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Mitglieder des Prüfungsausschusses: Univ.-Prof. Dr. Karin Jacobs

Univ.-Prof. Dr. Heiko Rieger

Univ.-Prof. Dr. Giovanna Morigi

Dr. Reza Shaebani



Abstract

Bosons in optical lattices can be described by the Bose-Hubbard model. In regular lat-
tices a phase transition from a Mott insulator to the superfluid phase occurs, at which
localization is transferred from position to momentum space. In the disordered Bose-
Hubbard model, where at least one parameter is a random variable, also the Bose glass
phase occurs [1]. Interpreting this phase as a mixture of Mott insulator and superfluid
sites leads to an innovative criterion for the phase transitions, called the local mean-field
cluster analysis, excellently agreeing with quantum Monte-Carlo results [2].
In experiments disorder can be realized by a quasi-periodic potential, a superposition of
a strong lattice and a second one with incommensurate wave length [3]. By introducing
this potential in the derivation of the ordered Bose-Hubbard model, the Wannier func-
tions are generalized by allowing them to be asymmetric, showing that not only disorder
in the depth of the lattice sites, but also in the tunneling rates contributes crucially to
the phase diagram of quasi-periodic potentials [4].
Moreover, the interplay of an optical lattice and a cavity field of photons, leads to a dy-
namical on-site potential for the bosons, which can be described within the Bose-Hubbard
model [5, 6]. In the parameter regime accessible in experiments [7, 8], this system shows
the Mott insulator, superfluid and the Bose glass phase as well as the supersolid phase
characterized by a checker board pattern in the density profile [9].





Kurzzusammenfassung

Bosonen in optischen Gittern können durch das Bose-Hubbard Modell beschrieben wer-
den. In regulären Gittern findet ein Phasenübergang vom Mott Isolator zur superfluiden
Phase statt, bei dem die Lokalisation aus dem Ortsraum in den Impulsraum übergeht.
Beim ungeordneten Bose-Hubbard Modell, in dem mindestens einer der Parameter eine
Zufallsvariable ist, tritt zusätzlich die Bose Glass Phase auf [1]. Interpretiert man die
Bose Glass Phase als Mischung von Mott Isolator and superfluiden Gitterplätzen, erhält
man im Rahmen der sog. lokalen mean-field Cluster Analyse ein neues Kriterium für
die Phasenübergänge, welches exzellent mit Quanten Monte-Carlo Ergebnissen überein-
stimmt [2].
Experimentell kann Unordnung durch ein quasiperiodisches Potential realisiert werden,
indem ein Hauptgitter mit einem zweiten mit inkommensurabler Wellenlänge überlagert
wird [3]. Verwendet man dieses bei der Herleitung des Bose-Hubbard Modells, ergeben
sich unsymmetrische, verallgemeinerte Wannier Funktionen und es zeigt sich, dass nicht
nur Unordnung in der Gitterplatztiefe, sondern auch in den Tunnelraten entscheidend
zum Phasendiagramm beiträgt [4].
Das Wechselspiel eines optischen Gitters mit dem Feld eines optischen Resonators, führt
zu einem dynamischen lokalen Potential, welches innerhalb des Bose-Hubbard Modells
beschrieben werden kann [5, 6]. Im experimentell zugänglichen Parameterregime [7, 8],
treten hier die Mott Isolator, superfluide, Bose Glass Phase sowie die supersolide Phase
auf, die durch ein Schachbrettmuster im Dichteprofil ausgezeichnet ist [9].
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1 Introduction

Bosons confined in an optical lattice at ultracold temperatures serve as an ideal quantum
system for the comparison of theoretical and experimental results on various quantum ef-
fects. On the one hand bosons in such a setup can be described precisely in theory within
the Bose-Hubbard (BH) model [10], on the other hand in experiments the correspond-
ing system parameters can be controlled with a high precision by tuning the intensity
and the wave lengths of the lasers forming optical lattices in various dimensions and ge-
ometries [11–13]. By varying these laser parameters and the angle between the beams a
variety of lattice configurations can be realized [14–18]. The theoretical parameters of the
BH model and the experimental relevant parameters are linked uniquely, which allows for
the direct and easy comparison of theoretical and experiment results in this field.
Within the so-called ordered BH model ultracold bosons confined in a periodic lattice can
be described by three different energy scales: The on-site energy ε describing the depth
of the lattice sites, the inter-particle interaction U , which represents the cost of energy
for two particles occupying the same site, and the tunneling rate J , which is a rate for
the hopping of particles between neighboring sites. A main feature of this system is that
it shows a phase transition from the Mott insulator (MI) to the superfluid (SF) phase.
In the MI phase, which occurs in the regime of small tunneling rates J , the ground state
is neither coherent nor compressible. Moreover, there exist an energy gap in the particle
excitation spectrum, preventing bosons from tunneling from one site to the other. There-
fore, in the MI phase we find the same number of particles at each site, which means that
the ground state in this phase is localized in position space. In the limit of large tunneling
rates J the ground state is SF, which means that the particles are free to tunnel from
site to site. In this situation the energy gap in the particle excitation spectrum is closed,
the system is coherent and compressible and the ground state is localized in momentum
space. Thus, at the MI-SF phase transition the localization in position space changes to
a localization in momentum space.
The ordered BH system can be extended by the introduction of disorder in theory. This is
mainly done by choosing the local on-site energies εi at each site randomly according to a
bounded box distribution. In this case the so-called Bose glass (BG) phase occurs between
the MI and the SF phase [19, 20]. On the one hand the ground state in the BG phase is
compressible, like in the SF phase, but not yet coherent, as in the MI phase [1]. Thus,
this phase exhibits features of the MI as well as of the SF phase. A deeper understanding
of the characteristics of the BG phase is part of this thesis. The interpretation of the BG
phase as a mixture of clusters of so-called MI and SF sites in Chapter 4 will lead to an
innovative criterion for the phase transitions, called the local mean-field (LMF) cluster
analysis.
The existence of the MI, SF as well as the BG phase has also been shown experimentally,



2 Introduction

by making use of diverse features of the three phases in order to distinguish between them.
The coherence of the quantum state in the optical lattice can be measured with help of
the time-of-flight technique [21]. For this procedure the optical lattice is switched off after
the experiment such that the atomic cloud can evolve freely. Under the assumption that
the particles do not interact with each other during this process, which can be ensured
at very low densities and after sufficiently long time, the density distribution in position
space, which is accessible by absorption imaging, is proportional to the density distri-
bution in momentum space of the cloud held in the optical lattice [22]. With the help
of the Bragg spectroscopy, where particle tunneling is amplified in a controlled way, the
particle excitation spectrum can be measured in the ordered as well as in the disordered
case [3, 21, 23, 24]. By measuring the radius of the atomic cloud under a compression,
achieved with the help of an additional harmonic trap, the compressibility is directly ac-
cessible in experiments [25].
The MI-SF transition occurring in the ordered system has been shown experimentally
using ultracold 87Rb atoms confined in a 3D optical lattice [21]. In order to distinguish
between both phases they used time-of-flight imaging for the measurement of the ap-
pearance or absence of coherence in the quantum state. Moreover, the usage of Bragg
spectroscopy confirmed the occurrence of the MI-SF transition by the observation of the
disappearance of the gap in the excitation spectrum at the transition.
The existence of the BG phase in a disordered system, however, has been shown experi-
mentally with time-of-flight imaging and Bragg spectroscopy on ultracold 87Rb atoms in a
1D optical lattice [3]. In this experiment the disorder was introduced by a quasi-periodic
potential constructed by a strong main periodic optical lattice, on which a second weaker
optical lattice, with an incommensurate wave length, is superposed [3]. For a sufficiently
small detuning between both wave lengths the periodicity exceeds the system size and
the resulting quasi-periodic pattern may serve as an analogon for a disordered system.
The theoretical description of such quasi-periodic optical potentials within the BH model
and their comparison to the experiments will be discussed in Chapter 6. The second
possibility for the realization of disorder is to use a speckle potential, randomly modu-
lating the intensity of the laser and thus leading to local inhomogeneities in the lattice
structure [26,27]. While in a quasi-periodic potential the strength of the disorder and the
distribution of the local values can be changed easily by varying the wave lengths and the
intensities of both lasers, they are fixed in a speckle potential.
Theoretically, the disordered BH system is usually treated by isolated on-site box disor-
der, while the other parameters have precise values. Numerical methods like quantum
Monte Carlo methods in various dimensions [20, 28–36] and density-matrix renormaliza-
tion group techniques in one dimension [37–41] have been applied to this system in order
to study the phase diagram. Based on the so-called LMF approximation [42] various nu-
merical techniques have already been proposed, such as LMF theory [43–45], stochastic
mean-field (SMF) theory [46, 47], which will be discussed thoroughly in Chapter 3. On
that basis the LMF cluster analysis [2] will be introduced in Chapter 4 yielding a crite-
rion for the phase transitions. As we will see, the phase diagram of the 2D disordered
BH model with random on-site potentials predicted by the LMF cluster analysis [2] is
in excellent agreement with the one calculated with quantum Monte Carlo methods [20].
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Moreover, analytical perturbative results for the border of the MI region are available for
the ordered [48] as well as for the disordered case [49].
The influence of disorder on the other BH parameters like the tunneling rates or the
inter-particle interactions has rarely been studied. Disordered tunneling rates are mostly
discussed in context with bimodal distributions [32, 47, 50, 51], where two different val-
ues of the tunneling rates are distributed randomly over the lattice. Compared to the
experimental setups the modeling of tunneling disorder by a bimodal distribution is far
from reality. Moreover, it is hardly comparable to a uniform distribution of the tunneling
rates, where values are allowed to vary continuously in a certain range [4]. Disorder in the
inter-particle interaction can be realized near a Feshbach resonance [52,53] and a uniform
distribution of this parameter has been studied in [4, 52,54].
Having introduced the most important experimental and theoretical background in Chap-
ter 2, the starting point of this thesis presented in Chapter 3 is the LMF approxima-
tion [42]. Within this treatment the whole quantum system consisting of M sites and
N particles can be decomposed into M individual quantum systems one for each site,
which are coupled via an effective mean-field tunneling rate. By the introduction of the
so-called local SF parameter ψi = 〈Ψ|âi|Ψ〉 the determination of the ground state |Ψ〉 of
the whole quantum system is reduced to solving the determination equation for the local
SF parameter recursively at each site. In the context of LMF theory this method has
been used in order to determine the phase diagram of the disordered BH model on the
basis of averaged values, which have been intended to serve as order parameters [43–45].
While this method works well in the ordered case, in the disordered case these averaged
values do not show a kink in the vicinity of the expected phase transition. Therefore, in
the framework of LMF approximation averaged global order parameters fail to indicate
the phase transitions [2].
However, the LMF cluster analysis [2], introduced in Chapter 4, is able to determine
the phase transitions of the disordered BH model on the basis of local properties of the
system. With the help of the local particle numbers, which are calculated in the frame-
work of the LMF approximation, so-called MI sites, with integer particle numbers and
SF sites with non-integer particle numbers can be defined. On that basis a new criterion
for the determination of the phase transitions can be implemented [2]: The MI phase,
which appears for small tunneling rates, is characterized by a system consisting only of
MI sites. At each site there is a fixed number of particles and particle fluctuations are
suppressed. The quantum state is neither coherent nor compressible. The appearance of
SF sites with non-integer particle numbers marks the transition to the BG phase. Here
the system consists of a mixture of MI sites and connected SF regions. Since within these
SF clusters particle fluctuations are possible, the whole atomic cloud is compressible, but
phase coherence is not yet established in the whole system. With increasing tunneling
rates the number of SF sites increases and finally at least one SF cluster percolates, which
marks the entrance to the SF phase. The appearance of a percolating SF cluster, which
dominates the behavior of the system, introduces long range order and global phase co-
herence. We will see that the phase diagram resulting from this LMF cluster analysis is
in excellent agreement with quantum Monte Carlo predictions [2, 35].
With this new criterion for the phase transitions at hand, in Chapter 5 the disorder
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scenarios for each BH parameter are studied individually, while the remaining parame-
ters are treated as sharp values. For each system there are characteristic differences in
the phase diagram [4]: In the case of on-site disorder there exists an infinite number of
MI regions, which are completely surrounded by the BG and finally, for large tunneling
rate, by the SF phase. For disordered tunneling rate the number of MI regions is finite.
In contrast to the previous case there exist individual BG regions and regions, where the
SF phase reaches down to the limit of vanishing tunneling rates. In the situation with
disordered inter-particle interaction there also exists a finite number of MI regions, which
correspondingly to the case of disordered on-site energies, are surrounded by one BG and
finally by one single SF region. In the limit of vanishing tunneling rates and vanishing
chemical potential there exists a tricritical point, where all three phases approach each
other tightly [4, 52,54].
The knowledge of the characteristic influences of the different disorder scenarios, is the
basis for the study of authentic disorder realizations as they are applied in experiments.
In Chapter 6 the quasi-periodic optical potential is studied, which is one of the avail-
able realizations of disorder in experiment. By introducing this potential in the usual
derivation of the ordered BH model, its influence on the BH parameters can be derived
fundamentally. This process requires a generalization of Wannier functions by allowing
them to be asymmetric due to the asymmetry of the underlying quasi-periodic potential.
Since these generalized Wannier functions have to be computed for each site individually,
the numerical effort increases by a factor of the number of sites M in comparison to previ-
ous works, where the effect of quasi-periodic potential on the BH parameters was treated
only approximately [37, 38, 55–57]. In contrast to the common expectation, disorder in
the on-site energies as well as in the tunneling rates are important for the description of
quasi-periodic potentials [4]. Both parameters reach the regime in which all three phases
occur in the phase diagram. Indeed, due to the disordered tunneling rates the phase dia-
grams of the quasi-periodic potential deviate from those of isolated on-site disorder, which
have mostly been studied in theory. Therefore, for a detailed comparison of theoretical
and experimental results the influence of disordered tunneling rates has to be taken into
account. Moreover, with a quasi-periodic potential as used in experiments real isolated
on-site disorder, which mainly is studied in theory, cannot be realized.
The interplay of a periodic optical lattice and the optical field produced by photons,
which are scattered coherently into a cavity, leads to a dynamical potential for bosonic
atoms, which will be discussed in Chapter 7. In dependence of the system parameters
there exist regions where the scattering of photons is prohibited and the atoms only feel
the periodic optical lattice, while there are also other regions where effective scattering is
favored. This system can be described by a BH model with a specific dynamical on-site
potential from the cavity photons [5, 6]. In the parameter regime which is accessible in
experiments [8], this system shows the MI, SF as well as the BG phase depending on the
wave lengths of the optical lattice and the cavity field [9]. If they are commensurate the
phase diagram consists of MI as well as SF regions, but also of supersolid (SS) regions,
where only every second site is occupied, corresponding to a checker board pattern in the
density profile. For incommensurate wave lengths the BG phase occurs in the parameter
region of coherent scattering of photons into the cavity. Moreover, there are also regions
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of enhanced photon scattering, where the atoms only feel the periodic optical lattice. The
interplay of ordered parameter regions, where no photons are scattered into the cavity
and disordered parameter regions, where the photonic potential establishes a correlated
disorder potential, leads to different interesting phase transitions in the phase diagram,
which finally will also be discussed in this thesis.





2 Bose-Einstein condensates and
optical lattices

Phase transitions occurring in the ground state properties of both the ordered and the
disordered BH model are the main topic of this work. In the ordered system there exists
a phase transition from the MI to the SF phase. In the MI phase the system exhibits
an energy gap in the particle excitation spectrum preventing particles from tunneling
causing the incompressibility of the whole Bose gas. However, in the SF phase this
energy gap closes, which means that tunneling between the sites becomes favorable for
the particles. The ground state in this phase is coherent. Therefore, the MI-SF phase
transition is a transition from localization in position space (MI phase) to localization in
momentum space (SF phase). In the disordered system the BG phase occurs in between.
Here the Bose gas is compressible, as in the SF phase, but the ground state is not yet
coherent as in the MI phase. In this chapter we will discuss the fundamental theory as
well as the experimental techniques used in order to proof the existence of the phase
transitions. In the second part the derivation of the BH model involving the introduction
of Wannier functions and of the BH parameters will be presented. In the end we will
give an overview on the phase diagrams of the two situations calculated on the basis of
perturbative descriptions will be given.

2.1 Ultracold bosons

The BH model describes bosons confined in an optical lattice. Bosons have an integer spin
and thus can occupy the same energy eigenstate. An Bose gas of bosons shows a phase
transition from an energy distribution according to the whole range of the Bose-Einstein
statistics to a state where a macroscopic part of the particles occupy the ground state
forming a so-called Bose-Einstein condensate (BEC). A single boson can be described by
a wave packet with its width given by the De-Broglie wave length. As the temperature
decreases this wave length increases and as it reaches the mean atomic distance the waves
of different particles overlap and the formation of the BEC sets in. Theoretically this
phase transformation was predicted by Einstein [58] and Bose [59] in 1924. In order to
reach this regime in experiments a high density of bosons in the gas phase at very low
temperatures in the µK regime are necessary. The bosons prepared in this way and right
before they undergo the transition to a BEC, are called thermal or atomic cloud. The
challenging experiments, where a thermal cloud has been prepared and finally formed a
BEC, have been realized in 1995 [60–62] and since has inspired physicists to innovative
work on both experiments and theory and thus founded a new research field.
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With the help of optical traps and lattices, constructed by counter propagating laser
beams, in which the BEC is confined and atoms can occupy individual sites, a vari-
ety of many-body Hamiltonians can be realized experimentally [11–13]. It was shown
theoretically [1] and experimentally [21] that there is a phase transition from a ground
state, localized in position space (MI phase) to another one, localized in momentum space
(SF phase). Additionally disorder can be introduced to the regular lattice, which leads
to the appearance of the Bose glass (BG) phase in-between [1, 3]. These lattice models
are described by the Bose-Hubbard model [10]. The advantage of such optical setups is
the precise control of all system parameters. This is of interest especially in the field of
quantum optics and quantum computing, where high controllability is indispensable, as
well as for the experimental modeling of other Hamiltonians [14–18].
In this chapter we will theoretically discuss the BEC and its connection to a SF as well as
the basic experimental techniques for the production of a BEC and for the detection of
the MI-BG-SF transitions. Afterwards the BH model is derived, connecting the relevant
experimental parameters to the model parameters, followed by a discussion of the phase
transitions in ordered and disordered lattices.

2.1.1 Bose-Einstein condensate

For the theoretical description of the BEC we start with an ideal Bose gas, which is
described by the Bose-Einstein statistics of the occupation number

n~p (~r ) =
1

eβ(ε(~p )−µ) − 1
(2.1)

of the energy levels ε (~p ) = p2/ (2m) = εp of bosons, where β = 1/ (kBT ) is the inverse
temperature [22]. In order to get positive occupations number the chemical potential µ is
restricted to µ ≤ εp. For the lowest energy level ε0 = 0 the Bose-Einstein statistic diverges
for µ = 0. Therefore, it is useful to separate the total number of particles

N =
∞∑
p=0

n~p = N0 +NT (2.2)

into the occupation number of the ground state

N0 =
1

e−βµ − 1
(2.3)

and the thermal cloud

NT =
∞∑
p=1

1

eβ(εp−µ) − 1
. (2.4)

Replacing the sum by an integral, the thermal part can be rewritten as

NT =
V

(2π~)3

∫
d3p

1

eβ(εp−µ) − 1
=

V

λ3
T

g3/2(eβµ) , (2.5)
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where V is the volume of the Bose gas and

λT =

√
2π~2

mkBT
=

3

√
g3/2(eβµ)

n
(2.6)

is the thermal wavelength. The Bose function [22]

gp(z) =
1

(p− 1)!

∫ ∞
0

dx xp−1 1

z−1ex − 1
(2.7)

satisfies the recursive relation

gp(z) = z
dgp+1(z)

dz
. (2.8)

For p = 3/2 this function increases as a function of z = eβµ until at z = 1 it assumes
its maximal value g3/2(1) ≈ 2.612. In this limit (µ = 0, z = 1) and on the basis of
Equation (2.6) the characteristic temperature

Tc =
2π~2

mkB

(
n

g3/2(1)

)2
3

(2.9)

can be defined and Equation (2.5) can be written in the form

NT = N

(
T

Tc

)3
2 g3/2(eβµ)

g3/2(1)
. (2.10)

From equations (2.3) and (2.10) we see that the total particle number behaves differently
above (T > Tc) and below (T < Tc) the characteristic temperature Tc. If the temperature
is higher then the characteristic temperature Tc the occupation of the ground state N0

is finite and can be neglected in comparison to the thermal part NT . The atoms occupy
excited states and form a thermal cloud. With decreasing temperature the particle num-
ber NT of the thermal cloud shrinks according to Equation (2.10), while the occupation
number of the ground state follows

N0 = N

(
1−

(
T

Tc

)3
2

)
. (2.11)

For decreasing temperature more and more bosons populate the ground state, which
below the characteristic temperature Tc is macroscopically occupied. Only for an ideal
Bose gas, as discussed here, finally all particles occupy the ground state. In general, for
an interacting Bose gas, only a certain fraction of the particles condenses while the rest
remains as a thermal cloud. The macroscopic population of the ground state is called
BEC [58,59,63].
In the case of a BEC the many body wave function of the system is given then by

Ψ (~x1 , . . . , ~xN , t) =
N∏
i=1

χ0 (~xi, t) , (2.12)
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where χ0 (~r, t) is the single particle ground state wave function. This equations is valid
for a dilute gas, where, in the framework of the Hartree-Fock approximation, correlations
among particles can be neglected in first approximation [22]. In a mean-field description
the condensate wave function Ψ0 (~r, t) = Ψ0 (~r ) e−iµt/~ can therefore be written according
to

Ψ0 (~r, t) =
√
N0χ0 (~r, t) , (2.13)

which is described by the Gross-Pitaevskii equation; further details are discussed in
Section A.2 and the textbooks [22, 64, 65]. In the case of an interacting Bose gas the
total macroscopic wave function can then be written according to

Ψ (~r, t) = Ψ0 (~r, t) + δΨ (~r, t) (2.14)

as the sum of the condensate wave function Ψ0 (~r, t), and the so-called depletion wave
function δΨ (~r ), describing the non-condensed particles [22].
A BEC exists below the characteristic temperature Tc (n), which is given by Equation (2.9)
and depends on the density n = N/V of the Bose gas. For fixed temperature T the
Equation (2.9) defines a characteristic density nc below which the BEC occurs. There-
fore, the experimental challenge is to form a dilute Bose gas and to cool it below the
characteristic temperature Tc.
This experiment has first been realized in 1995 with Rubidium [60], Lithium [61] and
Sodium [62] atoms by three groups simultaneously. The first step of cooling of the Bose
gas, confined in a magneto-optical trap, is achieved by laser cooling [66–68]. The laser
is blue detuned with respect to an atomic transition. Because of the Doppler effect an
atom moving towards the laser absorbs a laser photon and gains the energy ~ω. By
fluorescence the atom emits a photon in a random direction. Since the direction of the
emission is distributed isotropically in space, a row of these processes leads to a slowing
of the atom in direction of the laser. The simultaneous laser cooling in all three spacial
dimensions reduces the average velocity and thus also the temperature. The cooling with
this technique is limited from below at around 140µK for Rubidium atoms. Afterwards
the slow atoms with a velocity of some cm/s are loaded into a magnetic or optical trap.
The second cooling process is called evaporative cooling [69,70]. For this process the trap-
ping barrier is lowered such that the fastest particles can leave the trap. The remaining
particles thermalize in the trap and reach a density and temperature, with which they
finally undergo the transition to a BEC. In typical experiments temperatures of between
500nK and 2µK with densities of 1014 − 1015 cm−1 are reached [71].

2.1.2 Superfluid

The formation of a BEC below the critical temperature is not the only feature of an
interacting Bose gas. Moreover, it can also show all properties of a SF. Therefore, the
occurrence of a SF in context with a BEC is widely discussed. A SF shows zero viscosity,
which means that it flows without inner friction. In turn an obstacle moving in a SF
cannot set the fluid in motion or excite the fluid.
In order to describe this phenomenon, suppose there is a heavy obstacle moving with
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velocity ~v in a viscous fluid of mass M . In the coordinate system K, where the obstacle
is at rest, the energy is given by E and the momentum by ~p. In the coordinate system K ′

moving with the same velocity ~v as the fluid, the ground state is given by E0 and has zero
momentum |~p | = 0 [64].
Due to the Galilean transformation, the ground state energy in the system K moving
with the obstacle is given by

E = E0 +
1

2
M~v 2 . (2.15)

If there is one single excitation in the fluid, in the system K ′ the ground state energy

E = E0 + ε (~p ) (2.16)

is then given as the sum of the ground state energy E0 in the system K ′ and the
excitation ε (~p ). Therefore, the energy in the system K, where the obstacle is fixed,
is given by

E = E0 + ε (~p )− ~p~v +
1

2
M~v 2 . (2.17)

By comparing Equation (2.15) to (2.17), we may conclude that one excitation costs the
energy ε (~p ) − ~p~v. Therefore, the spontaneous creation of excitations only occurs in the
regime, where the energy necessary for one excitation is negative

ε (~p )− ~p~v < 0 . (2.18)

Therefore, there exists a critical velocity

vc = min
~p

ε (~p )

|~p|
(2.19)

above which excitations are possible [64]. Below this threshold it is impossible to create
excitations, which means that there is no mechanism for degrading the motion of the
fluid. In this situation the fluid moves without inner friction and forms a SF. Therefore,
the so-called Landau criterion states that only for small velocities v less than the critical
velocity vc a fluid can be a SF [64].
As the excitation spectrum for an ideal Bose gas is given by ε (~p ) = ~p 2/ (2m), according
to Equation (2.19) the critical velocity vc is zero. Thus, an ideal Bose gas cannot be SF.
However, an interacting Bose gas indeed can be SF. To see this, we have a look on the
excitation spectra for a weakly and strongly interacting Bose gas as shown in Figure 2.1.
For a weakly interacting Bose gas the Bogoliubov excitation spectrum is given by

ε (~p ) =

√
~p 2

2m

(
~p 2

2m
+ 2n0U0

)
, (2.20)

where n0 is the density of particles in the limit of zero momentum and U0 is the inter-
particle interaction [64]. For large momenta |~p | it approaches the dispersion relation of a
free particle,

ε (~p ) ≈ ~p 2

2m
+ n0U0 for |~p| → ∞ . (2.21)
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Figure 2.1: Dispersion relation for a Bose gas with weakly interacting (a), as given in equation (2.20),
and strongly interacting particles (b). The dashed line describes the linear behavior for
small momentum |~p | and the dotted the limit for large momentum |~p |.

In the limit of small momenta |~p | the Bogoliubov excitation spectrum (2.20) becomes
linear in the momentum |~p | according to

ε (~p ) ≈ |~p|
√
n0U0

m
for |~p| → 0 , (2.22)

describing phonon excitations. According to the Landau criterion (2.19), the critical
velocity vc is given by the speed of sound c =

√
n0U0/m. Therefore, a weakly interacting

Bose gas indeed fulfills the Landau criterion and can behave as a SF.
The excitation spectrum for a strongly interacting Bose gas is shown in Figure 2.1 b). In
the limit of small momenta also we find here a linear dependency on the momentum |~p|.
The critical velocity, however, is smaller than the one in the weakly interacting case.
Thus, we conclude that an interacting Bose gas show a SF phase in the weakly as well as
strongly interacting limit.

2.1.3 Bose-Einstein condensate and Superfluid

The BEC represents the macroscopic occupation of the ground state below the charac-
teristic temperature Tc, as described in Section 2.1.1. However, SF fluids according to
the Landau criterion occur, if there exists a critical velocity (2.19), below which a moving
obstacle cannot create excitations. In general, these criteria describe different features of
a Bose gas and do not hint to the idea that BECs and SF might be identical. And indeed
there are differences, as for example, a non-interacting BEC cannot be SF, as discussed
in the last section. Therefore, we will analyze the relationship of BECs and SFs in more
detail in this section.
The Galilean transformation of some wave function Ψ (~r, t) to a frame moving with ve-
locity ~v is in general given by

Ψ′ (~r, t) = Ψ (~r − ~vt, t) exp

(
i

~

(
M~v~r − 1

2
M~v 2t

))
(2.23)
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and thus leads to an additional phase factor. This implies that the absolute value of the
wave function |Ψ (~r, t) |2 in invariant under this transformation.
Assume there is a condensate wave function Ψ0, describing the particles in the macro-
scopically occupied ground state, which can be written as

Ψ0 (~r, t) = Ψ0 (~r ) e−iµt/~ (2.24)

with the chemical potential µ [22]. Under the Galilean transformation this condensate
wave function takes the form

Ψ0 (~r, t) = Ψ0 (~r ) eiφ (2.25)

where the phase is given by

φ =
1

~

(
M~v~r −

(
1

2
M~v 2 + µ

)
t

)
(2.26)

and Ψ0 (~r ) remains unchanged. With equation (2.26) at hand, we can directly conclude
that the velocity ~v is proportional to the gradient of the phase φ:

~vSF =
~
M
~∇φ . (2.27)

This equation states that the phase plays the role of a velocity potential [22,64,65]. Notice,
that for the derivation of Equation (2.27), we have only assumed to have a BEC, without
any further constraints for example on the temperature or the density. As the phase φ is
a scalar, according to Equation (2.27) a BEC is irrotational (~∇× ~vSF = 0). Therefore, a
BEC shows one main feature of a SF.
Notice that the condensed density M |Ψ0| and the SF density ρSF , however, are not
identical. In an interacting Bose gas even at zero temperature there also exist particles,
which do not occupy the ground state such that the condensed density M |Ψ0| is smaller
than the total density ρ, while in the same situation all particles of the Bose gas are SF and
the SF density ρSF equals the total density ρ. As a result the condensed density M |Ψ0| is
smaller than the SF density ρSF , which means that also non-condensed particles belong
to the SF.

2.1.4 Bose gas in optical lattices

Optical traps are a widespread technique to experimentally confine a BEC. Let us therefore
discuss the interaction between light and matter in more detail. When an atom interacts
with coherent laser light, the electric field ~E (~r, t) of this laser light induces an atomic

dipole moment ~d (~r, t), which oscillates at the some frequency ω. The resulting potential
is given by [72]

Vdip = −1

2
〈~d ~E〉t = − 1

2ε0c
Re (α)V (~r ) , (2.28)

where the brackets denote the time average, α (ω) is the polarization and the intensity V (~r )
can be calculated according to

V (~r ) = 2ε0c| ~E (~r ) |2 . (2.29)
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Thus, the resulting trapping force acting on the atoms may be written as

~Fdip = −∇Vdip =
1

2ε0c
Re (α)∇V (~r ) . (2.30)

It can be shown, that the potential

Vdip ∼
V (~r )

Γ
(2.31)

is proportional to the quotient of the laser intensity V (~r ) and the detuning Γ = ω − ω0

of the laser frequency ω and the atomic transition ω0 [72].
This trapping force (2.30) can be used to produce an optical lattice. In one dimension a
laser with the field

~E (~r, t) = E0

(
ei~k~r + e−i~k~r

)
(2.32)

and the wave vector ~k is reflected into itself, which leads to an interference pattern, where
the intensity changes according to

V (x) = V0 cos2 (kx) (2.33)

and the factor V0 is proportional to the intensity of the laser. The recoil energy is given by
ER = ~2k2/ (2m). The atoms in this potential either rest at the maxima or at the minima

of this potential, depending on the sign of the force ~Fdip (2.30): Below the resonance

(”red” detuning) where Γ is negative, the force ~Fdip is attractive and the atoms move
into the direction of higher field intensity. Thus, for the atoms the potential minima
are at the positions with maximal intensity. On the other side of the resonance (”blue”

detuning) Γ is positive, the force ~Fdip is repulsive and the atoms move out of regions with
high intensity. Therefore, the potential minima for the atoms coincide with the intensity
minima in this case. By increasing the number of laser beams, periodic optical potentials
can analogously be produced in 2D and 3D. By varying the frequencies, the intensities
and the angles between the lasers a huge variety of different lattice configurations can be
produced [13].
Ultracold bosons in a regular, square optical lattice show a transition from the MI, for
high laser intensities where the optical lattice is deep, to the SF phase, for lower laser
intensities where the lattice is shallow. In the MI phase the particles are localized in
position space, since there exists an energy gap in the particle excitation spectrum, which
means that adding a particle at some site costs energy. Moreover, this energy gap prevents
the particles from tunneling, such that the Bose gas cannot be compressed by a small
external potential. In the SF phase the energy gap in the particle excitation spectrum is
closed and the particles can move freely without any energy cost. This situation resembles
the frictionless movement of a SF showing zero viscosity as discussed in Section 2.1.3. This
means that the particles are delocalized in positions space, leading to a sharp localization
in the phases. The ground state can be described by a Glauber coherent state, which
are introduced in Appendix A.1. Due to the closed energy gap, the Bose gas can be
compressed by an external potential, which means that it is compressible.
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If the optical lattice is disordered, which can experimentally be realized for example by a
bi-chromatic potential, discussed in Chapter 6, the BG phase occurs between the MI and
SF phase in the phase diagram [19, 20]. In the BG phase the energy gap of the particle
excitation spectrum is closed, which enables particle to move from one site to the other.
That is why the Bose gas is compressible, just as the SF phase. But still the ground state
is not coherent, which is similar to the MI phase. Thus, the BG phase exhibits features of
both the MI as well as the SF phase. The BG phase is called glass, as the density does not
show a crystalline structure, as in the MI phase, but rather an amorphous, non-crystalline
shape. A detailed discussion of the nature of this phase is a main topic of this thesis and
will be given in Chapter 4.

2.1.5 Experimental observation of the phase transitions

The MI-SF transition in an ordered optical lattice has been experimentally shown in [21].
In this experiment ultracold 87Rb atoms are confined in a 3D optical lattice. In order
to detect the phase of the system in the trap, one makes use of the coherence of the
macroscopic wave function of the BEC. The coherence of BECs was impressively shown
in [73], where the interference pattern of two interfering BECs in a double well potential
was observed. In a lattice system the coherence of the condensed fraction of the Bose gas
in the trap can, therefore, be detected by using the technique of time-of-flight imaging.
In this framework the trap is switched off after the experiment such that the Bose gas
can evolve freely in space. An absorption image of the resulting cloud then shows regular
interference peaks if there exists a condensed fraction of particles macroscopically occu-
pying the same state and a diffuse density profile if not.
In order to understand this, we take a closer look on the density in the trap in momentum
space n (~p ) and position space n (~r ) after the time-of-flight. The initial density

n (~p ) = n0 (~p ) + nT (~p ) (2.34)

consists of a condensed n0 (~p ) and a thermal component nT (~p ) with a total number of
N =

∫
d~p n (~p ) particles. The density of the condensate is given by the mean square of

the condensate wave function and can be represented by [22]

n0 (~p ) = N0|Ψ0 (~p ) |2 = N0

(
1

~πmωho

) 3
2

exp

(
− m

~t2
∑

k=x,y,z

r2
k

ωk

)
, (2.35)

where the momentum is given by ~p = m~r/t, the number of condensed particles by N0 and

the geometric average ωho = (ωxωyωz)
1/3 of the three oscillator frequencies. The thermal

fraction is given by [22]

nT (~p ) =
1

(2π~)3

∫
d~r n~p (~r )

=
1

(λTmωho)3 g 3
2

[
exp

(
−βmr

2

2t2

)]
, (2.36)
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where the thermal wavelength λT is given by Equation (2.6) and n~p (~r ) by the Bose-
Einstein statistic (2.1). We assume that the particles do not interact during the time of
flight and thus perform a ballistic expansion. Let us take a look at the densities after the
free expansion. The condensate density in position space is then given by [22]

n0 (~r, t) = N0

(mωho

~π

)3
2

exp

(
−m

~
∑

k=x,y,z

ωk
1 + ω2

kt
2
r2
k

) ∏
k=x,y,z

1√
1 + ω2

kt
2
. (2.37)

For sufficient long times (ωkt� 1) this reduces to

n0 (~r, t)→ N0

(
m

~πt2ωho

)3
2

exp

(
− m

~t2
∑

k=x,y,z

r2
k

ωk

)
. (2.38)

The thermal part may be written according to [22]

nT (~r, t) =
1

λ3
T

g 3
2

[
exp

(
−βm

2

∑
k=x,y,z

ω2
k

1 + ω2
kt

2
r2
k

)] ∏
k=x,y,z

1√
1 + ω2

kt
2
, (2.39)

which in the limit ωkt� 1 reduces to

nT (~r, t)→ 1

(λT tωho)3 g 3
2

[
exp

(
−βmr

2

2t2

)]
. (2.40)

A comparison of Equation (2.38) and (2.40), describing the densities after a free expansion
of sufficiently long time (ωkt � 1), with the initial densities in momentum space (2.35)
and (2.36) shows that they are proportional and fulfill the equality

n (~r, t) =
(m
t

)3
n (~p ) . (2.41)

This means that after the free expansion the density in position space is proportional to
the momentum distribution of the trapped system, if the interaction of the atoms during
the process of free expansion is negligible and the time of free expansion is sufficiently
long.
In Figure 2.2 absorption images after the time-of-flight are shown for increasing values
of the potential depth V0 [21]. In a shallow lattice there exists a main maximum, which
is accompanied by a regular pattern of lower maxima, showing that the original state in
the trap was coherent. In deep lattices this interference pattern vanishes and is replaced
by a diffuse Bose gas. In this regime the state in the trap exhibits no phase coherence,
corresponding to a MI state. In order to show that the loss of phase coherence is due
to this transition and to exclude other processes, it was shown that starting from a MI
configuration phase coherence can be restored by lowering the lattice depth again.
Alternatively the different phases can be detected by Bragg spectroscopy, where the par-
ticle excitation spectrum of the system is measured [3, 21, 23, 24, 74]. If a particle moves
from one site to another, it has to pay the energy U if the other site is already occupied.
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Figure 2.2: Absorption images of the 2D Bose gas after a time-of-flight of 15 ms for different values of
the potential depth V0/ER = 0, 3, 7, 10, 13, 14, 16, 20. The figure is taken from [21].

In a MI configuration, where tunneling is suppressed, the particle does not posses enough
energy to overcome this energy gap. Since in the SF regime the energy gap is closed,
tunneling is favorable and particles are free to tunnel to other sites. In order to study this
excitation spectrum in experiment a perturbative potential is applied in addition to the
optical lattice. This can be realized by a potential gradient with an energy difference ∆E
between neighboring sites [21] or a sinusoidal modulation with the amplitude being ap-
proximately 30% of the main lattice height s1 and some frequency ν [3]. In the SF regime
the particle-hole excitation can be stimulated easily for all values of the parameters ∆E
or ν. In the MI phase the excitation is only possible for specific energies, which are mul-
tiples of the energy U . The width of the interference peak of the time-of-flight images
versus the energy difference ∆E is shown in Figure 2.3. In the SF regime particle-hole
excitations are possible for every value of ∆E as can be seen in Figure 2.3 c). For the other
parameters, representing MI configurations, two peaks at multiples of the energy U are
visible. Therefore, the existence of a energy gap in the particle-hole excitations spectrum
can be measured by Bragg spectroscopy.
With the help of both, the measurement of coherence with time-of-flight images and the
probing of the excitation spectrum by Bragg spectroscopy, the authors [21] conclude that
the MI-SF transition occurs between V0/ER = 10(1) and V0/ER = 13(1), which corre-
sponds to U/J ≈ 36 for the second value.
Moreover, with the help of trap squeezing spectroscopy [25,75], the compressibility of the
Bose gas can also be measured directly. Suppose in addition to the optical lattice there
exists a harmonic confinement, which can be tuned independently. By varying the ampli-
tude of this potential the Bose gas can be compressed. An accompanying measurement of
the radius of the Bose gas via absorption imaging, shows if the Bose cloud is compressible
or not. This method, however, is bounded by the resolution of the absorption imaging.
Such a system with regular optical lattices can be extended by introducing disorder to
the system. Experimentally there are in general two possibilities: The first one is the
introduction of a diffuser, which randomly modulates the intensities of an additional laser
and in superposition with the optical lattice leads to local inhomogeneities in the lattice
potential, in which the atoms move [27]. The distribution of local inhomogeneities, and
especially the disorder strength, however, is unique for the diffuser used in the experi-
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Figure 2.3: Excitation spectrum of the Bose gas resulting from Bragg spectroscopy for different values
of the potential depth V0/ER = 10, 13, 16, 20 as a function of the energy difference ∆E
between neighboring sites. The figure is taken from [21].

ment and cannot be adjusted to different values. The second opportunity is to use of
a bi-chromatic optical potential [3, 26]. Here the main optical lattice is overlapped by a
second optical lattice, whose frequency is slightly shifted from and whose amplitude is
smaller than that of the main lattice. By varying the amplitude of the second lattice the
strength of disorder can be adjusted freely. The period of such pattern increases as the
difference between the wave lengths shrinks. If the difference is chosen to be so small,
that the period exceeds the system size, this quasi-periodic pattern serves as a model for
uncorrelated disorder, which will be discussed in Chapter 6 in detail.
In this disordered configurations the so-called BG phase occurs between the MI and the
SF phase. This phase exhibits properties of both, the MI and the SF phase. In the BG
phase the ground state is not coherent, which means that the time-of-flight images show
no regular interference peaks than rather a diffuse density cloud like in the MI phase. But
yet, the energy gap in particle-hole excitation spectrum is closed like in the SF regime,
which can be shown with Bragg spectroscopy. Therefore, with both experimental methods
the parameter regime of the BG phase can be separated from the MI as well as from the SF
regime. This has been realized in a 1D bi-chromatic optical lattice [3]. In dependence of
the amplitudes of the lattices they found configurations, in which the time-of-flight images
as well as the excitation spectrum show no precise peaks, which indicates that the system
is in a non-coherent state, where the excitation gap is already closed, corresponding to
the BG phase.
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Figure 2.4: The BH Parameters and some 1D potential. The on-site energy εi describes the relative
difference in the potential depth. The tunneling rate Jij is the energy gain, that a particle
gets by tunneling from one site to the neighboring. The inter-particle interaction Ui is the
amount of energy that a second particle must pay, if it reaches an occupied site.

2.2 The Bose-Hubbard model

A laser reflected into itself forms a regular lattice potential for the atoms according to
Equation (2.33). For a 2D system, which is under consideration in this work, the potential
is given by

V (~r ) = V0

(
cos2 (kx) + cos2 (kz)

)
, ~r = (x, y) , (2.42)

where the wave vector k = 2π/λ, the lattice constant a = π/k and the intensities V0 = sER
are given in units of the recoil energy ER = ~2k2/ (2m). In experiments 87Rb atoms,
which have an atomic transition at the wavelength of λ = 830 nm and a mass of
mRb = 1.45 10−25 kg are widely used [3, 21]. The BH Hamiltonian

Ĥ =
∑
i

(εi − µ) n̂i +
∑
i

Ui
2
n̂i

(
n̂i − 1

)
−
∑
〈i,j〉

Jij â
†
i âj (2.43)

describes the behavior of bosons in such optical lattices [10]. The operator n̂i = â†i âi is
the particle number operator of bosons at site i, which can be annihilated and created
by the operators âi and â†i respectively. The site index i = 1, . . . ,M , where M = L2

is the number of sites in a 2D lattice, represents a tuple of spatial coordinates (ix, iz)
with ix,z = 1, . . . , L, where L is lateral size of the square lattice. The last sum runs over
all four (Z = 4) nearest neighbor pairs 〈i, j〉 of the lattice. In Figure 2.4 a 1D potential
is shown. The BH parameter εi is the on-site energy, describing the relative differences
in the potential depth. The tunneling rate Jij is the energy, which a particle gets by
tunneling, while the inter-particle interaction Ui is the amount of energy that a second
particle must pay, if it reaches an occupied site. Therefore, the tunneling rate Jij and
the inter-particle interaction Ui are competing energy scales. All these parameters can be
site dependent for the disordered or site independent for the ordered BH model. In this
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Figure 2.5: Scattering potential of two different spin states for a situation before (a) and after (b) the
Feshbach resonance. Scattering length a as a function of the magnetic field B (c) in the
vicinity of the Feshbach resonance at B0 according to equation (2.44). Below the resonance
the scattering length a is positive, while it becomes negative above.

system the chemical potential µ is a Lagrange multiplier determining the total particle
number.
Especially remarkable is the high level of controllability of these systems in the experi-
mental setup, where all parameters can be adjusted in a wide range. The ratio Jij/εi is
inverse proportional to the laser intensity. According to Equation (2.31) the potential for
the atoms is small for low laser intensities resulting in a high tunneling rate Jij/εi. On the
other hand for large laser intensities the atoms are tightly confined to their lattice sites
and the tunneling rate Jij/εi is small. The explicit dependency of the BH parameter and
the experimental parameters will be discuss in Section 6.1.2. For the adjustment of the
inter-particle interaction Ui an additional magnetic field is necessary. In the vicinity of
a Feshbach resonance the scattering length a and with it the inter-particle interaction Ui
can be changed. Figure 2.5 a) and b) shows the scattering potential for two atoms as
a function of their separation r for two different spin states. If the two considered spin
states have opposite magnetic moment, their relative position can be shifted continuously
by changing an externally applied magnetic field B. Therefore, it is possible to shift a
bound state of the upper potential relatively to the dissociation energy of the lower po-
tential. If the two levels are in resonance at some value B0 of the magnetic field, the
scattering length a diverges. In the vicinity of the Feshbach resonance the scattering
length a can be described by the relation

a = a0

(
1− ∆B

B −B0

)
, (2.44)

where ∆B describes the width of the resonance and a0 the scattering length far from res-
onance as shown in Figure 2.5 c). Below the resonance the scattering length a is positive,
while it becomes negative above the resonance. Since the inter-particle interaction Ui is
proportional to the scattering length a, as we will see in Section 2.2.2, both regimes, i.e.
attractive and repulsive inter-particle interaction Ui, can be realized in the vicinity of a
Feshbach resonance.
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2.2.1 Wannier Functions

To derive the BH Hamiltonian, we first introduce the so-called Wannier functions W l
n (~r ).

According to the Bloch theorem [76] the Bloch functions

ψ~qn (~r ) = u~q ei ~q ~r, u~q (~r ) =
∑
~G

c~q−
~G

n e−i ~G~r (2.45)

are solutions of the stationary Schrödinger equation. In order to show this, we start with
a periodic potential V (~r ) like given in Equation (2.42), with lattice constant a and the
Hamiltonian Ĥ = p̂2/ (2m) + V (~r ). The Fourier-representation of such a potential is
given by

V (~r ) =
∑
~G′

V ~G′ ei ~G′ ~r, (2.46)

where ~G′ = 2π~j′/a is the reciprocal lattice vector and ~j′ is a vector of integer numbers.
The ansatz

ψn (~r ) =
∑
~k′

c
~k′

n ei~k′ ~r (2.47)

and the transformation ~k′+ ~G′ = ~k lead to a stationary Schrödinger equation of the form

∑
~k

(~2~k2

2m
− En

)
c
~k
n +

∑
~G′

V ~G′c
~k− ~G′

n

 ei~k ~r = 0 . (2.48)

Since ei~k ~r are orthogonal functions, this equation must hold for every value of ~k. Moreover,
for every wave vector ~k there exists a unique decomposition ~k = ~q − ~G′′, where the
reciprocal lattice vector ~G′′ = 2π~j′′/a is chosen in a way that ~q is a parameter defined in

the first Brillouin zone (1.BZ). The additional transformation ~G′ = ~G − ~G′′ leads to the
equation ~2

(
~q − ~G′′

)2
2m

− En

 c~q−
~G′′

n +
∑
~G

V ~G− ~G′′ c
~q− ~G
n = 0 . (2.49)

This equation represents an eigenvalue problem for the coefficients c~q−
~G

n of Equation (2.45).
For a given energy level n the dimension of this eigenvalue problem is given by the
dimension of the vector ~G′′, which runs over the whole reciprocal lattice. In a numerical
treatment the reciprocal lattice vector has to be truncated at a suitable value.
For the regular 1D potential, V (x) = V0 cos2 (kx) the Fourier-transform of the potential
reads

VGx−G′′
x

=
1

a

∫
dx eiGx x =

V0

4
[δ(1− j + j′′) + δ(1 + j − j′′) + 2δ(j − j′′)] . (2.50)

In this case the matrix representation of the operator of the eigenvalue problem (2.49)
is a tridiagonal matrix. Exemplary some ground state Bloch functions ψq0 (~r) for the 1D
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Figure 2.6: Bloch functions for a 1D ordered symmetric lattice with s1 = 2, s2 = 0 for
qa
π = 0.027, 0.5, 0.67, 1.

potential are shown in Figure 2.6. They are periodic and spread over the whole lattice.
Please note that the Bloch coefficients u~q (~r ) are also periodic functions.
Since the Bloch functions form an orthonormal basis, the Wannier functions can be con-
strued by

W l
n (~r ) =

√
2π

a

1

M

∑
~q∈1.BZ

ψ~qn (~r ) ei ~q ~xl with ~xl = ~l a , (2.51)

and are localized at site ~l = (lx, lz). The set of Wannier functions are the Fourier trans-

form of the set of Bloch functions. They are real functions, which fulfill
∫
V

dVW l
n

2
(~r ) = 1.

Moreover, they are symmetric due to the symmetry of the underlying lattice. Figure 2.7
shows a Wannier function for a regular 1D lattice. This wave function has a dominant
occupation probability at one single site and significantly smaller probability at the neigh-
boring sites.
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Figure 2.7: Wannier functions for a 1D symmetric lattice with s1 = 2 and s2 = 0 for l = 5 and
n = 0. The function shows a dominant occupation probability at one single site and small
probability at the neighboring sites.

2.2.2 Derivation

In order to derive the BH model we start with the quantum field theory Hamiltonian

Ĥ =

∫
d~r ~Ψ†(~r)

(
−~2∇2

2m
+ V (~r)

)
~Ψ (~r)

+
1

2

∫
d~r d~r ′ ~Ψ† (~r) ~Ψ† (~r ′)U (~r, ~r ′) ~Ψ (~r ′) ~Ψ (~r) , (2.52)

describing bosons in some potential V (~r) in the quasi-ideal regime, where U (~r, ~r ′) de-
scribes the two particle interaction [22]. The field operator for a specific mode n

~Ψ (~r) =
∑
l

W l
n (~r ) âl (2.53)

can be composed into Wannier functions W l
n (~r ) and the creation operator âl creating

a particle at site ~l = (lx, lz). In the tight-binding approximation the inter-particle in-
teraction reduces to a contact interaction U (~r, ~r ′) = U0δ (~r − ~r′) [64]. The effective
inter-particle interaction in 2D is then given by

U0 =
~2as
m

√
8mπωz

~
= 5.56 10−11 ~ , (2.54)

where as = 5.2 nm is the scattering length, mRb = 1.45 10−25 kg is the mass of the
87Rb atoms and ωz = 6π kHz is the frequency of the vertical confinement [6, 77–79]. In-
serting the representation (2.53) into the quantum field Hamiltonian (2.52) the BH Hamil-
tonian in tight-binding approximation reads

Ĥ =
∑
i

(εi − µ) n̂i +
∑
i

Ui
2
n̂i

(
n̂i − 1

)
−
∑
〈i,j〉

Jij â
†
i âj , (2.55)
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where the BH parameters εi , Jij and Ui are given by

εi =

∫
d~r Wi (~r )

(
−~2∇2

2m
+ V (~r)

)
Wi (~r ) ,

Ui = U0

∫
d~r Wi

4 (~r ) ,

Jij = −
∫

d~r Wj (~r )

(
−~2∇2

2m
+ V (~r)

)
Wi (~r ) . (2.56)

Thus, the BH parameters can be determined using the Wannier function Wi (~r ) = W i
0 (~r )

of the ground state and the actual potential V (~r). The chemical potential µ is a Lagrange
multiplier used to fix the total particle number N =

∑
i〈n̂i〉.

For a symmetric optical potential (2.42) the local potentials at each lattice site is identical
and thus the Wannier functions at all sites are the same. In this case the BH parameter are
site independent, i.e., ε = εi, U = Ui, J = Ji for all i. Then, the summand

∑
i εin̂i = εN̂

in the Hamiltonian is proportional to the total number of particles and leads to a global
shift of the spectrum, which does not influence the behavior of the system. Therefore,
the BH Hamiltonian for a symmetric potential may finally be cast into the from

Ĥ = −µN̂ +
U

2

∑
i

n̂i

(
n̂i − 1

)
− J

∑
〈i,j〉

â†i âj . (2.57)

2.2.3 Phase diagrams

In the following the phase diagram for the ordered BH model are presented. The so-
called Mott-lobes, which are the transition lines from the MI to the SF phase, can be
described analytically in the framework of perturbation theory [48]. In the case of on-site
disorder there also exists a perturbative description of the border of the MI region [49].
The MI regions, which still have the form of lobes, are surrounded by the BG phase for
intermediate tunneling rates and finally by the SF phase for strong tunneling rates [1].

2.2.3.1 The ordered Bose-Hubbard model

The ground state of the BH model bears different characteristics in dependence of the
system parameters. As discussed in Section 2.1.4, in the ordered system there occurs a
phase transition from a MI to a SF phase. On the one hand in the MI phase there ex-
ists an energy gap in the particle excitation spectrum, which prevents the particles from
tunneling and the ground state is localized in position space. On the other hand in the
SF phase the energy gap is closed and the particles can tunnel without any energy cost,
which makes the Bose gas compressible.
This phase transition in the parameter space of the ordered BH model can be described
analytically [48]. For the ordered system the BH parameters for each site are identi-
cal, which means that the Hamiltonian is the same for each site. Within the so-called
LMF approximation, which we will introduced and discuss in detail in Chapter 3, the
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Figure 2.8: The phase diagram of the ordered BH model as predicted by perturbation theory [48] and
given by Equation (2.61). Within the Mott-lobes the number of particles per site is fixed,
while in the SF phase tunneling is favorable for the particles and the ground state is a
coherent state.

BH Hamiltonian decomposes into a sum of local Hamiltonians, which are coupled in a
mean-field way. The Hamiltonian for a single site in LMF approximation reads

Ĥ = µn̂ +
U

2
n̂
(
n̂ − 1

)
− Jη

(
â + â† − ψ

)
, (2.58)

with ψ = 〈gs|â†|gs〉 being the local SF parameter and η = Zψ, where Z is the number of
neighboring sites. For small tunneling rates J the ground state energy for a state with n
particles can be calculated in perturbation theory [48] yielding

En = µn+
U

2
n (n− 1) + JZψ2

(
JZn

U (n− 1) + µ
− JZ (n+ 1)

Un+ µ
+ 1

)
. (2.59)

Following the Ritz method, we minimize the energy with respect to ψ and find an upper
bound for the ground state energy. The first step yields the necessary condition

∂En
∂ψ

= 2JZψ

(
JZn

U (n− 1) + µ
− JZ (n+ 1)

Un+ µ
+ 1

)
= 0 , (2.60)

which leads to the transition line at

µ± (J, Z, U, n) = −1

2
(JZ − U (2n− 1))

±
√

1

4
(JZ − U)2 − JZUn . (2.61)

The chemical potential µ± as a function of JZ/U for different values of n is shown in
Figure 2.8. In this parameter plane the function (2.61) forms the so called Mott-lobes,
which are numbered by integer values n = 1, 2, . . .. The function encloses individual MI
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Figure 2.9: Probability density function p (ε) of the local on-site energies εi according to Equation (2.63).
This distribution is symmetric around zero, has a width of ∆ and a variance of σ2 = ∆2/12.

regions in which the particle number per site equals the integer number n. Their tips are
located at

µ

U
= −1 +

√
n (n+ 1) and

JZ

U
= 1 + 2n− 2

√
n (n+ 1) . (2.62)

The Mott-lobes are aligned along the µ-axis and the particle number increases from lobe
to lobe with growing µ. The upper and the lower part of the Mott-lobe is not symmetric
with respect to the line µ/U = 3n/2− 1 and its tip is slightly below this line. While their
extends along the µ/U -axis is always one, their width in JZ/U -direction shrinks with
increasing n, but does not vanish in the limit n→∞. Therefore, there exists an infinite
number of Mott-lobes.

2.2.3.2 The disordered Bose-Hubbard model

The main focus of this work is on the phase diagram of site dependent, inhomogeneous
BH parameters. In this case the BH Hamiltonian is given by Equation (2.43), where all
BH parameters are site dependent. The system, which is studied most, is the BH model
with disordered on-site energies εi, while the other BH parameters J and U are treated
as sharp values. The local on-site energy εi is then a random number drawn from a box
distribution

p(ε) =
1

∆
Θ

(
∆

2
− |ε|

)
, (2.63)

where ∆ is the strength of the disorder. This distribution, as shown in Figure 2.9, is sym-
metric around zero and its variance is given by σ2 = ∆2/12. As discussed in Section 2.1.4,
in the disordered scenario the so-called Bose glass phase occurs in between the MI and
SF phase in the phase diagram [19,20]. Similar to the SF phase also in the BG phase the
energy gap in the particle excitation spectrum is closed, which means that the Bose gas
is compressible, but still the ground state is not coherent just as in the MI phase.
A sketch of the phase diagram of the disordered BH model with on-site disorder is shown
in Figure 2.10 for different values of the disorder strength ∆. This disorder scenario is
a substantial part of this work and will be discussed in Chapters 3 and 4. An overview
of the relevant phase diagrams is given in Section 5.1. Here, the MI-BG transition is
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Figure 2.10: Sketch of the phase diagram of the BH model for box distributed disordered on-site energies
εi according to distribution (2.63) for the disorder strengths ∆/U = 0.35, 0.6, 1.5. The
MI-BG transition shown in blue is given by the analytical perturbative result from [49].
The BG-SF transition is determined with LMF cluster analysis, which will be introduced
in Chapter 4 and discussed in Section 5.1. The Mott-lobes along the µ/U -axis have a
distance of ∆/U from each other and are completely surrounded by the BG phase [20].
For larger tunneling rates JZ/U the SF phase dominates the phase diagram.

given by the analytical perturbative result from [49]. In this paper the authors showed
that, just as in the ordered case, the tip of the Mott-lobe lies slightly below the line
µ/U = 3n/2 − 1. Moreover, they found that in comparison to the ordered case, in the
disordered case the upper (lower) part of the Mott-lobes is shifted downwards (upwards)
by ∆/2U , while their slope remains unchanged. Since for the BG-SF transition there
exists no analytic result, the transition lines shown here have been determined via the
LMF cluster analysis, which will be introduced in Chapter 4 and discussed in Section 5.1.
Analogously to the ordered case we find Mott-lobes along the µ/U -axis, which now have
a distance of ∆/U from each other. With increasing disorder strength ∆/U they shrink
and vanish all simultaneously for ∆ = U . The Mott-lobes are completely surrounded by
the so called BG phase [20]. The ground state in this phase is not coherent ψ = 0 like in
the MI phase, but yet compressible, κ > 0, like in the SF phase. The Bose glass phase
shows characteristics of both the MI and the SF phase, on which we will have a detailed
look in Chapter 4. Finally, for large tunneling rates JZ/U the SF phase survives in the
parameter region.

2.2.4 Numerical Methods

There exists a variety of sophisticated numerical methods in order to diagonalize the
BH Hamiltonian (2.43), as its dimension

D =
(N +M − 1)!

N ! (M − 1)!
(2.64)

of the Hilbert space increases drastically with the number of particles N and sites M .
Even though there are effective algorithms for the exact diagonalization of the BH Hamil-
tonian [80], the BH model can only be solved for small systems with a low number of
particles and modes. That is why, there exists a whole bunch of numerical techniques or
approximations in order to overcome this bound.
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Quantum Monte-Carlo techniques, of which a short introduction is given in Appendix C,
has been applied to the BH model in two [28–30, 32–36] as well as in three dimen-
sions [20, 81, 82]. This algorithm includes all quantum effects and can be applied in the
whole parameter regime of the model. The basis of this algorithm is the Trotter-Suzuki
decomposition (C.14), which allows for a systematic decomposition of the partition func-
tion in so-called Trotter slices ∆τ = it in imaginary time, where contributions on the
order of ∆τ 2 are neglected. Advanced quantum Monte-Carlo methods, which operate
in continuous imaginary time overcome this limit and hence eliminate this discretization
error of ∆τ 2 [83–87]. Moreover, finite size effects occurring in every numerical simulation,
can be treated with finite size techniques, which allows for a systematic and accurate
description of the transition from a finite to the limit of an infinite system. Therefore,
the combination of advanced quantum Monte Carlo algorithms with the systematic de-
scription of finite size effects improve the accuracy of quantum Monte-Carlo results up to
a very high level and make the algorithm the most powerful technique for a huge class of
quantum many-body systems.
In one dimension density-matrix renormalization group techniques [88] have been applied
to BH models containing either quasi-periodic potentials [37–39] or a uniform distribution
of disorder strength [40, 41]. Within this treatment the many-body quantum state of a
system at low energies - and especially the ground state - can be determined with high
accuracy in low dimensions. The technique corresponds to an iterative, variational algo-
rithm, where in each step the whole chain of sites is decomposed into two blocks, which are
separated by two sites. On the basis of this decomposition, which is called a superblock,
a possible candidate for the ground state is determined. Within a row of systematically
changed decompositions, the determined candidate approaches the actual ground state.
Since this algorithm has been introduced by White [88] in 1992, the density-matrix renor-
malization group technique has been established as a highly reliable and precise method,
which found applications in the Heisenberg model, the Hubbard model for fermions as
well as for bosons and quantum chemistry [89].
A frequently used alternative approach is the LMF approximation [42], which replaces
the nearest neighbor hopping on the lattice by isolated bosonic degrees of freedom inter-
acting via an effective mean-field coupling with the neighbors. Within this approximation
the quantum wave function is described by a direct product of local wave functions, one
for each site, which is equivalent to the Gutzwiller variational technique [90–92]. Based
on the LMF approximation several numerical techniques, such as SMF theory [46, 47]
and LMF theory [43–45], were proposed, which will be discussed in detail in Section 3.
The LMF cluster analysis [2], as an advanced mean-field technique, will be introduced in
Section 4. The phase diagram of the 2d disordered BH model with random on-site po-
tentials predicted by the LMF cluster analysis, which interprets the BG-SF transition as
a percolation of SF regions, agrees precisely with the one obtained from quantum Monte
Carlo methods [35]. Moreover, in Reference [93] the percolation criterion has already been
applied to their studies on the BH model with random impurities.
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Conclusion

We have seen that for decreasing temperature an Bose gas of bosons undergoes a phase
transition to a BEC, where the ground state is occupied macroscopically. Such a system
confined in a regular optical lattice undergoes a phase transition from a MI to a SF phase.
In the disordered system additionally the BG phase occurs in between. In order to detect
the three different phases experimentally the phase coherence, the energy gap of particle
excitations as well as the compressibility measured with the help of time-of-flight tech-
niques, Bragg spectroscopy [3, 21] and trap squeezing spectroscopy [25,75], respectively.
The BH Hamiltonian describes the behavior of ultracold bosons in optical lattices. It
can be derived expanding the field operators in terms of Wannier functions, which have
a maximal occupation probability at one specific site and only small overlap with neigh-
boring sites. The BH model has three free parameters, namely on-site energy, tunneling
rate and inter-particle interaction. The chemical potential determines the total number
of particles. These energy scales compete with each other, leading to phase transitions
in the ordered as well as in the disordered BH model. In this chapter we have already
given an overview on the phase diagrams of both BH models on the basis of perturbative
descriptions.





3 Local and Stochastic mean-field
theory

The dimension of the BH model increases dramatically with the system size M = L2 and
the number of atoms N . This is why a complete solution of a large system, comparable
to experimental setups, is not feasible, due to the demanded resources as memory and
computer time. The LMF approximation [42] reduces the full Hilbert space into M
Hilbert spaces of a smaller dimension one for each lattice site. Within this approximation
the Hamiltonian of the whole quantum systems is decomposed into a sum of quantum
Hamiltonians describing individual sites, which couple to each other in a mean-field way.
Within this treatment the phase diagram has been determined on the basis of global order
parameters [44, 45]. These, however, do not serve a sharp criterion for the detection of
the phase transition, as we will see in this chapter. These global order parameters vary
smoothly in the vicinity of the phase transition without showing a precise kink. One
advanced method is the SMF technique [46,47], which introduces an innovative approach
for the determination of the ground state properties. This method is also based on the
LMF approximation, but requires an additional approximation, whose validity will be
discussed in this chapter. Within this treatment the global order parameters show a kink
at the phase transition and allow to determine a phase diagram of the disordered system,
which will also be discussed in this chapter.

3.1 Local mean-field theory

This theory founds on the LMF approximation, where the tunneling part of the Hamil-
tonian is approximated via

âiâ
†
j ≈ âi〈â

†
j〉+ â†j〈âi〉 − 〈âi〉〈â

†
j〉 , (3.1)

where terms of the form (âi−〈âi〉)(â
†
j−〈â

†
j〉) are neglected [42]. The central quantities are

the local SF parameters ψi, which are defined as the expectation values of the annihilation
operator at the individual site i in the ground state |Ψ〉 of the system:

ψi = 〈Ψ|âi|Ψ〉 . (3.2)

Because of the U(1)-symmetry of the Hamiltonian, they can be chosen to be positive and
real, which leads to the LMF approximation

âiâ
†
j ≈ ψj âi + ψiâ

†
j − ψiψj . (3.3)
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In these terms, the Hamiltonian can be decomposed into a sum of diagonal operators,

Ĥ =
∑
i

Ĥi, where

Ĥi = (εi − µ) n̂i +
Ui
2
n̂i

(
n̂i − 1

)
− Jijηi

(
âi + â†i − ψi

)
, (3.4)

whose tunneling rate is replaced by an effective local rate Jijηi, which depends on the
local SF parameter of the neighboring sites ηi :=

∑
j Aijψj, with Aij = 1 for i and j

being nearest neighbors on a square lattice with periodic boundary conditions and zero
otherwise. This approximation reduces the full quantum problem to M quantum sites,
which are coupled in a mean-field way with a spatially varying coupling rate Jijηi.
As a direct consequences of the decomposition (3.4) of the Hamiltonian, the full quantum
states reduces to a direct product of individual single-site wave functions |φi〉:

|Ψ〉 =
M∏
i=1

|φi〉 . (3.5)

This LMF approximations neglects spatial correlations between the sites as well as quan-
tum fluctuations, which is equivalent to other mean-field as for example the Gutzwiller
variational method [90–92]. This LMF approximation is less severe in high space dimen-
sions and is exact for infinite dimensions. Already above the upper critical dimension
the LMF description reproduces the exact critical behavior of the full quantum system.
Even though the critical dimension is unknown for the considered system, it is certainly
larger than 4. Consequently, we expect the approximation to be critically inaccurate for
1D systems, but applicable for 2D systems.
In order to compute the phase diagram in LMF theory the coupled set of the self-
consistency equations

ψi = 〈Ψ|âi|Ψ〉, i = 1, . . . ,M, M = L2 (3.6)

is solved on an L × L lattice, where the expectation value is evaluated in the ground
state of Ĥi, which itself depends on the local SF parameter ψi. For the numerical imple-
mentation the set (3.6) of equations is solved recursively, starting from a random initial
configuration for the local SF parameters ψi on the 2D lattice. This involves solving the
eigenvalue problem on each site and computing the expectation value of the annihilator in
the numerically determined ground state. This is repeated until the SF order parameter

ψ =
1

M

[
M∑
i=1

ψi

]
av

, (3.7)

which is given by the mean value of the local SF parameters, is determined with an accu-
racy of 10−4. In the disordered case the results are averaged over 200 different realizations
of disorder, indicated by the brackets [·]av. Since we are working in a regime in which
the maximum mean particle number per site is less than three, it is sufficient to trun-
cate the basis of the local Hilbert space for each site at n = 10. This has been checked
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numerically. If we finally solve for the local SF parameters ψi, the ground state of the
Hamiltonian (3.4) is determined numerically. Now all desired expectation values, like the
local particle number ni = 〈â†i âi〉, and finally the compressibility

κ =
[
〈N̂2〉 − 〈N̂ 〉2

]
av
, (3.8)

with N̂ =
∑

i n̂i, can be computed directly. Also the probability distribution (PD) of the
occurring local SF parameters

P (ψ) =

[
1

M

M∑
i=1

δ(ψ − ψi)

]
av

(3.9)

can be determined. Here again an average over different disorder realizations has to be
performed.
In general the different phases in parameter space can be identified on the basis of the SF
order parameter ψ and the compressibility κ. The MI phase is neither coherent (ψ = 0)
nor compressible (κ = 0). The SF phase is coherent (ψ > 0) and compressible (κ > 0).
The BG phase contains features of both, it is not coherent (ψ = 0), but yet compressible
(κ > 0). Determining the phase diagram in LMF theory on that basis [44, 45], we face
the problem that the exact location of the phase transition cannot be determined. This
problem and the resulting consequences will be described in Section 3.3.1. They are the
starting point for the research presented in this work and the introduction of a different
criterion for the phase transitions in Chapter 4.
In LMF theory, as discussed here, the mean value of local SF parameters ψi = 〈Ψ|âi|Ψ〉
is used to identify the transition to the SF phase. On the one hand, if |Ψ〉 is a Fock state
this local expectation value is zero, as these states form an orthonormal basis. On the
other hand, if |Ψ〉 is a coherent state, this expectation value is positive. In this sense
the expectation value ψi and thus also its mean value ψ, can be interpreted as a number
indicating if the system state |Ψ〉 shows a significant overlap with coherent states. The
meaning of the local SF order parameter in the context of mean-field descriptions and its
connection to the Glauber coherent states is discussed in Appendix A in more detail.

3.2 Stochastic mean-field theory

The central idea of SMF theory [46,47] is to solve a self-consistency equation for the prob-
ability distribution P (ψ) directly instead of the Set of self-consistency equations (3.6) for
each local SF parameter ψi. This technique follows the LMF approximation (3.3), but in-
cludes an additional approximation. The ground state of the single-site Hamiltonian (3.4)
is determined in dependence of two stochastic variables, ε and η. The parameter ε is drawn
from the disorder distribution p (ε) and as a result ψ = 〈Ψ|â|Ψ〉 is a stochastic variable,
drawn from the PD P (ψ), which must be determined self-consistently. Since η is the sum
of the SF parameters of the neighboring sites, it also is a stochastic variable drawn from
a distribution Q (η). The problem of computing the ground state of the full quantum
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system for all lattice sites simultaneously is thereby replaced by analyzing the ground
state |Ψ (ε, η)〉 of the site independent Hamiltonian

Ĥ = (ε− µ) n̂ +
U

2
n̂
(
n̂ − 1

)
− Jη

(
â + â† − ψ

)
(3.10)

as a function of ε and η. The PD

P (ψ) =

∫
dη Q (η) P̃η (ψ) (3.11)

of the local SF parameters depends on the distribution Q (η) of the occurring values of η
and the distribution P̃η (ψ) of the local SF parameters for given η. A direct analysis of
〈Ψ (ε, η) |â|Ψ (ε, η)〉 as a function of ε and η yields

P̃η (ψ) =
d

dψ

∫
dε p (ε) Θ (ψ − 〈Ψ(ε, η)|â|Ψ(ε, η)〉) . (3.12)

Since η is the sum of the local SF parameters ψ of the neighboring sites, its distribution
is given by

Q (η) =

∫ ∞
0

Z∏
i=1

dψiPZ (ψ1, . . . , ψZ) δ

(
η −

Z∑
i=1

ψi

)
, (3.13)

where PZ (ψ1, . . . , ψZ) is the connected PD function of the local SF parameters ψ1, . . . , ψZ
of the Z neighboring sites. Assuming that these Z local SF parameters are statistically
independent,

PZ (ψ1, . . . , ψZ) =
Z∏
i=1

P (ψi) , (3.14)

equation (3.13) transforms into a convolution

Q (η) =

∫ ∞
0

(
Z∏
i=1

dψiP (ψi)

)
δ

(
η −

Z∑
i=1

ψi

)
. (3.15)

The Equations (3.11), (3.12) and (3.15) form a set of equations for the determination of
the PD P (ψ), which is self-consistent and must be solved recursively. With the PD P (ψ)
at hand, the SF order parameter

ψ =

∫
dψP (ψ)ψ , (3.16)

as the mean value of the distribution, as well as the compressibility

κ = [〈N̂2〉 − 〈N̂ 〉2]av , (3.17)

with N̂ =
∑

i n̂i, can be computed.
The SMF theory follows the LMF approximation (3.3) and demands the additional as-
sumption (3.14), which implies the absence of correlations of the local SF parameters.
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Figure 3.1: SMF phase diagram for fixed disorder strength ∆/U = 0.6 determined by using the SF order
parameter ψ and the compressibility κ [46,47]. The red line indicates the critical tunneling
rate where the SF order parameter ψ becomes non-zero, the blue line the critical tunneling
rate JZ/U , where the compressibility κ becomes non-zero.

One expects that this is not justified close to the phase boundaries, where the correlation
length even diverges, when the transition is of 2nd order. The validity of this approx-
imation in dependence of the system parameters JZ/U and µ/U will be discussed in
Section 3.3.2.
The phase diagram results from the analysis of the SF order parameter ψ and the com-
pressibility κ [46,47]. The MI phase is neither coherent (ψ = 0) nor compressible (κ = 0).
The SF phase is both coherent (ψ > 0) and compressible (κ > 0). The BG phase contains
features of both, it is not coherent (ψ = 0) but yet compressible (κ > 0). The phase dia-
gram shows Mott-lobes along the µ/U -axis with a round tip and a direct MI-BG transition
at its tip. In between there is a BG-SF transition, which in the region of integer chemical
potential µ/U is almost independent of the tunneling rate JZ/U . In Section 4.3.2 this
phase diagram will be discussed thoroughly and compared with the LMF cluster analysis,
which will be introduced in Chapter 4.

3.3 Comparison

In the following we will compare the behavior of global order parameters like the SF
order parameter ψ and the compressibility κ in the vicinity of the phase transition for the
LMF with the corresponding quantities of the SMF technique. We will see that, while
the order parameters of the LMF theory do not show a kink, the parameters of the SMF
theory do. On this basis it is possible to determine a phase diagram in SMF theory. Since
both theories use the LMF approximation (3.3), the difference arise from the additional
approximation (3.14) made in SMF theory. We will focus on this approximation and
check its validity in dependence of the system parameters. We also find differences in the
shape of the PD of the local SF parameter.
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Figure 3.2: Comparison of the LMF and SMF predictions for the average SF order parameter ψ and the
compressibility κ for fixed chemical potential µ/U as a function of the tunneling rate JZ/U .
Homogeneous case (∆/U = 0) (a, c), disordered case with ∆/U = 0.6 (b, d). Top row is
for µ/U = 1.05, where the ordered system displays a MI-SF transition and the disordered
system a BG-SF transition (κ > 0 for all values of JZ/U). Bottom row is for µ/U = 0.32,
where the ordered system again displays a MI-SF transition and the disordered system is
expected to display the MI, BG and SF phase. For LMF theory the results for a 2D lattice
with L = 100 (line), L = 50 (◦), L = 10 (+) are depicted, which shows that finite-size
effects can be neglected.

3.3.1 Superfluid order parameter and compressibility

Since the phase diagram of both, the LMF and the SMF theory, base on the SF order
parameter ψ and the compressibility κ, we will take a closer look on these important
quantities. The behavior of the SF order parameter and the compressibility are shown in
Figure 3.2 for the LMF and the SMF theory for comparison.
In the ordered case, shown on the left, the lattice is homogeneous. The SF order pa-
rameter ψ is zero below and positive above the MI-SF transition. Directly at the phase
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transition the SF order parameter shows a plain kink and thus clearly marks the loca-
tion of the MI-SF phase transition. The compressibility κ shows the same behavior at
the phase transition. Moreover, analyzing different lattice sizes L the LMF results show
no visible finite-size effects. In this way the phase transition in the ordered case can be
determined very precisely. The resulting phase transition agrees perfectly with the per-
turbative predictions of Equation (2.61).
The situation for the disordered case is shown in Figure 3.2 on the right. The SF order
parameter is shown for µ/U = 1.05 and 0.32 as a function of the tunneling rate JZ/U for
a disorder strength of ∆/U = 0.6. Here, the behavior of ψ as predicted by LMF theory
does not indicate a transition at all. It varies smoothly as a function of the tunneling
rate JZ/U . This is not a finite-size effect as visible from the graphs for different different
system sizes L. The compressibility κ, which indicates the MI-BG transition, also displays
the absence of a kink independent of the system size L. While in the ordered case both the
SF order parameter ψ and the compressibility κ show a kink at the phase transition, in
the disordered case they vary smoothly in the region of the phase transitions. Therefore,
a precise determination of the phase transition is not possible.
It turns out that the reason for the failure of the average SF order parameter to predict
the location of the BG-SF boundary is the following: In the disordered case the value of
the local SF parameter varies substantially from site to site due to the variation of the
local potential of on-site energies εi. Close to the phase transition there are sites with
zero local SF parameter and others, where the local SF parameter is still positive. This
has been interpreted as an overestimation of the phase coherence in LMF description [46].
Our interpretation, however, is different: It is only the average SF order parameter ψ that
overestimates the phase coherence. In Chapter 4 the LMF cluster analysis is introduced.
It will be shown, how a deeper understanding of the mechanisms driving the phase transi-
tions and their location in the phase diagram can be obtained by studying the geometric
characteristics of the spatial inhomogeneities of the local particle number n̂i.
The results of the SMF theory, also shown in Figure 3.2, seem to overcome this prob-
lem. The SF order parameter ψ (red line) as well as the compressibility κ (black line)
show an obvious kink at the phase transition. The SMF theory includes the LMF
approximation (3.3) just as the LMF theory and adds the assumption (3.14), that the
local SF parameters are uncorrelated. Due to this additional assumption it is doubtful,
whether the kink represents the real phase transitions of the BH model or rather is intro-
duced by the restriction (3.14). Therefore, it will be necessary to test this assumption in
the next section and finally discuss differences of LMF and SMF theory in Section 3.3.3.

3.3.2 Correlations of the local superfluid parameter

In this section we analyze the assumption (3.14) of statistical independence, which is
introduced in SMF theory. Additional to the LMF approximation (3.3) in the tunneling
part of the Hamiltonian, SMF theory assumes that the local SF parameters ψ1, . . . , ψZ
of the Z neighbors of a chosen site i are uncorrelated and distributed identically, which
is introduced by the approximation (3.14). On the basis of LMF calculations we want
to test this approximation by comparing P (ψi)P (ψj), which is the product of the PD
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Figure 3.3: The deviation ∆P between P (ψi)P (ψj) and PZ (ψi, ψj) in dependence of the system pa-
rameters JZ/U and µ/U . In the MI regime and for very small tunneling rates the deviations
are small, whereas they grow at the phase transitions and in the SF regime. The black dots
mark the parameters used in Figure 3.4 along a line at µ/U = 1.0455 and at the tip of the
Mott-lobe, where the deviation is maximal.

describing the distribution of the local SF parameter as given in Equation (3.9) with
PZ (ψi, ψj), which is the PD of pairs (ψi, ψj), where i and j are neighboring sites. It
represents the probability of having a specific value for the pair (ψi, ψj). The distributions
P (ψj) and PZ (ψi, ψj) are computed for every realization of disorder and finally averaged.
Both distributions should coincide if the assumption (3.14) is valid.
In Figure 3.3 the integral difference

∆P =

∫
dψi

∫
dψj|P (ψi)P (ψj)− PZ (ψi, ψj) | (3.18)

of both distributions is shown in parameter space. In the MI region, where the P (ψ)
has the shape of a delta function at ψ = 0 and for very small tunneling rates JZ/U the
deviations are small, whereas they are significant in the region of the phase transition
and in the SF regime. For illustration both PDs are shown in Figure 3.4 along a line of
µ/U = 1.0455 and at the tip of a Mott-lobe, where the deviation ∆P reaches its maximal
value (corresponding to the black dots in Figure 3.3). Additional to the fact that all
distributions are symmetric by construction, P (ψi)P (ψj) shows a rectangular symme-
try, which intrinsically follows from the fact that it is a product of the same PD P (ψ).
However, the PD PZ (ψiψj) contains further information of the occurring pairs and shows
systematic deviations. Whereas the values on the diagonal are reproduced quite well, the
off-diagonal contributions are squeezed to the diagonal. This is especially pronounced in
Figure 3.4 j), k), l), which corresponds to the tip of the Mott-lobe. These main differences
can be observed for all parameters shown in Figure 3.4 and mainly occur in the regime of
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Figure 3.4: The first column shows P (ψi)P (ψj), the second PZ (ψi, ψj) and the third the deviation
|P (ψi)P (ψj)−PZ (ψi, ψj) | in the disorder case (∆/U = 0.6). In the first row the parame-
ters are given by JZ/U = 0.0283, µ/U = 1.0455 followed by JZ/U = 0.0586, µ/U = 1.0455
and JZ/U = 0.1414, µ/U = 1.0455 and JZ/U = 0.1434, µ/U = 0.4394 in the last row,
corresponding the black dots in Figure 3.3. All distributions are symmetric by construc-
tion and P (ψi)P (ψj) shows a rectangular symmetry. The off-diagonal contributions of
PZ (ψiψj) are squeezed to the diagonal leading to pronounced systematic deviations here.

small local SF parameters.
Figure 3.3 illustrates that the assumption (3.14) made in SMF theory, is fulfilled well in
the MI regime but does not hold in the region of the phase transition. It is therefore to
question, whether this theory reliably predicts the phase transition in this regime.
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Figure 3.5: PD P (ψ) of the local SF parameter at fixed chemical potential µ/U = 1.05 for different
tunneling rates JZ/U as predicted by the LMF (blue) and SMF (red) theory. The ordered
case (∆/U = 0) is show in the first, the disordered case (∆/U = 0.6) in the second row. The
crosses (×) at the ψ-axis represent the mean of the PD, which is the SF order parameter ψ.
In the ordered case the PD is a delta function. In the disordered case all local SF parameters
are zero in the MI phase. The PD in the BG phase is a superposition of a delta function
at ψ = 0 and a SF tail. The SF phase is characterized by a broad distribution of positive
non-zero local SF parameters.

3.3.3 Probability distribution of the local superfluid parameter

In this section we take a closer look on the PD of the local SF parameter and discuss the
occurring deviations of the PD in LMF and SMF theory. Moreover, we will see that it
assumes three different characteristics shapes.
In LMF theory for a given realization of disorder at first the self-consistent solution of
Equation (3.6) has to be determined. The PDs of each realization are then averaged over
200 different samples of disorder. In SMF theory the PD is the self-consistent result of
the set of Equations (3.11), (3.12) and (3.15). Some of the PDs for LMF (blue) and
SMF (red) theory are shown in Figure 3.5 for fixed chemical potential µ/U = 1.05 and
two different disorder strengths ∆/U = 0 and 0.6.
In the ordered case, depicted in the first row, all local SF parameters are identical, since
all sites have the same BH parameters. The averaged order parameter ψ, depicted as
a blue cross, is identical to each local SF parameter ψi and the variance of the PD is
zero. Therefore, the PD P (ψ) is a delta function at the value ψ. Here, in the ordered
case, we find no deviation between LMF and SMF theory, as we have already described
in Section 3.3.1 and as is visible in Figure 3.2.
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Figure 3.6: Regions of the three characteristic shapes of P (ψ) for fixed density n = 1 (a) and fixed
disorder strength ∆/U = 0.6 (b). The black line represents the MI-BG transition according
to the perturbative result given by [48, 49]. In the regions enclosed by the blue line P (ψ)
consists only of a delta function at ψ = 0. Within the region bounded by the red line
in Figure a) and to the right of the red line in Figure b) P (ψ) only has a continuous
part PSF (ψ). In other parts of the parameter space the PD is a superposition of a delta
function at ψ = 0 and PSF (ψ).

This situation changes if disorder is introduced, since then the on-site energy differs
from site to site resulting in a variety of different values of the local SF parameter ψi.
Although, in the MI regime the PD is a sharp delta function at ψ = 0 still, it becomes
a broad distribution in the BG and SF phase. In the BG phase sites with zero local
SF parameter and sites, which have non-zero local SF parameter coexist. Far in the SF
regime the PD is a broad distribution representing the variety of positive values for the
local SF parameter. In the disordered case the deviations between LMF and SMF theory
become apparent. In the disordered case both distribution show roughly the same shape,
but especially for small values of ψ, which are crucial for the determination of the phase
transition in the BG and SF phase they differ significantly.
Due to its characteristic shape, the PD can be written as a superposition of a delta
function at ψ = 0 and a broad distribution representing the values ψ > 0:

P (ψ) = aδ (ψ) + PSF (ψ) . (3.19)

In order to get an overview of the behavior of the PD in parameter space, we identify
regions in parameter space, in which the PD assumes one of the three different shapes:

1. The PD is a delta function at zero ψ.

2. The PD is a superposition of a delta function at ψ = 0 and the distribution PSF (ψ).

3. The PD is a broad distribution PSF (ψ) and all ψ are positive.
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For that purpose we numerically identify two benchmarks of the histograms representing
P (ψ). The first one is the value of the histogram at the first bin, P0, representing the
delta function of P (ψ). The second characteristic point is the value of the histogram at
the second bin, P1, which is given by P1 = P (ψ = δψ) with δψ being the bin size of the
histogram representing P (ψ) (δψ = 0.0025 in LMF and δψ = 0.015 in SMF theory).
The regions determined on that basis are shown in Figure 3.6 for fixed density n = 1
on the left and fixed disorder strength ∆/U = 0.6 on the right. The LMF results are
depicted with circles, SMF results with crosses. The blue curves enclose the regions in
which P (ψ) is just a delta function at ψ = 0 (numerically: P0 > 0 and P1 < 10−3).
The red curves delimit the regions, in which the delta function part of P (ψ) vanishes
(numerically P0 < 10−6). In the remaining part of the parameter space P (ψ) consists of
a superposition of a delta function at ψ = 0 and a continuous part PSF (ψ).
Along the blue line, which describes the occurrence of the SF distribution LMF and SMF
theory coincide very well. In other words, here the first sites with positive local SF order
parameter ψi > 0 appear. Moreover, this line also perfectly agrees with the perturbative
predictions [48,49] for the MI-BG transition. At the red line deviations are visible. Here
the delta function at ψ = 0 disappears and the PD is purely given by PSF (ψ). While
these deviations are rather small for low disorder strengths and U/J > 23, they grow with
increasing disorder.

Conclusion

Within LMF approximation (3.3) the full Hamiltonian is decomposed into M quantum
systems, one for each lattice site, which are coupled to each other in a mean-field way. We
have seen that within this LMF approximation the global order parameters, usually used
for the determination of the phase diagram of the ordered as well as the disordered BH
model [44, 45], vary smoothly at the phase transition of the disordered system without
showing a precise kink. On the contrary, the global order parameters determined with the
SMF technique [46,47] show a precise kink at the phase transition. Since both techniques
are based on the LMF approximation, the only difference is an additional approximation
introduced in SMF theory, which assumes that the local SF parameters of different sites
are uncorrelated. A thorough study of the correlations of the local SF parameters showed
that they are indeed uncorrelated within the Mott regime, but maximally correlated at
the phase transition. Therefore, it is to doubt whether the SMF technique predicts the
correct phase transition. Moreover, a comparison of the PD for pairs of the local SF order
parameter with the PD of one single parameter showed grave deviations, confirming the
claim that the local SF parameters of different sites actually are correlated.
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The local properties of the BG phase are the central topic of this chapter. As we will show,
the BG phase is characterized by a finite number of SF sites, which are characterized by
the occurrence of local particle fluctuations, within a background of MI sites, without any
local particle fluctuations. We will see that this characterization can be used to identify
the phase diagram of the disordered BH model by analyzing appearance and growth of
clusters of SF sites: In the MI phase the system only consists of MI sites. In the BG
phase SF clusters occur, which do not percolate. The SF phase is the region, where at
least one SF clusters percolates. We call this treatment LMF cluster analysis [2] and
apply it to the LMF ground states of the 2D disordered BH model. The resulting phase
diagram excellently agrees with the phase diagram predicted on the basis of quantum
Monte Carlo simulations [35] and deviates largely from the one of SMF and other mean-
field predictions. We will also discuss the relation of the percolation transition of the SF
clusters to the order parameters usually used to determine the phase transitions.

4.1 Percolation

Some of the sites of a 2D lattice with M = L2 sites with index i = 1, . . . ,M are occupied
with probability p, other are not with probability (1− p). We may define a mapping of
this pattern by

Gi =

{
1 if site i is occupied,

0 otherwise.
(4.1)

For increasing p the number of occupied sites increases and at a critical probability pc a
percolating cluster occurs. In other words, at the value pc we can find a connected region
of occupied sites (Gi = 1), which connects opposite borders of the system. This critical
value pc systematically depends on the system size L. With the help of finite-size scaling
we can extract the limit L→∞ from results for different finite system sizes.
Let us now analysis this scaling behavior. The size s of a cluster is given by the number
of sites contained in this cluster. The number of clusters of size s is denoted by ns, which
means that the number of sites belonging to clusters of size s is given by sns. For a cluster
of size s we can define the radius Rs of a cluster by [94]

R2
s =

1

2

s∑
i=1

|~ri − ~rj|2

s2
, (4.2)

where ~ri are the coordinates of the cluster sites. Independent of the actual shape of the
cluster, this radius is a measure of the average distance between two cluster sites. For
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large clusters, s→∞, exactly at the percolation (p = pc) the radius scales as

Rs ∼ sρ , (4.3)

where 1/ρ plays the role of a dimension, which might be natural or fractal. The correlation
length [94]

ξ2 =
2
∑

sR
2
ss

2ns∑
s s

2ns
(4.4)

is the average distance between two sites belonging to the same cluster. The average
squared distance between two sites of the same cluster is 2R2

s. A specific site belongs to a
cluster of size s with the probability sns/M and is then connected to s sites. Therefore, the
corresponding average over 2R2

s of the probability s2ns/M gives the squared correlation
length. At the percolation p = pc the correlation length diverges as

ξ ∼ |p− pc|−ν (4.5)

with the critical exponent ν = 4/3 in 2D systems [94]. The fraction of sites

R = p−
∑
s

sns , (4.6)

which belongs to the percolating cluster is given by the number of occupied sites p minus
the fraction of sites that does not belong to the percolated cluster. Notice that the sum
runs over all finite clusters except the percolating cluster. Approaching the percolation
from below (p→ pc with p < pc) R goes to zeros. Thus, Equation (4.6) can be transformed
into

R =
∑
s

s (ns (pc)− ns (p)) . (4.7)

For large s and in the vicinity of the percolation p→ pc we assume ns to behave like [94]

ns (p) ∼ s−τe−cs with c ∼ |p− pc|
1
σ , (4.8)

with the critical exponents τ and σ. Therefore, the fraction of sites, which belong to the
percolating cluster, behaves like

R ∼
∑
s

s1−τ (1− e−cs
)
. (4.9)

Transforming the sum into an integral, integrating by parts and applying the transforma-
tion z = cs leads to

R ∼ cτ−2

∫
dz z2−τe−z . (4.10)

This integral is the Γ-Function Γ (3− τ), which is constant. Therefore, we can conclude
with Equation (4.8) that the fraction of sites, which belong to the percolating cluster near
the percolation p→ pc behaves like

R (p− pc) ∼ |p− pc|β , (4.11)



4.1. Percolation 45

with the critical exponent β = (τ − 2) /σ, which is 5/36 for two dimensions [94]. No-
tice that in the vicinity of the percolation p → pc, this fraction is independent of the
system size L.
Now we want to analyze the dependence of R (p− pc, L) not only on the distance p−pc to
the critical value pc, but also on the system size L of the system. According to the scaling
hypothesis [94] for large systems (1/L→ 0) and in the vicinity of percolation (p → pc)
this quantity behaves according to

R (p− pc, L) = L−AF (z) , z = LB (p− pc) , (4.12)

where F is a scaling function and A, B are critical exponents, which we will determine in
the following.
For large systems, L → ∞, the fraction R (p− pc, L) must agree with Equation (4.11),
which means in particular that it is independent of L. Thus, in this limit the scaling
function F behaves like F ∼ zA/B and the L dependency cancels; therefore, we find
β = A/B.
At the percolation, z = 0, the largest cluster is of the order of the system size, i.e. Rs ∼ L.
Due to Equation (4.3), the largest cluster contains L1/ρ sites. Therefore, the fraction of
the largest cluster is given by R = L1/ρ−d in d dimensions. Thus, we find A = d− 1/ρ.
With the help of ν/ρ = β + γ and dν = γ + 2β [94], we conduct finally

R (p− pc, L) = L−
β
ν F
(
L

1
ν (p− pc)

)
. (4.13)

The schematic behavior of R (p− pc, L) is shown in Figure 4.1 a). For a finite system,
L <∞, this function shows a smooth variation from zero to one. In the limit L→∞ it
approaches a function with a kink at the percolation point pc. Above the critical value pc,
where p− pc � L1/ν , the correlation length ξ is much smaller than the system size L and
the finite system behaves like an infinite system. Approaching the critical value pc, the
correlation length ξ increase according to Equation (4.5) until it reaches the order of the
system size L, where |z| is on the order of one. At the critical value, where z = 0 the
correlation length ξ diverges.
Let us now have a closer look at the probability PPerc (p− pc, L) that in a given sample of
size L and occupation probability p at least one percolating cluster occurs. Its schematic
behavior is shown in Figure 4.1 b). In an infinite system this probability is one for all p
above, and zero for all p below the critical value pc. For a finite system we see a smooth
variation between zero and one. The slope of this function at the critical point increase
with the system size L and the function approaches the shape of the step function in the
limit L→∞. The scaling behavior for a finite system is given by

PPerc (p− pc, L) = Φ
(
L

1
ν (p− pc)

)
, (4.14)

where Φ is a scaling function which is universal for the problem. The probability PPerc

varies smoothly with p and its shape approaches a step function for increasing system
sizes L. Notice that at the percolation (p→ pc), the probability PPerc (p− pc, L) is inde-
pendent of the system size L. As a consequence all functions for different system sizes L
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Figure 4.1: The schematic behavior of the fraction R (p− pc, L) of sites belonging to the percolating
cluster (a) and the probability PPerc (p− pc, L) of having a percolating cluster in the sample
(b). For a finite system R (p− pc, L) varies smoothly from zero to one. In the limit of an
infinite system, L → ∞, this function shows a kink at the percolation point. In a finite
system PPerc (p− pc, L) also varies smoothly from zero to one. Its slope at the percolation
point increases with the system size L and the function approaches a step function in the
limit of an infinite system, L→∞. At the critical point the probability PPerc (p− pc, L) is
independent of the system size L.

intersect at the same point. Within finite-size scaling analysis, Equation (4.14) is used
to determine the critical value pc for the percolation. Suppose we have numerical data
for different system sizes L. If we plot PPerc versus z = L1/ν (p− pc) with the critical
exponent ν = 4/3 for two dimensions, the functions coincide for the right value of pc. We
will use this fact in the following, in order to determine the percolation point of the SF
clusters of the disordered BH model.

4.2 Criteria for the phase transitions

With the help of the LMF approximation (3.3) it is possible to solve the self-consistency
Equation (3.6). As a result, we are able to compute the local SF parameter ψi and the
local particle number 〈n̂i〉 as well as the local particle fluctuations κi = 〈n̂2

i 〉 − 〈n̂i〉2 for
each site. In order to determine the phase transitions we first distinguish so called MI
sites from SF sites according to their local features. MI sites show the same behavior as
sites in the MI phase of the ordered BH model, where tunneling of particle is suppressed
leading to vanishing local particle fluctuations κi. At SF sites, however, analogously to
the sites in the SF phase of the ordered system, tunneling of particles is favorable and the
local particle fluctuations κi are positive.
Experiments have already reached the regime of single site detection [95, 96], where the
local particle number at each site can directly be measured. Before the measurement
the system can be described by a full quantum wave function, which in the measurement
process is projected onto a product of states of local number eigenstates. By repeating
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this process the possible configurations can be explored experimentally in a row of mea-
surements.
As the local particle numbers 〈n̂i〉 are the observables in the experiment, we use them
as the basis for the identification of MI and SF sites. Sites with an integer local particle
number 〈n̂i〉 are called MI sites. They in general show vanishing particle fluctuations
(κi = 0) and thus exhibit similar features as the sites in the MI phase of the ordered
system. Sites with non-integer particle numbers 〈n̂i〉 are denoted as SF sites. At these
sites tunneling of particles is favorable and local particle fluctuations occur (κi > 0), just
as sites in the SF phase of the ordered system. Analogously, we distinguish SF clusters
from MI clusters. Formally we map the local particle numbers 〈n̂i〉 for each site to a
discrete map Gi according to

Gi =

{
0 if n̂i is integer (MI site),

1 if n̂i is non-integer (SF site).
(4.15)

In LMF approximation the BH Hamiltonian decomposes into a sum of local Hamiltonians,
according to equation (3.4). As a result the wave function of the full quantum system
reduces to a product of single site wave functions as given in equation (3.5). That is why
we can determine sites being either SF or MI, individually. In this picture the single site
wave functions of individual sites can be a coherent state, while the others are still a Fock
state. Notice that the corresponding full quantum wave function is a high dimensional
entangled many body quantum state also describing correlations between the sites as well
as quantum fluctuations.
For numerical reasons we introduce a threshold γ into the definition of the discrete field Gi.
We denote the local particle number 〈n̂i〉 as integer if it is inside a range of width 2γ around
an inter number,

I − γ ≤ n̂i ≤ I + γ, I = 0, 1, 2, . . . , (4.16)

where γ = 5 · 10−3 is chosen to serve as the cut-off in this algorithm. In the whole param-
eter range, where sites with integer particle number occur, the histogram of the particle
number 〈n̂i〉 has narrow peaks of width 2γ at integer values. The width decreases when
we increase the number of iteration steps to solve the self-consistency Equations (3.6).
Therefore, the threshold parameter γ introduced to identify MI sites (and complementar-
ity SF sites) can be reduced by increasing the numerical effort without changing the final
results.
In LMF approximation the expectation value of the local particle numbers 〈n̂i〉 in the
ground state can actually exactly assume integer values. The corresponding full quantum
ground state, however, shows non-integer values as it also contains spatial correlations
between the sites as well as quantum fluctuations. In order to demonstrate this behavior,
we focus on a small system for which the quantum Hamiltonian can easily be diagonalized
exactly. For an asymmetric two site system the ground state in LMF approximation is
compared with the full quantum state in Appendix B. While in the quantum case the
local particles numbers 〈n̂i〉 are non-integer for positive tunneling rates J/U > 0, in LMF
approximation there exists a regime where both local particle numbers 〈n̂i〉 are integer.
Therefore, the chosen cut-off γ is introduced exclusively for numerical reasons in order to
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limit the numerical effort for the recursive determination of the particle number. Please
note that this is in contrast to the cut-off used in LMF theory [43–45], described in Sec-
tion 3.1. In the framework of this theory the global order parameters vary smoothly in
the vicinity of the phase transition, independent of the number of iteration steps and the
system size as shown in Section 3.3.1. Here a cut-off is necessary to identify the phase
transition; it is introduced in order to distinguish positive from zero order parameters.
Thus, the resulting phase transition changes dramatically with the actual value of the
cut-off.
Notice, that there exit SF sites, which by chance show integer local particle numbers
〈n̂i〉, while their local particle fluctuations κi still are positive. With the presented
mapping (4.15) on the basis of the local particle numbers 〈n̂i〉, these occasionally oc-
curring sites are misinterpreted as MI sites, although they behave like a SF. Because of
their low number, their influence on the phase diagram can in general be neglected. An
exception will be discussed in the context of disorder in the tunneling rates in Section 5.2.
In Figure 4.2 typical results for one realization of disorder for ∆/U = 0.6 and µ/U = 1.0455
are shown for three different values of the tunneling rate JZ/U representing the three dif-
ferent phases. In the first column the local SF parameter ψi, in the second the particle
number per site 〈n̂i〉 and in the third the resulting discrete map Gi are shown. In the MI
regime all sites are occupied by the same integer number of particles. Here the particle
number is one, since we are in the first Mott-lobe. The SF order parameter ψ as well as
the compressibility κ are zero for this configuration. At the transition from the MI to
the BG regime, SF sites (Gi = 1) with non-integer particle number occur, where locally
particle fluctuation exists. Because of these locally occurring SF sites (ψi > 0) the SF
order parameter ψ > 0 is small, but not zero in this regime. Since the SF islands are
compressible, this phase has positive compressibility κ > 0. The system consists of a MI
background and some SF islands, in which phase coherence is established locally. Different
disconnected SF islands do not have a precise phase coherence and as non of them perco-
lates, yet the system does not show long range phase coherence. For increasing tunneling
rates JZ/U these SF islands grow in number and size, until one of them finally percolates.
With the percolation of a SF cluster long range phase coherence occurs in the system and
thus represents the actual transition to the SF regime in parameter space. Just after the
percolation the phase of the system is macroscopically coherence, which means that the
SF order parameter is positive, ψ > 0, as well as the compressibility, κ > 0. On the basis
of these results, we will introduce a criterion for the phase transitions.
For each realization of disorder the map Gi is determined as given by Equation (4.15).
The SF clusters in the sample are found with the Hoshen-Kopelman algorithm [97] and
it is tested, if a percolating cluster exists. The probability PPerc is one if we find such
a percolating cluster, connecting two opposite sides of the system, and zero otherwise.
Afterwards the results are averaged over 200 (L = 50, 100) and 2500 (L = 10) realizations
of disorder for a fixed value of the tunneling rate JZ/U . The percolation probability PPerc

is shown in Figure 4.3 for different system sizes as a function of the tunneling rate JZ/U .
Moreover, the finite-size scaling analysis for the percolation transition is depicted. This
analysis yields JcZ/U = 0.15 and JcZ/U = 0.04 for fixed ∆/U = 0.6 and µ/U = 0.439
and µ/U = 1 respectively, and a critical exponent of ν = 4/3 in both cases. We find the
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Figure 4.2: Configurations of the local SF parameter ψi, the local particle number 〈n̂i〉 and the discrete
map Gi, given in Equation (4.15), for a single realization of disorder for ∆/U = 0.6. The
first row shows an example for a MI (JZ/U = 0.0242, µ/U = 0.4394) followed by one for
a BG (JZ/U = 0.0182, µ/U = 1.0455) and a SF phase (JZ/U = 0.141, µ/U = 1.0455).
Note that white color marks the minimal value (zero in the left and right, one in the middle
column) and black the maximal value (one in the left and right, two in the middle column).

same critical exponent of the percolation transition for all parameters we study. Thus,
we may conclude that this transition is in the universality class of conventional 2D per-
colation [94].
At this point we hypothesize that the BG-SF transition is characterized by the percolation
of SF sites. The MI-BG transition, however, is characterized by the appearance of the
first SF site. In the MI phase the system contains only MI sites. In the BG phase the
system consists of a mixture of MI and not percolating SF sites. Finally, in the SF phase
a percolating SF cluster occurs, introducing long range order of the phases of the system.
According to that, the criterion for the transitions is given by:

1. The MI-BG transition takes place, where the first SF site occurs in the system.

2. The BG-SF transition is the percolation transition of the SF clusters.

The appearance of the first SF site in a MI background marks the MI-BG transition.
The compressibility κ, which is given by the particle fluctuation, is zero in the MI phase
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Figure 4.3: The percolation probability PPerc (a), (b) and the finite-size scaling plot (c), (d) for different
system sizes L = 10 (+) , 50 (◦) , 100 (−). The critical tunneling rates according to the finite-
size scaling (4.14) are given by JcZ/U = 0.15 for µ/U = 0.439 on the left and JcZ/U = 0.04
for µ/U = 1 on the right. The critical exponent is ν = 4/3.

and non-zero in the BG and SF phase. Within the MI phase there exists an energy
gap Eg = EN

0 − EN+1
0 between the ground state energy of N and N + 1 particles. This

means adding a particle at some site costs the energy Eg [1]. This energy gap suppresses
particle fluctuations between sites, leading to a non-compressible (κ = 0) system. At the
transition to the BG phase this energy gap closes locally and particles start to tunnel
within these small SF islands. Since within these small islands particles tunnel freely
from one site to the other, the system becomes compressible, which is characteristic for
the BG phase. Therefore, the MI-BG transition is characterized by the appearance of the
first SF sites in a sea of MI sites.
The BG-SF transition is marked by the percolation of SF sites. The SF order parameter
is a measure for the coherence of the system, as it is zero if the ground state is not
an eigenstate of the annihilator and positive otherwise. The BG phase is characterized
by isolated SF clusters within a MI sea. The phases of different isolated clusters are
uncorrelated, hence long range order of the phases is lacking and the SF order parameter
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is zero, corresponding to the situation as in the MI phase. Because of the Heisenberg
uncertainty relation clusters with sharp particle number (MI sites) have fluctuating phases,
while clusters with sharp phases (SF sites) have fluctuating particle numbers. Connected
clusters of SF sites with fluctuating particle numbers tend to have a fixed phase relation.
Therefore, these clusters can be identified with SF regions, although, true superfluidity
only exists in the infinite system. Indeed, once these phase ordered clusters percolate, true
superfluidity emerges. Moreover, the appearance of the percolating cluster introduces the
long range order of the phases and the SF order parameter become positive, describing
the coherence of the whole system.
The SF fraction is also used to identify the BG-SF transition, as it is zero in the MI and
BG phase and positive in the SF phase. The SF fraction is given by the stiffness of the
system under a uniform twist θ on the phases and is given by [44,98]

fSF = lim
θ→∞

Eθ − E0

NJθ2
, (4.17)

where Eθ is the ground state energy of the system with twisted boundary conditions.
Such a twist can be introduced by applying a certain twist to the boundary phases in
one space direction. In absence of long range order of the phases such a twist at the
boundary does not cost energy. This means that, the SF fraction is zero as long as the
clusters do not percolate. The application of a phase twist at the system boundaries
will only cost a macroscopic amount of energy when the percolating SF cluster appears.
The percolating cluster establishes long range order of the phases and thus yields a non-
vanishing SF fraction.
The SF density [36,99]

ρSF =
〈W 2〉
2Jβρ

, (4.18)

where β = 1/ (kBT ) is the inverse temperature and ρ is the average particle number per
site, is proportional to the mean-square of the winding number 〈W 2〉 of boson world lines
in the path integral representation, which is used in quantum Monte Carlo simulations
to identify SF order. An overview on quantum Monte Carlo techniques and the world
line picture is given in the Appendix C. When on average a finite fraction of boson world
lines wrap around the whole system, the mean-square winding number is positive and
the system is SF. To wrap around the whole system, a boson world line, on its way
through imaginary time, has to move along a path that traverses the whole system, thus
attributing particle number fluctuations to the individual sites of this path. These sites
will consequently attain non-integer expectation values for the local particle numbers 〈n̂i〉.
This means, that there exists at least one percolating SF cluster in the system.
It should be noted that other quantum phase transitions of disordered systems are nat-
urally percolation transitions: The critical point of the random transverse Ising model is
governed by an infinite randomness fixed point (in d ≥ 1 dimensions [100–103]), which
signals the percolation of strongly coupled clusters that away from criticality constitute
the Griffiths phase [104]. The percolation transition that we observe in our calculations
falls into the universality class of a conventional, 2D site percolation, which means it does
not carry the signature of the critical properties of the proper BG-SF transition. This is
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most probably a consequence of the LMF approximation that we use, since it does not
properly account for spatial correlations. If applied to the exact ground state one would
expect the critical exponents of the percolation transition to be related to the critical
exponents of the BG-SF transition.

4.3 Phase diagrams

We will determine the phase diagram on the basis of the LMF cluster analysis for two
common representations, namely for commensurate filling as well as for fixed disorder
strength. The BH model with disordered on-site energies drawn from a box distribution
as given in equation (2.63), is described by two system parameters J and U , as well as
by the disorder strength ∆ and the chemical potential µ, which as a Lagrange multiplier
fixes the total number of particles. There exist two common representations of the 2D
phase diagram: In the first one the mean particle number N/M is fixed to an integer
number, which fixes the chemical potential µ. Here it is fixed to one particle per site
and the matching chemical potential µ must be determined for each set of parameters
individually. Thus, the phase diagram can be presented in dependence of the scaled
parameters ∆/ (2J) and U/J . In the second representation the disorder strength ∆ is
kept fixed and the phase diagram is given in dependence of µ/U and JZ/U . In this
representation the well known Mott-lobes occur. In the following we will discuss both
representations and compare them to either quantum Monte Carlo simulations [35] and
SMF or other mean-field predictions.

4.3.1 Commensurate filling

In this section we determine the phase diagram for commensurate density in dependence of
∆/ (2J) and U/J , for which a prediction on the basis of quantum Monte Carlo simulations
is available [35]. The mean particle density n =

∑M
i=1〈n̂i〉/M = 1 is fixed with an accuracy

of 10−4 by adjusting the chemical potential for each set of the system parameters ∆/ (2J)
and U/J . Outside of the Mott-lobes this result is unique, whereas inside the MI regime the
chemical potential is fixed to the vertical center of the Mott-lobe. In the µ/U versus JZ/U
representation, where the Mott-lobes are visible and which we will discuss in Section 4.3.2,
the line for n = 1 always passes the tip of the first Mott-lobe. In the ∆/ (2J) versus U/J
parameter space the corresponding line for fixed ∆ is a straight line through the origin
with slope ∆/2U .
For the right chemical potential that fixes the density n to one, we compute the ground
state of the LMF Hamiltonian (3.4), the local particle number 〈n̂i〉 and determine the
discretized map Gi (4.15), which is used to identify the MI, BG and SF phase on the
basis of LMF cluster analysis [2]. The resulting phase diagram is shown in Figure 4.4 a).
As expected [20, 35] the SF region is completely surrounded by the BG phase (except
at ∆/ (2J) = 0). Its boundary has some characteristic features: It extends in a slight
bump up to quite large disorder strength of up to ∆/ (2J) ∼ 75 and in a pronounced
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Figure 4.4: Comparison of LMF cluster analysis phase diagram (a) and quantum Monte Carlo phase
diagram (b) for fixed mean particle number n = 1. In the LMF cluster analysis phase
diagram (a) the percolation transition of the SF sites occurs at the red line, which indicates
the BG-SF phase boundary. The blue line marks the boundary of the MI region, in which all
sites are MI sites. The black line indicates the MI-BG transition according to perturbative
results [48, 49]. On the right the prediction for the phase diagram for fixed mean particle
number n = 1 based on the results of quantum Monte Carlo simulations is shown (data
taken from [35]).

nose up to the inter-particle interaction of U/J ∼ 52. Here in this region we find a re-
entrance behavior. Starting in the MI regime and going along a line of fixed inter-particle
interaction U/J , we enter the BG region for increasing disorder strength ∆/ (2J). For
larger values of ∆/ (2J) the system is in the SF phase, while for even higher ∆/ (2J) it
re-enters the BG phase. Weak disorder thus supports superfluidity in the BH model, as
has already been observed in [28,35,36,105].
Most remarkably, our prediction on the basis of the LMF cluster analysis agrees very well
with the results of quantum Monte Carlo simulations [35] shown for comparison in Figure
4.4 b). Further details on quantum Monte Carlo simulations are given in the Appendix C.
The shape of the BG-SF phase boundary with its characteristic nose and bumps clearly
coincide, but also the quantitative agreement is very good, regarding the substantial error
bars of the quantum Monte Carlo data in the large disorder and large interaction regime.
The quantum Monte Carlo method estimate for the extreme value of ∆/ (2J) in the bump
is ∆/ (2J) ∼ 72±4 and of inter-particle interaction in the nose U/J = 49±3, see Figure 2
in [35]. Moreover, with our method we could also explore the region of weak inter-particle
interaction, which is hardly accessible by quantum Monte Carlo methods and we found
a singular behavior and a steep rise of ∆/ (2J) with U/J → 0, which is compatible with
the analytically predicted behavior ∆/ (2J) ∝

√
U/J [106]. Note that, ∆/ (2J) rises

steeply for U/J → 0 and in order to obtain data for ∆/ (2J) < 20, it would be necessary
to compute the ground state of even larger systems sizes. Finally, we conclude that the
percolation criterion, that we introduced in Section 4.2 to locate the SF-BG transition,
produces remarkably accurate predictions.
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Figure 4.5: Comparison of LMF cluster analysis phase diagram (a) and SMF phase diagram (b) for
fixed disorder strength ∆/U = 0.6. The percolation transition of the SF sites occurs at the
red line, which indicates the BG-SF phase boundary. The blue line marks the boundary
of the MI region, in which all sites are MI sites. The black line is the MI-BG transition
according to the perturbative result given by 2.61. The SMF phase diagram on the right
is determined by using the SF order parameter ψ and the compressibility κ as described
in [46, 47]. The red line indicates the critical tunneling rate JZ/U where the SF order
parameter ψ becomes non-zero, the blue line the critical tunneling rate JZ/U , where the
compressibility κ becomes non-zero.

Our result for the MI-BG transition line, which denotes the appearance of SF sites with
non-integer local particle numbers 〈n̂i〉, agrees well with the perturbative result [48, 49],
shown in Figure 4.4 a). Moreover, they agree with the line ∆ = Eg/2 obtained using the
gap data from [34], shown in Figure 4.4 b).

4.3.2 Fixed disorder strength

After we have seen in the last section that our method to determine the phase dia-
gram of the 2D disordered BH model leads to results that agree very well with quantum
Monte Carlo predictions, in this section we determine the phase diagram for fixed disor-
der strength ∆/U = 0.6 as a function of the chemical potential µ/U and the tunneling
rate JZ/U and compare it with predictions of SMF theory. In this phase diagram the
Mott-lobes occur and the line given by n = 1 always passes the tip of the first one.
In Section 3.2 we introduced the SMF theory and emphasized that the SMF theory bases
on the same LMF approximation (3.3) as LMF theory, but it involves the additional
approximation (3.14) of the distribution PZ (ψ1, . . . , ψZ), by assuming that the local SF
parameters ψi are independent of each other. The validity of this restriction fails close to
the phase transitions as was shown in Section 3.3.2. Despite or perhaps because of this
approximation the SF order parameter ψ as well as the compressibility κ computed within
SMF theory are exactly zero in specific regions of the parameter space (see Figure 3.2),
which one might want to identify with MI and BG phase, as done in [46,47].
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MI-BG BG-SF

JZ/U µ/U JZ/U µ/U ∆/U

single site LMF [107] 0.155 0.5091 0.5

multi site LMF [107] 0.17 0.4364 0.5

LMF cluster analysis [2] 0.1115 0.4644 0.1509 0.4434 0.6

quantum Monte Carlo results [35] 0.124 (0.4561) 0.2012 0.4082 0.6

strong-coupling expansion [49] 0.1253 0.4345 0.6

SMF [46] 0.1433 0.5 0.1433 0.5 0.6

Gutzwiller variational techniques [90] 0.2748 0.3684 0.2748 0.3684 0.6

LMF cluster analysis [2] 0.0942 0.4868 1

quantum Monte Carlo results [35] 0.1047 0.4846 1

LMF cluster analysis [2] 0.0934 0.5043 2

quantum Monte Carlo results [35] 0.1062 0.4950 2

Table 4.1: Comparison of the parameters at the tip of the first Mott-lobe (MI-BG transition) and the
BG-SF transition at the chemical potential µ/U which satisfies n = 1. The MI-BG predictions
of [35] were not obtained by quantum Monte Carlo of the disordered BH model, but are based
on gap data for the ordered BH model [34] and given in brackets here. Methods predicting
tapered Mott-lobes as the quantum Monte Carlo method and LMF cluster analysis, are shown
with grey background. The others predict round Mott-lobes, like the mean-field techniques
based on global order parameters.

The LMF cluster analysis and SMF [46, 47] phase diagrams for fixed disorder strength
∆/U = 0.6 are shown in Figure 4.5. One immediately observes substantial differences:
Firstly, in LMF theory the BG phase always separates the MI from the SF phase. The
intervening BG phase is actually predicted to be quite large even at the tip of the Mott-
lobes. However, SMF theory predicts a direct MI-SF transition, in contradiction to the
theorem of inclusion [20], which states that the MI and the SF phase of the BM model
with uncorrelated disorder are always separated by the BG phase. Secondly, large differ-
ences in the critical tunneling rate of the BG-SF transition occur, especially in the region
around µ/U = 1. Assume we fix the chemical potential there. In this case the SMF
theory predicts the phase transition at JZ/U = 0.0241. However, the percolation of the
SF cluster takes place at JZ/U = 0.0430. Thus, significant changes of the system in this
case occur for values of the tunneling rate twice as large as predicted by ψ in SMF theory.
A direct comparison of the LMF results with quantum Monte Carlo data from [35] is not
possible here, since the latter is obtained for the canonical ensemble, where the chemical
potential is fixed by the constraint n = 1 and thus absent as a free variable. However, we
can take our LMF estimate for the value of µ that fixes the particle density at n = 1 for
fixed U/J and ∆/ (2J) to obtain an approximate comparison. This data is collected in
Table 4.1, where we also show the prediction of other works. For the MI-BG transition
there exist only small deviations of the quantum Monte Carlo [35] and strong-coupling [49]
predictions from our LMF cluster analysis results at the tip of the Mott-lobe. For the
BG-SF transition one observes deviations of the quantum Monte Carlo predictions from
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our LMF cluster analysis results, but a good agreement for stronger disorder, ∆/U ≥ 1.
We also note that the tapered shape of the Mott-lobe predicted by the strong-coupling
expansion [49] agrees well with our result of the LMF cluster analysis shown in Figure 4.5.
The LMF theory has been used in [43, 44] to solve the self-consistency Equations (3.2)
and to calculate a LMF expression for the compressibility κ, given in Equation (3.8), and
the SF fraction fs, given in Equation (4.17). On the basis of these two observables the
phase diagram as a function of µ/U and JZ/U is determined in [43,44], which displayed a
round shape of the Mott-lobes, a direct MI-SF transition for small disorder strengths ∆/U
and an intervening BG phase at larger disorder strengths ∆/U . With this procedure one
faces the problem, that the order parameters smoothly pass the phase transition instead
of showing a precise kink, as discussed in Section 3.3.1. It is important to notice that
although the starting point of the calculation in [43,44] is the LMF approximation, which
is identical to our, the usage of a different criterion to identify the phases leads to a phase
diagram that differs significantly from the one predicted by our LMF cluster analysis [2].
Note that the SMF theory, as described in Section 3.2, predicts a direct MI-SF transition
along the lower border of the SF region in the parameter range shown in Figure 4 in [46].
The characteristic BG region for small disorder strength ∆/U is absent in this param-
eter range, which is in contradiction to the theorem of inclusion, proven in [20], which
excludes a direct MI-SF transition in any uncorrelated disordered systems. The tip of
the Mott-lobe in SMF theory lyes above the values predicted by the LMF cluster analy-
sis [2], the quantum Monte Carlo technique [35] and the strong-coupling expansion [49]
(see Table 4.1).
A multi site LMF theory is introduced in [107], where every plaque of two by two sites is
treated quantum, which keeps the spatial correlation therein. Instead of single sites these
plaques are coupled in a LMF way, analogously to the treatment described in Section 3.1.
The Mott-lobe for ∆/U = 0.5 is determined for both, the single site and multi site LMF
theory, on the basis of the condensate fraction, which is the largest eigenvalue of the
one-body density matrix. The Mott-lobe shows a round shape at the tip, which is in
agreement with LMF predictions on the basis of the global order parameters [44] and
SMF theory [46, 47]. The multi site LMF theory predicts a larger MI region than the
single site LMF theory. In both cases the tip of the Mott-lobe is predicted for larger
tunneling rates JZ/U as for the LMF cluster analysis [2], the quantum Monte Carlo tech-
nique [35] or the strong-coupling expansion [49] at ∆/U = 0.6 (see Table 4.1). This is in
contradiction with the fact, that the Mott-lobes shrink with increasing disorder strength.
Note that the condensate fraction in [107] smoothly approaches zero, analogous to our
observations on the SF order parameter ψ and the compressibility κ made in Section 3.3.1
and a linear fit is used to determine the transition point.
The so-called Gutzwiller projected variational technique is introduced in order to deter-
mine a canonical transformation of the quantum Hamiltonian, which requires the trunca-
tion of the hopping term [90–92]. Thus, it is possible to minimize the expectation value of
the transformed Hamiltonian in Gutzwiller type LMF states with respect to its variational
parameters. Finally, the SF stiffness and the compressibility yield a phase diagram, which
shows a remarkably narrow BG region between the MI and the SF phase. The tip of the
Mott-lobe here is predicted for larger value of the tunneling rate JZ/U and smaller values
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of the chemical potential µ/U and differs from the predictions of LMF cluster analysis [2],
quantum Monte Carlo technique [35] and strong-coupling expansion [49] (see Table 4.1).
In all mean-field calculations (LMF theory [43, 44], SMF theory [46, 47], multi site LMF
technique [107] and Gutzwiller variational technique [90]) mentioned here, we see char-
acteristic deviations from the LMF cluster analysis [2], the quantum Monte Carlo tech-
nique [35] and the strong-coupling expansion [49]. The tip of the Mott-lobe of mean-field
techniques is predicted for far higher values of the tunneling rate as listed in Table 4.1.
Moreover, the shape of the Mott-lobes obtained from mean-field techniques is round at
the tip, in contrast to a tapered shape in LMF cluster analysis [2], quantum Monte Carlo
technique [35] and strong-coupling expansion [49].

Conclusion

We characterized the three occurring phases on the basis of local properties. In the MI
phase the system consists exclusively of MI sites with zero local particle fluctuations.
The BG phase is characterized by a mixture of MI sites and not percolating SF sites,
where local particle fluctuations occur, while in the SF phase at least one SF cluster
percolates. With this picture in mind, we have introduced a new criterion to identify
the three different phases of the disordered BH model on the basis of the whole set of
local particle numbers {n̂i}. The resulting phase diagram of this LMF cluster analysis
for a fixed commensurate density n = 1, shown in Figure 4.4, is in excellent agreement
with the prediction of quantum Monte Carlo simulations [35], not only qualitatively, but
also quantitatively within the numerical error bars. This is remarkably, since other LMF
approaches using averaged quantities fail to identify the BG-SF transition, since the used
indicator varies smoothly at the expected phase transition as discussed in Section 3.3.1.
Therefore, the LMF cluster analysis can serve as a reliable tool to localize the transitions.
Moreover, it provides an intuitive picture and a deeper understanding of the underlying
physics of the BG-SF phase transitions in terms of SF islands their percolation at the
phase transition.





5 Boxed uncorrelated disorder

In the following we will discuss the effect of uncorrelated disorder in each of the BH
parameters εi, Jij and Ui separately. With the help of the LMF cluster analysis [2, 4] we
will determine, the phase diagram for a uniform distribution

p(α) =
1

∆α

Θ

(
∆α

2
− |α|

)
(5.1)

for each BH parameter α = εi, Jij, Ui individually, while the other parameters are treated
as sharp values. We will find all three phases in each of the disorder scenarios, however
we will recognize substantial characteristic differences in the respective phase diagrams.
Currently theoretical works mostly deal with uncorrelated disorder only with distribu-
tions of the on-site energies [2,20,29,34–36,44,46,49]. Studies on the effect of disordered
tunneling rates are only limited to bimodal distributions, where only two different values
are distributed randomly over the lattice sites [32, 47, 50, 51]. We, however, will discuss
uncorrelated tunneling disorder according to a uniform distribution. Moreover, we will
also discuss disorder in the inter-particle interaction, which can be realized experimentally
in the vicinity of a Feshbach resonance [52, 54]. We will see the inter-particle interaction
is the only BH parameter, for which isolated disorder can be realized in an experiment
independent of the other parameters determined by the optical lattice. For a detailed
understanding of the BH model, which is especially important for the correct interpre-
tation of experimental data in comparison to theoretical results, the specific influences
of disorder in the different BH parameters on the phase transition must be considered.
Therefore, with the results of this chapter we will be prepared to study a quasi-random
potential, which is widely used in experiments on disordered bosonic systems.

5.1 Disorder in the on-site energy ε

The most common disorder scenario is diagonal disorder introduced by site-dependent
local on-site energies εi, which are drawn from a box distribution

p(εi) =
1

∆ε

Θ

(
∆ε

2
− |εi|

)
, (5.2)

where ∆ε is the disorder strength. This system has been widely studied via quantum
Monte-Carlo methods [29, 34–36], mean-field techniques [2, 44, 46] as well as analytic
approaches [20,49].
Figure 5.1 shows the phase diagram for increasing disorder strengths ∆ε/U resulting from
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Figure 5.1: Phase diagram for box distributed disordered on-site energies εi with the disorder strengths
∆ε/U = 0.35, 0.6, 1.5. There exist an infinite number of Mott-lobes, which disappear at the
same critical disorder strength ∆c

ε/U = 1. They are surrounded by a connected BG region
and a SF region for even higher values of the tunneling rate JZ/U .

the LMF cluster analysis [2], as introduced in Chapter 4. The Mott-lobes with a fixed
particle number n = 1, 2, . . . per site reach from [1]

µ− = (n− 1)U +
∆ε

2
to µ+ = nU − ∆ε

2
(5.3)

along the µ/U -axis and have a distance of ∆ε/U from each other. As a result, there
exist an infinite number of Mott-lobes, which all simultaneously disappear at the same
critical disorder strength of ∆c

ε/U = 1. At the tip the Mott-lobes have a tapered shape
and coincide with the perturbative result [49], which is shown in blue in Figure 2.10. The
Mott-lobes are surrounded by one connected BG region. For larger tunneling rates the
phase transition to the SF regime occurs. While all three phases appear for ∆c

ε/U < 1,
in the strong disorder limit only the BG in the small tunneling and the SF phase in the
high tunneling regime survive.

5.2 Disorder in the tunneling rate J

The influence of disordered tunneling rates was mainly studied for bimodal distributions,
where two values of the tunneling rate are chosen and distributed randomly among the
lattice sites [32, 47, 50, 51]. In contrast, here we focus on a general approach, where the
local tunneling rates are uniformly distributed according to

p(Jij) = J +
1

∆J

Θ

(
∆J

2
− |Jij|

)
, (5.4)

where ∆J is the disorder strength and the distribution is symmetric around a given value
of the tunneling rate J .
In Figure 5.2 the phase diagrams resulting from LMF-Cluster-Analysis [2] in dependence of
the chemical potential µ/U and the mean tunneling rate JZ/U are shown. It is important
to notice that here the width of the disorder distribution ∆J is the disorder strength and
is one order of magnitude smaller than for on-site disorder ∆ε. Here two new unique
features occur in the phase diagram [4]:
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Figure 5.2: Phase diagram for box distributed disordered tunneling rates Jij with the disorder strengths
∆J/U = 0.035, 0.06, 0.095. The number of Mott-lobes is finite and for increasing tunneling
rate JZ/U they disappear on after the other. They are enclosed by individual BG regions,
which are separated by one connected SF region, which exist for arbitrary small tunneling
rates in the vicinity of integer chemical potential µ/U .

1. The BG regions are separated into individual regions by SF regions reaching down
to small tunneling rates, JZ/U → 0.

2. The distance between the Mott-lobes increases with their number n and the number
of Mott-lobes is finite.

For an intuitive explanation, we recall the perturbative result of the ordered case, given
in Equation (2.61), which is the limiting result for vanishing disorder strength ∆J → 0.
For a small but non-zero disorder strength ∆J , the first SF regions in the lattice occur
at sites with J + ∆J/2. Therefore, the MI regions are smaller than in the ordered case,
where the relevant tunneling rate is J . In comparison to the ordered case the MI border
is shifted to the left by ∆J/2. In the ordered case the JZ/U -coordinate of the tip of
the Mott-lobes approaches the µ/U -axis asymptotically in the limit n → ∞, leading to
an infinite number of Mott-lobes. Thus, for a tunneling disorder strength ∆J all shifted
Mott-lobes with an extension smaller than ∆J/2 do not exist, since instead the system is
already in the BG phase, as SF sites occur.
Let us now discuss the behavior of the transition thoroughly [4]: Along the µ/U -axis
(JZ/U = 0) the Mott-lobes exist between

µ±

(
∆J

2
, Z, U, n

)
= −1

2

(
∆JZ

2
− U (2n− 1)

)
±

√
1

4

(
∆JZ

2
− U

)2

− ∆JZ

2
Un , (5.5)

according to Equation (2.61). For fixed disorder strength ∆J the height of the Mott-lobes
is given by

∆MI
µ = 2

√
1

4

(
∆JZ

2U
− 1

)2

− ∆JZ

2U
n , (5.6)
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which decreases with n. The height of the Mott-lobes becomes zero at a critical number

nMI
c =

1

2

(
∆JZ

2U
− 1

)2
U

∆JZ
, (5.7)

which means that only a finite number nMI
c of Mott-lobes exist. As a consequence, the

Mott-lobes disappear one after the other for increasing disorder strength ∆J/U . The last
Mott-lobe (n = 1) disappears at

∆J

U
=

3− 2
√

2

2
≈ 0.0858 . (5.8)

This is different from the on-site disorder case, where all Mott-lobes vanish at the same
critical disorder strength ∆c

ε/U = 1. For a disorder strength of ∆J/U = 0.035, shown in
Figure 5.2 a), three Mott-lobes exist, two of which are visible, while in Figure b) for a
disorder strength of ∆J/U = 0.06 only one remains. In the last diagram for ∆J/U = 0.095
no Mott-lobe exists, as the critical disorder strength is exceeded.
The Mott-lobes are surrounded by the BG phase. As a new feature in comparison to the
on-site disorder case, we find disconnected BG regions between

µ±

(
∆J

2
, Z = 1, U, n

)
= −1

2

(
∆J

2
− U (2n− 1)

)
±

√
1

4

(
∆J

2
− U

)2

− ∆J

2
Un , (5.9)

which are separated from each other by the SF region in the vicinity of integer values of
the chemical potential µ/U . The fact that the SF region survives in the limit JZ/U → 0,
is a unique feature of tunneling disorder. The height of the BG regions along the µ/U -axis
is given by

∆BG
µ = 2

√
1

4

(
∆J

2U
− 1

)2

− ∆J

2U
n , (5.10)

which also decreases for growing n. The number of BG regions is given by

nBG
c =

1

2

(
∆J

2U
− 1

)2
U

∆J

. (5.11)

Even though the BG regions survive for even higher disorder strength than the Mott-
lobes, they analogously disappear one after the other and finally the last one vanishes
at

∆J

U
= 2

(
3− 2

√
2
)
≈ 0.3431 . (5.12)

The SF phase exists for infinitesimal small tunneling rates between these BG regions. At
the ends of the BG regions narrowing tips occur, which are located along the line of mean
integer filling but finally end in the SF region. They occur due to the criterion for the
definition of the MI and SF sites bases on integer filling, given by Equation (4.15). In
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the BG regions inside of this tip, there exist sites in the system, which show local particle
fluctuations κi = 〈n̂2

i 〉 − 〈n̂i〉2 > 0 indicating a SF site, while their particle number 〈n̂i〉
is integer by chance. By the application of the above criterion these sites are mislabeled
as MI sites, even though they rather behave like SF sites due to the occurrence of local
particle fluctuations. That is why here the percolation of SF sites is predicted for larger
values of the tunneling rate JZ/U . In order to overcome this flaw one could also use a
different mapping criterion based on local particle fluctuations.

5.3 Disorder in the inter-particle interaction U

In an experimental setup disorder in the inter-particle interaction Ui can be realized near
a Feshbach resonance [52, 53, 108]. We have seen in Section 2.2 that the inter-particle
interaction Ui, which is proportional to the scattering length a (see Equation (2.54)), can
be tuned from repulsive to attractive interactions in the vicinity of a Feshbach resonance
by tunning an external magnetic field B, as shown in Figure 2.5 c). Near the Feshbach
resonance small changes in the magnetic field B have a large effect on the scattering
length a and consequently also on the resulting inter-particle interaction Ui. Therefore,
a magnetic field with weak spatial modulations in the region of the optical lattice, will
strongly influence the scattering properties locally and lead to a variety of values of the
inter-particle interaction Ui [52,54]. With this technique disorder in the inter-particle in-
teraction Ui can be introduced without influencing the other BH parameters. Therefore,
the inter-particle interaction is the only parameter, for which isolated disorder can be
realized.
A uniform distribution of this parameter has been studied in [52, 54]. The phase dia-
grams for inter-particle interaction disorder, where U is the mean value of the disorder
distribution

p(Ui) = U +
1

∆U

Θ

(
∆U

2
− |Ui|

)
(5.13)

resulting from LMF cluster analysis [2], are shown in Figure 5.3. Analogously to the
disordered tunneling case we find a finite number of Mott-lobes. Intuitively this can be
understood by recalling the MI boundaries (2.61) of the ordered case, as we have already
discussed for tunneling disorder. For small tunneling rates, the first SF sites occur where
the tunneling rate J overcomes the reduced inter-particle interaction U − ∆U/2. Thus,
the Mott-lobes shrink all by the same amount for fixed disorder strength ∆U . Therefore,
the smallest Mott-lobes of the ordered system disappear for small but non-zero disorder
strength ∆U leading to a finite number of Mott-lobes. Along the µ/U−axis the Mott-lobes
spread from

µ− = (n− 1)

(
U +

∆U

2

)
to µ+ = n

(
U − ∆U

2

)
(5.14)

and they disappear at the critical disorder strength

∆c
U/U =

2

2n− 1
, (5.15)
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Figure 5.3: Phase diagram for box distributed disordered inter-particle interactions Ui with the disorder
strengths ∆U/U = 0.35, 0.6, 0.95 and a blow-up for ∆U/U = 0.6. There is a finite number
ob Mott-sites, which disappear on after the other for increasing disorder strength ∆U/U .
One BG region and for even higher values of the tunneling rate JZ/U one SF region sur-
rounds the Mott-lobes. These phase diagrams show the tricritical point at µ/U = JZ/U = 0,
where all three phases approach each other tightly.

where µ− and µ+ meet [52]. As the critical disorder strength ∆c
U depends on the number n

of the specific Mott-lobe, they vanish one after the other, until for ∆c
U/U = 2 the first

Mott-lobe is the last to disappear. For all disorder strengths there is only one connected
BG region, respectively one SF region. This is different from the system with tunneling
disorder, but analogous to the on-site disordered case.
A new feature occurs below the first Mott-lobe, which is shown as a blow-up in the second
row of Figure 5.3. In this region the BG-SF transition widely follows the MI-SF transition
of the ordered case given by Equation (2.61). Between this transition line and the MI-BG
transition line the BG phase forms a narrowing strip. Both transition lines approach each
other tightly for small tunneling rates and form a tricritical point in the limit µ/U → 0
and JZ/U → 0, which does not contradict the fact that a direct transition from MI to
SF is impossible in the disordered case [19, 20].
This phenomenon can be understood recalling the transition line of the ordered system
given in Equation (2.61) and studying the behavior of this equation under a variation
of U [4]: According to its derivation, Equation (2.61) describes the transition line, at
which the SF order parameter ψ becomes non-zero in the ordered case. In the disordered
case this takes place at the BG-SF transition. Therefore, the BG-SF transition line in the
disordered case follows Equation (2.61) in regions, where it is stable against variation of
the inter-particle interaction U . This variation of µ± (J, Z, U, n) under a change of U is
given by the derivative

∂µ±
∂U

= n− 1

2
∓ f (x) with f (x) =

x− 1 + 2xn

2
√

(x− 1)2 − 4xn
, (5.16)
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where x = JZ/U is a small parameter since Equation (2.61) is a perturbative result for
small x, as shown in Section 2.2.3.1. With the Taylor expansion f (x) ≈ −1

2
−x2n (n+ 1)

for small x, where the linear term in x cancels, we get

∂µ±
∂U
≈

{
x2n (n+ 1) + n upper branch,

−x2n (n+ 1) + n− 1 lower branch.
(5.17)

In general for n = 1, 2, . . . this derivative is non-zero. In case of the first Mott-lobe (n = 1)
it reduces to

∂µ±
∂U
≈

{
2x2 + 1 upper branch,

−2x2 lower branch,
(5.18)

and for the lower branch the derivative vanishes for zero tunneling rate (x = 0). There
exists no other configuration for which this derivative becomes zero. For small tunneling
rates 0 < x < 1 the rate grows sublinearly. This means that the lower branch of the first
Mott-lobe is fairly stable against variation of U . For all other Mott-lobes with n > 1 the
absolute value of the derivative is positive, even for small tunneling rates J . This feature
of the lower branch of the first Mott-lobe is unique and does not occur for other branches
of the disordered inter-particle interaction case, the tunneling or on-site disorder case.
Therefore, the BG-SF transition of the inter-particle interaction disordered system below
the first Mott-lob widely follows the transition line of the ordered system [4] leading to
the occurrence of the tricritical point at the origin of the phase diagram.

Conclusion

The influence of disorder in one of the BH parameter on the phase diagram leads to char-
acteristic different features. For disordered on-site energies we find an infinite number of
Mott lobes for small disorder strengths, which all simultaneously disappear at the critical
disorder strength ∆c

ε/U = 1. They are surrounded by one connected BG and one SF
region.
For disordered tunneling rates, there only exists a finite number of Mott-lobes, which
disappear one after the other with increasing disorder strength until the last one vanishes
at ∆c

J/U = (3− 2
√

2)/2 ≈ 8.58 10−2. As a new feature, the SF region also exists in the
limit of vanishing tunneling rates and separates individual BG regions from each other.
These individual BG regions also disappear one after the other and finally the last one
vanish at ∆J/U = 2

(
3− 2

√
2
)
≈ 0.3431.

In the case of disordered inter-particle interactions there also exists a finite number
of Mott-lobes, which again vanish on after the other and the last one disappearing
at ∆c

U/U = 2. Moreover, in this case there exists a tricritical point in the limit of van-
ishing chemical potential and tunneling rates, where all three phase approach each other
asymptotically. As we have shown this results from the fact, that the lower branch of the
first Mott-lobe is stable against variations of U .
The understanding of the characteristics of these three different types of disorder sce-
narios, will help us to understand phase diagrams of systems in which disorder affects
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all BH parameters, as we usually find them in experiments. One common experimental
realization of disorder is a quasi-periodic bi-chromatic optical potential, which we will
discuss in the next chapter.



6 Quasi-periodic bi-chromatic
potentials

One possible realization of disorder in an experiment is to use a bi-chromatic potential [3],
where two overlapping optical lattices with incommensurate wave lengths form a quasi-
periodic potential for the bosons, which leads to locally varying BH parameters. Their
distribution can be described by the mean value and the variance of the PD for each
BH parameter separately. With the help of both quantities the quasi-periodic potentials
can be compared to the results of uncorrelated disorder in each of the BH parameters,
as discussed in the preceding chapter. While the effect of bi-chromatic potentials on the
BH parameters has only been described approximatively so far [37, 38, 55–57], we will
follow the general derivation of the BH model, as presented in Chapter 2, by the de-
termination of generalized Wannier functions and the corresponding BH parameters for
each lattice site individually. In this way we introduce disorder to the BH model in a
fundamental way. We will study the PD for each BH parameter and especially compare
the occurring disorder strengths with the results of isolated uncorrelated disorder, which
we have discussed in the last chapter. We will be able to show that, in contrast to the
common expectation, the effect of tunneling disorder is actually not negligible and has a
recognizable effect on the resulting phase diagram.

6.1 Bi-chromatic potentials

In an experiment disorder can be introduced either by a diffuser [26, 27] or by a bi-
chromatic potential [3]. The diffuser modifies the intensity of the laser, which leads to
inhomogeneities in the resulting optical lattice. For a detailed comparison with theoretical
predictions a thorough characterization of the diffuser is necessary. Especially the width of
the disorder distribution is a crucial system parameter, which cannot be tuned precisely.
Alternatively a bi-chromatic potential is formed by a main optical lattice with a high
intensity, which is superposed by a second weaker one with slightly different wave length
[3]. By varying the amplitude of the second lattice the strength of disorder can be adjusted
freely. With vanishing difference between the wave lengths, the period of such a pattern
increases. Below a critical value of the difference of the two wave lengths the period of
the pattern extends the system size. In this regime this so-called quasi-periodic potential
serves as a model for uncorrelated disorder, showing local inhomogeneities. The quasi-
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Figure 6.1: A 1D quasi-periodic potential according to V (x) = V1 cos2 (k1x) + V2 cos2 (k2x) with the
parameters s1 = 16, s2 = 2.5 and V2/V1 ≈ 0.09. This potential shows inhomogeneities in
the depth of the lattice and the barrier between the lattice sites.

periodic potential in two dimensions is given by

V (x, y) = V1

(
cos2 (k1x) + cos2 (k1z)

)
+V2

(
cos2 (k2x) + cos2 (k2z)

)
, (6.1)

with the wave vectors ki = 2π/λi (i = 1, 2), the lattice constant a = π/k1 and the
intensities Vi = siERi, which are given in units of the recoil energy ERi = ~2k2

i / (2m). In
the present simulations the wavelengths are chosen to be λ1 = 830 nm and λ1 = 1076 nm
with reference to the experimental setup of [3]. In experiments 87Rb atoms, which have
a mass of mRb = 1.45 10−25 kg, are widely used. The amplitude of the main lattice s1

determines the depth of the lattice. The amplitude of the second lattice s2 is by far
smaller than the first one, s2 � s1, and increases the influence of the disorder. Such a
quasi-periodic potential in one dimension is shown in Figure 6.1 for a high value of s2. In
comparison to a regular lattice there are inhomogeneities in the depth of the lattice and
the barrier between the lattice sites.

6.1.1 Generalized Wannier functions

The calculation of the Bloch and the Wannier functions in the ordered case as described
in Section 2.2.1, can also be applied to the non-symmetric case (0 6= s2 � s1). Since
the quasi-periodic potential (6.1) is a sum of individual periodic functions the Fourier-
transform of the potential can be calculated analytically and individually for each sum-
mand according to Equation (2.50). In contrast to the regular case, where the determina-
tion of the Wannier function is necessary only for one lattice site, the Wannier function
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Figure 6.2: Wannier functions for a disordered asymmetric lattice for the parameters s1 = 2, s2 = 1
with V2/V1 ≈ 0.3 for l = 5 and n = 0. The corresponding Wannier function for a symmetric
lattice is shown in Figure 2.7.

in the non-symmetric case must be calculated for each site individually, therefore the
computation time scales with the system size M = L2. The resulting Bloch functions

ψ~qn (~r ) = u~q ei ~q ~r with u~q (~r ) =
∑
~G

c~q−
~G

n e−i ~G~r (6.2)

still form an orthogonal basis, but their coefficients u~q (~r ) are no longer periodic. But also
in this case, localized functions which can be interpreted as generalized Wannier functions
can be constructed according to Equation (2.51). As one can see in Figure 6.2, these func-
tions are still localized at a specific lattice site, but they are asymmetric reflecting the
asymmetry of the underlying lattice.
With this generalization of the Wannier functions for a asymmetric lattice system we
follow the usual derivation made introducing the BH model in literature [22, 64] as de-
scribed in Section 2.2.2. All BH parameter in the Hamiltonian (2.55) are site dependent
now and can be computed on the basis of the generalized Wannier function according
to Equation (2.56). With this method we introduce disorder via quasi-periodic poten-
tials fundamentally in the calculations. Other approaches [37, 38, 55, 109, 110] avoid the
computation of any Wannier function and describe this effect on the BH parameter ef-
fectively and argue that only disorder in the on-site energies is relevant. In Section 6.1.2
we will discuss the accuracy of these methods. Moreover, in other works [56,57] the sym-
metric Wannier functions are used as an approximation for the quasi-periodic case. In
Section 6.3.2 we will show that this is only accurate for s2 < 0.1. Before we do this, in
the next section we will use these generalized Wannier functions in order to determine
the BH parameters.

6.1.2 Distributions of the Bose-Hubbard Parameters

For fixed values of s1 and s2 we get a set of individual BH parameters εi, Jij and Ui at
each lattice site. Exemplaryly the BH parameters for s1 = 10 and s2 = 0.5 are shown
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Figure 6.3: BH Parameters for a quasi-periodic potential according to Equation (6.1) with s1 = 10 and
s2 = 0.5. The tunneling rate at site i = (ix, iz) yields the value for the tunneling rate to
the neighbor j = (ix + 1, iz). Note that this contains all information, since the tunneling
rate Jij , given in Equation (2.56), is symmetric under a change of the indices and the
Potential V (x, z) (6.1) under a change of the coordinates x and z.
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Figure 6.4: Mean values α (first row) and widths ∆α =
√

12σ2
α (second row) with variance σ2

α of the
distributions of the BH-Parameters α = ε, J, U in units of the recoil energy ER1. Notice
that in the figures of ε and U the s1- and s2-axis are switched in comparison to the other
figures. As expected the mean value of ε and U increase with the depth s1 of the lattice,
while the mean value of J decreases. The widths of the distributions ∆α increases with the
amplitude s2 of the second lattice.

in Figure 6.3. In the diagram showing εi, Jij and Ui each pixel represents the value at
a specific site. The BH parameters follow the modulation of the lattice potential and
depend on the specific lattice site. Therefore, we now deal with distributions P (α) with
α = ε, J, U , which depend on the parameter set (s1, s2) chosen for the amplitudes of the
two lasers. Now we will especially focus on their mean value α =

∫
dααP (α) and their

variance σ2
α =

∫
dαα2P (α). Since we want to compare results to the box distributed

case from Chapter 5, where the variance is σ2
α = ∆2

α/12, we define the width of the
distribution ∆α according to this equation. With the help of both benchmarks we are
able to compare the distributions with the scenarios of disorder in only one BH parameter,
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Figure 6.5: Mean values α (first row) and the widths ∆α =
√

12σ2
α (second row) of the distributions of

the BH-Parameters α = ε, J, U in units of the inter-particle interaction U . The white lines
in the second row show the critical widths ∆c

α, where the last Mott-lobe disappears, which
is also stated below the plot. In the case of on-site disorder as well as for tunneling disorder
the widths of the distributions reach the critical value ∆c

α.

as introduced in Chapter 5. The mean value of the distribution P (α) here matches the
site independent BH parameters α = ε, J and U from Chapter 5, while the width of the
distribution

∆α =
√

12σ2
α (6.3)

corresponds to the disorder strength given as free parameter in Chapter 5.
The resulting mean value and width of the distribution in units of the recoil energy ER1

are shown in Figure 6.4. The amplitude of the main lattice s1 is one order of magnitude
larger than the one of the second lattice s2. In a shallow lattice (s1 small) the mean
value of the on-site energy ε and the inter-particle interaction U are small and grow with
increasing depth of the lattice s1. The mean value of the tunneling rate J reaches its
maximal value in a shallow lattice (s1 small) and decreases in a deep lattice (s1 large).
All mean values are independent on the strength s2 of the second lattice. The width ∆ε

of the distribution of the on-site energy is independent of the amplitude of the main
lattice s1, but increases with the amplitude of the second lattice s2. As expected the am-
plitude of the second lattice s2 indeed increases the disorder strength in the system. The
width ∆J of the distributions of the tunneling rate and the inter-particle interaction ∆U

show a corresponding behavior, which depends on both parameters s1 and s2, however
their maximal values differ substantially. Both show increasing widths for increasing s2

and adopt the maximal values for a shallow (s1 small) and strongly disordered (s2 large)
lattice.
In Figure 6.5 the mean values α and widths ∆α of the distributions of the values α = ε, J, U
are shown in units of the inter-particle interaction U . The critical disorder strength at
which the last Mott-lobe disappears, in the case where only one isolated BH parameter
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is disordered, is given below the figures and as a white line in the graphs. The critical
disorder strength for pure on-site energy disorder is given by ∆c

ε/U = 1 and for pure
tunneling rate disorder by ∆c

J/U = (3 − 2
√

2)/2 ≈ 0.0858. Above these values only the
BG and SF phase remain. A comparison of these critical values with the widths of the
distribution in units of U , displayed in Figure 6.5, shows that both, the width of the
distribution of the on-site energy, as well as the tunneling rate reach the region, where
all three phases occur in the phase diagram. Even though the occurring width of the
distribution of the tunneling rate ∆J is smaller than the width for the on-site energy ∆ε,
it reaches the parameter range, where all three phases compete in the phase diagram.
This is in contrast to the width of the inter-particle interaction ∆U , which indeed is small
in comparison to the range in which all three phases occur. The field of on-site disorder
has widely been studied in theory [2, 20,29,34–36,44,46,49]. Our studies, however, show
that this treatment is not sufficient, since in a quasi-periodic lattice system, like it is used
in various experiments [3], the effects of disorder in the tunneling rate is not negligible
and will affect the actual experimental phase diagram as well as the disorder in the on-site
energy.

6.2 Phase diagrams

Let us first discuss the phase diagram for integer filling in dependence of the two laser
intensities s1, which describes the intensity of the main lattice, and s2, which is one
order of magnitude smaller and describes the influence of the disorder. Since the BH
parameters are functions of the laser intensities, as derived in Section 6.1.2, it is possible
to transform the phase diagram in dependence of the intensities into one, which depends
on the BH parameters ∆ε/ (2J), ∆J/ (2J) and U/J . This representation can be compared
to common representations of the phase diagram of the BH model, as for example for on-
site disorder, as shown in Figure 4.4.
Secondly, the phase transitions are determined in dependence of the chemical potential µ
and the intensity s1 of the main lattice for fixed intensity s2 of the second one. This phase
diagram can be compared to these for isolated disorder in one of the BH parameters, where
the disorder strength is fixed and the phase transitions are given in dependence of the
chemical potential µ/U and and the tunneling rate JZ/U , as shown in Figure 4.5 and all
figures of Chapter 5.

6.2.1 Intensity phase diagram

With BH parameters for each the site at hand we can determine the phase diagram in de-
pendence of the laser intensities s1 and s2 for fixed mean particle number N =

∑
i〈n̂i〉 = M

of one particle per site. The mean particle number is fixed by adjusting the chemical po-
tential µ. The resulting phase diagram for a 32 × 32 lattice is shown in Figure 6.6 a).
Here the BH parameters are correlated according to the lattice potential (6.1). According
to the LMF cluster analysis described in Chapter 4, the MI phase is characterized by
the absence of any SF site, which means that every site in the MI region has an integer
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Figure 6.6: Phase diagram for the bi-chromatic quasi-periodic potential (6.1) for a mean particle number
of n = 1 in dependence of the laser intensities s1 and s2 for a system with 32× 32 sites (a)
and a system with uncorrelated disorder (b). In the ordered case (s2 = 0) a direct phase
transition between the MI and the SF phase exists. With increasing s2 the MI, BG and SF
phase occur in a stack.

particle number. In the SF region sites with non-integer particle number percolate. In
between, in the BG region, the system consists of both, sites with integer and others with
non-integer particle number, which do not percolate.
Next we compare the obtained phase diagram for the quasi-periodic potential with the
one obtained for a BH model with uncorrelated disorder according to identical PDs of the
BH parameters P (α) with α = ε, J, U , which depend on the laser intensities s1 and s2.
We start with one parameter set for ε, J and U given for fixed s1 and s2, which we
have determined and discussed in Section 6.1.2. We produce 200 different samples, by
randomly choosing new site indices. In other words, we study 200 samples according to
the same PD by switching lattice sites and in this way erasing local correlations in the
parameter set. The phase diagram resulting from LMF cluster analysis and finite-size
scaling is shown in Figure 6.6 b) and agrees quite well with the one on the left for corre-
lated disorder. The BG-SF transition line for uncorrelated disorder is slightly distorted
in comparison to correlated disorder.
In both phase diagrams, shown in Figure 6.6, all three phases occur in dependence of the
lattice parameters s1 and s2. Along the s1-axis (s2 = 0) the direct SF-MI transition of
the ordered system occurs. Below this point in a shallow lattice the SF phase covers the
whole parameter region independent of s2. This corresponds to the fact that in this region
the tunneling rate is largest, as shown in Figure 6.4 and dominants the system behavior.
Above this point the MI phase occurs, which is completely surrounded by the BG for
intermediate s2, which in turn is enclosed by the SF phase for even larger amplitudes s2

of the second lattice. Notice that the potential (6.1) reduces to the ordered case for s2 = 0
as well as for s1 = 0. Therefore, along the s2-axis the system also undergoes a direct MI-
SF transition. In the region where s1 � s2 the second lattice is dominant and a similar
structure occurs.
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6.2.2 Bose Hubbard parameter phase diagram

In the case of only one disordered BH parameter two possible representation of the phase
diagram are common: For the first one [2,35] the particle number is fixed to one particle
per site, which fixes the chemical potential µ. Then, the phase transitions are shown in
dependence of the inter-particle interaction U/J and the disorder strength ∆/ (2J). The
phase diagram for the case of disorder only in the on-site energy in this representation
is shown in Figure 4.4. The second representation [2, 43–45] shows the Mott-lobes in
dependence of the tunneling rate JZ/U and the chemical potential µ/U for fixed disorder
strength ∆/U . The corresponding phase diagrams for the case of disorder only in one of
the BH parameters are shown in Figure 5.1, 5.2 and 5.3. In this section we will discuss
our results in both representations, keeping in mind that all BH parameters ε, J and U
as well as all disorder strengths ∆ε ,∆J and ∆U are functions of s1 and s2 and thus are
not independent of each other.

6.2.2.1 Commensurate filling

The data from the phase diagram as a function of s1 and s2 shown in Figure 6.6 can be
translated into a diagram similar to the first representation for a fixed particle number:
According to Figure 6.4 the mean parameters ε, J , U as well as the widths ∆ε, ∆J , ∆U

are functions of the two amplitudes s1 and s2. Since ∆U is two orders of magnitude
smaller than the critical value ∆c

U and smaller than the other widths, the inter-particle
interaction U can be treated as a sharp value to a good approximation. As a result the
phase diagram can be visualized as the surface (U/J, ∆ε/ (2J) , ∆J/ (2J)) in three di-
mensions. This is shown in Figure 6.7 for correlated and in Figure 6.8 for uncorrelated
disorder, where each phase is colored differently. Notice that with a quasi-periodic po-
tential (6.1), which depends on the two amplitudes s1 and s2, only this surface in the BH
parameter space can be reached, since all BH parameters are functions of s1 and s2. As a
consequence disorder, where only one parameter is disordered while the others are fixed,
cannot be reached in this phase diagram. Either it is an ordered (∆ε = ∆J = 0) or a com-
pletely disordered (∆ε 6= 0, ∆J 6= 0) system. This has two important implications: With
a quasi-periodic potential neither the whole parameter space nor a pure on-site disorder
can be realized.
The phase diagrams in Figure 6.7 and 6.8 show all three phases: The BG phase (blue)
separates the MI (dark gray) phase at strong inter-particle interaction U/J from the SF
regime (light gray) at weak inter-particle interaction U/J . Both phase diagrams are also
shows as a projection on the (U/J, ∆ε/ (2J))-plane. The phase boundaries differ substan-
tially from those of the BH model with uncorrelated disorder exclusively in the on-site
energies as shown in Figure 4.4. Here the SF region shows a bump around ∆ε/ (2J) ∼ 10
and a much larger BG region for both correlated and uncorrelated disorder in comparison
to the case of exclusively on-site disorder. These differences are due to the additional
presence of disorder in the hopping strengths, which we already found to be important in
Section 6.1.2.
Moreover, we find differences between Figure 6.7 and the phase diagram as a function
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a) b)

Figure 6.7: Phase diagram for a quasi-periodic potential (6.1) in dependence of the
BH parameters (U/J, ∆ε/ (2J) , ∆J/ (2J)). Since these BH parameters all depend
on s1 and s2 they span a surface in the 3D parameter space. The BG phase separates
the MI from the SF region. On the right the projection onto the (U/J, ∆ε/ (2J))-plane is
shown.

a) b)

Figure 6.8: Phase diagram for uncorrelated disorder according to the distributions, which re-
sult from a quasi-periodic potential (6.1) in dependence of the BH parameter
(U/J, ∆ε/ (2J) , ∆J/ (2J)). Since these BH parameters all depend on s1 and s2 they span
a surface in the 3D parameter space. The BG phase separates the MI from the SF region.
On the right the projection onto the (U/J, ∆ε/ (2J))-plane is shown.

of V2/J and U/J predicted for a one-dimensional BH model with quasi-periodic modu-
lation of the on-site energies exclusively [37, 38]. Since ∆ε is proportional to V2 = s2ER2

according to Figure 6.4, the phase diagram in Figure 6.7 is directly comparable to Figure
1 (left) of [37] and Figure 3 (bottom) of [38]. Both show a direct MI-SF transition along
the whole border of the MI region. The latter is absent in our phase diagram in Figure
6.8, where an intervening BG phase occurs between the MI and SF phase. The reason
is most plausibly that, already a small disorder strength ∆J in the tunneling strength
strongly enlarges the BG regions in the phase diagram, as Figure 5.2 demonstrates. In
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Section 6.3.1 we will discuss the method of [37] in detail and compare it to results of the
LMF cluster analysis for the disorder realization as proposed in [37].

6.2.2.2 Fixed disorder strength

For the second representation we fix the weaker amplitude s2, which introduces disor-
der to the system, and study the system in dependence of s1 and µ. Since the tunneling
rate JZ/U is a unique function of s1 and independent of s2, as shown in Figure 6.9 b), the
s1-axis can easily be converted into a JZ/U -axis. In theoretical works disorder is usually
introduced by bounded distributions with zero mean values. In the quasi-periodic case
the mean value of the distributions P (α) of the BH parameters α = ε, J, U are non-zero
in general, as shown in Figure 6.4. In order to take this into account, we use µ− ε instead
of simply µ at the axis. The phase diagrams as a function of the laser intensity s1 and the
chemical potential (µ− ε) /U are shown in Figure 6.10 for correlated (first row) as well as
for uncorrelated (second row) disorder. Thus, from the data in the (s1, µ)-plane, we can
extract a phase diagram in dependence of JZ/U and (µ− ε) /U , like it is shown in Figure
6.11. Notice that ε , J and U, as well as ∆ε ,∆J and ∆U are all functions of s1 and s2 and
are not independent from each other, while in the most simulations of disordered systems
they are treated as independent parameters.
In Figure 6.9 the behavior of the system parameters for different values of the laser inten-
sity s2 = 0.0354, 0.0758, 0.1162 is shown as a function of JZ/U . Only in Figure 6.9 b)
the tunneling rate in dependence of s1 is shown. While the tunneling rate JZ/U is inde-
pendent of s2, the on-site energy ε/U varies for different values of s2. In a shallow lattice
(s1 small) the tunneling rate JZ/U is large, while for increasing s1 it approaches zero and
finally in a deep lattice (s1 large) the tunneling rate JZ/U is infinitesimally small. This
means that in the phase diagram the µ/U -axis at JZ/U = 0 may be approached with
arbitrary accuracy, but never reached. In a deep lattice (s1 is large) the ratio ε/U is small
and increases with growing JZ/U , see Figure 6.9. The disorder strengths ∆ε/U, ∆J/U
and ∆U/U increase with JZ/U and the amplitude s2.
The phase diagrams for three values of the laser intensity s2 = 0.0354, 0.0758, 0.1162
as a function of s1 and (µ− ε) /U are shown in Figure 6.10 for correlated (first row)
as well as for uncorrelated (second row) disorder. For all values of s2 we find a regular
structure of Mott-lobes, surrounded by individual BG regions. The number of Mott-lobes
decreases with increasing disorder amplitude s2, which corresponds to an increase of the
disorder strengths ∆ε/U, ∆J/U, ∆U/U with growing s2, see Figure 6.9. The regular pat-
tern of Mott-lobes and BG regions repeats in a distance of one along the (µ− ε) /U -axis.
For fixed s2 the lower and the upper extent of the Mott-lobes have all the same dis-
tance to the next integer number. Thus, the Mott-lobes have the same width along the
(µ− ε) /U -axis, while their extension in s1-direction shrinks with their number n. Ex-
cept of the first BG region all the others are separated from each other by SF regions,
reaching up to very high values of s1. The phase diagrams for both correlated as well as
uncorrelated disorder show identical features. In the uncorrelated case the Mott-lobes are
slightly smaller than in the correlated case.
The same data shown as a phase diagram as a function of JZ/U and (µ− ε) /U is given
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Figure 6.9: The on-site energy ε/U and the widths ∆ε/U, ∆J/U, ∆U/U of the BH parameters as a
function of JZ/U for different values of s2 = 0.0354 (−) , 0.0758 (−·) , 0.1162 (−−). In
Figure b) the tunneling rate JZ/U is shown as a function of s1. The tunneling rate is
independent of s2 and a unique function of s1. The on-site energy ε/U as well as all widths
increase with the tunneling rate JZ/U and the amplitude s2.

in Figure 6.11 for correlated (first row) as well as for uncorrelated (second row) disorder.
Notice that the BH parameters and their widths vary along the JZ/U -axis corresponding
to Figure 6.9. Here we also find the structure of Mott-lobes surrounded by BG regions and
finally enclosed by the SF phase for large tunneling rates JZ/U . Since the (µ− ε) /U -axis
is not changed in comparison to Figure 6.10, here we also see a decreasing number of Mott-
lobes for increasing s2 and the regular pattern of Mott-lobes, with identical widths for
fixed s2. They are surrounded by individual BG regions, which are separated from each
other by SF regions, except of the first one. The SF regions reach down to very small
tunneling rates JZ/U → 0. This is a unique feature of disorder only in the tunneling
rates, as discussed in Section 5.2. The fact that we see this unique phenomenon here
in the phase diagram of a quasi-periodic potential, ones more promotes our finding from
Section 6.1.2, that the influence of disorder in the tunneling rate cannot be neglected.
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Figure 6.10: Correlated (first line) and uncorrelated (second line) disorder phase diagrams for differ-
ent s2 = 0.0354, 0.0758, 0.1162 as a function of the laser intensity s1 and the chemical
potential (µ− ε) /U . There is a regular pattern of Mott-lobes, completely enclosed by in-
dividual BG regions, which are surrounded by one SF region. The SF regions extend up
to high values of the laser intensity s1.
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Figure 6.11: Correlated (first line) and uncorrelated (second line) disorder phase diagrams for different
s2 = 0.0354, 0.0758, 0.1162 as a function of the tunneling rate JZ/U and the chemical
potential (µ− ε) /U . There exists a regular pattern of Mott-lobes, completely enclosed by
individual BG phases, which are surrounded by one SF region. The SF regions survive
in the limit JZ/U → 0, which is a unique feature of uncorrelated disorder only in the
tunneling rate.
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6.3 Comparison with alternative approaches

The numerical effort for the computation of the non-symmetric Wannier functions is
immense, as they have to be computed for each site individually. There exist other ap-
proaches, avoiding this step by modeling the influence of the quasi-periodic potential either
by a specific pattern of the on-sites energies [37,38,55] or by using the symmetric Wannier
function of the main lattice as an approximation for the non-symmetric ones [56,57]. Both
methods reduce the numerical effort by a factor of the system size M = L2 compared to
the computation of generalized Wannier functions. In the following we will discuss the
phase diagram on the basis of the LMF cluster analysis for both approximative approaches
and discuss their limitations.

6.3.1 Quasi-periodic potential for the Bose-Hubbard parameters

The influence of a quasi-periodic potential on the BH parameters with an alternative
approach is discussed in [37]. The authors derive the site dependent perturbations of the
BH parameters directly on the basis of the geometric shape of a quasi-periodic potential,
as given in Equation (6.1) in one dimension, without computing any Wannier functions.
After the authors have determined the resulting perturbations of the tunneling rate and
the inter-particle interaction, they argue that these perturbations are small. Thus, they
reduce the influence of the quasi-periodic potential to a site dependent on-site energy
given by

εi = V2 cos2 (rπi+ φ) , (6.4)

where r = k2/k1 is the ratio between the two wave vectors and φ is a constant phase shift
between the first and the second lattice. An agreeing description for the BH parameters
was also used in [38,55].
In agreement with our findings from Section 6.1.2, the perturbation of the inter-particle
interaction U is negligible. The authors of [37] argue, that the perturbative tunneling
rate J2 in units of the tunneling rate J is around J2/J ≈ 0.002− 0.1 and the strength of
the on-site disorder V2 in units of the tunneling rate J is around V2/J ≈ 2.6− 53.3. The
perturbation of the tunneling rate J2 is some orders of magnitudes smaller than that of
the on-site energy V2. Thus, the authors concluded that the tunneling rate can also be
neglected here. In Section 5.2 we have seen that the critical tunneling disorder strength is
given by ∆c

J/U ≈ 0.0858, beyond which all three phases occur in the phase diagram, and
it is one order of magnitude smaller than that of the on-site energy disorder ∆c

ε/U = 1.
Therefore, it is necessary to check carefully if disorder in the tunneling rate is really
negligible. On the basis of the data given in [37], there might be parameter ranges, in
which it is essential to consider the perturbations in the tunneling rate also.
Their phase diagram as a function of U/J and s2/J for a fixed mean particle number
of n = 1 for a 1D system is shown in Figure 1 in [37]. Since U/J is proportional to s1 and
independent of s2 according to Figure 6.9 b), the s1-s2 phase diagram for two dimensions,
shown in Figure 6.6, can directly be compared to Figure 1 in [37]. Their phase diagram,
for isolated disorder in the on-site energy according to Equation (6.4) shows a direct
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Figure 6.12: The same LMF cluster analysis phase diagram for the quasi-periodic potential given in
Equation (6.4) for commensurate particle numbers n = 1 shown in three different param-
eter ranges. Especially in Figure b) we see, that there is no direct MI-SF transition, even
in the ordered case (s2 = 0). The black cross in Figure c) marks the parameters used in
Figure 6.13.

MI-SF transition along the whole border of the MI phase, while we found an intervening
BG region between the MI and the SF phase with correlated disorder according to the
treatment described in Chapter 6.
In order to study this contradiction we have determined the phase diagram for isolated
on-site disorder according to the quasi-periodic potential (6.4) in two dimensions with the
help of the LMF cluster analysis described in Chapter 4. The resulting phase diagram is
shown in Figure 6.12 for three different parameter ranges. In Figure 6.12 a) we see a large
SF region with a fingering border, which is completely surrounded by the BG phase. In
the regime of small s2 we find the MI region. As visible from the blow up in the middle,
here we find no direct MI-SF transition, not even for the ordered case (s2 = 0), which is
in contradiction to the perturbative result, predicting the MI-SF transition at U/J ≈ 23,
see Equation (2.62). This regime is covered by the parameter range shown in the blowup
in Figure 6.12 c). However, in our phase diagram shown in Figure 6.6 computed on the
basis of the non-symmetric Wannier functions, we find the direct MI-SF transition for
the ordered system. For the parameters marked by the black cross in Figure 6.12 c)
the local particle number n̂i and the discrete map Gi, see Equation (4.15), are shown in
Figure 6.13. The local particle number has values on the order of one. In the map Gi on
the right, sites with a particle number of one are shown in white, while the SF sites with
non-integer particle numbers are shown in black. Here non of the SF clusters percolate.
Thus, this represents a typical BG situation, where we find a mixture of MI sites and SF
sites, which have not percolated.
We concluded that for the quasi-periodic potential (6.4) with the LMF cluster analysis
we find no direct SF-MI transition at all. For the disordered system (s2 > 0) this is
in agreement with the phase diagram shown in Figure 6.6 resulting from non-symmetric
Wannier functions, but for the ordered system (s2 = 0) this is in contradiction to the
perturbative results (2.62). Therefore, the quasi-periodic potential (6.4) cannot describe
the influence of a quasi-periodic potential of a 2D system especially in the small disorder
(s2 small) regime. How accurate this potential describes the influence of a quasi-periodic
potential of a 1D system, as done in [37, 38, 55], where the phase transition occurs for
smaller values of the parameters, is unclear.
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Figure 6.13: The local particle number n̂i and the discrete map Gi, given by Equation (4.15),
for U/J = 17.88 and s2/J = 0.71 corresponding to the black cross in Figure 6.12 c). The

local particle number n̂i assumes values on in the order of one. On the right MI sites with
one particle per site are shown in white, while SF sites with non-integer particle number
are shown in black. Here we see a typical pattern of a BG, with a mixture of MI and SF
sites, which are not percolated.

6.3.2 Application of symmetric Wannier functions

Another method [56,57] is to compute the Wannier function for the main periodic lattice

V1 (x, y) = V1

(
cos2 (k1x) + cos2 (k1z)

)
. (6.5)

Then, the BH parameters according to Equation (2.56) are computed on the basis of
the full potential (6.1) and the symmetric Wannier functions of the regular lattice V1.
This drastically reduces the numerical effort in comparison to the computation of the
non-symmetric Wannier functions of the full quasi-periodic potential as presented in
Section 6.1.1, since here the Wannier function must be computed only once instead of
M = L2 times.
In Figures 6.14 and 6.15 the mean values and widths of the BH parameters resulting from
this method are shown. In comparison to the results on the basis of the non-symmetric
Wannier functions, shown in Figures 6.4 and 6.5, there are no visible deviations for all
means values and the width of the distribution of the on-site energies ∆ε. Neverthe-
less, there are drastic differences in the width for the tunneling rate ∆J and the inter-
particle interaction ∆U . The width ∆J resulting from the symmetric Wannier functions
is one magnitude smaller, than those of the non-symmetric Wannier functions, shown in
Figure 6.4. Moreover, ∆J/U , resulting from symmetric Wannier functions, is beyond the
critical value of ∆c

J/U ≈ 8.58 10−2 for all parameters. In the region of a shallow lattice
(s1 small) it assumes values slightly below the critical values ∆c

J/U , which means that
the influence of disorder in the tunneling rates is not negligible in this region. However,
the width ∆U/U is even ten orders of magnitudes smaller than the one determined using
the method with non-symmetric Wannier functions.
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Figure 6.14: Mean values α (first row) and widths ∆α =
√

12σ2
α (second row) with variance σ2

α of the
distributions of the BH-Parameters α = ε, J, U in units of the recoil energy ER1 based on
symmetric Wannier functions. Notice that in Figures a) and c) showing ε and U the s1- and
s2-axis are switched in comparison to the other figures. In comparison with the method
of using non-symmetric Wannier functions, shown in Figure 6.4, the usage of symmetric
Wannier functions leads to agreeing results for the mean values and the disorder width ∆ε.
The width for the tunneling rate ∆J is one, and for the inter-particle interaction ∆U is
ten orders of magnitudes smaller here.

The phase diagram for this method is shown in Figure 6.16 for a 10× 10 and 32× 32 sys-
tem. The phase diagram on the right for the 32× 32 system can directly be compared to
the phase diagram for correlated disorder for the same system size shown in Figure 6.6 a).
Independent of the system size L both phase diagrams determined on the basis of sym-
metric Wannier functions, shown in Figure 6.16, reveal a BG-SF transition line, which
depends on both system parameters s1 and s2 only in a small regime where s2 < 0.1,
while for higher values it is independent of s2. This is in contrast to the phase diagram
determined on basis of non-symmetric Wannier functions, which is shown in Figure 6.6,
where the percolation line depends on both parameters s1 and s2 and in the high disorder
regime (s2 large) the SF phase covers the whole phase diagram. In Chapter 5 we have
discussed uncorrelated disorder only in one of the BH parameters and have seen that for
increasing disorder ∆α (equivalent to increasing s2) the BG region shrinks. This means
that the BG-SF transition line moves to smaller tunneling rates JZ/U , which is inverse
proportional to s1, as shown in Figure 6.9. Consequently, this means that the BG-SF
transition line moves to higher values of s1 for increasing s2. This is consistent with the
phase diagram shown in Figure 6.6 determined from non-symmetric Wannier functions,
but not with phase diagram shown in Figure 6.16 determined from the symmetric Wan-
nier functions for s2 > 0.1.
The border of the MI phase can only be determined in the regime of the blue dots shown
in Figure 6.16. Above a value of s2 > 0.1 the numerical data shows an irregular pattern
instead of a precise line. In the parameter regime s1 < 20 there exists no direct MI-SF
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Figure 6.15: Mean values α (first row) and the widths ∆α =
√

12σ2
α (second row) of the distributions of

the BH-Parameters α = ε, J, U in units of the inter-particle interaction U based on sym-
metric Wannier functions. The white lines in the second row show the critical widths ∆c

α,
where the last Mott-lobe disappears, which is also stated below the plot. For on-site disor-
der the width of the distributions reach the critical value ∆c

α. The width of the tunneling
rates ∆J approaches this critical value ∆c

α only for very shallow lattices (s1 small).

transition and for the 32× 32 system on the right not even in the ordered case (s2 = 0).
This phenomenon is similar to what we have seen in the last section in the phase dia-
gram in Figure 6.12. Although, the MI-SF transition in the ordered system is predicted
at U/J ≈ 23 according to Equation (2.62), it does not occur here. Therefore, we conclude
that for a 2D system the usage of symmetric Wannier function is not applicable even in
the regime of very small amplitudes of the second laser s2. Above this threshold this
approximation leads to misleading results in the phase diagram. This method was intro-
duced for a 1D BH system [56, 57], where the phase transitions of uncorrelated disorder
in one BH parameter naturally occur for smaller values of ∆/ (2J) and U/J . Therefore,
the amplitudes s1 and s2 are smaller, too, and possibly this approximation might hold
there with a higher accuracy.

Conclusion

We have investigated the quasi-periodic potential of a bi-chromatic potential and intro-
duced it fundamentally using generalized Wannier functions. In Chapter 5 we had already
showed that the critical disorder strength ∆c

J for tunneling disorder, below which all three
phases occur in the phase diagram, is one order of magnitude smaller than for the on-site
interaction. Here, we have seen that for bi-chromatic quasi-periodic potentials the width
of the distribution of the tunneling rate, as well as that of the on-site energy, reach the
physically interesting region on the order of ∆c

ε and ∆c
J , where all three phases compete
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Figure 6.16: Phase diagram for the bi-chromatic quasi-periodic potential (6.1), where the symmetric
Wanner functions where used, for fixed mean particle number of n = 1 in dependence of
the laser intensities s1 and s2 for a system with 10 × 10 sites (a) and 32 × 32 sites (b),
which can be compared to the phase diagram determined on the basis of non-symmetric
Wannier functions for the same system size and shown in Figure 6.6 b).

in the phase diagram (see Figure 6.4). This is true even though the width of the distri-
bution of the tunneling rates is one order of magnitude smaller than that of the on-site
energy. The influence of disordered inter-particle interaction, however, is negligible, since
its width remains four orders of magnitude below the critical disorder strength.
Moreover, in Chapter 5 we have found that each scenario, where only one BH parameter
is disordered, yields different characteristic features in the phase diagram. Having this
in mind, the influence of tunneling disorder becomes obvious in the phase diagram of
the quasi-periodic potential in dependence of the BH parameters. The transition lines,
shown in Figure 6.8, deviate from pure box distributed on-site disorder, which are shown
in Figure 4.4. In the quasi-periodic case the SF region is smaller, while the BG and
the MI regions cover a larger region. In the phase diagram in dependence of JZ/U and
(µ− ε) /U , shown in Figure 6.11, we find individual BG regions, which are separated
by SF regions. This, however, is a unique feature exclusively occurring in systems with
disordered tunneling rates (see Figure 5.2). Consequently one has to be aware that exper-
imental setups using a bi-chromatic quasi-period potential, as for example [3], should be
expected to produce a phase diagram that is qualitatively very different from predictions
of the disordered BH model with exclusively on-site disorder. Moreover, it is important
to know, that in a bi-chromatic quasi-periodic potential it is not possible to study on-site
disorder exclusively, since as becomes evident from Figure 6.7, for growing intensity of
the second laser s2, the width of the disorder distribution of both the on-site and the
tunneling rate increase simultaneously.



7 Quasi-periodic structures due to
cavity backaction

The interplay of a regular optical lattice and an additional optical field produced by
photons inside a cavity will be discussed in this chapter. The bosons are tightly confined in
an optical lattice produced by lasers of some wave length λ0. An optical dipole transition
of the bosons is driven by an additional laser leading to scattering of photons into the
cavity field, according to the geometry shown in Figure 7.1. These photons themselves
in turn form an optical potential for the atoms, which is periodic with the wave length λ
given by the cavity. This optical pattern, however, depends on the local particle density
in the system. In situations, in which particle fluctuations are negligible, as for example
deep in the MI regime of the main optical lattice, the scattering of photons into the cavity
field is suppressed and the atoms experience only the regular optical lattice with wave
length λ0. With the onset of particle fluctuations photons are scattered into the cavity
field and the atoms experience the overlap of the main lattice produced by the laser
with wave length λ0 and the optical field of the photons with the cavity wave length λ.
This interplay can be described by a BH model with correlated disorder in the on-site
energies [5,6]. As we will see in this chapter for commensurate wave lengths there are two
classes of phase diagrams, one for odd and one for even ratios of the two wave lengths.
For odd ratios the so-called SS phase occurs, where the system is in the SF phase and
additionally the particle densities show a checker board like pattern. For incommensurate
wave lengths the behavior is much richer and not only the SS phase, but also the BG
phase and a variety of SF phases occur in the phase diagram.

7.1 The System

For a systematic description of this system we assume the ultracold bosons to be tightly
confined in the lowest band of a regular 2D optical lattice in the x-z-plane, originated by
a standing-wave potential

V (x, z) = V0

(
cos2 (k0x) + cos2 (k0z)

)
, (7.1)

where V0 < 0 is the potential depth and k0 = 2π/λ0 the wave number. The atomic motion
is restricted to the x-z-plane, as motion in the y-direction is assumed to be frozen out.
This potential (7.1) is regular and periodic with the lattice constant a = π/k0, defining
the location of lattice sites at its maxima.
In the considered setup the atoms are additionally confined within an optical resonator,
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Figure 7.1: The atoms are tightly confined in a regular optical lattice, whose minima are shown in red

and which is produced by lasers of the wave length λ0. A laser, shown in grey, drives an
optical dipole transition of the bosons leading to coherent scattering of photons into the
cavity mode. These cavity photons, shown in blue, form an additional optical lattice for the
bosons at wave length λ. Therefore, the atoms, which are confined in the regular optical
lattice with wave length λ0, also feel the optical potential of wave length λ. The interplay
of both wave lengths leads to a dynamical on-site potential for the atoms.

which possesses a standing-wave mode at wave number k = 2π/λ coupling quasi-resonantly
to an atomic dipolar transition at frequency ω0. We assume that a laser field propagat-
ing along the x-direction drives the same optical transition from the side, such that the
atoms scatter photons into the cavity along the z-direction, as depicted in Figure 7.1. In
specific limits the cavity field dynamics adiabatically follows the atomic density dynam-
ics; details are discussed in [5, 6], where it is argued that this regime is reached for the
parameters of the experimental setup of [7, 8]. If this holds, the system is described by
the Hamiltonian [5, 6]

Ĥsys = ĤBH + Ĥlaser + Ĥcav , (7.2)

where ĤBH is the Bose-Hubbard Hamiltonian (2.43) as introduced in Chapter 2, Ĥlaser is
the potential term due to the transverse laser field, and Ĥcav is the long-range potential
along the z-direction mediated by the cavity photons the atoms are interacting with. The
specific form of these Hamiltonians will be discussed in the following section. In this
chapter we will evaluate the phase diagram of this model for various relations of the two
wave lengths λ and λ0.
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7.2 The Bose-Hubbard model with long-range
photon-mediated interactions

Let us now have a closer look on the three parts of the Hamiltonian (7.2). The first term
is the BH Hamiltonian (2.43), which describes bosons in a regular 2D L × L lattice and
has already been discussed in Chapter 2. The three different energy scales in this model,
namely the on-site energy εi, the tunneling rate J and the inter-particle interaction U
can be computed with the help of the Wannier functions Wi (~r ) for the potential (7.1)
according to Equation (2.56).
The Hamiltonian Ĥlaser results from a sinusoidal potential along the x-direction of the
form V1 cos(kx). Its depth V1 is a tunable parameter, which is smaller than the gap be-
tween the lowest and the second band of the optical lattice. In this limit the decomposition
into the lowest band Wannier functions Wi(~r) is consistent, and the corresponding term
reads

Ĥlaser = V1

∑
i

J
(i)
0 n̂i , (7.3)

with the coefficients

J
(i)
0 =

∫
d~rWi (~r ) cos2 (kx)Wi (~r ) (7.4)

and the amplitude V1 = ~Ω2/∆a. This Hamiltonian is diagonal and will lead to a site
dependent correction of the on-site energy.
Cavity backaction is now constituted by the Hamiltonian

Ĥcav = δ̂ (n̂)L2Φ̂2 (7.5)

with n̂ = {n̂1, . . . , n̂L2}, which gives rise to selfordering. The operator

Φ̂ =
1

L2

∑
i

Z
(i)
0 n̂i (7.6)

depends on the particle number n̂i at each site and on the site dependent function

Z
(i)
0 =

∫
d~rWi (~r ) cos (kz) cos (kx)Wi (~r ) , (7.7)

which assumes values between 1 and −1. The coefficient

δ̂ (n̂) =
~s2

0

δ̂2
eff + κ2

δ̂eff with δ̂eff = δc +
u0

L2

∑
i

Y
(i)

0 n̂i (7.8)

and

Y
(i)

0 =

∫
d~rWi (~r ) cos2 (kz)Wi (~r ) , (7.9)

depends on the particle density at each site. Notice that the values of the functions J
(i)
0 ,

Y
(i)

0 , Z
(i)
0 as well as the BH parameters ε, J , U depend on the potential depth of the
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optical lattice V0, since the Wannier functions Wi (~r ) change their shape according to
potential (7.1). Thus, in this model these functions and the BH parameter are dependent
parameters.
Both Hamiltonians Ĥlaser as well as Ĥcav lead to a diagonal contribution to the BH
Hamiltonian (2.43), such that the on-site energies εi = ε + δε̂i become site dependent
with the dynamic potential

δε̂i = V1J
(i)
0 − δ̂ (n̂) Φ̂Z

(i)
0 . (7.10)

While the site independent BH parameters ε, J and U are defined at the lattice sites
given by the optical lattice with wave length λ0, the dynamic potential, which describes
the influence of the cavity and the laser, is periodic with wave length λ. Consequently
the setup shown in Figure 7.1 is described by the Hamiltonian

Ĥ = −δ̂ (n̂)L2Φ̂2 +
∑
i

(
ε− µ+ V1J

(i)
0

)
n̂i +

U

2

∑
i

n̂i

(
n̂i − 1

)
− J

∑
〈i,j〉

(
â†i âj + âiâ

†
j

)
.

(7.11)

The static on-site potential V1J
(i)
0 , describing the influence of the laser, is independent of

the local particle numbers n̂ and its amplitude V1 = ~Ω2/∆a is fixed. It induces a regular
2D stripe pattern, which is periodic in x-direction and constant in z-direction and exists
in the whole parameter regime. However, the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 , describing

the influence of the cavity, forms a 2D periodic pattern, whose amplitude depends not
only on the absolute number of bosons, but rather on the distribution of bosons within
the lattice and thereby introduces a long range interaction. Its amplitude is governed
by δ̂ (n̂) on the one hand, which depends on the particle numbers, and on the other hand
by the operator Φ̂. According to Equation (7.6), the operator Φ̂ is the component of the
Fourier transform of the particle density {n̂i} at a given wave vector k. If this component
is positive, the atoms coherently scatter photons at wave length λ into the cavity mode.
Therefore, Φ̂ describes the occupation number of photons in the cavity. We will see,
that there are parameter ranges in which coherent scattering of photons into the cavity is
supported (Φ̂ > 0), and others in which this process is suppressed (Φ̂ = 0). The photons
in the cavity mode themselves again form an optical potential for the atoms, which is
described by the first part of Hamiltonian (7.11). The energy −δ̂ (n̂)L2Φ̂2 depends on
the square of the occupation number Φ̂ of the cavity mode and thus is non-linear in the
particle numbers n̂i. We will see, that for specific ratios of the wave length of the optical
potential λ0 and the cavity mode λ this dynamic potential gives rise to the formation of
a checker board pattern in the local densities, where sites are occupied by an alternating
number of particles. The occurrence of such a checker board pattern is indicated by the
structure factor

S(~k) =
1

L2

∑
i,j

n̂in̂je
−i~k(~ri−~rj), ~k =

2π

L
l, ~ri = ai (7.12)

with i = (ix, iz) and l = (lx, lz). This function shows a peak at the coordinates (π, π), if the
checker board pattern, which has a period of two sites, occurs in the density distribution.
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The structure factor S(~k) equals the absolute value of the Fourier transform

F (~k) =
∑
i

n̂ie
−i~k~ri/L (7.13)

of the density distribution. For wave length ratios, for which the checker board pat-
tern can be established, the occurrence of coherent scattering into the cavity (Φ̂ > 0)
is accompanied by the appearance of the peak of the structure factor at (π, π), which
means that S (π, π) > 0. Thus, the value S (π, π) is proportional to Φ̂ and can serve
as an order parameter for the appearance of the checker board pattern in the particle
density. SF phases in which the particle density shows such a pattern and thus show
positive values of S (π, π), were referred to as SS phases [111–113]. Notice that, the
order parameter S (π, π) directly occurs in the first part of Hamiltonian (7.11). Since
the structure factor is accessible in experiments via time-of-flight techniques, the order
parameter S (π, π) is also an observable for the identification of the checker board pattern.
The main lattice is defined by the maxima of the red detuned regular potential (7.1) with
lattice sites at x = ixa and z = iza with the lattice constant a = λ0/2. The values of the
site independent BH parameters ε, J and U are defined at each lattice site as the overlap
integral of the Wannier functions Wi (~r ) with the kinetic and potential part of the Hamil-
tonian, according to Equation (2.56). The dynamic potential δε̂i introduces a correlated
pattern modulated by a different wave length λ = 2π/k. This pattern is governed by the
values of

cos (kx) = cos

(
ixπ

λ0

λ

)
and cos (kz) = cos

(
izπ

λ0

λ

)
(7.14)

at the lattice sites occurring in the functions J
(i)
0 Z

(i)
0 and Y

(i)
0 as given in equations (7.4),

(7.7) and (7.9). Thus, the ratio λ0/λ of both wave lengths influences the behavior of the
system fundamentally and will lead to a variety of different phase transitions.
The BH Hamiltonian discussed here can be realized in experiment [7,8], where 87Rb atoms
with mass mRb = 1.45 10−25 kg are used. Therefore it is useful to recall all experimental
parameters: The optical lattice is periodic with the wave length λ0 = 785 nm. The cavity
field ωC is characterized by wave number k = 2π/λ and a linewidth of κ = 2π × 1.3 MHz
and a wave vector pointing in z-direction. While the difference between the laser fre-
quency and the cavity field is denoted by δc = ωC − ωL = 5κ, the difference between
the laser and the optical lattice frequency is given by ∆a = ωL − ω0. The Rabi fre-
quency of the cavity is denoted by g0 and the Rabi frequency of the coherent cou-
pling between the dipolar transition and a standing-wave laser along the x-direction by
Ω. The frequency u0 = g2

0L
2/∆a = 237κ scales with the depth of the intra cavity po-

tential generated by a single photon. The Raman scattering amplitude with which a
single photon is scattered by a single atom between cavity and laser mode is denoted
by s0 = g0ΩL/∆a = 0.15κ for L = 100. The potential depth of the pump laser is finally
given by V1 = ~Ω2/∆a = ~s2

0/u0 [6, 77, 79].
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7.3 Commensurate lattices

In this section our purpose is to study commensurate ratios of the wave lengths λ0,
determining the position of the lattice sites and λ, describing the dynamic potential δε̂i.
We will focus on the cases

λ =
λ0

l
, with l = 1, 2, (7.15)

which means that the distance between the lattice sites a = λ0/2 is larger than the beat-
ing of the dynamic potential δε̂i given in Equation (7.10).
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Figure 7.2: The function cos2 (k0x) (blue) defines the lattice sites at x = ixa, which are marked with
crosses. The functions cos (2πl/λ0x) , shown for l = 1 (green) and l = 2 (red), represent

the period of the dynamic potential δε̂i as given in Equation (7.10).

Due to the functions J
(i)
0 , Y

(i)
0 and Z

(i)
0 , given in equations (7.4), (7.9) and (7.7), the values

of the dynamic potential at lattice sites (x, z) = (ix, iz) a with the lattice constant a = λ0/2
are governed by the function

cos (kx) = cos

(
ixπ

λ0

λ

)
= cos (ixπl) =

{
(−1)ix for l odd

1 for l even
(7.16)

in x-direction; an analogous dependency holds for the z-direction. In Figure (7.2) the
function cos2 (k0x) is shown in blue and the lattice sites at x = ixa at the maxima of this
function are marked with crosses. The function cos (kx) with λ = λ0/l is shown in green
(l = 1) and red (l = 2). For even l this function is always positive in the vicinity of the

lattice sites, while for odd l the sign changes at each site. As J
(i)
0 and Y

(i)
0 are proportional

to cos2 (kx) and the setup is symmetric in x- and z-direction, they have the same value

at each lattice site. Also the absolute value of Z
(i)
0 is identical at each site. As a result

these functions fulfill

J
(i)
0 = Y

(i)
0 = Y (V0) and Z

(i)
0 = (−1)ixizl Z (V0) , (7.17)

where the values Y (V0) and Z (V0) are site independent, but vary as a function of the
depth V0 of the potential (7.1), since the Wannier functions Wi (~r ) change their shape
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NSF P Φ̂

MI = 0 = 0 = 0

MICB = 0 = 0 > 0

SF > 0 = 1 = 0

SS > 0 = 1 > 0

Table 7.1: For commensurate wave lengths the four occurring phases can be identified by the number
of SF sites NSF , the percolation probability P of SF clusters and the occupation number of
photons in the cavity Φ̂.

according to this potential. In general these functions are smaller than one, since, accord-
ing to the equations (7.4), (7.7) and (7.9), they are given by the overlap integral of the
square of the Wannier function with a cosine. Simply setting them to one is equivalent
to approximating the Wannier function by a δ-function, which is far away from a realistic
description.
For even values of l the dynamic potential

δε̂i = V1Y (V0)− δ̂ (n̂)Z (V0)2 n̂ (7.18)

has the same value at each site and acts like a shift of the chemical potential µ/U , which
is different for every value of the tunneling rate JZ/U , as it depends on V0. The situation
changes for odd values of l, since then, the dynamic potential

δε̂i = V1Y (V0)− (−1)ixiz δ̂ (n̂) Φ̂Z (V0) (7.19)

changes its sign at each lattice site. This gives rise to the formation of a checker board
like density distribution in regions, where the coherent scattering into the cavity is
supported (Φ̂ > 0). The occurrence of the checker board pattern is accompanied by a
positive value of the order parameter S (π, π). The static potential V1Y (V0) is a function
of V0 and shifts the chemical potential µ/U . This is why there exist two different classes
of phase diagrams, one for odd and one for even values of l.
In the following we study the phase diagram of this system in dependence of the chemical
potential µ/U and the tunneling rate JZ/U . The phases of the system can be identified
by the number of SF sites NSF , the percolation probability P of SF clusters and the
occupation number of photons in the cavity Φ̂ and are summarized in Table 7.1:
MI phase: Each lattice site is occupied by an integer number of particles, which means
that all sites are MI sites (NSF = 0). This phase occurs in parameter regions, where no
checker board pattern is established (Φ̂ = 0) and the system is equivalent to an ordered
BH model. Since there exists a energy gap in the excitation spectrum, tunneling of par-
ticles is suppressed, the system is not compressible and its ground state is not coherent.
MICB phase: This phase occurs in parameter regions, where coherent scattering into the
cavity is supported (Φ̂ > 0) and the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 introduces a checker

board pattern. The local density shows sites occupied by one particle, which are sur-
rounded by empty sites. The structure factor S(~k), given in Equation (7.12), indicates
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the formation of the checker board pattern by showing a peak at ~k = (π, π). Since the
occurring particle numbers are integer, the system consists only of MI sites (NSF = 0)
and shows the same features as the MI phase.
SF phase: This phase is characterized by the occurrence of a least one percolating
SF cluster (P = 1). In this phase all sites are occupied by the same non-integer number,
forming a huge percolating SF cluster. Within these SF sites, particle tunneling is favor-
able and the ground state is coherent. Thus, the system is compressible and coherent.
SS phase: The system shows all features of the SF phase, especially the occurrence of
a percolating SF cluster (P = 1). Additionally, the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 intro-

duces a checker board pattern and the particle number alters between two non-integer
values. Thus, the structure factor S(~k) shows a peak at ~k = (π, π).
Let us now discuss the two classes of phase diagrams separately.

7.3.1 Odd ratios (l odd)

For odd values of l the function cos (kx) changes its sign at each site. In this case the
static potential V1Y (V0) causes a shift of the chemical potential. However the dynamic
potential (−1)ix δ̂ (n̂) Φ̂Z (V0) establishes a checker board pattern in parameter regions,
where the cavity is populated (Φ̂ > 0). In regions where the cavity mode is empty (Φ̂ = 0)
the sites are occupied by the same number of particles.
In the limit of zero tunneling rates (J = 0), the upper and lower bounds of the Mott-lobes
at the µ-axis can be determined analytically. For this purpose we distinguish the particle
number at even ne from those at odd sites no. According to the Hamiltonian (7.11) the
energy per site for a checker board configuration (ne = n and no = n− 1) is given by

ECB
n

L2
= − δ̂ (n)Z2

4
+ (ε− µ+ V1Y )

2n− 1

2
+
U

2
(n− 1)2 (7.20)

with Φ̂ = Z/2. For a MI configuration (ne = no = n) where Φ̂ = 0 the energy per site
reads

EMI
n

L2
= (ε− µ+ V1Y )n+

U

2
n (n− 1) . (7.21)

The energy gap ECB
n − EMI

n vanishes for

µ− (n) =
δ̂ (n)Z2

2
+ ε+ V1Y + U (n− 1) , (7.22)

which defines the lower bound of the Mott-lobe, while the energy gap ECB
n+1−EMI

n vanishes
for

µ+ (n) = − δ̂ (n)Z2

2
+ ε+ V1Y + Un , (7.23)

describing the upper bound of the Mott-lobes. Therefore, along the µ-axis there exists
a row of MI regions between µ− (n) and µ+ (n), which are separated from each other by
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Figure 7.3: (a) and (b): The phase diagram for λ = λ0 as a function of µ/U or rather (µ− V1Y ) /U and
JZ/U . The percolation line of the SF cluster is shown with red dots separating the MI from
the SF region. Within the black lines there exists coherent scattering into the cavity (Φ̂ > 0)
and the dynamic potential forms a checker board pattern. The black crosses, which are la-
beled with the circled letter, mark the parameters chosen in Figure c) and d) showing the

local boson occupation number 〈n̂i〉 for the parameters (c) JZ/U = 0.0489, µ/U = 0.3307
and (d) JZ/U = 0.2792, µ/U = 0.3307. (e) and (f): Mean particle number n and occupa-
tion number of the cavity mode Φ̂.

a checker board region between µ+ (n) and µ− (n+ 1). This pattern only occurs in the
region, where δ̂ (n) fulfills the inequality

0 ≤ δ̂ ≤ U

Z2
. (7.24)
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Above this threshold, for δ̂ ≥ U/Z2, all Mott-lobes disappear, while below, for δ̂ ≤ 0, all
CB regions vanish simultaneously. Thus, for small δ̂ only Mott-lobes exist, for interme-
diate δ̂ Mott-lobes and CB regions coexist, while for large δ̂ (n) only CB regions survive.
The reader should notice that in this model δ̂ (n) ∼ 1/n is inverse proportional to the
particle number and thus is different for each Mott-lobe and CB region. As a result the
Mott-lobes and CB regions do not disappear simultaneously but rather according to their
specific value of δ̂ (n). For the parameters chosen in our simulations, δ̂ (n) always fulfills
condition (7.24) and we consequently expect to observe the coexistence of Mott-lobes and
CB regions.
The phase diagram, the mean particle number n and the occupation number of the cav-
ity field Φ̂ for λ = λ0 are shown in Figure 7.3. In regions, where coherent scattering
into the cavity is suppressed (Φ̂ = 0), the phase diagram shows regular Mott-lobes with
increasing integer particle number, which are shifted according to Equation (7.22) and
(7.23). In between there are regions, where photons are coherently scattered into the

cavity (Φ̂ > 0) and the dynamic potential δ̂ (n̂) Φ̂Z
(i)
0 forms a checker board pattern,

which is also visible in the particle density. In the MICB phase, occurring at half filling
(n = 1/2), an occupied site is surrounded by empty sites as shown in Figure 7.3 c). For
larger tunneling rates JZ/U the transition to the SS region occurs, where the sites are
alternatingly occupied by two different non-integer numbers of bosons, as shown in Figure
7.3 d). In the region around µ/U = 1.2 another region of coherent scattering into the
cavity occurs (Φ̂ > 0), where we also observe the transition from the MICB region to the
SS region.

7.3.2 Even ratios (l even)

For even values of l the function cos (kx) assumes a positive value in the vicinity of each

lattice site and the functions J
(i)
0 = Y

(i)
0 = Y (V0) and Z

(i)
0 = Z (V0) have the same positive

value at each lattice site. Consequently, the influence of the dynamic potential δε̂i reduces
to a shift of the chemical potential µ/U , which depends on V0 and thus is a function of
the tunneling rate JZ/U . Since all sites have the same parameters, each lattice site is
occupied by the same particle number n̂i = n ∀i. As a result the population of the cavity
mode Φ̂ = Zn, shown in Figure 7.4 d), is non-zero and positive in the whole parameter
range. Therefore, the phase diagram consists of a row of shifted Mott-lobes, which are
surrounded by a SF phase.
In the limit of zero tunneling rates (J = 0) the extension of the Mott-lobes along the
µ/U -axis can be computed analytically. According to Hamiltonian (7.11) the energy per
site is given by

En
L2

= −δ̂ (n)Z2n2 + (ε− µ+ V1Y )n+
U

2
n (n− 1) (7.25)

and the energy gap En − En−1 vanishes for

µ = Z2
(
δ̂ (n)n2 − δ̂ (n+ 1) (n+ 1)2

)
+ ε+ V1Y + Un . (7.26)
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Figure 7.4: (a) and (b): The phase diagram for λ = λ0/2 as a function of µ/U or rather (µ− V1Y ) /U
and JZ/U . The percolation line of the SF cluster is shown with red dots separating the MI
from the SF region. (c) and (d): Mean particle number n and occupation number of the
cavity mode Φ̂.

For the ordered BH model the n-th Mott-lobe reaches from µ/U = n − 1 to µ/U = n.
Here each Mott-lobe is shifted by the value

∆µ (n) = Z2
(
δ̂ (n)n2 − δ̂ (n+ 1) (n+ 1)2

)
+ ε+ V1Y , (7.27)

which linearly depends on the particle number n, as δ (n) is inverse proportional to n.
In the phase diagram for l = 2, shown in Figure 7.4 a), we find individual Mott-lobes,
where each site is occupied by a fixed integer number of particles. Each Mott-lobe is
shifted downwards by the amount ∆µ (n), which depends on n and varies as a function
of the tunneling rate J , as it depends on the depth V0 of the optical potential (7.1).
The mean particle number n increases with the chemical potential µ/U , as shown in
Figure 7.4 c).
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7.4 Incommensurate lattices

In the following we study the situation in which the wave length λ of the cavity field is a
simple fraction of the one of the laser field λ0 plus a small shift of ελ = 45 nm according
to

λ =
λ0

l
+ ελ, with l = 1, 2, 3 . (7.28)

In this situation the wave length λ0, which defines the position of the lattice sites at
(x, z) = (ix, iz) a with the lattice constant a = λ0/2, is incommensurate with the wave
length λ of the dynamic potential δε̂i, which is given in Equation (7.10). According to
Equation (7.14) the values of the dynamic potential evaluated at the lattice sites in both
spatial directions is governed by the function

cos (kx) = cos

(
ixπl

1 +K

)
= (−1)ixl cos

(
ixπl

K

1 +K

)
= (−1)ixl cos

(
2π
ix
ip

)
, (7.29)

where we used the geometric series 1/ (1 +K) =
∑∞

r=0 (−K)r with K = lελ/λ0 as a small
parameter. This function is a superposition of a factor, which changes sign at each lattice
site for all odd values of l and a periodic envelope with a period of

ip =
2

l2
λ

ελ
. (7.30)

The knots of the envelope are located at

ir = (2r − 1)
ip
4

=
2r − 1

2l2
λ

ελ
(7.31)

and are separated by

ip
2

=
1

l2
λ

ελ
=


166
9
≈ 18.44 for l = 1

175
72
≈ 2.43 for l = 2

184
243
≈ 0.76 for l = 3

(7.32)

lattice sites. As an example the function (7.29) and its envelope are shown in Figure 7.5
for l = 1.
Since the function J

(i)
0 , as given in Equation (7.4), is proportional to cos2 (kx), it shows a

periodic stripe structure in x-direction with the period ip/2. The function Z
(i)
0 is propor-

tional to cos (kx) cos (kz), as given in Equation (7.7), and also shows a periodic pattern
with the same period ip/2, whose knots are located along the lattice sites (ir, ir). For
odd l this function additionally changes its sign at each site. Therefore, the dynamic po-
tential δε̂i, as given in Equation (7.10), establishes two characteristic pattern: The static
potential introduces a stripe structure, which exists in the whole parameter range since
V1 is fixed by experimental parameters [7,8]. The dynamic potential, which appears only
in regions, where the coherent scattering of photons into the cavity is supported (Φ̂ > 0),
shows a 2D periodic pattern, which changes its sign at each site for odd l and thus gives
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Figure 7.5: The function cos (ixπ/ (1 +K)), shown in blue, and its envelope cos (2π ix/ip), shown in
red, according to Equation (7.29) for l = 1. The bold blue crosses mark the knots of
cos (ixπ/ (1 +K)).

rise to the formation of a checker board pattern in the density profiles.
This interplay of the optical lattice with wave length λ0 on the one hand, and the field due
to the photons in the cavity, depending on λ, on the other hand, leads to the occurrence
of different phases, which are summarized in Table 7.2:
MI phase: Each lattice site is occupied by an integer particle number, which means that
all sites are MI sites (NSF = 0). This phase occurs in parameter regions, where coherent
scattering of photons into the cavity is suppressed (Φ̂ = 0). Since there exists an energy
gap in the excitation spectrum, tunneling of the particles is suppressed and the system is
not compressible and its ground state not coherent.
BG phase: This phase occurs in parameter regions, where coherent scattering into the
cavity is supported (Φ̂ > 0) and the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 introduces a checker

board pattern for odd l. The local density shows a mixture of sites which are occu-
pied by an integer particle number (MI sites) and non-integer particle number (SF sites)
(NSF > 0). The system consists of MI sites and not percolating, compressible SF islands,
in which phase coherence occurs locally. This situation is analogous to the BG phase as it
appears in the disordered BH model [2, 4]. In this phase the system is already compress-
ible, due to the compressible SF islands, but long-range coherence is still lacking, since
disconnected SF island cannot establish phase coherence.
SF phase: This phase is characterized by the occurrence of at least one percolating
SF cluster and occurs in parameter regions, where coherent scattering into the cavity is
suppressed (Φ̂ = 0). Before the percolation, isolated SF clusters locally form coherent
and compressible islands in the background of MI sites. With the percolation of one of
these SF clusters local properties of the SF sites become globally relevant leading to a real
SF system, which is compressible and shows long-range coherence. The behavior of the
whole system is now governed by the percolating SF cluster. Due to the stripe structure
introduced by the static potential V1J

(i)
0 , there exists a preferred direction of percolation.

Therefore, we distinguish between the SFX and the SFZ phase according to the direction
of the percolation, which is described by the percolation probability PX and PZ. In these
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NSF PX PZ Φ̂

MI = 0 = 0 = 0 = 0

BG > 0 = 0 = 0 > 0

SF > 0 = 1 = 1 = 0

SFX > 0 = 1 = 0 = 0

SFZ > 0 = 0 = 1 = 0

SS > 0 = 1 = 1 > 0

SSX > 0 = 1 = 0 > 0

SSZ > 0 = 0 = 1 > 0

Table 7.2: For incommensurate wave lengths the occurring phase can be identified by the number of
SF sites NSF , the percolation probabilities PX and PZ corresponding to the direction of
percolation of the SF clusters and the occupation number of photons in the cavity Φ̂.

phases the system is compressible in one direction, but not yet in the other direction. In
the SF phase the percolation occurs in both directions (PX = PZ = 1), which means that
the system is compressible in any direction.
SS phase: The system shows all features of the SF phase, especially the occurrence of
percolating SF clusters. Here the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 introduces a pattern,

which is a superposition of a checker board pattern for odd l and a periodic function
with period ip, according to Equation (7.31). The particle density in some regions shows
a checker board pattern, while along the knots of the function neighboring sites have
similar values. We distinguish between SS, SSX and SSZ according to the direction of the
occurring percolation. The occurrence of the checker board pattern in the local densities
is accompanied by the appearance of a peak of the structure factor S(~k) at ~k = (π, π).
Phases, showing such a pattern and positive values of S (π, π), are referred to as SS
phases [111–113].

7.4.1 Phase diagram for λ = λ0 + ελ

In the first case the mode of the cavity λ and the laser field λ0 are slightly shifted off
resonance by ελ. This system has already been studied in [6] with the help of 1d quantum
Monte-Carlo techniques and 2D LMF theory on the basis of global order parameters,
as introduced in Section 3.1. As we have seen in Section 3.3.1 the absence of a precise
kink in the order parameters necessitated the introduction of a new criterion for the
phase transitions based on local properties of the system, as done in Chapter 4. This
LMF cluster analysis is the fundamental criterion for all phase diagrams discussed in this
thesis.
The phase diagram obtained from 2D LMF cluster analysis [2,4] for this model is shown in
Figure 7.6 a), the mean particle number n in g) and the photon occupation number Φ̂ of
the cavity field in h). The occupation number Φ̂ of the cavity field shows a precise border
between a region in which scattering into the cavity is supported (Φ̂ > 0) and another
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Figure 7.6: (a) and (b): The phase diagram for λ = λ0+ελ as a function of µ/U or rather (µ− V1Y ) /U

and JZ/U , where Y is the mean value of J
(i)
0 . The border of the MI region is shown with

blue dots and marks the appearance of SF sites. The border of the SF region, shown in
red, marks the percolation of the SF cluster. Within the black line there exists coher-
ent scattering into the cavity (Φ̂ > 0) and the dynamic potential forms a checker board
pattern. The black crosses, which are labeled with the circled letter, mark the parame-
ters chosen in Figure c), d), e) and f) showing the local boson occupation number 〈n̂i〉
for the parameters (c) JZ/U = 0.0777, µ/U = 0.378, (d) JZ/U = 0.0537, µ/U = 0.198,
(e) JZ/U = 0.1184, µ/U = 0.198 and (f) JZ/U = 0.0081, µ/U = 0.02. (g) and (h): Mean
particle number n and occupation number of the cavity mode Φ̂.

in which this scattering is suppressed (Φ̂ = 0). This border is shown as a black line in
the phase diagram. For large chemical potential µ/U the cavity is not occupied (Φ̂ = 0)

and thus the dynamic potential δε̂i consist only of the static potential V1J
(i)
0 , introducing
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Figure 7.7: (a): The first (red) and the second (blue) part of the dynamic potential δε̂i for iz = 20
corresponding to the situation of Figure 7.6 f) for JZ/U = 0.0081 and µ/U = 0.02. The

dark blue crosses mark the value of δ̂ (n̂) Φ̂Z
(i)
0 at the minima of V1J

(i)
0 . At the site index

ix = 83 the dynamic potential becomes zero at the minimum static potential. (b): The local

particle number 〈n̂i〉 at the site index ix = 83 in dependence of iz is shown for increasing
chemical potential µ/U .

a stripe structure with period ip/2. In this region a phase transition from the MI phase
to the SFZ phase occurs. The density distribution right after the percolation shows
regular stripes with period ip/2 at the minima of the dynamical potential δε̂i as visible

in Figure 7.6 c). Notice that, the value of the dynamical potential δε̂i at its knots is
slightly different at each site, since its periodicity with wave length λ mismatches the
lattice constant a = λ0/2 of the main lattice. This effect is visualized by the bold crosses
at the knots of cos (kx) in Figure 7.5. As the ratio λ/λ0 is not irrational for the chosen
parameters, this pattern has a finite period. As long as the system size is below this
period the system mimics a situation where the ratio of the wave lengths is irrational.
Within the region of coherent scattering into the cavity (Φ̂ > 0), inside the black line
in the phase diagram, there exists a BG region. A typical situation of the BG phase is
shown in Figure 7.6 d), where we find stripes of MI sites, which are populated by one
particle. They are separated from each other by stripes which show a checker board
pattern of empty sites and sites occupied by one particle and in between there are empty
regions. All these sites are MI sites. At the border of these stripes there exist connected
regions of SF sites with non-integer particle numbers, where particle fluctuations are
possible. These SF islands grow with increasing tunneling rate JZ/U until they percolate

in z-direction along the minima of V1J
(i)
0 at the BG-SSZ transition. For even larger values

of the tunneling rate JZ/U the percolation also occurs in x-direction, which we call the
SS region, according to Table 7.2. A typical density distribution for the SS phase is
shown in Figure 7.6 e). All sites, except of the checker board regions, show non-integer
particle numbers and form a SF cluster, which connects all borders of the system. Above
the upper rim of the black line in the phase diagram, for larger values of the tunneling
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rate JZ/U , there exists also a SF region, where we find the percolation of SF sites in both
dimensions, but since Φ̂ = 0, there exists no checker board pattern.
For small chemical potentials µ/U there exists a pronounced SSZ protrusion for small
tunneling rates JZ/U . In order to understand the existence of this SSZ region, we take a
closer look at Equation (7.31) describing the knots of the dynamic potential δε̂i. At the

fifth knot the index ir=5 = 83 is an integer value, which means that a minimum of V1J
(i)
0

and one knots of δ̂ (n̂) Φ̂Z
(i)
0 coincide with the lattice site at ix = 83.

An example for the situation inside this SSZ protrusion is shown in Figure 7.6 f). There
are empty regions alternating with checker board patterns. We see that the percolation
of a SF cluster took place along the yellow line with the site index ix = 83. A cut
at iz = 20 of both parts of the dynamic potential δε̂i is shown in Figure 7.7 a). The

static potential V1J
(i)
0 is shown in red and has regular minima at z = ira. The dynamic

potential δ̂ (n̂) Φ̂Z
(i)
0 is shown in blue. The values of the dynamic potential at the minima

of the static potential are marked by the dark blue crosses. We see that here both, the
minimum of the static potential as well as the knot of the dynamic potential appear at
the site with the index ix = 83. Along this specific lines the percolation of SF clusters is
possible without any potential obstacles in between. At these small occupation numbers
the minima of the dynamic potential δε̂i are filled with particles first. Since the dynamic

potential δ̂ (n̂) Φ̂Z
(i)
0 changes sign at each site, a connected line of SF clusters can only

occur along a knot, where the function is constant. The particle number of the percolating
line ix = 83 for increasing µ/U and fixed JZ/U = 0.0081 is shown in Figure 7.7 b). In
the beginning for small chemical potential µ/U this line is empty, but since there are SF
islands at the minima of the dynamic potential δε̂i elsewhere in the lattice, the system
is in the BG regime. With increasing chemical potential µ/U the particle number rises
and this line is occupied by a non-integer particle number at all sites simultaneously.
The particle number becomes non-integer, indicating particle fluctuations and the sites
form a percolating SF cluster along this line. For even higher values of the chemical
potential µ/U the particle number increases further until each site is filled up with one
particle. Now particle fluctuations are suppressed and the sites behave like MI sites. It
now forms a barrier for particle fluctuations and no longer a percolating SF cluster. Thus
the system consists of a mixture of MI and SF sites, but does not contain a percolated
SF cluster. Therefore, the system re-entered the BG region.

7.4.2 Phase diagram for λ = λ0/2 + ελ

In the second case the wave length of the cavity field is given by λ = λ0/2+ελ. The corre-
sponding phase diagram is shown in Figure 7.8 a). Analogously to the previous case there
are parameter regions in which coherent scattering into the cavity is supported (Φ̂ > 0)
and others where it is suppressed (Φ̂ = 0) as visible in Figure 7.8 e). Since l is even here,
we do not expect the formation of a checker board pattern according to Equation (7.29).
For l = 2 the period of the dynamic potential δε̂i is rather small; the stripes of the static
potential are separated by only ip/2 ≈ 2.43 lattice sites. A density distribution according
to this pattern is shown in Figure 7.8 c) for a BG phase shortly before the percolation of
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Figure 7.8: (a) and (b): The phase diagram for λ = λ0/2 + ελ as a function of µ/U or rather

(µ− V1Y ) /U and JZ/U , where Y is the mean value of J
(i)
0 . The border of the MI re-

gion is shown with blue dots and marks the appearance of SF sites. The border of the SF
region, shown in red, marks the percolation of the SF cluster. The black cross, which is
labeled with the circled letter, marks the parameters chosen in Figure c) showing the local

boson occupation number 〈n̂i〉 for the parameters JZ/U = 0.0465, µ/U = 0.198. (d) and

(e): Mean particle number n and occupation number of the cavity mode Φ̂.

the SF cluster. The system shows regions where the sites are occupied by one particle. In
between there are empty islands according to the maxima of the dynamic potential δε̂i.
At the borders of these MI regions SF regions with non-integer particle number occur,
which are shown in yellow and red.
In the region of small chemical potentials µ/U we also find a pronounced SF protrusion.
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In this region a minimum of the static potential V1J
(i)
0 and the knots of the dynamic

potential δ̂ (n̂) Φ̂Z
(i)
0 almost coincide with the lattice site at ix = 4 , 10 , 18, which enables

the system to populate these specific lines with an increasing number of particles as µ/U
rises. While it is filled with a non-integer number of particles, particle fluctuations are
possible and these lines form percolating SF clusters until they are filled up with one
particle per site and the sites behave like MI sites again. This behavior is analogous to
the situation discussed for l = 1 and shown in Figure 7.6 f).
In contrast to the previous case, where the percolation always takes place in z-direction,
here we find all possible combinations. Along the percolation line, shown with red dots,
the percolation occurs mostly in z-direction and we refer to this phase as the SFZ phase
according to Table 7.2. For intermediate chemical potentials µ/U the percolation occurs
in both directions simultaneously. This SF phase exists in a wide parameter range of the
phase diagram. There is also a small region, where the percolation occurs only along the
x-direction leading to the SFX phase, whose occurrence is a unique feature of the l = 2
case.

7.4.3 Phase diagram for λ = λ0/3 + ελ

The phase diagram of the third case, where the wave lengths of the cavity field is given
by λ = λ0/3 + ελ is shown in Figure 7.9 a). Since l is odd here, we expect the formation of
a checker board pattern, according to Equation (7.29) in the regions where the occupation
number of the cavity mode Φ̂ is positive. But as the frequency of the dynamic potential δε̂i
is also on the order of one lattice site, ip/2 ≈ 0.76, the checker board pattern is not visible
in the particle densities.
Similarly to the previous cases there exists a MI region, where the lattice is empty and
another one, where the lattice is occupied by one particle per site. In between the mean
particle number n, shown in Figure 7.9 d), increases smoothly. For small values of the
chemical potential µ/U the pronounced SFZ protrusion appears in the vicinity of the BG
region. Within this region the percolation takes place at lattice sites, where the minima
of the dynamic potential δε̂i almost fit to the position of the lattice sites. An example
of a BG is shown in Figure 7.9 c), where the sites are mainly occupied by one particle
or are empty. At the borders of theses MI regions non-integer particle numbers occur.
Along the percolation line, shown with red dots in the phase diagram, the percolation
mostly occurs in z-direction, but for intermediate chemical potentials µ/U , there exist
also transitions to the SF phase, where the percolating SF cluster occurs simultaneously
in both directions.

Conclusion

The interplay of a regular optical lattice of wave length λ0 and an optical field produced by
photons inside a cavity of wave length λ leads to different dynamical on-site potentials δε̂i,
which depend on the local particle density of the system. In this chapter we have studied
this situation for commensurate and incommensurate wave lengths. In all cases we have
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Figure 7.9: (a) and (b): The phase diagram for λ = λ0/3 + ελ as a function of µ/U or rather

(µ− V1Y ) /U and JZ/U , where Y is the mean value of J
(i)
0 . The border of the MI re-

gion is shown with blue dots and marks the appearance of SF sites. The border of the SF
region, shown in red, marks the percolation of the SF cluster. The black cross, which is
labeled with the circled letter, marks the parameters chosen in Figure c) showing the local

boson occupation number 〈n̂i〉 for the parameters JZ/U = 0.0105, µ/U = 0.118. (d) and

(e): Mean particle number n and occupation number of the cavity mode Φ̂.

found regions in parameter space, in which particle fluctuations are negligible and the
scattering of photons into the cavity field is suppressed (Φ̂ = 0). In these regions the
particles only feel the regular optical lattice with wave length λ0 and undergo a direct
MI-SF transition. With the onset of particle fluctuations (Φ̂ 6= 0) photons scatter into
the cavity field and the atoms feel the overlap of the optical lattice with wave length λ0
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and the optical field of the photons in the cavity with wave length λ.
Depending on the relation of λ0 and λ we have found different scenarios in the phase dia-
grams: For the case of commensurate wave lengths we find two classes of phase diagrams;
one for odd and another for even values of l. For odd values of l, for example λ0 = λ,
there exists a row of MI region, where all lattice sites are occupied by an integer number
of particles, alternating with MICB regions, where the particle density changes at each
site according to a checker board pattern. At the tips of these MICB regions, there exists
a SS phase, where the system is SF and still the particle density shows a checker board
pattern. For even larger values of the tunneling rate JZ/U the SF phase is reached, where
the particle number increases smoothly with the chemical potential µ/U . For odd values
of l, the phase diagram consists of regular Mott-lobes, which are surrounded by the SF
phase.
In the incommensurate case besides the MI, the SF and the SS phase a variety of additional
phases occur. In contrast to the commensurate case, here the percolation of SF cluster
does not occur in both directions simultaneously. That is why for intermediate tunneling
rates J/U we find regions in the phase diagram, where the system is SF in one direction,
while in the perpendicular direction it still behaves like a BG. For even larger tunneling
rates JZ/U the percolation finally occurs in both directions. Moreover, for odd values
of l the formation of a checker board pattern in the particle density is visible in parameter
regions, where the cavity mode is occupied. In this phase the structure factor S(~k) shows
a peak at (π, π), and therefore this phase is referred to as the SS phase [111–113]. Within
this phase the system is SF, which means that a percolating SF cluster exist, and the
particle densities show a checker board pattern. In all incommensurate scenarios in the
regime of small chemical potentials µ/U , a pronounced SF regions exists down to small
tunneling rates JZ/U . This feature originates from the fact that a minimum of the static

potential V1J
(i)
0 coincides with the saddle point line of the dynamic potential δ̂ (n̂) Φ̂Z

(i)
0 .

At these low densities this specific line can be filled up with particles, as the chemical po-
tential µ/U , increases without any potential barrier in between. During this process these
sites form a percolating SF cluster until they are filled up with one particle per site and
become MI sites again. Then, the system re-enters the BG phase, since the percolating
SF cluster has vanished.





8 Conclusion

In this thesis we have developed two innovative results: On the one hand an intuitive
picture of the BG phase has been introduced, which enables us to determine the phase
transitions of the disordered BH model in LMF approximation with high accuracy con-
firmed by quantum Monte-Carlo results. On the other hand we have shown that for the
comparison of experimental setups, like the quasi-periodic bi-chromatic potential, with
theoretical models, which are mostly restricted to disorder of the on-site energies, also
disorder in the tunneling rates has to be taken into account. For a quasi-periodic bi-
chromatic potential disorder in the tunneling rates is just as relevant as on-site disorder,
even though the corresponding disorder strengths are separated by one order of magni-
tude.
In the ordered BH model local and global averaged parameters are identical. This, how-
ever, changes in the disordered case. Since in the ordered case all sites have the same BH
parameters, local as well as global, averaged parameters behave simultaneously and both
indicate the phase transitions at the same values of the BH parameters. In the MI phase
each site is occupied by an integer number of particles and the mean particle number
equals the local number of particles at each site. Since there exist no particle fluctuations
all local SF parameters are zero as well as their mean, the SF order parameter. In the
SF phase we find the same positive value of the local SF parameter at each site, agreeing
with the global SF order parameter. In both cases the global parameters, which serve as
identifiers of the phase transitions, coincide with the corresponding local quantities.
This situation changes if disorder is introduced to the BH model and all BH parameters
vary locally resulting in a specific set of BH parameters for each site. The attempt of de-
scribing this system in LMF approximation with the help of global parameters fails, since
they vary smoothly in the vicinity of the phase transition. The mean global parameters
cannot reflect the processes occurring locally, especially at the phase transitions. More-
over, an intuitive local picture of the processes in the BG phase has thus been missing so
far.
In some features the BG phase resembles the MI in others the SF phase. Its ground state
is non-coherent, just as the MI phase, but yet the Bose cloud is compressible as in the
SF phase. In agreement with this fact we have shown that in the BG phase the system
consists of a mixture of so-called SF and MI sites. MI sites show an integer particle num-
ber and a zero local SF parameter, just like sites in the MI phase of the ordered system.
SF sites are characterized by a non-integer fluctuating particle number and a non-zero
local SF parameter corresponding to the sites in the SF phase of the ordered BH model.
Connected SF sites form SF clusters, which are locally compressible, making the whole
atomic cloud compressible. These SF islands show a fixed phase relation, but since the
whole system only consists of small coherent SF islands, there exists no global phase co-
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herence. Global coherence sets in with the appearance of a percolated SF cluster, which
dominates the system behavior and establishes long range order. The percolation of one
of the SF clusters, therefore, marks the BG-SF phase transition in parameter space.
The MI-BG transition in turn is given by the appearance of the first SF site in the system.
This criterion for the phase transitions, to which we refer to as the LMF cluster analysis,
leads to a phase diagram, which is in excellent agreement with quantum Monte-Carlo
results, but which deviates gravely from other LMF phase diagrams determined on the
basis of global parameters. Moreover, it yields an intuitive picture of the local processes
going on in the BG phase. The phase transition can then be interpreted as the point, at
which local properties of the system become globally relevant.
To introduce disorder in an experimental setup there exist two common possibilities. A
diffuser modifies the intensity of the laser locally, leading to inhomogeneities in the result-
ing optical lattice [26, 27]. Another realization is to use a bi-chromatic potential, which
is formed by a main optical lattice with high intensity and a second weaker one with
slightly different wave length [3]. This forms a quasi-periodic potential, which serves as
a quasi-random potential for a sufficiently small detuning of the wave lengths. As a clear
advantage of this setup the system parameters can be varied freely, whereas for a diffuser
the parameters are fixed by the optical device.
As the second main result, we have shown that for a quasi-periodic bi-chromatic potential
the influences of disorder in the tunneling rates is just as important as in the on-site ener-
gies. With the help of the LMF cluster analysis we have studied the specific influences of
disorder in each BH parameter separately and found characteristic features in the phase
diagram for each case. Only in the case of on-site disorder there exists an infinite number
of Mott-lobes. For tunneling disorder the SF phase reaches down to vanishing tunneling
rates and separates individual BG regions from each other. A tricritical point, where all
three phases approach tightly, occurs in the case of disorder in the inter-particle interac-
tion. Moreover, the relevant disorder strengths, for which all three phases occur in the
phase diagram, is one order of magnitude smaller for disorder in the tunneling rates than
the one for disorder in the on-site energies or inter-particle interaction. This is an impor-
tant fact, since in various works on the quasi-periodic bi-chromatic potential [37,38,55–57]
it has been argued that disorder in the tunneling rate can be neglected, even though it
would have been necessary to analyze this carefully.
The influence of disorder in the tunneling rates is also visible directly in the phase dia-
grams of a quasi-periodic bi-chromatic potential. To show this, we have generalized the
Wannier functions by allowing them to be asymmetric, reflecting the inhomogeneities of
the optical potential. Thereby, we were able to introduce disorder already in the usual
derivation of the BH model. This treatment influences all three BH parameters locally,
resulting in statistical distributions for each BH parameter. By comparing the variance of
these distributions with the disorder strength in the case of isolated disorder in one single
parameter, we have shown that besides of disorder in the on-site energies also disorder
in the tunneling rates reaches the critical regime, where all three phases occur in the
phase diagram. The influence of disorder in the inter-particle interaction can actually be
neglected, since the variance of its distribution is found to be two orders of magnitude
smaller than the critical disorder strength.
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This is also reflected by the fact that the influence of tunneling disorder is clearly visi-
ble in the phase diagram for the quasi-periodic bi-chromatic potential. Even though its
structure resembles the one for isolated on-site disorder, deviations of the transition lines
are obvious. In the vicinity of integer values of (µ− ε) /U the SF phase separates indi-
vidual BG regions from each other, which is a unique characteristic feature of disorder
in the tunneling rates. This finding once more promotes the statement, that disorder in
the tunneling rates indeed influences the phase diagram for quasi-periodic bi-chromatic
potentials, which is important in particular for the comparison of experimental and the-
oretical data.
Moreover, isolated disorder, as mostly studied in theory, cannot be realized with a quasi-
periodic bi-chromatic potential, since in the whole parameter regime the disorder strength
of both parameters is non-zero. We expect to find the same situation for the second ex-
perimental possibility, where disorder is introduced via a diffuser. Since a diffuser locally
modulates the intensity, also in this case all BH parameters, especially the tunneling
rates, will be affected. Experimentally real isolated disorder can only be realized for the
inter-particle interaction. Since this parameter is adjusted by an external magnetic field,
independently of the optical lattice, disorder can be realized in the vicinity of a Feshbach
resonance without any interference with the other parameters [52,54].
For future work it is important to notice, that the cluster analysis is not restricted to
data determined within the LMF approximation. The cluster analysis depends only on
the discrete map Gi representing the MI and SF sites of the system [2]. The mapping
from numerical data on Gi can be adjusted to the method used for solving the ground
state problem. In this work we distinguished between MI and SF sites on the basis of the
particle number [2], but equivalently it is also possible to use, for example, the local SF
parameter or the local compressibility. Therefore, the underlying LMF algorithm can be
replaced by some other numerical method with a corresponding map Gi separating MI
from SF sites.
Moreover, in modern experiments single site detection of ultra cold bosons in optical lat-
tices is possible [95, 96], which yields the opportunity to observe the particle numbers at
each site individually. Particle fluctuations can than be directly observed through in-situ
imaging, allowing for a direct distinction between MI and SF sites using time averaged
occupation numbers. Therefore, this experimental technique might allow access to the
observation of SF islands and their percolation and thereby improve our understanding
of the BG phase.
The last part of this thesis deals with the application of the LMF cluster analysis, de-
veloped in the previous parts, to current experimental research, which allows for a direct
comparison [8]. This system consists of a regular optical lattice at some wavelength λ0

and an additional cavity collecting photons producing an optical field at a different wave
length λ. The photon occupation number of the cavity mode depends on the local particle
density of the whole system and thus introduces long-range interaction. This system can
be described by a BH model, whose on-site energies are given by correlated disorder [5,6].
Our theoretical studies on the basis of LMF cluster analysis for the first time yield the
phase diagrams for this kind of systems covering both, commensurate and incommensu-
rate ratios of the wave lengths. These systems in fact turn out to reveal a much richer
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variety of occurring phases. Besides the MI, BG and SF phase, for certain ratios of the
wave lengths also the so-called MICB and SS phase appear. In the MICB phase there
exists an energy gap in the particle excitation spectrum preventing particles from tun-
neling, similar to a MI, but here additionally the density profile shows a checker board
pattern, where the sites are occupied by an alternating number of particles. In the SS
phase the system is SF but also here the particle densities show a checker board pattern.
Even though tunneling of particles is favorable as they can move without energy cost, like
in the SF phase, in the SS phase we, nevertheless, find a checker board density profile
produced by superlattices with double period. At the moment it is possible to distinguish
between the MI, SF, MICB and SS in experiments with a combination of time-of-flight
imaging and measurement of the light output of the cavity. For the detection of the BG
phase the measurement of an additional feature is necessary which is still a challenging
project in experimental groups [114].



A Mean-field description

The mean-field description of BECs is governed by the widely used Gross-Pitaevskii equa-
tion. In this framework a wide range of features of BECs have successfully been captured.
One of the possible derivations of the Gross-Pitaevskii equation is to compute the expec-
tation value of the Hamiltonian in coherent states. By using the properties of Lie algebras,
the coherent states of the harmonic oscillator can be generalized to various systems in
second quantization. The expectation value 〈ψ|âi|ψ〉 of the annihilation operator and its
complex conjugate are important quantities in the mean-field description, as all desired
correlation functions factorize. In a coherent state these values are non-zero, whereas

in a Fock state they vanish exactly. Therefore, the mean value 〈ψ|âi|ψ〉, which is the
SF order parameter, can be interpreted as a number, showing whether local parts of the
wave function have significant overlap with coherent states.

A.1 Glauber coherent states

Schrödinger already mentioned the coherent states in context of the quantum harmonic
oscillator in 1926 for the first time as a possible connection between the quantum and
classical mechanical description [115]. In their studies of the correlation functions of
electromagnetic fields, Glauber and Sudarsham coined the term coherent states in 1963, as
the correlation function of nth order factorizes in these states [116–119]. The fundamental
introduction of coherent states in the context of Lie algebras was finally achieved by
Perelomov and Gilmore in 1972 by extending the definition of the coherent states of the
harmonic oscillator to general systems in second quantization [120–123].
The coherent states |α〉 of the harmonic oscillator at frequency ω can be defined in three
different, but equivalent ways [117,123]:

1. The coherent state |α〉 is an eigenstate of the annihilation operator â with some
complex eigenvalue α:

â|α〉 = α|α〉 . (A.1)

2. The coherent state |α〉 shows minimal uncertainty relationship

(∆p̂)2 (∆q̂)2 =

(
~
2

)2

, (A.2)

where the coordinate and momentum operators are given by

q̂ =

√
~

2mω

(
â† + â

)
, p̂ =

1

i

√
~mω

2

(
â† − â

)
(A.3)
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and
(

∆f̂
)2

= 〈α|
(
f̂ − 〈f̂〉

)2

|α〉 with 〈f̂〉 = 〈α|f̂ |α〉.

3. The coherent state |α〉 can be represented as the displacement of the vacuum
state |0〉 according to

|α〉 = D (α) |0〉 , (A.4)

while the displacement operator is given by

D (α) = exp
(
αâ† − α∗â

)
. (A.5)

In agreement with these definition the coherent state of the harmonic oscillator the particle
number basis is given by

|α〉 = exp
(
αâ† − α∗â

)
|0〉

= exp

(
−α

∗α

2

) ∞∑
n=0

αn√
n!
|n〉 . (A.6)

As the operators {â†, â, 1̂} obey the familiar commutation relations

[â†, 1̂] = 0, [â, 1̂] = 0, [â, â†] = 1̂ , (A.7)

they span a closed algebra, called Lie algebra. All expectation values of elements of the Lie
algebra in the corresponding coherent states can be computed analytically. Moreover, if
the dynamics of a system is governed by a Hamiltonian, which is a linear superposition of
operators of the Lie algebra, a coherent state remains coherent throughout the evolution
in time. Coherent states are also denoted as classical states as the expectation values of
coordinate and momentum operators in the coherent states 〈α|q̂|α〉 and 〈α|p̂|α〉 follow the
trajectories of the classical harmonic oscillator. In this way, they can connect quantum
to classical dynamics.
The concept of Lie algebras and the representation of coherent states by displacement of
the vacuum state, as given in the third definition, can be extended to various systems in
second quantization and has found its application in the description of bosonic as well as
fermionic lattice systems as studied in quantum optics [117,124]. Especially interesting in
the context of the BH model is the bosonic multimode Lie algebra u (M), given by 2M + 1
operators {â†i , âi, 1̂} for i = 1, . . . ,M , where M is the number of sites in an optical lattice.
The involved operators obey the commutation relations

[âi, â
†
j] = 1̂δij, [â†i , â

†
j] = [âi, âj] = [â†i , 1̂] = [âi, 1̂] = 0 . (A.8)
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The corresponding coherent states, also called Glauber coherent state, can be constructed
with the help of the generalized displacement operator according to

|~α〉 = D (α1, . . . , αM) |~0〉

= exp

(
M∑
i=1

(
αiâ

†
i − α∗i âi

))
|~0〉

=
M∏
i=1

exp
(
αiâ

†
i − α∗i âi

)
|~0〉 =

M∏
i=1

|αi〉

=
M∏
i=1

exp

(
−α

∗
iαi
2

)
exp

(
αiâ

†
i

)
|~0〉

= exp

(
−~α

†~α

2

) M∏
i=1

exp
(
αiâ

†
i

)
|~0〉

= exp

(
−~α

†~α

2

) ∞∑
n1=0

. . .
∞∑

nM=0

α1
n1 . . . αM

nM

√
n1! . . . nM !

|n1 , . . . nM〉 . (A.9)

For vanishing inter-particle interaction U the BH Hamiltonian (2.43) is a linear combina-
tion of operators of the u (M) algebra and a coherent state remains coherent under this
time evolution. The expectation values of any product of elements of the Lie algebra can
be computed analytically. This is of main interest as any coherence respectively correla-
tion function, for example of the form Cr = 〈~α|âiâ

†
i+r|~α〉, can be calculated easily, as this

function factorizes. That is why Glauber called these states coherent states [116].
Within the su (M) algebra the total particle number N =

∑M
i=1 ni is a given parameter

and the corresponding coherent state is given by [124]

|~α〉 =
∑

n1+...+nM=N

√
N !

n1! . . . nM !
α1

n1 . . . αM
nM |n1 , . . . nM〉 , (A.10)

where the sum runs over all combination of n1, . . . , nM satisfying n1 + . . .+ nM = N .

A.2 Gross-Pitaevskii equation

Taking expectation values in the u (M) coherent states is one possibility to introduce a
mean-field description of the BH model. This ansatz leads to a hamiltonian function

H (α∗i , αi) =
∑
i

(εi − µ) |αi|2 +
∑
i

Ui
2
|αi|2

(
|αi|2 − 1

)
−
∑
〈i,j〉

Jijα
∗
iαj , (A.11)

describing the corresponding classical energy. The dynamics of this systems is then given
by the equations

iα̇i =
∂H
∂α∗i

and iα̇∗i = −∂H
∂αi

, (A.12)
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where αi and α∗i are conjugate variables. With the canonical transformation

qi =

√
~

2mω
(α∗i + αi) , pi =

1

i

√
~mω

2
(α∗i − αi) (A.13)

these equations resemble the canonical classical equations

q̇i =
∂H
∂pi

and ṗi = −∂H
∂qi

(A.14)

with H (qi, pi) being the hamiltonian function. Plugging the hamiltonian function (A.11)
into the Equations (A.12), this immediately yields the discrete Gross-Pitaevskii equation

i α̇i =
∑
i

(εi − µ)αi +
∑
i

Ui
2

(
2|αi|2 − 1

)
αi −

∑
〈i,j〉

Jijαj , (A.15)

which also exists in the continuous limit and as a stationary version. This equation is the
heart of the mean-field description of BECs [22,64,65].
There are also other possibilities to derive this equation, two of which will be shortly
discussed here. The starting point for a second possible derivation of the Gross-Pitaevskii
equation is the quantum Heisenberg equation, where according to the Bogoliubov pre-
scription, all operators are replaced by complex numbers [125]. Specifically this means
that, the operators âi and â†i are replaced by the so-called wave functions of the conden-
sate Ψ and Ψ∗. This step is justified by the fact that in a BEC a large number of atoms
occupy the ground state and can be described by a single wave function |Ψ〉 [22]. This
widely used description covers the collective motion of the atoms condensed in a BEC.
To include other effects like the depletion of the BEC, higher order approximations, like
for example Bogoliubov theory, are necessary.
For a third approach the many body wave function of N condensed particles can be
written as a product of identical single particle wave functions χ0 (~xi) according to

Ψ (~x1 , . . . , ~xN) =
N∏
i=1

χ0 (~xi) . (A.16)

The expectation value of the BH Hamiltonian in this wave function leads to the so-called
Gross-Pitaevskii energy functional, which with the help of a variational ansatz also leads
to the Gross-Pitaevskii equation [65].
To conclude, there are three different mean-field approaches, namely the approximation
of the full many body wave function by a product of single particle wave functions, the
replacement of operators by complex numbers as well as taking the expectation values in
a coherent state, which all lead to the Gross-Pitaevskii equation. As they all result in the
same mean-field equation, they are therefore equivalent approximations, where the BEC
can be described by one single wave function obeying non-linear dynamics according to
the Gross-Pitaevskii equation. Mean-field theory has turned out to be a very powerful
framework to describe collective features of the BEC, like for example solitons or vor-
tices [64]. Quantum effects, as for instance entanglement, break-down and revival or the
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quantum phase transitions, however, are not covered by this theory. One possibility to
go beyond, is the introduction of the LMF theory, which is able to capture more of the
quantum nature of the system and shows break-down and revival as well as the quantum
phase transitions.

A.3 Superfluid order parameter

The expectation value of the annihilation operator 〈ψ|âi|ψ〉 in some system state |ψ〉 is
an important quantity in any mean-field description. In the first derivation of the Gross-
Pitaevskii equation, presented in the last section, the system state is approximated by
a coherent state and the expectation value is given by 〈~α|âi|~α〉 = αi and is non-zero.
However, in the second derivation it is assumed that the expectation value 〈ψ|âi|ψ〉 exists
without specifying the system state |ψ〉. This method is analogous to the introduction
of the local SF parameter ψi = 〈ψ|âi|ψ〉 in Section (3.1), where the expectation value is
taken in the ground state of the |ψ〉 without assuming a special shape. The actual ground
state is then determined by solving the LMF problem recursively.
The expectation value of the particle number of the ground state |ψ〉 is given by

〈ψ|n̂i|ψ〉 = 〈ψ|â†i âi|ψ〉 ≈ 〈ψ|â
†
i |ψ〉〈ψ|âi|ψ〉 = |ψi|2 (A.17)

and the total number of particles in the macroscopically occupied ground state is given
by
∑M

i=1 |ψi|2.
Suppose the system state is given by a Fock state |ψ〉 = |n1 , . . . , nM〉, then the expectation
is zero as the Fock states are orthogonal

〈m1 , . . . ,mM |n1 , . . . , nM〉 = δm1n1 , . . . , δmMnM . (A.18)

However, if the system state |ψ〉 is a coherent state, this expectation value is simply given
by 〈~α|âi|~α〉 = αi and in general non-zero as |~α〉 is an eigenstate of âi. In LMF description
the system state is approximated by a product of single site wave functions, according to
Equation (3.5). This approximation enables us to introduce the picture of SF and MI sites
in Chapter 4. While single sites can be described by a coherent state, leading to a positive
local SF parameter ψi, others are in some other state showing zero values. Therefore, the
SF order parameter ψ = ψi, which according to Equation (3.7) is the mean value of all
local SF parameters ψi, is a measure of the fraction of sites, which can be described by a
coherent state.
In general states of the quantum system are some high dimensional possibly entangled
many body states, which makes the situation more difficult. But from its shape it is
not obvious if some degrees of freedom form something like a coherent state. With the
help of the local SF parameter ψi = 〈ψ|âi|ψ〉 one can probe if the wave function locally
leads to a positive value of the local SF order parameter ψi. If the wave function in this
subspace of site i shows a significant overlap with exact eigenstates of the annihilation
operator âi, namely the coherent states, the complete wave function may approximately
be decomposed into a direct product of local coherent states and entangled many body
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states for the rest of the system.
In the ordered BH system all sites are identical copies of each other with the same
BH parameters. Thus, the local SF parameters ψi of each site are identical and equal
to the SF order parameter ψ = ψi = ψi. In this case the local quantity ψi reflects
the behavior of the whole system. The particle number of the ground state is given
by
∑M

i=1〈ψ|n̂i|ψ〉 =
∑M

i=1 |ψi|2. This situation changes in the disordered case, where at
least one BH parameter randomly changes from site to site. This leads to varying local
SF parameters ψi, which can be described by the PD P (ψ) as discussed in Section 3.3.3.
In the BG phase at some sites there exists a significant overlap with coherent states lead-
ing to positive values of the local SF parameter ψi, namely the SF sites. In this situation
the SF order parameter ψ = ψi is small but non-zero. This effect has already been dis-
cussed in Section 3.3.1. According to LMF theory the SF order parameter ψ is supposed
to indicate the BG-SF transition [44, 45], at which long range coherence occurs. This
would imply that the SF order parameter ψ is zero in the BG phase and positive in the
SF phase showing a precise kink at the phase transition. As discussed in Section 3.3.1,
the SF order parameter ψ is small but positive in the BG phase and does not show a kink.
As in the BG phase there always exist regions with positive local SF parameter ψi, its
mean value, the SF order parameter ψ, may in fact be small, but positive. As shown in
Section 3.3.1 in LMF description this is not due to finite size effects. However, since the
local SF parameter ψi indicates an overlap with a coherent state locally, its mean value
cannot serve as a measure for long range coherence. Thus, in contrast to the ordered case,
in the disordered case the SF order parameter ψ, obtained in LMF approximation, does
not yield the desired properties of an order parameter.

Conclusion

The concept of coherent states, as it was first introduced in the context of the quantum
harmonic oscillator, can be extended for various systems in second quantization. The
introduction of Lie algebras allows for a generalization of the displacement operator and
a universal definition of coherent states. By the usage of these states, also called classical
states, the well-known Gross-Pitaevskii equation can be derived, which is the basis of the
widely used mean-field theory for the description of the collective features of a BEC. In
this context the expectation value 〈ψ|âi|ψ〉 of the annihilation operator is an important
quantity. In a coherent state this value is non-zero, while for example in a Fock state it is
always exactly zero. This expectation value can be used in order to decide if local parts
of the wave function show a significant overlap with coherent states.



B Two site Bose-Hubbard system

In LMF approximation there exist sites, which show integer particle numbers 〈n̂i〉, while
the corresponding value of the full quantum ground state is non-integer. In order to stress
this fact, we will compare the ground state of the two site problem with only two particles,
for which the exact quantum result is available.
For the two site problem the quantum BH Hamiltonian (2.43) reduces to

Ĥ = −µN̂ + ε1n̂1 + ε2n̂2 +
U

2

(
n̂1

(
n̂1 − 1

)
+ n̂2

(
n̂2 − 1

))
− J

(
â†1â2 + â1â

†
2

)
(B.1)

with the total particle number N̂ = n̂1 + n̂2. In the symmetric case (ε1 = ε2 = 0) the
local particle number at each site is identical and integer (〈n̂1〉 = 〈n̂2〉 = 1) independent
of the other BH parameters J and U . The situation changes for the asymmetric case
(ε1 = −0.3, ε2 = 0.3), for which the local particle numbers 〈n̂1〉 and 〈n̂2〉 as well as the
mean particle number per site 〈N̂〉/2 are shown in Figure B.1 a). In the ground state
the site with the lower on-site potential ε1 shows a higher local particle number 〈n̂1〉.
Moreover, the local particle numbers 〈n̂1〉 and 〈n̂2〉 show non-integer particle numbers
in the whole parameter range of the tunneling rate J/U > 0, while the total particle
number 〈N̂〉 is conserved, as the BH Hamiltonian in general commutes with the particle
number operator N̂ .
Within the LMF approximation the two site Hamiltonian (B.1) is given by

Ĥ = Ĥ1 + Ĥ2 ,

Ĥ1 = (ε1 − µ) n̂1 +
U

2
n̂1

(
n̂1 − 1

)
− Jψ2

(
â†1 + â1 − ψ1

)
,

Ĥ2 = (ε2 − µ) n̂2 +
U

2
n̂2

(
n̂2 − 1

)
− Jψ1

(
â†2 + â2 − ψ2

)
. (B.2)

The ground state of this system is computed self-consistently, as described in Section 3.1,
for a given density of one particle per site, which fixes the chemical potential µ. In the
symmetric case (ε1 = ε2 = 0) also here we find an equally distributed particle density,
where the local particle numbers are integer values (〈n̂1〉 = 〈n̂2〉 = 1), which is in full
agreement with the exact quantum result. For the asymmetric case (ε1 = −0.3, ε2 = 0.3)
the expectation values of the local particle number operators 〈n̂1〉 and 〈n̂2〉 are shown
in Figure B.1 b). The local particle numbers 〈n̂1〉 and 〈n̂2〉 show non-integer values for
large, but also integer values for small tunneling rates J/U . This is in contradiction to
the exact quantum result shown in Figure B.1 a), where the local particle numbers are
non-integer in the whole parameter regime of tunneling rate J/U > 0.
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Figure B.1: The local particle numbers 〈n̂1〉 (blue) and 〈n̂2〉 (red) as well as the particle

number 〈N̂ 〉/2 = (〈n̂1〉+ 〈n̂2〉)/2 (green) resulting from exact diagonalization of the full
quantum Hamiltonian (a) and from LMF theory (b).

Conclusion

From these results we can learn that for certain values of the tunneling rate J/U the LMF
approximation predicts integer local particle numbers, while the quantum system shows
non-integer values for all positive tunneling rates J/U > 0. This is due to the fact, that in
LMF approximation the whole quantum wave function is approximated by a product of
local wave functions, neglecting spatial correlations between the sites as well as quantum
fluctuations.



C Monte-Carlo algorithm

In this appendix we will recall the fundamental principles of Monte-Carlo techniques,
which are used in various fields of physics [126–129]. This method poses no restrictions
on the system parameters, which means that it can be used in the whole parameter regime
of the considered model. Finite size effects, which occur in all numerical simulations, can
be treated with systematic descriptions. An example for such a treatment is described
in Section (4.1). Advanced quantum Monte Carlo algorithms can improve the accuracy
of QMC results up to a very high level. Therefore, the excellent agreement of the phase
transition of the disordered BH model on basis of the LMF cluster analysis with QMC
results presented in Section 4.3.1, is a strong evidence for the reliability of our method.

C.1 Classical Monte-Carlo algorithm

To understand the classical Monte-Carlo algorithm [130], let us consider the partition
function

Z = Tr e−βH , (C.1)

of the system, which is given by the trace over the exponential of the product of the
inverse temperature β = 1/ (kBT ) and the Hamiltonian function H. The average value of
a physical quantity A is then given by

〈A〉 =
1

Z
TrAe−βH . (C.2)

This equation states that the average of a quantity A is given by the average over all
possible configurations ν with energy Eν weighted by their probability

Pν =
1

Z
e−βEν , (C.3)

which is given by the Boltzmann weight e−βEν [131]. There are configurations with a high
Boltzmann weight, which provide a large contribution to the average of the quantity A
and others with a small Boltzmann weight, which contribute less. In order to implement
an effective algorithm, the challenge is to effectively generate configurations with high
Boltzmann weights and only occasionally configurations with small Boltzmann weights.
For this purpose let us assume we have some dynamical process producing the desired
probability (C.3) in the long time limit

Pν (t→∞) = Pν . (C.4)
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In order to investigate this process we introduce the master equation

dPν (t)

dt
=
∑
σ

[Pσ (t)W (σ → ν)− Pν (t)W (ν → σ)] (C.5)

for the probability Pν (t) of finding the system in a certain configuration ν at time t [131].
The probability per unit time for the system to undergo a transition from configuration
σ to ν is given by the rate W (σ → ν). The first term on the right hand side is the
rate at which the configuration ν is populated, while the second term is the rate of its
depopulation. If the system is in configuration ν it must undergo a transition to some
other configuration σ or stay in configuration ν, which leads to the condition∑

σ

W (ν → σ) = 1 , (C.6)

where σ runs over all configurations including ν. The probability Pν fulfills the condition∑
ν

Pν (t) = 1 , (C.7)

since the system must be in one of the configurations ν.
So far the rates W (ν → σ), bearing the information of the chosen dynamical process, are
undefined. In general, every process fulfilling condition (C.4) is allowed. It is convenient
to use the Markov process [131,132], which satisfies two important properties: Firstly, the
transition rates W (ν → σ) are time independent. Secondly, the transition rate W (ν → σ)
depends only on the configurations ν and σ and is independent of the history, what had
happened before the system reached configuration ν. Moreover, the Markov process is
ergodic, which means that from all starting configurations ν every other configuration σ
can be reached.
In the stationary limit t→∞ the master Equation (C.5) becomes∑

σ

PσW (σ → ν) =
∑
σ

PνW (ν → σ) . (C.8)

Due to Equation (C.6) the right hand side of this equality reduces to Pν , while on the
left hand side the sum runs over all configurations σ, which prevents the implementation
of an effective algorithm. Therefore, this equation is replaced by the so-called detailed
balance [131,133]

PσW (σ → ν) = PνW (ν → σ) , (C.9)

which is a sufficient, but not necessary condition for Equation (C.8). This means, that
rates W (ν → σ), which fulfill this condition automatically satisfy the stationary master
Equation (C.8). Since we want to generate probabilities according to the Boltzmann
rates (C.3), we get

W (ν → σ)

W (σ → ν)
=
Pσ
Pν

= e−β(Eσ−Eν) . (C.10)
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This condition of detailed balance does not uniquely define the rates W (ν → σ) so far.
A common choice to fix this is the Metropolis algorithm [131,134], which is defined by

W (ν → σ) = 1 for Pσ ≥ Pν (Eσ ≤ Eν)

W (ν → σ) =
Pσ
Pν

for Pσ < Pν (Eσ > Eν) (C.11)

and fulfills the detailed balance (C.10). The dynamical process starts in some configura-
tion ν, on which some change is proposed at random, producing the configuration σ. If this
change lowers the energy (Eσ ≤ Eν) it is always accepted with probability W (ν → σ) = 1
and applied to the configuration. However, when the energy increases (Eσ > Eν) due to
the proposed change, it is accepted only with probability W (ν → σ) = Pσ/Pν ≤ 1. In
the limit of many steps this process leads to configurations σ with small energies Eσ and
high Boltzmann weights Pσ. Therefore, this process produces mainly configurations with
large contributions to the average 〈A〉 of a physical quantity given by Equation (C.2) and
only rarely ones with a small contribution.

C.2 Quantum Monte-Carlo algorithm

The principle of classical Monte-Carlo algorithm can also be transfered to quantum sys-
tems, where the Boltzmann weight e−βĤ now becomes an operator. Therefore, we need
to redefine the criterion for the production of relevant configurations. In order to do so,
the exponential in the partition function

Z = Tr e−βĤ = Tr
(

e−∆τĤ e−∆τĤ . . . e−∆τĤ
)

(C.12)

can be decomposed in Lτ Trotter slices of equal width ∆τ = β/Lτ [131]. Moreover, the
full Hamiltonian Ĥ = Ĥ1 + Ĥ2 is decomposed in two summands, which is specific for the
model under consideration. For the Bose-Hubbard model (2.43) introduced in Chapter 2
the two parts are given by

Ĥ1 =
∑
i odd

(
(εi − µ) n̂i +

Ui
2
n̂i

(
n̂i − 1

)
− 1

2

∑
j n.n.

Jij

(
â†i âj + â†j âi

))
and

Ĥ2 =
∑
i even

(
(εi − µ) n̂i +

Ui
2
n̂i

(
n̂i − 1

)
− 1

2

∑
j n.n.

Jij

(
â†i âj + â†j âi

))
, (C.13)

where the sum runs over all odd (even) sites i in Ĥ1 (Ĥ2). With the help of the Baker-
Hausdorff identity the exponential in the partition function can be rewritten as

e−∆τĤ ≈ e−∆τĤ1e−∆τĤ2 +O
(
∆τ 2

)
, (C.14)

where contributions on the order of ∆τ 2 are neglected. This equation is called the Trotter-
Suzuki approximation [131,135]. Since the trace is invariant of the chosen basis, we may
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use the particle number basis |n〉 = |n1, n2, . . . nM〉, where M is the number of sites. Using
the decomposition of the Hamiltonian (C.13) and the Trotter-Suzuki Equation (C.14) the
partition function, finally takes the form

Z =
∑
{n}

〈n1|e−∆τĤ2|n2Lτ 〉〈n2Lτ |e−∆τĤ1|n2Lτ−1〉 . . . 〈n3|e−∆τĤ2|n2〉〈n2|e−∆τĤ1|n1〉 , (C.15)

where between each pair of the exponential the identity 1 =
∑

n |n〉〈n| was inserted and
the sum runs over all possible configurations of |n〉. The partition function is decomposed

into a row of individual expectation values of the operators e−∆τĤs with s = 1, 2, which

have the same form as the time evolution operator e−itĤs . Therefore, the width of a
Trotter slice ∆τ = it can be associated with imaginary time. This leads to an intuitive
picture of Equation (C.15): Starting in state |n1〉, which is the state at the first Trotter

slice, the operator e−∆τĤ1 evolves the system in imaginary time and ends in state |n2〉.
Afterwards e−∆τĤ2 evolves |n2〉 in imaginary time reaching state |n3〉. Now, after the

action of e−∆τĤ1 and e−∆τĤ2 the system has evolved the first Trotter slice ∆τ . This
process goes on until after Lτ steps the final Trotter slice |n2Lτ 〉 is reached. Therefore, the
partition function can be written as a path integral over all allowed configurations {n}
as they evolve during Lτ imaginary time steps. The index l = 1, . . . , 2Lτ in the particle
number state |nl〉 represents the corresponding Trotter slice in imaginary time.
The concept of world lines [131] here serves as an intuitive geometric interpretation, which
is illustrated in Figure C.1 for a system with 8 sites (along the x-axis) and 6 Trotter
slices (along the y-axis). Please note that Equation (C.15) intrinsically demands periodic

boundary conditions in imaginary time for the world lines via 〈n1|e−∆τĤ2|n2Lτ 〉, which
means that the first and the last Trotter slices are identical. Periodic boundary conditions
in position space are extrinsically introduced in many models as also in the Bose-Hubbard
model, which connects the first and the last lattice site with each other. During the first

step in imaginary time the operator e−∆τĤ1 acts, which due to the definition of Ĥ1 connects
site 1 with 2, 3 with 4,. . .. In Figure C.1 connected sites are emphasized by gray plaquettes

between them. Operator e−∆τĤ2 connects site 2 with 3, 4 with 5,. . . leading to a checker
board pattern in Figure C.1. Since only sites connected by gray plaquettes interact via
the Hamiltonian (C.13), the jumps of world lines are restricted to the gray areas, as for
example the blue world line in Figure C.1.
In Equation (C.15) the sum runs over all allowed world lines. Just as in the classical
algorithm the task is to find configurations, which have a large contribution to the average
value 〈A〉 in a way that detailed balance (C.10) is fulfilled. Therefore, starting with some
allowed world line, as for example the black one in Figure C.1, one deformation is proposed
leading to a new one, shown with dashed lines. For the Bose-Hubbard Hamiltonian (2.43)
the affected matrix elements in the partition function (C.15), which change under this
deformation, are those who are connected to the light gray plaquettes in the Figure C.1.
The product Πi of these affected matrix elements before and Πf after the deformation
are computed. In order to satisfy detailed balance (C.10) the move is accepted if this
ratio Πf/Πi is larger than a random number drawn from a uniform distribution between
zero and one and is rejected otherwise [131]. Analogously to the classical algorithm this
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Figure C.1: Possible world line configurations in imaginary time l∆τ for six Trotter slices and eight
sites. The arrow represents one possible deformation of the world line.

procedure mainly generates configurations with hight weights in the average value 〈A〉
and only occasionally ones with small weights.

Conclusion

The Monte Carlo algorithm in both, the classical and the quantum version is a powerful
tool that ca be used in various fields of physics [126–129]. Its biggest advantage is that
it poses no restrictions on the system parameters, as the algorithm can be applied in the
whole parameter space of the considered model. Finite size effects, which are present in
every numerical simulation, are treated with finite size techniques, as for example dis-
cussed in Section (4.1), which allows for a systematic and accurate description of the
transition from a finite to the limit of an infinite system. In the quantum Monte Carlo
algorithm the Trotter-Suzuki approximation (C.14) is introduced, where contributions to

the exponential e−∆τĤ on the order of ∆τ 2 are neglected. Moreover, there exist sophis-
ticated methods, which operate in continuous imaginary time and hence can eliminate
this discretization error [83–87]. Therefore, advanced quantum Monte Carlo algorithms
together with the systematic description of finite size effects are a powerful technique and
are also widely used in connection with the Bose-Hubbard model [20,28–36].
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[79] P. Krüger, Z. Hadzibabic, and J. Dalibard, Critical Point of an Interacting Two-
Dimensional Atomic Bose Gas, PRL 99 (2007) 040402

[80] J. M. Zhang and R. X. Dong, Exact diagonalization: the Bose-Hubbard model as an
example, Eur. J. Phys. 31 (2010) 591

[81] B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov, Phase diagram and
thermodynamis of the three-dimensional Boson-Hubbard model, Phys. Rev. B 75
(2007) 134302

[82] P. Hitchcock and E. S. Sørensen, Bose-glass to superfluid transition in the three-
dimensional Bose-Hubbard model, Phys. Rev. B 73 (2006) 174523

[83] B. B. Beard and U.-J. Wiese, Simulations of Discrete Quantum Systems in Conti-
nous Euclidean Time, Phys. Rev. Lett. 77(25) (1996) 5130

[84] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Worm algorithm in quantum
Monte Carlo simulations, Physics Letters A 238 (1998) 253



130 Bibliography

[85] H. Rieger and N. Kawashima, Application of a continous time cluster algorithm to
the two-dimennsional random quantum Ising ferromagnet, Eur. Phys. J. B 9 (1998)
233–236

[86] A. Winter, H. Rieger, M. Vojta, and R. Bulla, The Quantum Phase Transition in
the Sub-Ohmic Spin-Boson Model: Quantum Monte-Carlo Study with a Continuous
Imaginary Time Cluster Algorithm, PRL 102 (2009) 030601

[87] A. Winter and H. Rieger, Quantum phase transition and correlations in the multi-
spin-boson model, Phys. Rev. B 90 (2014) 224401

[88] S. R. White, Density Matrix Formulation for Quantum Renormalization Groups,
PRL 69 (1992) 19
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