
Dynamic Language Models for Hybrid
Speech Recognition

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultät II

- Physik und Mechatronik -
der Universität des Saarlandes

von

Munir Georges

Saarbrücken
2015

Tag des Kolloquiums: 12.07.2016

Dekan: Univ.-Prof. Dr.-Ing. Georg Frey

Mitglieder des
Prüfungsausschusses: Univ.-Prof. Dr. Dietrich Klakow

Univ.-Prof. Dr.-Ing. Chihao Xu

Dr. rer. nat. Andreas Leschhorn

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe. Die aus anderen Quellen oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die
Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähn-
licher Form in einem Verfahren zur Erlangung eines akademischen Grades
vorgelegt.

Ort, Datum (Unterschrift)

Abstract

This thesis describes methods and techniques for low resource speech
recognition on embedded devices. The speech recognizer is based on a
weighted finite-state transducer. A method to estimate dynamic language
models is proposed. This method combines grammars and statistical n-
gram models. The grammars can be used to represent word sequences with
long range dependencies, such as address entries, abbreviations, proper
names or stock prices. These sequences are often sparsely represented in
the training data. A decoding technique is described which nests transduc-
ers at speech recognition time. This enables the recognition of privacy pro-
tected data, e.g. contact names from an user’s address book. It also enables
the use of favorite music titles or medical records to achieve more precise
speech recognition. In addition, a novel technique is proposed which al-
lows speech recognition on multiple devices. This technique uses a dy-
namic language model in combination with acoustic filler models.

All methods and techniques were evaluated on the Wall Street Journal Cor-
pus. The transducer nesting technique was evaluated in an embedded en-
vironment. An recognition improvement from 19% word error rate to 13%
was achieved. The decoding technique on multiple devices was applied
for accurate client-server based speech recognition keeping personal data
on the client. The average latency increased by 15% compared to real time
recognition, but a word error rate reduction of 17% was achieved.

Deutsche Zusammenfassung

Diese Arbeit beschreibt Methoden und Techniken zur Spracherkennung
mit Transduktoren auf eingebetteten Systemen. Insbesondere dynamis-
che Sprachmodelle werden vorgestellt, mit denen statistische n-gram Mo-
delle und Grammatiken kombiniert werden. Die Grammatiken werden
dazu verwendet lange Wortfolgen zu beschreiben. Das sind beispielsweise
Adressen, Eigennahmen oder Aktienkurse. Varianten dieser Wortfolgen
sind im Datensatz selten vertreten. Es wird eine Suchtechnik verwen-
det, die mit geringer Speicher- und Rechenleistung verschachtelte Trans-
duktoren zur Laufzeit decodiert. Dies ermöglicht die Verwendung von
sensiblen Daten zur Verbesserung der Spracherkennung. Das kann ein
Adressbuch sein, aber auch eigene Wiedergabelisten oder medizinische
Aufzeichnungen. Darüber hinaus wird eine neue Technik vorgestellt, die
Spracherkennung auf mehreren Geräten ermöglicht. Hierfür werden dy-
namische Sprachmodelle mit akustischen Füllermodellen kombiniert.

Die Methoden und Techniken wurden mit dem Wall Street Journal Corpus
bewertet. Die Spracherkennung mit verschachtelten Transduktoren wurde
auf eingebetteten Geräten evaluiert. Die Erkennung konnte von 19% Wort-
fehlerrate auf 13% verbessert werden. Diese Arbeit ermöglichte auch eine
Client-Server basierte Spracherkennung bei der personenbezogene Daten
auf dem Client verbleiben können. Die mittlere Verzögerung stieg um 15%
verglichen mit einer Echtzeiterkennung, jedoch verringerte sich die Wort-
fehlerrate um 17%.

Acknowledgements

First I would like to thank Prof. Dr. Dietrich Klakow and Prof. Dr. Chihao
Xu for reviewing my thesis. I am grateful to SVOX and Nuance Communi-
cation for giving me the opportunity to research and write this PhD thesis
by providing challenging issues and resources for advanced research in au-
tomatic speech and language processing.
Particular thanks are due to all my speech colleagues all over the world
for many inspiring conversations. Let me specially mention: Stephan
Kanthak, Georg Stemmer, Oliver Bender, Josef Anastasiadis, Eduardo Vel-
lasques, Friederike Niedtner, Ute Ziegenhain, Josef Bauer, Joachim Hofer.

This thesis is dedicated to my parents Dr. Elme and Dr. Jawdat Georges.

Contents

1 Thesis Introduction 1

2 Weighted Finite-State Transducer 5
2.1 Introduction in weighted Finite-State Transducers 6
2.2 Determinization . 8
2.3 Minimization . 12
2.4 Composition . 14
2.5 Epsilon removal . 23
2.6 Topological order . 24
2.7 Robust language processing . 26
2.8 Data structures . 27
2.9 Compression methods for transducer . 30
2.10 Summary . 32

3 Automatic Speech Recognition 35
3.1 Conceptual framework . 36
3.2 Developing process . 37
3.3 Introduction in acoustic signal processing . 38

3.3.1 Feature front end . 39
3.3.2 Signal energy . 40
3.3.3 Mel Frequency Cepstral Coefficients . 41
3.3.4 Linear discriminant analysis . 44
3.3.5 Spectral subtraction and cepstral mean normalization 45

3.4 Language representation . 47
3.4.1 Grammars . 48
3.4.2 N-gram Markov language model . 50
3.4.3 Class based language models . 53
3.4.4 Interpolation and adaptation of n-grams 54
3.4.5 Statistical estimators . 58
3.4.6 Back-off n-gram language models . 60
3.4.7 Language model combination techniques 60

3.5 Language processing . 61
3.5.1 Word tokenization . 61
3.5.2 Text formatting and interpretation . 64

3.6 Summary . 66

CONTENTS

4 Dynamic Speech Decoding 67
4.1 Finite state transducer for speech recognition . 68
4.2 Lexicon transducer . 68
4.3 Language transducer . 70

4.3.1 Grammatical text representation . 70
4.3.2 Statistical Language Modeling . 74
4.3.3 Dynamic Language Modeling . 76

4.4 Creating a dynamic Language model . 78
4.4.1 Word sequence clustering . 78
4.4.2 Extraction of grammatical structures . 79
4.4.3 Grammatical structure replacement . 81

4.5 Speech decoding with transducer . 83
4.6 Speech decoding of nested transducers . 89
4.7 Speech decoding on multiple devices . 92

4.7.1 Schematic overview for speech recognition on multiple devices . . 93
4.7.2 Use of dynamic language model . 94
4.7.3 Use of acoustic filler . 96
4.7.4 Word duration modeling for slot fillers . 97

4.8 Summary . 98

5 Applications 99
5.1 Evaluation of speech and language techniques . 100

5.1.1 Language model evaluation . 100
5.1.2 Evaluation of speech recognition . 101
5.1.3 Evaluation of information retrieval . 104

5.2 Dynamic Language Model evaluation . 106
5.2.1 Introduction . 106
5.2.2 Transducer nesting for dynamic language models 107
5.2.3 Evaluation . 109
5.2.4 Conclusion . 113

5.3 Evaluating recognition on multiple devices . 114
5.3.1 Introduction . 114
5.3.2 Dynamic language models with acoustic fillers 116
5.3.3 Recognition on the server . 118
5.3.4 Recognition on the client . 119
5.3.5 Evaluation . 119
5.3.6 Conclusion . 123

5.4 Summary . 124

6 Thesis summary 125

References 129

1
Thesis Introduction

This thesis introduces dynamic language models for automatic speech recognition. A

transducer nesting technique is used to embed grammars in statistical language mod-

els, dynamically. This lead to a novel technique for hybrid speech recognition where

the processing is distributed over multiple devices. This was achieved by using acous-

tic filler models within dynamic language models. The technique is used, e.g., for

client-server bases speech recognition keeping private data on the client. Next para-

graph provides a brief introduction on the background of this thesis.

The work on this thesis started in the ASR research group at SVOX in Munich, Ger-

many. Along the research on efficient decoding methods for embedded devices, a de-

coder was developed for short message dictation. The company was acquired by Nu-

ance Communications. The work was first followed up in the automotive ASR search

group and later in the spoken language understanding group for cloud and hybrid au-

tomotive use-cases in Aachen, Germany. The research on this thesis contributed to

recognizing heavy content data on embedded devices. Starting from the recognition

of named entities in message dictation, methods and techniques were invented for

speech recognition with dynamic language models on multiple devices. The work con-

tributes to research and developing efforts for low resource and hybrid speech recog-

nizers at Nuance for automotive and mobile use-cases.

1

2 CHAPTER 1. THESIS INTRODUCTION

Thesis Introduction

Automatic speech recognition is becoming an essential element in modern human

machine interfaces. The areas of use range from applications in automotive, mobile

and home automation to applications in the medical field. The recognition accuracy

depends among other things on suitable training data for the target domain. Statistical

models are used to compute the most probable word sequences given a sequence of

speech features extracted from an audio stream. The training data is often derived from

field data, e.g. for acoustic modeling, and text corpora, e.g. for language modeling.

Scraped text from the World Wide Web is also used. Common words and phrases are

well represented and suited to estimate precise statistical models. The picture changes

when large structured content needs to be considered, e.g. for recognizing addresses,

media or named entities in a natural language context. This is a spares data problem

because it is unlikely to gather enough data representing all entities in a natural lan-

guage context. In addition, these data might be privacy protected. Two questions arise:

(1) How can this data be represented in the speech search space?

(2) How to store and process the search space, e.g. to protect private data?

Both questions are addressed in this thesis. A dynamic language model is proposed.

It embeds stochastic grammars into statistical n-gram Markov models during speech

decoding. Whereas heavy content is accessible through large databases or collections

from human experts, other data is available through the user itself. The grammar is

used to incorporate these knowledge, e.g. addresses, contact names or the list of a

user’s favorite movies and music titles. A speech recognizer is described based on

weighted finite state transducer using a nesting technique. This technique allows the

use of dynamic language models on embedded devices. Not all the users data is avail-

able on a single device. It is also an issue for cloud infrastructures with data centers

that are shared over the world. There are various reasons why such data might not be

always available. One is a data privacy restriction for certain data, e.g. medical records.

Another reason is the increasing costs of server infrastructures dealing with millions of

user profiles. Moreover, medical records might be accessible on a user’s smart phone,

but stock prices, weather records or crowd sourced trends are immediately available in

the cloud. This led to the invention of recognizing speech phrases on multiple devices,

depending on where the most suitable data is accessible. It uses a dynamic language

model which is combined with acoustic fillers. The proposed methods and techniques

are described in four chapters as outlined on following page.

3

Thesis Overview

Chapter 2 introduces weighted finite-state transducers and operators for processing.

The processing can change the data structure or the relation between the input

and output language. The data structure of a transducer is described together

with compression methods. This enables the use on embedded devices with low

resources. Such a decoder was built at SVOX for research on embedded dictation.

Chapter 3 introduces automatic speech recognition: Acoustic feature computation,

the representation of language as well as some pre- and post-processing of

text. The investigation was done on following software: Millennium ASR at LSV,

EAR/VSR at SVOX and Vocon and NCS at Nuance. It leads to the patent appli-

cation of location aware speech recognition [1] and influenced the work on the

patent application of processing user input [2]. Part of the introduction were

published by Georges [3] and as joined work with Faubel et al. [4], [5].

Chapter 4 introduces dynamic speech decoding with transducers. The preprocessing

is described including the compiling and optimization of weighted finite state

transducers. The speech decoding is described in three parts: First, transducer

based speech decoding for devices with low resources. Second, on–the–fly trans-

ducer nesting which enables the use of dynamic language models. Third, speech

decoding on multiple devices. These methods and techniques are part of the re-

search and developing efforts for hybrid speech use-cases at Nuance. Parts of

this work were developed during discussions with colleagues. The work leads to

the patent applications on speech recognition on multiple devices [6], [7] and [8].

Chapter 5 evaluates a selection of the described methods and techniques. For this, an

introduction about the evaluation of language applications is given. The speech

decoding with dynamic language models is evaluated. The application uses the

transducer nesting technique and is applicable on embedded devices. Speech

decoding on multiple devices is evaluated on an hybrid set-up. A cloud recog-

nizer is used to recognize general speech, all personal phrases are recognized on

the client. Two applications are described in this thesis and were published at

INTERSPEECH and ICASSP [9], [10].

2
Weighted Finite-State Transducer

A weighted finite-state transducer is commonly used in language technology. It is a

framework to represent and process relations between two languages, e.g. the relation

between a sequence of phonemes and a word sequence. The first language is often de-

noted as input which is consumed during decoding. The second language is denoted

as output which is emitted during decoding. An ε symbol is used to align phrases from

two languages with different number of entities. This symbol is whether consuming

nor emitting. A formal definition is given in section 2.1.

The following two operators have an effect on the data structure representing the

languages. The languages and the relation between these are retained. The deter-

minization and the minimization operator is described in Section 2.2 and 2.3 respec-

tively. Whereas determinization causes a more efficient decoding, minimization re-

duces the required memory. The next two operator has an effect on the relation be-

tween languages. Section 2.4 describes the composition of two transducers. Section

2.5 introduces an operator which influences the ε sequence. It removes all non con-

suming and emitting, weight neutral paths. A method to compute the topological or-

der is described in Section 2.6. An open vocabulary processing technique is proposed

in Section 2.7. A data structure overview is provided in Section 2.8. A compression

method is described in Section 2.9. A summary is given in Section 2.10

5

6 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

2.1 Introduction in weighted Finite-State Transducers

A transducer represents a weighted relation between two regular languages. An intro-

duction on formal languages is provided, e.g. by Schönig [11]. Rabin et al.[12] gen-

eralized the notation of an automaton to multiple tape which might be the origin of

final state transducers. A weighted finite-state transducer extends an automaton by

an additional symbol and weight on each transition. One language is often denoted as

"input" and is consumed while decoding. The other language is often denoted as "out-

put" and is emitted in the same time the input is consumed. In speech recognition, it

is used to define a mapping between phoneme and word sequences. The variability

between these two sequences is represented by weights. Hence, alternative word pro-

nunciations can be modeled as well as hidden Markov models. Mohri et al.[13], [14]

wrote an overview of weighted finite-state transducer for speech processing.

In this thesis, weighted finite-state transducers are used for speech recognition with

dynamic language models. As described in Chapter 4. Let L i ⊆ V ∗
i ∪ {ε} be the input

language over an input vocabulary Vi and let Lo ⊆ V ∗
o ∪ {ε} be the output language

over a vocabulary Vo . The operator "∗" denotes the Kleene closure and computes all

sequences from the given set. An introduction of automaton theory is provided e.g. by

Hopcroft [15]. The dedicated symbol ε has to be introduced to apply the Kleen closure

on languages. It is used to align phrases from two languages with different number of

entities. In addition, it can be used to summarize multiple initial or finial states to one

initial or final state. This symbol is whether consuming nor emitting.

Transitions of weighted finite-state transducers are defined by triples (Vi ×Vo ×σ)
with weightσ. Each transition is associated with a source state and a destination state

analogous to transitions of automatons. Hence, a transducer can be visualized as a di-

rected graph. In speech recognition the input vocabulary might be a set of phonemes.

Let L i be such a set. The output language might be a set of words. Let Lo be such a set

of words. The transducer can be used to translate the L i to Lo accordingly to a weight,

e.g. the combination of an acoustic and a language model.

A weighted finite-state transducer can be formalized in different ways. The defini-

tion may variate depending on the application and required operators. In general, it

can be defined as tuple:

G = (Vi , Vo ,Q , T , i , F,λ,ψ)

2.1. INTRODUCTION IN WEIGHTED FINITE-STATE TRANSDUCERS 7

with the following definitions:

Vi , Vo is the input and output vocabulary

Q is a set of states

T is the set of transitions

i ∈Q is the initial state

F ⊆Q is the set of final states

λ is the initial weight

ψ is the final weight function.

Having just one initial state is no limitation by considering uε transition. The set of

transitions T is defined as tuples between states:

T ⊆Q × (Vi ∪{ε}× (Vo ∪{ε})×K×Q ,

K defines the semiring which is a generalization of the algebraic ring structure. The

algebraic notation of a semiringK is described, e.g., by Kuich at al. [16]. The Semiring

K defined as (K,⊕,⊗, 0̄, 1̄), where it is equipped with associative and commutative op-

erator ⊕with identity 0̄. Also the associative operator ⊗with identity 1̄ can be defined

byK. Those are commutative. A selection of common semirings is given in Table 2.1.

Semiring Set ⊕ ⊗ 0̄ 1̄

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪{+∞} + × 0 1
Log R∪{−∞,+∞} ⊕log + +∞ 0
Tropical R∪{−∞,+∞} min + +∞ 0

Table 2.1: Semiring selection which are commonly used for speech recognition with
weighted finite-state transducer as proposed by Mori [17].

The tropical semiring is used in automatic speech recognition together with the

Viterbi best path approximation. The following equation is fulfilled, e.g. for the

Boolean and tropical semiring:

x ⊕ x = x ∀x ∈K.

A decoding with weighted finite-state transducers is described in Section 4.5. Using

weighted finite-state transducers for speech recognition enables the compiling and

optimization of the search space in advance. This is done by applying operators as

described in the following sections.

8 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

2.2 Determinization

Determinization is a structural operator on transducers. It has no impact on the re-

lation between both languages nor an impact on the languages itself. This operator

optimizes the transducer. Many computations become more efficient, e.g., decoding.

This remains even though the number of states may increase during conversion from

n up to 2n states. The decoding time will become linear to the length of the input se-

quence. Mohri et al. also denotes deterministic transducers as sequential ones [18].

Especially speech decoding takes advantage of an efficient decoding, e.g. motivated

by Ney et al. in the work of dynamic programming for speech recognition [19]. A de-

scription of determinization for language processing was provided by Mohri et al. [13].

The theory of Determinization is described in the following paragraph together with an

algorithm proposed by Mohri et al. [18]. Afterwards, the determinization is discussed

for an application that should evaluate area codes of phone numbers.

Determinization in theory

Every nondeterministic finite automaton can be converted into an equivalent deter-

ministic automaton. A proof is provided, e.g. by Schöniger [11]. However, this conver-

sion is not always possible for transducers. The set of deterministic transducers is a

subset of all transducers.

In general, all acyclic transducers are determinizable and most transducers used in

natural language processing are determnizable accordingly to Mohri et al.[18]. For the

sake of clarity, the determinization of unweighted finite state transducers is described

here. The extension to weighted transducers is described, e.g. by Mohri et al. [14]. The

operator is derived from the power set construction for automatons where the power

set over states is computed. This was proposed, e.g., by Rabin et al.[12]. In case of

transducers, the power set construction is computed over the set of states by consider-

ing the input and output sequence of labels. The resulting transducer is deterministic

and allows a efficient decoding, e.g. for speech recognition. Let T1 be a determinizable

transducer which is defined by a 7-tuple:

T1 = (V1, I1, F1, A, B ∗,δ1,σ1)

2.2. DETERMINIZATION 9

The tupel T1 defines following entities:

V1 set of states

I1 ⊆V set of initial states

F1 ⊆V set of final states

A, B input and output alphabet

δ1 state transition function: V1×A→ 2V1 (power set of V1)

σ1 output function V1×A×V1→ B ∗

Applying the determinization operator on T1 results in a deterministic transducer T2.

The result is defined as 8-tupel:

T2 = (V2, i2, F2, A, B ∗,δ2,σ2,Φ2)

with the following entries:

V2 set of states

i2 ∈V initial states

F2 ⊆V set of final states

A, B input and output alphabet

δ2 state transition function: V2×A→V2

σ2 output function V2×A→ B ∗

Φ2 final output function F → B ∗

Further, let a ∧ b be the longest common prefix of two strings a and b . Removing the

prefix a is denoted by a−1(a b) = b . The determinization is presented in Algorithm 2.1.

The Algorithm does also use two methods J1 and J2. Let q2 be a state candidate of T2

which includes a set of states (q ,ω) from T1. Those are combined in T2. Let J1(a) be

the set of all (q ,ω) ∈ q2 of T2 for which a transition in T1 exists with the input symbol a .

J1(a) is defined as follows:

J1(a) ={(q ,ω)|δ1(q , a)∧ (q ,ω) ∈ q2}}

Further, let J2(a) be the set of all transitions from q to q ′ of T1 with the input symbol a

where (q ,ω) ∈ q2. Those transitions of T1 are combined in T2. J2(a) is defined as:

J2(a) ={(q ,ω, q ′)|δ1(q , a)∧ (q ,ω) ∈ q2 ∧q ′ ∈δ1(q , a)}

10 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Algorithm 2.1 Pseudo code for determinization of a transducer T1 [18]
1: F2←; // Initialize final states
2: i2←

⋃

i∈I1

{(i ,ε)} //Unify initial states from T1

3: Q ←{i2} // set inital state
4: while Q 6= ; do // Continue until Q is empty
5: q2←head[Q]
6: if ∃(q ,ω) ∈ q2 : q ∈ F1 then // q2 is final iff it includes (q1,ω)∧q1 is a final state
7: F2← F2 ∪{q2} // Add final state q2

8: Φ2(q2)←ω //ω is the output for final state q2

9: end if
10: for each a such that (q ,ω) ∈ q2 ∧δ1(q , a) do // construct outputσ2(q2, a)

11: σ2(q2, a)
∧

(q ,a)∈J1(a)
←
�

ω
∧

q ′∈δ1(q ,ω)
σ1(q , a , q ′)

�

// for transition q2 to δ2(q2, a)

12: // create transition for q2 with input a
13: δ2(q2, a)

⋃

(q ,ω,q ′)∈J2(a)
←
�

(q ′, [σ2(q2, a)]−1ωσ1(q , a , q ′)
	

14: if δ2(q2, a) a new state then
15: ENQUEUE(Q ,δ2(q2, a)) // Add new state in the queue
16: end if
17: end for
18: DEQUEUE(Q) // Remove current state from queue
19: end while

Other implementations are proposed, e.g. by Van Noord et al. [20]. The deter-

minization of weighted finite-state transducers is described, e.g. by Allauzen et al. [21]

or Mohri et al. [14] It is also possible to add new entries incrementally in already deter-

ministic transducers,e.g. described by Bender et al. [22]

Determinization in practice

A deterministic transducer computes the transduction of a sequence w =w1...wn with

n being the number of input symbols. The transduction can be computed in linear

time O (n). The operator is extensively used to optimize transducers for speech recog-

nition, where the entire search space is represented as a transducer. An efficient trans-

duction is important to achieve a recognition with low latencies. Weighted transducers

are used in speech recognition which increases the computational complexity. A to-

ken passing time synchronous Viterbi beam search is often used as described, e.g. by

Young et al. [23]. Its efficiency is based on a well constructed and optimized transducer.

Next paragraph introduces the construction.

2.2. DETERMINIZATION 11

Figure 2.1: Subset of a non deterministic transducer that decodes Austria area codes.
The input sequence is a digit sequence and the output sequence are the names of areas
in Austria."<eps>" denotes an empty symbol.

Let R be the transducer used for speech recognition. It is comprises a transducer L

which describes the relation between phonemes and words. Let G be a grammar repre-

senting a word sequence. The C and H transducers are used to represent the phoneme

context and hidden Markov model, respectively. A detailed construction is described

in Section 4.5 together with a decoding technique. R is then compiled by a sequence

of transducer operators including Determinization and Minimization. Minimization

is denoted by "min" and described in the next section. The operator "◦" denotes the

composition of two transducers and is introduces afterwards. R is compiled by:

R =min(H ◦det(C ◦det(L ◦G))).

As a more general illustration, an application is described that resolves area codes.

This can be used on a smart phone. The phone number of an incoming call is evaluated

on a mobile phone to display the area on a map. This should increase the readability

compared to just displaying the raw number. The application is realized by transduc-

ers. Alternatively, a hash table could be used. A transducer that represents the relation

between each number and its area can be constructed. Figure 2.1 shows a subset of this

nondeterministic transducer for Austria area codes. An equivalent deterministic repre-

sentation is constructed to enable an efficient time linear decoding of phone numbers.

In other words, the input symbols of the final transducer are unique for each outgoing

transition at every stage. The result is a transducer that has a tree like structure. An

illustration in provided in Figure 2.2.

12 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Figure 2.2: Deterministic transducer derived from the one given in Figure 2.2.

2.3 Minimization

Minimizing a transducer does not change the relation between both languages. Also

the input and output language remain unchanged. Minimization is a structural chang-

ing operator. Whereas determinization causes a more efficient computation, mini-

mization leads to reduced memory requirements. It reduces the number of required

states. However, this might also have an impact on the processing speed. A reduced

number of states may also reduces the time for memory allocations. It can also enable

a more efficient use of memory caches, e.g. for decoding on embedded devices.

A pseudo code is given in Algorithm 2.2. A detailed description is provided by Baclet

et al. [26]. Let Q be a set of states and let F be the set of final states with F being a subset

of Q . Further let Σ be the input alphabet. For the sake of clarity, let "split(B ,S , a)" split

each partition B if a state in S can be reached with input symbol a . The method iterates

over final states and merges all states which are reachable by equal input sequence.

2.3. MINIMIZATION 13

Algorithm 2.2 Pseudo code of minimizing an deterministic automation derived from
Almeida et al. [24] accordingly to Hopcroft [25].

L←{}
if |F | ≤ |Q − F | then // There are non final states

P ←{Q − F, F } // compute the partition
L←{F } // Push all final states

else // there are just final states
P ←{F,Q − F } // Initialize partition
L←{Q − F } // Push all non finial states

end if
while L 6= ; do // Iterate over all blocks in L

S ← extracts(L) // Pop an element of L for computation
for a in

∑

do // Iterate over the alphabet
for B in P do // Iterate over all states in P
(B1, B2)← split(B ,S , a) // states which are reachable

// from S by consuming a
P ← P −{B } // Remove state from B
P ← P ∪{B1} // Add state from B1

P ← P ∪{B2} // Add state from B2

if |B1| ≤ |B2| then // there are less states in B1 as in B2

L← L ∪{B1} // add minimal states to L
else // there are less states in B2 as in B1

L← L ∪{B2} // add minimal states to L
end if

end for
end for

end while

An alternative algorithm was proposed, e.g. by Brzozowski [27]. Also Hopcroft et

al. [25], [15] described several algorithms. Especially the minimization of determinis-

tic transducers is important for speech recognition. An algorithm is proposed, e.g. by

Mohri et al. [28]. It is desired by many applications to add knowledge continuously

with a minimum amount of computational power. This requires on-the-fly minimiza-

tion to add address-book entries or music titles to the search space. An incremental

minimization was proposed, e.g. by Watson et al. [29]. Dobrisek et al. proposed an al-

gorithm for sequential minimization for a pronunciation lexicon [30]. The use of cross-

word context modeling may increase the accuracy, e.g. for message dictation. But this

also increase the transducers significantly. An arc minimization method for crossword

modeling was proposed by Zweig et al. [31] Speech can also often be acyclic. A mini-

mization algorithm in linear time was proposed, e.g., by Revuz et al. [32]

14 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

2.4 Composition

The composition is a binary operator on weighted finite-state transducers. It computes

the intersection of two transducers accordingly to a shared language, e.g. the output

from one transducer and the input of the second transducer. The result is a new trans-

ducer representing the relation between the input and output of the first and second

transducer, respectively. The use of a weighted composition was introduced, e.g. by

Fernando et al. [33]. Let "◦" be the composition operator. It computes the relation be-

tween P and G given the intersection of W1 and W2. Without loss of generality, let P be

the language over a sequence of phonemes and G a language grammar. W1 and W2 are

two languages over a set of words with:

W1 ∩W2 6= ;.

W1 is the vocabulary of lexicon RL as described in Section 4.2. W2 is the vocabulary used

by the language model or grammar. The relation P describes a grapheme to phoneme

dictionary. It is defined over sequences of words represented as transducer RG . A con-

struction of RG is given in Chapter 4.3. Let RL and RG are two binary relations repre-

senting the lexicon and grammar, respectively. Both are defined by:

RL ⊆ (P ×W1)
∗ (2.1)

RG ⊆ (W2×G)∗ (2.2)

The binary relation RL ◦RG ⊆ P ×G is the composition of RL and RG . The composition

computes the intersection given W1 and W2. It is defined as follows:

RL◦RG = {(x , z) ∈ P ×G |

∃y ∈W1 ∩W2 : (x , y) ∈RL ∧ (y , z) ∈RG }.

The result is a transducer that represents the relation between phoneme sequences

and words. This transducer is composed with an hidden Markov Model and used for

automatic speech recognition. In the following is a description of the operator given

together with the use in practice.

2.4. COMPOSITION 15

Figure 2.3: Transducer T1 on the top. On the bottom T ′1 with auxiliary symbols re-
quired for ε-free composition; The "eps" symbol on the output is replaces by "eps1" and
self loops "eps:eps1/0" are introduced

Composition in theory

Here, the formalism and algorithm proposed by Mohri in [17] is taken up and described

together with an example. Let T1 be a weighted transducer. For the sake of clarity,

let T1 be the one illustrated in Figure 2.3 at the top of the page. It accepts the input

language "abcd" and returns "ad" as output sequence, respectively. More generally, T1

is declared as a 8-tuple:

T1 = (Σ
∗,∆∗,Q1, I1, F1, E1,λ1,ρ1)

with the following entries:

Σ,∆ input, output alphabets

Q1 set of states

I1 set of initial states

F1 set of final states

E1 set of transitions; Q1× (Σ1 ∪{ε})× (∆1 ∪{ε})×K×Q1

λ an initial weight function λ : I →K
ρ a final weight function ρ : F →K

whereK is a semiring defined by:

(K,⊕,⊗, 0̄, 1̄)

16 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Figure 2.4: Transducer T2 on the left. On the right T ′2 with auxiliary symbols required
for ε-free composition; The "eps" symbol on the input is replaced by "eps1" and self loops
"eps1:eps/0" are introduced

The semiring can be chosen from Table 2.1 in the introduction section on weighted

finite-state transducers. According to the example, let Σ,∆ be

Σ={a , b , c , d }

∆={a , d },

with initial state ”0” ∈ I1 and final state ”4” ∈ F1. Here, the final state has a weight of

0.6. Further, let T2 be a weighted transducer. For the sake of clarity, let T2 be the one

illustrated in Figure 2.4 at the top. The input alphabet is ∆ = {a , d } and the output

one is Ω = {a , d , e }. T2 accepts the input language "ad"⊆∆∗ and returns "dea"⊆ Ω∗ as

output sequence. More generally, T2 is declared as the following 8-tuple:

T1 = (∆
∗,Ω∗,Q2, I2, F2, E2,λ2,ρ2)

with the following entries:

∆,Ω input,output alphabets

Q2 set of states

I2 set of initial states

F2 set of final states

E2 set of transitions; Q2× (Σ2 ∪{ε})× (∆2 ∪{ε})×S ×Q2

λ an initial weight function λ : I → S

ρ a final weight function ρ : F → S

Note, the input alphabet of T2 is∆. It is shared with the input alphabet of T1.

2.4. COMPOSITION 17

Figure 2.5: composition of T ′ and T ′: Re mo v eε((T ′ ◦ε1) ◦T ′)

In the example, it is obvious that the output language of T1 matches the input of

T2. In general, the output language of T2 has to be a subset of the language T2 accepts.

Here, the composition computes the intersection accordingly to the shared language

∆. The composition of T1 and T2 results in T as presented in Figure 2.5. In the example,

the following strings are processable:

T1 :"abcd"→ "ad"

T2 :"ad"→ "dea"

T :"abcd"→ "dea"

T has the input alphabet Σ = {a , b , c , d } and the output alphabet Ω = {a , d , e }. Given

the input string "abcd" it will return "dea". This is the sting T1 accepts and the output

T2 returns for an appropriated input. More generally, T is declared as 8-Tuple:

T1 ◦T2 = T = (Σ∗,Ω∗,Q , I , F, E ,λ,ρ)

where

Σ,Ω input,output alphabets

Q set of states

I set of initial states

F set of final states

E set of transitions; Q × (Σ∪{ε})× (∆∪{ε})×S ×Q

λ an initial weight function λ : I → S

ρ a final weight function ρ : F → S

The Algorithm 2.3 introduces the composition of weighted transducers. The following

notation was used for the sake of clarity:

E =
⊎

(q1,a ,b ,ω1,q2)∈E1
(q ′1,b ,c ,ω2,q ′2)∈E2

��

(q1, q ′1), a , c ,ω1⊗ω2, (q2, q ′2)
�	

18 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Algorithm 2.3 Pseudo code for composition as published by Mohri [17].
Q ← I1× I2 // Add initial states
Θ← I1× I2 // Add initial states
while Θ 6= ; do

q = (q1, q2)←HEAD(Θ) // create new state
DEQUEUE(Θ) // remove state form the queue
if q ∈ I1× I2 then // check if new state is an inital one

I ← I ∪{q } // add new initial state one
λ(q)←λ1(q1)⊗λ2(q2)

end if
if q ∈ F1× F2t he f o l l o w i ng : then // check if new state is a final one

F ← F ∪{q } // add new final state
ρ(q)←ρ1(q1)⊗ρ2(q2)

end if
//walk over all transitions in T1, T2

for each (e1, e2) ∈ E [q1]×E [q2] such that o [e1] = i [e2] do
// check matching of out-, input transitions of T1, T2

if (q ′ = (n [e1], n [e2]) /∈Q) then
Q ←Q ∪{q ′} // add new state
ENQUEUE(Θ, q ′) // append new candidate to the queue

end if
E ← E]{(q , i [e1], o [e2],ω[e1]⊗ω[e2], q ′)} // add new transition

end for
end while

The composition is a local operator just considering current states and transitions

of both transducers. Further on, it is a ε-free composition and treats εs as regular sym-

bols of the input and output language. Starting from the initial states q1 ∈ I1 and q2 i n I2

a new state q is generated. For the sake of clarity, let q be labeled as (q1, q2). In a first

iteration, q will become an initial state because q1 and q2 are initial states, too. The

method iterates over all outgoing transitions of q1 and q2. A new transition is initial-

ized if the output label from a transition of q1 matches the input label from an outgoing

transition of q2. In addition, a new state is created which is denoted by the target states.

Here, these new states are labeled as tuples from its origin state label. Each target state

of T1 and T2 is pushed to the queue, e.g. qi ∈Q1 and q j i nQ2. These are processed in

the next iteration. If both target states qi ∈ I1 and q j ∈ I2 are initial, the resulting state

(qi , q j)will be initial, too. If both states qi ∈ F1 and q j ∈ F2 the resulting state (qi , q j)will

be final.

2.4. COMPOSITION 19

The composition does not make a difference between symbols from the regular

vocabulary and a ε symbol. A preprocessing is required to compose transducers with

ε-transitions. Let T1 and T2 be transducers with such ε-transition. T1 and T2 are aug-

mented with auxiliary symbols during preprocessing. The result is a transducer T ′1 and

T ′2 , respectively. All ε-transitions are replaced by "eps1" on the in and output. In addi-

tion, a "eps"-self loop is added to each state. All other transitions remain. The trans-

ducer T ′1 of the example is presented in Figure 2.3 at the bottom. T ′2 is presented in

2.4 at the bottom, respectively. Further, a ε-filter is applied on T ′1 . The one used here

is presented in Figure 2.6. The input language matches the output language of T1. It

Figure 2.6: ε-Filter for T ′1 . In practice, this transducer is built on the fly.

computes the identity function for all non ε-transitions. In contrast, all ε-transitions

are replaced by "eps1" in the output. Hence, the composition of T ′1 with ε1 enables the

final composition with T ′2 . A ε-filter is applied on T ′1 as follows:

T ′′1 = T ′1 ◦ε1

The new transducer includes several "eps"-transitions. On the one hand, "eps"-

transitions are "empty" symbols and do not change the input or output language. On

the other hand, the language is extended by several "eps" when considering these as

valid symbols. Here, T ′′1 is illustrated in Figure 2.7. In this way, an ε-free composition

can be used, since all symbols are treated equally. Finally, the composition for T1 and

T2 is computed the same way as with three single compositions as follows:

T =Re mo v eε(T
′′

1 ◦T ′2)

=Re mo v eε(T
′

1 ◦ε1) ◦T ′2)

20 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Figure 2.7: T ′′1 = T ′1 ◦ε1. T ′′1 is used for ε-free composition with T ′2 .

Note, the result may include several ε-Transitions which are removed by Re mo v eε.

This operator is described in 2.5 and usually applied together with the composition.

Fernando et al. also described the composition for weighted finite-state transducers

[33]. The transducer in speech recognition can become huge and it is often not suited

to keep a compiled transducer in memory. An on–the–fly computation with consider-

ing cross-word contexts was motivated by T. Hori et al. [34], [35] and further improved

by J.W. McDonough et al. [36] and C. Allauzen et al. [37], [38]. These methods enables

to compose two transducers during run time. This may saves memory because the

composition and the operator itself can consume a lot of memory.

Composition in practice

As an illustration, let C be a transducer that stores facts related to contacts on a smart

phone, e.g. the birthday of contacts or wedding days. An example transducer is shown

in Figure 2.8.

Figure 2.8: Transducer C that stores personal information, e.g. in an address book.

2.4. COMPOSITION 21

Figure 2.9: Transducer MF that is used to retrieve all wedding days. The transducer
does also defines the result text formatting: "<name> : <marriage> <year>"

More precisely, the input symbols are facts whereas the output are semantic tags,

e.g. "1985" is a fact and has to be interpreted as "year". This transducer might be avail-

able to other applications, too. One of these applications might be an overview applica-

tion to display all wedding days of the contacts in the contact list. Here, a composition

is used to retrieve the desired content and apply some text formatting.

Let MF be the transducer that is used to retrieve all wedding days out of the content

and apply some text formatting. Here, just the year of the wedding is retrieved. The

transducer is illustrated in Figure 2.9. The composition M is defined by:

M =C ◦MF

The resulting transducer is illustrated in Figure 2.10. An application might treat

"<eps>" as ε symbol and use M to list all wedding years, e.g.:

Georg:2011

Roland:2010

Other knowledge in C can be retrieved in a similar way, e.g. the birthdays. All the

knowledge is already available in C but the formatting information is introduced by the

composition. The composition does also choose which content of C will be extracted.

Let BF be the transducer specifying the desired content with a desired text formatting.

Here, the output symbol is interpreted as a delimiter symbol, e.g. the date should be

formatted with hyphens in the following order: "year - month - day.". This is illustrated

Figure 2.10: Result transducer M of the composition of the transducers C in Figure
2.8 and MF in Figure 2.9. Hence, it is computed by M =C ◦MF .

22 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Figure 2.11: Transducer BF that is used to retrieve birthdays. The transducer does also
defines the result text formatting: "<name> : <birthday> <year>-<month>-<day>"

in Figure 2.11. The composition B = C ◦ BF is a transducer with contacts and their

birthdays. B is illustrated in Figure 2.12. To list all birthdays, one has to go through

the transducer in depth first order and just use the output symbols as delimiter for the

input symbol. The result would look like:

Georg:1974-7-20

Gesina:1977-4-5

Roland:1979-4-17

Munir:1985-4-22

The composition of transducers is frequently used in language processing. This

thesis uses composition to compile the search network for speech recognition starting

from a lexicon and grammar. Composition can be seen as a generalization of decod-

ing. The symbol sequence for decoding can be represented as transducer and used for

composition. A depth first search in the resulting transducers will result in the same

set of symbol sequences as computed by decoding.

Figure 2.12: Result transducer B of the composition of the transducers C in Figure 2.8
and BF in Figure 2.11. Hence, it is computed by B =C ◦BF .

2.5. EPSILON REMOVAL 23

Figure 2.13: Example transducer with ε-transition.

2.5 Epsilon removal

It might happen that two states are connected by a non consuming and non emitting

weight-neutral path. Each transition in such a path has a ε label on both, the input and

output. The weights along such a path is balanced accordingly to the used semiring.

An example transducer is presented in Figure 2.13. Applying the ε-removal will result

in the transducer illustrated in Figure 2.14.

Figure 2.14: The result of an ε-removal on the Transducer shown in Figure 2.13.

A method for a general ε-Removal for automaton was proposed by Mohri et al. [39]

and is presented in Algorithm 2.4 For the sake of clarity, let TransM [s] be the set of out-

going transitions of s and let Next(t) be the destination state of transition t . The label

of t is given by i (t) and the weight is given by w (i). If Mi is a weighted automaton

with ε-transitions, Mo will be an equivalent automaton without. Algorithms for ε re-

moval and input ε normalization are described by Mohri et al. [40], [40]. A method

that extracts ε cycles from finite-state transducers was proposed by Kempe [41]. The

ε removal operator is important for speech recognition. It reduces the memory con-

sumption and speeds up the decoding by removing irrelevant paths from the search

network. This operator is often implemented beside others and it is typically not re-

quired to be applied.

24 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Algorithm 2.4 Pseudo code of the ε-removal algorithm [39]
Mε←Mi |{ε} // Store all ε-transitions of Mi

Mo ←Mi |∑∗−{ε} // Store all non-ε-transitions of Mi

Gε← CLOSURE(Mε) // compute the all-pairs shortest distance allgorithm on Mε

for p ← 1 to |V | do // iterate over all states
for each e ∈ TransGε[p] do // iterate over all transition

for each t ∈ TransMi
[Next(e)]∧ i (t) 6= ε do // iterate over all non ε-transitions

t ′←FindTrans(i (t),Next(t),TransMo
[p]) // Create state with label i (t) and

weight w (t)
ω(t ′)←ω(t ′)⊕ω(t)⊗ω(e) // update the weights caused by an ε-path

end for
end for

end for

2.6 Topological order

Computing the topological order is essential for decoding. A directed graph is used to

describe a processing schema. For example, intermediate results are stored in states

whereas the computation is described in transitions. This schema is often used, e.g. in

parallel computing, project management or to define a "just in time" production. The

transducer needs to be acyclic. An example is given in Figure 2.15.

Figure 2.15: Illustration of a topological sort. The right graph can be processed from
the left to the right; The topological sort is "0,1,2,3".

In speech recognition, the language and acoustical score is stored in each state. The

transitions between states denote the phoneme sequence which should be evaluated

to recognize a word sequence. Computing the graph in topological order ensures that

all intermediate result are computed in time. Hence, all results were computed right

before the next state is considered. In some sense, it combines the breadth-first and

depth-first search by considering paths. An introduction in breadth- and depth-first

search is provided, e.g. by Alsuwaiyel [42]. The graph on the right side is in topologi-

2.6. TOPOLOGICAL ORDER 25

cal order evaluating the states from the left to the right. The computation for time for

the topological order of a directed acyclic graph is asymptotically linear in the number

of states and edges O (|V |+ |E |). There are various algorithms known to compute the

topological order, e.g. by Kahn [43] and Tarjan [44]. Haeupler et al. described an algo-

rithm for fast incremental topological ordering [45]. In this thesis, the order is derived

from a depth-first search and is used for speech decoding as described in Section 4.5.

Algorithm 2.5 initializes the transducer by marking each state as unprocessed. This

Algorithm 2.5 Pseudo code of Topological order part 1: initializing the transducer by
marking each state as unprocessed. The result state list will be available in L.
∀v ∈ S : v ←w hi t e // Initialize all states
for v ∈V do // iterate over all states

if S [v] =white then // process only unseen states
startFromVertex(G , v) // Call the method described in Algorithm 2.6

end if
end for
L // The result is available in the queue L

is denoted as "white" in the pseudo code. The method in Algorithm 2.6 is called re-

cursively and processes each white states. If a state is reached for the first time, it is

Algorithm 2.6 Pseudo code of Topological order part 2: recursively search for the next
candidate, result state order in L.

S [v]←gray //Mark each state as "visited"
for w adjacent to v do // Iterate over all following states

if S [w] =white then // process only unseen states
startFromVertex(G , w) // Recursive call

else if S [v] = gray then // process already processed states
S is cyclic, abroad! // Error, topological order is not defined on cyclic graphs

end if
end for
S [v]←black //Mark finished states
L .insert(v) // fill L in topological order

marked as "gray" and "black" if the state is processed for the very last time. The topo-

logical order is given by the order the states are marked as "black".

The topological order is compute at each time a new set of features arrived in

speech recognition. Fortunately, it is sufficient to compute the order on all non emit-

ting transitions, e.g. ε transitions. The topological order is also used to determine tran-

sitions which can be computed in parallel.

26 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

2.7 Robust language processing

In language processing, the input vocabulary is often unknown in advance. Addition-

ally, the output vocabulary may also be unknown. This happens, e.g., when a web-

scraped text needs to be processed. It is observable that often new words are created

or words are written wrongly. A method is proposed which enables a transducer to

process an open vocabulary text. This method is also used to extract unknown word

sequences from a text. An example is the extraction of named entities. Each name is in-

troduced by "Mr." or "Mrs." in the corpus but the name itself is unknown and needs to

be extracted. For this, the functions for input and output symbol handling is modified

in the transducer framework. Now, the functions are realized by λI , λJ notations. The

function can be defined for each transition and in- and output-label, individually. This

enables a robust language processing with transducers. A traditional input handling is

realized by the following declaration:

λI w .True if w = "input_symbol" else False.

where "input_symbol" is the input label assigned to the current transition. In general,

the input function is defined over W →{True, False} where W can be an arbitrary vo-

cabulary. It depends only on the used λI -method. A path will be followed if the input

function evaluates "True". Another example is given in the following:

λI w .True if w ∈W else False.

It passes all words from the vocabulary W whereas all unknown words w are discarded.

Hence, it filters a text by known words. If the input evaluates "True" and the output

function is evaluated the next state will become active. The output handling was also

modified. In general, it is defined over W → W ′ where W depends only on the λF -

method computing the output symbol. An example looks like the following:

λF w .w if w ∈W ′ else ε.

All words which are not in W ′ are replaced by ε. Hence, the words are no longer visible

in the resulting transducer. Another example is given in Figure 2.16 which shows a

transducer that replaces all unknown words by "<unk>".

2.8. DATA STRUCTURES 27

Figure 2.16: A transducer that uses lambda methods on each transitions. Here, a
transducer that replaces all unknown words with "<unk>".

This transducer modifications are very powerful on the one hand. On the other

hand, it introduces also some complexity that might not be required for many appli-

cations. However, the technique shows to be helpful for applications discussed in the

thesis. It is possible to use a global set of variables, e.g. a list of proper names which

should be searched on a web-page. Further, the concept can be used to handle context

free languages when a stack memory is introduced and used as global variable for both

λI andλF . However, there are also some disadvantages. First, the transducer construc-

tion may need some more attention because the deterministic-assumption is difficult

to predict for λ declarations. Second, the transducer minimization, determinization

and composition operators do not evaluate any λ declaration and it assumes that all λ

declarations are non overlapping and ε-free.

2.8 Data structures

A transducer is treated as directed graph for defining a suitable data structure. The

structure has a significant impact on both, the memory consumption and the com-

putational time it takes to apply operators. In speech recognition, the transducer is

optimized for efficient decoding on the one hand. On the other hand, the size should

not exceed certain limitations, e.g. constant storage, random access and cache sizes.

In the following, are common data structures described: adjacency-, incidence matrix

and list. The spectral graph theory uses both, adjacency and incidence matrix to close

the gap between linear algebra and graph theory. This was introduced, e.g. by Brouwer

et al. [46]. A data structure can be optimized for certain operators such as composi-

tion, decoding, etc. Let V = {v1, .., vn} be the set of states and let E = {e1, .., em} be the

set of transitions for a graph G = (V , E). Note, a transducer is defined by augmenting

the states and transitions with some more information, e.g. the marker of a state is

initial, final, weighted or the transitions input, output symbol and weight.

28 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

An adjacency matrix for G is defined as follows:

ai j =

¨

wi j if (i , j) ∈ E

0 else.

for wi j the label between state i and j . It takes a O (n 2)memory given n states. An ex-

ample is shown in Figure 2.17. A undirected graph has a symmetric matrix. Hence, the

a b c d

a 0 46 0 0
b 0 0 1 32
c 0 5 0 0
d 0 0 0 0

Figure 2.17: Example graph and its representation with an adjacency matrix.

matrix has a complete set of real eigenvalues and an orthogonal eigenvector basis. In

spectral graph theory, these eigenvalues are the spectrum of the graph, e.g. introduced

by Brouwer et al. [46]. A graph with no self-loops has zeros on the main diagonal. In

addition, the matrix product An for a not weighted graph gives the number of walks

between two states of length n . Adjacency matrices are used for various applications,

e.g., ranking of web-pages according to hyper-links. In contrast to the adjacency, the

incidence matrix stores the transitions for each state. An example is shown in Figure

2.18. It takes O (n ·m)memory where m is the number of transitions in G . This data

a , b b , c c , b b , d

a 46 0 0 o
b 0 1 0 32
c 0 0 5 0
d 0 0 0 0

Figure 2.18: Example graph and its representation with an incidency matrix.

structure is more suitable for graphs with far more states than transitions. Formally,

the matrix is defined as following:

bi j =

¨

wi j if vi ∈ e j

0 else.

2.8. DATA STRUCTURES 29

Figure 2.19: Example graph and its representation with an adjacenc list. The list is a
linked list with terminal symbol. State 1 has two following states 2 and 3. State 2 has no
following states.

An decoding efficient data structure for graphs is list based. A common represen-

tation uses adjacent lists. It is a list of stages with each stage linked to a transition, e.g.

let x and y be two stages so that E ⊂ V ×V and (x , y) ∈ E . For each x ∈ E , a list A(x)

of all x -following states is defined as follows:

A(x) = {y ∈V : (x , y) ∈ E }.

The intention is a stage-oriented processing for which each stage can be hashed, ef-

ficiently. An example is given in Figure 2.19, where the set of outgoing transitions is

represented as linked list. The links are denoted by arrow and terminals are marked

by a ground symbol. Usually, the stages are organized in an array whereas the outgo-

ing transitions for each stage are linked lists. In this thesis, an array is also used for

transitions. A stage is linked to the set of all its outgoing transitions. This reduces the

memory requirement significantly.

The concept of adjacent lists was taken up, e.g. by Goodrich et al. [47] to represent

a graph with an incidence list. In contrast to previous structure, it is a list of transitions

where each transition points to a source and destination stages The list of transitions

can be organized as an array, similar to stages in adjacent lists. Also linked list are often

used. Figure 2.20 on next page shows an example and is formalized as:

I (x) = {(x , y) ∈ E : x ∈V }

Both list representations are suited to store weighted finite-state transducers. Each

transition stores an output and input symbol together with a weight. In addition, a

state needs to be marked as initial or final state. Usually a second array is used to

quickly access these states. The data structure is suited for embedded usage because

it enables an efficient block decoding by evaluating all outgoing transitions at once.

30 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

Figure 2.20: Example graph and its representation with an incidence list. Linked list
are used for both, states and transition.

A garbage collector is not required for not mutable transducers. For other transduc-

ers, a concept needs to be implemented that enables to change the transducer without

rebuilding it from the very beginning. In practice, the mutable transducer is used dur-

ing decoding. It is built during decoding and represents the current search sub space.

Typically, stages or transitions need to be deleted or the target of a transition changes.

In practice, it is also common to use smart pointers. The concept is used in Section 4

where it is used to build the word history tree during decoding. An example implemen-

tation for weighted grammars and transducers for language processing is provided by

Allauzen et al. [48], [49].

2.9 Compression methods for transducer

Reducing the memory requirement is essential for embedded speech recognition and

language processing with transducers. Reducing the static and dynamic memory con-

sumption has a significant impact on the run-time. Aqrawi et al.[50] described the ef-

fect of compression on data intensive algorithms. A compact representation of finite-

state transducers was proposed by Mohri et al. [51]. Blandford et al. described a

compact representation of separable graphs [52]. This section describes the used data

structure for efficient decoding for low resource speech recognition.

The computer memory is organized as linear array with a fixed length per entry

which is usually one byte. A compressed row and column storage for matrices was

proposed by Barrett et al. [53] together with "Block Compressed Row Storage", "Com-

pressed Diagonal Storage" and "Jagged Diagonal Storage". These are powerful data

structures used by many libraries for matrix computations, e.g. BLAS. However, these

data structures are in general not suitable to represent transducers for language pro-

cessing and speech recognition. Two memory blocks are required to store all states

and transitions as discussed in the previous section 2.8. One is used to store states and

2.9. COMPRESSION METHODS FOR TRANSDUCER 31

Figure 2.21: On the left side is a linear organized memory, e.g. storing states. On the
right side is a compressed version using a fixed block length.

the other one is used to store transitions. Each state is addressable and every state has

a pointer to a block of outgoing transition. In addition, the number of outgoing tran-

sitions is stored per state. This enables a fast iteration over all outgoing transitions.

Here, this weight is also used to identify a final state. The states are directly address-

able as long as each state has an identical size, e.g. two byte. Each transition has an

input and output symbol, a weight and a destination state address. The outgoing tran-

sitions of a state are consecutively stored in the list of transitions as one block. The set

of transitions is directly addressable as long as each one has an identical size, e.g. four

byte. In this way, a breath-first search can be processed most effectively. An optimized

data structure for improved cache performance was proposed by Lam et al. [54]Cache

optimized algorithms on graphs are described by Park et al.[55]. This is beneficial for

speech decoding to evaluate the next time frame for all consuming transitions. Speech

decoding is described in Section 4.5.

The compression of weighted finite-state transducers was proposed by Caseiro et

al. [56] and Toivonen et al. [57]. The compression method proposed in this thesis

enables arrays with byte unequal entry sizes. Hence, it might be sufficient to store

states with six bits and transitions with 12 bits instead of 8 and 16 bits, respectively.

This fix block length coding already reduces the memory. An illustration is given in

Figure 2.21. Note that each entry is directly addressable. This structure can be im-

plemented efficiently, e.g. using Boolean operators. In addition, parallel programing

32 CHAPTER 2. WEIGHTED FINITE-STATE TRANSDUCER

can be used, such as the "single instruction, multiple data" code execution extension.

Further compression can be realized by a variable block length coding. Each entry can

have a different size using a stop-bit at the end of each entry. Searching an entry would

requires to go through the entire array. However, using a bit-array as index to store start

addresses can speed up the search. In addition, a hierarchical index structure can be

used to speed up even the search in the index itself. The result is a direct addressable

compression using a variable block length coding as described, e.g., by Brisaboa et al.

[58] and Williams et al. [59]. In practice, it is established to use a combination of both

methods. The fixed block length is used to store states and transitions, e.g. clustered

by the number of bits the entities need. The variable block length coding is used with

entries to optimally use the available bits for different data, such as the input, output

label, weight, etc. Finally, a fast dictionary based compression method could be used,

accordingly to Skibinski et al. [60]. In addition, Whittaker et al. described a quantiza-

tion approach for n-gram language models [61]. A compression method for language

models used for speech recognition was proposed by Olsen et al. [62].

2.10 Summary

This chapter introduced weighted finite-state transducers as a framework for process-

ing regular languages and relations between languages. The application of transducers

to human language processing and speech processing was propose, e.g. by Pereira et

al. [63]or Mohri et al.[13]. Section 2.1 described the representation of regular languages

as states and transitions following the definition of automatons and transducers. In

general, it was proposed to consider multi tape automaton, e.g. outlined by Furia [64].

In this thesis, one and two tape automatons are considered which are denoted as au-

tomatons and transducers, respectively. There are two classes of operators applicable

on automatons and transducers.

The first class which only influences the way a language or the relation between two

languages is represented as automaton or transducer, respectively. These operators fa-

cilitate the use of transducers on common computational hardware. Two operators are

most important for speech recognition. (1.) The Determinization operator described

in Section 2.2 optimizes the automaton/transducer for an efficient decoding. (2.) The

Minimization operator described in Section 2.3 optimizes the automaton/transducer

to fulfill memory requirements.

2.10. SUMMARY 33

The second class of operators influences the language or the relation between two

languages. For example, the composition operator is used to compile the search space

for speech recognizers. This can be done in a very modular way so that parts, e.g. the

lexicon transducer, can be used for various projects. Section 2.4 described the compo-

sition operator. Another operator of this class is the ε-Removal operator. It removes

all ε-paths from the automaton or transducer, respectively. This operator changes the

languages assuming thatε is part of the regular vocabulary. However, for speech recog-

nition the ε symbol is used to represent relations between languages with different en-

tity length. For example, the entity "u-boat" is related to the sequence of two entities

"u" and "boat". In this case, the ε-Removal operator will not have an impact on the

result. ε is treated as a special symbol which is non consuming and non emitting.

Section 2.6 described a method that computes a sequence of states in topologi-

cal order. Starting the processing at the top of the sequence, ensures that a state is

only processed if all previous states are already evaluated that are pointing to it. This

method is used in speech decoding to evaluate ε-paths. In contrast, the breadth-first

search is used to compute emitting transitions. A technique for robust processing was

described in Section 2.7. It enables the use of transducers for open vocabulary tasks.

This is achieved by defining transition-dependent input- and output functions. Com-

mon data structures for automatons and transducers were discussed in Section 2.8.

Section 2.9 described the use of compression methods.

Future work may investigate the parallelization of transducer operators. This may

not only allow a faster processing but also the use of larger transducers with millions

of words. Direct addressable compression methods for huge transducers will also be-

come a challenging research topic. The use of in-memory technology needs to be fur-

ther investigated and scaled out to large data centers. The demand of a continuous in-

tegration of new speech and language features requires an innovative software design.

Reducing the resource consumption of cloud based speech services is a main opti-

mization criteria. Although the computational power of embedded devices increased,

the provision of advanced speech services remains challenging. Further research on

robust parsing techniques using weighted finite-state transducers can improve the lan-

guage model training by detecting and correcting wrongly written words.

3
Automatic Speech Recognition

Applications for Automatic Speech Recognition are becoming more and more popular.

There are applications in the car, e.g. for voice destination entry or point of interest

search by voice. Further on, voice commands can be phrased in a natural language.

There are also applications in the home automation area such as smart TVs. Speech

recognition is used by entertainment systems to query huge databases, e.g. for music

titles or movies. A speech recognizer computes the most likely words sequence given

a sequence of speech features. For this, speech features are captured and evaluated

using an acoustic and a language model. An introduction in automatic speech recog-

nition is provided in Section 3.1. The use of weighted finite-state transducers enables

a modular developing process for speech recognizers on the on hand. On the other

hand, the optimization of the search network in advance enables recognition on em-

bedded devices. Section 3.2 describes the development process.

The input for any speech recognizer are speech features and a knowledge of word

sequences. An introduction in audio signal processing for deriving speech features

is given in Section 3.3. The representation of word sequences is described in Section

3.4. Finally, two methods are discussed for word tokenization and text formating in

Section 3.5. Whereas the first defines words for recognition, the second prepares word

sequences for further processing. The chapter is completed by a summary.

35

36 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.1 Conceptual framework

The fundamental formula of speech recognition computes the most likely word se-

quence ŵ over vocabulary W given a sequence of speech features x . An introduction

is provided, e.g. by Schukat-Talamazzini [65] or Huang et al. [66]. Let P (x |w) be the

acoustic model and let P (w) be the language model for a sequence of words w ∈W ∗.

A detailed description of the equation is given in Section 4.5. The speech decoding

solves the following equation:

ŵ = argmax
w∈W ∗

P (x |w)P (w)
P (x)

= argmax
w∈W ∗

P (x |w)P (w).

Speech features can be computed on various ways. In this thesis, speech features

are derived from audio recordings. In general, it was also proposed to use others, such

as visual features. It was also proposed to combine features. A study of audio-visual

features for speech recognition is provided, e.g., by Georges [3]. The noisy portion of

the audio signal was used to estimate a noise model. Faubel et al. further enhanced the

idea by using a "mouth-tracking" method [4], [5]. Lee et al. [67] proposed the AVICAR

corpus to evaluate audio-visual speech recognition. This set-up uses video cameras

which are mounted in-front of the speaker together with a microphone array under the

dash board. The experimental set-up is shown in Figure 3.1 on the left side. On the right

side of Figure 3.1, a sample video captured during speech recognition is given. The

video signal was used to enhanced voice activity detection. It was possible to estimate

a noise profile to improve the noise reduction. It could be shown that the recognition

accuracy increased, e.g. by Georges [3] and together with Faubel et al. [4], [5].

However, without loss of generality, acoustic features are used for experiments in

this thesis. Today, most speech applications are using speech features derived from au-

dio signals. The feature front end computes the speech features directly on the device.

Alternatively, the audio signal is compressed and transferred to the cloud for further

processing. Whether the recognizer is hosted on locally or in the cloud depends on the

available computational power. The speech is recognized for a certain domain and

passed to the device where it is presented to the user in a suitable way. This could be a

written text or an executed command, e.g., playing a song or turning the radio on.

3.2. DEVELOPING PROCESS 37

Figure 3.1: Set-up for an automotive audio visual speech recognizer on the right side.
Four video cameras are used and a microphone array with 8 microphones. On the left
side is an example video caputure used to improve the speech recognition [5].

3.2 Developing process

Developing an application for speech recognition can be separated into several mod-

ules. An overview of all modules is provided in Figure 3.2, where the process is sepa-

rated into a preprocessing and a run-time part. Both, the acoustic model (AM) and the

language model, represented as weighted finite-state transducer (wFST-LM) are esti-

mated in a preprocessing step and passed to the run-time modules. Speech features

are captured and evaluated by the acoustical model P (x |w) for a word sequence w . It is

combined with language model weights P (w)during decoding. The decoder evaluates

all promising word sequences and returns the most likely ones. Both, the acoustic and

the language model can be developed independently for each language. This makes

the concept of speech recognition suitable for industrial usage. The preprocessing is

discussed in this chapter. Chapter 4 describes the run-time part together with the novel

decoding technique for nested transducers using dynamic language models.

The output of a speech recognizer can be further processed. An application for

message dictation will generate a well readable output. In contrast, a voice and con-

trol application will try to understand the spoken utterance. Today, the training data is

derived from field data. Especially, cloud recognizers can take advantage of these data.

Frequently updates of the acoustic and language model allow to train well suited mod-

els. In contrast, an embedded recognizer has quite limited update capabilities. Even

though more and more devices are connected, a client update is often difficult and lim-

38 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

Figure 3.2: Overview of a speech recognizer using weighted finite-state transducers.

ited to certain aspects. Thus, the developing process for embedded recognizers differs.

In cloud based systems, the task is more how to best learn from observations derived

from field data. In embedded systems, the task is more how to best define a solution

that matches arbitrary users expectations. In practice, embedded systems are more

specified by customers.

3.3 Introduction in acoustic signal processing

Acoustic signal processing enables a robust speech recognition, also in noisy environ-

ments or environments with strong reverberation. Computing speech features is a

trade-off between enhancing speech features and reducing noise. Section 3.3.1 de-

scribes the processing chain of an acoustic feature front end in general. Some portion

of the chain is described more detailed afterwards. Section 3.3.2 describes the signal

energy which is commonly used for voice activity detection. The MFCC features are

described in Section 3.3.3. A feature reduction method is discussed in Section 3.3.4

which enables speech decoding also on embedded devices. Finally an introduction in

spectral subtraction and cepstral mean normalization is given in Section 3.3.5.

3.3. INTRODUCTION IN ACOUSTIC SIGNAL PROCESSING 39

3.3.1 Feature front end

The feature front-end captures the audio signal and computes a stream of speech fea-

tures. A voice activity detection is used to pass speech features to the decoder. In gen-

eral, Mel Frequency Cepstral Coefficients are used which are computed by the follow-

ing instruction pipeline:

Figure 3.3: Overview of a speech recognizer using weighted finite-state transducers.

Hybrid speech recognition denotes a system where the computational effort is

shared over one (or more) devices. Today, there are hybrid recognizers computing

speech features on the device whereas the decoding happens in the Cloud. This re-

duces the network load on the one hand. On the other hand, it may makes a con-

tinuous integration of new features difficult. It is also common to stream only voiced

signals to the cloud, e.g. detected by a local voice activity detection. In addition, the

audio signal is compressed, e.g. by Speex or Opus to reduce the network load. The

Speex coder is described, e.g. by Valin [68]. Terriberry et al. [69] described the Opus

coder. This enables to compute speech features on the cloud.

40 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.3.2 Signal energy

Voiced sounds typically have a high energy. In fact, this can already be used to detect

speech in an audio signal. Especially detecting the beginning and the end of speech is

important for real world applications. It saves computational time on the one hand.

On the other hand, it reduces the network load in case of cloud based recognition.

From a speech feature perspective, the knowledge of speech and non speech sections

in a feature stream is used to enhance the noise reduction. The short-time energy also

enables a hyphenation as illustrated by Schukat-Talamazzini [65]. In general, the long-

time energy of a signal fn is given by

E =
∞
∑

n=−∞
| fn |2 .

It derives a short-time energy at sampling time m . It is defined as follows:

E (m) =
N−1
∑

n=0

αn | fm+n |2 ,

where αn =ω2
−n represents a window function. Typically, a hamming-window is used.

It is defined as follows:

w (n) =α−β cos
2πn

M −1
,

with n = 0..M −1 being M the window length and n the current index. A Von-Hann

window is specified by α=β = 0.5. Energy-based voice activity detection is realized by

a thresholding. Voiced sound is detected when the signal energy Et at time t exceeds

the threshold α. This method is suited for most common speech recognizers. This is

formalized as follows:

(Et >α) ? speech : non speech .

Voice activity detection was also discussed by Rabiner et al. [70] by using zero-

crossing rates. Dong et al. proposed an enhanced version using a spectral noise adap-

tation method [71]. Other methods are proposed, e.g. by Garner et al. [72] Real-time

implementations are proposed, e.g. by Moattar et al. [73].

3.3. INTRODUCTION IN ACOUSTIC SIGNAL PROCESSING 41

3.3.3 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) features are frequently used for speech

recognition. The computation is done along several stages. An introduction is pro-

vided, e.g. by Davis et al. [74], Schukat-Talamazzini [65] or Huang et al. [66]. The

MFCC speech feature was introduced in section 3.3.1. The audio signal is captured

and preprocessed following by a discrete Fourier transformation. This is formalized

for a windowed short-time signal X on signal x :

X [k] =
N−1
∑

n=0

x [n]e −i 2πn k
N for 0≤ k <N .

Usually a 25ms hamming window is used. This is shifted once in 10ms. The construc-

tion of the speech feature is derived from the human audio processing. For exam-

ple, the human ear has a non-linear pitch perception characteristics. This is techni-

cally realized for speech features by a non-linear scaling of the frequency axis. These

scales can be applied by a non-linear filter bank. The average spectrum around a cen-

ter frequency with increasing bandwidth is computed via a filterbank with M filters

m = 1, 2, .., M . Where filter Hm is triangular and defined as follows:

Hm [k] =

0 k < f [m −1]
2(k− f [m−1])

(f [m+1]− f [m−1])(f [m]− f [m−1]) f [m −1]≤ k ≤ f [m]
2(f [m+1]−k)

(f [m+1]− f [m−1])(f [m+1]− f [m]) f [m]< k ≤ f [m +1]

0 k > f [m +1]

.

Where f [m]marks the boundaries which are uniformly spaced in the mel-scale. The

lowest cut off frequency is typically about fl = 300Hz. The highest cut off frequency of

is typically about fh = 3400Hz. Actually, it depends on the sampling rate of the signal.

f [m] is given by

f [m] =
N

Fs
B−1

�

B (fl) +m
B (fh)−B (fl)

M +1

�

,

42 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

where the sampling frequency is denoted by Fs . The discrete Fourier Transformation

uses a size of N . The mel-scale B−1 is defined as follows:

B−1(b) = 700(e
b

1125 −1) .

The log-energy S [m] at the output of filter m is computed as

S [m] = ln

�

N−1
∑

k=0

|Xq [k]|2Hm [k]

�

for 0≤m <M .

Note that S is even. The mel-frequency cepstrum c is computed via the discrete cosine

transformation of the M filter outputs of S multiplied by two and defined as follows:

c [n] =
M−1
∑

m=0

S [m]cos

�

πn
m − 1

2

M

�

for 0≤ n <M .

The Discrete cosine transformation reduces the dimension while decorrelating the

components. Typically the first 13 cepstrum coefficients are used for speech recog-

nition. The MFCC transformation is a non homomorphic transformation due to the

used log-energy filter S [m]. However, using a smoothed transfer S ′ will result in an ap-

proximately homomorphic representation. The disadvantage using S ′ is an increased

sensitivity for noise and spectral estimation errors as discussed, e.g. by Huang et al.

[66]. Using S ′ leads to a homomorphic transformation and is defined as:

S ′[m] =
N−1
∑

k=0

ln
�

|Xq [k]|2Hm [k]
�

for 0≤m <M .

An illustration in Figure 3.4 of MFCC features for the spoken number sequence 1 to

9 was provided by Georges [3]. The first row shows a plot of the original signal. Fol-

lowed by its log- and mel-log-spectrum. At the bottom is the final MFCC speech fea-

ture stream. This stream is finally used to compute the emission probabilities from

the acoustic model. Temporal changes in the cepstra of a speech signal can be used

for speech recognition as introduced by Schukat-Talamazzini [65] or Huang et al. [66].

This can be achieved by a derivations of consecutive features or by a linear discrimi-

nant analysis as described in the following.

3.3. INTRODUCTION IN ACOUSTIC SIGNAL PROCESSING 43

Figure 3.4: MFCC example for the digits one to nine [3].

MFCC +∆+∆∆

Typically the first and second derivation over a time of 40 ms is used. ∆ denotes the

first derivative and ∆∆ the second derivative. The overall “MFCC +∆+∆∆” feature

vector has a dimension of 39. A derivative of higher order does not further improves

speech recognition, significantly. The derivatives are approximated by a filter kernel

F∆. An example kernel is defined as follows:

F∆ =
�

−2 −1 0 1 2
�

44 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

MFCC and LDA

The temporal behavior of adjacent MFCC vectors can be trained by a linear discrimi-

nant analysis. An introduction of the analysis in general is given in the following sec-

tion. In contrast to derivative based features, an additional training step is required.

During training significant characteristics over adjacent MFCC vectors are learned.

Typically, all MFCC features within a 40 ms window length are used.

3.3.4 Linear discriminant analysis

Linear Discriminant Analysis makes use of a class affiliation as proposed by Fisher [75].

An introduction is provided, e.g. by Duda et al. [76]. All classes should have compa-

rable variances. An alternative method is the principle component analysis. Let K be

the classes with mean vector µ
k

where k ∈ K . Further let µ be the overall mean of the

signal. The impact of each class, depending on the amount of available training data

is given by pk . µ
k

and pk is computed for a feature sequence x as follows:

µ
k
=

1

Nk

Nk
∑

l=1

xi ,k ,

pk =
Nk

∑K
l=1 Nl

.

Where Nk denotes the number of features in class k . The between class scatter matrix

Sb and the within class scatter matrix Sw are defined as follows:

Sb =
K
∑

k=1

pk (µk
−µ)(µ

k
−µ)t and Sw =

K
∑

k=1

pkΣk

Σk =
1

Nk

Nk
∑

i=1

(x i ,k −µk
)(x i ,k −µk

)t .

This maximizes the class separability and keeps the class variances roughly constant

at the same time. This optimization problem is solved by the following equation:

Sbφi
=λi Swφi

.

3.3. INTRODUCTION IN ACOUSTIC SIGNAL PROCESSING 45

3.3.5 Spectral subtraction and cepstral mean normalization

There are many proposals to reduce noise form the signal and to enhance the speech

features at the same time. Here, the spectral subtraction and cepstral mean normal-

ization are discussed. Some more methods, e.g. the vocal tract length normalization

is introduced, e.g. by Huang et al. [66].

Spectral subtraction

Spectral subtraction was proposed, e.g. by Boll et al. [77]. It assumes that the desired

signal X is distorted by uncorrelated additive noise V captured by microphone m . The

distorted power spectral density Y can be approximated by

|Ym (ω)|2 ≈ |Xm (ω)|2+ |Vm (ω)|2 .

The noise power spectrum V̂m (k , f) can be estimated from the non voiced speech fea-

ture stream. A voice detection method is used as described previously in Section 3.3.2

The power spectrum estimation is non-linear. Lockwood et al. [78] proposed a heuris-

tic method. An estimation using a design parameter γ is defined as follows:

|V̂m (ω)|2N L =
max

over K frames
|V̂m (ω)|2

1+γSN R (ω)
.

where SN R (ω) denotes the signal to noise ratio ofω. Finally, the desired signal X̂ can

be estimated by

|X̂m (ω)|2 =max
�

|Ym (ω)|2−α|V̂m (ω)|2N L ,β ≥ 0
	

.

where α is the overestimation factor. β is a spectral floor of the non-linear spectral

subtraction as outlined, e.g. by Wölfel et al. [79].

46 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

Cepstral mean normalization

Cepstral mean Normalization is used for compensating channel effects, e.g. outlined

by Atal [80]. Different microphones or encodings in the audio processing change the

transfer function. Those slight differences in the channel are summarized as channel

effects. Even if the same microphone is used, the transfer function varies over time de-

pending on the distance to the microphone and depending on the room acoustics, e.g.

described by Huang et al. [66]. Wölfel et al. [79] proposed to use as cepstral mean nor-

malisation to suppress short-time convolutional distortions for distance speech recog-

nition. This method is closely related to spectral subtraction, which subtracts the es-

timated noise from the signal in the frequency domain. The method has to be applied

on the speech feature stream during acoustic model training as well as during recog-

nition in the run-time part. The cepstral mean x is computed on the voiced speech

feature stream x as follows:

x =
1

T

T−1
∑

t=0

xt .

The cepstral mean normalized feature vector x̂ is finally computed by:

x̂t = xt − x .

The normalization is applied for each utterance, independently or for each speaker in-

dividually. Each utterance should be long enough to capture sufficient phonetic vari-

ability and short enough to get along with non-stationary effects of the channel im-

pulse response. The signal should include about two seconds of voices features.

3.4. LANGUAGE REPRESENTATION 47

3.4 Language representation

A language can be described as a sequence of concatenated words w =w1 ·w2 · ... ·wn ,

where "·" denotes a delimiter. Usually a whitespace delimiter is used for processing

text, e.g. written in German or English. A speech recognizer usually interprets this de-

limiter as an optional silence phase between spoken words. Let L1 ⊆V ∗ and L2 ⊆V ∗ be

two sets of regular languages over vocabulary V . Where "∗" denotes the Kleen star op-

erator as introduced, e.g. by Schöniger [11]. V ∗ denotes the set of all word sequences

that can be build using words from the vocabulary V . Further, the union and intersec-

tion of two languages are defined as follows:

L1 ∪ L2 ={w |w ∈ L1 ∨w ∈ L2} union

L1 ∩ L2 ={w |w ∈ L1 ∧w ∈ L2} intersection.

The languages L1, L2 can be parsed by a finite-state automaton. For example, there

is a finite-state automaton which accepts telephone numbers. A telephone number is

valid or not and hence a binary decision. Those languages are well representable by

grammars. Section 3.4.1 introduces grammars. In general, the assessment whether a

word sequence is valid or not depends on various constrains. For example, a phrase

can depend on the context and content of the discussion. Also the speakers knowledge,

e.g. over the vocabulary can make a difference. In such cases, it is established to use

statistical models which are trained on some train data. The model is then used to

compute the probability of a word sequence. Here, models based on N -gram Markov

language models are discussed. An introduction is provided in Section 3.4.2

The generalization capability of such models have a significant impact on the

recognition of sentences which were not seen previously. Section 3.4.3 describes the

use of classes to generalize on the one hand. On the other hand, the technique enables

speech dictation with large vocabularies on embedded devices. The combination of

statistical language models is described in Section 3.4.4. It is used to shift the proba-

bility distribution of a language model to the one of a different model, e.g. a uniformly

distributed 0-gram. Statistical estimators for N-gram Markov models are introduced

in Section 3.4.5. An introduction in back-off language models is given in Section 3.4.6.

Finally, an overview of combination methods for grammars and statistical models is

given in Section 3.4.7.

48 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.4.1 Grammars

Whereas grammars were investigated for speech dictation in the past, its usage to-

day focuses mostly on recognizing structured command like utterances. This includes

heavy content domains such as voice destination entry. It was proposed to use gram-

mars for error correction. Grammars are also used for part of speech tagging, e.g. pro-

posed by Brill [81]. Furthermore, applications for natural language understanding are

using grammars as well as full text search methods. A grammar was also used in this

thesis to prepare the train corpora for estimating dynamic language models. Chom-

sky investigated a formal language theory using grammars, e.g. proposed by Chomsky

[82], [83] or Aho et al. [84]. Chomsky defined 4 types of grammars:

• phrase structured grammars with no restrictions

• context sensitive grammars

• context free grammars

• regular grammars

Regular grammars are used for speech recognition although context free grammars

were proposed to represent linguistic knowledge. An algorithm is described by Jurafsky

et al. for using probabilistic early parser and a stochastic context free grammar to gen-

erate word transition probabilities at each frame for a Viterbi decoder[85]. Duckhorn et

al. proposed an extension to weighted finite-state transducers in order to enable them

to model context-free grammars [86]. Regular grammars have become established for

recognizing speech from heavy domains like addresses or media entries, e.g. proposed

by Junqua [87].

Let G be a regular grammar. It is defined by a 4-tuple:

G = (V ,Σ, P,S)

with following entities:

V is the set of variables

S ∈V are the start variables

Σ is the set of non-terminals with V ∩Σ= ;
P is the set of rules

3.4. LANGUAGE REPRESENTATION 49

The set of variables is denoted as vocabulary for natural language processing. The set

of rules P is defined as

P : (V ∪Σ)+× (V ∪Σ)∗

It describes all possible paths as introduced, e.g. by Schöninger [11]. Grammars can be

created by human experts or learned automatically, e.g. by using structured databases.

This technique was described in Section 2.4 for constructing a grammar for voice des-

tination entry. It is also common to use grammars for generating syntactic data in an

early stage of a data driven model generation process. The data is used to estimate sta-

tistical language models including already available field data or data from a project

survey. This developing process is established for both, estimating models for natural

language understanding and speech recognition.

Many speech applications are using grammars to recognize command like speech,

e.g. in car navigation systems, home automation systems or smart televisions. All com-

mands are well known and specified by language experts accordingly to customer’s

specifications. A set of Voice Commands like "start navigation", "turn the light on" or

"play radio" can be directly represented as single rules. Grammars for speech recogni-

tion are often characterized by a small set of non-terminal symbols combined with a

huge set of terminals. Such a grammar for voice destination entry is presented in Ta-

ble 3.1. Note that the grammar is simplified. The concrete dependency between streets

Table 3.1: Overview of grammars in Backus-Naur Form

〈address〉 ::= [〈number〉] 〈street〉 [[〈city〉] 〈state〉] | 〈city〉 〈state〉

〈number〉 ::= 1 | 2 | 3 | ... | 99999

〈street〉 ::= list of streets

〈city〉 ::= list of city

〈state〉 ::= list of states

and cities is not conducted. Voice Destination Entry (VDE) has a manageable structure

with just a few non-terminals. For US it is expected that a user utter an address always

by almost the same semantic entities:

<number>, <street>, <city>, <state>.

50 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

The non-terminal "<street>" can be derived in a huge list of all possible streets in

the specified city. Grammars are also used to compactly represent large structured

databases. For example, all telephone numbers in the US for Voice Activated Dialing

or to represent postal codes as introduced in Section 2.2. Many speech dialog systems

are using grammars where rules are activated depending on the current dialog stage.

Rule activation is also used to improve speech recognition by reducing the language

confusion for certain use cases. A taxi driver will most likely search streets in the same

city. Hence, only streets in a dedicated city are active during speech recognition.

A technique is described, e.g. by Angluin [88] to learn regular sets from queries and

counter examples. Firoiu et al. proposed to learn regular languages based on positive

evidence [89]. There are also proposals to learn non deterministic finite automaton,

e.g. by Garcil et al. [90] and for residual finite-state automaton, e.g., by Denis et al.

[91]. There are also a set of papers using unsupervised learning methods, e.g., Klein et

al. describe an approach to syntactic analyses of natural language text [92]. The use of

a history was approached by Feili et al. [93]. Li et al. proposed a transformation-based

algorithm for learning complex regular expressions for information extraction [94]. An

overview of unsupervised grammar inference systems is provided by Roberts et al. [95]

and Clark et al. [96].

3.4.2 N-gram Markov language model

Markov[97]proposed a letter n-gram model that was later used by Shannon et al.[98] to

estimate word n-gram models for English. An n-gram language model is an approxi-

mation for the probability distribution P (w) for word sequences w =w1...wn . It is used

in many language applications such as speech recognition, information retrieval and

genre detection or language identification. Examples are summarized, e.g. by Toby

Norvig [99]. An historical overview of statistical methods for speech recognition is pro-

vided, e.g. by Jelinek [100] or Rosenfeld [101]. Computing the probability of a word wi

in a sequence of words w1...wn−1 allows the speech recognizer to decide whether to

consider a word for further computation or not. In this way the computational effort

is reduced on the one hand. On the other hand it also reduces the confusion between

words that are acoustically similar.

3.4. LANGUAGE REPRESENTATION 51

Starting from P (w), a N-gram Markov model can be derived as follows:

P (w) =P (w0w1...wn wn+1)

=P (w0)P (w1|w0)P (w2|w0w1) · · ·P (wn |w1w2...wn−1)

=
|w |
∏

i=1

P (wi |w1...wi−1)

≈
|w |
∏

i=1

P (wi |wi−n+1...wi−1)

This approximates a n-gram model. A 2-gram language model is defined as follows:

P (w)≈
|w |
∏

i=1

P (wi |wi−1)

Each sentence w = w1...wn is enclosed by the SGML tag <s> and <\s>. The vocabu-

lary is W ∪{<s>,<\s>}. This enables the computation of the very first word of each

sentence:

P (wi |w0) = P (wi |<s>),

as well as the very last word of a sentence:

P (wn−1|wn) = P (<\s>|wn),

On the other hand it ensures that the probability is normalized,

∑

w

P (w) = 1.

The corpora should be big enough for an reliable estimation of all probabilities.

Franz et al.[102] described the 13 unique million n-gram model from a trillion words

web collection. The great amount of language variability made speech modeling to a

data sparsity problem. In practice, a cut-off frequency is used to reduce wrong esti-

mates due sparse data and noise. The cut-off is applied on n-grams. For example wi

should occur at least one time, a word sequence wi−1wi should occur at least two times

and so on. Handling the data sparsity problem is important.

52 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

The language model can be represented as weighted finite-state transducer. This

enables to use nesting techniques during decoding as proposed, e.g. by Georges et al.

[9]. It is used to combine models from various domains, e.g. to include user content.

An overview of combination methods is given in Section 3.4.4. It was also proposed

to influence the language model by statistics gathered from the recognized text itself.

Such a cache based language model was proposed, e.g. by Kuhn et al. [103]. Guthrie

et al.[104] examine the use of Skip-n gram models to overcome this problem. A k-skip

n-gram is the set of following word sequences:

{wi1
, wi2

, ..., win
|

n
∑

j=1

i j − i j−1 < k}

Information retrieval methods are used to determine suitable in-domain models,

e.g., proposed by Mahajan et al. [105]. An introduction in information retrieval with

statistical language models is provided, e.g. by Kalt [106], Ponte [107] or Liu et al. [108].

Basically, a statistical language model is estimated for every single document in a col-

lection. During retrieval, the probability of the search term is estimated for each of

these models. The document which is assigned to the model that achieved the highest

probability on the search term is proposed to be the best result. Overall, the result is

a ranked list of retrieved documents according to their achieved probabilities on the

search term. The order of words in information retrieval is less important so that most

often 1-grams are used together with a Bernoulli or multinomial process to generate

the query. An introduction is given, by Salton et al. [109] or Baeza-Yates et al.[110]. A

bag of word features are proposed, e.g. by Harris et al.[111]. This can be combined with

a vector space model which is commonly used in information retrieval.

Cavnar et al.[112] proposed a text categorization. This approach was later adapted

for language identification, e.g. by Vatanen et al. [113]. The factors that determine the

performance of text-based language identification was investigated, e.g. by Botha et

al.[114]. In principle, a statistical letter model is estimated for each language and eval-

uated on the test text. The highest probability is most likely achieved by evaluating the

test text with the correct language. Using letter n-gram were also proposed for named

entity recognition, e.g. by Klein et al. [115]. In general, N -gram models for text genre

detection is described, e.g. by Kessler et al. [116].

3.4. LANGUAGE REPRESENTATION 53

3.4.3 Class based language models

Linguistic knowledge or statistical clustering methods can be used to group words.

Each group is assigned to a class so that the language model is estimated on classes.

Instead of estimating the model on words, the class based n-gram model is estimated

on word-classes, e.g. a sequence of classes. Each word wi is assigned to a class Ci with

a probability P (wi |Ci). An N-gram Markov model is then defined as follows:

P (wi |Ci−n+1...Ci−1) = P (wi |Ci)P (Ci |Ci−n+1...Ci−1),

where Ci−n+1...Ci is an N-gram over seen classes. Each class includes a set of words.

The probability P (w) for a word sequence w is computed by:

P (w) =
∑

ci ..cn

∏

i=1

P (wi |ci)P (Ci |Ci−n+1...Ci−1).

A Bayesian formulation of a many-to-many mapping between words and classes for

class based language models is formulated by Su [117]. This can be simplified for many

applications when a word is uniquely assigned to one class, e.g. the class for proper

names, the class of nouns or the class derived from syntactic-semantic word relations.

The equation simplifies with the assumption that each wi is uniquely assigned:

P (w) =
∏

i=1

P (wi |ci)P (Ci |Ci−n+1...Ci−1).

The word to class mapping can be learned automatically or derived manually by hu-

man expert knowledge. Word class n-gram models are often used in applications such

as travel information systems or embedded media search. In general, most heavy con-

tent domain recognizers are using classes in the one or the other way. An efficient class

based language model for very large vocabularies was proposed, e.g. by Whittaker et

al. [118]. In addition to the generalization methods available for word n-gram models,

the word class n-gram model can generalize by the content of each class. Especially,

it enables to change the content of certain classes on the fly, e.g. to add user content.

These models are also used for dialog systems where the classes are filed on-the-fly de-

pending on the current dialog stage. Word-class n-gram models are also used in em-

bedded dictation. Both, estimation and evaluation during speech decoding requires

less computational effort compared to word n-gram models. Smoothing, backing-off

54 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

and interpolation methods can be applied on class based language models in a similar

way. The class based n-gram model is a special case of the dynamic language model

proposed in Section 4.3.3. In contrast a dynamic language model can enclose gram-

matical structures in classes instead of word lists.

A different kind of class n-gram model was proposed by Bahl et al. [119]. It as-

sumes that the word probability of wi depends on equivalence classes E (w1...wi−1) of

preceding words w1...wi−1. These equivalence classes are derived from decision trees.

For long-distances an entropy criterion can be used to develop the tree. In this way, a

long-distance n-gram language model can be built as follows:

P (w) =
∏

i=1

P (wi |E (w1...wi−1)).

An introduction in word class n-gram models and clustering methods is provided

e.g., by Brown et al. [120]. Detailed experiments with class based n-gram model were

presented, e.g. by Moisa et al. [121] or Jardino [122]. Using corpus-based clustering

algorithms to assign word classes was proposed, e.g., Beaujard et al. [123]. It takes

a word context similarity criterion into account. Samuelsson et al.[124] used part-of-

speech statistics to estimate a class based language model. In this thesis, semantic

entities are used to group certain word sequences. For example proper names and

identifiers for streets, states or city names are grouped for applications such as voice

destination entry. A model M approach with classes was proposed by Ahmad et al.

[125]. A hierarchical class n-gram model was proposed by Zitouni et al. [126]. Related

is also the work from Yamamoto et al.[127]who used multiple word clusters for a multi

class composite n-gram language model.

3.4.4 Interpolation and adaptation of n-grams

A huge amount of text data is required to estimate n-gram probabilities. Interpolat-

ing an n-gram language model with an (n − 1)-gram one assumes that (n − 1)-grams

suffer less from data sparseness. Actually, it is always possible to assume a uniformly

distribution for n = 0 if no data is available. In this way, interpolation can be used as

a smoothing technique, e.g. as proposed by Katz [128], Martin et al. [129]. A summary

of interpolating n-gram models is provided by Goodman et al.[130].

3.4. LANGUAGE REPRESENTATION 55

Let Pl i (wi |wi−1) be a combination of a 2-gram language model P (wi |wi−1) and a

1-gram language model P (wi):

Pl i (wi |wi−1) =λP (wi) + (1−λ)P (wi |wi−1),

with 0≤λi ≤ 1. A λ = 1 considers just 1-gram probabilities whereas 2-gram is consid-

ered for λ = 0. This method is often denoted as deleted interpolation. Generally, the

interpolation of k probability distributions can be formalized for 0≤λi ≤ 1 as follows:

P (wn |wn−k ...wn−1) =
k
∑

i=1

λi Pi (wn |wn−i ...wn−1).

The following criteria ensures that the language model remains normalized:

∑

i

λi = 1.

It is also common to define history dependent interpolation weights, such as

λwi−n+1...wi−1
. Usually, these are summarized in classes similar to the history-class-based

language model as described in previous Section 3.4.3. A recursive interpolation from

higher-order n-gram models to lower-order one can be formulated as follows:

Pl (wi |wi−n+1...wi−1) =λwi−n+1...wi−1
P (wi |wi−n+1...wi−1)

+ (1−λwi−n+1...wi−1
)Pl (wi |wi−n+2...wi−1)

Language model interpolation is an integral part of the developing process. It

is used to create models with certain properties. For this, it combines several do-

main specific language models which were estimated from domain specific text co-

pora. For example, there might be a corpus for short message dictation and one for

search queries. Both can be combined for a voice search with natural queries. Bigi et

al.[131] proposed to use information retrieval methods for interpolating various lan-

guage models. In practice, it is common to determine the weights automatically, e.g.

proposed by Jelinek et al. [132]. The expectation maximization algorithm can be used

but there are also alternatives, e.g. proposed by Chen et al. who used the Powell’s al-

gorithm [133]. The Bayesian interpolation method determines the weights automati-

cally and considers the current history in the word sequence on–the–fly. Interpolation

weights λi can be adjusted domain dependent, e.g. by human experts.

56 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

Figure 3.5: Motion adaptive speech recognition for enhanced voice destination entry.
On the left side a schematic example distribution for a traditional language model. On
the right side a motion adapted model along a users route.

Dupont et al.[134] explores a method to interpolate word and class based language

models. Klakow[135] proposed a log-linear interpolation for combining models of dif-

ferent context size. Further experiments were reported by Maltese et al. [136]. An

overview of major approaches in language model adaptation is provided by Bellegarda

et al. [137]. Bilmes et al proposed an online adaptive learning for speech decoding

[138]. Various interpolation methods for a variety of recognition tasks was explored by

Allauzen et al. [139]. Using grammars for adaptation was also provided by Wu [140].

Methods to combine grammars and statistical language models are summarized in

Section 3.4.7. In this thesis, a method is proposed which enables the use of user knowl-

edge during speech decoding. A dynamic language model is used as described in 5.3.2.

Location aware speech recognition

An application for interpolating statistical language models is address entry by voice

which is challenging in two aspects: First, the great amount of postal addresses (10M+

for US) and point of interests (3M+ for US) requires a speech recognizer to oper-

ate close to the acoustical resolution limit. Second, the sparse amount of training

data makes it nearly impossible to estimate reliable statistical models to constrain the

search space by incorporating syntactical knowledge. A static system has to make a

trade-off between dialog stages and destination coverage to achieve a usable accuracy.

3.4. LANGUAGE REPRESENTATION 57

Both have a significant impact on the users experience using voice for destination en-

try. Continuously interpolation of statistical language models can close the gap by an-

alyzing the motions profile of the speaker as proposed by Georges et al. [1]. For this,

statistical language models were estimated for every region. Let λ be the continuous

interpolation weight vector with
∑cities

c λc = 1. The statistic language model is then

defined as follows:

Ppoi(wi |wi−1) =
cities
∑

c

λc ·Pc (wi |wi−1),

The current state of the art system can be simulated by a uniformly interpolation of all

these models. Activation and deactivation capability is achieved by binary interpola-

tion weights, e.g. the current city has a weight of 1 - activated - whereas all others are

0 weighted - disabled:

λ= (0, ..., 0, 1, 0, ..., 0)T

The continuous interpolation weight vector is based on the speakers motion profile.

This profile is estimated from various sensors, such as space-based satellite naviga-

tion systems, acceleration sensors, speed measurements, altimeters, etc. The informa-

tion is analyzed together with a default map to generate an aligned weight vector with

the set of available statistical models. Figure 3.5 illustrates the use of location aware

speech recognition. The following examples shows the advantage and disadvantage of

this novel technique. Les "cities" be the set of all cities in Germany and let M be the

German city "Munich". Assuming the motion profile indicates a speaker in Munich

would result in the following interpolation weight vector:

λM+
cities
∑

c 6=M

λc = 1 with ∀λi .i ∈ cities∧ i 6=M ∧λi <λM.

Hence, the probability of words w related to Munich PM (w) is boosted compared to a

city-unified model. The perplexity and word error rate will decrease given a correctly

assigned interpolation weight vector:

λM ·PM (w) +
cities
∑

c 6=M

λc ·Pc (w)>>
cities
∑

c

1

#cities
·Pc (w)

58 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.4.5 Statistical estimators

The conditional probability can be estimated from a text corpora, e.g. scraped from

the world wide web, or transcribed field data by the maximum likelihood estimation

[141]. The conditional probability can be estimated from a text corpora, e.g. scraped

from the world wide web, or transcribed field data by computing

P (wi |wi−n+1...wi−1) =
P (wi−n+1...wi−1wi)

P (wi−n+1...wi−1)
for an n-gram model

P (wi |wi−2wi−1) =
P (wi−2wi−1wi)

P (wi−2wi−1)
for a 2-gram model

from a corpora,e.g. by a maximum likelihood estimator as described in Section 3.4.5.

The probabilities can be estimated by computing word frequencies:

P (wi |wi−n+1...wi−1) =
F (wi−n+1...wi−1wi)

F (wi−n+1...wi−1)
for an n-gram model

P (wi |wi−2wi−1) =
F (wi−2wi−1wi)

F (wi−2wi−1)
for a 3-gram model

A class based model is estimated by assigning each word to classes. The word class

n-gram model can be estimated by computing the frequency F (·) for words and classes:

P (wi |wi−n+1...wi−1) =P (wi |Ci)P (Ci |Ci−n+1...Ci−1)

=
F (wi)F (Ci−n+1...Ci)

F (Ci)F (Ci−n+1...Ci−1)
for a n-gram model

=
F (wi)F (Ci−1Ci)

F (Ci)F (Ci−1)
for a 2-gram model.

An detailed introduction is also provided, e.g. by Manning et al. [142] together with

alternative estimators. However, there are also seldom word sequences which are not

belonging to one certain class like media titles. Smoothing techniques are used to en-

hance the probability of unseen sequences. Goodman [143] and Chen et al.[133] gave

an overview on smoothing techniques for language modeling. Jeffreys [144] formalized

the add-one smoothing method that was recently revisited by Chopin et al. [145]. This

was used, e.g., by Jelinek et al. for speech recognition [146]. n-gram add-one estimator

3.4. LANGUAGE REPRESENTATION 59

for a vocabulary size V as described, e.g., by Manning et al. [142]:

Padd-one(w1..wn) =
F (w1..wn) +1

N +V n

Lidstone et al. [147] proposed a lambda value instead of just adding one:

PLid(w1..wn) =
F (w1..wn) +λ

N +V nλ

where λ is usually smaller 1 and N being the number of overall words. The add-one

method is available by λ = 1. Box et al.[148] proposed the expected likelihood esti-

mation with λ = 1
2 . However, this method can be seen as a linear interpolation of a

maximum likelihood estimation and a uniform prior as shown by Johnsons et al. [149]:

PLid(w1..wn) =µ
F (w1..wn)

N
+ (1−µ)

1

V n
,

with µ computed by:

µ=
N

N +V nλ
.

Witten et al. proposed to shift the probability mass depending on the context of the

word [150]. Let T (wi−1) be the number of different words preceding wi and N (wi−1) its

overall count. With Z (wi−1) the number of 2-grams in some held-out data the estimator

is described as follows:

PWB(wi |wi−1) =
T (wi−1)

Z (wi−1)(N +T (wi−1))
if F(w_iw_i-1)=0

PWB(wi |wi−1) =
F (wi−1)

N (wi−1) +T (wi−1)
if F(w_iw_i-1)>0.

This method performs well as long as there is enough data for training available.

Church et al. described the Good-Turing estimation [151] There are lot of other lan-

guage models available like the absolute and linear discounting that was proposed,

e.g., by Ney et al. [152], [153].

60 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.4.6 Back-off n-gram language models

A back-off language model for speech recognition was proposed, e.g. by Katz [128]. The

back-off (n−1)-gram is used as approximation whenever the n-gram is not reliable, e.g.

the count of the n-gram in the corpus is too small for a reliable estimation. Let k be

the desired minimal count of an n-gram in the corpus. A Good-Turing estimation can

be used to compute the discounting d that reserves some probability mass from the

maximum likelihood estimator for the back-off. Alternatively, an absolute discounting

could be used. Formally, the Katz back-off model is recursively defined as follows:

Pbo(wi |wi−n+1...wi−1) =

¨

(1−dwi−n+1...wi−1
) C (wi−n+1..wi)

C (wi−n+1..wi−1)
if C (wi−n+1..wi)> k

αwi−n+1...wi−1
Pb o (wi |wi−n+2..wi−1) otherwise

,

where α ensures that the overall model is normalized. Actually, the back-off model is

a linear interpolation as introduced in Section 3.4.4 Alternatives are proposed, e.g. by

Rosenfeld et al. [154] or Kneser et al. [155]. The latter optimizes (n − 1)-gram as a sig-

nificant factor of the back-off combination together with the discounting and normal-

ization weights . This method uses (n −1)-gram estimations which are proportional to

the number of different words that follow instead of the (n−1)-gram counts. A detailed

introduction in back-off language models is provided by Huang et al. [66].

3.4.7 Language model combination techniques

It was proposed to interpolate statistical grammars and language models. Kaufmann

et al.[156] investigated the usage of rules in statistical language models. Combining

stochastic context free grammars with 3-gram models was proposed several times, e.g.

by Gillett et al.[157]. Nasr et al.[158] generalized this approach for n-grams. A com-

bination of unified context free grammars and n-gram models was proposed, e.g. by

Wang et al.[159]or Martin et al.[160]. In addition, Wang et al.[161]described the combi-

nation of statistical and rule-based approaches for language understanding. Vaibhava

et al.[162] used a maximum likelihood estimation to improve annotation performance

of n-gram models by incorporation stochastic finite-state grammars. Mohri[163] pro-

posed to embed grammars hierarchically. Adaptation techniques for statistical lan-

guage models using context free grammars were proposed, e.g. by Wu [140]. This thesis

introduces a nested of grammars in statistical language models.

3.5. LANGUAGE PROCESSING 61

3.5 Language processing

There are many applications for language processing. In this thesis, methods are de-

scribed which are used for speech recognition and related applications. Section 3.5.1

describes a tokenization process. For the sake of clarity, let a token be the desired set

of letters. Often, a token is similar to a word. The language model is estimated on

these token sequences and the output of the speech decoder is a sequence of tokens.

Section 3.5.2 describes a method which interprets the token sequence and generates a

formated word sequence. This is then presented to the user. The formatting depends

on the context. A medical text has a different format compared to a short message.

3.5.1 Word tokenization

A sequence of letters is separated into a sequence of tokens. This process is called tok-

enization. White spaces are commonly used to define tokens. A token is often identical

to a word. In addition, the tokenization process takes care on well defined tokens, e.g.

whether a word is capital or not. It computes also word stems for applications in nat-

ural language understanding. The process does also convert written words, e.g.,

111 one one one | one hundred and eleven |

hundred and eleven | one eleven

9:30 half past ten | nine thirty.

This process is best suited for a rule-based method. Often, a normalization process

is applied which takes care that the generated tokens are distinguishable across the

corpora, e.g.,

Ct.|<address> Connecticut

Ct.|<medical> computed tomography

Ct.|<musical instruments> Coil Tap

where "< ·>" denotes the context of the sentence. Both, tokenization and normaliza-

tion are most often domain dependent.

In this section, a statistical method is described that identifies co-occurrence of

words which can be considered as one token. This has also an impact on the under-

standing of natural language as described by Georges et al. [2]where the tokenization

62 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

is an essential part of a query disambiguation. Word co-occurrences can also be used

to improve speech recognition by reducing the language model perplexity. A method is

described which uses mutual information, as proposed by Church et al. [164]. A com-

parative study of joining frequent word sequences to phrases is provided by Klakow

[165]. Let "I" be the mutual information that is defined as:

I(wI , w J) :=
∑

i , j

P (wi , w j)log
p (wi , w j)

p (wi)p (w j)

where the log can be denoted as point-wise mutual information ("PMI") as:

PMI(wi , w j) := log
p (wi , w j)

p (wi)p (w j)

= log
p (wi |w j)

p (wi)

= log
p (w j |wi)

p (w j)
= PMI(w j , wi)

where wi and w j are words. This measure can be used to decide whether to join or

not both words. A value of 0 indicates independence between wi and w j . The "PMI"

maximizes for a co-occurrence of wi and w j and minimizes if the 2-gram wi w j or w j wi

does not occur in the training corpus. It can be generalized with the chain-rule. Let

w j wk = h be the history of word wi so that PMI is defined as follows:

PMI(wi , w j wk) = PMI(wi , w j) +PMI(wi , wk |w j)

= log
p (wi , w j wk)

p (wi)p (w j wk)
= log

p (wi |w j wk)

p (wi)

= log
p (wi |h)

p (wi)
= PMI(wi , h)

wi and h are independent if PMI(wi , h) = 0. This generalized variant is best suited be-

cause all probabilities are known from the language model developing. Alternatively,

Bouma [166] described a variation which is normalized between [−1, 1]. The normal-

ized point-wise mutual information is 1 for complete co-occurrence of wi and h . In

contrast, it is −1 if wi and h are never occurring together. It is computed as follows:

−1≤ PMIno r ma l i z e d (wi , h) =
PMI(wi , h)
−log(p (wi , h))

≤ 1

3.5. LANGUAGE PROCESSING 63

As an example, a 2-gram language model is computed for the Wall Street Journal 5k

corpus [167] using Kneser-Ney discounting. The 1-gram and 2-gram probabilities are

used for the "PMI" computation. A sorted subset is given in the following for common

co-occurrences:

PMI(santa, fe) = 13.74529

PMI(hong, kong) = 12.54758

PMI(las, vegas) = 12.53122

PMI(los, angeles) = 11.16868

PMI(tele, communications) = 8.13129

PMI(multimillion, dollar) = 8.03381

PMI(U., S.) = 7.21532.

All these 2-grams are suited to be considered as one token. In this way, "los angeles"

will become one word "los_angeles" where the word order is given by the origin word

sequence. In practice, a threshold has to be defined between number of tokens and a

development-set perplexity. A low threshold might also concatenate common phrases,

such as:

PMI(accounted, for) = 5.98041

PMI(according, to) = 5.93769

PMI(intends, to) = 5.9195

PMI(able, to) = 5.91757.

Whereas a PMI>> 0 denotes a co-occurrence, a PMI near zero indicates a unlikely

word pair in the corpus. These n-grams are most probably independent from each

other and not suited to be concatenated. Moreover, it is most likely that these words

will never occur consecutively in this corpus. Some examples are:

PMI(manufacturer, holds) = 0.00058

PMI(stocks, shows) = 0.00013

PMI(legal, confrontation) =−0.00013

PMI(pennsylvania, cleveland) =−0.00061.

64 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

In contrast, n-grams with a PMI<< 0 do not occur in the corpus at all. The conclu-

sion whether to concatenate or not, is just not possible. For example, there are linguis-

tic reasons such as "the said" or "said the" which are very uncommon on the one hand.

On the other hand, there are semantical 2-grams which are obviously not relevant in

the corpus as the following example shows:

PMI(not, international) =−4.50398

PMI(two, interests) =−5.00358

PMI(the, said) =−8.95582.

3.5.2 Text formatting and interpretation

One text formatting example was described in Section 2.4 together with the introduc-

tion of composing transducers. Text formatting is a main developing stage for building

speech recognizers. Its precision can make the difference whether a speech recognizer

is used or not. For example, the text formatting for medical dictation is quit impor-

tant. In some sense, the text formatting process is an inverse of the tokenization and

normalization process described in previous section 3.5.1.

The formatting process is domain dependent and may also vary between user-

settings. A typical example is date and time formatting, e.g. whether the user likes

"." or "/" delimiter or a 12 hours cycle or 24 hours one. Moreover, text formatting has

to interpret an utterance so that it can format it in the appropriated way. A queried

time phrase should also be displayed in a similar way, e.g.

half past ten 9:30

nine thirty 9:30

This example can be extended to number formating in general, e.g. for presenting

monetary numbers, date and time representation or dosing of medicines. In the fol-

lowing, there are four examples how people might utter "111":

one one one 1:1:1

one hundred and eleven 111

one eleven 1.11

one eleven one 11.

3.5. LANGUAGE PROCESSING 65

Which of the following alternatives is the correct one might depend on various aspects,

e.g. domain, context, target application. "111" might be different for medical dictation

or address entry. A similar example is abbreviation handling, e.g. for address destina-

tion:

drive Dr

court Ct

place Pl

road Rd

lainways Ln

street St

avenue Ave

circle Cir

terrace Ter

trail Trl

way Way

boulevard Blvd

loop Loop

pass Pass

parkway Pkwy

Some of these examples are uniquely determinable within the address domain. Other

examples are ambiguous, e.g. "St" which could also be "saint" or "state" depending

on the context. The abbreviations are ambiguous between domains, e.g., "Dr." could

be "drive" or "doctor". Similar for "Ct" which could be "Connecticut", "court", "com-

puted tomography" or "Coil Tap" depending on its context and domain. Thus, text

formatting is already a text interpretation stage and may benefit from linguistic knowl-

edge. Abbreviations are also content provider dependent and may also vary between

cultures and regions. Formatting does also apply taboo-filtering and may take care on

capitalization. Punctuation is part of most text formatting processes.

Common text formatting techniques are based on a mix of rules and statistical

models. This was described for speech recognition on mobile devices, e.g. by Schuster

[168]. The rules are usually written by human experts for dedicated applications and

domains. Some of these rules are adjustable by the user, e.g. time and date represen-

tation or whether to use a dot or comma as thousands separator.

66 CHAPTER 3. AUTOMATIC SPEECH RECOGNITION

3.6 Summary

This chapter introduced automatic speech recognition to translate human speech to

text. The set-up and theory is described in Section 3.1. The technique can be sepa-

rated into several modules. An overview of each module is provided in Section 3.2.

The preprocessing module is described in three sections.

Section 3.3 introduces the feature front end. The processing chain is described

starting from the audio capturing. Mel Frequency Cepstral Coefficients are described

as todays de facto standard features. These features are used to compute emission

probabilities according to an acoustic model. Not only the audio-visual speech recog-

nition is still an active research topic. Nearly all topics in speech feature processing is

requested. Today, deep neuronal networks are being investigated in combination with

bottleneck features. Recurrent neuronal networks and deep believe networks are also

commonly investigated for speech and language processing.

Section 3.4 describes the representation of language. In this thesis, recognizers with

closed vocabulary are considered. Hence, the recognizer need to have a knowledge of

words and word sequences. Both, the grammatical representation as well as statistical

models are described. A novel location aware speech recognition system was intro-

duced. It enables a precise recognition of millions of address entries. Currently, future

work is focusing on estimating sequence probabilities with neuronal networks. The

combination of information retrieval techniques and methods for reasoning opens up

new possibilities. Natural language processing and question answering will play an

increasingly important role in human machine interfaces. Also the speech to speech

translation requires precise language models.

Section 3.5 introduces basic text processing methods. The methods are used dur-

ing model training on the one hand. On the other hand, it is applicable in the run-time

part to display a uttered phrase in an appropriated way to the speaker. A novel tech-

nique was proposed to use word co-occurrence for query disambiguation. Future work

needs to investigate the use of natural language processing techniques. This is not only

important for textual representation but also to model a more humanoid voice in text

to speech systems. Prosody and word emphasis is an important factor and analyzing

speech and language may solve this open research question.

4
Dynamic Speech Decoding

Weighted finite-state transducers are used for speech recognition. The use of trans-

ducers enables to compile and optimize the search space for speech decoding in ad-

vance. This enables an efficient speech decoding on the on hand. But on the other

hand, it reduces the flexibility to use user-dependent content during the recognition

process. Georges et al. [9] propose the use of dynamic language models to combine

user-dependent content and transducer based speech recognition. The used trans-

ducer nesting technique allows the decoding of multiple transducers simultaneously.

In fact, user-dependent content can be added on-the-fly. Moreover, it can be shared

over multiple devices and recognized consecutively as described by Georges et al. [10].

Section 4.1 introduces weighted finite-state transducers for speech recognition.

The lexicon representation is described in Section 4.2. Section 4.3 describes the repre-

sentation of three language model types. First, the use of a grammar is described. Sec-

ond, the representation of a statistical model is introduced. Third, a dynamic language

model is described. The developing process to compile a dynamic language model is

described in Section 4.4 followed by speech decoding methods for transducers. Speech

decoding with transducers is described in Section 4.5 followed by a description of the

decoding of nested transducers in Section 4.6. Decoding on multiple devices is intro-

duced in Section 4.7. Finally, the chapter is summarized.

67

68 CHAPTER 4. DYNAMIC SPEECH DECODING

4.1 Finite state transducer for speech recognition

The weighted finite-state transducer for speech recognition is constructed and opti-

mized in advance. Phonetic information from the acoustic model and information

about word sequences from the language model are used. Whereas the composition

operator for transducers is used for constructing, determinization and minimization is

used for optimizing the transducer for efficient decoding. Weighted finite-state trans-

ducers are introduced in Chapter 2. Section 2.4 describes the composition operator.

Determinization and minimization is described in Section 2.2 and 2.3, respectively.

The search space construction includes several transducers. A lexicon L transducer

represents the relation between words w ∈W ∗ and its phoneme sequences p ∈ P ∗. L is

described in Section 4.2. The language model is represented in a weighted finite-state

transducer G . The weights are used to determine the probability of a word sequence.

Hence, all recognizable word sequences are represented in G . A composition is used

to compute the relation between phoneme sequences in L and words in G :

LG = L ◦G

where "◦" denotes the composition operator. G can represent a grammar, a statistical

language model or a dynamic language model. The construction is described in Sec-

tion 4.3. The developing of dynamic language models using finite-state transducers is

described in Section 4.4. Speech decoding with transducers is described in Section 4.5.

4.2 Lexicon transducer

A lexicon transducer represents the relation between words w ∈W ∗ and their phonetic

transcriptionsρ ∈ P ∗. In fact, the relation (W ×P)∗ is represented. A subset of a lexicon

transducer L ′ is shown in Figure 4.1.

The transducer can be seen as a 0-gram word loop model where each word is re-

lated to its phonetic transcription. The probabilities are uniformly distributed, usually.

Pronunciations variants may use some weighting. The lexicon transducer is optimized

by applying determinization and minimization. Both operators, "min" and "det" are

4.2. LEXICON TRANSDUCER 69

Figure 4.1: Subset of a lexicon transducer. The input labels are phonemes and the
output labes are words. Both, phonemes and words are aligned using ε symbols.

described in Section 2.1 and 2.3. The lexicon L is computed by:

L =min(det(L ′))

The phonetic transcription can be created by human experts. Often a grapheme-to-

phoneme mapper is used which was trained on some human transcribed training data.

Usually, a set of most frequent words of a language is used to train a mapper. The con-

struction of a lexicon transducer is described, e.g. by Mohri et al. [169]. Homophones

such as "two", "too", "to" or "read", "red" are sharing the same phonetic transcriptions.

An auxiliary symbol "#i" with i = 0..n is used for each n homophones. This auxiliary

symbol are removed after speech decoding and not visible to the user. The result is a

determinizable transducer. The following two examples illustrate how to augment the

phonemes with auxiliary symbols "#":

two=:two#1

too=:too#2

to=:to#3

read=:read#1

res=:red#2

70 CHAPTER 4. DYNAMIC SPEECH DECODING

4.3 Language transducer

The language transducer G represents the language model. It is used by the decoder

to decide whether a word sequence is probable or not. This is a binary decision for

grammars. For statistical models, the transducer is used to compute the probability of

a word sequence. Command and control tasks are using grammars, typically. A gram-

mar is also used by recognizers for heavy content domains, such as voice destination

entry. Statistical models are usually used, e.g. for dictation tasks. Actually, a language

model can be represented by a weighted automaton. In practice, a transducer is used

which enables the use of the transducer framework. Note, the input and output word

sequence of the transducer is identical. The transducer G ′ is optimized as follows:

G =min(det(G ′))

Where "min" and "det" are operators on finite-state transducers as described in Sec-

tion 2.1 and 2.3. The optimization might happen on-the-fly when the transducer is

compiled from the language model, e.g. for heavy content domains. The construction

of G ′ using grammars is described in Section 3.4.1. The representation of a statistical

language model as transducer is described in Section 4.3.2. Dynamic language model

representation is described in Section 5.3.2.

4.3.1 Grammatical text representation

A grammar is s compact representation for regular languages. A structured model was

proposed, e.g. by Chelba [170]or Rastrow et al. [171]. Kaudmann proposed a rule based

language model for speech recognition [156]. Duckhorn et al. described a method to

use context free grammars for embedded speech recognition [86].

Table 4.1 illustrates a grammar used for voice dialing. Its representing transducer

Table 4.1: Hand written example egrammar for en-US VDE

〈number〉 ::= [<s>] 〈num〉

〈num〉 ::= eins | zwei | drei | vier | fuenf |
sechs | sieben | acht | neun | null

4.3. LANGUAGE TRANSDUCER 71

Figure 4.2: Grammar for digit recognition. The silence "[s]" is optional between digits.

is shown in Figure 4.2. The "[s]" label denotes an optional silence phase in the fea-

ture stream. The transducer also introduces a "[nib]" label which is used as garbage

model to increase the robustness, e.g. for voiced background noise. ε-transitions are

denoted by "[eps]". All digit sequences are recognizable. Reducing the search space on

valid telephone numbers would increase the search space, significantly. However, it is

still possible to add some constrains as trade-off between sharp search space and its

memory requirement. For example, the sequence has to start with an area code or a

certain number of digits needed to be recognized. Typically, grammars are hand writ-

ten, e.g. for command and control applications such as controlling smart TVs by voice.

It is also possible to create such grammars automatically. An introduction of grammars

for speech recognition is given in Section 3.4.1.

In the following, the construction of a grammar for voice destination entry is de-

scribed. The starting point is a relational database of entities for addresses. With out

loss of generality, there are 3 columns in the database. One column includes street

names, one column city names and a third one denotes all states, e.g. for the US. An

address is given in each row. There are about 10 million rows for a US address database.

Similar databases are available for media domains, air and train timetables etc. A lan-

72 CHAPTER 4. DYNAMIC SPEECH DECODING

Table 4.2: Hand written example egrammar for en-US VDE

〈address〉 ::= [<house number>] <street> [[<city>] <state>] |
<city> <state> |
<city> |
<state>

guage expert identifies the order of columns a user might utter their entities. The order

of columns is written as grammar. An example grammar for US voice destination en-

try is given in Table 4.2. The user will be able to utter addresses by denoting the house

number, street, city and state. Alternatively, there are partials defines such as street,

city, state or city, state etc. This grammar is translated into an acceptor over the vocab-

ulary {"city", "street", "state"}. The result is a transducer S representing the human

written grammar. An example transducer is shown in Figure 4.3. For the sake of clarity,

Figure 4.3: Transcuder S representing a semantic relation for an US VDE grammar.

house numbers are not presented. The database itself is translated into a finite-state

transducer P . A subset is illustrated in Figure 4.4. The input vocabulary is given by

entries of each column. Each entry is assigned with its column as output symbol over

vocabulary {"city", "street", "state"}. Moreover, all possible permutations of columns

are represented in the transducer. This way, the relational database is translated into a

Figure 4.4: Subsection of transducer P representing all permutations which are de-
rived from a relational address database.

4.3. LANGUAGE TRANSDUCER 73

transducer, directly. The composition of P and S will create the desired transducer as

follows:

V ′ =min(det(P ◦S)), (4.1)

where "◦" denotes the composition operator and "min", "det" the operators to deter-

minize and minimize the transducer. The operators are introduced in Section 2.4, 2.2

and 2.3. V ′ represents the relation between word sequences and columns identifiers.

Here, it is the relation between street, cities and states names and the sequence of tags

denoted by "street", "city" and "state". For speech recognition, the tags are not re-

quired. Those are removed from the recognized word sequence. However, the tags can

be passed through the recognizer and evaluated afterwards for a database look-up, e.g.

by the application. Figure 4.5 shows the final automaton. Note that no weights are used

in the grammar. In general, it would be possible to add some weights, e.g. derived by

some popularity measurements from the World Wide Web.

Figure 4.5: Final recognition grammar for addresses.

A similar construction can be done for all kind of data that is represented as re-

lational database. It is also possible to use an on-the-fly composition technique to

add custom dependent constrains in a language transducer. Adding content, e.g. new

cities, is just an additional path in P . It is also possible to describe the transducer as

word-class grammar analogous to a uniformly distributed class based language model

described in Section 3.4.3.

74 CHAPTER 4. DYNAMIC SPEECH DECODING

Figure 4.6: Example representation of a 2-gram back-off Markov language model.

4.3.2 Statistical Language Modeling

Statistical language models are used, e.g. for speech dictation or applications for nat-

ural language understanding. A back-off n-gram Markov model is commonly used.

The model is estimated from text corpora, e.g. using web scraper or transcribed field

data. N -gram language models are introduced in Section 3.4.6. Figure 4.6 illustrates

an automaton for a 2-gram language model. It can compute probabilities for any com-

bination of words w1 and w2 as follows:

<s>[w1, w2]
∗<\s>

where "<s>" and "<\s>" are denoting the begin and end of each sentence. In speech

recognition, the start and end of a sentence is typically recognized by a significant

silence phase in the feature stream. Note, the probability P (w2|w1) for the word se-

quence w1w2 was estimated from some training data. There is a directed path P (w2|w1)

in the transducer. Note, the path over the back-off weight β (w1)P (w2) for the word se-

4.3. LANGUAGE TRANSDUCER 75

Figure 4.7: Example representation of a word-class 2-gram back-off language model.

quence w1w2. This is usually used when the probability for w1w2 could not been esti-

mated from the training data. In this representation, there are always two paths. This

does not influence the decoding, because the following equation is fulfilled for most

statistical language models:

P (w2|w1)>β (w1)P (w2)

Word class n-gram models are representable in a similar way. An example is illus-

trated in Figure 4.7. This kind of class based language model was introduced in Sec-

tion 3.4.3. Here, a 2-gram Markov model on word classes is described. It is very similar

to the word n-gram model described previously. Either there are transitions between

stages for each word wi in a class C (wi) as follows:

P (w2|C (w2))P (C (w2)|C (w1)).

76 CHAPTER 4. DYNAMIC SPEECH DECODING

Or each transition P (C (w2)|C (w1)) is assigned to a lexical tree computing,

P (w2|C (w2)).

Note, β (<s>) and β (<\s>) are omitted for a better overview. An efficient class based

language model was proposed, e.g. by Whittaker et al. [118]. Georges et al. generalized

this approach for dynamic language models as described in Section 4.3.3.

In this section, the representation of statistical language model as finite-state au-

tomatons was described. It was illustrated by a word and a word-class 2-gram language

model example. Whereas the word model becomes the baseline experiment, the word-

class model will be extended to a dynamic language model in the following section.

4.3.3 Dynamic Language Modeling

A dynamic language model enables the use of content from various sources. For exam-

ple, it enables a recognizer to consider just local available user knowledge. Dynamic

language models can be seen as generalized class based models. In this thesis, a dy-

namic language model nests grammars into statistical language models. To create a

dynamic language model, a preprocessing step is used to replace grammatical word

sequences form a text corpus with its corresponding rule name.

Let D be a rule for any dates and let "22.04.1985" be one instance of that rule. All

such grammatical word sequences are given by SK and used by function R to replace

them in any sentences. For example, the sentence

"My birthday is 22.04.1985"

will become

"My birthday is <D>" with <D> generalizing "22.04.1985"

after applying R . A set of sentencesC′ is computed by applying the function R on each

sentence of C. C denotes as text corpus which is used for model training, e.g. a web

scraped text. This is formalized by:

C′ = {w ∈ ((W ∪T)∗\SK)
∗|∃w ′ ∈C : w =R (w ′)}.

4.3. LANGUAGE TRANSDUCER 77

Let S be a set of tuples (U , t)which associates each set U ⊆ SK with a corresponding

grammar tag t ∈ T . The rule for any dates is assigned with the tag <D> as follows:

S = {(U , t)|∃k : U = Sk ∧ t = tk}

Further, each sentence in SK is unique and fulfills:

|SK |=
∑

k

|Sk |.

Nevertheless, there could still be ambiguity between partial sentences. In this case, we

choose the longest word sequence which can be computed by:

ŵ =min
k≤K
(argmax

w∈Sk

(w))

Where max/min is the sequence with the maximal/minimal number of words. R can

be computed by common string search methods using regular expressions. In this the-

sis a method based on finite-state transducer is used and described in next Section 4.4.

Jurafsky et al. proposed the use of stochastic grammars as language model for

speech recognition [85]. A combination method of stochastic grammars and n-gram

language was presented, e.g. by Gillett et al. [157]. Nasr et al. described a method to

combine n-gram models with stochastic automatons [158]. Several contributions were

also proposed by Wang et al., e.g., [159], [161] or [172]. Section 3.4.7 gives an overview

of language model combination methods. Usually, a class includes a list of words. An

evaluation of class based language models was provided, e.g. by Beaujard et al. [123].

Maltese et al. [136]made a comparative study of combined word and word-class mod-

els for several languages and clustering techniques. Determining word classes by the

use of part of speech statistics was provided by Samuelsson et al. [124]

78 CHAPTER 4. DYNAMIC SPEECH DECODING

4.4 Creating a dynamic Language model

A users address book or favorite music titles are dynamic parts of a natural language.

These parts can be modeled separately using a dynamic language model. A dynamic

language model consists of, at least, 2 models. The dynamic content is represented

in one model and nested in another one during speech decoding. In general, the dy-

namic content could be represented as grammar or statistical model. For the sake of

clarity, let the dynamic content be a grammar. Typically, the dynamic language model

is spare represented in the training data. For example, dynamic content could be user’s

medical records or favorite point of interests on the one hand. On the other hand, it

could be sparse represented word sequences with long range dependencies, such as

telephone numbers or stock prices.

Each model in a dynamic language model is trained separately. Section 4.4.1 out-

lines method and techniques to tag word clusters in a text. Theses word clusters can

be considered as dynamic content. A grammatical tagger is described in Section 4.4.2.

This method is used in this thesis to find proper names, abbreviations and stock prices.

The output is used to train a model for the dynamic content. In fact, the derived in-

formation is used to populate some generalized dynamic content data, e.g. by human

experts. Section 4.4.3 describes a technique to replace grammatical represented word

sequences in a text. The processed text is used to train the model in which the dynamic

content is nested during speech decoding.

4.4.1 Word sequence clustering

Word classes have a significant impact on the recognition performance. Both the ac-

curacy and the computational effort can be influenced by the class definition. Yu et

al.[173] improved name recognition by introducing a user model. The impact of word

clusters for text classification was investigated by Noam et al. [174]. All kind of struc-

tured content is suited to be represented in word classes. Examples are named entities

such as proper names or business names.

A general approach was proposed by Martin et al.[175] using n-gram word clusters.

Lin [176] proposed an automatic retrieval and clustering of similar words. Wiebe et

al.[177] described WordNet sense tagging in the Wall Street Journal. Mutual informa-

tion was used similar to the technique described in Section 3.5.1. Chunyu et al.[178]de-

4.4. CREATING A DYNAMIC LANGUAGE MODEL 79

scribed a method for abbreviation recognition using maximum entropy models. Roche

et al.[179] described a deterministic part of speech tagging with finite-state transduc-

ers. Kit et al.[178] proposed a more general abbreviation recognition with a maximum

entropy model.

A dynamic language model extends the concept of word classes by introducing

classes as container for grammatical given word sequences. A tagging method was

used on the basis of transducers as described in the following section. There are var-

ious named entity taggers available. Chrupala et al.[180] proposed one for German

and a series of named entity taggers is also implemented in NLTK [181]. In this the-

sis, named entities are tagged by an introducing word ’Mr.’, ’Mrs.’ etc. A grammatical

extraction method was used and is described in the following sections 4.4.2 and 4.4.3.

4.4.2 Extraction of grammatical structures

A rule based part of speech tagger was proposed by Brill [81]. A grammar can be used

to represent regular languages in a compact way. This was introduced in Section 3.4.1.

Grammars can also be used to filter an arbitrary text. The output will be a set of sen-

tences which are represented in the grammar and given in the text. This way, statis-

tics of certain word sequences are derivable from an arbitrary text. For example, the

method is used to extract the abbreviations from the Wall Street Journal [39]. Following

sentences is an example:

• about half these managers are in the u. s.

A grammar is used which interprets every single letter with a consecutive dot "." as

abbreviation. The output of the filter is a list of all abbreviations in the input text. The

result for the example above is:

• u. s.

The output can be used to estimate statistics, e.g. for a language model adaptation. It

is also used to train a model for similar dynamic content, such as abbreviations, stock

prices, etc. Note that the filtered data can be used as seed data to adapt statistical

models.

The technique is described in the following. Let W be the vocabulary, e.g. for En-

glish. Let C ⊆W ∗
c be a corpus of sentences I ⊆C with vocabulary Wc ⊆W e.g. the WSJ

Corpus [167]. Further there is a set of word sequences S . This set of word sequences are

80 CHAPTER 4. DYNAMIC SPEECH DECODING

representable as grammar. The grammar is written by human experts. It could be a list

of proper names or a set of number representations. In this thesis, regular grammars

are used but the method can be extended to context free grammars. The grammar is

translated into a transducer T ′ where the input language is W ∗. The transducer gener-

ates an identical output for all input sentences S ⊆W ∗. All other input sequences are

non emitting. Hence, it filters an input sequence by a grammar S .

This can be formalized as composition. Each sentence I ∈ C can be represented

as automaton. As described in Section 2.4, a composition can be used to compute

the intersection of two languages. Here, the composition of I and T ′ will result in the

desired word sequence w :

w = LS(I ◦T ′),

where LS(·) generates the longest word sequence. For sentences with equal length, ran-

dom sampling is used to restrict to one solution. This can be motivated by a human

user who is only interested in one solution, typically.

In practice, the vocabulary W is unknown, e.g. when processing text from web

pages. Let T be the transducer over an input vocabulary S∪{ε}. In addition, a mapping

RV(·) is applied on the input sentence I which maps each unknown word to ε. The final

method is formalized as follows:

w = LS(RV(I) ◦T),

The mapping RV(·) can also be done on-the-fly. A robust input and output handling was

introduced in Section 2.7. An example transducer using the λ notation on transitions

is shown in Figure 4.8. It is used to filter a text for abbreviations. An abbreviations is

defined as a word with 2 letters where the second one is a dot ".".

Figure 4.8: Transducer for extracting abbreviations from a training corpus.

4.4. CREATING A DYNAMIC LANGUAGE MODEL 81

4.4.3 Grammatical structure replacement

Looking for certain word sequences in an arbitrary text was discussed in the previous

section. In this section, a method is described which replaces word sequences by a dif-

ferent sequence, e.g. tags. Similar to the retrieval task, a grammar is used to represent

the word sequences in a compact way. Applications are taboo-filtering and text nor-

malization on the on hand. On the other hand, it is used to pre-process a training text

for dynamic language model training. For example, the technique is used to identify

time, date or media search phrases in a training corpus. An example is selected from

the Wall Street Journal [39]:

• it had sales of ninety point five million dollars in nineteen eighty six third quarter

Note, the number representation are spares in the training data. For example, there

are no phrases denoting a year of the new millennium. In general, the "five million

dollars" are not related to "nineteen eighty six". The idea is to replace these phrases so

that the sentence will look like:

• it had sales of <NUMBER-in-DOLLAR> in the <YEAR> third quarter

The phrases "<NUMBER-in-DOLLAR>" and "<YEAR>" are considered as dynamic

content during speech decoding with dynamic language models. Hence, the number

representation is generalized. During speech decoding a model for uniformed num-

bers is entered which enables to recognize numbers. These where not present in the

training corpus. The method is used as corpus preprocessing to estimate a dynamic

language model. Let T be a transducer over vocabulary W ×W ∪{R }with R being the

set of tag symbols:

W ∩R = ;

In the example above R = {<NUMBER-in-DOLLAR>,<YEAR>}. Tag-labels are not part

of the recognition vocabulary. R is the set of tag-labels where each label is associated

with one grammar, e.g. the grammar for time and date representations. The transducer

T can be constructed from a grammar. Karttunen [182] proposed a replace operator.

A replacing method R is applied for each sentence in C. This is defined recursively:

R : w 7→R ′(;, 1, 1),

82 CHAPTER 4. DYNAMIC SPEECH DECODING

where R ′ computes the replacing for a word sequence w starting at position 1, 1 in the

word sequence. It is defined as follows:

R ′(o , i , j) =

R ′(o wi : j , i + j , 1) ∃v ∈W + : wi : j v /∈ SK

R ′(o , i , j +1) ∃v ∈W + : wi :i+ j v ∈ SK

R ′(o t , i + j , 1)

¨

∃(U , t) ∈ S : wi :i+ j−1 ∈U

wi+ j /∈U

o wi ,|w | else.

The computation starts with an empty result word sequence, the word w1 at position 1

and a step size of 1. Four cases have to be considered. First, no initial part of any word

sequence in SK was observed. Second, a word sequence in SK was partly observed.

Third, a complete word sequence in SK was observed and can be replaced with its cor-

responding tag symbol. Fourth, the remaining word sequence will not match any word

sequence in SK . R is applied for each sentence in C . The result in C ′ is a preprocessed

text with all sentences in SK replaced by tag symbols. C′ is then used for N-gram lan-

guage model learning.

The desired word sequence w from a sentence I can be computed as a composi-

tion. This is formalized as follows:

w = LS(I ◦T),

Let LS(·) be a function that generates the longest word sequence. The automaton I is

derived from the source sentence.

This method requires to know the vocabulary W in advance. However, this is not

the case for many applications, e.g. to process web-scraped text. A robust extension

for open vocabulary transducers is introduced in Section 5.2.2. The input and output

handling is replaced by λ notations. An example is shown in Figure 4.9, it replaces

Figure 4.9: Example transducer that replaces abbreviations in a training corpus.

4.5. SPEECH DECODING WITH TRANSDUCER 83

abbreviations. Given the example from previous section, the transducer will replace

all single letter words with a preceding dot by "<ABB>":

• about half these managers are in the u. s.

The abbreviation "u. s." is replaces by "<ABB>" so that the sentence will become:

• about half these managers are in the <ABB>

Note that the transducer does not know anything else than the structure of an abbre-

viation. It is also possible to add a list of abbreviations, e.g. "SVOX", "BMW".

4.5 Speech decoding with transducer

Starting from the fundamental formula of speech recognition, an equation is derived

for speech decoding. Let ŵ be the most likely word sequence according to the proba-

bility of words given a sequence of features x This can be formalized as follows:

ŵ =argmax
w∈W ∗

P (w |x)

=argmax
w∈W ∗

P (x |w)P (w)
P (x)

=argmax
w∈W ∗

P (x |w)P (w)

where P (x |w) denotes the acoustic model and P (w) denotes the language model. The

acoustic model considers word sequences as sequences of phonemes. In practice, the

word sequences are considered as phoneme sequences. These phonemes can be fur-

ther segmented into hidden Markov states. In fact, the most likely sequence is com-

puted by computing all possible state sequences s as follows:

ŵ =argmax
w∈W ∗

P (x |w)P (w)

=argmax
w∈W ∗

P (w)
∑

∀s

P (x , s |w)

The last sum is not practical, especially for recognizing large vocabularies on embed-

ded devices.

84 CHAPTER 4. DYNAMIC SPEECH DECODING

A "Viterbi approximation" is used to compute the most likely state sequence in-

stead of the most likely word sequence, e.g. outlined by Huang et al. [66]. The equation

becomes:

argmax
w∈W ∗

P (w)
∑

∀s

P (x , s |w)≈ argmax
w∈W ∗

�

P (w)max
s

P (x , s |w)
�

A language model weight is used: P (w)λ with λ being the language weight. This

was described, e.g, by Brown [183]. It should balances the acoustic and language model

distribution. The equation becomes:

ŵ ≈ argmax
w∈W ∗

�

P (w)λmax
s

P (x , s |w)
�

In addition, a word transition penalty ρλw is introduced. This factor is used for a

word length modulation. Here, it is a word independent constant and multiplied to the

word probability whenever a word starts. The factor λw is tuned on some developing

data together with the language model weight λLM . The equation becomes:

ŵ ≈ argmax
w∈W ∗

�

P (w)λρλw max
s

P (x , s |w)
�

In practice, the inverse of the Bayes’ posterior probability is used together with log-

arithms to avoid multiplications during speech decoding. Finally, the equation used

for speech decoding is:

ŵ ≈ argmin
w∈W ∗

�

log(P (w))λ+ log(ρ)λw + log(max
s

P (x , s |w))
�

Where the language P (w) and acoustic model P (x , s |w) is used to compute the most

probable state sequences for an observation sequence to retrieve the best suited word

sequence. Whereas P (w) is used to be a statistical model. It is also common to use

stochastic grammars, e.g. for recognizing named entities.

In practice, it is established to use unweighted grammars, e.g. for digit recogni-

tion. Also heavy content recognition uses unweighted grammars, since there is just no

suitable distribution available. An example is voice destination entry where all desti-

nations are equally probably voice queries. A study using finite state graphs for speech

recognition was provided, e.g., by Ou et al. [184].

4.5. SPEECH DECODING WITH TRANSDUCER 85

Sturtevant [185] proposed a stack decoding. Here, a token passing time syn-

chronous Viterbi beam search is used as proposed, e.g. by Young et al. [23]. A one

pass decoder design was described, e.g. by Odell et al. [186]. An introduction in dy-

namic programming search for continuous speech recognition is provided by Ney et

al. [19]. This thesis uses finite state transducers as motivated, e.g., by Mohri et al. [169].

An overview of decoding techniques for large continuous speech recognition was pro-

vided, e.g. by Aubert [187] and Saon et al. [188]. Here, a speech decoder on weighted

finite state transducer is used. The transducer is compiled and optimized in advanced.

It starts by composing the grammar with the lexicon transducer:

GL= det(L ◦G)

where L is the lexicon and P (w) is represented by G . This was introduced in Section 4.2

and 4.3, respectively. The entire recognition search-space is modeled as transducer. It

is a composition of the lexicon, language, phoneme context and hidden Markov Model

transducer. The phoneme context is a transducer which models 2 to 4-gram phoneme

features. Usually, the inter and intra word phoneme sequences are differed whereas

cross-word modeling is neglected to fulfill memory requirements. It is possible to com-

pute cross-word models on-the-fly. Here, the final transducer is computed by:

R =min(H ◦det(C ◦G L))

=min(H ◦det(C ◦det(L ◦G))).

For the sake of clarity, the ε-removal operators is omitted in the above equations. Also

all non valid paths are removed from R . A non valid paths is a path that will never reach

a final state or, which cannot be derived starting from an initial state.

Often H and C is composed in advanced. The composition of G and L is done on-

the-fly. This reduces the memory requirements on the one hand. On the other hand, it

increases the computational effort during run-time. Techniques are described, e.g. by

Hori et al. [34], [35]. Caseiro et al. [189] or McDonough et al.[36]. A more generalized

approach was described by Allauzen et al. [37], [38].

Figure 4.10 illustrates the structure of a speech decoder. Features are computed by

the acoustic front end. Further, the probability for each feature vector is computed

accordingly to the acoustic model. The feature front end was introduced in Section

3.3. The decoder loads a finite-state transducer either completely or in pieces using an

on demand loading method. A technique was described,e.g, by Kanthak et al. [190]

86 CHAPTER 4. DYNAMIC SPEECH DECODING

Figure 4.10: Overview of a decoder used for speech recognition on embedded devices.

On demand loading is commonly used on embedded devices to reduce the run-

time memory requirements. Only a small portion of the transducer has to be available

in random-access memory. Note, the caches on embedded systems are limited. The

small portion is stored as "Current FST". However, the search algorithm can remain

untouched. In addition, the decoder uses a stack which stores intermediate results,

e.g. the list of active states. In the following, the stack consists of two queues Qs and Qt .

The decoding result is stored as word history, representing most likely word sequences

occurring. Note, only the word sequence is stored. In contrast, it would also be possible

to store the entire state sequence including silent ε-transitions.

The speech decoder alternately computes a topological order and a Viterbi beam

search. Two queues Qt and Qs are used which should be kept in the buffer for fast ac-

cess. Qt is filled by the search method and is input for the topological ordering. The

result of the ordering, Qs , is the input for the beam search. The topological sort is de-

scribed in section 2.6.

Algorithm 4.1 outline the beam search method. All outgoing transitions for each

node in Qs are considered. The computation for each transition has always two stages.

First, the new score is computed. For emitting transitions, both the language model

score and the acoustic score is considered. A special treatment for self-loops might

be required depending on the used acoustic and language model. Second, the score

is evaluated to decide whether to keep the target stage or to prune it from the list. If

the target stage will be considered, the state is stored in the second queue. In addition,

the output label of the transition is computed. It is checked whether there is an output

word or not. In case a word should be omitted, it will be added to the word history.

ε-labels are usually not omitted. Finally, the next time step can be computed starting

again with the topological order on Qt .

4.5. SPEECH DECODING WITH TRANSDUCER 87

Algorithm 4.1 Pseudo code of speech decoding using a Viterbi beam search
Qs ← topo(Qt) // topological sort of active states
while ∀q ∈Q do // viter over actie states

while ∀e ∈ q do // iter over all outgoing transitions
q .s c o r e + t .s c o r e // compute new score
if e not emitting then

if e not seen yet ∨ e not pruned then
if output label then

add output
end if

end if
else // e emitting

add emission score
if e not seen yet ∨ e not pruned then

if output label then
add output

end if
end if

end if
Compute the current best score
Qt .p u s h (q .ne x t s t a t e) // add new state to the list if not yet in Q

end while
reset q
ENEQUEUE q

end while
switch active states to non active list.

The word history can be stored in various ways. In practice, a word lattice is estab-

lished which enables some powerful re-scoring methods. Multiple-pass search strate-

gies are proposed, e.g. by Schwartz et al. [191]. For the sake of clarity, a tree based

history is presented. This can be used for high speed embedded decoders. An illustra-

tion is provided in Figure 4.11.

The tree is stored as a hash array using smart pointers as described, e.g., by Andrei

[192]. The use of smart pointers ensures an always updated memory without dedicated

garbage collection. Each entity stores its usage by storing the number of references

pointing to it. Whenever the counter becomes zero, the entity is tiered up. The tree is

oriented to the root word w0. Hence, all pointers are in root direction which makes it

fast to retrieve the best suited word sequence. Each state in the search space, given by

Qs is pointing to the word history, respectively. Figure 4.11 shows an example tree. The

reference counting is shown in small boxes next to each tree node. The one with zero

will be removed automatically.

88 CHAPTER 4. DYNAMIC SPEECH DECODING

Figure 4.11: Example search space on the top. The word history is shown on the bot-
tom using smart pointers for automatic garbage collection.

Figure 4.12 on the next page shows an example tree recording from a digit num-

ber recognition task. The used grammar was introduced in Figure 4.1. It is a German

gender independent grammar with silence "[s]" between digits. There are 14 paths

presented. One is "[s] sechs [s] zwei" and all others are initialized by "[s] sechs [s] eins".

The number of pointers pointing to each node is denoted by "Ref = n", where n is the

number of references.

In this section, a speech decoding technique was described. Starting from the fun-

damental formula of speech recognition, the construction of the preprocessed search

space was presented. The preprocessing ensures an efficient speech decoding using

weighed finite-state transducers. Together with the decoder overview an algorithm for

a Viterbi beam search was described. The word history was stored in a tree based data

structure.

4.6. SPEECH DECODING OF NESTED TRANSDUCERS 89

Figure 4.12: Subset of a real word histroy result of a digit recognition task.

4.6 Speech decoding of nested transducers

Using dynamic grammars in finite-sate transducers based speech recognition was pro-

posed, e.g. by Schalkwyk et al. [193]Mohri proposes an algorithm to use local gram-

mars in transducers [163]. In contrast, techniques are proposed to add vocabularies to

word class models, e.g. by Dixon et al. [194]. A technique to add grammatical knowl-

edge for improved speech recognition was proposed by Georges et al. [9]. A trans-

ducer nesting technique is described in this section which is applicable on embedded

devices. This technique can be used to add user knowledge.

An n-gram language model P (R (w)) is used which is represented as transducer

G . Where R replaces all domain specific content by tag-symbols. This tag symbol is

trapped during speech decoding to nest a second transducer. The construction of G is

described in Section 4.3. The R function is discussed in Section 4.4.3. G is composed

with a lexicon L . Note, the tag-symbol has to be added to the lexicon. The phoneme

context and the hidden Markov model is composed and the entire search network is

optimized. The construction is described in previous section 4.5.

Here, the search network G ′ is built by applying a set of transducer operators. The

composition is denoted by ◦as introduced in Section 2.4. The "det" and "min" operator

is described in Section 2.2 and 2.3, respectively. G is computed as follows:

G ′ =min(H ◦det(C ◦det(L ◦G)))

90 CHAPTER 4. DYNAMIC SPEECH DECODING

Furthermore, there is a transducer G ′
k for each grammar Gk . Each G ′

k has to be built

in similar way to G ′. It represents the domain specific content such as a user’s address

book or the user’s favorite music titles. Here, the construction uses the same C and H

transducer so that the same acoustic model can be used. In general, it is also possible to

denote a different acoustic model. For the sake of clarity, one acoustical model is used

and the same lexicon L . In practice, L is computed on the device using a comparable

set of phonemes together with a grapheme-to-phoneme conversion tool. This enables

to use user knowledge which is not available when the embedded system is deployed.

The transducer for each G ′
k is built as following:

G ′
k =min(H ◦det(C ◦det(L ◦Gk)))

The speech decoding schema is comparable to the one described in Section 4.5.

In fact, there are no structural changes required. Even the computation is identical by

alternatively computing the topological order and the beam search. A decoding based

on the token passing time synchronous Viterbi beam search is used as described, e.g.,

by Young et al. [23]. For nesting a transducer on the fly, an additional "if" condition

is included. It introduces a nested transducer whenever an output label denotes one.

More detailed, every time a tk output word in G ′ is reached, it continues by evaluating

the initial state of the G ′
k transducer. This nesting can be achieved by using the replace-

ment operator for weighted finite-state transducers as a preprocessing step. The tech-

nique is described by Mohri et al. [169]. Alternatively a concept described by Schalk-

wyk for adding dynamic grammars can be used [193], as also described, e.g. by Mohri

[163]. The proposed technique in this thesis nests a transducer G ′
k during speech de-

coding in G ′ with negligible additional computational cost. An evaluation is provided

by Georges et al. [9]. The decoding schema is outlined in Figure 4.13.

G ′ is represented by green states S 1 to S 6 which could represent an N -gram lan-

guage model. The states in blue are representing the nested transducers G ′
T and G ′

E .

When state S 2 is reached during decoding, the transducer G ′
T is embedded instead of

the "δ : T /0" transition between state S 2 and S 5. State S 2 is connected with an ε : ε/0

transition with the initial state T 1 of G ′
T . An "ε : ε/0" transition connects the final state

T 2 with S 5. Hence, a δ transition between S 2 and S 5 is required to protect S 5 during

determinization and minimization, analogously. G ′
E is embedded between state S 3

and S 6 when S 3 is reached. Each transition with a δ input is omitted by the Viterbi

search. All weights are zero in this example. In general, weights are used and individ-

ually scaled for each nested transducer.

4.6. SPEECH DECODING OF NESTED TRANSDUCERS 91

Figure 4.13: Schematic Embedded transducer decoding.

This construction is a hierarchical transducer nesting. Source and destination

states of transitions with tk output labels are marked. Those transitions have a δ input

label, in order to prevent eliminations during determinization and minimization. The

transducer G ′
k which corresponds to tk is embedded using an ε transition, if a marked

state is reached. If a final state in G ′
k is reached, an ε transition is taken back to the orig-

inal transducer. This procedure requires just moderate modification in typical trans-

ducer frameworks. In addition, it is possible to omit not only the recognized word but

also the origin transducer. Knowing the source may help identifying correlated seman-

tic knowledge. For example, if the words origin comes from an address book trans-

ducer, the entire phrase might be more likely a command for voice activated dialing,

e.g.

• i’d like to hear <Contacts>Marie</Contacts>

In contrast, if the words origin comes from a favorite music title transducer, it might

be more likely a command for playing a song such as following example:

• i’d like to hear <Music_Artist>Jackson</Music_Artist>

Given the introducing example in Section 4.4.3, the abbreviation can be enclosed with

some semantic tags as follows:

• about half these managers are in the <ABB>u. s.</ABB>

This nesting technique is applicable on devices with limited hardware without con-

suming much computational power and time. This could also introduce indetermin-

92 CHAPTER 4. DYNAMIC SPEECH DECODING

ism. Each transducer is deterministic and minimal, but the proposed transducer nest-

ing method is a local operator without considering neighboring states and transitions.

It might happen during search, that identical word hypotheses from various embed-

ded grammars are active. Thus, a wider beam is required in order not to exclude other

hypotheses. This effect is moderate for small |SK | and well predictable terms in Sk .

In this section, a technique is described which nests transducers on-the-fly. Its us-

age for speech recognition on embedded devices is described. This enables the use of

user knowledge on the device.

4.7 Speech decoding on multiple devices

Using an on-the-fly transducer nesting technique enables some new applications. One

of these is a speech decoding schema on multiple devices. Whereas some portion is

recognized on one device, the rest might be recognized on a different one. This way,

it is possible to use personal data without violating data privacy on the one hand. On

the other hand, it reduces the effort for cloud bases speech services by avoiding mem-

ory expensive user-profiles. The technique was proposed by Georges et al. [10]. The

following example illustrates speech decoding on multiple devices. A voice udialing

application is considered with following sentence recognized on the cloud:

"Please call {NAME} on his|her cell phone"

where "{NAME}" was recognized by an acoustic filler model. Let "|" be an exclusive or.

The result sentence is passed to the device. There the filler is replaced by user depen-

dent knowledge. In this example, the users address book is introduced as follows:

"Please call Angelique|Isabel|Robert on his|her cell phone"

Where "Angelique", "Isabel" and "Robert" are names from the address book of the user.

The entire sentence is used on the device to construct a finite-state transducer which

is then used for speech recognition on the device, respectively.

Figure 4.14 shows a schematic overview. A first speech processing pass recognizes

the natural language portion. In addition it identifies domain specific content such

as entries from a user’s address book. A second speech processing pass introduces

domain specific content and finally recognizes the utterance. The technique uses dy-

namic language models as introduced in Section 4.3.3. A transducer nesting technique

4.7. SPEECH DECODING ON MULTIPLE DEVICES 93

Figure 4.14: Multiple pass speech recognition.

is used as described previously in Section 4. In addition, a filler model is used which

substitutes the nested transducer. It enables a postponed evaluation by replacing the

filler model with the target transducer. The filler model is ideally derived from the tar-

get transducer. In practice, a generalized acoustical model is used.

Section 4.7.1 described the overview how multiple devices are connected to each

other. The use of dynamic language models is described in Section 4.7.2. An introduc-

tion to the acoustical filler models is provided in Section 4.7.3.

4.7.1 Schematic overview for speech recognition on multiple devices

Recognizing speech on multiple devices is proposed using a dynamic language model.

It is a hierarchical combination technique starting from less detailed to detailed. Each

layer uses acoustical filler models from the layer below. Where each layer can be pro-

cessed on a different device.

In this thesis, n-best lists are shared between decoders. This ensures backwards

compatibility for existing cloud services. Alternatively, a word lattice can be shared.

Hence, the natural language portion can be recognized on a speech server whereas

the domain specific portion might be recognized in a car’s head-unit or on a mobile

phone using local available knowledge. The intention is to recognize speech wherever

the data is localized. There is a huge amount of natural phrases available on the cloud.

94 CHAPTER 4. DYNAMIC SPEECH DECODING

Figure 4.15: Example data flow for speech recognition on two devices.

Hence, the natural portion is best recognized on the cloud. In contrast, the users ad-

dress book is available on a mobile phone. Hence, the domain specific content is best

recognized on the device. In principle, this technique is not limited to two layers, e.g.

two devices. It is also imaginable to use several recognizer, e.g. a smart phone for mes-

sage dictation and a car-head unit to recognizes address entries.

In this thesis, a two layer implementation is described as proposed by Georges et al.

[10]. The private data is kept on the device and also recognized on the device where-

upon all other data, e.g. the carrier phrase is recognized on the cloud. The proposal is

evaluated in section 5.3.

4.7.2 Use of dynamic language model

A dynamic language model is used together with the transducer nesting technique.

Figure 4.15 gives an overview of the system. The first speech processing pass uses a

dynamic language model as well as acoustic filler models. Each filler model replaces

the "dynamic" content acoustically. The second speech processing pass processes the

recognized word sequence from the first pass. In addition it introduces the domain

specific content. Even though the acoustic model is shared in the figure, in principle,

both passes can use different models. In fact, this is the case when the first processing

pass is done on the cloud whereas the second one is done on an embedded device.

4.7. SPEECH DECODING ON MULTIPLE DEVICES 95

In this thesis, the transducer nesting technique is used together with acoustic filler

models and domain specific content. As an example, a decoding on two devices is

described in the following. Let G ′ be the transducer for recognizing the natural portion

of an utterance. It is built by composing a language transducer G and a lexicon L . G is

trained on a corpus with substituted domain-specific content. In addition, a phoneme

context C and a hidden Markov model H is used. This was introduced in previous

sections. G is constructed in the following way:

G ′ =min(H ◦det(C ◦det(L ◦G)))

"NAME" would be substituted by an acoustic filler for the example sentences in

Section 4.7. The decoding schema is analogous to the one described in Section 4 ex-

cept that acoustic filler models are nested. An n-best sentence list is the result and

passed to a second device. All sentences are used to create the grammar Gt where the

filler denotes the domain specific content. It is possible to add some language model

weights. Also the domain specific content which is introduced afterwards on the fly

is not weighted here. This reduces the latency caused by the search transducer con-

struction G ′′. Here, the same L , C and H transducer is used for the sake of clarity.

In general, it is possible to use different transducers which enables the use of various

acoustic models. The transducer G ′′ for the second device is constructed as follows:

G ′′ =min(H ◦det(C ◦det(L ◦Gt)))

This computation happens on-the-fly. The domain specific content, e.g. G ′
k , is also

represented as transducer:

G ′
k =min(H ◦det(C ◦det(L ◦Gk)))

It is pre-processed on the client. The decoding on the second device uses the trans-

ducer nesting technique to nest G ′
k in G ′′ on the fly. The result is a word sequence

including both, the carrier phrase as well as the domain specific content.

In this section, the use of dynamic language modeling was described for recogniz-

ing speech on multiple devices. As example, the domain specific content of a natural

phrase was recognized on a different device. The technique was described using finite-

state transducers. It uses the transducer nesting technique.

96 CHAPTER 4. DYNAMIC SPEECH DECODING

4.7.3 Use of acoustic filler

Recognizing speech on multiple devices requires some abstraction on levels where not

all knowledge is present. Here an acoustic filler model is proposed which substitutes

the missing context acoustically.

Using filler models is widely used in speech recognition. It is also used to com-

pute the confidence of recognition hypothesis. Adding new words automatically was

proposed by Asadi et al. [195]. Modeling unknown words for speech recognition was

described, e.g., by Kemp et al. [196] or Jiang et al. [197]. Klakow et al. proposes the

use of word fragments as fillers for detecting out of vocabulary words [198]. A general

model for out of vocabularies was proposed by Bazzi et al. [199]. The use of hierar-

chical Markov language model was proposed by Kokubo et al. [200]. An n-gram based

filler model was proposed by Yu for grammar authoring [201]. Using flat hybrid models

was proposed by Bisani et al. for open vocabulary speech recognition [202]. Qin et al.

uses hybrid models with different fragments for unknown word detection and recov-

ery [203]. In this thesis a phoneme 2-gram model is used. It is trained on phoneme

sequences ρ from domain specific content as follows:

P (ρ) =
�

F (ρi−1ρi)
F (ρi−1)

�λAF

Where F (ρi−1ρi) denotes the frequency of the 2-gram. A phoneme transition penalty

λAF was used to further improve the recognition. This parameter was tuned on some

tuning data. The model can be enhanced using smoothing techniques for unseen

phoneme sequences. This is similar to the methods described in 4.3.2. A motivation

for the usage of phonemes is given, e.g. by Savic et al. [204]. Here, a word model was

investigated as "oracle" model as described by Georges et al. [10] and summarized in

Section 5.3. The acoustic filler model was trained on its representing domain specific

content, e.g. an address book.

4.7. SPEECH DECODING ON MULTIPLE DEVICES 97

Figure 4.16: The word duration measurement for the Wall Street Journal corpus indi-
cates a Poisson distribution.

4.7.4 Word duration modeling for slot fillers

The duration of filler models may have an impact on the recognition performance. In

this thesis a word penalty is used, but in general more advanced technique are imagin-

able. This is motivated by Jennequin et al. [205]where a duration model is used during

lattice re-scoring. A similar approach was also proposed by Dino et al. for large vocab-

ulary speech recognition [206]. Kao et al. proposes a discriminative duration models

for speech recognition with segmental conditional random fields [207].

The filler models in this thesis uses a transition penalty similar to a word start

penalty in the language transducer. However, not only the filler model can use a du-

ration model also the introduced domain specific content can use dedicated recog-

nizers. A word duration model, e.g. for large address books, might improve speech

recognition. In Figure 4.16 is a word duration statistic presented. It was derived from

a recognition on the Wall Street Journal corpus [39]. The measure indicates a Poisson

distribution of the word length. However, most words have a duration between 400ms

and 700ms. This is often approximated with an uniform distribution.

This section introduces a word duration modeling for speech recognition. It was

observed that the word duration differs significantly. This may have an impact on the

recognition accuracy. A word transition penalty is therefor introduced and transferred

to the acoustic filler models. In addition, the word transition penalty was also proposed

to improve the recognition of domain specific content.

98 CHAPTER 4. DYNAMIC SPEECH DECODING

4.8 Summary

This chapter introduced a novel method to model dynamic content for language and

speech processing. Dynamic content refers to word sequences which are sparsely rep-

resented in common training data. This could be user-dependent word sequences

or words which are changing frequently. Examples are address book entries, medi-

cal records or stock prices. It is also possible to model word sequences with long range

dependencies using a dynamic language model. In addition, a technique is described

that enables the use of dynamic language models in low resource speech recognition.

This could be speech recognition on mobile phones, car head-units but it could also be

speech recognition on a highly scalable cloud infrastructure. The technique is based

on weighted finite state transducers and uses a transducer nesting technique.

Principles of transducer based speech recognition are introduced in Section 4.1

The transducer for automatic speech recognition is composed of several automatons

and transducers. A lexicon transducer defines the relation between grapheme and

phoneme sequences given words. It is described in Section 4.2 as a tree-like repre-

sentation for fast look-up of phonetic transcriptions. The language automaton repre-

sents the knowledge of word sequences, e.g. to determine whether a word sequence is

probable, or not. The transducer is derived form statistical n-gram language models

or grammars. Section 4.3 describes the developing process in detail.

The embedding of grammars in statistical models to model dynamic content is de-

scribed in Section 4.4. Speech decoding with transducers is introduced in Section 4.5

together with an algorithm for efficient decoding. It is based on a token passing time

synchronous Viterbi beam decoder which is implemented for low resource speech

recognition, e.g. on embedded devices. A tree structured word history is proposed

with a continuous garbage collector. Section 4.6 extends the decoding schema by a

transducer nesting technique. This enables speech recognition using several trans-

ducers where the nesting happens during run-time as proposed by Georges et al. [9].

A transducer can be compiled on the device and nested into the deployed transducer

which models carrier phrases. The recognition with nested transducers allows speech

decoding on multiple devices as proposed by Georges et al. [7], [6], [8]. For this, acous-

tical filler models are used which enable to evaluate some portion of the utterance on

a different device. This technique is described in Section 4.7.

5
Applications

There are many applications using speech recognizers. Today, short message dicta-

tion and voice search is available on nearly all smart phones. All high class navigation

systems are offering voice destination entry. The methods and techniques described

in this thesis are contributing to the developing of humanoid voice interfaces. In fact,

these allow a voice command to be queried in a natural language. This chapter gives

an overview of evaluation metrics and evaluates the transducer nesting technique as

well as the technique for recognizing speech on multiple devices.

The chapter is organized as follows; Section 5.1 introduces evaluation methods for

language processing. The perplexity measure is described for language model evalua-

tion. Speech recognition accuracy is measured by the word and sentence error rate. In

addition, some evaluation metrics for information retrieval tasks are defined.

Section 5.2 describes an application which embeds grammars in n-gram language

models. For this the transducer nesting technique was used as described in Section 4.6.

The evaluation was proposed by Georges et. al [9] for the use on embedded devices.

The decoding on multiple devices is evaluated in Section 5.3.5. This was proposed

by Georges et al. [10]. It is an application to keep personal data on the client. These

data is also recognized on the client whereas the rest of the utterance is recognized on

the cloud. Finally, the chapter is summarized.

99

100 CHAPTER 5. APPLICATIONS

5.1 Evaluation of speech and language techniques

There are two aspects in evaluating speech and language techniques. First, it should

measure how good a technique suites the assumption. Second, it should assess the

human experience using the technique. Both is not always achieved by one measure.

This section outlines evaluation methods used for developing speech applications.

Evaluating a language mode covers two questions; First, how well does a language

model suits the assumption, e.g. evaluate the model on training data. Second, how

good generalizes the model, e.g. test the model on test data. A language model is eval-

uated by computing its perplexity. This is described in Section 5.1.1. Whereas the lan-

guage model performance is not visible to the user, the accuracy of the speech recog-

nition is perceptible by the user.

The evaluation of a speech recognizer should measure an user’s experience. The

word or sentence error rate is a good measure for many speech applications, such as

short message dictation. It is the ratio of wrongly recognized words or sentences overall

words or sentences, respectively. The measure is described in Section 5.1.2. Evaluation

methods known from the information retrieval research are used, too. It is used to

evaluate applications such as voice destination entry or command and control tasks.

In addition, note that a web search engine on a tablet computer may cause a different

user experience than similar engine on a car head-unit. A set of standard metrics is

described in Section 5.1.3.

5.1.1 Language model evaluation

The cross-entropy for a word sequence w with Nw words can be approximated as

H (w) =−
1

Nw
log2(P (w)).

where P (w) is the probability of a word sequence w . The sequence w should be suffi-

cient long, e.g. a test-corpora. The reciprocal average of the geometric probability for

each word form a sentence w defines the perplexity measure:

P P (w) = 2H (w)

5.1. EVALUATION OF SPEECH AND LANGUAGE TECHNIQUES 101

It is the geometric mean of the transducers branching factor. Moreover it can measure

the generalization capabilities of a statistical language model.

The perplexity is computed on a suitable test-set. The test-set should match the

user’s expectation on the one hand. On the other hand, the test set should not be part

of the training set. Both, test and train will give a good estimation on the overall per-

formance. Variations of the perplexity measure were proposed, e.g. by Bimbota et al.

[208] or Chen et al. [209]. In some sense, a lower perplexity correlates with the speech

recognition accuracy on the same test set. In contrast, the perplexity does not con-

sider the confusing between words acoustically. This fact makes a speech recognition

evaluation unavoidable.

5.1.2 Evaluation of speech recognition

Speech recognizers are often evaluated by the Levehnstein distance between hypoth-

esis and reference. This is a de facto standard evaluation. For which the reference was

transcribed by human experts. There are three types of errors:

Substitution: an incorrect word was substituted for the correct word

Deletion: a correct word was omitted in the recognition sentence

Insertion: an extra word was added in the recognition sentence

This is in line with the introduction provided by Huang et al. [66]: A matrix D is used

to compute the minimum path for a recognized word sequence w and its reference u .

This matrix is computed by the following equations:

D0,0(w , u) =0

Di ,0(w , u) =i if 1≤ i ≤ |w |

D0, j (w , u) = j if 1≤ j ≤ |u |

Di , j (w , u) =

Di−1, j−1 +0 if w i = u i

Di−1, j−1 +1 if substitution

Di , j−1 +1 if insertion

Di−1, j +1 if deletion

for 1≤ i ≤ |w | and 1≤ j ≤ |u |. Where | · | denotes the number of words in the sequence.

A weighted finite-state transducer could be used to compute the distances between w

102 CHAPTER 5. APPLICATIONS

Algorithm 5.1 Pseudo code for computing the levenshtein matrix
initialize matrix d // The result will be in d
for i index s1 do // iterate over all words in s1

d [i , 0]← 1 // Add a identity substitution
end for
for j index s2 do // iterate over all words in s2

d [0, j]← 1 // Add a identity substitution
end for
for j index s2 do // iterate over all words in s2

for i index s1 do // iterate over all words in s1

if s1[i] == s2[j] then // current words are identical
d [i , j]← d [i −1, j −1] // denote the identical words

else // current words are not identical
d [i , j]←min(d [i −1, j] +1, d [i , j −1] +1, d [i −1, j −1] +1)

end if
end for

end for

and u , e.g. proposed by Mohri [210]. In this thesis, Algorithm 5.1 was used to compute

the matrix D together with a backtracing algorithm to retrieve the best path.

The Levehnstein distance is defined by:

Lev(w, u) =D|w|,|u|(w, u).

It assigns the minimal number of errors, which are required to transform the hypothe-

ses to the reference word sequence. The word error rate is the ratio between the Lev-

ehnstein distance and the number of correct words:

WER(w, u) =
S (w , u) +D (w , u) + I (w , u)

C (w , u)
·100

=
Lev(w, u)
C (w , u)

·100

It is often helpful to see which word was recognized wrongly to investigate a recog-

nizer output. The backtracing is shown in Algorithm 5.2. Note that the result is just one

trace back. In general there might be several optimal paths with different back traces

and identical overall distance. The word error rate will be consistent but the number

of insertions versus deletions might differ from path to path. Let c denote a correct

match. d denotes a deletion and a substitution is denoted by s . An example is the

following hypothesis:

5.1. EVALUATION OF SPEECH AND LANGUAGE TECHNIQUES 103

Algorithm 5.2 Pseudo code for backtracing levenshtein matrix
if i > 0∧D [i −1, j] +1=D [i , j] then // determine a deletion

backtrace(D,i-1,j)+" D " //Mark a deletion
end if
if j > 0∧D [i , j −1] +1=D [i , j] then // determine a insertion

backtrace(D,i ,j-1)+" I " //Mark an insertion
end if
if i > 0∧ j > 0∧D [i −1, j −1] +1=D [i , j] then // determine a substitution

backtrace(D,i-1,j-1)+" S " //Mark a substitution
end if
if i > 0∧ j > 0∧D [i −1, j −1] =D [i , j] then // determine a correct path

backtrace(D,i-1,j-1)+" C " //Mark correct words
end if

• about half managers art in the u. s.

for the reference

• about half these managers are in the u. s.

Where on error path might be

• c c d c s c c c c

The word "these" is missing in the hypothesis and the word "are" was mis-recognized

as "art". However, an other error path could be:

• c c s s d c c c c

The differences are small and usually unimportant since the same back-tracing meth-

ods is applied on all results. However, it might make a difference when computing

distances between two hypothesis, e.g. for word confidence measuring.

The accuracy of a recognizer is defined as inverse to the word error rate as follows:

ACC(w , u) = 1−WER(w , u) =
C (w , u)−S (w , u)−D (w , u)− I (w , u)

C (w , u)
·100

Note that AC C may have values larger 100%. This is intuitively correct, since the rec-

ognizer might introduce much more words than spoken, actually. If the number of

insertions is set to zero I = 0, the AC C becomes a recall value in sense of information

retrieval. In addition, this measure is normalized. The correctness is defined by:

COR(w , u) =
C (w , u)−S (w , u)−D (w , u)

C (w , u)
·100

104 CHAPTER 5. APPLICATIONS

Alternatively, the sentence error rate can be used, which does not take the length of

a sentence into account. Let SF be the number of wrongly recognized sentences and S

is the number of overall sentences. It is defined as follows:

SER=
SF

S

The measure of word and sentence error is well established, but not unrivaled for

certain applications. Other alternatives were also proposed. Incorporating humane

performance of recognizing speech was proposed, e.g. by Morris et al. [211]. Other

metrics are proposed, e.g. by Mishra et al. [212]. Favre et al. proposed an alternative

evaluation metric to Word Error Rate for the decision audit task of meeting recordings

[213]. Note that other languages may require other metrics, e.g. mandarin is evaluated

on character error rate and for Japanese an error scoring adapted to Katakana is used.

5.1.3 Evaluation of information retrieval

The precision is the ratio between correctly retrieved documents and the number of

all retrieved documents. It can also be defined as ratio between the true positives and

the sum of true positives and false positives as follows:

P =
|{relevant documents∩ retrieved documents}|

|{retrieved documents}|
:=

t p

t p + f p
(5.1)

Let t n and f p , f n and f p be the number of true positives and negatives and the num-

ber of false positives and negatives, respectively. In contrast, the recall is the ratio be-

tween correct retrieved documents and relevant documents. It is defined as follows:

R =
|{relevant documents∩ retrieved documents}|

|{relevant documents}|
:=

t p

t p + f n
(5.2)

Figure 5.1 illustrates the precision and recall measure. The F-measure derives one

value from precision P and recall R as follows:

Fβ = (1+β
2) ·

P ·R
β 2 ·P +R

5.1. EVALUATION OF SPEECH AND LANGUAGE TECHNIQUES 105

Figure 5.1: Illustration of an information retrieval process.

where β ≥ 0. The balanced F-measure is a harmonic mean of precision and recall with

β = 1. This F1-measure is typically chosen:

F1 =
2 ·P ·R
P +R

The Jaccard similarity coefficient is defined between set A, e.g. the set of retrieved doc-

uments and a set B , e.g. the set of relevant documents. It measures the ratio over cor-

rect retrieved documents over the union of both, relevant and retrieved documents. It

is defined as:

J =
|A ∩B |
|A ∪B |

(5.3)

with J (A, B) = 1 if A = ; and B = ; so that 0≥ J (A, B)≥ 1. Hence, the coefficient is 1 for

identical sets and 0 when there is no compliance, e.g. the sets are different. Matthews

proposed a correlation coefficient that uses true and false positives and negatives to

determine the quality of binary classification [214]. The Matthews correlation coeffi-

cient is defined as follows:

M C C =
t p · t n − f p · f n

p

(t p + f p)(t p + f n)(t n + f p)(t n + f n)
(5.4)

It is balanced and can be used even for strongly varying sample sizes for each class.

The range is −1 ≥M C C ≥ +1, where +1 means a perfect prediction, 0 is just random

and −1 indicates total disagreement between prediction and observation. This can be

generalized for multi dimensional purposes as described, e.g. by Jurman et al. [215].

106 CHAPTER 5. APPLICATIONS

5.2 Dynamic Language Model evaluation

This section proposes to embed universal grammars into N -gram Markov language

models. This allows an accurate speech recognition even for N -gram models es-

timated on sparse grammatical word sequences. The technique was published by

Georges et al. [9]. It allows explicit and user-dependent modeling of content, such as

phone numbers, email addresses or US ZIP codes separately from the Markov model.

The method is described along with a feasible implementation overview. More

precisely, a language model preprocessing step generalizes the enclosed grammati-

cal word sequences during language model learning. These grammars are embedded

during speech decoding by using a novel transducer nesting technique. The Wall Street

Journal corpus was used to evaluate the proposed method. A word error rate reduction

of 31.1% was achieved. A computational environment was used, which is typical for

car head units or mobile devices

5.2.1 Introduction

The use of grammars is typical for various speech enabled applications. An example

is voice destination entry. Also voice controlled car head units are using grammars to

model dialogs for embedded speech recognition. In the future, grammars are embed-

ded into natural sentences. This enables a more intuitive human-machine interaction

by understanding utterances formulated in a natural language. Whereas grammars are

well suited for structured informations, Markov models are suitable for natural lan-

guages. Word class based N-gram model were introduced in Section 3.4.3.

Georges et al.[9] proposed to embed grammars into N -gram Markov models. For

this, a transducer nesting technique was used which allows to consider different trans-

ducers during speech decoding. It enables the use of grammars together with N -gram

Markov models. In this way, a generalized Markov models for speech recognition is

realized. This enables accurate speech recognition, even for N-gram models which

are estimated on sparse data. This is relevant for developing applications without the

need of expensive and time-consuming data collections. Furthermore, the transducer

nesting technique allows a late customization with universal grammars as well as the

integration of user-dependent knowledge. The proposed recognizer uses the nesting

technique as described in Section 4.6. Section 5.2.2 presents a preprocessing which is

5.2. DYNAMIC LANGUAGE MODEL EVALUATION 107

used to embed grammars into Markov models. Section 5.2.3 evaluates the proposed

method on the Wall Street Journal task [167]. This has shown that a significant im-

provement can be achieved with the proposed technique. The used computational

environment was comparable with typical car head-units or mobile phones.

5.2.2 Transducer nesting for dynamic language models

A preprocessing step replaces word sequences from a text corpus with corresponding

tag labels. The word sequences are represented by grammars. The replacing method

R is applied for each sentence in a corpus C:

C′ = {w ∈ ((W ∪T)∗\SK)
∗|∃w ′ ∈C : w =R (w ′)}.

C′ is used to estimate the N -gram language model. Section 5.2.3 evaluates the corre-

lation between the number of substituted word sequences and the overall recognition

accuracy. It has been shown that sparse grammatical word sequences are sufficient.

R can be computed in various ways. Here, R is computed by a finite-state trans-

ducer as motivated by Karttunen [182]. The technique was described in Section 4.4.3.

Let S be a set of tuples (U , t) which associates each set U ⊆ SK with a corresponding

grammar tag t ∈ T . This can be formalized as:

S = {(U , t)|∃k : U = Sk ∧ t = tk}

The transducer used to compute R represents the relation between word sequences in

Sk and grammar tags tk . Each sentence in SK is assumed to be unique and the following

equation is fulfilled:

|SK |=
∑

k

|Sk |

Nevertheless, there could still be ambiguity between partial sentences. In this case, the

longest word sequence is selected, which can be computed by the smallest common

substring. This is formalized by the following equation:

ŵ =min
k≤K
(argmax

w∈Sk

(w))

108 CHAPTER 5. APPLICATIONS

Where max/min is the sequence with the maximal/minimal number of words. This

can be computed recursively. The replacing method R is defined as follows:

w 7→R ′(;, 1, 1)

The computation starts with an empty result word sequence, the word w1 at position 1

and a step size of 1. Four cases have to be considered. First, no initial part of any word

sequence in SK was observed. Second, a word sequence in SK was partly observed.

Third, a complete word sequence in SK was observed and can be replaced with its cor-

responding tag symbol. Fourth, the remaining word sequence will not match any word

sequence in SK . This can be formulated for i + j ≤ |w | as follows:

R ′(o , i , j) =

R ′(o wi : j , i + j , 1) ∃v ∈W + : wi : j v /∈ SK

R ′(o , i , j +1) ∃v ∈W + : wi :i+ j v ∈ SK

R ′(o t , i + j , 1)

¨

∃(U , t) ∈ S : wi :i+ j−1 ∈U

wi+ j /∈U

o wi ,|w | e l s e .

This equation can be solved by using an extended finite-state transducer. Usual

transducer implementations are using global declared functions to compute the in-

put and output, e.g. described by Mohri et al.[13], [14]. If an input matches, the out-

put word from the corresponding label is generated. This construction would require

knowing all words in advance.

The transducer which is used here, declares local functions I N : W 7→ {0, 1} along

with an output function OU T : W 7→ W ∪ T for each transition. This robust finite-

state transducer implementation was described in Section 2.7. Furthermore, the in-

put word is shared over the input and output function. This enables an open vocab-

ulary processing with transducers. Every time when an input function evaluates to 1,

the corresponding output is computed and the new state and set of transitions can be

evaluated as usual. This transducer is well suited for computing R , because just the

vocabulary of SK has to be known. All other words are treated equally and are passed

through to the output.

5.2. DYNAMIC LANGUAGE MODEL EVALUATION 109

5.2.3 Evaluation

The proposed technique is evaluated using the Wall Street Journal which is described

by Paul et al. [167]. A computational environment with limited hardware resources was

used. A similar one is typically used by car head units or mobile phones. In fact, the

acoustic model was evaluated with integer values and no advanced acoustic adapta-

tion technique was applied such as MLLR etc. Both the acoustic and language models

have to be as small as possible to fulfill memory requirements of the embedded de-

vices. The SRI Language Model toolkit proposed by Stolcke [216] was used to learn a

5000 word 2-gram language model.

The intention of the proposed technique is the use of specific grammatically given

language knowledge. For this purpose, the corpus was preprocessed to simulate var-

ious grammar coverages. Five grammars were used to evaluate the proposed method

on the Wall Street Journal corpus. Each grammar represents one of the following sets.

The set of all monetary terms is denoted with S$ and the set of percentages is denoted

with S%. Sκ denotes the set of abbreviations. Table 5.1 gives a detailed definition in

Backus–Naur form. Also a statistical N -gram model for abbreviations was used.

The result was a slightly degraded speech recognition accuracy over all experi-

ments. The set of Months is denoted with Sµ and Sη denotes the set of Weekdays.

Further, let S ′i ⊆ Si with i ∈ {$, %,µ,η,κ} be the observable portion of Si in the test

corpus. Each set can be used alone or in combination with others. Here, there are

32=
�

5
1

�

+
�

5
2

�

+
�

5
3

�

+
�

5
4

�

+1 combinations.

Table 5.1: Overview of grammars in Backus-âĂŞNaur Form

〈NUM〉 ::= 〈num〉 [‘point’ 〈num〉][‘comma’ 〈num〉]

〈num〉 ::= ‘one’ 〈num〉 | ‘two’ 〈num〉 | ... | 〈empty〉

〈MONETARY 〉 ::= 〈NUM〉 ‘dollar’ | 〈NUM〉 ‘cent’ | ...

〈PERCENT〉 ::= 〈NUM〉 ‘percent’

〈ABBREVIATION〉 ::= 〈Letter〉 | 〈ABB〉

〈Letter〉 ::= ‘A.’ 〈Letter〉 | ... | 〈empty〉

〈ABB〉 ::= ‘SVOX’ | ...

110 CHAPTER 5. APPLICATIONS

Let π be one arbitrary combination. This defines the set Sπ, S ′π as follows:

Sπ =
⋃

∀i∈π
Si and S ′π =

⋃

∀i∈π
S ′i .

S ′π is used to adjust the grammar coverage in the text corpora which is then used for

language model learning. This enables a realistic application with similar coverages.

The corpus Cπ includes each sentence of Cwhich did not contain any term from S ′π:

Cπ = {w ∈C|>m , n : wm :n ∈ S ′π}.

Each corpusCπ was used to learn a language model for a traditional speech recog-

nizer. The proposed technique requires one further step. R is applied which replaces

every term of Sπ with a corresponding grammar tag:

C′π = {w ∈ ((W ∪T)∗\Sπ)∗|∃w ′ ∈Cπ : w =R (w ′)}.

Using Then, a language model for each C′π was learned, too. Both the N -gram model

and grammar of Sπ were then used to evaluate the proposed technique by means of

recognition accuracy.

In addition, define the corpus size is defined as the number of sentences in percent

compared with the original corpus. Let the grammar coverage forCπ be defined as the

percentage of sentences which contain a term from Sπ:

100 · |{w ∈Cπ|∃m , n : wm :n ∈ Sπ}|
|Cπ|

.

The test corpus has a grammar coverage between 3.64% and 40.61% depending on the

considered Sπ. Different S ′π for Cπ causes a tag coverage between 6, 72% and 36, 44%.

Best recognition accuracy is achieved if the grammar coverage in Cπ is high while

the coverage in the test corpus is low. Conversely, the error rate increases if the gram-

mar coverage in Cπ is low while the coverage in the test corpus is high. In this way a

word error rate of 19.3% was obtained. The effect can be reduced by using dynamic

language models. This has been confirmed by the experiments. A word error rate of

13.3% was achieved with a low grammar coverage of 6.72% by using the proposed dy-

namic language model. Figure 5.2 shows the results for each experiment. The novel

technique is beneficial for situation with a low grammar coverage.

5.2. DYNAMIC LANGUAGE MODEL EVALUATION 111

Figure 5.2: Using 2-gram models reduces the word error rate by up to 31% for low
grammar coverage. No significant word error rate improvements achieved for high
grammar coverages of 36%.

Another aspect next to grammar coverage is the corpus size, which was used to

learn the language model. An increasing error rate for decreasing corpus size was ex-

pected. The proposed technique could as well prevent this deterioration. An analysis

is provided on the next page in Figure 5.3.

Finally, the influence of the corpus size for constant grammar coverage was ana-

lyzed. Two use cases are presented here. In the first case, the grammar coverage is

good, with 36.44%. Here, no further improvements could be achieved. The corpus

randomly shrunk for each speech recognition experiment. No improvements were ob-

served for various corpus sizes. This can be seen on the next page in Figure 5.4.

In the second case, the grammar coverage is low (6.86%±0.22% variance). Here, an

improvement could be achieved using the proposed technique for large corpora. The

result was a 6% reduction in word error rate from 19.3% to 13.3%. The achievement

is still observable for small corpora, although the relative improvement decrease in

this case. The baseline system has a word error rate of 27.0% using a word 2-gram lan-

guage mode, while the proposed technique with the proposed grammar 2-gram model

achieves 23.5% word error rate. The results are shown in Figure 5.5 on the next page.

112 CHAPTER 5. APPLICATIONS

Figure 5.3: The novel technique improves speech recognition for domains with a lim-
ited amount of train data. The word error rate could be reduced from 19% to 13% using
a grammar 2-gram model for small corpora.

Figure 5.4: No improvement achieved for a constant grammar coverage of 36%. The
word error rate increases with a potential dependence for randomly shrunk corpus.

5.2. DYNAMIC LANGUAGE MODEL EVALUATION 113

Figure 5.5: A constant grammar coverage of 7% leads to a relative word error rate
reduction from 31% to 12% for a randomly shrunk corpus.

5.2.4 Conclusion

This section evaluated a technique which generalizes N-gram Markov language mod-

els with grammars. For this, grammatical word sequences were generalized during lan-

guage model learning. The suitable grammars are then embedded dynamically during

speech decoding using a transducer nesting technique. It is feasible to use universal,

application-independent grammars or user-dependent grammars.

The evaluation shows that the novel technique can improve speech recognition on

the Wall Street Journal corpus. Especially when grammatical word sequences are re-

quired to be estimated in N-gram models due to sparseness or long-range dependen-

cies. A computational environment with limited hardware was used which allows a

realistic evaluation for the use in car head-units or mobile devices. An improvement

from 19.3% to 13.3% word error rate was achieved.

114 CHAPTER 5. APPLICATIONS

5.3 Evaluating recognition on multiple devices

This section describes, a novel technique that recognizes speech on a server but all

private knowledge is processed on the client. There is no need anymore to transfer

the users address book, calendar or medical data to the server to achieve a satisfying

recognition. This work was previously published by Georges et al. [10].

The technique combines the advantage of a powerful server with almost unlimited

memory and the advantage of using locally available user dependent knowledge. A

dynamic language model is used to recognize speech with the help of content depen-

dent acoustic fillers on a server. The result is then recognized including user dependent

knowledge on a client, e.g., a smart phone. A word error rate reduction of 17% on the

Wall Street Journal Corpus was achieved.

5.3.1 Introduction

It would be beneficial for various speech enabled applications to use local data such as

address book entries, calendar entries or other private data. These private data is often

not available on a server. This may be because of legal reasons, e.g., medical patient

data. A framework for secure speech recognition was proposed, e.g. by Smaragdis et al.

[217]. However, in this thesis a method is proposed which keeps personal data on the

client. Using local data can also reduce the required server storage complexity for high

demand speech applications. Recognition on an embedded device is often limited due

to restricted computational power and memory.

A novel technique was proposed by Georges et al.[10] that combines client and

server based speech recognition using dynamic language models and acoustic fillers.

There is no need to synchronize user dependent private data to achieve accurate

speech recognition. All private data is recognized on the client. It enhances the recog-

nition hypotheses from the server with suitable locally available data. This allows the

use of models that are highly optimized for the use on embedded devices on the one

hand. On the other hand, the server recognizer can use precise acoustic models and

language models which are estimated on crowd sourced data. The novel technique

can take advantage of private data that is only locally available on the client.

The novel speech recognition technique uses several language models, simultane-

ously. Alternatively, Murveit et al.[218] described a technique that uses different levels

5.3. EVALUATING RECOGNITION ON MULTIPLE DEVICES 115

Figure 5.6: Speech recognition hypotheses from a server are enhanced on the smart
phone with user knowledge. The recognizers are connected through a Wide Area Network
(WAN).

of detail between recognition passes. Multiple pass search strategies were described

in detail by Schwartz et al.[191]. Here statistical language models and grammars are

combined. An overview of combining method was given in Section 3.4.7.

Figure 5.6 gives an overview of the novel technique. The speech signal is captured,

without loss of generality, on a smart phone and passed through a wide area network to

a server. A generalized language model is used for recognition along with an acoustic

model and acoustic fillers. This is described in detail in Section 5.3.3. The recogni-

tion hypotheses are passed to the smart phone. The hypotheses were enhanced on the

smart phone with user grammars and assembled to a weighted finite-state transducer

and Finally recognized as described in Section 5.3.4. The technique was evaluated on

the Wall Street Journal Corpus [167] in Section 5.3.5. A word error reduction of 17%

has shown that a significant accuracy improvement can be achieved. A delay of 15%

compared to real time speech recognition was observed. This delay can be used to pro-

vide preliminary recognition results. The client is typically equipped with embedded

processors and advanced battery-saving modes. In fact, the novel technique can take

advantage of these modes. The full computational power is only required for a short

time period to compute the 2nd pass.

116 CHAPTER 5. APPLICATIONS

Figure 5.7: The standard language model is divided into a user dependent grammar
and a generalized language model. Both were represented as weighted finite-state trans-
ducers.

5.3.2 Dynamic language models with acoustic fillers

Various language models are dynamically combined on multiple devices. An overview

of the language models is given in Figure 5.7. The start point is a corpus C ⊂W ∗ over

vocabulary W for language model training. Further, there are K sets of user-dependent

word sequences Sk ⊂W ∗ with k ≤ K . User dependent word sequences could be terms

from a calendar, proper names from an address book or credit card numbers, etc. Let

SK be the set of all user dependent word sequences:

SK =
K
⋃

k

Sk ⊆W ∗.

Each occurrence of a term from Sk inC is substituted with a marker tk ∈ T where |T |=
K and T ∩W = ;. The result is a generalized corpusC′. The replacing operator R is used

as described by Georges et al. [9]. Regular expressions can be used, too. The definition

of R is given as:

R : W ∗→ ((W ∪T)∗\SK)
∗.

5.3. EVALUATING RECOGNITION ON MULTIPLE DEVICES 117

A generalized N -gram Markov language model is then estimated onC′. The probability

of a word sequence w is given by the sequence computed by R (w). The generalized

language model can be formulated as:

P (R (w)) =
|R (w)|
∏

i
P (R (w)i |R (w)i−N+1:i−1)·

¨

Pk (w m :n) ∃m , n : R (w m :n) =R (w)i = tk

1 e l s e .

Pk is a conditional probability for a replaced word sequence by R where the probability

is 1 if no word was replaced. The model is normalized if each word sequence in SK is

uniquely associated with one marker. Let P (x |w) be the acoustic model. The most

probable word sequence ŵ is given by a sequence of speech features x [66], [65]. Here,

the fundamental formula of speech recognition becomes:

ŵ = argmax
w∈W ∗

P (x |w)P (R (w)).

The server uses the generalized language model where each Pk is replaced on–the–

fly with a corresponding acoustic filler as described in Section 5.3.3. The acoustic fillers

are based on phoneme loop models estimated on the replaced word sequences. There

are various filler alternatives described in the literature. Asadi et al.[195] proposed

fillers that were used to obtain phonetic transcriptions for modeling out of vocabulary

words. Jiang et al.[197] described fillers based on sub–word features for a vocabulary–

independent word confidence measure. Fillers based on word fragments were pro-

posed by Klakow et al [198] and various models were described by Bazzi et al.[199].

Section 5.3.5 investigates the use of oracle fillers for recognizing speech on multiple

devices. The server recognition result is used along with user grammars on the client,

e.g., a smart phone to assemble a user dependent transducer. This transducer is rec-

ognized on the client as described in Section 5.3.4.

118 CHAPTER 5. APPLICATIONS

5.3.3 Recognition on the server

The speech recognizer on the server uses a generalized language model where user

dependent word sequences are recognized with acoustic fillers. Weighted finite-state

transducers are used. This enables an on–the–fly nesting technique together with

acoustic filler models.

The generalized N -gram Markov language model can be represented by a weighted

automaton G1. The relations between phoneme sequences P and words W is de-

scribed by a lexicon transducer L ⊆ (P×W)∗. Further on, the context dependency be-

tween phonemes is given by the transducer C . A static search network can be assem-

bled as follows:

M ′
1 =min(det(C ◦ L ◦G1)),

where "◦" denotes the composition operator as described in Section 2.4. "min", "det"

denote the transducer operator for minimization and determinization. The operators

are introduced in Section 2.2 and 2.3, respectively. Finally, M ′
1 is composed on–the–fly

with a hidden Markov model H along with the cross-word computation. This was ini-

tially described by Hori et al. [34], [35] and further improved by McDonough et al.[36],

Allaucen et al. [37], [38]. The probability for a phoneme sequence, given a sequence

of speech features, can be computed using a token passing time synchronous Viterbi

beam search. An introduction is given by Mohri et al.[169] and Young et al. [23]. This

was described in Section 4.5. Each acoustic filler is represented as a weighted trans-

ducer, sharing the same set of hidden states. There is no need to extend the acoustic

model. The transducer replacing operator can be used to nest the filler model into

the M ′
1 transducer. The filler is nested each time when a marker from the generalized

language model is reached. The technique was introduced in Section 4.7.1.

The recognition result is an N -best list of sentence hypotheses, e.g. proposed by

Schwartz et al.[191]. The acoustic filler location is tagged and will be later used to in-

clude user dependent knowledge. Using N -best sentence hypotheses ensures back-

ward compatibility for other speech applications using the same server infrastructure.

Alternatively, a lattice could be passed to the client.

5.3. EVALUATING RECOGNITION ON MULTIPLE DEVICES 119

5.3.4 Recognition on the client

The smart phone receives recognition hypotheses from the server. The user dependent

language portion is marked. This could be proper names, dates or other private data.

The user data is locally available as grammar, e.g., an address book, calendar or medical

recordings. These data is used for speech recognition on the client, e.g., a smart phone.

Here, the received N -best sentence hypotheses from the server is summarized in

one grammar G2, where each sentence ends up in one grammar rule. This is compara-

ble to an output voting error reduction system where different hypotheses from vari-

ous recognizers are combined to improve the overall accuracy. The Recognizer Output

Voting Error Reduction (ROVER) method was proposed, e.g. by Fiscus [219]. Schwenk

et al.[220] proposed to include language model weights. This can also be introduced

in the method described in this thesis. Alternatively, a word lattice can be delivered by

the server. Each marker in G2 points to a user grammar. Similar to the recognition on

the server, a transducer M ′
2 can be assembled as:

M ′
2 =min(det(C ◦ L ◦G2)).

The phoneme dependency model is C and L is the lexicon transducer. M ′
2 is com-

posed on–the–fly with a hidden Markov model H along with the cross-word compu-

tation. A token passing time synchronous Viterbi beam search is used similar to the

server recognition system. In addition, histogram pruning is applied to fulfill the em-

bedded memory requirement. An introduction in pruning techniques is provided, e.g.

by Huang et al. [66].

5.3.5 Evaluation

The proposed system was evaluated using the Wall Street Journal Corpus [167]. The

same decoder set-up was used on the server and on the client. This enables a fair

comparison. An integer value based acoustic model evaluation was used. Acousti-

cal adaptation techniques such as MLLR etc. were not used in this evaluation The SRI

Language Model tool–kit described by Stolcke [216] was used to estimate the 5k word

language models. Kneser-Ney discounting was used as described, e.g. by Kneser et

al.[155]. The Wall Street Journal Corpus C was prepared for language model training

so that it becomes comparable to real world applications.

120 CHAPTER 5. APPLICATIONS

Table 5.2: Used grammar for evaluation in Backus–Naur Form

〈DAY 〉 := ‘Monday’ | ‘Tuesday’ | ...

〈MONTH〉 := ‘January’ | ‘February’ | ...

〈NUM〉 ::= 〈num〉 [‘.’ 〈num〉][‘,’ 〈num〉]

〈num〉 ::= ‘one’ 〈num〉 | ‘two’ 〈num〉 | ... | 〈empty〉

〈MONETARY 〉 ::= 〈NUM〉‘dollar’|〈NUM〉‘cent’|...

〈PERCENT〉 ::= 〈NUM〉 ‘percent’

〈ABBREVIATION〉 ::= 〈Letter〉 | ‘SVOX’ | ...

〈Letter〉 ::= ‘A.’ 〈Letter〉 | ... | 〈empty〉

Imagine a short message dictation application where the local available address

book, the music title collection and the calendar should be included in the recognition.

Here, the user dependent knowledge S is a subset of all weekdays, names of months,

various number terms and abbreviations according to Table 5.2. All user dependent

knowledge S ′ ⊂ S from the corpus that occurs in the set of test sentences was excluded.

This reduces the coverage of S ′ from 31% down to 7%:

C′ = {w ∈C|>m , n : wm :n ∈ S ′}.

This coverage seems realistic for real world applications when we analyze N -gram cut-

off data. C′ is used to estimate the language models for the server only system. Each

term of S is replaced in the corpus C′ with a corresponding marker symbol from T .

Te grammar in Table 5.2 was used. The transducer replacement operator R to used to

build C′′ as follows:

C′′ = {w ∈ ((W ∪T)∗\S)∗|∃w ′ ∈C′ : w =R (w ′)}.

The generalized corpusC′′ is used to estimate the dynamic language model. This lan-

guage model is used by the server along with the acoustic fillers. Those fillers are based

on phoneme loop models. Every substituted word sequence from C′′ is used to esti-

mate the 1-gram phoneme loop filler.

5.3. EVALUATING RECOGNITION ON MULTIPLE DEVICES 121

Figure 5.8: The minimal word error rate was achieved when the 2nd decoder was
recognizing on 5-best hypotheses. This point is denoted by a cross.

Initially, the impact of the number of N -best hypotheses was analyzed. The hy-

potheses are passed from the server (1s t decoder) to the client (2nd decoder). It was ex-

pected that this influences the recognition accuracy significantly. This was confirmed.

Figure 5.8 shows the influence using 3-gram dynamic language models. The same be-

havior was also observed for the 2-gram and 4-gram models. A minimal word error rate

along with tenable recognition time for the 2nd decoder was achieved using 5-best hy-

potheses. This experiment is denoted with a cross in Figure 5.8. The pruning behavior

on the 2nd decoder has a significant influence on the recognition time but nearly no

influence on the accuracy for small N .

In this evaluation, phoneme loop fillers were used. Even when each model was esti-

mated on representative data, the difference between each filler is minimal. The accu-

racy can be further improved using fillers which are strongly user adapted. The oracle

full word filler model was estimated on the test data in the following experiment. Fig-

ure 5.9 on the next page illustrates the potential of improvement for dynamic 2-gram

language models on representative hardware. The oracle filler outperforms the pro-

posed phoneme loop model as expected. Further, the performance of the grammar

2-gram language model was compared, where user dependent grammars were nested

during decoding. This is only possible when the user data is available on the server.

The novel technique could achieve nearly the same recognition accuracy with user de-

pendent fillers although it took a certain delay. Similar behavior was observed using

the 3 and 4-gram language model set-up.

122 CHAPTER 5. APPLICATIONS

Figure 5.9: The oracle filler gives an impression of the potential of improvement when
user adapted fillers can be used compared to the proposed phoneme loop fillers.

Figure 5.10: The novel client-server speech recognition technique is beneficial if a
short delay is acceptable.

5.3. EVALUATING RECOGNITION ON MULTIPLE DEVICES 123

Finally, the novel system was compared with a server only speech recognition. A

faster recognition was achieved with 4-gram language models whereas no further ac-

curacy improvement was observable. In summary, the recognition accuracy of the

novel technique outperforms the server only system as summarized in Figure 5.10.

No private data has to be synchronized with the server. All private data such as the

address book, calendar or medical data remains on the client. The latency of the pro-

posed technique requires a user feedback mechanism for certain applications. Here,

the latency was on average 15% of the utterance duration. The processor can stay in a

battery-saving mode for 85% of the utterance duration. Note that the begin and end of

speech detection is used to measure the utterance duration. A word error rate reduc-

tion of 17% was achieved for the 3-gram dynamic language model set-up.

5.3.6 Conclusion

A technique for recognizing speech on a client and server was described. The tech-

nique enables to keep private data on the client. Private data could be an address book,

a private calendar or some medical patient data. A dynamic language model is used

on the server along with acoustic fillers. The recognition result is then combined with

user dependent knowledge on the client, e.g., on a smart phone.

It was experimentally shown that the proposed technique improves speech recog-

nition on the Wall Street Journal corpus. An average latency of 15% was observed com-

pared to real time recognition and, in the same time, a word error rate reduction of 17%

was achieved.

124 CHAPTER 5. APPLICATIONS

5.4 Summary

This chapter introduced common evaluation metrics to evaluate language processing

techniques. The evaluation of statistical language models is described followed by the

measure of the speech recognition quality. This chapter puts all pieces together which

were introduced previously. Weighted finite-states are used in the data preparation

stage as well as in the recognizer run-time stage. In Chapter 2, transducers were in-

troduced. Automatic speech recognition was described in Chapter 3. In Chapter 4 the

use of weighted finite-state transducers for speech recognition are described. It also

introduced decoding techniques which are used by the applications described in this

chapter. Two applications were selected to be evaluated in the thesis.

First, an application is proposed which allows to embed grammars in statistical

language models. This dynamic language model allows to use models from various

sources, e.g. the user address book. The used transducer nesting technique enables

the computation on embedded devices, such as mobile phones or car-head units as de-

scribed in Section 5.2. An improved recognition performance was shown by an evalu-

ation. Second, an application is proposed which recognizes speech in the cloud where

the personal data is recognized on the client. A dynamic language model was used

to distinguish between user data and data needed to estimate the language model.

Section 5.3 described the application. It outlines which methods and techniques de-

scribed in this thesis are used to realize the application.

Future research may increase the precision of acoustic fillers. The substituted word

sequence duration can be estimated and used during decoding. The use of natural lan-

guage understanding methods may also increase the accuracy by estimating more pre-

cise dynamic language models. However, the technique still needs to be evaluated on

different language and domains. Research may further decrease the latency between

passes, e.g. by optimizing the network communication. Also the use of alternative

decoders for the 2nd pass may become an important research question. It could use

information from the 1s t pass to reduce the required computational power on succeed-

ing passes. An phonetic sensitive database look-up could be used as well as pruning

methods to speed up the recognition of dynamic content. Future research may also

investigate the limits of this technology. This may help optimizing the system by de-

termining the best number of nested transducers given an infrastructure. This could

be a cloud infrastructure as well as a network of loosely connected wearables.

6
Thesis summary

This thesis describes methods and techniques for speech recognition for embedded

and hybrid use-cases. It introduces novel techniques, such as a location aware speech

recognition (Georges et al. [1]) or a query disambiguation method (Geroges et al. [2]).

In particular, a recognizer was described which uses a dynamic language model to rec-

ognize speech on multiple devices (Georges et al. [6], [7], [8]). The presented speech

decoder is based on weighted finite state transducer and is applicable for low resource

speech recognition, e.g. on embedded devices.

Two real world applications are selected to evaluate the proposed methods and

techniques. Both applications were evaluated on the Wall Street Journal Corpus and

published at INTERSPEECH and ICASSP by Georges et al. [9], [10]. First, a transducer

based speech recognition with dynamic language models was evaluated. It nests trans-

ducers on embedded devices to embed grammars in statistical language models. An

improvement from 19% to 13% word error rate was achieved. Second, accurate client-

server based speech recognition keeping personal data on the client was evaluated. It

recognizes the utterance on a speech server whereas all personal data is recognized on

the client. For this, acoustic filler models were used and a word error rate reduction

of 17% was achieved. An average latency of 15% was observed compared to real time

recognition and a word error rate reduction of 17% was achieved.

125

126 CHAPTER 6. THESIS SUMMARY

Thesis summary and future work

This thesis proposes the use of dynamic language models for automatic speech recog-

nition. The proposed method allows to embed dynamic content into statistical lan-

guage models. A technique is invented that allows to distribute the recognition process

on multiple devices. Two question were considered:

(1) How to represent dynamic data in the speech search space?

(2) How to store and process the search space, e.g. to protect private data?

Dynamic content could be an address book, favorite music titles or medical records.

More general, all content is considered that is sparsely represented in common train-

ing data. This includes stock prises, abbreviations and words with long range depen-

dencies. Such data can often be represented by grammars that are written by human

experts or derived from dedicated data bases. Combining dynamic language models

with acoustic fillers lead to a novel technique. The possibility of recognizing speech on

multiple devices enables new applications and business use-cases.

Weighted finite-state transducers are used in this thesis. A data structure and com-

pression method was introduced that enables low resource speech recognition, e.g. on

embedded devices. Operators on transducers are summarized and their use illustrated

for many applications in the area of speech and language processing. The transducer

composition operator was demonstrated by an application that compiles recognition

grammars from relational databases. This is used to build a voice destination entry sys-

tem. A robust transducer implementation was proposed that enables open vocabulary

processing. This was required to retrieve and replace proper names, abbreviations or

stock prices from arbitrary data. An introduction in grammars and statistical n-gram

Markov model is provided together with techniques for text post- and preprocessing.

Also smoothing, adaptation and interpolation methods on word and word-class based

statistical models are introduced. A novel technique is proposed for location aware

speech recognition using statistical language models.

Finally a dynamic language model is proposed together with a transducer nest-

ing technique. The dynamic language model embeds grammars in statistical models

where the grammar is used to represent dynamic content. An example for such data

is the set of command and control phrases, addresses or named entities. These data is

often sparsely represented in the training data or not accessible due to data privacy re-

strictions. The statistical model is used to compute the probability of word sequences

127

which are phrased in a natural language. The transducer representation of grammars,

statistical and dynamic language models was described.

A nesting technique for transducers enables the use of dynamic language models

on embedded devices. The nesting and decoding is described together with a novel

technique to recognize speech on multiple devices. It uses acoustic fillers to substitute

dynamic content to be processed in a postponed recognition pass. The first pass may

happen by a cloud speech service where the second pass is processed on a personal

device, e.g. a smart phone. Two applications are used in this theses to evaluate the

proposed methods and techniques. The evaluation shows a significant improvement

over the baseline:

(1) The first application described the use of the transducer nesting technique to de-

code dynamic language models on embedded devices. It enables the use of locally

available data in a language model estimated on crowd sourced data. Local data can

be a list of favorite music titles, proper names, abbreviations or number expressions.

These phrases are often sparse represented in the training data.

(2) The second application described the recognition of speech on multiple devices.

A hybrid set-up was chosen to recognize short massages by a speech-server whereas

all personal data is recognized on the client. The personal data is not transfered to the

server. In this way, the data on the client is protected on the one hand. On the other

hand, it reduces the complexity of the server infrastructure.

Both applications are typical use-cases for speech recognizers of the next generation.

The content which is intended to be used for speech recognition is going to be shared

over a plurality of devices. The exchange of data will be limited due to network band-

width, storage capacities or legal reasons. Not only the handling of distributed data,

but also the distribution of computational power is getting more and more important.

Load balancing within and across speech data centers is an important cost factor. Also

new devices such as wearables requires such innovations in speech recognition. These

devices often provide only a limited computational power and the network bandwidth

is restricted, e.g. to protect the data. This thesis described dynamic language models

and a novel technique for distributed speech recognition on multiple devices.

128 CHAPTER 6. THESIS SUMMARY

Future work needs to investigate the use of dynamic language models in other lan-

guage domains such as natural command and control queries, voice search or question

answering. Also its use in other languages needs to be investigated. It is also important

to investigate the scaling capabilities for the use in an industrial environment. How

suited is a dynamic language model for a one, two million word task? The method can

also be improved by the use of natural language understanding to identify dynamic

content. Also a result preparation between processing stages could further increase

the accuracy. One example is the re-use of phonetic information that were recognized

in the 1s t recognition pass. This information can be used in the 2nd pass to prune the

dynamic content in advance. An acoustic database look-up can be used for this as well

as re-scoring methods. Further research may also investigate different 2nd pass de-

coders. It is not required to use a time synchronous search. It could be beneficial to

use alternative search techniques, e.g. a condition random field. Future research can

also develop precise acoustic filler models. A starting point can be the use of duration

models for words and word sequences, but also the use of dedicated pronunciations

for special names could further increase the recognition accuracy.

Optimizing the latency will also become an important factor, at least when the rec-

ognizer will be distributed over a plurality of devices. Research can investigate new

protocols to reduce the network bandwidth between recognition passes. This thesis

proposed a vertical search space distribution over multiple devices. One part of the

network is nested into a more general one which itself can be nested into an even

more general network. All together is a huge search space that is distributed over

multiple devices and connected over acoustic fillers. It is an hierarchical approach

although applicable on different branches simultaneously. Future research could in-

vestigate a horizontal search space distribution where, e.g., the 1st part of the sentence

is recognized on one device and the rest of the sentence on a different one, subse-

quently. Horizontal and vertical search space separation can open a new way of novel

load balancing approaches. It could enable a new set of distributed speech recognizers

which can be connected in an arbitrary way. The network of speech recognizers can be

self-organizing by analyzing available resources. This ambitious recognizer framework

may achieve the always overall best recognition accuracy given the available models,

network bandwidth and computational power.

References

[1] M. Georges, J. Anastasiadis, and O. Bender, “Motion adaptive speech recognition for enhance
voice destination entry,” U.S. application PCT/US2015/035 110, 2015.

[2] M. Georges, E. Vellasques, F. Niedtner, O. Bender, J. Anastasiadis, and D. Jung, “Method and appa-
ratus for processing user input,” U.S. application PCT/US2015/038 535, 2015.

[3] M. Georges, “A comparative study of features for audio-visual speech recognition,” Master’s thesis,
Saarland University, Saarland, 2010.

[4] F. Faubel, M. Georges, B. Fu, and D. Klakow, “Robust gaussian mixture filter based mouth tracking
in a real environment,” Visual Computing Research Conference : 8. - 10. Dezember 2009, Saar-
brücken, Saarland, 2009.

[5] F. Faubel, M. Georges, K. Kunatami, D. Klakow, and A. Bruhn, “Improving hands-free speech recog-
nition in a car through audio-visual voice activity detection,” HSCMA : 2011 Joint Workshop on
Hands-free Speech Communication and Microphone Arrays, pp. 70–75, 30 May - 1 June 2011, dK
ISSN: 978-1-4577-0997-5.

[6] M. Georges and S. Kanthak, “Multiple pass automatic speech recognition methods and appara-
tus,” International application PCT/US2013/056 403, 2013.

[7] M. Georges and S. Kanthak, “Mehrstrangiges automatisches spracherkennungsverfahren und
vorrichtung dafür,” Europe Patent EP App. EP20,130,861,533, May 20, 2015.

[8] M. Georges and S. Kanthak, “Multiple pass automatic speech recognition methods and appara-
tus,” U.S. Patent US App. 14/364,156, Feb. 26, 2015.

[9] M. Georges, S. Kanthak, and D. Klakow, “Transducer-based speech recognition with dynamic lan-
guage models,” Proceedings of INTERSPEECH, pp. 642–646, 2013.

[10] M. Georges, S. Kanthak, and D. Klakow, “Accurate client-server based speech recognition keeping
personal data on the client,” Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on, pp. 3271–3275, May 2014.

[11] U. Schöning, “Theoretische informatik kurzgefasst,” Spektrum Akademischer Verlag, vol. 36,
no. 46, p. 118, 2008.

[12] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM Journal of Research
and Development, vol. 3, no. 2, pp. 114–125, 1959.

[13] M. Mohri, F. Pereira, and M. Riley, “Weighted automata in text and speech processing,” IN ECAI-96
WORKSHOP, pp. 46–50, 1996.

[14] M. Mohri, Weighted Finite State Transducer Algorithms: An Overview. Physica-Verlag, 2004.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[16] W. Kuich and A. Salomaa, Eds., Semirings, Automata, Languages. London, UK, UK: Springer-
Verlag, 1986.

[17] M. Mohri, “Weighted automata algorithms,” in Handbook of Weighted Automata, ser. Monographs
in Theoretical Computer Science. An EATCS Series, M. Droste, W. Kuich, and H. Vogler, Eds.
Springer Berlin Heidelberg, 2009, pp. 213–254.

[18] M. Mohri, “On some applications of finite-state automata theory to natural language processing,”
Nat. Lang. Eng., vol. 2, no. 1, pp. 61–80, Mar. 1996.

[19] H. Ney and S. Ortmanns, “Dynamic programming search for continuous speech recognition,”
Signal Processing Magazine, IEEE, vol. 16, no. 5, pp. 64–83, Sep 1999.

[20] G. V. Noord and D. Gerdemann, “Finite state transducers with predicates and identities,” Gram-
mars, vol. 4, p. 2001, 2001.

129

130 REFERENCES

[21] C. Allauzen and M. Mohri, “An efficient pre-determinization algorithm,” CIAA 2003. LNCS, pp.
83–95, 2003.

[22] S. Kanthak and O. Bender, “Efficient incremental modification of optimized finite-state transduc-
ers (fsts) for use in speech applications,” Jul. 30 2014, eP Patent App. EP20,110,872,688.

[23] S. J. Young, N. H. Russell, and Thornton, “Token Passing: A Simple Conceptual Model for Con-
nected Speech Recognition Systems,” Cambridge University Engineering Department, Tech. Rep.,
1989.

[24] M. Almeida, N. Moreira, and R. Reis, “On the performance of automata minimization algorithms,”
DCC - FC LIACC, UNIVERSIDADE DO PORTO, Tech. Rep., 2007.

[25] J. E. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” Stanford Uni-
versity, Stanford, CA, USA, Tech. Rep., 1971.

[26] M. Baclet and C. Pagetti, “Around hopcroft’s algorithm.” CIAA, vol. 4094, pp. 114–125, 2006.

[27] J. A. Brzozowski, “Canonical regular expressions and minimal state graphs for definite events,” in
Mathematical theory of Automata, ser. Volume 12 of MRI Symposia Series. Polytechnic Press,
Polytechnic Institute of Brooklyn, N.Y., 1962, pp. 529–561.

[28] M. Mohri, “Minimization algorithms for sequential transducers,” Theor. Comput. Sci., vol. 234, no.
1-2, pp. 177–201, Mar. 2000.

[29] B. W. Watson and J. Daciuk, “An efficient incremental dfa minimization algorithm,” Nat. Lang.
Eng., vol. 9, no. 1, pp. 49–64, Mar. 2003.

[30] S. Dobrisek, B. Vesnicer, and F. Mihelic, “A sequential minimization algorithm for finite-state pro-
nunciation lexicon models.” Proceedings of INTERSPEECH, pp. 720–723, 2009.

[31] G. Zweig, G. Saon, and F. Yvon, “Arc minimization in finite state decoding graphs with cross-word
acoustic context.” INTERSPEECH, 2002.

[32] D. Revuz, “Minimisation of acyclic deterministic automata in linear time,” Theor. Comput. Sci.,
vol. 92, no. 1, pp. 181–189, Jan. 1992.

[33] F. C. N. Pereira and M. D. Riley, “Speech recognition by composition of weighted finite automata,”
Finite-State Language Processing, pp. 431–453, 1996.

[34] T. Hori, C. Hori, and Y. Minami, “Fast on-the-fly composition for weighted finite-state transducers
in 1.8 million-word vocabulary continuous speech recognition,” INTERSPEECH, 2004.

[35] T. Hori and A. Nakamura, “Generalized fast on-the-fly composition algorithm for wfst-based
speech recognition.” INTERSPEECH, pp. 557–560, 2005.

[36] J. W. McDonough, E. Stoimenov, and D. Klakow, “An algorithm for fast composition of weighted
finite-state transducers.” ASRU, 2007.

[37] C. Allauzen and M. Mohri, “3-way composition of weighted finite-state transducers,” CIAA, pp.
262–273, 2008.

[38] C. Allauzen and M. Mohri, “N-way composition of weighted finite-state transducers,” Int. J.
Found. Comput. Sci., vol. 20, no. 4, pp. 613–627, 2009.

[39] M. Mohri, F. C. N. Pereira, and M. Riley, “The design principles of a weighted finite-state transducer
library.” Theor. Comput. Sci., vol. 231, no. 1, pp. 17–32, 2000.

[40] M. Mohri and C. S. Yu, “Generic epsilon-removal and input epsilon-normalization algorithms for
weighted transducers,” 2000.

[41] A. Kempe, “Extraction of epsilon-cyclesfrom finite-state transducers,” Revised Papers from the 6th
International Conference on Implementation and Application of Automata, pp. 190–201, 2002.

[42] M. H. Alsuwaiyel, Algorithms: Design Techniques and Analysis, ser. Lectures Notes Series on Com-
puting. Singapore: World Scientific, 1999.

[43] A. B. Kahn, “Topological sorting of large networks,” Commun. ACM, vol. 5, no. 11, pp. 558–562,
Nov. 1962.

[44] R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,” Acta Informatica, vol. 6, no. 2,
pp. 171–185, 1976.

[45] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan, “Faster algorithms for incremental
topological ordering.” ICALP (1), vol. 5125, pp. 421–433, 2008.

REFERENCES 131

[46] A. E. Brouwer and W. H. Haemers, Spectra of Graphs. New York, NY: Springer, 2012.

[47] M. T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis and Internet Examples,
2nd ed. New York, NY, USA: John Wiley & Sons, Inc., 2009.

[48] C. Allauzen, M. Mohri, and B. Roark, “A general weighted grammar library.” CIAA, vol. 3317, pp.
23–34, 2004.

[49] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “Openfst: A general and efficient
weighted finite-state transducer library.” CIAA, vol. 4783, pp. 11–23, 2007.

[50] A. A. Aqrawi, S. Anne, and C. Elster, “Effects of compression on data intensive algorithms,” 2010.

[51] M. Mohri, “Compact representations by finite-state transducers.” ACL, pp. 204–209, 1994.

[52] D. K. Blandford, G. E. Blelloch, and I. A. Kash, “Compact representations of separable graphs.”
SODA, pp. 679–688, 2003.

[53] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

[54] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimizations of blocked
algorithms,” SIGPLAN Not., vol. 26, no. 4, pp. 63–74, Apr. 1991.

[55] Park, Penner, and Prasanna, “Optimizing graph algorithms for improved cache performance,”
IEEETPDS: IEEE Transactions on Parallel and Distributed Systems, vol. 15, 2004.

[56] D. Caseiro, “Wfst compression for automatic speech recognition.” INTERSPEECH, pp. 1493–1496,
2010.

[57] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, “Compression of weighted graphs.” KDD, pp.
965–973, 2011.

[58] N. R. Brisaboa, S. Ladra, and G. Navarro, “Directly addressable variable-length codes.” SPIRE, vol.
5721, pp. 122–130, 2009.

[59] H. E. Williams and J. Zobel, “Compressing integers for fast file access.” Comput. J., vol. 42, no. 3,
pp. 193–201, 1999.

[60] P. Skibinski, S. Grabowski, and S. Deorowicz, “Revisiting dictionary-based compression.” Softw.,
Pract. Exper., vol. 35, no. 15, pp. 1455–1476, 2005.

[61] E. W. D. Whittaker and B. Raj, “Quantization based language model compression.” INTERSPEECH,
pp. 33–36, 2001.

[62] J. Olsen and D. Oria, “Profile based compression of n-gram language models,” Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on,
vol. 1, p. I, may 2006.

[63] F. Pereira, M. Riley, and R. Sproat, “Weighted rational transductions and their application to hu-
man language processing.” HLT, 1994.

[64] C. A. Furia, “A survey of multi-tape automata,” CoRR, vol. abs/1205.0178, 2012.

[65] E. G. Schukat-Talamazzini, Automatische Spracherkennung - Grundlagen, statistische Modelle und
effiziente Algorithmen, ser. Künstliche Intelligenz. Vieweg, 1995.

[66] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to Theory, Algorithm
and System Development. Prentice Hall PTR, May 2001.

[67] B. Lee, M. Hasegawa-johnson, C. Goudeseune, S. Kamdar, S. Borys, M. Liu, and T. Huang, “Avicar:
Audio-visual speech corpus in a car environment,” in Proc. Conf. Spoken Language, Jeju, Korea,
pp. 2489–2492, 2004.

[68] J.-M. Valin. (2007) The Speex Codec Manual. Xiph.org Foundation. [Online]. Available: http:
//speex.org/docs/manual/speex-manual/

[69] T. Terriberry and K. Vos, “Definition of the Opus Audio Codec,” Internet Requests for Comment,
RFC Editor, Fremont, CA, USA, Tech. Rep. 6716, Sep. 2012.

[70] L. Rabiner and R. Schafer, Digital Processing of Speech Signals. Englewood Cliffs: Prentice Hall,
1978.

http://speex.org/docs/manual/speex-manual/
http://speex.org/docs/manual/speex-manual/

132 REFERENCES

[71] D. Enqing, L. Guizhong, Z. Yatong, and C. Yu, “Voice activity detection based on short-time energy
and noise spectrum adaptation,” Signal Processing, 2002 6th International Conference on, vol. 1,
pp. 464–467 vol.1, Aug 2002.

[72] P. N. Garner, T. Fukada, and Y. Komori, “A differential spectral voice activity detector,” Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, May 2004.

[73] M. Moattar and M. Homayounpour, “A simple but efficient real-time voice activity detection al-
gorithm,” EUSIPCO. EURASIP, pp. 2549–2553, 2009.

[74] S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences,” Acoustics, Speech, and Signal Processing [see also
IEEE Transactions on Signal Processing], IEEE Transactions on, vol. 28, no. 4, pp. 357–366, 1980.

[75] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals Eugen., vol. 7,
pp. 179–188, 1936.

[76] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition), 2nd ed. Wiley-
Interscience, November 2000.

[77] S. F. BOLL, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans.
Acoust, Speech & Signal Process, vol. 33, no. 27, pp. 113–120, 1979.

[78] P. Lockwood and J. Boudy, “Experiments with a nonlinear spectral subtractor (nss), hidden markov
models and the projection, for robust speech recognition in cars,” Speech Commun., vol. 11, no.
2-3, pp. 215–228, 1992.

[79] M. Wölfel and J. McDonough, Distant Speech Recognition, 1st ed. Chichester, UK: Wiley, 2009.

[80] B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave for automatic
speaker identification and verification,” The Journal of the Acoustical Society of America, vol. 55,
no. 6, pp. 1304–1312, 1974.

[81] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of the 3rd Conference on Applied
Natural Language Processing, 1992.

[82] N. Chomsky, Syntactic Structures. The Hague: Mouton, 1957.

[83] N. Chomsky, Aspects of the Theory of Syntax. Cambridge, MA: MIT Press, 1965.

[84] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translating and Compiling. Vol 1 : Parsing.
Englewood Cliffs, N.J.: Prentice-Hall, 1972.

[85] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke, E. Fosler, G. Tajchman, , N. Morgan, and N. Morgan,
“Using a stochastic context-free grammar as a language model for speech recognition,” 1995.

[86] F. Duckhorn and R. Hoffmann, “Using context-free grammars for embedded speech recognition
with weighted finite-state transducers.” INTERSPEECH, 2012.

[87] J.-C. Junqua, Robust Speech Recognition in Embedded System and PC Applications. Norwell, MA,
USA: Kluwer Academic Publishers, 2000.

[88] D. Angluin, “Learning regular sets from queries and counterexamples,” Inf. Comput., vol. 75, no. 2,
pp. 87–106, Nov. 1987.

[89] L. Firoiu, T. Oates, and P. R. Cohen, “Learning regular languages from positive evidence,” In Twen-
tieth Annual Meeting of the Cognitive Science Society, pp. 350–355, 1998.

[90] F. Denis, A. Lemay, and A. Terlutte, “Learning regular languages using non deterministic finite
automata,” 2000.

[91] F. Denis, A. Lemay, A. Terlutte, and R. F. J. Curie, “Learning regular languages using rfsas,” 2001.

[92] D. Klein and C. D. Manning, “Natural language grammar induction using a constituent-context
model.” NIPS, pp. 35–42, 2001.

[93] H. Feili and G. Ghassem-Sani, “Unsupervised grammar induction using history based approach.”
Computer Speech & Language, vol. 20, no. 4, pp. 644–658, 2006.

[94] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish, “Regular expression
learning for information extraction,” In EMNLP, pp. 21–30, 2008.

[95] A. Roberts and E. Atwell, “Unsupervised grammar inference systems for natural language,” School
of Computing, University of Leeds, Tech. Rep. 2002.20, 2002.

REFERENCES 133

[96] A. Clark and S. Lappin, “Unsupervised learning and grammar induction,” in The Handbook of
Computational Linguistics and Natural Language Processing, A. Clark, C. Fox, and S. Lappin, Eds.
Wiley-Blackwell, 2010, pp. 197–220.

[97] A. A. Markov, “An example of statistical investigation in the text of ‘Eugene Onyegin’ illustrating
coupling of ‘tests’ in chains,” Proceedings of the Academy of Sciences, vol. 7 of VI, pp. 153–162, 1913.

[98] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. Urbana and
Chicago: University of Illinois Press, 1949.

[99] T. Segaran and J. Hammerbacher, Beautiful Data: The Stories Behind Elegant Data Solutions.
O’Reilly Media, Jul. 2009.

[100] F. Jelinek, Statistical Methods for Speech Recognition. The MIT Press, Jan. 1998.

[101] R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from here,” Pro-
ceedings of the IEEE, p. 2000, 2000.

[102] A. Franz and T. Brants. (2006, Aug.) All our n-gram are belong to you. Google Ma-
chine Translation Team. [Online]. Available: http://googleresearch.blogspot.com/2006/08/
all-our-n-gram-are-belong-to-you.html

[103] R. Kuhn and R. D. Mori, “A cache-based natural language model for speech recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 12, no. 6, pp. 570–583, 1990.

[104] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks, “A closer look at skip-gram modelling,”
Proceedings of the Fifth international Conference on Language Resources and Evaluation (LREC-
2006), 2006.

[105] M. Mahajan, D. Beeferman, and X. Huang, “Improved topic-dependent language modeling using
information retrieval techniques,” Acoustics, Speech, and Signal Processing, 1999. Proceedings.,
1999 IEEE International Conference on, vol. 1, pp. 541–544 vol.1, Mar 1999.

[106] T. Kalt, “A new probabilistic model of text classification and retrieval title2:,” University of Mas-
sachusetts, Amherst, MA, USA, Tech. Rep., 1998.

[107] J. M. Ponte and W. B. Croft, “A language modeling approach to information retrieval,” Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 275–281, 1998.

[108] X. Liu and W. B. Croft, “Statistical language modeling for information retrieval,” Annual Review of
Information Science and Technology, vol. 39, no. 1, pp. 1–31, 2005.

[109] G. Salton and M. J. McGill, Introduction to modern information retrieval. New York: McGraw-Hill,
1983.

[110] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Technology
behind Search (2nd Edition) (ACM Press Books), 2nd ed. Addison-Wesley Professional, Feb. 2011.

[111] Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–162, 1954.

[112] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,” In Proceedings of SDAIR-94,
3rd Annual Symposium on Document Analysis and Information Retrieval, pp. 161–175, 1994.

[113] T. Vatanen, J. J. VÃČÂd’yrynen, and S. Virpioja, “Language identification of short text segments
with n-gram models.” LREC, 2010.

[114] G. R. Botha and E. Barnard, “Factors that affect the accuracy of text-based language identifica-
tion.” Computer & Language, vol. 26, no. 5, pp. 307–320, 2012.

[115] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning, “Named entity recognition with character-level
models,” Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003
- Volume 4, pp. 180–183, 2003.

[116] B. Kessler, G. Numberg, and H. Schütze, “Automatic detection of text genre,” Proceedings of the
35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the
European Chapter of the Association for Computational Linguistics, pp. 32–38, 1997.

[117] Y. Su, “Bayesian class-based language models.” ICASSP, pp. 5564–5567, 2011.

[118] E. Whittaker and R. Woodland, “Efficient class-based language modelling for very large vocabu-
laries,” Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE Inter-
national Conference on, vol. 1, pp. 545 –548 vol.1, 2001.

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

134 REFERENCES

[119] L. R. Bahl, P. Brown, P. De Souza, and R. Mercer, “A tree-based statistical language model for natu-
ral language speech recognition,” Acoustics, Speech and Signal Processing, IEEE Transactions on,
vol. 37, no. 7, pp. 1001–1008, Jul 1989.

[120] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, “Class-based n-gram models of
natural language,” Jun. 07 1992.

[121] L. Moisa and E. P. Giachin, “Automatic clustering of words for probabilistic language models,”
EUROSPEECH, 1995.

[122] M. Jardino, “Multilingual stochastic n-gram class language models,” Acoustics, Speech, and Sig-
nal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on,
vol. 1, pp. 161–163 vol. 1, May 1996.

[123] C. Beaujard, M. Jardino, and H. Bonneau-maynard, “Evaluation of a class-based language model
in a speech recognizer,” Jan. 18 1999.

[124] C. Samuelsson and W. Reichl, “A class-based language model for large-vocabulary speech recog-
nition extracted from part-of-speech statistics,” IEEE ICASSP-99, pp. 537–540, 1999.

[125] A. Emami and S. F. Chen, “Multi-class model m.” ICASSP, pp. 5516–5519, 2011.

[126] I. Zitouni, O. Siohan, and C.-H. Lee, “Hierarchical class n-gram language models: towards better
estimation of unseen events in speech recognition,” INTERSPEECH’03, pp. –1–1, 2003.

[127] H. Yamamoto and S. Isogai, “Multi-class composite n-gram language model for spoken language
processing using multiple word clusters,” 39 th Annual meetings of the Association for Computa-
tional Linguistics, pp. 6–11, 2001.

[128] S. M. Katz, “Estimation of probabilities from sparse data for the language model component of a
speech recognizer,” in IEEE Transactions on Acoustics, Speech and Singal processing, vol. ASSP-35,
no. 3, March 1987, pp. 400–401.

[129] S. C. Martin, C. Hamacher, J. Liermann, F. Wessel, and H. Ney, “Assessment of smoothing methods
and complex stochastic language modeling,” in Sixth European Conference on Speech Communi-
cation and Technology, EUROSPEECH 1999, Budapest, Hungary, September 5-9, 1999, 1999.

[130] J. T. Goodman, “Putting it all together: Language model combination,” In Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 1647–1650, 2000.

[131] B. Bigi, Y. Huang, and R. de Mori, “Vocabulary and language model adaptation using information
retrieval.” INTERSPEECH, 2004.

[132] F. Jelinek, “Readings in speech recognition,” in Readings in Speech Recognition, A. Waibel and K.-F.
Lee, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, ch. Self-organized
Language Modeling for Speech Recognition, pp. 450–506.

[133] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for language modeling,”
Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, pp. 310–318,
1996.

[134] P. Dupont and F. T. Cnet/laa/tss/rcp, “Interpolated word and class bigram models for spanish
conversational speech recognition,” Oct. 14 1997.

[135] D. Klakow, “Log-linear interpolation of language models.” ICSLP, 1998.

[136] G. Maltese, P. Bravetti, H. CrÃČÂl’py, B. J. Grainger, M. Herzog, and F. Palou, “Combining word-
and class-based language models: a comparative study in several languages using automatic and
manual word-clustering techniques.” INTERSPEECH, pp. 21–24, 2001.

[137] J. R. Bellegarda, “Statistical language model adaptation: review and perspectives,” Speech Com-
munication, vol. 42, pp. 93–108, 2004.

[138] J. Bilmes and H. Lin, “Online adaptive learning for speech recognition decoding.” INTERSPEECH,
pp. 1958–1961, 2010.

[139] C. Allauzen and M. Riley, “Bayesian language model interpolation for mobile speech input.” IN-
TERSPEECH, pp. 1429–1432, 2011.

[140] J. Wu, “Adaptation of language models and context free grammar in speech recognition,” US
Patent US7 925 505 B2, 2007.

REFERENCES 135

[141] D. Jurafsky and J. H. Martin, Speech and Language Processing (2Nd Edition). Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 2009.

[142] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing. Cam-
bridge, Massachusetts: The MIT Press, 1999.

[143] J. Goodman, “A Bit of Progress in Language Modeling,” Microsoft Research, 56 Fuchun Peng, Tech.
Rep., 2000.

[144] H. Jeffreys, Theory of probability. Clarendon Press, Oxford, second edition, 1948.

[145] N. Chopin, C. P. Robert, and J. Rousseau, “Harold jeffreys’ theory of probability revisited,” Paris
Dauphine University, Economics Papers from University Paris Dauphine, 2009.

[146] F. Jelinek and R. L. Mercer, “Interpolated estimation of markov source parameters from sparse
data,” In Proceedings of the Workshop on Pattern Recognition in Practice, pp. 381–397, May 1980.

[147] G. J. Lidstone, “Note on the general case of the bayes-laplace formula for inductive or a posteriori
probabilities,” Transactions of the Faculty of Actuaries, vol. 8, pp. 182–192, 1920.

[148] G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis, 1st ed. Wiley-Interscience,
Apr. 1992.

[149] W. Johnson, “Probability: deductive and inductive problems,” Mind, vol. 41, pp. 421–423, 1932.

[150] I. Witten and T. Bell, “The zero-frequency problem: Estimating the probabilities of novel events
in adaptive text compression,” IEEE Transactions on Information Theory, vol. 37, no. 4, 1991.

[151] K. W. Church and W. A. Gale, “A comparison of the enhanced Good-Turing and deleted estimation
methods for estimating probabilities of English bigrams,” Computer speech and language, vol. 5,
pp. 19–54, 1991.

[152] H. Ney, U. Essen, and R. Kneser, “On Structuring Probabilistic Dependencies in Stochastic Lan-
guage Modelling,” Computer Speech and Language, vol. 8, pp. 1–38, 1994.

[153] H. Ney, U. Essen, and R. Kneser, “On the estimation of ’small’ probabilities by leaving-one-out,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 12, pp. 1202–1212, Dec. 1995.

[154] R. Rosenfeld and X. Huang, “Improvements in stochastic language modeling,” Proceedings of the
Workshop on Speech and Natural Language, pp. 107–111, 1992.

[155] R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling,” Processing of
ICASSP, 1995.

[156] T. Kaufmann, “A rule-based language model for speech recognition,” 2009.

[157] J. Gillett and W. Ward, “A language model combining trigrams and stochastic context-free gram-
mars.” ICSLP, 1998.

[158] A. Nasr, Y. Esteve, F. Bechet, T. Spriet, and R. D. Mori, “A language model combining n-grams and
stochastic finite automata,” Proceedings of Eurospeech, pp. 2175–2178, 1999.

[159] Y.-Y. Wang, M. Mahajan, and X. Huang, “A unified context-free grammar and n-gram model for
spoken language processing,” Proceedings ICASSP, 2000.

[160] S. C. Martin, A. Kellner, and T. Portele, “Interpolation of stochastic grammar and word bigram
models in natural language understanding.” INTERSPEECH, pp. 234–237, 2000.

[161] Y. yi Wang, A. Acero, C. Chelba, B. Frey, and L. Wong, “Combination of statistical and rule-based
approaches for spoken language understanding,” Proc. ICSLP 2002, pp. 609–612, 2002.

[162] V. Goel, “Conditional maximum likelihood estimation for improving annotation performance of
n-gram models incorporating stochastic finite state grammars.” INTERSPEECH, 2004.

[163] M. Mohri, “Local grammar algorithms,” in Inquiries into Words, Constraints, and Contexts.,
A. Arppe, L. Carlson, K. Lindèn, J. Piitulainen, M. Suominen, M. Vainio, H. Westerlund, and A. Yli-
Jyrä, Eds. CSLI Publications, 2005.

[164] K. W. Church and P. Hanks, “Word association norms, mutual information, and lexicography,”
Comput. Linguist., vol. 16, no. 1, pp. 22–29, Mar. 1990.

[165] D. Klakow, “Language-model optimization by mapping of corpora,” Acoustics, Speech and Signal
Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 2, pp. 701 –704
vol.2, may 1998.

136 REFERENCES

[166] G. Bouma, “Normalized (pointwise) mutual information in collocation extraction,” From Form to
Meaning: Processing Texts Automatically, Proceedings of the Biennial GSCL Conference 2009, vol.
Normalized, pp. 31–40, 2009.

[167] D. B. Paul and J. M. Baker, “The design for the wall street journal-based csr corpus.” ICSLP, 1992.

[168] M. Schuster, “Speech recognition for mobile devices at google,” Proceedings of the 11th Pacific Rim
international conference on Trends in artificial intelligence, pp. 8–10, 2010.

[169] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers in speech recognition.” Com-
puter Speech & Language, vol. 16, no. 1, pp. 69–88, 2002.

[170] C. Chelba, “A structured language model,” Computer Speech and Language, vol. 14, pp. 283–332,
1997.

[171] A. Rastrow, M. Dredze, and S. Khudanpur, “Efficient structured language modeling for speech
recognition,” INTERSPEECH 2012, 13th Annual Conference of the International Speech Commu-
nication Association, Portland, Oregon, USA, September 9-13, 2012, pp. 1660–1663, 2012.

[172] Y.-Y. Wang and A. Acero, “Combination of cfg and n-gram modeling in semantic grammar learn-
ing.” INTERSPEECH, 2003.

[173] D. Yu, K. Wang, M. Mahajan, P. Mau, and A. Acero, “Improved name recognition with user model-
ing.”

[174] N. Slonim and N. Tishby, “The power of word clusters for text classification,” In 23rd European
Colloquium on Information Retrieval Research, 2001.

[175] S. C. Martin, J. Liermann, and H. Ney, “Algorithms for bigram and trigram word clustering.” EU-
ROSPEECH, 1995.

[176] D. Lin, “Automatic retrieval and clustering of similar words,” Proceedings of the 17th international
conference on Computational linguistics - Volume 2, pp. 768–774, 1998.

[177] J. Wiebe, J. Maples, L. Duan, and R. Bruce, “Experience in wordnet sense tagging in the wall street
journal,” 1997.

[178] C. Kit, X. Liu, and J. J. Webster, “Abbreviation recognition with maxent model.” CICLing, vol. 3878,
pp. 117–120, 2006.

[179] E. Roche and Y. Schabes, “Deterministic part-of-speech tagging with finite-state transducers.”
Computational Linguistics, vol. 21, no. 2, pp. 227–253, 1995.

[180] G. Chrupala and D. Klakow, “A named entity labeler for german: Exploiting wikipedia and distri-
butional clusters.” LREC, 2010.

[181] E. Loper and S. Bird, “Nltk: The natural language toolkit,” CoRR, vol. cs.CL/0205028, 2002.

[182] L. Karttunen, “The replace operator,” 1994.

[183] P. F. Brown, “The acoustic-modeling problem in automatic speech recognition,” Ph.D. disserta-
tion, Carnegie Mellon University, Pittsburgh, PA, USA, 1987, aAI8727170.

[184] Z. Ou and J. Xiao, “A study of large vocabulary speech recognition decoding using finite-state
graphs,” Chinese Spoken Language Processing (ISCSLP), 2010 7th International Symposium on,
pp. 123 –128, 29 2010-dec. 3 2010.

[185] D. G. Sturtevant, “A stack decoder for continous speech recognition,” Proceedings of the workshop
on Speech and Natural Language, pp. 193–198, 1989.

[186] J. J. Odell, V. Valtchev, P. C. Woodland, and S. J. Young, “A one pass decoder design for large vocab-
ulary recognition.” HLT, 1994.

[187] X. L. Aubert, “An overview of decoding techniques for large vocabulary continuous speech recog-
nition.” Computer Speech & Language, vol. 16, no. 1, pp. 89–114, 2002.

[188] G. Saon, D. Povey, and G. Zweig, “Anatomy of an extremely fast lvcsr decoder.” INTERSPEECH, pp.
549–552, 2005.

[189] D. Caseiro and I. Trancoso, “A specialized on-the-fly algorithm for lexicon and language model
composition.” IEEE Transactions on Audio, Speech & Language Processing, vol. 14, no. 4, pp. 1281–
1291, 2006.

REFERENCES 137

[190] S. Kanthak and H. Ney, “FSA: An efficient and flexible C++ toolkit for finite state automata using
on-demand computation,” ACL, pp. 510–517, 2004.

[191] R. Schwartz, L. Nguyen, and J. Makhoul, “Multiple-pass search strategies,” in Automatic Speech
and Speaker Recognition, ser. The Kluwer International Series in Engineering and Computer Sci-
ence, C.-H. Lee, F. Soong, and K. Paliwal, Eds. Springer US, 1996, vol. 355, pp. 429–456.

[192] A. Alexandrescu, Modern C++Design Generic Programming and Design Patterns Applied. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[193] J. Schalkwyk, I. L. Hetherington, and E. Story, “Speech recognition with dynamic grammars using
finite-state transducers,” Processing of INTERSPEECH, 2003.

[194] P. R. Dixon, C. Hori, and H. Kashioka, “A specialized wfst approach for class models and dynamic
vocabulary.” INTERSPEECH, 2012.

[195] A. Asadi, R. Schwartz, and J. Makhoul, “Automatic modeling for adding new words to a large-
vocabulary continuous speech recognition system,” Processing of ICASSP, 1991.

[196] T. Kemp, A. Jusek, I. Systems, L. Ag, and A. Informatik, “Modelling unknown words in spontaneous
speech,” In Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 530–533, 1996.

[197] L. Jiang and X. Huang, “Vocabulary-independent word confidence measure using subword fea-
tures.” ICSLP, 1998.

[198] D. Klakow, G. Rose, and X. L. Aubert, “Oov-detection in large vocabulary system using automati-
cally defined word-fragments as fillers.” EUROSPEECH, 1999.

[199] I. Bazzi, J. Glass, and A. C. Smith, “Modeling out–of–vocabulary words for robust speech recogni-
tion,” 2000.

[200] H. Kokubo, H. Yamamoto, Y. Ogawa, Y. Sagisaka, and G. Kikui, “Out-of-vocabulary word recog-
nition with a hierarchical doubly markov language model,” Automatic Speech Recognition and
Understanding, 2003. ASRU ’03. 2003 IEEE Workshop on, pp. 543 – 547, nov.-3 dec. 2003.

[201] D. Yu, Y. C. Ju, Y.-Y. Wang, and A. Acero, “N-gram based filler model for robust grammar authoring,”
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, vol. 1, p. I, may 2006.

[202] M. Bisani and H. Ney, “Open vocabulary speech recognition with flat hybrid models.” INTER-
SPEECH, pp. 725–728, 2005.

[203] L. Qin, M. Sun, and A. I. Rudnicky, “Oov detection and recovery using hybrid models with different
fragments.” INTERSPEECH, pp. 1913–1916, 2011.

[204] M. Savic, M. Moore, and C. Scoville, “Statistical speech reconstruction at the phoneme level,”
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International
Conference on, vol. 1, pp. 657 –660 vol.1, 2001.

[205] N. Jennequin and J.-L. Gauvain, “Modeling duration via lattice rescoring,” Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–641 –IV–644,
april 2007.

[206] D. Seppi, D. Falavigna, G. Stemmer, and R. Gretter, “Word duration modeling for word graph
rescoring in lvcsr.” INTERSPEECH, pp. 1805–1808, 2007.

[207] J. T. Kao, G. Zweig, and P. Nguyen, “Discriminative duration modeling for speech recognition with
segmental conditional random fields.” ICASSP, pp. 4476–4479, 2011.

[208] F. Bimbot, M. El-BÃČÂĺze, S. Igounet, M. Jardino, K. SmaÃČÂŕli, and I. Zitouni, “An alternative
scheme for perplexity estimation and its assessment for the evaluation of language models.” Com-
puter Speech & Language, vol. 15, no. 1, pp. 1–13, 2001.

[209] S. Chen, D. Beeferman, and R. Rosenfeld, “Evaluation metrics for language models,” 1998.

[210] M. Mohri, “Edit-distance of weighted automata: General definitions and algorithms,” Int. J.
Found. Comput. Sci., vol. 14, no. 6, pp. 957–982, 2003.

[211] A. C. Morris, V. Maier, and P. Green, “From wer and ril to mer and wil: improved evaluation mea-
sures for connected speech recognition.” INTERSPEECH, 2004.

[212] T. Mishra, A. Ljolje, and M. Gilbert, “Predicting human perceived accuracy of asr systems.” INTER-
SPEECH, pp. 1945–1948, 2011.

138 REFERENCES

[213] B. Favre, K. Cheung, S. Kazemian, A. Lee, Y. Liu, C. Munteanu, A. Nenkova, D. Ochei, G. Penn,
S. Tratz, C. R. Voss, and F. Zeller, “Automatic human utility evaluation of asr systems: does wer
really predict performance?” INTERSPEECH, pp. 3463–3467, 2013.

[214] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage
lysozyme,” Biochim. Biophys. Acta, vol. 405, pp. 442–451, 1975.

[215] G. Jurman, S. Riccadonna, and C. Furlanello, “A comparison of mcc and cen error measures in
multi-class prediction,” PLoS ONE, vol. 7, no. 8, p. e41882, 08 2012.

[216] A. Stolcke, “Srilm – an extensible language modeling toolkit,” Jun. 06 2002.

[217] P. Smaragdis and M. V. S. Shashanka, “A framework for secure speech recognition.” IEEE Transac-
tions on Audio, Speech & Language Processing, vol. 15, no. 4, pp. 1404–1413, 2007.

[218] H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub, “Large-vocabulary dictation using SRI’s
DECIPHER speech recognition system: Progressive search techniques,” Proceedings of ICASSP,
1993.

[219] J. G. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer output voting
error reduction (rover),” Proceedings ASRU, 1997.

[220] H. Schwenk and J.-L. Gauvain, “Combining multiple speech recognizers using voting and lan-
guage model information.” INTERSPEECH, pp. 915–918, 2000.

	Thesis Introduction
	Weighted Finite-State Transducer
	Introduction in weighted Finite-State Transducers
	Determinization
	Minimization
	Composition
	Epsilon removal
	Topological order
	Robust language processing
	Data structures
	Compression methods for transducer
	Summary

	Automatic Speech Recognition
	Conceptual framework
	Developing process
	Introduction in acoustic signal processing
	Feature front end
	Signal energy
	Mel Frequency Cepstral Coefficients
	Linear discriminant analysis
	Spectral subtraction and cepstral mean normalization

	Language representation
	Grammars
	N-gram Markov language model
	Class based language models
	Interpolation and adaptation of n-grams
	Statistical estimators
	Back-off n-gram language models
	Language model combination techniques

	Language processing
	Word tokenization
	Text formatting and interpretation

	Summary

	Dynamic Speech Decoding
	Finite state transducer for speech recognition
	Lexicon transducer
	Language transducer
	Grammatical text representation
	Statistical Language Modeling
	Dynamic Language Modeling

	Creating a dynamic Language model
	Word sequence clustering
	Extraction of grammatical structures
	Grammatical structure replacement

	Speech decoding with transducer
	Speech decoding of nested transducers
	Speech decoding on multiple devices
	Schematic overview for speech recognition on multiple devices
	Use of dynamic language model
	Use of acoustic filler
	Word duration modeling for slot fillers

	Summary

	Applications
	Evaluation of speech and language techniques
	Language model evaluation
	Evaluation of speech recognition
	Evaluation of information retrieval

	Dynamic Language Model evaluation
	Introduction
	Transducer nesting for dynamic language models
	Evaluation
	Conclusion

	Evaluating recognition on multiple devices
	Introduction
	Dynamic language models with acoustic fillers
	Recognition on the server
	Recognition on the client
	Evaluation
	Conclusion

	Summary

	Thesis summary
	References

