
BROMETH: Methodology to
Develop Safe Reconfigurable
Medical Robotic Systems

Application on Pediatric
Supracondylar Humeral Fracture

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen

Fakultät der Universität des Saarlandes

&

University of Carthage (Tunisia)

von

Mohamed Oussama BEN SALEM

Saarbrücken

2016

Tag des Kolloquiums: 20.02.2017

Dekan: Univ.-Prof. Dr. Guido Kickelbick

Vorsitz: Univ.-Prof. Dr.-Ing. Michael Vielhaber

Berichterstatter:
Univ.-Prof. Dr.-Ing. Georg Frey
Prof. Luis Gomes
Prof. Valeriy Vyatkin

Akademischer Beisitzer:
Dr. Tilman Sauerwald

Abstract

In this thesis project, we propose a global approach called BROMETH for
the development of safe reconfigurable medical robotic systems. The recon-
figuration is a useful feature for the modification of software and hardware
components to dynamically adapt their behaviors to the execution environ-
ment at runtime. We define R-TNCES-based patterns enriched with PCP
to model reconfigurable systems with adaptive shared resources. A software
tool, ZiZo, is also proposed to model, simulate and verify such R-TNCES
models. We introduce, then, a new UML profile, baptized R-UML (Re-
configurable UML), to model such reconfigurable systems. The profile is
enriched with a PCP-based solution for the management of resource shar-
ing. An automatic translation of R-UML into R-TNCES is also proposed to
support model checking. A new approach is also suggested to generate ROS
codes from verified R-UML models. To prove the relevance of BROMETH,
the latter is applied to the BROS project.

Keywords : Reconfiguration, Adaptive shared resource, R-TNCES,
Petri nets, UML, ROS, E-health, Supracondylar humeral fracture, Mod-
eling, Simulation, Model checking.

iv

Abstrakt

Diese Arbeit schlgt fr die Entwicklung sicherer rekonfigurierbarer medi-
zinischer Robotersysteme den umfassenden Ansatz BROMETH vor. Die
Rekonfiguration ist eine ntzliche Eigenschaft von Software- und Hardware-
Komponenten, durch die sich deren Verhalten dynamisch zur Laufzeit an
die Ausfhrungsumgebung anpassen lsst. In der Arbeit werden R-TNCES-
basierte, mit PCP erweiterte Muster definiert, um rekonfigurierbare Sys-
teme mit adaptiven geteilten Ressourcen zu modellieren. Auerdem wird ein
Software-Werkzeug namens ZiZo vorgeschlagen, um derartige R-TNCES-
Modelle zu erstellen, zu simulieren und zu verifizieren. Zur Modellierung
solcher rekonfigurierbaren Systeme erfolgt anschlieend die Einfhrung eines
neuen UML-Profils, hier R-UML (Reconfigurable UML) genannt. Das Pro-
fil wird zum Management der Ressourcenteilung um eine PCP-basierte
Lsung erweitert. Des Weiteren wird eine automatische bersetzung von R-
UML nach R-TNCES vorgeschlagen; dies untersttzt das Model-Checking.
Schlielich schlgt diese Arbeit einen neuen Ansatz vor zur Generierung
von ROS-Codes aus verifizierten R-UML-Modellen. Um die Bedeutung
des BROMETH-Ansatzes zu belegen, wird dieser auf das BROS-Projekt
angewendet.

List of Figures

1.1 BROMETH methodology steps. 6
1.2 BROS’s class diagram. 7
1.3 Behaviour of B-BROS1 and B-BROS2 in AM. 11
1.4 Behavior of the surgeon, B-BROS1 and B-BROS2 in SAM. . 11

2.1 Gartland’s classification of supracondylar fractures of the
humerus. 26

2.2 Lagrange’s classification of supracondylar fractures of the
humerus. 26

2.3 Smida’s classification of supracondylar fractures of the humerus. 27
2.4 Fracture’s radiographs. 28
2.5 Injured elbow installed under the fluoroscopic image intensifier. 28
2.6 Elbow immobilization after obtaining fracture reduction. . . . 28
2.7 Lateral percutaneous pinning. 28

3.1 Behavior of A and B before a reconfiguration scenario 34
3.2 Behavior of A and B after a reconfiguration scenario 34
3.3 Illustrative example’s R-TNCES 35
3.4 Shared resource’s modeling. 37
3.5 Shared resource’s reconfiguration TNCES. 38
3.6 State TNCES. 39
3.7 Ceiling TNCES. 39
3.8 The resource Q’s modeling . 40
3.9 A task’s modeling. 41
3.10 Task’s reconfiguration TNCES. 41
3.11 Task’s state R-TNCES. 42
3.12 A and B’s modeling. 43
3.13 A and B behaviors after using PCP. 43
3.14 Screenshot from SESA. 44
3.15 Screenshot from SESA. 44
3.16 Specification step. 46
3.17 BROS modeling using ZiZo. 48
3.18 Certification step. 50
3.19 BROS’s simulation report. 51

4.1 Behavior of A and B before a reconfiguration scenario. 56
4.2 Behavior of A and B after a reconfiguration scenario. 57
4.3 A and B behaviors after using PCP. 57
4.4 Task class. 59
4.5 Resource class. 60

viii List of Figures

4.6 Running example’s object diagram. 60
4.7 Shared resource’s R-StD. 63
4.8 Task’s R-StD. 64
4.9 Task A’s R-StD. 65
4.10 Resource R’s R-StD. 66
4.11 Illustrative example’s R-TNCES. 70
4.12 Screenshot from SESA. 71
4.13 Tasks A and B’s modeling using PCP. 72
4.14 Screenshot from SESA. 73
4.15 Screenshot from SESA. 73
4.16 ZiZo’s different modules. 80
4.17 R-StD of BROS. 81
4.18 R-TNCES of BROS. 82
4.19 BROS’s simulation report. 82

5.1 Implementation step. 87
5.2 Middleware’s class diagram. 89
5.3 Sequence diagram of communication with CU. 90
5.4 Coordinate system axes. 91
5.5 Image matching applied on two fractured elbow images. . . . 92
5.6 Contour comparison performed by MW. 92
5.7 Different coordinate systems. 93
5.8 Reduction of a type II fracture. 94
5.9 Reduction of a type III fracture. 94
5.10 Operating room definition. 95
5.11 Blocker 1 and Blocker 2’s 3D modeling. 96
5.12 Pinning’s 3D modeling. 96
5.13 Limb’s 3D modeling. 96
5.14 Blocking the patient’s limb. 97
5.15 Robotized fracture reduction. 97
5.16 Blocking the fractured limb at the forearm. 97
5.17 Orientation of ”Pinning” in the case of a type II fracture. . . 98
5.18 Orientation of ”Pinning” in the case of a type III fracture. . . 98
5.19 Error rates per SCH fracture type. 101

List of Tables

1.1 Complementary Strengths of Robots and Humans. 3
1.2 BROS’s operating modes. 10

2.1 Gartland’s classification of supracondylar fractures of the
humerus. 25

2.2 Lagrange’s classification of supracondylar fractures of the
humerus. 26

2.3 Smida’s classification of supracondylar fractures of the humerus. 27

4.1 Correspondence table for R-StD translation into R-TNCES. . 67
4.2 Correspondence table for R-UML translation into ROS con-

figuration file. 78

5.1 Synchronization logic signals. 99
5.2 Sorting 42 SCH fractures’ radiographies according to La-

grange’s classification. 100

Nomenclature

α A function which maps a stereotype to an attribute

β A function which maps an attribute to a class

δ A function which maps a guard to a transition

ǫ A function which maps an action to a transition

η A function controlling tasks

γ A function which maps an event to a transition

ι A function defining whether a task is using a resource in the triggered
mode

Ω A function mapping a reconfigurable state diagram to a class

Ψ An input/output structure of TNCES module

∑

M A set of Judgment Matrices

∑

R A set of n2 shared resources

∑

R− TNCES A set of n1 R-TNCES

θ A function controlling resources

̟ A virtual coordinator handling
∑

M

ζ A function which maps a transition to a pair of states

A A finite set of attributes of classes

Ac A finite set of actions

B The behavior module that is a union of multi StD

B The distance separating the two wires

Bc A set of TNCES module input condition arcs

Be A set of TNCES module input event arcs

C A finite set of classes in a class diagram

Cin A finite set of TNCES module condition input signals

Cout A finite set of TNCES module condition output signals

xii Nomenclature

Cl A ceiling of a resource

ClDs A finite set of class diagrams

CM A camera matrix

CN A finite set of condition arcs

CN A superset of condition signals

Cs A set of TNCES module output condition arcs

D The humeral palette’s width

D0 The initial set of the clocks associated with the places

DC A superset of time constraints on output arcs

DR The set of minimum times that the token should spend at particular
place before the transition can fire

Dt A set of TNCES module output event arcs

Dt The final set of limitation time that defines maximum time that the
place may hold a token

Ein A finite set of TCNES module event input signals

Eout A finite set of TCNES module event output signals

EN A finite set of event arcs

EN A superset of event signals

Ev A finite set of events in transitions

F A finite set of flow arcs between places and transitions

F A superset of flow arcs

G A finite set of guards

M A finite set of methods of the classes

m0 The initial marking

O A finite set of objects

P A finite set of transitions

P A superset of places

PCP Priority Ceiling Protocol

Nomenclature xiii

R The control module consisting of a set of reconfiguration functions
R={r1,...,rn}

R− StDs A finite set of reconfigurable state diagrams

R− TNCES Reconfigurable Timed Net Condition/Event Systems

RDCS Reconfigurable Distributed Control Systems

Rec A parameter which indicates whether a resource/task is added to the
systems

RV A rotation vector

S A finite set of stereotypes

S The stability threshold

S The state of a resource/task

St A finite set of states in a state diagram

T A finite set of transitions

T A superset of transitions

Tr A finite state of transitions in a state diagram

V A function which maps an event-processing mode for every transition

W A function which maps a weight to a flow arc

Z The initial clock position

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 BROS: Robotic System for the Treatment of Supracondylar
Humeral Fracture . 7

1.2.1 Architecture . 7

1.2.2 Reconfiguration Modes 9

1.2.3 Shared Resources and Issues 10

1.3 Outline . 12

1.4 Originality . 12

1.5 Publications and Awards . 13

1.6 Collaboration . 14

2 State of the Art 15

2.1 Introduction . 16

2.2 IT State of the Art . 16

2.2.1 Net Condition/Event Systems 16

2.2.2 Timed Net Condition/Event System 17

2.2.3 Reconfigurable Timed Net Condition/Event System . 18

2.2.4 Tools Modeling Petri Nets 19

2.2.5 Model Checking . 19

2.2.6 Temporal Logic . 20

2.2.7 Priority Ceiling Protocol 22

2.2.8 Image Processing . 22

2.2.9 UML Profiles . 22

2.2.10 Formalism Transformation 23

2.2.11 Robot Operating System 24

2.3 Medical State of the Art . 25

2.3.1 Supracondylar Humeral Fracture’s Classifications . . . 25

2.3.2 Supracondylar Humeral Fracture Treatment 27

2.4 Summary . 28

3 Formal Modeling and Verification 31

3.1 Introduction . 32

3.2 Contribution 1: PCP-based Solution for Resource Sharing in
R-TNCES . 32

3.2.1 Motivations . 32

3.2.2 Case Study . 33

3.2.3 Formalization . 36

3.2.4 Modeling . 37

xvi Contents

3.2.5 Verification . 43

3.3 Contribution 2: New Environment ZiZo 44

3.3.1 Motivation . 44

3.3.2 Features . 45

3.4 Application: Specification and Certification of BROS 45

3.4.1 Specification Step . 45

3.4.2 Certification Step . 49

3.5 Summary . 52

4 New UML Profile: R-UML and Automatic Transformation
to ROS 53

4.1 Introduction . 54

4.2 Motivations . 54

4.3 Running Example . 56

4.4 R-UML Profile . 57

4.4.1 Structure Modeling . 58

4.4.2 Behavior Modeling . 61

4.5 Transformation from R-UML to R-TNCES 66

4.5.1 R-Std Translation into R-TNCES 66

4.5.2 Verification . 68

4.5.3 Implementation . 73

4.6 Transformation from R-UML to ROS 74

4.6.1 State of the Art . 74

4.6.2 Transformation Rules from R-UML to ROS 74

4.7 Application to BROS . 79

4.8 Summary . 82

5 Implementation of BROS 85

5.1 Introduction . 86

5.2 Platform and Environment 88

5.3 Middleware . 89

5.3.1 Architecture . 89

5.3.2 Image Processing . 91

5.4 Control Unit . 94

5.4.1 Station Definition . 95

5.4.2 B-BROS1 Module . 96

5.4.3 B-BROS2 Module . 96

5.4.4 P-BROS Module . 97

5.4.5 Synchronization Module 98

5.4.6 CU-MW Communication Module 99

5.4.7 Surgeon-Robot Interface 99

5.4.8 Simulation and Test of BROS 100

5.5 Summary . 101

Contents xvii

6 Conclusion and Perspectives 103
6.1 Conclusion . 104
6.2 Perspectives . 104

Bibliography 105

Chapter 1

Introduction

Contents

1.1 Introduction . 2

1.2 BROS: Robotic System for the Treatment of Supra-
condylar Humeral Fracture 7

1.2.1 Architecture . 7

1.2.2 Reconfiguration Modes 9

1.2.3 Shared Resources and Issues 10

1.3 Outline . 12

1.4 Originality . 12

1.5 Publications and Awards 13

1.6 Collaboration . 14

2 Chapter 1. Introduction

1.1 Introduction

The field of robotics is expanding day after day. The ability of robots to
replace, supplement or transcend human performance has had a profound
influence on many fields of our society, spanning fields such as agriculture,
military and especially medicine. Patients demand greater precision, less
and minimally invasive procedures, and faster recovery times. The increas-
ing life expectancy associated with a need for reducing costs and increas-
ing efficiency have opened the door for new and innovative solutions in the
medical robotic industry. The field of computer-assisted surgery is relatively
new since the first clinical application of a robot was performed to a neu-
rosurgery in 1985 [Kwoh 1988]. Since then, many research centers around
the world have developed a multitude of robotic surgical products to tackle
new areas such as ophthalmology, radiology, urology, cardiothoracic and or-
thopedics [Cleary 2001].

The field of computer-assisted surgery is relatively new. The first
clinical application of a robot was performed to a neurosurgery in 1985
[Kwoh 1988]. Since then, many research centers around the world have
developed a multitude of robotic and computer-assisted surgical prod-
ucts, tackling new areas such as orthopedics [Martelli 2000], radiology
[Bertaud 2008], urology [Llobet 2007], cardiothoracic [Costa 2012] and oph-
thalmology [Cleary 2001,Wang 2006,Gomes 2011].

At the beginning, the products consisted mainly of modifying industrial
robots for a given procedure, but the safety of such mechanisms was called
into question [Xu 2015,Garg 2013]. The current trend in surgical robotics
is that systems will no longer be adaptations of industrial robots, but in-
creasingly systems will be dedicated to a single task, with some autonomous
capabilities and an extreme level of safety [Riviere 2006]. Medical robots are
more and more accepted thanks to their ability to significantly improve sur-
geon’s technical capability [Kooijmans 2007,Martelli 2003]. They also take
advantage of the complementary strengths between humans and robotic de-
vices as described in Table 1.1 [Kutz 2003,Vendruscolo 2001]. Their function
is far from replacing the surgeon, but supporting him with ameliorated dex-
terity, visual feedback, and information integration [Marcus 2013,Hoeckel-
man 2015]. Furthermore, the actual systems still lack of flexibility concern-
ing their capacity to be autonomous and reconfigurable [Haux 2006].

1.1. Introduction 3

T
ab

le
1.
1:

C
om

p
le
m
en
ta
ry

S
tr
en

gt
h
s
of

R
ob

ot
s
an

d
H
u
m
an

s.

S
tr
en

gt
h
s

L
im

it
at
io
n
s

H
u
m
an

s

-
E
x
ce
ll
en
t
ju
d
gm

en
t

-
E
x
ce
ll
en
t
h
an

d
-e
ye

co
or
d
in
at
io
n

-
E
x
ce
ll
en
t
d
ex
te
ri
ty

(a
t
n
at
u
ra
l
h
u
-

m
an

sc
al
e)

-
A
b
le

to
in
te
gr
at
e
an

d
ac
t
on

m
u
l-

ti
p
le

in
fo
rm

at
io
n
so
u
rc
es

-
E
as
il
y
tr
ai
n
ed

-
V
er
sa
ti
le

an
d
ab

le
to

im
p
ro
v
is
e

-
P
ro
n
e
to

fa
ti
gu

e
an

d
in
at
te
n
ti
on

-
T
re
m
or

li
m
it
s
fi
n
e
m
ot
io
n

-
L
im

it
ed

m
an

ip
u
la
ti
on

an
d
d
ex
te
r-

it
y
ou

ts
id
e
n
at
u
ra
l
sc
al
e

-
C
an

n
ot

se
e
th
ro
u
gh

ti
ss
u
e

-
B
u
lk
y
en

d
-e
ff
ec
to
rs

-
L
im

it
ed

ge
om

et
ri
c
ac
cu

ra
cy

-
H
ar
d
to

ke
ep

st
er
il
e

-
A
ff
ec
te
d
b
y
ra
d
ia
ti
on

,
in
fe
ct
io
n

R
ob

ot
s

-
E
x
ce
ll
en
t
ge
om

et
ri
c
ac
cu

ra
cy

-
U
n
ti
ri
n
g
an

d
st
ab

le
-
Im

m
u
n
e
to

io
n
iz
in
g
ra
d
ia
ti
on

-
O
p
er
at
e
at

m
an

y
d
iff
er
en
t
sc
al
es

of
m
ot
io
n
an

d
p
ay
lo
ad

-
In
te
gr
at
e
m
u
lt
ip
le

so
u
rc
es

of
n
u
-

m
er
ic
al

an
d
se
n
so
r
d
at
a

-
P
os
si
b
il
it
y
of

le
ss

or
m
in
im

al
ly

in
-

va
si
v
e
su
rg
er
y
(M

IS
)

-
P
o
or

ju
d
gm

en
t

-
H
ar
d
to

ad
ap

t
to

n
ew

si
tu
at
io
n
s

-
L
im

it
ed

d
ex
te
ri
ty

-
L
im

it
ed

h
an

d
-e
ye

co
or
d
in
at
io
n

-
L
im

it
ed

h
ap

ti
c
se
n
si
n
g

-
L
im

it
ed

ab
il
it
y
to

in
te
gr
at
e
an

d
in
-

te
rp
re
t
co
m
p
le
x
in
fo
rm

at
io
n

4 Chapter 1. Introduction

One of the most common injuries faced by pediatric orthopedic surgery
is the supracondylar fracture of the humerus (or SCH). It accounts for 18%
of all pediatric fractures and 75% of all elbow fractures [Landin 1986]. It
mainly occurs during the first decade of life and are more common among
boys [Landin 1983]. The current treatment of SCH may lead to many com-
plications. The neurological ones consists in damages caused to the median
nerve during the reduction of the fracture or during the open procedure. The
study in [Gosens 2003] also reports some vascular complications, mostly con-
sisting in the disruption of the brachial artery. All those complications are
principally caused by the ”blind” pinning the surgeons perform [Flynn 1974].
Even though they are usually using an image intensifier, the medical staff
can’t guess in advance the trajectory the pin will follow. Images are actually
taken once the pin is inserted, which may cause the previously mentioned
complications. Other inconvenient of the current treatment technique is the
recurrent medical staff exposure to radiations when using the fluoroscopic
C-arm [Clein 1954]. These X-ray Radiations are harmful, and fluoroscopic
examinations usually involve higher radiation doses than simple radiography.
For example, a work in [Rampersaud 2000a] showed that, for spine surgeons,
radiation exposures may approach or exceed guidelines for cumulative ex-
posure. Another research in [Haque 2006] showed that the fluoroscopically
assisted placement of pedicle screws in adolescent idiopathic scoliosis may
expose the spine surgeon to radiation levels that exceed established lifetime
dose equivalent limits.

Considering these constraints and issues, a new national project, bap-
tized BROS (Browser-based Reconfigurable Orthopedic Surgery), has been
launched to remedy these problems. BROS is a new reconfigurable robotized
platform dedicated to the treatment of supracondylar humeral fractures in
children. It is capable of running under several operating modes to meet the
surgeons requirements and well-defined constraints. Thus, it can automati-
cally perform the whole surgery or bequeath some tasks to the surgeon.

Given the said issues faced when designing a reconfigurable system with
adaptive resources,we aim to extricate a new methodology to be followed
each time we want to validate and certify a medical robotized platform.
And this is what we are proposing in this thesis. This methodology will be
baptized BROMETH and composed of four main steps as shown in Figure
1.1: specification, certification, implementation and deployment. The first
step, specification, consists in defining the expectations from the system to
design and express them in a modeling formalism. During the certification
step, we apply mathematical properties on the obtained models to check
some properties. Once the system is specified and certified, we move to the
implementation step where the checked models are translated into program-
ming codes which are simulated, then, on specific software tools. The last
step, deployment, comes to integrate the validated codes on the correspond-
ing hardware. This work introduces BROS, the new robotic platform which

1.1. Introduction 5

ensures a safer treatment of the SCH for both surgeons and patients. The
whole BROMETH methodology is applied on the BROS system to serve
two purposes: certifying the safety of BROS from a design perspective and
proving the soundness and relevance of the said methodology. The latter is
actually applicable on any other reconfigurable distributed architecture and
permits to safely design it from the specification to the deployment steps.

Several methodologies have been recently proposed in our community to
design safe medical robotic systems. The work in [Kouskoulas 2013] applies
quantified differential-dynamic logic (QdL) to analyze a control algorithm
designed to provide directional force feedback for a surgical robot. Several
problems were revealed in the algorithm, proving that it was in general un-
safe, and described exactly what could go wrong. The work then applied
QdL to guide the development of a new algorithm that provides safe oper-
ation along with directional force feedback.

The authors in [Rahimi 1991] explains a design framework for the soft-
ware safety module for industrial robotic operations. The module proposed
includes preconditions and post-conditions for each robot action based on
a static model of the robot physical configurations and the environment.
A generic software safety verification and encoding is presented for safety-
critical actions of the robot. Another work is introduced in [Sun 2007] and
uses RT-PROMELA to construct models which were checked in RT-SPIN.
In order to reduce the state explosion problem, a model is decomposed into
multiple sub-models, each with a smaller state space that can be checked
individually, and then the proofs checked for noninterference. Cooperation
among multiple clock variables due to their lack of notion of urgency and
their asynchronous interactions, are also addressed.

Another work cited in [Dumitru 2015] examined the potential risks for
the design and manufacture products for medical robotics. It researched all
foreseeable potential defects and their causes and effects for a robotic arm.
Through a qualitative assessment of the effect of a defect, the probability
of occurrence and probability of detection were discovered risks and set
appropriate corrective measures.

These works are relevant, however, they don’t deal with systems with
a self-reconfiguration function like BROS. They don’t simulate either the
models nor the codes after being corrected.

6 Chapter 1. Introduction

F
ig
u
re

1.
1:

B
R
O
M
E
T
H

m
et
h
o
d
ol
og

y
st
ep

s.

1.2. BROS: Robotic System for the Treatment of Supracondylar
Humeral Fracture 7

1.2 BROS: Robotic System for the Treatment of
Supracondylar Humeral Fracture

Considering these constraints and issues, a new national project, bap-
tized BROS (Browser-based Reconfigurable Orthopedic Surgery), has been
launched to remedy these problems. BROS is a new reconfigurable robotized
platform dedicated to the treatment of supracondylar humeral fractures in
children. It is capable of running under several operating modes to meet the
surgeons requirements and well-defined constraints. Thus, it can automati-
cally perform the whole surgery or bequeath some tasks to the surgeon.

1.2.1 Architecture

BROS is a robotic platform dedicated to humeral supracondylar fracture
treatment. It is able to reduce fractures, block the arm and fix the elbow
bone’s fragments by pinning. It also offers a navigation function to follow the
pins’ progression into the fractured elbow. BROS is, as shown in the class
diagram in Figure 1.2, composed of a browser (BW), a control unit (UC),
a middleware (MW), a pinning robotic arm (P-BROS) and 2 blocking and
reducing arms (B-BROS1 and B-BROS2). The said components are detailed
hereafter.

Figure 1.2: BROS’s class diagram.

8 Chapter 1. Introduction

Browser

The browser, which is a Medtronics’s product and called FluoroNav, is a
combination of specialized surgical hardware and image guidance software
designed for use with a StealthStation Treatment Guidance System. To-
gether, these products enable a surgeon to track the position of a surgical
instrument in the operating room and continuously update this position
within one or more still-frame fluoroscopic images acquired from a C-arm.
The advantages of this virtual navigation over conventional fluoroscopic nav-
igation include:

❼ the ability to navigate using multiple fluoroscopic views simultane-
ously;

❼ the ability to remove the C-arm from the operative field during navi-
gation;

❼ significant reduction in radiation exposure to the patient and staff.

In addition, the FluoroNav System allows the surgeon to:

❼ simulate and measure instrument progression or regression along a
surgical trajectory;

❼ save instrument trajectories, and display the angle between two saved
trajectories or between a saved trajectory and the current instrument
trajectory;

❼ measure the distance between any two points in the cameras field of
view;

❼ measure the angle and distance between a surgical instrument and a
plane passing through the surgical field (such as the patient midplane).

Primary hardware components in the FluoroNav System include the Fluo-
roNav Software, a C-arm Calibration Target, a reference frame, connection
cables, and specialized surgical instruments.

Control Unit

The CU ensures the smooth running of the surgery and its functional
safety. It asks the supracondylar fracture’s type to the middleware, and
then computes, according to it, the different coordinates necessary to spec-
ify the robotic arms’ behaviors concerning the fracture’s reduction, blocking
the arm and performing pinning. The surgeon monitors the intervention
progress thanks to a dashboard installed on the CU.

1.2. BROS: Robotic System for the Treatment of Supracondylar
Humeral Fracture 9

Middleware

The middleware is a software installed on the browser which acts as a me-
diator between the CU and the BW. It is an intelligent component that
provides several features of real-time monitoring and decision making. The
middleware contains several modules: (i) an image processing module, (ii)
a controller, (iii) a communication module with the CU.

Pinning Robotic Arm

The pinning robotic arm, P-BROS, inserts two parallel Kirschner wires ac-
cording to Judet technique [Judet 1953] to fix the fractured elbow’s frag-
ments. To insure an optimal postoperative stability, BROS respects the
formula:

S = B/D > 0.22 (1.1)

where S is the stability threshold, B the distance separating the two wires
and D the humeral palette’s width [Smida 2007].

Blocking and Reducing Robotic Arms

B-BROS1 blocks the arm at the humerus to prepare it to the fracture re-
duction. B-BROS2 performs then a closed reduction to the fractured elbow
before blocking it once the reduction is properly completed.

1.2.2 Reconfiguration Modes

Reconfiguration is an important feature of BROS and makes the latter an
original medical robotic system. It is designed to be able to operate in
different modes to be as flexible as possible and adapted to the characteristics
and requirements of the fracture under treatment. The surgeon can actually
decide to take over and manually perform a task if BROS does not succeed to
automatically perform it. The said task can be fracture reduction, blocking
the arm or pinning the elbow. Thus, five different operating modes are
designed, detailed hereafter and summarized in Table 1.2.

Automatic Mode (AM)

The whole surgery is performed by BROS. The surgeon oversees the opera-
tion running.

Semi-Automatic Mode (SAM)

The surgeon reduces the fracture. BROS performs the remaining tasks.

10 Chapter 1. Introduction

Degraded Mode for Pinning (DMP)

BROS only realizes the pinning. It is to the surgeon to insure the rest of
the intervention.

Degraded Mode for Blocking (DMB)

BROS only blocks the fractured limb. The remaining tasks are manually
done by the surgeon.

Basic Mode (BM)

The whole intervention is manually performed. BROS provides navigation
function using the middleware that checks in real time the smooth running
of the operation.

Table 1.2: BROS’s operating modes.

Reduction Blocking Pinning Unblocking

AM Robotized Robotized Robotized Robotized

SAM Manual Robotized Robotized Robotized

DMP Manual Manual Robotized Robotized

DMB Manual Robotized Manual Robotized

BM Manual Manual Manual Manual

1.2.3 Shared Resources and Issues

BROS is a distributed system composed of several entities: the browser,
the control unit, the middleware, the two blocking and reducing arms and
the two pinning arms. The said entities may be represented by several
sharing resource processes. The most relevant resources in our system are
the browser and the patient’s arm. The first is solicited by the robotic arms,
the MW and the surgeon (when a manual reduction or pining is performed)
to update the image on the screen. As to the fractured arm, it may be used
by whether the surgeon or the robotic arms.

Applying a reconfiguration scenario on BROS by switching from one
operating mode to another may actually lead to a deadlock because of con-
current access to shared resources and which is usually unsafe. This is what
happens for example when switching from AM to SAM. To illustrate this
situation, we represent B-BROS1, B-BROS2 and the surgeon by three pro-
cesses with increasing priorities (B-BROS1 < B-BROS2 < the surgeon).
This is due to the fact that human intervention takes precedence over the

1.2. BROS: Robotic System for the Treatment of Supracondylar
Humeral Fracture 11

robotic one, and B-BROS2 has one more function than B-BROS1, which is
the fracture reduction.

As illustrated in Figure 1.3, B-BROS1 starts by locking the patient’s arm
to block it and frees it once the blocking is achieved (P(A) and V(A) re-
spectively stand for locking and freeing the fractured limb). B-BROS2 locks
it to reduce the fracture, and then locks the browser (P(BW) and V(BW)
respectively stand for locking and freeing the browser) time to update the
image displayed on the screen. Once the blocking is done, B-BROS2 frees
the browser. The two robotic arms will successively use the patient’s arm
to unlock it at the end of the intervention.

Figure 1.3: Behaviour of B-BROS1 and B-BROS2 in AM.

When the surgeons judges the fracture reduction performed by B-BROS2
as unsatisfying, he can decide to manually do it, and, thus, switches the
system from AM to SAM. However, when trying to use the patient’s arm,
he finds it already locked by B-BROS2 and a deadlock occurs as illustrated
in Figure 1.4.

Figure 1.4: Behavior of the surgeon, B-BROS1 and B-BROS2 in SAM.

We see, according to this example, that problems may be faced in recon-
figurable control systems, and in this case with BROS, when dealing with
concurrent processes that share resources.

12 Chapter 1. Introduction

1.3 Outline

In Chapter 2, an overview of IT concepts and computer techniques is given,
followed by an introduction to some medical knowledge necessary to the
achievement of the project. This chapter also relates the state of the art in
several areas on which we work throughout this thesis.

Chapter 3 defines new Petri Nets-based to model both tasks and re-
sources of a reconfigurable system. A new Petri Nets-based editor and
random-simulator named ZiZo is also developed to model and simulate the
generated models. These new concepts and tools are applied on BROS as
part of going through the specification and certification steps of BROMETH.

Chapter 4 proposes a new UML profile, baptized R-UML (Reconfigurable
UML), to model flexible control systems sharing adaptive shared resources.
The profile is enriched with a PCP-based solution for the management of
resource sharing which is defined in Chapter 3. The chapter also presents an
automatic translation of R-UML into R-TNCES to support model checking.
BROS serves as an application of this new concept on a real study case.
This chapter also introduces new solutions to automatize the generation of
codes usable by Robot Operating System from R-UML models.

Chapter 5 discusses the implementation step of BROS. It exposes and
evaluates the results of the treatment of supracondylar humeral fracture by
BROS. The development of the middleware and control unit of BROS are
detailed in this chapter.

In Chapter 6, the results shown are discussed and conclusions of the
work presented are drawn. Future improvements that could enrich the work
developed during this dissertation are proposed.

1.4 Originality

This work starts from a real medical issue to extricate a new methodology
relevant to the development of various reconfigurable robotic systems.

The said methodology proposes several theoretic contributions such as
PCP-based solutions for the management of adaptive shared resources in R-
TNCES. A new UML profile (R-UML) is also introduced and which allows
to model and verify reconfigurable systems. Likewise, automatic translation
from R-UML to R-TNCES and from R-UML to ROS are introduced.

The previous contributions were integrated in a new software tool, bap-
tized ZiZo, which permits modeling, simulating and verifying reconfigurable
real-time control tasks sharing adaptive resources.

The relevance of the methodology is proved by applying it to the medical
robotic system BROS. The latter is now certified to be safe and is ready to
be implemented.

1.5. Publications and Awards 13

1.5 Publications and Awards

The outcomes of this thesis are published in the hereafter list of publications:

International Conferences (published):

[1] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui:
PCP-based Solution for Resource Sharing in Reconfigurable Timed Net Con-
dition/Event Systems. ADECS @ Petri Nets 2014: 52-67, Class B

[2] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Georg Frey: ZiZo: Modeling, Simulation and Verification of Reconfigurable
Real-time Control Tasks Sharing Adaptive Resources - Application to the
Medical Project BROS. HEALTHINF 2015: 20-31, Class C

[3] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Georg Frey: BROS - A New Robotic Platform for the Treatment of Supra-
condylar Humerus Fracture. HEALTHINF 2015: 151-163, Class C. Se-
lected Paper

[4] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Georg Frey: Transformation from R-UML to R-TNCES: New Formal
Solution for Verification of Flexible Control Systems. ICSOFT-PT 2015:
64-75, Class B. Selected Paper

Journals (Accepted):

[1] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Zied Jlalia, Georg Frey, Mahmoud Smida: BROMETH: Methodology to
Design Safe Reconfigurable Medical Robotic Systems, International Journal
of Medical Robotics and Computer Assisted Surgery, Impact factor:
1.511

Book Chapters (published):

[1] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Georg Frey: Towards a Safer and More Optimal Treatment of the Supra-
condylar Humerus Fracture, Biomedical Engineering Systems and Technolo-
gies 2015. ISBN: 978-3-319-27706-6 (Print) 978-3-319-27707-3 (Online).

[2] Mohamed Oussama Ben Salem, Zied Jlalia, Olfa Mosbahi, Mohamed
Khalgui, Mahmoud Smida: New Robotic Platform for a Safer and More Op-
timal Treatment of the Supracondylar Humerus Fracture, European Project
Space on Intelligent Systems, Pattern Recognition and Biomedical Systems
2015. ISBN: 978-989-758-095-6.

[3] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui,
Georg Frey: R-UML: An UML Profile for Verification of Flexible Control
Systems. Communications in Computer and Information Science 2016.

14 Chapter 1. Introduction

ISSN: 1865-0929.

Awards :

- 1st Prize - Tunisian National Contest ”My thesis in 180 seconds” (Franco-
phone University Association, June 2015).
- Best Mobidoc PhD Student (Agence Nationale de Promotion de la
Recherche Scientifique, November 2015).

1.6 Collaboration

This research work is carried out within a MOBIDOC PhD thesis of the
PASRI program, EU-funded and administered by ANPR (Tunisia). The
BROS national project is a collaboration between the orthopedic institute
of Mohamed Kassab, eHTC, INSAT (LISI Laboratory), Tunisia Polytechnic
School and Saarland University.

Chapter 2

State of the Art

Contents

2.1 Introduction . 16

2.2 IT State of the Art . 16

2.2.1 Net Condition/Event Systems 16

2.2.2 Timed Net Condition/Event System 17

2.2.3 Reconfigurable Timed Net Condition/Event System . 18

2.2.4 Tools Modeling Petri Nets 19

2.2.5 Model Checking . 19

2.2.6 Temporal Logic . 20

2.2.7 Priority Ceiling Protocol 22

2.2.8 Image Processing . 22

2.2.9 UML Profiles . 22

2.2.10 Formalism Transformation 23

2.2.11 Robot Operating System 24

2.3 Medical State of the Art 25

2.3.1 Supracondylar Humeral Fracture’s Classifications . . . 25

2.3.2 Supracondylar Humeral Fracture Treatment 27

2.4 Summary . 28

16 Chapter 2. State of the Art

2.1 Introduction

This dissertation reports formal modeling and verification of reconfigurable
discrete event control systems (RDECSs). All independent innovation works
relating to modeling are based on the formalisms Net Condition/Event Sys-
tem (NCES) and Timed Net Condition/Event System (TNCES) and Recon-
fonfigurable Timed Net Condition/Event System (R-TNCES). Model check-
ing technologies are applied to perform the formal verification. The main
contributions of this work are applied to a medical robotic platform dealing
with supracondylar humeral fracture. Thus, for the better understanding of
works of this dissertation, relevant elemental knowledge on Petri Nets-based
formalisms, model checking technologies and other software technologies are
recalled in this chapter. We present, then, the different classifications of
supracondylar humeral fracture and how it is currently treated.

2.2 IT State of the Art

Several computer concepts, techniques and software used throughout this
work are introduced in this section.

2.2.1 Net Condition/Event Systems

The formalism of Net Condition/Event Systems (NCES) is an extension
of the well known Petri net formalism. It was introduced by Rausch and
Hanisch in [Rausch 1995] and further developed through the last years, in
particular in [Hanisch 1999], according to which a NCES is a place-transition
net formally represented by a tuple:

NCES = (P, T, F, CN,EN,Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt,m0) (2.1)

where:

❼ P (resp. T) is a non-empty finite set of places (resp. transitions),

❼ F is a set of flow arcs, F : (P × T) ∪ (T × P),

❼ CN (resp. EN) is a set of condition (resp. event) arcs, CN ⊆ (P × T)
(resp. EN ⊆ (T × T)),

❼ Cin (resp. Ein) is a set of condition (resp. event) inputs,

❼ Cout (resp. Eout) is a set of condition (resp. event) outputs,

❼ Bc (resp. Be) is a set of condition (resp. event) input arcs in a NCES
module,

2.2. IT State of the Art 17

❼ Bc ⊆ (Cin × T) (resp. Be ⊆ (Ein × T)),

❼ Cs (resp. Dt) is a set of condition (resp. event) output arcs,

❼ Cs ⊆ (P × Eout) (resp. Dt(T × Eout)),

❼ m0 : P → 0, 1 is the initial marking.

2.2.2 Timed Net Condition/Event System

The formalism was introduced by [Hanisch 1997]. A TNCES is a tuple:

TNCES = (P, T, F,m0,Ψ, CN,EN,DC) (2.2)

where:

❼ P = {p1, p2, ..., pn} is a finite set of places;

❼ T = {t1, t2, ..., tm} is a finite set of transitions;

❼ F ⊆ (P × T) ∪ (T × P) is a finite set of flow arcs between places and
transitions;

❼ m0 is initial marking;

❼ CN ⊆ (P × T) is a finite set of condition arcs;

❼ EN ⊆ (T × T) is a finite set of event arcs.

Ψ is input/output structure of TNCES module which is represented by
the following tuple:

Ψ = (Cin, Ein, Cout, Eout, Bc,Be, Cs,Dt) (2.3)

where:

❼ Cin defines a finite set of TNCES module condition input signals;

❼ Ein defines a finite set of TCNES module event input signals;

❼ Cout defines a finite set of TNCES module condition output signals;

❼ Eout defines a finite set of TCNES module event output signals;

❼ Bc ⊆ Cin × T is a set of TNCES module input condition arcs;

❼ Be ⊆ En× T is a set of TNCES module input event arcs;

❼ Cs ⊆ P × Cout is TNCES module output condition arcs;

❼ Dt ⊆ T × Eout is a set of TNCES module output event arcs.

18 Chapter 2. State of the Art

Time intervals are assigned to the pre-transition flow arcs F ⊆ P × T ,
which impose time constrains to the firing of the transition:

DC = (DR,DL,D0) (2.4)

where:

❼ DR represents the set of minimum times that the token should spend
at particular place before the transition can fire;

❼ DL is the final set of limitation time that defines maximum time that
the place may hold a token (if all the other conditions for transition
firing are met);

❼ D0 is the initial set of the clocks associated with the places.

2.2.3 Reconfigurable Timed Net Condition/Event System

An R-TNCES is an extension of the formalism TNCES with a specific func-
tion of self-reconfiguration [Zhang 2013, Zhang 2015,Wang 2015]. It is de-
fined as a structure R-TNCES =(B, R), where R is the control module
consisting of a set of reconfiguration functions R = r1,...,rn and B is the
behavior module that is a union of multi TNCESs, represented as

B = (P, T, F,W,CN,EN,DC, V, Z) (2.5)

where:

❼ P (respectively, T) is a superset of places (respectively, transitions),

❼ F ⊆ (P × T) ∪ (T × P) is a superset of flow arcs,

❼ W : (P×T)∪(T×P)→ {0, 1}maps a weight to a flow arc, W (x, y) > 0
if (x, y) ∈ F , and W(x, y)=0 otherwise, where x, y ∈ P ∪ T ,

❼ CN ⊆ (P ×T) (respectively, EN ⊆ (T ×T)) is a superset of condition
signals (respectively, event signals),

❼ DC : F ∩(P×T)→ {[l1, h1], ..., [l|F∩(P×T)|, h|F∩(P×T)|} is a superset of
time constraints on output arcs, where i ∈ [1, |F ∩ (P ×T)|], li, hi ∈ N ,
and li < hi,

❼ V : T → {∨,∧} maps an event-processing mode (AND or OR) for
every transition, (vii) Z0 = (M0, D0), where M0 : P → {0, 1} is the
initial marking and D0 : P → {0} is the initial clock position.

2.2. IT State of the Art 19

2.2.4 Tools Modeling Petri Nets

Several tools already exist to model and/or simulate Petri nets and their ex-
tensions. For example, CPN tools is a software for editing, simulating and
analyzing Colored Petri Nets. It features a fast simulator that efficiently
handles both untimed and timed nets. Full and partial state spaces can be
generated and analyzed, and a standard state space report contains informa-
tion such as boundedness properties and liveness properties [Ratzer 2003].
Petri.NET is another tool which allows modeling, simulation and real-time
implementation of static and dynamic Petri nets. The results of a Petri
net model simulation are presented to the user in the form of a token game
and in the graphical form showing diagrams of a state vector [Genter 2007].
Nevertheless, neither CPN tools nor Petri.NET can support R-TNCES with
their condition and event signals.

The VisualVerification (ViVe) toolset is a tool chain for automatic verifi-
cation of distributed control systems. It allows creation and modification of
model components in modelling language of Net Condition/Event Systems
(NCES) [Suender 2011]. But, it does not deal with the notion of time in
NCES and the reconfiguration feature they may have. The TNCES-Editor,
developed at the Martin Luther University Halle-Wittenberg, allows the
graphical modeling of all NCES based subtypes, including R-TNCES [Du-
binin 2006]. To support interpretation and reachable state analysis, the
TNCES-Editor offers an optional labeling of transitions. The whole net
structure including the labels will be stored in a special file format (*.pnt)
which can be used as an import file for the model-checker SESA. How-
ever, TNCES-Editor doesn’t feature the simulation of a built R-TNCES,
nor highlights the reconfiguration aspect of a DRCS.

2.2.5 Model Checking

Model-checking is a technique for automatically verifying the correctness
properties of finite-state systems [Rouff 2012]. It is a general verification
approach that is applicable to a wide range of applications such as embedded
systems, software engineering, and hardware design. It also supports partial
verification, i.e., properties can be checked individually, thus allowing focus
on the essential properties first. Model-checking is a potential ”push-button”
technology; the use of model checking requires neither a high degree of user
interaction nor a high degree of expertise. It can be also easily integrated
in existing development cycles since its learning curve is not very steep, and
empirical studies indicate that it may lead to shorter development times
[Baier 2008].

Model checking for TNCES and R-TNCES is based on their reachability
graphs. SESA [Starke 2002] is an effective software environment for the
analysis of TNCES, which computes the set of reachable states exactly.

20 Chapter 2. State of the Art

Typical properties which can be verified are boundedness of places, liveness
of transitions, and reachability of states. In addition, temporal/functional
properties based on Computation Tree Logic (CTL) specified by users can
be checked manually. Nevertheless, R-TNCES lacks of an environment to
edit, simulate and verify its models. It cannot model systems with adaptive
shared resources neither.

2.2.6 Temporal Logic

The Computation Tree Logic (CTL) offers facilities for the specification
of properties to fulfill by the system behavior [Roch 2000a, Roch 2000b].
In this section, we present this logic and two of its extensions: Extended
Computation Tree Logic (denoted by ECTL) and the Timed Computation
Tree Logic (denoted by TCTL).

Computation Tree Logic

In CTL, all formulae specify behaviors of the system starting from an as-
signed state in which the formula is evaluated by taking paths (e.g. sequence
of states) into account. The semantics of formulae is dened with respect to
a reachability graph where states and paths are used for the evaluation. A
reachability graph M consists of all global states that the system can reach
from a given initial state. It is formally dened as a tuple M = [Z,E] where

❼ Z is a finite set of states,

❼ E is a finite set of transitions between states, e.g. a set of edges (z, z′),
such that z, z′ ∈ Z and z′ is reachable from z.

In CTL, paths play a key role in the denition and evaluation of formulae.
A path denoted by (zi) starting from the state z0 is a sequence of states,
(zi) = z0z1... such that ∀j ∈ N, there is an edge (zj ,zj+1) ∈ E. The truth
value of a CTL formula is evaluated with respect to a certain state of the
reachability graph. Let z0 ∈ Z be a state of the reachability graph and ϕ
be a CTL formula. The relation z0 |= ϕ means that the CTL formula ϕ is
satisfied in the state z0. Then the relation |= for a CTL formula is defined
as follows:

❼ z0 |= EFϕ, if there is a path (zi) and j > 0 such that zj |= ϕ,

❼ z0 |= AFϕ, if for all paths (zi), there exists j > 0 such that zj |= ϕ,

❼ z0 |= AGϕ, if for all paths (zi) and for all j > 0, it holds zj |= ϕ.

2.2. IT State of the Art 21

Extended Computation Tree Logic

In CTL, it is rather complicated to refer to information contained in certain
transitions between states of a reachability graph. A solution is given in
[Roch 2000a, Roch 2000b] for this problem by proposing an extension of
CTL called Extended Computation Tree Logic ECTL. A transition formula
is introduced in ECTL to refer to a transition information contained in the
edges of the reachability graph. Since it is wanted to refer not only to state
information but also to steps between states, the structure of the reachability
graph M = [Z,E] is changed as follows:

❼ Z is a finite set of states,

❼ E is a finite set of transitions between states, e.g. a set of labeled edges
(z, s, z′), such that z, z′ ∈ Z and z′ is reachable from z by executing
the step s..

Let z0 ∈ Z be a state of the reachability graph, τ a transition formula
and ϕ an ECTL formula. The relation � for ECTL formulae is defined
inductively:

❼ z0 � EτXϕ: iff there exists a successor state z1 such that there is an
edge (z0, s, z1) ∈ E where (z0, s, z1) � τ and z1 � ϕ holds,

❼ z0 � AτXϕ: iff z1 � ϕ holds for all successors states z1 with an edge
(z0, s, z1) ∈ E such that (z0, s, z1) � τ holds.

Timed Computation Tree Logic

TCTL is an extension of CTL to model qualitative temporal assertions to-
gether with time constraints. The extension essentially consists in attaching
a time bound to the modalities and we note that a good survey can be found
in [Alur 1991]. For a reachability graph M = [Z,E], the state delay D is
defined as a mapping D : Z → N0 and for any state z = [m,u] the number
D(z) is the number of time units which have to elapse at z before firing any
transition from this state. For any path (zi) and any state z ∈ Z we put:

❼ D[(zi, z] = 0,if z0 = z,

❼ D[(zi, z] = D(z0)+D(z1)+ ...+D(zk−1, if zk = z and z0, ..., zk−1 6= z.

In other words, D[(zi, z] is the number of time units after which the state
z on the path (zi) is reached the first time, e.g. the minimal time distance
from z0.

Let z0 ∈ Z be a state of the reachability graph and ϕ a TCTL formula.
The relation � for TCTL is dened as follows:

22 Chapter 2. State of the Art

❼ z0 � EF [l, h]ϕ, iff there is a path (zi) and a j > 0 such that zj � ϕ
and l ≤ D((zi), zj) ≤ h,

❼ z0 � AF [l, h]ϕ, iff for all paths (zi) there is a j > 0 such that zj � ϕ
and l ≤ D((zi), zj) ≤ h.

2.2.7 Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) [Goodenough 1988] in real-time com-
puting is a synchronization protocol for shared resources to avoid unbounded
priority inversion and mutual deadlock due to wrong nesting of critical sec-
tions. In this protocol, each resource R is assigned a priority ceiling Cl(R),
which is equal to the highest priority of the tasks that may lock it. A task
can acquire a resource only if the resource is free and has a higher priority
than the priority ceiling of the rest resources in lock by other tasks.

Let us assume a system to be composed of the tasks T1, T2, T3 and T4

(having respectively the increasing priorities 1, 2, 3 and 4) and two resources
R and Q : R can be used by T1 and T2 and Q by T1 and T4. Then, Cl(R)=2
and Cl(Q)=4. Thus, T2 is blocked if it tries to block R which is free when
Q is locked.

2.2.8 Image Processing

One of image processing techniques is image matching which consists in
comparing images in order to obtain a measure of their similarity. It ex-
tracts invariant local features for all images, and then uses voting to rank
the database images in similarity with the query image [Grauman 2005a].
Another technique is contour comparison. It consists in detecting an image
contour by quantifying the presence of a boundary at a given image location
through local measurements [Arbelaez 2011]. The said two techniques are
used by the middleware of our reconfigurable system, BROS.

For image processing, a C++ library named OpenCV is used. OpenCV
is released under a BSD license and hence it’s free for both academic and
commercial use. OpenCV was designed for computational efficiency and
with a strong focus on real-time applications. Usage ranges from interactive
art, to mines inspection, stitching maps on the web or through advanced
robotics [Bradski 2008]. OpenCV has already used in medical image pro-
cessing and it gained the spurs of the community working on this field [In-
tel 2012,Nolden 2013,Membarth 2012].

2.2.9 UML Profiles

The idea of being able to, more or less automatically and systematically,
verify and validate UML-based models has been around for a while, so there
is a rather large body of literature on the topic. Thus, a number of UML

2.2. IT State of the Art 23

profiles are proposed for embedded and real-time systems. The authors
in [Martin 2001] propose a profile for specification, design and verification
of embedded real-time systems. It takes advantage of the best concepts
of UML, Real-Time UML, functional-architecture co-design and platform
based design. Nevertheless, the profile features concurrency, communica-
tion and implementation issues. The profile proposed in [Selic 1998], UML-
RT, is a complete modeling language which allows to model complex and
event-driven real-time systems. However, it does not support time and time
constraints modeling [Gherbi 2006] and has limited modeling capabilities for
performance and architecture [Staines 2007]. Another UML standard pro-
file, SPT, permits to model scheduling, performance and time of embedded
real-time systems [Group 2005], but it has shortcomings in expressive power,
flexibility and reconfiguration [Gérard 2010]. SPT was replaced, then, with
another UML standard profile, MARTE [Shousha 2012], which is used for
modeling and analysis of real-time and embedded systems [Mallet 2009].
It extends UML 2.0 to cover the aspects of time and hardware and soft-
ware resources. UML MARTE can not be used, however, for modeling of
dynamic composition as it only provides the static and predefined set of
configuration [Hamid 2010].

2.2.10 Formalism Transformation

Several works have been recently proposed to automatically map UML
models into performance models, such as queueing networks [Smith 2005,
D’Ambrogio 2005], Petri nets [Bernardi 2007, Petriu 2007] and simulation
[Marzolla 2004].

For example, the authors in [Merseguer 2002] propose a two-step cor-
respondence between UML models and labeled generalized stochastic Petri
nets (LGSPN): First, each UML state machine diagram describing the soft-
ware architecture behavioral is independently converted into the correspond-
ing LGSPN; secondly, the different obtained LGSPNs are joined according
to the information contained in the UML use case and sequence diagrams.
However, this solution disregards the hardware limits and supposes that we
dispose of infinite resources.

The authors in [Woodside 2005] propose another approach using LGSPN,
which was lately extended in [Petriu 2007]. The proposition specifies a per-
formance metamodel, named Core Scenario Model (CSM), as an intermedi-
ate model. The latter uses deployment diagrams to represent the software
architecture structure. UML behavioral diagrams (activity diagrams and/or
sequence diagrams) are used to describe the software architecture behavior
and the related performance specifications, endowed with special tags and
stereotypes. The CSM can be mapped into several kinds of performance
models, such as Petri nets, queueing network and simulative models.

The work in [Gu 2005] uses an algorithm based on XML algebra to

24 Chapter 2. State of the Art

transform UML models in XML format and, then ,to the corresponding
layered queueing network. This works extends the results of [Petriu 2002]
which propose adopting the layered queueing networks as the target per-
formance model. Two sequential steps are required to perform the UML
transformation: First, an UML deployment diagram described the top-level
representation of the software architecture is translated to a layered queue-
ing network structure; secondly, an UML interaction or activity diagram is
created using the parameters collected from the first step, annotated with
performance information.

A similar and valuable approach is proposed in [D’Ambrogio 2005]. It
uses the the Metaobject Facility (MOF) [ISO 2005] metamodeling driven
architecture approach. Deployment and activity diagrams are, thus, gen-
erated. The work in [Marzolla 2004] use case diagrams, detailed through
activity diagrams, to describe the software architecture behavior. A UML
performance is proposed to transform UML diagrams into a discrete-event
simulation model.

2.2.11 Robot Operating System

Robot Operating System (ROS)is a meta-operating system framework that
facilitates robotic system development. It is widely used in various fields
of robotics including industrial robotics, UAV swarms and low-power image
processing devices [Quigley 2009].

It provides services such as hardware abstraction, low-level device con-
trol, implementation of commonly-used functionality, message-passing be-
tween processes and package management. Robotic Operating System fea-
tures tools to develop distributed robot applications composed of with a net-
work of processes called nodes that are coupled using the ROS communica-
tion infrastructure. ROS has become a de-facto standard in robotics. Due to
its extensive use by robot developers, ROS has a wide repository of software
components such as sensor drivers, visualization tools, navigation systems,
arm manipulation systems or artificial vision algorithms [Koubâa 2016]. Be-
sides, ROS is being actively supported by the Open Source Robotics Foun-
dation [sit a]. Based on all those features, ROS was selected for the devel-
opments presented in this paper.

ROS enables the deployment of a network of interacting ROS nodes, that
communicate using the ROS middleware infrastructure. A ROS application
is a packaged set of ROS nodes that communicate through a ROS Master,
where a ROS Master is a single discovery and communications broker that
facilitates node-node flow setup [Kumar 2015].

ROS is not an operating system in the traditional sense of process man-
agement and scheduling; rather, it provides a structured communications
layer above the host operating systems of a heterogenous compute cluster.
The philosophical goals of ROS can be summarized as: peer-to-peer, tools-

2.3. Medical State of the Art 25

based, multi-lingual, thin, free and open-source [Quigley 2009]. ROS enables
software developers to create robot applications by providing libraries for
hardware abstraction, device drivers, visualizers, and many more [Baum-
gartl 2013].

Robot Operating System (ROS) is is an open-source software develop-
ment framework dedicated to robots.

2.3 Medical State of the Art

This section exposes three different classifications of supracondylar humeral
fracture and justifies the adopted one. We give then a report on the con-
duct of a conventional treatment of the SCH fracture after attending a real
surgical intervention.

2.3.1 Supracondylar Humeral Fracture’s Classifications

Many classifications of the supracondylar humeral fractures were estab-
lished. They are based on both the direction and the degree of displacement
of the distal fragment [Barton 2001]. The Gartland’s classification system
and the Lagrange’s are the most widely used. In the English literature, the
first is the most commonly used: the Gartland’s classification is based on
the lateral radiography and fractures are classified, as illustrated in Figure
2.1, according to a simple three-type system (Table 2.1) [Pirone 1988]. La-
grange’s classification is the most widely used in the French literature. It
divides these fractures into four types on the basis of antero-posterior and
lateral radiography [Lagrange 1962] as illustrated in Figure 2.2.

These two classifications do not consider the rotary displacement, an
important feature to assess the SCH fracture [Barton 2001,Kuo 2004]. As
a consequence, the majority of authors overlook this important component
of the displacement. Thus, a new classification, named Smida’s classifica-
tion, is proposed in [Douira-Khomsi 2012] to remedy this deficiency. This
classification sorts the SCH fractures according to five types as illustrated
in Figure 2.3 and detailed in Table 2.3. We adopt this classification in this
paper.

Table 2.1: Gartland’s classification of supracondylar fractures of the
humerus.

Type Radiologic characteristics

I Undisplaced fractures
II Displaced fracture with intact posterior hinge
III Completely displaced fractures with no contact between the fragments

26 Chapter 2. State of the Art

Figure 2.1: Gartland’s classification of supracondylar fractures of the
humerus.

Table 2.2: Lagrange’s classification of supracondylar fractures of the
humerus.

Type Radiologic characteristics

I Undisplaced fractures
II Unidirectional displacement
III Multidirectional displacement including posterior tilt, translation,

rotation and coronal angulation. Contact between bone fragments
is maintained

IV Fracture with complete displacement without contact between the
fragments

Figure 2.2: Lagrange’s classification of supracondylar fractures of the
humerus.

2.3. Medical State of the Art 27

Table 2.3: Smida’s classification of supracondylar fractures of the humerus.

Type Radiologic characteristics

I Undisplaced fracture with cracks in the anterior cortex of
the two columns

IIA Greenstick fracture with total anterior discontinuity
IIB Total discontinuity in the lateral column
IIC Total discontinuity in the medial column
III Total displacement and loss of contact

Figure 2.3: Smida’s classification of supracondylar fractures of the humerus.

2.3.2 Supracondylar Humeral Fracture Treatment

In this section, we expose the treatment which was performed on a true
case of a patient presenting a supracondylar humeral fracture who came
to the Children Hospital of Béchir Hamza (Tunis). The patient who is
a ten-year-old girl fell on her outstretched right hand on November 12th
2013. After clinical examination and radiological diagnosis, the patient’s
elbow was immobilized in a plaster splint and the patient was admitted
in the pediatric orthopedics department and operated on the same day.
Radiographies showed a type III fracture according to Smida’s classification
as shown in Figure 2.4.

During the surgical intervention we attended, closed reduction of frac-
ture and lateral percutaneous pinning were performed under general anes-
thesia and fluoroscopic control. The injured elbow was, then, placed under
the fluoroscopic image intensifier (Figure 2.5). The fracture was reduced
by external maneuvers: pulling gentle, longitudinal traction and correct-
ing frontal displacement, flexing the elbow and pushing anteriorly on the
olecranon, hyperflexing the elbow and confirming maintenance of coronal
alignment. Reduction was controlled by the image intensifier and a total of

28 Chapter 2. State of the Art

9 radioscopic images were taken. The elbow was immobilized once a satis-
fying reduction was achieved (Figure 2.6). As illustrated in Figure 2.7, two
lateral and parallel smooth pins were then percutaneously inserted from the
lateral condyle through the opposite cortical bone to stabilize the fracture.
After the placement of the two pins, the second pin had to be removed and
reinserted since it did not straightaway follow the right trajectory. In this
step, 15 fluoroscopic images were taken. After placement, the pins were bent
over and cut off outside the skin. A long arm cast was then applied at the
elbow in approximately 90➦of flexion.

Figure 2.4: Fracture’s radiographs. Figure 2.5: Injured elbow installed
under the fluoroscopic image inten-
sifier.

Figure 2.6: Elbow immobilization
after obtaining fracture reduction.

Figure 2.7: Lateral percutaneous
pinning.

During this surgery, a total of 24 fluoroscopic images were taken, which
involves high doses of radiation to the medical staff, especially since such
interventions are performed 2 times per day on average.

2.4 Summary

For the better understanding of works of this dissertation, an IT state of
the art introducing relevant elemental knowledge on Petri Nets-based for-

2.4. Summary 29

malisms, model checking technologies and other software technologies was
recalled in this chapter. We presented, then, the different classifications of
supracondylar humeral fracture and how it is currently treated.

Chapter 3

Formal Modeling and
Verification

Contents

3.1 Introduction . 32

3.2 Contribution 1: PCP-based Solution for Resource
Sharing in R-TNCES 32

3.2.1 Motivations . 32

3.2.2 Case Study . 33

3.2.3 Formalization . 36

3.2.4 Modeling . 37

3.2.5 Verification . 43

3.3 Contribution 2: New Environment ZiZo 44

3.3.1 Motivation . 44

3.3.2 Features . 45

3.4 Application: Specification and Certification of BROS 45

3.4.1 Specification Step . 45

3.4.2 Certification Step . 49

3.5 Summary . 52

32 Chapter 3. Formal Modeling and Verification

3.1 Introduction

In this chapter, we propose to enrich the formalism Reconfigurable Timed
Net Condition/Event Systems (R-TNCES) with the well-known protocol
Priority Ceiling Protocol (PCP) in order to model and verify safety re-
configuration scenarios. The contribution is applied first to a case study
illustrating our contribution, and then to BROS to specify and certify the
latter.

3.2 Contribution 1: PCP-based Solution for Re-

source Sharing in R-TNCES

Since R-TNCES is a useful formalism to model reconfigurable systems, we
aim in this section to propose a new PCP-based extension to this formal-
ism in order to check the system’s safety after any reconfiguration scenario
dealing with the addition or removal of resources.

3.2.1 Motivations

Reconfiguration is the qualitative change in the structure, functionality, and
algorithms of the control systems. This is due to qualitative changes of goals
of control, the controlled system or of the environment the system behaves
within. Partial failures, breakdowns, or even human intervention may cause
such changes. Thus, the development of Reconfigurable Distributed Control
Systems (RDCS) is not an easy activity to perform since they should be
adapted to their environment under functional and temporal constraints.
These systems are distributed on networked devices which execute control
tasks with shared resources. The RDCS’s devices may actually share physi-
cal or logical resources (robots, material movement systems, machining cen-
ters, etc.) which may be added or removed according to user’s requirements
with specific evolution in the environment.

A reconfiguration scenario is assumed, in [Khalgui 2011], to be any ad-
dition, removal or up-date of control tasks to insure the required flexibility
of the system and according to well-defined user’s strategies. Nevertheless,
this definition is incomplete since it does not consider the reconfiguration
of resources. We propose, then, a new definition of reconfiguration to deal
with the addition and removal of resources shared by tasks. We note that no
one in our community proposed a same. To model and verify reconfigurable
systems, the authors in [Zhang 2013] propose a new formalism named Re-
configurable Timed Net Condition/Event Systems (R-TNCES) extending
the formalism TNCES [Hanisch 1997] and Petri nets to model the differ-
ent behaviors of the system to be executed after different reconfiguration
scenarios. Even though this formalism is original and useful, the authors

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 33

do not consider the case of shared resources to be adapted at run time.
Nowadays, several research works are proposed to manage the problems of
shared resources [Koh 1991, Zhou 1991]. Two well-known protocols have
been selected in our community to encode the management of resources:
Priority Inheritance Protocol (PIP) [Sha 1990] and Priority Ceiling Proto-
col (PCP) [Goodenough 1988]. The second protocol is better than the first
since it avoids deadlock problems. Today, several research works are based
on these two protocols, but no one consider them for the case of reconfig-
urable resources in DRCS. Since it is an expressive formalism for adaptive
systems, we propose in this paper to enrich R-TNCES with the protocol
PCP in order to model both tasks and resources. Our goal is to check that
any reconfiguration of resources or tasks does not bring the whole architec-
ture to a blocking situation.

3.2.2 Case Study

Let us assume a reconfigurable discrete event system to be composed of two
tasks A and B. We suppose that these two tasks share initially the resources
Q and R (as shown in Figure 3.1) before applying a reconfiguration scenario
which will add a new resource S (to be used by both A and B). This case
was not treated in any related work and forms a new problem dealing with
reconfigurable resources. We suppose that B has the highest priority (B >
A). We suppose that the system is safe before the reconfiguration scenarios.
However, once the reconfiguration is applied, a deadlock certainly occurs
according to Figure 3.2. In fact, A starts by using R before being interrupted
by B due to the latter’s higher priority. B is then blocked because it tries
to lock R (P(R)) which is hold by A. A continues progressing until it frees
R (V(R)) and B interrupts it. When B asks for Q (P(Q)), it is interrupted
because Q is hold by A. A is lately blocked when it asks for S (hold by B).
A deadlock occurs thus, because A is waiting for S while B for Q. Regarding
to situation, we affirm that reconfiguration scenarios can bring the system to
blocking situations. The latter can be met if we apply R-TNCES according
to [Zhang 2013] to model the tasks A and B as illustrated in Figure 3.3.
This is proven by applying the CTL formula AG EX TRUE which turned
out to be false .

34 Chapter 3. Formal Modeling and Verification

Figure 3.1: Behavior of A and B before a reconfiguration scenario

Figure 3.2: Behavior of A and B after a reconfiguration scenario

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 35

F
ig
u
re

3.
3:

Il
lu
st
ra
ti
ve

ex
am

p
le
’s

R
-T

N
C
E
S

36 Chapter 3. Formal Modeling and Verification

This is why we aim to check the safety of each scenario by enriching
R-TNCES with the PCP protocol. We propose in the following sections
new patterns to model reconfigurable discrete event systems according to
R-TNCES by using PCP. This contribution is original since R-TNCES is
an original formalism for reconfigurable systems, but lacks of useful mech-
anisms to manage shared resources. Let us remember the reader that
in [Zhang 2013], the authors do not consider the eventual addition or re-
moval of resources in the system.

3.2.3 Formalization

We present in this section the formalization of Distributed Reconfigurable
Control Systems sharing resources.

DRCS

We assume a DRCS D to be composed of n1 networked reconfigurable sub-
systems sharing n2 resources. They extend the formalization of DRCS in
[Zhang 2013] by adding the new set of resources as follows:

D = (
∑

R− TNCES,̟,
∑

M,
∑

R) (3.1)

where:

❼

∑

R− TNCES is a set of n1 R-TNCES,

❼ ̟ a virtual coordinator handling
∑

M , a set of Judgment Matrices,

❼

∑

R, a set of n2 shared resources.

Shared Resources

On the basis of PCP’s definition and the flexibility expected from the DRCS,
a resource R is defined as follows :

R = (Rec, S, Cl) (3.2)

where:

❼ Rec (Reconfiguration) indicates whether R is added to the system /
Rec ∈ {added, !added},

❼ S indicates the state of R /S ∈ {free, hold by a task i},

❼ Cl is used for the ceiling of R.

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 37

Tasks

Based on the expected reconfiguration of the system, we define a task T by:

T = (Rec, S) (3.3)

where:

❼ Rec (Reconfiguration) indicates whether T is added to the system /
R ∈ {added, !added},

❼ S indicates the state of T /S ∈ {idle, execute, wait, P (Ri), V (Ri)}
and P (Ri) means locking R and V (Ri) unlocking it.

3.2.4 Modeling

We are interested in this research work in the reconfiguration of both tasks
and shared resources. We propose, then, new solutions to introduce PCP
in R-TNCES to avoid any blocking problem after reconfiguration scenarios.
We propose an R-TNCES model for each resource of

∑

R and task of
∑

R−
TNCES.

Shared Resource

We model each shared resource by a R-TNCES as shown in Figure 3.4. The
latter is composed of three TNCES modeling the resource’s reconfiguration
(Rec), state (S) and ceiling (Cl). Here is the modeling of a resource R:

Figure 3.4: Shared resource’s modeling.

Let’s, now, dissect this R-TNCES into 3 TNCESs to analyze the struc-
ture of each one and understand the role of each arc and place. The first
TNCES, named Rec and represented in Figure 3.5, models the reconfigu-
ration of the resource R. Actually, a DRCS, as its name suggests, is recon-
figurable and may work under different modes. It may need, depending on

38 Chapter 3. Formal Modeling and Verification

the activated mode, the use of a set of resources. Thus, a resource may
be used under some modes but not others. We suggest, therefore, that a
resource may be added to a system or removed from it as required from the
activated mode. That explains the fact that we have two places in the recon-
figurable TNCES: Added and !Added (not added) respectively represented
by p1 and p2. Two conditions leave the place ”Added” to join transitions
in the TNCES S (State). This is explained by the fact that a resource can
not change status if it is not added to the system.

Figure 3.5: Shared resource’s reconfiguration TNCES.

The second TNCES (illustrated in Figure 3.6), S, models the state of the
resource R. A resource may be free or hold by a task Ti. Thus, we suggested
the places Free, Hold by Ti,... and Hold by Tn (respectively represented by
p3, p4 and p5) where R may be exclusively hold by a task from a set of
n different tasks (n is an integer ∈ [1,+∞[). The conditions leaving the
different places are due to the fact that, according to PCP, a task T may
hold a given resource if the latter is free and the resources hold by other
tasks have a ceiling lower than T ’s dynamic priority. We will see where those
conditions are entering in the next TNCES. The different signals indicated
on the figure above stand for:

❼ S2 : a signal going to Ti and confirming the lock of R by it,

❼ S3 : a signal from Ti asking to unlock R,

❼ S5 : A signal confirming that all the conditions required to lock R are
met (based on PCP).

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 39

Figure 3.6: State TNCES.

The last TNCES (represented in Figure 3.7), Cl, models R’s ceiling. It
contains a place named PoD (Point of Decision) and several places type
U(task, resource) and type C(task, resource). The two last types stand for:

❼ U(Ti, R): this place will allow the use of the resource R by the task Ti.
To switch from PoD to U(Ti, R), we need the two events S1 and S4.1.
S1 is an event coming from the task Ti and asking to lock the resource
R. S4.1 is actually the S4.2 leaving the transition following C(Ti, R).
The latter place will be drawn on the R-TNCES of the resource Q. S5
is the signal which we explained in the previous TNCES.

❼ C(Ti, Q): this place controls the use of Q by Ti by checking the PCP’s
requirements. To reach the place C(Ti, Q), we need, according to PCP,
one of the two following conditions: the other resources, whose ceiling
are higher than Ti’s priority, are free or hold by Ti (hence the OR sign
in the transition preceding C(Ti, R)). S4.2 on the opposite figure is
the S4.1 which will enter the transition preceding U(Ti, Q) (drawn of
the R-TNCES of the resource Q).

Figure 3.7: Ceiling TNCES.

40 Chapter 3. Formal Modeling and Verification

Running example 1 in case study

In our case study (Section 3.2.2), the different resources have the
same modeling since they have the same ceiling and are used by the
same tasks. We choose to model the resource Q as shown in Figure 3.8.

Figure 3.8: The resource Q’s modeling

The conditions entering the transition preceding C(Task, Resource)
are used to guarantee that, when a task T tries to lock a resource, all
the other resources -whose ceilings are not lower than the task’s priority-
are free or hold by T. Thus, we avoid any eventual deadlock and see the
relevance of the PCP.

Control Tasks

Each task T is modeled by a R-TNCES to be composed of two TNCESs as
shown in Figure 3.9: the first one is illustrating its reconfiguration (Rec),
the second its state (S).

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 41

Figure 3.9: A task’s modeling.

We unpack the R-TNCES in Figure 3.9 and analyze the functioning of its
two TNCES. Due to the reconfigurable aspect of DRCS, a task may be added
or removed to the system according to the activated mode. That’s why the
T ’s reconfiguration TNCES (Rec), represented in Figure 3.10, contains two
places: Added and !Added (respectively the places p9 and p10). Once T is
removed, the event leaving the transition following Added will force the task
T to switch from the state Execute to the state Idle. A condition leaving
the place Added will allow the switching from Idle to Execute.

Figure 3.10: Task’s reconfiguration TNCES.

The second TNCES (Figure 3.11) models the state of the task T. It
contains the following places:

❼ Idle: as its names suggests, the task is idle,

❼ Execute: the task is running,

❼ Wait : the task was interrupted by another one, so it is waiting,

❼ P(R): the task T is asking to lock a resource R,

❼ Q(R): the task T is unlocking the resource R.

42 Chapter 3. Formal Modeling and Verification

The R-TNCES of a task T should include as many P(R) and Q(R) as
the resources it may lock, but, in this illustrative example, we decided that
T will use just one resource (R).The different signals indicated on the figure
above stand for:

❼ S8.1 : when T switches from Idle to Execute, the event S8.1 will force
the running tasks with lower priorities to switch from Execute to Wait.
T ’s S8.1 is actually the S8.2 of tasks with lower priorities,

❼ S9.1 : when T switches from Execute to Idle, the events S9.1 will force
the waiting tasks with lower priorities to switch from Wait to Execute.
T ’s S9.1 are actually the S9.2 of tasks with lower priorities,

❼ S1, S2 and S3 : refer to the last paragraph.

Figure 3.11: Task’s state R-TNCES.

Running example 2 in case study

We continue our case study by modeling, here, the case study us-
ing R-TNCES and tasks and shared resources’ modeling we previously
proposed. Let’s remember that B has a higher priority than A (prior-
ity(A)=1 and priority(B)=2), and Q, R and S are all shared by the two
tasks (Cl (Q) = Cl (R) = Cl (S) = priority (B) = 2). We start by
modeling the two tasks as following in Figure 3.12:

3.2. Contribution 1: PCP-based Solution for Resource Sharing
in R-TNCES 43

Figure 3.12: A and B’s modeling.

Now that PCP is used, A and B ’s behaviors in time become as
following in Figure 3.13. We note that the deadlock issue is now resolved.

Figure 3.13: A and B behaviors after using PCP.

3.2.5 Verification

Once the R-TNCES model of the DRCS is enriched with PCP, the next
step is to verify whether the models meet users requirements. So, any re-
configuration scenario dealing with adding/removal or resources does not
lead to a blocking situation. Model-checking is a technique for automat-
ically verifying the correctness properties of finite-state systems. Model
checking for TNCES and R-TNCES is based on their reachability graphs.
SESA [Starke 2002] is an effective software environment for the analysis of
TNCES, which computes the set of reachable states exactly. Typical proper-

44 Chapter 3. Formal Modeling and Verification

ties which can be verified are boundedness of places, liveness of transitions,
and reachability of states. In addition, temporal/functional properties based
on Computation Tree Logic (CTL) specified by users can be checked man-
ually. The following e-CTL formula is applied:

AG EX true (3.4)

This formula is proven to be true by SESA as shown in the screenshot
in Figure 3.14, so there no deadlocks in our R-TNCES.

Figure 3.14: Screenshot from SESA.

We also check the safety property by checking if a given resource may be
simultaneously locked by two different tasks. The following CTL formula is
checked:

EF p22 AND p23 (3.5)

where: (i) p22 is the place translating that the resource R is locked by
the task A, (ii) p22 means that B locks R. This formula is proven to be false
as illustrated in Figure 3.15.

Figure 3.15: Screenshot from SESA.

3.3 Contribution 2: New Environment ZiZo

We present in this section the new tool ZiZo and its usefulness in certifying
distributed reconfigurable control systems. BROS is the case study.

3.3.1 Motivation

ZiZo is an R-TNCES modeling and random-simulating tool written in C#
programming language for the Windows platform and developed in LISI
laboratory of INSAT and eHTC (Tunisia). Its originality consists in featur-
ing the simulation of a built R-TNCES and highlighting the reconfiguration

3.4. Application: Specification and Certification of BROS 45

aspect of a DRCS. These features which are not offered in any other Petri
Nets editor. The main window of ZiZo GUI comprises five dockable frames:
Menu Bar, Model Arborescence, Place Properties, the Document Explorer
and the Debug Window. Further details are provided in the official webpage
of ZiZo [sit b].

3.3.2 Features

The originality of ZiZo consists in featuring the edition of an R-TNCES
and highlighting the reconfiguration aspect of a distributed reconfigurable
control system, which are not offered in any other Petri Nets editor. ZiZo
is capable of

❼ creating several modules within the same model,

❼ interconnecting modules by input/output condition and event signals,

❼ randomly simulating the created model to detect any eventual dead-
lock,(iv) storing the created model in a special file format (*.pnt),

❼ loading a created model to edit it and/or simulate it,

❼ exporting the model to the model-checker SESA [Starke 2002].

3.4 Application: Specification and Certification of

BROS

We expose in this section the BROMETH’s first two steps and their appli-
cation on BROS. BROMETH can be applied when designing any medical
robotic platform. BROS is used to prove the relevance of this methodology.

3.4.1 Specification Step

We detail hereafter how to perform the specification step when following
BROMETH. The step in question is realized within two sub-steps as illus-
trated in Figure 3.16: constraints definition and modeling.

46 Chapter 3. Formal Modeling and Verification

F
ig
u
re

3.
16

:
S
p
ec
ifi
ca
ti
on

st
ep

.

3.4. Application: Specification and Certification of BROS 47

Constraints Definition

Several discussions between the medical and technical staffs defined the con-
straints controlling the functioning of BROS. And thus, to treat a humeral
supracondylar fracture using BROS, the following steps will be performed
in the automatic mode:

1. the surgeon launches the system and chooses one of the five operating
modes;

2. CU asks MW about the fracture coordinates;

3. MW requests an image from BW and the latter sends it;

4. MW determines the different coordinates by image processing and
sends them to CU;

5. based on the received coordinates, CU orders B-BROS1 to block the
arm at the humerus;

6. B-BROS1 blocks the limb;

7. CU asks B-BROS2 to reduce the fracture based on the latter’s line;

8. B-BROS2 reduces the fracture;

9. CU asks MW to ensure that the reduction was successful;

10. MW requests a new image from BW and checks the fracture reduction
result. If it is satisfactory, BROS moves to step 11. Steps from 7 to 9
are repeated otherwise;

11. CU orders B-BROS2 to block the arm;

12. under the request of UC, P-BROS performs the first and the second
pinning;

13. once the pinning is successful, CU asks B-BROS1 and B-BROS2 to
unblock the limb.

The previously described steps delineate how BROS treats a SCH frac-
ture when the automatic mode is triggered. As for the other modes, some
steps will be manually performed as indicated in Section 1.2.2.

Modeling

Using ZiZo, we model the whole architecture of BROS with its different
modules (UC, MW, BW, B-BROS1, B-BROS2, P-BROS and the surgeon)
and shared resources. We obtain an R-TNCES model of 186 places and 283
transitions as shown in Figure 3.17.

48 Chapter 3. Formal Modeling and Verification

F
ig
u
re

3.
17

:
B
R
O
S
m
o
d
el
in
g
u
si
n
g
Z
iZ
o.

3.4. Application: Specification and Certification of BROS 49

3.4.2 Certification Step

BROMETH’s second step, the certification, takes as input model files (Spec-
ification’s output) and properties written by the researcher based on the
constraints defined during the specification step. Figure 3.18 shows that the
certification is performed thanks to two sub-steps, simulation and formal
verification. These are detailed hereafter. The purpose from the certifica-
tion step is to obtain verified models.

50 Chapter 3. Formal Modeling and Verification

F
ig
u
re

3.
18

:
C
er
ti
fi
ca
ti
on

st
ep

.

3.4. Application: Specification and Certification of BROS 51

Simulation

Simulation is realized using ZiZo. Upon definition of the model, ZiZo sim-
ulates it. Simulation can be tracked by selection of a token game. Once
simulation is finished, a report is displayed at the debug window. If a dead-
lock is detected, we go back to specification to do the modeling sub-step
again.

Using ZiZo, we simulate the BROS modeling performed during the spec-
ification step. The obtained report displayed in Figure 3.19 proves that,
after exploring 3057 places by ZiZo, our system is deadlock-free. Hence, we
can move to the formal verification sub-step.

Figure 3.19: BROS’s simulation report.

Simulation is actually applied prior to model checking to get a first im-
pression about the system’s behavior and early find out the eventual design
errors. If the latter exists, formal verification may be time-consuming when
performed on a large state-space.

Formal Verification

Once the simulation is finished without detecting any deadlock, we start the
formal verification. The latter consists in defining CTL, eCTL and TCTL
formulas, based on the specification step. These properties are formally
verified using the model checker SESA [Starke 2002] which takes as input
a .pnt file exported from ZiZo. If all the checked formulas meet the users’
expectations, we obtain verified models as output. Otherwise, we go back
to the specification step.

We do in this section an exhaustive CTL-based verification to check the
existence of several problems that may be faced at BROS’s runtime. Thus,
we apply several CTL formulas on the model of the whole BROS system,
built using ZiZo and then exported to SESA.

Blocking and Pinning

Pinning in the patient’s arm while moving it by unblocking it may lead to
several postoperative complications. We check whether this two actions may
be simultaneously performed by applying the following formula to BROS’s
model:

52 Chapter 3. Formal Modeling and Verification

EF p23 AND p43 (3.6)

where: (i) p23 translates unblocking the arm, (ii) p43 pinning it. The
formula is proven to be false.

Timeout Issue

We check that the whole surgical intervention does not last more than a
given definite time. The medical partners agreed that it shouldn’t last more
that 301 seconds.

EF [0, 301] p23 (3.7)

This formula is also proven to be false.

Intervention Sequence

We have to be sure that BROS complies with the specified logic by
performing in order the following actions: reduction, blocking, pinning 1,
pinning 2 and unblocking. We apply, therefore, the following CTL formula:

AGA t18 X AFE t25 X AFE t40 X AFE t74 X AFE

t111 X TRUE
(3.8)

where t18, t25, t40, t74 and t111 are respectively the transitions lead-
ing to the places translating reduction, blocking, pinning 1, pinning 2 and
unblocking. The formula is proved to be true.

3.5 Summary

This chapter deals with the management of adaptive shared resources in
reconfigurable systems: it is a new challenge in industry. We proposed a
solution to this issue by providing a PCP-based R-TNCES models, an ex-
tension of Petri Nets. We define formal patterns allowing reconfigurations
of a DRCS , where the first module deals with tasks and the second with
resources. We apply a model checking for the verification of CTL-based
functional properties in order to guarantee a safe behavior of this reconfig-
urable architecture. A new software tool, ZiZo, is also introduced in this
chapter. We finally apply the contribution to BROS in order to perform the
specification and certification steps of BROMETH.

Chapter 4

New UML Profile: R-UML
and Automatic

Transformation to ROS

Contents

4.1 Introduction . 54

4.2 Motivations . 54

4.3 Running Example . 56

4.4 R-UML Profile . 57

4.4.1 Structure Modeling . 58

4.4.2 Behavior Modeling . 61

4.5 Transformation from R-UML to R-TNCES 66

4.5.1 R-Std Translation into R-TNCES 66

4.5.2 Verification . 68

4.5.3 Implementation . 73

4.6 Transformation from R-UML to ROS 74

4.6.1 State of the Art . 74

4.6.2 Transformation Rules from R-UML to ROS 74

4.7 Application to BROS 79

4.8 Summary . 82

54
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

4.1 Introduction

Unified Modeling Language (UML) is currently accepted as the standard
for modeling software and control systems since it allows to concentrate
on different aspects of the system under design. However, UML lacks for-
mal semantics and, hence, it is not possible to apply, directly, mathematical
techniques on UML models to verify them. UML does not feature explicit se-
mantics to model flexible control systems sharing adaptive shared resources
either. Thus, this chapter proposes a new UML profile, baptized R-UML
(Reconfigurable UML), to model such reconfigurable systems. The profile is
enriched with a PCP-based solution for the management of resource shar-
ing. This chapter also presents an automatic translation of R-UML into
R-TNCES, a Petri Net-based formalism, to support model checking.

4.2 Motivations

The Unified Modeling Language (UML) is a semi formal language devel-
oped by the Object Management Group to specify, visualize and document
models of both software and non-software systems. Driven by software en-
gineering industries, it became well developed and supported with dozens of
tools [Bahill 2003]. UML provides two types of diagrams to create a specific
profile for a given system: structural and behavioral. The first is designed
to visualize and document the static aspects of systems, while the second
aims at visualizing the dynamic aspects [Warmer 1998]. UML has unques-
tionable advantages as a technique for visual modeling, nevertheless, it does
not guarantee that the generated models are correct. Actually, no step of
system development, including the modeling one, is spared from human er-
rors. Consequently, the cost to detect and remove such defects considerably
increases through the system development [Fenton 1999].

The idea of being able to, more or less automatically and systematically,
verify and validate UML-based models has been around for a while, so there
is a rather large body of literature on the topic. For example, the authors
in [Lilius 1999] use statecharts and sequence diagrams in a combined man-
ner to check temporal logic formulas over a statechart-based description of
the system, and the model checker produces, then, counterexamples through
sequence diagrams. Another approach is described in [Cardoso 2001] where
sequence diagrams are formally translated into Petri nets, based on the
UML collaborations package metamodel. The authors check the correct-
ness of the sequence diagrams through the resulting Petri nets. A work
described in [Cortellessa 2000] uses the sequence diagram in conjunction
with use cases and deployment diagrams to obtain queuing network models
for performance evaluation. An execution graph from the sequence dia-
gram is later obtained thanks to a given algorithm. Another work reported

4.2. Motivations 55

in [Mikk 1998] translated Statecharts into PROMELA, the input language
of SPIN verification system, whereas [Lam 2007] formally analyzed activity
diagrams using NuSMV model checker to determine the correctness of activ-
ity diagrams. The authors in [King 1999] produce Petri net models starting
from UML diagrams, however, they only describe the methodology at an in-
tuitive level, through an example and no translation procedure is described.
The work described in [Bondavalli 1999] proposed new UML stereotypes to
enrich UML diagrams with dependability aspects. The purpose is to exploit
the latter to build generally distributed stochastic Petri net models. The
authors didn’t focus on an automatic translation, but rather on detecting
the dependability aspects from the UML diagrams.

We see in the previous related works that no one of our community was
interested in modeling the reconfiguration aspect which is featured by many
control systems and their shared resources. Nevertheless, reconfiguration
has become, nowadays, a crucial feature to consider when designing new
embedded systems. It is actually the ability to dynamically improve the
latter’s performance and quality of service at run-time, according to well
defined conditions [Salem 2015b]. Increasing safety constraints and growing
expected flexibility pushed developers to focus on designing systems that are
able to fit their environment and shifting user requirements under functional
and temporal constraints [Salem 2015a]. In this work, a reconfiguration
scenario is assumed to be any run-time automatic operation that modifies
the system’s structure by adding or removing tasks or resources according to
user requirements in order to adapt the whole architecture to its environment
as mentioned in Section 3.2.1.

Hence, we propose, in this work, a new UML profile, baptized R-UML
(Reconfigurable UML), endowed with a formal semantics enabling UML to
model flexible control systems sharing adaptive shared resources. R-UML
relies on UML’s extensibility mechanisms to enhance class and statechars
diagrams, respectively called R-CD and R-StD henceforth. The latter are
extended to support Priority Ceiling Protocol (PCP). It was proved in Chap-
ter 3 the relevance of this protocol to solve the issue of concurrent access
to adaptive shared resources in reconfigurable control systems. We propose
then a new solution to translate R-UML into Reconfigurable Timed Net
Condition/Event Systems (R-TNCES). An application of formal verification
is, then, performed and aims to (dis)prove certain properties of the system
using a formal model. This contribution is original since R-TNCES is a new
and original formalism for reconfigurable systems, and no one in our com-
munity worked on the translation of UML into R-TNCES to combine their
respective assets, i.e. the easiness and relevance of UML for visual modeling
and the formal semantics of R-TNCES to verify and validate models.

56
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

4.3 Running Example

Let us assume a reconfigurable discrete event system to be composed of
two tasks A and B. We suppose that these two tasks share initially the
resources Q and R (as shown in Figure 4.1) before applying a reconfiguration
scenario which will add a new resource S (to be used by both A and B). This
case was not treated in any related work and forms a new problem dealing
with reconfigurable resources. We suppose that B has the highest priority
(B > A). We suppose that the system is safe before the reconfiguration
scenarios. But, once the reconfiguration is applied, a deadlock certainly
occurs according to Figure 4.2. In fact, A starts by using R and then S
before being interrupted by B due to the latter’s higher priority. B is then
blocked because it tries to lock R (P(R)) which is dill hold by A. A continues
progressing until it frees R (V(R)) and B interrupts it. When B asks for
S (P(S)), it is interrupted because S is hold by A. A is in its turn blocked
because it is asking for Q which is hold by B. A deadlock occurs thus,
because A is waiting for Q while B for S. Regarding to this situation, we
apply the PCP on this running example which solves the deadlock issue as
illustrated in Figure 4.3.

This running example features two tasks sharing three adaptive resources
like in [Salem 2014], however, the tasks’ behavior and the reconfiguration
scenario are different. Besides, in [Salem 2014], a deadlock occurs because
A is waiting for S while B for Q, whereas, in this work, it occurs because A
is waiting for Q while B for S.

Figure 4.1: Behavior of A and B before a reconfiguration scenario.

4.4. R-UML Profile 57

Figure 4.2: Behavior of A and B after a reconfiguration scenario.

Figure 4.3: A and B behaviors after using PCP.

4.4 R-UML Profile

In this section, we define how to model the structure and the behavior of
a flexible control system using R-UML. The contribution is applied on the
running example of Section 4.3.

58
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

4.4.1 Structure Modeling

UML provides the class diagram to show the logical structure of a sys-
tem. This diagram highlights conceptual connections showing the relations
between the system’s modules or components, each of which having its dis-
tinctive properties defined by a class. It is possible to extend the core se-
mantics of UML and express new properties by using stereotypes. The latter
is a mechanism to categorize an element. Thus, we extend the contribution
proposed in [Lobov 2005] and define the following eight stereotypes of the
class’s attribute:

❼ << input >>: the given attribute is a system input;

❼ << output >>: the given attribute is a system output;

❼ << in >>: the given attribute is a system module input;

❼ << out >>: the given attribute is a system module output;

❼ << eventInput >>: the given attribute is a system module event
input;

❼ << eventOutput >>: the given attribute is a system module event
output;

❼ << integer >>: the given attribute is an integer;

❼ << boolean >>: the given attribute is a boolean attributed which
can be evaluated to TRUE or FALSE.

The description above distinguishes between system and module. Sys-
tem denotes the whole system under control, whereas module a part of the
system. A system may actually have internal connections between the mod-
ules specified by means of the stereotypes << in >> and << out >>,
and a module may provide to the controller the connections that are spec-
ified by means of the stereotypes << input >> and << output >>. Two
system modules may also be interconnected by an event which is an ac-
tion which occurrence may be detected by another module in the system.
An event is different from an input/output, since the first is just a signal
informing that a certain action took place. The << eventInput >> and
<< eventOutput >> stereotypes respectively represent the event inputs
and outputs that a module may have.

The information provided by a class diagram can be formally written as
a tuple:

ClD = (C,A,M, S, α, β) (4.1)

where:

4.4. R-UML Profile 59

❼ C = {cl1, c12, ..., cln} is a finite set of classes in a class diagram ClD;

❼ A = {attr1, attr2, ..., attrn} is a finite set of attributes that belong to
the classes;

❼ M = {setlnput, resetInput, setOutput, resetOutput, setCeiling} is a
finite set of methods of the classes;

❼ S is a finite set of stereotypes / S = {<< in >>,<< out >>,<<
input >>,<< output >>,<< eventInput >>,<< eventOutput >>
,<< integer >>,<< boolean >>};

❼ α : sti → attrj is a function which maps the stereotype sti from S to
the attrj from A;

❼ β : attri → clj is a function which maps attribute to the class.

According to the previous class diagram definition, we create two classes
to model the running example of Section 4.3:

❼ a class named Task to model, as its name suggests, the different tasks
of the system,

❼ a second class, named Resource, to model the different reconfigurable
shared resources. We instantiate for each task or resource an object
from the corresponding class.

The class Task, as showed in Figure 4.4, has an integer-stereotyped at-
tribute, named priority, translating the task’s priority. It also has a boolean-
stereotyped one, added, indicating whether the task in added to the system
(added=TRUE) or not (added=FALSE), depending on the applied recon-
figuration scenario. The Figure 4.5 shows that the class Resource features
an integer-stereotyped attribute, named ceiling, translating the ceiling that
each resource has according to PCP definition in Section 2.2.7. The class
also features a method named setCeiling that recompute a resource’s ceiling
after applying a reconfiguration scenario. This method’s code will be de-
tailed later. Just as tasks, resources have a boolean-stereotyped attribute,
added, because a reconfiguration scenario may add or remove a task or a
resource [Salem 2014].

Figure 4.4: Task class.

60
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Figure 4.5: Resource class.

Figure 4.6: Running example’s object diagram.

Running Example 1

The static description of a system is often made through the class dia-
gram. This simplifies the modeling by synthesizing the common char-
acteristics and covering a large number of objects. However, it is some-
times useful or even necessary to add an object diagram. The latter al-
lows, depending on the situation, to illustrate the class diagram (showing
an example that explains the model), clarify certain aspects of the sys-
tem (by highlighting imperceptible details in the class diagram), express
an exception (by modeling specific cases of non-generalizable knowledge)
or take an image (snapshot) of a system at a given time. The class dia-
gram models the rules, whereas the object diagram models facts. Often
the class diagram is a model to instantiate the binders in order to ob-
tain the object diagram [Rumbaugh 1991]. Thus, we propose here to
realize the object diagram of the running example described in Section

4.4. R-UML Profile 61

4.3. The said diagram illustrated in Figure 4.6 features two objects of
the Task class (modeling the tasks A and B) and three of the Resource
class (modeling the resources R, Q and S) while highlighting the links
between them.

4.4.2 Behavior Modeling

UML features the State diagram as powerful tool to represent the behavior
of an object which is the implementation of a particular class. We define
for the system or its components a set of states which they may take. Each
state is distinguished by its name. The change of the states is represented
via transitions. The latter specify the laws that cause the change of the
state and the consequences of the change. The rules which fire transitions
may be expressed by event and guard which is a boolean expression that has
to be evaluated to TRUE to fire the transition. A given transition may be
fired through three manners: an event (if a certain action took place some-
where in the system), a guard (if the certain properties are assigned with
the particular values) or combination of both. The different states are in-
terconnected by transitions which determine the rules that cause transition
to fire and the consequences of a transition’s firing. Events, guards and the
combination of both specify these rules. A time event, after (n) where n is a
positive integer, is also used to specify that n time units should elapse before
the transition may fire. Events may also be specified by << eventInput >>
or << eventOutput >> stereotyped attributes. A transition firing may be
accompanied by the activation of an action which can modify some prop-
erties of the system. This activation may call attribute-modifying methods
defined in the classes, such as setlnput, resetInput, setOutput, resetOutput
and setCeiling.

We extend the contribution proposed in [Lobov 2005] and formally rep-
resent a state diagram by the tuple:

StD = (St, Tr, Ev,G,Ac, γ, δ, ǫ, ζ) (4.2)

where:

❼ St = {st1, st2, ..., stn} is a finite set of states in a state diagram StD ;

❼ Tr = {tr1, tr2, ..., trm} is a finite state of transitions in a state diagram
StD;

❼ Ev is a finite set of events in transitions of StD ;

❼ G is a finite set of the guards in StD ;

❼ Ac is a finite set of actions;

62
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

❼ γ : evi → trj is a function that maps the event evi of Ev to the
transition trj of Tr ;

❼ δ : grk → trj is a function which maps the guard grk of Gr to the
transition trj of Tr ;

❼ ǫ : actl → trj is a function which maps the action actl of Ac to the
transition trj of Tr ;

❼ ζ : trj → {stb, ste} is a function which maps transition trj of Tr to
the pair of states stb and ste, where stb is the state from which the
transition is taken and ste is the next state if trj fires.

According to the reconfiguration feature expected from the system, we
define a reconfigurable state diagram as a structure:

R− StD = (B,R) (4.3)

where:

❼ B is the behavior module that is a union of multi StD;

❼ R is the control module consisting of a set of reconfiguration functions
R={r1,...,rn}.

A reconfiguration function ri makes the necessary changes to the system
after a reconfiguration scenario in accordance with the definition given in
Section 4.2. Hence, we define r as the structure:

r = (η, θ, ι) (4.4)

where:

❼ η : ti → {0, 1} is a function controlling tasks, η(ti) = 1 if the task ti is
added to the system, η(ti) = 0 otherwise;

❼ θ : resj → {0, 1} is a function controlling resources, θ(resj) = 1 if the
resource resi is added to the system and θ(resj) = 0 otherwise;

❼ ι : (resj , ti) → {0, 1}, ι(resj , ti) = 1 if resj is used by ti in this
triggered reconfiguration scenario, ι(resj , ti) = 0 otherwise.

According to the previous definitions, we define in this section the Re-
source class’s method, setCeiling, as follows:

if θ(res) == 1
for i:=1 to |Tasks|

if η(ti) == 1 AND ι(res, ti) == 1
AND ti.priority > res.ceiling
res.ceiling := ti.priority

4.4. R-UML Profile 63

We propose, then, R-StD diagrams to model a task and a resource on
the basis of PCP definition and the reconfiguration feature expected from
the system. Thus, we propose the R-StD illustrated in Figure 4.7 to model
a reconfigurable shared resource:

Figure 4.7: Shared resource’s R-StD.

A resource may actually be free or hold by a task Ti. Thus, we propose
the states ”Free”, ”Hold by Ti” and ”Hold by Tn” where R may be exclusively
hold by a task from a set of n different tasks (n is an integer ∈ (1, +∞)).
The guards associated to the transitions leaving the state Free guarantee
the respect of PCP rules before locking a resource, i.e. a task T may hold
a given resource if, first, the latter is free and, secondly, the resources hold
by other tasks have a ceiling lower than T ’s dynamic priority, a condition
verified by the guard named X. E3.i is an event coming from Ti and asking
to unlock R.

We propose, then, a second R-StD, illustrated in Figure 4.8 to model a
reconfigurable task:

64
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Figure 4.8: Task’s R-StD.

The task’s R-StD is composed of the following states:

❼ Idle: as its names suggests, the task is idle,

❼ Execute: the task is running,

❼ Wait : the task was interrupted by another one, so it is waiting,

❼ P(R): the task T is asking to lock a resource R,

❼ Q(R): the task T is unlocking the resource R.

The R-StD of a task T should include as many P(R) and Q(R) as the
resources it may lock, but, in this running example, we decide that T will
use just one resource (R).The different events indicated on the figure above
stand for:

❼ E2 : an event confirming the lock of Rby T,

❼ E8.1 and E8.2 : when T switches from Idle to Execute, the event E8.1
forces the running tasks with lower priorities to switch from Execute
to Wait. T’s E8.1 is actually the E8.2 of tasks with lower priorities.
Whence, the E8.2 on Figure 4.8 is an event announcing that a task
with a higher priority than T ’s switched from Idle to Execute,

4.4. R-UML Profile 65

❼ E9.1 : when T switches from Execute to Idle, the event E9.1 will force
the waiting tasks with lower priorities to switch from Wait to Execute.
T ’s E9.1 is actually the E9.2 of tasks with lower priorities. Whence,
the E9.2 is translating that a task with a higher priority that T ’s has
switched from Execute to Idle.

Running Example 2

Now that we formalized R-StD and proposed patterns to model control
tasks and shared resources, we can model our running example. We
propose, as examples and respectively in Figure 4.9 and Figure 4.10, the
modeling of the control task A, which uses the resources Q, R and S,
and the resource R which is shared by the tasks A and B.

Figure 4.9: Task A’s R-StD.

In our case study, the different resources have the same modeling
since they have the same ceiling and are used by the same tasks. We
choose to model the resource R as shown in Figure 4.10. The guards
named X are used to guarantee that, when a task T tries to lock the
resource, all the other resources, whose ceilings are not lower than the
task’s priority, are free or hold by T. Thus, we avoid any eventual dead-
lock and see the relevance of the PCP.

66
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Figure 4.10: Resource R’s R-StD.

4.5 Transformation from R-UML to R-TNCES

We propose, in this section, a new solution to translate R-StD models into
the ones R-TNCES ones. A formal verification is, then, performed to prove
the relevance of our contribution. Finally, an algorithm is proposed to au-
tomatize this transformation.

4.5.1 R-Std Translation into R-TNCES

4.5. Transformation from R-UML to R-TNCES 67

T
ab

le
4.
1:

C
or
re
sp
on

d
en

ce
ta
b
le

fo
r
R
-S
tD

tr
an

sl
at
io
n
in
to

R
-T

N
C
E
S
.

R
u
le
s

R
-S
tD

R
-T

N
C
E
S

R
u
le

1
S
t
(4
.2
)

P
(2
.2
.3
)

R
u
le

2
T
r
(4
.2
)

T
(2
.2
.3
)

R
u
le

3
{
st

b
,s
t e
}
:=

ζ
(t
r)

(4
.2
)

{
p
o
u
t,
p
to
}
⊆

P
;
{f

a
1
,f

a
2
}
⊆

F
(2
.2
.3
)

R
u
le

4
g
r
:=

δ−
1
(t
r)

(4
.2
)

ci
∈
C

in
(2
.3
)
;
co
∈
C

o
u
t
(2
.3
)
;
ca
∈
C
N

(2
.2
)

R
u
le

5
a
c
:=

ǫ−
1
(t
r)

(4
.2
)

ei
∈
E

in
(2
.3
)
;
eo
∈
E

o
u
t
(2
.3
)
;
ea
∈
E
N

(2
.2
)

R
u
le

6
ev

:=
ζ
−
1
(t
r)

(4
.2
)
A
N
D

<
<

ev
en

tI
n
p
u
t
>
>
:=

α
−
1
(e
v
)
(4
.1
)

ei
∈
E

in
(2
.3
)
;
eo
∈
E

o
u
t
(2
.3
)
;
ea
∈
E
N

(2
.2
)

R
u
le

7
ev

:=
ζ
−
1
(t
r)

(4
.2
)
A
N
D

ev
is

an
af
te
r(
n
)
ev
en
t

n
∈
D
R

;
∞
∈
D
L

(2
.2
)
(2
.3
)
(2
.4
)

68
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

The paper proposes Table 4.2 which is given above to show the corre-
spondence between R-StD and R-TNCES. The numbers given in parentheses
show the reference to the formulas that give details on the syntax used in
the table.

The seven translation rules are explained hereafter:

❼ Rule 1: A state St in an R-StD corresponds to a place P in an R-
TNCES;

❼ Rule 2: A transition Tr in an R-StD corresponds to a transition too
(T) in an R-TNCES;

❼ Rule 3: Each transition tr in an R-StD is mapped to a pair of states,
stb and ste, where the first is the state from which tr is taken and the
second is the next state if tr fires. The corresponding transition (t)
and two places (pout and pto) will be created using, respectively, Rule
2 and Rule 1. Rule 3 creates actually in the R-TNCES a flow arc, fa1,
linking pout to t, and another one, fa2, linking t to pto;

❼ Rule 4: In an R-StD, some guards can be mapped to some transitions.
A guard gr corresponds to a condition arc, ca, in an R-TNCES. A
condition output signal, co, is added to the place from which ca is
leaving and a condition input signal, ci, to the place which is pointed
by ca;

❼ Rule 5: In an R-StD, some actions can be mapped to some transitions.
An action ac corresponds to an event arc, ea, in an R-TNCES. An
event output signal, eo, is added to the place from which ea is leaving
and an event input signal, ei, to the place which is pointed by ea;

❼ Rule 6: In an R-StD, each <<eventInput>>-stereotyped event, ev,
is translated into an event arc, ea, in the corresponding R-TNCES. An
event output signal, eo, is added to the place from which ea is leaving
and an event input signal, ei, to the place which is pointed by ea;

❼ Rule 7: An R-StD may feature after(n)-typed events, where n ∈ NNN
∗.

If so, n is added to DR, the set of minimum times that the token
should spend at particular place before the transition can fire, and ∞
to DL, the set of limitation time that defines maximum time that the
place may hold a token, since the place from which the after(n)-typed
event is leaving may indefinitely hold the token.

4.5.2 Verification

We propose in this section to check the relevance of the proposed solution
and the contribution of PCP in solving several issues threatening a DRCS’s

4.5. Transformation from R-UML to R-TNCES 69

safety and deadlock-freedom. Thus, we start by modeling the running ex-
ample of Section 4.3 in UML and then transforming the latter in R-TNCES
according to [Zhang 2013]. Thus, we don’t call out the PCP. We obtain the
model illustrated in Figure 4.11. To verify it, we use model-checking which is
a technique for automatically verifying the correctness properties of finite-
state systems. Model checking for R-TNCES is based on its reachability
graphs. ZiZo [Salem 2015b] is a new and effective software environment for
the analysis of R-TNCES, which computes the set of reachable states exactly.
It exports, then, files exploitable by the model-checker SESA [Starke 2002].
Typical properties which can be verified are boundedness of places, liveness
of transitions, and reachability of states. In addition, temporal/functional
properties based on Computation Tree Logic (CTL) specified by users can
be checked manually. We apply, then, the CTL formula AG EX TRUE
which checks the deadlock-freedom of the system. The said formula turned
out to be false as shown in Figure 4.12, meaning that the system features a
deadlock issue.

70
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

F
ig
u
re

4.
11

:
Il
lu
st
ra
ti
ve

ex
am

p
le
’s

R
-T

N
C
E
S
.

4.5. Transformation from R-UML to R-TNCES 71

Figure 4.12: Screenshot from SESA.

Whence, we call out the solution we proposed in the previous sections.
We start by modeling the two tasks and the three resources in R-StD and
transform, then, the models to R-TNCES based on the transformation rules
specified in Section 4.5.1. We obtain, thus, the R-TNCES model of the tasks
A and B illustrated in Figure 4.13.

Once the R-TNCES model of the DRCS is enriched with PCP, the next
step is to verify whether the models meet users requirements. So, any recon-
figuration scenario dealing with adding/removal of resources does not lead
to a blocking situation. The following e-CTL formula is applied:

AG EX true (4.5)

This formula is proven to be true by SESA as shown in the screenshot
in Figure 4.14, so there is no deadlock in our R-TNCES.

72
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

F
ig
u
re

4.
13

:
T
as
k
s
A

an
d
B
’s

m
o
d
el
in
g
u
si
n
g
P
C
P
.

4.5. Transformation from R-UML to R-TNCES 73

Figure 4.14: Screenshot from SESA.

We also check the safety property by checking if a given resource may be
simultaneously locked by two different tasks. The following CTL formula is
checked:

EF p22 AND p23 (4.6)

where p22 is the place translating that the resource R is locked by the
task A; p22 means that B locks R. This formula is proven to be false as
illustrated in Figure 4.15.

Figure 4.15: Screenshot from SESA.

The formula 5.3.2 is applied six times of the R-TNCES modeling, chang-
ing at each time p22 and p23 by the places which correspond to the ones
translating that the resource R (and then Q and S) is locked by the task A
(and then B). We check thus whether a given resource can be locked by the
two tasks at the same time. The six formulas turned out to be false. We
are sure, then, that our system doesn’t feature a deadlock issue caused by a
concurrent access to shared resources after a reconfiguration scenario.

4.5.3 Implementation

Having basic elements of R-UML used for system modeling defined by the
equations 4.1 and 4.3, the R-UML project defining a reconfigurable system
with adaptive shared resources model can be represented via 4-tuple:

R− UMLsystem = (ClDs,R− StDs,O,Ω) (4.7)

where:

❼ ClDs = {ClD1, CID2, ..., CIDn} is a finite set of class diagrams,
where each ClDi element is defined by (4.1);

74
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

❼ R−StDs = {R−StD1, StD2, ..., StDl} is a finite set of reconfigurable
state diagrams, where each R− StDj element is defined by (4.3);

❼ O is a finite set of objects, where each one is an instance of ClDi and
have its corresponding R− StDj ;

❼ Ω : R − StDa → clb is function that maps the reconfigurable state
diagram R− StDa to the class clb of C (4.1).

The algorithm 1 defines the rules to translate R-UML to R-TNCES. The
numbers given in parentheses show the reference to the formula that gives
details on the used syntax.

4.6 Transformation from R-UML to ROS

4.6.1 State of the Art

Many works in our community have recently established concepts to improve
robustness, interoperability, maintainability and reusability in robotics to
face the latter’s growing complexity. They proposed means of component-
based architectures and model-driven software development. This gave
rise to the creation of robotic frameworks and architectures such as ROS
[Quigley 2009], SmartSoft [Schlegel 2004] and Orocos [Bruyninckx 2001].
Current activities focus on composition towards reuse as black boxes and
configuration at run-time for both, parameters and the component’s life-
cycle.

Among the works promoting the component-based development, we cite
the BRICS component model (BCM) [Bruyninckx 2013] which introduces
the concept of composition with components grouped or nested together.
They include a lifecycle coordinator to form a new reusable component.
Restricted finite state machines (rFSM) [Klotzbücher 2012] were also devel-
oped in the context of BRICS/BCM. rFSM are a minimal variant of state
charts and are integrate into the robotic framework OROCOS/RTT. This
new concept was developed with a focus on component coordination for
robotics. BCM and rFSM certainly make valuable progress towards reuse
and composition of components. However, they cannot handle reconfigu-
ration, an important feature in new robotic systems [Murata 2002]. They
control the component’s life-cycle rather than the component’s skills at task
level.

4.6.2 Transformation Rules from R-UML to ROS

We propose in this section a new approach to generate ROS code from
R-UML diagrams. We define, thus, a server to manage the different recon-
figuration scenarios. We also explain how ROS nodes communicate. We
introduce then a solution to translate R-UML into ROS code.

4.6. Transformation from R-UML to ROS 75

Algorithm 1 R-UML translation into R-TNCES
Input: R− UMLsystem

Output: R− TNCESsystem

for objj ∈ O (4.7); j ∈ [0, |O|] do
Initialize R− TNCESk, each element is ∅ (2.2.3)
Define class of the object Cl := Ω(objj) (4.7)
for attrl ∈ Cl(l ∈ [0, |ACl|] do

if α−1(attrl) =<< input >> (4.1) then

Add condition input ci to Cin of R− TNCESk (2.3)
Add condition arc ca to CN of R− TNCESk (2.2)

end if

if α−1(attrl) =<< output >> (4.1) then

Add condition output co to Cout of R− TNCESk (2.3)
Add condition arc ca to CN of R− TNCESk (2.2)

end if

if α−1(attrl) =<< in >> (4.1) then

Add condition input ci to Cin of R− TNCESk (2.3)
end if

if α−1(attrl) =<< out >> (4.1) then

Add condition input co to Cout of R− TNCESk (2.3)
end if

if α−1(attrl) =<< eventInput >> (4.1) then

Add event input ei to Ein of R− TNCESk (2.3)
end if

if α−1(attrl) =<< eventOutput >> (4.1) then

Add event input eo to Eout of R− TNCESk (2.3)
end if

if α−1(attrl) =<< integer >> and Attrl == x (4.1) then

Add x to DR of DC(2.4)
end if

if α−1(attrl) =<< boolean >> and Attrl == y (4.1) then

Add y to G of StD (4.2)
end if

end for

Define a state diagram for each object objj : R− StD := Ω−1(Cl) (4.7)
for tr ∈ Tr of StD (4.2) do

Add transition t to T of R− TNCESk (2.2.3)
Get outgoing stout and incoming stto states for transition: stout, stto := ζ(tr)
for st ∈ ζ(tr) do

place pout and pto to P of R− TNCESk (2.2.3)
place flow arc fa1 to F of R− TNCESk: (pout, t)
place flow arc fa2 to F of R− TNCESk: (t, pto)

end for

Define guard for transition tr:gr := δ−1(tr) (4.2)
Define action for transition tr:ac := ǫ−1(tr) (4.2)
Define event for transition tr:ev := γ−1(tr) (4.2)
for < operand > (Pguard) ∈ gr do

Add condition input ci to Cin of R− TNCESk (2.2.3)
Add condition arc ca to CN of R− TNCESk (2.2)

end for

for < action > (Paction) ∈ ac do

Add event input ei to Ein of R− TNCESk (2.2.3)
Add event arc ea to EN of R− TNCESk (2.2)

end for

if ev is of ¡¡eventInput¿¿ stereotype then

Add event input ei to E
in

of R− TNCESk (2.2.3)
Add event arc ea to EN of R− TNCESk (2.2)

end if

if ev is after(n) event then

Add n to DR of DC for fa1 (2.4)
Add ∞ to DL of DC for fa1 (2.4)

end if

end for

end for

76
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Configuration Server

Due to the potential large number of parameters in a reconfigurable robotic
system, it is highly unpractical or even infeasible to configure and tune the
performance of the said system if these parameters are incorporated in the
source code as hard-coded constants. Modifying hard-coded constants re-
quires recompilation and redeployment to the robot, potentially a very time-
consuming process, and does not allow for runtime changes to parameters.
To address this issue, the configuration server was developed. Implemented
as a ROS node, the configuration server is a centralized manager and stor-
age location for system parameters. The existing dynamic reconfigure ROS
package provides a means to change node parameters at any time without
having to restart the node [Allgeuer 2013].

Running Example

To begin, we create a package called running example which depends
on the packages rospy, roscpp and dynamic reconfigure:

catkin create pkg -rosdistro indigo running example rospy roscpp dy-
namic reconfigure

Then, we create a cfg directory, this is where all configuration files
live:

mkdir cfg

Lastly, we need to create two configuration file, task.cfg and
resource.cfg :

task.cfg

#!/usr/bin/env python PACKAGE = ”running example”

from dynamic reconfigure.parameter generator catkin import *

gen = ParameterGenerator()

gen.add(”priority”, int t, 0, ”the priority of the task”, 1, 0, 100)

gen.add(”added”, bool t, 0, ”defines whether the task is added to
the system”, False)

4.6. Transformation from R-UML to ROS 77

exit(gen.generate(PACKAGE, ”running example”, ”run-
ning example”))

task.cfg

#!/usr/bin/env python PACKAGE = ”running example”

from dynamic reconfigure.parameter generator catkin import *

gen = ParameterGenerator()

gen.add(”ceiling”, int t, 0, ”the priority of the task”, 1, 0, 100)

gen.add(”added”, bool t, 0, ”defines whether the task is added to
the system”, False)

exit(gen.generate(PACKAGE, ”running example”, ”run-
ning example”))

Communication with ROS Nodes

Communication between ROS nodes and the external world is performed
in the form of YAML strings. This approach has a number of advantages.
First, this approach avoids the requirement of actually running ROS on the
lightweight device featuring the HMI (human-machine interface). This is a
critical issue as ROS is not designed for the small memory, bandwidth and
computational limits of most of devices featuring HMI. Second, interfacing
with the robot’s control environment can be separated to a large extent
from the ROS-based computation that is providing vehicle control. Finally,
the approach only exposes the specific messages that are key for device
operation/management [Speers 2013].

Dynamic reconfigure Package

dynamic reconfigure ROS package, which extends the ROS parameter server,
permits easy adjustment of filtering parameters on-the-fly (during execu-
tion). This tool is used to change the parameters of ROS nodes dynamically.
The parameters are stored in a hierarchical structure in the server, with lo-
cal copies of the relevant parameters being kept in each of the nodes for
performance reasons. The appropriate nodes are notified via service calls
whenever a parameter is changed on the server. Appropriate functional-
ity exists to be able to load and save the entire parameter hierarchy. The

78
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Table 4.2: Correspondence table for R-UML translation into ROS configu-
ration file.

Rules R-StD ROS

Rule 1 Class Node

Rule 2 Attribute Parameter

Rule 3 Stereotype Enumerated type

default parameter values on system startup are taken from a well-defined
configuration file, stored on each robot. This feature is very interesting in
this paper, since configuration parameters are dynamically changed.

R-UML Translation into ROS Configuration File

The paper proposes Table 4.2 which is given above to show the correspon-
dence between R-UML class diagrams (Formula 4.1) and ROS configuration
file.

The three translation rules are explained hereafter:

Configuration File

We explain in this section how to create a basic configuration file which will
be used by dynamic reconfigure package.

This first lines are pretty simple, they just initialize ros and import the
parameter generator.

from dynamic recon f i gure . pa ramete r gene ra to r ca tk in import ✯

We create then a generator.

gen = ParameterGenerator ()

Now that we have a generator we can start to define parameters. The add
function adds a parameter to the list of parameters. It takes few different
arguments:

❼ name - a string which specifies the name under which this parameter
should be stored.

❼ type - defines the type of value stored, and can be any of int t, dou-
ble t, str t, or bool t.

❼ level - A bitmask which will later be passed to the dynamic reconfigure
callback. When the callback is called all of the level values for parame-
ters that have been changed are ORed together and the resulting value
is passed to the callback.

❼ description - string which describes the parameter.

4.7. Application to BROS 79

❼ default - specifies the default value.

❼ min - specifies the min value (optional and does not apply to strings
and bools).

❼ max - specifies the max value (optional and does not apply to strings
and bools).

gen . add (” int param ” , i n t t ,
0 , ”An In t eg e r parameter ” , 50 , 0 , 100)
gen . add (” double param ” , double t , 0 , ”A double parameter ” ,
. 5 , 0 , 1)
gen . add (” str param ” , s t r t ,
0 , ”A s t r i n g parameter ” , ”He l l o World”)
gen . add (” bool param ” , boo l t ,
0 , ”A Boolean parameter ” , True)

The last line simply tells the generator to generate the necessary files
and exit the program. The second parameter is the name of a node this
could run in, the third parameter is a name prefix the generated files will
get

e x i t (gen . generate (PACKAGE, ”dynamic example ” , ”example ”))

4.7 Application to BROS

In order to automate and evaluate the proposed transformation from R-
UML to R-TNCES, we decide to develop two new modules in an R-TNCES
editor, simulator and model-checker named ZiZo [Salem 2015b]. Thus, the
latter will be able to, first, edit R-UML models and, secondly, translate
them into R-TNCES ones as indicated in Figure 4.16. The user can, lately,
simulate the generated models and apply CTL formulas on them to check
different properties.

80
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

F
ig
u
re

4.
16

:
Z
iZ
o’
s
d
iff
er
en
t
m
o
d
u
le
s.

4.7. Application to BROS 81

We start, then, by editing an R-StD describing the behavior of BROS
as illustrated in Figure 4.17. The second step consists, according to Figure
4.16, in translating the R-UML model into an R-TNCES one. The latter is
shown in Figure 4.19. Upon definition of the model, ZiZo can simulate it.
Simulation can be tracked by selection of a token game. Once simulation is
finished, a report is displayed at the debug window. The obtained report
displayed in Figure 3.19 proves that, after exploring 3057 places by ZiZo,
our system is deadlock-free.

Figure 4.17: R-StD of BROS.

82
Chapter 4. New UML Profile: R-UML and Automatic

Transformation to ROS

Figure 4.18: R-TNCES of BROS.

Figure 4.19: BROS’s simulation report.

After proving, by simulation, the non-existence of problems related to
concurrent access on BROS’s reconfigurable shared resources, we perform
again the exhaustive CTL-based verification previously done in Section 3.4.2
to check the potential existence of several problems that may be faced at
BROS’s runtime. The results are as positive as in Section 3.4.2.

4.8 Summary

Our work consisted, through this chapter, in proposing a new UML profile,
the R-UML, to model and verify flexible control systems sharing adaptive

4.8. Summary 83

resources. Whence, we chose to enhance class and statecharts diagrams to
support PCP. We proposed, then, a new and original solution to translate the
generated R-UML models into R-TNCES-based patterns which were pro-
posed in [Salem 2014]. This aims at proving the correctness of the R-UML
models by performing model-checking on the generated R-TNCES models.
The relevance of our contribution was proved thanks to model-checking using
ZiZo, a new R-TNCES editor, simulator and model-checker [Salem 2015b].
This approach is original since R-TNCES is a new formalism dedicated to
flexible control systems modeling and ZiZo is a new tool supporting the said
formalism.

We applied, then, this contribution on BROS which is a flexible system
since it can run under different operating modes: it is reconfigurable. The
concurrent access to adaptive shared resources is present in the said system,
which can be rather hazardous in such medical systems. Whence, applying
our contribution to BROS turned out to be very relevant to certify that the
robotic platform is safe and does not run any risk after any reconfiguration
scenario. Thus, we can move to the next step: implementation of BROS.

Chapter 5

Implementation of BROS

Contents

5.1 Introduction . 86

5.2 Platform and Environment 88

5.3 Middleware . 89

5.3.1 Architecture . 89

5.3.2 Image Processing . 91

5.4 Control Unit . 94

5.4.1 Station Definition . 95

5.4.2 B-BROS1 Module . 96

5.4.3 B-BROS2 Module . 96

5.4.4 P-BROS Module . 97

5.4.5 Synchronization Module 98

5.4.6 CU-MW Communication Module 99

5.4.7 Surgeon-Robot Interface 99

5.4.8 Simulation and Test of BROS 100

5.5 Summary . 101

86 Chapter 5. Implementation of BROS

5.1 Introduction

Once the system is specified and certified, we move to the implementation
step. It takes as input the verified models we got from the certification
step and hardware/software libraries (algorithms, programming languages,
OS,..etc) which were chosen by designers to be used for the implementation
of the system. This step is composed of two sub-steps as illustrated in
Figure 5.1. It produces the code that will be used for the deployment step.
If any issue is detected during the simulation step, we have to go back to the
specification step. Note that this simulation step is different from the one
we find in the certification step: the first uses simulators provided by the
manufacturers of the hardware/software we are intending to use, whereas the
second uses ZiZo to detect any potential deadlock in the R-TNCES-based
models.

5.1. Introduction 87

F
ig
u
re

5.
1:

Im
p
le
m
en
ta
ti
on

st
ep

.

88 Chapter 5. Implementation of BROS

5.2 Platform and Environment

As the smallest robot from ABB, the IRB 120 offers all the functional-
ity and expertise of the ABB range in a much smaller package. Like all
ABB robots, the IRB 120 is a particularly agile 6-axis robot which, thanks
to its compact turning radius, can be mounted closer to other equipment.
Besides, it is ideal for a wide range of industries including the electronic,
food and beverage, machinery, solar, pharmaceutical, medical and research
sectors. With its lightweight but strong aluminum structure and small pow-
erful engines, the IRB 120 weighs only 25 kg, which explains its rapid and
precise acceleration. In fact, this featherweight has all the traditional fea-
tures of ABB robots, including leading performance in terms of trajectory
tracking and motion control. Thus, the IRB 120 won many manufacturers’
spurs [Mikaelsson 2009].

IRB 120 can be programmed offline with RobotStudio ABB’s software
that allows to simulate an industrial manufacturing cell to find the opti-
mal position of the robot and avoid costly downtime and production delays.
RobotStudio from ABB Robotics is a powerful off-line robot programming
and simulation tool. What makes it unique is the fact that, when the code is
fully developed off-line, it downloads to the actual controller with no transla-
tion stage, reducing time-to-market. RobotStudio is able to create the robot
movements using graphical programming, edit and debug the robot system,
and simulate and optimize existing robot programs. It is widely used in uni-
versities to educate engineering students in the capabilities and applications
of robots, as well as in the automation industry by mechanical designers and
robot programmers. RobotStudio is also used in remote maintenance and
troubleshooting. It actually connects to the live system to take an instant
virtual copy, and then goes off-line to enable the situation to be studied in
depth. RobotStudio also features a RAPID Editor which enables the user
to write a robot program. The user can watch a single robot execute the
RAPID program in the graphical environment [Connolly 2009].

Running example 1

To test our new robotized platform, we decided to simulate the
surgery that would be performed on a real case. Thus, we chose a
new patient, a nine-year-old girl, suffering from a fracture similar to the
one presented in the case study of Section 2.3.2 (a a type III fracture).
We simulated the whole surgery on June 9th 2014 using the software
RobotStudio and the developed middleware and control unit. We will
present the obtained results as we introduce these two components in
the next sections.

5.3. Middleware 89

Figure 5.2: Middleware’s class diagram.

5.3 Middleware

We introduce in this section the architecture of the middleware and its image
processing module.

5.3.1 Architecture

The Middleware features two important modules: the first performs opera-
tions relating to image processing and the second insures the synchronization
and communication with the whole robotized platform. Middleware’s class
diagram is illustrated in Figure 5.3.1. Since the middleware acts as a medi-
ator between the browser and the control unit, several data are exchanged
between MW and CU during the surgery. First, the control unit notifies the
start of the intervention and the activated operating mode to the middle-
ware. Then, it asks it to compute necessary parameters like fracture’s type
and spatial coordinates. It also informs MW about the end of reduction and
pinning. The middleware and the control unit are connected through an ad
hoc network. We illustrate the different exchanges between MW and CU by
a sequence diagram as shown in Figure 5.3.1.

The controller is a module that saves the current status reached by the
intervention. Indeed, the control unit informs the middleware of each fired
transition and the current triggered operating mode. The control unit up-
dates these information as the intervention advances in time. Thus, the
middleware is kept aware of the progress of the surgery. This module syn-

90 Chapter 5. Implementation of BROS

Figure 5.3: Sequence diagram of communication with CU.

5.3. Middleware 91

Figure 5.4: Coordinate system axes.

chronizes, then, the middleware with the whole operation. The image pro-
cessing module is deeply detailed in the next section.

5.3.2 Image Processing

Image processing is the most important module of the middleware and pro-
vides a number of features that we detail below.

Locating

Locating is an important feature that involves setting a spatial reference
which is considered during the whole intervention. The middleware and
the control unit must use the same coordinate system since several points
coordinates computed by MW are, firstly, sent to CU so the latter performs
a preoperative simulation and, secondly, to B-BROS and P-BROS to realize
the fracture reduction and pinning. We choose to fix the coordinate system
origin at the patient’s elbow as illustrated in Figure 5.3.2. The X, Y and
Z axes respectively represent the elbow’s rotation axis, the humeral palette
length’s median and the normal to (XY) plan.

Determination of the Fracture Type

MW starts by receiving from BW a first image of the fracture to deter-
mine its type. It compares the acquired image with the ones stored in its
database. To do this, the middleware uses two image processing techniques,
ensuring, thus, proper detection of the fracture type. The first one is image
matching and consists in comparing images in order to obtain a measure
of their similarity. It extracts invariant local features for all images, and
then uses voting to rank the database images in similarity with the query

92 Chapter 5. Implementation of BROS

image [Grauman 2005b]. The second used image processing technique is
contour comparison. It consists in detecting an image contour by quanti-
fying the presence of a boundary at a given image location through local
measurements [?]. The contour comparison is applied on the patient’s elbow
image acquired from BW and images stored at the database, one at a time.

Running example 2

Figure 5.3.2 shows the result of image matching applied on the
running example’s fractured elbow (on the left) and an image from the
MW database (on the right). Figure 5.3.2, for its part, shows a contour
comparison with another image from the database. The type III is
confirmed.

Figure 5.5: Image matching ap-
plied on two fractured elbow im-
ages.

Figure 5.6: Contour comparison
performed by MW.

Coordinates Transformation

The middleware acquires images from the browser. The latter uses a sys-
tem camera composed of two lenses to geometrically triangulate the spatial
coordinates of each light source on the instrument, reference frame, and
C-Arm Target. However, the images it sends to MW are two-dimensional,
and MW needs to operate in a three-dimensional environment to properly
ensure the different steps of the surgery, such as the fracture reduction and
pinning. Thus, we must, first, realize a camera calibration which consists in
finding the relationship between the spatial coordinates of a point in space
(i.e. the operating theatre) and the associated point in the image taken by
the camera [Tsai 1987]. To achieve the desired transformation, two types of
parameters must be determined:

❼ the camera extrinsic parameters which define the position and orien-
tation of camera relative to the space in which we work. Technically,

5.3. Middleware 93

Figure 5.7: Different coordinate systems.

determining these parameters consists in finding the translation vector
between the relative positions of the origins of two references: the cam-
era reference and the operating theatre’s. A rotation vector aligning
the axes of the two references must also be computed.

❼ the camera intrinsic parameters which are required to bind the image
pixels coordinates with the corresponding ones in the camera coordi-
nate system. These parameters present the camera optical, digital and
geometric features like the focal length, the geometric distortion and
image magnification factors.

Figure 5.3.2 illustrates the different used coordinate systems where: (i)
(x, y) plan is the image pixels reference, (ii) (x’, y’, z’) is the camera coor-
dinate system, (iii) (x, y, z) is the operating theatre reference.

To translate the coordinates of a point in the image from the latter’s
reference to the operating theatre’s and vice versa, we use the following
formula:

S





u
v
1



 = CM(RV





X
Y

Zconst



+ TV) (5.1)

where :

❼ S





u
v
1



 are the coordinates of a point in the image,

❼ CM is the camera matrix,

❼ RV represents the rotation vector,

❼ TV is the translation vector,

❼ (X, Y, Zconst) are the coordinates corresponding to the point S in the
operating theater reference.

94 Chapter 5. Implementation of BROS

Fracture Reduction Validation

The validation of fracture reduction consists in checking whether the bone
fragments regained their original places or not. Thus, this module detects,
based on the acquired image, the bone discontinuity and, then, computes the
distance between the displaced bone fragments. We hereafter explain this
technique with the most common fracture types of Lagrange classification:
II and III.

Validating the reduction of a type II fracture involves calculating the dis-
tances AC and BD as illustrated in Figure 5.3.2. A reduction is considered
successful when:

|AC| = |BD| = 0 (5.2)

BROS has only three attempts to achieve a successful reduction before
switching to the semi-automatic mode (SAM) to let the surgeon manually
perform it. The type III fractures usually present a rotary disorder. Their
reduction consists, therefore, in the rotation of the forearm with an α angle
which is arcsin (Zb - Za) as illustrated in Figure 5.3.2.

Figure 5.8: Reduction of a type II
fracture.

Figure 5.9: Reduction of a type III
fracture.

Pinning Validation

Pinning validation amounts to checking the respect of the formula which is
introduced in Section 1.2.1 by computing the humeral palette’s width and
the distance separating the two pins.

5.4 Control Unit

The control unit, the entity responsible of the smooth running and the safety
of surgery, is composed of several modules which we detail hereafter. We
use RobotStudio to implement it and RobotWare [Rampersaud 2000b] as
the robot controller. Both are ABB’s products.

5.4. Control Unit 95

5.4.1 Station Definition

This module implements the station which is, in our case, the operating room
with all its components. The latter can be grouped into two categories: the
mechanisms and the static components. The mechanisms are objects that
perform 3D motion during simulations, whereas static components, as their
name suggests, remain fixed during all surgery.

Running example 3

Figure 5.10 shows the implementation of our operating theater with
its different robotic arms, the patient’s limb modeling and the surgical
bed.

Figure 5.10: Operating room definition.

Mechanisms

Our operating theatre’s mechanisms are B-BROS1, B-BROS2 and PBROS.
They are all ABB’s IRB 120. ”Blocker 1” is the used tool to block the
patient’s limb at humerus and lately unblock it according to coordinates
computed by the blocking module. To reduce the fracture and block the
limb at forearm, ”Blocker 2” is used according to coordinates received from
the reduction module. Blocker 1 and Blocker 2 have the same 3D modeling
illustrated in Figure 5.4.1. ”Pinning”, as its name suggests, is the used tool
to perform pinning at the patient’s elbow according coordinates computed
by the pinning module. Its 3D modeling is showed in Figure 5.4.1.

96 Chapter 5. Implementation of BROS

Figure 5.11: Blocker 1 and Blocker
2’s 3D modeling.

Figure 5.12: Pinning’s 3D model-
ing.

Figure 5.13: Limb’s 3D modeling.

To simulate the progress of the surgery on the patient’s limb, we model
the latter as illustrated in Figure 5.4.1. It is modeled by a mechanism that
rotates about the X axis (in red).

Static Components

Static components are the different 3D objects which are useful to the sim-
ulation like the robotic arms’ racks and the surgical bed.

5.4.2 B-BROS1 Module

B-BROS1 module describes the behavior of the robotic arm B-BROS1 and
how it blocks the patient’s limb at the humerus and unblocks it once the
surgery is completed. Thus, this module features two procedures:
(i) B BROS1 humerusBlock () : it blocks the arm at a distance of y +
100mm where y is the coordinate on Y axis of the intersection point of the
humeral palette and its median. Figure 5.4.2 illustrates how the blocking is
performed, (ii) B BROS1 humerusUnblock () : it releases the patient’s limb
once the fracture treatment is completed.

5.4.3 B-BROS2 Module

This module features several procedures which allow robotized fracture re-
duction when the automatic mode is triggered and direct robotized arm
blocking when AM, SAM or DMB is triggered. B-BROS2 module releases

5.4. Control Unit 97

Figure 5.14: Blocking the patient’s limb.

the patient’s limb once the surgery is completed. We, hereafter, detail the
procedures:

1. B BROS2 reduce II (A, B, C, D) : it performs the reduction of a type
II fracture and takes into account the parameters that we defined in
Section 5.2. Figure 5.4.3 illustrates a robotized fracture reduction,

2. B BROS2 unblock II () : this procedure unblock the patient’s limb
suffering from a type II fracture once the surgery is completed,

3. B BROS2 reduce III (A, B) : it computes the rotation angle of the
rotary disorder in the case of a type III fracture and, then, reduces the
latter,

4. B BROS2 block () : the procedure blocks the limb at the forearm once
a manual reduction is performed during SAM or DMB. Figure 5.4.3
shows how this is performed.

Figure 5.15: Robotized fracture re-
duction.

Figure 5.16: Blocking the fractured
limb at the forearm.

5.4.4 P-BROS Module

This section describes the behavior of P-BROS, the robotic arm performing
fracture reduction according to its type and the triggered operating mode.

98 Chapter 5. Implementation of BROS

We point out that the used pinning technique is Judet’s which we mentioned
in Section 1.2.1. The orientation of the tool ”Pinning” (Section 6.1), rel-
atively to the coordinate system defined in Section 5.3.2, depends on the
type of the fracture. Thus, the figures 5.4.4 and 5.4.4 respectively shows the
orientation of ”Pinning” in the case of a type II and a type III fractures.

Figure 5.17: Orientation of ”Pin-
ning” in the case of a type II frac-
ture.

Figure 5.18: Orientation of ”Pin-
ning” in the case of a type III frac-
ture.

The P-BROS module features several procedures that we hereafter de-
tail:

1. P BROS DoublePin (A, B, C, D, HP) : it performs a parallel pin-
ning using two pins inserted from the external condyle to the lateral
humeral column in the case of a type II fracture which requires a dou-
ble pinning. The procedure uses as parameters the four points of the
distal dissolution and the width of the humeral palette (HP),

2. P BROS SinglePin III (A, B, HP) : this procedure performs a percu-
taneous pinning for a type III fracture. The pin is actually inserted
from the external condyle throughout the medial column in a rectilin-
ear direction by keeping a fixed (XY) plane,

3. P BROS SinglePin IV (A, B, HP) : it realizes a percutaneous pinning
for a type IV fracture. Indeed, for this type of fracture, the pin is
inserted in the lateral condyle and makes an angle of 45 relative to
the orientation of the pin in the case of a type III fracture. The pin is
inserted until reaching the lateral column.

5.4.5 Synchronization Module

We present, in this section, the synchronization module of the control unit.
It is the entity that insures the coordination between the tasks of B-BROS1,
B-BROS2 and P-BROS modules. To insure this function, we use interrup-
tions through binary logic signals. Indeed, each signal corresponds to a very
specific task. The signal is high when the task is running and low when it is
idle or finished executing. We note that the used signals represent the steps

5.4. Control Unit 99

of a fracture treatment based on the operating mode and regardless to the
nature of a given action (robotized or manual).

We define for the control unit the following logic signals which we detail
in Table 5.4.5.

Table 5.1: Synchronization logic signals.
Logic Signal Description

HandBlocking

This signal controls the first step of a fracture treatment
which is blocking the patient’s limb at the humerus. It is
the highest priority task. The signal is high when B-BROS1
starts blocking the humerus and it switches to low once block-
ing is finished.

HandReduction

The signal controls the fracture reduction and the forearm
blocking. It switches to high when HandBlocking is low and
either B-BROS2 starts the robotized reduction and/or block-
ing or the surgeon starts the manual reduction and/or block-
ing. It is the second priority task.

HandPinning

HandPinning controls pinning, whether it is manual or robo-
tized. It changes to high when the signal HandReduction
changes to low informing, thus, that reduction and blocking
are finished. When it switches to high, HandPinning starts
pinning and switches to low once it is finished.

5.4.6 CU-MW Communication Module

A good communication between the control unit and the middleware is
critical to the smooth functioning of BROS. For example, the control unit
cannot start the different processing until it receives key parameters like
the fracture type and the coordinates of the points of the distal fragment
discontinuity. The module respects the diagram presented in Section 5.3.1.

5.4.7 Surgeon-Robot Interface

It is the graphical interface through which the surgeon communicates with
the platform and oversees the progress of the operation. The surgeon can,
using this interface, choose the operating mode to start with. Through this
GUI, the surgeon consults any medical parameter like the fracture type, the
displacement nature or the angle of the rotational trouble in the case of type
III fractures. This interface meets the man-machine requirements like:

❼ Guidance: All resources used to guide the surgeon during the use of the
interface like grouping/distinction, immediate feedback and legibility,

❼ Workload: Minimum and explicit actions (”start reduction”, ”start
pinning”), informational density more or less acceptable for a surgeon,

100 Chapter 5. Implementation of BROS

❼ Error management: This is to protect sensitive actions against errors
with error messages,

❼ Ergonomics: The interface must be flexible and adaptable to a surgeon
and especially in an operating room.

Running example 4

The whole surgery was successfully performed by BROS under the
automatic operating mode and simulated using RobotStudio and Robot-
Ware. Only 4 fluoroscopic images were needed, what makes 21 images
less than in the case study introduced in Section 3. BROS insured all
the intervention steps and the surgeon had only to remotely check the
smooth running of the surgery and be ready to intervene in the case
where the robotized platform would not be able to perform one of the
surgery’s steps or he would judge that a human intervention is necessary.

5.4.8 Simulation and Test of BROS

To test the relevance and the accuracy of BROS, we decided to compare the
pinning coordinates computed by the middleware (MC) and those where
BROS really inserts the Kirschner wires into the fractured elbow (RC).
Our medical partners provided us, thus, with forty-two real radiographies
of supracondylar humeral fracture. The middleware sorted them according
to Smida’s classification as illustrated in Table 2.3.

Table 5.2: Sorting 42 SCH fractures’ radiographies according to Lagrange’s
classification.

Type Number

I 4
IIA 6
IIB 12
IIC 7
III 13

We assume that the error rate is the ratio of RC to MC. Since type-I
fractures don’t need pinning to be treated, the error rate is only calculated
for type-IIA, IIB, IIC and III fractures [Smida 2007]. We obtain the graph
illustrated in Figure 5.19.

5.5. Summary 101

Figure 5.19: Error rates per SCH fracture type.

Based on the obtained results, the error rates never exceeded 2%. Ac-
cording to our medical partners, these error rates are very acceptable in
themselves, which allows us to confirm that BROS is a safe and trustful
platform for the robotized treatment of supracondylar humeral fractures.

5.5 Summary

Our work consisted, through this chapter, in implementing BROS on ded-
icated software. Through the simulation of a real case of BROS-assisted
surgery, we proved the usefulness of this robotic platform to avoid the com-
plications that may be generated because of the blind pinning and prevent
the danger posed by the recurrent exposition to radiations. We can, now,
certify that BROS is an innovating project which will be of a great help
to pediatric orthopedic surgeons. The next step is to proceed to the real
implementation of BROS using the ABB robotic arms.

Chapter 6

Conclusion and Perspectives

Contents

6.1 Conclusion . 104

6.2 Perspectives . 104

104 Chapter 6. Conclusion and Perspectives

6.1 Conclusion

This dissertation presents a new methodology called BROMETH to validate
medical robotized platforms and insure their safety from specification to
deployment. This methodology is original since it uses new technologies like
the R-TNCES and a new tool, ZiZo. BROMETH is mainly established to
validate medical robotized platforms, but it can besides be used with systems
belonging to other fields and presenting issues of reconfiguration scenarios
and concurrent access to shared resources. Thanks to this methodology, we
are able to guarantee the safety of the medical project BROS. The results
of the experiments performed on real SCH fracture radiographies were quite
satisfactory. Clinical experiments can then be performed after deploying the
system on real hardware during the last step of BROMETH. The latter will
be the subject of our future work.

In this work, we defined new Petri Nets-based to model both tasks and
resources of a reconfigurable system. A new Petri Nets-based editor and
random-simulator named ZiZo is also developed to model and simulate the
generated models. These new concepts and tools are applied on BROS as
part of going through the specification and certification steps of BROMETH.

We also proposed a new UML profile, baptized R-UML (Reconfigurable
UML), to model flexible control systems sharing adaptive shared resources.
The profile is enriched with a PCP-based solution for the management of
resource sharing which is defined in Chapter 3. The chapter 4 also presents
an automatic translation of R-UML into R-TNCES to support model check-
ing. BROS serves as an application of this new concept on a real study case.
This chapter also introduces new solutions to automatize the generation of
codes usable by Robot Operating System from R-UML models.

We, then, discussed the implementation step of BROS. It exposes and
evaluates the results of the treatment of supracondylar humeral fracture by
BROS. The development of the middleware and control unit of BROS are
detailed in this chapter.

We, finally, discussed the shown results and drawn conclusions of the
presented work presented. Future improvements that could enrich the work
developed during this dissertation are proposed.

6.2 Perspectives

The BROMETH methodology turned out to be relevant to design, cer-
tify and implement a surgical robotic system dedicated to the treatment
of humeral supracondylar fracture. Our purpose is now to continue devel-
oping this system to treat other sensitive surgeries, like the spinal cord and
femoral neck ones. BROMETH is absolutely useful to design reconfigurable
industrial systems featuring adaptive shared resources issues.

Bibliography

[Allgeuer 2013] Philipp Allgeuer, Max Schwarz, Julio Pastrana, Sebastian
Schueller, Marcell Missura and Sven Behnke. A ROS-based software
framework for the NimbRo-OP humanoid open platform. In Proceed-
ings of 8th Workshop on Humanoid Soccer Robots, IEEE-RAS Int.
Conference on Humanoid Robots, Atlanta, USA, 2013. (Cited on
page 76.)

[Alur 1991] Rajeev Alur and Thomas A Henzinger. Logics and models of
real time: A survey. In Workshop/School/Symposium of the REX
Project (Research and Education in Concurrent Systems), pages 74–
106. Springer, 1991. (Cited on page 21.)

[Arbelaez 2011] Pablo Arbelaez, Michael Maire, Charless Fowlkes and Jiten-
dra Malik. Contour detection and hierarchical image segmentation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 33, no. 5, pages 898–916, 2011. (Cited on page 22.)

[Bahill 2003] Terry Bahill and Jesse Daniels. Using objected-oriented and
UML tools for hardware design: A case study. Systems Engineering,
vol. 6, no. 1, pages 28–48, 2003. (Cited on page 54.)

[Baier 2008] Christel Baier, Joost-Pieter Katoenet al. Principles of model
checking, volume 26202649. MIT press Cambridge, 2008. (Cited on
page 19.)

[Barton 2001] Kelly L Barton, Cornelia K Kaminsky, Daniel W Green,
Christopher J Shean, Steven M Kautz and David L Skaggs. Relia-
bility of a modified Gartland classification of supracondylar humerus
fractures. Journal of Pediatric Orthopaedics, vol. 21, no. 1, pages
27–30, 2001. (Cited on page 25.)

[Baumgartl 2013] Johannes Baumgartl, Thomas Buchmann, Dominik Hen-
rich and Bernhard Westfechtel. Towards Easy Robot Programming-
Using DSLs, Code Generators and Software Product Lines. In IC-
SOFT, pages 548–554, 2013. (Cited on page 25.)

[Bernardi 2007] Simona Bernardi and José Merseguer. Performance evalu-
ation of UML design with Stochastic Well-formed Nets. Journal of
Systems and Software, vol. 80, no. 11, pages 1843–1865, 2007. (Cited
on page 23.)

[Bertaud 2008] Valérie Bertaud, Jérémy Lasbleiz, Fleur Mougin, Anita Bur-
gun and Régis Duvauferrier. A unified representation of findings in

108 Bibliography

clinical radiology using the UMLS and DICOM. International journal
of medical informatics, vol. 77, no. 9, pages 621–629, 2008. (Cited
on page 2.)

[Bondavalli 1999] Andrea Bondavalli, Istvan Majzik and Ivan Mura. Au-
tomated dependability analysis of UML designs. In Object-Oriented
Real-Time Distributed Computing, 1999.(ISORC’99) Proceedings.
2nd IEEE International Symposium on, pages 139–144. IEEE, 1999.
(Cited on page 55.)

[Bradski 2008] Gary Bradski and Adrian Kaehler. Learning opencv: Com-
puter vision with the opencv library. ” O’Reilly Media, Inc.”, 2008.
(Cited on page 22.)

[Bruyninckx 2001] Herman Bruyninckx. Open robot control software: the
OROCOS project. In Robotics and Automation, 2001. Proceed-
ings 2001 ICRA. IEEE International Conference on, volume 3, pages
2523–2528. IEEE, 2001. (Cited on page 74.)

[Bruyninckx 2013] Herman Bruyninckx, Markus Klotzbücher, Nico
Hochgeschwender, Gerhard Kraetzschmar, Luca Gherardi and
Davide Brugali. The BRICS component model: a model-based
development paradigm for complex robotics software systems. In
Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pages 1758–1764. ACM, 2013. (Cited on page 74.)

[Cardoso 2001] Janette Cardoso and Christophe Sibertin-Blanc. Ordering
actions in sequence diagrams of UML. In Information Technology In-
terfaces, 2001. ITI 2001. Proceedings of the 23rd International Con-
ference on, pages 3–14. IEEE, 2001. (Cited on page 54.)

[Cleary 2001] Kevin Cleary and Charles Nguyen. State of the art in surgical
robotics: clinical applications and technology challenges. Computer
Aided Surgery, vol. 6, no. 6, pages 312–328, 2001. (Cited on page 2.)

[Clein 1954] Norman W Clein. How safe is X-ray and fluoroscopy for the
patient andthe doctor? The Journal of pediatrics, vol. 45, no. 3,
pages 310–315, 1954. (Cited on page 4.)

[Connolly 2009] Christine Connolly. Technology and applications of ABB
RobotStudio. Industrial Robot: An International Journal, vol. 36,
no. 6, pages 540–545, 2009. (Cited on page 88.)

[Cortellessa 2000] Vittorio Cortellessa and Raffaela Mirandola. Deriving
a queueing network based performance model from UML diagrams.
In Proceedings of the 2nd international workshop on Software and
performance, pages 58–70. ACM, 2000. (Cited on page 54.)

Bibliography 109

[Costa 2012] Carlos Costa and José Lúıs Oliveira. Telecardiology through
ubiquitous Internet services. International journal of medical infor-
matics, vol. 81, no. 9, pages 612–621, 2012. (Cited on page 2.)

[D’Ambrogio 2005] Andrea D’Ambrogio. A model transformation frame-
work for the automated building of performance models from UML
models. In Proceedings of the 5th international workshop on Soft-
ware and performance, pages 75–86. ACM, 2005. (Cited on pages 23
and 24.)

[Douira-Khomsi 2012] Wiem Douira-Khomsi, Mahmoud Smida, Hela
Louati, Zied Jlalia, Maher Ben Ghachem and Ibtissem Bellagha.
Multi slice computed tomography approach in the assessment of
supracondylar humeral fractures in children. Acta Orthopædica Bel-
gica, vol. 78, no. 4, page 458, 2012. (Cited on page 25.)

[Dubinin 2006] VN Dubinin, HM Hanisch and S Karras. Building of reacha-
bility graph extractions using a graph rewriting system. In (2006):
. V . .-. , pages 160–171, 2006. (Cited on page 19.)

[Dumitru 2015] Violeta Cristina Dumitru and Mirela Cherciu. Application
of the FMEA concept to medical robotic system. In Advanced Engi-
neering Forum, volume 13, pages 324–331. Trans Tech Publ, 2015.
(Cited on page 5.)

[Fenton 1999] Norman E Fenton and Martin Neil. A critique of software
defect prediction models. Software Engineering, IEEE Transactions
on, vol. 25, no. 5, pages 675–689, 1999. (Cited on page 54.)

[Flynn 1974] Joseph C Flynn, Joseph G Matthews and Roger L Benoit.
Blind pinning of displaced supracondylar fractures of the humerus in
children. J Bone Joint Surg Am, vol. 56, no. 2, pages 263–272, 1974.
(Cited on page 4.)

[Garg 2013] Adesh Garg, Timmy Siauw, Dmitry Berenson, J Adam M
Cunha, I-Chow Hsu, Jean Pouliot, Dan Stoianovici and Ken Gold-
berg. Robot-guided open-loop insertion of skew-line needle arrange-
ments for high dose rate brachytherapy. Automation Science and
Engineering, IEEE Transactions on, vol. 10, no. 4, pages 948–956,
2013. (Cited on page 2.)

[Genter 2007] Goran Genter, Stjepan Bogdan, Zdenko Kovacic and Ivor
Grubisic. Software tool for modeling, simulation and real-time im-
plementation of Petri net-based supervisors. In 2007 IEEE Inter-
national Conference on Control Applications, pages 664–669. IEEE,
2007. (Cited on page 19.)

110 Bibliography

[Gérard 2010] Sébastien Gérard, Huascar Espinoza, François Terrier and
Bran Selic. 6 Modeling Languages for Real-Time and Embedded Sys-
tems. In Model-Based Engineering of Embedded Real-Time Systems,
pages 129–154. Springer, 2010. (Cited on page 23.)

[Gherbi 2006] Abdelouahed Gherbi and Ferhat Khendek. UML Profiles for
Real-Time Systems and their Applications. Journal of Object Tech-
nology, vol. 5, no. 4, pages 149–169, 2006. (Cited on page 23.)

[Gomes 2011] Paula Gomes. Surgical robotics: Reviewing the past, analysing
the present, imagining the future. Robotics and Computer-Integrated
Manufacturing, vol. 27, no. 2, pages 261–266, 2011. (Cited on page 2.)

[Goodenough 1988] John B Goodenough and Lui Sha. The priority ceiling
protocol: A method for minimizing the blocking of high priority ada
tasks, volume 8. ACM, 1988. (Cited on pages 22 and 33.)

[Gosens 2003] Taco Gosens and Karst J Bongers. Neurovascular complica-
tions and functional outcome in displaced supracondylar fractures of
the humerus in children. Injury, vol. 34, no. 4, pages 267–273, 2003.
(Cited on page 4.)

[Grauman 2005a] Kristen Grauman and Trevor Darrell. Efficient image
matching with distributions of local invariant features. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 627–634. IEEE, 2005. (Cited
on page 22.)

[Grauman 2005b] Kristen Grauman and Trevor Darrell. Efficient image
matching with distributions of local invariant features. In 2005
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), volume 2, pages 627–634. IEEE, 2005.
(Cited on page 92.)

[Group 2005] OMGroupet al. Uml profile for schedulability, perfomance and
time specification. Version 1.1, formal/05-01, vol. 2, 2005. (Cited on
page 23.)

[Gu 2005] Gordon P Gu and Dorina C Petriu. From UML to LQN by XML
algebra-based model transformations. In Proceedings of the 5th in-
ternational workshop on Software and performance, pages 99–110.
ACM, 2005. (Cited on page 23.)

[Hamid 2010] Brahim Hamid and Fatma Krichen. Model-based engineering
for dynamic reconfiguration in DRTES. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume,
pages 269–276. ACM, 2010. (Cited on page 23.)

Bibliography 111

[Hanisch 1997] H-M Hanisch, J Thieme, A Luder and O Wienhold. Mod-
eling of PLC behavior by means of timed net condition/event sys-
tems. In Emerging Technologies and Factory Automation Proceed-
ings, 1997. ETFA’97., 1997 6th International Conference on, pages
391–396. IEEE, 1997. (Cited on pages 17 and 32.)

[Hanisch 1999] HM Hanisch and A Lüder. Modular modelling of closed-loop
systems. In Colloquium on Petri Net Technologies for Modelling
Communication Based Systems, Berlin, Germany, pages 103–126,
1999. (Cited on page 16.)

[Haque 2006] Maahir Ul Haque, Harry L Shufflebarger, Michael OBrien and
Angel Macagno. Radiation exposure during pedicle screw placement
in adolescent idiopathic scoliosis: is fluoroscopy safe? Spine, vol. 31,
no. 21, pages 2516–2520, 2006. (Cited on page 4.)

[Haux 2006] Reinhold Haux. Health information systems–past, present, fu-
ture. International journal of medical informatics, vol. 75, no. 3,
pages 268–281, 2006. (Cited on page 2.)

[Hoeckelman 2015] Mathias Hoeckelman, Imre Rudas, Paolo Fiorini, Frank
Kirchner and Tamas Haidegger. Current capabilities and develop-
ment potential in surgical robotics. International Journal of Advanced
Robotic Systems, vol. 12, no. 61, pages 1–39, 2015. (Cited on page 2.)

[Intel 2012] Willow Garage Intel. Open Source Computer Vision Library.
URL http:// opencv. willowgarage. com. Retrieved May, 2012. (Cited
on page 22.)

[ISO 2005] ISO. ISO/IEC 19502:2005 Information TechnologyMeta Object
Facility (MOF). 2005. (Cited on page 24.)

[Judet 1953] JEAN Judet. Traitement des fractures sus-condyliennes
transversales de lhumérus chez lenfant. Rev Chir Orthop, vol. 39,
pages 199–212, 1953. (Cited on page 9.)

[Khalgui 2011] Mohamed Khalgui, Olfa Mosbahi, Zhiwu Li and Hans-
Michael Hanisch. Reconfiguration of distributed embedded-control
systems. IEEE/ASME Transactions on Mechatronics, vol. 16, no. 4,
pages 684–694, 2011. (Cited on page 32.)

[King 1999] Peter King and Rob Pooley. Using UML to derive stochastic
Petri net models. In Proceedings of the 15th UK Performance Engi-
neering Workshop, pages 45–56, 1999. (Cited on page 55.)

[Klotzbücher 2012] Markus Klotzbücher and Herman Bruyninckx. Coor-
dinating robotic tasks and systems with rFSM statecharts. JOSER:

112 Bibliography

Journal of Software Engineering for Robotics, vol. 3, no. 1, pages
28–56, 2012. (Cited on page 74.)

[Koh 1991] I Koh and F DiCesare. Checking liveness in Petri nets using syn-
chronic concepts. In Proceedings of the Korean Automatic Control
Conference, 1991. (Cited on page 33.)

[Kooijmans 2007] Tijn Kooijmans, Takayuki Kanda, Christoph Bartneck,
Hiroshi Ishiguro and Norihiro Hagita. Accelerating Robot De-
velopment Through Integral Analysis of Human–Robot Interaction.
Robotics, IEEE Transactions on, vol. 23, no. 5, pages 1001–1012,
2007. (Cited on page 2.)

[Koubâa 2016] Anis Koubâa. Robot operating system (ros): The complete
reference, volume 1. Springer, 2016. (Cited on page 24.)

[Kouskoulas 2013] Yanni Kouskoulas, David Renshaw, André Platzer and
Peter Kazanzides. Certifying the safe design of a virtual fixture con-
trol algorithm for a surgical robot. In Proceedings of the 16th in-
ternational conference on Hybrid systems: computation and control,
pages 263–272. ACM, 2013. (Cited on page 5.)

[Kumar 2015] Pranav Srinivas Kumar, William Emfinger, Amogh Kulka-
rni, Gabor Karsai, Dexter Watkins, Benjamin Gasser, Cameron
Ridgewell and Amrutur Anilkumar. ROSMOD: a toolsuite for
modeling, generating, deploying, and managing distributed real-time
component-based software using ROS. In 2015 International Sympo-
sium on Rapid System Prototyping (RSP), pages 39–45. IEEE, 2015.
(Cited on page 24.)

[Kuo 2004] Christina E Kuo and Roger F Widmann. Reduction and per-
cutaneous pin fixation of displaced supracondylar elbow fractures in
children. Techniques in Shoulder & Elbow Surgery, vol. 5, no. 2,
pages 90–102, 2004. (Cited on page 25.)

[Kutz 2003] Myer Kutz. Standard handbook of biomedical engineering and
design. McGraw-Hill, 2003. (Cited on page 2.)

[Kwoh 1988] Yik San Kwoh, Joahin Hou, Edmond A Jonckheere and Samad
Hayati. A robot with improved absolute positioning accuracy for CT
guided stereotactic brain surgery. Biomedical Engineering, IEEE
Transactions on, vol. 35, no. 2, pages 153–160, 1988. (Cited on
page 2.)

[Lagrange 1962] J Lagrange and P Rigault. Fractures supra-condyliennes.
Rev Chir Orthop, vol. 48, pages 337–414, 1962. (Cited on page 25.)

Bibliography 113

[Lam 2007] Vitus SW Lam. A formalism for reasoning about UML activity
diagrams. Nordic Journal of Computing, vol. 14, no. 1, pages 43–64,
2007. (Cited on page 55.)

[Landin 1983] Lennart A Landin. Fracture Patterns in Children: Analysis
of 8,682 Fractures with Special Reference to Incidence, Etiology and
Secular Changes in a Swedish Urban Population 1950–1979. Acta
Orthopaedica Scandinavica, vol. 54, no. sup202, pages 3–109, 1983.
(Cited on page 4.)

[Landin 1986] Lennart A Landin and Lars G Danielsson. Elbow fractures in
children: an epidemiological analysis of 589 cases. Acta orthopaedica
Scandinavica, vol. 57, no. 4, pages 309–312, 1986. (Cited on page 4.)

[Lilius 1999] Johan Lilius and Iván Porres Paltor. The production cell: An
exercise in the formal verification of a UML model. 1999. (Cited on
page 54.)

[Llobet 2007] Rafael Llobet, Juan C Pérez-Cortés, Alejandro H Toselli and
Alfons Juan. Computer-aided detection of prostate cancer. interna-
tional journal of medical informatics, vol. 76, no. 7, pages 547–556,
2007. (Cited on page 2.)

[Lobov 2005] Andrei Lobov, JL Martinez Lastra and Reijo Tuokko. Appli-
cation of UML in plant modeling for model-based verification: UML
translation to TNCES. In Industrial Informatics, 2005. INDIN’05.
2005 3rd IEEE International Conference on, pages 495–501. IEEE,
2005. (Cited on pages 58 and 61.)

[Mallet 2009] Frédéric Mallet and Charles André. On the semantics of
UML/MARTE clock constraints. In Object/Component/Service-
Oriented Real-Time Distributed Computing, 2009. ISORC’09. IEEE
International Symposium on, pages 305–312. IEEE, 2009. (Cited on
page 23.)

[Marcus 2013] Hani Marcus, Dipanjan Nandi, Ara Darzi and Guang-Zhong
Yang. Surgical robotics through a keyhole: from today’s translational
barriers to tomorrow’s disappearing robots. Biomedical Engineering,
IEEE Transactions on, vol. 60, no. 3, pages 674–681, 2013. (Cited
on page 2.)

[Martelli 2000] M Martelli, M Marcacci, L Nofrini, F La Palombara,
A Malvisi, F Iacono, P Vendruscolo and M Pierantoni. Computer-
and robot-assisted total knee replacement: analysis of a new surgical
procedure. Annals of biomedical engineering, vol. 28, no. 9, pages
1146–1153, 2000. (Cited on page 2.)

114 Bibliography

[Martelli 2003] Sandra Martelli, Laura Nofrini, Paolo Vendruscolo and An-
drea Visani. Criteria of interface evaluation for computer assisted
surgery systems. International journal of medical informatics, vol. 72,
no. 1, pages 35–45, 2003. (Cited on page 2.)

[Martin 2001] Grant Martin, Luciano Lavagno and Jean Louis-Guerin. Em-
bedded UML: a merger of real-time UML and co-design. In Pro-
ceedings of the ninth international symposium on Hardware/software
codesign, pages 23–28. ACM, 2001. (Cited on page 23.)

[Marzolla 2004] Moreno Marzolla and Simonetta Balsamo. UML-PSI: the
UML performance simulator. In Quantitative Evaluation of Systems,
2004. QEST 2004. Proceedings. First International Conference on
the, pages 340–341. IEEE, 2004. (Cited on pages 23 and 24.)

[Membarth 2012] Richard Membarth, Frank Hannig, Jürgen Teich, Mario
Körner and Wieland Eckert. Generating device-specific GPU code
for local operators in medical imaging. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2012 IEEE 26th International, pages
569–581. IEEE, 2012. (Cited on page 22.)

[Merseguer 2002] José Merseguer, Javier Campos, Simona Bernardi and Su-
sanna Donatelli. A compositional semantics for UML state machines
aimed at performance evaluation. In Discrete Event Systems, 2002.
Proceedings. Sixth International Workshop on, pages 295–302. IEEE,
2002. (Cited on page 23.)

[Mikaelsson 2009] Pierre Mikaelsson and Mark Curtis. Portrait-robot d’un
petit prodige: ABB présente son nouveau robot IRB 120 et son ar-
moire de commande IRC5 Compact. Revue ABB, no. 4, pages 39–41,
2009. (Cited on page 88.)

[Mikk 1998] Erich Mikk, Yassine Lakhnech, Michael Siegel and Gerard J
Holzmann. Implementing statecharts in PROMELA/SPIN. In In-
dustrial Strength Formal Specification Techniques, 1998. Proceed-
ings. 2nd IEEE Workshop on, pages 90–101. IEEE, 1998. (Cited on
page 55.)

[Murata 2002] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura, Haruhisa
Kurokawa, Kohji Tomita and Shigeru Kokaji. M-TRAN: Self-
reconfigurable modular robotic system. IEEE/ASME transactions on
mechatronics, vol. 7, no. 4, pages 431–441, 2002. (Cited on page 74.)

[Nolden 2013] Marco Nolden, Sascha Zelzer, Alexander Seitel, Diana Wald,
Michael Müller, Alfred M Franz, Daniel Maleike, Markus Fangerau,
Matthias Baumhauer, Lena Maier-Heinet al. The medical imaging
interaction toolkit: challenges and advances. International journal of

Bibliography 115

computer assisted radiology and surgery, vol. 8, no. 4, pages 607–620,
2013. (Cited on page 22.)

[Petriu 2002] Dorina C Petriu and Hui Shen. Applying the UML perfor-
mance profile: Graph grammar-based derivation of LQN models from
UML specifications. In Computer Performance Evaluation: Mod-
elling Techniques and Tools, pages 159–177. Springer, 2002. (Cited
on page 24.)

[Petriu 2007] Dorin B Petriu and Murray Woodside. An intermediate meta-
model with scenarios and resources for generating performance mod-
els from UML designs. Software & Systems Modeling, vol. 6, no. 2,
pages 163–184, 2007. (Cited on page 23.)

[Pirone 1988] AM Pirone, HK Graham and Joseph Ivan Krajbich. Man-
agement of displaced extension-type supracondylar fractures of the
humerus in children. J Bone Joint Surg Am, vol. 70, no. 5, pages
641–650, 1988. (Cited on page 25.)

[Quigley 2009] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler and Andrew Y Ng. ROS:
an open-source Robot Operating System. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan, 2009. (Cited on
pages 24, 25 and 74.)

[Rahimi 1991] Mansour Rahimi and Xia Xiadong. A framework for soft-
ware safety verification of industrial robot operations. Computers &
industrial engineering, vol. 20, no. 2, pages 279–287, 1991. (Cited on
page 5.)

[Rampersaud 2000a] Y Raja Rampersaud, Kevin T Foley, Alfred C Shen,
Scott Williams and Milo Solomito. Radiation exposure to the
spine surgeon during fluoroscopically assisted pedicle screw insertion.
Spine, vol. 25, no. 20, pages 2637–2645, 2000. (Cited on page 4.)

[Rampersaud 2000b] Y Raja Rampersaud, Kevin T Foley, Alfred C Shen,
Scott Williams and Milo Solomito. Radiation exposure to the
spine surgeon during fluoroscopically assisted pedicle screw insertion.
Spine, vol. 25, no. 20, pages 2637–2645, 2000. (Cited on page 94.)

[Ratzer 2003] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads
Laursen, Jacob Frank Qvortrup, Martin Stig Stissing, Michael West-
ergaard, Søren Christensen and Kurt Jensen. CPN tools for editing,
simulating, and analysing coloured Petri nets. In International Con-
ference on Application and Theory of Petri Nets, pages 450–462.
Springer, 2003. (Cited on page 19.)

116 Bibliography

[Rausch 1995] Mathias Rausch and H-M Hanisch. Net condition/event sys-
tems with multiple condition outputs. In Emerging Technologies
and Factory Automation, 1995. ETFA’95, Proceedings., 1995 IN-
RIA/IEEE Symposium on, volume 1, pages 592–600. IEEE, 1995.
(Cited on page 16.)

[Riviere 2006] Cameron N Riviere, Jacques Gangloff and Michel De Math-
elin. Robotic compensation of biological motion to enhance surgical
accuracy. PROCEEDINGS-IEEE, vol. 94, no. 9, page 1705, 2006.
(Cited on page 2.)

[Roch 2000a] Stephan Roch. Extended computation tree logic. In Work-
shop Concurrency, Speci & Programming, number 140 in Informatik-
Bericht. Citeseer, 2000. (Cited on pages 20 and 21.)

[Roch 2000b] Stephan Roch. Extended computation tree logic: Implementa-
tion and application. 2000. (Cited on pages 20 and 21.)

[Rouff 2012] Christopher Rouff, Richard Buskens, Laura Pullum, Xiaohui
Cui and Mike Hinchey. The AdaptiV approach to verification of adap-
tive systems. In Proceedings of the Fifth International C* Confer-
ence on Computer Science and Software Engineering, pages 118–122.
ACM, 2012. (Cited on page 19.)

[Rumbaugh 1991] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, William E. Lorensenet al. Object-oriented modeling
and design, volume 199. Prentice-hall Englewood Cliffs, 1991. (Cited
on page 60.)

[Salem 2014] Mohamed Oussama Ben Salem, Olfa Mosbahi and Mohamed
Khalgui. PCP-based Solution for Resource Sharing in Reconfigurable
Timed Net Condition/Event Systems. In ADECS 2014, Proceed-
ings of the 1st International Workshop on Petri Nets for Adaptive
Discrete-Event Control Systems, co-located with 35th International
Conference on Application and Theory of Petri Nets and Concur-
rency (Petri Nets 2014), Tunis, Tunisia, June 24, 2014., pages 52–67,
2014. (Cited on pages 56, 59 and 83.)

[Salem 2015a] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed
Khalgui and Georg Frey. BROS - A New Robotic Platform for
the Treatment of Supracondylar Humerus Fracture. In HEALTH-
INF 2015 - Proceedings of the International Conference on Health
Informatics, Lisbon, Portugal, 12-15 February, 2015, pages 151–163,
2015. (Cited on page 55.)

Bibliography 117

[Salem 2015b] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed
Khalgui and Georg Frey. ZiZo: Modeling, Simulation and Verifi-
cation of Reconfigurable Real-Time Control Tasks Sharing Adaptive
Resources. Application to the Medical Project BROS. In HEALTH-
INF 2015 - Proceedings of the International Conference on Health
Informatics, Lisbon, Portugal, 12-15 February, 2015, pages 20–31,
2015. (Cited on pages 55, 69, 79 and 83.)

[Schlegel 2004] Christian Schlegel. Navigation and execution for mobile
robots in dynamic environments: an integrated approach. PhD thesis,
University of Ulm, 2004. (Cited on page 74.)

[Selic 1998] Bran Selic. Using UML for modeling complex real-time systems.
In Languages, Compilers, and Tools for Embedded Systems, pages
250–260. Springer, 1998. (Cited on page 23.)

[Sha 1990] Lui Sha, Ragunathan Rajkumar and John P Lehoczky. Prior-
ity inheritance protocols: An approach to real-time synchronization.
IEEE Transactions on computers, vol. 39, no. 9, pages 1175–1185,
1990. (Cited on page 33.)

[Shousha 2012] Marwa Shousha, Lionel Briand and Yvan Labiche. A um-
l/marte model analysis method for uncovering scenarios leading to
starvation and deadlocks in concurrent systems. Software Engineer-
ing, IEEE Transactions on, vol. 38, no. 2, pages 354–374, 2012. (Cited
on page 23.)

[sit a] The Open Source Robotics Foundation. http://www.

osrfoundation.org/. Accessed: 2016-09-14. (Cited on page 24.)

[sit b] ZiZo: a tool to model, simulate and verify reconfigurable real time
control systems. http://www.aut.uni-saarland.de/forschung/

forschung-zizo-tool-bensalem/. Accessed: 2016-06-16. (Cited
on page 45.)

[Smida 2007] M Smida, H Smaoui, T Ben Jlila, W Saeid, H Safi, C Ammar,
C Jalel and M Ben Ghachem. Un index de stabilité pour lembrochage
percutané latéral parallèle des fractures supracondyliennes du coude
chez lenfant. Revue de Chirurgie Orthopédique et Réparatrice de
l’Appareil Moteur, vol. 93, no. 4, page 404, 2007. (Cited on pages 9
and 100.)

[Smith 2005] Connie U Smith, Catalina M Lladó, Vittorio Cortellessa, An-
tinisca Di Marco and Lloyd G Williams. From UML models to soft-
ware performance results: an SPE process based on XML interchange
formats. In Proceedings of the 5th international workshop on Soft-
ware and performance, pages 87–98. ACM, 2005. (Cited on page 23.)

118 Bibliography

[Speers 2013] Andrew Speers, P Mojiri Forooshani, Michael Dicke and
Michael Jenkin. Lightweight tablet devices for command and con-
trol of ROS-enabled robots. In Advanced Robotics (ICAR), 2013
16th International Conference on, pages 1–6. IEEE, 2013. (Cited on
page 77.)

[Staines 2007] Anthony Spiteri Staines. A Comparison of Software Analy-
sis and Design Methods for Real Time Systems. In Proceedings of
World Academy of Science, Engineering and Technology, volume 21.
Citeseer, 2007. (Cited on page 23.)

[Starke 2002] Peter H Starke and Stephan Roch. Analysing signal-net sys-
tems. Professoren des Inst. für Informatik, 2002. (Cited on pages 19,
43, 45, 51 and 69.)

[Suender 2011] Christoph Suender, Valeriy Vyatkin and Alois Zoitl. Formal
validation of downtimeless system evolution in embedded automation
controllers. ACM Transactions on Embedded Control Systems, 2011.
(Cited on page 19.)

[Sun 2007] Yan Sun, Bruce McMillin, Xiaoqing Liu and David Cape. Veri-
fying noninterference in a cyber-physical system the advanced electric
power grid. In Seventh International Conference on Quality Software
(QSIC 2007), pages 363–369. IEEE, 2007. (Cited on page 5.)

[Tsai 1987] Roger Tsai. A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf TV cameras
and lenses. IEEE Journal on Robotics and Automation, vol. 3, no. 4,
pages 323–344, 1987. (Cited on page 92.)

[Vendruscolo 2001] Paolo Vendruscolo and Sandra Martelli. Interfaces for
computer and robot assisted surgical systems. Information and soft-
ware technology, vol. 43, no. 2, pages 87–96, 2001. (Cited on page 2.)

[Wang 2006] Yulun Wang, Steven E Butner and Ara Darzi. The developing
market for medical robotics. PROCEEDINGS-IEEE, vol. 94, no. 9,
page 1763, 2006. (Cited on page 2.)

[Wang 2015] Xi Wang, Imen Khemaissia, Mohamed Khalgui, ZhiWu Li,
Olfa Mosbahi and MengChu Zhou. Dynamic low-power reconfigura-
tion of real-time systems with periodic and probabilistic tasks. Au-
tomation Science and Engineering, IEEE Transactions on, vol. 12,
no. 1, pages 258–271, 2015. (Cited on page 18.)

[Warmer 1998] Jos B Warmer and Anneke G Kleppe. The Object Con-
straint Language: Precise Modeling With UML (Addison-Wesley Ob-
ject Technology Series). 1998. (Cited on page 54.)

Bibliography 119

[Woodside 2005] Murray Woodside, Dorina C Petriu, Dorin B Petriu, Hui
Shen, Toqeer Israr and Jose Merseguer. Performance by unified model
analysis (PUMA). In Proceedings of the 5th international workshop
on Software and performance, pages 1–12. ACM, 2005. (Cited on
page 23.)

[Xu 2015] Yi Xu, Ying Mao, Xianqiao Tong, Huan Tan, Weston B Griffin,
Balajee Kannan and Lynn A DeRose. Robotic Handling of Surgical
Instruments in a Cluttered Tray. Automation Science and Engineer-
ing, IEEE Transactions on, vol. 12, no. 2, pages 775–780, 2015. (Cited
on page 2.)

[Zhang 2013] Jiafeng Zhang, Mohamed Khalgui, Zhiwu Li, Olfa Mosbahi
and Abdulrahman M Al-Ahmari. R-TNCES: A novel formalism for
reconfigurable discrete event control systems. Systems, Man, and
Cybernetics: Systems, IEEE Transactions on, vol. 43, no. 4, pages
757–772, 2013. (Cited on pages 18, 32, 33, 36 and 69.)

[Zhang 2015] Jiafeng Zhang, Mohamed Khalgui, Zhiwu Li, Georg Frey, Olfa
Mosbahi and Hela Ben Salah. Reconfigurable coordination of dis-
tributed discrete event control systems. Control Systems Technology,
IEEE Transactions on, vol. 23, no. 1, pages 323–330, 2015. (Cited
on page 18.)

[Zhou 1991] MengChu Zhou and Frank DiCesare. Parallel and sequential
mutual exclusions for Petri net modeling of manufacturing systems
with shared resources. IEEE Transactions on Robotics and Automa-
tion, vol. 7, no. 4, pages 515–527, 1991. (Cited on page 33.)

Tag des Kolloquiums:

Dekan:

Berichterstatter:

Vorsitz:

Akad. Mitarbeiter:

