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ähnlicher Form in einem Verfahren zur Erlangung eines Akademischen Grades vorgelegt.





xv

Abstract

Isotachophoresis (ITP) is a powerful technology capable of simultaneously concentrating

analytical targets and removal of interferences. Free flow electrophoresis (FFE) is an

electrophoretic separation technique where an electric field is applied perpendicular to

the flow direction in order to have a continuous separation system. FFITP is the mode

of FFE where a discontinuous buffer system consisting of a LE and TE flows through

the separation chamber. FFITP is especially attractive because it provides a continuous

separation combined with selective concentration of the analytes. Two applications were

studied in this thesis. First, the online coupling of a FFITP to an electrospray ioniza-

tion mass spectrometer. This combination decouples the separation and detection time

frame because the electrophoretic separation and concentration takes place perpendicular

to the flow direction. Second, the FFITP was coupled to a dual gate field effect transistor

(DGFET). DGFET is a self-made sensor which consists of an extended gate where anti-

bodies are bound on the surface. When the target antigen is entering to the extended gate

(EG) the DGFET will change the threshold voltage. The online coupling with FFITP a

DGFET will lower the detection limit by pre-concentration of the target sample. Based

on the result future applications of this approach are expected in monitoring biochemical

changes and proteomics.
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Zusammenfassung

Die Isotachophorese (ITP) ist eine leistungsfähige Analysenmethode, mit der man

gleichzeitig das zu analysierende Molekül aufkonzentrieren und Nebenkomponenten ab-

trennen kann. Die Elektrophorese im freien Fluss, die sogenannte ”Free Flow Elec-

trophoresis (FFE)” ist eine elektrophoretische Trennmethode, mit der man kontinuier-

lich Ionen durch ein elektrisches Feld senkrecht zur Strömungsrichtung auftrennen kann.

”Free-Flow-Isotachophoresis (FFITP)” ist eine Kombination aus FFE und ITP. FFITP ist

besonders attraktiv, weil es Trennung und Erhöhung der Konzentration der zu analysieren-

den Moleküle kontinuierlich ermöglicht. Zwei Anwendungen wurden in dieser Arbeit un-

tersucht:

1. Die Online-Kopplung von einem FFITP mit der Elektrospray-Ionisations

-Massenspektrometrie:

Diese Kombination ermöglicht die Auswahl einer bestimmten Fraktion der Trennung aus

komplexen Gemischen und überführt sie kontinuierlich in ein Massenspektrometer. Dabei

kann die Fraktionsdauer frei gewählt werden.

2. Die Kombination von FFITP mit einem Biosensor, einem sogenannten ”Dual Gate

Field Effect Transistor” (DGFET): Das ist ein Sensor, bei dem Antikörper auf der Oberfläche

eines Extended Gate (EG) immobilisiert sind. Wenn die Ziel-Antigene über das EG

fließen und sich mit den Antikörpern verbinden, verändert sich die Schwellenspannung

des DGFET. Durch die vorherige Trennung und Aufkonzentration mittels FFITP wird

eine niedrigere Nachweisgrenze erzielt.
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Chapter 1

Introduction

1.1 Motivation

Isotachophoresis (ITP) is a powerful technology capable of simultaneously concentrating

analytical targets and removal of interferences. An ITP system consists of different elec-

trolytes, with the co-ion selected based on the electrophoretic mobility in relationship to

the target. The co-ion in the leading electrolyte (LE) has mobility higher than the target

analytes, whilst the co-ion in the terminating electrolyte (TE) has mobility lower than

the target. When the ITP system establishes, ions arrange according to their mobility

according to the Kohlrausch regulating function, positioning the analytical target(s) be-

tween the LE and TE. Free flow electrophoresis (FFE) is an electrophoretic separation

technique where an electric field is applied perpendicular to an electric field in order to

have a continuous separation system. Analogous to the terminology used in capillary elec-

trophoresis, FFITP is the mode of FFE where a discontinuous buffer system consisting

of a LE and TE flows through the separation chamber. FFITP is especially attractive

because it provides a continuous separation combined with selective concentration of the

analytes. Hydrodynamic flow control was used in order to guide the concentrated sam-

ple to the desired outlet. Two applications were studied in this thesis. First, the online

coupling of a free-flow isotachophoresis (FFITP) chips to an electrospray ionization mass

spectrometer (ESI-MS) for continuous online monitoring without extensive sample prepa-

ration. The online coupling of FFITP to ESI-MS decouples the separation and detection

timeframe because the electrophoretic separation takes place perpendicular to the flow

direction, which can be beneficial for monitoring (bio) chemical changes and/or extensive

MSn studies. We have demonstrated the coupling of FFITP with ESI-MS for simultane-

ous concentration of target analytes and sample clean-up. Furthermore, we demonstrated

hydrodynamic control of the fluidic fraction injected into the MS, allowing for fluidically

controlled scanning of the ITP window. Future applications of this approach are expected

in monitoring biochemical changes and proteomics. Second, the FFITP was coupled to a
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dual gate field effect transistor (DGFET). DGFET is a self made sensor which consists

of a extended gate where antibodies are bind on the surface. When the target antigen is

entering to the extended gate the DGFET will change the threshold voltage. The online

coupling with FFITP a DGFET will lower the detection limit by pre-concentration of the

target sample. This is important for early detection of disease. Although the fact that

the antibodies are highly selective, in real application the concentration of the unwanted

protein has a much higher concentration compare to the target concentration. Which

result lots of noise to the DGFET, therefore a sample clean-up is needed. The FFITP-

DGFET is also compareable with the FFITP-ESI-MS. One of the big problems of the

FFITP-ESI-Ms coupling is that the buffer system should be chosen which is compatible

with the MS. However this criterion is not easy to full fill, where the FFITP-DGFET is

free of this problem. Therefore a similar approach was done where the FFITP is used as

purification of the sample and concentration of the taget sample which was injected to

the DGFET. Based on the result with the two applications, future applications of this

approach are expected in monitoring biochemical changes and proteomics.

1.2 Electrophoresis

Analytical chemistry is a study for determine the constituents of a chemical compound

or a mixture of chemical compounds. Analytical chemistry has a various application such

as; biological, environmental, and materials analysis. One of the problems to analyze

these samples is the complexity. Therefore a separation technique is needed to sepa-

rate the compound of interest from the other compounds. Several techniques are used

for solve this problem including electrophoresis. Electrophoresis is a separation method

based on the mobility different by applying an electric field. A detail explanation will

be given in the chapter 1.2.3. Even though electrophoresis is a good separation method

many practical application in analytical chemistry is suffering of a very low concentration

of the compound of interest. Therefore a pre-concentration method is needed such as

filtering or centrifugation. However both of these methods need an additional step for

pre-concentration, an alternative for sample pre-parathion (concentration and separation)

is isotachophoresis. Where isotachophoresis is mode of electrophoresis which is able to

concentrate and separate the sample simultaneously (see chapter 1.3). In order to deter-

mine the compound of the sample a detection method is needed, where normally a desired

volume is needed, which result to the problem to collect a separated a concentrated com-

pound. In ordered to collect the compound a continues output is required. In this chapter

I will discuss about the theory of each technology stating with the Double layer.
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1.2.1 Double layer

The concept of the existence of the double layer at a charged flat surface and a spatial

counter charge was first appeared by Helmholtz (1879) [19].

Helmholtz double layer

A Helmholtz double layer constitutes two layers having opposite charges, one being neg-

atively charged and the other positively charged. A separation of charges exists like in

a capacitor. Helmholtz figured it out in 1853, when an electronic conductor (metal) dis-

solves continuously, it become increasingly negative charge. This is due to the ions in

solution adsorbed at the surface of the solid. The excess of negative charge on the metal

surface attract the positive charge ion of the solution (see 1.1). The negatively charged

layer is called as the inner Helmholtz layer and the positive layer is called as an outer

Helmholtz layer. A potential (Ψ) drop from the surface to the outer Helmholtz layer

(OHL). The potential drop is given in equation 1.1.

Ψ = Ψ0(1− 1

xOHL
x) (1.1)

Figure 1.1: (A) The schematic drawing of the Helmholtz double layer. (B) The inner

layer in which the potential changes linearly with the distance it comprises the absorbed

anions.
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Gouy-Chapman double layer

The Helmholtz model is a good foundation for explaining the surface charge. However it

does not include important factors such as diffusion, thermal motion, adsorption onto the

surface, and solver/ surface interactions. A more realistic description of the electrostatic

double layer which involves the diffuse part is suggested by Gouy-Chapman in 1910 [39]

(1.2). The counter ions are not rigidly held as in the Helmholtz model, but tend to diffuse

into the solvent until the counter potential is set up. The kinetic energy of the counter

ions will affect the thickness of diffused double layer which know as the Debye length

(1/k). The charge distribution of ions as a function of distance from the metal surface

follows Maxwell-Boltzmann statistics to be applied. The potential drops exponentially as

given in equation 1.2.

Ψ = Ψ0(e−kx) (1.2)

Figure 1.2: (A) The schematic drawing of the Gouy-Chapman model (B) The potential

change is exponential which follows the Boltzmann statistical distribution

Stern double layer

The Gouy-Chapman theory provides a better approximation of reality than does the

Helmholtz theory, but it still has limited quantitative application. It assumes that ions

behave as point charges, which they cannot, and it assumes that there is no physical limits

for the ions in their approach to the surface, which is not true. Stern [49], therefore,

modified the Gouy-Chapman diffuse double layer. His theory states that ions do have

finite size so cannot approach the surface closer than a few nm. As a result he has

combined the Helmholtz model with the Gouy-Chapman model, where a compact layer is
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followed by diffuse layer (see 1.3). The transition point from Helmholtz model to Gouy-

Chapman model is called as a shear plane, where the potential of the plase know as zeta(ζ)

potential.

P

XXOHL 1/k

P0

Pst

Pst/e

Figure 1.3: (A) The schematic drawing of the stern model model (B) The potential change

is exponential which follows the Boltzmann statistical distribution

1.2.2 Electroosmotic flow

When a charged particle is put in contact with a liquid in a capillary tube, double-layer

forms at the wall of the capillary. The first layer is surface charge, and can be positive

or negative depending on the material. As capillaries are generally borosilicate glass,

the numerous silanol (SiOH) groups cause the charge of the first layer to be negative

(Helmholtz layer). The second layer is made up of ionic particles in solution that are

electronically attracted to the charge of the capillary surface. As the particles in this

layer are not fixed, but move as a result of electrical and thermal energy, it is called the

diffuse layer (Gouy-Chapman layer). When an electrical potential is placed across the

capillary tube, the diffuse layer is pulled to one side. As the diffuse layer progresses to

one side of the capillary tube, it drags the bulk solution along with it, creating a flow

(specifically, the electro-osmotic flow) of the solution through the cathode. As shown in

figure 1.4 the resulting of applying an electrical potential is a plug flow, where the velocity

profile (green) is approximately planar, expect of the variation near the electric double

layer [53].
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Figure 1.4: Electroosmotic Flow Schematic

Navier-Stokes Equation

The Navier-Stokes equation can be viewed as an application of Newton’s second law

(F=ma) to fluid motion, together with the assumption that the stress in the fluid is the

sum of a diffusing viscous term (proportional to the gradient of velocity) and a pres-

sure term The density of the fluid is equivalent to the mass, and dv
dt

+ (v · ∇)u is the

acceleration.∇ · σ is the shear stress and f is all other force.

ρ

[
dv

dt
+ (v · ∇)v

]
= ∇ · σ + f (1.3)

This can be rewritten as:

ρ

[
dv

dt
+ (v · ∇)v

]
= −∇p+ γ∇2v + f (1.4)

The divergence on velocity ((v · ∇)v) which describe how the divergence affects the

velocity which is also called as convection. For instance when the channel is narrowing the

velocity of the flow will be increased and when the channel is become wider the overall

flow will become slower. However in an incompressible situation the divergence of the

velocity becomes zero. Therefore equation 1.4 can be simplified as:

ρ

[
dv

dt

]
= −∇p+ γ∇2v + f (1.5)

In the case of electroosmotic flow the last term in equation 1.5, the force (f ) represent

as the electroosmotic body force and is equivalent to the product of the net charge density

in the double layer ρe, multiplied by the gradient of the total potential (Ψ). It is also

typical in electroosmotic flow that the channel is in micro or in even in nano meter range,

where the Reynolds number (Re = ρlϑ
γ

) is low. Which result that the transient and
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convective terms are neglectable. Neglecting the transient part implies that the system

will reach the steady state instantaneously (dv
dt

= 0). Also the pressure gradient can be

eliminated since no additional pressure is applied to the system. Therefore equation 1.5

can be rewritten as:

0 = γ∇2v − ρeΨ∇ (1.6)

The total potential is a summation of the electrical double layer and the applied

electrical potential.

Helmholtz-Smoluchowski’s equation

Assuming that the electrical double layer varies only in the direction normal to the surface

the potential and the net charge density can be related as

γ
d2vx
dy2
− εwεo

d2Ψ

dy2
Ex = 0 (1.7)

where εo and εw are the dielectric permittivity of vacuum (8.854 ∗ 10−12C/V m) and

dielectric constant of the liquid respectively.Applying the condition when y → ∞, than
dvx
dy

= 0 and dΨ
dy

= 0, and that at y = 0, also considering the outside region of the double

layer (Ψ = 0) yields,

veo = −εwεoζ
γ

Ex (1.8)

which describes the electroosmotic flow velocity. The proportionality coefficient be-

tween of the velocity (veo) and Ex is commonly used and referred to the electroosmotic

mobility (µeo)

µeo =
−εwεoζ
γ

(1.9)

1.2.3 Electrophoresis

Electrophoresis is one of the main techniques in separation science because it is not only

a powerful technique but also a relative easy and inexpensive technique. The principle of

electrophoresis is by applying a uniform electric field the particle will migrate [42][8].

Electrophoretic mobility

When the ions reaches a steady state velocity the accelerating force equals the friction

force. The accelerating force is made by the electrical field which is proportion to the
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effective electric field (q), and the field strength (E ). The friction force is proportional to

the velocity of the ion (vep) and the friction coefficient (ζ).

qE = ζvep (1.10)

By dividing the friction coefficient in both side:

vep =
q

ζ
E = µepE (1.11)

The term in equation 1.11 is the eletrophoretic mobility of the ion, which is a constant.

The friction coefficient is related to the hydrodynamic radius (r), the viscosity (gamma).

ζ = 6πγr (1.12)

Together with equation 1.11 and equation 1.12 the eletrophoretic mobility can be

rewritten as

µep =
q

6πγr
(1.13)

The vector sum of the eletroosmotic mobility µeof and the eletrophoretic mobility (µep)

is known as the apparent mobility (µapp).

Neutral ions will migrate in the same direction and velocity as eletroosmotic flow,

cations and anions will separated based on their differences in their apparent mobilities.

The total mobility for each ions cases can be given as

Neutral

µneutral = µeof (1.14)

anions

µanion = µeof + µep (1.15)

cations

µanion = µeof − µep (1.16)

Figure 1.5 illustrate the electrophoresis for each of the ions charge. When the pH

value is higher than 3, eletroosmotic flow is normally higher than the eletrophoretic flow,

hence the all of the ions (anions, cations, and neutral) will move to the negative potential.

However when the pH is lower than 3, the eletroosmotic flow becomes weak and therefore

the anions will move to the positive potential.
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Figure 1.5: Schematic of electrophoresis

1.3 Isotachophoresis

Isotachophoresis (ITP) is one type of an electrophoresis, where the sample is placed

between two different electrolytes, called leading and terminating buffer. The leading

buffer contains the highest mobility ions while the terminating buffer contains the lowest

mobility ions. The name isotachophoresis comes from Greek terms where, iso means

equal, tacho means speed, and phoresis migration. Let consider a situation where you

have a leading buffer (LB), two analytes (A,B) and a terminating buffer (TB) with a

mobility given as µLB > µA > µB > µTB. The sample is injected in between of LB and

TB as shown in 1.6A [2][15][44][9].

When the electric field is applied the ions will be first the ions will be separated

according to their different migration velocity (va = µa ×Emixandvb = µb ×Emix). Since

the mobility of analyte A is higher than B, A will be migrating out from the mixed zone

to the leading buffer side and B will be moved out to the terminating buffer side (1.6B).

When the separation is done so that the mixed zone (A+B) disappear a steady state is

established which is called as the isotahcophoretic condition (1.6C). When the system

reaches the steady state, all of the ions move with a same velocity [21].

Based on a Kohlrausch regulation all zones reach a specific ion concentration. The

Kohlrausch regulating function (KRF) is conservation law in electrophoresis which enables

to calculate the concentrations of the ions. The potential drop in a capillary is related to

the resistivity of the cross-sectional area. In the liquid domain the resistivity is defined

through each ions charge (z), and concentration which given in the following equation :

ω = Σ
cizi
| µi |

(1.17)

Where Kohlrausch regulating value ω 1.17 remains constant because ions arrange ac-
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Figure 1.6: An Isotachophoretic Sepratation. (A) Before Applying electric field (B) Sep-

aration Commenced (C)Steady state

cording to their electrophoretic mobility (µi) and charge (zi) by regulating their concen-

tration (ci). As this affects the current density, the electric field strength (E ) in each zone

is adjusted so that all zones move at an equal velocity, vi(vi = µi×E). When dealing with

samples containing compounds across a wide dynamic range in zone electrophoreis, ana-

lytes/interferences in high concentration broaden due to ion diffusion following Fick’s law.

In ITP, compounds outside the separation window dissipate in the LE or TE. Concentra-

tion differences within the window are evened out because high concentration compounds

are diluted by lengthening their zone, low concentration compounds are concentrated by

narrowing the zone.

The main advantage of ITP compare to the conventional electrophoresis is its immunity

to band broadening. This phenomenon is called self-sharpening effect. It forces ions which

diffused out of their band into a higher (or lower band) back into their original band. The

specific ion concentration as well as the self-sharpening effect made the ITP an attractive

option for miniaturized electrophoresis using microfluidics as it is capable concurrently

focus and separate the sample [38] [16][36].

1.4 Miniaturization

The concept of miniaturization of analytical techniques has gain lot of interest in the

past decade. This trend can be seen in various fields from the mechanical filed which

focus on the novel micro fabricated structures such as in Microelectromechanical systems

(MEMS). Together with the micro fabrication skills also new approached are done for the
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use of this technology such as in Lab on a chip. Research into miniaturization is driven

because of various advantages; 1) high throughput, 2) cost reduction, 3) less use of sample

amount, 4) ability to make a handle device, and 5) automation etc. [23]. In 1982 silicon

was suggested as a substrate for fabrication of micromechanical devices. This was quickly

adapted to the microelectromechanical systems (MEMS) with the photolithography and

the etching methods [5]. Microfluidic is essentially based on this approach [40], however

because of the incompatibility with the high voltage, and also the non-transparency glass

or quartz material became more preferred [22]. The introduction of Polydimethylsiloxane

(PDMS) [43][54] for soft lithography obtains lots of interested, since it has the advantage

of being cheap, transparent, non-toxic. However, one of the biggest problems of PDMS

is that the surface is hydrophobic, therefore much effort has been focused on controlling

the surface of PDMS [41]. Another common material for microfluidic chip fabrication is

polymethylmethacrylate (PMMA) which usually fabricated by hot embossing [34].

1.4.1 On hips capillary electrophoresis

The structure of the Microfluidic chips are based on small platforms comprising channel

system which are connected to various features such as reservoir, chamber, mixing region

etc. The size of these structures is typically in the range of a few micrometers. Microfluidic

chip is used in various areas one of the application of it is electrophoresis and related

techniques (2-4). Beside the advantage that the amount of sample volume is reduced, the

combination of microfluidic and electrophoresis has additional advantages [8][? ]. The

number of theoretical plates represents the efficiency and resolution of electrophoresis

1.11.

N = CA (1.18)

where N is the plate number and micro is the apparent mobility and D is the diffusion

coefficient. A higher plate number means a better efficiency and resolution. As it can be

seen in the equation in order to increase the plate number the only parameter that we

can change is the voltage. However by increasing the voltage will result to increase the

temperature because of joule heating 1.19.

P = IV = I2R =
V 2

R
(1.19)

where P is the power which converted from electrical energy to thermal energy I is the

current, V is the applied voltage and R is the resistance from the buffer. This temper-

ature increase will result a non-uniform temperature gradient across the capillary, lower

temperature at the wall than in the middle of capillary. Since the electrophoretic mobility

is also temperature dependent this variation of temperature will also result variation of
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the electrophoretic mobility across the capillary which eventually means loss of resolution.

The production of heat in capillary electrophoresis inevitable since electrophoresis needs

a voltage across the capillary. However, using narrow-diameter capillaries improves the

situation based on two reasons. The resulting thermal gradient is proportional to the

square of the diameter of the capillary as shown in equation 1.20.

∇T = 0.24
Wr2

4K
(1.20)

Where W is the power, r is the capillary radius, and K is the thermal conductivity.

Therefore the reduction of the capillary radius will result less thermal gradient. The

second problem is ineffective heat dissipation. Narrow-diameter capillaries also help heat

dissipation, which can be additionally improved by effective cooling.

1.4.2 Free-flow electrophoresis

Free-flow-electrophoresis techniques are used for continuous electrophoretic separations by

applying an electric field perpendicular to the buffer and sample flows [33]. The schematic

and conceptual drawing is shown in 1.7. A pressure driven flow is induced from the inlet

side while an electric field is applied. The main advantage of free-flow electrophoresis

compare to the capillary electrophoresis (CE) is that the separation domain is orthogonal

to the flow domain. Which result a continuous separation of the analytes which can

be easily collected, where CE gives a discontinuous output. Large scale FFE was first

introduced in the 1960s [18]. Since 1994 several microfuidic FFE were developed with

the benefit of low sample volume (nL to µL). Also the separation time is reduced from

minutes to seconds by reducing the size according to the scaling laws [37]. Furthermore

the smaller separation chamber reduces the joule heating problem which allows applying

a higher electric field [23].

Figure 1.7: Conceptual drawing of free flow electrophoresis where a perpendicular electric

field is applied to the pressure driven flow
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So far different materials for FFE miniaturized chips were employed. The first chip

[47] was fabricated from a silicon substrate with a channel depth of 50 µm. This silicon

chip was anodically bonded to a glass cover. The decrease dissipation of Joule heat and

theoretical band broadening effect were studied. However using a silicon substrate limited

the effectiveness of the device due to problems with electrical isolation of the substrate and

thus limited maximum applied voltage.Alternatively the polydimethylsiloxane (PDMS)

was used to replace silicon as the substrate to eliminate the electrical breakdown of silicon

insulating material [55]. The device had channels with depth of 10 µm. Unfortunately,

the week bonding of PDMS and glass and the elasticity of PDMS hindered the device

to use a high flow rate. To solve this problem various type of glass chip was suggested

[13][7][32][29][26][31][25][6][30].

1.5 Detection methods

FFE has an advantage that the separation is continuously done as described above, how-

ever observing the process is relatively difficult especially when it comes to online detec-

tion. The most common method is detecting the process optically in this chapter we will

discuss about the optical method and also mass spectrometry.

1.5.1 Optical detection

Optical detection is usually done with instruments which include UV absorbance and

fluorescence detectors. One of the most common instruments for optical detection is a

fluorescence microscope. The principle of the fluorescence microscope is illuminating a

fluorescent dye with a specific wavelength (excitation wavelength). The excitation light

is absorbed by the fluorophores and emits a light in a longer wavelength (emission wave-

length). 1.8 shows a schematic view of a common fluorescence microscope where a LED

is used for the excitation light source, a dichroic mirror is used to guide the excitation

light to the sample. The target sample will then produce the emission light which will

be grant to the lens and finally of the detector. Even though optical detection is one of

the most simple and common way to detect the sample it is lacked due to the need of an

optical dye. Therefore a more efficient method is required.

1.5.2 Electrospray Ionization Mass Spectrometry (ESI-MS)

Electrospray Ionization Mass Spectrometry (ESI-MS) is an important technique which can

provide the structure, the molecular mass, and the concentration of analyze molecules.

The process of the ESI-MS is that the molecules first enter the ionization source where

the molecules become ionized. These ionized molecules (ion) will travel through the mass
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Figure 1.8: Conceptual drawing of free flow electrophoresis where a perpendicular electric

field is applied to the pressure driven flow

analyzer and finally arrive at a detector. After arriving at the detector a computer system

will generate a mass spectrum which shows the abundance of the relative mass to charge

(m/z) ratio. Each of the components will be describe in detail in the following chapters.

Electro spray ionization

The ESI consist of three steps starting with spraying of fine droplets which are charged,

followed by solvent evaporation and finally ion ejection. 1.9 shows the process in detail

were the tube is made of stainless steel or quartz silica capillary. A voltage of 2.5-6.0 kV

is applied to the tube which charge droplets with the same polarity. The highly charged

droplets will fly to the MS inlets size which has the opposite charge of the droplets. With

the aid of Nitrogen and heat the charged droplets are reducing their size by evaporating.

This will reduction of size will increase the surface charge density and finally when the

electric field strength inside the charge droplets reaches the critical point the droplet will

be changed to a gaseous phase [10][11][48]

Mass analyzer

A quadrupole mass analyzer is commonly used which consist of four parallel metal bars

which is kept in equal distance. The two metal bars which are located horizontally ( 1.10)

has a DC voltage where the AC voltage is applied to the vertical bars. The DC voltage

is used for keeping the ions flying to the z-direction where the AC voltage making an

oscillation motion. The principal mechanism of the mass analyzer is that the movement

of ions is an electric field is determined by their m/z ratio. With this principle the DC

and AC voltages can be set so that only desired m/z ratios are able to become stable

which will be lead to the detector and the other ions will collapse with metal bar which

has a high temperature.
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Figure 1.9: Conceptual drawing of free flow electrophoresis where a perpendicular electric

field is applied to the pressure driven flow

Figure 1.10: Conceptual drawing of free flow electrophoresis where a perpendicular electric

field is applied to the pressure driven flow
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Chapter 2

Fabrication

2.1 Glass chip fabrication

As descripted in the previous chapter microfluidic consist of small channels or structure

which has a dimension in micrometer or even nanometer region. In order to realize

this kind of structures microfabrication techniques are used which comes originally for

semi-conductor fabrication methods. This technique in general consist of two big process

which photolithography and etching. In the fabrication process of the glass device will be

described also for more detail parameter please see also table 1.

2.1.1 Gold and chrome sputtering

The wafer was first sputtered with gold and chrome as shown in2.1. This process is needed

since after the photolithography process the wafer will be put inside HF in order to etch

the glass wafer. Even though a so called photoresist which will describe in more detail in

the following chapters was used to protect the part which we did not want to etch this

process will be ensure that the glass wafer is protected since gold is not possible to etch

through HF. The chrome layer was required in order to make the gold layer adhesive to

the glass layer.

Figure 2.1: Gold and chrome sputtering
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2.1.2 Spin coating of photoresist

TThis process was required to put a thin photoresist layer on the gold layer. The principle

method was to put a small amount of the photo resist (Olin Oir 907-17) and then rotated

the wafer with a speed of 4000 rpm for 30 second. To improve the adhesion and remove

the solvent the glass wafer was heated at a temperature of 90 degree for 90 second, this

process is called soft backing (2.2).

Figure 2.2: Spin coating of photoresist

2.1.3 Exposure of the photoresist

After the photoresist was spin coated on the wafer UV light was exposure to the wafer.

The UV light will react with the photoresist so that the photoresist can be developed

with a chemical which is called a developer. In order to protect the part where the UV

light should not reach a mask is used. The mask can be made from various software such

as AutoCAD, solid works, cadence, etc. 2.3 shows the conceptual drawing of the process

and also a photomask which was generated by cadence.

Figure 2.3: Exposure of the photoresist and cadence desing
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2.1.4 Development of the pattern

The exposed plate put in a developer solution (OPD4262) so that the reacted photoresist

can be removed as shown in 2.4. After the developing of the photoresist the other etchant

can reach the surface and can be etched (see appendix A for more detail parameter).

Figure 2.4: Development of the pattern

2.1.5 Wet etching

After developing the photoresist the wafer should be etched each layer starting with the

gold layer (See 2.5A). The gold etchant was made of KI : I2 : DI = (4 : 1 : 40), this

process will take until it was possible to see the chrome layer which has a gray color.

When the gold layer was etched away the wafer is rinsed with Distilled water (DI) and

the dried with a nitrogen gun. After cleaning the wafer was again put in the chrome

etchant and wait until the glass surface was able to observe (See2.5B). When the wafer

became transparent then the cleaning process was done as above and finally the wafer was

put in HF/HCl 25percent/2.5percent. The etch rate of 25 percent HF is 1µm. therefore

the wafer was let in HF for 5 min to have a structure depth of5µm. One important thing

that needs to be in mind is that wet etching is not only one directional but etching in

all direction as shown in 2.5C. Therefore it is not possible in wet etching to have a width

smaller than the height of the structure which has to consider in the designing process.

Figure 2.5: Wet etching. Where (A) is chrome etching, (A) is gold etching, and (A) is

glass etching
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2.1.6 Removal of the photoresist and Gold/Chrome layers

When the etching process is done and also the wafer is cleaned the wafer was put in

acetone in order to remove the photoresist of the wafer. Then the wafer was put in the

gold etchant and chrome etchant until only the pure glass wafer was left. 2.6 shows this

process where a also in figure2.6 is showing the wafer after removing the photoresist of

the wafer.

Figure 2.6: Removal of the photoresist(A), Gold(B). and Chrome(C) layers

2.1.7 Making inlets

Since the microfluidic chip needs inlet so that the fluidic can enter the chip, inlets should

be made at the glass wafer. Several method are possible to make an inlets, we have used

making holes at the glass wafer. This process seems very simple however making a hole

in a glass wafer was not as simple as we have imaged. Therefore several approaches were

done to overcome this problem.

Drilling

The first approach was simply drilling the holes by assisting a diamond drill bit. 2.7A

shows the conceptual Idea of this process. The glass wafer was mounted on a table which

was assembled with a stepper motor so that the table was able to move up and down.

On the top of the table the diamond drill bit was mounted to a driller. 2.7B shows the

setup in real, where the chip was mounted at the chip holder and the diamond drill bit

was mounted on the driller.

Figure 2.7: Drilling with a drill machine
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This approach did give some promising result however it was very time consuming since

for every single hole the user had to align the holes. Therefore with a similar concept a

CNC machine as shown in 2.8 was used except of the drilling set. The CNC machine did

reduce the time since the glass wafer had to be aligned only once however the number of

successful result was very low which means that the wafer was broken during this process.

This is because that from average after drilling 10 holes the drill bit has to be changed

and the wafer was consisting at least 60 holes. This was a big problem not only it will

take a lot of time but also it was expensive since the drill bit cost around 100 euros.

Figure 2.8: Drilling with a CNC machine

Etching

Another attempt was to etch the holes, since the inlets have a diameter of 1 mm and

the wafer was 500 micro meter deep. The concept of this process was instead of making

holes in the same wafer but making holes at the second wafer and then bond these wafer

together as shown in 2.9.

The process of making the holes from the second layer is described as in 2.10. To

protect the other side of the wafer, it was spin coated with the photoresist in both side

and then it was developed and etched. Unfortunately, however this process was not able

to realize because we were never able to etch the entire wafer through.

Powder blasting

Another approach was powder blasting the wafer. Here once again a photoresist film was

used in this to protect the wafer from powder blasting. The whole process is shown in 2.11

where the photoresist film was first attached to the back side of the wafer and exposure

(2.11A), then it was developed (2.11B). After developing the film 30 micro meters (Al2O)
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Figure 2.9: Making inlets by etching

Figure 2.10: Etching procedure

particle was blasted to the wafer to make the holes (2.11C).2.11D shows the result of this

process where the inlets holes are able to observer.

2.1.8 Bonding and dicing

The next process is sealing the microfluidic structure which is done by bonding the glass

wafer to another glass wafer. This process was done by applying a temperature while

pressing the two wafers together (see also table1). The final step is dicing the chips out

of the wafer which was done by a dicing machine see tappedix.
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Figure 2.11: Making inlets by etching with photoresist

2.2 Connector mounting

Bootlace ferrules (OD: 1 mm, height: 8 mm, Bauhaus, Germany) was used as an interface

to connect the Teflon tubing to the FFITP device. The ferrules was simply bonded to the

glass surface by an epoxy, here the detail process is explained. First the FFITP device

is cleaned with nitrogen gun to blow small particles and also to ensure that the device

is complete dry. UHU PLUS Endfest 300 was used for the epoxy since it promised a

good bonding strength between glass and metal. The UHU PLUS consist of two mixing

solution. Therefore the component was mixed with a 1:1 ration as shown in 2.12.

Figure 2.12: Connenctor bonding 1

The FFITP device is than put to a hot plate with 120 degree, a silicon wafer was used

to protect that the hotplate is contaminated through the epoxy. The ferrules were then

carefully put at the inlets of the FFITP device as shown in 2.13. Here, because of particle

issue the ferrules were out from one side to the other side.

Then a small amount of UHU plus 300 was put at the outer side of the ferrules and

cure for 10 minutes in temperature of 120Â◦C, to keep them stable (2.14). This process

is required because the epoxy has very low viscosity when a temperature is applied.

Therefore there exist high possibilities that the epoxy will flow into the other inlets where

the ferrules do not exist.



26

Figure 2.13: Connenctor bonding 2

Figure 2.14: Connenctor bonding 3

This process was also repeated to the other inlets, and when all of the ferrules where

stabilized on the device, UHU plus 300 was again used to seal any possible leakage from

the inlets as shown in 2.15. Here once again the curing time was 10 minutes and the

temperature was 120 degree. After the whole process was done, the chip was rested in

room temperature for at least 2 hours.

2.3 Cleaning protocol

After the device was used the FFITP device needs to be cleaned. The cleaning method

is provided in detail in this chapter. First the FFITP device was put in beaker with

isopropanol and distilled water with a ratio of 2 : 10 as shown in 2.16.

In order to wash the chip also inside the chip was put in a sonicator for 2 hours with

a temperature of 80 degree. The temperature was also needed not only to clean the chip

but also to remove the ferrules from the FFITP device. After the sonication the ferrules

will be removed from the chip as shown in2.17.

When the ferrules were removed from the chip then nitrogen was applied to the FFITP
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Figure 2.15: Connenctor bonding 4

Figure 2.16: Cleaning 1

Figure 2.17: Cleaning 2

device. This process was required to push all the residues inside the chip, however this

process need a lot of caution since when a too high pressure is applied the chip will be
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break. Therefore it is recommend not using the full power of the nitrogen gun and also

keeping slight distance from the device as shown in 2.18.

Figure 2.18: Cleaning 3

After applying nitrogen to the device the chip was put again in the isopropanol and

water solution and was sonicated for 30 min in temperature of 80 degree. This process

together with the nitrogen cleaning process was repeated twice more and then rinse the

chip with kimtex paper as shown in ??.

Figure 2.19: Cleaning 4

In order to ensure that the device does not have any residues inside the chip was put

in a vacuum chamber (see ??) with 0.2 bars for 1 hour. Finally the chip was put in an

oven with a temperature of 400 degree for 6 hours to be complete sure that there are no

residues inside. This process can be also used when the epoxy goes inside the inlets by

accident. After the whole cleaning process the chip will be cleaned as shown in ??.
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Figure 2.20: Cleaning 5

Figure 2.21: Cleaning 6
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Chapter 3

Isotachophoresis free-flow on a glass

chip using side flow for selectable

output

3.1 Introduction

ITP is a powerful mode of electrophoresis, which allows simultaneously preconcentration

and separation of samples. Free-flow electrophoresis (FFE) is a method used for con-

tinuous separation. The combination of FFE and ITP allows us to have a continuous

preconcentrated and separated sample which can be used for real time online detection.

The combination of ITP and FFE was first suggested in 2006 [24]. Conventional ITP

has all separated bands flowing next to each other making their optical detection as well

as collection of a specific band a challenging task [45][20][27]. Collecting a specific band

after the separation of the sample is commonly done by sample shifting. Sample shifting

means that the focused ITP stream is moving by the changing the flow ratio [3]. One of

the method to shif the ITP window is using the electric field as shifting force [28][4]. The

device consist three inlets where the middle inlet is used for sample injection, the out side

two inlets is made also for applying an electric field to the device. By changing the voltage

at the inlet side of the device, the sample was guided to the desired location. However

this method has some limititations, such as precise control is not posible and also the

range of the shifting is small. In order to overcome this problems our FFITP glass device

use hydrodynamic flow control to shift the sample to the desired location. Three possible

method were tested and compared, which was using an additional flow at the outlet of

the device, using negative pressure (sucction) at the outlet, and changing the flow rate

at the inlet. Also to optimize and to know the relatioship between concentration change

based on the electric field and the flow rate optical detection was uesd with an optical

microscope and also with a photomultiplier tube (PMT) to observe the distribution and
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concentration of the device.

3.2 Experimental

3.2.1 Chemicals

All buffers were prepared using deionized water with final pH of 9. The leading buffer

was made from 10 mM NaCl solution mixed with tris(hydroxymethyl) aminomethane

(TRIS) buffer for pH adjustment. The terminating buffer was made from 5 mM solution

of 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanosulphonic acid (HEPES) mixed with TRIS.

The sample for testing was prepared by adding 0.1 mM solution of fluorescein into the

terminating buffer. All chemicals were purchased from Sigma Aldrich GmbH.

3.2.2 Device layout

The layout of the device is shown in 3.1 (left). Arrays of pillars prevented the chamber

collapsing during the thermal bonding process. The device consisted of five inlets (I),

a separation (main) chamber with the size of 23mm × 15mm, two side chambers for

connecting the electrodes and seven outlets (O). Three middle inlets were equipped with

binary tree structures to evenly distribute input solutions into the chamber. The outer

two inlets (I1andI5) were designed to guide the flow direction into the chamber. All

outlets were designed similarly as the inlets except the middle one (O4) which has narrow

entrance for sample collection. The side chambers are separated from the main chamber

by 25µm wide channels to prevent gas bubbles entering the main chamber. The side

channels and the pillars ( 3.1). Reservoirs were also used for connecting the electrodes,

as well as to reduce the pH change inside the chamber. 3.1 right bottom shows the side

reservoir and the connectors which are used for connecting the syringes.

3.2.3 Optical setup

The chip was mounted on an Axiovert 100 (Zeiss, GmbH) inverted microscope. We have

used LED type M470L3 (Thorlabs, GmbH) with 470 nm principal wavelength and maxi-

mum optical power of 650 mW for sample illumination. For all fluorescence imaging and

measurement experiments we have used a filter set model 49002 (Chroma Technology

Corp.). Imaging was performed with 5x objective lens and with color CCD camera model

C5 (Jenoptik, GmbH). The LED intensity was adjusted by 1600 mA electrical current.

The concentration measurement was performed as single point detection with 50× objec-

tive lens and with a photomultiplier tube (PMT) model H10722-01 (Hamamatsu, Co.,).

Its gain was set by 0.5 V bias. The LED intensity was adjusted by 16 mA electrical

current.
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Figure 3.1: Chip schematic showing all chambers. The side chambers are separated from

the main chamber by 25µm wide channels and pillars were used in order to avoid collapse

during thermal bonding which is shown by an SEM picture left top. Connections for the

syringes and the side reservoirs which are used to connect the electrodes are shown at the

left bottom figure.

3.2.4 Experimental procedure

The experiment consisted of four steps: filling, steady-state laminar flow, applying sepa-

ration voltage, hydrodynamic control. The chip was first filled with the terminating and

leading buffers. The leading buffer was introduced by inlets I1 and I2 and the terminating

buffer by inlets I4 and I5, all with flow rate of 10 µL/min. First the chamber was filled

with buffers which also contained air bubbles. It was impossible to push the bubbles out

by external positive pressure. A negative pressure at the outlets was then applied to re-

move those bubbles. Once the main chamber and side reservoirs were filled the electrodes

were introduced into the side chamber and sealed. Then the sample was introduced and

all flow rates adjusted to 5µL/min. Once the laminar flow was achieved +100 V was

applied to the leading buffer and -100 V to the terminating buffer. 3.2A shows the steady

state situation before applying the voltage, and 3.2B shows the fluorescein focused after

applying the separation voltage.



34

Figure 3.2: (A) Laminar flow before applying the separation voltage (B) Focused stream

line of fluorescein with 200V separation voltage.

3.3 Result and discussion

3.3.1 FFITP concentration factors

The concentration of ITP will be happen at the isoelectric point (PI) which means the

charged particles which are not at the point should move toward the point. The velocity

of the charged particle is proportional to the applied electric field; v = µe ×E where v is

the drift velocity µe is the electrophoretic mobility and E is the electric field. In FFITP

it could happen that the applied electric filed is not high enough so that not all of the

charged particle reaches the PI point. Since there is not enough time given before the

particles is leaving the chip. Therefore PMT observation was done to check the change of

the concentration, while changing the voltage with a flow rate of 5 µL/min. 3.3 shows the

concentration change while increasing the voltage. It could be observed a linear increase

of concentration till the 600 V and no more increase after this point. When the voltage

was higher than 2000 V bubble generation was able to observe. It could be caused by

either extensive buffer electrolysis or Joule heat dissipation.

Next we have tested the system with flow rate as a parameter. As discussed in the

former chapter the concentration of ITP has a relation with the time until the charged

particle are drift to the PI point. Therefore if we give more time inside the separation

chamber it is possible that the concentration will increase. In order to verify this principle

an experiment was done where a constant electric field was applied and the flow rate

was increased. As expected the intensity of fluorescein decrease when the flow rate was

increased (see 3.4). As the expectation it could be observed that the fluorescein intensity

was decreasing when the flow rate was increasing also a exponential graph was able to

observe which also fit with the result of the voltage increase.
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Figure 3.3: PMT output signal as function of applied voltage with a constant flow rate

of 5 µL/min. It could be observed that the concentration of the fluorescein is increased

by applying a higher

Figure 3.4: PMT output signal change by a constant voltage (100 V) and increasing

the flow rate. It could be observed that the fluorescein concentration is decreasing by

increasing the flow rate.

3.3.2 Hydrodynamic flow control

One of the key features of the FFITP chip design was the possibility to collect specific

fractions at one of the outlets. Three possible method was studied (see 3.5. First applying

a positive pressure at the outlets O1 and O7. Second applying a negative pressure at the

outlet O1 and O7 by suction. Last increasing the flow rate at the at inlets I1 and I7.

Each of the method was compared, based on two parameters the settling time and the

preciseness to move the focused stream line. The settling time means the needed time

until the focused stream line is not moving further.

Applying positive pressure at outlet

This method was done by introducing a flow to the outlet O1 and O7. The FFITP settling
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Figure 3.5: : Schematic operation of the ITP device. By applying an electric field per-

pendicular to the flow direction, the sample will be focused. This focused stream can be

control by applying an additional flow which is called as control flow. Three possibilities

is considered for the control flow; applying positive pressure from the outlet, applying

positive pressure from the inlet and applying negative pressure from the outlet.

time was below 30 second and we were able to achieve precise control of the focused line.

Nevertheless the pressure inside the chamber was often too high leading to the chamber

destruction. It was probably caused by high pressure drop at the fluid outlet channel,

which can be calculated by Hagen-Poiseuille equation (3.1).

∆P =
12× µ× l ×Q

h3 × w
(3.1)

where ∆P is pressure drop, l is length of the channel, µ is dynamic viscosity of the

fluid, Q is volumetric flow rate, h and w are the height and the width of the channel, re-

spectively. For the calculation purpose we assumed a simple straight channel with length

of 4 mm and width of 1 mm. The channel depth was left at 5 µm. Total applied volu-

metric flow inside the chamber was 25 µl/min (5 inlets in parallel each with a flow rate of

5 µl/min) with all outlets opened. With those assumptions the calculated pressure drop

at the outlet channels and thus also pressure inside the chamber was 0.24 bar. Once the

outlets O1 and O7 are used for flow control with positive pressure, the pressure inside the

chamber rose to 0.395 bar, far too high for glass chip integrity.

Applying negative pressure at outlet

Second option to control the focused line is applying a negative pressure to the outlets O1

and O7. Suction was used to realise this method. By changing the suction speed of the

syringe pump the focused stream was controlled to the desired location. Since no further

pressure were applied no destruction was able to observe during the process. However

a very long settling time (3 min) was required, and also it had also a precision control

below 100 µm was no possible.



37

Applying positive pressure at inlet

The mechanism of this method is to increase the flow rate either from I1 or I7 to control

the focused line. In order to achieve the exact relationship of the flow ratio change and the

shifted streamline, simulations were conducted using FreeFEM++28 simulation software

using a slight simplification of the design (3.6).

Figure 3.6: Simplified drawing of the device showing the velocity vectors. For shifting the

stream, the flow rate at inlet 1 was increased.

The Stokes differential equation for an incompressible Newtonian fluid was solved,

with boundary conditions set by flow velocities in both directions at all surfaces. Grid

resolution was tested by decreasing the grid size by a factor of two, accepting the resolution

if the difference in flow shift was less than 5 percent. An example of an obtained flow

pattern is shown in3.6. In 3.7, the x-component of the velocity is given for a change

in flow rate at inlet 1 from 5 to 6 µl/min by 0.1 µl/min increments, reducing the flow

rate through inlet 5 from 5 to 4 µl/min to maintain a constant total flow rate of 10

µl/min. The outlet position for the sample stream line is defined at the point where the

x-component of the velocity is zero, and shows a trend towards the right with an increase

in flow rate from inlet 1. The measured displacement is plotted as a function of the flow
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Figure 3.7: The x-component of the velocity at the outlet of the device as function of

the flow at inlet 1. The point at which the x-component becomes zero shifts towards the

right with increasing flow, by increasing the flow rate with a 0.1 µL/min step.

rate change at inlet 1 for a total flow rate of 10 µl/min in reffig:flowcontrolex using black

dots, demonstrating good agreement with the simulated results (indicated with red line).

A linear relationship was found between the flow rate and displacement, with a 0.1 µl/min

increment resulting in a 30 µm shift. After a flow rate change at the inlet, approximately

45 seconds were required for the outlet flow to stabilize at its new position. Inserts 1 and

2 in reffig:flowcontrolex are microscope images taken at 5 µl/min and 6 µl/min, again

taken at a total flow rate of 10 µl/min, to illustrate the shift of the focused stream line.

3.4 Conclusion

A free-flow Isotachophoresis has been fabricated on a glass wafer with 5 µm depth channel.

The device consists of five inlets, a separation chamber with the size of 23× 15 mm, two

side chambers for connecting the electrodes and five outlets. The three middle inlets are

split with a binary tree structure for equal distribution of samples and buffers. Two outer

two inlets used to guide flow direction into the main chamber. The side chambers are
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Figure 3.8: Comparison of the experimental data and the simulation of the hydrodynamic

control of the focused stream line. Indicated on the vertical axes is the x-position the

outlet at which the x-component of the velocity is zero. This point, at which the liquid

no longer displaces in x-direction, is shifting to the left side with increasing flow at input

1.

separated from the main chamber by 15 µm wide channels to prevent gas bubbles entering

the main chamber. The outlets are designed in similar fashion as the inlets. Steady flow

of buffers and a sample was achieved by syringe pumps with flow rate of 5 µL/min. The

relationship between concentration and voltage was studied in a constant injection flow

rate. As the theory already predicted a Logarithmic relation was able to observe. When

the applied electric filed was higher than 2000 V bubble generation was able to observe.

Therefore, instead of increasing the voltage an alternative was studied by reducing the

flow rate. A similar relation was observed with the concentration and the flow rate. Also

fluid scanning method of the ITP window was realised by controlling the inlet flows,

changing the flow rate ratio supplied to either side of the device. A computational model

predicting the shift of the outlet flow as a function of flow rate ratio was experimentally

confirmed, enabling a shift of 300 µm with 30 µm steps. With result we were confident

that the FFITP is working and also that we were able to control the focused stream, so

that we can collect the desired sample for other applications.
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Chapter 4

Coupling to the Mass spectrometer

4.1 Introduction

Biochemical pathways are complex and typically involve a wide range of compounds

covering a wide dynamic range. The elucidation of these pathways and their control

mechanisms requires sophisticated analytical methods, typically removing interferences

and enhancing the concentration of targets to allow for their detection. High resolution

analytical techniques such as high performance liquid chromatography (HPLC) and capil-

lary electrophoresis (CE) are often coupled with mass spectrometry to obtain information

about the amount and identity of these compounds [12]. The biggest limitation of the

CE-MS method is that it is common that the amount of the sample of interest is very

low. Furthermore the concentration of the contaminants are much higher, therefore lots

of sample preparation is needed. To solve this problem ITP,MS (Advanced electrolyte

tuning and selectivity enhancement for highly sensitive analysis of cations by capillary

ITP-ESI MS.) was suggested. Since ITP is powerful technique to pre concentrate and

also separate the sample as discussed in the other chapters. This facilitates the hand-

ing of samples across a wide dynamic range making it a very attractive technique for

studying biochemical processes with high complexity in chemical diversity and dynamic

range. ITP has been extensively used in capillaries and on microchips, as discussed in

various review articles [2] [46]. FFITP is advantageous since it has a continuous sample

output. However detection in FFITP is a challenging task. The most common way is

optical detection, which done by fluorescent labelling of the samples. Optical detection,

however, is complicated in ITP because the separated analyte zones are stacked next to

each other, requiring the use of spacers [24]. More serious problem is that in real sample

the labelling is difficult and also very time consuming. Therefore we suggest a online

coupling of an FFITP device with ESI-MS, enabling continuous analyte concentration

and clean-up before injection into the MS where.

Hydrodynamic flow control was used to direct zones of interest into the MS, and en-
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Figure 4.1: Principle of operation of the FFITP chip. By applying an electric field

perpendicular to the flow direction, the target analytes are focused between the leading

(LE) and terminating buffer (TE). Increasing the flow at inlet 5 will shift the stream to

a desired outlet (13)

abled scanning of the ITP system as discussed in chapter 3. As mentioned before, analyte

identification in analytical ITP with universal detection is complicated by the changes in

migration time with sample composition. Connection with an MS eliminates this issue

by allowing for the identification of the analyte based on its mass. In plateau mode, the

hydrodynamically controlled scanning also provides a measure for the zone width, and

hence analyte concentration. The proposed method is ideally suited for proteomic and

metabolic studies, where the FFITP can simultaneously concentrate trace analytes in a

specific mobility range in peak mode ITP, whilst removing interferences with mobilities

outside the ITP window. The concentrated targets are then continuously directed into

the MS, providing its resolving power to identify and analyse the concentrated analytes

in a timeframe independent of the analytical separation.
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4.2 Simulation of ITP

In capillary and free flow ITP, conductivity and optical detection are most frequently used,

but this method can also be used in conjunction with a mass spectrometer. The limited

range of ESI-MS compatible buffers, however, restricts the range of LEs and TEs that can

be used. Gebauer et al. [17] recently proposed manipulating the ITP window by adjusting

the pH and therefore effective mobility of the LE and TE. Here, a similar approach was

followed, and resulted in the selection of formic acid as the leader and propionic acid as

the terminator. With the LE adjusted to pH 4.3 using NH4OH; the resulting effective

mobilities are shown in Table 130. The ITP process was modeled using SIMUL31 in

constant current mode (−1.125 µA). The LE was 10 mM formic acid adjusted to pH 4.3

with 8 mM ammonium, and the TE was 7 mM propionic acid with a pH of 3.5. Alexa

fluor 488 (3 mM), citric acid (1 mM), fluorescein (2 mM) and glycolic acid (1 mM) were

used as model analytes, with their effective mobilities given in Table 1.

Figure 4.2: Result of the ITP simulation, showing Alexa fluor 488 and citric acid being

concentrated in the ITP window while fluorescein dissipates into the TE. The ITP system

is depicted right to left with the relative position of the window positioned at 0, LE at

negative values and TE at the positive values.

The SIMUL results are presented in4.2. To maintain continuity in the figures through-
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out the manuscript, the LE is on the left, TE on the right hand side. The ITP window

defined between the LE (formic acid) and TE (propionic acid). The target analytes stack

in the window in order of decreasing mobility, with the fast Alexa fluor 488 adjacent to

the LE followed by Alexa fluor 488. Fluorescein, the model contaminant, has mobility

lower than the TE and therefore dissipated from the ITP window into the TE zone.

Compund pka µ(10−9m/V.s) µeff (10−9m/V.s

Alexa Fluor 488 - - 36

Fluorescein 6.8;4.4 35.9,19 0.5

Citric acid 6.41;4.76;3.13 74.4;54.7;28.7 28.9

Formic acid 3.89 42.4 27.1

Propionic acid 4.87 37.1 1.6

4.3 Experimental

4.3.1 Chemicals

As LE, we used 10 mM Formic acid adjusted to pH 4.29 with ammonium hydroxide, 7mM

propionic acid (pH 3.55) was used as TE. For the MS scanning study, samples contained

1 mM fluorescein, 1 mM citric acid, 1 mM Alexa Fluor 488, and 1 mM glycolic acid. All

chemicals were purchased from Sigma Aldrich (Germany) with the exception of Alexa

fluor 488, which was purchased from Life Technology (Germany).

4.3.2 Chip layout and tubing

The layout of the device is shown in 4.1. The device consisted of five inlets (1-5), a 23×15

mm separation chamber, two side chambers for connecting the electrodes (6-9) and seven

outlets (10-16). The three middle inlets were equipped with binary tree structures to

evenly distribute the input solutions into the chamber. The outer two inlets (1 and 5) were

designed for hydrodynamic control. All outlets were designed similarly to the inlets except

for the middle outlet (13), which has a narrower (100 µm wide) outlet channel for sample

collection. The electrode chambers are connected to the main chamber using an array

of 25 µm wide channels, 50 µm apart. Arrays of pillars were introduced to strengthen

the support of the chamber wall (4.3A). The voltages were applied to the buffer-filled

reservoirs to minimize the pH changes inside the chamber. Gas bubbles, generated by

electrolysis, were prevented from entering the main chamber by reservoirs and an array

of channels in the side chamber. 4.3B shows the side reservoir and the connectors, which

are used for connecting the tubing. To provide fluidic access by Teflon tubing (ID: 0.5

mm, OD: 1.6 mm, ProLiquid GmbH,Germany) to the chip, bootlace ferrules (OD:1 mm,

height: 8 mm, Bauhaus, Germany) were bonded to inlets 1-4 and outlets 10-12 and 14-16

using epoxy (UHU, Germany). Outlet 13 was connected using a one-Piece Fitting and
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Bonded-Port Connector (Labsmith, USA). The metal bootlace ferules were also mounted

to the four electrode outlets (6-9) to act as buffer reservoirs.

Figure 4.3: (A) Photograph of the device implementation in glass. The side chambers

are separated from the main chamber by 25 Î1
4
m wide grooves. Pillars were introduced to

avoid collapse during thermal bonding and to prevent breaking by the high back pressure

inside the chamber (B) Connections for the tubing and the side reservoirs which are used

to connect the electrodes. (C) Connection of the FFITP chip to the MS with a diagram

showing the connection points for the electric field, syringe pumps and ESI-MS. The chip

is mounted on an inverted optical microscope (photograph).

4.3.3 Experiment setup

The setup of the experiment is shown in 4.3C. The FFITP device was mounted on an

Axiovert 100 (Zeiss GmbH, Germany) inverted microscope. LEDs (type M470L3, Thor-

labs GmbH, Germany) with a 470 nm principal wavelength and maximum optical power

of 650 mW were used for sample illumination. All fluorescence imaging and measurement

experiments were done using a 470/525ex/em filter set (model 49002, Chroma Technology

Corp. USA). Imaging was performed using a 5x objective lens (Zeiss GmbH, Germany)

and a color CCD camera model C5 (Jenoptik GmbH, Germany) with the LED intensity

adjusted to 1.6 A. The fluorescence intensity measurements were performed using a single

point detector made using a 50x objective lens and photomultiplier tube (PMT) (model

H10722-01, Hamamatsu Photonics, Co., Germany) with the gain set by a 0.5 V bias. Sam-

ples and buffer were injected through a neMESYS Low Pressure Syringe Pump system

comprised of five syringe modules (Cetoni GmbH, Germany). To connect the tubing from
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the syringes to the device, bootlace ferrules were bonded to the glass chip using epoxy

(UHU, Germany), shown in 4.3B. The potential difference was applied using a HVS448

High Voltage Sequencer (Labsmith, USA).

4.3.4 Interface from chip to MS

A fused silica capillary with an outer diameter of 360 µm, inner diameter of 100 µm and

length of 30 cm was used to connect the FFITP chip to the ESI interface of the 1100

LC/MSD mass spectrometer (Agilent, Germany). A commercially available connector

(One-Piece Fitting and Bonded-Port Connector, Labsmith, USA) was used to connect

the fused silica capillary to the chip. A 1/32” OD PEEK tubing Sleeve (IDEX, USA) was

used to guide the capillary into the ESI interface of the 1100 LC/MSD mass spectrometer

(Agilent, Germany). The mass spectrometer was operated in negative mode with a po-

tential of 4000 V, fragmentation factor 100, and nitrogen was used as nebulizing gas. No

sheath flow was used. The flow rate from the chip outlet through the capillary was 1.5

µL/min as determined by collection and weighing at 10 minute intervals when the free

flow device operated at 2 µL/min. At this flow rate, there is a 2 minute delay between

the analytes leaving the device and entering the MS.

4.3.5 Experimental Procedure

The FFITP device was first filled with LE (inlets 1 and 2) and TE (inlets 4 and 5). Once

the main chamber and electrode reservoirs were filled, the reservoirs at the side chambers

were sealed using the Platinum electrodes. Then the sample was introduced at inlet 3,

and after equilibration of the flows, the electric field was applied across the chamber.

4.4 Result and discussion

4.4.1 Isotachophoresis

The main advantage of ITP over zone electrophoresis is that clean-up and concentration

of trace analytes can be achieved simultaneously through the selection of the LE and TE.

To demonstrate the FFITP-MS, model compounds were selected because they could be

visualized using fluorescence microscopy and/or determined by MS. Fluorescein was used

as a model contaminant with a lower mobility than the TE and the targets. Citric acid

was selected as target analyte because its electrophoretic mobility is similar to that of

Alexa Fluor 488, but unlike Alexa Fluor 488 it yields a response in the MS. This allows

the visualization of the ITP window using Alexa Fluor 488, and the analysis of the effluent

by MS. In order to determine the optimal separation voltage, the fluorescence intensity
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of the Alexa Fluor 488 zone was studied as a function of the potential difference applied

across the FFITP device with a constant flow rate of 2 µL/min.The intensity increased

with the applied potential difference, leveling off around 1200 V (E= 520 V/cm, I= 100

µA), indicating that steady state was achieved. Using a flow rate of 2 µL/min and a

potential difference of 1200 V, a sample comprising of fluorescein, Alexa fluor 488 and

citric acid was loaded. The microscope image in 4.4 confirms the validity of the selected

electrolyte system. The fluorescein is effectively removed from the sample, demonstrated

by a faint zone representing the dissipating fluorescein at the TE side. The Alexa Fluor

488 is stacked in the ITP window, visualised by the bright zone. Citric acid acts as a

non-fluorescent spacer between Alexa Fluor 488 and the TE containing the dissipating

fluorescein and cannot be observed by fluorescence microscopy. The fluorescence intensity

was quantified using a PMT using the microscope stage to move the chip. 4.5 shows the

fluorescence intensity measured using a PMT as a function of the scan time. A narrow

peak with high intensity is recorded for Alexa Fluor 488, indicating the ITP window

passes the detection spot. Further down in the terminator, a broad zone of lower intensity

corresponds to the fluorescein dissipating ion the TE. Regular drops in the fluorescence

intensity are caused by the pillars used to support the microfluidic chamber, passing across

the detection spot.

4.4.2 FFITP-ESI-MS interface test

Before applying an electric field to the FFITP device and test the compatibility of the

FFITP-MS, it had to be test first whether the simple connection through fused silica

tubing was appropriate as an interface. Also electrolyte system (LE, TE) had to be

tested if the electrolytes give any interference at the signal. Therefor a simple test was

done where fluorescein was used as optical guidance as well as the detection guidance

for the MS. This simple test was done by inducing the fluorescein at inlet 3 the LE was

injected at inlet 1 and 2, and the TE at inlet 4 and 5 all of the inlet flowrate was 1 µL/min

which was the minimum flow rate where the MS was able to give a stable output. After

achieving a laminar flow the FFITP device was connected to MS and a scanning from

LE to TE was done.4.6 shows the result of this process where it can be observed that

the abundant number is very low. This is time region is when the LE was entering the

MS, also it can be seen that the signal is increasing after 10 minutes which is the time

when fluorescein is entering the MS. In the time domain between 17-25 min the signal is

decreasing which is the time domain when the TE was entering. After 25 min the signal

is increasing again which is the time where fluorescein was entering again. This result

was able to make us to conclude that the interface of the FFITP-MS was working and

also the electrolyte system for the ITP does not give interferences.
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Figure 4.4: Microscope image of the FFITP device which showing the focusing of Alexa

fluor into a sharp band and dissipating fluorescein. (C) PMT signal output which showing

the intensity of Alexa fluor and fluorescein.

4.4.3 FFITP-ESI-MS

Having confirmed the validity of the FFITP system, the device was connected to the

MS interface. Two concepts were studied by the on line connection of the FFITP to

the ESI-MS. First, the use of the ITP window for the elimination of a contaminant in

combination with the concentration of the target analyte and its continuous infusion into

the MS. Citric acid was selected as target analyte together with fluorescein as contaminant.

Alexa Fluor 488 was only used as an optical maker to guide the ITP zone into the MS,

since it does not yield an MS response. Citric acid and fluorescein were chosen as analyte

and contaminant respectively.4.7 show the result of raw MS data which agreed with the

fluorescence microscopy experiments and showed fluorescein dissipating in the TE and

citric acid forming and ITP zone. 4.8 shows the normalized data of 4.7 where it is possible

to observer the concentration of citric acid increased while the concentration of fluorescein

decreased, with the ratio of citric acid to fluorescein increasing from 1:2.6 to 1:8.4. More

significant enhancements are expected in peak mode when the initial concentration of

citric acid is lower or when the concentration of fluorescein is higher.

The second question would it be possible to have several interest of analytes which
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Figure 4.5: PMT signal output which showing the intensity of Alexa fluor and fluorescein.

Figure 4.6: Online connection test with fluorescein for 40 min

will be concentrated by the FFITP and then by hydrodynamic control shift the stream

line so that we can scan the focused stream line in such that only one of the analytes

will enter the MS. In order to proof this concept an additional acid (glycolic acid) was

mixed to the sample which will be concentrated next to the citric acid.4.9 shows the MS

data output as a function of the scanning time of this process, moving from the LE to the

TE and back. First citric acid is detected between 2 and 4 minutes, characterised by the

signal at mass to charge ratio (m/z) of 191, glycolic acid with m/z of 73 can be observed

around 6 minutes. After reaching the TE at around 7 minutes of scan time, the flows

were shifted back to the original location, showing first glycolic and then citric acid. It

is important to realise that fluorescein (m/z= 331), added as interference, is not detected



50

Figure 4.7: Online connection with fluorescein and Citrci acid

in the ITP window.

4.10 shows the MS data output of this scanning process with a percentage value which

was made by dividing the highest value of each time and multiplied with hundred. Where

it is more clearly to observe that citric acid is entering first which has a mass to charge

ratio (m/z) 191. By shifting the stream line further to terminating buffer, glycolic acid

(73 m/z) is able to observe, and in the whole time domain fluorescein was not able to

observe.

The extracted ion isotachopherograms for the three compounds over the period scan-

ning back from TE to LE are given in 4.11. The flat baseline signal for m/z= 331 confirms

fluorescein has been effectively removed from the ITP window. 4.11 also demonstrates
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Figure 4.8: Normalized value of the output of the online connection of fluorescein and

citric acid

glycolic and citric acid have been separated into their respective ITP zones, with the

slower glycolic acid forming the zone closest to the TE preceding the faster citric acid.

Without the use of a spacer, the overlap in signal for the adjacent glycolic and citric acid

bands is normal. It is important to note the absence of citric acid in the glycolic acid

zone and vice versa, confirming steady state has been reached

4.5 Conclusion

The coupling of FFITP with ESI-MS decouples the separation and detection time frame,

whilst benefiting from the power of ITP to simultaneously concentrate and purify an-

alytical targets. We have demonstrated the online coupling of FFITP-ESI-MS by the

removal of fluorescein from a set of target analytes. Fluidic scanning of the ITP window

was realised by controlling the inlet flows, changing the flow rate ratio supplied to either

side of the device. The connection between the chip and MS was realised using a 100
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Figure 4.9: The MS data output during FFITP-ESI-MS. A mixture of Alexa fluor 488,

Citric acid, Glycolic acid, and fluorescein was used as sample, using Alexa fluor for optical

guidance. By controlling the flow rate at the inlets the flow through the outlet connected

with the MS was moved from LE to TE for 7 min and then shifted back to LE. Throughout

this process, first citric acid (191 m/z) was detected, followed by glycolic acid and back

to citric acid

Figure 4.10: Normalized value of the output of the online connection of fluorescein, citric

acid, and glycolic acid

µm ID fused silica capillary, selected to minimize flow resistance and dead volume whilst

enabling visual inspection using a fluorescence microscope. For further study where the

use of a microscope can be eliminated, shorter capillaries with a narrower ID can be used
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to allow for lower flow rates and increased residence times in the electric field and hence

the time for ITP to establish. The dissipation of fluorescein into the TE at the same time

of the concentration of Alexa Fluor 488 and citric acid to the steady state concentration

were recorded using a fluorescence microscope and MS, respectively. The fluorescence

intensity across the device IS showing a narrow band for the Alexa Fluor 488 in the ITP

window, and a broad and less intense signal for the dissipating fluorescein. The changes

in abundance for the m/z corresponding to citric acid and fluorescein confirmed that the

ITP was simultaneously increasing the citric acid concentration to its steady state level

and removing the fluorescein. Quantification based on the changes in abundance of the

MS signal in presence and absence of an applied electric field demonstrated an increase

in the citric acid to fluorescein ratio by a factor of 3.2. Fluidically scanning across the

ITP window past the MS demonstrated the separation of glycolic acid and citric acid by

the changes in the abundance at their respective m/z ratio. Importantly, no signal was

recorded at the m/z ratio for fluorescein, demonstrating it was effectively removed from

the ITP window. Based on these encouraging initial results, we are confident that the

online coupling of FFITP-ESI-MS will solve problems either where the concentration of

the target analytes is very low compared to contaminants, and/or where extended MS

studies are required for structure elucidation. Additional engineering of the ESI-MS con-

nection is required to achieve higher spraying stability at low volumetric flow rates. Once

solved, it should be possible to apply the technique to biomolecules including peptides

and proteins, which may require surface modification of the glass device.



54

Figure 4.11: Selected ion isotachopherograms for glycolic acid (m/z=73), citric acid

(m/z=191) and fluorescein (m/z=331).



55

Chapter 5

FFITP enhanced ISFET Based

Biosensor

5.1 Introduction

Biomarkers are objectively measurable biological characteristics that can be used to di-

agnose, monitor or predict the risk of disease [1]. For example, BRCA1 mutations are

genetic markers for breast cancer risk [14], high blood glucose indicative for diabetes,

creatinine clearance related to kidney function, and prostate specific antigen (PSA) is

a protein biomarker for prostate cancer [50]. With ”omics” approaches such as tran-

scriptomics, proteomics, glycomics and metabolomics, the number of known biomarkers

increases exponentially. A critical issue in the use of these biomarkers to inform treatment

is the development of analytical techniques being able to cope with the large variety in

physicochemical properties and dynamic range in plasma and urine. As many biomarkers

of interest are present at low concentration against a more concentrated and complex

chemical background, their concentration needs to be raised selectively so that it can

be detected without interferences. Isotachophoresis (ITP) is a mode of electrophoresis,

where the sample is placed in a discontinuous electrolyte system, comprised of a leading

and trailing electrolyte (LE and TE, respectively). The key advantages of isotachophoresis

are that the sample can be concentrated and separated in the same time. The combina-

tion of ITP and FFE has the advantage that the sample can be countioulsy separated

and also concentrated as already discussed in the ohter chapres. However detection in

FFITP is a challenging task, The most common method to detect the sample is done

by optical detection. Optical detection has several limitations. Firts of all the sample

has to be labeled which is not always possible. The bigger problem in FFITP or in ITP

genral is the fact that the sample will stack to next to each other, which makes difficult

to distinguish the sample. To solve this problem spacer are put in between the sample

[51]inano2000capillaryoerlemans1981isotachophoresis. Finding the right spacer however is
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Figure 5.1: Schematic operation of the FFITP-DGFET.

relative compilicated. In order to overcome this limitation of the optical sensor a more el-

egant detection method is required. One of the possibilities is the Ion-sensitive field-effect

transistors (ISFETs). Since an ISFET is a electrochemical sensor which can be used for

various analyte which also includes biological samples [52]rothberg2011integrated. Self-

amplified transistor immunosensor under dual gate (DGFET) was recently suggested [35]

to improve the sensitivity and the stability of the ion-sensitive field-effect transistor. The

connection of the FFITP to the DGFET is beneficial for both of the technology. From

the FFITP side the DGFET sensor is a label free sensor which could solve the limitation

of the optical sensor. Also the combination of FFITP-DGFET is beneficial of the point

of view from the DGFET. Since the major problem of the DGFET is the high sensitivity

which is resulting also to detect unwanted signal, therefore purification of the sample is

needed. Especially in real biological application it is common that the sample of interest

has much lower concentration than the other proteins. It is also common in early disease

detection that the sample has a very low concentration. Therefore the pre-concentration

ability of the FFITP will enable to increase the concentration of the sample which result

to increase the detection limit. We demonstrate the online coupling of an FFITP de-

vice with DGFET operation, enabling continuous analyte concentration and purification

before injection into the DGFET, as illustrated in 5.1.

5.2 Experimental

5.2.1 Chemicals

All buffers were prepared as follows with resulting pH value of 7.5. The leading buffer

was made by 5 mM TRIS hydrochloride, the terminating buffer by 10 mM TRIS Glycine
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buffer solution. The sample was prepared by mixing 10 pg/mL (GFP) full length pro-

tein (ab119740), Fluorescein mixed with TE. All chemicals were purchased from Sigma

Aldrich (Germany) with the exception of GFP, which was purchased from Life Technology

(Germany).

5.2.2 Surface modification for attaching GFP antibody to the

sensor

Antibodies (Anti-GFP antibody ChIP Grade (ab290)) were used to detect Green fluores-

cent protein (GFP). Surface modification was needed that for attaching the antibodies.

First, the extended gate (EG) was put in Oxygen plasma for 5 min with 30 watt, in order

to make -OH at the surface. Than 5 percent APTES (500 µL + 9.5 mL ethanol), was

injected to the EG for 1 hour to build −NH2. 1 M of succinic anhydride which was mixed

with Dimethylformamide (DMF) was used for 16 hours in a incubator of temperature 37

degree too build -COOH. In order to enhance the bonding between -COOH and −NH2,

4 M EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) was mixed with 0.1 M NHS

(N-Hydroxysuccinimide) for 15 minutes. Finally GFP antibodies were injected with a

concentration of 200 ng/mL for 1 hour in room temperature. In order to wash out the

non attached antibodies the EG was washed out with phosphate buffer solution. To avoid

that non wanted protein attached to the surface 10 percent bovine serum albumin (BSA)

was injected for 1 hour. All chemicals were purchased from Sigma Aldrich (Germany) with

the exception of GFP antibodies, which were purchased from Life Technology (Germany).

5.2.3 Experiment setup

The FFITP device was mounted on Canon ) inverted microscope as in the former chapters.

Blue LED was used and the picture were taken by a fluorescence filer set. neMesys low

pressure pump was used to inject the sample and buffer to the FFITP device and also to

the DGFET with a flow rate 20µL.DGFET was connected to the Probe station via using

the Semiconductor analyzer (B1500A). 5.2 shows the experimental setup where the top

left side shows the microfluidic chip, the bottom left is the extended gate, and the right

side is the probe station. The FFITP device was directly coupled to the EG sensing part

of the DGFET via a 100 µm wide and 30 cm long fused silica capillary. The threshold

voltage was measure through the probe station and the semiconductor analyser.

5.3 Experimental Procedures

The FFITP process was done as the former chapter. The concentrated GFP through

the FFITP device was collected to the sensing part of the DGFET with a volume of 100
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Figure 5.2: 3 Left top: FFITP with connector. Left bottoms: EG-DG FET where the

antibody and the antigens was injected. Right bottom: Probe station where the DGFET

was mounted

µL. In order to ensure that the GFP was properly injected to the DGFET sensing part

fluorescein was additionally used for optical guidance. The change of the threshold voltage

due to the concentrated GFP was measured after 30 min so that the GFP can react with

the antibody. Additionally a negative curve was measured where the no antibody were

bind at the surface of the DGFET for negative control.

5.4 Result and Discussion

Before coupling FFITP to the GFP we had to test first the ITP process and also the

DGFET with the GFP antigen and antibody. Therefore each of the experiment was first

done individually.
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5.4.1 FFITP

The FFITP process of 10 ng/ml GFP with TRIS buffer with a flow rate of 20 µL/min

was observed so that we can confirm our designed ITP condition. 5.3 shows the FFITP

process. It can be observed when the electric field is applied the GFP is concentrating

(5.3 A) and when no voltage is applied the GFP is dissipating (5.3 B). 5.3 C shows the

zoomed region of the FFITP process where it can be once more observe that the GFP is

concentrating during it flows trough the outlet

5.4.2 DGFET

In order to check whether the antibody ant the GFP is function properly the DGFET was

tested alone. Here the concentration of GFP was increased from 1 fg/ml to 10 µg/ml with

a concentration increase of factor ten. PBS buffer was used for this experiment, and the

GFP was let for 20 min so that they can react with the antibody and the change of the

gate voltage was measured. 5.4 shows the result of the gate voltage and also the the change

of the threshold voltage. Positive control means that the gate voltage was measured with

existence of GFP antibody and vice versa negative is without the antibody. It could be

observed that the threshold voltage in increasing when the GFP concentration increase.

5.4.3 FFITP-DGFET connection

By connecting FFITP and DGFET three major problems were able to occur. First, since

FFITP use an electric field for the ITP process, this electric field could be transferred

to the DGFET and could make some problems. Second, fluorescein was used as optical

guidance so that we can ensure that the sample is injected to the DGFET. Here however

fluorescein could be disturb the DGFET signal since fluorescein itself has also a charge

there the influence of fluorescein was also considered. At last since DGFET was origi-

nally tested under PBS buffer, however FFITP needs a TRIS buffer for the ITP process,

therefore the buffer change from PBS buffer to TRIS buffer was studied.

Influence of the electric field from FFITP to the DGFET

DGFET is measuring the change of the threshold voltage. Also it known that the FET

is possible to break due to an electric field two possible problems were able to think.

First, although the FFITP is connected to the DGFET through a fused silica tube there

exist possibilities that the high electric field of FFITP will damage the DGFET. The

second possible scenario was that the FFITP electric field will shift the threshold voltage.

Therefore an experiment was done to observe this problem. The fluorescein was used as

sample with an initial concentration of 100 µM . The voltage across the FFITP device

was increased from 100 V to 500 V. As shown in ?? no voltage shift and also no damage
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Figure 5.3: The ITP process of GFP. (A) Electric field on (B) Electric fiedl off (C) The

zoomed version when the electric field is applied

of the chip was observed. We believe that the resistance of the fused silica tube is high

enough so that amount of delivered current is neglect able.
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Figure 5.4: The concentration change from DGFET with GFP in PBS buffer

Influence of fluorescein to the DGFET

GFP was used initially as sample since it is possible observer through a fluorescent mi-

croscope. However we have discovered that the detection limit of GFP was 200 nM which

was already to low since, the initial concentration was less than 1 nM. Since the FFITP is

able to concentrate about 100 fold, even after FFITP it was difficult to observe the GFP.

Therefore fluorescein was needed for optical guidance so that we can ensure that the GFP

is entering the DGFET. Here the concern was does the fluorescein has any influence to the

threshold change since fluorescein has also a charge. Therefore fluorescein was injected

through the FFITP to the DGFET, and the threshold voltage change of the DGFET

was observed. As shown in 5.6, also in this case we were not able to see any influence of

fluorescein. Which give us to conclude that fluorescein can be used for optical guidance.

Influence of TRIS buffer to the DGFET

To test the compatibility of the TRIS buffer a simple experiment was done were the

concentration of GFP was increased from 1 fg/ml to 1 ng/ml. Also as fluorescein was used

as optical guidance it was also tested of the concentration influence of the fluorescein. 5.7

right shows the threshold voltage shift according to the concentration of the GFP, where

it could be obtain that the threshold voltage decreases when the concentration of GFP

is increasing. Also no influence was detected from fluorescein. The graph was made by
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Figure 5.5: The V-I curve by increasing the voltage at the FFITP device.

subtracting of the signal which was achieved with antibodies (Positive signal) and without

the antibodies (Negative control)

5.4.4 Coupling of FFITP and DGFET

Since all of the data so far was promising for the final step we connected the FFITP devie

to the DGFET. With a 10 pg/mL initial concentration of GFP and 2 nM of fluorescein.

TRIS buffer was used for this experiment. It was able to observe a threshold voltage

change from -0.04451 V to -0.0134 V. Also no influence was observed from fluorescein.

Based on these encouraging initial results, we are confident that the online coupling of

FFITP-DGFET is possible.

5.5 Conclusion

The connection of FFITP and DGFET is beneficial for both device. DGFET is solving

the limitation of the optical detection from the FFITP side. While the FFITP will be

enable to purify the sample and also simultaneously concentrated the desired sample so

that the detection limit of the DGFET will increase. The compatibility of the buffer and
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Figure 5.6: The V-I curve with injection of fluorescein to the DGFET via FFITP.

Figure 5.7: Left: TRIS buffer which was injected to the EG via pipette. Right: the

threshold votage change when the GFP concentration was increased from 1 fg/ml to 1

ng/ml

the influence of the electric field to FFITP to the DGFET were tested where the threshold
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voltage has changed from -0.04451 V to -0.0134 V before FFITP (GFP: 10 pg/mL, flu-

orescein 2nM) and after FFITP. Also no influence was observed from fluorescein. Based

on these encouraging initial results, we are confident that the online coupling of FFITP-

DGFET will solve problems either where the concentration of the target analytes is very

low compared to contaminants. However due to the low threshold shift which had an

average shift less than 50 mV, where in normal case a signal change of 1V is achieved.

We were not confident enough to trust our standard curve and therefore we were not able

to conclude the concentration effort of the FFITP. Therefore further studies a required

to optimize the condition in DGFET and FFITP.
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Chapter 6

Conclusion

A free-flow Isothachophoresis chip was directly connected to an Electrospray-Ionisation-

Mass-Spectrometry (ESI-MS) and a Dual-Gate-Field-Effect-Transistor (DGFET). Isotha-

chophoresis is a separation based on two buffers (leading and terminating) with ions of

different mobility presence of electric field. This method makes enable focusing of the sam-

ple while allowing separation. Free-flow electrophoresis (FFE) separation methods have

been developed and investigated for continuous sample preparation and mild separation

conditions make it also interesting for online monitoring and detection applications. Here

we have combined both methods into continuous free-flow isothachophoresis using micro

fabricated glass. The microfluidic device was designed and its pattern was transferred by

conventional photolithography and etched by HF/HCl mixture. The device consists of

five inlets (I), a separation (main) chamber with the size of 23∗15mm, two side chambers

for connecting the electrodes and five outlets (O). The three middle inlets are split with a

binary tree structure for equal distribution of samples and buffers. Two outer two inlets

used to guide flow direction into the main chamber. The side chambers are separated from

the main chamber by 25 micro meter wide channels to prevent gas bubbles entering the

main chamber. The outlets are designed in similar fashion as the inlets. The relationship

with the ITP process and the flow rate as well as the relation chip with the electric field

strength and the ITP process was studied. Where it could be observed that the concen-

tration of the ITP process is increasing when the flow rate was lower and the electric was

higher, however bubble generation was able to observe when the applied electric field was

higher than 1000 V. With this result we were able to conclude the optimal condition for

the FFITP chip was when the flow rate was2 µL/min and the voltage was 500 V. In order

to scan the concentrated the target sample, hydrodynamic control was used in such way

that the focus stream was moving to a desired output. Here three method was compared

which was applying positive pressure at outlet, applying positive pressure at inlet, and

applying negative pressure at the inlet. After comparing the settling time and the shift

precision of the three methods we could conclude that applying positive pressure was giv-
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ing the best result with a settling time of 45 second and control precision of 30 µm. The

online connection with the FFITP-ESI-MS was realized with fused silica tubing. Citric

acid, Glycolic acid was used as a target sample and Fluorescein was used as contaminant.

Also Alexa flour 488 was used as optical guidance to ensure the position of Citric acid and

Glycolic acid. A concentration factor of 3.2 was able to observe and also a fluidic scanning

was done which was detected by the ESI-MS. Also a fluidic scanning was demonstrated

where it could be Citric acid and Glycolic acid was concentrated which had no interfer-

ence in the time domain and Fluorescein not able to observed in the entire ESI-MS data

output. With this result we could conclude that the online coupling of FFITP to ESI-MS

decouples the separation and detection timeframe because the electrophoretic separation

takes place perpendicular to the flow direction, which can be beneficial for monitoring

(bio)chemical changes and/or extensive MSn studies. Also a feasibility test was done of

the FFITP-DGFET. Green fluorescent protein (GFP) was used as target sample where

fluorescein was used as an optical guidance. Although we were not able to conclude the

exact concentration factor due to several problems, we were able to conclude that the

online connection of FFITP to DGFET increases the signal output which was a positive

sign that the coupling would lower the detection limit of the sensor. With the encouraging

result of the online coupling FFITP-MS and FFITP-DGFET we were able to conclude

that the FFITP chip can be used as an interface for sample concentration and purification.

This leads to encourage us to do further study with application where the sample should

be extracted from a solution where the contaminant has a high concentration and the

target sample has a low concentration which should be collect or observed for a relative

long time domain.
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Chapter 7

Appendix

7.1 fabrication protocol

This is the detail process document for the chip fabrication

7.1.1 Glass chip



Step Process Comment 

1 Bottom wafer  

2 

Substrate 

Borofloat BF33- 

500 μm 

(#subs114) 

NL-CLR-Cupboard cleanroom 

Supplier: Schott Glas: 

www.schott.com/borofloat 

• Type: Borofloat 33 

• C.T.E.: 3.25 X 10-6 K-1 

• Tglass: 525°C 

• T anneal: 560°C 

• Tsoftening: 820 °C 

 

• Diameter: 100.0 mm ± 0.3 mm 

• Thickness: 0.5 mm ± 0.025 mm 

• Roughness: < 1.0 nm 

• TTV: < 5 μm 

• Surface: DSP 

• Edge: C-edge 

• Flat: 32.5 mm (Semi) 

• Sec. Flat: 18 mm (acc to SEMI) 

• Price 40 euro 

 

• Etch rate HF 25%: 1μm/min 

• Etch rate BHF (1:7): 20-25 nm/min 

• Etchrate HF 1%: 8.6 nm/min 
 

Number of wafers = 2 

3 Clean HNO3 

1&2 

(#clean105) 

NL-CLR-WB16 

• Beaker 1: HNO3 (99%) 5min 

• Beaker 2: HNO3 (99%) 5min 
 

 

4 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

5 Substrate 

rinsing/drying  

Semitool 

(#clean121) 

NL-CLR-Wet Benches 

Semitool spin rinser dryer 

Apply always a single rinsing step (QDR) 

before using the Semitool 

Use dedicated wafer carrier of rinser dryer 

Parameters/step  

• rinse in DI: 30 sec: 600 rpm 

• Qrinse in DI: 10.0 MΩ; 600 rpm 

• N2 purge: 10sec; 600 rpm 

• drying 1: 280 sec; 1600 rpm 

• drying 2: 0000 - 0000 

Unload wafer 

 

 

6 Sputtering of Cr  

(#film117) NL-CLR-Sputterke Eq.Nr. 37 

10 nm 



Cr Target (gun #: see mis logbook) 

• Use Ar flow to adjust process pressure. 

• Base pressure: < 1.0 e-6mbar 

• Sputter pressure: 6.6 e-3mbar 

• power: 200W 

• Depositionrate = 15 nm/min 

 

7 Sputtering of 

Au  

(#film136) 

 

NL-CLR-Eq.Nr. 37 / Sputterke 

Au Target (gun #: see mis logbook) 

• use Ar flow to adjust pressure  

• Base pressure: < 1.0 e-6mbar 

• Sputter pressure: 6.6 e-3mbar 

• power: 200W 

• Depositionrate = 45-50 nm/min. 

• MAX THICKNESS: 250 NM 

 
 

150 nm 

8 Dehydration 

bake 
(#lith102) 

NL-CLR-WB21/22 

dehydration bake at hotplate 

• temp. 120°C 

• time: 5min 
 

Continue immediately with 

priming the step! 

9 Priming (liquid) 

(#lith101) NL-CLR-WB21/22 

Primer: HexaMethylDiSilazane (HMDS) 

use spincoater: 

• program: 4000 (4000rpm, 30sec) 

 

 

10 Coating Olin Oir 

907-17  

(#lith105) 
NL-CLR-WB21 

Coating: Primus spinner 

• olin oir 907-17 

• spin Program: 4000 (4000rpm, 30sec) 

Prebake: hotplate  

• time 90 sec 

• temp 95 °C 

 

1.7 um 

11 Alignment & 

Exposure Olin 

OiR 907-17 

(#lith121) 

NL-CLR- EV620 

Electronic Vision Group EV620 Mask 

Aligner 

• Hg-lamp: 12 mW/cm 2 

• Exposure Time: 4sec 
 

mask channels 

12 Development 

Olin OiR resist 

(#lith111) 
NL-CLR-WB21 

After exposurebBake : hotplate 

• time 60sec 

• temp 120°C  

development: developer: OPD4262 

• time: 30sec in beaker 1 

• time: 15-30sec in beaker 2 
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Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

14 Substrate drying  

(#clean120) NL-CLR-WB 

Single wafer dryer 

• speed: 2500 rpm, 60 sec with 30 sec N2 

flow 

 

 

15 Postbake Olin 

OiR resist 
(#lith109) 

NL-CLR-WB21 

postbake: Hotplate  

• temp 120°C 

• time 10min 
 

t=30min 

16 Inspection by 

optical 

microscope  

(#metro101) 

NL-CLR- Nikon Microscope 

• dedicated microscope for lithography 

inspection 

 

 

17 Cleaning by 

UV/Ozone  

(#clean109) 
NL-CLR-UV PRS 100 reactor 

-To improve wetting for wet chemical 

etching of 

chromium and oxide layers coated with olin 

oir resist. 

-To remove resist residues 

Time: variable 

 

 

18 Etching of gold  
(#etch136) 

NL-CLR-WB10 

Use dedecated beaker with gold etch 

• recipe: KI:I2:DI = (4:1:40) 

• add 40g KI and 10g I2 to 400ml DI water 

• temp.: 20°C 

Etchrates = xx nm/min (check rate with 

dummy wafer!) 

Excessive underetching of Cr occurs because 

of a galvanic reaction with gold.  

To minimize this make sure you do not 

overetch the chromium. 
 

 

19 

Quick Dump 

Rinse (QDR) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

 



(#clean119) 1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

20 Etching of 

chromium 

(#etch134) 

NL-CLR-WB10 

Use dedicated beaker with chromium etch 

(standard) 

• temp.:20°C 

Etchrates = 60nm/min, 

Check always the etchrate with dummy 

wafer! 
 

 

21 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

22 Etching of gold  

(#etch136) 
NL-CLR-WB10 

Use dedecated beaker with gold etch 

• recipe: KI:I2:DI = (4:1:40) 

• add 40g KI and 10g I2 to 400ml DI water 

• temp.: 20°C 

Etchrates = xx nm/min (check rate with 

dummy wafer!) 

Excessive underetching of Cr occurs because 

of a galvanic reaction with gold.  

To minimize this make sure you do not 

overetch the chromium. 
 

 

23 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

24 Etching of 

chromium 
(#etch134) 

NL-CLR-WB10 

Use dedicated beaker with chromium etch 

(standard) 

• temp.:20°C 

Etchrates = 60nm/min, 

Check always the etchrate with dummy 

wafer! 
 

in order to make sure all Cr is 

gone, 



25 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

26 Substrate 

rinsing/drying  

Semitool 

(#clean121) 

NL-CLR-Wet Benches 

Semitool spin rinser dryer 

Apply always a single rinsing step (QDR) 

before using the Semitool 

Use dedicated wafer carrier of rinser dryer 

Parameters/step  

• rinse in DI: 30 sec: 600 rpm 

• Qrinse in DI: 10.0 MΩ; 600 rpm 

• N2 purge: 10sec; 600 rpm 

• drying 1: 280 sec; 1600 rpm 

• drying 2: 0000 - 0000 

Unload wafers 

 

 

27 Surface profile 

measurement 
(#metro105) 

NL-CLR-Veeco Dektak 8 

 

measure thickness stack, to 

allow measurement of channel 

depth afterward 

 

28 Cleaning by 

UV/Ozone  

(#clean109) 
NL-CLR-UV PRS 100 reactor 

-To improve wetting for wet chemical 

etching of 

chromium and oxide layers coated with olin 

or resist. 

-To remove resist residues 

Time: variable 

 

 

29 Etching in 

HF/HCl 

25%/2.5%  

(#etch131UPDAT

E) 

NL-CLR-WB09 or 10 

Use private beaker for etching: HF (25%)  

Add one part HF (50%) to one part DI to 

dilute etch solution. Add one part HCl to 

10 parts HF 
• temp.: 20°C 

Etchrates (function of load): 

First etch step to about 4.8 um, 

than slow etch towards 5.0 um 

using BHF 



• borofloat BF33: 1 μm/min in 25% HF 

BHF (1:7 dilution) for last step. Etchrate 23 

nm/min. 

 

30 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

31 Substrate 

rinsing/drying  

Semitool 

(#clean121) 

NL-CLR-Wet Benches 

Semitool spin rinser dryer 

Apply always a single rinsing step (QDR) 

before using the Semitool 

Use dedicated wafer carrier of rinser dryer 

Parameters/step  

• rinse in DI: 30 sec: 600 rpm 

• Qrinse in DI: 10.0 MΩ; 600 rpm 

• N2 purge: 10sec; 600 rpm 

• drying 1: 280 sec; 1600 rpm 

• drying 2: 0000 - 0000 

Unload wafers 

 

 

32 Surface profile 

measurement 

(#metro105) 

NL-CLR-Veeco Dektak 8 

 

measure etch depth 

 

33 Repeat from 28, and continue etching untill depth=5um. 

Be aware subtract the PR/Cr/Au film from the 

profilometer data (PR thickness + 160 nm). Use BHF 

Er=23 nm/min for last etch steps to slow down. 

Precision required 5.0+-0.2 

um. 

34 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

 



Rinse till the DI resistivity is > 10 ΩM 

 

35 Substrate 

rinsing/drying  

Semitool 

(#clean121) 

NL-CLR-Wet Benches 

Semitool spin rinser dryer 

Apply always a single rinsing step (QDR) 

before using the Semitool 

Use dedicated wafer carrier of rinser dryer 

Parameters/step  

• rinse in DI: 30 sec: 600 rpm 

• Qrinse in DI: 10.0 MΩ; 600 rpm 

• N2 purge: 10sec; 600 rpm 

• drying 1: 280 sec; 1600 rpm 

• drying 2: 0000 - 0000 

Unload wafers 

 

 

36 Clean HNO3 

1&2 

(#clean105) 

NL-CLR-WB16 

• Beaker 1: HNO3 (99%) 5min 

• Beaker 2: HNO3 (99%) 5min 
 

Stripping resist 

37   

38   

39 Lamination of 

BF 410 foil  

(#lith145) 

NL-CLR-GBC 3500 PRO Laminator 

Ordyl BF 410 dry resist foil 

 

Laminate BF 410 foil on one side 

• Protect hotplate with Aluminium foil 

• Put wafer on hotplate, 100 °C, 180 sec 

• Remove thick PET layer from BF 410 foil 

• Aply BF 410 foil with roller 

• Protect carry-paper with plain A4 paper 

• Close carrier and laminate 

• Temp: 130 °C (´carry ´preset) 

• Speed: 2 (´carry ´preset) 

• Remove and cool down wafer 

• Cut the wafer out of foil 

 

 

40 Alignment and 

exposure BF410 

(#lith135) 
NL-CLR-EVG 20 

Electronic Vision Group 20 Mask Aligner 

• Hg-lamp: 12 W.cm2 

• Exposure time: 20 sec (BF 410) 

Remark: DSP alignment with foil on both 

sides 

• Remove the foil with a "knife" to achieve a 

clear view of the aligning marks 

• After development protect the aligning 

mask with tape again! 

 

Using holes mask 

41 

UV dicing foil 

(Adwill D-210) 

Nl-CLR- Dicing foil 

Information: 

Thickness: 125um 

On other side as BF410 



(#back104) Material: 100um PET + 25um Acrylic 

(adhesive) 

Adhesion before UV: 2000 mN/25mm 

Adhesion after UV : 15 mN/25mm 

UV irradiation : Luminance > 120mW/cm2 

and Quality > 70mJ/cm2 (wave length: 

365nm) 

 

 

42 Development 

BF410 foil 

(#lith136) 

Carre-TST-HCM Spray Developer 

Na2CO3: MERCK 1.06392.0500 

Na2CO3:H2O = 15g : 7.5liters (+ 1 cup 

Antifoam) 

• Temp: 32°C 

• Time: 3min 

• Rinsing 

• Spin drying 

Due to non-uniform development turn 

sample by 180° after half the time 

- small features might need longer 

development time 
 

 

43 Powderblasting 

of glass 

(#etch120) 

NL-Carre-BIOS Powderblaster 

For feature size >100µm 

• Particles: 30µm Al2O3 

• Pressure: 4.6bar 

• Massflow: 3-12 g/min 

• Etchrate appr. 91µm per g/cm2 
 

Powderblast into, maybe 

through the dicing foil 

44   
 

 

45 Removal of foil 

and particles 

after 

powderblasting 

(#clean139) 

Outside cleanroom - use own facility 

Start with removal of foil  

• remove dicing foil manually 

• remove powderblast foil manually 

• rinse wafer with water (by spraying) to 

remove powderblast particles 

• strip foil in Na2CO31 solution, time >30 

min 

• rinse wafer with water time > few minutes 

• ultrasonic cleaning in water, time >10 min 

• ultrasonic cleaning in fresh water, time >10 

min 

• drying of substrate by spinning or N2 gun 

 

Note 1: For silicon substrates the stripping 

procedure in Na2CO3 solution is critical. 

 



The Na2CO3 solution may create a rough 

surface. 

#If wafer bonding is needed the silicon 

surface should be protected by an oxide film. 

 

46 

Removal of 

particles 

(#clean110) 

NL-CLR-Wet Bench11  

Removal of particles generated by 

powderblasting and /or metal lift-off. 

Use ultrasonic bath 1  

Use dedicated metal beakers and carriers 

• beaker 1: Aceton technical, > 10 min , 

ultrasonic  

• beaker 2: Isopropanol technical > 10min, 

ultrasonic 

• beaker 3: DI water > 10min, ultrasonic 

 

 

47 

Quick Dump 

Rinse (QDR) 

(#clean119) 

NL-CLR-Wet benches 

Recipe 1 QDR: 2 cycles of steps 1 till 3,  

1- fill bath 5 sec 

2- spray dump 15 sec 

3- spray-fill 90 sec 

4- end fill 200 sec 

Recipe 2 cascade rinsing: continuous flow 

Rinse till the DI resistivity is > 10 ΩM 

 

 

48 Substrate drying  

(#clean120) NL-CLR-WB 

Single wafer dryer 

• speed: 2500 rpm, 60 sec with 30 sec N2 

flow 

 

 

49 Surface profile 

measurement 
(#metro105) 

NL-CLR-Veeco Dektak 8 

 

Here the exact channel depth is 

determined 

50   

51 Etching of gold  

(#etch136) 
NL-CLR-WB10 

Use dedecated beaker with gold etch 

• recipe: KI:I2:DI = (4:1:40) 

• add 40g KI and 10g I2 to 400ml DI water 

• temp.: 20°C 

Etchrates = xx nm/min (check rate with 

dummy wafer!) 

Excessive underetching of Cr occurs because 

of a galvanic reaction with gold.  

To minimize this make sure you do not 

overetch the chromium. 
 

 

52 Etching of 

chromium 

(#etch134) 

NL-CLR-WB10 

Use dedicated beaker with chromium etch 

(standard) 

 



• temp.:20°C 

Etchrates = 60nm/min, 

Check always the etchrate with dummy 

wafer! 
 

53 Etching of gold  

(#etch136) 
NL-CLR-WB10 

Use dedecated beaker with gold etch 

• recipe: KI:I2:DI = (4:1:40) 

• add 40g KI and 10g I2 to 400ml DI water 

• temp.: 20°C 

Etchrates = xx nm/min (check rate with 

dummy wafer!) 

Excessive underetching of Cr occurs because 

of a galvanic reaction with gold.  

To minimize this make sure you do not 

overetch the chromium. 
 

 

54 Etching of 

chromium 

(#etch134) 

NL-CLR-WB10 

Use dedicated beaker with chromium etch 

(standard) 

• temp.:20°C 

Etchrates = 60nm/min, 

Check always the etchrate with dummy 

wafer! 
 

 

55 Clean HNO3 

1&2 

(#clean105) 

NL-CLR-WB16 

• Beaker 1: HNO3 (99%) 5min 

• Beaker 2: HNO3 (99%) 5min 
 

Both new top wafer and 

bottom wafer 

56 Etching in KOH 

standard 
(#etch138) 

NL-CLR-WB17 

use dedicated beaker 1 or 2 

• 25wt% KOH (standard recipe) 

• temp.: 75°C 

• use stirrer 

Etchrates: 

Si <100> = 1µm/min 

Si <111> = 12.5nm/min 

SiO2 (thermal) = 180nm/hr 

SiRN < 0.6nm/hr (LPCVD ??) 
 

To obtain good prebond 

57 Clean HNO3 

1&2 
(#clean105) 

NL-CLR-WB16 

• Beaker 1: HNO3 (99%) 5min 

• Beaker 2: HNO3 (99%) 5min 
 

 

57 Clean Piranha To obtain good prebond 

58 EV620 Aligning 

& Prebonding 

(#bond104) 
NL-CLR-EV620 mask aligner 

Program: xxxxx 

• SDB Direct Bond tool 4" 

• Bond chuck SDB 

• Substrate1 4" 

• Substrate2 4" 

• Separation 30 μm 

• No exposure 

• SDB Piston 

• Bond time 60 sec 

Instructions: 

• Align alignmarks of of top wafer to 

crosshairs 

 



• Check prebonding by using IR-setup 

 

59 -position waferstack in press -Temp:650 Fahrenheit -

Apply force: 'Max.pressure Dorothee' *clean chuck 

with acetone *position wafers (centre) *turn on heating 

*apply pressure T>550 F *Max.pressure: if valve is 

closed tightly, max 

 

60 At Mic-Mec Lab. temp:600-650 C, t=60min. Place 

stack on Si-wafer carrier 

 

61  

 

62  Dicing bonded wafers 

63 Dicing of a 

Silicon wafer 
(#back101) 

Nl-CLR- Disco DAD dicing saw 
Applications: 
Silicon wafers, bonded silicon-silicon wafers 

(max 1.1mm) 
See #back103 for laminate of Nitto STW 

T10 dicing foil (80 μm) 
See #back104 for laminate of UV dicing foil 

(250μm) 
 

Parameters dicing: 
Wafer work size: 110 mm for a standard 100 

mm silicon wafer 
Max. Feed speed: 10 mm/sec 
X, Y values: correspond respectively to Ch1 

and Ch2 and those values are determined by 

mask layout 
Saw type NBC-Z 2050 
Select in blade menu: NBC-Z-2050 
 

Blade info: 
Exposure 
1.3 mm (maximum dicing depth for a new 

blade) 
Width:  50 um 
Spindle revolutions: 30. 000 rpm 

Depth settings: 
 Maximum cut depth: 1.1 mm 

Foil thickness:   See foil 

info 

Min. blade heigth: 50 μm 
 

dicing from single side, 

completely though the wafer 
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7.1.2 SU8 chip



Step  Process  Comment

1  5 um channel wafer   

2 
Substrate 
Borofloat BF33- 
500 μm 
(#subs114) 

NL-CLR-Cupboard cleanroom 
Supplier: Schott Glas: 
www.schott.com/borofloat 
• Type: Borofloat 33 
• C.T.E.: 3.25 X 10-6 K-1 

• Tglass: 525°C 
• T anneal: 560°C 
• Tsoftening: 820 °C 
 
• Diameter: 100.0 mm ± 0.3 mm 
• Thickness: 0.5 mm ± 0.025 mm 
• Roughness: < 1.0 nm 
• TTV: < 5 μm 
• Surface: DSP 
• Edge: C-edge 
• Flat: 32.5 mm (Semi) 
• Sec. Flat: 18 mm (acc to SEMI) 
• Price 40 euro 
 
• Etch rate HF 25%: 1μm/min 
• Etch rate BHF (1:7): 20-25 nm/min 
• Etchrate HF 1%: 8.6 nm/min

 

Number of wafers = 2 

3  Clean HNO3 
1&2 
(#clean105) 

NL-CLR-WB16 
• Beaker 1: HNO3 (99%) 5min 
• Beaker 2: HNO3 (99%) 5min

 

 

4 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

5  Substrate 
rinsing/drying  
Semitool 
(#clean121) 

NL-CLR-Wet Benches 
Semitool spin rinser dryer 
Apply always a single rinsing step (QDR) 
before using the Semitool 
Use dedicated wafer carrier of rinser dryer 
Parameters/step  
• rinse in DI: 30 sec: 600 rpm 
• Qrinse in DI: 10.0 MΩ; 600 rpm 
• N2 purge: 10sec; 600 rpm 
• drying 1: 280 sec; 1600 rpm 
• drying 2: 0000 - 0000 
Unload wafer 

 

 

6  Sputtering of Cr  
(#film117)  NL-CLR-Sputterke Eq.Nr. 37 

10 nm



Cr Target (gun #: see mis logbook) 
• Use Ar flow to adjust process pressure. 
• Base pressure: < 1.0 e-6mbar 
• Sputter pressure: 6.6 e-3mbar 
• power: 200W 
• Depositionrate = 15 nm/min 

 

7  Sputtering of 
Au  
(#film136) 
 

NL-CLR-Eq.Nr. 37 / Sputterke 
Au Target (gun #: see mis logbook) 
• use Ar flow to adjust pressure  
• Base pressure: < 1.0 e-6mbar 
• Sputter pressure: 6.6 e-3mbar 
• power: 200W 
• Depositionrate = 45-50 nm/min. 
• MAX THICKNESS: 250 NM 

 
 

150 nm

8  Dehydration 
bake 
(#lith102) 

NL-CLR-WB21/22 
dehydration bake at hotplate 
• temp. 120°C 
• time: 5min 

 

Continue immediately with priming 
the step! 

9  Priming (liquid) 
(#lith101)  NL-CLR-WB21/22 

Primer: HexaMethylDiSilazane (HMDS) 
use spincoater: 
• program: 4000 (4000rpm, 30sec) 

 

 

10  Coating Olin Oir 
907-17  
(#lith105) 

NL-CLR-WB21 
Coating: Primus spinner 
• olin oir 907-17 
• spin Program: 4000 (4000rpm, 30sec) 
Prebake: hotplate  
• time 90 sec 
• temp 95 °C 

 

1.7 um

11  Alignment & 
Exposure Olin 
OiR 907-17 
(#lith121) 

NL-CLR- EV620 
Electronic Vision Group EV620 Mask 
Aligner 
• Hg-lamp: 12 mW/cm 2 

• Exposure Time: 4sec
 

mask channels 
(layet number 10) 

12  Development 
Olin OiR resist 
(#lith111) 

NL-CLR-WB21 
After exposurebBake : hotplate 
• time 60sec 
• temp 120°C  
development: developer: OPD4262 
• time: 30sec in beaker 1 
• time: 15-30sec in beaker 2 

 

 



13 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

14  Substrate drying 
(#clean120)  NL-CLR-WB 

Single wafer dryer 
• speed: 2500 rpm, 60 sec with 30 sec N2 

flow 

 

 

15  Postbake Olin 
OiR resist 
(#lith109) 

NL-CLR-WB21 
postbake: Hotplate  
• temp 120°C 
• time 10min 

 

t=30min

16  Inspection by 
optical 
microscope  
(#metro101) 

NL-CLR- Nikon Microscope 
• dedicated microscope for lithography 
inspection 

 

17  Cleaning by 
UV/Ozone  
(#clean109) 

NL-CLR-UV PRS 100 reactor 
-To improve wetting for wet chemical 
etching of 
chromium and oxide layers coated with olin 
oir resist. 
-To remove resist residues 
Time: variable 

 

 

18  Etching of gold  
(#etch136) 

NL-CLR-WB10 
Use dedecated beaker with gold etch 
• recipe: KI:I2:DI = (4:1:40) 
• add 40g KI and 10g I2 to 400ml DI water 
• temp.: 20°C 
Etchrates = xx nm/min (check rate with 
dummy wafer!) 
Excessive underetching of Cr occurs because 
of a galvanic reaction with gold.  
To minimize this make sure you do not 
overetch the chromium.

 

 

19 
Quick Dump 
Rinse (QDR) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  

 



(#clean119)  1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

20  Etching of 
chromium 
(#etch134) 

NL-CLR-WB10 
Use dedicated beaker with chromium etch 
(standard) 
• temp.:20°C 
Etchrates = 60nm/min, 
Check always the etchrate with dummy 
wafer! 

 

 

21 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

22  Etching of gold  
(#etch136) 

NL-CLR-WB10 
Use dedecated beaker with gold etch 
• recipe: KI:I2:DI = (4:1:40) 
• add 40g KI and 10g I2 to 400ml DI water 
• temp.: 20°C 
Etchrates = xx nm/min (check rate with 
dummy wafer!) 
Excessive underetching of Cr occurs because 
of a galvanic reaction with gold.  
To minimize this make sure you do not 
overetch the chromium.

 

 

23 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

24  Etching of 
chromium 
(#etch134) 

NL-CLR-WB10 
Use dedicated beaker with chromium etch 
(standard) 
• temp.:20°C 
Etchrates = 60nm/min, 
Check always the etchrate with dummy 
wafer! 

 

in order to make sure all Cr is gone,



25 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

26  Substrate 
rinsing/drying  
Semitool 
(#clean121) 

NL-CLR-Wet Benches 
Semitool spin rinser dryer 
Apply always a single rinsing step (QDR) 
before using the Semitool 
Use dedicated wafer carrier of rinser dryer 
Parameters/step  
• rinse in DI: 30 sec: 600 rpm 
• Qrinse in DI: 10.0 MΩ; 600 rpm 
• N2 purge: 10sec; 600 rpm 
• drying 1: 280 sec; 1600 rpm 
• drying 2: 0000 - 0000 
Unload wafers 

 

 

27  Surface profile 
measurement 
(#metro105) 

NL-CLR-Veeco Dektak 8

 

measure thickness stack, to allow 
measurement of channel depth 
afterward 

28  Cleaning by 
UV/Ozone  
(#clean109) 

NL-CLR-UV PRS 100 reactor 
-To improve wetting for wet chemical 
etching of 
chromium and oxide layers coated with olin 
or resist. 
-To remove resist residues 
Time: variable 

 

 

29  Etching in 
HF/HCl 
25%/2.5%  
(#etch131UPDAT
E) 

NL-CLR-WB09 or 10 
Use private beaker for etching: HF (25%)  
Add one part HF (50%) to one part DI to 
dilute etch solution. Add one part HCl to 
10 parts HF 
• temp.: 20°C 
Etchrates (function of load): 

First etch step to about 4.8 um, than 
slow etch towards 5.0 um using BHF



• borofloat BF33: 1 μm/min in 25% HF

BHF (1:7 dilution) for last step. Etchrate 23 
nm/min. 

 

30 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

31  Substrate 
rinsing/drying  
Semitool 
(#clean121) 

NL-CLR-Wet Benches 
Semitool spin rinser dryer 
Apply always a single rinsing step (QDR) 
before using the Semitool 
Use dedicated wafer carrier of rinser dryer 
Parameters/step  
• rinse in DI: 30 sec: 600 rpm 
• Qrinse in DI: 10.0 MΩ; 600 rpm 
• N2 purge: 10sec; 600 rpm 
• drying 1: 280 sec; 1600 rpm 
• drying 2: 0000 - 0000 
Unload wafers 

 

 

32  Surface profile 
measurement 
(#metro105) 

NL-CLR-Veeco Dektak 8

 

measure etch depth 

33  Repeat from 28, and continue etching untill 
depth=5um. Be aware subtract the PR/Cr/Au film from 
the profilometer data (PR thickness + 160 nm). Use 
BHF Er=23 nm/min for last etch steps to slow down.

Precision required 5.0+-0.2 um.

34 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 

 



Rinse till the DI resistivity is > 10 ΩM

 

35  Substrate 
rinsing/drying  
Semitool 
(#clean121) 

NL-CLR-Wet Benches 
Semitool spin rinser dryer 
Apply always a single rinsing step (QDR) 
before using the Semitool 
Use dedicated wafer carrier of rinser dryer 
Parameters/step  
• rinse in DI: 30 sec: 600 rpm 
• Qrinse in DI: 10.0 MΩ; 600 rpm 
• N2 purge: 10sec; 600 rpm 
• drying 1: 280 sec; 1600 rpm 
• drying 2: 0000 - 0000 
Unload wafers 

 

 

36  Clean HNO3 
1&2 
(#clean105) 

NL-CLR-WB16 
• Beaker 1: HNO3 (99%) 5min 
• Beaker 2: HNO3 (99%) 5min

 

Stripping resist 

37    

38    

39  Lamination of 
BF 410 foil  
(#lith145) 

NL-CLR-GBC 3500 PRO Laminator 
Ordyl BF 410 dry resist foil 
 
Laminate BF 410 foil on one side 
• Protect hotplate with Aluminium foil 
• Put wafer on hotplate, 100 °C, 180 sec 
• Remove thick PET layer from BF 410 foil 
• Aply BF 410 foil with roller 
• Protect carry-paper with plain A4 paper 
• Close carrier and laminate 
• Temp: 130 °C (´carry ´preset) 
• Speed: 2 (´carry ´preset) 
• Remove and cool down wafer 
• Cut the wafer out of foil 

 

 

40  Alignment and 
exposure BF410 
(#lith135) 

NL-CLR-EVG 20 
Electronic Vision Group 20 Mask Aligner 
• Hg-lamp: 12 W.cm2 
• Exposure time: 20 sec (BF 410) 
Remark: DSP alignment with foil on both 
sides 
• Remove the foil with a "knife" to achieve a 
clear view of the aligning marks 
• After development protect the aligning 
mask with tape again! 

 

Using holes mask 
(Layer number 30) 

41 
UV dicing foil 
(Adwill D-210) 

Nl-CLR- Dicing foil 
Information: 
Thickness: 125um 

On other side as BF410 



(#back104)  Material: 100um PET + 25um Acrylic 
(adhesive) 
Adhesion before UV: 2000 mN/25mm 
Adhesion after UV : 15 mN/25mm 
UV irradiation : Luminance > 120mW/cm2 

and Quality > 70mJ/cm2 (wave length: 
365nm) 

 

 

42  Development 
BF410 foil 
(#lith136) 

Carre-TST-HCM Spray Developer 
Na2CO3: MERCK 1.06392.0500 
Na2CO3:H2O = 15g : 7.5liters (+ 1 cup 
Antifoam) 
• Temp: 32°C 
• Time: 3min 
• Rinsing 
• Spin drying 
Due to non-uniform development turn 
sample by 180° after half the time 
- small features might need longer 
development time

 

43  Powderblasting 
of glass 
(#etch120) 

NL-Carre-BIOS Powderblaster 
For feature size >100µm 
• Particles: 30µm Al2O3 
• Pressure: 4.6bar 
• Massflow: 3-12 g/min 
• Etchrate appr. 91µm per g/cm2

 

Powderblast into, maybe through the 
dicing foil 

44    
 

45  Removal of foil 
and particles 
after 
powderblasting 
(#clean139) 

Outside cleanroom - use own facility 
Start with removal of foil  
• remove dicing foil manually 
• remove powderblast foil manually 
• rinse wafer with water (by spraying) to 
remove powderblast particles 
• strip foil in Na2CO31 solution, time >30 
min 
• rinse wafer with water time > few minutes 
• ultrasonic cleaning in water, time >10 min 
• ultrasonic cleaning in fresh water, time >10 
min 
• drying of substrate by spinning or N2 gun 
 
Note 1: For silicon substrates the stripping 
procedure in Na2CO3 solution is critical. 

 



The Na2CO3 solution may create a rough 
surface. 
#If wafer bonding is needed the silicon 
surface should be protected by an oxide film.

 

46 
Removal of 
particles 
(#clean110) 

NL-CLR-Wet Bench11  
Removal of particles generated by 
powderblasting and /or metal lift-off. 
Use ultrasonic bath 1  
Use dedicated metal beakers and carriers 
• beaker 1: Aceton technical, > 10 min , 
ultrasonic  
• beaker 2: Isopropanol technical > 10min, 
ultrasonic 
• beaker 3: DI water > 10min, ultrasonic 

 

 

47 
Quick Dump 
Rinse (QDR) 
(#clean119) 

NL-CLR-Wet benches 
Recipe 1 QDR: 2 cycles of steps 1 till 3,  
1- fill bath 5 sec 
2- spray dump 15 sec 
3- spray-fill 90 sec 
4- end fill 200 sec 
Recipe 2 cascade rinsing: continuous flow 
Rinse till the DI resistivity is > 10 ΩM 

 

 

48  Substrate drying 
(#clean120)  NL-CLR-WB 

Single wafer dryer 
• speed: 2500 rpm, 60 sec with 30 sec N2 

flow 

 

 

49  Surface profile 
measurement 
(#metro105) 

NL-CLR-Veeco Dektak 8

 

Here the exact channel depth is 
determined 

50    

51  Etching of gold  
(#etch136) 

NL-CLR-WB10 
Use dedecated beaker with gold etch 
• recipe: KI:I2:DI = (4:1:40) 
• add 40g KI and 10g I2 to 400ml DI water 
• temp.: 20°C 
Etchrates = xx nm/min (check rate with 
dummy wafer!) 
Excessive underetching of Cr occurs because 
of a galvanic reaction with gold.  
To minimize this make sure you do not 
overetch the chromium.

 

 

52  Etching of 
chromium 
(#etch134) 

NL-CLR-WB10 
Use dedicated beaker with chromium etch 
(standard) 

 



• temp.:20°C 
Etchrates = 60nm/min, 
Check always the etchrate with dummy 
wafer! 

 

53  Etching of gold  
(#etch136) 

NL-CLR-WB10 
Use dedecated beaker with gold etch 
• recipe: KI:I2:DI = (4:1:40) 
• add 40g KI and 10g I2 to 400ml DI water 
• temp.: 20°C 
Etchrates = xx nm/min (check rate with 
dummy wafer!) 
Excessive underetching of Cr occurs because 
of a galvanic reaction with gold.  
To minimize this make sure you do not 
overetch the chromium.

 

 

54  Etching of 
chromium 
(#etch134) 

NL-CLR-WB10 
Use dedicated beaker with chromium etch 
(standard) 
• temp.:20°C 
Etchrates = 60nm/min, 
Check always the etchrate with dummy 
wafer! 

 

 

55  Clean HNO3 
1&2 
(#clean105) 

NL-CLR-WB16 
• Beaker 1: HNO3 (99%) 5min 
• Beaker 2: HNO3 (99%) 5min

 

 

56 
UV dicing foil 
(Adwill D-210) 

Nl-CLR- Dicing foil 
Information: 
Thickness: 125um 
Material: 100um PET + 25um Acrylic 
(adhesive) 
Adhesion before UV: 2000 mN/25mm 
Adhesion after UV : 15 mN/25mm 
UV irradiation : Luminance > 120mW/cm2 

and Quality > 70mJ/cm2 (wave length: 
365nm) 

 

 

On channel side 

57 
UV dicing foil 
(Adwill D-210) 

Nl-CLR- Dicing foil 
Information: 
Thickness: 125um 
Material: 100um PET + 25um Acrylic 
(adhesive) 
Adhesion before UV: 2000 mN/25mm 
Adhesion after UV : 15 mN/25mm 
UV irradiation : Luminance > 120mW/cm2 

and Quality > 70mJ/cm2 (wave length: 
365nm) 

 

On back side ???? 
Perhaps another type of foil, since 
you might want to remove only the 
channel side foil for bonding. The 
UV foil needs a flood expose. Be 
aware that the foil should be able to 
withstand 150 degrees. 
 



 

Send to KIST 

 

59  50 um SU8 channel wafer   

60  Piranha clean  2 h @ 120 °C 
 

New glass wafer? 

62  Rinse & dry  HOW??? 
 

 

64  Oxygen 
treatment 

TEPLA 300 E 
230 W, 600 s 

 

Proceed immedately with next step

66  Lamination 
Photosensitive 
SU8 20um?? 

Laminator DH360
Fiol brand, thickness 20 um??? 
Roll speed 1 at 78 °C

 

Let the foil relax for 20 minutes 
before proceeding. 
Keep foil in yellow light until 
exposure! 

68  Adhesion bake  Hotplate in room ????
300s @ 90 °C 

 

Let the foil relax for 20 minutes 
before proceeding 

70  PET film peel   
 

Manual

72  Soft bake  Hotplate in room ????
300s @ 90 °C 

 

Let the foil relax for 20 minutes 
before proceeding 

74  Alignment & 
Exposure SU8 

Suss MA6 
• Hg-lamp: 12 mW/cm 2 

• Exposure Time: 240 sec
 

Flood exposure, no mask? 

76  Post bake  Hotplate in room ????
300s @ 90 °C 

 

80  Lamination 
Photosensitive 
SU8 50 um?? 

Laminator DH360
Fiol brand, thickness 50 um??? 
Roll speed 1 at 78 °C

 

Let the foil relax for 20 minutes 
before proceeding. 
Keep foil in yellow light until 
exposure!

82  Adhesion bake  Hotplate in room ????
300s @ 90 °C 

 

Let the foil relax for 20 minutes 
before proceeding 

84  PET film peel   
 

Manual



86  Soft bake  Hotplate in room ????
300s @ 90 °C 

 

Let the foil relax for 20 minutes 
before proceeding 

87  Prepare 5 um 
wafer 

Flood expose UV
Where? 
Power? 
How long? 

 

Preparation of 5 um wafer for 
bonding, so that there is no delay 
after development. 
Remove only UV foil from front 
side?

88  Alignment & 
Exposure SU8 

Suss MA6 
• Hg-lamp: 12 mW/cm 2 

• Exposure Time: 225 sec
 

Which mask? 

90  Develop  MR Dev 600 (PGMEA) 
• Temp:????? °C 
• Time: 240 s 
• Rinse in IPA 
• Dry with N2 

 

Proceed directly to microcopy 

92  Microscopy 
check 

What, where 

 

Proceed immediately to bonding

94  Bonding  Suss SB 6 
• Initial separation? 
• Pressure? 
• Temperature: 150 °C 
• Time? 

 

5 um wafer facing down?? onto 50 
um SU8 wafer 
Alignment by eye, precision 300 um 
 

100  Dicing  What, where, settings?
• Blade? 
• Speed? 

 

How do you protect inlet holes 
during dicing? Dicing foil? 

110  Enhance bond 
strength 

Which UV source, where?
Loctite 3491 
• 1000W 
• 120 sec 

 

Apply loctite on outside of structure.
Will it glue the dicing foil? 

110  Remove dicing 
foil 

UV flood expose has already been done

 

Right before using the chip. 

 

Final Structure layout  
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7.2 Connector mounting protocol

This is the protocol to bond the connectors for the tubing



<Connector mounting protocol > 

1) Clean the glass chip with Nitrogen gas (Nitrogen gun). 

2) Turn on the hot plate with temperature of 120 oC 

3) Mix the UHU PLUS Endfest 300  

Preparation:  

 
Mix the UHU plus 300 in the Mixing plate 

 
4) Put bootlace ferrules at the inlets. Carefully put the UHU in the outer side of the ferrules. 

Cure it for 10 min with a Temperature 120 oC 

 
 

 

5) Repeat the process #5 also for the other Inlets 

 
 

6) Seal the ferrules for no leakage. Cure it for 10 min with a Temperature 120 oC 

 
 

7) Rest the Chip for at least 2 hours (Overnight it when it is possible) 



94

7.3 Cleaning protocol

This is the protocol to clean the chip

7.3.1 Glass chip



<Cleaning protocol for 5 µm Glass chip> 

1. Mix isopropanol with water (2:10 ratio) in a beaker 

 
 

2. Let FFITP device in sonicator for 2 hours in 80°C 

 

 

3. The connector will be removed after process (2) than dry the chip with Nitrogen Gun 

(Keep slight distance with the chip, don’t use too high pressure)

 
 



4. Let the FFITP device in the solution and sonicate it (15 min, 80°C) 

 
 

5. Repeat step (3) & (4) three times and then rinse it with kimtex paper 

 
 

6. To remove the rest water inside the FFITP put the chip inside vacuum  

(Use Oxygen Plasma machine)  

 
 

a. Push the red button (turning on the machine) 

b. Press the Ventilation (open the machine) 

c. Put the FFITP inside  

d. Close and press (Pump)  

e. Wait for 5 min 

f. Press the Ventilation (open the machine) 

g. Remove the chip 

h. Close and press (Pump)  

 



 

7. To remove all the rest inside and outside the FFITP device put the chip inside a oven 

 

 
a. Turn on the oven 

b. Press time 1a and select 00:10  

c. Press time 2a and select 06:00 

d. Press T1 and select 400 °C 

e. The chip will be clean 
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7.3.2 SU8 chip



<Cleaning protocol for 5 µm Glass chip> 

1. Mix isopropanol with water (2:10 ratio) in a beaker 

 
 

2. Let FFITP device in sonicator for 2 hours in 80°C 

 

 

3. The connector will be removed after process (2) than dry the chip with Nitrogen Gun 

(Keep slight distance with the chip, don’t use too high pressure)

 
 



4. Let the FFITP device in the solution and sonicate it (15 min, 80°C) 

 
 

5. Repeat step (3) & (4) three times and then rinse it with kimtex paper 

 
 

6. To remove the rest water inside the FFITP put the chip inside vacuum  

(Use Oxygen Plasma machine)  

 
 

a. Push the red button (turning on the machine) 

b. Press the Ventilation (open the machine) 

c. Put the FFITP inside  

d. Close and press (Pump)  

e. Wait for 5 min 

f. Press the Ventilation (open the machine) 

g. Remove the chip 

h. Close and press (Pump)  

 



 

7. To remove all the rest inside and outside the FFITP device put the chip inside a oven 

with 70 degree. 
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