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ACTB Beta-actin 

AM alveolar macrophage 

amp ampicillin 

AP-1 Activator protein 1 

APC Allophycocyanin 

APS ammonium persulfate 

BHQ1 black hole quencher 1 

bp base pairs 

BSA bovine serum albumin 

C. Albicans Candida albicans 

CD cluster of differentiation 

cDNA complementary DNA 

CEA Carcinoembryonic Antigen 

CFSE carboxyfluorescein diacetate succinimidyl ester 

CXCL Chemokine (C-X-C motif) ligand 

d/o deficient 

DAPI 4',6-diamidino-2-phenylindole 

DC dendritic cell 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP dATP, dCTP, dGTP or dTTP 

dTTP 2’deoxythymidine 5′-triphosphate 

E. coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

eGFP green fluorescent protein 

EtBr ethidium bromide 

FBS fetal bovine serum 
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Fc fragment crystalline 

FITC fluorescein isothiocyanate 

FSC forward scatter 

g gram 

GILZ glucocorticoid -induced leucine zipper 

Glipr1 Glioma pathogenesis-related protein 1 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GMFI geometric mean of fluorescence intensity 

GM-M GM-CSF derived macrophages 

GRAS Generally recognized as safe 

HCV Hepatitis C virus 

HLA human leukocyte antigen 

ICL1 isocitrate lyase 

IFN interferon 

IKK-β inhibitory protein B 

IL Interleukin 

IL-1ra IL-1 receptor antagonist 

IRES internal ribosomal entry site 

IRF IFN regulating factor 

kb kilo bases 

kDa kilo Dalton 

l litre 

LB Luria Bertani 

LiAc lithium acetate 

LPS lipopolysaccharide 

M molar 

MCP-1 Monocyte chemoattractant protein-1 

M-CSF Macrophage colony-stimulating factor 

MgCl2 Magnesium Chloride 

min minute 

MLS1 malate synthase 



Abbreviations 

3 
 

M-M M-CSF derived macrophages 

MOI multiplicity of infection 

MPS mononuclear phagocyte system 

mRNA messenger RNA 

MTT 3-(4,5-dimethyl-thiazol-2-)-2.5-diphenyl tetrazolium 

bromide 

MyD88 myeloid differentiation factor 88 

M Macrophages 

NaN3 Sodium azide 

NF-B nuclear factor-b 

NK Natural killer 

P. brasiliensis Paracoccidioides brasiliensis 

PBMC Peripheral blood mononuclear cells 

PBS phosphate buffered saline 

PBST phosphate buffered saline tween 

PCR polymerase chain reaction 

PE Phycoerythrin 

PEG polyethyleneglycol 

PGK phosphoglycerate kinase promoter 

PI Propidium Iodide 

PMA Phorbol 12-myristate 13-acetate 

RNA ribonucleic acid 

RNase ribonuclease 

rpm rounds per minute 

RPMI Roswell Park Memorial Institute 

RT reverse transcription 

S. cerevisiae Saccharomyces cerevisiae 

SC synthetic complete 

SDS sodium dodecylsulfate 

SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis 

SEM standard error of the mean 
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SFM Serum Free Medium 

shRNA short hairpin RNA 

SSC sideward scatter 

STAT Signal Transducer and Activator of Transcription 

TAM tumor-associated macrophages 

TBE tris-borate EDTA buffer 

TE tris-EDTA buffer 

TEMED Tetramethylethylendiamin 

TGF transforming growth factor 

TLR toll-like Receptor 

TNF- tumor necrosis factor- 

TRIF TIR-domain-containing adapter-inducing interferon-β 

Tris -tris-(hydroxymethyl)-methylamine 

U unit 

ura uracil 

UV ultra violet 

V volt 

x g x-fold gravitational force 

[v/v] volume per volume 

[w/v] weight per volume 
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Abstract 

 

Macrophages (Mϕ) are professional phagocytic cells responsible for internalizing 

and clearing particles and pathogens. The prevailing Mϕ phenotype largely 

depends on the local immune status of the host. Whereas M1-polarized Mϕ are 

considered as pro-inflammatory Mϕ, M2 Mϕ exhibit anti-inflammatory functions 

and promote tumor growth. 

Yeast Saccharomyces cerevisiae is taken up by phagocytic cells and is a 

promising vehicle for nucleic acids vaccines. Herein, we aimed to study the 

response of human Mϕ to S. cerevisiae exposure and its potential use as a gene 

delivery system in M1 and M2 cells.  

Opsonized S. cerevisiae was taken up to the same extent by M1 and M2 Mϕ and 

induced an M1 like-phenotype in both cell types. Furthermore, yeast delivered 

functional nucleic acids to Mϕ, especially when constitutively biosynthesized 

mRNA was used. Interestingly, protein expression of the delivered nucleic acid 

was higher in M2 cells when compared with M1 Mϕ. Finally, the delivery of pro-

inflammatory mediator mRNA to M2 Mϕ re-educated them towards an M1 

phenotype.  

Silica nanoparticles represent another potential delivery system. Interestingly, 

nanoparticle uptake was enhanced in M2 compared with M1 Mϕ. In contrast, the 

uptake of microparticles did not differ between M1 and M2 phenotypes. 

Our results suggest the use of yeast- or nanoparticle-based gene delivery as 

promising approach for the treatment of pathologic conditions that may benefit 

from the presence of M1-polarized Mϕ, such as cancer. 

 

Zusammenfassung 

 

Makrophagen (Mϕ) sind professionelle Phagozyten und damit für die Aufnahme 

und den Abbau von Partikeln und Pathogenen verantwortlich. Der 

vorherrschende Mϕ-Phänotyp wird vom lokalen Immunstatus des Wirts bestimmt. 
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Während M1-Mϕ Entzündungsreaktionen unterstützen, haben M2-Mϕ anti-

inflammatorische Funktionen, können allerdings auch das Tumorwachstum 

fördern. 
Der Hefestamm Saccharomyces cerevisiae wird von phagozytierenden Zellen 

aufgenommen und bietet so die Möglichkeit, DNA-Impfstoffe zu verabreichen. In 

dieser Arbeit wurde der Einfluss von S. cerevisiae auf den Makrophagen-

Phänotyp sowie eine mögliche Verwendung als Genübertragungs-System 

untersucht. 

Opsonierte Hefezellen wurden von M1- und M2-Mϕ im gleichen Ausmaß 

aufgenommen und riefen in beiden Zelltypen einen pro-inflammatorischen 

Phänotyp hervor. Darüber hinaus konnte S. cerevisiae zur Übertragung 

funktioneller DNA und mRNA genutzt werden. Durch Übertragung von mRNA, 

die für pro-inflammatorische Mediatoren kodierte, konnten M2-Mϕ erfolgreich in 

Richtung M1 repolarisiert werden. 

Silica-Nanopartikel könnten ebenfalls ein nützliches Werkzeug zur 

Genübertragung darstellen. Interessanterweise zeigten M2-Mϕ eine höhere 

Kapazität zur Aufnahme von Silica-Nanopartikeln. 

Zusammengefasst zeigen unsere Ergebnisse, dass Hefe- oder Nanopartikel-

basierte Gentherapie einen vielversprechenden Ansatz zur Therapie von 

Erkrankungen darstellen könnte, die von der Anwesenheit von M1-Mϕ profitieren, 

wie z.B. Tumorerkrankungen. 
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1.1 Macrophage heterogeneity and plasticity 

 

Macrophages are a heterogeneous population of innate immune cells, distributed 

throughout the tissues of the body. They are professional phagocytic cells mainly 

responsible for ingesting and processing foreign materials and clearance of dead 

cells and debris. Macrophages express a panel of receptors (e.g. scavenger 

receptors, Toll-like receptors (TLRs), or Fc receptors) allowing them to detect 

aberrant signals. They can act as effector cells in inflammation and activate the 

adaptive immune system (Murray and Wynn, 2011).  

 
Figure 1: Macrophage distribution and functions. Macrophages are strategically located 
throughout the body. They fulfill several functions, mainly phagocytosis, cytokine secretion, and 
antigen presentation. Reprinted by permission from Macmillan Publishers Ltd: [Nat. Rev. 
Immunol.] (Murray and Wynn, 2011), copyright (2011). 
 
Macrophages have a remarkable plasticity. Their functional phenotype can be 

dictated by the signals received from their micro-environment. With reference to 

Th1/Th2 polarization, two distinct activation states of macrophages have been 
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suggested: the classically activated (M1) macrophage phenotype and the 

alternatively activated (M2) macrophage phenotype (Mills et al., 2000; Mantovani 

et al., 2004) 

 

1.1.1 Classically activated macrophages (M1) 

The M1 phenotype can be induced by different signals, such as granulocyte-

macrophage colony-stimulating factor (GM-CSF) (Martinez et al., 2014; Verreck 

et al., 2004), the Th1 cytokine IFN-ɣ, the bacterial product lipopolysaccharide 

(LPS), or tumor necrosis factor (TNF)- (Martinez et al., 2014; Mantovani et al., 

2004). These stimuli trigger the expression of pro-inflammatory mediators and 

surface markers (e.g.: CD80, CD86, HLAII) in macrophages, which is mediated 

via several signal transduction pathways (Martinez et al., 2014). For example, 

LPS is recognized by Toll-like receptor 4 (TLR4) and initiates distinct signaling 

cascades via the adapter molecules MyD88 (Myeloid differentiation primary 

response gene 88) or TRIF (TIR-domain-containing adapter-inducing interferon-

β), which leads to the expression of high amounts of pro-inflammatory cytokines, 

mainly TNF-, IL-6, IL-12, and interferons (Martinez et al., 2014). 

 
Figure 2: Classical activation of macrophages. (A) M1 stimuli, markers, and functions. (B) Key 
signaling mediators involved in LPS-induced activation. Modified after (Martinez et al., 2014). 
Illustrations were obtained and modified from Servier Medical Art by Servier, 
http://www.servier.com/Powerpoint-image-bank, licensed under Creative Commons Attribution 
3.0 Unported License, http://creativecommons.org/licenses/by/3.0/. 
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M1 macrophages are essential for pathogen clearance, adaptive immune 

response activation, and tumor suppression, but they can also contribute to the 

pathogenesis of auto-immune and chronic inflammatory diseases (Murray and 

Wynn, 2011). 

 

1.1.2 Alternatively activated macrophages (M2) 

M2 macrophages are more diverse than M1 macrophages and can be divided 

into sub-groups depending on the stimuli inducing the phenotype. When 

alternatively activated macrophages were described for the first time they were 

induced by the Th2 cytokine IL-4 (Mills et al., 2000). This phenotype was later 

called M2a and is characterized by a high expression of the mannose receptor 

(CD206) and the production of IL-1 receptor antagonist (IL-1ra). Macrophages 

stimulated simultaneously by immune complexes and agonists of Toll-like 

receptors (e.g.: LPS) are known as M2b. These cells express at the same time 

pro-inflammatory cytokines (e.g.: TNF- and IL-6) and high levels of the anti-

inflammatory cytokine IL-10 with low levels of IL-12. The anti-inflammatory 

cytokine IL-10 induces the M2c phenotype (Martinez et al., 2014; Mantovani et 

al., 2004). IL-10 administration leads to an inhibition of pro-inflammatory cytokine 

expression and to the production of anti-inflammatory mediators, such as IL-10 

itself (Staples et al., 2007) or GILZ (Berrebi et al., 2003), as well as to the 

upregulation of the scavenger receptor CD163 (Rey-Giraud et al., 2012). 

Recently, the macrophage colony-stimulating factor (M-CSF) was also 

considered as an M2 stimulus since it can also induce an anti-inflammatory 

phenotype (Martinez et al., 2014; Verreck et al., 2004).  
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Figure 3: M2 macrophage sub-groups. M2 stimuli, markers, and functions. Modified after 
(Martinez et al., 2014). Illustrations were obtained and modified from Servier Medical Art by 
Servier, http://www.servier.com/Powerpoint-image-bank, licensed under Creative Commons 
Attribution 3.0 Unported License, http://creativecommons.org/licenses/by/3.0/. 
 
The M2 phenotype is critically involved in wound healing and anti-parasitic 

immunity but is also known to promote tumor growth (Murray and Wynn, 2011). 

 

1.1.3 Tumor-associated macrophages 

Macrophages are one of the major populations of infiltrating leukocytes in solid 

tumors. These tumor-associated macrophages (TAM) play an important role in 

tumor initiation, development, and metastasis. TAM are considered to be a 

polarized M2-like macrophage population with potent immunosuppressive 

functions (Ma et al., 2010; Solinas et al., 2009; Sica et al., 2007). Both the 

presence of TAM and M-CSF overexpression are related to a poor prognosis, 

especially in ovarian, breast, uterine, prostate cancer and lung adenocarsinoma 

(Bingle et al., 2002; Pollard et al., 2004; Lin et al., 2001; Zhang et al., 2011). Also 

elevated numbers of tumor-associated macrophages were correlated with 

therapy failure since they contribute to drug-resistance and have a 

radioprotective effect (Tang et al., 2013).  
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Tumor associated macrophages originate from circulating blood monocytes 

recruited to the tumor sites by tumor-derived chemoattractants, mainly MCP-1 

(Monocyte chemoattractant protein-1) and M-CSF (Sica et al., 2006; Mantovani 

et al., 2002). In the tumor microenvironment, M-CSF promotes monocyte survival 

and differentiation into macrophages (Lin et al., 2001). The cytokines expressed 

at the tumor site, mainly M-CSF, IL-10, and TGF-, promote macrophage 

polarization towards an M2c phenotype (Sica et al., 2006). TAM have many M2 

markers: they express low levels of pro-inflammatory cytokines, high levels of 

scavenger receptor A (CD204), CD163, and mannose receptor (Sica et al., 2006; 

Mantovani et al., 2002; Komohara et al., 2014). TAM display several pro-tumoral 

functions, mainly suppression of adaptive immunity, matrix remodeling, 

promotion of neo-angiogenesis, maintenance of tumor growth and survival, and 

promotion of tumor invasion and metastasis (Sica et al., 2006). Thus, targeting 

TAM and re-educating them from an M2 to an M1 phenotype is a promising 

approach for cancer therapy (Tang et al., 2013; Stout et al., 2009). 

 

1.1.4 Inducing an M1 phenotype in macrophages by gene therapy 

The plasticity of macrophages provides a basis for strategies aiming to re-

educate TAM towards an M1 phenotype. Several strategies using nucleic acid 

therapy seeking to increase the expression of pro-inflammatory mediators in 

macrophages were described (Singh et al., 2014). In a mouse macrophage cell 

line, the expression of IFN- under the control of a hypoxia promoter using an 

adenoviral vector led to the successful overexpression of IFN- mRNA and 

protein in a hypoxic environment (Carta et al., 2001). Murine macrophages 

transfected with an IL-12 recombinant adenoviral vector secreted IL-12 and were 

characterized by an upregulation of HLA I and II. When injected into the tumor of 

a mouse prostate cancer model they enhanced the infiltration of T cells and NK 

cells, consequently increasing the survival of the mice (Satoh et al., 2003). 

Macrophages transfected with the Glipr1 (Glioma pathogenesis-related protein 1, 

a protein having pro-apoptotic activities in prostate and bladder cancer cells) 

gene in an adenoviral vector showed a high expression of CD40, CD80, HLAII, 
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IL-12, and IL-6. When injected into the tumor of a metastatic prostate cancer 

mouse model, they resulted in significantly suppressed tumor growth and 

metastasis (Tabata et al., 2011). In another tumor model, TAM were isolated 

from established tumors, and then infected with an adenovirus carrying dominant 

negative IKK , followed by a reinjection into the tumor-bearing mice. A 

significant decrease in tumor burden was observed along with a higher 

expression of IL-12 and lower expression of IL-10 in macrophages (Hagemann et 

al., 2008). In an in vitro model of human M1/M2 polarized macrophages, 

Krausgruber et al. showed that the forced expression of IRF5 (Interferon 

regulatory factor 5, a master regulator of M1 phenotype in macrophages) in M2 

macrophages re-educated them to an M1 phenotype by inducing the expression 

of pro-inflammatory cytokines and costimulatory molecules (Krausgruber et al., 

2011). All these studies using adenoviruses showed promising results, but their 

application is limited due their complicated handling procedure and poor safety 

profile. Several promising non-viral delivery systems including lipoplexes, 

polyplexes, polymers, and lipid delivery systems were tested in studies targeting 

the inflammatory macrophage phenotype (Singh et al., 2014).  

 

1.2 Silica nanoparticles 

 

Silica nanoparticles are used in several biomedical applications such as bio-

sensing and imaging (Korzeniowska et al., 2013). They also represent a 

promising non-viral gene delivery vector due to their versatility, low toxicity and 

high transfection efficiency (Knopp et al., 2009). Several studies showed the 

possibility of using surface modified silica nanoparticles as gene delivery system 

(Knopp et al., 2009). Cationic silica nanoparticles carrying eGFP DNA at their 

surface introduced intranasally to mouse showed higher eGFP expression in lung 

than the eGFP plasmid alone (Ravi Kumar et al., 2004). Amino-surface 

functionalized silica nanoparticles binding plasmid DNA were injected into mouse 

brains to transfect neuronal-like cells. This approach showed equal or better 

transfection efficiency than viral vectors (Bharali et al., 2005). 
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1.3 Yeast Saccharomyces cerevisiae 

 

1.3.1 Recombinant S. cerevisiae in biotechnology 

Saccharomyces cerevisiae is a non-pathogenic yeast, which has been used for 

thousands of years in the food industry (Sicard and Legras, 2011). Recombinant 

S. cerevisiae expressing viral or cancer antigens is currently being tested as a 

vaccine vehicle. Respective preclinical and clinical trials were reviewed by 

Ardiani et al. (Ardiani et al., 2010). Moreover, recent studies have shown that 

recombinant S. cerevisiae could be used as a live vector for nucleic acids 

vaccination. After recombinant yeast uptake, human monocyte-derived dendritic 

cells expressed the model gene enhanced green fluorescent protein (eGFP) and 

were able to process and present the antigen of the human cytomegalovirus 

phosphoprotein pp65 (Walch et al., 2012). Furthermore, S. cerevisiae could also 

deliver shRNA in vivo after oral yeast administration (Zhang et al., 2014). 

Several attributes make S. cerevisiae a promising nucleic acid vehicle:  

(i) It can be administered orally and protect the transported material 

from degradation in the gut (Beier et al., 1998; Kenngott et al., 

2016) 

(ii) Unlike bacterial and viral live vectors, S. cerevisiae is considered as 

a safe organism (GRAS notice (175, 604, 422) from the FDA “U.S. 

Food and Drug Administration”) and it is devoid of endotoxins and 

super antigens (Gellisen and Hollenberg, 1997; Walch et al., 2012). 

(iii) It has shown to be more efficient in nucleic acid delivery than a 

comparable Listeria-based system (Walch et al., 2012). 

(iv) Yeast can be easily genetically modified and can be rapidly grown 

to high cell density (Valenzuela et al., 1982; Smith et al., 1985). 

(v) Yeast can specifically target phagocytic cells (Beier et al., 1998). 
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1.3.2 S. cerevisiae interaction with phagocytic cells 

The S. cerevisiae cell wall is mainly composed of mannosylated proteins, -

glucan, and chitin (Lesage et al., 2006). These different components can be 

recognized by several receptors, mainly the mannose receptor (CD206) (Giaimis 

et al., 1993), Dectin-1 (Brown and Gordon, 2001), and Toll-like receptors 

(especially TLR2/TLR6 and TLR4) (Uematsu and Akira 2008). These receptors 

have a differential expression on professional phagocytic cells.  

Whole S. cerevisiae can activate human dendritic cells by increasing the 

expression of the surface markers CD80, CD83, and HLAII, and the secretion of 

the cytokines IL-12, TNF-, IFN-, IL-8, IL-2, IL-13, IL-10 and IL-1 (Remondo et 

al., 2009)  

The effect of some S. cerevisiae-derived components, such as β-glucan and 

zymosan on mouse macrophage polarization was recently described. While Liu 

et al. showed that β-glucan via its interaction with Dectin-1 induces an M1-like 

phenotype by down-regulating M2 markers, e.g. CD163 and IL-10, and up-

regulating M1 markers, such as CD86, IL-12, and TNF- (Liu et al., 2016), 

Elcombe et al. reported that zymosan induces an M2b phenotype with a high 

expression of IL-10 and low levels of IL-12 (Elcombe et al., 2013). 
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1.4 Aim of this work 

 

Macrophages are a heterogeneous and plastic cell population with two main 

phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-

inflammatory alternatively activated macrophages (M2). The macrophage 

phenotype can be both protective and pathogenic. Whereas M1-polarized 

macrophages are involved in host defense and have anti-tumor activity, M2 

macrophages exhibit wound-healing properties, but also promote tumor growth. 

Re-educating macrophages from an M2 to an M1 phenotype is a promising 

approach for cancer therapy. Yeast (Saccharomyces cerevisiae) and silica 

nanoparticles represent interesting vehicles for numerous medical applications. 

Macrophages are the major cell population responsible for nanoparticle 

clearance and yeast phagocytosis in vivo. So far, studies on S. cerevisiae or 

silica nanoparticle interaction with macrophages did not consider the 

macrophage phenotype. The aim of the present study was to investigate the 

interaction between differently polarized macrophages and S. cerevisiae or silica 

nanoparticles, given their possible application to target and possibly re-educate 

macrophages from an M2 to an M1 phenotype. 

 

I. Saccharomyces cerevisiae is a promising vehicle for the delivery of 

vaccines. It is well established that S. cerevisiae is taken up by professional 

phagocytic cells. However, the response of human macrophages to S. cerevisiae 

is ill-defined. Thus, the first chapter of this work focuses on characterizing the 

interaction between S. cerevisiae and M1- or M2-like macrophages.  

 

II. Recent studies on novel vaccination strategies have shown that S. 

cerevisiae can deliver nucleic acids to phagocytic cells. Therefore, in the second 

part of the present study, we aimed to investigate the potential use of S. 

cerevisiae for nucleic acid delivery to human macrophages to re-educate M2 

macrophages towards an M1 phenotype by yeast-based delivery of MYD88 or 

TNF mRNA. 
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III. Despite the increasing number of applications for silica nanoparticles, the 

influence of macrophage polarization on their uptake and thereby their clearance 

has not been characterized yet. In the third part of the present study, we aimed to 

examine the uptake potential of differentially polarized human macrophages for 

silica nanoparticles. 
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2 Chapter I 

 

 

Saccharomyces cerevisiae polarizes both M-

CSF and GM-CSF differentiated macrophages 

towards an M1-like phenotype 
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2.1 Introduction 

 

Recently, the influence of C. albicans uptake on M1 and M2 macrophages has 

been studied. Reales-Calderón et al. reported that human macrophages 

differentiated in vitro by GM-CSF or M-CSF treatment respond differently to C. 

albicans. The exposure to C. albicans increased the production of IL-10 by M-

CSF-differentiated macrophages but did not have any significant effect on the 

expression of IL-12, TNF-α, or IL-6. Interestingly, proteomic analysis suggests 

that interaction with C. albicans skews M1 macrophages towards an M2 

macrophage phenotype (Reales-Calderón et al., 2014). 

Paracoccidioides brasiliensis represents another common pathogenic yeast 

strain that causes systemic mycosis in humans. In a recent study, the effect of P. 

brasiliensis infection on GM-CSF and M-CSF differentiated bone marrow-derived 

macrophages from the A/J and B10.A mouse strains were analyzed. Unlike M-

CSF differentiated macrophages, GM-CSF-differentiated cells produced high 

levels of pro-inflammatory cytokines, i.e. IL-6 and TNF-α, as well as the anti-

inflammatory cytokine IL-10 upon incubation with P. brasiliensis. These results 

suggest that M1-like macrophages, which are predominant in the B10.A, but not 

in the A/J strain, may contribute to an unbalanced early immune response 

against P. brasiliensis in B10.A mice (De Souza Silva et al., 2015). 

Despite a significant number of studies on yeast-macrophage interactions, little is 

known about the direct effect of Saccharomyces cerevisiae on macrophage 

polarization. In contrast to the yeast strains mentioned above, S. cerevisiae is 

non-pathogenic and is currently being tested as a vaccine vehicle.  

In the present chapter, we characterized the influence of S. cerevisiae uptake on 

human macrophage polarization. We prepared M1- and M2-like macrophages by 

differentiating human peripheral blood monocytes using GM-CSF or M-CSF, 

respectively. Subsequently, we examined their uptake potential for fluorescently 

labeled S. cerevisiae and investigated the expression of M1 and M2 markers 

before and after yeast uptake. 
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2.2 Results 

 

2.2.1 Human monocyte-derived macrophages 

Human peripheral blood monocytes were differentiated into macrophages by 

GM-CSF- or M-CSF-treatment (GM-M / M-M) and the expression of 7 surface 

markers was analyzed by flow cytometry. As previously reported, GM-M and M-

M shared similar expression level of HLA I (Rey-Giraud et al., 2012) and CD80 

(Figure 4). Notably, M-M expressed higher levels of CD14, but a much lower 

amount of mannose receptors (CD206) than GM-M (Rey-Giraud et al., 2012; 

Xu et al., 2006; Bender et al., 2004) Moreover, GM-M were characterized by 

elevated expression of the M1 markers CD86 and HLAII (Krausgruber et al., 

2011; Lawrence et al., 2011; Sica et al., 2012; Gordon et al., 2005) . In contrast, 

M-M expressed higher levels of CD163, a known M2 marker (Biswas et al., 

2010; Krausgruber et al., 2011; Heusinkveld et al., 2011; Xu et al., 2007). Taken 

together, the flow cytometric analysis confirmed that GM-M display an M1-like 

phenotype, whereas M-M resemble M2 macrophages. 
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Figure 4: Characterization of monocyte-derived macrophages. Human peripheral blood 
monocytes were differentiated with either GM-CSF (GM-M) or M-CSF (M-M). Surface 
expression of HLAI, CD80, HLAII, CD86, CD14, CD163, and CD206 was analyzed by flow 
cytometry. (A) One representative histogram is shown. Dark gray: isotype control, white: specific 
staining. (B) GMFI values. Data represent GMFI means + SEM of obtained from 7 independent 
experiments with cells from different donors. p-values were generated by Mann-Whitney test 
except for CD14, where the two sample t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001. 
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2.2.2 Uptake of yeast by monocytes derived macrophages 

We then compared the ability of human GM-M and M-M to phagocytose S. 

cerevisiae S86c. Living yeast was stained with CFSE. Subsequently, yeast cells 

were left untreated or opsonized with human AB serum. As shown in Figure 5 A, 

both types of macrophages were able to take up untreated or opsonized S. 

cerevisiae at a multiplicity of infection (MOI) of 7 after co-incubation for 4 h. While 

87% of GM-M were CFSE positive reflecting a high yeast uptake efficiency, 

only 43.9% of M-M were able to internalize untreated yeast within 4 h (Figure 5 

B, C). Yeast opsonization with human serum did not affect yeast uptake by GM-

M but significantly increased yeast internalization by M-M. When using 

opsonized yeast, no significant difference in yeast uptake was observed between 

GM-M (85.6 ± 3.3) and M-M (80.2 ± 0.8) (Figure 5 B, C). Since the 

experiments were conducted in serum free medium, opsonized yeast was used 

in the following experiments to ensure identical starting conditions that better 

match the in vivo situation. 

To determine the optimal MOI for high uptake efficiency, macrophages were 

incubated for 4 h with opsonized yeast at various MOIs ranging from 1 to 11. The 

percentage of cells engulfing yeast was enhanced by increasing the MOI, 

reaching a plateau level at an MOI of 7 (Figure 6 A). Thus, we used MOI 7 in all 

further experiments.  

Next, we determined the optimal incubation time for yeast exposure. Yeast cells 

were added at an MOI of 7, and macrophages were analyzed at different time 

points for CFSE positive cells by flow cytometry. The uptake efficiency was 

already high (87.61 + 4.33% for GM-M and 82.6 + 1.75% for M-M as early as 

30 min after the co-incubation, reached a maximum at 2 h (92.66 ± 1.45% for 

GM-M and 83.5 ± 1.42 for M-M and a plateau phase afterward (Figure 6 B). 

Notably, yeast exposure did not show any toxic effect on macrophages at all 

MOIs tested (Figure 6 C). 
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Figure 5: Uptake of S. cerevisiae by monocyte-derived macrophages. GM-M or M-M 
were incubated with untreated or opsonized S. cerevisiae at an MOI of 7 for 4 h. (A) Yeast uptake 
was verified by fluorescence microscopy. Green: S. cerevisiae, blue: nucleus, scale bar: 20 µm. 
The percentage of CFSE+ macrophages was measured by flow cytometry. (B) One 
representative histogram is shown. (C) Percentage of CFSE+ macrophages. Data represent 
means + SEM from three independent experiments performed in duplicate. p-values were 
calculated by one-way ANOVA with Bonferroni’s post hoc test. ***p < 0.001. 
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Figure 6: Characterization of S. cerevisiae uptake by GM-M and M-M. GM-M or M-M 
were incubated with opsonized S. cerevisiae (A) at varying MOIs for 4 h or (B) at an MOI of 7 for 
varying periods of time. Data are presented as the percentage of CFSE+ macrophages. (C) Cell 
viability was measured by PI staining. Data are presented as the percentage of living 
macrophages (PI negative). Data represent means + SEM of three independent experiments 
performed in duplicate. p-values were generated by Mann-Whitney test. **p < 0.01, ***p < 0.001. 
(*) MOI compared to the preceding MOI. 
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2.2.3 Effect of S. cerevisiae on M-CSF and GM-CSF-differentiated 

macrophages polarization  

To study the effect of S. cerevisiae on macrophage polarization, GM-M and M-

M were loaded with opsonized S. cerevisiae and the expression of M1 and M2 

markers was analyzed. 

The expression of surface markers on yeast-loaded macrophages was measured 

by flow cytometry and compared to unloaded cells (Figure 7 A). No changes 

were observed in HLAI and CD80 expression in yeast-loaded GM-M (Figure 7 

B). The M1 markers HLAII and CD86 were significantly upregulated after yeast 

uptake by GM-M. In contrast, the M2 marker CD14 was downregulated. CD163 

expression also tended to be decreased, although the effect was not statistically 

significant (Figure 7 B). The mannose receptor CD206 was also significantly 

downregulated (Figure 7 B).  

Similarly, HLAII and CD86 were upregulated in M-M after yeast uptake, 

whereas CD14 was significantly downregulated (Figure 8 B). Taken together, S. 

cerevisiae enhanced M1 surface marker expression in both GM-M and M-M 

while reducing M2 markers. Taking into consideration that the initial expression 

of these markers was higher in GM-M, the M1 like-phenotype induced by yeast 

was more intense in GM-M compared with M-M. 
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Figure 7: S. cerevisiae induces an M1 surface marker expression in GM-M. GM-M were 
incubated with opsonized S. cerevisiae at an MOI of 7 for 40 h. Surface expression of HLAI, 
CD80, HLAII, CD86, CD14, CD163 and CD206 was analyzed by flow cytometry. (A) One 
representative histogram is shown. Dark gray: isotype control, white: specific staining. (B) GMFI 
values. Data represent GMFI means + SEM of yeast-loaded cells normalized to the mean of 
GMFI values for unloaded cells. Data were obtained from 4 independent experiments performed 
in duplicate. p-values were generated by two sample t-test except for CD80 where Mann-Whitney 
was used. *p < 0.05, **p < 0.01. 
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Figure 8: S. cerevisiae induces an M1 surface markers expression in M-M. M-M were 
incubated with opsonized S. cerevisiae at MOI 7 for 40 h. Surface expression of HLAI, CD80, 
HLAII, CD86, CD14, CD163 and CD206 was analyzed by flow cytometry. (A) One representative 
histogram is shown. Dark gray: isotype control, white: specific staining. (B) GMFI values. Data 
represent GMFI means + SEM of yeast-loaded cells normalized to the mean of GMFI of unloaded 
cells. Data were obtained from 4 independent experiments performed in duplicate. p-values were 
generated by two sample t-test except for CD86 where Mann-Whitney was used. *p < 0.05, **p < 
0.01. 
 



Chapter I 

30 
 

To further evaluate the yeast-facilitated induction of an M1-like phenotype 

suggested by surface marker expression, we determined cytokine mRNA levels 

by real-time RT-PCR. The pro-inflammatory cytokines TNF-, IL-12p40 and IL-6 

were used as M1 markers, whereas the anti-inflammatory cytokine IL-10 was 

used as an M2 marker (Biswas et al., 2010; Krausgruber et al., 2011; Verreck et 

al., 2006; Hamilton et al., 2014; Rey-Giraud et al.; 2012; Martinez et al., 2006). 

The expression of the anti-inflammatory regulator GILZ (Glucocorticoid-Induced 

Leucine Zipper) was also studied since GILZ has been reported to be 

upregulated in human and murine M2-like macrophages (Hoppstädter and 

Kiemer, 2015; Berrebi et al., 2003; Vago et al., 2015; Hoppstädter et al., 2015). 

TNF mRNA was significantly induced in both GM-M and M-M after 2 h of co-

culture and decreased afterward (Figure 9 A). IL12B mRNA was also induced 

after 2 h, reaching a peak at 4 h in M-M and still increasing after 16 h in GM-

M (Figure 9 B). In addition, IL6 mRNA was upregulated with a maximum at 4 h 

of co-culture (Figure 9 C). On the other hand, no significant changes of IL10 or 

GILZ mRNA were observed (Figure 9 D, E). Taken together, our data suggest 

that yeast can induce M1 cytokine expression in GM-M and M-M. Incubation 

with non-opsonized yeast also resulted in cytokine mRNA upregulation, although 

to a lesser extent (Figure 10), suggesting that Fc-receptor engagement 

contributes to the overall effect. 
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 Figure 9: S. cerevisiae induces cytokine expression in GM-M and M-M. GM-M and M-
M were left unloaded or loaded with opsonized S. cerevisiae at an MOI of 7 for the indicated 
periods of time. mRNA expression levels of TNFα, IL6, IL12B, IL10, and GILZ, were quantified by 
real-time RT-PCR, normalized to ACTB and multiplied by 104. Data show means + SEM of 4 
independent experiments performed in duplicate. p-values were generated by Mann-Whitney test. 
**p < 0.01, ***p < 0.001. (*) Yeast-loaded cells compared to unloaded cells at the same time 
point. (#) yeast-loaded GM-M compared to yeast-loaded M-M. 
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Figure 10: S. cerevisiae induces cytokine expression in GM-M and M-M. GM-M and M-
M were left unloaded or loaded with unopsonized S. cerevisiae at an MOI of 7 for 4 h. mRNA 
expression levels of TNFα and IL12B were quantified by real-time RT-PCR, normalized to ACTB 
and multiplied by 104. Data show 2 independent experiments with cells from different donors.  
 
 

2.3 Discussion 

 

The nonpathogenic yeast S. cerevisiae has been proposed as a promising 

candidate for biomedical applications, such as delivery of peptides and nucleic 

acids for vaccination (Ardiani et al., 2010; Walch et al., 2012; Kenngott et al., 

2016). S. cerevisiae can be specifically recognized by several receptors, mainly 

Toll-like receptors, mannose receptor, and dectin-1. After their recognition, yeast 

cells are engulfed by professional phagocytic cells, e.g. dendritic cells, 

neutrophils, and macrophages (Keppler-Ross et al., 2010). Most in vitro studies 

focused on the interaction of S. cerevisiae with dendritic cells or the influence of 

S. cerevisiae-derived compounds on mouse macrophages (Liu et al., 2016; 

Elcombe et al., 2013). Therefore, information on the interaction of the whole S. 

cerevisiae with differently polarized human macrophages is still lacking.  

 

2.3.1 Characterization of GM-Mand M-M 

It is well established that macrophages can adopt different phenotypes 

depending on the surrounding signals, with the pro-inflammatory phenotype (M1) 

and anti-inflammatory phenotype (M2) representing two extremes of a broad 

phenotypic spectrum. In vitro M1- and M2- like macrophages can be generated 

by differentiating peripheral blood monocytes using GM-CSF and M-CSF, 
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respectively. While GM-CSF induces the expression of M1 markers like HLAII 

and CD86, M-CSF induces the expression of M2 markers such as CD163 and 

CD14. Although the mannose receptor CD206 is widely used as an M2 surface 

marker, we and others (Rey-Giraud et al., 2012; Xu et al., 2006; Bender et al., 

2004; Kittan et al., 2013) observed that it is highly expressed on GM-CSF derived 

M1 like-macrophages. In fact, CD206 expression was reported to be induced by 

GM-CSF in early studies on macrophage phenotypes (Chroneos et al., 1995). 

The usage of CD206 as an M2 marker is actually being reconsidered lately, as at 

least 3 newer studies (Kittan et al., 2013; Jaguin et al., 2013; Ambarus et al., 

2012) suggested that this marker used for mouse macrophages could not be 

used to discriminate between human M1 and M2 macrophages. 

The assumption that GM-CSF and M-CSF-derived macrophage populations can 

be considered as M1-like and M2-like, respectively, is supported by the 

observation that both cell types exhibit distinct reactions upon stimulation. After 

LPS treatment, GM-M secrete high amounts of pro-inflammatory cytokines, 

whereas M-M increase IL-10 expression (Verreck et al., 2006; Reales-Calderon 

et al., 2014; Bender et al., 2004; Martinez et al., 2006). Furthermore, exposure to 

the same material can result in distinct uptake patterns depending on the 

macrophage phenotype. For example, M-M are more potent regarding the 

uptake of apoptotic cells when compared with GM-M (Xu et al., 2006). 

 

2.3.2 S. cerevisiae uptake by in vitro polarized macrophages  

To comparatively evaluate the initial interaction between human GM-M or M-

M and S. cerevisiae, we first determined the percentage of macrophages that 

internalized yeast. While De Souza Silva et al. showed that P. brasiliensis was 

internalized more efficiently by murine M-M than GM-M (De souza Silva et al., 

2015). Our data indicate that human GM-M have a higher uptake potential for 

S. cerevisiae than M-M. This difference in yeast uptake between GM-M and 

M-M might be explained by the high expression of the mannose receptor on 

GM-M since this receptor is critically involved in yeast recognition (Giaimis et 
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al., 1993; Porcaro et al., 2003). The yeast uptake capacity by GM-M was 

similar to human dendritic cells when compared with previous reports on yeast 

internalization in this cell type. In fact, under similar experimental conditions 

Boschi Bazan et al. have shown that 92% of human dendritic cells internalized at 

least one yeast cell (Boschi et al., 2011). However, opsonized yeast cells were 

engulfed to a similar extent by both GM-M and M-M. In both types of 

macrophages, yeast uptake was enhanced by opsonizing the yeast cells in 

human serum before performing the macrophage/yeast co-culture. Human serum 

contains opsonins, such as complement-derived proteins and immunoglobulins. 

Coating of yeast cells with opsonins allows their recognition and subsequent 

ingestion by complement receptors and Fc receptors (Underhill et al., 2012). 

 

2.3.3 S. cerevisiae polarizes both M-CSF and GM-CSF-differentiated 

macrophages towards an M1-like phenotype  

Two recent studies have focused on the response of GM-M and M-M to 

different pathogenic yeast strains, such as C. albicans (Reales-Calderón et al., 

2014) and P. brasiliensis (De Souza Silva et al., 2015). C. albicans induced an 

M2 proteomic profile in both GM-M and M-M, indicating that the interaction 

with C. albicans promotes a switch towards an anti-inflammatory phenotype. In 

line with these findings, C. albicans exposure did not result in the induction of 

pro-inflammatory cytokines, such as IL-12, TNF-α, and IL-6 (Jouault et al., 2006). 

In contrast to these observations, we showed that S. cerevisiae promotes an M1-

like macrophage phenotype. Both GM-M and M-M upregulated the M1-

associated surface markers HLAII and CD86, whereas M2 markers were 

downregulated. Furthermore, S. cerevisiae induced an upregulation of pro-

inflammatory cytokines, suggesting that S. cerevisiae skews macrophages 

toward an M1 phenotype. These results are in line with the observation for 

mouse macrophage cell lines and human dendritic cells. In particular, S. 

cerevisiae exposure leads to TNF- secretion by mouse macrophages (Jouault 

et al., 2006) and can induce human dendritic cell activation and maturation as 

evidenced by upregulation of CD80, CD83, and HLAII (Remondo et al., 2009). 
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The influence of S. cerevisiae uptake on the macrophage phenotype is of 

particular interest, as S. cerevisiae might be used as a vehicle to deliver peptides 

and nucleic acids in vivo. In veterinary medicine, S. cerevisiae expressing 

antigens on its surface is being investigated as a promising vaccine for oral 

administration. Several antigens for immunization against hepatitis B virus, 

porcine epidemic diarrhea virus, and Actinobacillus pleuropneumoniae are 

currently being tested (Shin et al., 2013). Furthermore, yeast expressing tumor-

associated antigens are presently evaluated in clinical trials as therapeutic anti-

cancer vaccines. The application of two genetically modified S. cerevisiae 

strains, yeast-ras, and yeast-CEA expressing a mutant of ras pro-oncogene and 

carcinoembryonic antigen, respectively, has led to promising results. In phase I 

clinical trials, yeast-ras, and yeast-CEA had minimal toxicity and induced antigen-

specific T-cell responses (Ardiani et al., 2010; Bilusic et al., 2015). S. cerevisiae 

may also be a suitable vaccine carrier against fungal diseases since S. 

cerevisiae expressing gp43 was able to immunize mice against 

paracoccidioidomycosis (Assis-Marques et al., 2015). Moreover, vaccination with 

yeast-HCV led to the induction of HCV-specific T-cell responses in HCV-infected 

patients and reduction in the viral load (Ardiani et al., 2010). Besides these 

peptide antigens, yeast cells can deliver antigen-encoding DNA and mRNA to 

phagocytic cells, which was previously described in vitro and in vivo (Walch et 

al., 2012; Walch-Rückheim et al., 2015; Kiflmariam et al., 2013) Furthermore, S. 

cerevisiae could also deliver shRNA in vivo after yeast oral administration (Zhang 

et al., 2014). 

 

2.4 Conclusion 

 

In conclusion, our study suggests that opsonized S. cerevisiae can induce an 

M1-like phenotype in macrophages. This inflammatory response was stronger in 

GM-M than in M-M. Moreover, opsonized S. cerevisiae might be used as a 

delivery system for therapeutic agents targeting macrophages. These findings 



Chapter I 

36 
 

may be of particular interest for the treatment of pathologic conditions that would 

benefit from reprogramming M2 towards M1 macrophages, such as solid tumors. 
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3 Chapter II 

 

 

Yeast-mediated MYD88 or TNF mRNA delivery 

re-educates M2 macrophages towards an  

M1-like phenotype 

  



Chapter II 

38 
 

  



Chapter II 

39 
 

3.1 Introduction 

 

Cell-specific gene delivery represents a promising therapeutic approach, but 

limited bioavailability is still a major obstacle. Macrophages as critical players in 

inflammatory diseases have gained increasing attention as potential targets for 

gene delivery strategies. Still, therapeutic approaches mostly aim to target the 

inflammatory macrophage phenotype (Singh et al., 2014). Adenoviral vectors 

delivering cytokine DNA (such as IL-12 or IFN-) were able to induce an M1 

phenotype in macrophages. Adoptive transfer of these genetically modified 

macrophages into tumor-bearing mice showed promising results (Satoh et al., 

2003; Tabata el al., 2011; Hagemann et al., 2008). Due to the lack of specificity 

and potential toxicity of these viral vectors, several non-viral gene delivery 

approaches (e.g. polymers, liposomes) are currently being tested (Singh et al., 

2014; Nayerossadat et al., 2012). Specificity, stability, and clearance are major 

challenges in designing a novel gene delivery system (Singh et al., 2014) 

Recent studies have shown that S. cerevisiae can be used as vehicle for 

DNA/RNA vaccination (Walch et al., 2012; Walch-Rückheim et al., 2016). We 

hypothesized that yeast might also be a used as a gene delivery vehicle targeting 

phagocytic cells.  

In this chapter, we analyzed the potency of S. cerevisiae to deliver nucleic acids 

to primary human macrophages and determined whether this approach might be 

used to re-educate M2 macrophages towards an M1 phenotype. 
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3.2 Results 

 

3.2.1 Polarization of human monocyte-derived macrophages 

To establish an in vitro model for pro- and anti-inflammatory macrophages, 

peripheral blood monocytes were isolated from buffy coats and differentiated into 

macrophages using GM-CSF (GM-M) or M-CSF (M-M). The pro-inflammatory 

macrophage phenotype (M1) was induced by stimulation of GM-M with 

LPS/IFN-. To generate anti-inflammatory M2a and M2c macrophages, M-M 

were exposed to IL-4 or IL-10, respectively. The expression of surface markers 

was analyzed by flow cytometry. No significant difference was observed in CD80 

expression between the three macrophages populations (Figure 11). As reported 

previously (Rey-Giraud et al., 2012), M1 cells displayed an increased surface 

expression of CD86, HLAI, and HLAII, especially when compared with M2c 

(Figure 11). We also observed an increased expression of the mannose receptor 

CD206 as well as CD86 on M2a cells. M2c macrophages showed the highest 

expression of CD14 and the scavenger receptor CD163, which was paralleled by 

low CD206, HLA II and CD86 expression (Figure 11).  

To further characterize the macrophage phenotype, we measured the mRNA 

expression of pro- and anti-inflammatory mediators. Consistent with their pro-

inflammatory phenotype, M1 cells expressed TNF, IL6, and IL12B (Figure 12 A-

C). M2a macrophages expressed higher amounts of IL10 when compared with 

M1 cells. M2c cells expressed the highest amount of the anti-inflammatory 

mediators IL10 and GILZ (Figure 12 D, E).  

Taken together, both surface marker and cytokine expression confirmed the pro-

inflammatory phenotype of in vitro generated M1 and the anti-inflammatory 

phenotype of M2a and M2c cells. The anti-inflammatory phenotype was more 

pronounced in M2c cells when compared with M2a macrophages. 
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Figure 11: Surface markers expression on in vitro polarized macrophages. Human 
peripheral blood monocytes were differentiated into macrophages with either GM-CSF (GM-M) 
or M-CSF (M-M). GM-M were polarized to M1 by stimulation with LPS/IFN-ɣ. M-M were 
polarized towards M2a or M2c by the addition of IL-4 or IL-10, respectively. Surface expression of 
CD80, CD86, HLAI, HLAII, CD206, CD14 and CD163 was analyzed by flow cytometry. (A)  
Representative histograms are shown. Dark grey: isotype control, white: specific staining. (B) 
Relative GMFI values. Data represent relative GMFIvalues ± SEM obtained from 7 independent 
experiments with cells from different donors. p-values were generated by Mann-Whitney test 
except for CD80 and HLAI where one way ANOVA with Bonferroni’s post hoc test was used. **p 
< 0.01, ***p < 0.001. 
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Figure 12: Cytokine mRNA levels in in vitro polarized macrophages. GM-M were polarized 
into M1 cells by stimulation with LPS/IFN-ɣ. M-M were polarized towards M2a or M2c by the 
addition of IL-4 or IL-10, respectively, for the indicated periods. mRNA expression levels of TNF, 
IL12B, IL6, IL10, and GILZ were quantified by real-time RT-PCR, normalized to ACTB and 
multiplied by 104. Data show means ± SEM of 4 independent experiments performed in duplicate. 
p-values were generated by Mann Whitney test. **p < 0.01, ***p < 0.001. (*) M2a or M2c 
compared to M1 at the same time point. (+) M2c compared with M2a. (#) 2 h or 4 h compared 
with 16 h. 
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3.2.2 Uptake of yeast by differently polarized macrophages 

To be able to compare the yeast-based nucleic acid delivery to pro- and anti-

inflammatory macrophages, we had to make sure that S. cerevisiae was 

internalized to a similar extent by all cell types. Thus, we compared the ability of 

human in vitro generated M1, M2a, and M2c macrophages to phagocytose S. 

cerevisiae S86c. Living S. cerevisiae S86c was stained with CFSE, and then left 

untreated or opsonized with human AB serum. Macrophages were co-cultured 

with yeast at an MOI of 7 for 4 h. All types of macrophages internalized untreated 

S. cerevisiae (Figure 13 A). M1 macrophages had the highest yeast uptake 

efficiency with 82% CFSE positive cells, followed by M2a (56% CFSE+ cells). 

M2c had the lowest uptake efficiency with only 31% CFSE positive cells (Figure 

13 B). Yeast opsonization with human serum increased the percentage of cells 

internalizing yeast, especially in M2c cells (Figure 13 B). No significant difference 

in opsonized yeast uptake was observed between the differently polarized cells 

(Figure 13 B). M2a tended to have lower uptake efficiency than M1 and M2c 

macrophages. Since M2c macrophages represent the main macrophage 

population at tumor sites (Sica et al., 2006) and show a more pronounced anti-

inflammatory phenotype (Figure 11 and 12), we decided to focus on this cell type 

rather than M2a cells. Thus, M1 and M2c macrophages were loaded with 

opsonized yeast in the following experiments. 
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Figure 13: S. cerevisiae uptake by M1, M2a, and M2c. M1, M2a or M2c were incubated with 
untreated or opsonized S. cerevisiae at an MOI of 7 for 4 h. (A) Yeast uptake was verified by 
fluorescence microscopy. Green: S. cerevisiae, blue: nuclei, scale bar: 20 μm. The percentage of 
CFSE+ macrophages was measured by flow cytometry. (B) One representative histogram is 
shown. (C) Percentage of CFSE+ macrophages. Data represent means ± SEM from three 
independent experiments with cells from different donors performed in duplicate. p-values were 
calculated by one-way ANOVA with Bonferroni’s post hoc test. ***p < 0.001. (#) cells loaded with 
opsonized yeast compared to cells loaded with untreated yeast. 
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3.2.3 S. cerevisiae uptake induces pro-inflammatory cytokine mRNA 

expression in M1 and M2c macrophages 

Prior to gene delivery experiments, we assessed the effect of yeast uptake itself 

on the macrophage phenotype by comparing the expression of cytokine mRNA in 

yeast-loaded macrophages with unloaded cells (Figure 14). Yeast uptake 

induced a significant upregulation of TNFand IL6 mRNA in M1 macrophages 

after 6 h, whereas no change in IL12B expression was observed (Figure 14 A-C). 

Yeast uptake also induced pro-inflammatory cytokine expression in M2c 

macrophages, with maximal expression values detected as early as 4 h for TNF 

(Figure 14 D)and IL6 (Figure 14 E) and after 6 h for IL12B (Figure 14 F). No 

significant change was observed for anti-inflammatory mediators (Figure 15 B-D), 

except for IL10 mRNA, which was induced in M1 macrophages 4 h after yeast 

uptake (Figure 15 A).  
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Figure 14: S. cerevisiae uptake induces pro-inflammatory cytokine mRNA expression in 
M1 and M2c macrophages. M1 (A, B,C) or M2c cells (D, E,F) were incubated with opsonized S. 
cerevisiae carrying the empty vector (YEp352) at an MOI of 7 for the indicated periods of time. 
mRNA expression levels of TNF, IL12B, and IL6 were quantified by real-time RT-PCR, 
normalized to ACTB, and multiplied by 104. Data show means + SEM of 3 independent 
experiments performed in duplicate. p-values were generated by Mann Whitney test. **p < 0.01, 
***p < 0.001. (*) yeast-loaded cells compared to unloaded cells at the same time point. (#) yeast-
loaded cells compared to yeast-loaded cells at 16 h. 
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Figure 15: S. cerevisiae uptake induces IL10 mRNA in M1 macrophages. M1 (A, B) or M2c 
cells (C, D) were incubated with opsonized S. cerevisiae carrying the empty vector (YEp352) at 
an MOI of 7 for the indicated periods of time. mRNA expression levels of IL10 and GILZ were 
quantified by real-time RT-PCR and normalized to ACTB and multiplied by 104. Data show means 
+ SEM of 3 independent experiments performed in duplicate. p-values were generated by Mann 
Whitney test. **p < 0.01, ***p < 0.001. (*) yeast-loaded cells compared to unloaded cells at the 
same time point. (#) yeast-loaded cells compared with yeast-loaded cells at 16 h. 
 
3.2.4 S. cerevisiae delivers functional DNA and mRNA to human M1 and 

M2c macrophages 

To compare the ability of recombinant yeast to deliver either DNA or mRNA to 

human M1 and M2c macrophages, we used yeast strains carrying an eGFP gene 

(Walch et al., 2012). All vectors contained an internal ribosomal entry site (IRES) 

of the encephalomyocarditis virus upstream of the eGFP encoding sequence. 

This approach prevents translation in yeast while enhancing it in macrophages 

(Walch et al., 2012; Evstafieva et al., 1993). For DNA delivery, a vector 

containing the mammalian CMV promoter was used. This made sure that 

transcription was facilitated by macrophages. For mRNA delivery, several yeast 

promoters were tested. The yeast phosphoglycerate kinase promoter (PGK) 

induces constitutive eGFP mRNA expression in yeast. For inducible mRNA 
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expression after yeast uptake by macrophages, the promoters of the yeast 

malate synthase (MLS1) and isocitrate lyase (ICL1) were used (Walch et al., 

2012). Both promoters are derived from genes involved in the yeast glyoxylate 

cycle, a metabolic pathway which permits the use of two-carbon compounds as 

carbon sources in absence of complex carbon sources such as glucose. The 

yeast glyoxylate cycle was shown to be induced in yeast isolated from 

macrophage phagolysosomes, most probably because the phagolysosome is 

poor in complex carbon compounds (Lorenz et al., 2001; Lorenz et al., 2004). 

 

M1 or M2c macrophages were co-cultured for 16 h with yeast carrying the eGFP 

vectors. eGFP expression was observed in both M1 and M2c macrophages 

under all conditions tested (Figure 16). Comparison of transfection efficiencies 

revealed that both DNA and mRNA delivery were more efficient in M2c than in 

M1 cells. DNA delivery was less effective than mRNA delivery (Figure 16). The 

highest transfection efficiency was obtained with the constitutive PGK promoter, 

yielding 7.7 ± 0.6% transfected M1 and 22.7 ± 2.5% M2c cells (Figure 16). Thus, 

constitutive expression of mRNA in yeast was the most efficient method to 

deliver nucleic acids to human macrophages. This approach was used for all 

subsequent experiments. 

 
Figure 16: S. cerevisiae delivers functional DNA and mRNA to human M1 and M2c 
macrophages. M1 or M2c macrophages were incubated with opsonized S. cerevisiae carrying 
the indicated vector at an MOI of 7 for 16 h. The percentage of eGFP+ macrophages was 
measured by flow cytometry. (*) M2c compared to M1, (#) M2c compared to M2c loaded with 
yeast carrying the pPGK-IRES-eGFP vector. p-values were calculated by Mann Whitney test.    
*p < 0.05, ***p < 0.001. Data show means + SEM of 4 independent experiments performed in 
duplicate. 
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3.2.5 S. cerevisiae-mediated MYD88 mRNA delivery repolarizes M2c 

macrophages towards a pro-inflammatory phenotype 

In order to re-educate M2c macrophages towards an M1 phenotype, we aimed to 

deliver MYD88 mRNA. MyD88 is an adaptor protein implicated in the signal 

transmission induced by most Toll-like receptor agonists, and is therefore 

involved in the induction of pro-inflammatory cytokine expression in 

macrophages (Martinez et al., 2014; Wang et al., 2014). 

M1 and M2c cells were incubated with yeast carrying the vector pPGK-IRES-

MyD88 for 16 h. MYD88 mRNA delivery was verified by real-time RT-PCR, and 

MyD88 expression was evaluated by Western blot. Yeast-mediated mRNA 

delivery resulted in an at least 3-fold increase in the abundance of the delivered 

mRNA in M1 macrophages (Figure 17 A) and 2-fold increase in M2c 

macrophages (Figure 17 D). 

In M1 macrophages, yeast uptake itself tended to induce a downregulation of 

MyD88 expression, but a significant up-regulation was observed upon yeast-

mediated mRNA delivery (Figure 17 B, C). In M2c macrophages, yeast uptake 

induced an upregulation of MyD88, which was further enhanced after MYD88 

mRNA delivery by yeast (Figure 17 E, F). 
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Figure 17: S. cerevisiae delivers functional MYD88 mRNA to human M1 and M2c 
macrophages. (A, D) MYD88 mRNA delivery was verified by real-time RT-PCR and normalized 
to ACTB. Data are presented as x-fold, with cells loaded with yeast carrying YEp352 set to 1. p-
values were generated by Mann Whitney test. (*) pPGK-MyD88 compared to YEp352. (#) pPGK-
MyD88 compared to pPGK-MyD88 at 16 h. (B, E) MyD88 expression was measured by Western 
blot. One representative blot is shown. (C, F) MyD88 quantification. Data are presented as x-fold, 
with unloaded cells set to 1. (C) p-values were calculated by Mann Whitney test (F) p-values were 
calculated using one-way ANOVA with Bonferroni’s post hoc test. *p < 0.05, **p < 0.01, ***p < 
0.001. Data show means ± SEM of 3 independent experiments.  
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We then compared the expression of pro- and anti-inflammatory mediators in 

macrophages loaded either with yeast carrying the empty vector or with yeast 

producing MYD88 mRNA. MYD88 mRNA delivery did not affect the phenotype of 

M1 macrophages (Figure 18 A-F). In contrast, the MYD88 vector induced a 

significant up-regulation of TNF mRNA in M2c macrophages (Figure 18 A). 

Furthermore, it significantly induced the secretion of TNF- by these cells 16 h 

after yeast addition (Figure 18 B). This effect was still detectable after 40 h 

(Figure 18 B). MYD88 delivery induced an upregulation of IL12B and IL6 after 16 

h in M2c cells (Figure 18 C, D), but did not have any significant effect on anti-

inflammatory mediators (Figure 18 E, F). 

These results indicate that yeast-based MYD88 mRNA delivery induced pro-

inflammatory cytokine expression in M2c macrophages, suggesting a re-

education of these cells towards an M1-like phenotype. 
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Figure 18: S. cerevisiae-mediated MYD88 mRNA delivery induces pro-inflammatory 
cytokine expression in M2c macrophages. M1 or M2c macrophages were incubated with 
opsonized S. cerevisiae carrying the indicated vector at an MOI of 7 for 16h or the indicated 
period of time. (A C-F) mRNA expression levels of TNF, IL12B, IL6, IL10, and GILZ, were 
quantified by real-time RT-PCR and normalized to ACTB. Data are presented as x-fold, with cells 
loaded with yeast carrying YEp352 set to 1. Data show means + SEM of 3 independent 
experiments performed in duplicate. p-values were generated by Mann Whitney test, except for 
IL10, GILZ (for M1), IL6, TNF and IL12B (for M2) where one way ANOVA with Bonferroni’s post 
hoc test was used. *p < 0.05, **p < 0.01, ***p < 0.001. (*) pPGK-MyD88 compared to YEp352. (B) 
TNF-was measured in the macrophage supernatant by ELISA after 16 h or 40 h of yeast co-
culture. Data represent means + SEM from three (16 h) or two (40 h) independent experiments 
performed in duplicate. p-values were calculated by one-way ANOVA with Bonferroni’s post hoc 
test. *p < 0.05, ***p < 0.001. (*) yeast-loaded cells compared to unloaded cells. (+) yeast-loaded 
cells compared to cells loaded with yeast carrying the vector YEp352.  
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3.2.6 S. cerevisiae-mediated TNF mRNA delivery repolarizes M2c 

macrophages towards a pro-inflammatory phenotype 

TNF- is considered as an M1 macrophage stimulus (Martinez et al., 2014). 

Recently Kratochvill et al. have shown that the loss of type I TNF receptor 

signaling enhanced the M2-like phenotype of tumor-associated macrophages, 

suggesting that TNF- can act as a repressor of M2 signaling in TAM (Kratochvill 

et al., 2015). Using yeast-mediated mRNA delivery, we aimed to overexpress 

TNF- in M2c macrophages. 

Yeast-mediated TNF mRNA delivery was successful in both M1 and M2c 

macrophages, as indicated by a 3-fold and 4.5-fold induction of TNF mRNA, 

respectively (Figure 19 A). TNF- was measured in the cell culture supernatants 

by ELISA after short-term (16 h) and long-term (40 h) incubation. The delivery of 

TNF mRNA tended to increase the TNF- secretion by M1 macrophages (Figure 

19 B), although not significantly so. However, TNF mRNA delivery significantly 

induced the secretion of TNF- in M2c cells after short term and long term 

exposure (Figure 19 B). 

TNF overexpression resulted in an induction of IL12B and tended to induce IL6 

(Figure 19 C, D) in both M1 and M2c macrophages. Interestingly, the pro-

inflammatory effect of yeast-mediated delivery of TNF mRNA was more 

pronounced in M2c cells. In addition to pro-inflammatory cytokines, TNF delivery 

induced the expression of the anti-inflammatory mediators IL10 (Figure 19 E) and 

GILZ (Figure 19 F), in M1 macrophages, possibly within a regulatory feedback 

loop. No significant change in IL10 expression was observed in M2c 

macrophages (Figure 19 E), although an upregulation of GILZ mRNA was 

induced (Figure 19 F). 

Taken together, these results indicate that yeast carrying the pPGK-IRES-TNF 

boosts the M1 pro-inflammatory activation state and can induce pro-inflammatory 

cytokine expression in M2c macrophages. 
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Figure 19: S. cerevisiae-mediated TNF mRNA delivery induces cytokine expression in M1 
and M2c macrophages. M1or M2c macrophages were incubated with opsonized S. cerevisiae 
carrying the indicated vector at an MOI of 7 for 16 h or the indicated period of time. (A C-F) 
mRNA expression levels of TNF, IL12B, IL6, IL10, and GILZ, were quantified by real-time RT-
PCR and normalized to ACTB. Data are presented as x-fold, with cells loaded with yeast carrying 
YEp352 set to 1. Data show means + SEM of 3 independent experiments performed in duplicate. 
p-values were generated by Mann Whitney test, except for IL10 and IL6 (for M1), GILZ, IL12B 
and TNF (for M2) where one way ANOVA with Bonferroni’s post hoc test was used. *p < 0.05, **p 
< 0.01, ***p < 0.001. (*) pPGK-MyD88 compered to YEp352. (B) TNF-was measured in the 
macrophage supernatant by ELISA after 16 h or 40 h of yeast co-culture. Data represent means 
+ SEM from three (16 h) or two (40 h) independent experiments performed in duplicate. p-values 
were calculated by one-way ANOVA with Bonferroni’s post hoc test. *p < 0.05, ***p < 0.001. (*) 
yeast-loaded cells compared to unloaded cells. (+) yeast-loaded cells compared to cells loaded 
with yeast carrying the vector YEp352. 
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3.3 Discussion 

 

Recently, S. cerevisiae was proposed as a novel live DNA/RNA vaccine vehicle 

(Walch et al., 2012; Walch-Rückheim et al., 2016; Kiflmariam et al., 2013). Since 

yeast can also be internalized by macrophages (Seif et al., 2016), we 

hypothesized that this novel approach might also be useful for gene delivery into 

macrophages. In this study, we show for the first time that recombinant yeast 

cells can be used to genetically modify macrophages and to manipulate their 

functional phenotype. 

 

3.3.1 In vitro model of pro- and anti-inflammatory macrophages 

In response to surrounding signals, macrophages can acquire different 

phenotypes. With reference to Th1-Th2 activation of T cells, macrophages 

exposed to Th1 cytokines, such as IFN-, were termed M1 and the ones exposed 

to Th2 cytokines, such as IL-4 and IL-10, were referred to as M2. Several other 

stimuli inducing a pro-inflammatory or anti-inflammatory phenotype were grouped 

as M1 or M2 stimuli, respectively (Martinez et al., 2014). The notion of 

macrophage polarization is of particular importance due to their influence on 

disease progression (Murray and Wynn, 2011). In solid tumors, for example, the 

presence of tumor-associated macrophages with an anti-inflammatory M2 

phenotype is related to a poor prognosis (Bingle et al., 2002). Rey-Giraud et al. 

(Rey-Giraud et al., 2012) described a method to generate in vitro M1 and M2 

macrophages, with M2c macrophages showing a significant pro-tumor activity. 

As an in vitro model of M1 and M2 macrophages, we cultured human peripheral 

blood monocytes with GM-CSF/LPS/IFN- (for M1), M-CSF/IL-4 (for M2a) or M-

CSF/IL-10 (for M2c). In our hands, macrophages differentiated with GM-CSF and 

stimulated by subsequent LPS/IFN- treatment expressed M1 macrophages 

surface markers, mainly HLAII and CD86. M-CSF differentiation followed by IL-4 

treatment led to a high expression of the mannose receptor CD206. Finally, M-

CSF differentiation followed by IL-10 treatment induced the expression of the M2 

marker CD163. The pro-inflammatory phenotype of the in vitro differentiated M1 
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cells was confirmed by their high expression of pro-inflammatory cytokines. Both 

M2a and M2c cells expressed the anti-inflammatory cytokine IL-10. Thus, our 

treatment scheme successfully generated differentially polarized macrophages, 

as previously described in the literature (Rey-Giraud et al., 2012; Seif et al., 

2016; Hoppstädter and Kiemer, 2015). 

 

3.3.2 Yeast uptake by differently polarized macrophages 

One main function of macrophages is phagocytosis. The efficiency of this 

process can vary depending on their phenotype. M2 macrophages have for 

example been described as more potent regarding cell debris clearance when 

compared with M1 macrophages (Xu et al., 2006). While it is well known that 

yeast can be taken up by phagocytic cells including macrophages (Seif et al., 

2016), its uptake by fully polarized pro- and anti-inflammatory macrophages was 

not described. In this study, we showed that M1 macrophages were more potent 

in yeast uptake when compared to M2a or M2c cells. Interestingly, M2a 

macrophages internalized S. cerevisiae more efficiently than M2c cells. This 

difference in yeast uptake capacity might be related to the differential expression 

of the mannose receptor CD206 in M1, M2a, and M2c macrophages. The 

mannose receptor is well known to be involved in yeast uptake (Giaimis et al., 

1993). However, opsonized S. cerevisiae was internalized to the same extent by 

the three macrophage populations, suggesting that different types of 

macrophages can be targeted by yeast-based delivery systems. Opsonization 

enhanced yeast uptake is due to the involvement of Fc and complement 

receptors in the internalization of yeast coated with antibodies and complement 

fragments (Underhill et al., 2012). 

 

3.3.3 Yeast mediated nucleic acids delivery to human macrophages 

To find the optimal vector for nucleic acid delivery to polarized human 

macrophages, we compared DNA, constitutively expressed mRNA or inducible 

mRNA delivery using the model protein eGFP. All treatment schemes resulted in 

a higher percentage of eGFP-expressing cells in M2c macrophages when 
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compared with M1 cells. The maximal amount of eGFP-expressing cells was 

obtained by delivering eGFP mRNA constitutively expressed in yeast using the 

PGK promoter. These results were in contrast to the observation made in 

dendritic cells where inducible mRNA using the MLS promoter and DNA using 

the CMV promoter led to the highest number of eGFP positive cells (Walch et al., 

2012). These differences might be due to differential phagolysosome maturation 

and acidification processes upon particle uptake in M1/M2 macrophages and 

dendritic cells (Cerovic et al., 2014; Canton et al., 2014). 

Several studies using adenoviral vectors to deliver genes, such as IFNG, IL12B 

or IRF5, suggested inducing an M1 phenotype in macrophages as a promising 

strategy for cancer therapy (Singh et al., 2014). We used the biosynthetic mRNA 

mycofection described here and earlier (Walch et al., 2012) to deliver MYD88 or 

TNF. Both MyD88 and TNF- are involved in the polarization of macrophages 

towards an M1 phenotype (Martinez et al., 2014). Furthermore, loss of type I TNF 

receptor and MyD88 in TAM has been reported to induce an M2 phenotype and 

an increase in tumor size (Kratochvill et al., 2015). 

First, we compared cytokine expression profiles between yeast-loaded and 

unloaded cells to determine the unspecific effects of mycofection. Yeast uptake 

induced a pro-inflammatory phenotype in M1 and M2c macrophages, as 

indicated by the upregulation of the pro-inflammatory cytokines IL12B, TNF, and 

IL6. These results are in line with our previous observations for GM-CSF and M-

CSF differentiated macrophages. In fact, we recently showed that S. cerevisiae 

exposure leads to the upregulation of pro-inflammatory cytokine mRNA in both 

cell types (Seif et al., 2016).  

We then compared the expression profiles of macrophages loaded with yeast 

carrying the empty vector as a negative control and yeast delivering MYD88 or 

TNF mRNA. Both MYD88 and TNF mRNA were expressed in M1 and M2c cells 

after yeast-mediated mRNA delivery. Since M1 cells were already secreting TNF-

, mRNA delivery did not induce TNF- much further. In contrast, a remarkable 

increase in TNF- secretion was observed after yeast-mediated MYD88 and TNF 

mRNA delivery in M2c macrophages. Interestingly, the concentration measured 
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was similar to TNF- concentrations that have previously been shown to be 

sufficient to induce a 50% reduction of cell viability in MCF7 cells, a human 

breast adenocarcinoma cell line (Machuca et al., 2006).  

The delivery of MYD88 mRNA did not affect the M1 macrophage phenotype. In 

contrast, the upregulation of MyD88 after mycofection induced a high and long 

lasting expression of pro-inflammatory mediators in M2c macrophages. TNF 

delivery led to a significantly higher expression of pro-inflammatory cytokine 

mRNA in both M1 and M2c cells but also induced the anti-inflammatory cytokine 

IL-10 in M1 and GILZ in both M1 and M2c macrophages. Recently, the elevated 

expression of GILZ in macrophages was reported to occur in the late stage of 

inflammation (Hoppstädter and Kiemer, 2015; Hoppstädter et al., 2015; Vago et 

al., 2015). Thus, GILZ and IL-10 upregulation might indicate the initialization of 

the resolution phase. Since this effect is lacking in MyD88-overexpressing cells, 

a MyD88-based strategy may be more efficient. 

In summary, we showed for the first time that S. cerevisiae-mediated mRNA 

delivery can be used to overexpress cytosolic (MyD88) or secreted proteins 

(TNF-)in both M1 and M2c macrophages.  

 

3.4 Conclusion 

 

In conclusion, we show for the first time that mycofection can be used to 

overexpress proteins in macrophages and manipulate their phenotype. mRNA 

mycofection could be a good strategy to target tumor-associated macrophages 

and repolarize them toward an M1 phenotype. 
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4 Chapter III 

 

 

M2 polarization enhances silica 

nanoparticle uptake by macrophages 
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4.1 Introduction 

 

Numerous types of nanomaterials, such as quantum dots or silica, carbon, zinc 

oxide and gold nanoparticles, have been shown to induce inflammatory 

responses both in vitro and in vivo (Roy et al., 2014; Wu and Tang, 2014; 

Autengruber et al., 2014; Deng et al., 2011; Kusaka et al., 2014). Macrophages 

represent critical regulators of inflammatory processes and also exhibit a high 

uptake potential for nanoparticles (Amoozgar and Goldberg, 2014; Diesel et al., 

2013; Klein et al., 2013; Kusaka et al., 2014; Sica and Mantovani, 2012). 

Therefore, the investigation of macrophage responses upon nanoparticle 

exposure is highly relevant for the prediction of potentially harmful effects. 

Most cellular models used so far to investigate nanoparticle-associated 

inflammation do not take macrophage heterogeneity into account. A study by 

Jones et al. (2013) recently reported that the rate of nanoparticle clearance in 

vivo differs largely between mouse strains dependent on their preference for 

either Th1- or Th2-responses. C57BL/6 mice preferentially produce T helper type 

1 (Th1) cytokines, such as interferon (IFN)-, whereas those from Balb/c mice 

favor T helper type 2 (Th2) cytokine production, e.g. interleukin (IL)-10. In 

addition to their distinct T-cell responses, in vitro investigations have 

demonstrated that macrophages from these mouse strains exert different 

reactions in response to the bacterial cell wall component and activator of the 

innate immune response lipopolysaccharide (LPS) (Watanabe et al., 2004). 

Using depletion strategies, Jones et al. (2013) demonstrated that macrophages 

are involved in the enhanced clearance of 300 nm cylindrical PEG hydrogel 

nanoparticles observed in Th2-prone mice. In accordance, macrophages isolated 

from Th1 strains showed a lower capacity than macrophages from Th2 strains to 

take up these nanoparticles. In vitro polarization led to similar results, suggesting 

that macrophage polarization critically affects nanoparticle uptake. 

Other factors influencing cellular uptake include nanoparticle morphology, i.e. 

size and shape, and the materials used (Truong et al., 2014; Albanese et al., 

2012; Kusaka et al., 2014). Therefore, the findings by Jones et al. might not 
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apply to other types of nanoparticles. Among different nanomaterials, silica 

nanoparticles are widely used in various applications, ranging from additives for 

plastics or food to targeted drug carrier systems. Worldwide, 1.5 million tons of 

amorphous silica nanoparticles are produced annually. This enormous 

production rate is even expected to rise due to growth sectors such as energy 

and information technology as well as nanomedicine (BMBF, 2013). 

Despite the increasing number of applications for silica nanoparticles, the 

influence of macrophage polarization on their uptake and thereby their clearance 

has not been characterized yet. Thus, we examined the uptake potential of 

differentially polarized human macrophages for silica nanoparticles by employing 

fluorescently labeled particles. 

 

4.2 Results 

 

4.2.1 Silica nanoparticle toxicity 

We used silica nanoparticles preparations having 26 nm or 41 nm size. Viability 

tests by MTT assay showed no significant cytotoxicity of both nanoparticle 

preparations on GM-M, M-M in concentrations up to 50 µg/ml (Figure 20). 

Controls for unspecific interactions of nanoparticles with the assay were 

performed as previously described (Astanina et al., 2014; Diesel et al., 2013). 
 

 
Figure 20: Nanoparticle cytotoxicity. Cell viability upon nanoparticle exposure as determined 
by MTT assay. GM-M (A) or M-M (B) were treated with nanoparticles for 24 h at the indicated 
concentrations. Data represent means + SEM from two independent experiments performed at 
least in quadruplicate with cells originating from different donors. Values obtained for untreated 
cells were set as 100%. p-values were calculated by one way ANOVA with Bonferroni’s post hoc 
test. ***p < 0.001 compared with untreated cells. 

A B 
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4.2.2 Uptake of nanoparticles and microparticles in in vitro polarized 

macrophages 

Particle uptake by M1 and M2 polarized primary human monocyte-derived 

macrophages was assessed by flow cytometry (Figure 21 A and B). M1 and M2 

cells internalized 1.75 µm microspheres to a similar extent, as shown by 

comparable values for relative geometric mean fluorescence intensity. Likewise, 

no significant difference was observed between M1 and M2 cells regarding the 

percentage of macrophages positive for particle-associated fluorescence (63.8 ± 

5.1% for M1 vs. 69.6 ± 3.3% for M2). In contrast, both M1 and M2 macrophages 

were > 98% positive for particle-associated fluorescence after incubation with 

nanoparticles. GMFI values were significantly higher in M2 macrophages 

compared with M1 polarized cells, indicating that both 26 and 41 nm silica 

particles were taken up more efficiently in M2 cells. Visualization of particle 

uptake by fluorescence microscopy further confirmed these assumptions and 

indicated that nanoparticles were in fact localized inside the cells and not merely 

attached to their surface (Figure 21 C).  

In addition to monocyte-derived macrophages, the macrophage-like cell line 

THP-1 is widely used to investigate the impact of M1 and M2 polarization on 

distinct cell functions (Chanput et al., 2013; Tjiu et al., 2009). Therefore, we also 

analyzed nanoparticle uptake in these cells after treatment with LPS/IFN- or IL-

10 to induce an M1 or M2 phenotype, respectively. As observed in primary MDM, 

the uptake potential for nanoparticles was increased in M2-polarized THP-1 

macrophages when compared with M1 cells, as suggested by significantly 

increased GMFI values (Figure 22). 
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Figure 21: Particle uptake in M1- and M2-polarized monocyte-derived macrophages. (A, B) 
Macrophages were incubated for 1 h with FITC-labelled 1.75 µm latex beads (100 beads/cell) or 
fluorescent nanoparticles (26 or 41 nm, 50 µg/ml) and uptake efficiency was assessed by flow 
cytometry. (A) Representative histograms are given. (B) GMFI values. Data represent means + 
SEM of 3 independent experiments performed in duplicate or triplicate with cells derived from 
different donors. p-values were generated by Student’s t-test. ***p < 0.001 compared with M1-
polarized cells. (C) Representative images of M1 and M2 macrophages 3 h after particle addition. 
Green: microparticles, red: nanoparticles, blue: nucleus, scale bar: 20 µm. Imaging was done by 
Anna Dembek. 
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Figure 22: Particle uptake in M1- and M2-polarized THP-1 macrophages. (A, B, C) Cells were 
incubated for 1 h with fluorescent nanoparticles (26 or 41 nm, 50 µg/ml) and uptake efficiency 
was assessed by flow cytometry. (A) Representative histograms are given. (B, C) GMFI mean 
values + SEM of 3 independent experiments performed in triplicate. p-values were generated by 
Student’s t-test. ***p < 0.001 compared with M1-polarized cells. 
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4.2.3 Nanoparticle uptake in primary human alveolar macrophages (AM) 

and tumor-associated macrophages (TAM) 

In general, TAM represent M2-like macrophages promoting tumor cell 

proliferation, angiogenesis, matrix turnover, and repression of adaptive immunity 

(Solinas et al., 2009). In contrast, AM are considered to exhibit a more pro-

inflammatory, M1-like phenotype (Hoppstädter et al., 2010). Therefore, we 

hypothesized that the capacity to take up nanoparticles might differ between 

those two cell types. TAM were obtained after digestion of tumor tissue from 

patients undergoing lung resection, whereas AM were isolated from the 

surrounding non-tumor lung tissue. AM populations mostly consisted of large, 

round cells whereas TAM were more heterogenous in size and shape (Figure 23 

A). Intracellular CD68, often used as a marker specific for macrophages 

(Hoppstädter et al., 2010; Holness and Simmons, 1993), was detected in over 

95% of the cells contained in AM and TAM preparations, thereby identifying them 

as macrophages (Figure 23 B). The uptake of 26 nm silica particles was indeed 

enhanced in TAM when compared to AM, as assessed by flow cytometry (Figure 

23 C), suggesting that our findings for in vitro polarized macrophages also 

translate to the in vivo situation. 
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Figure 23: Nanoparticle uptake in AM and TAM. (A) AM and TAM morphology were examined 
by light microscopy. One representative image is given. Scale bar: 20 µm. (B) CD68 expression 
in AM and TAM. Data show one histogram representative for 4 independent experiments. Dark 
grey: isotype control; light grey: specific staining. (C) GMFI mean values + SEM obtained from 
independent experiments with AM obtained from two and TAM obtained from 4 different donors. 
P-values were calculated by Student’s t-test. *p < 0.05 compared with AM. This experiment was 
performed by Anna Dembek. 
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4.3 Discussion 

 

The use of silica-based nanomaterials in commercial products, e.g. as additives 

to food, cosmetics, varnishes or printer toners, is rapidly increasing. In addition, 

silica or silica coated engineered nanoparticles have been suggested as 

promising candidates for biomedical applications, such as gene transfection, 

drug delivery, biosensing, and imaging applications (Probst et al., 2012; 

Korzeniowska et al., 2013; Knopp et al., 2009; Montalti et al., 2014; Ravi Kumar 

et al., 2004; Rosenholm et al., 2010). The growing commercialization of 

nanotechnology products has raised concerns about their safety. The physico-

chemical properties of silica nanoparticles that make them attractive for industrial 

use might represent potential hazards to human health, due to an enhanced 

ability to penetrate tissues or even cells and their interactions with biomolecules. 

Investigations on their potential to induce cell death or inflammation led to 

divergent results. Apart from the composition and size of nanomaterials, the 

target cell type critically affects intracellular responses and the degree of 

cytotoxicity (Napierska et al., 2010; Sohaebuddin et al., 2010; Izak-Nau et al., 

2013). 

 

4.3.1 Nanoparticles clearance 

After entering the body, nanoparticles are rapidly cleared by macrophages and 

other cells of the mononuclear phagocyte system (MPS) (Amoozgar and 

Goldberg, 2014; Yoo et al., 2010). Besides tissue macrophages present in every 

organ of the body, the MPS includes committed precursors in the bone marrow 

and circulating blood monocytes (Jenkins and Hume, 2014). Nanoparticles 

entering tissues or circulating in the blood make direct contact with various MPS 

cells. Previous studies have shown that the MPS is responsible for the clearance 

of most nanoparticles larger than 10 nm, regardless of their shape and surface 

chemistry (Longmire et al., 2008).  

Nanoparticle uptake by MPS cells can occur through various pathways In 

macrophages, phagocytosis, and macropinocytosis, as well as clathrin-, 
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caveolae-, and scavenger receptor-mediated endocytic pathways have been 

suggested to be involved in nanoparticle internalization (Diesel et al., 2013; Kuhn 

et al., 2014; Roy et al., 2014). Nanoparticle exposure can lead to pro-

inflammatory responses, most of which are associated with macrophages. The 

avid uptake of nanoparticles by these cells might make them more susceptible to 

particle overload and cell death (Napierska et al., 2010; Sohaebuddin et al., 

2010). Thus, the characterization of nanoparticle uptake in macrophages is a 

major step in the assessment of nanoparticle toxicity. 

 

4.3.2 Macrophage polarization influences particle uptake  

In the present study, we demonstrated that macrophage polarization influences 

particle uptake in primary human macrophages and human macrophage-like 

THP-1 cells. M1 macrophages are considered to be more involved in 

inflammatory and microbicidal processes and have been shown to be more 

phagocytic towards bacteria (Krysko et al., 2011; Varin et al., 2010). In contrast, 

M2 macrophages are thought to exert anti-inflammatory functions and to promote 

wound healing. They might also be more involved in debris clearance, since they 

exhibit a greater phagocytic activity towards cell debris compared with M1 (Rey-

Giraud et al., 2012), indicating that the influence of macrophage polarization on 

phagocytosis largely depends on the properties of the phagocytosed material. 

Accordingly, phagocytosis has been suggested as a general property of 

macrophages, but not a reliable predictor of M1 or M2 responses (Mills and Ley, 

2014). In fact, we did not detect any differences between primary M1 and M2 

macrophages regarding the phagocytic uptake of latex microparticles. In line with 

our findings, microparticle clearance has been reported to be similar in Th1- and 

Th2-prone mouse strains (Jones et al., 2013). 

On the other hand, we observed a markedly increased uptake of both 26 and 41 

nm silica nanoparticles following M2 polarization compared to M1 cells in primary 

as well as THP-1 macrophages. M2 macrophages have been shown to 

internalize FITC-dextran and 300 nm PEG hydrogel nanoparticles more 

efficiently when compared to M1 polarized cells, indicating that M2 polarization 
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leads to a higher endocytic capacity (Edin et al., 2013). This might be due to 

increased expression of receptors facilitating endocytosis, i.e. scavenger and 

lectin receptors, in M2-polarized cells (Jones et al., 2013; Martinez et al., 2006; 

Rey-Giraud et al., 2012). Furthermore, the Th1-biased mouse strain C57BL/6 

has been reported to clear nanoparticles more slowly than the Th2-prone Balb/c 

strain, which might be mainly due to the prevalence of M2 macrophages in Balb/c 

mice (Jones et al., 2013). 

The unique physical and chemical properties associated with potentially 

detrimental effects of nanoparticles on cells and tissues might be beneficial in the 

context of nanomedicine. In fact, nanomaterials offer many advantages, such as 

improved bioavailability and feasibility of incorporation of both hydrophilic and 

hydrophobic substances, and may be used in various biomedical applications 

ranging from diagnostics to therapeutics (Latterini and Amelia, 2009; Chang et 

al., 2014; Vijayanathan et al., 2014; Zhao et al., 2009). Due to their hydrophilicity, 

stability in physiological environment, ease of production, and relatively low cost, 

silica nanoparticles display a great potential for biomedical applications (Bitar et 

al., 2012).  

However, rapid elimination from the systemic circulation by cells from the MPS 

constitutes a major challenge for the application of nanoparticles as intravenous 

drug delivery platforms, as it significantly reduces the number of nanoparticles 

available at the target site, thereby impairing the efficacy of the drug (Amoozgar 

and Goldberg, 2014; Yoo et al., 2010). At the same time, nanoparticle 

accumulation in macrophages has been considered to be an advantage for 

therapeutic strategies based on macrophage reprogramming towards a 

stimulatory/destructive or a suppressive/protective phenotype (Chellat et al., 

2005). 

A recently published meta-analysis revealed that the inter-patient 

pharmacokinetic variability of nanoparticulate formulations is higher compared 

with small molecule agents (Schell et al., 2014). The patients’ immune status and 

thereby their dominant macrophage phenotype can be influenced by various 

immune-priming events such as allergies or infections (Sica and Mantovani, 
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2012). Thus, our data suggest that the macrophage phenotype might contribute 

to the high inter-individual pharmacokinetic variability of nanoparticulate drugs, 

with analogous implications for the clearance of potentially harmful nanoparticles 

taken up from the environment. 

 

4.3.3 Silica nanoparticles uptake is enhanced in tumor-associated 

macrophages 

We previously reported that distinct macrophage populations residing in the 

human lung exhibit different phenotypic and functional characteristics: alveolar 

macrophages (AM) resemble inflammatory M1 macrophages, whereas lung 

interstitial macrophages display a more regulatory phenotype (Hoppstädter et al., 

2010). Macrophages are also one of the major populations of infiltrating 

leukocytes in solid lung tumors. These tumor-associated macrophages (TAM) 

play a major role in tumor initiation, development, and metastasis. TAM are 

considered to be a polarized M2-like macrophage population with potent 

immunosuppressive functions. High numbers of TAM are associated with a poor 

prognosis, accelerated lymphangiogenesis, and lymph node metastasis (Ma et 

al., 2010; Solinas et al., 2009; Sica et al., 2008). In the present study, we 

compared the nanoparticle uptake capacity of human primary TAM from non-

small cell lung cancer tissue samples with AM from non-tumor tissue. As 

observed for in vitro differentiated M2 macrophages, the internalization of 26 nm 

silica nanoparticles was clearly enhanced in TAM. Since TAM retain functional 

plasticity, reprogramming TAM in order to eliminate their support for tumor 

growth or to induce cytotoxic activity has been considered as a strategy to 

improve tumor therapy (Amoozgar and Goldberg, 2014; Sica et al., 2007; 

Chakraborty et al., 2012; Stout et al., 2009). Considering the high potential for 

nanoparticle uptake observed in TAM, such therapeutic approaches might benefit 

from the use of nanoparticulate formulations. 
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4.4 Conclusion 

 

In summary, our data suggest that the interaction of nanoparticles with 

differentially polarized macrophages should be taken into consideration when 

investigating the potentially toxic health effects of nanomaterials. What is more, 

the preferential uptake of nanoparticles by M2-like macrophages might offer new 

therapeutic approaches aimed at targeting M2 macrophages. 
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5 Materials and methods 
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5.1 Cell culture  

 

5.1.1 Human monocyte-derived macrophages (MDM) 

Peripheral blood monocyte isolation  

Buffy coats were obtained from healthy adult blood donors (Blood Donation 

Center, Saarbrücken, Germany). The use of human material for the isolation of 

primary cells was approved by the local ethics committee (State Medical Board of 

Registration, Saarland, Germany; permission no. 130/08). Peripheral blood 

mononuclear cells (PBMC) were isolated by density gradient centrifugation 

following the protocol proposed by Miltenyi Biotec (Bergisch Gladbach, 

Germany). In brief, buffy coats were diluted 1:1 with endotoxin-free PBS 

(phosphate buffered saline, Sigma-Aldrich, Steinheim, Germany) containing 2 

mM EDTA (ethylenediaminetetraacetic acid, Sigma-Aldrich). The diluted buffy 

coats were carefully layered on Pancoll (density 1.077g/ml, PAN Biotech, 

Aidenbach, Germany) and centrifuged (400 x g, 30 min, w/o break). The 

mononuclear cell layer was removed, washed with PBS/EDTA and centrifuged 

again (300 x g, 10 min). Remaining red blood cells were lysed in BD Pharm Lyse 

(BD Biosciences, Heidelberg, Germany). For removal of platelets, PBMCs were 

washed twice with PBS/EDTA, followed by centrifugation (200 x g, 10 min). 

Monocytes were isolated from PBMC using magnetic anti-CD14 microbeads 

(Miltenyi Biotec) following the manufacturer instructions. Briefly, PBMCs were 

resuspended in isolation buffer (PBS, 2 mM EDTA, 0.5% FBS) and incubated 

with CD14 microbeads (8 μl CD14 microbeads for 107 total cells) for 15 min at 

4°C. Cells were subsequently washed (300 x g, 10 min, 4°C), resuspended in 

isolation buffer and applied to an LS column (Miltenyi Biotec) attached to a 

MidiMACS separator (Miltenyi Biotec). After washing the column three times with 

isolation buffer, the column was removed from the separator and magnetically 

labeled monocytes were eluted by firmly applying a plunger. Monocyte purity was 

> 95% as assessed by CD14 expression (Figure 24). 
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Figure 24: Monocyte purity. After isolation, Monocytes were 
stained with anti-CD14 (clone TÜK4, Miltenyi Biotec) as 
described in section 5.9.2. One representative histogram is 
shown. Gray: unstained cells, white: stained cells; the 
percentage of CD14+ cells is indicated. 
 

 

 

Monocyte differentiation and polarization  

For macrophage polarization, monocytes were cultured in 12-well plates at a 

density of 0.5 x 106 cells per well for 5 days at 37°C and 5% CO2 in Macrophage-

SFM (Life Technologies, Grand Island, NY, USA) supplemented with either 10 

ng/ml human recombinant macrophage colony-stimulating factor (M-CSF) or 

granulocyte-macrophage colony-stimulating factor (GM-CSF). The medium was 

changed every other day. GM-CSF-differentiated macrophages (GM-M) were 

stimulated for another 40 hours or as indicated with 1 µg/ml LPS (Sigma-Aldrich) 

and 20 ng/ml human recombinant interferon (IFN)-for M1 polarization. M-CSF-

differentiated macrophages (M-M) were stimulated for another 40 hours or as 

indicated with 50 ng/ml human recombinant IL-4 or 200 ng/ml human 

recombinant IL-10 for M2a or M2c polarization, respectively. All cytokines and 

growth factors were obtained by Miltenyi Biotec and dissolved in endotoxin-free 

water (Sigma-Aldrich). 

For uptake experiments, monocytes were cultured in petri dishes (Ø 60 mm) at a 

density of 6 x 106 cells per dish for 4 days at 37°C and 5% CO2 in Macrophage-

SFM (Life Technologies) supplemented with GM-CSF or M-CSF as described 

above. On day 4, cells were detached from plates using PBS supplemented with 

5 mM EDTA (Sigma-Aldrich). Cells were seeded into 24-well plates (for flow 

cytometry analysis) or SensoPlate™ 24-well glass-bottom plate (for fluorescence 

microscopy) at a density of 1.5 x 105 cells/well or into 12-well plates at a density 

of 5 x 105 cells/well (for real time RT-PCR or western blot). On the next day, cells 

were stimulated with LPS/IFN-, IL-4 or IL-10 as described above.  
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In all experiments comparing GM-M and M-M, or M1, M2a and M2c cells 

were generated from monocytes obtained from the same donor. 

 

5.1.2 THP-1 cell line 

THP-1 cells were grown in RPMI1640 (PAN Biotech) medium supplemented with 

10% [v/v] FBS (PAN Biotech) and kept at a density of 2 x 105 – 1 x 106 cells / ml. 

For differentiation into macrophages, cells were cultured at a concentration of 

5.105 cells/ml in the presence of 30 ng/ml PMA (Sigma-Aldrich) for 48 hours. For 

polarization, PMA-differentiated cells were harvested using PBS containing 5 mM 

EDTA (Sigma-Aldrich) and seeded overnight into 24-well plates at a density of 

1.5 x 105 cells/well and cytokines were added as described in section 5.1.1.  

 

Freezing  

For freezing, cell suspensions were centrifuged (250 x g, 5 min) and 

resuspended in ice-cold freezing medium (60 % [v/v] RPMI 1640, 30 % [v/v] FBS, 

10 % [v/v] DMSO). Cells were stored at -80 °C for 2-3 days and afterwards in 

liquid nitrogen at -196 °C. 

 

Thawing 

Cells were thawed by rapidly shaking for 1 min in a 37°C water bath and instantly 

transferred into pre-warmed cell culture medium. After centrifugation (250 x g, 5 

min), cells were resuspended in growth medium and cultured as described 

above. 

 

5.1.3 Cell counting and viability  

For routine cell culture, living cells were counted using an automated cell counter 

(CASY Model TT, OMNI Life Science, Bremen, Germany). 

 

PI staining  

Macrophages were co-cultured with yeast overnight and harvested using 

PBS/EDTA (Sigma-Aldrich). Cells were resuspended in MACS buffer (PBS pH 
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7.2 containing 2 mM EDTA, 0.5% (w/v) BSA, and 0.09% (w/v) NaN3, Miltenyi 

Biotec) containing 2 μg/mL PI (Propidium Iodide, Sigma-Aldrich). After incubation 

for 10 min at 4°C, cells were examined on a FACSCalibur (BD Biosciences, 

Heidelberg, Germany ). Results were analyzed using FlowJo v10 software (Tree 

Star, Inc., Ashland, OR, USA ) and are presented as % viable cells. 

 

MTT assay  

The MTT (3-(4,5-dimethyl-thiazol-2-)-2.5-diphenyl tetrazolium bromide) 

colorimetric assay was used to ensure the usage of non-toxic nanoparticle 

concentrations as described previously (Astanina et al., 2014; Diesel et al., 2013; 

Ziaei et al., 2015). Briefly, culture medium was replaced by MTT solution (0.5 

mg/ml in culture medium) after 24 hours of nanoparticle exposure in medium 

containing 5% FCS. After incubation for 2 h, the MTT solution was removed and 

cells were solubilized in dimethyl sufoxide (DMSO). Absorbance measurements 

were performed at 550 nm with 630 nm as the reference wavelength using a 

microplate reader (Tecan Sunrise). The cell viability index was calculated relative 

to the untreated control and obtained from at least two independent experiments. 

 

5.2 Yeast preparation  

 

Saccharomyces cerevisiae S86c WT or recombinant (carrying the following 

vectors: pCMV-IRES-eGFP, pMLS1-IRES-eGFP, pICL1-IRES-eGFP, pPGK-

IRES-eGFP and pPGK-IRES-MYD88), YPD medium, synthetic complete (SC) 

medium, uracil-deficient (ura d/o) SC medium and agar plates were kindly 

provided by Dr. Frank Breinig (Molecular and Cell Biology, Saarland University).  

 

5.2.1 Culture  

Saccharomyces cerevisiae S86c [MATα ura3-2 leu2 his3 pra1 prb2 prc1 cps1] 

cells were grown overnight in synthetic complete (SC) medium (0.17% yeast 

nitrogen base, 0.5% ammonium sulfate, supplemented with amino acids, 

nucleotides, and 2% glucose) while shaking at 220 rpm at 30°C. Recombinant S. 
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cerevisiae cells were grown in SC medium lacking uracil in flasks shaken at 220 

rpm at 30°C until O.D.600 ~ 1 was reached. 

 

5.2.2 Fluorescence labeling 

107 yeast cells were harvested by centrifugation (3,000 x g, 5 min), washed twice 

with endotoxin-free PBS (Sigma-Aldrich), and stained with 2.5 µM 

carboxyfluorescein diacetate succinimidyl ester (CFSE, Life Technologies) for 30 

min at 37°C. Yeast cells were washed twice with PBS containing 5% FBS to 

remove the residual dye.  

 

5.2.3 Opsonization  

Yeast cells were opsonized by incubation with 50% human AB serum (PAA, 

Pasching, Austria, diluted in PBS), for 30 min at 37°C. Subsequently, the cells 

were washed twice with PBS and resuspended in macrophage-SFM medium. 

 

5.2.4 Plasmid generation for yeast transformation 

The DNA sequences coding for the IRES-TNF fusion construct were synthesized 

by GeneArt (Life technologies). The IRES-TNF sequence was cloned into the 

pPGK-IRES-eGFP as XhoI/BglII fragments resulting in pPGK-IRES-TNF 

replacing the IRES-eGFP sequence. For cloning, ultracompetent E. coli cells 

(NEB 10-beta competent E. coli, New England BioLabs, MA, USA) were used 

following the manufacturer instructions. Transformants were selected on LB 

plates with 50 mg/ml ampicillin and the isolated plasmid was sequenced 

(Eurofins MWG Operon, Ebersberg, Germany). 

 

5.2.5 Transformation  

Yeast cells were transformed by the lithium acetate method (Ito et al., 1983). In 

brief, S. cerevisiae was grown overnight at 30°C in YPD medium (1% yeast 

extract, 2% peptone, 2% glucose). Cells were centrifuged (7,000 rpm, 5 min) and 

washed with LiAc/TE (0.1 M lithium acetate, 10 mM Tris-HCL, 1 mM EDTA, pH 

7.5). Yeast was resuspended in 100 μl LiAc/TE and 10 μl carrier DNA (salmon 
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sperm DNA, 10 mg/ml, Serva, Heidelberg, Germany), 1 μg plasmid DNA, 600 μl 

PEG solution (0.1 M lithium acetate, 10 mM Tris-HCL, 1 mM EDTA, pH 7.5, PEG 

4000 40% [w/v]) and 3 μl of 10x LiAc (lithium acetate 1 M, pH 7.5) were added. 

The cells were incubated for 30 min at 30°C under agitation at 220 rpm and heat-

shocked at 42°C for 15 min. Yeast cells were washed twice with TE (10 mM Tris, 

1 mM EDTA, pH 7.5), centrifuged (13,000 rpm, 5 min) and resuspended in TE 

buffer. To select the transformed yeast, cells were plated on synthetic complete 

(SC) medium lacking uracil and incubated for three days at 30°C. 

 

5.3 Isolation of DNA  

 

5.3.1 Plasmid DNA isolation  

Plasmid DNA was isolated from overnight culture using the Mini plasmid isolation 

kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions.  

 

5.3.2 THP-1 DNA isolation  

DNA was isolated using RiboZol RNA Extraction Reagents (AMRESCO VWR 

Life sciences, Solon, OH, USA) following the manufacturer instruction. In brief, 

106 cells were centrifuged (300 x g, 5 min) and resuspended in 1 mL RiboZol. 

After homogenizing the cell lysate by several passage through the tip of a 

pipette, 200 µL of chloroform were added. Tubes were shaken vigorously for 15 

seconds then incubate for 2 minutes at room temperature. Samples were 

centrifuged (12,000 x g, 15 min, 4 °C), the aqueous phase containing the RNA 

was removed. In order to precipitate the DNA, 300 μl of 100% ethanol were 

added to the interphase/organic phase and mixed. Samples were centrifuged 

(2,000 x g, 5 min, 4°C) and the pellet was washed twice with 1 mL sodium citrate 

0.1 M /10% ethanol, then resuspended in 1 mL 75% ethanol. After 10 min 

incubation at room temperature, samples were centrifuged (2,000 x g, 5 min, 

4°C) and pellet was air-dried for 5 minutes. DNA pellet was dissolved in 8 mM 

NaOH and stored at -20°C. 
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5.4 Agarose gel electrophoresis  

 

5.4.1 Detection of DNA 

0.8 – 2 % [w/v] agarose (ultra-quality for DNA/RNA electrophoresis, Roth, 

Karlsruhe, Germany) gels containing 0.4 μg/ml ethidium bromide (Roth) were 

used depending on the DNA size. After adding 5 x loading buffer (30% [w/v] 

glycerol, 10 mM Tris (pH 8), 1 mM EDTA, 0.04 % bromphenol blue), DNA 

samples were loaded onto agarose gel and separated in TBE (9 mM Tris, 90 mM 

boric acid, 2 mM EDTA) at 100 V. A Quick-Load 2-Log DNA ladder (NEB) or 

GeneRuler 100 bp DNA Ladder (Thermo Scientific, Invitrogen, Carlsbad, CA, 

USA) was used in order to determine the DNA band size. Gels were imaged 

using a gel documentation system E-Box VX2 (Peqlab biotechnologies, 

Erlangen, Germany). 

 

5.4.2 Detection of RNA 

RNA samples were boiled at 68 °C for 10 min in loading buffer (2 x RNA-

Ladepuffer Peqlab) then loaded on an agarose-formaldehyde gel (1.2% [w/v] 

agarose (Ultra-pure agarose, Invitrogen); 1% fomaldehyde (roth); 10% MOPS 

buffer). RNA samples were separated in MOPS buffer (20 mM MOPS; 5 mM 

sodium acetate; 1 mM EDTA in DEPC-treated water) 1% formaldehyde at 80 v. 

Gels were imaged using a gel documentation system E-Box VX2 (Peqlab 

biotechnologies). 

 

5.5 RNA isolation and reverse transcription  

 

5.5.1 RNA isolation  

Total RNA was extracted using the RNeasy plus mini kit (Qiagen) following the 

manufacturer’s instructions. RNA quality was checked by agarose gel 

electrophoresis.  
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5.5.2 Measurement of RNA concentration  

RNA concentration was measured at 260 nm using a nanodrop 2000c UV-Vis 

spectrophotometer (Peqlab biotechnologies).  

 

5.5.3 Alu PCR 

To confirm the elimination of genomic DNA during the RNA isolation process, a 

PCR analysis for Alu elements was performed. Alu elements are very abundant 

and dispersed throughout the human genome. The following primer was used: 5’-

TCATGTCGACGCGAGACTCCATCTCAAA-3’. 5 ng THP-1 genomic DNA were 

used as a positive control. The PCR reaction was performed using a 96 

Universal Gradient Peqstar Thermocycler (Peqlab biotechnologies). 

 

One reaction mixture composition: 

Taq-Polymerase 2.5 U 

10 x Taq-buffer 2.5 μl 

MgCl2  5 mM 

dNTPs 800 μM 

primer  100 nM 

template 100 ng RNA 

H2O ad 25 μl 

 

Reaction conditions: 

Denaturation  5 min 94°C 

Denaturation 1 min 94°C 

Annealing  1 min 56°C 30 cycles  

Elongation  1 min 72°C 

Final elongation  10 min 72°C

 

Products were detected by agarose gel electrophoresis. If no product was 

detected in the samples, they were considered DNA-free and used for reverse 

transcription. 
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5.5.4 Reverse transcription  

200 ng of total RNA were reverse transcribed in a total volume of 20 µl using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, 

CA, USA) according to the manufacturer’s instructions. Samples were 

subsequently diluted with 80 μl of TE buffer (AppliChem, Darmstadt, Germany) 

and stored at -20°C until use for real-time RT-PCR. 

 

5.6 Real Time RT-PCR 

 

5.6.1 Primer and probes sequences 

Primers and dual-labelled probes were obtained from Eurofins MWG Operon. 

 

Primer sequences 

mRNA primer sense (5' 3') primer antisense, (5' 3') 

ACTB TGCGTGACATTAAGGAGA AG GTCAGGCAGCTCGTAGCTCT 

IL12B GTGCCCTGCAGTTAGGTTCT TGGGTCTATTCCGTTGTGTCTT 

TNF CTCCACCCATGTGCTCCTCA CTCTGGCAGGGGCTCTTGAT 

IL6 AATAATAATGGAAAGTGGCTATGC AATGCCATTTATTGGTATAAAAAC

IL10 CAACAGAAGCTTCCATTCCA AGCAGTTAGGAAGCCCCAAG 

GILZ TCCTGTCTGAGCCCTGAAGAG AGCCACTTACACCGCAGAAC 

MYD88 TTCGATGCCTTCATCTGCTAT T CGGTCAGACACACACAACTT 

 

Probe sequences  

mRNA probe, 5' FAM  3' BHQ1 

ACTB CACGGCTGCTTCCAGCTCCTC 

TNF CACCATCAGCCGCATCGCCGTCTC 

IL6 TCCTTTGTTTCAGAGCCAGATCATTTCT 

IL10 AGCCTGACCACGCTTTCTAGCTGTTGAG 

GILZ CCCGAATCCCCACAAGTGCCCGA 
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ACTBTNF, IL6, IL10 and GILZ primers and probes sequences were already 

described (Hoppstädter et al., 2010). IL12B primers sequences were provided by 

Dr. Jessica Hoppstädter (Department of Pharmacy, Pharmaceutical Biology, 

Saarland University). MYD88 primers sequences were designed using Primer 

Quest Tool (Integrated DNA technologies, CA, USA). 

 

5.6.2 Standard dilution series  

To quantify the target cDNA and check the real-time RT-PCR efficiency, standard 

curves were generated by a serial dilution from 60 to 0.00006 attomoles of the 

PCR product cloned into pGEM-T easy vector (Promega, Madison, WI, USA). 

Plasmids were diluted in TE-buffer, using the following formula: 

 

c (target-DNA) [µmol/ml] = c (plasmid) [µg/ml] / MW * L 

 

MW: molecular weight of the DNA (approx. 660g/ml) and L: length of plasmid 

insert in bp. 

All plasmids were provided by Dr. Jessica Hoppstädter except for MYD88. The 

standard plasmid for MYD88 was generated by cloning the MYD88 PCR product 

into the pGEM-T vector (Promega, Madison, WI, USA) according to the 

manufacturer's guidelines. 

 

5.6.3 Experimental procedure  

The CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Richmond, 

CA, USA) was used for real-time RT-PCR. Standards were run alongside the 

samples to generate a standard curve. All samples and standards were analyzed 

in triplicate. Experiments were performed in 96 well plates using 5 μl of sample or 

standard. 
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Real-time RT-PCR using dual-labeled probes 

 

PCR reaction mix: 

Taq-Polymerase 2.5 U 

10 x Taq-buffer 2.5 μl 

MgCl2  3-9 mM 

dNTPs 200 μM 

Primer forward 500 nM 

Primer reverse 500 nM 

Dual-labelled probe  2.5 or 1.5 pmol 

Template 5 μl 

H2O Up to 25 μl 

 

Reaction conditions: 

Denaturation  8 min 95°C 

Denaturation 15 s 95°C 

Annealing  15 s 57-60°C 40 cycles  

Elongation  15s 72°C 

 

Target specific conditions: 

mRNA probe MgCl2 annealing 

ACTB 60 nM 4 mM 60 °C 

TNF 100 nM 3 mM 60 °C 

IL6 100 nM 4 mM 59 °C 

IL10 100 nM 4 mM 60 °C 

GILZ 100 nM 4 mM 60 °C 

 

Real-time RT-PCR using EvaGreen 

For IL12B and MYD88, the EvaGreen qPCR Mix Plus (Solis Biodyne, Tartu, 

Estonia) was used.  
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PCR reaction mix: 

EvaGreen® mix           4 μl 

Primer forward  500 nM 

Primer reverse 500 nM 

Template 5 μl 

H2O Up to 20 μl 

 

Reaction conditions: 

Initial Denaturation  15 min 95°C 

Denaturation 15 s 95°C 

Annealing  20 s 60°C 40 cycles  

Elongation  20s 72°C 
 
 
 

5.7 Western Blot  

 

5.7.1 Preparation of protein samples 

After co-culture with yeast, cells were washed with PBS and stored at -80°C until 

further use. Cells were then lysed in lysing buffer (50 mM Tris-HCl, 1% [m/v] 

SDS, 10% [v/v] glycerol, 5% [v/v] -mercaptoethanol, 0.004% [m/v] bromophenol 

blue) supplemented with protease inhibitor (Complete; Roche Diagnostics, Basel, 

Switzerland). Cell lysates were sonicated, centrifuged (17,000 x g, 10 min, 4 °C), 

and denatured for 5 min at 95°C. 

 

5.7.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Equal sample volumes were used for SDS-PAGE and separated on 12% gels. A 

protein marker (Fermentas, St. Leon-Rot, Germany) was used to estimate the 

molecular masses. 
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Composition of 12 % gels: 
 

resolving gel   stacking gel  

H20 6.6 ml  H20 5.5 ml 
 

30 % acrylamide Mix 
 

8 ml  30 % acrylamide  
 

1.3 ml 
 

Tris (1.5 M, pH 8.0) 
 

5 ml  Tris (1 M, pH 6.8) 
 

1 ml 
 

SDS (10 % [w/v]) 
 

200 µl  SDS (10 % [w/v]) 
 

80 µl 
 

APS (10 % [w/v]) 
 

200 µl  APS (10 % [w/v]) 
 

80 µl 
 

TEMED 
 

20 µl  TEMED 
 

8 µl 
 
 

Proteins were separated in electrophoresis buffer (24.8 mM Tris, 1.92 mM 

glycine, 0.1 % [w/v] SDS) for 30 min at 80 V, followed by 2 hours at 100 V. 

The Mini PROTEAN system (Bio-Rad) was used for gel preparation and 

electrophoresis. 

 

5.7.3 Blotting  

Proteins were transferred to Immobilon FL-PVDF membranes (Millipore, Billerica, 

MA, USA) using the Mini-Transblot cell (Bio-Rad) system. The membrane was 

incubated for 30 s in methanol. Sponges, filter papers and membrane were 

equilibrated in transfer buffer (24.8 mM tris base, 1.92 mM glycine, 20% [v/v] 

methanol, 0.05% [w/v] SDS), followed by gel sandwich preparation. Blotting 

was performed overnight at 80 mA.  

 

5.7.4 Immunodetection  

After blocking for 1 h in Rockland Blocking Buffer for near- infrared Western 

Blotting (RBB, obtained from Rockland, Gilbertsville, PA, USA), the membranes 

were incubated overnight at 4°C with the primary polyclonal antibody anti-MyD88 

(abcam, Cambridge, MA, USA) and anti-tubulin (DM1A) (Sigma-Aldrich) diluted 

1:1000 in PBST (0.1 % [v/v] tween 20 in PBS) containing 5 % [m/v] dried milk. 

Subsequently, membranes were washed in PBST (4 times for 5 min) and 

incubated at room temperature for 1.5 h with the secondary antibodies, i.e. 

IRDye© 800CW conjugated goat anti-mouse IgG (1:10,000) and IRDye© 680 
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conjugated mouse anti-rabbit IgG (1:5,000) diluted in RBB. Blots were washed 

twice with PBST and twice with PBS, followed by documentation on an Odyssey 

Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA). Relative 

signal intensities were determined using Odyssey software. 

 

5.8 Flow cytometry 

 

5.8.1 Antibodies  
 

Antibody Isotype control 

APC-labelled mouse anti-human CD206; clone DCN228 APC-IgG1, mouse 

FITC-labelled mouse anti-human HLA-A, B, C; clone W6/32 FITC-IgG2a , mouse

FITC-labelled anti-human HLA-DR, DP, DQ; clone REA332 FITC-REA 

FITC-labelled mouse anti-human CD163; clone GHI/61.1 FITC-IgG1, mouse 

PE-labelled mouse anti-human CD14; clone TÜK4 PE-IgG2a, mouse 

PE-labelled mouse anti-human CD80; clone 2D10 PE-IgG1, mouse 

PE-labelled mouse anti-human CD86; clone B7-2 PE-IgG2b , mouse 

 

CD14, CD80, CD163, CD206 and HLA-DR, DP, DQ antibodies and respective 

isotype control were obtained from Miltenyi Biotec. CD86, HLA-A, B, C antibodies 

with respective isotype controls were obtained from eBioscience (San Diego, CA, 

USA). All antibodies were used at concentrations recommended by the supplier. 

 

5.8.2 Cell staining and analysis  

Macrophages were harvested using PBS containing 5 mM EDTA (Sigma-

Aldrich). Cells were resuspended in MACS Buffer (PBS pH 7.2 containing 2 mM 

EDTA, 0.5% (w/v) BSA, and 0.09% (w/v) NaN3, Miltenyi Biotec). FcR receptors 

were blocked using FcR Blocking Reagent (Miltenyi Biotec). Cells were stained 

for 10 min at 4°C with the following antibody combinations or respective isotype 

controls: anti-CD14; anti-HLA-A, B, C/anti-CD206; anti-CD163/ anti-CD80; anti-
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HLA-DR, DP, DQ/ anti-CD86. Stained cells were washed with MACS Buffer then 

analyzed using FACSCalibur (BD Biosciences) and FlowJo software. Results are 

reported as relative geometric mean of fluorescence intensity (GMFI; geometric 

mean of fluorescence intensity of specifically stained cells related to geometric 

mean of fluorescence intensity of isotype controls) 

 

5.9 Uptake studies 

 

5.9.1 Sample preparation 

Particle uptake  

Fluorescently labeled (Atto647N) 25 nm or 41 nm silica nanoparticles were 

provided by Dr. Annette Kraegeloh (Nano Cell Interactions Group, INM – Leibniz 

Institute for New Materials). 

Cells were incubated with nanoparticles (50 µg/ml), or 1.75 µm microparticles 

(Fluoresbrite carboxylated YG microspheres, Polysciences, Warrington, PA, 

USA. 100 particles/cell) in RPMI 5% FCS at 37°C, 5% CO2 for 1 (for flow 

cytometry) or 3 (fluorescence microscopy) hours. 

 

Yeast uptake 

Macrophages were incubated with CFSE-stained yeast cells at an MOI of 7 

unless stated otherwise in a total volume of 1 ml at 37°C in 5% CO2 for 4 hours 

or the indicated period of time. Plates were briefly centrifuged to ensure that 

yeast and macrophages were in close contact. 

 

5.9.1 Uptake evaluation by fluorescence microscopy  

Cells were washed three times with ice cold PBS and fixed with fixing solution 

(Cell Biolabs, San Diego, CA, USA) for 15 min at room temperature. 

Subsequently, cells were washed three times with PBS again and nuclei were 

counterstained with DAPI (Cell Biolabs) in PBS for 10 min. Cells were kept in 

PBS for microscopy analysis and stored at 4°C. Particle uptake was analyzed by 

Anna Dembek with an Axio Observer Zeiss microscope (Carl Zeiss, Göttingen, 
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Germany) equipped with a MRM Axiocam at a 63× magnification using 

AxioVision software. Yeast uptake was imaged using an IX71 inverted 

microscope (Olympus, Hamburg, Germany) equipped with a 60× PlanApo N oil-

immersion objective (Olympus; NA of 1.42). Image overlays were generated 

using AnalySIS Life Science software (version 2.8, Build1235, Olympus Soft 

Imaging Solutions). 

 

5.9.2 Uptake quantification by flow cytometry 

After incubation with particles or yeast, macrophages were washed 2 times with 

PBS and detached from plates using PBS containing 5 mM EDTA. Cells were 

resuspended in MACS buffer and examined on a FACSCalibur (BD Biosciences). 

Results were analyzed using FlowJo software and are presented as relative 

geometric mean fluorescence intensity (GMFI; mean fluorescence intensity of 

particle-loaded cells related to mean fluorescence intensity of untreated controls) 

for particles uptake and as % CFSE positive macrophages for yeast uptake. 

 

5.10 Cytokine measurement  

 

TNF- was measured in cell culture supernatant using a TNF alpha ELISA Kit 

(Invitrogen) according to the manufacturer’s instructions. Absorbance was 

measured using a Tecan sunrise absorbance reader (Tecan, Austria). 

 

5.11 Statistics  

 

If not stated otherwise, data represent the means + SEM of at least 3 

independent experiments with cells from different donors, each performed in 

duplicates. Data distribution was determined by the Shapiro-Wilk test. For 

normally distributed data, means of two groups were compared with non-paired 

two-tailed Student’s t-test. Whenever the data were not normally distributed, 

means of two groups were compared using the Mann-Whitney test. Means of 
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more than two groups were compared by one-way ANOVA with Bonferroni’s post 

hoc test (normal distribution) or Kruskal-Wallis ANOVA followed by Mann-

Whitney test (no normal distribution). Statistical significance was set at a p-value 

of < 0.05, < 0.01, or < 0.001. Data analysis was performed using Origin software 

(OriginPro 8.6G; OriginLabs).  
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Macrophages can adopt different phenotypes depending on the surrounding 

signals, with the pro-inflammatory phenotype (M1) and anti-inflammatory 

phenotype (M2) representing two extremes of a broad phenotypic spectrum. 

Tumor-associated macrophages are predominantly M2-polarized and have 

tumor-promoting functions. Re-educating tumor-associated macrophages 

towards an M1 phenotype with anti-tumor activity by gene therapy is a promising 

approach for cancer treatment. For successful gene therapy, several gene 

delivery systems are being investigated. The ideal gene delivery carrier would be 

stable, specific and biodegradable. Recently, nanoparticles and whole yeast 

were suggested as potential nucleic acid carriers.  

In this work, we described the interaction of yeast and macrophages. We studied 

the possibility of using yeast as a gene delivery system to re-educate M2 

macrophages towards an M1 phenotype. Finally, we investigated the influence of 

macrophages polarization on particles uptake. 

First, we established and characterized an in vitro model of human M1/M2-

polarized macrophages. GM-CSF-differentiated macrophages (GM-M 

expressed M1 surface markers such as HLAII and CD86, whereas M-CSF-

differentiated macrophages (M-M expressed the scavenger receptor CD163. 

Further polarization was achieved by the addition of LPS and IFN- to GM-M or 

IL-10 to M-M, thereby generating fully polarized M1 and M2 macrophages, 

respectively. M1 macrophages were characterized by high amounts of HLAII and 

CD86, low expression of CD14 and absence of CD163. The M1 pro-inflammatory 

phenotype was confirmed by the expression of pro-inflammatory cytokines, such 

as IL-12, TNF-and IL-6. M2 macrophages had a high expression of CD14 and 

CD163, whereas HLAII and CD86 were only slightly expressed. Furthermore, M2 

macrophages showed an up-regulation of the anti-inflammatory mediators IL-10 

and GILZ, which correlated with their anti-inflammatory phenotype. 

Then we studied the interaction between yeast and differently polarized 

macrophages. M1 macrophages showed a higher yeast uptake capacity when 

compared with M2 cells. In contrast, opsonized yeast was taken up to the same 

extent by all in vitro polarized macrophages. Opsonized S. cerevisiae promoted 
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an M1-like phenotype, as indicated by the induction of pro-inflammatory 

cytokines.   

We also showed that biosynthetic mRNA mycofection is more efficient than DNA 

delivery in macrophages and established for the first time that S. cerevisiae-

mediated mRNA delivery can be used to overexpress cytosolic (MyD88) or 

secreted proteins (TNF-) in both M1 and M2 macrophages. Furthermore, both 

MyD88 and TNF- overexpression re-educated M2 macrophages towards an M1 

phenotype. Interestingly, while the upregulation of MyD88 did not show any effect 

on the M1 macrophages phenotype, it induced a high and long lasting expression 

of pro-inflammatory cytokines (TNF- and IL-12) in M2 macrophages. TNF- 

delivery had a stronger effect, as it boosted the pro-inflammatory mediator 

expression in both M1 and M2 cells to a considerable extend. Furthermore, TNF-

 overexpression also induced GILZ mRNA upregulation in both M1 and M2 

macrophages, possibly indicating the initialization of the resolution phase. Taken 

together these results suggest the use of mRNA mycofection as a novel strategy 

repolarize M2 macrophages toward an M1 phenotype. This system can still be 

improved due the versatility of S. cerevisiae as a gene carrier. New studies have 

shown that co-expression of human perforin in yeast can ameliorate the mRNA 

delivery efficiency (Walch-Rückheim et al., 2016). It would also be possible to 

modify the surface properties of the yeast cells in order to enhance their uptake 

by a specific kind of cells (Kenngott et al., 2016).  

Finally, we demonstrated that macrophage polarization influences particle uptake 

in human macrophages. We employed three different models of human M1/M2 

polarized macrophages. Whereas we did not detect any differences between 

primary M1 and M2 monocyte-derived macrophages regarding the phagocytic 

uptake of latex microparticles, we showed that M2 polarization enhanced 

nanoparticle uptake. M2 polarization was also associated with increased 

nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in 

vivo polarized M2-like primary human tumor-associated macrophages (TAM) 

obtained from lung tumors took up more nanoparticles than M1-like alveolar 

macrophages isolated from the surrounding lung tissue. Our data indicate that 
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the M2 polarization of macrophages promotes nanoparticle internalization. 

Therefore, the phenotypical differences between macrophage subsets should be 

taken into consideration in future investigations on nanosafety, but might also 

open up therapeutic perspectives allowing to specifically target M2 polarized 

macrophages. 

 

Taken together, these findings may be of particular interest for the treatment of 

pathologic conditions that would benefit from reprogramming M2 towards M1 

phenotype, such as solid tumors. Both yeast and silica nanoparticles are 

promising vectors for targeting M2 macrophages, silica nanoparticles due to their 

preferential uptake by M2 cells and yeast because of their ability of to induce an 

M1 phenotype in M2 macrophages which can be further enhanced by gene 

delivery.  
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