2 which also found co-expressed in turquoise module of tumor 

samples. NFKB1 is one of the family members of NFKB1 transcription factors [193]. Several 

studies noted that NFKB among the Ca2+ sensitive transcription factors which are associate 

with STIM1 and ORAI1 to stimulate cell proliferation and differentiation [194–196]. On the 

other hand, two interactions are found involving the micophthalmia-associated transcription 

factor (MITF) on promoter region of ORAI3 (MITF:ELF1 and MITF:SPI1). We found that 

MITF are co-expression in both turquoise modules of normal and tumor samples. A study by 

Carmit and co-workers noted that MITF functions as master regulatory of melanocytes 

development and melanoma oncogene [197]. Furthermore, Stanisz and co-workers stated the 

role of STIM and ORAI in melanocytes and melanoma which significantly correlates with the 

expression of MITF [163,198]. Generally, our findings suggest several roles of STIM and 

ORAI genes in normal and breast cancer tissues.  

 

4.4 Conclusions 

In this work, we identified 13 non-redundant transcription factors targeting STIM and ORAI 

genes.  We then found ten putative TFs interactions bound on promoter regions of STIM and 

ORAI genes predicted by the STRING, prePPI, and mentha databases. According to these 

interactions, we found 14 non-redundant TFs act as bridge proteins. Then, we identified 63 

non-redundant genes as genes of interest for differential expression gene analysis and co-

expression analysis of breast invasive carcinoma dataset. In the differential expression analysis, 

we found 26 up-regulated genes including ORAI1, ORAI2, and ORAI3, while the 19 down-

regulated genes include STIM1 and STIM2. On the other hand, in the co-expression analysis, 
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we found two significant modules (blue and turquoise modules) in normal samples and three 

significant modules (brown, blue, and turquoise modules) in tumor samples which the 

expression patterns of the individual modules tend to provide clues about their functions. Next, 

we identified 83 differential interactions in normal-tumor samples and 61 interactions in tumor-

normal samples. Finally, we identified CREBBP and ELK3 as hubs genes in the normal-tumor 

network, and ELK3 in the tumor-normal network. Overall, our findings form an important basis 

for identifying TFs targeting STIM and ORAI genes and demonstrate the significant 

involvements of STIM and ORAI genes in breast cancer. In ongoing work, we are extending 

the gene enrichment analysis and applying the framework to datasets of diseases reported 

linked to STIM and ORAI genes such as Alzheimers disease (AD) and prostate cancer. 
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Chapter 5 

 

Evaluation of the Protein Pocket Identification Tools on 

Protein-Ligand Complexes 
 
My contribution was to write the manuscript, designed the research project, and analyzed the 

results together with the co-authors Zhao Yuan, Rahmad Akbar, and Volkhard Helms. I and 

Rahmad Akbar co-supervised Zhao Yuan. Zhao Yuan performed the calculations. 

 

Abstract 

Binding pockets are regions on protein surfaces where substrates of enzymatic reactions or 

effector molecules and co-factors may bind. Thus, identifying these cavities is often a 

prerequisite step for structure-based drug design. Various computational methods have been 

developed to identify such sites on protein surfaces. In this work, we evaluated the seven tools 

DEPTH, DoGSiteScorer, Fpocket, GHECOM, IsoMif, PocketPicker, and ProACT2 on a 

dataset of 167 non-redundant protein-ligand complexes. We analyzed how well the predicted 

pocket-lining residues overlap with the residues that contact the ligand. We used the residue 

overlap to define a score as a measure of the predictive capabilities of the tools.  Even though 

the tools predicted pockets of various sizes and shapes we found comparable performance 

amongst the predictions of five tools (DEPTH, GHECOM, DoGSiteScorer, Fpocket, and 

IsoMif) in terms of average score. Using always the most suitable tool improved the average 

score by 28% over randomly selecting a tool. To support users in a pocket prediction scenario, 

we trained a random forest model (classifier) to output a list of suitable tools for a given protein 

structure. This classifier should be useful for prioritizing the tools to be used for unknown 

proteins or proteins that are not contained in our dataset. 

 

Keywords: classifier, protein-ligand complexes, protein pockets, and random forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

5.1 Introduction 

Proteins play major roles in practically all cellular processes. They typically interact with small 

molecules (ligands), nucleic acids or other proteins to perform a certain function. These 

interactions often occur in a particular site on the protein surface (binding site). As binding 

sites are thus often related directly to protein function, it is important to advance our 

understanding on these sites. The large collection of experimentally determined three-

dimensional structures of protein-ligand complexes stored in the protein data bank (PDB) 

allows us to study these binding sites.  For instance, it has been shown that binding sites for 

small molecule ligands tend to be rather hydrophobic with few selected polar and charged 

residues [199–201] and tend to be found in deep pockets on the proteins surface [53,202]. 

Based on this data, one can develop algorithms to identify cavities that may 

accommodate bound ligands on protein surfaces. The current batch of such algorithms fall into 

five categories (i) geometric methods that can be further grouped into the three subcategories 

grid system scanning, probe sphere filling, and alpha shape [49,50], (ii) energy based methods, 

(iii) evolution based methods, (iv) blind docking and molecular dynamics and, (v) combined 

approaches [48]. Grid system scanning basically projects a protein structure onto a three-

dimensional grid of points and examines spatial overlaps on this grid. DEPTH [57,58], 

DoGSiteScorer [56], GHECOM [49], and PocketPicker [55] are tools that implement a grid 

system scanning approach.  Probe sphere filling methods generate a set of probe spheres to fill 

cavities on protein surfaces. Pockets are then defined as those regions containing the highest 

amount of spheres, e.g. by the tool IsoMif [63].  Alpha shape methods rely on the alpha-shape 

theory and Voronoi tessellation to identify a pocket. Fpocket [68] is a representative of alpha 

shape methods. Energy based methods identify pockets using energetic criteria. Cavities with 

the largest total interaction energies are defined as pockets. For instance, ProACT2 [69,70] is 

a representative of energy based method. Other tools employ further strategies. For example, 

Rate4Site [203] uses an evolution based approach and MolSite [77] utilizes blind docking. As 

a wide range of different strategies and approaches are employed by current pocket 

identification tools, it is of interest to compare and contrast the performance of these tools.  

Defining the correct pockets on protein surfaces is not an easy task [68,204]. 

Schematically, Figure 5.1 sketches three possible ways to define the pocket volume of a 

pacman-shape surface cavity that is shown in two dimensions. It is unclear what definition is 

correct and most useful. Here we analyzed how well the constructed pockets overlap with the 

protein contacts made by small molecule ligands in their X-ray conformations. One should add, 
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as a word of caution, that native or synthetic ligands may either be smaller than surface pockets 

or exceed the volume of the pocket into the solution. Figure 5.2 shows for a case system that 

these tools predict pockets of various sizes and shapes. Indeed, in some cases the ligand is not 

fully enclosed by the detected pocket whereas other tools generated rather large pockets.  

 

Figure 5.1 Two dimensional illustrations of three possible ways to define the pocket volume 

of a pacman-shape surface cavity. 

 

 
Figure 5.2 Pockets (blue) identified by DEPTH (lining residues) (top panel left), GHECOM 

(top panel middle), Fpocket (top panel right), DoGSiteScorer (middle panel left), PocketPicker 

(middle panel middle), IsoMif (middle panel right), and ProACT2 (bottom panel) that overlap 

with the ligand HNT (red sticks) bound to human phenylethanolamine N-methyltransferase, 

PNMT (PDB ID: 2G70). The figures were generated using PyMOL Molecular Graphics 

System [47].  
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Here, we compared the performance of seven tools using a set of quality metrics on a 

set of 167 protein-ligand complexes. We then computed a set of physico-chemical and 

geometric features for each ligand-bound pocket in the dataset. Correlation analysis of pocket 

features and the quality metrics revealed only weak correlation between pocket features and 

the predictive performance of the tools. In general, we found comparable performance in the 

predictions of five tools DEPTH [57,58], GHECOM [49], DoGSiteScorer [56], Fpocket [68], 

and IsoMif [63]. 

 

5.2 Material and Methods 

5.2.1 Dataset 

We used a non-redundant dataset of 195 protein-ligand complexes retrieved by Degac et. al. 

[205] from the PDBbind [37,206] database version 2014. Beside the protein, these complexes 

contain a single ligand with weight less than 1000 Da and the resolution of the X-ray structure 

must be equal to or better than 2.5 Å. Additionally, the ligand molecules must contain only 

common organic elements and the protein molecules include only the standard 20 amino acid 

residues in the area of the binding sites. Complexes with insertions and/or residues numbered 

with special characters (20 complexes), or that could not be processed with Fpocket [68] (five 

complexes) or with DoGSiteScorer [56] (three complexes) were removed. This yielded a final 

dataset of 167 complexes (Supplementary Information Table 5.1). Only a single chain was 

considered if a complex contains more than one homomer. 

 

5.2.2 Tools 

Initially, we considered a total of 25 pocket identification tools. However, among these, we 

were only able to automate the use of seven tools due to various limitations. Table 1 lists the 

tools used in this work. The complete set of tools and the respective limitations are listed in 

Supplementary Information Table 5.2.   

 

Table 5.1 Names, URLs and year of creation of the seven protein pocket prediction tools. 

Program URL Year 

DEPTH http://mspc.bii.a-star.edu.sg/tankp/help.html 2011 

DoGSiteScorer http://dogsite.zbh.uni-hamburg.de/ 2012 

Fpocket http://Fpocket.sourceforge.net/ 2009 

GHECOM http://strcomp.protein.osaka-u.ac.jp/GHECOM/ 2010 

IsoMif http://bcb.med.usherbrooke.ca/imfi.php 2015 

PocketPicker http://gecco.org.chemie.uni-frankfurt.de/pocketpicker/index.html 2007 

ProACT2 http://people.cryst.bbk.ac.uk/~ubcg66a/proact2_summary.html 2010 
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5.2.3 Binding Site Definition 

A binding site is defined as the set of residues which are located within 5.0 Å from the ligand 

surface (actual positive class in the X-ray structure of the protein-ligand complexes). The 

remaining residues in the protein are defined as non-binding site residues (actual negative 

class). 

 

5.2.4 Model Evaluations 

Predicted pockets were evaluated by comparing their pocket lining residues with the residues 

of the corresponding binding site of the respective protein-ligand complexes using a confusion 

matrix. Each column of the confusion matrix represents the predicted class, whereas each row 

represents the actual class. We used this matrix to quantify the correct and incorrect predictions 

of each tool. In our case, TP (true positive) is the overlap between residues in the binding site 

and the lining residues of the predicted pockets, FN (false negative) are the residues in the 

binding site that were predicted as non-binding site. FP (false positive) are the non-binding site 

residues that were predicted as binding sites and TN (true negative) are the non-binding site 

residues that were correctly predicted as non-binding site. From the confusion matrix we 

computed the following quality metrics. 

 

5.2.5 MCC 

The Matthews correlation coefficient (MCC) [207] quantifies the degree of correlation between 

the actual and predicted classes of the residues. An MCC value of 1 indicates that all predictions 

are correct, -1 for completely incorrect predictions [208], and a value of zero indicates a random 

prediction [209]. MCC is defined in equation 5.1: 

 

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                   (5.1) 

5.2.6 Precision 

Precision (P) is the proportion of correct predictions (TP) among all positive predictions (TP 

and FP). The precision value ranges from 0 to 1. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                             (5.2) 

 

 

 

 



70 
 

5.2.7 Recall 

Recall (R) is the proportion of correct predictions (TP) in condition positive (TP and FN). 

The recall value ranges from 0 to 1. 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                               (5.3) 

5.2.8 Overlap 

Overlap measures the fraction of overlapping residues in a binding site for every tool (high 

probability residues, HPR). The values range from 0 to 1. An overlap value of 1 indicates that 

all residues in the binding site predicted by one tool are high probability residues that are found 

by the majority of the tools. 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑠𝑐𝑜𝑟𝑒 =
𝐻𝑃𝑅 𝑖𝑛 𝑎 𝑡𝑜𝑜𝑙

𝑡𝑜𝑡𝑎𝑙 𝐻𝑃𝑅
                                                       (5.4) 

 

5.2.9 Correlation between Features and Quality Metrics 

The correlation between features (chemical descriptors) and quality metrics was computed 

using the Pearson Correlation Coefficient (PCC). 

𝑃𝐶𝐶 =
∑ 𝑋𝑌−

(∑ X)(∑ Y)

n

√(∑ 𝑋
2

−
(∑ X)2

n
)(∑ 𝑌

2
−

(∑ Y)2

n
)

                                             (5.5) 

 

where X is the value of a descriptor, Y is the value of the corresponding quality metrics and n 

is the total number of samples. 

 

5.2.10 TScore 

A tool score (TScore) was defined as the sum of the quality metrics (MCC, precision, recall, 

and overlap) normalized by the count of this metrics. Higher scores, in general, indicate better 

performance. 

𝑇𝑆𝑐𝑜𝑟𝑒 =
𝑀𝐶𝐶+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙+𝑜𝑣𝑒𝑟𝑙𝑎𝑝

4
                            (5.6) 

 

5.2.11 TRatio 

The tool ratio (TRatio) was used to approximate the distance between a predicted TScore and 

the reference score. The reference score was defined separately for each protein-ligand 

complex as the maximum score obtained from any of the tools (maxTScore). TRatio is defined 

as: 

 

𝑇𝑅𝑎𝑡𝑖𝑜 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

𝑚𝑎𝑥𝑇𝑆𝑐𝑜𝑟𝑒
                                                (5.7)                                
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5.2.12 Classifiers 

Scikit-learn [210] was used to evaluate five classification methods Bayes [211,212], decision 

tree [213,214], random forest [215], support vector machine with radial kernel (svm_c_rbf), 

and support vector machine with linear kernel (svm_linear) [216,217]. These methods were 

trained on 75% of the dataset and tested on the remaining samples. As the training and test data 

were randomly split, we iterated the training and testing procedures 100 times to obtain more 

objective results. 

 

5.3 Results  

5.3.1 Pocket Distributions 

The pocket tools output various quantities of pockets and formats for a given protein. DEPTH 

and ProACT2 output predicted pockets as a single file making it difficult to extract individual 

pockets for further analysis. GHECOM and PocketPicker output a predetermined number of 

five pockets per protein. In contrast, Fpocket, DoGSiteScorer, and IsoMif output all predicted 

pockets on the protein surface without limiting the number of predicted pockets to a fixed 

quantity.  For the latter three tools, as they output all predicted pockets for a given protein, 

Figure 5.3 shows the distribution of the number of predicted pockets. Fpocket, DoGSiteScorer, 

and IsoMif predicted 1 to 43, 3 to 112, and 13 to 147 pockets, respectively. IsoMif predicted, 

on average, the largest number of pockets per protein (52.1) followed by DoGSiteScorer (18.4), 

and Fpocket (11.7). 
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Figure 5.3 Distribution of the number of predicted pockets per protein for Fpocket, 

DoGSiteScorer, and IsoMif, respectively.   

 

5.3.2 Size Distributions 

Beside predicting different numbers of pockets, the tools also predict pockets of different sizes. 

For tools which provide individual pockets (Fpocket, DoGSiteScorer, IsoMif, GHECOM, and 

PocketPicker), we approximated the size of the predicted pockets by counting the number of 

residues that constitute a predicted pocket. As GHECOM and PocketPicker only output five 

pockets per protein, we always considered the top five pockets in each case. DoGSiteScorer, 

PocketPicker, and IsoMif predicted a similar number of residues for the top five pockets of 

26.7, 26.5, and 23.6, respectively. Fpocket predicted 17.4 residues per pocket and GHECOM 

predicted the smallest number of residues per pocket, 9.0. Figure 5.4 shows the distribution of 

the number of residues per pocket for the tools. 
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Figure 5.4 Distribution of the number of pocket lining residues per pocket (top five) for 

Fpocket, DoGSiteScorer, IsoMif, GHECOM, and PocketPicker, respectively. 

 

5.3.3 Prediction versus Reality 

Then, we measured how well the identified pockets match the positions of bound ligands (see 

also discussion section). We used four quality metrics to assess the performance of each tool 

against a reference binding site namely Matthews correlation coefficient (MCC), precision 

(pre), recall (recall), and residue overlap (overlap). The Methods section provides 

comprehensive definitions of these metrics. Reference binding sites encompass residues within 

5.0 Å distance from any atom of the small-molecule ligand bound to the protein. Figure 5.5 

shows the cumulative density of each metric for each tool. In general a tool would perform well 

if its corresponding quality metrics are shifted to the right of the density plots. 

ProACT2 and PocketPicker consistently yielded lower performance compared to the 

other tools. ProACT2 is on the leftmost portion of the density plots (Figure 5.5) for MCC, 

precision, and overlap. Similarly, PocketPicker is near or at the leftmost portion of the density 

plot for MCC, precision, and recall. On the other hand, GHECOM performed best (on the 

rightmost of the plots) in three metrics (MCC, precision, and overlap) followed by 
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DoGSiteScorer in recall, and DEPTH was on the rightmost of the MCC plot. On the other hand, 

IsoMif was placed always in the middle range. 

 

 
Figure 5.5 Cumulative density of Matthews correlation coefficient (MCC), precision (pre), 

recall, and residues overlap (overlap). 

 

5.3.4 Features and Quality Metrics 

Next we asked whether the pocket tools work better for certain types of pockets and worse for 

other. Several of the tools used in this work can compute features for the predicted pockets. 

DoGSiteScorer, Fpocket, GHECOM, PocketPicker, and ProACT2 provide 64, 19, 5, 420, and 

23 descriptors for a protein, respectively. PocketPicker [55] generates the largest number of 

features. However, its features focus only on shapes and buriedness of a pocket neglecting 

physico-chemical properties entirely. In contrast, DoGSiteScorer [56] outputs both shapes and 

physico-chemical descriptors. For this reason we selected DoGSiteScorer to compute features 

for each pocket in our reference dataset. Details regarding the features used are included in 

Supplementary Information Table 5.3. 

Similar to the previous section, we used a cumulative density plot to visualize the 

correlation values. The densities are centered around zero in all metrics and tools. This suggests 
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predominantly weak correlations between the features and the quality metrics. Furthermore, 

the Pearson correlation coefficients for MCC, precision, and overlap never exceeded 0.5 in all 

tools. For GHECOM, the feature simple score (simpleScore) correlated slightly with recall 

(0.56). 

 

5.3.5 Tool Score 

To rank the tools, we defined a simple tool score (TScore) by summing MCC, precision, recall, 

overlap and normalized the sum by four. Figure 5.6 shows the TScores per protein-ligand 

complex as a heatmap. We then labelled each protein with the tool that achieved the highest 

TScore (maxTScore). DEPTH, GHECOM, Fpocket, DoGSiteScorer, PocketPicker, IsoMif, 

and ProACT2 were assigned to 65, 33, 36, 15, 0, 14, and 4 proteins, respectively. The average 

TScores across DEPTH (0.58), GHECOM (0.54), Fpocket (0.55), DoGSiteScorer (0.55), and 

IsoMif (0.53) did not differ much. Compared to this group, PocketPicker (0.40) and ProACT2 

(0.36) yielded considerably lower scores. Picking the tools randomly from the seven tools 

yielded an average TScore of 0.53. On the other hand, if one would always pick the tool with 

the highest TScore for each individual protein, the maximum possible TScore is 0.67. This 

means that an optimal choice of tools with the highest TScore for each protein may improve 

the average score by 28% over choosing tools randomly. 
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Figure 5.6 Heatmap of TScores of DEPTH, GHECOM, Fpocket, DoGSiteScorer, 

PocketPicker, IsoMif, ProACT2, and maxTScore, respectively. The column maxTScore 

contains the maximum TScores among all methods. 

 

5.3.6 Identifying an Optimal Pocket Tool for a Protein 

Since we are now in possession of a labelled dataset along with the corresponding features, we 

were able to train classifiers on this dataset. The idea behind is that such classifiers could be 

used to identify the optimal tool for an unknown protein. We trained Bayes, decision tree, 

random forest, support vector machine with radial and linear kernel on 75% of the total data 

and tested on the remaining data. As the training and testing dataset are split randomly, we 

needed to account for the variance on each split, hence, we iterated the training 100 times. We 

found that random forest yielded an accuracy of 0.60 followed by support vector machine with 

radial kernel (0.55), decision tree (0.50), support vector machine with linear kernel (0.38), and 

Bayes (0.34).  

As the TScores amongst the tools are very similar, thus, we computed the ratio of the 

TScores the predictions in our best performing classifier (random forest) and the maximum 

TScores of the reference proteins (TRatio). Such a ratio approximates the distance between the 

TScore of the random forest predictions and the corresponding maximum TScore of reference 

proteins. A ratio value near one indicates that the TScore of the random forest prediction is 
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very similar to the maximum TScore of the reference protein. We found that TRatios are 

distributed around 0.90±0.03, further indicating that the best tools have similar predictive 

capabilities. 

 As TScores are very similar across the tools we decided to output a list of tools along 

with the corresponding weights (probability values from the random forest model) for each 

protein in the prediction instead of just one optimal tool.  A higher weight indicates that the 

classifier is confident in the decision while uniform weights across the tools indicate less 

confidence in the decision.  For example, for EPSP synthase from Escherichia coli (PDB 

ID:2QFT) DEPTH has a clearly higher weight (0.4253) than the other tools (first row, Table 

2). On the other hand, in the case of 2-naphtamidine urokinase inhibitor (PDB ID:1SQA) four 

tools (DEPTH, Fpocket, DoGSiteScorer, and IsoMif) have similar weights (second row, Table 

2). Similarly, for the PTP16-inhibitor complex (PDB ID:2QBR) DEPTH and IsoMif have 

similar weights (last row, Table 2). For cases like 1SQA and 2QBR it is useful to present the 

predictions in the form of a list of tools instead of just one tool to allow users to interfere and 

make a choice based on their need or objectives. Supplementary Information Table 5.4 lists the 

weight for each tool obtained for each protein of the training and test sets. 

 

Table 5.2 Examples of weight for each tool for each protein complex obtained from the 

classifier of the random forest model. 

 

PDB ID DEPTH GHECOM Fpocket DoGSiteScorer IsoMif ProACT2 

2QFT 0.4253 0.1908 0.1888 0.0744 0.0817 0.0389 

1SQA 0.2332 0.1385 0.2138 0.1915 0.1757 0.0472 

2QBR 0.2545 0.1071 0.1713 0.1459 0.2411 0.0801 
 

5.4 Discussion 

As mentioned in the introduction section defining the correct pockets on protein surfaces is not 

an easy task. This is reflected in our results. Despite similar average TScores for five tools, we 

found clear differences in the shape and size of the predictions (Figures 5.2 and 5.4). It was 

previously reported that pockets vary in shapes and can be found buried deep within a protein 

or narrow and shallow on the protein surface [201,202]. In addition, Villar and Kauvar [218] 

noted that specific amino acids such as Arg, His, Trp, and Tyr are often enriched in protein 

binding sites compared to the entire protein. Due to these complexities, a pocket identification 

tool can be very successful for a set of proteins and less successful on other sets. 

   On the dataset studied here and using the four quality metrics defined by us, DEPTH 

yielded the highest aggregated TScore for 64 proteins. However, one should note that DEPTH 
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predicted larger pockets compared to other tools for the majority of the proteins. This is 

illustrated by the number of residues per predicted pocket. DEPTH, on average, predicted 

pockets with 77.0 residues while other tools predicted an average smaller pockets (for top five 

pockets), DoGSiteScorer (26.7), PocketPicker (26.5), IsoMif (23.6), Fpocket (17.4), and 

GHECOM (9.0). We speculate that the larger pocket sizes might have provided an advantage 

to DEPTH in terms of TScores since the score is computed based on these residues.  

Interestingly, when TScores were correlated to maxTScore, we found that GHECOM 

yielded the highest correlation (0.84) followed by DoGSiteScorer (0.78), DEPTH (0.77), and 

IsoMif (0.75). Not surprisingly PocketPicker (0.43) and ProACT2 (0.23) yielded the lowest 

correlations. Even though GHECOM did not yield the highest average TScores, the tool was 

either in the second or third position for each protein-ligand complex in the dataset.  In addition, 

GHECOM also predicted the smallest pockets (Figure 5.3). The high correlation to maxTScore 

and the relatively small pocket size indicate that GHECOM can produce quite precise 

predictions and could be a reasonable choice if one does not know what tool to choose for a 

given protein. Alternatively, the decision for a suitable tool may of course also be based on the 

random forest classifier that was trained here. 

 

5.5 Conclusions 

In this work we compared seven pocket identification tools. We found that these tools predict 

pockets of various size and shapes. For instance, DEPTH, DoGSiteScorer and PocketPicker 

tend to predict larger pockets, whereas GHECOM predicts smaller sized pockets. The tools 

also predict various numbers of pockets per protein. IsoMif identified most pockets an average 

(52.1), followed by DoGSiteScorer (18.4), and Fpocket (11.7). We introduced TScores as a 

measure of the predictive capabilities of the tools. When one applies the optimal tool for each 

protein, the average TScore increases by 28% over randomly labelled proteins. The tool 

GHECOM constructed pockets of rather compact size and its predictions were consistently 

among the top three tools. Finally, we trained a random forest classifier on this dataset. The 

classifier outputs a list of tools with a corresponding set of weights indicating the confidence 

of the decision boundaries. The classifier should be useful to prioritize a set of pocket tools for 

protein structures that are not contained in our dataset.  
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Chapter 6 

 

Conclusions and Future Works 

 
In this thesis, we presented three different projects which mainly related to the core area of 

protein interactions and gene regulations. We are aimed to understanding the role of protein-

protein interactions and protein-ligand interactions, protein interfaces, and pockets. We also 

are extending our study to gain knowledge on transcription factors targeting STIM and ORAI 

genes, the regulation and relation with breast cancer.  

First, we performed statistical analysis on the composition of overlapping protein-

protein and protein-ligand interfaces. We started from the research question to find out whether 

small molecule ligands have similar physio-chemical features as protein binding interfaces 

when they bind at overlapping protein-protein or protein-ligand binding interfaces. We are 

using five different datasets from the ABC, PIBASE and TIMBAL databases. According to the 

statistics, we found that generally, both interface types have a very similar composition. Among 

the three datasets of PL complexes, we found that the protein interfaces of the Timbal dataset 

contain more hydrophobic residues and fewer polar residues than the two other datasets. In 

addition, we found that the ligands in the PIBASE and Timbal datasets bind more flat on the 

protein surfaces or bind deeper into pockets on the protein surface than ABC ligands. To further 

explore the findings, we will apply the framework on larger datasets of protein-protein and 

protein-ligand complexes. 

For the second project, we addressed several angles about STIM and ORAI genes. We 

identified ten predictive interactions between transcription factors bound to promoter regions 

of STIM and ORAI genes based on predictions using the STRING, prePPI, and mentha 

databases. We used a set of genes of interest for co-expression and differential expression 

analysis on breast invasive carcinoma dataset which main focus on the regulation of STIM and 

ORAI genes. We found ORAI1, ORAI2, and ORAI3 genes to be up-regulated and in contrast 

STIM1 and STIM2 were down-regulated. We identified several roles of STIM and ORAI genes 

in normal and breast cancer tissues. The results presented in this study allow us to gain 

knowledge and unveiling the predicted transcription factors bound to the promoter regions of 

STIM and ORAI genes, their regulation, and relation with breast cancer. In future, we aim to 

extend this study by performing gene enrichment analysis and expand this workflow to new 

datasets of diseases which reported related to STIM and ORAI such as Alzheimers disease and 

prostate cancer. 
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In final study presented in this thesis, we evaluate performance of seven protein pocket 

identification tools on a dataset of protein-ligand complexes. We analyzed how well the 

predicted pocket-lining residues overlap with the residues that contact the ligand. We also used 

the residue overlap to define a score as a measure of the predictive capabilities of the tools. We 

found comparable performance amongst the predictions of five tools in terms of average score. 

We then trained a random forest model (classifier) to output a list of suitable tools for a given 

protein structure to assist users in a pocket prediction scenario. This classifier should be helpful 

for prioritizing the tools to be used for unknown proteins or proteins that are not contained in 

our dataset. Future work, we will present a more comprehensive evaluation of our framework 

on larger datasets of protein-ligand complexes. 

In summary, the studies presented in this thesis led to gain knowledge of protein 

interactions and regulation of STIM and ORAI genes. Overall, our future works for these three 

projects will involve and focusing on applying the frameworks either on new or larger datasets 

for better understanding and comprehensive evaluation.   
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Supplementary Information 

 
8.1 Supplementary Information for Chapter 3 

Table 3.1 Datasets of PP and PL complexes.  

 

Dataset of PP complexes from the ABC database (Table A).  
PDB ID Chain Chain          
15C8 L H 1HE8 B A 1R5T A B 2BL0 B A 

1A09 A B 1HFY A B 1R8Q A E 2BTO T A 

1A6U H L 1HJA B I 1RFX B C 2C3N A B 

1AB8 B A 1HQK E D 1RH7 C B 2CHP C D 

1AHW F A 1HWU B A 1RQ7 B A 2COG A B 

1ASL B A 1I3O B E 1S4Y B A 2CUY B A 

1AV1 B A 1I8F C B 1S7Y B A 2D26 A B 

1AVA A C 1ICF A I 1SC1 A B 2D4V B A 

1AY7 A B 1IFV A B 1SGF G B 2DSQ I G 

1AZZ A C 1IIN A B 1SGR E I 2DVG C B 

1B06 A B 1JSU B C 1SND A B 2EV4 B A 

1B99 F C 1JTH D A 1STF E I 2FHZ B A 

1BJQ C A 1JZD B C 1SUV D F 2FR6 C D 

1BMF F B 1KQD A B 1T6G C A 2G2U A B 

1BRR A C 1KQM C A 1TH7 L K 2GD4 I H 

1BVI A C 1KWS B A 1U3R A B 2GMR L M 

1BVN P T 1MCI B A 1U3W B A 2GPV D B 

1BZX E I 1MCV A I 1UGH E I 2GQD B A 

1C2O D A 1MI3 B A 1UVC A B 2GVM B A 

1CKG B A 1MSA B C 1VGQ B A 2H1L E F 

1CYY A B 1N8O C E 1VLZ B A 2HI7 A B 

1D7F B A 1N9S C D 1W0I B A 2I2R H D 

1DFJ E I 1NHG B D 1W29 C D 2IDO A B 

1DLE A B 1NMA N H 1X1U A D 2IJO A I 

1DM5 B D 1NW9 A B 1X1Z A B 2IPJ B A 

1DPJ A B 1NYS A C 1XBY B A 2IWG D E 

1E0F E J 1O6S A B 1XMZ B A 2IYG B A 

1E8U B A 1O81 B A 1XX9 B D 2J3K A B 

1EYS H M 1OBQ B A 1Y48 E I 2J96 B A 

1EZL C D 1OKT B A 1YGP A B 2NX5 A D 

1F45 A B 1OME A B 1YI5 C H 2NY7 G H 

1F46 B A 1OO9 A B 1YRQ A H 2O8A A I 

1F88 B A 1OPF B A 1ZJD A B 2OCC A B 

1FAK H I 1P0S H E 1ZRS B A 2OL1 A C 

1FI8 A C 1P4I L H 1ZUX D B 2P1L A B 

1FX9 B A 1P7L A B 2AAX A B 2PRG A C 

1G0A D B 1PA0 B A 2AGY B D 2PVO D A 

1G21 H G 1PMO D C 2AMT C B 2TNF B A 

1G3N A B 1PPF E I 2AQ3 G A 3PCD A M 

1G6V A K 1PST M H 2AY5 A B 4AKE A B 

1GIF B A 1PYG B A 2AYQ B A 6PFK C D 

1GQ3 C B 1QGE D E 2B42 B A 7TIM B A 

1GXS D C 1QPX A B 2BE6 A D     
1H6A B A 1QRN D E 2BEX C A     
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Dataset of PL complexes from the ABC database (Table B).  
 
PDB ID Chain Ligand          
1A05 B IPM 1IT6 A CYU 1TI1 A D12 2DQV A GAL 

1A0J A BEN 1IZ2 A SUM 1TR5 A THP 2FMH A TRS 

1A8J L PME 1JI5 B MPD 1TXC A 2AN 2FNW A REP 

1ANK A AMP 1JTK A THU 1U0H B ONM 2FYD A PG4 

1AR1 A LDA 1KJ1 D MAN 1U3T B CCB 2G2Z A COZ 

1BG9 A BGC 1KMH B TTX 1UBH S MPD 2G7Y A MO9 

1BIW B S80 1KYN A KTP 1USR A SIA 2GJ6 D 3IB 

1BLC A CEM 1L7Z A MYR 1UTM A PEA 2GOO C NDG 

1BMQ A MNO 1L9B L HTO 1UX0 A THU 2H0T A EPE 

1BQI A SBA 1L9H A HTO 1V3V B 5OP 2H6Y A MPD 

1BWO A LPC 1LBC A CYZ 1V84 A NAG 2HA3 A P6G 

1C50 A CHI 1LIN A TFP 1W5F B G2P 2HG8 A MLE 

1CGY A MAL 1LOJ A MPD 1WB8 A PMS 2HQU C DUP 

1CLS D DEC 1LVW D TYD 1WV0 A BN4 2HXM A 302 

1CPC A CYC 1M2Z A BOG 1WV7 T FUC 2I17 A CIT 

1CY2 A TMP 1MBQ A BEN 1X29 B PMG 2IPF A TRS 

1DBN B NAG 1MFI B FHC 1XEY A GUA 2IW6 A QQ2 

1DHK B NAG 1MPF A C8E 1XJI A D10 2IWZ A 6NA 

1EKX C PAL 1NGP L NPA 1XKD A NAP 2J6E B MPD 

1EST A TSU 1NIP B ADP 1XR8 A PG4 2J7L A XC2 

1EWY C FAD 1O4H A 772 1XXS B STE 2J8C M GGD 

1F42 A MNB 1O5D H CR9 1Y11 A 1PE 2J9C C ATP 

1FLJ A GSH 1O6T A MES 1Y2F A WAI 2JH0 D 701 

1FQ6 A 0QF 1O9T B ATP 1YRX B D9G 2NY0 A HEZ 

1G4I A MPD 1OAU J DNF 1ZL0 A TLA 2OIZ A TSR 

1G5N A SGN 1PFK A ADP 1ZOM A 339 2OL4 B JPN 

1G8I A P6G 1Q4J A GTX 1ZRK A 367 2OM9 A AJA 

1GG6 C APF 1Q6O B LG6 2A01 A AC9 2OPY A CO9 

1GKA A D12 1Q6Y A MPD 2APX A MLA 2P95 A ME5 

1GMR A 2GP 1QIW A DPD 2AY9 B 5PV 2PL7 B HTG 

1GOY A 3GP 1RE2 A NAG 2AZ5 B 307 2UUE B GVC 

1GZR B C15 1RH7 C P6G 2B0U B MPD 2YXJ A N3C 

1H1B A 151 1RHM B NA4 2B45 X EPE 35C8 L NOX 

1H48 C CDI 1RTK A GBS 2BUQ A CAQ 3LJR A GGC 

1HJ1 A PMB 1RYD A GLC 2C01 X ATP 4LIP D CCP 

1HUR A GDP 1RZH H CDL 2C4L A SIA 4VGC B SRD 

1HVV A TAR 1S57 B EPE 2C97 B MPD 6RNT A 2AM 

1HX0 A AC1 1S9Q B CHD 2CL0 X TRS 9RSA B ADU 

1I5G A TS5 1SUP A PMS 2CZ5 B CIT     
1I9B D EPE 1SVL C ADP 2DCY A TAR     
1ICR A NIO 1TB6 I MPD 2DJH A UM3     
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Dataset of PP complexes from the PIBASE database (Table C).  
 
PDB ID Chain Chain             
1YM4 A C 1CA7 A C 1EZR A B 1HAK A B 1M43 A B 

1A22 B A 1CBK A B 1EZV B A 1HG4 A D 1M48 A B 

1A2K C B 1CD1 A B 1EZV A B 1HKV A B 1M56 A B 

1A2V C D 1CD9 B A 1EZV C D 1HP0 A B 1M7N A B 

1A5A A B 1CH4 A B 1EZV D C 1HR6 D C 1M7W A B 

1A5A B A 1CKI A B 1F1J A B 1HR6 A E 1MCZ A B 

1A7K C D 1CMV A B 1F2D A B 1HXM A B 1MF8 B A 

1A8G A B 1CN4 A C 1F3T C D 1HXM B A 1MG2 O N 

1A8T A B 1CWQ A B 1F5P A B 1HYR A C 1MPY A C 

1A99 B A 1CYD A B 1F60 A B 1I0Z A B 1MRU A B 

1AB8 A B 1D0E A B 1F6B A B 1I1R A B 1MZJ A B 

1ACB E I 1D0I A C 1F6R A C 1I3R D C 1MZN A C 

1AE1 A B 1D0O A B 1F8U A B 1I41 F G 1N0H A B 

1AFS A B 1D1Z A B 1FJG E H 1I4U A B 1N0S A B 

1AG1 O T 1D4A A C 1FR1 A B 1I7I A B 1N1A A B 

1AGR A D 1D6S A B 1FRT A B 1I85 D B 1N4O A B 

1AIG P O 1D6U A B 1FSK J L 1I85 A B 1N7G A B 

1AIG L H 1D8U A B 1FTM A C 1II6 A B 1N9E A B 

1AIP A C 1DBQ A B 1FUJ A D 1IJL A B 1NBU B C 

1AJS A B 1DCL A B 1FVU B A 1IY8 B C 1NCC N H 

1AR1 B A 1DF8 A B 1FX0 B A 1IYK A B 1NF3 B D 

1AUW C D 1DIR A B 1G1A A B 1IZ1 A P 1NFD A D 

1AZS A B 1DJU A B 1G2O A C 1J7E A B 1NFQ A B 

1AZS C B 1DN0 B A 1G4A B A 1J90 A B 1NKS A B 

1AZZ C A 1DO5 A C 1G5Q A D 1JDS A C 1NTO C D 

1B3R B D 1DOF B C 1G6O A B 1JEB A D 1NW4 A B 

1B6C D C 1DOH A B 1G6Y A B 1JFF A B 1NX9 B D 

1B7G O Q 1DPJ A B 1G73 C A 1JG8 A B 1O4S A B 

1B7T Z A 1DTY A B 1G85 A B 1JKF A B 1O5D L T 

1B7T Y A 1DUG A B 1G8Y C D 1JSW A D 1O5I A B 

1B8G A B 1DVR A B 1G9M C G 1JT0 A C 1O5O A B 

1B9C A B 1DZB A B 1GEG B C 1JWH A D 1O61 A B 

1BAI A B 1E3I A B 1GH7 A B 1JWI B A 1O63 A B 

1BB3 A B 1E3U A C 1GMY A B 1K2O A B 1O6E B A 

1BCC E D 1E5E A B 1GNX A B 1K3F A D 1O9J A B 

1BCC G C 1E7W A B 1GP7 A B 1KBU A B 1OAT B C 

1BD3 A C 1E8T A B 1GPM A B 1KCZ A B 1OD2 A B 

1BEB A B 1E9S E F 1GPW A B 1KFY B C 1ODL A B 

1BGY R O 1ECE A B 1GR7 A D 1KFY D B 1OE7 A B 

1BI7 A B 1ECS A B 1GRI A B 1KFY C B 1OGA D E 

1BJF A B 1EE0 A B 1GTV A B 1KI9 A B 1OGA E D 

1BKJ A B 1EI1 A B 1GWN A C 1KOB A B 1OJ6 A B 

1BKO A B 1EK6 A B 1GYL A B 1KRU A C 1OME A B 

1BMF C D 1EKX B C 1GZ6 A B 1KSG A B 1OPL A B 

1BML A C 1EM6 A B 1GZM A B 1KXJ A B 1ORR A B 

1BQH G H 1EOC B A 1H48 A B 1L8X A B 1ORT C D 

1BUQ A B 1EP1 A B 1H4G A B 1LBH A B 1ORW B D 

1BVR A B 1EQU A B 1H5B A B 1LLU E F 1OVL A B 

1BYE C D 1EWK A B 1H5Q A B 1LRT A B 1OVM B D 

1C0T A B 1EYS M C 1H8V D E 1LW6 E I 1OYJ C D 
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1OZF A B 1SVX B A 1W6T A B 2BVC D E 

1P0K A B 1SXG A D 1W6U A B 2C7F A D 

1P0S H E 1T2O B A 1W91 F G 2CLT A B 

1P4B L H 1T8S A B 1WC1 B C 2D1Y B C 

1P4E A D 1T91 A D 1WUE A B 2DFT A C 

1P60 A B 1T97 A B 1WYE A B 2DNS A B 

1P7C A B 1TAH A B 1WZ8 A B 2DW6 A B 

1P93 A C 1TC0 A B 1X27 A E 2DY4 D B 

1PKG A B 1TEX A B 1X9F J K 2EGH B A 

1PKQ A B 1TF7 B C 1XCA A B 2EVO A B 

1PV4 C D 1TFC A B 1XDK B A 2EW8 B D 

1PWE C D 1TPZ A B 1XED A B 2F1G A B 

1PWX B C 1TW2 A B 1XG5 A B 2F73 A B 

1PY4 A C 1TXT A B 1XGM A B 2FG6 C D 

1PYT B A 1TZ3 A B 1XI9 A B 2FM6 A B 

1Q0C A C 1U0L A C 1XKQ A B 2FYI A B 

1Q3D A B 1U1I A B 1XNX A B 2G2U A B 

1Q3G A B 1U46 A B 1XSE A B 2GF0 A B 

1Q57 A C 1U5Q A B 1XTT B C 2GIC A B 

1Q5Q C B 1UB7 A B 1XXD B C 2GJ7 E B 

1Q6T A B 1UFH B A 1XYG B C 2I6A A D 

1Q8M A B 1UI5 A B 1Y1M A B 2IFA A B 

1Q90 B D 1UIM A B 1Y1P A B 2IG2 H L 

1QA9 A B 1UIU A B 1YDE B P 2IGO C D 

1QPB A B 1UKM A B 1YO6 A B 2IJ2 B A 

1QZF C D 1UKV Y G 1YP2 C D 2J12 B A 

1R4P E A 1UMO A B 1YQ2 A B 2NUU B C 

1R5K A C 1UPA B D 1YTA A B 2O23 A B 

1R8Q E A 1URZ B C 1YTZ C I 2O2Y C D 

1RD5 A B 1USI A C 1YVB A I 2OKR A D 

1RD7 A B 1UTR A B 1YXM A B 2ONL C A 

1RE5 B C 1UU0 A B 1Z08 B D 2PD3 B C 

1RJN A B 1UVQ A B 1Z1B A B 2PMT C D 

1RKX A D 1UZM A B 1Z5A A B 2TAA A B 

1RPY A B 1V2I A B 1Z7M E A 3TAT C D 

1RQR A C 1V4J A B 1Z7X X W 7MDH D C 

1S2G A B 1VC8 A B 1ZEM E G     
1SB2 A B 1VDM B H 1ZPD B E     
1SF2 A B 1VDW A B 2A2G A C     
1SGF G Z 1VEA A B 2A7K G H     
1SL6 D A 1VF5 B A 2A9K A B     
1SN0 A C 1VHW A D 2A9K B A     
1SP8 A B 1VIQ B C 2AAW A C     
1SPG B A 1VIY A B 2AG5 A B     
1SPI A B 1VKG A B 2ANC C E     
1SQB B I 1VM6 B D 2B4G A B     
1SQI A B 1VPX C B 2BCK A D     
1SQL D E 1W0M B D 2BD0 A B     
1SQP A I 1W2Z A B 2BEX C A     
1SU2 A B 1W59 A B 2BTW A B     
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Dataset of PL complexes from the PIBASE database (Table D). 

PDB ID Chain Ligand          
1A07 A PTR 1EE2 A CHD 1LW5 C PLG 1U2R A DDE 

1A2D A PYX 1EEI D GAA 1M2Z A BOG 1U4S A BIH 

1A50 A FIP 1EFA A NPF 1MVN A PCO 1U7G A BOG 

1A54 A MDC 1EHK A BNG 1N0S A FLU 1U9V A IHE 

1A69 A FMB 1EHK B BNG 1N3I B DIH 1UAY A ADN 

1A8G A 2ZN 1ELU A PDA 1N3Z A ADN 1UTR A PCB 

1A9X B CYG 1EUP A ASD 1NBP A MHC 1UYS A H1L 

1AB8 A FOK 1EYN A 2AN 1NLP C MN8 1VAF A ARR 

1ACM A PAL 1EYS M BGL 1NX9 A AIC 1VEA A HBN 

1AHI A CHO 1EYS H BGL 1OKE A BOG 1VKG B CRI 

1AOE A GW3 1F40 A GPI 1OSV A CHC 1W9D M SEH 

1AQU B EST 1FL6 L AAH 1PKG A PTR 1X8I A BMH 

1AWB B IPD 1FP1 D HCC 1PP9 A BHG 1X8V A ESL 

1B4W A BOG 1FUP A PMA 1PP9 B BHG 1XK9 A P34 

1B59 A OVA 1G9V A RQ3 1PP9 D BHG 1YIK A MM1 

1B9C A CRO 1GG5 A E09 1PP9 F BHG 1YK3 D BOG 

1B9I A PXG 1GSE A EAA 1PPJ G BHG 1YP2 A PMB 

1B9V A RA2 1H2S A BOG 1Q0B A NAT 1Z7Y A AA5 

1BAV A BIP 1H47 A GPP 1Q3A C NGH 2A8T A ADN 

1BCC E BOG 1H4G A FXP 1QW9 A KHP 2AEO A CPT 

1BDA A 2Z0 1H61 A PDN 1QZR A CDX 2AJ8 B SC3 

1BL6 A SB6 1HAK A K21 1R4Z A RIL 2BM2 C PM2 

1BLS A IPP 1HJ1 A PMB 1R8Q A AFB 2BT4 B CA2 

1BM7 A FLF 1HNU A REO 1R8Q E AFB 2BU3 A 3GC 

1BQM A HBY 1HRK A CHD 1REJ A B1L 2BVC F P3S 

1BT5 A IM2 1HZX A BNG 1RKW A PNT 2BXE A 1FL 

1BUQ A NTH 1I53 A RTC 1RQI A DST 2CLE B F6F 

1BX4 A ADN 1I9H A BNI 1RQR B 5FD 2CVD A HQL 

1BZJ A PIC 1IDT A CB1 1RRI A A45 2D97 A IYR 

1C1P A BAI 1IEC A SEB 1S2C A FLF 2EVC A FC3 

1C50 A CHI 1IYL A R64 1S2D A AR4 2F11 A IEM 

1C9C A PP3 1J0B B 5PA 1S36 A CEI 2FAK H SA1 

1C9M A SEB 1J12 A EBG 1SA0 A CN2 2GFD A RDA 

1CGK A NAR 1JNH H ECO 1SEZ A OMN 2GIC A IUM 

1COW B AUR 1JR1 A MOA 1SHJ A NXN 2IPK A 4DP 

1COW F AUR 1JUT A LYD 1SIH A MBQ 2IPK B 4DP 

1CQE A BOG 1JVN A 143 1SJD A NPG 2IYY A S3P 

1CRX B PO4 1JYV A 145 1SQI A 869 2OOW A OX4 

1CZI E PHI 1K3T C BRZ 1SUX A BTS 2OQW A CS3 

1D3H A A26 1KDT A DOC 1SZR A PLG 2ORK B IPD 

1D4F A ADN 1KFY C BRS 1T1R B IMB 2OT1 A N3P 

1DFG A NDT 1KFY D BRS 1T3T A CYG 2VLE A DZN 

1DHT A DHT 1KIC A NOS 1T6H A PHI 3PCI A IHB 

1DX6 A GNT 1KLL A MC 1T83 A HG2 4AC9 A CMH 

1DY3 A 87Y 1KRP A PST 1T9B A 1CS 6PRC L CEB 

1E2N A RCA 1KRV B 147 1T9H A IUM 11GS A EAA 

1E7P B F3S 1KYN A KTP 1TAU A BGL     
1E81 E M91 1L0L C FMX 1TC1 A FMB     
1EBA B DBY 1LBC B CYZ 1TFQ A 998     
1ECZ B BOG 1LKD A BP6 1TXC B 2AN     
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Dataset of PL complexes from the TIMBAL database (Table E). 
PDB ID Chain Ligand       
1A6A A NAG 2LZG A 13Q 3M1I A GTP 

1A7X B FKA 2OU7 A ANP 3MDY A LDN 

1AB8 A FOK 2P1M B IHP 3NC0 A IPH 

1AGR A GDP 2P26 A NAG 3O47 A GDP 

1AZS C GSP 2TNF A TRS 3OSK A NAG 

1CS4 A MES 2VJE D FLC 3QAZ B NAG 

1D8D B FII 2VOH A CIT 3QBR X NHE 

1H2K A OGA 2W5Y A SAH 3QD6 A NAG 

1I8L A NAG 2WBE C ANP 3QTK A TFA 

1IA0 K ACP 2WKP A FMN 3SL9 A IMD 

1ICF I NAG 2XRP B GTP 3TX7 B P6L 

1L2I A ETC 2YDS A NAG 3U88 A GGB 

1O9C A FLC 2YEM A WSH 3UP0 A D7S 

1P93 A DEX 2ZKW A CU1 3V4P C TRS 

1PZN B IMD 3A9E B REA 3VNG A FUU 

1QAB E RTL 3BEJ A MUF 4A9E A 3PF 

1R6N A 434 3CLX D X22 4AY6 A 12V 

1S1J A IQZ 3DZU D PLB 4DBB A ACY 

1TCO B MYR 3DZU A REA 4DEW A LU2 

1TW6 B BTB 3F7Q A 1PE 4DSN A GCP 

1U27 A 4IP 3FCS A IMD 4E2T A EPE 

1V7P B NAG 3GBG A PAM 4G1E A NAG 

1XLS E TCD 3HOF B DHC 4G1M A NAG 

1YJD C NAG 3HQR A OGA 4GMX C K85 

1YSG A 4FC 3HVL A SRL 4GS6 A 1FM 

2BRQ A GSH 3ICI A MES 4GZ9 A NAG 

2ERJ B NAG 3IPQ A 965 4H71 A PXE 

2GXA A ADP 3IT8 D NAG 4JWL A HRC 

2H61 E PG4 3K6S A MAN 4LOO A SB4 

2HBH A XE4 3L0L A HC3     
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Table 3.2 Dataset of PP complexes from the ABC dataset 

List of PP complexes from the ABC dataset comprised of 94 homodimer complexes (Table A). 

 

No 
PDB 
ID 

Resolution 
(Å) 

Name of homodimer Scientific source 
Chain 
one 

Length 
Chain 
two 

Length 

1 1GIF 1.90 Human Glycosylation-Inhibiting Factor Homo sapiens B 115 A 15 

2 1A09 2.00 
Peptide Ligands Of PP60(C-SRC) SH2 
Domains 

Homo sapiens A 107 B 107 

3 1AB8 2.20 Adenylyl Cyclase Homo sapiens B 220 A 220 

4 1ASL 2.60 Aspartate Aminotransferase Escherichia coli B 396 A 396 

5 1AV1 4.00 Apolipoprotein A-I Homo sapiens B 201 A 201 

6 1B06 2.20 Protein (Superoxide Dismutase) Sulfolobus acidocaldarius DSM 639 A 210 B 210 

7 1B99 2.70 Protein (Nucleoside Diphosphate Kinase) Dictyostelium discoideum F 155 C 155 

8 1BJQ 2.65 Lectin 
Vigna unguiculata subsp. cylindrica 
(sow-pea) 

C 253 A 253 

9 1BRR 2.90 Protein (Bacteriorhodopsin) Halobacterium salinarum A 247 C 247 

10 1BVI 1.90 Protein (Ribonuclease T1) Aspergillus oryzae A 104 C 104 

11 1C2O 4.20 Acetylcholinesterase Electrophorus electricus D 539 A 539 

12 1CKG 2.20 Protein (Lysozyme) Homo sapiens B 130 A 130 

13 1CYY 2.15 DNA Topoisomerase I Escherichia coli K-12 A 264 B 264 

14 1D7F 1.90 Cyclodextrin Glucanotransferase Bacillus sp. 1011 B 686 A 686 

15 1DLE 2.10 Complement Factor B Homo sapiens A 298 B 298 

16 1DM5 1.93 Annexin XII E105k Mutant Homohexamer Hydra vulgaris B 315 D 315 

17 1E8U 2.00 Hemagglutinin-Neuraminidase Newcastle disease virus B 454 A 454 

18 1EZL 2.00 Azurin Pseudomonas aeruginosa C 128 D 128 

19 1F46 1.50 Cell Division Protein Zipa Escherichia coli B 140 A 140 

20 1F88 2.80 Rhodopsin Bos taurus B 348 A 348 

21 1FX9 2.00 Phospholipase A2, Major Isoenzyme Sus scrofa B 124 A 124 

22 1G0A 2.04 Hemoglobin Beta Chain Bos taurus D 145 B 145 

23 1G21 3.00 Nitrogenase Iron Protein Azotobacter vinelandii H 289 G 289 

Continued 
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24 1GQ3 2.01 Aspartate Carbamoyltransferase Escherichia coli K-12 C 310 B 310 

25 1H6A 2.50 
Precursor Form Of Glucose-Fructose 
Oxidoreductase 

Zymomonas mobilis B 433 A 433 

26 1HFY 2.30 Alpha-Lactalbumin Capra hircus A 123 B 123 

27 1HQK 1.60 6,7-Dimethyl-8-Ribityllumazine Synthase Aquifex aeolicus E 154 D 154 

28 1HWU 2.10 PII Protein Herbaspirillum seropedicae B 112 A 112 

29 1I8F 1.75 Putative Snrnp SM-Like Protein Pyrobaculum aerophilum C 81 B 81 

30 1IFV 2.25 Protein LLR18B Lupinus luteus A 155 B 155 

31 1IIN 2.10 
Glucose-1-Phosphate 
Thymidylyltransferase 

Salmonella enterica A 292 B 292 

32 1KQD 1.90 
Oxygen-Insensitive NAD(P)H 
Nitroreductase 

Enterobacter cloacae A 217 B 217 

33 1KWS 2.10 Beta-1,3-Glucuronyltransferase 3 Homo sapiens B 261 A 261 

34 1MCI 2.70 
Immunoglobulin Lambda Dimer MCG 
(Light Chain) 

Homo sapiens B 216 A 216 

35 1MI3 1.80 Xylose Reductase Candida tenuis B 319 A 319 

36 1MSA 2.29 Agglutinin Galanthus nivalis B 109 C 109 

37 1N9S 3.50 Small Nuclear Ribonucleoprotein F Saccharomyces cerevisiae C 93 D 93 

38 1NYS 3.05 Activin Receptor Rattus norvegicus A 105 C 105 

39 1O81 1.50 Tryparedoxin II Crithidia fasciculata B 152 A 152 

40 1OBQ 1.85 Crustacyanin C1 Subunit Homarus gammarus B 181 A 181 

41 1OKT 1.90 Glutathione S-Transferase Plasmodium falciparum B 211 A 211 

42 1OME 2.30 Beta-Lactamase Staphylococcus aureus A 258 B 258 

43 1OPF 3.20 Matrix Porin Outer Membrane Protein F Escherichia coli B 340 A 340 

44 1P7L 2.50 S-Adenosylmethionine Synthetase EScherichia coli A 383 B 383 

45 1PA0 2.20 Myotoxic Phospholipase A2-Like Bothrops pauloensis B 121 A 121 

46 1PMO 2.30 Glutamate Decarboxylase Beta Escherichia coli A D 466 C 466 
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47 1PYG 2.87 Glycogen Phosphorylase B Oryctolagus cuniculus B 842 A 842 

48 1QPX 2.40 Papd Chaperone Escherichia coli A 218 B 218 

49 1R5T 2.00 Cytidine Deaminase Saccharomyces cerevisiae A 142 B 142 

50 1RFX 2.00 Resistin Mus musculus B 94 C 94 

51 1RH7 3.11 Resistin-Like Beta Mus musculus C 81 B 81 

52 1RQ7 2.60 Cell Division Protein FTSZ Mycobacterium tuberculosis B 382 A 382 

53 1S7Y 1.75 
Glutamate Receptor, Ionotropic Kainate 2 
Precursor 

Rattus norvegicus B 259 A 259 

54 1SND 1.84 Staphylococcal Nuclease Dimer Staphylococcus aureus A 143 B 143 

55 1TH7 1.68 Small Nuclear Riboprotein Protein Sulfolobus solfataricus L 81 K 81 

56 1U3R 2.21 Estrogen Receptor Beta Homo sapiens A 241 B 241 

57 1U3W 1.45 Alcohol Dehydrogenase Gamma Chain Homo sapiens B 374 A 374 

58 1UVC 2.00 Nonspecific Lipid Transfer Protein Oryza sativa A 91 B 91 

59 1VGQ 2.13 Formyl-Coenzyme A Transferase Oxalobacter formigenes B 427 A 427 

60 1VLZ 2.05 Chey Escherichia coli B 128 A 128 

61 1W0I 2.10 3-Oxoacyl Carrier Protein Synthase Arabidopsis thaliana B 431 A 431 

62 1W29 2.30 6,7-Dimethyl-8-Ribityllumazine Synthase Mycobacterium tuberculosis C 160 D 160 

63 1X1Z 1.45 Orotidine 5'-Phosphate Decarboxylase 
Methanothermobacter 
thermautotrophicus 

A 252 B 252 

64 1XBY 1.58 
3-Keto-L-Gulonate 6-Phosphate 
Decarboxylase 

Escherichia coli B 216 A 216 

65 1XMZ 1.38 GFP-Like Chromoprotein FP595 Anemonia sulcata B 243 A 243 

66 1YGP 2.80 Yeast Glycogen Phosphorylase Saccharomyces cerevisiae A 879 B 879 

67 1ZRS 1.50 Hypothetical Protein Pseudomonas aeruginosa B 317 A 317 

68 1ZUX 1.85 
Green To Red Photoconvertible GPF-Like 
Protein EOSFP 

Lobophyllia hemprichii D 226 B 226 

69 2AAX 1.75 Mineralocorticoid Receptor Homo sapiens A 275 B 275 

70 2AMT 2.30 
2-C-Methyl-D-Erythritol 2,4-
Cyclodiphosphate Synthase 

EScherichia coli C 159 B 159 
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71 2AQ3 2.30 T-Cell Receptor Beta Chain V Mus musculus G 112 A 112 
72 2AY5 2.40 Aromatic Amino Acid Aminotransferase Paracoccus denitrificans A 394 B 394 
73 2AYQ 3.00 3-Isopropylmalate Dehydrogenase Bacillus coagulans B 366 A 366 
74 2C3N 1.50 Glutathione S-Transferase Theta 1 Homo sapiens A 247 B 247 

75 2CHP 2.00 
Metalloregulation DNA-Binding Stress 
Protein 

Bacillus subtilis subsp. subtilis str. 
168 

C 153 D 153 

76 2COG 2.10 
branched chain aminotransferase 1, 
cytosolic 

Homo sapiens A 386 B 386 

77 2CUY 2.10 
Malonyl CoA-[acyl carrier protein] 
transacylase 

Thermus thermophilus HB8 B 305 A 305 

78 2D4V 1.90 Isocitrate Dehydrogenase isocitrate dehydrogenase B 429 A 429 
79 2DVG 2.78 Galactose-Binding Lectin Arachis hypogaea C 236 B 236 
80 2EV4 2.28 Hypothetical Protein Rv1264/MT1302 Mycobacterium tuberculosis B 222 A 222 
81 2FR6 2.07 Cytidine Deaminase Mus musculus C 146 D 146 
82 2GPV 2.85 Estrogen-Related Receptor Gamma Homo sapiens D 230 B 230 
83 2GQD 2.30 3-Oxoacyl-[Acyl-Carrier-Protein] Synthase 2 Staphylococcus aureus B 437 A 437 
84 2GVM 2.30 Hydrophobin-1 Trichoderma reesei B 75 A 75 
85 2H1L 3.16 Large T Antigen Simian virus 40 E 370 F 370 
86 2IPJ 1.80 Aldo-Keto Reductase Family 1 Member C2 Homo sapiens B 321 A 321 

87 2IYG 2.30 
Appa, Antirepressor Of PPSR, Sensor Of 
Blue Light 

Rhodobacter sphaeroides B 124 A 124 

88 2J3K 2.80 NADP-Dependent Oxidoreductase P1 Arabidopsis thaliana A 345 B 345 
89 2J96 2.25 Phycoerythrocyanin Alpha Chain Mastigocladus laminosus B 162 A 162 

90 2OL1 1.80 
Deoxyuridine 5'-Triphosphate 
Nucleotidohydrolase 

Vaccinia virus A 147 C 147 

91 2TNF 1.40 Protein (Tumor Necrosis Factor Alpha) Mus musculus B 156 A 156 
92 4AKE 2.20 Adenylate Kinase Escherichia coli A 214 B 214 
93 6PFK 2.60 Phosphofructokinase Geobacillus stearothermophilus C 319 D 319 
94 7TIM 1.90 Triosephosphate Isomerase Saccharomyces cerevisiae B 247 A 247 
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List of PP complexes from the ABC dataset comprised of heterodimer complexes (Table B). 

 

 
No 

PDB 
ID 

Resolution 
(Å) 

Chain 
one 

Name of chain one Length 
Chain 
two 

Name of chain two Length 

1 15C8 2.50 L IGG 5C8 FAB (Light Chain) 213 H IGG 5C8 FAB (Heavy Chain) 217 
2 1A6U 2.10 H B1-8 Fv (Heavy Chain) 120 L B1-8 FV (Light Chain) 108 
3 1AHW 3.00 F Tissue Factor 219 A Immunoglobulin FAB 5G9 (Light Chain) 214 
4 1AVA 1.90 A Barley Alpha-Amylase 2 403 C Barley Alpha-Amylase/Subtilisin Inhibitor 181 
5 1AY7 1.70 A Guanyl-Specific Ribonuclease SA 96 B Barstar 89 
6 1AZZ 2.30 A Collagenase 226 C Ecotin 142 
7 1BMF 2.85 F Bovine Mitochondrial F1-Atpase 482 B Bovine Mitochondrial F1-Atpase 510 
8 1BVN 2.50 P Alpha-amylase 496 T Tendamistat 71 
9 1BZX 2.10 E Protein (Trypsin) 222 I Protein (Bovine Pancreatic Trypsin Inhibitor) 58 
10 1DFJ 2.50 E Ribonuclease A 124 I Ribonuclease Inhibitor 456 
11 1DPJ 1.80 A Proteinase A 329 B Proteinase Inhibitor IA3 Peptide 33 
12 1E0F 3.10 E Thrombin 259 J Haemadin 57 
13 1EYS 2.20 H Photosynthetic Reaction Center 259 M Photosynthetic Reaction Center 324 
14 1F45 2.80 A Interleukin-12 Beta Chain 306 B Interleukin-12 Alpha Chain 197 

15 1FAK 2.10 H 
Protein (Blood Coagulation Factor 
Viia) 

254 I Protein (5l15) 55 

16 1FI8 2.20 A Natural Killer Cell Protease 1 228 C Ecotin 84 
17 1G3N 2.90 A Cyclin-Dependent Kinase 6 326 B Cyclin-Dependent Kinase 6 Inhibitor 168 
18 1G6V 3.50 A Carbonic Anhydrase 260 K Antibody Heavy Chain 126 

19 1GXS 2.30 D 
P-(S)-Hydroxymandelonitrile Lyase 
Chain B 

158 C P-(S)-Hydroxymandelonitrile Lyase Chain A 270 

20 1HE8 3.00 B Transforming Protein P21/H-Ras-1 166 A 
Phosphatidylinositol 3-Kinase Catalytic 
Subunit, Gamma Isoform 

965 

21 1HJA 2.30 B Alpha-Chymotrypsin 131 I Ovomucoid Inhibitor 51 
22 1I3O 2.70 B Caspase 3 110 E Baculoviral Iap Repeat-Containing Protein 4 121 
23 1ICF 2.00 A Protein (Cathepsin L: Heavy Chain) 175 I Protein (Invariant Chain) 65 
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24 1JSU 2.30 B Cyclin A 260 C P27 84 

25 1JTH 2.00 D Syntaxin 1a 77 A SNAP25 82 

26 1JZD 2.30 B 
Thiol:Disulfide Interchange Protein 
DSBC 

220 C Thiol:Disulfide Interchange Protein dsbd 132 

27 1KQM 3.00 A Myosin Heavy Chain 835 C Myosin Essential Light Chain 156 

28 1MCV 1.80 A Elastase 1 240 I HEI-TOE I 28 

29 1N8O 2.00 C Chymotrypsin A, C Chain 97 E Ecotin 142 

30 1NHG 2.43 B Enoyl-Acyl Carrier Reductase 229 D Enoyl-Acyl Carrier Reductase 60 

31 1NMA 3.00 N N9 Neuraminidase 388 H Fab Nc10 122 

32 1NW9 2.40 B Catalytic Domain Of Caspase-9 238 A A Inhibitor Of Apoptosis Protein 3 91 

33 1O6S 1.80 A Internalin A 461 B E-Cadherin 105 

34 1OO9 X A Stromelysin-1 168 B Metalloproteinase Inhibitor 1 128 

35 1P0S 2.80 H Coagulation Factor X Precursor 254 E Ecotin Precursor 142 

36 1P4I 2.80 L Antibody Variable Light Chain 135 H Antibody Variable Light Chain 124 

37 1PPF 1.80 E Leukocyte Elastase 218 I Ovomucoid Inhibitor 56 

38 1PST 3.00 M Photosynthetic Reaction Center 296 H Photosynthetic Reaction Center 237 

39 1QGE 1.70 D Protein (Triacylglycerol Hydrolase) 222 E Protein (Triacylglycerol Hydrolase) 97 

40 1QRN 2.80 D T-Cell Receptor, Alpha Chain 200 E T-Cell Receptor, Beta Chain 243 

41 1R8Q 1.86 A ADP-Ribosylation Factor 1 181 E Arno 203 

42 1S4Y 2.30 B Inhibin Beta A Chain 116 A Activin Receptor Type IIB Precursor 98 

43 1SC1 2.60 A Interleukin-1 Beta Convertase 178 B Interleukin-1 Beta Convertase 88 

44 1SGF 3.15 G Nerve Growth Factor 237 B Nerve Growth Factor 118 

45 1SGR 1.80 E Streptomyces Griseus Proteinase B 185 I Turkey Ovomucoid Inhibitor 51 

46 1STF 2.40 E Papain 212 I Stefin B 98 
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47 1SUV 1.75 D Serotransferrin, N-Lobe 329 F Serotransferrin, C-Lobe 345 
48 1T6G 1.80 C Endo-1,4-Beta-Xylanase I 184 A Xylanase Inhibitor 381 
49 1UGH 1.90 E Protein (Uracil-Dna Glycosylase) 223 I Protein (Uracil-Dna Glycosylase Inhibitor) 82 
50 1X1U 2.30 A Ribonuclease 110 D Barstar 89 
51 1XX9 2.20 B Coagulation Factor XI 238 D Ecotin 142 
52 1Y48 1.84 E Subtilisin BPN' 281 I Chymotrypsin Inhibitor 2 64 
53 1YI5 4.20 C Acetylcholine-Binding Protein 210 H Long Neurotoxin 1 71 

54 1YRQ 2.10 A 
Periplasmic [NiFe] Hydrogenase 
Small Subunit 

264 H 
Periplasmic [Nife] Hydrogenase Large 
Subunit 

549 

55 1ZJD 2.60 A 
Catalytic Domain of Coagulation 
Factor XI 

237 B 
Kunitz Protease Inhibitory Domain of 
Protease Nexin II 

57 

56 2AGY 1.10 B Aromatic Amine Dehydrogenase 361 D Aromatic Amine Dehydrogenase 135 
57 2B42 2.50 B Endo-1,4-beta-xylanase A 185 A Xylanase Inhibitor-I 381 

58 2BE6 2.50 A Calmodulin 2 150 D 
Voltage-Dependent L-Type Calcium Channel 
Alpha-1C Subunit 

37 

59 2BEX 1.99 C Nonsecretory Ribonuclease 135 A Ribonuclease Inhibitor 460 
60 2BL0 1.75 B Myosin Regulatory Light Chain 145 A Major Plasmodial Myosin Heavy Chain 63 
61 2BTO 2.50 T Thioredoxin 1 108 A Tubulin Btuba 473 
62 2D26 3.20 A Alpha-1-Antitrypsin 358 B Alpha-1-Antitrypsin 36 
63 2DSQ 2.80 I Insulin-Like Growth Factor IB 70 G Insulin-Like Growth Factor-Binding Protein 1 94 
64 2FHZ 1.15 A Colicin-E5 Immunity Protein 109 B Colicin-E5 108 
65 2G2U 1.60 A Beta-lactamase SHV-1 265 B Beta-lactamase inhibitory protein 165 

66 2GD4 3.30 I Antithrombin-III 443 H 

Coagulation Factor, Stuart Factor, Stuart-
Prower Factor, Contains: Factor X Light 
Chain; Factor X Heavy Chain; Activated 
Factor Xa Heavy Chain 

241 

67 2GMR 2.50 L 
Photosynthetic Reaction Center 
Protein L Chain 

281 M 
Photosynthetic Reaction Center Protein M 
Chain 

307 

68 2HI7 3.70 A 
Thiol:Disulfide Interchange Protein 
dsbA 

189 H Disulfide Bond Formation Protein B 176 

69 2I2R 3.35 H Kv Channel-Interacting Protein 1 180 D 
Potassium Voltage-Gated Channel 
Subfamily D Member 3 

144 

70 2IDO 2.10 A DNA Polymerase III Epsilon Subunit 186 C Hot Protein 83 
Continued 
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71 2IJO 2.30 A Polyprotein 58 I Pancreatic Trypsin Inhibitor 58 

72 2IWG 2.35 D IG Gamma-1 Chain C 207 E 52 Kda Ro Protein 181 

73 2NX5 2.70 A HLA-B35 276 D ELS4 TCR Alpha Chain 188 

74 2NY7 2.30 G Envelope Glycoprotein Gp120 317 H Antibody B12, Heavy Chain 230 

75 2O8A 2.61 A 
Serine/Threonine-Protein 
Phosphatase Pp1-Gamma 
Catalytic Subunit 

329 I Protein phosphatase inhibitor 2 206 

76 2OCC 2.30 A Cytochrome C Oxidase 514 B Cytochrome C Oxidase 227 

77 2P1L 2.50 A Apoptosis Regulator Bcl-X 153 B Beclin 1 31 

78 2PRG 2.30 A 
Peroxisome Proliferator Activated 
Receptor Gamma 

271 C Nuclear Receptor Coactivator SRC-1 88 

79 2PVO 3.40 D Ferredoxin-1 96 A 
Ferredoxin-thioredoxin reductase, 
catalytic chain 

110 

80 3PCD 2.10 A Protocatechuate 3,4-Dioxygenase 200 M Protocatechuate 3,4-Dioxygenase 238 
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Table 3.3 Dataset of PP complexes from the PIBASE dataset 

 List of PP complexes from the PIBASE dataset were grouped into 335 homodimer complexes (Table A). 

 

No 
PDB 
ID 

Resolution 
(Å) 

Name of homodimer Scientific source 
Chain 
one 

Length 
Chain 
two 

Length 

1 1YM4 2.25 Beta-Secretase 1 Homo sapiens A 408 C 408 

2 1A2V 2.40 Methylamine Oxidase Ogataea angusta C 655 D 655 

3 1A7K 2.80 Glyceraldehyde-3-Phosphate Dehydrogenase Leishmania mexicana C 360 D 360 

4 1A8G 2.50 HIV-1 Protease 
Human immunodefiency 
virus 

A 99 B 99 

5 1A8T 2.55 Metallo-Beta-Lactamase Bacteroides fragilis A 232 B 232 

6 1A99 2.20 Putrescine-Binding Protein Escherichia coli B 344 A 344 

7 1AB8 2.20 Adenylyl Cyclase Rattus norvegia A 220 B 220 

8 1AE1 2.40 Tropinone Reductase-1 Datura stramonium A 273 B 273 

9 1AFS 2.50 3-Alpha-Hydroxysteroid Dehydrogenase Rattus norvegia A 323 B 323 

10 1AG1 2.36 Triosephosphate Isomerase Trypanosoma brucei O 250 T 250 

11 1AGR 2.80 Guanine Nucleotide-Binding Protein G(I) Rattus norvegia A 353 D 353 

12 1AJS 1.60 Aspartate Aminotransferase Sus scrofa A 412 B 412 

13 1AUW 2.50 Delta 2 Crytallin Anas platyrhynchos C 468 D 468 

14 1B3R 2.80 Protein (S-Adenosylhomocysteine Hydrolase) Rattus norvegia B 431 D 431 

15 1B7G 2.05 
Protein (Glyceraldehyde-3-phosphate 
dehydrogenase) 

Sulfolobus solfatarius O 340 Q 340 

16 1B8G 2.37 
Protein (1-Aminocyclopropane-1 carboxylate 
synthase) 

Malus domestica A 429 B 429 

17 1B9C 2.40 Protein (Green Fluorescent Protein) Auquorea victoria A 238 B 238 

18 1BAI 2.40 Protease Rous sarcoma virus A 124 B 124 

19 1BB3 1.80 Lysozyme Homo sapiens A 130 B 130 

20 1BD3 1.93 Uracil Phosphoribosyltransferase Toxoplasma gondii A 243 C 243 

21 1BEB 1.80 Beta-Lactoglobulin Bos taurus A 162 B 162 

22 1BJF 2.40 Neurocalcin Delta Bos taurus A 193 B 193 

23 1BKJ 1.80 NADPH-Flavin Oxidoreductase Vibrio harveyi A 240 B 240 

Continued 
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24 1BKO 2.75 Thymidylate Synthase A Bacillus subtilis A 278 B 278 

25 1BQH 2.80 Protein (VSV8) Mus musculus G 129 H 129 

26 1BUQ X 
Protein (3-Ketosteroid isomerase-19-
nortestosterone-hemisuccinate) 

Comamonas testosteroni A 125 B 125 

27 1BVR 2.80 
Protein (Enoyl-Acyl Carrier Protein (ACP) 
Reductase) 

Mycobacterium tuberculosis A 268 B 268 

28 1BYE 2.80 Protein (Glutathione S-transferase) Zea mays C 213 D 213 

29 1C0T 2.70 HIV-1 Reverse Transcriptase Human immunodeficiency virus 1 A 560 B 440 

30 1CA7 2.50 Protein (Macrophage Migration Inhibitory Factor) Homo sapiens A 114 C 114 

31 1CBK 2.00 Pyrophosphokinase Haemophilus influenzae A 160 B 160 

32 1CH4 2.50 
Module-Substituted Chimera Hemoglobin Beta-
Alpha 

Homo sapiens A 146 B 146 

33 1CKI 2.30 Casein Kinase I Delta Rattus norvegia A 317 B 317 

34 1CMV 2.27 Human Cytomegalovirus Protease Human herpesvirus 5 A 256 B 256 

35 1CWQ 2.25 
Bacteriorhodopsin ("M" State Intermediate In 
Combination With Ground State) 

Halobacterium salinarum A 248 B 248 

36 1CYD 1.80 Carbonyl Reductase Mus musculus A 244 B 244 

37 1D0E 3.00 Reverse Transcriptase Moloney murine leukemia virus A 259 B 259 

38 1D0I 1.80 Type II 3-Dehydroquinate Hydratase Streptomyces coelicolor A 156 C 156 

39 1D0O 1.95 Bovine Endothelial Nitric Oxide Synthase Heme Bos taurus A 444 B 444 

40 1D1Z 1.40 SAP SH2 Domain Homo sapiens A 104 B 104 

41 1D4A 1.70 Quinone Reductase Homo sapiens A 273 C 273 

42 1D6S 2.30 O-Acetylserine Sulfhydrylase 
Salmonella enterica subsp. enterica 
serovar Typhimurium 

A 322 B 322 

43 1D6U 2.40 Copper Amine Oxidase Escherichia coli A 727 B 727 

44 1D8U 2.35 Non-Symbiotic Hemoglobin Oryza sativa A 166 B 166 

45 1DBQ 2.20 Purine Repressor Escherichia coli A 289 B 289 

46 1DCL 2.30 MCG Homo sapiens A 216 B 216 
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47 1DF8 1.51 Protein (Streptavidin) Streptomyces avidinii A 127 B 127 

48 1DIR 2.60 Dihydropteridine Reductase Rattus norvegia A 241 B 241 

49 1DO5 2.75 
Human Copper Chaperone For Superoxide Dismutase Domain 
II 

Homo sapiens A 154 C 154 

50 1DOF 2.10 Adenylosuccinate Lyase Pyrobaculum aerophilum B 403 C 403 

51 1DOH 2.10 Trihydroxynaphthalene Reductase Magnaporthe grisea A 283 B 283 

52 1DTY 2.14 
Adenosylmethionine-8-Amino-7-Oxononanoate 
Aminotransferase 

Escherichia coli A 429 B 429 

53 1DUG 1.80 
Chimera Of Glutathione S-Transferase-Synthetic Linker-C-
Terminal Fibrinogen Gamma Chain 

Schistosoma japonicum A 234 B 234 

54 1DVR 2.36 Adenylate Kinase Saccharomyces cerevisiae A 220 B 220 

55 1DZB 2.00 SCFV Fragment 1F9 Mus musculus A 253 B 253 

56 1E3I 2.08 Alcohol Dehydrogenase, Class II Mus musculus A 376 B 376 

57 1E3U 1.66 Beta-Lactamase Oxa-10 Pseudomonas aeruginosa A 246 C 246 

58 1E5E 2.18 Methionine Gamma-Lyase Trichomonas vaginalis G3 A 404 B 404 

59 1E7W 1.75 Pteridine Reductase Leishmania major A 291 B 291 

60 1E8T 2.50 Hemagglutinin-Neuraminidase 
Newcastle disease virus 
(strain Kansas) 

A 454 B 454 

61 1E9S 2.50 Conjugal Transfer Protein TRWB Escherichia coli E 437 F 437 

62 1ECE 2.40 Endocellulase E1 Acidothermus cellulolyticus A 358 B 358 

63 1ECS 1.70 Bleomycin Resistance Protein Klebsiella pneumoniae A 126 B 126 

64 1EE0 2.05 2-Pyrone Synthase Gerbera hybrid cultivar A 402 B 402 

65 1EI1 2.30 DNA Gyrase B Escherichia coli A 391 B 391 

66 1EK6 1.50 UDP-Galactose 4-Epimerase Homo sapiens A 348 B 348 

67 1EKX 1.95 Aspartate Transcarbamoylase Escherichia coli B 311 C 311 

68 1EM6 2.20 Liver Glycogen Phosphorylase Homo sapiens A 847 B 847 

69 1EQU 3.00 Protein (Estradiol 17 Beta-Dehydrogenase 1) Homo sapiens A 327 B 327 

70 1EWK 2.20 Metabotropic Glutamate Receptor Subtype 1 Rattus norvegia A 490 B 490 
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71 1EZR 2.50 Nucleoside Hydrolase Leishmania major A 314 B 314 

72 1F1J 2.35 Caspase-7 Protease Homo sapiens A 305 B 305 

73 1F2D 2.00 1-Aminocyclopropane-1-Carboxylate Deaminase Cyberlindnera saturnus A 341 B 341 

74 1F3T 2.00 Ornithine Decarboxylase Trypanosoma brucei C 425 D 425 

75 1F5P 2.90 Hemoglobin V Petromyzon marinus A 149 B 149 

76 1F6B 1.70 SAR1 Cricetulus griseus A 198 B 198 

77 1F6R 2.20 Alpha-Lactalbumin Bos taurus A 123 C 123 

78 1FR1 2.00 Beta-Lactamase Citrobacter freundii A 361 B 361 

79 1FTM 1.70 Glutamate Receptor Subunit 2 Rattus norvegia A 263 C 263 

80 1FUJ 2.20 PR3 Homo sapiens A 221 D 221 

81 1G1A 2.50 
DTDP-D-glucose 4,6-Dehydratase Salmonella 
Enterica 

Salmonella enterica A 352 B 352 

82 1G2O 1.75 Purine Nucleoside Phosphorylase 
Mycobacterium 
tuberculosis 

A 268 C 268 

83 1G4A 3.00 Atp-Dependent Protease Hslv Escherichia coli B 175 A 175 

84 1G5Q 2.57 Epidermin Modifying Enzyme Epid 
Staphylococcus 
epidermidis 

A 181 D 181 

85 1G6O 2.50 CAG-Alpha Helicobacter pylori A 330 B 330 

86 1G6Y 2.80 URE2 Protein 
Saccharomyces 
cerevisiae 

A 261 B 261 

87 1G85 1.80 Odorant-Binding Protein Bos taurus A 159 B 159 

88 1G8Y 2.40 Regulatory Protein REPA Escherichia coli C 279 D 279 

89 1GEG 1.70 Acetoin Reductase Klebsiella pneumoniae B 256 C 256 

90 1GH7 3.00 Cytokine Receptor Common Beta Chain Homo sapiens A 419 B 419 

91 1GMY 1.90 Cathepsin B Homo sapiens A 261 B 261 

92 1GNX 1.68 Beta-Glucosidase Streptomyces sp. A 479 B 479 

93 1GP7 2.60 Phospholipase A2 Ophiophagus hannah A 151 B 151 

94 1GPM 2.20 GMP Synthetase Escherichia coli K12 A 525 B 525 
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95 1GR7 1.80 Azurin Pseudomonas aeruginosa A 128 D 128 

96 1GRI 3.10 Growth Factor Bound Protein 2 Homo sapiens A 217 B 217 

97 1GTV 1.55 Thymidylate Kinase 
Mycobacterium 
tuberculosis 

A 214 B 214 

98 1GWN 2.10 RHO-Related GTP-Binding Protein Rhoe Mus musculus A 205 C 205 

99 1GYL 3.00 Glycolate Oxidase Spinacia oleracea A 369 B 369 

100 1GZ6 2.38 Estradiol 17 Beta-Dehydrogenase 4 Rattus norvegia A 319 B 319 

101 1GZM 2.65 Rhodopsin Bos taurus A 349 B 349 

102 1H48 2.30 
2C-Methyl-D-Erythritol-2,4-Cyclodiphosphate 
Synthase 

Escherichia coli BL21 A 161 B 161 

103 1H4G 1.10 Xylanase (Bacillus) agaradhaerens A 207 B 207 

104 1H5B 1.85 Murine T Cell Receptor (TCR) Valpha Domain Mus musculus A 113 B 113 

105 1H5Q 1.50 NADP-Dependent Mannitol Dehydrogenase Agaricus bisporus A 265 B 265 

106 1H8V 1.90 Endo-Beta-1,4-Glucanase Trichoderma reesei D 218 E 218 

107 1HAK 3.00 Annexin V Homo sapiens A 320 B 320 

108 1HG4 2.40 Ultraspiracle Drosophila melanogaster A 279 D 279 

109 1HKV 2.60 Diaminopimelate Decarboxylase 
Mycobacterium 
tuberculosis H37RV 

A 453 B 453 

110 1HP0 2.10 
Inosine-Adenosine-Guanosine-Preferring Nucleoside 
Hydrolase 

Trypanosoma vivax A 339 B 339 

111 1HR6 2.50 Mitochondrial Processing Peptidase Alpha Subunit Saccharomyces cerevisiae A 475 E 475 

112 1I0Z 2.10 L-Lactate Dehydrogenase H Chain Homo sapiens A 333 B 333 

113 1I41 3.20 Cystathionine Gamma-Synthase Nicotiana tabacum F 445 G 445 

114 1I4U 1.15 Crustacyanin Homarus gammanus A 181 B 181 

115 1I7I 2.35 Peroxisome Proliferator Activated Receptor Gamma Homo sapiens A 292 B 292 

116 1I85 3.20 T Lymphocyte Activation Antigen CD86 Homo sapiens A 110 B 110 

117 1II6 2.10 Kinesin-Related Motor Protein EG5 Homo sapiens A 368 B 368 
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118 1IJL 2.60 Phospholipase A2 Deinagkistrodon acutus A 123 B 123 

119 1IY8 1.60 Levodione Reductase Leifsonia aquatica B 267 C 267 

120 1IYK 2.30 Myristoyl-COA:Protein N-Myristoyltransferase Candida albicans A 392 B 392 

121 1IZ1 2.50 LYSR-Type Regulatory Protein Cupriavidus necator A 294 P 294 

122 1J7E 2.55 Vitamin D Binding Protein Homo sapiens A 458 B 458 

123 1J90 2.56 Deoxyribonucleoside Kinase Drosophila melanogaster A 230 B 230 

124 1JDS 1.80 5'-Methylthioadenosine Phosphorylase Sulfolobus solfatarius A 236 C 236 

125 1JG8 1.80 L-Allo-Threonine Aldolase Thermotoga maritima A 347 B 347 

126 1JKF 2.40 Myo-Inositol-1-Phosphate Synthase Saccharomyces cerevisiae A 533 B 533 

127 1JSW 2.70 L-Aspartate Ammonia-Lyase Escherichia coli A 478 D 478 

128 1JT0 2.90 
Hypothetical Transcriptional Regulator In Qaca 
5'Region 

Staphylococcus aureus A 194 C 194 

129 1K2O 1.65 Cytochrome P450CAM Pseudomonas putida A 414 B 414 

130 1K3F 2.50 Uridine Phosphorylase Escherichia coli A 253 D 253 

131 1KBU 2.20 Cre Recombinase Enterobacteria phage P1 A 349 B 349 

132 1KCZ 1.90 Beta-Methylaspartase Clostridium tetanomorphum A 419 B 419 

133 1KI9 2.76 Adenylate Kinase 
Methanothermococcus 
thermolithotrophicus 

A 192 B 192 

134 1KOB 2.30 Twitchin Aplysia californica A 387 B 387 

135 1KRU 2.80 Galactoside O-Acetyltransferase EScherichia coli A 203 C 203 

136 1KXJ 2.80 Amidotransferase HISH Thermotoga maritima A 205 B 205 

137 1L8X 2.70 Ferrochelatase Saccharomyces cerevisiae A 362 B 362 

138 1LBH 3.20 
Intact Lactose Operon Repressor With Gratuitous 
Inducer IPTG 

EScherichia coli A 360 B 360 

139 1LLU 2.30 Alcohol Dehydrogenase Pseudomonas aeruginosa E 342 F 342 

140 1LRT 2.20 Inosine-5'-Monophosphate Dehydrogenase Tritrichomonas suis A 376 B 376 
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141 1M43 2.40 Plasmepsin II Plasmodium falciparum A 331 B 331 

142 1M48 1.95 Interleukin-2 Homo sapiens A 133 B 133 

143 1M7N 2.70 Insulin-Like Growth Factor I Receptor Homo sapiens A 322 B 322 

144 1M7W 2.80 Hepatocyte Nuclear Factor 4-Alpha Rattus rattus A 250 B 250 

145 1MCZ 2.80 Benzoylformate Decarboxylase Pseudomonas putida A 582 B 582 

146 1MPY 2.80 Catechol 2,3-Dioxygenase Pseudomonas putida A 307 C 307 

147 1MRU 3.00 Probable Serine/Threonine-Protein Kinase Pknb 
Mycobacterium 
tuberculosis 

A 311 B 311 

148 1MZJ 2.10 Beta-Ketoacylsynthase III Streptomyces sp. R1128 A 339 B 339 

149 1MZN 1.90 RXR Retinoid X Receptor Homo sapiens A 240 C 240 

150 1N0H 2.80 Acetolactate Synthase 
Saccharomyces 
cerevisiae 

A 677 B 677 

151 1N0S 2.00 Bilin-Binding Protein Pieris brassicae A 184 B 184 

152 1N1A 2.40 FKBP52 Homo sapiens A 140 B 140 

153 1N4O 1.85 L2 beta-lactamase 
Stenotrophomonas 
maltophilia 

A 276 B 276 

154 1N7G 2.20 GDP-D-Mannose-4,6-Dehydratase Homo sapiens A 381 B 381 

155 1N9E 1.65 Lysyl Oxidase Komagataella pastoris A 787 B 787 

156 1NBU 1.60 Probable Dihydroneopterin Aldolase 
Mycobacterium 
tuberculosis 

B 119 C 119 

157 1NFQ 2.40 Putative Oxidoreductase Rv2002 
Mycobacterium 
tuberculosis 

A 260 B 260 

158 1NKS 2.57 Adenylate Kinase Sulfolobus acidocaldarius A 194 B 194 

159 1NTO 1.94 NAD-Dependent Alcohol Dehydrogenase Sulfolobus solfataricus C 347 D 347 

160 1NW4 2.20 Uridine Phosphorylase, Putative 
Plasmodium falciparum 
3D7 

A 276 B 276 

161 1NX9 2.20 Alpha-Amino Acid Ester Hydrolase Acetobacter pasteurianus B 652 D 652 

162 1O4S 1.90 Aspartate Aminotransferase Thermotoga maritima A 389 B 389 

163 1O5I 2.50 3-Oxoacyl-(Acyl Carrier Protein) Reductase Thermotoga maritima A 249 D 249 
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164 1O5O 2.30 Uracil Phosphoribosyltransferase Thermotoga maritima A 221 B 221 

165 1O61 1.90 Aminotransferase Campylobacter jejuni A 394 B 394 

166 1O63 2.00 ATP Phosphoribosyltransferase THermotoga maritima A 219 B 219 

167 1O6E 2.30 Capsid Protein P40 Human herpesvirus 4 A 235 B 235 

168 1O9J 2.40 Aldehyde Dehydrogenase, Cytosolic 1 Elephantulus edwardii A 501 B 501 

169 1OAT 2.50 Ornithine Aminotransferase Homo sapiens B 439 C 439 

170 1OD2 2.70 Acetyl-Coenzyme A Carboxylase Saccharomyces cerevisiae A 805 B 805 

171 1ODL 2.10 Purine Nucleoside Phosphorylase Thermus thermophilus HB8 A 235 B 235 

172 1OE7 1.80 Glutathione S-Transferase Schistosoma haematobium A 211 B 211 

173 1OJ6 1.95 Neuroglobin Homo sapiens A 151 B 151 

174 1OME 2.30 Beta-Lactamase Staphylococcus aureus A 258 B 258 

175 1OPL 3.42 Proto-Oncogene Tyrosine-Protein Kinase Homo sapiens A 537 B 537 

176 1ORR 1.50 CDP-Tyvelose-2-Epimerase 
Salmonella enterica subsp. 
enterica serovar Typhi 

A 347 B 347 

177 1ORT 3.00 Ornithine Transcarbamoylase Pseudomonas aeruginosa C 335 D 335 

178 1ORW 2.84 Dipeptidyl Peptidase IV Sus scrofa B 728 D 728 

179 1OVL 2.20 
Orphan Nuclear Receptor NURR1 (MSE 414, 
496, 511) 

Homo sapiens A 271 B 271 

180 1OVM 2.65 Indole-3-Pyruvate Decarboxylase Enterobacter cloacae B 552 D 552 

181 1OYJ 1.95 Glutathione S-Transferase Oryza sativa C 231 D 231 

182 1OZF 2.30 Acetolactate Synthase, Catabolic Klebsiella pneumoniae A 566 B 566 

183 1P0K 1.90 Isopentenyl-Diphosphate Delta-Isomerase Bacillus subtilis A 349 B 349 

184 1P4E 2.70 Recombinase FLP Protein Saccharomyces cerevisiae A 429 D 429 

185 1P60 1.96 Deoxycytidine Kinase Homo sapiens A 263 B 263 

186 1P7C 2.10 Thymidine Kinase 
Herpes simplex virus (type 1 / 
strain 17) 

A 343 B 343 
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187 1P93 2.70 Glucocorticoid Receptor Homo sapiens A 280 C 280 

188 1PKG 2.90 C-Kit Protein Homo sapiens A 329 B 329 

189 1PV4 3.00 Transcription Termination Factor Rho EScherichia coli C 419 D 419 

190 1PWE 2.80 L-Serine Dehydratase Rattus norvegia C 327 D 327 

191 1PWX 1.80 Halohydrin Dehalogenase Agrobacterium tumefaciens B 254 C 254 

192 1PY4 2.90 Beta-2-Microglobulin Precursor Homo sapiens A 100 C 100 

193 1Q0C 2.10 Homoprotocatechuate 2,3-Dioxygenase Brevibacterium fuscum A 365 C 365 

194 1Q3D 2.20 Glycogen Synthase Kinase-3 Beta Homo sapiens A 424 B 424 

195 1Q3G 2.65 
UDP-N-Acetylglucosamine 1-
Carboxyvinyltransferase 

Enterobacter cloacae A 419 B 419 

196 1Q57 3.45 DNA Primase/Helicase Enterobacteria phage T7 A 503 C 503 

197 1Q5Q 2.60 Proteasome Alpha-Type Subunit 1 Rhodococcus erythropolis C 259 B 259 

198 1Q6T 2.30 
Protein-Tyrosine Phosphatase, Non-Receptor 
Type 1 

Homo sapiens A 310 B 310 

199 1Q8M 2.60 
Triggering Receptor Expressed On Myeloid Cells 
1 

Homo sapiens A 127 B 127 

200 1QPB 2.40 Pyruvate Decarboxylase (Form B) 
Saccharomyces pastorianus 
Weihenstephan 34/70 

A 563 B 563 

201 1QZF 2.80 
Bifunctional Dihydrofolate Reductase-Thymidylate 
Synthase 

Cryptosporidium hominis C 521 D 521 

202 1R5K 2.70 Estrogen Receptor Homo sapiens A 261 C 261 

203 1RD5 2.02 Tryptophan Synthase Alpha Chain, Chloroplast Zea mays A 262 B 262 

204 1RD7 2.60 Dihydrofolate Reductase EScherichia coli A 159 B 159 

205 1RE5 2.60 3-Carboxy-Cis,Cis-Muconate Cycloisomerase Pseudomonas putida KT2440 B 450 C 450 

206 1RJN 2.30 menB Mycobacterium tuberculosis A 339 B 339 

207 1RKX 1.80 CDP-Glucose-4,6-Dehydratase Yersinia pseudotuberculosis A 357 D 357 

208 1RPY 2.30 Adaptor Protein APS Rattus norvegia A 114 B 114 

209 1RQR 2.67 5'-Fluoro-5'-Deoxyadenosine Synthase Streptomyces cattleya A 299 C 299 
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210 1S2G 2.10 Purine Trans Deoxyribosylase Lactobacillus helveticus A 167 B 167 

211 1SF2 2.40 4-Aminobutyrate Aminotransferase EScherichia coli A 426 B 426 

212 1SGF 3.15 Nerve Growth Factor Mus musculus G 237 Z 237 

213 1SL6 2.25 C-Type Lectin DC-Signr Homo sapiens D 184 A 184 

214 1SN0 1.90 Transthyretin Sparus aurata A 130 C 130 

215 1SP8 2.00 4-Hydroxyphenylpyruvate Dioxygenase Zea mays A 418 B 418 

216 1SPI 2.80 Fructose 1,6-Bisphosphatase Spinacia oleracea A 358 B 358 

217 1SQI 2.15 4-Hydroxyphenylpyruvic Acid Dioxygenase Rattus norvegia A 393 B 393 

218 1SQL 2.20 Dihydroneopterin Aldolase Arabidopsis thaliana D 146 E 146 

219 1SU2 2.70 Mutt/Nudix Family Protein Deinococcus radiodurans A 159 B 159 

220 1SXG 2.75 Glucose-Resistance Amylase Regulator Bacillus megaterium A 280 D 280 

221 1T2O 2.30 Sortase Staphylococcus aureus B 146 A 146 

222 1T8S 2.60 Amp Nucleosidase EScherichia coli A 484 B 484 

223 1T91 1.90 Ras-Related Protein Rab-7 Homo sapiens A 207 D 207 

224 1T97 2.70 Lysozyme Enterobacteria phage T4 A 175 B 175 

225 1TAH 3.00 Lipase Burkholderia glumae A 318 B 318 

226 1TC0 2.20 Endoplasmin Canis lupus familiaris A 236 B 236 

227 1TEX 2.60 Stf0 Sulfotransferase Mycobacterium smegmatis A 287 B 287 

228 1TF7 2.80 KaiC Synechococcus sp. B 525 C 525 

229 1TFC 2.40 Estrogen-Related Receptor Gamma Homo sapiens A 251 B 251 

230 1TPZ 2.00 Interferon-Inducible GTPase Mus musculus A 422 B 422 

231 1TW2 2.50 Carminomycin 4-O-Methyltransferase Streptomyces peucetius A 360 B 360 

232 1TXT 2.50 3-Hydroxy-3-Methylglutaryl-CoA Synthase Staphylococcus aureus A 388 B 388 
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233 1TZ3 2.90 Putative Sugar Kinase 
Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 

A 339 B 339 

234 1U0L 2.80 Probable GTPase engC Thermotoga maritima A 301 C 301 

235 1U1I 1.90 Myo-Inositol-1-Phosphate Synthase Archaeoglobus fulgidus DSM 4304 A 392 B 392 

236 1U46 2.00 Activated CDC42 Kinase 1 Homo sapiens A 291 B 291 

237 1U5Q 2.10 Serine/Threonine Protein Kinase TAO2 Rattus norvegia A 348 B 348 

238 1UB7 2.30 3-Oxoacyl-[Acyl-Carrier Protein] Synthase Thermus thermophilus HB8 A 322 B 322 

239 1UFH 2.20 YYCN Protein 
Bacillus subtilis subsp. subtilis str. 
168 

B 180 A 180 

240 1UI5 2.40 A-Factor Receptor Homolog Streptomyces coelicolor A3(2) A 215 B 215 

241 1UIM 2.15 Threonine Synthase Thermus thermophilus A 351 B 351 

242 1UIU 1.85 Nickel-Binding Periplasmic Protein EScherichia coli A 502 B 502 

243 1UMO 2.59 Cytoglobin Homo sapiens A 190 B 190 

244 1UPA 2.35 Carboxyethylarginine Synthase Streptomyces clavuligerus B 573 D 573 

245 1URZ 2.70 Envelope Protein 
Tick-borne encephalitis virus 
(WESTERN SUBTYPE) 

B 401 C 401 

246 1USI 1.80 Leucine-Specific Binding Protein Escherichia coli A 346 C 346 

247 1UTR X Uteroglobin Rattus norvegia A 96 B 96 

248 1UU0 2.85 Histidinol-Phosphate Aminotransferase Thermotoga maritima A 335 B 335 

249 1UZM 1.49 3-Oxoacyl-[Acyl-Carrier Protein] Reductase Mycobacterium tuberculosis H37Rv A 247 B 247 

250 1V2I 2.20 Hemagglutinin-Neuraminidase Glycoprotein Human parainfluenza virus 3 A 431 B 431 

251 1V4J 2.85 Octoprenyl-Diphosphate Synthase Thermotoga maritima A 299 B 299 

252 1VC8 2.00 NDX1 Thermus thermophilus HB8 A 126 B 126 

253 1VDM 2.50 Purine Phosphoribosyltransferase Pyrococcus horikoshii B 153 H 153 

254 1VDW 1.30 Hypothetical Protein PH1897 Pyrococcus horikoshii A 254 B 254 

255 1VEA 2.80 Hut Operon Positive Regulatory Protein Bacillus subtilis A 148 B 148 
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256 1VHW 1.54 Purine Nucleoside Phosphorylase Vibrio cholerae A 253 D 253 

257 1VIQ 2.40 ADP-Ribose Pyrophosphatase Escherichia coli B 220 C 220 

258 1VIY 1.89 Dephospho-CoA Kinase Escherichia coli A 218 B 218 

259 1VKG 2.20 Histone Deacetylase 8 Homo sapiens A 377 B 377 

260 1VM6 2.27 Dihydrodipicolinate Reductase THermotoga maritima B 228 D 228 

261 1VPX 2.40 Protein (Transaldolase (EC 2.2.1.2)) THermotoga maritima B 230 C 230 

262 1W0M 2.50 Triosephosphate Isomerase Thermoproteus tenax B 226 D 226 

263 1W2Z 2.24 Amine Oxidase, Copper Containing Pisum sativum A 649 B 649 

264 1W59 2.70 Cell Division Protein FTSZ Homolog 1 
Methanocaldococcus 
jannaschii 

A 364 B 364 

265 1W6T 2.10 Enolase 
Streptococcus 
pneumoniae TIGR4 

A 444 B 444 

266 1W6U 1.75 2,4-Dienoyl-Coa Reductase, Mitochondrial Precursor Homo sapiens A 302 B 302 

267 1W91 2.20 Beta-Xylosidase 
Geobacillus 
stearothermophilus 

F 503 G 503 

268 1WC1 1.93 Adenylate Cyclase Arthrospira platensis B 226 C 226 

269 1WUE 2.10 
Mandelate Racemase/Muconate Lactonizing Enzyme 
Family Protein 

Enterococcus faecalis 
V583 

A 386 B 386 

270 1WYE 2.80 2-Keto-3-Deoxygluconate Kinase Sulfolobus tokodaii str. 7 A 311 B 311 

271 1WZ8 1.80 Enoyl-CoA Hydratase 
Thermus thermophilus 
HB8 

A 264 B 264 

272 1X27 2.70 Proto-Oncogene Tyrosine-Protein Kinase LCK Homo sapiens A 167 E 167 

273 1XCA 2.30 Cellular Retinoic Acid Binding Protein Type II Homo sapiens A 137 B 137 

274 1XED 1.90 Polymeric-Immunoglobulin Receptor Homo sapiens A 117 B 117 

275 1XG5 1.53 ARPG836 Homo sapiens A 279 B 279 

276 1XGM 2.80 Methionine Aminopeptidase Pyrococcus furiosus A 295 B 295 

277 1XI9 2.33 Putative Transaminase 
Pyrococcus furiosus DSM 
3638 

A 406 B 406 

278 1XKQ 2.10 Short-Chain Reductase Family Member (5D234) Caenorhabditis elegans A 280 B 280 
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279 1XNX 2.90 Constitutive Androstane Receptor Mus musculus A 256 B 256 

280 1XSE 2.90 11beta-Hydroxysteroid Dehydrogenase Type 1 Cavia porcellus A 295 B 295 

281 1XTT 1.80 Probable Uracil Phosphoribosyltransferase Sulfolobus solfataricus B 216 C 216 

282 1XYG 2.19 
Putative N-Acetyl-Gamma-Glutamyl-Phosphate 
Reductase 

Arabidopsis thaliana B 359 C 359 

283 1Y1M 1.80 Glutamate [NMDA] Receptor Subunit Zeta 1 Rattus norvegia A 292 B 292 

284 1Y1P 1.60 Aldehyde Reductase II 
Sporidiobolus 
salmonicolor 

A 342 B 342 

285 1YDE 2.40 Retinal Dehydrogenase/Reductase 3 Homo sapiens B 270 P 270 

286 1YO6 2.60 Putative Carbonyl Reductase Sniffer Caenorhabditis elegans A 250 B 250 

287 1YP2 2.11 
Glucose-1-Phosphate Adenylyltransferase Small 
Subunit 

Solanum tuberosum C 451 D 451 

288 1YQ2 1.90 Beta-Galactosidase Arthrobacter sp. C2-2 A 1024 B 1024 

289 1YTA 2.20 Oligoribonuclease Escherichia coli A 180 B 180 

290 1YXM 1.90 Peroxisomal Trans 2-Enoyl Coa Reductase Homo sapiens A 303 B 303 

291 1Z08 1.80 Ras-Related Protein Rab-21 Homo sapiens B 170 D 170 

292 1Z1B 3.80 Integrase 
Enterobacteria phage 
lambda 

A 356 B 356 

293 1Z5A 2.20 Type II DNA Topoisomerase VI Subunit B Sulfolobus shibatae A 469 B 469 

294 1ZEM 1.90 Xylitol Dehydrogenase Gluconobacter oxydans E 262 G 262 

295 1ZPD 1.86 Pyruvate Decarboxylase Zymomonas mobilis B 568 E 568 

296 2A2G 2.90 Protein (Alpha-2u-Globulin) Rattus norvegia A 181 C 181 

297 2A7K 2.24 CarB 
Pectobacterium 
carotovorum 

G 250 H 250 

298 2AAW 2.40 Glutathione S-Transferase Plasmodium falciparum A 222 C 222 

299 2AG5 1.84 Dehydrogenase/Reductase (SDR Family) Member 6 Homo sapiens A 246 B 246 

300 2ANC 3.20 Guanylate Kinase Escherichia coli C 207 E 207 

301 2B4G 1.95 Dihydroorotate Dehydrogenase Trypanosoma brucei A 317 B 317 
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302 2BCK 2.80 
HLA Class I Histocompatibility Antigen, A-24 Alpha 
Chain 

Homo sapiens A 294 D 294 

303 2BD0 1.70 Sepiapterin Reductase Chlorobium tepidum TLS A 244 B 244 

304 2BTW 2.00 ALR0975 Protein Nostoc sp. PCC 7120 A 254 B 254 

305 2BVC 2.10 Glutamine Synthetase 1 
Mycobacterium tuberculosis 
H37Rv 

D 486 E 486 

306 2C7F 2.70 Alpha-L-Arabinofuranosidase 
Ruminiclostridium 
thermocellum 

A 513 D 513 

307 2CLT 2.67 Interstitial Collagenase Homo sapiens A 367 B 367 

308 2D1Y 1.65 Hypothetical Protein TT0321 Thermus thermophilus B 256 C 256 

309 2DFT 2.80 Shikimate Kinase Mycobacterium tuberculosis A 176 C 176 

310 2DNS 2.40 D-Amino Acid Amidase Ochrobactrum anthropi A 363 B 363 

311 2DW6 2.30 Bll6730 Protein Bradyrhizobium japonicum A 389 B 389 

312 2DY4 2.65 DNA Polymerase Enterobacteria phage RB69 D 903 B 903 

313 2EGH 2.20 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase 
Escherichia coli str. K-12 
substr. W3110 

B 424 A 424 

314 2EVO 1.70 Methionine Aminopeptidase Escherichia coli A 264 B 264 

315 2EW8 2.10 (S)-1-Phenylethanol Dehydrogenase 
Aromatoleum aromaticum 
EbN1 

B 249 D 249 

316 2F1G 1.90 Cathepsin S Homo sapiens A 220 B 220 

317 2F73 2.50 Fatty Acid-Binding Protein, Liver Homo sapiens A 149 B 149 

318 2FG6 2.80 Putative Ornithine Carbamoyltransferase 
Bacteroides fragilis NCTC 
9343 

C 338 D 338 

319 2FM6 1.75 Metallo-Beta-Lactamase L1 Stenotrophomonas maltophilia A 269 B 269 

320 2FYI 2.80 Hth-Type Transcriptional Regulator CBL Escherichia coli K-12 A 228 B 228 

321 2GF0 1.90 GTP-Binding Protein DI-RAS1 Homo sapiens A 199 B 199 

322 2GIC 2.92 Nucleocapsid Protein 
Vesicular stomatitis Indiana 
virus 

A 422 B 422 

323 2I6A 2.20 Adenosine Kinase Homo sapiens A 345 D 345 

324 2IFA 2.30 Hypothetical Protein SMU.260 Streptococcus mutans UA159 A 208 B 208 
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325 2IGO 1.95 Pyranose Oxidase Trametes ochracea C 623 D 623 

326 2IJ2 1.20 Cytochrome P450 BM3 Bacillus megaterium B 470 A 470 

327 2NUU 2.50 Ammonia Channel Escherichia coli B 415 C 415 

328 2O23 1.20 HADH2 Protein Homo sapiens A 265 B 265 

329 2O2Y 2.20 Enoyl-Acyl Carrier Reductase 
Plasmodium falciparum 
3D7 

C 349 D 349 

330 2OKR 2.00 Mitogen-Activated Protein Kinase 14 Homo sapiens A 366 D 366 

331 2PD3 2.50 Enoyl-[Acyl-Carrier-Protein] Reductase [NADH] Helicobacter pylori B 275 C 275 

332 2PMT 2.70 Glutathione Transferase Proteus mirabilis C 203 D 203 

333 2TAA 3.00 TAKA-Amylase A Aspergillus oryzae A 478 B 478 

334 3TAT 3.50 Tyrosine Aminotransferase Escherichia coli C 397 D 397 

335 7MDH 2.40 Protein (Malate Dehydrogenase) Sorghum bicolor D 375 C 375 
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List of PP complexes from the PIBASE dataset were grouped into 101 heterodimer complexes (Table B). 

No PDB ID 
Resolution 
(Å) 

Chain 
one Name of chain one Length 

Chain 
two Name of chain two Length 

1 1A22 2.60 B Growth Hormone Receptor 238 A Growth Hormone 191 

2 1A2K 2.50 C RAN 216 B Nuclear Transport Factor 2 127 

3 1A5A 1.90 A Tryptophan Synthase Alpha chain 268 B Tryptophan Synthase Beta Chain 397 

4 1A5A 1.90 B Tryptophan Synthase Beta chain 397 A Tryptophan Synthase Alpha Chain 268 

5 1ACB 2.00 E Alpha-Chymotrypsin 241 I Eglin C 63 

6 1AIG 2.60 P 
Photosynthetic Reaction Center (H 
Subunit) 

260 O 
Photosynthetic Reaction Center (M 
Subunit) 

307 

7 1AIG 2.60 L 
Photosynthetic Reaction Center (L 
Subunit) 

281 H 
Photosynthetic Reaction Center (H 
Subunit) 

260 

8 1AIP 3.00 A Elongation Factor TU 405 C Elongation Factor TS 196 

9 1AR1 2.70 B Cytochrome Oxidase 298 A Cytochrome Oxidase 558 

10 1AZS 2.30 A VC1 220 B IIC2 212 

11 1AZS 2.30 C GS-ALPHA 402 B IIC2 212 

12 1AZZ 2.30 C Ecotin 142 A Collogenase 226 

13 1B6C 2.60 D TGF-B Superfamily Receptor Type 1 342 C FK506-Binding Protein 107 

14 1B7T 2.50 Y Myosin Regulatory Light Chain 156 A Myosin Heavy Chain 835 

15 1B7T 2.50 Z Myosin Essential Light Chain 156 A Myosin Heavy Chain 835 

16 1BCC 3.16 E 
Ubiquinol Cytochrome C 
Oxidoreductase 

196 D 
Ubiquinol Cytochrome C 
Oxidoreductase 

241 

17 1BCC 3.16 G 
Ubiquinol Cytochrome C 
Oxidoreductase 

81 C 
Ubiquinol Cytochrome C 
Oxidoreductase 

380 

18 1BGY 3.00 R Cytochrome BC1 Complex 110 O Cytochrome BC1 Complex 379 

19 1BI7 3.40 A Cyclin-Dependent Kinase 6 326 B Multiple Tumor Supressor 156 

20 1BMF 2.85 C Bovine Mitochondrial F1-Atpase 510 D Bovine Mitochondrial F1-Atpase 482 

21 1BML 2.90 A Plasmin 250 C Streptokinase 362 

22 1CD1 2.67 A CD1 315 B CD1 99 

23 1CD9 2.80 B Protein (G-CSF Receptor) 215 A 
Protein (Granulocyte Colony-
Stimulating Factor) 

175 
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24 1CN4 2.80 A Protein (Erythroprotein Receptor) 228 C Protein (Erythroprotein) 166 

25 1DN0 2.28 B 
IGM-Kappa Cold Agglutinin (Heavy 
Chain) 

232 A 
IGM-Kappa Cold Agglutinin (Light 
Chain) 

215 

26 1DN0 2.10 B 
IGM-Kappa Cold Agglutinin (Heavy 
Chain) 

232 A 
IGM-Kappa Cold Agglutinin (Light 
Chain) 

215 

27 1DPJ 1.80 A Proteinase A 329 B Proteinase Inhibitor IA3 Peptide 33 

28 1EOC 2.25 B 
Protocatechuate 3,4-Dioxygenase 
Beta Chain 

241 A 
Protocatechuate 3,4-Dioxygenase 
Alpha Chain 

209 

29 1EP1 2.20 A 
Dihydroorotate Dehydrogenase B 
(Pyrd Subunit) 

311 B 
Dihydroorotate Dehydrogenase B (Pyrk 
Subunit) 

261 

30 1EYS 2.20 M Photosynthetic Reaction Center 324 C Photosynthetic Reaction Center 382 

31 1EZV 2.30 A 
Ubiquinol-Cytochrome C Reductase 
Complex Core Protein I 

430 B 
Ubiquinol-Cytochrome C Reductase 
Complex Core Protein 2 

352 

32 1EZV 2.30 B 
Ubiquinol-Cytochrome C Reductase 
Complex Core Protein 2 

352 A 
Ubiquinol-Cytochrome C Reductase 
Complex Core Protein I 

430 

33 1EZV 2.30 C Cytochrome B 385 D Cytochrome C1 245 
34 1EZV 2.30 D Cytochrome C1 245 C Cytochrome B 385 
35 1F60 1.67 A Elongation Factor EEF1A 458 B Elongation Factor EEF1BA 94 
36 1F8U 2.90 A Acetylcholinesterase 583 B Fasciculin II 61 
37 1FJG 3.00 E 30s Ribosomal Protein S5 162 H 30s Ribosomal Protein S8 138 
38 1FRT 4.50 A Neonatal FC Receptor 269 B Beta 2-Microglobulin 99 
39 1FSK 2.90 J Major Pollen Allergen Bet V 1-A 159 L Immunoglobulin Kappa Light Chain 214 
40 1FVU 1.80 B Botrocetin Beta Chain 125 A Botrocetin Alpha Chain 133 
41 1FX0 3.20 B ATP Synthase Beta Chain 498 A Atp Synthase Alpha Chain 507 

42 1G73 2.00 C Inhibitors Of Apoptosis-Like Protein Ilp 121 A 
Second Mitochondria-Derived Activator 
Of Caspases 

162 

43 1G9M 2.20 C T-Cell Surface Glycoprotein Cd4 185 G Envelope Glycoprotein GP120 321 
44 1GPW 2.40 A Hisf Protein 253 B Amidotransferase HISH 201 

45 1HR6 2.50 D 
Mitochondrial Processing Peptidase 
Beta Subunit 

443 C 
Mitochondrial Processing Peptidase 
Alpha Subunit 

475 
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46 1HXM 3.12 A Gamma-Delta T-Cell Receptor 229 B Gamma-Delta T-Cell Receptor 242 
47 1HXM 3.12 B Gamma-Delta T-Cell Receptor 242 A Gamma-Delta T-Cell Receptor 229 

48 1HYR 2.70 A 
NKG2-D Type Ii Integral Membrane 
Protein 

137 C MHC Class I Chain-Related Protein A 275 

49 1I1R 2.40 A Interleukin-6 Receptor Beta Chain 301 B Viral IL-6 167 

50 1I3R 2.40 D 
Fusion Protein Consisting Of Mhc E-
Beta-K Precursor, Glycine Rich 
Linker, And Hemoglobin Beta-2 Chain 

228 C 
H-2 Class II Histocompatibility Antigen, 
E-K Alpha Chain 

192 

51 1I85 3.20 D 
Cytotoxic T-Lymphocyte-Associated 
Protein 4 

110 B T Lymphocyte Activation Antigen CD86 126 

52 1JEB 2.10 A Hemoglobin Zeta Chain 142 D Hemoglobin Beta-Single Chain 146 
53 1JFF X A Tubulin Alpha Chain 451 B Tubulin Beta Chain 445 
54 1JWH 3.10 A Casein Kinase II, Alpha Chain 337 D Casein Kinase II Beta Chain 215 
55 1JWI 2.00 B Platelet Aggregation Inducer 125 A Bitiscetin 131 

56 1KFY 3.60 B 
Fumarate Reductase Iron-Sulfur 
Protein 

243 C 
Fumarate Reductase 15 Kda 
Hydrophobic Protein 

130 

57 1KFY 3.60 C 
Fumarate Reductase 15 Kda 
Hydrophobic Protein 

130 B 
Fumarate Reductase Iron-Sulfur 
Protein 

243 

58 1KFY 3.60 D 
Fumarate Reductase 13 Kda 
Hydrophobic Protein 

119 B 
Fumarate Reductase Iron-Sulfur 
Protein 

243 

59 1KSG 2.30 A Arf-Like Protein 2 186 B 
Retinal Rod Rhodopsin-Sensitive 
Cgmp 3',5'-Cyclic Phosphodiesterase 
Delta-Subunit 

152 

60 1LW6 1.50 E Subtilisin BPN 281 I Ubtilisin-Chymotrypsin Inhibitor-2A 63 
61 1M56 2.30 A Cytochrome C Oxidase 566 B Cytochrome C Oxidase 264 

62 1MF8 3.10 B Calcineurin B Subunit Isoform 1 170 A 
Calmodulin-Dependent Calcineurin A 
Subunit, Alpha Isoform 

373 

63 1MG2 2.25 O Amicyanin 105 N 
Methylamine Dehydrogenase, Light 
Chain 

131 

64 1NCC 2.50 N 
Influenza A Subtype N9 
Neuraminidase 

389 H 
IGG2A-Kappa NC41 FAB (Heavy 
Chain) 

221 

65 1NF3 2.10 B 
G25K GTP-Binding Protein, Placental 
Isoform 

195 D PAR-6B 128 

Continued 

 



131 

 

66 1NFD 2.80 A N15 Alpha-Beta T-Cell Receptor 203 D N15 Alpha-Beta T-Cell Receptor 239 

67 1O5D 2.05 L Coagulation Factor VII 152 T Tissue factor 218 

68 1OGA 1.40 D 
T-Cell Receptor Alpha Chain V 
Region 

215 E T-Cell Receptor Beta Chain C Region 252 

69 1OGA 1.40 E T-Cell Receptor Beta Chain C Region 252 D T-Cell Receptor Alpha Chain V Region 215 

70 1P0S 2.80 E Ecotin Precursor 142 H Coagulation Factor X Precursor 254 

71 1P4B 2.35 L Antibody Variable Light Chain 135 H Antibody Variable Heavy Chain 124 

72 1PKQ 3.00 A (8-18C5) Chimeric Fab, Light Chain 241 B (8-18C5) Chimeric Fab, Heavy Chain 252 

73 1PYT 2.35 B Procarboxypeptidase A 309 A Procarboxypeptidase A 94 

74 1Q90 3.10 B Cytochrome B6 215 D Cytochrome B6-F Complex Subunit 4 159 

75 1QA9 3.20 A Human Cd2 Protein 102 D Human CD58 Protein 95 

76 1R4P 1.77 E Shiga-Like Toxin Type II B Subunit 70 A Shiga-Like Toxin Type II A Subunit 297 

77 1R8Q 1.86 E Arno 203 A ADP-Ribosylation Factor 1 181 

78 1SB2 1.90 A Rhodocetin Alpha Subunit 133 B Rhodocetin Beta Subunit 129 

79 1SPG 1.95 B Hemoglobin 147 A Hemoglobin 144 

80 1SQB 2.69 B 
Ubiquinol-Cytochrome C Reductase 
Complex Core Protein 2, 
Mitochondrial 

453 I 
Ubiquinol-Cytochrome C Reductase 8 
Kda Protein 

78 

81 1SQP 2.70 A 
Ubiquinol-Cytochrome-C Reductase 
Complex Core Protein I, Mitochondrial 
Precursor 

480 I 

Ubiquinol-Cytochrome C Reductase 
Iron-Sulfur Subunit, Mitochondrial 
Precursor (EC 1.10.2.2) (Rieske Iron-
Sulfur Protein) (RISP) [Contains: 
Ubiquinol-Cytochrome C Reductase 8 
Kda Protein (Complex III Subunit IX)] 

78 

82 1SVX 2.24 B Maltose-Binding Periplasmic Protein 395 A Ankyrin Repeat Protein Off7 169 

83 1UKM 1.90 A EMS16 A Chain 134 B EMS16 B Chain 128 
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84 1UKV 1.50 G 
Secretory Pathway GDP Dissociation 
Inhibitor 

453 Y GTP-Binding Protein YPT1 206 

85 1UVQ 1.80 A 
HLA Class II Histocompatibility 
Antigen 

197 B Hla Class II Histocompatibility Antigen 198 

86 1VF5 3.00 A Cytochrome B6 215 B Subunit IV 160 

87 1X9F 2.60 J Globin II, Extracellular 145 K Globin III, Extracellular 153 

88 1XDK 2.90 B Retinoic Acid Receptor, Beta 303 A Retinoic Acid Receptor RXR-Alpha 238 

89 1XXD 2.91 B Coagulation Factor XI 238 C Ecotin 142 

90 1YTZ 3.00 C Troponin C 162 I Troponin I 182 

91 1YVB 2.70 A Falcipain 2 241 I Cystatin 111 

92 1Z7M 2.90 E ATP Phosphoribosyltransferase 208 A 
ATP Phosphoribosyltransferase 
Regulatory Subunit 

344 

93 1Z7X 1.95 X Ribonuclease I 129 W Ribonuclease Inhibitor 461 

94 2A9K 1.73 A Ras-Related Protein Ral-A 187 B Mono-ADP-Ribosyltransferase C3 223 

95 2A9K 1.73 B Mono-ADP-Ribosyltransferase C3 223 A Ras-Related Protein Ral-A 187 

96 2BEX 1.99 C Nonsecretory Ribonuclease 135 A Ribonuclease Inhibitor 460 

97 2G2U 1.60 A Beta-lactamase SHV-1 265 B Beta-Lactamase Inhibitory Protein 165 

98 2GJ7 5.00 E Glycoprotein E 401 B IG Gamma-1 Chain C Region 227 

99 2IG2 3.00 H 
IGG1-Lambda Kol FAB  (Heavy 
Chain) 

455 L IGG1-Lambda KOL FAB (Light Chain) 216 

100 2J12 1.50 B 
Coxsackievirus And Adenovirus 
Receptor 

128 A Fiber Protein 194 

101 2ONL 4.00 C 
MAP Kinase-Activated Protein Kinase 
2 

406 A Mitogen-Activated Protein Kinase 14 366 
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8.2 Supplementary Information for Chapter 4 

Table 4.1 List of the transcription factors targeted to STIM and ORAI genes with Pubmed ID 

(PMID), technique of experiments and cell types obtained from the CheA database.  

 

Gene TF 
PMID 
(Pubmed) Technique Cell Type 

STIM1 AR 20517297 CHIP-SEQ VCAP 

 E2F4 21247883 CHIP-SEQ LYMPHOBLASTOID 

 EGR1 20690147 CHIP-SEQ ERYTHROLEUKEMIA 

 ELK3 25401928 CHIP-SEQ HUVEC 

 FLI1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 FOXA2 19822575 CHIP-SEQ HepG2 

 FOXP1 21924763 CHIP-SEQ HESC 

 GATA1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 GATA1 19941826 CHIP-SEQ K562 

 GATA2 19941826 CHIP-SEQ K562 

 GATA2 21666600 CHIP-SEQ HMVEC 

 HNF4A 19822575 CHIP-SEQ HepG2 

 MITF 21258399 CHIP-SEQ MELANOMA 

 MYC 19915707 CHIP-SEQ AK7 

 NCOR1 26117541 CHIP-SEQ K562 

 PHF8 20622854 CHIP-SEQ HELA 

 RUNX1 17652178 CHIP-SEQ JURKAT 

 SCL 21571218 CHIP-SEQ MEGAKARYOCYTES 

 SOX2 21211035 CHIP-SEQ LN229_GBM 

 SPI1 20517297 CHIP-SEQ HL60 

 TP63 22573176 CHIP-SEQ HFKS 

 TRIM28 17542650 CHIP-SEQ NTERA2 

 TTF2 22483619 CHIP-SEQ HELA 

STIM2 AR 22383394 CHIP-SEQ PROSTATE_CANCER 

 AR 19668381 CHIP-SEQ PC3 

 AR 25329375 CHIP-SEQ VCAP 

 
CUX1 19635798 CHIP-SEQ MULTIPLE HUMAN CANCER CELL 

TYPES 

 E2F1 21310950 CHIP-SEQ MCF7 

 E2F4 17652178 CHIP-SEQ JURKAT 

 EGR1 20690147 CHIP-SEQ ERYTHROLEUKEMIA 

 ELK3 25401928 CHIP-SEQ HUVEC 

 FOXP1 21924763 CHIP-SEQ HESC 

 GABP 19822575 CHIP-SEQ HepG2 

 GATA1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 GATA2 19941826 CHIP-SEQ K562 

 HOXB7 26014856 CHIP-SEQ BT474 

 MYCN 21190229 CHIP-SEQ SHEP-21N 

 
PAX3-
FKHR 20663909 CHIP-SEQ RHABDOMYOSARCOMA 
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 POU3F2 20337985 CHIP-SEQ 501MEL 

 PPARD 21283829 CHIP-SEQ MYOFIBROBLAST 

 RUNX1 17652178 CHIP-SEQ JURKAT 

 RUNX2 22187159 CHIP-SEQ PCA 

 SCL 21571218 CHIP-SEQ MEGAKARYOCYTES 

 SMAD4 21799915 CHIP-SEQ A2780 

 SOX11 23321250 CHIP-SEQ Z138-A519-JVM2 

 SOX2 21211035 CHIP-SEQ LN229_GBM 

 TOP2B 26459242 CHIP-SEQ MCF7 

 TP63 23658742 CHIP-SEQ EP156T 

 TTF2 22483619 CHIP-SEQ HELA 

 VDR 23849224 CHIP-SEQ CD4+ 

 WT1 25993318 CHIP-SEQ PODOCYTE 

 ZNF217 24962896 CHIP-SEQ MCF7 

ORAI1 BCL6 25482012 CHIP-SEQ CML/JURL-MK1 

 E2F4 21247883 CHIP-SEQ LYMPHOBLASTOID 

 ELK3 25401928 CHIP-SEQ HUVEC 

 FLI1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 FOXA2 19822575 CHIP-SEQ HepG2 

 FOXP1 21924763 CHIP-SEQ HESC 

 FOXP2 23625967 CHIP-SEQ PFSK-1 AND SK-N-MC 

 GATA6 25053715 CHIP-SEQ YYC3 

 KLF5 25053715 CHIP-SEQ YYC3 

 MITF 21258399 CHIP-SEQ MELANOMA 

 MYC 22102868 CHIP-SEQ BL 

 PPARD 21283829 CHIP-SEQ MYOFIBROBLAST 

 RUNX1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 SMAD4 21741376 CHIP-SEQ HESC 

 TFEB 21752829 CHIP-SEQ HELA 

ORAI2 EBNA2 21746931 CHIP-SEQ IB4-LCL 

 ELK3 25401928 CHIP-SEQ HUVEC 

 GATA1 19941826 CHIP-SEQ K562 

 GATA2 19941826 CHIP-SEQ K562 

 MITF 21258399 CHIP-SEQ MELANOMA 

 MYC 22102868 CHIP-SEQ BL 

 PPARD 21283829 CHIP-SEQ MYOFIBROBLAST 

 RBPJ 21746931 CHIP-SEQ IB4-LCL 

 RUNX1 21571218 CHIP-SEQ MEGAKARYOCYTES 

 TP63 22573176 CHIP-SEQ HFKS 

 VDR 24763502 CHIP-SEQ THP-1 

ORAI3 BCL6 25482012 CHIP-SEQ CML/JURL-MK1 

 ELF1 20517297 CHIP-SEQ JURKAT 

 ELK3 25401928 CHIP-SEQ HUVEC 

 FOXA1 25552417 CHIP-SEQ VCAP 

 GATA2 19941826 CHIP-SEQ K562 
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 GATA2 21666600 CHIP-SEQ HMVEC 

 GATA3 24758297 CHIP-SEQ MCF7 

 GATA4 25053715 CHIP-SEQ YYC3 

 HNF4A 19822575 CHIP-SEQ HepG2 

 MITF 21258399 CHIP-SEQ MELANOMA 

 NCOR1 26117541 CHIP-SEQ K562 

 PPARD 21283829 CHIP-SEQ MYOFIBROBLAST 

 SPI1 23547873 CHIP-SEQ NB4 

 SPI1 23127762 CHIP-SEQ K562 

  TFAP2C 20629094 CHIP-SEQ MCF7 

TF, transcription factor. 
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Table 4.2 List of the promoter sequences of STIM and ORAI genes obtained from the EPDnew 

database. 
Promoter 
Name Promoter Sequence 

STIM1_1 TTGGGGGCTGGGAGCTCGCCCCCGGGCCGAGCCGGGTCAGGCTGTTGTCGCCTCAGGCAG 

  CTCCTGGGAGGCTAACGTCGTGTCCTGGGCCTCTGTTTAGACAGCTCTAGAACTGAGGCG 

  AGTGGAGCAGCACCAAGGCCCGGAGATCGGGGCAGGGCAGCTGCTGTCGCCGCCGCCGCA 

  GGCCTGAGTTACCTGAGTAACTGCGGGTCAGGGACCCGCCCGACGGCCCGCGGTTGGCGC 

  TGGAGACTCTCGGTGGGGAAAGGGAAGCTGGGACTTGATCCTTTGCGCGGGATCCTGGCA 

  AAGACTAGCGCGGGCCGGGGGTCCGGGAGAGCCCGCTAGGGGCGGGGATTCCGGGGAGCC 

  GTCTTCACCGGTTATTCCGGGATCCAGCTGGGCGCTGGGGCTGGCCCGGGCTTCGCTGGG 

  GACCGGGCGGCGCGGGGCGGGCGCGGAGACGCACGCCCCCGCCCGCCCCGGGCCCGCCCC 

  GCGCCGCCCGCCCGCCTGGAAGCCGCTGTCCTGGGCCTGGCCGGTGTGCGTCCGCCTGCT 

  GGACCTGGGCACCGCCAGCCGCCTGGGCACGGGACTGGGCGGGGGCGCTGACCTCGGCCT 

STIM1_2 CTCATTTCTTTCATTGCTTACAAGTAGATAGCATTCCAGTTCATAGGTTTCTTTGAGAAA 

  TAGACTGTAGAAAAGACGACAATGTTTATTCTCATTAGTCAGACGAACTGCAGCACAAGT 

  GTTTCAAAGAGGAACCCCAAGAACTCCCAGGCTTGTAGGAAGCATCTGATTTTACATAAG 

  TTTGCACAGTAGGAAACTGAGGTCCTCGGGGAGGAACAAAGCAACTTATGATCAGACAAA 

  TGAGTCACTAGTAGAGCTGAAATGAGAAGCCAGATCTCCTAACCACTCCCACACCCCATC 

  ACAGTGCCTCACTGCGTCTCTTACTGGTGGGCTTGATTGCTTTCCAAGGCCAGAGAAGGA 

  AGTAGCTGTTCCTGTATGCTCAGACAGGAGTATAAATCACACTGTGATGTCAGAAGCTTC 

  TTTTCTAGCTGGAGAAATAAAGCTATGCATCAGAAAAGAGCACCAATCTTATAGAGTAGT 

  ATAGAATTAAGTGCTTACTTGTGGGACCTAGACCAGTGGTTTTCAACCTTTCATATCTTT 

  TACCCCCCTCCTCTTATATCCACTGTGTTCCAGCAGAAGAGAAACAAAGTTCCATTTTTC 

STIM2_1 AAAACGCTAAGCTATGCTAACCGCGTCTAAACAGCCAGCCACTTGTAAGCCCCACCTATA 

  TTGAAATTACGGGGACGCTGCTGTTTTCCGATTGCAAGATTTTCCTGATCCATGCAATTA 

  CTTTCGCTGCCCTCTACGAGGCTGAAACTCGCCCTCAGGATGTGGGACGTCTGGACTCTT 

  CTCTCCGTCCCCTTGTAGCCCCCCACTCCCCCTCGCGGTGGTACCGTGAATGAGGGAGAG 

  GTACACGTCCCCCTTCTTCCCCGCCTCCTATCTTCGCGGCTCGCTAAAGCGTTATCAGCC 

  GCCCCACGGTACTACCGTCCGTCTAGGAACGCCTCCGGGGCGGGGCTGGGATGCCGCGCA 

  CGCGCAGTACAGCAGCGCCGCGCCTGCGCCGTGGAGAGCCTGAGGGAGGCGGGGGATTGG 

  TATGCGAGCGAATGTGCGAGGGGAGGGAGGCGTCCCGGCGGAGCGTGGTACTACGACCAG 

  CGCGGGCCGGAGGGGGCGGGGGGATGCGCCGCGGCGGCGGCGGCGCGGGAGCTGGGGTTG 

  GTGTTTGGCGGCGCCAGAGCAGCGGATCCCGGTCTCGCCGCAGCAGCAGCGCGGGTGTCG 

STIM2_2 TACAGATTTATTATAAATGTGTATACTTGAGAATAAATGAGTAGAAGAACAGTGGAGGTA 

  AGTCAAATATAGTGGAATTAGATGTGTAGTTAAATTTTATTTTTAACTTGATTTAAATAA 

  TTAGGAATTTTTGAAAAGCTTTTTGCGGAAGAGTATTTCCCTGCTTTCCCTGTCATTTGA 

  ACCCAGGATAACCAAAATAGCTGTATAGTAAGTTGCCTGATATTTGTATTAACCAAACTT 

  AAGGCTAATGAAAAATGCTATGATTTCTGATTGAAATATGTATTTAATCGCTTGACCCAG 

  TATTCATTATTTTGTAAAAAAAAATAAAACTGGAAATTTTTGTGAGGAATTTTTATTTTT 

  ATTGTTCTATAAGGCTTGAAAAGGCACAGGAAGAAAACAGAAATGTTGCTGTAGAAAAGC 

  AAAATTTAGAGCGCAAAATGATGGATGAAATCAATTATGCAAAGGAGGAGGCTTGTCGGC 

  TGAGAGAGCTAAGGGAGGGAGCTGAATGTGAATTGAGTAGACGTCAGTATGCAGAACAGG 

  AATTGGAACAGGTATTTACATTAAAAAAAAAATCACTTGTAAAGATGTTAACATTGCCAC 

Continued 
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ORAI1 GACAGGTTTTGTCCATCTCGTTCACCACCCTACCCAGCCTCAGCACCTAGACCAGTGTTG 

  GCACCCAGTGGGCGCCAAATAAACACTGCTTGAACTCCAGACGTCAGCCGCTCTTTTTCC 

  TACAGACCTTGAGCCACCTTGTTCCAAAGGGGATATGGGCCTCAGGAGGCGCCCAGAGGT 

  GACCTCAGGCGGCCCGACCCAGGAGTCCAAGCTCCAGGAGCAGGGCCACGGGAGCAGCTG 

  CGGAGAGGGGCGGCGCCAGGAGCCGGAGCGGGCAGCCGGGCGCTTCCAGGAAAAGTGGCG 

  GGCGGCGGCGCGCCAGGGACCGTGGGCGGTGCCGTCGGAGCGGGCGGGTCACGTGACGCC 

  CACAACAACGCCCACTTCTTGGTGGGCGGGGCACAGGTGGGCGGGGAGCATGCAAAACAG 

  CCCAGGGCGGCGGCCAATCGCGGCGCGCGCCGGGGGTCCAGGCCCCGGGGATCCGAGGCG 

  CCGCCCGCGCGCAGTCTCTGGTCACTGCCGCCCGGGGGCTTTTGCCAGCGGCGCCGCGGG 

  CCTGCGTGCTGGGGCAGCGGGCACTTCTTCGACCTCGTCCTCCTCGTCCTGTGCGGCCGG 

ORAI2 ACTCCCCGCCCCTCTACGCAGCCAGCGTCCAATGCTGGGCACCCCCCGAGGCTCACCCTG 

  CCAAGCCTGGGGCTCCCCTTTTGCGCCCGGACCCAGGGGCAGGGAAAGCCCAGCTCGTGG 

  TCTGTGGGTAGCCGGACCCCCGATGGGGCGGTGGGGGGCCTCGCCTTGACTCCCAGAGCT 

  GGGGCCGGGGACAGGAGCTGGGGCAGGAGGGATGCGCGCGGGTCGGGGTCTTCCCACCTC 

  CCCTGCTCCTCTCCCTCGCGCGATCCCGGGGTGGTTCCAGGTGAGGCGGGGACCCCCACC 

  CCCCCACTCTCCGAGGAGGCGCCGCCAGCCCCGCCCCTCCCGGCCCGGCGGGTGACGTGG 

  CCGCGGCTCTCCCGCGGGTGGGTCACGTGTTGGCGGCGCCTGGTTGCCTTGGCAGCGGCT 

  GCGGCGGCCGCGGGGGCGGGGTGGAGGCGGGGCCGGGGGACCCCGCGCGACCGGCGGAAG 

  GAGGGAGGGGGCCGCGCTCGGCGCCCCGGCCGGGCCACTGGGCCACAGGCCACGCGGCCA 

  CGCAGTCCGAGCGGGAGCCGAGCCGGGCGGGGCGAGGGCAGCTCCGGTGAGTGTGGCGGC 

ORAI3 GTAACAGGGAGGTGCGCGGGTGGGGGGAGGGCTGGGCGGACCAAAGGCCGGAGGGGTGGG 

  GCCTGGGGATAGCGAGAGGCTTGAGAATGGGGCCGCTTGGGGGAGGGAAGAGGCAGCCCG 

  GCGAGGGGCAAGCGGGGGACCCAGCCGGGCTGGGCCCCTGGGCCCCGGGTCTGTACAATA 

  CGGTTTGCTATAAAACTCAAAATCTTCCAGCCGGGGCTGCGGAGTTCGTGTGTGTATCTG 

  CGGGGTCCCTACCTACAGATGAGTGGGCTCACCTCTCCTGGACTCATTTTGGGAGGGATT 

  TGGAAGTGTGGACACCTGGGGTGTCCAGCTGTACCTTGGAGGGGGCTGGGGTTGGCGTGC 

  ACCTCGGTGGGGTCCGGGCGCTTGGATAACGTTCTTGGTGGGTAGGGGTCGCGGGGAATC 

  TCTGCGGGCCCGGGACTGCGGGGACTTGGTCCCCGGCTCCACCCCATCATGTGGCTAGCC 

  CCGGCTCCGCCTCTGTCCCAGTTCCTGTTTTGGCCTCCGCTGTCCCGCTCCGGCTCCTGG 

  GGCTCCCCGCAGACGCTGCTTTTCTTGCTCCACTGGGGGTGCCTCTTCCTGGGCGCCCGC 
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Table 4.3 List of the predicted interactions between transcription factors, name of bridge proteins and score obtained from the STRING database. 
Promoter 
name 

Potential 
Interactions 

Type of 
interaction 

Bridge 
Proteins 

Interactions node1 node2 Score node1 node2 Score node1 node2 Score 

STIM2_1 E2F1:E2F4 Direct     E2F1 E2F4 0.966             

  E2F1:E2F4 
Bridge 
protein 

MYC E2F1>MYC>E2F4 E2F1 MYC 0.982 MYC E2F4 0.982       

STIM2_1 E2F1:EGR1 
Bridge 
protein 

SPI1 E2F1>SPI1>EGR1 E2F1 SPI1 0.905 SPI1 EGR1 0.501     

  E2F1:EGR1 
Bridge 
protein 

E2F4 E2F1>E2F4>EGR1 E2F1 E2F4 0.966 E2F4 EGR1 0.846     

  E2F1:EGR1 
Bridge 
protein 

MYC E2F1>MYC>EGR1 E2F1 MYC 0.982 MYC EGR1 0.928     

STIM2_1 E2F1:GATA1 
Bridge 
protein 

ELF1 E2F1>ELF1>GATA1 E2F1 ELF1 0.902 ELF1 GATA1 0.893       

  E2F1:GATA1 
Bridge 
protein 

SPI1 E2F1>SPI1>GATA1 E2F1 SPI1 0.905 SPI1 GATA1 0.995     

  E2F1:GATA1 
Bridge 
protein 

MYC E2F1>MYC>GATA1 E2F1 MYC 0.982 MYC GATA1 0.961       

STIM2_1 E2F4:GATA1 Direct     E2F4 GATA1 0.727             

  E2F4:GATA1 
Bridge 
protein 

MYC E2F4>MYC>GATA1 E2F4 MYC 0.96 MYC  GATA1 0.961     

  E2F4:GATA1 
Bridge 
protein 

EGR1 E2F4>EGR1>GATA1 E2F4 EGR1 0.846 EGR1 GATA1 0.584     

ORAI1 PPARD:E2F4 
Bridge 
protein 

EGR1 PPARD>EGR1>E2F4 PPARD EGR1 0.691 EGR1 E2F4 0.846      

ORAI2 NFKB1:RUNX1 
Bridge 
protein 

EGR1 NFKB1>EGR1>RUNX1 NFKB1 EGR1 0.671 EGR1 RUNX1 0.676       

  NFKB1:RUNX1 
Bridge 
protein 

MYC NFKB1>MYC>RUNX1 NFKB1 MYC 0.993 MYC RUNX1 0.61      

  NFKB1:RUNX1 
Bridge 
protein 

SPI1 NFKB1>SPI1>RUNX1 NFKB1 SPI1 0.781 SPI1 RUNX1 0.991      

  PPARD:MYC 
Bridge 
protein 

EGR1 PPARD>EGR1>MYC PPARD EGR1 0.691 EGR1 MYC 0.928      

  PPARD:MYC 
Bridge 
protein 

HNF4A PPARD>HNF4A>MYC PPARD HNF4A 0.916 HNF4A MYC 0.942       

ORAI3 MITF:ELF1 
Bridge 
proteins 

SPI1, E2F1 MITF>SPI1>E2F1>ELF1 MITF SPI1 0.951 SPI1 E2F1 0.905 E2F1 ELF1 0.902 

  MITF:ELF1 
Bridge 
proteins 

SPI1, 
GATA1 

MITF>SPI1>GATA1>ELF1 MITF SPI1 0.951 SPI1 GATA1 0.995 GATA1 ELF1 0.893 

  MITF:SPI1 Direct    MITF SPI1 0.951          

  SPI1:ELF1 
Bridge 
protein 

GATA1 SPI1>GATA1>ELF11 SPI1 GATA1 0.995 GATA1 ELF1 0.893      

  SPI1:ELF1 
Bridge 
protein 

E2F1 SPI1>E2F1>ELF1 SPI1 E2F1 0.905 E2F1 ELF1 0.902       
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Table 4.4 List of differential interactions in (normal-tumor) and (tumor-normal) samples. 

Node 1 Node 2 Weight Node 1 Node 2 Weight 

Normal-tumor Tumor-normal 

EP300 CREBBP 0.2822 FOXP2 ELK3 0.1546 

NCOR1 EP300 0.2343 MITF RUNX2 0.1528 

SP1 EP300 0.2093 FOXA1 GATA3 0.1112 

NCOR1 CREBBP 0.1903 FLI1 ELK3 0.1095 

MITF ELK3 0.1636 SPI1 FLI1 0.1049 

NCOR1 AR 0.1624 AR EP300 0.0869 

SMAD4 SP1 0.1448 SPI1 TFEB 0.0749 

MITF FLI1 0.1331 FOXP2 FLI1 0.0737 

SP1 CREBBP 0.1330 SP1 EP300 0.0673 

TOP2B SP1 0.1270 FOXP2 RUNX2 0.0625 

FLI1 ELK3 0.1135 FOXP2 MITF 0.0623 

FOXA1 GATA3 0.0985 TOP2B SP1 0.0623 

NCOR2 TRIM28 0.0976 STIM2 FLI1 0.0604 

MITF TRIM28 0.0963 ZNF217 TFEB 0.0584 

NCOR1 SP1 0.0929 MITF ELK3 0.0579 

AR EP300 0.0915 SP1 AR 0.0552 

TTF2 EP300 0.0881 FOXA1 FLI1 0.0552 

TRIM28 ELK3 0.0829 FLI1 TFEB 0.0536 

FLI1 HOXB7 0.0820 TOP2B EP300 0.0532 

KDM1A HOXB7 0.0807 NCOR1 SP1 0.0487 

SMAD4 TOP2B 0.0805 AR CREBBP 0.0484 

KDM1A HDAC2 0.0803 ELF1 TOP2B 0.0474 

KDM1A FLI1 0.0743 TP63 KLF5 0.0470 

TTF2 SP1 0.0698 EP300 ELK3 0.0440 

RBPJ TRIM28 0.0688 RUNX2 ELK3 0.0431 

KLF5 TFAP2C 0.0686 E2F1 RUNX1 0.0424 

HOXB7 TFAP2C 0.0670 ELF1 SP1 0.0410 

HDAC3 KDM1A 0.0647 FOXP2 EGR1 0.0387 

KDM1A MITF 0.0624 TOP2B AR 0.0378 

TOP2B EP300 0.0603 FLI1 GATA3 0.0378 

FOXP1 TP63 0.0587 TP63 EGR1 0.0369 

FOXP2 HDAC1 0.0549 EGR1 ELK3 0.0363 

AR CREBBP 0.0548 EGR1 FLI1 0.0360 

MITF VDR 0.0544 NCOR1 EP300 0.0349 

TRIM28 FLI1 0.0539 SP1 CREBBP 0.0324 

MITF RBPJ 0.0539 STIM2 ELK3 0.0313 

FOXP2 MITF 0.0536 FOXA1 E2F4 0.0310 

HOXB7 VDR 0.0525 NFKB1 ELK3 0.0307 

MITF HOXB7 0.0522 NCOR1 AR 0.0306 

FLI1 VDR 0.0516 ELF1 ELK3 0.0300 

NCOR1 PHF8 0.0496 FOXA1 SPI1 0.0295 
Continued 
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SMAD4 ORAI2 0.0491 MITF TRIM28 0.0294 

KDM1A TFAP2C 0.0486 SP1 ELK3 0.0283 

TP63 TFAP2C 0.0478 MITF FLI1 0.0277 

SMAD4 CUX1 0.0457 PHF8 CREBBP 0.0262 

TTF2 TOP2B 0.0424 SPI1 E2F4 0.0258 

SMAD4 EP300 0.0417 FOXA1 TFEB 0.0257 

FOXA1 PHF8 0.0404 AR ELK3 0.0248 

KLF5 CUX1 0.0398 ELF1 AR 0.0247 

FOXA1 AR 0.0392 ELF1 EP300 0.0244 

ORAI2 SP1 0.0383 SP1 CDKN2A 0.0240 

PHF8 AR 0.0379 PHF8 AR 0.0239 

FLI1 TFAP2C 0.0378 FOXP2 STIM2 0.0235 

HOXB7 GATA2 0.0370 RUNX2 RUNX1 0.0231 

KDM1A ELK3 0.0363 NCOR1 TOP2B 0.0225 

GATA6 ELK3 0.0360 NCOR1 CREBBP 0.0216 

RBPJ FLI1 0.0351 NFKB1 AR 0.0212 

FOXP2 TRIM28 0.0331 FOXP2 RUNX1 0.0211 

TTF2 CREBBP 0.0328 ELK3 RUNX1 0.0205 

FOXP2 ELK3 0.0306 ELF1 NFKB1 0.0203 

TTF2 NCOR1 0.0302 FLI1 GATA6 0.0201 

KDM1A VDR 0.0293     
NCOR2 RBPJ 0.0286     
RBPJ ELK3 0.0282     
NCOR1 TOP2B 0.0278     
TRIM28 VDR 0.0277     
MITF TFAP2C 0.0264     
FLI1 GATA2 0.0257     
TOP2B CREBBP 0.0257     
SP1 AR 0.0251     
MITF GATA6 0.0248     
TP63 CREBBP 0.0247     
KDM1A TRIM28 0.0245     
PHF8 EP300 0.0238     
VDR ELK3 0.0237     
NCOR2 FLI1 0.0236     
MITF NCOR2 0.0225     
TP63 HOXB7 0.0222     
FOXP1 SMAD4 0.0217     
HDAC3 HDAC2 0.0211     
SP1 CDKN2A 0.0207     
PHF8 CREBBP 0.0201     
TOP2B HOXB7 0.0201       
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8.3 Supplementary Information for Chapter 5 

Table 5.1 Dataset of 167 protein-ligand complexes. 

1Q8T 1Q8U 1XD0 2YKI 3JVS 2J62 2W66 4DEW 

1VSO 2WBG 3B3W 1W3K 2CBJ 3OZT 3GCS 2X97 

3OE5 1LOR 2QBP 3F3E 3I3B 3UO4 3ZSX 2V7A 

3L4W 2QBR 3PXF 2YFE 3OV1 3HUC 2WTV 3F3C 

2ZXD 2VVN 3F3A 2D3U 1H23 2ZWZ 3SU2 3BFU 

2P4Y 1YC1 2J78 2X8Z 3GBB 2VW5 3GE7 1R5Y 

4DE2 3UDH 3G2Z 3EBP 2GSS 2XHM 3MSS 1U33 

1SLN 3F17 2X00 2BRB 3AO4 4DE1 4GID 3D4Z 

2ZCR 3IMC 10GS 1GPK 1PS3 3PE2 3ACW 3FCQ 

3CYX 2CET 3K5V 2V00 1OS0 1Z95 3BKK 3MFV 

2ZJW 3DD0 3N86 3EHY 3E93 1LOQ 3F80 1U1B 

3NW9 3IVG 3N7A 1NVQ 2OBF 3G0W 1N2V 3VH9 

1LBK 3AG9 4G8M 2G70 3SU5 2VO5 3S8O 3B68 

3PWW 2XY9 3ZSO 2FVD 1KEL 3UEX 2ZCQ 2YGE 

3SU3 1SQA 2D1O 2VOT 2WEG 2XNB 3B3S 3CJ2 

3FK1 4TMN 4DJR 1P1Q 2XDL 4GQQ 3GNW 3DXG 

2X0Y 3MUZ 1HNN 3EJR 2QFT 2YMD 2QMJ 2XYS 

3VD4 2HB1 1HFS 3L3N 3OWJ 3L7B 1W3L 3COY 

3NQ3 3NOX 2ZX6 3LKA 3FV1 3MYG 2PQ9 3KV2 

2OLE 1LOL 1JYQ 2IWX 3L4U 2VL4 3KWA 4DJV 

3U9Q 3UEU 2WCA 1E66 2XB8 3G2N 1QI0  
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Table 5.2 Names, URLs, year of creation and respective limitations of the 18 pocket identification tools. 

Program URL Year Limitation 

APROPOS http://www.csb.yale.edu/poststructure/apropos/apropos.html 1996 Need CSB core 

BetaCavityWeb http://voronoi.hanyang.ac.kr/betacavityweb/ 2015 Available only as webserver 

CASTp http://sts.bioe.uic.edu/castp/calculation.php 2003/2006 Available only as webserver 

CAVER Analyst http://www.caver.cz 2014 No output file, not run automatically 

ConCavity http://compbio.cs.princeton.edu/concavity/  2009 Not compatible with Debian 16.0-4-amd64 

Epock http://epock.bitbucket.org 2014 Need VMD 

HotPatch http://hotpatch.mbi.ucla.edu/ 2007 Incomplete documentation 

LIGSITEcs http://projects.biotec.tu-dresden.de/pocket/ 1997 Need BALL algorithm 

McVol http://www.bisb.uni-bayreuth.de/index.php?page=data/mcvol/mcvol  2010 Does not take PDB as input 

Metapocket2.0 http://projects.biotec.tu-dresden.de/metapocket/ 2011 Available only as webserver 

MolSite http://presto.protein.osaka-u.ac.jp/myPresto4/index.php?lang=en 2011 Incomplete documentation 

PASS http://www.ccl.net/cca/software/UNIX/pass/overview.shtml 2000 Not compatible with Debian 16.0-4-amd64 

POCASA http://altair.sci.hokudai.ac.jp/g6/service/pocasa/ 2010 Available only as webserver 

PocketAnalyzer http://sourceforge.net/projects/papca/ or http://cpclab.uni-duesseldorf.de/downloads 2011 Not compatible with Debian 16.0-4-amd64 

QSiteFinder http://www.bioinformatics.leeds.ac.uk/qsitefinder 2005 Not compatible with Debian 16.0-4-amd64 

Rate4Site bioinfo.tau.ac.il/ConSurf 2002 Only available in Windows OS 

SITEHOUND http://scbx.mssm.edu/sitehound/sitehound-web/Input.html 2009 Not compatible with Debian 16.0-4-amd64 

SURFNET http://www.ebi.ac.uk/thornton-srv/software/SURFNET/ 1995 Not compatible with Debian 16.0-4-amd64 

VMD,Visual Molecular Dynamics; PDB, protein data bank and OS, operating system. 
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Table 5.3 List of the descriptors obtained from the DoGSiteScorer tool. 

Group Label Description 

Ligand descriptors lig_cov Percentage of ligand covered by the predicted pocket 

poc_cov Percentage of the pocket covered by the co-crystallized ligand 

Size and shape 
descriptors 

volume Pocket volume in A^3 calculated via grid points 
surface Pocket surface in A^2 calculated via grid points 
lipo_surf  solvent accessible lipophilic surface; 
depth Depth of the pocket in A 
ellips c/a or b/a Ellipsoid main axes ratios, with a > b > c 
enclosure Rratio of number of surface to hull grid points 

Functional group 
descriptors 

H-don Number of hydrogen bond donors 

H-acc Number of hydrogen bond acceptors 
Met Number of metals 
Hphob Number of hydrophobic contacts 
siac ratio Relative number of hydrophobic site interaction centers (SIACs, from 

flex) 
Element descriptors nof_dif_atms Number of surface atoms lining the pocket 

elem_x Number of elements of specific type in active site; types: C, N, O, S 
or other (X) 

Amino acid 
composition 

aa_apol, aa_pol and aa_neg Relative number of amino acids apolar, polar, positive, and negative) 

Amino acid 
descriptors 

ALA, ARG, ASN, ASP, CYS, GLN, 
GLU, GLY, HIS, ILE, LEU, LYS, 
MET, PHE, PRO, SER, THR, TRP, 
TYR and VAL 

Number of amino acids in pocket, 3-letter code of 20 amino acid 
types 
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Table 5.4 List of the weight of each tool for each protein.  

PDB ID DEPTH GHECOM Fpocket DoGSiteScorer IsoMif ProACT2 

1Q8T 0.4133 0.1937 0.2018 0.0677 0.0871 0.0363 

1Q8U 0.4149 0.2008 0.1893 0.0711 0.0875 0.0363 

1XD0 0.3998 0.1663 0.1428 0.0929 0.1599 0.0383 

2YKI 0.3981 0.2065 0.1720 0.0887 0.1021 0.0327 

3JVS 0.2649 0.0929 0.1151 0.1324 0.3245 0.0701 

2J62 0.2634 0.1428 0.2079 0.1629 0.1664 0.0567 

2W66 0.2709 0.1183 0.1988 0.1527 0.1975 0.0618 

4DEW 0.2799 0.1049 0.1460 0.1810 0.2037 0.0845 

1VSO 0.2675 0.1421 0.2116 0.1451 0.1718 0.0619 

2WBG 0.3796 0.2107 0.1432 0.0787 0.1425 0.0453 

3B3W 0.3621 0.1279 0.1229 0.1004 0.2305 0.0563 

1W3K 0.2837 0.1284 0.2061 0.1617 0.1569 0.0632 

2CBJ 0.3433 0.1332 0.1343 0.1027 0.2234 0.0631 

3OZT 0.2524 0.1665 0.2263 0.1449 0.1583 0.0515 

3GCS 0.3593 0.2084 0.1833 0.0800 0.1359 0.0331 

2X97 0.3794 0.1841 0.2701 0.0657 0.0743 0.0263 

3OE5 0.3443 0.2091 0.1697 0.0897 0.1499 0.0373 

1LOR 0.2656 0.1598 0.1891 0.1647 0.1675 0.0533 

2QBP 0.2676 0.1080 0.1657 0.1399 0.2425 0.0763 

3F3E 0.3170 0.0885 0.1060 0.1394 0.2675 0.0816 

3I3B 0.2605 0.1602 0.2600 0.1412 0.1333 0.0448 

3UO4 0.3595 0.1491 0.1715 0.0998 0.1794 0.0407 

3ZSX 0.3797 0.1957 0.1857 0.0835 0.1116 0.0439 

2V7A 0.3591 0.1501 0.1335 0.0890 0.2123 0.0561 

3L4W 0.2539 0.1482 0.2218 0.1698 0.1647 0.0416 

2QBR 0.2545 0.1071 0.1713 0.1459 0.2411 0.0801 

3PXF 0.3847 0.1979 0.1989 0.0812 0.1083 0.0290 

2YFE 0.4139 0.2012 0.1885 0.0714 0.0963 0.0287 

3OV1 0.2798 0.1208 0.1715 0.1646 0.2176 0.0457 

3HUC 0.3762 0.2115 0.1956 0.0845 0.0991 0.0331 

2WTV 0.3581 0.1694 0.1975 0.0967 0.1398 0.0385 

3F3C 0.2674 0.1753 0.2301 0.1415 0.1372 0.0485 

2ZXD 0.3690 0.2211 0.1714 0.0840 0.1248 0.0297 

2VVN 0.2577 0.1213 0.2214 0.1546 0.1911 0.0539 

3F3A 0.3711 0.1865 0.1614 0.0977 0.1388 0.0445 

2D3U 0.3539 0.1333 0.1462 0.0964 0.2297 0.0405 

1H23 0.3562 0.2298 0.1538 0.0793 0.1429 0.0381 

2ZWZ 0.3785 0.1522 0.1206 0.0819 0.2225 0.0442 

3SU2 0.3553 0.1255 0.1467 0.1062 0.2203 0.0460 

3BFU 0.2563 0.1304 0.2397 0.1555 0.1566 0.0615 

2P4Y 0.4201 0.1800 0.2041 0.0750 0.0897 0.0311 

1YC1 0.3806 0.1821 0.1683 0.0905 0.1289 0.0496 
Continued 
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2J78 0.3884 0.2140 0.1579 0.0844 0.1135 0.0418 

2X8Z 0.3873 0.1739 0.2635 0.0687 0.0769 0.0297 

3GBB 0.4069 0.1970 0.1688 0.0785 0.1123 0.0365 

2VW5 0.3799 0.1929 0.1595 0.0866 0.1300 0.0511 

3GE7 0.3484 0.1782 0.2081 0.0867 0.1327 0.0458 

1R5Y 0.2391 0.1301 0.2643 0.1558 0.1491 0.0617 

4DE2 0.2651 0.1292 0.2076 0.1613 0.1668 0.0701 

3UDH 0.4061 0.1951 0.2027 0.0788 0.0873 0.0299 

3G2Z 0.2581 0.1122 0.2129 0.1620 0.1860 0.0688 

3EBP 0.3483 0.1386 0.1527 0.1007 0.2143 0.0453 

2GSS 0.2590 0.1345 0.2499 0.1361 0.1651 0.0553 

2XHM 0.3878 0.1977 0.2380 0.0734 0.0809 0.0222 

3MSS 0.3987 0.2165 0.1761 0.0735 0.1015 0.0337 

1U33 0.3343 0.1734 0.1813 0.1213 0.1471 0.0427 

1SLN 0.3597 0.1971 0.1919 0.0851 0.1304 0.0359 

3F17 0.3821 0.1596 0.1650 0.1002 0.1493 0.0439 

2X00 0.2487 0.1189 0.1581 0.1612 0.2579 0.0551 

2BRB 0.3511 0.2136 0.1689 0.0864 0.1398 0.0402 

3AO4 0.2528 0.1397 0.3007 0.1416 0.1215 0.0437 

4DE1 0.2556 0.1245 0.2134 0.1675 0.1739 0.0652 

4GID 0.4089 0.1918 0.2181 0.0707 0.0828 0.0277 

3D4Z 0.2929 0.0859 0.1403 0.1359 0.2788 0.0662 

2ZCR 0.4160 0.1872 0.1901 0.0751 0.0962 0.0354 

3IMC 0.3658 0.1946 0.1752 0.0920 0.1290 0.0434 

10GS 0.2425 0.1485 0.2463 0.1468 0.1689 0.0470 

1GPK 0.3622 0.2275 0.1535 0.0772 0.1415 0.0381 

1PS3 0.3089 0.0839 0.1357 0.1309 0.2764 0.0643 

3PE2 0.3659 0.1701 0.1457 0.0823 0.1911 0.0449 

3ACW 0.4033 0.1907 0.2083 0.0743 0.0889 0.0345 

3FCQ 0.2641 0.1451 0.2276 0.1387 0.1711 0.0535 

3CYX 0.3889 0.1417 0.1471 0.0891 0.1770 0.0563 

2CET 0.3820 0.2205 0.1569 0.0859 0.1138 0.0409 

3K5V 0.3689 0.2124 0.1660 0.0861 0.1275 0.0392 

2V00 0.3695 0.1891 0.1833 0.0811 0.1287 0.0483 

1OS0 0.3317 0.1728 0.1963 0.0973 0.1623 0.0397 

1Z95 0.4029 0.1514 0.1545 0.0835 0.1675 0.0403 

3BKK 0.3863 0.1892 0.2387 0.0697 0.0835 0.0327 

3MFV 0.3560 0.1737 0.1672 0.0955 0.1601 0.0474 

2ZJW 0.3655 0.2112 0.1799 0.0777 0.1320 0.0337 

3DD0 0.2764 0.1277 0.1889 0.1473 0.2013 0.0585 

3N86 0.2669 0.1487 0.2331 0.1452 0.1492 0.0569 

3EHY 0.3535 0.1721 0.1775 0.1085 0.1447 0.0436 

3E93 0.3951 0.2141 0.1760 0.0691 0.1096 0.0361 
Continued 
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1LOQ 0.3578 0.2029 0.1504 0.1009 0.1505 0.0375 

3F80 0.3698 0.1705 0.1628 0.0973 0.1491 0.0506 

1U1B 0.2616 0.1033 0.2079 0.1703 0.2027 0.0541 

3NW9 0.2511 0.1711 0.2099 0.1463 0.1625 0.0591 

3IVG 0.4155 0.1983 0.1835 0.0734 0.0945 0.0347 

3N7A 0.2713 0.1502 0.2387 0.1393 0.1464 0.0541 

1NVQ 0.3624 0.1580 0.1569 0.0853 0.1903 0.0472 

2OBF 0.3819 0.1906 0.1879 0.0873 0.1146 0.0377 

3G0W 0.3903 0.1891 0.1840 0.0842 0.1185 0.0339 

1N2V 0.3244 0.1948 0.1935 0.0965 0.1465 0.0443 

3VH9 0.2863 0.1119 0.1313 0.1361 0.2704 0.0639 

1LBK 0.3877 0.2125 0.1763 0.0713 0.1189 0.0332 

3AG9 0.3723 0.1294 0.1280 0.1019 0.2185 0.0499 

4G8M 0.3749 0.1991 0.1951 0.0865 0.1081 0.0361 

2G70 0.3613 0.1873 0.1955 0.0948 0.1221 0.0390 

3SU5 0.3655 0.1380 0.1343 0.1049 0.2136 0.0437 

2VO5 0.2533 0.1543 0.2135 0.1504 0.1642 0.0643 

3S8O 0.2515 0.1237 0.1910 0.1645 0.2228 0.0465 

3B68 0.3807 0.1694 0.1623 0.0819 0.1648 0.0410 

3PWW 0.3497 0.1793 0.1529 0.1021 0.1746 0.0414 

2XY9 0.3882 0.1905 0.2272 0.0776 0.0839 0.0325 

3ZSO 0.3119 0.1780 0.2135 0.1119 0.1237 0.0609 

2FVD 0.3752 0.2055 0.2073 0.0765 0.1058 0.0297 

1KEL 0.3009 0.1216 0.2132 0.1412 0.1685 0.0545 

3UEX 0.3623 0.1668 0.1639 0.0943 0.1785 0.0342 

2ZCQ 0.4172 0.1855 0.1895 0.0747 0.1019 0.0311 

2YGE 0.3661 0.1964 0.1641 0.0809 0.1414 0.0511 

3SU3 0.3632 0.1373 0.1341 0.1067 0.2134 0.0453 

1SQA 0.2332 0.1385 0.2138 0.1915 0.1757 0.0472 

2D1O 0.3658 0.1863 0.1786 0.0900 0.1384 0.0409 

2VOT 0.4032 0.1359 0.1175 0.0817 0.2115 0.0503 

2WEG 0.4151 0.1397 0.1293 0.0887 0.1809 0.0463 

2XNB 0.3553 0.1969 0.1881 0.0851 0.1378 0.0368 

3B3S 0.2495 0.0982 0.1517 0.1665 0.2637 0.0704 

3CJ2 0.2575 0.0997 0.1736 0.1493 0.2597 0.0602 

3FK1 0.2670 0.1479 0.2725 0.1439 0.1109 0.0578 

4TMN 0.2402 0.1521 0.2409 0.1543 0.1514 0.0610 

4DJR 0.3558 0.1428 0.1231 0.1099 0.2175 0.0509 

1P1Q 0.4020 0.1787 0.2029 0.0812 0.0987 0.0365 

2XDL 0.3686 0.1537 0.1479 0.0972 0.1790 0.0537 

4GQQ 0.2517 0.0979 0.1211 0.1647 0.2953 0.0695 

3GNW 0.3769 0.2130 0.1803 0.0793 0.1181 0.0324 

3DXG 0.2593 0.1136 0.2285 0.1737 0.1713 0.0535 
Continued 
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2X0Y 0.2764 0.1535 0.2337 0.1458 0.1389 0.0516 

3MUZ 0.2579 0.1597 0.2509 0.1475 0.1367 0.0473 

1HNN 0.3899 0.1849 0.1960 0.0812 0.1089 0.0391 

3EJR 0.2715 0.0863 0.1446 0.1441 0.2895 0.0640 

2QFT 0.4253 0.1908 0.1888 0.0744 0.0817 0.0389 

2YMD 0.2671 0.1069 0.1763 0.1738 0.2201 0.0557 

2QMJ 0.3813 0.1194 0.1027 0.0948 0.2598 0.0420 

2XYS 0.3611 0.1461 0.1326 0.0991 0.2165 0.0446 

3VD4 0.2621 0.1286 0.1520 0.1450 0.2527 0.0596 

2HB1 0.2612 0.1244 0.2735 0.1507 0.1431 0.0471 

1HFS 0.2732 0.1491 0.2359 0.1328 0.1661 0.0430 

3L3N 0.3594 0.2314 0.1736 0.0763 0.1234 0.0359 

3OWJ 0.3834 0.1963 0.1951 0.0727 0.1128 0.0397 

3L7B 0.3913 0.1925 0.2401 0.0686 0.0771 0.0304 

1W3L 0.2803 0.1223 0.1995 0.1619 0.1733 0.0627 

3COY 0.4210 0.1946 0.1849 0.0743 0.0918 0.0333 

3NQ3 0.3653 0.1797 0.1717 0.0968 0.1520 0.0345 

3NOX 0.2513 0.0961 0.1297 0.1398 0.3114 0.0717 

2ZX6 0.3739 0.1797 0.1630 0.0853 0.1582 0.0399 

3LKA 0.3635 0.1766 0.1665 0.1055 0.1439 0.0441 

3FV1 0.3933 0.2019 0.1709 0.0787 0.1163 0.0388 

3MYG 0.3527 0.2009 0.1989 0.0861 0.1263 0.0351 

2PQ9 0.4107 0.1839 0.2146 0.0721 0.0837 0.0351 

3KV2 0.3541 0.1728 0.1762 0.0965 0.1539 0.0464 

2OLE 0.2768 0.1041 0.1787 0.1509 0.2360 0.0535 

1LOL 0.3349 0.1709 0.1585 0.1129 0.1865 0.0363 

1JYQ 0.2774 0.0991 0.1475 0.1526 0.2646 0.0589 

2IWX 0.4143 0.2165 0.1744 0.0714 0.0933 0.0301 

3L4U 0.2695 0.0859 0.1381 0.1432 0.3048 0.0585 

2VL4 0.2695 0.1279 0.1900 0.1509 0.1963 0.0653 

3KWA 0.2726 0.1229 0.1911 0.1413 0.2076 0.0645 

4DJV 0.2601 0.1085 0.1834 0.1655 0.2207 0.0617 

3U9Q 0.4046 0.2014 0.2074 0.0717 0.0879 0.0270 

3UEU 0.3611 0.1628 0.1580 0.0961 0.1789 0.0430 

2WCA 0.3901 0.1985 0.1615 0.0863 0.1305 0.0331 

1E66 0.3604 0.2369 0.1500 0.0743 0.1390 0.0394 

2XB8 0.2739 0.1603 0.2293 0.1365 0.1443 0.0557 

3G2N 0.3911 0.1987 0.2305 0.0737 0.0744 0.0317 

1QI0 0.2703 0.1301 0.2058 0.1737 0.1650 0.0551 
 

 

 

 


