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ZUSAMMENFASSUNG 

Dielektrische Elastomer (DE) Wandler stellen eine neue Technologie dar, die viele Vorteile im 

Bereich der Aktorik sowie Sensorik bietet. Diese Arbeit fokusiert auf DE Aktoren (DEAs), 

welche durch hohe Dehnungen und Reaktionsgeschwindigkeiten während der Auslenkung 

charakterisiert werden. 

Eine spezielle Art der DEAs, die Diaphragma DEAs, sind aus der Ebene heraus betriebene 

Membrane. Um dabei einen grossen Hub erzeugen zu können, muss die Membran mit einem 

flexiblen Vorspannungsmechanismus ausgerüstet werden. Beide Teile bilden das 

Aktorsystem.  

Im ersten Teil dieser Arbeit wird die Funktion von DEA Aktorsystemen und der Einfluss 

verschiedener Vorspannungsmechanismen untersucht. Unterschiedliche Mechanismen 

werden vorgestellt und experimentell verglichen. Die besten Ergebnisse konnten mit dem 

Einsatz einer bistabilen Feder (NBS, Negative-rate Biased Spring) erzielt werden 

Der zweite Teil dieser Arbeit präsentiert zwei Testgeräte, die zur elektromechanischen 

Charakterisierung von DE Membranen entwickelt wurden. Eines ist ein steuerbarer 

elektromagnetischer Motor, der DEAs unter verschiedenen Lastbedingungen 

charakterisieren und testen kann. Das zweite Gerät wurde entwickelt, um DEs unter 

wiederholbaren Bedingungen in einem planaren Zugversuch zu charakterisieren. Dabei wird 

ein Membrandickenprofil kontinuierlich für jede Auslenkung aufgenommen. Der Tester 

ermöglicht einen Vergleich der wesentlichen Leistungsparameter und damit eine 

Verbesserung zukünftiger DEA Anwendungen. 

  



 

ABSTRACT 

Dielectric elastomer (DE) transducers are a new technology offering many benefits for 

actuation and sensing devices. This work focuses on DE actuators (or DEAs) which have been 

shown to exhibit high-strain and high-speed characteristics. 

Diaphragm DEAs are a type of membrane DEA configured to operate out-of-plane. However, 

to produce reasonable stroke, membrane DEAs should be pre-stretched with a compliant 

mechanism. Therefore, the actuator system consists of the DEA and the necessary compliant 

mechanism.  

The first focus of this work to investigate how DEA membranes operate as a system and how 

they can be improved by designing compliant mechanisms which, when coupled with the 

DEA, give higher performance. Several compliant mechanisms are presented and 

experimentally compared. A bistable mechanism called a negative-rate bias spring (NBS) is 

shown to greatly increase the output of the DEA. 

The second part of this work presents two test devices and techniques for electromechanically 

characterizing DE membranes. One is a programmable electromagnetic motor to characterize 

diaphragm DEAs and test them under different loading conditions. The second device is 

designed to repeatably characterize planar DEs through a tensile test. The work includes a 

novel technique for obtaining a membrane thickness profile while stretching and/or actuating 

the DEA. The tester allows for a comparison of material performance parameters which aid 

in more informed design recommendations for future DEAs. 
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Introduction 1 

 

Chapter 1 INTRODUCTION 
This thesis presents the systematic study and development of Dielectric Elastomer (DE) as 

actuator systems. Dielectric elastomers are a multi-functional material that can serve as 

actuators and as sensors or generators. They are commonly referred to as dielectric elastomer 

transducers (DET). DE material can undergo a large change in shape in response to electrical 

energy, therefore acting as an actuator [1]. It can also transform mechanical energy into 

electrical energy, acting as a sensor [2]–[4] or generator [5]–[7]. In the realm of actuators, which 

is the focus of this work, the intended applications for DE actuators (DEAs) are fluidic pumps, 

valves, micro-positioning stages, robotic end effectors and many more.  

DE film actuators can be designed in different configurations. For membrane actuators the 

film is clamped at the edge. Diaphragm actuators, which are studied here, are a type of 

membrane actuator. These membrane actuators can generate reasonable stroke in-plane and 

out-of-plane (with respect to the plane defined by the clamped boundary). The mode and 

magnitude of actuation depends on the direction and magnitude of the force pre-stretching 

or pre-deflecting the film membrane. This applied force is what deforms the DE membrane.  

In contrast, stacked actuators (see page 11), which are clamped or fixed at the ends, operate in 

the thickness direction (with respect to the film). These require no pre-deflection or loading 

mechanism for significant stroke because they contract due to the Maxwell force deforming 

the stack (see Section 1.2). Therefore, they are less dependent on the external load as are 

membrane actuators. This distinction is important to note as this work focuses primarily on a 

type of membrane actuator. 

Firstly, this research focuses on the design, fabrication, testing and optimization of diaphragm 

membrane DEAs. It is shown that for a well-performing membrane actuator system the choice 

of the compliant mechanism to bias or pre-load the DEA is highly deterministic in the 

resulting output. Therefore, this work includes a systematic investigation of various 

compliant mechanisms which can be used with membrane DEAs. A so-called negative-rate 

bias spring or bistable spring is studied extensively and its benefits on the DEA performance 

are shown experimentally and theoretically. Finally, lab-tested actuator prototypes are 

presented to provide the reader with examples of how such DEAs can be achieved and 

applied to real-world situations. 

Secondly, this research includes an experimental investigation into techniques for 

characterizing DE membrane behavior. Electro-mechanical characterization tests are 

performed using two custom-built high-performance DE film testing suites. One is a 
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programmable electromagnetic motor to characterize diaphragm DEA membranes and to 

simulate loads. This showed the importance of mechanical loads on membrane actuators. The 

second setup and test procedure detailed is used to test and compare commercially available 

elastomer thin films. Actuator strain and force output were measured along with resistance 

and capacitance. Actuator design parameters such as pre-stretch and electrode thickness were 

studied. The work details a novel test technique for obtaining a membrane thickness profile 

while straining and/or actuating the DEA by utilizing dual confocal displacement sensors. The 

tester allows for comparison of material performance parameters which leads to informed 

design recommendations for future DEAs.  

Overall this work seeks to present and equip the reader with some key principles on how to 

design, fabricate, test and build a high-performing membrane DEA system to provide the 

desired output for a given application.  

1.1 MOTIVATION 
Conventional actuator technologies such as pneumatic motors, linear solenoids and DC-

motors are generally well-established, well-understood and marketable in the industries 

where they are found. Despite this, consumers continue to demand smaller, lighter, faster, 

quieter, smarter and more efficient products. However, since conventional electromagnetic 

motors generally have poor efficiencies at small scales (not to mention many parts, difficult 

assembly, noise and high-friction forces) there is a growing interest in other actuator 

technologies to save money and gain a technological advantage. Companies are considering 

the area of unconventional actuator systems or “smart material” technologies to do this. A 

“smart material” is one that changes one or more of its properties under the influence of 

external stimuli [8]. There are dozens of smart materials including piezo-ceramics, shape-

memory alloys, and magneto rheological fluids which are continually being researched and 

gradually applied to industrial and commercial solutions [9]–[12]. 

Dielectric elastomer transducers (DETs), one of these smart materials, have many attractive 

characteristics. In addition to their overall low cost, DETs demonstrate inherent advantages 

over conventional transducers which include their high work/energy density, silent operation, 

form-flexibility and scalability. These traits promise applications which have been 

impracticable with standard actuator technologies. Such applications, among others, include 

DEA powered pumps [13]–[17], valves [18]–[20], loudspeakers [21], [22], robots [23]–[25], 

flapping wing insects [26], [27], variable stiffness devices [28]–[30], optical positioning systems 

[31]–[34] and micro-positioning stages [35]. 

1.2 BACKGROUND AND LITERATURE 
The actuation effect of electrostatic forces on dielectrics was first reported by Röntgen in 1880 

[36] but it was not until the mid-1990s that several researchers began studying the potential 

of using DEs as actuators. It began primarily with the research performed by Pelrine et. al. [1], 
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[37] at Stanford Research Institute (SRI) International. They were not the first to study the 

effect of electrostatic forces on soft dielectrics [38] but they were the first to investigate and 

publish primarily on its potential as an actuator. The findings of these groups and others since 

have been presented at conferences and published in journals around the world. Research of 

DEs is now rapidly spreading to research institutions and industrial companies around the 

world. Figure 1.1 shows internet search results (www.google.com/scholar) per annum for the 

query “Dielectric elastomer” or “Dielectric elastomer actuator”. It is a clear attestation to the 

attention the technology is increasingly receiving. 

 

Figure 1.1: DE or DEA Google Scholar search results (per annum)  

In the following paragraphs a literature survey is presented and current challenges for DEA 

technology are discussed. 

Pelrine et. al. demonstrated the high-strain capability of the several DE materials while 

presenting actuators in a variety of configurations such as planar, stacks, rolls and tubes [1]. 

Two years later (in 2000) Pelrine and his colleagues published a landmark paper in Science. 

They demonstrated high actuation strains (>30%), fast response times (<1ms) and high specific 

energy densities (up to 0.15J/g) of DE actuators when using acrylic and silicone films [37]. 

These studies and others [39]–[41] led to a scientific and technological leap forward in the field 

of polymer actuators. Several annual, multi-day conferences in North America (SPIE Smart 

Structures/NDE, [42]) and in Europe (EuroEAP, [43]) have helped in communicating 

advancements in DE materials and applications to actuator/sensor technologies. The 

conference sessions facilitate collaboration between engineers and researchers since there are 

many active research areas (from better understanding DE materials to fabrication methods, 

modeling/simulation and improving the overall actuator system performance). 

Rubber-like soft-dielectrics (such as natural rubber, polyurethane, acrylic, or silicone 

elastomers) display a non-linear stress-strain characteristic. As mentioned before they are 

capable of very high strains (ex. 3MTM VHB 4910 has been shown to endure strains up to 500% 
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[44]). Much of the initial DEA research used the commercially available “Very High Bonding” 

3M tape as the DE. Even to this day some continue to use this material although it has been 

shown that the acrylic VHB tapes exhibit a much higher viscoelastic behavior than silicone 

based elastomers [45]. As with most other rubber-like materials, elastomers are viscoelastic.  

Many groups have proposed constitutive behavior models (several based on Yeoh, Ogden 

and Gent hyperelastic models) to represent the elastomer non-linear and viscoelastic behavior 

[46]–[53]. Typically the electromechanical coupling between the stretch and the applied 

electric field is made via Maxwell’s equation [1], [54]. This equation applies when the DEA is 

approximated as a parallel plate capacitor, with the elastomer serving as the dielectric and the 

conductive compliant electrodes on both sides of the film (which have their own stiffness) 

serving as the parallel plates. The dielectric constant (or relative permittivity, εr) is an 

important parameter since in the Maxwell equation it is directly related to the electrostatic 

attractive force through the film thickness. Efforts to measure the change in dielectric constant 

at different temperatures, film thicknesses and/or pre-stretch have been made but with 

varying results [54]–[58]. Dielectric films with higher dielectric constants are more desirable 

because they require lower electric fields for the same Maxwell stress. Additionally, low-

modulus films are favorable for the reason of increasing the electromechanical performance 

[59]. It is however difficult to make soft materials with high dielectric constants (e.g. >10). 

Therefore, enhancing the dielectric constant has been the subject of considerable research. This 

involves modifying the chemistry of the elastomer with the goal of making it more 

polarizable. One common method is loading the elastomer with a high-permittivity filler [60]–

[63] however this often comes at cost of increasing the modulus of the film. Another method, 

that of blending the elastomer with a highly polarizable copolymer, has shown promising 

results by enabling an increase in relative permittivity and a decrease in elastic modulus [64]. 

Other work has filled the elastomer with ceramic coated polarizable filler spheres [65]. 

Various failure modes of DE elastomer actuators have been observed and studied [51], [66]–

[70]. Understanding the conditions and why an actuator fails is paramount in designing 

optimal long-lasting actuators. Most DE actuator failures are initiated due to electrical failure 

and not mechanical rupture. The dielectric breakdown limit, which ultimately constrains the 

achievable actuation stretch, has been shown to vary with thickness and pre-stretch [71]–[73]. 

On the other hand, pre-stretching has been shown to increase electromechanical stability and 

thereby enabling higher actuation stretch [74]. 

According to literature only a handful of investigations have been made on the behavior of 

DEAs in warm/cold or humid/dry environments [56], [75], [76]. The DE was shown to have a 

different viscoelastic response at different temperatures. The hysteresis was lower at higher 

temperatures. The DEA system behavior in different climates needs to be studied further in 

order to move toward applying the technology in functional areas like the automotive, 

aerospace, and space industry. In particular, some elastomers, like polydimethylsiloxane 

(PDMS), a common silicon based elastomer used in DEAs, are gas permeable and will swell 
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when confronted with some nonpolar solvents [77], [78]. The impact of climate on the 

electrode material has yet to be studied.  

Electrodes play a crucial role in a well-functioning DEA. The conductivity must allow free-

flow and distribution of charge on the surface, but the bulk stiffness should be low enough to 

not inhibit the desired actuation strain. The preferred electrode material has primarily been 

carbon based (such as carbon black, i.e. soot) but alternative materials are growing. By 

dispersing carbon black or graphite particles into a viscous oil/grease the electrodes can easily 

be applied by hand, but this is can be messy, may remain wet and over time will dry out and 

lose conductivity [79]. However, two-part silicone elastomer mixes (from companies like Dow 

Chemical, DuPont, NuSil, Wacker etc.) can be combined and filled with conductive particles, 

and cured with heat to serve as conductive and compliant rubber electrodes [79], [80]. These 

are more robust and stable over time. Common methods of depositing and patterning the 

electrodes on the elastomer film range from painting (by hand), blade casting, spraying and 

laser ablation [81] to screen printing, pad printing and drop-on-demand printing [79]. The last 

three are the most mass-producible [79]. 

The loading conditions of DEAs play a key role in the actuator performance, particularly in 

membrane actuators. Numerous studies have shown this to be true [39], [82], [83]. The 

compliant mechanism (also called the bias element) is used to pre-stretch or pre-load the DE 

membrane and can be optimized to maximize the desired force or stroke output of the actuator 

[84]. This topic will be expounded upon in this thesis.  

1.2.1 Challenges 

A major challenge for DEA technology is lowering the driving voltage required for DEAs. If 

this is achieved voltage amplifiers could be cheaper, smaller and more efficient, and DEAs 

would be more appropriate for applications in the human body. This challenge is in part a 

material problem and in part a fabrication problem. The solution using the material approach 

seeks to increase the dielectric constant (which would then theoretically lead to lower driving 

voltages), while not drastically increasing the Young’s modulus or adding unwanted negative 

effects (like viscoelasticity, high dielectric loss or decreasing the breakdown voltage). The 

fabrication approach seeks to decrease the polymeric film thickness so the driving voltages 

may be lower but generate the same electric field needed for actuation. Ultra-thin films [85], 

[86] are more difficult to consistently fabricate and handle which leads to difficulty in making 

functional devices. Furthermore, the thinner the dielectric film is the larger the impact the 

electrodes have on the mechanical response for the film [79], [87], [88]. This requires the 

electrodes to be much thinner, relative to the film thickness. Poor electrode mechanical 

behavior (stiff, viscoelastic etc.) can lead to the overall actuators behaving poorly. The thinner 

the electrodes are, the higher the electrode surface resistance becomes, changing the electrical 

dynamics of the DEAs. These design challenges are essentially interrelated and should be 

addressed together. 
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1.3 RESEARCH OBJECTIVE AND THESIS STRUCTURE 
This work aims to present a systematic investigation of the operating principles and the 

practical methods to improve the performance of diaphragm DEAs. The design, fabrication, 

modeling, testing and application of negative-rate (bias) springs coupled with DEAs are 

presented alongside qualitative and empirical results. The impact of the mechanical loading 

conditions on DEA stroke is studied. Lastly this research concludes with advanced techniques 

and test rig designs to perform experimental characterization of diaphragm DEAs and planar 

configured DE membranes. 

Much of the analysis and experimental results in the thesis have been published in the 

author’s following papers: [82], [89]–[96].
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Chapter 2 FUNDAMENTALS OF 

DIELECTRIC ELASTOMER ACTUATORS 

(DEA) 
DE transducers (DETs) are multi-functional, meaning they have the ability to change electrical 

energy into mechanical energy—an actuator (DEA), and transfer mechanical energy to 

electrical energy—a generator (DEG) or sensor (DES).  

Figure 2.1 illustrates this. 

 

Figure 2.1: Operating principle of DE transducers 

Section 2.1 introduces how DEAs work and Section 2.2 provides an overview of common 

configurations. Section 2.3 and 2.4 discuss the key role electrodes and elastomer materials play 

in DEAs. 

2.1 ELECTRO-MECHANICAL BEHAVIOR OF DE 

ACTUATORS 
Dielectric elastomer actuators undergo a shape change due to electrostatic forces. They consist 

of an elastomer film as the dielectric and compliant electrodes which coat both sides of the 

film. When a potential difference is applied across the film, opposite charges accumulate on 

the conductive electrodes. If this electric field is high enough to overcome the bulk stiffness of 

the dielectric material, the electrostatic pressure will squeeze the two electrodes together, 

reducing the thickness and causing an increase in surface area (assuming compliant electrodes 

and free boundary conditions). In Figure 2.2, a sample actuator is shown for the high-voltage 

circuit when open and closed. Since the electrode is highly flexible and conductive, and the 

elastomer has a low-stiffness (Young’s modulus <1MPa), the electrostatic pressure or Maxwell 

stress squeezes the film and the elastomer reacts by changing in shape. The effective pressure 

on the electrode surface is given by the Pelrine equation [97]:  

Mechanical 
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E W
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 2
0p E   (1) 

where p is the electrostatic pressure (acting on the electrode area), ε0 is the free-space 

permittivity, ε is the relative dielectric constant of the elastomer and E is the electric field 

(voltage/film thickness). This is the basic operating principle of DEAs.  

 

Figure 2.2: Operating principle of a DEA with free-boundaries, (a) No voltage, (b) Voltage applied  

The goal of DEAs is to harness this electrostatic-induced shape change of the elastomer film 

to perform mechanical work. Well-performing dielectric elastomer materials are normally 

soft, thin dielectrics which should demonstrate as little viscoelastic behavior as possible. 

Electrode material should likewise be thin relative to the polymer thickness, highly 

conductive and very compliant. 

2.2 CONFIGURATIONS  
An attractive feature of DEAs is that they can be fabricated into different configurations to 

meet the demands of the application. Figure 2.2 above, shows an idealized case of a single DE 

membrane flat sheet with no boundary constraints. In non-idealized (real-life) cases the film 

is bounded in a particular manner to make it handleable and functional—able to perform 

mechanical work.  

 

Figure 2.3: DE membranes with various boundary constraints  

These boundaries or constraints can be applied differently to produce a shape/geometry and 

end output motion which meets the requirements Figure 2.3. The adaptability and formability 

of DEAs, as well as the characteristics listed in Section 1.1, are great selling points to 

companies seeking to incorporate DEAs into consumer or industrial products.  
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Further configurations are possible such multi-segmented electrodes which can be actuated 

to make more complex shapes and motions [98], [99]. The following sub-sections present 

several types of actuator configurations as seen in the literature with a brief explanation.  

2.2.1 Stacked Actuator 

Stacked actuators produce linear motion through the change in film thickness when the 

voltage is applied. This means the output motion is contractile and is in the direction of the 

film thickness. Since the films are normally thin (1-100µm) and the maximum thickness strains 

are generally less than 30% [39] the resulting stroke for a single layer would be microscopic. 

Therefore, the stroke is made more prominent by increasing the number of film layers—

leading to a stack formation. The layers are mechanically in series meaning the force output 

can be scaled up by increasing the electrode area footprint. 

 

Figure 2.4: Stacked actuator type (a) No Voltage, (b) With Voltage   

The stack has the advantage of being compact, monolithic, and capable of carrying 

compressive loads. However, because the actuator is fixed at the ends there is very little 

actuation in the planar direction. A stack can bulge at the middle when voltage is applied 

[100], [101], which can be problematic. Several groups have studied various aspects of stack 

actuators, including fabrication [16], [102], [103], using them in pump/valve applications [16], 

[20], and dynamic applications [104]. 
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Figure 2.5: Stacked actuators seen in literature, (a) Stack formed by folding [102], (b) stack lifting a weight [105], (c) 
miniature stack to close and open a pneumatic valve [20], (d) machine fabricated stack actuator [103].  

2.2.2 Planar Actuator 
While the stack actuators use primarily the change in thickness, planar actuators take 

advantage of the increase in area upon activation. This configuration has many different 

varieties since the frame surrounding the active areas can vary in shape. Figure 2.6 shows an 

actuator strip which is held in tension by a spring. In this configuration the dominant 

actuation stroke is perpendicular to the membrane thickness—in the planar direction, mostly 

in the direction of the applied force. The force can be scaled up by adding more layers.  

 

Figure 2.6: Planar actuator type with multiple layers (a) pre-stretched with voltage off, (b) voltage on, showing stroke.  

The frame holding the membrane can be flexible [48], [106], rigid and may partially (or 

completely) surround the membrane. Flexible frames allow for an increase in stroke because 

the compliant frame surrounding the planar actuator deforms with the film. However the 

frame-film interface near the moving joints can be subject to high fatigue, delamination issues 

and lead to premature film breakdown in that area [25]. It is important to develop a frame 

with low-hysteresis to minimize the mechanical losses. Figure 2.7 shows some planar type 

actuators seen in literature. 

(a) (b)

(c)

(d)
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Figure 2.7: Planar actuators seen in literature (a) for actuating a tail of a fish-like blimp [107], (b) patterned-electrode planar 

actuator with six degrees of freedom [108]; (c) Rectangular actuator with compliant mechanism to apply output force [109], 
(d) diamond shaped actuator to study performance of viscoelastic DEAs [110].  

2.2.3 Roll/Tube Actuators 
By rolling a DEA sheet on itself or around a flexible structure, such as a spring, a tubular 

actuator can be formed [111]–[116]. This actuator produces stroke primarily in the axial 

direction of the roll. This was the actuator type used in the much popularized human versus 

artificial muscle arm wrestling completion at the 2005 EAPAD conference in San Diego, CA 

[114]. This configuration is similar to planar actuations as the layers of film are mechanically 

in parallel, meaning the force output can be scaled up by adding layers.  

 

Figure 2.8: Roll actuator with coil spring core (a) voltage off, (b) voltage on showing actuation stroke  

Some tests show that with certain materials with high pre-stretch (such as VHB types) the 

actuator creeps over its lifetime, reducing performance [114]. Additionally, DE breakdown, 

instabilities and mechanical failure may result at the elastomer-end caps and the core-film 

interface [114], [116]. Other drawbacks to the configuration are the empty space in the core, 

the complicated fabrication process (due to rolling and pre-stretching the film) and the 

(a) (b) (c)

(d)

(a) (b)
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inability to interchange core springs once assembled. Nevertheless, this remains a promising 

configuration. Several designs are shown below. 

 

Figure 2.9: Photos of Roll/Tube actuators seen in literature, (a) Polyurethane stack actuators for vibration isolation [113], (b) 

actuators with spring core for driving robot arm [114], (c) rolled DEA for driving bio-inspired wing flapper [27], (d) multi-

degree of freedom spring-core actuators operating as flexible legs of walking platform [112].  

2.2.4 Out-of-plane Actuators 
Out-of-plane actuators are, like planar actuators, are membrane. As with the other 

configurations listed, several variations exist for out-of-plane actuators [49], [82], [94], [117]–

[120], however they would all be considered membrane actuators. As the name indicates, 

these actuators operate out-of-plane and this can be achieved by a variety of means: from a 

compliant mechanism, like a spring or linkage, or with air or fluid pressure forming a bubble 

or bulge. One advantage of this type is that the outer boundary condition is usually fully-

clamped which reduces the risk of membrane tearing because of the continuously fixed-edge. 

Below are a few examples of actuators operating in out-of-plane mode and producing linear 

actuation. 

 

Figure 2.10: Photos of out-of-plane actuators: (a) flip-flop rotational mechanism [121], (b) pressurized membrane actuator 

showing giant deformation when voltage applied [122], (c) diaphragm actuator (from author).  

(a) (b)

(c) (d)

(a) (b) (c)
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Figure 2.11: Diaphragm out-of-plane actuator (a) voltage off, (b) voltage on.  

The so-called circular or diaphragm actuators (Figure 2.11) are used extensively in this work 

to produce linear motion. In this configuration there is a ring of active material surrounded 

by a stiff frame. The actuator exhibits out-of-plane motion when the center mount is displaced, 

as shown in Figure 2.11(b), thus stretching the DE membrane in the radial and circumferential 

directions. 

2.3 ELASTOMER MATERIALS 
Many rubber materials have been candidates for DEAs and a few have proven to be adequate 

for actuation [39]. The 3M VHB (“Very high bond”) acrylic adhesive is used by many 

researchers because of its availability, high-stretch capability and high breakdown strength. 

Still this material is highly viscoelastic [123]–[125], resulting in a slow response to voltage and 

high-creep over time. This is a major downside because the potential speed of the actuators 

(due to the charging of a capacitive load) cannot be realized due to the slow mechanical 

behavior [45]. 

A more appropriate material in recent days has been shown to be a silicone-based rubber 

compound called polydimethelsiloxane (PDMS). Wacker Chemie AG produces a PDMS 

elastomer called Elastosil® film at thicknesses as low as 20µm. This and other silicone rubber 

(from companies such as NuSil, Dow Corning, etc.) have much shorter response times and 

less dissipation [45]. With a relative coefficient of about 3 and a low modulus the driving 

voltages only need to be around a few kV and not 10kV like VHB materials. 

Other materials such as polyurethane [113], [126], [127] and natural rubber [5], [128] films 

have also been used. While polyurethanes usually exhibit a higher dielectric constant (~6-13) 

than silicones they also exhibit a higher elastic modulus and an increased sensitivity towards 

humidity [126] and temperature [129]. Natural rubbers are not so often reported in literature 

but some results show them as good candidates for energy harvesting because the high energy 

densities at a lower cost [130]. 

Rubber materials are inherently non-linear in their behavior. They can undergo large 

deformations but exhibit several hysteretic effects (hyperelasticity, viscoelasticity, creep, 

Mullin’s effect, etc) which can be exasperated in different temperatures and humidity. 

Therefore, appropriate models are used to describe the behavior including normally 
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combining hyperelasticity models (Neo-hookean, Odgen, Mooney-Rivlin, and Gent models) 

with the induced Maxwell stress due to the applied electric field. (An example of this can be 

seen in the work of Rizzello and Hodgins [95], [131]). 

2.4 ELECTRODE MATERIALS 
As mentioned earlier, electrodes greatly impact the DE actuator performance and therefore 

need to be studied and well understood. This is a very open field and no perfect solution exists 

for each application. The goal and challenge in short is for an electrode material to exhibit 

high flexibility, low electrical resistance, good adhesion to the membrane, good patternability, 

low and uniform thickness relative to the membrane and robustness (will not degrade or rub 

off with use). Furthermore, to commercialize such devices, the fabrication process must be 

scalable—able to be manufactured uniformly at a large scale. 

Carbon-based compliant electrode materials are most commonly used, likely due to their 

relatively good conductivity, mixability (with several polymer matrix materials) and 

availability. Other types of electrodes include metallic, ion implanted and hydrogels 

containing electrolytes. This work deals only with carbon based electrodes. A good summary 

of electrodes, which discusses the advantages and disadvantages common kinds, can be read 

in the following articles [79], [132]. 

Repeatable large-scale fabrication methods (which are dependent on the size of the device) 

include pad printing, screen printing and drop-on-demand printing (ie. Inkjet) [79], [133]. 
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Chapter 3 DEA DESIGN AND STROKE 

ANALYSIS 
As seen above in Section 2.2, several design configurations are possible. In each case the DEA 

operation is the same—using the transduction abilities of the DE film the electrical energy is 

converted to mechanical work.  

However, in order to produce meaningful actuation for DE membrane actuators, the coupling 

with the surrounding structure should be correctly implemented. As mentioned on page 1 

this is not as important for stacked actuators (page 11), but for membrane actuators, or other 

actuator configurations which extend when actuated, this is important. Realizing the most 

beneficial DEA loading conditions is not always trivial due to several reasons including the 

non-linear material behavior, space/size limitations and external loading conditions. 

By performing a force-equilibrium study of the DE actuator system and the load (if any) the 

mechanical operating principle can be better understood. The following sections provide an 

explanation using this approach to help describe the operation of membrane DEA systems 

and additionally to show the importance of the surrounding structure (or bias mechanisms) 

chosen. (This view doesn’t focus heavily on the electronics or the microscopic view of the 

actuator but rather takes a macroscopic view of the DEA and the supporting mechanical 

components which make up the actuator system.) 

3.1 MEMBRANE DEA OPERATION AND STROKE 
Since DEAs are designed to perform work it is necessary to measure and study the mechanical 

forces to understand their operation. Some configurations, such as the diaphragm 

configuration (Figure 2.11), rely heavily on a compliant bias mechanism (like a linear spring 

or hanging mass) to produce meaningful actuation stroke, in this case out-of-plane. The force 

characteristic of this bias element and the magnitude to which it pre-loads the DEA will dictate 

the displacement and force output of the actuator (when no other external forces are applied). 

To illustrate the operation, take the example of a positive-rate spring (linear coil spring) and 

a diaphragm DEA, as seen in Figure 3.1. The spring is compressed against the DEA with no 

voltage applied. When a high-voltage is applied to the DEA, its membrane expands radially 

which allows the coil spring to extend further to a new equilibrium position (Figure 3.1). If 

the spring was not compressed against the DEA virtually no stroke would occur. Therefore, 

the bias mechanism is vital to produce stroke for membrane actuators. 
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Figure 3.1: Cross sectional sketch of circular/diaphragm DEA coupled with a bias mechanism.  

By performing a force-equilibrium analysis the force-equilibrium position can be determined. 

This is done by measuring the out-of-plane force of the membrane DEA as constant voltage is 

applied to the DEA. To perform this a linear actuator controlled the out-of-plane displacement 

of the DEA while the blocking force was measured with a load cell. Figure 3.2(a) shows a 

schematic of the test setup, Figure 3.2(b,c) shows photos of DEA being deflected out-of-plane 

and Figure 3.2(d) presents the measured force response to sinusoidal displacement at 1Hz. 

The effect of the voltage on the out-of-plane stiffness is clearly seen. The DEA is acting as a 

variable stiffness spring. The viscoelasticity of the actuator is also seen by the hysteresis in the 

force-displacement response. 

 

Figure 3.2: Force vs. controlled out-of-plane displacement of DEA setup and results.  

The hysteresis can be neglected for quasi-static actuation cases. Figure 3.3 presents force-

displacement (F-D) profiles for the individual components: the DEA as a single solution 

polynomial fit to the data, and the linear spring as a linear line with the stiffness k. By 

combining the F-D profiles (reversing the sign of the force for the spring) and locating the 

intersection points, the effective quasi-static actuator stroke can be approximated. 

(a) (d)(b)

(c)
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Figure 3.3: Stroke development of a pre-loaded DEA with a positive-rate bias spring (linear spring).  

Figure 3.3 shows that increasing the voltage effectively softens the DEA membrane and results 

in a new force equilibrium position for the DEA-spring system. In other words, by increasing 

the voltage some of the stored energy in the compressed linear spring is released to stretch 

the now “softer” DEA. One can also note that while the linear spring is extending, the force is 

decreasing. At the maximum voltage the stroke or elongation of the elements is at its peak but 

the force and total stored energy are at their lowest point. When the voltage returns to zero, 

the starting force-equilibrium position is reached. This is how repeatable stroke is achieved 

with the DEA-spring system. As can be seen in Figure 3.3, at low-deflections there is little 

separation between the low and high-voltage profiles, meaning relatively low actuation stroke 

can be achieved in this region. Without an external bias force, little stroke could occur. The 

spring assists in deflecting the DEA into its working region highlighted in Figure 3.4. 

 

Figure 3.4: Diaphragm Membrane DEA workable region 

The force range (and workable region size) can be increased by stacking diaphragm DEAs 

(Figure 3.5). This is useful when adapting the DEA to an application. One drawback to adding 

layers can be seen in Figure 3.5—an increase in viscoelasticity. This is seen by the larger 

hysteresis loops at constant voltage. 



20 DEA Design and Stroke Analysis 

 

 

Figure 3.5: Scaling force output by stacking diaphragm DEAs. Sinusoidal displacement at 1Hz for (a) 1-layer, (b) 4-layer 

and 8-layer DEAs.  

By changing the inner and outer diameter size the force response also changes. Hau et al found 

that increasing the inner diameter linearly increases the blocking force while linearly 

decreasing the stroke (at constant force) [134]. 

 

Figure 3.6: Photo of DEA with different inner disk diameters. 

3.2 EXPERIMENTAL COMPARISON OF BIAS ELEMENTS 
A linear spring is only one bias element. Others elements which can be used include a constant 

force (hanging mass) and non-linear springs. These are studied and compared in this section. 

3.2.1 Introduction 

Here an experimental comparison of 3 different bias elements producing actuation stroke is 

performed. A hanging mass, a linear coil spring, and a non-linear (bistable) mechanism are 

individually paired with a diaphragm DEA, pre-deflecting it out-of-plane. High-voltage (e.g. 

2.5kV) is applied to the DEA and the out-of-plane stroke of the DEA is measured. The actuator 

stroke is notably different for each bias element. Results show that as the bias element’s 

stiffness increases, the actuator stroke decreases. However, the bistable element, when 

coupled with the DEA, demonstrated improved actuation within a specific range of DEA pre-

deflection. Not only was the stroke larger for this case, the stroke also did not attenuate as 

much as the linear coil spring element at higher actuation frequencies. This study 

demonstrates a promising method for obtaining high-performing DEA actuators. 

F F F

(a) (b) (c)
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3.2.2 Bias Elements 
This section introduces and briefly details the bias elements to be used in the experiments, 

including the design and fabrication of the bistable spring. 

3.2.2.1 Bias Elements 

A hanging mass was used to provide a constant bias force, a compression spring a linear bias 

force, and a non-linear (bistable) spring provided a non-linear bias force (Figure 3.7). The 

hanging masses ranged from 10-100 grams in 10 gram increments. The range of masses 

permitted a gradual pre-deflection of the DEA up to approximately 5mm. Linear springs of 

stiffness 0.05N/mm, 0.24N/mm and 1.01N/mm were each tested with the DEA, also at 

different pre-deflections. 

  

Figure 3.7: Three biasing mechanisms, (a) hanging masses, (b) compression Springs, and (c) post-buckled mechanism.  

A miniature, custom made post-buckled beam mechanism was used as the bistable spring 

(Figure 3.7(c)). The thin stainless steel X-shaped form was mechanically buckled by inserting 

it into a smaller square shape and then constrained at the corners with a cover. Once inserted, 

the mechanism exhibits two stable post-buckled positions. Figure 3.7(c) shows the mechanism 

in the stable up position. (Further design and fabrication details are presented in Section 4.2.) 

A force vs. controlled-displacement test was performed and revealed the expected non-linear 

force-displacement response. Figure 3.8(a, c) presents a sketch/photo of test setup and Figure 

3.8(b) presents the measured force response highlighting the mechanical stability regions. The 

negative slope region of the spring explains the previously mentioned name of “negative-rate 

bias spring” or NBS. 

(b)(a) (c)
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Figure 3.8: Force vs. controlled out-of-plane displacement of NBS, (a, c) setup and (b) results.  

This region is inherently unstable while the outer stiff regions are stable like a linear spring. 

The mechanism can be snapped by hand from one stable position to the other, showing large 

motion quite suddenly when the critical force is exceeded. 

3.2.3 Experiments and Results 
This section presents the setup, procedure and actuation results for the three different bias 

elements. These three experiments were performed using one circular DEA. In each test the 

DEA was mounted to a frame and fully constrained around the stiff square-shaped epoxy 

region of the DEA to ensure no flexing. Then the DEA was biased (or pre-deflected at the 

center disk) while voltage was off. The voltage was then linearly ramped from 0V to 2.5kV 

and back to 0V (a triangle shape) for multiple cycles. The signal was digitally generated and 

was amplified with a Trek model 610E. The out-of-plane displacement of the DEA center disk 

was measured using a Keyence LK-G37 laser displacement sensor with 10nm resolution. The 

actuator and sensor signals were processed through a National Instruments 7852R FPGA 

board that was programmed from a Windows desktop computer running LabVIEW 2010. 

3.2.3.1 Hanging Mass 

The test setup for the hanging mass (constant bias force—CBF) is shown in Figure 3.9. Since 

the DEA was oriented vertically (i.e. the out-of-plane deflection was in the horizontal 

direction) a pulley was required to transfer the force from the hanging mass to the DEA. 

Masses were individually tested at a voltage frequency of 0.1Hz. The slow rate minimized any 

oscillations from the hanging mass which might be transferred to the DEA center disk. 

(b)(a)

(c)
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Figure 3.9: Hanging mass test setup (a) sketch, (b) photo.  

 

Figure 3.10: Stroke results for each hanging mass at 0.1Hz, (a) disp. vs time results, (b) stroke results vs pre-deflection.   

Figure 3.10 shows the DEA displacement results for each hanging mass. The displacement 

stroke increased slightly with increasing mass and then decreased slightly after initial 

deflections exceeded approximately 3.5mm. It maintained a stroke of around 0.5mm. 

3.2.3.2 Positive-rate Bias Spring (PBS) 

In Figure 3.11 presents a sketch of the test setup and photos. For this test a linear actuator 

(Aerotech ANT-25LA) was used to compress the PBS against the DEA. With each PBS tested 

(0.05N/mm, 0.24N/mm and 1.01N/mm) the DEA was biased from 0mm to 5mm (out-of-plane).  

Lin. Act.

DEA centerpulley

string-

DEA 

connection

film Laser Disp. 

Sensor

m

V+ (b)(a)

(a)

(b)
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Figure 3.11: Positive-rate spring (PBS) test setup (a) sketch, (b-d) photos of setup with the 3 springs.  

Figure 3.12 presents the time resolved DEA displacement results for the DEA biased (to 

various pre-deflection amounts) with a spring of k=0.24N/mm. Each line represents a different 

spring pre-deflection. The stroke clearly increases with an increase in DEA pre-deflection 

shown from the lower curves to the upper curves. 

 

Figure 3.12: Stroke results for each PBS pre-deflection, k=0.24N/mm at 0.1Hz, (a) time resolved, (b) stroke results vs. pre-
deflection.  

3.2.3.3 Negative-rate Bias Spring (NBS) 

Next the NBS was tested as the bias element. This required a slightly more complicated setup 

because of the configuration of the NBS (i.e. the buckling frame should be fixed relative to 

NBS center deflection). To test the DEA at different pre-deflections the circular DEA was 

mounted onto a movable platform (Newport, model 443) which was actuated by a linear 

actuator (Zaber LA-28A) in the direction of the NBS, see Figure 3.13. The laser displacement 

sensor was mounted on the platform behind the DEA to track the out-of-plane displacement 

with respect to the DEA outer frame. Therefore, the absolute DEA out-of-plane deflection was 

(c)

(b)

(d)

(a)

(b)

(a)
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being measured precisely by the laser sensor. This moveable platform made it possible to bias 

the DEA by controlling the position of the outer frame of the DEA while the center disk of the 

DEA made contact with the NBS. A second linear actuator (Aerotech ANT-25LA) was 

positioned to the left of the NBS and served as an adjustable mechanical stop for the NBS 

(when needed). 

 

Figure 3.13: Negative-rate bias spring (NBS) test setup (a) sketch and (b) photo of setup.  

The NBS used had a much higher stiffness than the DEA it was paired with, resulting in a 

mechanically unstable coupling when attempting to operate on the negative branch of the 

NBS. Therefore, a mechanical stop was used to provide a stable position for the NBS-DEA 

when unactuated. The mechanical stop was positioned so that when blocked, the DEA was 

still pre-deflected.  

 

Figure 3.14: Bistable stroke results at (a) several DEA outer frame positions (0.1Hz) and (b) different modes of stroke 
possible.  

The DEA was biased by the NBS while the mechanical stop was held constant. Figure 3.14 

presents the time resolved displacement results for the NBS where each line represents 

different DEA outer frame position with respect to the neutral position Figure 3.14(b) 

highlights 3 types of stoke observed. At 4mm (DEA frame position with respect to the NBS 

frame) stable stroke is observed. At position 4.5 and 4.6mm bistable actuation occurred as seen 

by the sudden displacement at higher voltage levels. Suddenly at the next position (4.7mm) 

the stroke has vanished and no actuation occurs because the NBS is blocked against the stop. 

(a) (b)

(a) (b)
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3.2.3.4 Comparison 

The stroke achieved vs. the initial out-of-plane deflection of the DEA (when voltage=0V) for 

each bias element is presented in Figure 3.15. The stiff PBS produces less displacement stroke 

than softer PBS. The hanging mass gives even larger stroke than the softest PBS. The NBS, 

however, far exceed the stroke of the hanging mass and PBS. It showed a 2.6x larger stroke 

than the hanging mass and 3.2x larger stroke than nearest performing PBS (k=0.05N/mm).  

 

Figure 3.15: Comparison of Stroke vs. inactivated DEA Pre-deflection.  

Additionally, when tested at higher frequencies the PBS showed a decrease in maximum 

stroke of nearly 40%, while the NBS showed only a miniscule 5% decrease.  

 

Figure 3.16: Stroke vs. DEA pre-deflection at 1Hz and 10Hz for: (a) PBS and (b) NBS.   

The NBS shows virtually no decrease in performance at higher actuation frequency. These 

results clearly show the advantage of the NBS’s bistable behavior to increase overall stroke 

and to maintain a higher operating bandwidth.  

3.2.4 Stroke Analysis 

In this section, a force-equilibrium (assuming a quasi-static equilibrium) analysis is performed 

in order to better understand how stroke results when each bias mechanism is coupled to the 
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DEA shown in Figure 3.10, Figure 3.12, and Figure 3.14. The area between the Voltage OFF 

and Voltage ON can be seen as the active operating area for a bias element. In order to plot 

the bias elements with the DEA together on the same plot, the sign for each bias element was 

flipped according to the force equilibrium equation. 

 

Figure 3.17: Displacement stroke for two bias elements (a) constant force and (b) linear springs.  

Figure 3.17(a-b) visualizes the variation in stroke (between circles) by increasing DEA pre-

deflection for a springs and masses. 

3.2.4.1 Hanging Mass and Positive-rate Bias Spring 

Figure 3.17(a) is a force equilibrium plot of the DEA (Voltage ON and Voltage OFF) biased 

showing 3 different hanging masses with their respective displacement stroke denoted. The 

user defined maximum out-of-plane displacement is shown for perspective. The hanging 

mass has zero stiffness and results in a reversible displacement stroke between the denoted 

force equilibrium points. The heavier masses pre-deflect the DEA more and tend to produce 

more displacement stroke. However, the experimental results (in Figure 3.10) show that for 

pre-deflections above 3mm the stroke decreases for the hanging mass. Graphically this can be 

seen from the convergence of the Voltage ON curve towards the Voltage OFF curve. In other 

words, the high-voltage has less of an effect on the DEA at these high stretches. This could be 

attributed to the high in-plane strain affecting the dielectric constant or film z-direction 

stiffness [44]. The effects of pre-strain and pre-deflection are discussed further in [49], [94], 

[135]. In Figure 3.17(b) the positive stiffness bias spring results in a reversible displacement 

stroke between the force equilibrium points. This stroke increases as the DEA bias force is 

increased. A larger displacement stroke can also be achieved by choosing a more compliant 

spring at the cost of a lower change in force. 

3.2.4.2 Negative-rate Bias Spring with mechanical stop 

The NBS, as seen in Figure 3.8(b), has a non-linear force characteristic. When a NBS is used to 

bias the DEA, this can result in multiple actuation “modes” when voltage is applied to the 

DEA. In Figure 3.18(a) the NBS is started in the stable right position and where it is just in 

contact with the DEA (i.e. no bias). (The reader should note that in Figure 3.18 the DEA 

constant voltage curves shapes are taken from deflections less than the 5.5mm maximum 

allowed deflection—hence the difference in appearance compared to the constant voltage 

curves of Figure 3.17. The smaller constant voltage curves of Figure 3.18 are more 
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distinguishable, showing such high deflections of the DEA are not necessary.) Figure 3.18(b) 

shows a case when the NBS pre-deflects the DEA so the force equilibrium is found on the 

stable branch of the NBS. This actuation mode is similar to when a stiff PBS is the bias element 

which produces small stroke (between points A and B). In Figure 3.18(c) the NBS is pre-

deflected enough that the NBS is snapped to an equilibrium position on the left stable branch. 

When actuated, this results in very small stroke moving to the left direction (between points 

A and B). 

 

Figure 3.18: Sketch of small stroke possible using NBS without mechanical stop, (a) Initial condition (no pre-deflection), (b) 

NBS pre-deflecting DEA giving small stroke, (c) further deflected DEA such that peak NBS force overcome and NBS 
snapped to new stable condition on left side.   

However, a mechanical stop can be added to constrain the NBS on the unstable branch as 

illustrated in Figure 3.19. The mechanical stop is positioned so that at low voltage (OFF) the 

actuator is blocked but at high voltage the only NBS-DEA intersection point is off the stop. 

Cycling voltage will produce a repeatable snapping action (between point A and B). 

 

Figure 3.19: Stabilized NBS and DEA by mechanical stop. 

Figure 3.20 presents the time-resolved steps for a single bistable actuation cycle when a 

mechanical stop is implemented. Each time step shows the force-equilibrium plots of the 
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DEA-NBS system synchronized with a sketch of the physical components beneath. In Figure 

3.20(a-d) the bistable stroke is presented incrementally as voltage is increased to 2.5kV. Figure 

3.20(d)-(f) present the position as the voltage is decreased. 

 

Figure 3.20: DEA-NBS stroke behavior for one cycle.  

In Figure 3.20(a) the cycle begins at 0V with the DEA-NBS actuator at rest against the 

mechanical stop. The actuator remains blocked as the voltage is increased to 1.5kV as Figure 

3.20(b) shows. In Figure 3.20(c) the voltage has reached 2.0kV. At this point the NBS has 

snapped away from mechanical stop (overcoming the DEA force) and has found a new 

equilibrium position on NBS characteristic curve. As the voltage increases to 2.5kV, the 

displacement steadily increases, Figure 3.20(d). The reverse happens when the voltage is 

decreased. Figure 3.20(e) shows the DEA-NBS soon before snapping back against the 
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mechanical stop. The snap occurs because there is no intersection point for the NBS and the 

DEA. From point (f) to point (a) the voltage decreases 1.0kV and the DEA stiffens up but 

remaining against the stop. As the center plot in Figure 3.20 shows the NBS behavior is quite 

hysteretic. Notice the difference in the voltage when the NBS snaps away and snaps back. This 

is due to the nonlinearity of the NBS. 

3.2.5 Summary 
In summary a small profile and scalable circular DEA actuator biased by a hanging mass, 

positive-rate bias spring, and negative-rate bias spring were systematically tested and 

compared. When electrically loaded at 0.1Hz the results showed the expected trends. The 

lower stiffness bias springs provided more displacement stroke than the stiff ones, and the 

hanging mass out-performed the softest spring. The non-linear or negative-rate bias spring 

(NBS) revealed the highest stroke of all the DEA bias elements. The NBS was bistable and 

used a mechanical stop to maintain stability on the negative stiffness branch. The NBS 

mechanism showed a decrease in stroke of less than 5% when the loading rate was increased 

from 1Hz to 10Hz. The linear spring showed a decrease of nearly 30% when the electrical 

loading rate was increased.  

3.3 CONCLUSIONS 
In conclusion, this chapter sought to analyze, explain and demonstrate the operation of a 

diaphragm membrane DEA in terms of the characteristic forces and those of the loading 

mechanism, or bias element. It was shown through qualitative analysis and systematic 

experimentation that the output (force and stroke) for a membrane DEA can be greatly 

improved by using a bias element with a profile aligned with the DEA force characteristic 

itself. A bistable element called a negative-rate bias spring (NBS) was introduced and, when 

coupled with the DEA, it produced over 50% more stroke than the constant load counterparts. 

The next chapter will examine non-linear bias elements more closely.
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Chapter 4 NEGATIVE-RATE BIAS SPRING 

MECHANISM 
In this chapter contains a detailed explanation of NBS mechanisms: how they are made and 

how they can be used most effectively to perform work with the diaphragm membrane DEA. 

The design of the NBS used is detailed and tested and trends are shown. A stroke analysis for 

the DEA operating against loads is presented along with experimental results. 

4.1 INTRODUCTION AND MOTIVATION 
It was demonstrated in Section 3.2 that the loading conditions of membrane DEAs are very 

important and in particular that negative-rate bias springs can provide a larger stroke. These 

compliant structures show large geometric change when switched between the stable 

configurations. They have the positive features of having high load carrying capacity, high 

speed, and sudden energy release [136]. For the case of a bistable mechanism there are two 

stable positions (S1 and S2) and an unstable point B as seen in Figure 4.1. 

 

Figure 4.1: Force and stored potential energy of a typical NBS. 

A switch will occur when the energy barrier ∆U is overcome. In the case above, the NBS is 

symmetric meaning the energy required is the same no matter the switching direction, 

however this is not always the case. For example, when the NBS is coupled to another 

mechanism, such as a spring or DEA, the U(x) curve would be tilted and have one deeper well 

and one elevated well. This will be discussed and investigated further in Section 4.3.3.1. 
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As stated before, the NBS gets its name is due to the unstable region which predominately 

displays a negative stiffness. This provides an advantage when coupled with the DEA because 

the NBS force can increase when extending (as the DEA is actuated) and thereby perform 

more work against the DEA. 

Since the NBS is a non-linear spring with at least 2 stable positions and the DEA is also non-

linear (but stable) spring there are some extra challenges when designing a combined actuator 

system. The DEA+NBS system may or may not be bistable. One must choose the actuator 

mode based on the application. For example, if an open-close valve is required, possibly a 

bistable actuator would suffice, but if a proportional control valve is needed then a stable DEA 

mechanism would be more appropriate. One should also design the actuator with the 

component and external forces in mind. The challenge here lies in tuning (or designing) the 

NBS system to perform the desired work.  

4.2 DESIGN AND FABRICATION 
Bistable structures can come in many different forms and a variety of configurations have 

recently been built by researchers to match up with their respective membrane DEA 

configuration or application of interest. Some are made of four-bar linkages (rotational hinges, 

sliders and rollers) and springs [25], [137]–[139]. Some are built from bistable buckled 

members [24], [140]. The drawback of the linkages is that usually many parts must be 

assembled. As one would imagine this makes miniaturization challenging. For this reason, 

scalable mechanisms are very appealing for applications which need to be miniaturized, like 

DE actuators. One kind of scalable mechanism often found in applications are compliant 

mechanisms. These mechanisms are made to bend but do not undergo permanent 

deformation. Examples are buckled or post-buckled beams or monolithic structures with 

"living hinges” [141]. This is simply a bending joint which is thinned so that it is highly 

compliant. Figure 4.2 shows some examples of compliant mechanisms in literature. 

 

Figure 4.2: Examples of compliant mechanisms in literature (a) bistable element with parallel linkages [142], (b) Lozenge-

shaped four bar linkage [106], (c) SMA compensating system which makes use of a system of post-buckled beams [143], (d) 

cone actuator deflected with carbon fiber leaf springs [144].  

An advantage of these bistable mechanisms is that they contain fewer parts and there is no 

sliding or friction between parts. A disadvantage is that they sometimes undergo high stress 

when buckled.  

Figure 4.3 presents sketches of two bistable mechanisms. One is realized through linear pre-

compressed springs and rotational pivots/sliders and the other is made of slender post-

(a) (b) (c) (d)
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buckled beams. The figure presents the force profiles together showing some differences. The 

linear compressed spring mechanism exhibits more of a gradual change in force before 

reaching the critical force. The post-buckled beam profile is more abrupt because the beam 

suddenly begins to buckle resulting in a sharp decrease in force. These trends are discussed 

in the papers by Hodgins et. al. [94], [119]. 

 

Figure 4.3 Bistable mechanisms and the force-displacement (a) Linear spring bistable mechanism, (b) Post-buckled beam 

bistable mechanism, (c) F-D response.  

The NBS designed for this work is a post-buckled beam type. As already seen in Section 

3.2.2.1. It consists of four beams (making an X-shape) which were wire electro-discharge 

machined (EDM) from a thin stainless steel sheet. Figure 4.4 presents the design. 

 

Figure 4.4: X-shaped bistable mechanism, (a) SolidWorks sketch of NBS, (b) photo unconstrained, (c-d) mechanically 

buckled and constrained into smaller frame, (c) shows upper stable position, and (d) shows lower stable position.  

The thin X-shape is mechanically buckled into a square shape which is slightly smaller than 

the X-shape itself. This results in beams buckling out-of-plane Figure 4.4(c-d). The square 

frame was designed with SolidWorks and printed with a 3D-printer (OBJET Connex500). A 

3D-printed cover frame is screwed down over the NBS to completely secure it. The force-

displacement response of the mechanism is measured by controlling the position of the center 

of the mechanism and recording the force (as shown before in Figure 3.8).  

(a) (b) (c) (d)
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Many different force profiles are achievable by varying the beam thickness (t), beam width 

(w) and the amount the beams are post-buckled (measured as a fraction of original beam 

length L0). Figure 4.5(a-d) below shows some trends.  

 

Figure 4.5: NBS parameter variation, (a) Buckling frame with dimensions; Force-displacement response and variation of (b) 
buckling amount, (c) beam width, (d) beam thickness.  

By decreasing the size of the buckling frame (i.e. increasing the buckling amount) the stable 

equilibrium distance increases, Figure 4.5(b) but the negative slope remains constant (when 

w=2.5mm, t=0.002in). By increasing the beam width (w) the critical force increases, along with 

the negative slope (while t=0.002in and Buckling = 0.97L0), Figure 4.5(c). Increasing the beam 

thickness results in a large increase in the peak force as well as an increase in negative stiffness 

(while w=2mm and buckling=0.97L0). 

In summary, this simple X-shaped NBS design offers several tuning parameters to obtain 

other force responses. This is helpful for generating the NBS needed to match the DEA. The 

next section will discuss various ways to improve the DE actuation behavior by the use of this 

mechanism. 

(a) (b)

(c) (d)
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4.3 MECHANISM COUPLED TO DEA 

4.3.1 Approach 

In order to design and use a NBS mechanism appropriately with a membrane DEA to perform 

work, several considerations must be made at the beginning. For a given force/stroke 

requirement one can design the NBS for the DEA or design the DEA around the given NBS. 

For this work and analysis, the membrane DEA is a diaphragm configuration with a fixed 

geometry. The actuators can be stacked together, as explained in Section 3.1 (p.20). This 

connects them mechanically in parallel which scales up the blocking force as well as the 

positive and negative behaviors observed (like hysteresis, capacitance, electrode resistance, 

probability to failure, etc.) Additionally the probability of failure is higher because of the 

increase in electrode surface area [145]. Similarly, the parallel capacitance increases with 

layers, meaning more charge is required and there will be a higher current draw to activate 

the actuators, especially at high rates. Therefore, it is advantageous to simply not add any 

unnecessary layers. 

With a given DEA force response, one must design and adjust the NBS to fit the given 

diaphragm DEA for the given job. This is the approach applied here. 

4.3.2 Background 
When coupling a bias mechanism to the diaphragm DEA it must deflect the DEA out-of-

plane—leading to a force equilibrium between the two mechanism or springs. If a linear 

spring and a DEA are coupled there is only one solution (Figure 4.6(a)). There can never be a 

bistable structure in this case because there is only a single equilibrium point. However, when 

a NBS and DEA are coupled there can be a case when the equilibrium paths cross more than 

once—giving multiple solutions. This case is represented by the sketch in Figure 4.6(b). The 

points S2 and S3 are stable solutions and S1 is unstable. (It is possible to use a mechanical stop to 

stabilize this actuator on the negative branch and make a bistable actuator, as was shown in 

Section 3.2.) Point S3 is not a viable solution from a practical standpoint because the actuator 

is intended to operate out-of-plane to the right (positive displacement), serving as a push 

actuator. However, if the NBS is not as stiff as the DEA to which it is coupled, it is possible to 

have a single stable solution on the normally unstable branch of the NBS. Here Figure 4.6(c) 

represents this case when the NBS is quite soft and exhibits only one solution when paired 

with the DEA. The Figure 4.6(c) solution might be advantageous for a stable actuator, though 

the size of the NBS is a drawback. 
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Figure 4.6: Graphical solutions when DEA and bias mechanisms are coupled, (a) linear spring and DEA, (b) stiff NBS and 
DEA, (c) soft NBS and DEA with one solution.  

The NBS needs to be so large for two reasons. The first reason is that the DEA has a relatively 

low-stiffness, and to have a single stable solution on the negative branch, the NBS must have 

a local stiffness less than the DEA. To have a low-stiffness, the mechanism (assuming a post-

buckled bistable mechanism) should have narrower post-buckled beams (as demonstrated in 

Figure 4.5(b-d)) or longer beams so the bending moment is reduced, and forces are lower. 

However, the longer the beam, the larger the geometric change between stable states. 

The second reason for the large NBS size is due to the symmetric nature of the NBS. It needs 

to be bigger simply to achieve the correct stiffness can be achieved. But unfortunately since 

the left side of the DEA is not used, much of the NBS is wasted geometry. 

On the whole, increasing the NBS size is not good (especially when miniaturization is 

considered). The longer the beams are, the larger the actuator footprint becomes. This is a 

critical consideration for product design. 
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One must also consider the required actuation force when designing an actuator. This is the 

force that the bias mechanism provides in addition to the force to stretch the activated DEA. 

See Figure 4.7 below. 

 

Figure 4.7: Generic membrane DEA+NBS system performing positive work as voltage is increased.  

In this example, work is performed on the mass by the DEA+NBS system. The weight of the 

mass disturbs the DEA+NBS force equilibrium, so it must be accounted for in the stroke 

analysis. In maximizing actuator work output, the external forces should also be known so 

that they can be compensated for in the design of the DEA+NBS system.  

4.3.3 Stroke Analysis  

4.3.3.1 Influence of linear springs on NBS 

A solution to the challenge of designing a NBS mechanism which accounts for the external 

force is to use an asymmetric bistable mechanism. This is a mechanism in which one stable 

potential energy state is higher than the other. It may look like the one shown in Figure 4.8(b). 

The energy difference between the wells is ∆U, which is also the net energy the mechanism 

can store/release. 

 

Figure 4.8: NBS energy landscape: (a) Symmetric vs (b) Asymmetric bistable mechanism showing tilted energy wells.  
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To make such a mechanism the NBS itself can be modified (through beam geometry and/or 

beam boundary conditions, see Appendix A) or by simply adding another mechanism (such as 

a linear spring) in series to the NBS (Figure 4.9).  

 

Figure 4.9: Combination of NBS and linear force resulting in a shifted or asymmetric bistable mechanism.  

From the force perspective, the linear element shifts the NBS curve up and effectively 

“softens” the NBS negative stiffness branch. If the linear spring is compressed sufficiently 

against the NBS, one zero-force equilibrium can disappear altogether, as shown in Figure 4.9. 

In terms of potential energy, the linear spring (with U = x2 form, a parabola), when summed 

with the NBS, tilts the potential energy landscape, making one minimum more favorable than 

the other.  

 

Figure 4.10: Transformation of energy landscape by combining a symmetric NBS and a linear spring to produce an 
asymmetric bistable mechanism.  

The potential energy difference between wells can be used to the advantage of the actuator. 

For instance, the bistable structure can be used to store energy by being stabilized in the upper 

well (through work done by an actuator) and then can be released by exerting only enough 

energy to overcome the U-barrier from S1 to B, Figure 4.8(b). Once the barrier is overcome, the 

energy is suddenly released and can, for example, be used against a load. (The load can be the 

combination of the DEA and an external force.) The deactivated actuator can then return the 

NBS to the upper energy well. 

In summary, by adding a linear spring to a stiff NBS, a NBS can be "softened" and made 

adjustable. Since linear springs are a standard mechanical component sold by many suppliers 

adding them to the NBS is often more advantageous than redesigning and fabricating an 

entirely new NBS post-buckled mechanism with the appropriate stiffness to match the DEA. 



Negative-rate Bias Spring Mechanism 39 

 

The linear spring gives the engineer more freedom when designing the bias mechanism. 

Figure 4.11 below illustrates the impact the linear spring parameters (stiffness and pre-

compression) have on the resulting NBS behavior. In particular, it is shown that the linear 

spring provides a way to adjust the NBS profile vertically with little impact to the NBS profile, 

i.e. it maintains a bistable region. By increasing the linear spring stiffness, it gradually cancels 

the negative-rate stiffness region—softening this region. If the linear spring is stiff enough, it 

can essentially negate the bistability altogether. 

 

Figure 4.11: Influence of linear spring on NBS behavior. 

Figure 4.12 shows the result of the NBS+LS system coupled with a DEA. Part (a) presents the 

bias elements just aligned with the DEA but without deflection. In Figure 4.12(b) the linear 

spring and NBS assemblies have been moved toward the DEA, deflecting the DEA and the 

NBS+LS system. One can see that this yields a much larger stroke than if any one component 

biases the DEA alone. Note that while the linear spring may add to the length of the actuator, 

the footprint does not necessarily increase because of the spring’s small diameter. 
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Figure 4.12: Sketch of tuned NBS+LS mechanism with DEA (a) Un-deflected and (b) deflected DEA and giving actuation 

stroke.  

4.3.3.2 Influence of external forces on stroke 

The analysis of the actuation of the DEA with the NBS system up to this point included no 

external forces. The NBS was working only against the DEA. For these actuators to be of any 

practical use, they must perform work—on external objects (see Figure 4.7), such as lifting a 

mass, closing a valve, or pumping fluid. 

Assuming the work required (Force x Distance) is known, this force should be included in the 

Force-Displacement plot when designing the biasing element. Below a sketch of a case when 

a DEA is loaded with a hanging mass. 

 

Figure 4.13: Sketch of loaded DEA (a) tuned DEA without mass, (b) mass loaded DEA not tuned to load, (c) mass loaded 

DEA tuned by compressing linear spring.  

The force the mass adds to the DEA can be accounted for by compressing the linear spring, 

and thus shifting the NBS profile upward Figure 4.13(c). The linear spring is tunable and is 
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limited only by the blocked force of the linear spring (that is, when the spring is at the 

maximum compression). 

An alternate way of representing the actuator behavior on a Force-Displacement graph is to 

plot the Actuator (output) Force, at the deactivated and activated states (LV and HV states). 

This is a quasi-static measurement, which when plotted clearly, shows the obtainable 

actuation forces. By plotting the load one can also see how the actuator would perform based 

on the intersection of the LV and HV curves with the load. Below is a free-body diagram of a 

generic actuator system (DEA biased with a linear spring) to show the derivation. 

 

Figure 4.14: DEA actuator force (a) Sketch and (b) Free-body diagram of mechanism showing the actuator force (FACT).  

The actuator force is the bias spring force less the DEA force. Figure 4.15 presents the FACT for 

a DEA biased with a linear spring. 

 

Figure 4.15: Actuator force produced by linear spring, (a) force equilibrium, (b) actuator force plot showing stroke with 0N 

load.  

Figure 4.15(a) is the force-equilibrium of a linear spring. Figure 4.15(b) highlights the stroke 

for a no load case. The trends show that by increasing the load in the positive direction the 

stroke would decrease slightly, but by reversing and increasing the load in the other direction 

(making it negative) the stroke would increase slightly. It is possible to negate the stroke 

altogether by adding load negate pre-deflection and stroke. 
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When examining the actuator force for a NBS+LS system, one will note that the stroke is larger 

but more sensitive to external forces. Figure 4.16(a) shows the force equilibrium case of a 

NBS+LS system with large stroke. Figure 4.16(b) highlights the actuator output force for an 

unloaded case.  

 

Figure 4.16: Actuator force produced by NBS+LS mechanism (a) Force equilibrium, (b) actuator force plot showing stroke 
with 0N load.  

However, the actuator is very sensitive to any change in loading conditions because the bias 

element is quite compliant and has a stiffness similar to the DEA itself. If the load were 

increased (in the positive direction) the stroke would drop almost immediately to zero. If the 

load were reversed (pulling on the DEA), the stroke would still decrease eventually to zero, 

but not as quickly. 

Therefore, the system must be tuned to each constant load applied. In the following sections 

a DEA with a NBS+LS bias system is tested against constant loads. The results serve as a 

validation of the theory presented in this section and empirically show the advantage of using 

a linear spring to tune the system against varying constant forces. 

4.4 RESULTS AND EXPERIMENTAL VALIDATION 

4.4.1 NBS + Mech. Stop 
To illustrate the impact a small external force can have on a membrane actuator, this section 

presents a test with a NBS, a mechanical stop and an external force. The NBS and mechanical 

stop were appropriately coupled with the DEA to make a bistable DE actuator (as in Section 

3.2.3.3) and a hanging mass was the external force. 

4.4.1.1 Setup and Procedure 

Figure 4.17 shows both a photo and a sketch of the test rig. The diaphragm DEA is mounted 

onto a movable platform (Newport) which is actuated by a Zaber LA-28A linear actuator. A 

Keyence LK-G37 laser displacement sensor is mounted on the platform behind the DEA. The 
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NBS is mounted and fixed in position relative to the moving platform and collinear with the 

center axis of the DEA. The center of the DEA is connected to the NBS with a plastic spacer. 

As the moving platform is actuated in the direction of the NBS, the spacer in between the NBS 

and DEA pre-deflects the DEA out-of-plane. The deflection of the center of the DEA is 

measured with the Keyence laser displacement sensor. A second linear actuator (Aerotech, 

model ANT-25LA with an Aerotech Ensemble ML controller) is positioned and fixed behind 

the NBS, serving as the adjustable mechanical stop. A plastic extender is attached to the end 

of the linear actuator to serve as the mechanical stop and its shape allows enough room for 

the pulley and a thread to hang the mass. The thread is tied to the center of the NBS and 

guided over a plastic pulley with low-friction needle roller bearing. 

 

 

Figure 4.17: NBS with mechanical stop test setup (a) photo and, (b) schematic.  

The DEA offset parameter is the position of the DEA outer frame which is controlled by the 

Zaber linear actuator. The x1 parameter is the deflection of the center of the DEA from its un-

deflected position. This is the value the laser sensor measured. 

The DEA employed consisted of two stacked single-layer cartridges. The DEA was pre-

deflected incrementally (with the Zaber linear actuator) and voltage on the DEA was linearly 

cycled from 0kV-2.5kV-0kV at rates of 0.1, 1.0 and 10Hz. The actuator was first tested without 

a hanging mass and then repeated with a hanging mass of 20 grams. 

Aerotech

Lin. Act.

Pulley

Hanging Mass Zaber

Lin. Act.

Keyence 

Laser Disp. 

Sensor

DEAP

NBS

Mech. Stop(a)

Aerotech
Lin. Act.

Zaber Lin. Act.

DEANBS

Mech. 
stop

Pulley

Hanging 
Mass

+V

Computer with 
LabView 2010

-V

Amplifier
(TREK Model 610E)

Keyence Laser 
Disp. Sensor

DAQ FPGA Board
(Model NI-7833R)

m

(b)



44 Negative-rate Bias Spring Mechanism 

 

 

Figure 4.18: Photo of test rig with mass attached (20 gram) to NBS (DEA not visible).  

4.4.1.2 Results 

Results without mass for 0.1Hz are show in Figure 4.19(a-b). In the bistable region the largest 

displacement is approximately 1.5mm at a DEA offset of 4.8mm. Figure 4.19(a) presents the 

DEA output (x1) (for 0.1Hz excitation) at various DEA offsets, highlighting the bistable region. 

In Figure 4.19(b) one cycle of DEA output vs. voltage is plotted. This clearly shows the large 

stroke for the bistable cases (DEA offset = 4.5 and 4.8). The higher DEA offsets (more pre-

deflection, e.g. 5mm) results in a blocked actuator and low deflections behave like a linear 

spring. 

 

Figure 4.19: Test result of NBS without mass (a) time resolved stroke for different frame positions (DEA offsets), (b) stroke 
vs. voltage for same frame positions revealing stable, bistable and blocked cases.  
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When a 20 gram mass is added to the system the results are quite different (Figure 4.19(b)). 

The bistable stroke is no longer as it was with no mass. The maximum stroke is approximately 

0.5mm at a DEA offset of 3.8mm. 

 

Figure 4.20: Test result of NBS with mass (a) time resolved stroke for different frame positions (DEA offsets), (b) Stroke vs. 
voltage for same frame positions revealing blocked or small actuation stroke.   

A direct comparison of the stroke with a mass and without a mass is shown in Figure 4.21. 

The difference is clear. The external load on the actuator essentially removes the bistable 

behavior, substantially reducing the stroke over the range of pre-deflections. 

 

Figure 4.21: Comparison of stroke output with mass and without mass  

4.4.1.3 Discussion 

To understand failure of the DEA to perform work against a payload one should examine the 

force-equilibrium of the actuator. 
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Figure 4.22: Stroke development when adding mass (with mech. stop), (a) no mass with large bistable stroke, (b) small mass 

reducing stroke slightly, (c) large mass with no displacement stroke (actuator blocked).  

Figure 4.22 shows force-equilibrium sketches of the DEA with the NBS for a gradual addition 

of mass. The initial force equilibrium (at 0kV) is denoted by a star (*) symbol. The equilibrium 

point at the 2.5kV is denoted with a circle (°) symbol. The equilibrium point at which the NBS 

snaps away from the mechanical stop is denoted by a square (□) symbol.  

Firstly, Figure 4.22(a) shows the DEA being pre-deflected by the NBS and being stabilized by 

the mechanical stop. In this position, the NBS begins against the mechanical stop because the 

DEA force is greater than the NBS force. As the voltage is increased, the stop force decreases 

until the force of the NBS overcomes the DEA (see □ symbol) and the NBS snaps away from 

the mechanical stop to a new equilibrium on a higher voltage curve. The force equilibrium 

position will continue to change until the voltage reaches the maximum of 2.5kV, denoted by 

the circle symbol (°). When the voltage is lowered the reverse happens. The NBS maintains 

equilibrium with the DEA until the DEA becomes so stiff that it overcomes the NBS force. 

Then the NBS must snap against the mechanical stop and return to equilibrium at the star (*) 

symbol.  

The addition of a mass to the system (Figure 4.22(b)) results in the NBS force curve “falling 

down”. This is because the force from the mass (negative force) is added to NBS bias force and 

as a result it reduces the NBS force when plotted with the DEA curves, essentially softening 

the NBS with respect to the DEA. As the Figure 4.22(b) plot shows, this results in a snap 

behavior as before. However, the snapping away from the mechanical stop (see □ symbol) 

occurs at a lower force and also at a higher voltage level. As Figure 4.22(b) shows, this results 

in a slightly smaller stroke than the previous case, without the mass. As mass is gradually 

added to the system the stroke will continue to decrease until it becomes zero. There is a point 

when the NBS + m*g force curve no longer intersects the mechanical stop within the DEA 

operating region (i.e. between the 0kV and 2.5kV curves). Therefore, even though the 2.5kV is 
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applied to the DEA, the NBS remains pressed against the stop. An example of this is seen in 

Figure 4.22(c), bottom. In this case, the force against the stop changes but it produces no stroke. 

 

Figure 4.23: Effect of mass on actuator, (a) NBS + mechanical stop producing stroke, (b) mass added system resulting in 

blocked actuator.  

Figure 4.23 shows a DEA without mass vs. a DEA with a mass. An unloaded DEA biased (to 

a particular pre-deflection) with an NBS reveals large stroke (Figure 4.23(a)). However, when 

a mass is added to the system Figure 4.23(b), the NBS force characteristic is shifted down with 

respect to the DEA characteristic curves. The loaded actuator produces no bistable 

displacement. This was demonstrated experimentally in the case shown in Figure 4.20 

(blocked case). 

One can clearly see from the tests, that the NBS biased DEA can produce large bistable stroke 

(with aid of a mechanical stop). It was also shown that when a 20gram mass was added to the 

previously bistable actuator the DEA large bistable stroke disappears. Theoretically, under 

the presence of a small enough mass (e.g. 10gr), bistable stroke could be obtainable but this 

was not shown experimentally.  

4.4.1.4 Conclusions 

These experimental results show the inadequacy of a NBS with a mechanical stop to bias the 

DEA and perform substantial work. When a payload was added to the system the bistable 
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behavior was nullified. The reason for the change was analyzed and qualitatively explained 

using a force-equilibrium argument. The suggestion to add a linear element (replacing the 

mechanical stop) to improve the stroke and obtain peak performance against a payload is 

covered in the following section. 

4.4.2 NBS + Linear spring 
As explained in Section 4.3.3.1 (page 37), when a linear spring is added to a NBS the 

mechanism can become asymmetrically bistable and the F-D curve will be softened and 

shifted upwards. To empirically document this effect, a force-displacement characterization 

was performed on a NBS+LS mechanism. A linear spring was simply aligned with the NBS 

and the force characteristic was measured, Figure 4.24(a-b). Figure 4.24(c) shows the results 

for a NBS and then the cases with linear spring at different compressions. Increasing the linear 

spring compression shifts the curve upwards. One case in literature where a similar 

mechanism (combination of a linear spring and bistable mechanism) is seen is in Chen et al. 

[146] where a monolithic constant force end-effector was designed. 

 

Figure 4.24: Test results for NBS+LS bias element (a) Photo of test rig from front showing NBS and LS being displaced by 

linear actuator, (b) Photo of test rig from rear revealing linear spring with adjustable thumb screw, (c) Force vs. controlled 

displacement results for NBS and NBS+LS at different linear spring pre-compressions.  

The goal here is to perform a parameter study, in which the relevant bias mechanism 

parameters are studied. The linear spring has stiffness and length as inherent parameters and 

compressed length as an adjustable parameter. The NBS can likewise be positioned at varying 

distances from the DEA. Therefore, there are at least two independent parameters which need 

to be controlled in this test. Figure 4.25 shows a sketch of the DEA with the NBS and the linear 

spring.  
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Figure 4.25: DEA biased by combination of NBS and linear spring (a) sketch, (b) Force vs- Displacement plot of individual 

elements.  

The DEA outer frame position with respect to the NBS as well as the length (pre-compression) 

of the linear spring was varied. This enabled complete system characterization because the 

DEA pre-deflection and the linear spring deflection were variable. Additionally, the setup 

enabled an addition of a hanging mass to serve as the constant payload against the DEA. 

4.4.2.1 Setup and Procedure 

This combined NBS plus linear spring test setup was realized and is presented in the photo 

and sketch below. 

 

 

Figure 4.26: NBS with linear spring test setup (a) photo, (b) schematic.  

The test was enabled by the two linear actuators to control the deflection of the DEA and the 

linear spring. The out-of-plane DEA displacement was tracked with a laser displacement 
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sensor which was mounted to the linear stage which was moving to deflect the DEA against 

the NBS. The setup was also designed to add a constant payload via a hanging mass and 

pulley system. See figure below for more visual details.  

 

Figure 4.27: Photos of setup, (a) Close up of NBS and linear spring, (b) mechanism with low voltage, (c) mechanism 
snapped out when high voltage applied.  

Before beginning the parameter study, the setup was initialized as follows. The NBS was 

manually snapped to the stable position to the right. The DEA frame was moved so that it was 

just in contact with the NBS (laser sensor used to sense contact). The linear spring was then 

moved to make contact with the NBS (load cell used to sense contact). These were the initial 

conditions (sketched in Figure 4.25). If a load was being tested, at this point the mass would 

be carefully hung on the thread. 

Various combinations of DEA deflection (achieved by varying the DEA frame position) and 

linear spring compressions were set. Next, the voltage was applied linearly and the stroke was 

measured. For one NBS mechanism, three different linear springs (with stiffness constants k= 

0.174, 0.240, 0.377N/mm) were coupled and tested. As before, measurements and control of 

the motors and sensors were performed using LabVIEW. 

4.4.2.2 Results 

Figure 4.28(a) shows the time resolved displacement results for a triangular voltage input. The 

figure shows the results for different linear spring, k= 0.174N/mm, compressions (1.1mm, 

1.3mm…) while the NBS-DEA distance is fixed at 6.6mm. This plot reveals there are many 

types of displacements possible and they vary depending on the linear spring compression. 

The highest stroke in Figure 4.28(a) is approximately 2.5mm. 
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Figure 4.28: NBS + Linear spring stroke results without mass added at DEA frame position 6.6mm, (a) time resolved stroke 
at different LS pre-deflection levels, (b) Contour plot of stroke vs DEA frame position vs LS pre-deflection levels.  

Figure 4.28(b) plots the measured stroke for a range of DEA frame positions and LS pre-

deflections. The plethora of stroke results are summarized in this contour plot, showing that 

the optimum stroke has a magnitude of 3.02mm. The tuning of these two parameters are both 

quite sensitive. However there appears to be a small range of frame positions and LS pre-

deflections that yields large results. 

When a mass was added to the actuator, large stroke was still obtainable (as before) but at 

different linear spring pre-deflections. Figure 4.29 presents this case. The oscillations seen in 

the plot are due to the oscillations transferred to the center DEA disk from the hanging mass.  

 

Figure 4.29: NBS + Linear spring stroke results with mass added (30grams) at DEA frame position 6.4mm, (a) time resolved 

stroke at different LS pre-deflection levels, (b) Contour plot of stroke vs DEA frame position vs LS pre-deflection levels.  

By comparing the “ridge” of optimal values in Figure 4.28(b) and Figure 4.29(b), the main 

difference appears to be the higher LS pre-deflection. In order to illustrate this point further 
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Table 4.1 presents the stroke results when loaded by many different masses). Notice that a 

similar maximum stroke is obtainable at each level but at a higher linear spring pre-deflection. 

Table 4.1: Stroke landscapes for different hanging mass loads. Stroke for different hanging mass levels (0-100grams) when 
using linear spring k=0.24N/mm. 

0grams  10grams  

20grams  30grams  

40grams  50grams  

70grams  100grams  

The table of plots shows the ridge of optimal stroke moves to the right as mass is added. A 

stroke of at least 3mm is possible no matter the load faced. Figure 4.30 shows 3D surface plots 

of the stroke with different masses.  
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Figure 4.30: 3D surface plots of stroke at various constant loads.  

Higher pre-deflections from the linear spring are required to compensate when larger 

constant loads are added. 

4.4.2.3 Discussion 

Since the linear spring counterbalances the applied load, more work can be performed for 

each stroke. Mechanical work is calculated as Force x Displacement with the force being the 

weight of the mass and the displacement being the DEA stroke. Figure 4.31 presents the 

maximum stroke for each load and the corresponding work output. 

 

Figure 4.31: Stroke and work output (a) maximum displacement stroke vs. applied load, (b) calculated work-per-cycle vs. 
applied load.  

The work performed can also be seen as the graphical area beneath the actuator force curve 

as presented in the Figure 4.32 below. In part (a) there is no load present. Once the load is 

applied (Figure 4.32(b-c)) work is being performed. The DEA is only allowing the bias element 

to perform the work against the load. If the load, for example, shown in (c) were to be removed 

(a) (b)
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(i.e. 0N) the NBS would no longer be in balance with the DEA and it would snap and stretch 

the DEA until the actuator force reached null. Therefore, the load is required to maintain the 

desired stroke. 

 

Figure 4.32: DEA performing work against increasing loads (FLOAD) (a) no load, (b) medium load, (c) high load.  

4.5 CONCLUSIONS 
This chapter presented the design, fabrication, testing, and implementation of NBS 

mechanisms as bias elements for DEAs. An approach for tuning the NBS to the given DEA 

was explained and experimentally validated. This was performed by means of an asymmetric 

bistable spring. This was realized by combining linear spring elements with post-buckled 

bistable elements. This was motivated by the failure of the DEA with a NBS-mechanical stop 

to operate against a substantial load (i.e. more than 30grams). Therefore, the linear spring was 

added and tested. The linear element proved to be a good compensating mechanism when 

the DEA was operating against constant loads. It served as a tuning mechanism to adjust the 

bias mechanism to fit with the DEA and the external loads. An experimental test showed 

repeatable stroke of more than 3mm could be maintained even when loads up to 1N were 

applied. 
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Chapter 5 DEA PROTOTYPES 
This chapter introduces demonstrator designs and uses them in a study to show the DE 

actuation theory explained in the previous chapters. Force-displacement measurements were 

performed for each individual component (DEA and bias components) and used in predicting 

the DEA stroke behavior. By using different NBS and linear spring combinations, bi-stable, 

semi-stable and stable stroke cases are achieved with the demonstrator. Furthermore, a quasi-

static model is presented for each stability case by using polynomial fits to the empirical force 

data. The actuation stroke is modeled by examining the force-equilibrium condition at each 

voltage level. The qualitative actuation response matches the data well. 

5.1 DESIGN 
Having presented the theory of biasing diaphragm DEAs, now some further experimental 

results are presented. The DEA demonstrator devices designed are standalone, portable 

actuators which demonstrate how DEAs work. The DEA cartridge and appropriate bias 

elements are held together by a 3D printed structure designed in SolidWorks. The 

demonstrator makes a good display piece when seeking to explain how diaphragm 

membrane DEAs work. Contained in the demonstrator is the DEA and a bias element. Figure 

5.1 highlights the main components with bright colors. There is a spacer between the DEA 

and the NBS to allow for some separation between the two and for pre-deflection. 

 

Figure 5.1: DEA demonstrator design (a) isometric view, (b) cross-sectional view.  

The demonstrator was designed so that the DEA pre-deflection and linear spring deflection 

could be adjusted. The NBS was fixed, but the DEA could be lowered against the NBS+LS 

system to deflect it. The adjustable screw permitted linear spring pre-compression. The 3D 

(a) (b)

Adjustable 

screw

Linear spring

NBS

DEA
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printed parts were fastened together with M2 fasteners and/or via snap/flexure mechanisms. 

Figure 5.2 shows the process of assembling the individual components.  

 

Figure 5.2: Views for demonstrator assembly (a) the NBS and push piece, (b) the base to hold the NBS, (c) snapping NBS 

into the base, (d) snapping DEA into seat, (e) guiding the DEA seat on to the base, (f) the linear spring and thumb screw, and 
(g) the fully assembled demonstrator.  

Because of the use of snap-able parts, the DEA cartridge and NBS can be replaced easily when 

needed (see Figure 5.2(c-d)). The design had an open side to permit free access to the linear 

spring. The distance between the DEA seat and the NBS was adjustable via the grooves and 

the 4 screws could be tightened to lock the position. This allowed for freedom to adjust the 

DEA pre-deflection. This demonstrator design has been expanded and used for various sized 

diaphragm DEAs. Below is a series of DEA actuators with the same basic design as shown in 

Figure 5.1 and Figure 5.2 but with larger NBS and DEA components. 

 

Figure 5.3: Photos of various sized DEA demonstrators.  

Figure 5.4 presents three photos of the demonstrator producing stroke as voltage is increased. 

(a) (b) (c) (d)

(e) (f) (g)
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Figure 5.4: DEA demonstrator (a) no voltage applied, (b) voltage increasing, (c) maximum voltage.  

The stability of the actuator depends on the DEA force behavior and the NBS + linear spring 

combination chosen. This will be briefly explored in the next section. Experimental results for 

bistable and stable actuators are shown along with actuator force response at different 

voltages. 

5.2 EXPERIMENTAL INVESTIGATION OF ACTUATOR 

FORCE 
Force measurements of the individual actuator components were performed and used in the 

force equilibrium analysis. First the force response of the DEA itself was measured (at constant 

voltage). Next the NBS+LS system force was measured. Finally, the DEA+NBS+LS force was 

measured at different voltage levels. The test setup is shown below for a DEA+NBS+LS test. 

While similar to the previously shown setups this one differs slightly. The motor may 

experience positive and negative loads due to the combined force measured. To maintain 

contact with the actuator, the motor shaft was secured to the DEA with two neodymium 

(Nd2Fe14B) magnets. When tension forces were required, the connection to the shaft would 

remain (up to a max holding force of ~5.2N) and the load cell would measure a tensile force. 

The magnets also allowed for quick connection and disconnection. 

The linear motor with a shaft mounted load cell began the force-displacement experiment 

with the DEA at its zero or the minimum pre-deflection allowed by the NBS. The DEA (or 

NBS+LS) was displaced in a sinusoidal manner while the force was measured. 

 

Figure 5.5: Actuation force test setup (a) Linear motor to push/pull the DEA+NBS+LS demonstrator, (b) photo of setup.  

A NBS and a DEA used for this demonstrator are shown in the figure below. The NBS and the 

DEA were slightly larger than the ones used in previous chapters. This particular frame 

buckled the NBS by about 5% of the active beam length (L0= 13.3mm). The beam width was 

either 1.5 or 2.5mm. The shim stock thickness was 0.003in (76µm). The exact NBS combination 

(a) (b) (c)

(b)(a)

load cell

magnetic 

connector

bias 

mechanism

DEA
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will be listed for each stability case. The linear spring used for all three cases had a stiffness 

of, k=0.38N/mm. 

 

Figure 5.6: Photo of tested elements (a) DEA, (b) NBS, and (c) linear spring.  

The force-displacement results for a two-layer DEA are presented below for voltage ranging 

from 0 to 2500V. 

 

Figure 5.7: Force response of DEA (45mm diameter) to sinusoidal displacement (a) at 6 constant voltage levels (b) 0V and 
2500V showing gap (workable area) and (c) photo of test.  

 The NBS and the NBS+LS were tested in the same manner. Figure 5.8(a-c) shows force 

measurements of the NBS+LS combination used with the DEA to produce a bistable, semi-

stable and stable actuator, respectively.  

 

 

Figure 5.8: Force response of NBS+LS cases (a) bistable case, (b) semi-stable case, (c) stable case, (d) test at start 
(compressed spring) and (e) extended linear spring.  

20mm
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w
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The table below lists the NBS and LS parameters. Two NBS elements were stacked and 

clamped together in the buckling frame to achieve the desired thickness and stiffness. (The 

linear spring compression was approximated from the data since the small workable area in 

the prototype did not allow for measurements of the spring length.)  

Table 5.1: NBS and LS parameters for three stability cases 

 Frame size w [mm] t [mm] LS k [N/mm] LS compression [mm] 

Bistable 
0.95L0 2.5 0.076 

0.38 ~4.61 
0.95L0 2.5 0.076 

Semi-
stable 

0.95L0 2.5 0.076 
0.38 ~2.18 

0.95L0 1.5 0.076 

Stable 
0.95L0 1.5 0.076 

0.38 ~2.14 
0.95L0 1.5 0.076 

To test the free actuation stroke, a setup with a laser displacement sensor was used (as shown 

in Figure 5.9). The starting deflection of the DEA was not directly measured, since the DEA 

was deflected as the demonstrator was assembled by hand. For this reason, the absolute 

actuation stroke measured by the laser was compared with the DEA and NBS system force 

measurements to calculate the DEA starting deflection. In other words, the NBS system force 

measurements were shifted to the right with respect to the DEA coordinates (Figure 5.7). 

 

Figure 5.9: Actuation stroke test setup (a) sketch and (b) photo.  

5.2.1 Results 

In Figure 5.10 are the results for the three different cases. The time-resolved stroke is plotted 

for each case when a sinusoidal voltage input was applied and the actuation stroke is 

measured with the laser displacement sensor. The absolute stroke vs. voltage plot shows the 

stability of the system. The force-displacement plots present the DEA (Figure 5.7) with the 

NBS+LS results (Figure 5.8) plotted in the same coordinates. The intersection points show the 

start and max stroke obtained. 

Stroke

(b)(a)
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Figure 5.10: Demo results compared (a) bistable case, (b) semi-stable case and (c) stable case.  

 

Figure 5.11: Comparison of stroke for each case.  

5.2.1.1 Bistable DEA 

Shown in Figure 5.10(a) is the case where the DEA was bistable due to the NBS+LS 

combination chosen (Figure 5.8(a)). The bistability is seen clearly in the voltage resolved plot. 

(c)

(b)

(a)
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no snap

no snap

slow

snap

slow

snap
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There is a sudden large displacement around 2000V and a return around 250V. The stroke 

from the intersection points in the F-D plot appear to very similar to the actual stroke 

measured, ~5mm. 

Examining the actuation force provides a deeper understanding of the actuator behavior at 

hand. Figure 5.12 presents the measured actuator force vs. the actuator displacement or 

elongation at different voltage levels. This can be used to predict the possible stroke of the 

actuator system under various loading cases. For this demonstrator the load was ~0N, hence 

the displacement must remain on the x-axis. The large overlapping hysteresis loops in Figure 

5.12(a) are due to the combined hysteresis of the NBS and also partially due to the 

viscoelasticity of the DEA. To make the trends clearer, the force is averaged in Figure 5.12(b). 

 

Figure 5.12: Bistable actuator force output, (a) force measurement to sinusoidal response at 6 constant voltage levels, (b) 
measurement average for each voltage level with start and end points for 0N load noted.  

The multiple intersections of the constant voltage curves with the x-axis show that there can 

be instabilities. At 0V the actuator has one intersection point (~4.75mm), but at higher voltages 

up to 1500V there are three intersection points, with the middle one being an unstable 

equilibrium. However, beginning with 1500V, there is a switch back to one solution but at a 

higher deflection (~9.25mm). This switch in stability point results in a snap. Increasing the 

voltage further to 2500V gives a steady and minimal stroke.  

Decreasing the voltage also results in a snap back to the start when the number of x-axis 

intersection points switch from three to one. On the return this happens at a much lower 

voltage; less than 500V. 

5.2.1.2 Semi-stable DEA 

In this case a different, slightly softer NBS mechanism was used (Figure 5.8(b), Table 5.1) so 

that the demonstrator revealed semi-stable stroke. This resulted in the negative stiffness being 

slightly less (than the bistable case) and therefore more similar to the DEA stiffness itself.  

As seen in Figure 5.10 the stroke is more gradual than the fully bistable case. The cycle is still 

hysteretic, i.e. two solutions for each voltage level, but it is not as extreme as the bistable case. 

The hysteresis is attributed primarily to the viscoelasticity of the DEA and secondarily to the 

(a) (b)
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NBS mechanism. It is also possible that the similarity in stiffness (between the DEA and the 

NBS+LS) exaggerates the DEA viscoelasticity because the ∆F is relatively small compared to 

the ∆x due to the voltage change. In other words, the softness of the overall actuator system 

allows the viscoelasticity, and not the bias spring to dominate the system during actuation. 

From the actuation force results (Figure 5.13) one can notice that the shape of the actuation 

force profile is flatter in the region of intersection with the x-axis and generally displays a 

single solution at 0N. Therefore, the actuation should not exhibit a large jump in position 

when actuated. 

 

Figure 5.13: Semi-stable actuator force output (a), force measurement to sinusoidal response at 6 constant voltage levels, (b) 
measurement average for each voltage level with stroke start and end points for 0N load noted.  

According to Figure 5.13(b) there is clearly one solution (with the 0N axis) from 1500V 

onward. This seems to suggest the acceleration in stroke from this point on as seen in Figure 

5.10(b). This is due to the large decrease in DEA stiffness and not due to bistability.  

5.2.1.3 Stable DEA 

An increasingly stable response (and a much less-hysteretic response) therefore, is achieved 

with an even softer mechanism. The NBS here was slightly softer than the semi-stable case so 

that, when combined with the same linear spring (k=0.38N/mm), the negative stiffness was 

softer than the DEA stiffness at the same deflection. 

In Figure 5.10(c) one can see that the stroke is quite stable (low-hysteresis), however this is at 

the cost of actuator stroke. The stroke is reduced to around 2mm. In the force-equilibrium plot 

of Figure 5.10(c) there appears to be a range of intersection points between the bias mechanism 

and the DEA at 0V (at the start). This is believed to lead to the large initial stroke which doesn’t 

return completely to 0mm. This can be due again to the viscoelasticity of the DEA along with 

the bias force which practically matches the DEA stiffness at the start point. 

(a) (b)
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Figure 5.14: Stable actuator force output (a) Force measurement to sinusoidal response at 6 constant voltage levels, (b) 
measurement average for each voltage level with stroke start and end points for 0N load.  

In the actuation force interpretation, one can see that the actuator gives stable actuation 

because there is one clear intersection point at each voltage level with the 0N load. This means 

the hysteresis observed is primarily due to the DEA viscoelasticity and NBS hysteresis but not 

due to bistability or multiplicity of force equilibria. 

5.3 MODELING 
A quasi-static modeling of the stroke behavior can be performed by solving for the force 

equilibrium at each voltage level. However, when multiple solutions are possible, a more 

elegant way to solve for displacement is to track the minimum potential energy of the system 

when actuated. This is the approach taken here. Firstly, by using polynomial fits for the DEA 

force at constant voltage, the NBS force can be approximated. The linear spring is assumed to 

be linear. The total actuator potential energy expression can be found from these analytical 

force equations, by summing the integral of the force expression. 

For the DEA a 5th order polynomial was used for fitting to the experimental data at each 

voltage level. Figure 5.15(a) shows the fits and data for low and high voltage. Figure 5.15(b) 

shows the fits at each voltage level. Notice the increasing separation at the higher voltages. 

 

Figure 5.15: DEA experimental and model results (a) 0V and 2500V experimental and model fits, (b) model fits for 
intermediate voltages.  

(a) (b)

(a) (b)
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For the NBS data a 9th order polynomial fit was solved for each NBS combination used. Figure 

5.16 shows the data and the resulting fit. Due to some slight asymmetry in the NBS 

mechanism, the fits have some small error but overall it represents the experiments well. 

 

Figure 5.16: NBS model fits for (a) bistable, (b) semi-stable and (c) stable cases.  

Using these polynomial fits, the potential energy was calculated using the following formula: 

 DEA BPE F dx F dx    (2) 

Where FDEA is the force of the DEA (a function of the voltage) and the FB is the force of the bias 

mechanism (NBS+LS). 

Figure 5.17 presents the modeled F-D plots with the total PE for 0kV to 2.5kV in increments 

of 500V. By tracking the minimum energy for all voltage levels the entire stroke profile can be 

known. 

 

Figure 5.17: Modeled force and actuator potential energies at intermediate voltage levels for (a) bistable, (b) semi-stable, and 
(c) stable. The change in potential energy minimum is clearly seen.  

The coefficients of the 5th order polynomial fits (Figure 5.15(b)) are linearly interpolated 

between the six constant voltage measurements. This provides a smooth change in the 

parabola shape as voltage is simulated. 

(a) (b) (c)

(a) (b) (c)
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Figure 5.18: Experimental and model results (a, b).  

For comparison, the results are presented side-by-side. The magnitudes are fairly similar 

considering the assumptions and data fits made. The bistable case shows the hysteretic 

behavior due to the instability. The model was purely quasi-static, so there are no viscoelastic 

effects seen in the results as in the experiments. It is interesting to note that the largest stroke 

also has the largest hysteresis. Such an actuator would perform well as a binary actuator or 

an “open-close” actuator unless stability was achieved using robust control as used in [147]. 

For a proportional actuator, the stable case would be preferable because of the continuous 

displacement with voltage. The control would be less complicated. 

5.4 DISCUSSION AND OUTLOOK 
When non-zero loads are applied, the actuation force plots can be useful to present the 

expected stroke. Consider the following case when a linear spring load is applied. Figure 5.19 

shows the test scenario and the actuation force. The intersection points of the actuator force 

with the load show when there is a force equilibrium. 

 

Figure 5.19: Actuator with linear load (a), FBD (b) and actuator force against linear load (c).  

With the addition of a load the stability of the actuator can change. To study the stability, the 

same procedure of finding the minimum of the total potential energy can be used. Thus the 

stability can be ensured for all voltage levels.  
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This chapter presented experimental and modeling results for 3 demonstrators built from 3 

different NBS mechanisms. The F-D diagrams along with the actuator force were used to 

analyze the actuator behavior. Using a potential energy approach, the actuators were modeled 

and showed good qualitative results for the different mechanisms. 

Using this method of modeling the NBS and diaphragm DEA force with polynomial fits, the 

stroke can be estimated under different loading conditions. The time dependent effects like 

viscoelasticity and creep are neglected here so in reality the performance could be lower in 

applications. Further work in material modeling is should be performed to include the time 

dependent effects into this model. 





 

 

 

 

 

 

 

 

 

PART 2: ADVANCED EXPERIMENTAL 

TECHNIQUES FOR CHARACTERIZATION 

OF DEAS  

Experimental testing of DEAs is highly important not only because the field is fairly young 

but because it allows models to be created and verified. Validated models can then be used in 

the design and optimization of other DEA systems.  

Part Two of this thesis highlights two newly-designed methods for benchmarking membrane 

DEAs. The first is a programmable force application device which was developed to 

characterize DEAs and to determine optimal loading conditions. The second is a standardized 

DEA tester which performs uniaxial tests on simple geometry DE materials. The device is 

capable of performing repeatable electromechanical tests of DEAs and DE materials. The 

development, utilization and studies from each setup are presented in the following chapters. 
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Chapter 6 SMART EXPERIMENTAL 

TECHNIQUE TO OPTIMIZE DIAPHRAGM 

DEAS 

6.1 INTRODUCTION 
As with most active or “smart” materials systems, DE Actuators (DEAs) exhibit non-linearities 

which are easily seen in stress-strain, voltage-force and voltage-stroke measurements [49], 

[123]. These non-linearities need to be analyzed and compensated for to maximize 

performance in applications and take full advantage of the attractive features of DEAs. 

Research has shown that DEAs respond differently when coupled with different mechanical 

loads. Chapter 4 and [82] demonstrated how a negative stiffness spring (post-buckled beam 

mechanism) provided an order of magnitude increase in the DEA stroke over constant force 

or positive stiffness springs. However, to experimentally test a DEA to find the optimal bias 

mechanism configuration requires designing, fabricating and testing several pre-load 

mechanisms. This can often be a time consuming process. For instance, testing a DEA at 

different constant force levels requires attaching several test masses to the DEA (as performed 

in Section 3.2.3). Or testing a DEA with different linear spring rates requires aligning and 

repeating the tests for each spring tested. Each time a load or component is exchanged for the 

other, there is a risk of alignment and offset errors. Furthermore, given the variety of DEA 

geometries and the multitude of mass/spring configurations, the number of useful actuator 

designs that would need to be tested could reach the 1000’s. 

In this chapter a novel solution is developed to couple any predefined load to a diaphragm 

DEA while simultaneously measuring the performance of the actuator (stroke, force, work 

etc.). This benchtop tool mechanically simulates realistic loading conditions via a 

programmable electromagnetic motor and can expedite testing of application specific devices. 

It limits the number of setups which need to be built and allows for enhanced dynamic testing 

of DEAs which was previously impossible. 

To validate and demonstrate this tool, various mechanical loads were applied to a circular 

diaphragm DEA via the custom force controlled electromagnetic motor. The motor is 

programmed to simulate various biasing systems, such as a constant mass or linear spring, 

and proved to be capable of maintaining the desired loads as the DEA was actuated. The 

measured DEA stroke matched the measured DEA force-displacement profile. This study also 
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demonstrated that higher mechanical output can be achieved by matching the pre-load 

mechanism loading characteristic with that of the DEA—ultimately making an actuator 

system more sensitive to the applied voltage. This was in agreement with the work presented 

in Section 3.2. 

6.2 DESIGN OF A PROGRAMMABLE ELECTROMAGNETIC 

MOTOR 
Before testing the DEA under different biasing loads, careful experiments were conducted on 

a linear electromagnetic motor. The intent was to use the motor to apply mechanical loads to 

the DEA. This particular linear direct drive motor has a built-in encoder and an already 

implemented internal current control loop. It is designed to be operated in closed loop 

position control, with the position as the process variable and the current as the output of the 

controller. However, since force control is desired, in this case the motor current is the process 

variable. A load cell mounted on the motor shaft permits measuring the applied force. This 

section shows the experimental results which convinced the authors of the need to control the 

force with a closed loop PID law rather than exploiting the force-current correlation via a 

feedforword control. The control scheme implemented is explained in Section 6.2.2. 

6.2.1 Linear motor characterization 
Two tests for the motor were performed: a blocked and an unblocked test. The tests were 

primarily performed to verify the expected linear relationship between the motor output force 

and the commanded current, and eventually to determine the motor force constant.  

 

Figure 6.1: Photo of linear motor (Aerotech ANT-25LA) with load cell attached.  

In the blocking force test the motor force was measured for fixed motor-current levels and at 

different motor shaft extensions. The results (Figure 6.2) show an almost linear relationship 

but with a small offset and small hysteresis, indicating that the motor’s force (torque) constant 

[148] is actually variable and position dependent. 
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Figure 6.2: Motor characterization when blocked, Force vs. current at various motor extensions.  

For the unblocked test, a linear coil spring was placed in front of the motor. The force output 

and displacement were measured while the motor current was commanded in a sinusoidal 

manner at different rates (see Figure 6.3). The hysteresis was independent of current 

frequency. 

 

Figure 6.3: Motor characterization against spring, force vs. current at various rates.  

As seen in Figure 6.3, the test resulted in large hysteresis in the force response when 

commanding the current of the motor. These losses are attributed to internal friction in the 

motor drive. 
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6.2.2 Control implementation 
Following the above results, it was concluded that the motor force is not accurately 

controllable with open loop control of the motor current. This is due primarily to the observed 

shift in the blocking force, depending on the motor extension (Figure 6.2) and the hysteretic 

behavior when compressing a linear spring (Figure 6.3). Consequently, a closed loop force 

control is preferable in order to regulate the force output more accurately and repeatedly. 

Force applied to the DEA was measured via a load cell. (Details of the equipment and setup 

are given at the beginning of Section 6.3.) The current i is then generated according to the 

following PID law: 

      * * *

0

t

P C C I C C D C C

d
i k F F k F F d k F F

dt
       (3) 

where FC* and FC are the desired and the measured force, respectively, and kP, kI, kD are the 

controller gains. The integral action in the PID law ensures zero steady-state error in the force, 

provided that the closed loop system is stable. As this work represents a first attempt to 

address the problem, the controller was hand-tuned experimentally in order to achieve a 

sufficiently fast and overdamped response. (The design of more complex control solution with 

hysteresis compensation capability has not been explored, and represents a possible further 

optimization of the proposed setup.) If the PID controller is fast enough, we can assume that 

the applied force equals the set point, therefore 

 *
C CF F  (4) 

Assuming Eqn. 3 is true, the force equilibrium on the mass connected to the load cell results 

then in 

 
2

*

2C DEA

d
F F m x

dt
   (5) 

where x is the DEA out-of-plane deflection and m is the mass connected to the load cell. We 

have therefore different options in selecting the desired force FC*: 

1) Constant force FC*, at steady state we have 

 *
C DEAF F  (6) 

2) A force profile FC*(t), we expect that 

    *
C DEAF t F t  (7) 

with an error that becomes smaller for slower force reference frequencies;  

3) Desired mechanical impedance, by setting 

  * * * *
0C

d
F b x k x x

dt
     (8) 

the resulting force equation becomes  
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  
2

* * *
02DEA

d d
F m x b x k x x

dtdt
      (9) 

therefore the motor reacts to the DEA force as a mass-spring-damper system with desired 

stiffness k*, equilibrium position x0* and viscous damping b*, allowing the possibility to 

simulate a dynamic mechanical load. At steady-state, Eqn. 8 results in the DEA operating 

solely against an elastic load, 

  * *
0DEAF k x x    (10) 

Note that k* can be selected either positive or negative, allowing the possibility to simulate 

both positive-rate and negative-rate springs. 

Figure 6.4 shows the scheme of the control loop with the linear motor. Here the motor is 

shown applying a pre-load force (FC*) to the DEA. 

 

Figure 6.4: Force control implementation by commanding current to linear motor via the PID controller.  

6.3 PRE-LOADED DEA EXPERIMENTS 
The linear motor operating in force control was used to pre-load the DEA with various linear 

loads. This further validated of the force control, and provided previously unavailable insight 

into the DEA actuation under different mechanical loads.  

6.3.1 Test Setup 

Voltage was applied to the DEA and the resulting actuation strain (from the loading of the 

linear motor) was recorded via the linear motor encoder. The setup used is seen in Figure 6.5. 
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Figure 6.5: Force control test setup, (a) sketch, (b) picture of motor and load cell, (c) close-up of load cell and DEA, (d) 
DEA with electrical connections.  

The electromagnetic linear motor used was an Aerotech® model ANT-25LA with an Aerotech® 

Ensemble™ ML controller. The direct drive motor is capable of 250mm/s, has 10nm linear 

resolution, and ±12mm range. A Futek (LSB-200, 2lbf) load cell was fixed on the end of the 

linear motor to record the force of the DEA and provide feedback for the force control scheme. 

Voltage was applied to the DEA using a Trek® Model 610E amplifier. The actuator and sensor 

signals were processed through a National Instruments™ 7852R Field Programmable Gate 

Array (FPGA) board programmed from a Windows® desktop computer running LabVIEW 

2012™. 

6.3.2 DEA Characterization 
A quasi-static (0.01Hz) force-displacement measurement of the DEA using the linear motor 

was performed with 0V and 2.5kV applied (Figure 6.6). 
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Figure 6.6. DEA Force response to sinusoidal displacement input while DEA at a constant voltage.  

This result was later used when presenting the loaded actuation stroke. Since this force profile 

was measured with the same motor which would later simulate the loads, the force-

displacement results can be plotted on the same coordinate system. 

6.3.3 Programmable loads 

Next, a linear force profile as seen in Figure 6.7 was simulated using the programmable motor. 

It was programmed to behave as a desired mass-spring-damper system. The encoder reading 

x was x=0mm when the DEA was in the neutral position. Figure 6.7 shows a sketch of the DEA 

loaded with an arbitrary linear force, FC*. The figure neglects the dynamic contribution in FC* 

related to the viscous damping. 

 

Figure 6.7: Sketch of DEA loaded with an arbitrary linear load (FC*) via the programmable Aerotech® linear motor.  
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Given the programmability of the motor, various linear springs with stiffness ranging from  

-0.2N/mm<k*<0.4N/mm were systematically tested against the DEA at different x0* values (i.e. 

different DEA pre-deflections). The damping b* was always selected in order to achieve an 

overdamped response. To do this, the FC* control was enabled (so that the equilibrium 

condition Eqn. 5 was met) and the DEA was allowed to rest for 30 seconds before receiving 

voltage each time. Next, voltage to the DEA was cycled from 0V to 2.5kV in a sinusoidal 

manner at a slow rate (0.05 or 0.10Hz). The slow rate was chosen based on initial tests 

performed which showed that the faster the DEA was activated the larger the error was in the 

force. Below are the results when the voltage frequency was varied and the motor was set to 

maintain constant force (k*=0). 

 

Figure 6.8: Frequency variation test for DEA at constant force (a) 0.1N and (b) 0.5N showing smaller force error for slower 
activation rates.  

At the slower activation (e.g. 0.05Hz) there is less error in the force than there is at higher 

frequencies. Therefore, to better allow the controller to maintain the desired FC* as well as 

lessen the inherent DEA viscoelastic effects on the actuation results, a 0.05Hz activation 

frequency was used for the remainder of the tests.  

To illustrate the actuation from the simulated springs, the results were plotted directly with 

the previously measured DEA force response (Figure 6.6). Combined they provide clearer 

understanding of the stroke trends. 

6.4 RESULTS AND DISCUSSION 
In this section a sampling of the results are presented and discussed first, followed by an 

overview of the results and concluding remarks.  

Figure 6.9 shows the time resolved results for one simulated positive stiffness spring. The 

DEA voltage input, linear motor current command from controller, FDEA and DEA 

(a) (b)
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displacement for three actuation cycles are plotted. Included in the figure are three insets 

which show one second of data after the controller was enabled. The controller quickly 

increased the motor current, deflecting the DEA until the desired FC* was read by the load cell. 

Over the next 29 seconds the DEA relaxed slightly before 2.5kV was gradually applied to the 

electrodes, upon which the DEA “softened” and the motor extended further to a new force-

equilibrium position. The motor current increased slightly with the applied voltage and then 

dropped when the voltage reversed. As the voltage cycled the DEA repeatedly responded 

with stroke because of the linear load applied by the motor. 

 

Figure 6.9: Time-resolved response of DEA loaded with a simulated linear spring of stiffness k*=0.10N/mm. (a) rise of 

motor current, (b) rise of resulting force, (c) deflection of DEA. 

Figure 6.10 presents the actuation results when plotted with the DEA force-displacement 

characteristic. It highlights the linear motor quickly moving into the force equilibrium position 

in about 1 second. By the time the voltage is applied (t=30sec) the motor has settled to the 

(a)

(b)

(c)

Inset (a) Inset (b) Inset (c)
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coordinates which lie in the middle of the 0V hysteresis loop. (This is no surprise because the 

DEA is known to relax over time [49])  

In this test a linear spring with k* = 0.10N/mm and x0* = 9mm was simulated. The combined 

system behaves linearly as expected, demonstrating the programmed stiffness when 

operating between the 0V and 2.5kV DEA characteristic. The cycle 1 results begin in the 

middle of the 0V hysteresis loop and after increasing the voltage the maximum displacement 

achieved is on the edge of the 2.5kV loops. The reason the displacement didn’t proceed further 

into the 2.5kV loop could be due to the lack of relaxation time at high voltage. The DEA had 

approximately 30 seconds to relax at 0V, sufficient time to stretch the DEA so that it was in 

the middle of the hysteresis loop. On the other hand, the DEA was at 2.5kV for only a moment. 

Figure 6.10(c) shows three subsequent displacement cycles. They are steady and repeatable 

with an absolute stroke of approximately 0.4mm and a ∆force of about 0.035N. 

 

Figure 6.10: Simulated spring response (FC*), (a) plotted with DEA response, (b) close up of spring stroke, (c) stroke cycles 
1-3.  

The force-displacement results for a sampling of the springs simulated (at six different k*’s and 

x0*) are presented in Figure 6.11 at varying pre-deflections. Each colored linear line reveals the 

simulated force profile as voltage was varied in a sinusoidal manner (third complete cycle 

shown). The results are very repeatable. The starting and ending points of the stroke lie within 

the pre-measured DEA constant voltage force-displacement curves (presented in Figure 6.6.) 

The stroke varies not only between different k* but also at different pre-deflections.  

The negative rates springs behaved as expected—producing a higher stroke than positive and 

constant rate bias mechanisms. Several simulated negative-rate springs were unstable when 

t=30-50sec

t=50-70sec

t=70-90sec

Cycle 1

Cycle 2

Cycle 3

(a)

(b)
(c)
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the DEA had low-stiffness, i.e. at low-deflections; tests could not be performed in these cases. 

Negative-rate tests were performed when the motor and the DEA were able to be stabilized 

at 0V. These are included in Figure 6.11. 

 

Figure 6.11: DEA actuation results for different springs (k*) at different x0* values (pre-deflections).   

Figure 6.12(a) compares the performance of all springs at the tested DEA pre-deflections in 

terms of absolute out-of-plane stroke in millimeters. The negative rate springs provided an 

overall improvement, but the stroke generally still decreases at higher pre-deflections due to 

the stiffening of the membrane. Pre-deflections above 4.5mm were not tested because of high 

failure rates due to high electric fields. Some negative stiffness springs could not be tested 

k*=0.40N/mm k*=0.10N/mm

k*=0.00N/mm k*=-0.075N/mm

k*=-0.150N/mm k*=-0.200N/mm
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because the stiffness of the NBS exceeded the stiffness of the DEA leading to an unstable 

system. At times the motor needed to be damped (in the first 30 seconds of force control) by 

hand in order to initially stabilize the linear motor at the desired DEA pre-deflection before 

applying voltage. Current limits were also implemented to protect the linear motor and DEA 

in case of mechanical instability.  

Figure 6.12(b) presents one actuation cycle for the three stroke cases numbered in Figure 

6.12(a). This clearly highlights why the stroke is larger in the case of the negative rate spring. 

The force increases when voltage increases, thereby giving more stroke.  

 

Figure 6.12: Stroke results compared (a) DEA Stroke vs. Pre-deflection, (b) Force-Disp.   

Presenting the results in a different format, Figure 6.13 illustrates the stroke vs. the pre-

deflection vs. the spring stiffness. This shows the dependence of the stroke on the bias 

mechanism characteristic (spring stiffness) and the amount the DEA is pre-deflected. A 

surface is interpolated over the data to show the trends. 

 

Figure 6.13: Surface plot of stroke data (a) displacement stroke, (b) force stroke.  

The displacement and force stroke are highest for the more negative springs when the DEA is 

at a mid-DEA pre-deflection. The lowest displacement comes from the more positive stiffness 

springs. The lowest force stroke occurs when the constant load is applied (i.e. k~0) as seen by 

the trough in Figure 6.13(b). 

(a) (b)

(a) (b)
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While the DEA diaphragm membrane undergoes multi-directional strain when deflected, the 

radial strain is most dominant. This can provide an approximation of the linear (uniaxial) 

strain and can be calculated based on the initial and final geometry. Figure 6.14 shows the 

geometry and values for deflected (Figure 6.14(a)) and undeflected (Figure 6.14(b)). 

 

r [mm] 𝑙0 [mm] 𝑧0[µm] 

6.25 4.75 40 
 

Figure 6.14: Diaphragm DEA geometry, (a) un-deflected, (b) deflected.  

Using this information and the displacement/stroke data (in Figure 6.12) the stroke can be 

described in terms of elongation strain (Figure 6.15(a)). The general strain formula is ε=l/∆l. 

Additionally, by assuming constant DE membrane volume and approximating the membrane 

deformation as a truncated cone [95], the thickness can be approximated and therefore the 

electric field can be approximated when voltage is applied. This was calculated for three 

actuation results, as seen in Figure 6.15(b). This shows how the DEA loading system not only 

effects the overall stroke, but it can even make the system more electromechanically sensitive. 

The compared curves (#1, 2 & 3) are for different spring stiffnesses but each have been initially 

deflected the DEA to approximately the same pre-strain (~10%) for a fair comparison. 

 

Figure 6.15: Actuation strain results (a) Elongation strain vs. Pre-strain, (b) Elongation strain vs. Electric field.  

6.5 FURTHER DISCUSSION 
As previously mentioned, during testing it was observed that the negative stiffness springs 

produce an unstable system overall if the stiffness of DEA (at 0V) is exceeded by the negative 

stiffness of the pre-load spring. In this case, the system will have at least two stable solutions. 

(a) (b)
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In the author’s previous work, it is shown that a bistable DEA system can be harnessed with 

the use of at least one mechanical stop [94]. If bi-stability should be avoided, then the design 

should take precautions that the DEA stiffness, for all viable actuator extensions (and applied 

voltages) will not be less than the negative stiffness of the pre-loading spring. Figure 6.16(a) 

presents a plot showing the stiffness of the DEA at a given pre-deflection; Figure 6.16(b) shows 

the DEA stroke output from the experimental results.  

 

Figure 6.16: DEA stroke vs. stiffness vs. pre-deflection, (a) sketch showing DEA slope, (b) DEA stroke vs. Pre-load 
mechanism stiffness (k*) vs. DEA Pre-deflection.  

The figure includes two lines indicating the approximate negative stiffness of the DEA at each 

DEA deflection. The negative of the DEA stiffness is plotted in the xy-plane to show that the 

stable solutions must be less than the DEA stiffness. This is also the boundary along which 

the highest stable stroke occurs.  

6.6 CONCLUSION 
This work presented a benchtop tester and a novel method to load or pre-load diaphragm 

DEAs with programmable springs; the first of its kind as far as the authors know. This was 

realized by first testing the electromagnetic linear motor and designing a force control scheme. 

The multi-purpose setup performed well in both characterizing the DEA and applying the 

desired pre-loads to the DEA. The technique expedites testing, characterization and 

optimization of membrane DEAs. 

Furthermore, the results of the actuation tests show that the actuator stroke is dependent on 

the actuation frequency and relaxation time, but can be accurately approximated using the 

intersection of the pre-load force-displacement profile with the DEA force-displacement 

characteristic, as has been done throughout this work. It was shown also that pre-load 

mechanisms can increase the electromechanical sensitivity of the DEA system by matching 

the stiffness of the pre-load device to the DEA stiffness. This actuator system approach for 

increasing the sensitivity is not dependent on the DE material (e.g. permittivity or E modulus,) 

per se but on the pre-load mechanism. 

(a) (b)
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In the future, this new setup will be used to test and benchmark other DEAs in order to 

determine which biasing profile is optimal. Furthermore, this setup can be utilized to apply 

other loads to the DEA system, such as pure viscous or non-linear loads, which mimic the 

forces in the target applications. 
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Chapter 7 DE MEMBRANE 

CHARACTERIZATION SUITE 

7.1 INTRODUCTION  
New Dielectric Elastomers (DE) and compliant-electrode materials for dielectric elastomer 

transducers (DETs) are developing quickly as the technology grows. The many procedural 

steps in DE device fabrication, such as film pre-stretching, surface treatment, electrode 

patterning and membrane cutting can influence the actuator performance positively or 

negatively. To aid in understanding the impact the fabrication process parameters have on 

DE device performance, a systematic electro-mechanical study of the DE membrane is 

necessary. These elastomers are notoriously difficult to characterize in a repeatable manner 

due to their very compliant and often viscoelastic nature. Therefore, for reliable outcomes 

when testing multiple specimens there should be as little variation as possible so that correct 

conclusions can be drawn. Careful attention should be given to the test rig design (including 

motors, clamps, amplifier, load cell etc.) so that they enable repeatable placement and 

sufficient data acquisition for each test performed.  

In this work an experimental test rig, with a procedure to systematically manufacture and test 

DE membranes in a standardized manner, is designed, fabricated and built. The steps to 

fabricate and prepare the specimens (while minimizing variations in geometry, 

clamping/boundary conditions, electrical contact) before testing are detailed. The test rig 

includes optical thickness sensors which provide the first known DE membrane thickness 

profile measurements of stretched and/or activated membranes. The work summarizes the 

tester design and presents measurements of several pure shear DE membrane specimens, 

which demonstrates the functionality of the test rig. This versatile programmable test rig 

results in a highly useful tool for further repeatable electro-mechanical characterization 

studies of DE membranes. 

7.2 BACKGROUND AND MOTIVATION 
DE transducers can be fabricated into many different configurations such as stacked, planar, 

rolled, and circular/cone/diaphragm configurations. The previous chapters studied bias 

mechanisms coupled to circular DE membranes. The DEAs had been mass manufactured via 

a screen printing process. Since the topic was focused on the bias mechanisms, the 

film/electrode behavior, and even production parameters were not investigated. 

Nevertheless, this is still a very important area to study. While the circular actuator 
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configuration exhibits many advantages, (e.g. having a fully-constrained active electrode area, 

being scalable/stackable and being easy to handle) it is a suboptimal configuration for direct 

material characterization. Due to the complex frustum shape of the deformed circular DE 

membrane the stress and strain fields are non-uniform and material parameters such as 

Young’s modulus cannot be directly measured. Furthermore, membrane thickness 

measurement when deformed is not realistically achievable. Therefore, to help in modeling 

efforts and direct material characterization, a more appropriate form factor for obtaining DE 

material parameters is needed. 

A planar, rectangular DE membrane with a rigid frame on each end and two free edges is a 

common configuration used for studying DE film transducers. This so-called pure shear test 

is recommended for DE and DEA characterization [149]. Kofod et al [44] showed a parabolic 

dependence of force upon applied voltage for a polyacrylic pure shear DEA. It supported the 

theoretical analysis but the low-force from the experimental piece was attributed to 

imperfections in the setup. Zhu et al [150] studied the wrinkle transitions in a simple clamped-

clamped membrane setup. The study observed two types of wrinkle transitions in actuated 

states. Using a pure shear specimen Kollosche et al [51] conducted a many experiments and 

developed a model which describes the viscoelastic properties and instability effects of 

samples for different pre-stretches and voltage ramp rates. Stoyanov et al [151] performed 

isotonic test with a pure shear specimen of VHB4905 (3M, a polyacrylic elastomer). More than 

140% actuation strain was obtained at 120V/um. Additionally, using a pure shear specimen, 

strain-dependent capacitance measurements of the specimen were performed. After grafting 

organic dipoles to the silicon network (in an attempt to increase the relative permittivity) 

Kussmaul et al [152] characterized a pure shear specimen (80mm wide, 10mm long) in an 

isotonic test. The improvement due to the grafting was determined from the slope β of the 

strain versus E2 curve. In Wang et al [153] pure shear tensile experiments were performed to 

study dielectric elastomers with transparent electrodes made from PAAM hydrogel 

containing lithium chloride (LiCl) electrolytes. A maximum actuation strain of 67% was 

achieved for a specimen pre-stretched to {λp1, λp2}={2.7, 5}. Yang et al [154] studied the 

elongation of uniaxial specimens vs pre-strain and compared them with FEA predictions. 

From the uniaxial tests and simulations, they observed that modeling actuator strain requires 

a hyperelastic expression and an optimized electrode/actuator geometry. Using a custom 

made tensometer Vertechy et al [128] mechanically tested pure shear DE membrane 

specimens made of commercially available natural rubber. The tester rig was used in 

populating an open-access DE material database.   

Clearly as shown above, the pure shear planar specimen is a commonly used in DET 

experimentation. Still, a further motivation for choosing to build a test rig for testing planar 

DE membranes lies in the possible measurements the configuration enables. For example, an 

accurate non-contact thickness measurement of the DE membrane is very important as it 

allows for an estimation of the applied electric field. Due to the planar membrane 
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configuration, the electrode surface of pure shear specimen is easily observable from both 

sides; allowing for a thickness measurement. It should be noted that due to the challenging 

nature of the measurement (e.g. soft DE membrane and the high-voltage during actuation), 

thickness measurements of planar DEA membranes during actuation and/or deformation are 

typically not performed or seen in literature. One group in the literature presented an optical 

thickness strain measurement technique of an activated DEA, however this was a point 

measurement of a pre-stretched circular DEA and not a pure shear specimen [155]. No 

membrane thickness profile was taken. Most often in literature the initial DE membrane 

thickness (z0) is said to be measured via a mechanical micrometer (or perhaps an optical 

method), and the deformed thickness (z) is calculated by assuming constant volume and 

measuring the planar deformation of the primary axis (tension direction). Consequently, the 

electric field calculation is approximated to be constant through the entire specimen because 

the thickness is approximated as uniform. Nonetheless, a non-contact measurement of the 

actual membrane thickness during electro-mechanical testing would lead to a better 

understanding the DEA specimen under test. For this reason, this contribution features an 

accurate, non-contact film thickness measurement device in the test rig, which can obtain a 

thickness profile of the stretched or un-stretched DE membrane. 

It is possible to realize economical test rigs, as demonstrated by Moser using LEGO blocks 

[156], however this lacks the accuracy, speed and robustness which precision metal 

components can provide. Commercially available tensile testers can be used, but they were 

not employed in this work. Instead the test rig was designed to meet our particular needs and 

be able to accept future components. Commercially available key components such as linear 

drives were chosen based on the speeds, strains and force needed for typical film membrane 

tensile tests. Sufficient space around the specimen and clamps was reserved so that potential 

video capture and other measurement systems could be used in the future. Furthermore, 

custom programming of the sensors, data acquisition (DAQ) and synchronization in 

LabVIEW allowed for flexibility. 

7.3 SPECIMEN DESIGN/FABRICATION, CLAMPS AND TEST 

RIG 
The objective in designing the device and procedure were: repeatable results, ease of use and 

flexibility in the testing of DE membranes. The device was developed to accommodate planar 

specimens of varying geometries (e.g. from uniaxial to pure-shear), varying membrane 

stiffness/thickness and varying maximum strains. Figure 7.1 gives an example of the range of 

test specimen sizes the setup is designed to accommodate. 
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Figure 7.1: Range of DEA specimens the test rig can accommodate (a) uniaxial, (b) square, and (c) pure-shear. The setup 
should manage a reasonable span of stretches and forces so that various materials and geometries can be tested.  

The choice of specimen geometry influenced several aspects of the test rig design such as the 

design of the clamps, choice of load cell and linear actuators. For example, the clamps should 

be wide enough for a pure shear specimen, the load cell should be sensitive enough to resolve 

the force of a narrow uniaxial specimen and the linear actuator should be capable of reaching 

high enough stretch levels for a uniaxial specimen of several centimeters length. In the 

following sections the specimen design/fabrication, clamp design and final devices with 

instrumentation are detailed. 

7.3.1 Specimen Design/Fabrication 
While several specimen geometries can be used in the test rig, for this study the electrode 

geometry was chosen to be 125mm wide and 25mm long (see Figure 7.1(c)). This geometry 

maintains the minimum 5:1 width-to-length ratio suggested by Carpi [149] for pure-shear 

tests.  

7.3.1.1 Electrode patterning 

A screen printing process was used to repeatably print the electrodes. The first step was to 

design and prepare the screen. The electrode geometry was designed on the computer with a 

vector graphics drawing software (Inkscape) and printed at 1:1 scale on a transparency film. 

Emulsion paper was applied to a new screen (with count of 90 nylon threads per centimeter) 

and allowed to dry in a dark cabinet for several hours. Next, the transparency/overlay was 

put into position over the screen before developing the emulsion layer with UV light. The 

undeveloped emulsion (under the overlay) was then washed off by rinsing the screen with 

water. See Figure 7.2 for photo of the developed screen. 
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Figure 7.2: Screen development, (a) electrode designed on computer, (b) developed screen, (c) close-up of developed screen.  

Next the DE film (Wacker Elastosil®, 50µm nominal thickness [78]), in roll form was first cut 

to size (~200mmx200mm) and adhered directly to the aluminum carrier frame (Figure 7.3(a)) 

before carefully peeling the backing off. 

 

Figure 7.3: Electrode application process, (a) remove backing and tape film to carrier frame, (b) 1/2 automatic screen printer, 
(c) curing oven and (d) printed electrodes.  

Two electrode (PDMS/carbon black mix) patterns were applied to the DE film via screen 

printing and with each layer cured in an oven at 150°C for 10 minutes (Figure 7.3, Figure 

7.5(a,2)). 

7.3.1.2 Reinforcement frame application 

To handle the specimen, a reinforcing frame (3D-printed, Objet500 Connex, material: 

FullCure720) was precisely adhered to both sides of the DE film with double-sided tape (3M), 

sandwiching the specimens (Figure 7.4(b) and Figure 7.5(a,3)). The reinforcing frame was 

designed to fit exactly within the inner edge of the aluminum carrier frame by use of sacrificial 

tabs. This ensured good alignment of the frame with the electrode patterns. (The tabs would 

later be cut off, Figure 7.5(b,4)). Once sandwiched by the reinforcing frame, four straight-cuts 

through the DE film were made with a sharp razor blade to define the free-edges of the two 

pure-shear specimens (Figure 7.4(c-d)).  

Specimen 1 pattern 

Specimen 2 pattern fiducials developed emulsion

(closed screen)

open screen

(a) (b) (c)

(a) (b) (c) (d)



90 DE Membrane Characterization Suite 

 

 

Figure 7.4: Photo summary of applying reinforcing frame to DE film (pictures show no electrodes but process is the same 

when electrodes are on film), (a) carrier frame with and reinforcement frames, (b) applying reinforcement frame to film, (c) 

cutting free-edges of specimen with razor blade, (d) close-up of cutting, (e) whole reinforcement frame cutout/removed from 
carrier frame, (f) finished specimen showing free-edge/cut, (g) finished specimen.  

After trimming the sacrificial alignment tabs away, the specimen was ready to be placed into 

the clamps. The specimen was aligned at the center of the clamps via the tongue feature of the 

reinforcement frame and the matching groove feature designed into the clamps. As soon as 

the clamps were securely tightened the linear motor was enabled in order to lock the initial 

position and length of the specimen. This would be the 0% strain position for all the 

subsequent tests. Next the two sacrificial connectors could be clipped. These connectors 

ensured that no pre-stretching of the specimen could occur during fabrication and handling. 

It also certified that each specimen would have the same initial length. 

 

Figure 7.5: Pure-shear specimen assembly, (a) exploded view, (b) removal from carrier frame (c) and close-up of 
details/features.  

(a) (b) (c) (d)

(e) (f) (g)

(a) (b)

(c)
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While the procedure for forming the specimens explained above is for a pure-shear shaped 

specimen, the same process can be used for differently shaped specimens including those 

shown in Figure 7.1(a-c). In these cases, the electrode and reinforcing frame should be 

redesigned to fit together with the DE film spanning the carrier frame. 

7.3.2 Clamp Design 
The clamps were CNC-machined from Delrin® with a width of 130mm to enable a range of 

specimens from pure-shear to uniaxial test specimens as seen in Figure 7.6. Delrin was chosen 

for the clamp material because it is a high-modulus insulator. It could isolate the high-voltage 

from the load cell, linear actuator and any metal fasteners. 

 

Figure 7.6: 3D sketch of clamp design with various sized specimens the clamps can accommodate (a-c).  

As previously mentioned, the specimen and clamps were designed with a tongue and groove 

respectively which ensures proper specimen placement and alignment before clamping, 

Figure 7.7. 

 

Figure 7.7: Photos of clamps, (a) Isometric view of clamps, (b) side-view of clamps highlighting opening assist springs and 

electrical contacts, (c) clamps open revealing specimen alignment groove for repeatable specimen alignment, (d) top-view 
showing stationary clamp, membrane and clamp mounted to linear motor.  

(a) (b) (c)
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The electrical connection to the specimen was built into the clamps. Gold-plated, spring-

loaded contact pins (Figure 7.8) were fixed in the clamps so that upon mechanical clamping 

(tightening the two screws) the electrical connection was also made.  

 

Figure 7.8: Electrode connections in clamps, (a) Close-up of gold-plated, spring loaded contacts used in clamps, (b) contacts 
in clamps, (c-d) wire connections to amplifier soldered to ends of contacts.  

Lead wires with connections to the HV amplifier were soldered to the top of the gold plated 

contacts. The spring loaded contacts were used to reduce variation in electrical contact 

pressure to the electrode surface from specimen to specimen. This feature simplified the 

process of inserting the specimen into the clamps. The clamps had an overall height of less 

than 20mm which was needed to avoid a collision with the thickness sensors when scanning 

the specimen thickness. 

7.3.3 Devices and Instrumentation 

The setup was mounted to a vibration isolated optical table (air-cushioned) located in a 

climate controlled cleanroom (ISO 7). Extruded aluminum optical rails (Thorlabs) formed the 

structure on which the motors and sensors were attached. Several additional jigs were 

precision CNC-machined from 12mm thick aluminum plates. Two linear-servomotor-driven 

actuators (Aerotech ACT115DL) were employed in the setup. The x-axis actuator stage 

stretched the DE membrane and the y-axis stage carried the 2-confocal displacement sensors. 

The actuators have a travel range of 200mm, a resolution of ±2 µm, a maximum speed of 5m/s 

and a maximum continuous force of 105N. The entire setup is presented in Figure 7.9.  
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Figure 7.9: Planar actuator experimental setup, (a) CAD rendering, (b) photo and (c) sketch with equipment.  

Two confocal displacement sensors (Micro-epsilon, confocalDT IFS 2405) were employed to 

perform the point-thickness measurement of the DE membrane. These sensors individually 

have measurement ranges of 1mm with a 10mm offset from the sensor, a resolution of 28nm 

and a linearity of 0.5µm. They were arranged in-line with overlapping measurement ranges 
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in order to measure the thickness of the DE membrane surface. For a transparent membrane 

(with known refractive index) only one sensor is needed for the thickness measurement due 

to the two reflective surfaces which the sensor recognizes. However, for non-transparent 

membranes (i.e. with electrodes) two sensors operating in displacement mode (first peak 

used) are required for a thickness measurement. By first using a calibration piece of known 

thickness, the thickness of unknown objects in the measurement range can be realized. See 

Figure 7.10. 

 

Figure 7.10: Calibrating thickness measurement sensors (a) photo and (b) measurement schematic.  

With the y-axis linear actuator the membrane thickness was measured across the specimen 

width. The thickness profile was at a given cross-section of the specimen. See Figure 7.11. The 

tensile force on the specimen was measured with a load cell (Futek LSB-302, 25lbf). High 

voltage signals were supplied to the DE using an Ultravolt® HVA series amplifier (shown in 

Figure 7.9(c)). For resistance and capacitance measurements a Hameg HM8118 LCR meter 

was utilized. A video camera (Logitech® B910HD) was employed to continuously observe one 

electrode surface throughout the tests. The actuator and sensor signals were processed 

through a National Instruments™ 7852R Field Programmable Gate Array (FPGA) board which 

was programmed from a Windows 7® desktop computer running LabVIEW 2012™. 
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Figure 7.11: Thickness scan of membrane (a) sketch from above, (b) sketch from side, (c-e) photos from above as membrane 

is scanned.  

7.4 EXPERIMENTAL RESULTS 
This section presents an overview of some tests which can be performed with the device as 

well as a summary of the results and analysis. The prepared pure-shear specimens were first 

placed in the clamps, the four clamp screws were carefully tightened and the x-axis linear 

actuator was enabled (fixed). This initial starting position was maintained as the zero stretch 

reference for all the following tests. The sacrificial connecting tabs were clipped, freeing the 

two halves of the specimen. Figure 7.12 shows the specimen before and after clipping. 

D
E

 f
ilm

 s
a
m

p
le

V-

V+

linear 

actuator

load cell

DE film with 

electrode

linear 

actuator

X

Y

clamps

2-confocal

displacement sensors 

(film thickness 

measurement)

(e)(d)(c)

(a)

linear 

actuator

V+

V-

clamps
load cell

DE film with 

electrode

confocal 

displacement laser 

head (A)

confocal displacement 

laser head (B)

X

Z

(b)



96 DE Membrane Characterization Suite 

 

 

Figure 7.12: View of specimen (with electrodes) in clamps (a) before, and (b) after removing the sacrificial connection tabs.  

The following set of tests were executed for several identical specimens (same film, electrode 

mix and fabrication procedure):  

1. Scan across the specimen width, measuring thickness profile.  

2. Mechanically load the specimen at various sinusoidal rates.  

3. Perform isometric (constant position) tests at different pre-stretch levels and at various 

electrical loading rates.  

4. Perform isotonic (constant force) actuation tests at various loads.  

7.4.1 Thickness profile test 

Thickness profile scans were performed to check the repeatability of the specimen fabrication 

process. To do this thickness sensors were moved in a linear manner (at 5mm/s) from one side 

of the specimen and back again. The scan crossed the specimens at their undeformed mid-

section (Figure 7.13(a-b)) from the right to the left and back again. Figure 7.13(c) presents a 

profile without electrodes compared with three specimens with electrodes. The specimen 

without electrode is thinner and shows a significantly lower roughness than specimens 1-3. 

This added roughness on specimens 1-3 is an artifact of the screen printing. Figure 7.13(d) 

shows a close-up photo of the screen printed surface which leads to the uneven measurement. 

Even though specimens 1-3 are rough, they are similar in roughness which suggests that the 

printing process is consistent. It is also interesting to note the total electrode thickness is ~9µm, 

meaning the screen print process applied a ~4.5µm thick electrode to each side. 
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Figure 7.13: Average membrane thickness measurements when un-stretched (λ = 1), (a) for specimen without electrodes, (b) 
for specimen with electrodes, (c) specimen profiles compared and (d) close-up of screen printed electrode surface.   

A second type of thickness profile measurement was performed in which a stretched 

membrane thickness was measured and compared with the calculated thickness. The 

calculated thickness was found assuming the material maintained constant volume while 

stretched. 

 
1 2 3 1     (11) 

Where λ1, λ2 and λ3 are the principle stretches of the sample in the x, y and z directions 

respectively. Since it is a pure-shear specimen with a width-to-length ratio of 5:1, the width is 

approximated to be constant [149], [157]. Therefore, λ2 = 1 and consequently the thickness can 

be calculated as follows: 

 0
3

1 z
z

 
    (12) 

Where λ is the stretch in the x-direction (λ1), z0 is the original membrane thickness and z is the 

new thickness.  

For this test the specimen was stretched and allowed to rest for 1 minute before being scanned. 

This was performed for four different λ1 values. See Figure 7.14. The dashed horizontal lines 
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represent the calculated thickness found using Eqn. 10 while z0 (52.9µm) was the measured 

average thickness before stretching (λ = 1). 

 

Figure 7.14: Measured thickness profile when stretched to 4 different stretch levels. Dashed lines are calculated thickness.  

The linear actuator performing the scan was fixed and did not move in the x-direction as the 

specimen was stretched. Therefore, the thickness profiles recorded were at different cross-

sectional “cuts” of the membrane. Nevertheless, the reduction in thickness due to the stretch 

can be realized by this measurement. Note for higher stretch levels the thickness deviates from 

the calculated thickness, especially at the free-ends. This is attributed to the necking of the 

specimen’s width. It compromises the plane-shear approximation and results in a thicker 

membrane at the free edges. The calculated thickness is most similar to the measured 

thickness at the middle of the specimen.  

7.4.2 Force vs. displacement test 
Next the specimens were stretched at rates of 0.02Hz up to 12.5mm (λ = 1.5) while measuring 

force, displacement, thickness, resistance and capacitance. Figure 7.15 presents the time 

resolved results for one specimen when the voltage was on and off. This plot is valuable when 

predicting voltage induced stroke for different counter loads as discussed in Hodgins et al 

[84]. While the tensile test was performed, the “local thickness” of the specimen was 

measured. It is termed “local thickness” because the sensors measured the thickness 

continually along a 2mm line at the approximate middle of the specimen width. The sensors 

were oscillating sinusoidally along the line at a rate of 2Hz to obtain a better average reading 

of the electrode surface. 
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Figure 7.15: Time resolved force-displacement results of tensile test for one specimen.   

As expected, with 2500V applied there is a noticeable decrease in the measured membrane 

force. The thickness change in the membrane was as expected: the thickness decreases as the 

specimen is stretched. The membrane thickness is quite similar in magnitude to the calculated 

thickness (Eqn. 11). As would be expected, the thickness deviation is greatest at the higher 

elongations because specimen has lost its original rectangular shape due to necking. The 

applied voltage has little to no impact on the thickness, as expected, because of the constrained 

boundaries and the pure-shear approximation. Hence the thickness change is dominated by 

the stretch in the x-direction. Due to the film wrinkling slightly out-of-plane at low elongations 

yielding irregular thickness readings, no results are shown for low stretches. 

To examine and ensure the repeatability of the tensile test the 3 specimens were tested in the 

same manner. For comparison force vs. elongation is plotted in Figure 7.16(a).  
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Figure 7.16: Force-Elongation plot for sinusoidal displacement of (a) three specimens showing repeatable results and (b) one 
specimen at different elongation frequencies showing increase in force with frequency.  

The results for the three membranes are very similar and this is attributed to the repeatable 

electrode printing and fabrication. The small differences in force may be due to slight 

variations in membrane thickness from specimen to specimen. Figure 7.16(b) shows the 

results for Specimen 2 at different frequencies. The increase in the peak measured force is 

higher due to the viscoelastic response of the film. Since the setup is capable of testing high 

mechanical rates this can be helpful to identify parameters when modeling the viscoelastic 

response of elastomer materials. 

The electrical properties of the DE membrane were tested when stretched to show another 

capability of the testing device, Figure 7.17.  

 

Figure 7.17: Measurement of capacitance and resistance change when sinusoidally stretched. For capacitance (a) the LCR 

measured the series capacitance, while when measuring resistance across one electrode (b) the LCR measured the parallel 
resistance.  

(a) (b)
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First the capacitance of the DE was measured and secondly the electrode resistance was 

measured. The two tests were performed for sinusoidal oscillations with an amplitude of 

12.5mm (λ=1.5) and 0.02Hz. The capacitance was measured with an LCR meter equipped with 

Kelvin clips and a 4-wire probe. The device was set to measure at 100Hz for capacitance and 

1kH for resistance. The stretch induced capacitance change shows a very linear response 

without hysteresis. This is because the specimen area and thickness greatly influences the 

capacitance. The resistance change here is quite repeatable but not without hysteresis. The 

mechanism which leads to this is not known but future tests will examine this more closely. 

In general, this test procedure and other similar ones will be beneficial in benchmarking 

highly compliant and conductive electrode materials for DE devices. 

7.4.3 Isometric tests 
The blocking force was measured at different stretches while increasing and decreasing the 

voltage linearly. Figure 7.18 compares three specimens when stretched to three different 

stretches.  

 

Figure 7.18: Comparing the blocking force results for three specimens at three different stretches for voltage frequency = 
0.1Hz  

The force level for each specimen lie directly over each other confirming a repeatable specimen 

fabrication. The measured “local thickness” (at the middle of specimen) shows only a small 
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variation between specimens. As expected with the fixed stretch there is practically a constant 

thickness even when actuated. This would show the pure-shear assumption is still 

maintained. 

Figure 7.19 presents the results for one specimen at different stretches and voltage frequencies 

in terms of force vs. voltage. In Figure 7.19(a) five different stretch ratios are shown while 

voltage is varied in linear manner, at three different freq. (one cycle shown). Several trends 

can be seen here. 

 

Figure 7.19: Blocking force measurement results (a) Force-voltage at different stretch levels and at 3 different driving 
frequencies, (b) Normalized force and current vs. voltage at λ= 1.5.  

Firstly, the larger stretches produce a larger change in force. This observation agrees with the 

diverging constant voltage force-elongation characteristic seen in Figure 7.16 as well as in 

York et. al. [49]. Secondly, it can be seen in Figure 7.19(a) that the hysteresis increases with the 

stretch and in Figure 7.19(b) with voltage frequency. Also Figure 7.19(b) compares the ∆ force 

along with the current draw for λ = 1.5 at three frequencies. 

This plot clearly shows that the hysteresis observed in the force measurement is dependent 

on the driving frequency. As would be expected, the current draw increases with the voltage 

frequency. The hysteresis seen in the force is primarily attributed to the electrical dynamics of 

the DEA. Charging and discharging of the electrode surfaces is a time dependent process. This 

phenomenon is normal since DEs are effectively a variable RC-circuit with a time constant (τ) 

which increases with the stretch (due to the increase in capacitance and electrode resistance). 

7.4.4 Isotonic tests 
The actuation elongation was tested by applying a constant force while the voltage was cycled. 

This is a standard test for DEAs [149] and is helpful when comparing the electro-mechanical 

sensitivity of the DEAs. A custom LabVIEW algorithm (similar to the method reported in [84]) 

was written to operate the test rig in force control mode.  
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Figure 7.20 presents the time resolved constant force actuation results for a specimen at three 

different force levels. The higher the force (of stretch), the higher the actuation stroke was for 

a given maximum voltage. The average electric field calculation is a result of using the 

dielectric elastomer as the thickness. To get this the unstretched electrode thickness was 

removed from the known membrane thickness: 

 0 Electrode
DE

z z
z




  (13) 

Where zDE is the thickness of the DE film, z0 is the average membrane thickness (from 

unstretched profile scan), zElectrode is the initial combined electrode thickness (9µm) and λ is the 

membrane stretch. Since the maximum voltage is 2.5kV the electric field approximation 

(V/zDE) is higher for higher forces (or stretch). 

 

Figure 7.20: Time resolved constant force actuation test results at three different force levels. The voltage induces a stroke 

and a decrease in thickness. Based on this thickness (and the voltage) the electric field is determined as shown at the bottom 

frame.   

In Figure 7.21(a) the results from Figure 7.20 are presented in terms of the actuation strain 

versus the electric field. This plot illustrates that the DEA is increasingly electromechanically 

sensitive the more the membrane is stretched. These results confirm as do several other 

studies [158]–[160] that the pre-stretch can increase the output of membrane DEAs. 
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Figure 7.21: Actuation strain vs. Electric field for three isotonic tests, Maximum voltage applied is 2.5kV. (a) Specimen at 

different constant force levels. Pre-stretch increases the electromechanical sensitivity of the actuator. (b) Comparison of 

three specimens at constant load of 2.00N showing repeatability.  

One can also notice that since the same was voltage applied for each test (2.5kV) it results in 

different electric fields due to the difference in membrane thickness. Figure 7.21(b) 

additionally demonstrates that the results of the isometric tests are repeatable.  Specifically, 

three different specimens were tested at 2.00N. The slight deviations are attributed to the small 

differences in membrane thickness.  

7.5 CONCLUSIONS 
This paper presented the design, fabrication and initial results of a testing station which is 

capable of accurate and repeatable measurements of the mechanical and electrical properties 

of DE membranes. A systematic approach for preparing and mounting the test specimens in 

a way which minimizes measurement variation was realized. To demonstrate the 

functionality and types of repeatable measurements possible with the device, several pure 

shear specimens were characterized and the results were presented. The outcome showed the 

setup was capable of performing a variety of repeatable measurements to test DE membranes. 

Among others this included a novel ability to obtain a membrane thickness profile when the 

specimen was stretched or activated. Future work will use this testing station to characterize 

various elastomer and electrode materials and their applicability as DE sensors and DE 

actuators. 
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Chapter 8 DISCUSSION AND OUTLOOK  
The results of this work and their contribution to the field of membrane DEAs are summarized 

in this chapter. Additionally, in light of the present development, further work packages are 

suggested for each parts of the thesis. 

8.1 SUMMARY OF WORK 
This work emphasized the design of membrane dielectric elastomers actuators (DEAs). The 

general introductory chapter provided a brief background of DEs and the motivation for 

investigating membrane DEAs. Specifically, it introduced the need for a complaint 

mechanism to increase membrane DEA stroke (covered in Part 1), as well as the importance 

of the new experimental test setups and techniques (covered in Part 2). Chapter 2 covered the 

fundamentals of DEAs including their electromechanical behavior and the role of the 

dielectric material and compliant electrodes. Various actuator configurations used and 

commonly studied in literature were similarly briefly discussed. In Chapter 3 the benefits and 

requirements of proper bias mechanisms for membrane DEAs (specifically diaphragm 

membrane DEAs) were shown experimentally. By comparing three types of bias mechanisms, 

trends were observed which led to a recommendation of a non-linear spring or negative-rate 

bias spring (NBS) for increasing actuator output stroke. Chapter 4 continued with the 

experimental study of the NBS as the bias element of the DEA. It was shown experimentally 

that when the NBS is assisted by a linear spring (LS) it can stabilize the actuator and allow for 

tuning of the DEA when operating against loads. The addition of the linear spring element 

allowed for easier modification of the output force and control of the stroke. Chapter 5 

presented experimental and modeled actuation results of a membrane DEA demonstrator. 

The diaphragm DEA was biased by a NBS+LS mechanism. The force was measured for each 

element and was used to develop a potential energy based model of the actuator. From the 

potential energy model the stability and stroke of the actuator were predicted for three 

different NBS+LS combinations. The actuation stroke behavior modeled agreed qualitatively 

well with the experimental measurements.  

Part two of the thesis concerned two test techniques for characterizing and benchmarking 

membrane DE actuators and materials. Chapter 6 presented a novel test device capable of 

applying programmable loads to DE membranes via a custom programmed electromagnetic 

motor. The design, setup and control were first explained before using the device to pre-load 

a diaphragm DEA. A range of strokes were observed when positive and negative stiffness 

mechanisms were tested. These results concurred with those found in Chapter 3 which 

concluded that the largest stroke can achieved by using a negative stiffness mechanism. It was 
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additionally shown that for the DEA to maintain overall mechanical stability the bias 

mechanism stiffness must be of lower stiffness (i.e. softer) than the membrane DEA. Chapter 7 

presented the design of a uniaxial test device and procedure to repeatably test planar 

membrane DEs. The design included the new ability to obtain a membrane thickness profile 

when the specimen is stretched and/or actuated. The specimen fabrication procedure and 

tester design included features to eliminate human error during handling. Electromechanical 

characterization results were presented for pure-shear specimens. The tester showed very 

repeatable results which are promising for future material benchmarking and electrode 

mixture studies.  

8.2 FUTURE WORK IN DESIGNING MEMBRANE DEAS 
To progress on toward commercialization of membrane DE actuators several areas should 

continue to be addressed by the DE research community. Some have been touched on in this 

thesis and some not. One is on optimizing the design of the bias mechanism. This thesis 

presented one kind (i.e. shape) of bistable mechanism but there are more shapes and sizes 

possible. Considerable work can be performed to optimize the shape and size of the bistable 

mechanism. This can be done perhaps through finite element computer simulations.  

Another area is designing the negative-stiffness mechanism to make the overall actuator more 

compact. This could be through a clever spring design or a combination of miniature 

compliant mechanisms to achieve the stroke desired while maintaining a small device 

footprint.  

Related to this is the packaging of the membrane DEA system. The DEA system should be as 

small as possible and preferably smaller (if not smaller, then at least lighter) than the 

conventional actuator solution. This calls often for clever configuration and arrangement of 

the membrane DEAs and the bias mechanism to make use of the available space. It is 

recommended that the membranes be sized (via changing the diameter or area of electrode) 

based on the application’s stroke requirements and/or stacked depending on the force 

requirements. The size is typically constrained by the maximum film strain and the force is 

limited by the maximum allowed electric field. Stacking the membranes increases the 

available force but, as is the case with stacked actuators (page 11), making a robust electrical 

contact between the layers can be challenging and thus should be thoroughly thought-out.  

Use of negative-rate bias mechanisms with DEAs can be expanded to DE configurations other 

than diaphragm/circular/out-of-plane configurations. For example, a planar DEAs can also 

benefit from a well-designed negative-rate bias mechanism just as do the circular DEAs. 

Furthermore, because the out-of-plane force-displacement (F-D) response of circular DEAs is 

parabolic (due to the geometry), the achievable stroke, even with the NBS mechanism, is 

unnecessarily limited. The problem lies in fitting a linear NBS profile into a parabolic-shaped 

gap (see Figure 3.4, p.19). However, for the planar membrane DEAs tested in Chapter 7, this 

is not the case. They exhibit a relatively linear F-D response (see Figure 7.16, p.100). This 
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means the workable area for these actuators is more linear in shape, which allows for easier 

tuning the linear region of the NBS mechanism to the DEA.  

8.3 FURTHER WORK IN EXPERIMENTAL TECHNIQUES 
Considerable work is yet to be performed in the area of experimental testing of DEAs. The 

suggestions here are limited to the potential tests which can be performed using test setups 

described in part 2 of the thesis. Firstly, the programmable force motor presented in Chapter 

6 can be applied to not only to simulate bias mechanisms, it can be also used to mimic a viscous 

load such as in a fluid pump. If the load was known (perhaps a non-linear one) the motor 

could be programmed to be the load as the membrane DEA acted against it. The advantage of 

this is that the programmable motor can measure the force and position while testing. This 

eliminates the need to somehow adding sensors to measure the DEA force or stroke when 

acting against the load. The load can be changed simply modifying the LabVIEW program.  

Other tests using the programmable motor can be performed on planar membrane DEAs. As 

explained in the previous section, these membrane DEAs are more linear in their force-

displacement response (e.g. Figure 7.16, p.100) than the diaphragm DEAs (e.g. Figure 6.6, p.75) 

and therefore when biased with a linear negative-rate spring they could exhibit actuation 

strains easily higher than 30%. This can be pursued as an alternative to diaphragm membrane 

DEAs. The programmable motor test rig could potentially help show the maximum actuation 

stroke achievable for planar DE membranes. Again this would not require the extra work to 

build the physical bias mechanism. 

As presented in Chapter 7, the comprehensive DE tensile test device is capable of accurate and 

repeatable tests. The test rig will enable future investigations into the impact of DEA 

fabrication process parameters on the actuator performance. In the area of conductive 

electrode patterning, the parameters such as screen size and number of layers could have an 

impact on the stiffness and resistance of the DEA. Still, further tests could study different 

electrode mixtures to learn, for example, the impact the electrode components (carbon black 

or PDMS) have on the actuator or sensor electrical resistance, mechanical compliance and 

thickness per layer [161]. Other investigations, some of which are ongoing, will delve into 

answering questions like how the film thickness, film pre-stretch and planar specimen 

geometry impact the actuator performance. 

The test rig was built so that extra motors and/or sensors could be added. An incremental 

improvement step is to add a second motor axis to control the position of the thickness sensors 

not only in the y-direction but also the x-direction. This would ultimately enable an x-y thickness 

profile map of the stretched/activated membrane. Such results could aid in validating a FE 

model of the membrane. 

Another interesting study to perform is to map the strain fields of a membrane DEAs using 

digital image correlation (DIC). To date little work has been reported in this area [162]–[164] 
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but investigating this topic could help in understanding the effect of membrane pre-stretch, 

boundary conditions, specimen geometry and electrode stiffening.  

The test rig would also be a good platform to study joule heating of the membrane electrodes 

using thermal camera systems. The electrode resistance of the specimen can be varied by 

stretching the specimen and the cameras could observe where the resistance is highest. These 

studies could lead to observation of thermally induced dielectric breakdown as shown in 

[165].  

Additionally, self-sensing, as presented in [166], could be implemented into the test rig to 

provide useful information into how the capacitance and resistance change while the actuator 

is driven. These could be very interesting also if the change in capacitance could be verified 

by digital image techniques. 

As one can see there is practically no limit to the number of investigations possible. These 

experimental results can be modeled in a finite element analysis (FEA) program such as 

COMSOL to develop detailed material models.  
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Appendix A: MINIATURIZATION THROUGH 

INCLINED BEAM FLEXURES 

In an effort to reduce the length and overall size of the DEA actuator system, a new kind of 

NBS mechanism was designed. For this design the same X-shaped beam mechanism was 

used, but with new boundary conditions. In this case the clamped ends of the NBS were 

inclined, therefore producing an asymmetric bistable mechanism, as discussed in Section 

4.3.3. The advantage of this method is that the mechanism is initially asymmetric, potentially 

eliminating the need for a linear spring. Work by Beharic et al showed that at a certain angle 

the bistability is lost, therefore giving it only one stable solution [167].  

The linear spring (as used in Section 4.4.2 and the chapter on DEA Prototypes) adds to the 

length of the overall actuator. For instance, the DEA prototype in Chapter 5 is approximately 

50mm long (including the support structure) and the stroke for this actuator ranged from 

2mm for a stable stroke and 5mm for a bistable stroke, therefore giving the actuator 4-10% 

elongation. Figure A.1 compares a DEA with the linear spring and one with an inclined NBS. 

 

Figure A.1: Comparing the actuator length for two bias mechanism designs (a) NBS+LS and (b) an inclined NBS (iNBS).  

To evaluate this design, several small prototypes were built. The buckling frames were 

designed with an inclined surface and a cover to clamp them down. Figure A.2 shows the 

buckling frame design and photos of the frame with 0° and 30° inclination angles.  
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Figure A.2: Buckling frame design (a) 0°and (b) 30°.  

Frames with angles ranging from 0° to 30° in steps of 5° were printed, assembled and tested. 

Figure A.3(a) presents the results for each mechanism. Figure A.3(b) shows a profile of the 

DEA and two appropriate iNBS elements together. 

 

Figure A.3: Inclined NBS test results (a) force-displacement, (b) DEA coupled with 20° and 25° inclined NBS 

The somewhat irregular trend seen in Figure A.3(a) shows that as the angle increases, the NBS 

stiffness in the linear region decreases. Also the distance between stable force equilibrium 

points decreases. Between 15° and 20° the mechanism loses the second stable position. These 

mechanisms can be stable when coupled to the DEA just as the NBS+LS mechanisms were in 

Section 4.4.2 and Chapter 5 on DEA Prototypes. 

The DEA actuator coupled with the iNBS has a force profile which appears to have a similar 

stiffness as the 20° and 25° mechanisms when properly pre-deflected as shown in Figure 

A.3(b). A small actuator prototype was designed in SolidWorks and printed on the 3D printer. 

Figure A.4 shows the design which is similar to the ones before. The inclined NBS mechanism 
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and the DEA are fastened in a frame. The DEA pre-defection is made adjustable thanks to the 

four screws which connect the two frames. 

 

Figure A.4: Solidworks sketch of demonstrator (a) Isometric view, (b) cross-sectional view (iNBS not modeled)  

Figure A.5 and Figure A.6 shows photos of the assembled demonstrator at 0V and at 2500V. 

 

Figure A.5: Photo of inclined NBS demonstrator (a) 0V and (b) 2500V.  

 

Figure A.6: Photo of inclined NBS demonstrator from rear (a) 0V and (b) 2500V.  

Below are the stroke results when applying different voltage inputs to the DEA biased with 

the iNBS. 
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Figure A.7: Stroke results for iNBS demonstrator for different voltage inputs, (a) amplitude modulated square wave, (b) 
square wave (1Hz), and (c) sine-sweep from 0-60Hz.  

Another advantage of this actuator is that the inertial forces are smaller because the linear 

spring is absent. As seen in the sine-sweep, the actuator responds well at higher frequencies. 

A maximum stroke is measured at resonance (~48 and 44Hz for 20° and 25° respectively). 

In summary, this design is clearly more compact without the linear spring behind the actuator. 

It produces around 1.8mm of stable stroke. From this design, as shown in Figure A.5 and the 

stroke shown in Figure A.7, this actuator exhibits stroke of about 14% of its length. This is 4% 

more than the prototype in Chapter 5 and could certainly be improved with further NBS 

tuning.

(c)

(b)

(a)
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Appendix B: MAGNETIC BIAS FORCE 

It has been shown that to increase the stroke of diaphragm membrane actuators, a negative 

stiffness and non-linear force mechanism is required. The NBS+LS bias mechanism which has 

been presented extensively here is non-linear and when coupled properly with the DEA, it 

will operate only in its linear region. Since the diaphragm DEA has a quadratic or a higher 

order force-displacement relationship, the stroke a linear mechanism can produce is limited 

by the gap between the force-displacement profiles. 

 

Figure B.1: Bias mechanism force profiles.  

Given that the DEA stiffens at higher stretches, it would be desirable to use a bias mechanism 

which also stiffens with elongation. This could increase the stroke since the bias force would 

remain in the workable region for higher elongations. As previously seen, the NBS 

mechanisms increase in force but at a certain point must fall again due to the beam changing 

buckling modes. However magnetic attraction force is shown here to have a quadratic or a 

stiffening behavior, as seen in the test performed below.  

 

Figure B.2: Measuring magnet attraction force (a) setup and (b) results.  

The magnetic attraction force was measured, as presented in Figure B.2. It decreases 

approximately quadratically as the separation distance increases. These results show that the 

F

x

Constant

F

x

Linear

F

x

Bistable

F

x

Quadratic

?
Is there a mechanism 

which can give us this 

response?

Separation distance [mm]

F
o

rc
e

 [
N

]

Linear actuator 

(ANT-LA25)
N S

Separation 

distance

Magnets

N S LC

(a) (b)

Magnets



116  Appendix B: Magnetic Bias Force 

 

attraction force can be used as a non-linear bias force for DEAs. Some advantages are that it is 

non-contact, high force and rate independent. 

 

Figure B.3: Magnet demo tests and sketch, (a) DEA force response, (b) magnet attraction force response, (c) theoretical force 
equilibrium plot showing potential bistability, and (d) demonstrator sketch.  

Figure B.3(c) presents the force-displacement results of a DEA biased with the magnetic 

attraction force. The theoretical stroke achievable with this magnet is around 4.5mm. To test 

the stroke, a demonstrator was designed in Solidworks, printed with the 3D printer and 

assembled using a single DEA. The NdFeB magnets are cylindrical with 5mm thickness and 

10mm diameter. 

 

Figure B.4: Photos of magnetic bias demonstrator, (a) test setup, (b) photos capturing actuation from above, (c) and from 
below.  

(a)

(c)

(b)

NdFeB

(d) D55

NdFeB

(a) (c)(b)

0kV

3kV

0kV

3kV



Appendix B: Magnetic Bias Force 117 

 

The work presented here is the first known DEA biased with magnetic attraction force. It is 

yet another method for biasing DEAs. Many configurations and applications can be 

conceptualized such as valves, pumps and miniature push-pull actuators, see Figure B.5. 

 

Figure B.5: Sketches of various magnetically biased DEAs such as, (a) DEA driving a fluidic valve, (b) 2-DEAs driving a 
diaphragm pump, (c) 2 planar DEAs configured antagonistically producing push-pull motion.  
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