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ABSTRACT

Corynebacterium glutamicum is of huge importance in the production of amino acids

and has an impressive portfolio of substrates and products.

In this thesis it was shown that elevated growth temperature led to decreased

biomass yield and specific growth rate and to increased lysine yield. At 38 ◦C,

the lysine yield was ca. 40-55 % higher than at 30 ◦C. Metabolic flux analysis of

C. glutamicum Lys12 revealed 101 % flux through the pentose phosphate pathway at

38 ◦C, as compared to 86 % at 30 ◦C. In a fed-batch bioreactor setup, the cultivation

at 38 ◦C led to a 10 % higher yield, as compared to 30 ◦C.

Also, C. glutamicum Lys12 was modified to allow for growth and lysine production

from xylose via expression of the Escherichia coli genes xylA and xylB. The resulting

strain C. glutamicum Xyl1 was able to grow at 0.17 h-1 and converted xylose into

lysine at a yield of 0.25 mol mol-1. In a more industry-like fed-batch bioreactor setup

116 g L-1 lysine were produced with a xylose based medium.

Finally, the Pseudomonas stutzeri ectABCD operon (with the osmosensitive promoter

exchanged for a constitutive one and the codon usage of C. glutamicum considered)

was expressed in C. glutamicum lysCT311I to enable ectoine production. This strain

produced ectoine (19 mol mol-1) from glucose, but also lysine, which was stopped

by deletion of lysE. Elevated temperatures led to improved ectoine secretion and

4.5 g L-1 ectoine could be produced in a fed-batch process at 35 ◦C.

x



ZUSAMMENFASSUNG

Corynebacterium glutamicum ist von großer Bedeutung für die Produktion von

Aminosäuren und weist ein beeindruckendes Spektrum an Substraten und Produkten

auf.

In dieser Arbeit wurde gezeigt, dass erhöhte Wachstumstemperaturen zu re-

duzierter Biomasseausbeute und spezifischen Wachstumsrate sowie erhöhter Lys-

inausbeute führten. Bei 38 ◦C lag die Ausbeute ca. 40-55 % höher als bei 30 ◦C.

Metabolische Flussanalyse zeigte 101 % Kohlenstofffluss durch den Pentosephosphat-

weg bei 38 ◦C, während bei 30 ◦C nur 86 % erreicht wurden. In einem Fedbatch

Prozesses im Bioreaktor war die Lysinausbeute bei 38 ◦C 10 % höher als bei 30 ◦C.

Das Einbringen der Escherichia coli Gene xylA und xylB in C. glutamicum Lys12

ermöglichte außerdem Wachstum mit 0,17 h-1 sowie Lysinproduktion mit einer

Ausbeute von 0,25 mol mol-1 auf Xylose. In einem Fedbatch Bioreaktorexperiment

wurden in einem auf Xylose basierten industrienahen Medium 116 g L-1 Lysin

produziert.

Schließlich wurde noch das Pseudomonas stutzeri ectABCD Operon (mit ausget-

auschtem Promotor und berücksichtigter Codonverwendung) in C. glutamicum Lys1

eingebracht, was die Ectoinproduktion von Glukose ermöglichte (19 mmol mol-1).

Die Sekretion des Nebenprodukts Lysin wurde durch Deletion von lysE unterbunden.

Wie bei der Produktion von Lysin führten erhöhte Temperaturen zu einer verbesser-

ten Ectoinproduktion und in einem Fedbatch Bioreaktor konnten bei 35 ◦C 4,5 g L-1

Ectoin produziert werden.

xi



CHAPTER 1

INTRODUCTION

1.1 General introduction

Biotechnology, i.e. ‘any technological application that uses biological systems, living

organisms or derivatives thereof, to make or modify products or processes for specific

use’ [209], has been employed by humans for centuries. Many people are, however,

not aware of the importance of this scientific field for their daily lives, even though

biotechnology comprises a wide range of applications e.g. in the pharmaceutical

or the food industry. The important flavor enhancer glutamic acid falls into the

latter category and is produced on an industrial scale by the microorganism Coryne-

bacterium glutamicum. This organism is closely linked to its most famous product,

glutamate, that it was even named after it.

Fig. 1: Phase contrast microscopic image of
C. glutamicum [22].

C. glutamicum, a Gram-positive rod

shaped microorganism, was isolated in

Japan in the mid 1950s [108] during a

program screening for microorganisms

able to produce glutamic acid. It was

soon discovered that C. glutamicum

is capable of producing other amino

acids besides glutamate, first and fore-

most lysine [107]. Today, C. glutami-

cum is one of the most important mi-

croorganisms for fermentative produc-

tion of amino acids and a workhorse of

industrial biotechnology [15]. C. glu-

1



Chapter 1 Introduction

tamicum has earned the status as a industrial workhorse and a platform organism

because of its robustness in large scale production processes, proven over many

decades [59].

From early on, the increase of lysine yields and titers were major goals of strain

optimization to enable more efficient production. Initially, this was realized by

random mutagenesis and subsequent selection [98]. More recently, the genome

sequence of C. glutamicum was unraveled [93] and by now systems metabolic engin-

eering provides the possibility for systems-wide understanding of the intracellular

mechanisms of the organism and optimization for improved production [18].

Continuously, this was driven by an increasing demand for lysine throughout the

decades, illustrated in Fig. 2. Lysine, i.e. the biologically active L-enantiomer L-lysine,

is an essential amino acid for most vertebrates and an important feed additive for the

cereal-based fodder of the pig and poultry industry [230]. In such feedstuffs, lysine is

one of the limiting amino acids [246]. Its concentration does not satisfy the demand

of animal mast. Even though nutritional requirements in animals may vary with age

and gender, and despite regional variations in fodder composition, L-lysine is the

first limiting amino acid when breeding pigs and the second limiting in breeding

poultry [94]. This can be visualized using the concept of LIEBIG’S barrel (Fig. 3)

showing that a limitation in one compound can hinder the performance of the entire
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Fig. 2: Worldwide production of L-lysine and poultry in the past decades. Lysine data until
2005 are taken from [163], 2009 data from [46] and later data/predictions from [142].
Poultry data are taken from [210].
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Chapter 1 Introduction

system. Compensation for this limitation by addition of L-lysine leads to higher meat

yield and lower ammonia burden in the manure [46]. The still increasing worldwide

demand for meat predicts an increased lysine market for the future [142].

C. glutamicum is able to naturally utilize a wide range of substrates [125]. This

includes many sugars such as glucose, fructose or sucrose, organic acids like succinate

and lactate [35]. Traditionally, lysine has been produced by fermentation from sugar-

based resources like starch hydrolysates or molasses [102, 238]. Clearly, for the

production of a ‘high-volume low-value ’ product such as lysine, the raw material costs

are a decisive factor for the profitability of a production plant [46]. An additional

downfall of the traditional substrates is a high price volatility [142, 243]. Coupled to

the criticism of using glucose-based, i.e. human consumable resources, to produce

animal feed additives, these points provide a strong incentive for the search for

alternative raw materials.

A promising candidate is the hemicellulose sugar xylose, a major building block

of lignocellulose and widely abundant as a by-product in agriculture and in the

pulp and paper industry [130], i.e. lignocellulosic waste products. The pentose

Ly
si
n
e

Tr
y
p
to
p
h
a
n

T
h
re
o
n
in
e

Fig. 3: LIEBIG’S barrel as a graphical representation of the nutritional value of lysine as a
animal feed additive.

3



Chapter 1 Introduction

is, however, not a natural substrate for most strains of C. glutamicum [59], but

an interesting raw material nevertheless. Turning a waste product into a valuable

commodity chemical is not only of economic interest, but could also help to create a

more ecologically sustainable approach to industrial lysine production [35]. Systems

metabolic engineering has been shown to enable C. glutamicum to utilize xylose for

growth and production by expressing xylulokinase and xylose isomerase from E. coli

and from other microorganisms [36, 138].

With regard to the product portfolio, C. glutamicum is capable of producing a wide

range of chemicals beyond L-amino acids: bulk products such as D-amino acids[196],

diamines [103, 180], organic acids [155, 156] and biofuels like ethanol [82] or

isobutanol [23], among other products [15]. In addition, also high-value chemicals

become accessible through C. glutamicum.

Ectoine is a compatible solute and interesting agent for the pharmaceutical and

cosmetic industry [61, 124, 160]. Ectoine is currently used in products like sunscreen

and nasal spray due to its moisturizing, protective and anti-inflammatory qualities

[204]. The current production relies on a process called ‘bacterial milking’, which is

technically demanding and corrosive for the equipment [120]. Ectoine is not natively

synthesized by C. glutamicum [14]. The biosynthetic route to ectoine starts from

L-aspartate semialdehyde, a precursor of the biosynthetic route towards lysine. This

makes C. glutamicum an excellent starting point for development [14].

Besides the molecular set up to handle the demanded bio-conversion efficiently,

any microbial strain also has to perform under industrial process conditions in order

to be an apt production strain. Large-scale production conditions are inherently more

challenging for microorganisms as they comprise e.g. higher levels of compound

inhomogeneity [30, 95] and huge variations in the local hydrostatic pressure.

Parameters influence growth and production capabilities of the used microorgan-

isms and include, amongst others, pH value [187], initial substrate concentration

[168] and temperature [14, 149, 151]. The set-point of controllable parameters

in an industrial context should generally be profit-driven and focus on productivity

(producing fast) and yield (producing efficiently). Other economic factors of bio-

chemical engineering might also play a role, e.g. reduced amount of cooling water

required.

4



Chapter 1 Introduction

N

O OH

NH

Substrate Fermentation Product

Ectoine

Lysine

Glucose

Xylose

Fig. 4: Microbial conversion of raw materials into value added chemicals. The depicted
molecules reflect the substrates and products used in this work. One of each (glucose and
lysine) is natural to C. glutamicum while the others are not naturally utilized/synthesized.

1.2 Main objectives

The aim of this work was to extend the biotechnological performance of C. glutami-

cum by addressing the three segments of the conversion of raw materials into value

added chemicals (Fig. 4):

• Production of L-lysine from D-xylose. Implementation of a bioreactor fed-batch

process emulating industrial production conditions.

• Characterization the correlation between lysine production and cultivation

temperature for different strains of C. glutamicum. Unraveling of the underlying

metabolic responses to changes in cultivation temperature.

• Broadening of the product portfolio of C. glutamicum towards the compatible

solute ectoine, a promising substance for a diverse set of possible and existing

applications in the cosmetic and pharmaceutical industry.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 C. glutamicum as industrial workhorse

2.1.1 Core metabolism

The soil bacterium C. glutamicum is one of the most important microorganisms

for amino acid production today [188]. The two amino acids with the largest

worldwide production volume by far, L-glutamate and L-lysine, are mainly produced

by this microorganism [16]. Contemporary lysine production uses mixtures of sugars

(glucose, fructose, sucrose) from sugar cane, starchy biomass or molasses as substrate

[102, 238].

The uptake of these sugars is mediated by three phosphoenolpyruvate dependent

phosphotransferase systems (PTS, see Fig. 5). A fourth PTS with unknown function

is reported in C. glutamicum [141]. Additionally, glucose is taken up via non-PTS

routes [79, 114, 128]. At least one of these is uninhibited by high osmolarity, which

can occur during fed-batch fermentations [60]. It was shown that overexpression

of non-PTS glucose uptake in a PTS deficient strain can be beneficial for lysine

production [79, 128]. Unlike other bacteria, the PTS uptake in C. glutamicum is only

marginally affected by catabolite repression [242]. In fact, the uptake systems are

rather expressed constitutively, which enables simultaneous consumption of mixtures

of sugars [45]. This is a clear advantage for industrial fermentation, where media

often contain a variety of such carbon sources.

The central carbon metabolism of C. glutamicum comprises the Embden-Meyer-

hof-Parnas (EMP) pathway, the pentose phosphate (PP) pathway, the tricarboxylic

acid (TCA) cycle and a range of anaplerotic reactions around the pyruvate node (Fig.

6



Chapter 2 Theoretical background

Fru Glc

PTSFru

(ptsF)
PTSSuc

(ptsS)
PTSGlc

(ptsG)

Glc

IolT1
(iolT1)

IolT2
(iolT2)

EIIBgl

GLK PPGK GGL2647

Glc Glc

GlcG6P

ATP/PolyPnADP/PolyPn-1

Suc

Suc6PF1P

FBP

PEP
Pyr

PEP
Pyr

PEP
Pyr

Fig. 5: Sugar uptake in C. glutamicum ATCC 13032. PTS = phosphotransferase systems, Fru
= fructose, Suc = sucrose, Glc = glucose, PEP = phosphoenolpyruvate, Pyr = pyruvate, G6P
= glucose 6-phosphate, Suc6P = sucrose 6-phosphate, F1P = fructose 1-phosphate, FBP =
fructose 1,6-bisphosphate, ATP = adenosine triphosphate, ADP = adenosine diphosphate,
PolyPn = polyphosphate, IolT = myo-inositole transporter, EII = enzyme II permease. GLK,
PPGK and GGL2647 are glucokinases. Gene names are shown in brackets. The molecules
representing the entry point into the central carbon metabolism are depicted with a dashed
frame. Figure adapted from [242] and [79].

6). The EMP pathway catalyzes the conversion of phosphorylated sugars into phos-

phoenolpyruvate and pyruvate, two molecules that represent important metabolic

intermediates and precursers for many metabolites [148]. Adenosine triphosphate

(ATP) is generated along the way. The PP pathway comprises an oxidative part,

generating NADPH, and a non-oxidative part, consisting of reversible interconver-

sion reactions with erythrose 4-phosphate, ribose 5-phosphate and sedoheptulose

7-phosphate as pathway intermediates. Erythrose 4-phosphate is a precursor for aro-

matic amino acids [242] and ribose 5-phosphate is a building block for nucleotides

[148]. Additionally, the PP pathway is a key route for lysine synthesis [136, 231,

234]. The quantification of metabolic fluxes through 13C labeling studies revealed

that this pathway supplies major amounts of NADPH during growth of C. glutamicum

on typical industrial sugars such as glucose [136], sucrose [235] and xylose [36].

Fructose on the other hand is a suboptimal carbon source for lysine bio-synthesis

[100]. The different entry point of fructose into the central carbon metabolism,

omitting the PP pathway (Fig. 5 and 6) leads to reduced NADPH supply and lysine

production [100]. Due to the high NADPH demand during lysine production, the PP

pathway has been a focus of strain optimization efforts [10, 13, 149].

The TCA cyle is the core pathway of energy metabolism in many aerobic microor-

ganisms, including C. glutamicum. Its major function is the generation of reducing

7
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Fig. 6: Central carbon metabolism of C. glutamicum. PEP = phosphoenolpyruvate, Pyr =
pyruvate, ATP = adenosine triphosphate, ADP = adenosine diphosphate, GTP = guanosine
triphosphate, GDP = guanosine diphosphate, FADH = flavin adenine dinucleotide (re-
duced ), NAD(P)H = nicotinamide adenine dinucleotide (phosphate) (reduced ), NAD(P)+ =
nicotinamide adenine dinucleotide (phosphate) (oxidized), Pi = phosphate, CoA(-SH) =
coenzyme A (unbound), Q(H2) = coenzyme Q (reduced).
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equivalents (NADH, NADPH, FADH) and biochemical energy as ATP. Additionally,

the TCA cycle supplies anabolism with precursor molecules. In order to replenish the

TCA cycle, C. glutamicum possesses reactions that supply TCA cycle intermediates –

the so called anaplerotic reactions. For lysine production, the anaplerotic reactions

involved in the formation of oxaloacetate/malate (OAA/Mal) from phosphoenolpyr-

uvate/pyruvate (PEP/Pyr) are of immense importance as both oxaloacetate and

pyruvate are product precursors. C. glutamicum has a remarkable array of enzymes at

this metabolic node: PEP carboxylase (PEP→OAA) [49], Pyr carboxylase (Pyr→OAA)

[162], PEP carboxykinase (OAA→PEP) [89], OAA decarboxylase (OAA→Pyr) [88]

and malic enzyme (Mal→Pyr) [211, 242].

2.1.2 Lysine biosynthetic pathway

The lysine synthesis (Fig. 7 A) starts from the TCA cycle intermediate oxaloacetate as

well as from pyruvate. It branches off into two parallel routes at the level of L-∆1-tetra-

hydropicolinate, both of which converge at meso-diaminopimelate. One of the two

routes, the multi-step succinylase pathway, is active even when only little ammonium

is available [48, 182] (Fig. 7 B). In contrast, the one-step ammonia-dependent

dehydrogenase pathway, is mainly active at a high concentration of ammonium [194]

(Fig. 7 B). In total, the generation of one molecule of lysine requires one molecule of

each, pyruvate and oxaloacetate, two molecules of ammonium and the oxidation of

four molecules of NADPH to NADP+.

Lysine biosynthesis in C. glutamicum is mainly controlled by the enzyme aspar-

tokinase, which is feedback inhibited by lysine and threonine. The release of this

inhibition is a key to lysine producing strains [98]. Multiple point mutations have

been reported in the literature that remove the feedback inhibition by the two amino

acids [38, 150, 192, 244].

Since C. glutamicum natively does not possess pathways for lysine degeneration,

lysine would accumulate inside the cell, if produced in large quantity. Therefore ,

C. glutamicum excretes lysine via a permease, encoded by lysE [217]. The low affinity

of this permease towards its substrate ensures activity only in case of intracellular

lysine accumulation [218].
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Fig. 7: Lysine biosynthetic pathways in C. glutamicum. The precurser molecules are oxalo-
acetate and pyruvate (inside dashed frames). A: ATP = adenosine triphosphate, ADP =
adenosine diphosphate, NADPH = nicotinamide adenine dinucleotide phosphate (reduced),
NADP+ = nicotinamide adenine dinucleotide phosphate (oxidized ), CoA(-SH) = coenzyme A
(unbound), Glu = glutamate, 2OG = α-Ketoglutarate. Gene names (red italics) are listed
on page vi. B: Carbon flux through the two parallel biosynthetic routes towards lysine at
different levels of ammonium concentration [48, 182, 194].

2.1.3 Product portfolio

Production of amino acids. C. glutamicum is the dominant and classical producer

of amino acids, originally discovered in a screening program for glutamate producing

organisms [108]. Soon after that, L-lysine was also established as a product, secreted

by a C. glutamicum mutant [107]. Today, these two amino acids are still the main

products (by volume) of C. glutamicum by far [16], but over time C. glutamicum

has developed into an industrial workhorse with a large range of products. It is

not surprising that C. glutamicum has been used to produce other amino acids as

L-methionine [25], L-arginine [77], L-tryptophan [74], L-alanine [90] and L-serine

[161], reaching impressive titers of over 50 g L-1 for some of these products [16].

Researchers also made use of the stereospecificity of biological reactions and used
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C. glutamicum to produce D-amino acids [196].

Other products. Apart from amino acid production, C. glutamicum has been used

for the generation of biofuels like ethanol [82] or isobutanol [23]. Ethanol is not

only a biofuel, but also member of a revised list of promising chemicals that can

serve as building blocks in a biorefinery based economy [28]. Glutamic acid, the

major product of C. glutamicum, had been included in the initial list [227] and

organic acids like succinate and lactate are included in both publications. The two

organic acids are natural products of C. glutamicum during anaerobic cultivation

[83]. Using metabolic engineering, titers of 146 g L-1 (succinic acid [156]) and 120

g L-1 (lactic acid [155]) could be reached. Other chemicals successfully produced in

C. glutamicum are diamines like putrescine [139] and cadaverine [34], two important

chemicals necessary for the production of bio-based polyamides.

Economical and ecological considerations. As researchers, politicians and the

general public become increasingly aware of the scarcity of fossil resources in the

recent decades, alternative production routes for fuels and commodity chemicals

are sought after, basically as a way to short-cut the global carbon cycle [134]. A

biotechnological approach to contribute to the solution of this pressing challenge is

the concept of biorefineries, converting biomass (often waste biomass) into valuable

products [35, 122]. Likewise, more traditional bioproduction, which relies on e.g.

sugars as substrate, generates value added chemicals, i.e. chemicals of higher

economical value than the educt, from renewable sources. It has many advantages

over petrochemical processes, like stereospecificity, low process temperatures and

independence of fossil raw materials, hence no risk of depletion of the substrate.

The added monetary value varies widely for the different products. Bulk chemicals

with high production volumes are usually less expensive due to the ‘volume effect’

or ‘economy of scale’ and because the high demand triggers competition. Fig. 8

illustrates this for the amino acid market, where the substances with the highest

annual production (lysine and glutamate) have the lowest market value per unit

while lower annual production amounts correspond to higher prices, as is the case

for histidine and serine.

The market value of any given substance is a decisive factor when considering

the production. In order to maximize profit, the three key performance indicators –
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Fig. 8: Worldwide annual production and costs of amino acids [46]. All amino acids shown
graph can be produced by C. glutamicum, although so far not all with economically feasible
titers [15, 73, 214]. Arg = arginine, Asp = aspartic acid, Cys = cysteine, Glu = glutamic
acid, Gly = glycine, His = Histidine, Ile = isoleucine, Leu = leucine, Lys = lysine, Phe =
phenylalanine, Ser = serine, Thr = threonine, Val = valine.

titer, yield and productivity – have to be considered. For any production process it is

desirable to attain high product titers in order to decrease the cost of downstream

processing. Yet for ‘high value’ products, this factor might be of lesser importance, as

even with increased formulation cost still a profit can be made due to high market

price. This applies also to the yield. With valuable products, the relative low influence

of inefficient (i.e. low-yield) substrate utilization to the overall profit margin leads to

less emphasis on this key performance indicator. The opposite holds true for cheap

bulk chemicals like lysine. Here, high titers and yields are crucial, as the substrate

cost often makes up a significant portion of the overall cost [41, 98].

Compatible solutes and ectoine. Chemical chaperones are a class of substances

that comprises small, polar and highly water-soluble organic osmolytes like trehalose,

glycine betaine, proline and the tetrahydropyrimidines ectoine and 5-hydroxyectoine

[29, 99, 184, 237]. They protect proteins against aggregation, promote their proper

folding under otherwise denaturing conditions, and are fully compliant with cellular

physiology, biochemistry and protein function [71, 199, 200, 241]. Due to these

attractive properties, industry advertises ectoines as protective compounds for health
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Fig. 9: Metabolic pathway for ectoine and 5-hydroxyectoine production from the building
block L-aspartate-β-semialdehyde, synthesized from the TCA cycle intermediate oxaloacetate
by the enzymes aspartokinase (Ask; EC: 2.7.2.4) and aspartate-semialdehyde-dehydrogenase
(Asd; EC: 1.2.1.11) (see Fig. 7) and then converted into ectoine and 5-hydroxyectoine by
L-2,4-diaminobutyrate transaminase (EctB; EC: 2.6.1.76) to form L-2,4-diaminobutyrate,
a metabolite that is then acetylated by 2,4-diaminobutyrate acetyltransferase (EctA; EC:
2.3.1.178) to produce N-γ-acetyl-2,4-diaminobytuyrate, which is subsequently transformed
to ectoine via a water elimination reaction by ectoine synthase (EctC; EC: 4.2.1.108). Ectoine
can then serve as substrate for the formation of 5-hydroxyectoine through the activity of
ectoine hydroxylase (EctD; EC: 1.14.11.). Gene names (red italics) are listed on page vi.

care products and cosmetics [61, 124, 160]. Ectoines possess excellent stabilizing

effects on biological molecules; e.g. proteins, cell membranes, DNA, and even entire

cells. To some extent they also find application as in vivo folding catalyst for the

recombinant production of proteins [8] and as enhancers for polymerase chain

reactions [181]. The anti-inflammatory effect of ectoine even suggests a medical

oriented application in the future for treating lung inflammation [204] and colitis [1],

and for tissue protection in ischemia [223]. These properties coupled with the current

industrial bio-process for ectoine production being elaborate and detrimental to the

equipment [33, 120] render the heterologous production of ectoines in C. glutamicum

an interesting aim.

Although chemical synthesis of ectoines is certainly possible [181], their large-scale

production with a high degree of purity and stereo-specificity is complicated and

costly. Chemical synthesis was consequently out-competed by a biotechnological

production route using the halophilic bacterium Halomonas elongata [175]. A major

problem with this production is the requirement of high-salinity growth medium,

which leads to slow production, corrosion of the equipment and an overall difficult

to handle process [147].

In vivo, ectoine is synthesized from the precursor L-aspartate-β -semialdehyde
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(ASA), a central hub in microbial amino acid production [131], by three successive

enzymatic steps that are catalyzed by the L-2,4-diaminobutyrate transaminase (EctB),

the 2,4-diaminobutyrate acetyltransferase (EctA) and the ectoine synthase (EctC)

[132, 157] (Fig. 9). A substantial subgroup of the ectoine producers can convert

ectoine into 5-hydroxyectoine through the activity of the ectoine hydroxylase (EctD)

[33, 170] (Fig. 9). The ectoine biosynthetic genes are normally organized in an

operon (ectABC) [118, 119, 132, 169] that might also comprise the ectD gene [33, 57,

165]. Expression of the genes involved in the ectoine synthesis is typically induced

in response to increased osmolarity [37, 118, 119, 184] or extremes in growth

temperature [37, 119]. Transcriptional profiling indicated that the cellular levels of

ASA could be a potential bottleneck in the synthesis of ectoines [21].

All in all, through the combination of its natural set-up as a robust and versatile

soil microorganism and of metabolic optimization and systems metabolic engineering

(see chapters 2.1.4 – 2.1.6), C. glutamicum is capable to produce a variety of value-

added chemicals.

2.1.4 Strain development and metabolic engineering

The improvement of C. glutamicum for industrial fermentation is a major goal since

many decades. Due to a lack of insight into microbial biochemistry and genetics,

at first, initial production strains of C. glutamicum could only be generated via

selection, often coupled to active random mutagenesis. For example, glutamic acid

producing strains were obtained by exposure of cell suspensions to UV radiation and

selection involving coverage of mutated colonies with glutamate auxotrophic bacteria

[127]. A second efficient approach for selection of desirable traits was the use of

antimetabolites or analogs. A prominent example is the use of S-(2-aminoethyl)

cysteine, an analog of lysine, and L-threonine, which led to the discovery of strains

with a mutated aspartokinase, uncoupled from feed-back regulation [98]. These

approaches led to the development of powerful production strains able to accumulate

100 g L-1 of L-lysine with yields of up to 50 % [72, 126]. On the other hand, random

mutagenesis inherently caused the integration of hundreds of unspecific mutations

into the genome. These can lead to detrimental changes and unwanted traits like

weak stress response, poor growth capability or extensive nutritional requirement

[9].
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With a deeper understanding of microbial genetics, a rapidly increasing set of tools

for their manipulation and the sequencing of the complete genome of C. glutamicum

[72, 93, 207], genetic, i.e. metabolic engineering became feasible to rationally

generate strains with improved production characteristics. One important tool

for example was the levansucrase based system for selection of mutants, which

allows simple identification of positive clones during integrative modification of

C. glutamicum genes [84, 176].

A metabolic engineering project where this tool was successfully applied, was the

production of ethanol in C. glutamicum [82]. Disruption of the native genes ldhA

and ppc and the heterologous expression of the Zymomonas mobilis genes adhB and

pdc led to an substantial increase in the ethanol produced. Metabolic engineering

was also applied to C. glutamicum to broaden the substrate spectrum. Episomal

expression of the E. coli xylA gene coding for xylose isomerase enabled xylose

utilization [97]. The likewise employment of the genes glpF, glpK and glpD, also from

E. coli, led to growth and lysine production from pure and crude glycerol [138, 171].

Another successful approach of metabolic engineering was the replacement of the

native D-lactate dehydrogenase promoter of C. glutamicum by the strong promoter

of the superoxide dismutase of the same organism [146]. This modification led

to an improved utilization of lactate as a substrate and ultimately enhanced lysine

production from that substrate.

Despite these successful examples, the inherent limitation, faced by metabolic

engineering approaches, boils down to a lack of system wide knowledge. This is also

the reason, why many bacterial modifications that can be identified as pure metabolic

engineering, aim at more or less obvious targets like the usage of heterologous genes

to enable novel substrates or products. Due to the complexity of the biochemical

pathways and their regulation, metabolic engineering at a more intricate level

requires a better understanding of the system to be modified, as presented in chapters

2.1.5 and 2.1.6.

2.1.5 Systems Biology

The systems-wide, holistic approach toward understanding complex biological sys-

tems is referred to as systems biology. In this discipline, various omics-techniques as

well as in silico modeling play a crucial role [159].
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Genomics provides the genome sequence of an organism, which sets the frame

for the capabilities of the bacterium [153]. The C. glutamicum ATCC 13032 genome

has been sequenced by various research groups [72, 93]. It is over 3 Mbp in size

and contains roughly 3000 genes. Genome scale stoichiometric models allowed the

response simulation the C. glutamicum metabolism to environmental changes [109]

and prediction of target for improved production of organic acids [189].

Transcriptomics reveals the set of genes, translated into mRNA, which can give

context to the function of genes whose purpose could not be predicted by gen-

omics [192]. Using techniques such as RT-PCR (reverse transcription polymerase

chain reaction), a limited set of genes can be quantified with high precision [54].

DNA Microassays and whole transcriptome shotgun sequencing (RNA-seq) enable

transcriptional analysis on a genomic scale [245]. The massive amount of data

generated in such experimental set ups requires advanced computational power

and techniques, for example normalization of the data for noise error reduction or

clustering according to the co-expression of the genes [245].

Proteomics provides accurate information on the intracellular protein amount.

Techniques like 2D-PAGE allow for the separation and quantification of many proteins

in a complex matrix and e.g. MALDI-TOF MS (Matrix-assisted laser desorption/ionization–

time of flight–mass spectrometry) and LC-ESI-MS/MS (liquid chromatography–

electrospray ionization–mass spectrometry) analysis can be used to identify proteins

[177].

Metabolomics quantifies intracellular metabolite levels and is useful to identify

enzymatic bottlenecks via metabolite accumulation [66]. The method is technically

challenging due to high turnover rates and huge chemical diversity of the analytes

[26, 111].

Fluxomics is the most ‘phenotypical’ of all omics techniques. It most closely

resembles the actual effect of certain conditions on the microbial central metabol-

ism and relevant biosynthetic routes by providing information about the carbon

fluxes through the various biochemical routes in an organism. This can be done by

employing stoichiometric models in combination with data of biomass generated

with isotopic tracers like 13C-labeled sugars [112, 229]. With this technique it was

possible to show the metabolic differences during growth and lysine production of

C. glutamicum on glucose and fructose, like e.g. the drastically reduced carbon flux

through the pentose phosphate pathway on the latter substrate [100]. Similarly, iso-
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topic tracer studies have been used to unravel preferred use of the Entner-Doudoroff

pathway in marine microorganisms [110], characterize the differences in the carbon

metabolism between a wild type and a riboflavin producing strain of Ashbya gossypii

[87] or even to investigate uropathogenic microbes [20]. These examples show the

diversity and power of the tool of isotopic labeling.

For a true system-wide understanding, ideally information from different omics

techniques is combined. The integration of fluxome, transcriptome and metabolome

data of C. glutamicum ATCC 13287 e.g. revealed a strong correlation between the

glucose uptake flux and the expression of glucose phosphotransferase genes, while

the lysine biosynthetic genes were constantly expressed despite substantial changes

in carbon flux [117].

2.1.6 Systems metabolic engineering

As the name suggests, systems metabolic engineering combines knowledge and

holistic viewpoints from systems biology with tools from metabolic engineering for

a ‘design-based creation of tailor-made overproducers that are optimized at the global

level’ [236].

A successful example for systems metabolic engineering is genome breeding [150].

Of the lysine over-producer C. glutamicum B-6 derived by classical mutagenesis, 16

relevant genes were compared to the ancestor strain ATCC 13032. Three mutations

(V59A hom, T311I lysC and P458S pyc) were then implemented in the genome of

C. glutamicum ATCC 13032, which led to an over-producing strain with excellent

properties and only minor and specific changes in the genetic background compared

to the wild type.

A lysine hyper producing strain with even better production properties was gener-

ated by integration of 12 rational modifications into the C. glutamicum genome [18].

In addition to the three amino acid exchanged named above, other modifications

were aimed at the attenuation of the TCA cycle (ATG→GTG start codon in icd [11]),

the increase of carbon flux through the PP pathway (strong promoters Ptuf and Psod

in front of fbp and tkt, respectively [13]), the anaplerotic node (∆pck, Psodpyc) and

an increased carbon flux towards lysine (2×ddh and lysA, PsoddapB, PsodlysCG1A). All

these modification made use of the technique for stable integration of changes into

the genome mentioned in chapter 2.1.4 [84]. This truly system wide approach led to

17



Chapter 2 Theoretical background

a strain capable of producing up to 120 g L-1 lysine with a yield of 55 %.

In an excellent example for the integration of multiple omics techniques for the

generation of advanced production-strains, systems metabolic engineering was used

to generate and improve a basic C. glutamicum strain for cadaverine production.

Conversion of lysine to cadaverine was enabled by integration of the E. coli ldcC

gene coding for the lysine decarboxylase into the C. glutamicum genome [103].

Hereby, the gene was codon-optimized for the expression in C. glutamicum and

put under the control of the strong Ptuf -promoter and many modifications that had

proven beneficial for lysine production (see above) were also implemented in this

C. glutamicum DAP-3c strain. By-product formation by acetylation of the product

was then eliminated by the use of deletion mutants which made more efficient

production possible [104]. C. glutamicum DAP-3c was further improved by genome-

wide transcriptome analysis which unraveled a gene responsible for the export of

cadaverine which also could subsequently be augmented by putting it under the

control of the Ptuf -promoter [105]. Finally, fluxome analysis allowed a detailed

evaluation of the differences in the carbon flux between the strains [106]. Taken

together, the consequent employment of systems metabolic engineering enabled the

creation of a superior production strain able to secrete 90 g L-1 cadaverine [106]

2.2 Alternative renewable feedstocks for bio-based

production

C. glutamicum is able to utilize a wide variety of molecules as a substrate [125]. In

addition to glucose, fructose, sucrose, ribose and mannose, also organic acids like

acetate, succinate and lactate are used as a substrate [35]. The relatively low level

of catabolite repression [242] and the ability to co-utilize multiple carbon sources

are highly desirable for industrial fermentation [45].

Traditionally, large-scale fermentation with Corynebacteria use substrates like

starch hydrolysate (North America) or sugar cane or beet molasses (Asia, Europe)

[102, 238]. Hence it comes as no surprise that strain engineering in the past

intensely focused on glucose [78, 113], fructose [100] and sucrose [235], the major

constituents of these raw materials. Direct utilization of starch by C. glutamicum was

achieved via heterologous expression and secretion of an amylase from Streptomyces
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griseus [185] and via surface display of a Streptococcus bovis α-amylase [205, 206].

As high-starch materials like corn, potatoes or cassava are available worldwide,

further efforts are important to enable more integrated biorefinery processes for

C. glutamicum. Due to its high availability as a major feedstock in agriculture, silage is

another substrate of interest [146]. Two major carbon sources of silage juice, lactate

and glucose, can be readily utilized by C. glutamicum [145]. Lysine production on

silage juice was successful with decent yields, but the final lysine titers of about 3

g L-1 are far too low to be of industrial interest [145].

Coupled to increasing demands for bio-based chemicals, the use of traditional

feedstocks, mentioned above, creates conflicts as they are also suitable for human nu-

trition or at least compete for arable land with food plants [179]. Hence, alternative,

widely available, cheap, renewable feedstocks, not competing with human nutrition,

are ethically, ecologically and economically desirable [34].

Whey is a waste product of the diary industry and hence abundantly at hand [7].

Yet, even though C. glutamicum has been genetically modified to utilize its main

constituents lactose and galactose [9, 35], the production of L-lysine from this raw

material is not beyond the proof of concept stage. A bit more advanced, the use

of the non natural substrate glycerol has been established in C. glutamicum [171]

and production of amino acids and putrescine was successfully implemented [139].

Glycerol used to be an attractive product itself at some point, but now is a promising

substrate as large quantities are produced as waste during biodiesel production

[247].

One extremely promising feedstock candidate, fulfilling the desirable criteria men-

tioned above is lignocellulose, a major component of plants. It can be derived from a

multitude of different sources like forestry or agricultural (crop straw), industrial

(pulp and paper industry) or municipal waste products [3, 6, 202]. Lignocellulose

consists of cellulose (40-50 %), lignin (10-25 %) and hemicellulose (20-30 %) [40].

Cellulose, the most abundant polymer on earth [130], is a polymer built from β-

1,4-linked glucose units [5]. The easily digestible monomer is an advantage for

the application in fermentation, but cellulose has to be treated intensely to break it

down into smaller units [40]. Metabolic engineering of C. glutamicum allowed direct

utilization of cellulose for glutamate production [35]. Cellulose, however, has an

important technical use for production of paper and board. The waste streams from

the pulp and paper industry consequently consist of mainly lignin and hemicellulose.
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Table 1: Different types of hemicelluloses. Like many plant derived polysaccharides, hemi-
celluloses exhibit a high molecular diversity [201].

Name Properties

Xylan 4-O-methyl-D-glucuronosyl & α-arabinofuranosyl residues on
a β-1,4 xylopyranose backbone

Glucuronoxylan 2,3- or 2,3-linked glucuronate residues on a β-1,4 xy-
lopyranose backbone

Arabinoxylan 2,3- or 2,3-linked arabinose on a β-1,4 xylopyranose back-
bone

Glucomannan β-1,6 linked residues on a β-1,4 mannose and glucose back-
bone

Xyloglucan β-1,6 xylose residues on a β-1,4 glucose backbone

Lignin is a diverse group of aromatic polymers of phenylpropane units [193] and a

class of molecules not well suitable for microbial conversion [35]. For the pulp and

paper industry as well as for the biofuel production, lignocellulosic raw material with

low lignin content are desirable, but for burning, lignin-rich woods are preferable

due to their high energy density [44].

Hemicellulose is a group of heteropolysaccharides (see Tab. 1) comprising different

sugars like glucose, xylose, mannose, galactose, rhamnose, and arabinose with xylose

usually being the most abundant one [36]. The sugar monomers are recovered from

hemicellulose by acidic hydrolysis with relatively little effort and even at higher yield

than glucose is obtained from cellulose [86]. As a beneficial trait, C. glutamicum

tolerates growth inhibitors like furfurals, hydroxyl methyl furfurals and organic

acids [173] typically present in hydrolysates of lignocellulose and hemicellulose

[59]. Naturally, C. glutamicum does not use xylose as a substrate, but harbors xylose

importers [174] and also xylB, encoding xylulokinase. This enzyme phosphorylates

D-xylulose to D-xylulose 5-phosphate, the last step of xylose catabolism [24]. The

first step, the conversion of D-xylose to D-xylulose is catalyzed by the enzyme xylose

isomerase, coded for by xylA. Indeed, heterologous expression of xylA from E. coli,

alone or in combination with xylB, enables C. glutamicum to use xylose as carbon

and energy source [97]. This has been exploited to engineer C. glutamicum for the

production of amino acids, putrescine [138], cadaverine [36] and succinic acid [220]

from xylose-based raw materials.
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2.3 Bioprocess technology of industrial lysine

production

Beyond the biosynthetic properties of microorganisms, used for a desired bioconver-

sion, their robustness to cultivation in large volumes is crucial for industrial efficiency.

The cultivation vessel provides a defined environment and serves as a barrier to

the outside. Modern bioreactors at laboratory scale are equipped with advanced

measurement and control technology, allowing fine-tuned settings of environmental

parameters [52]. Important parameters controlled by the operator include the tem-

perature, the pH value, the supply with oxygen, substrate or anti-foaming agents

and the power input required for mass transfer (homogenization, dispersion) and

heat transfer. Within a certain operational window, the variation of these parameters

controls the microbial behavior and hence the resulting bioprocess. Bioreactors are

operated in different modes, i.e. batch, fed-batch and continuous mode, depending

on the purpose of the cultivation.

In a batch cultivation, all nutrients (with the exception of oxygen and pH correction

and antifoam agents) are present in the reactor at the time of inoculation. A batch

fermentation requires less sophisticated equipment then the other operational modes,

but allows no stringent control over certain cultivation parameters.

In a fed-batch cultivation, nutrients are supplied to the vessel. This feeding phase

follows an initial batch phase. There are different possible feed regimes, e.g. per-

manent, exponentially increasing feed and feed pulses. The biggest advantage of

this operational mode is the higher total amount of substrate, that can be transferred

into the vessel in a controlled manner without causing (e.g. oxygen-) limitation,

substrate inhibition or by-product formation. This also leads to high final product

concentrations in the vessel, which is advantageous for the downstream processing.

During production phase, auxotrophic strains require low levels of certain supple-

ment at all times, which can also be achieved by the fed-batch operation. Early

homoserine-auxotrophic C. glutamicum strains could be utilized for lysine produc-

tion, if homoserine or threonine was present in limiting concentration [143, 144].

Compared to the batch mode, fed-batch processes need to be constructed with a

larger amount of and also more sophisticated peripheral equipment. In addition to

the storage tank and the pump(s) necessary for the feeding, sensors and software

21



Chapter 2 Theoretical background

apt for the task also have to be in place. A special case of a fed-batch fermentation is

the repeated fed-batch (also called semi-continuous mode), in which a fraction of

the culture broth of the previous fermentation remains in the vessel, and is used as

inoculum for the next fed-batch.

The continuous mode is characterized by a steady (and in most cases constant and

balanced) flow in and out of the bioreactor. This leads to steady state conditions,

which can be easily controlled via the feed rate by the operator. The resulting high

productivity is gained at the cost of product concentration, which is not as high as in

fed-batch cultivations [69]. Again, advanced measurement and control technology

is required to ensure proper operation, but the continuous mode allows for smaller

reactor sizes, which reduces investment costs.

Industrial production of L-lysine is usually conducted in up to 700 m3 large stirred-

tank bioreactors, operated in fed-batch, repeated fed-batch or continuous mode [98].

The latter two have the advantage of shorter down-times and higher productivity,

but exhibit an increased risk of contamination or, in some cases, genetic instability

[72]. Air lift reactors exhibit a more energy-efficient oxygen transfer, but their overall

oxygen transfer rate is too low for the high cell density cultivation of modern lysine

producing C. glutamicum strains [98]. The immense production volumes make

multiple, successively larger seed reactors necessary. This is also due to the tendency

of C. glutamicum to show a prolonged lag phase if the initial cell concentration at

inoculation is too low. In this so called seed train the maintenance of monoseptic

conditions is absolutely essential, as a contaminant like e.g. Bacillus sp. would

outgrow C. glutamicum [98].

Raw materials, currently used in large scale lysine production, include sugar cane

sucrose, starch hydrolysates or molasses as carbon sources, depending on the location

of the production site, with corn starch hydrolysis e.g. dominating in North America

[68]. Ammonia in dissolved, gaseous or saline form is used to provide nitrogen.

Alternatively, complex sources like corn steep liquor are also used. The use of well-

defined raw materials is beneficial for process reproducibility and has increased in

the last two decades [98]. On the other hand, raw materials are a major cost factor

in the production of a bulk chemical with a low price like lysine (see Fig. 8) [41,

163].

Among all parameters, temperature is an important, yet relatively easily control-

lable parameter of a bioprocess, as no advanced measurement and control technology
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is required. Its measurement is usually conducted with simple thermocouple or res-

istance thermometers and regulated via cooling jackets and coils. In contrast to

chemical reactions, bioconversions do not produce heat very rapidly. The bigger

problem lies in the fact that biological reactions take place at comparatively low

temperature, only 5 to 20 ◦C above the temperature of the cooling water, which leads

to poor heat removal capacity [213]. The impact of temperature on the process,

however, is substantial. Microorganisms exhibit optimal growth at specific temper-

atures, depending on the species. For different strains of C. glutamicum, optimal

temperatures around 25 to 37 ◦C are reported [2] and cultivation in the past decades

is typically performed at 30 ◦C [98]. Below and above this optimum, specific growth

rate is reduced. Too high temperatures eventually lead to cell death. The optimal

temperature for growth also might not be the best temperature for the bioprocess as

in some cases slower growth is desirable, e.g. to avoid oxygen limitation. In order to

maintain a constant temperature despite the heat generated by the metabolic activity

of the microorganisms and the mechanical power input of the stirrer, bioreactors are

equipped with cooling jackets and coils [58]. With higher volumes this becomes a

more and more demanding task as the specific volume (volume per surface area)

gets smaller. This means that the metabolic heat, generated by the microorganisms

increases cubically with the volume, but the cooling surface of the vessel wall in-

creases only quadratically, often making expensive cooling coils inside of the reactor

necessary, when scaling up a bioprocess [91].

Amino acid bulk production is often located in close proximity to substrate manu-

facturers [47]. In case of sugar cane this means tropical regions [102], where the

temperature difference between process and cooling water might be even lower,

which further increases the problem to cool large scale production. From a biopro-

cess point of view this illustrates the advantages of running fermentations at higher

temperature. Clearly, the limitation for this are microorganisms, which are sensitive

towards the temperature of their environment. Yet, the clear economic benefits

make it worthwhile to investigate the possible improvement of lysine production

bioprocesses by increased temperature.
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MATERIALS AND METHODS

3.1 Bacterial strains and molecular work

Pre-existing strains. All strains of Corynebacterium glutamicum used in this work

were based on the wild type strain C. glutamicum ATCC 13032 and were obtained

from the American Type Culture Collection (Manassas, VA, USA) and from previous

work [2, 18] (Tab. 2, Fig. 10). Strains were kept as cryostocks made by mixing equal

volumes of 60 % glycerol and culture broth with exponentially growing cells and

freezing them in liquid nitrogen before storage at -80 ◦C.

C. glutamicum Lys1 has a T311I amino acid exchange in the lysC gene, which

results in an aspartokinase, resistant to feedback inhibition by lysine and threon-

ine. The rationally designed strain C. glutamicum Lys12 comprises 12 genomic

modifications [18]. E. coli strains DH5α and NM522 (Invitrogen GmbH, Darmstadt,

Germany) were utilized for amplification and methylation of plasmids, respectively.

The plasmid pTc15AcglM [164], which contained an origin of replication for E. coli

and tetracycline resistance as selection marker, served as expression vector for DNA

methyl transferase, which added the C. glutamicum specific methylation pattern to

plasmid DNA, upon co-expression in E. coli NM522.

Generation of C. glutamicum Lys12K. The episomal vector pClik 5a MCS [115],

which contains a multiple cloning site, an origin of replication for E. coli and for

C. glutamicum as well as a kanamycin resistance selection marker was transformed

into E. coli DH5α cells via a heat shock. For that, 50 µL of E. coli DH5α cells, growing

exponentially on LB medium, and 3 µL (1-50 ng) plasmid DNA were incubated on

ice for 30 minutes, shifted to 45 ◦C for 45 seconds and immediately planted back
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Table 2: Bacterial strains and plasmids used in this work. The genealogy of the strains is
shown in Fig. 10.

Name Relevant feature Ref./Source

E. coli DH5α Heat shock competent cells for plasmid transforma-
tion

Invitrogen

E. coli NM522a Heat shock competent cells for plasmid transforma-
tion and C. glutamicum methylation pattern via plas-
mid pTc15AcglM

Invitrogen

C. glutamicum ATCC 13032 Wild type strain [2, 108]
C. glutamicum Lys1 C. glutamicum ATCC 13032 with a feedback resistant

aspartokinase
[13]

C. glutamicum Ect1 C. glutamicum Lys1 heterologously expressing the
synthetic ectABCD gene cluster

[14, 27]

C. glutamicum Ect2 C. glutamicum Ect1 with deletion of the lysE gene [14, 65]
C. glutamicum Lys12 Lysine hyper producer [18]
C. glutamicum Lys12Kb C. glutamicum Lys12 containing the episomal pClik

plasmid
this work

C. glutamicum Xyl1b C. glutamicum Lys12 containing the episomal pClik
xylAB plasmid

this work

pTc15AcglM Contains an E. coli ORI and genes for tetracycline
resistance as well as for a C. glutamicum specific DNA
methyl transferase

[164]

pClik 5a MCS Episomal replicating plasmid containing an MCS, an
E. coli and C. glutamicum ORI and a kanamycin res-
istance gene

[115]

pClik 5a MCS PgroxylAB pClik 5a MCS with E. coli xylA and xylB genes [36]
pClik int sacB Integrative plasmid containing an MCS, an E. coli ORI

and a levansucrase as well as a kanamycin resistance
gene

[84]

pClik int sacB Ptu f ectABCD pClik int sacB for the replacement of C. glutami-
cum ddh with an codon optimized ectoine synthesis
cluster under the control of the C. glutamicum tuf
promoter

[14]

pClik int sacB ∆lysE pClik int sacB for the disruption of the C. glutamicum
lysE gene

[105]

aTetracycline resistant
bKanamycine resistant

on ice for 2 minutes. Subsequently, 900 µL SOC medium was added, cells were

incubated at 37 ◦C for one hour and were then plated on LB-agar plates with an

appropriate antibiotic. To harvest amplified plasmids, the Gene Jet Plasmid Miniprep

K 0503 or the Gene Jet Plasmid Midiprep K0481 (both Thermo Scientific, Schwerte,

Germany) were used. To achieve the methylation of the DNA apt for utilization by

C. glutamicum, the plasmid amplification step was repeated, using E. coli NM522.
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Wild type
ATCC13032

Lys1

Ect1

Ect2

∆lysE

ectABCD∆ddh

Lys12

Xyl1
KanR

pClik xylAB

Lys12K
KanR

pClik

...

lysCC932T

Fig. 10: Genealogical tree of the C. glutamicum strains used in this work. C. glutamicum
ATCC 13032 was obtained from the American Type Culture Collection (Manassas, VA, USA)
Lys1 [2] and Lys12 [18] are described in the literature. The generation of C. glutamicum Ect1
and Ect2 was described previously [14, 27, 65]. A red background color represents ectoine
production, a yellow one xylose utilization and strains resistant to kanamycin are labeled
KanR.

Plasmids, isolated from E. coli NM522, were used to transform C. glutamicum

Lys12 cells using electroporation. C. glutamicum cells were grown in BHI medium up

to an optical density of 1.5, harvested via centrifugation (13000×g, 5 min), washed 4

times with and resuspended in ice cold 10 % glycerol to a concentration of 0.125-0.25

gcww mL-1. In chilled electroporation cuvettes (2 mm gap, Bio-Rad, Hercules, CA,

USA), 100 µL of the resuspended cells and 200-500 ng plasmid DNA were mixed.

Electroporation was performed at 2.5 kV, 25 F and 400 Ω with the Gene-Pulser

electroporator (Bio-Rad, Hercules, CA, USA). After the electric pulse, 1 mL of BHIS

medium was added and the cells were then incubated for 1.5 hours at 30 ◦C, then

were spread on BHIS agar plates, containing kanamycin as a selection marker, and

finally were incubated at 30 ◦C for two days. Cells selected for on these plates were

the desired clones and were named C. glutamicum Lys12K.

Generation of C. glutamicum Xyl1. The episomal vector pClik 5a MCS PgroxylAB

was used for expression of the xylose operon [36]. The plasmid contained genes for

xylose isomerase (xylA, ECK3554) and xylulokinase (xylB, ECK3553) from E. coli

K-12 MG1655 under control of the strong constitutive C. glutamicum promoter Pgro,

a multiple cloning site, an origin of replication for E. coli and for C. glutamicum as
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Table 3: Primers used in this work.

Sequence (5’-3’) Function

CACCCTCAACAGTTGAGTGCTGGCAC Verifying integration of the xylAB gene in
pClik 5a MCSATTGTCTGTTGTGCCCAGTCATAG

AGAGTACCTGGGACGCAGCGTCG Verifying integration of the Ptu f ectABCD
gene cluster & disruption of the ddh geneCGTCGCGTGCGATCAGATCGGT

CTCGTTGAACACGGGAGGAA
Verifying disruption of the lysE gene

CACGGACAAATATCTCGATG

well as a kanamycin resistance selection marker. The process of transformation of

C. glutamicum Lys12 was analogous to the one described for C. glutamicum Lys12K

above. For the verification of of the successful transformation, clones from the LBKan

agar plates were transferred to agar plates with a minimal medium containing xylose

as the sole carbon. One of the colonies able to grow in presence of kanamycin and

on xylose was chosen and named C. glutamicum Xyl1.

For strain validation, polymerase chain reaction was performed in addition to

physiological confirmation, like antibiotic resistance and growth on xylose. PCR was

done using a mastercycler EP gradient PCR machine (Eppendorf, Hamburg, Germany)

and either the PWO master, the PCR master (both Roche, Basel, Switzerland) or the

KAPAHiFi Kit (Peqlab, Erlangen, Germany). Primers were obtained from Invitrogen

(Darmstadt, Germany) and are listed in Tab. 3. The annealing temperature Ta of

primers was calculated according to equation 1, were C, G, A and T stand for the

nucleobases cytosine, guanine, adenine and thymine, respectively.

Ta =


64+(nG+nC−16.4)

nA+nT+nC+nG
−5, if ∑ni > 13

(nA +nT ) ·2+(nG +nC) ·4−5, if ∑ni ≤ 13
(1)

Generation of C. glutamicum Ect1 and Ect2. Heterologous production of ectoine

in C. glutamicum was based on the ectABCD biosynthetic gene cluster from Pseudo-

monas stutzeri A1501 [198]. The codon usage was adjusted to that preferred by

C. glutamicum using the proprietary GeneOptimizer R© software (Geneart, Regens-

burg, Germany). The DNA sequence of the codon-optimized ectABCD variant gene

cluster, along with the original sequence of P. stutzeri A1501, can be seen in the

27



Chapter 3 Materials and Methods

ectA ectB ectC ectDPtufddh ddh

SpeI SpeI

3448bp

4577bp

5' homologous re-
combination site

3' homologous re-
combination site

Fig. 11: Construct for the integration of the ectoine synthesis cluster into C. glutamicum.
It contained the codon-optimized ectABCD gene cluster based on that present in P. stutzeri
A1501 under the control of the promoter for the tuf gene from C. glutamicum. For genome-
based integration via a double-recombination, the construct was additionally equipped
with flanking regions of about 560 bp DNA sequences, derived from the upstream and
downstream regions of the ddh gene. Recognition sites for the restriction enzyme SpeI were
added to facilitate cloning of this DNA fragment into the vector pClik int sacB [13]. The ddh
gene, encoding diaminopimelate dehydrogenase, was chosen as integration site to minimize
competing carbon flux towards lysine.

appendix (Fig. 36). The complete 4577 bp-sized construct (Fig. 11) was provided by

Geneart (Regensburg, Germany) and included a nucleotide sequence consisting of a

200-bp DNA segment that carried the strong and constitutively active promoter for

the expression of the structural tuf gene (NCgl0480) of the elongation factor Tu of

C. glutamicum and the aforementioned optimized ectABCD gene cluster. Addition-

ally, the construct was flanked by 560 bp-sized homologous recombination sites for

genome-based integration of the construct into the structural ddh gene (NCgl2528),

encoding diaminopimelate dehydrogenase. Artificial SpeI digestion sites were added

at the 5’ and 3’ end.

Ligation of this construct into the pClik int sacB plasmid was conducted with the

Rapid Dephos & Ligation Kit (Roche, Basel, Switzerland). The resulting plasmid

pClik int sacB Ptu f ectABCD was used for the integration of the synthetic gene cluster

into C. glutamicum Lys1. It contained the ectoine-production construct (Fig. 11), an

origin of replication for E. coli as well as a kanamycin resistance and a sacB gene as

selection markers.

The further treatment of the plasmid (heat shock into E. coli, electroporation

into C. glutamicum Lys1) was done as described above, but more plasmid DNA

(1-5 µg) was used in the electroporation step. Single C. glutamicum colonies, able

to grow in the presence of kanamycin, were further cultivated without selective
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pressure to allow for the second recombination event and were subsequently plated

on CMSac agar plates [84]. A colony sensitive to kanamycin and insensitive to sucrose,

C. glutamicum Lys1 ∆ddh Ptu f ectABCD, was named C. glutamicum Ect1.

The plasmid pClik int sacB ∆lysE [105] contained homologous recombination sites

for genome-based disruption of the lysE gene (NCgl1214), an origin of replication

for E. coli as well as a kanamycin resistance and a sacB gene as selection markers.

Transformation of this plasmid into C. glutamicum Ect1 was done as described above.

The resulting strain, C. glutamicum Ect1 ∆lysE, was named C. glutamicum Ect2. The

construction of C. glutamicum Ect1 was performed by Nicole Borchert [27] and strain

C. glutamicum Ect2 was constructed by Björn Johannes Harder [65].

For strain validation, polymerase chain reactions were performed in addition to

physiological confirmation, like ectoine production. PCR was done as described

above with primers listed in Tab. 3.

3.2 Chemicals

Complex media ingredients like BHI (brain heart infusion) powder, yeast extract,

peptone and tryptone as well as agar were obtained from Becton & Dickinson

(Franklin Lakes, NJ, USA). Isotopically labeled substrates, i.e. 1-13C and U-13C

glucose were obtained from Euriso-Top (Saarbrücken, Germany). If not specified

otherwise, all other chemicals were obtained from Sigma-Aldrich (St. Lois, MO, USA)

or Merck (Darmstadt, Germany) at analytical grade quality. Water was purified by a

Milli-Q Integral water purification system (Merck, Darmstadt, Germany).

3.3 Media for shake flask cultivations

Complex cultivation media used in this work are listed in Tab. 4. Chemically defined

media are given in Tab. 5. If a solid version of a medium was required, 18 g L-1 agar

were added before sterilization. The sterilization was performed by autoclaving at

121 ◦C and 2 bar for 20 min. If required, kanamycin and tetracycline were used as

antibiotics at concentrations of 50 and 12.5 mg L-1, respectively.

Chemically defined media cdm1 and cdm2 were prepared by mixing sterile stock

solutions (Tab. 5) and adding autoclaved deionized water. Solutions (A)-(G) and (K)
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Table 4: Composition of complex media.

Medium Amount (g) Component Water (mL) Comment

BHI 37 BHI 1000

BHIS 37 BHI 750
250 mL 2 M sorbitol
solution added after
autoclaving

CM

2.5 NaCl

930

50 mL 40 g L-1 urea
solution and 20 mL 500
g L-1 glucose solution
added after autoclaving

5 Yeast extract
10 Peptone
5 Meat extract

CMSac

2.5 NaCl

930

50 mL 40 g L-1 urea
solution and 20 mL 500
g L-1 glucose solution
added after autoclaving

5 Yeast extract
10 Peptone
5 Meat extract
100 Sucrose

LB
5 NaCl

10005 Yeast extract
10 Tryptone

SOC

0.5 NaCl

975

5 mL 2 M MgCl2 solution
and 20 mL 1 M glucose
solution added after
autoclaving

5 Yeast extract
0.186 KCl
20 Tryptone

were sterilized by autoclaving, (H)-(J) by filtration (0.2 µm Minisart filter; Sartorius,

Göttingen, Germany). The medium cdm1 was used for shake flask cultivations with

xylose as the carbon source and the glucose-based reference cultivations thereof. The

cdm2 medium was used for all other shake flask cultivations on chemically defined

medium.

3.4 Media for bioreactor cultivations

Lysine production from xylose. The batch medium for lysine production from xyl-

ose contained (per liter medium): 72.4 g root beet molasses (Paik Kwang Industrial,

Gunsan, South Korea), 35 mL corn steep liquor (BASF, Ludwigshafen, Germany) , 85

g xylose, 250 µL H3PO4 (85 %), 40 g (NH4)2SO4, 250 mg KH2PO4, 100 mg MgSO4.
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Table 5: Composition of chemically defined media.

Stock Concentra- Component Comment mL in 1 L
solution tion (g L-1) cdm1 cdm2

A
40 NaCl

25 252.2 CaCl2
8 MgSO4

B 150 (NH4)2SO4 pH 7.0 100 100

C 100 Glucose 100

D 100 Xylose or glucose 100

E 100
N-(2-Acetamido)-2-
aminoethanesulfonic
acid (ACES)

pH 7.4 100

F KXHXPO4
a pH 7.8 100

G 2 FeSO4.7H2O pH 1.0 10 10

H 30
3,4-dihydroxybenzo-
ic acid

in 0.3 M
NaOH solution 1 1

I

0.2 FeCl3.6H2O

pH 1.0 10 10

0.2 MnSO4.H2O
0.05 ZnSO4.H2O
0.02 CuCl2.2H2O
0.02 Na2 B4O7.10H2O
0.01 (NH4)6Mo7O24.4H2O

J
0.025 Biotin

20 200.05 Thiamin
0.05 Ca-pantothenate

K 23 K2HPO4 10
a2 M KH2PO4 and 2 M K2HPO4 mixed to achieve a pH of 7.8

7H2O, 11 mg FeSO4.7H2O, 10 mg citric acid, 9 mg biotin, 15 mg thiamin-HCl, 60

mg Ca-pantothenate and 18 mg nicotinamide. The feed medium, added during the

fed-batch phase, contained 162.5 g molasses, 585 g xylose and 40 g (NH4)2SO4 per

liter.

Ectoine production from glucose. One liter of batch medium contained the fol-

lowing stock solutions: (A) 25 mL salt solution (40 g L-1 NaCl, 2.2 g L-1 CaCl2, 8 g L-1
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MgSO4), (B) 50 mL ammonium solution (400 g L-1 (NH4)2SO4, pH 7.0), (C) 100 mL

sugar solution (500 g L-1 glucose), (D) 100 mL buffer solution (2 M KH2PO4 and

2 M K2HPO4 mixed to achieve a pH of 7.8), (E) 10 mL yeast extract (50 g L-1), (F)

10 mL iron solution (2 g L-1 FeSO4.7H2O pH 1.0), (G) 1 mL complexing agent (30

g L-1 3,4-dihydroxybenzoic acid in 0.3 M NaOH solution), (H) 10 mL trace element

solution (200 mg FeCl3.6H2O, 200 mg MnSO4.H2O, 50 mg ZnSO4.H2O, 20 mg

CuCl2.2H2O, 20 mg Na2 B4O7.10H2O and 10 mg (NH4)6Mo7O24.4H2O per liter,

pH 1.0) and (I) 20 mL vitamin solution (25 mg biotin, 50 mg thiamin and 50 mg

Ca-pantothenate per liter). The feed medium comprised the same stock solutions

in the following composition per liter: (A) 5 mL, (B) 125 mL , (C) 850 mL, (E) 10

mL, (I) 50 mL. Solutions (D), (F), (G) and (H) were omitted. Solutions (A)-(E)

were sterilized by autoclaving, solutions (F)-(I) were sterilized by filtration (0.2 µm

Minisart filter; Sartorius, Göttingen, Germany).

Lysine production from glucose at elevated temperature. One liter of medium

contained the following stock solutions: (A) 25 mL salt solution (40 g L-1 NaCl, 2.2

g L-1 CaCl2, 8 g L-1 MgSO4), (B) 176.5 mL ammonium/sugar solution (248 g L-1

(NH4)2SO4 and 766 g L-1 glucose, pH 7.0), (D) 20 mL buffer solution (2 M KH2PO4

and 2 M K2HPO4 mixed to achieve a pH of 7.8), (E) 10 mL iron solution (2 g L-1

FeSO4.7H2O pH 1.0), (F) 1 mL complexing agent (30 g L-1 3,4-dihydroxybenzoic

acid in 0.3 M NaOH solution), (G) 10 mL trace element solution (200 mg FeCl3.6
H2O, 200 mg MnSO4.H2O, 50 mg ZnSO4.H2O, 20 mg CuCl2.2H2O, 20 mg Na2

B4O7.10H2O and 10 mg (NH4)6Mo7O24.4H2O per liter, pH 1.0) and (H) 20 mL

vitamin solution (25 mg biotin, 50 mg thiamin and 50 mg Ca-pantothenate per liter).

The feed medium comprised the same stock solutions in the following composition

per liter: (A) 5 mL, (B) 969.5 mL, (E) 5 mL, (F) 0.5 mL, (G) 5 mL and (H) 10 mL.

Solutions (A)-(D) were sterilized by autoclaving and (E)-(H) by filtration (0.2 µm

Minisart filter; Sartorius, Göttingen, Germany). The sterility of solution (B) was

ensured by first autoclaving the components in their dry form separately and then

dissolve them in sterile water.
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3.5 Cultivation conditions

3.5.1 Shake flask cultivation

Dispersing a small aliquot of cryostocks on BHI agar and incubation for two days

at 30 ◦C gave rise to enough cell material to be used in suspension cultures. Single

colonies from those agar plates were used as inoculum for a first pre-culture in

complex BHI medium. All shake flask cultures were incubated in baffled shake

flasks filled with 10 % medium at 230 rpm on an orbital shaker with a shaking

diameter of 5 cm (Multitron, Infors AG, Bottmingen, Switzerland). After 12 hours of

incubation, cells were harvested (5 min, 9800×g, 4 ◦C), including a washing step

with sterile NaCl (9 g L-1), and were then used as inoculum for a second pre-culture

in minimal medium. Cells were grown to mid exponential phase, were harvested as

described above, and were then used to inoculate main cultures in minimal medium.

On-line measurement of dissolved oxygen and pH in shake flasks was conducted

with immobilized sensor spots and a flask reader system (SFR, Presens, Regensburg,

Germany), installed in the rotary shaker [180].

3.5.2 Miniaturized cultivations

Small-scale cultivations of C. glutamicum strains were carried out in 1 mL cdm2 in 48-

well flower plates (m2p-labs, Baesweiler, Germany) at 700 rpm using the Biolector

system (DASGIP, Jülich, Germany). The temperature was varied between 27 ◦C

and 42 ◦C. To avoid evaporation of the medium, the plates were sealed with a gas-

permeable membrane (Aera Seal, Sigma Aldrich, Steinheim, Germany). Inoculum

preparation involved shake flask cultivation as described above, and these cells were

then subsequently used to inoculate the multi-well plates to an initial optical density

of 0.3. Cell growth was monitored online via measurement of the optical density

at 620 nm. After 10 h (27 ◦C, 30 ◦C, 35 ◦C) and 20 h (42 ◦C), extracellular and

intracellular accumulation of ectoines was determined. Process monitoring, data

collection, and data processing were carried out with the software suit BioLection

(m2p-labs, Baesweiler, Germany). Miniaturized cultivations were carried out by

Nicole Borchert [27].
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3.5.3 Fed-batch bioprocesses

Bioreactors used were stirred tank reactors with 1 L working volume (SR0700O-

DLS/CWD4 Bioblock, DASGIP AG, Jülich, Germany), equipped with two 6-blade

rushton impellers. The set-up also included temperature, pH (Mettler Toledo, Gießen,

Germany) and dissolved oxygen (DO) probes (VisiFerm, Hamilton, Bonaduz, GR,

Switzerland), aeration (MX4/4 aeration system, DASGIP AG, Jülich, Germany) and

pumps for the addition of base and feeding solution (MP8 pump system, DASGIP

AG, Jülich, Germany). In all cultivations, the initial volume was 300 mL medium.

The pH was controlled at 6.9 ± 0.2 by addition of 25 % NH3 (aq) using the software

DASGIP control (DASGIP AG, Jülich, Germany).

Lysine production from xylose. For preparation of inoculum, cells from glycerol

stocks of C. glutamicum Xyl1 were streaked out on BHI agar and incubated for two

days at 30 ◦C. Cells were then transferred to BHI medium with 10 g L-1 glucose for

rapid biomass generations and incubated for 12 hours at 30 ◦C at 230 rpm on a

rotary shaker with a shaking diameter of 2.5 cm (Certomat IS, Sartorius, Göttingen,

Germany). Afterwards, cells were harvested by centrifugation (10 min, 9800×g,

4 ◦C), resuspended in 20 mL of sterile 9 g L-1 NaCl solution and then were transferred

into the bioreactor with a syringe. During the process, temperature was kept at 30

± 0.3 ◦C. The stirrer speed (400-1200 rpm) and aeration rate (6-12 L h-1) were

adjusted manually to keep the dissolved oxygen concentration above 20 % relative

saturation.

Ectoine production from glucose. Ectoine production of C. glutamicum Ect2 was

also investigated by fed-batch cultivation. Cells pre-grown on agar plates as described

above were transferred in BHI medium with 20 g L-1 glucose and were incubated

for 10 hours at 35 ◦C at 230 rpm on a rotary shaker with a shaking diameter of

2.5 cm (Certomat IS, Sartorius, Göttingen, Germany). Cells were then harvest using

a Heraeus Multifuge 4KR centrifuge (Thermo Fisher Scientific, Rockford, MA, USA,

5350×g, 10 min), re-suspended in 20 mL fermentation medium and then transferred

into the bioreactor with a syringe as an inoculum. Dissolved oxygen was maintained

above 30 % of relative saturation by adjustment of stirrer speed and aeration rate.

These values were initially set to 18 L h-1 and 400 rpm, respectively. The temperature
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was kept constant at 35 ± 0.3 ◦C. The feeding was automatically controlled via the

dissolved oxygen (DO) level by triggering feed pulses upon pronounced increases in

the DO, which indicated complete sugar utilization by the cells. The fermentation

for ectoine production was done in collaboration with Michael Kohlstedt [111] and

Björn Johannes Harder [65].

Lysine production from glucose at elevated temperature. For production at elev-

ated temperature, cells were grown in a series of pre-cultures (see 3.5.1), then were

harvested, re-suspended in a small volume of fermentation medium and used as

inoculum. Aeration rate (8 to 16 L h-1 air) and stirrer speed (800 to 1200 rpm) were

varied to keep the dissolved oxygen level above 20 % saturation. Temperature was

kept constant at 38 ± 0.3 ◦C or 30 ± 0.3 ◦C as specified below. The feed was added

pulse-wise, coupled to the dissolved oxygen signal as described above.

3.6 Analytical methods

3.6.1 Sample preparation

For the quantification of substrates and of secreted products in the culture super-

natant, the biomass was separated from the culture broth by centrifugation (13000×g,

5 min, 4 ◦C and 10000×g, 15 min, 4 ◦C, centrifuge 5415R Eppendorf, Hamburg,

Germany).

For the quantification of intracellular concentrations of ectoine and hydroxyectoine,

cells from 1 mL culture were harvested by centrifugation (13000×g, 5 min, 4 ◦C).

The exact sample volume was determined gravimetrically on an analytical balance

(CP255D, Sartorius, Göttingen, Germany). In parallel, the optical density was

measured to quantify the harvested biomass amount. The supernatant was decanted,

and the cells were subsequently dried for 12 h in a speedvac apparatus (Concentrator

5301, Eppendorf, Hamburg, Germany). Cells were re-suspended in 500 µL Bligh &

Dyer solution (MeOH:CHCl3:H20, 10:5:2) and disrupted mechanically (FastPrep R©-

24, 3 min, 4 m s-1, MP Biomedicals, Santa Ana, CA, USA) using glass beads with a

diameter of 0.04 mm. The disruption step was repeated, after adding 130 µL H2O

and 130 µL chloroform to the slurry. Phases were then separated by centrifugation

(10000×g, 15 min centrifuge 5415R, Eppendorf, Hamburg, Germany). The aqueous
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phase was transferred into a novel reaction tube and subsequently evaporated to

dryness in a speedvac apparatus. The remaining solids were dissolved in 80-100 µL

H2O and centrifuged (15 min, 10000×g, 4 ◦C); metabolite concentrations were then

quantified by HPLC analysis (see section 3.6.3). Sampling for quantification of the

intracellular amino acid concentration was performed by fast filtration as described

in the literature [26].

3.6.2 Quantification of cell concentration

The concentration of cells was determined by measurement of the optical density of

the culture broth at 660 nm in plastic cuvettes (Sarstedt, Nümbrecht , Germany) and

water as a zero-value. For E. coli cells, a wave length of 600 nm was used. For optical

densities, determined with the Libra S11 instrument (Biochrome, Cambridge, UK),

the correlation between optical density and cell dry weight was 0.255 gcdw L-1 OD-1,

as reported in earlier work [11]. For determining the corresponding correlation

for a UV-1600PC spectrophotometer (VWR, Radnor, PA, USA), cells were cultivated

in 200 mL chemically defined medium in 2 L baffeled shake flasks after two pre-

cultures on BHI and defined medium as described before. At different time points,

10-14 mL of broth were withdrawn into pre-weighed reaction tubes, centrifuged

(10 min, 9800×g) and washed three times with deionized water. The cell pellets were

then dried until weight constancy (about 72 h), cooled to room temperature in an

desiccator and then weighed. The resulting correlation factor was 0.39 gcdw L-1 OD-1

(30 ◦C) and 0.34 gcdw L-1 OD-1 (38-40 ◦C).

3.6.3 Quantification of metabolites

Glucose, trehalose and organic acids were quantified by HPLC (Agilent 1260 Infinity

Series, Agilent Technologies, Waldbronn, Germany), using a Microgard pre-column

(Cation+ H+ 30x4.6, Bio-Rad, Hercules, CA, USA) and an Aminex HPX-87H main

column (Bio-Rad) as solid phase, 5 mM H2SO4 (55 ◦C, 0.7 mL h-1) as mobile phase

and quantification via external standards and refraction index detection (Agilent

Technologies, Waldbronn, Germany). Alternetively, xylose, glucose, fructose and

sucrose were quantified in diluted cultivation supernatant with HPLC (LaChromElite,

Hitachi, Chiyoda, Japan) on a Meta-Carb 87C carbohydrate column (300×7.8,
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Varian Inc., Palo Alto, CA, USA) at 85 ◦C with de-ionized water as mobile phase (0.6

mL min-1) and detection via refraction index. At-line analysis of glucose during shake-

flask experiments for ectoine production and of xylose during fed-batch cultivations

was performed by enzymatic quantification of the sugars in 1:10 diluted supernatant

samples using the biochemical analyzer YSI 2700 Select (YSI, Yellow Springs, OH,

USA).

Amino acids were quantified by HPLC (Agilent 1200 Series, Agilent Technolo-

gies, Waldbronn, Germany) on a reverse phase column (Gemini5u, Phenomenex,

Aschaffenburg, Germany) with fluorescence detection, after pre-column derivatiza-

tion with o-phthalaldehyde [116]. A gradient of eluent A (40 mM NaH2HPO4, pH

7.8) and B (45 % acetonitrile, 45 % methanol, 10 % water) served as mobile phase.

Quantification involved α-aminobutyric acid as internal standard [103]. In samples

from fed-batch production on xylose, lysine was quantified by HPLC (LaChromElite,

Hitachi, Chiyoda, Japan) on an Ionospher 5C column (100×3, Varian Inc., Palo

Alto, CA, USA) at 40 ◦C, a flow rate of 1.5 mL min-1 (20 mM tartaric acid, 4.9 mM

ethylenediamine, 1.8 mM citric acid in 95 % H2O and 5 % methanol) and detection

via refraction index. For lysine, mass concentrations given refer to lysine·HCl.

Ammonium was quantified in diluted supernatants by HPLC (ICS-2000, IonPac

CS16 column, IonPac CG16 pre-column, Dionex, Sunnycale, CA, USA) at a flow

of 0.5 mL min-1 at 40 ◦C with methansulfonic acid as mobile phase. Detection

was performed by a conductivity detector (L7470, LaChromElite, Hitachi, Chiyoda,

Japan).

Quantification of ectoine and hydroxyectoine was performed by HPLC analysis

(LaChrome, Merck-Hitachi, Darmstadt, Germany) using a ProntoSil C18 AQ + col-

umn (125×4 mm, Knauer, Berlin, Germany) with a Nucleosil C18 AQ + pre-column

(120×5 mm, Knauer, Berlin, Germany). As mobile phase, a phosphate buffer was

used (0.8 mM K2HPO4; 6.0 mM Na2HPO4, pH 7.6) at a flow rate of 1 mL min-1 and

at 40 ◦C. The injection volume was 2 µL. Detection was carried out with a diode

array detector (L7450, LaChrome, Merck-Hitachi, Darmstadt, Germany) at 220 nm.

3.6.4 Enzymatic assays

For preparation of a cell extract, cells, cultivated on minimal salt medium, were

harvested by centrifugation (5 min, 9800×g, 4 ◦C), washed with disruption buffer

37



Chapter 3 Materials and Methods

[97] and re-suspended in the same buffer to a final concentration of 0.25 gcww mL-1.

In a reaction cup, filled with 0.5 mL of glass beads (0.15-0.25 mm ∅), 1 mL of

the suspension was then disrupted using a homogenizer (4 m s-1, 2×30 s with a

5 min break in between, FastPrep-24, MP Biomedicals, Santa Ana, CA, USA). Cell

debris was removed by centrifugation (5 min, 14000×g, 4 ◦C). The protein content

of the obtained extract was measured with a bicinchoninic acid (BCA) protein assay

(Thermo Fisher Scientific, Rockford, MA, USA).

Xylose isomerase activity was determined in a reaction mixture that contained 50

mM Tris-HCl (pH 7.4), 10 mM MgCl2, 0.15 mM NADH, 0.5 U mL-1 sorbitol dehyd-

rogenase (Roche, Basel, Switzerland), 50 mM xylose and 20 µL crude cell extract

[56, 215]. Xylulokinase activity was measured in a reaction mixture that contained

50 mM Tris-HCl (pH 7.5), 2 mM MgCl2, 2 mM ATP, 0.2 mM phosphoenolpyruvate,

0.2 mM NADH, 10 U mL-1 pyruvate kinase (Sigma-Aldrich, St. Lois, MO, USA), 10

U mL-1 lactate dehydrogenase (Sigma-Aldrich, St. Lois, MO, USA), 13 mM xylulose

and 0.5 µL crude cell extract [51]. Diaminopimelate dehydrogenase activity was

determined in a reaction mixture that contained 200 mM glycine (pH 10.5), 10 mM

MgCl2, 2 mM NADP, 4 mM meso-diaminopimelate and 50 µL crude cell extract [39].

Quantification of the activity was realized by measuring the change of NADH

absorption at 340 nm (Sunrise, Tecan, Männedorf, Switzerland). It was converted to

enzymatic units, i.e. the amount of enzyme that catalyzes the reaction at a rate of 1

µmol min-1.

3.6.5 Mass spectrometry

Labeling patterns of proteinogenic amino acids and of secreted trehalose, required

for calculation of metabolic fluxes, were determined from the proteinogenic amino

acids and from the secreted trehalose by GC-MS [100]. Sample preparation and

measurements were carried out as described previously [26], using the GC system

7890A gas chromatograph and a quadrupole MS detector (inert MSD 5979C, Agilent

Technologies, Waldbronn, Germany). The 13C labeling patterns were determined

from three samples, which were taken at different time points during cultivation, to

verify the isotopic steady-state. The mass spectra of alanine, valine, threonine, as-

partate, glutamate, serine, phenylalanine, glycine and tyrosine from the cell proteins

and of the trehalose from the culture supernatants, which were corrected for the
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natural abundance of all stable isotopes then served as input for the flux calculation.

3.6.6 Metabolic flux analysis

Metabolic flux calculation was performed by Judith Becker at the Institute of Systems

Biology at the Saarland University. The metabolic network for flux estimation

comprises the central metabolism with glycolysis, the pentose phosphate pathway, the

tricarboxylic acid cycle and the glyoxylate shunt. All reactions for the interconversion

of the three-carbon metabolites of glycolysis and the four-carbon metabolites of

the TCA cycle present in C. glutamicum Lys12 as well as typical by-product-forming

pathways were included.

For flux estimation, the metabolic network of C. glutamicum was implemented in

the open source software OpenFlux [34, 167]. The software was extended to handle
13C labeling data from the two parallel experiments by changing the subroutines

‘leastSQ’ and ‘mdvGenerator’ (Fig. 37 in the appendix). In addition, the specification

file, reflecting the parallel labeling experiments (‘inputSubEMU.mat’), was adapted

accordingly, using the guided substrate input specifications [166].

Directly measured fluxes from three biological replicates (glucose uptake, form-

ation of biomass, lysine and by-products) were used to calculate the free fluxes in

the metabolic network of C. glutamicum Lys12 [34, 167]. The set of fluxes that gave

the minimal deviation between the experimental and the simulated mass isotopomer

fractions considered to be the best calculation of the intracellular flux distribution.

For error considerations, a weighted sum of least-squares was applied [229]. The

labeling data were corrected for the natural labeling of the inoculum and for nat-

ural isotopes [228]. Statistical analysis providing 90 % confidence intervals of the

estimated fluxes was carried out by Monte-Carlo approach [167, 233].

3.7 Calculation of production parameters

3.7.1 Yields and rates

For calculation of yields during cultivations, the amount of product (Ptn) formed and

substrate (Stn) utilized for each sample time tn was calculated. The term product

applies to biomass as well as to any metabolite formed. For simple shake flask
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cultivations at low temperatures, i.e. cultivations in chapters 4.3 and 4.2, equations

2 and 3 were used. Hereby, cP,tn denotes the concentration of the product at time tn;

the denomination of the substrate concentration followed suit.

Ptn = cP,tn− cP,t0 (2)

Stn = cS,t0− cS,tn (3)

For cultivations where the broth volume (Vt) significantly changed due to factors other

than sampling, i.e. all fed-batch cultivations and shake flask cultivations in chapter

4.1, where evaporation was considered due to higher temperatures, equations 4 and

5 were used

Ptn =Vtn · cP,tn−Vt0 · cP,t0 +
tn

∑
n=t0

(Vsample,n · cP,n) (4)

Stn =Vt0 · cS,t0−Vtn · cS,tn−
tn

∑
n=t0

(Vsample,n · cS,n) (5)

In all cases, the yield was determined by linear regression according to equation 6.

YP
S ,tn

=

tn
∑

n=t0
Pn ·Sn

tn
∑

n=t0
S2

n

(6)

Product per biomass yield YP
X ,t for the calculation of specific product formation rate

(see equation 9) were calculated using equation 7.

YP
X ,tn =

tn
∑

n=t0
Pn ·Xn

tn
∑

n=t0
X2

n

(7)
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For the calculation of the maximum specific growth rate µmax, equation 8 was used.

Here, the amount of biomass Xt was calculated according to equation 2 or 4 and

nt represents the amount of sample points used for the calculation. Like equation

6, equation 8 also a linear regression, but for the calculation of µmax only samples

considered to be within the period of exponential growth were included, not all

samples.

µmax,tn =

n ·
tn
∑

n=t0
(ln(Xn) ·n)−

tn
∑

n=t0
n ·

tn
∑

n=t0
(ln(Xn))

n ·
tn
∑

n=t0
n2−

(
tn
∑

n=t0
n
)2 (8)

Specific rates of product formation (qP) and substrate uptake (qS) were calculated

according to equation 9 and 10, respectively.

qP,tn = µmax,tn ·
P, tn
X , tn

(9)

qS,tn =
µmax,tn
YX

S ,tn

(10)

3.7.2 NADPH supply and demand

Following the stoichiometry of lysine production (chapter 2.1.2, Fig. 7) and the

metabolic routes in C. glutamicum (Fig. 6), equations 11 and 12 were used to

calculate the NADPH supply and demand respectively.

SupplyNADPH = vMalE + vIcd + vZwf + vGnd (11)

DemandNADPH = 4× vLysA + vBiomass×16.429
mmol

g
(12)

The corresponding genes and names to the enzymes, abbreviated here, can be found

in the list on page vi. The NADPH demand for biomass production is taken from

[231].
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3.7.3 Economic parameters

For the assessment of the economic effects of different cultivation temperatures

(chapter 4.1), equations 13 and 14 were used to calculate revenues. Equation 13

hereby represents the fundamental concept and equation 14 the more mathematical

notation, showing that in addition to the market prices of the substrate and product

also the product yield, the operational cost of the production plant and the production

rate play a role.

Revenue = {Market priceProduct}−{CostSubstrate}−{Operational cost} (13)

Revenue =

[
e

molLys

]
−
[
e

molGluc
·YS

P

]
−

[
e

L·h
molLys

L·h

]
(14)
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Lysine production of C. glutamicum at elevated

temperature

4.1.1 Growth and product formation

Temperature is one of the most fundamental process parameters in microbiology

and biotechnology. While it appears straightforward in research to keep cultivation

conditions constant in order to enable the comparison of different experiments,

traditionally used parameters might not be desirable for production performance.

Almost all cultivations with C. glutamicum have been performed at a temperature

around 30 ◦C [98]. However, it has been reported that certain strains may show

increased production performance at higher temperature [149]. In this regard, first

studies should investigate underlying metabolic responses to temperature in order

to eventually identify mechanisms for an enhancement of production and further

improvement of industrial applications of C. glutamicum.

The C. glutamicum strains under investigation comprised the entire range with

regard to lysine production, including the wild type C. glutamicum ATCC 13032, the

basic lysine producer C. glutamicum Lys1 and the hyper-producing strains C. glu-

tamicum Lys12 and Lys12K (Tab. 2, Fig. 10). C. glutamicum ATCC 13032 hereby

is the predecessor of all the strains, strain Lys1 displays lysine secretion due to

the decoupling of the enzyme aspartokinase from metabolic feedback inhibition.

The genome of the hyper-producers C. glutamicum Lys12 and Lys12K have been

engineered on a systems-wide level to allow for optimized lysine production [18].

The latter strain additionally possesses the empty plasmid pClik 5a MCS as further
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Fig. 12: Screening of C. glutamicum Lys12K growth and lysine production properties over a
range of temperatures in shake flasks. The data were corrected for evaporation and sampling
and the error bars represent the standard deviation of two flasks (for 30 and 40 ◦C four and
three flasks, respectively).

metabolic burden (Tab. 2).

An initial screening study investigated the impact of temperature on the growth

physiology of a highly advanced lysine producer in a range from the conventional

value 30 to 40 ◦C. C. glutamicum Lys12K, the strain with the highest metabolic

burden, was chosen for the first experiments as it was expected to be most sensitive to

environmental changes. Growth experiments in shake flasks revealed a considerable

temperature robustness of the strain (Fig. 12). Fastest growth of Lys12K occurred

at 30 ◦C, but the strain was capable to grow up to 40 ◦C, the highest temperature

tested. In contrast to a decreased growth efficiency, lysine production was enhanced

at higher temperature. The lysine yield at 40 ◦C (0.44 mol mol-1) was 55 % higher

than that at 30 ◦C (0.28 mol mol-1). The process productivity showed a maximum at

35.5 ◦C.

For three temperatures, 30, 38 and 40 ◦C, shake flask cultivations were performed

of the four strains mentioned above and the robust performance at higher temperat-

ure was also observed for them (Tab. 6). Generally, higher temperature positively

influenced lysine production at the expense of growth, i.e. biomass yield and specific

growth rate. To some extent, the studied strains differed in their quantitative re-

sponse to the imposed temperature. All lysine producing strains showed an increase

in the lysine yield of about 40-50 % with a temperature increase from 30 to 38 ◦C.

However, the highest temperature tested (40 ◦C) was only beneficial for lysine in
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Table 6: Impact of cultivation temperature on growth kinetics and stoichiometry in the wild
type C. glutamicum ATCC 13032 and lysine producing strains C. glutamicum Lys1, Lys12
and Lys12K, all grown on glucose minimal medium. The data comprise yields for the main
products lysine (YLys/Glc) and biomass (YX/Glc), maximum specific growth rate (µmax) and
yields for by-products trehalose (YTre/Glc), succinate (YSuc/Glc) and glycine (YGly/Glc) and
reflect mean values and deviations from three biological replicates (for Lys12K 30 and 38 ◦C
four and two replicates, respectively). The underlying concentration measurement data are
corrected for evaporation and sampling.

Strain Temp. µmax YX/Glc YLys/Glc YTre/Glc YSuc/Glc YGly/Glc
[ ◦C] [h-1] [g/mol] [mol/mol] [mmol/mol] [mmol/mol] [mmol/mol]

ATCC
13032

30 0.41±0.01 94.4±4.7 n/a 3.7±0.2 10.9±0.0 9.0±0.3

38 0.23±0.01 57.7±5.2 n/a 10.4±0.6 16.8±0.9 7.4±0.6

40 0.12±0.00 63.8±1.4 n/a 12.3±0.5 15.5±1.3 2.5±0.4

30 0.39±0.00 86.9±3.6 0.08±0.01 4.3±0.0 11.0±0.0 5.2±0.2

Lys1 38 0.31±0.00 52.7±5.8 0.12±0.00 10.5±0.7 16.6±0.5 4.2±0.2

40 0.08±0.01 37.8±1.2 0.22±0.06 15.4±1.2 12.2±0.6 1.6±1.1

30 0.24±0.01 57.9±2.6 0.27±0.02 5.7±0.9 6.0±2.0 4.0±0.7

Lys12 38 0.11±0.00 33.2±1.4 0.43±0.01 14.4±1.1 4.5±0.0 1.7±0.1

40 0.03±0.00 16.1±0.2 0.41±0.03 12.6±0.4 6.0±0.1 0.5±0.1

30 0.25±0.01 58.9±9.5 0.28±0.02 3.1±1.3 6.2±0.1 3.8±0.5

Lys12K 38 0.10±0.02 25.8±4.9 0.43±0.01 14.5±0.1 9.0±0.0 0.1±0.0

40 0.03±0.01 20.2±1.2 0.44±0.01 12.7±0.3 5.9±0.1 0.4±0.0

C. glutamicum Lys1, not for the highly engineered producers. With regard to growth,

the highly advanced lysine producers appeared more sensitive than the wild type

C. glutamicum ATCC 13032 and the basic producer C. glutamicum Lys1. The highest

lysine yield achieved in these shake flask studies amounted to almost 60 % of the

theoretical maximum of 0.75 mol mol-1 [197].

By-products formed at significant levels were trehalose, glycine and succinate (Tab.

6). The secretion of the disaccharide trehalose increased with higher temperature.

In contrast, glycine formation was reduced as temperatures increased, whereby the

relative changes differed among the strains to a varying degree. Succinate secretion

did not follow a temperature-specific pattern but remained within a similar range for

each strain. Leucine was secreted only by C. glutamicum ATCC 13032 at elevated

temperatures to levels of 46 and 75 µM at 38 and 40 ◦C respectively. Glutamate

was formed at levels above 10 µM only at the highest temperature of 40 ◦C to

concentrations of 45, 30, 52 and 18 µM for C. glutamicum ATCC 13032, Lys1, Lys12

and Lys12K, respectively. The increased levels of trehalose and glutamate at elevated
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Fig. 13: Quantitative physiological characterization of C. glutamicum Lys12 grown at 30 and
38 ◦C. A: Linear correlation of produced biomass and lysine relative to the amount of glucose
consumed by the cells. B: Exponential biomass production over the relevant time window of
the cultivation. The correlations show the metabolic steady state during exponential growth
of the cells.

temperatures are easily understood as those two compounds are known compatible

solutes and synthesized by C. glutamicum under temperature stress conditions [43,

55, 85]. The observed change in growth and product formation was a clear indication

for an altered physiology in the studied strains.

4.1.2 Intracellular metabolic fluxes

Flux calculation and NADPH balance. The clear effect on growth and production

suggested a temperature dependent metabolic shift towards a production-favorable

carbon utilization. To assess the intracellular flux distribution, C. glutamicum Lys12

was grown on [1-13C] glucose as well as on an equimolar mixture of [U-13C] glucose

and naturally labeled glucose in parallel. Subsequent GC/MS analysis of secreted

trehalose and of amino acids (alanine, valine, threonine, aspartate, glutamate, serine,

phenylalanine, glycine and tyrosine) from hydrolyzed cell protein delivered precise
13C labeling data (Tab. 7).

The obtained experimental data were used to calculate metabolic flux distributions

for each temperature (Fig. 15 and 16). The set of intracellular fluxes that gave the

minimum deviation between experimental and simulated labeling patterns was taken

as best estimate for the intracellular flux distribution. For both studied temperatures,

identical flux distributions were obtained with multiple starting values for the flux
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Table 7: Relative mass isotopomer fractions of amino acids from hydrolyzed cell protein
and the secreted trehalose from C. glutamicum Lys12, grown at 30 and 38 ◦C in 99% [1-
13C] glucose and in an equimolar mixture of naturally labeled glucose and 99% [U-13C]
glucose. Data denote experimental GC-MS data (exp) and calculated labeling patterns (calc),
corresponding to the optimal flux fit. The mass isotopomer m represents the relative amount
of non-labeled isotopomer, m+1 represents the amount of singly labeled mass isotopomer
fraction and so on. Amino acids and trehalose were analyzed by GC/MS as trimethyldi-
methylsilyl derivatives and as trimethylsilyl derivate, respectively. The considered ion cluster
for each compound is denoted by the m/z value of its mono-isotopic mass. (Table continued
on page 50)

1-13C U-13C

30 ◦C 38 ◦C 30 ◦C 38 ◦C

exp calc exp calc exp calc exp calc

Ala m/z 260
(Alanine)

m 0.582 0.588 0.605 0.610 0.358 0.355 0.353 0.351
m+1 0.300 0.296 0.281 0.278 0.149 0.145 0.157 0.155
m+2 0.094 0.093 0.092 0.090 0.123 0.121 0.133 0.132

Val m/z 288
(Valine)

m 0.455 0.457 0.493 0.494 0.166 0.156 0.169 0.154
m+1 0.356 0.357 0.336 0.338 0.092 0.088 0.101 0.098
m+2 0.140 0.138 0.127 0.126 0.220 0.219 0.217 0.219

Thr m/z 404
(Threonine)

m 0.392 0.386 0.421 0.421 0.165 0.166 0.193 0.189
m+1 0.357 0.360 0.346 0.346 0.202 0.195 0.201 0.196
m+2 0.172 0.174 0.162 0.162 0.199 0.195 0.183 0.181

Asp m/z 418
(Aspartate)

m 0.390 0.386 0.418 0.420 0.164 0.166 0.192 0.189
m+1 0.356 0.359 0.345 0.345 0.201 0.194 0.201 0.195
m+2 0.174 0.175 0.164 0.162 0.204 0.195 0.184 0.181

Glu m/z 432
(Glutamate)

m 0.316 0.317 0.354 0.356 0.088 0.084 0.108 0.096
m+1 0.358 0.363 0.353 0.356 0.130 0.120 0.128 0.122
m+2 0.209 0.206 0.192 0.189 0.231 0.235 0.242 0.253

Ser m/z 390
(Serine)

m 0.514 0.510 0.533 0.525 0.318 0.319 0.295 0.300
m+1 0.315 0.317 0.301 0.306 0.177 0.174 0.196 0.191
m+2 0.131 0.131 0.127 0.129 0.149 0.148 0.180 0.184

Phe m/z 336
(Phenylalanine)

m 0.390 0.385 0.424 0.420 0.056 0.054 0.067 0.054
m+1 0.366 0.367 0.352 0.355 0.053 0.049 0.058 0.054
m+2 0.170 0.173 0.156 0.159 0.091 0.092 0.090 0.095

parameters, suggesting that global minima were identified in the examined cases.

Excellent agreement between experimentally determined and calculated mass iso-

topomer ratios was achieved for both examined conditions (Tab. 7) and metabolic

(Fig. 13) and isotopic (Fig. 14) steady state could be validated.

The NADPH supply calculations (equations 11 and 12) in the 13C cultivations from

the fluxes and the Monte-Carlo approach showed an NADPH supply of 2.28±0.17
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Table 7: (Continued from page 49) Relative mass isotopomer fractions of amino acids from
hydrolyzed cell protein and the secreted trehalose.

1-13C U-13C

30 ◦C 38 ◦C 30 ◦C 38 ◦C

exp calc exp calc exp calc exp calc

Gly m/z 246
(Glycine)

m 0.752 0.751 0.749 0.743 0.384 0.378 0.387 0.381
m+1 0.176 0.177 0.179 0.185 0.187 0.190 0.196 0.196

Tyr m/z 466
(Tyrosine)

m 0.336 0.332 0.363 0.362 0.050 0.047 0.061 0.047
m+1 0.351 0.355 0.342 0.349 0.053 0.049 0.059 0.052
m+2 0.195 0.200 0.183 0.187 0.087 0.087 0.087 0.090

Tre m/z 361
(Trehalose)

m 0.155 0.149 0.180 0.179 0.295 0.287 0.271 0.269
m+1 0.550 0.554 0.528 0.531 0.122 0.120 0.123 0.122
m+2 0.187 0.188 0.186 0.185 0.091 0.096 0.100 0.104

Ala m/z 232
(Alanine)

m 0.613 0.620 0.639 0.643 0.411 0.407 0.408 0.404
m+1 0.297 0.292 0.275 0.272 0.148 0.141 0.161 0.158
m+2 0.090 0.088 0.086 0.085 0.441 0.452 0.431 0.437

Val m/z 260
(Valine)

m 0.463 0.472 0.503 0.511 0.186 0.178 0.188 0.176
m+1 0.354 0.354 0.334 0.333 0.096 0.089 0.108 0.104
m+2 0.135 0.131 0.122 0.118 0.377 0.384 0.364 0.373

Thr m/z 376
(Threonine)

m 0.422 0.415 0.451 0.447 0.196 0.192 0.227 0.219
m+1 0.356 0.360 0.342 0.345 0.257 0.246 0.244 0.237
m+2 0.165 0.167 0.154 0.155 0.296 0.308 0.303 0.321

Asp m/z 390
(Aspartate)

m 0.422 0.415 0.445 0.446 0.195 0.192 0.226 0.218
m+1 0.354 0.359 0.340 0.344 0.253 0.246 0.241 0.236
m+2 0.166 0.168 0.158 0.156 0.295 0.308 0.301 0.322

Glu m/z 330
(Glutamate)

m 0.451 0.448 0.478 0.487 0.160 0.149 0.176 0.156
m+1 0.361 0.359 0.333 0.340 0.144 0.127 0.137 0.128
m+2 0.148 0.143 0.135 0.129 0.333 0.345 0.338 0.348

Ser m/z 362
(Serine)

m 0.551 0.545 0.571 0.563 0.372 0.371 0.349 0.351
m+1 0.320 0.324 0.304 0.310 0.194 0.187 0.244 0.242
m+2 0.129 0.131 0.125 0.127 0.435 0.442 0.407 0.406

Phe m/z 234
(Phenylalanine)

m 0.440 0.442 0.480 0.483 0.070 0.067 0.079 0.067
m+1 0.370 0.375 0.352 0.357 0.057 0.052 0.063 0.059
m+2 0.140 0.141 0.125 0.125 0.155 0.158 0.149 0.158

Gly m/z 218
(Glycine)

m 0.827 0.826 0.825 0.822 0.465 0.456 0.473 0.463
m+1 0.173 0.174 0.175 0.178 0.535 0.544 0.527 0.537

Ser m/z 288
(Serine)

m 0.597 0.596 0.620 0.615 0.392 0.393 0.368 0.373
m+1 0.305 0.308 0.286 0.291 0.177 0.168 0.231 0.229
m+2 0.098 0.097 0.094 0.094 0.431 0.441 0.401 0.400

Phe m/z 302
(Phenylalanine)

m 0.731 0.716 0.728 0.713 0.386 0.368 0.389 0.372
m+1 0.194 0.206 0.196 0.209 0.200 0.201 0.209 0.208

Asp m/z 316
(Aspartate)

m 0.461 0.457 0.490 0.492 0.209 0.206 0.242 0.235
m+1 0.355 0.362 0.337 0.343 0.259 0.249 0.243 0.237
m+2 0.139 0.141 0.130 0.129 0.290 0.305 0.297 0.320
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Fig. 14: Mass-charge ratio of different amino acids at different biomass concentrations during
the cultivation of C. glutamicum Lys12 on 13C glucose showing the isotopic steady-state of the
cultivation. A: 30 ◦C with [1-13C] glucose, B: 30 ◦C with an equimolar [13C6] and naturally
labeled glucose mixture, C: 38 ◦C with [1-13C] glucose, D: 38 ◦C with an equimolar [13C6]
and naturally labeled glucose mixture. alanine, valine, threonine, glutamate, serine,

phenylalanine, glycine,

and 2.97±0.08 molNADPH molGlucose
-1 at 30 and 38 ◦C, respectively. On the demand

side, the values were 2.03±0.12 molNADPH molGlucose
-1 at 30 ◦C and 2.23±0.07

molNADPH molGlucose
-1 at 38 ◦C. This means a supply to demand ratio of 1.12 at 30 ◦C

of 1.33 at 38 ◦C. This ratio not being closed, but above the value of 1, indicates that

not all biochemical reactions have been taken into account. On the demand side,

this could be caused by the factor for the NADPH demand of biomass production

in our set up possibly being lower than the one taken from the literature and used

in equation 12. As NADPH is involved in the generation of nucleic and fatty acids

[195], higher molecular turnover and changes in the cell-membrane composition

[32] might explain the even higher NADPH-excess at elevated temperatures. On the

supply side the only of the major NADPH-generating enzymes [195] not considered

in the calculation of the balance (equation 11) is the polyphosphate/ATP-dependent

NAD kinase (EC:2.7.1.23) [129]. Due to the already existing apparent over supply, a

strong generation of NADPH by this enzyme is unlikely. Fundamentally, the supply

to demand ratio exceeding a value of 1 shows that carbon fluxes as calculated can
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well account for the extensive demand in redox power put forward by lysine yields

as high as the ones seen in C. glutamicum Lys12.

Metabolic fluxes through glycolysis and pentose phosphate pathway. At the ref-

erence temperature of 30 ◦C, C. glutamicum Lys12 channeled 86 % of the consumed

glucose into the PP pathway (Fig. 15), which is in good accordance with previous

estimates [18]. The PP pathway flux could be determined with high precision, which

becomes evident from the narrow 90 % confidence interval. The metabolically im-

portant branching point between glycolysis and PP pathway hence was reflected

sensitively in the labeling data. At elevated temperature, cells metabolized glucose

via the PP pathway even more than at 30 ◦C. The relative flux was as high as 101 %

(Fig. 16). Thus, cells almost exclusively channel the substrate into the PP pathway,

despite the EMP route being fully functional.

The strong connection between the oxidative part of the PP pathway and lysine

production has been pointed out in the introduction (chapter 2.1.1) and is based on

the high NADPH demand during the bio-synthesis of the amino acid, as the synthesis

of one molecule of lysine requires 4 molecules of NADPH. The integrated inspec-

tion of 13C metabolic flux data from this work with that of other lysine-producing

strains even suggests a direct correlation of flux through the PP pathway and lysine

biosynthesis (Fig. 17). Consequently, metabolic engineering efforts largely have

been aimed at increased carbon flux through the PP pathway. For example, replace-

ment of the PP pathway enzymes glucose 6-phosphate dehydrogenase (G6PDH) and

6-phosphogluconate dehydrogenase (6PGDH) by mutated variants with superior

kinetic properties successfully pulled extra carbon into the PP pathway and increased

lysine production [10, 152]. In addition, the pushing of carbon into the PP path-

way through over expression of gluconeogenic fructose 1,6-bisphosphatase (FBP)

improved lysine production in C. glutamicum [13].

An interesting approach in this direction reported on a disrupted glycolysis through

elimination of phosphoglucoisomerase, which forced C. glutamicum to completely

convert glucose via the PP pathway [135]. Unfortunately, such PGI null mutants

exhibit imbalanced growth and production. It is clear from the non-uniformity of

the trehalose labeling and the overall existing labeling information from [1-13C]

glucose presented in this work, that a significant inter-conversion of glucose 6-

phosphate and fructose 6-phosphate was present. The reason behind this is, that the
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Fig. 15: In vivo activity of the central metabolic pathways of C. glutamicum LYS12 at 30 ◦C.
(Caption continued on next side.)
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Fig. 15: (Caption continued from previous side). In vivo activity of the central metabolic
pathways of C. glutamicum LYS12 at 30 ◦C during growth on glucose. All fluxes are given as
molar percentage of the specific glucose uptake rate of 4.1±0.15, which was set to 100 %. An
arrow indicates the direction of the net flux of reversible reactions. Statistic evaluation was
carried out by Monte-Carlo analysis. The errors reflect the corresponding 90 % confidence
intervals for the different fluxes. AcCoA = acetyl CoA, AKG = α-ketoglutarate, BM =
biomass, DAP = diaminopimelate, DHAP = dihydroxyacetone phosphate, E4P = erythrose
4-phosphate, F6P = fructose 6-phosphate, GAP = glyceraldehyde 3-phosphate, Glyex =
extracellular glycine, G6P = glucose 6-phosphate, ICI = isocitrate, Lys = lysine, Lysex =
extracellular lysine, MAL = malate, OAA = oxaloacetic acid, PEP = phosphoenolpyruvate,
PGA = 3-phosphoglycerate, Pyr = pyruvate, P5P = pentose 5-phosphate, SUC = succinate,
SUCex = extracellular succinate, S7P = sedoheptulose 7-phosphate, Treex = extracellular
trehalose.

6-phosphoglucoisomerase dehydrogenase decarboxylates 6-phosphoglucoisomerase

at the isotopically labeled C1 atom when [1-13C] is used, thus eliminating any la-

beling information, unless said reversibility of the phosphoglucoisomerase is active.

This also underlines the high flexibility of the metabolic routes to adapt to environ-

mental changes. In addition to this obvious importance of phosphoglucoisomerase

to fine-tune metabolism, pathway simulations provide evidence that deletion of this

enzyme should not be the first choice to reach high PP pathway fluxes, because

optimal lysine production needs this enzyme to re-cycle carbon from lower parts

of metabolism back into the PP pathway [109, 140]. This re-directing of carbon is

exactly what happened in the 38 ◦C cultivations of C. glutamicum Lys12 (Fig. 16), a

strain metabolically designed for optimized lysine production. The combination of

bioprocess and metabolic engineering hence led to the highest flux through the PP

Fig. 16: (Figure on next side). In vivo activity of the central metabolic pathways of C. glu-
tamicum LYS12 at 38 ◦C during growth on glucose. The color of the arrows indicate the
deviation of the in vivo fluxes in positive (green,solid) or negative (red, hatched) direction
from the theoretical optimum for lysine production [34, 140], when compared to the fluxes
at 30 ◦C. For the flux from the PEP/Pyr to the OAA/Mal pool marked with an asterisk, the
flux is closer to the theoretical optimum only when the net-flux between those metabolite
pools is considered. All fluxes are given as molar percentage of the specific glucose uptake
rate of 3.9±0.17 mol g-1 h-1 which was set to 100 %. An arrow indicates the direction of the
net flux of reversible reactions. Statistic evaluation was carried out by Monte-Carlo analysis.
The errors reflect the corresponding 90 % confidence intervals for the different fluxes. The
same abbreviations as in Fig. 15 were used.
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Fig. 16: (Caption on previous side.) In vivo activity of the central metabolic pathways of
C. glutamicum LYS12 at 38 ◦C.
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Fig. 17: Correlation between the carbon fluxes through the pentose phosphate pathway
and towards lysine production determined with 13C-Flux analysis in different strains of
C. glutamicum. This work, [13], [10], [12], [18], [232], [100], [117],

[234], [101], [136] [158].

pathway ever reported for C. glutamicum and as a consequence to the highest lysine

yield ever achieved. Reaching lysine yields even closer to the theoretical maximum

would require even higher PP pathway fluxes [109, 140].

Fluxes at the pyruvate node. The pyruvate node in C. glutamicum comprises a

number of reactions (chapter 2.1.1), but the outline of the labeling experiments in this

work allowed only for the resolution of net-fluxes between the oxaloacetate/malate

(OAA/Mal) and the phosphoenolpyruvate/pyruvate (PEP/Pyr) pool. The carbon

re-cycling, which occurs at both temperatures, is much stronger at 38 ◦C. In both

experimental set-ups, the net-flux led from the PEP/Pyr pool to the OAA/Mal pool,

namely 43.9 % and 51.5 % for 30 and 38 ◦C, respectively. The flux at the higher

temperature was hence closer to the optimal theoretical value of 75 % [109, 140]. At

38 ◦C, a lower flux from pyruvate to acetyl-CoA occurs. The incorporation or release

of CO2 taking place in the anaplerotic reactions with regard to biomass formation

will be discussed later in this chapter.
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Metabolic fluxes through the TCA cycle. The tricarboxylic acid (TCA) cycle exhib-

ited fully cyclic operation with little difference at both temperatures as shown e.g. by

the entry reaction into the TCA cycle, citrate synthase (34.6 % at 30 ◦C and 30.4 %

at 38 ◦C). This carbon flux was rather low compared to other C. glutamicum strains,

including the predecessors of Lys12 [18]. Of those predecessor strains, the last 5

modifications implemented (in order: C1372T pyc, Psodpyc, A1G icd, Ptuf fbp, Psodtkt)

all led to reduced flux through the TCA cycle as well as to higher fluxes through the

PP pathway and toward lysine formation [18].

Obviously, rather low amounts of carbon were available for the formation of

energy in the form of ATP at both temperatures, which is likely due to the enormous

withdrawal of the TCA cycle-derived building block oxaloacetate for lysine production

and to a lower degree due to biomass formation, competing with energy forming

reactions. The energy shortage thus was one off the reason of the reduced growth

rate at high temperature, which was particularly pronounced in these more advanced

producers (Tab. 6). At 38 ◦C the hyper-producers C. glutamicum Lys12 and Lys12K

reach only 46 and 40 % of their specific growth rate at 30 ◦C. This temperature-

dependent reduction is less drastic for the wild type strain C. glutamicum ATCC 13032

(56 %) and the basic lysine producer C. glutamicum Lys1 (79 %). With increasing

temperature, the energy demand for cellular maintenance increases [4, 64, 133].

This has a more severe effect on strains like the advanced producers, which exhibit a

lower energy metabolism already at low temperatures and need to commit a bigger

percentage of it to cellular maintenance, which led to a stronger decrease of the

specific growth rate with rising temperatures for those strains.

By-product and biomass formation. By-product formation of C. glutamicum Lys12

was low for either of the tested temperatures with only trehalose, glycine and

succinate being formed under the conditions of the flux experiments. Only the

disaccharide trehalose was secreted at higher levels at the elevated temperature, as

can be expected due to its role as a compatible solute, as mentioned earlier. Glycine

and succinate both showed higher production at 30 ◦C, yet even that amounted only

to low concentrations.

The biomass production of C. glutamicum Lys12 was reduced by over 40 % at 38 ◦C

when compared to the values at 30 ◦C (Tab. 6), which obviously also is reflected

in the carbon fluxes. One of the contributing factors to the lower biomass yield

55



Chapter 4 Results and Discussion

at higher temperatures was the stronger CO2 production. There are two carbon

dioxide creating reactions of the TCA cycle, catalyzed by the isocitrate dehydrogenase

(Icd) and oxoglutarate dehydrogenase. While the carbon flux through the latter

was equal for both temperatures, the CO2 generation by Icd was higher at 30 ◦C.

The other CO2-generating reaction where this applies, is the conversion of pyruvate

to acetyl-CoA by the pyruvate dehydrogenase. All other reactions of the central

metabolism involving CO2, namely the ones in the PP pathway (6-phosphogluconate

dehydrogenase), the lysine biosynthetic pathway (diaminopimelate decarboxylase)

and the reactions of the pyruvate node (see chapter 2.1.1) had higher (net-)fluxes

at 38 ◦C. Summed up, the carbon loss due to CO2 generation is 9 % higher at 38 ◦C

than at 30 ◦C.

All in all, the carbon loss through by-product formation in C. glutamicum Lys12 was

low at both temperatures. The higher loss due to CO2 generation and the massively

increased lysine production explain the significant reduction in biomass yield at

elevated temperature.

Correlation of fluxome to transcriptome. Fluxome analysis of the central carbon

metabolism and the lysine biosynthesis pathway of C. glutamicum Lys12 at 30 and

38 ◦C revealed differences between the two cultivation conditions. PP pathway flux

and net flux from the PEP/Pyr to the OAA/Mal pool both increased by about 20 %

and flux toward lysine by about 50 % during cultivations at the elevated temperature

(Tab. 8). On the other hand, carbon flux from pyruvate to acetyl-CoA and the

subsequent flux to α-ketoglutarate via isocitrate was reduced to 80 and 90 % of the

30 ◦C-value at 38 ◦C, respectively. Carbon flux toward biomass was decreased by

about 40 % at the higher temperature. The by-products formed showed a mixed

response to higher temperatures. While the carbon flux toward compatible solute

trehalose showed the highest relative increase of about 140 %, fluxes toward glycine

and succinate were significantly reduced at 38 ◦C (Tab. 8).

In the literature, transcriptome analysis at 30 and 40 ◦C of the C. glutamicum

ATCC 13032 based strain AHP3 is reported [149]. Like C. glutamicum Lys12, AHP3

also possesses the genomic modifications V59A hom, T311I lysC and P458S pyc, but

lacks the additional ones present in strain Lys12 (A1G icd, Ptuf fbp, Psodtkt, ∆pck,

Psodpyc, 2×ddh, 2×lysA, PsoddapB, G1A PsodlysC). These differences in the genomic

background of the two strains have to be kept in mind as it makes a direct comparison
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of the data a bit difficult. However, one could still use the combined inspection on

the effect of elevated temperature on transcriptome and fluxome as a first qualitative

glance to possibly underlying metabolic and regulatory mechanisms. Tab. 8 connects

calculated flux-ratios to the genes, whose transcription level is given in the literature.

The increase in PP pathway and lysine production fluxes are reflected by enhanced

gene expression only for a few exceptions (asd, rpi, pgl). Even though those pathways

underwent heavy genomic optimization in C. glutamicum Lys12, the increased lysine

production at elevated temperatures in strain AHP3 allow the fairly safe assumption,

that fluxes through said metabolic routes were also higher. Higher fluxes, despite

lower transcription (i.e. lower enzyme amounts) indicate a higher enzymatic activity

which could have been caused by the increased temperature.

This is different at the anaplerotic node. Flux from pyruvate and phosphoen-

olpyruvate to oxaloacetate is catalyzed by pyruvate carboxylase (pyc) and phos-

phoenolpyruvate carboxylase (ppc). The flux from the OAA/Mal to the PEP/Pyr

pool can be catalyzed by malic enzyme (malE), oxaloacetate decarboxylase (odX)

and by phosphoenolpyruvate carboxykinase (pck) in C. glutamicum AHP3, while the

latter enzyme is eliminated in C. glutamicum Lys12. Here, both the fluxes from the

PEP/Pyr to the OAA/Mal pool and the ones in the reverse direction were consider-

ably increased at high temperatures. The transcriptome analysis on the other hand

revealed, that genes involved in the catabolic direction (pyc, ppc) were expressed at

lower levels at the higher temperature while the anabolic genes (malE, pck) show an

opposite response. Transcriptome data for odX were not available. These findings

indicate that both genes, malE and odX, are potential targets for further metabolic

engineering. Even though this would mean a lower drain on the lysine precursor

oxaloacetate, in the case of malE, this would also be coupled to a lower NADPH

production, which might be negative for the production of the amino acid.

It seems, with regard to carbon core metabolism, that most changes in gene

transcription and in flux are below a factor of two, with only a few exceptions,

highlighted in Fig. 18. Besides the mentioned strong increase in flux and transcription

level of malic enzyme, it is striking that the transcription of gapA and gltA was

considerably reduced without the analogous fluxes acting accordingly. Especially

for gltA, coding for citrate synthase and hence for a reaction competing with lysine

formation, this might point to attenuation of the gene being another possible target
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Table 8: Ratios of fluxes at 38 ◦C to fluxes at 30 ◦C (RFlux), the corresponding genes and the
ratios of transcriptional levels (40 over 30 ◦C values, RTransc.) from the literature [149]. The
comments point out the difference between the strains used for fluxome analysis (C. glutami-
cum Lys12) and for transcriptone data (C. glutamicum AHP3). Gene names can be found on
page vi and in the literature [67]. Metabolite abbreviations are identical to Fig. 15. Table
continued on next side

Flux RFlux Gene RTransc. Comment

G6P→P5P 1.18

zwf 0.65
Psod(tkt,tal,zwf,opcA,pgl) in
Lys12

opcA 1.00
pgl 1.80

gnd 0.55
rpe 0.70
rpi 1.25

G6P→Tre 2.42 n/a n/a

G6P→F6P n/a pgi 0.40 flux reversed, hence no RFlux

F6P→GAP 0.94
glpX 0.90 Ptuf fbp in Lys12, fbp named

glpX in [149]
pfp 1.10
fda 0.80

GAP,S7P→E4P,F6P 1.20 tal 0.60
Psod(tkt,tal,zwf,opcA,pgl) in
Lys12P5P,E4P→F6P,GAP 1.24 tkt 0.67

2×P5P→GAP,S7P 1.20

DHAP→GAP 0.94 tpiA 0.60

GAP→PGA 0.99
gapA 0.37
gapB 0.70
pgk 0.55

PGA→PEP 1.02
gpmB 0.60
gpm 1.30
eno 0.60

Pyr→ACoA 0.78
pdhA 0.80
pdhB 0.60
lpd 0.70

PEP/Pyr→OAA/Mal 1.78
ppc 0.55

Psodpyc in Lys12pyc 0.70

OAA/Mal→PEP/Pyr 3.03
malE 2.50

∆pck in Lys12odX n/a
pck 2.00

ACoA→ICI 0.88
gltA 0.31
acn 1.35
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Table 8: Table continued from previous side

Flux RFlux Gene RTransc. Comment

ICI→AKG 0.88 icd 0.70 A1G icd in Lys12

OAA/Pyr→Lys 1.48

dapA 0.80

2×ddh, 2×lysA, PsoddapB,
G1A PsodlysC in Lys12

dapB 0.55
dapC 0.70
dapD n/a
dapE 0.80
dapF 0.65
ddh 0.65
lysC 0.90
aspC 0.75
asd 1.30
lysA 0.65

Lys→Lysex 1.55 lysE 1.00

Suc→OAA 1.01
sdhB 2.43
sdhA 1.10
fumH 0.70

AKG→Suc 1.00
odhA 1.00
lpd 0.75
sucC 1.30

Suc→Sucex 0.71 n/a n/a

Gly→Glyex 0.50 n/a n/a

→BM 0.58 n/a n/a

for further engineering. However, care has to be taken as two different strains are

compared here.

4.1.3 Lysine production by C. glutamicum Lys12 at elevated

temperature

Obviously, temperature has a strong impact on the metabolism of C. glutamicum and,

in particular, on lysine production. Based on the findings, it appeared promising to

explore the increased performance of higher temperature in the relevant production

set-up of a fed-batch fermentation. To this end, C. glutamicum Lys12-cultivations
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Fig. 18: Flux changes and transcriptional changes of reactions and genes in the central
metabolism of C. glutamicum occurring with the switch from 30 ◦C to higher cultivation
temperatures (38 and 40 ◦C for flux and transcription data, respectively). Transcriptome
data are taken (and partly estimated) from the literature [149]. Values larger than 1 indicate
an at least twofold change. The flux assigned to malic enzyme in this graph might be partly
due to oxaloacetate decarboxylase, but no transcriptome data are available. Gene names are
listed on page vi.

were conducted at 30 and 38 ◦C.

C. glutamicum Lys12 was able to grow and produce L-lysine under both conditions.

For each temperature, two bioreactors were run in parallel as replicates, which

showed good agreement. At 38 ◦C, the final lysine titer was significantly increased.

After a process time of 90 hours, 119 and 127 g L-1 L-lysine were produced, at 30

and at 38 ◦C, respectively (Fig. 19). Particularly, the absolute amount of lysine

increased up to the end at 38 ◦C (Fig. 20 B), while it leveled out at 30 ◦C (Fig. 20

A). Obviously, cells retained their production capability to a higher degree at the

elevated temperature. This can also be seen from the frequency of the feed pulses

(vertical gray bars in Fig. 19), which at 38 ◦C was less reduced toward the end of

the cultivation. Glucose was added through a feed pump coupled to the dissolved

oxygen signal in the bioreactor. Hence active glucose utilization by the cells led

to faster depletion of the substrate and subsequent rapid increase of the dissolved

oxygen signal which again triggered the next feeding pulse.

At both temperatures, the initial glucose was depleted after approximately 20

hours. The pulse-wise addition of feeding solution caused the glucose concentration

never to exceed 8 g L-1 at the sampling time points. The volume of a feed-pulse was

60



Chapter 4 Results and Discussion

300

400

500

Vo
lu

m
e

[m
L]

0

50

100

150

Ly
si

ne
H

C
l[

g·
L-1

]

0

10

20

30

C
el

ld
ry

w
ei

gh
t[

g·
L-1

]

0

50

100

D
O

[%
]

G
lu

co
se

[g
·L

-1
]

119±1 g·L-1
A

300

400

500

Vo
lu

m
e

[m
L]

0

50

100

150

Ly
si

ne
H

C
l[

g·
L-1

]

0

10

20

30

C
el

ld
ry

w
ei

gh
t[

g·
L-1

]
0 10 20 30 40 50 60 70 80

0

50

100

Time [h]

D
O

[%
]

G
lu

co
se

[g
·L

-1
]

127±1 g·L-1
B

Fig. 19: Lysine production C. glutamicum Lys12 at 30 ◦C (A) and 38 ◦C (B). The data
represent mean values and standard deviation of 2 runs. The light gray vertical peaks show
the operation of the feed pump. The pump and DO data are exemplary taken from one of the
runs. The dashed vertical line marks the transition from batch to feed phase. Wall growth of
the cells at 38 ◦C towards the end of the cultivation made accurate determination of the cell
dry weight difficult. This can be seen from the large error bars and the sudden change of the
biomass concentration right at the end of the process.

set to prevent any given pulse to add glucose to a concentration higher than 30 g L-1.

The volume increase and hence the total amount of glucose added to the bioreactor

was higher for 30 ◦C (159 g) than for 38 ◦C (146 g) as can be seen from the broth

volume (Fig. 19) and the total glucose uptake over time (Fig. 20). The reduced

glucose consumption coupled to higher lysine production led to the overall increased

yield at 38 ◦C, as compared to 30 ◦C (Fig. 21).
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Fig. 20: Lysine production C. glutamicum Lys12 at 30 ◦C (A) and 38 ◦C (B). The absolute
values of the concentration values in Fig. 19 are shown.
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represent values for the two replicates.

As already reflected by the shake flask studies, less biomass was formed in the fed-

batch process at 38 ◦C. Additionally, the biomass concentration in the broth at 38 ◦C
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Fig. 22: Lysine productivity during fed-batch cultivation of C. glutamicum LYS12. The dashed
vertical line marks the transition from batch to feed phase.

declined towards the end of the process, whereas it remained constant at 30 ◦C. This

effect was likely not due to actual cell death, but rather resulted from increased wall

growth during the last period of the cultivation. At both temperatures, the specific

growth rate during the exponential growth phase was lower than expected from

the shake flask experiments (0.1 h-1 and 0.08 h-1 for 30 ◦C and 38 ◦C, respectively).

This implies that during the bioreactor cultivation, the higher temperature led to a

decrease of the specific growth rate by 20 % as compared to 54 % in shake flasks.

One possible explanation is the high initial sugar concentration of 115 g L-1 glucose

which might have led to substrate inhibition during the batch phase. In accordance,

the bioreactor cultivation at the reference temperature showed a higher lysine yield

(0.38 g g-1) than expected from the shake flask cultivations (Fig. 21 A).

The final concentration of 127 g L-1 L-lysine, produced at 38 ◦C, is among the

highest titers reported in the literature [18, 239]. The overall yield was boosted

by about 10 % to 0.42 g g-1 through the temperature increase (Fig. 21 B). The

productivity (Fig. 22) showed a similar time course for both temperatures with a

steep increase during the batch phase, a slightly reduced increase during the first

10 hours of the feeding phase followed by a constant decrease until the end of the

fermentation. While the peak productivity reached was higher at 30 ◦C (2.9 g L-1 h-1

compared to 2.7 g L-1 h-1 at 38 ◦C), the productivity during the batch phase and more

notably by the end of the feeding phase was higher for the elevated temperature.

Potential measures for further optimization of the bioprocess include the adjust-
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ment of the feed pulses towards slower feed-rates and higher volumes. This would

effectively lead to fewer pulses and hence fewer situations of glucose limitation for

the cells. Yet this approach would need to be executed with care as addition of

inhibiting amounts of the substrate also must be avoided. Another possible lever

is the initial glucose concentration, which could be optimized to allow for a more

efficient bioprocess. Lastly, a temperature gradient throughout the course of the cul-

tivation might lead to further improved performance. For this, further investigations

are needed to characterize the cellular response to such an incremental or gradual

change of the environment.

4.1.4 The metabolic response of C. glutamicum to elevated

temperature is of industrial value

Temperature is a major factor of industrial fermentation as it affects the behavior

of the microorganisms that catalyze the bioconversion. In addition, higher tem-

perature largely reduces the risk of contamination. Furthermore, it reduces the

amount of cooling water necessary to maintain constant temperature in industry

scale fermentation vessels. This is especially true in tropical regions, where typical

carbon sources for lysine production are grown [149] and many lysine production

plants are located [47]. It appears thus more economical to perform fermentations

at elevated temperature. Thereby, impact of the temperature on microbial growth

and production properties must be considered.

It has been observed that lysine producing C. glutamicum and related species

show varying growth and production performances during cultivation at 40 ◦C, as

compared to the commonly used 30 ◦C [151]. As presented in this work, increased

product yields at elevated temperature were observed for C. glutamicum Lys1 and

also for C. glutamicum Lys12 and a newly derived strain (Tab. 6). Furthermore, high

temperature was also found beneficial for fed-batch production of lysine (Fig. 19),

resulting in a high titer of 127 g L-1 and an efficient conversion of the substrate (42

g g-1). Fed-batch processes are most commonly used for biotechnological production

of lysine. For lysine, a ‘low value, high volume ’ commodity, product yield is of

crucial importance, because the substrate amounts to about 50 % of the variable

costs of production [41, 98] and a higher product yield therefore is a major economic

advantage.
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Fig. 23: Cost efficiency of identical lysine fermentations, considering the ratio of product to
raw material (sugar) cost. The solid lines represent the temperature dependence of the profit
at a given lysine-to-glucose price ratio. The bold green lines represent the upper and lower
boundaries (UB and LB, respectively) of ratios from the years 2008 to 2014. The data for the
calculation of the boundaries were taken from online resources and databases [221, 222].
The data for the profit are based on interpolated values for the yield and productivity shown
in Fig. 12 and on equation 14. Red markers are placed at the maximum value of each profit
curve. It becomes clear that at a lower ratio of value creation (i.e. a smaller profit margin),
the temperature with the greatest profitability should be rather high. In such a scenario, high
yields are preferable over fast production. The data should be taken as a qualitative trend, as
fixed costs and additional variable costs other than the profit margin are not considered.

Temperature variation enables an easy fine-tuning of key performance indicators:

shifting either to higher productivity or to higher yield. This provides manufacturers

the opportunity to quickly react to price developments on the market with an existing

production plant set-up merely by changing this one process variable, even for the

same strain. Fig. 23 visualizes this effect and shows how optimal temperature, i.e.

the most profitable temperature, depends on the lysine-to-glucose price ratio. In case

the glucose price is comparably low, the optimal temperature approaches the the

one with the highest productivity, 35.5 ◦C. If, on the other hand, the profit margin
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of glucose to lysine is low (i.e. a high glucose or/and a low lysine price), it is more

profitable to produce lysine with a higher yield. In this scenario, higher cultivation

temperatures are preferable.

The basic idea (equation 13) and the mathematical formulation (equation 14)

behind Fig. 23 are admittedly simplified. For a more reliable calculation of the

optimal temperatures, more than information about market prices of substrate and

product and the temperature dependence of the microbial production behavior would

be necessary. Additionally, detailed knowledge of engineering aspects of the different

temperatures (e.g. cooling costs) as well as of business numbers (e.g. market volume

of product) are also required. It is, however, noteworthy, that none of the profit-

maxima shown in Fig. 23 suggest a temperature close to 30 ◦C, which is often used

in scientific studies of C. glutamicum, as the optimal production temperature.
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4.2 Lysine production from xylose

4.2.1 Growth and lysine production of xylose-utilizing C.

glutamicum Xyl1

Naturally, C. glutamicum ATCC 13032 strains cannot use xylose as carbon source [24].

In order to implement xylose utilization, C. glutamicum Lys12 was transformed with

the episomal plasmid pClik5a PgroxylAB, which harbored the xylose catabolic genes

xylA and xylB from E. coli (Tab. 2). The gene xylA codes for xylose isomerase, while

xylB codes for xylulokinase. The two enzymes catalyze the conversion from xylose

to xylulose and further on to xylose 5-phosphate, an intermediate of the pentose

phosphate pathway, respectively (Fig. 28). C. glutamicum natively possesses a xylB

gene, so the heterologous expression of E. coli xylA allowed C. glutamicum to grow on

xylose [97]. The heterologous expression of both genes from E. coli also enabled the

bio-synthesis of cadaverine from hydrolyzed hemicellulose in C. glutamicum [36].

The mechanisms of xylose transport into C. glutamicum cells is not clear at this stage

[97], but there are indications for the involvement of hexose phosphotransferase

systems [219]. Additionally, an arabinose transporter coded by the C. glutamicum

31831 gene araE has been shown to enhance growth of a C. glutamicum R based

strain at low xylose concentrations [174].

The process of transferring the plasmid pClik5a PgroxylAB into C. glutamicum

Lys12 is described in chapter 3.1. The resulting strain was designated C. glutamicum

Xyl1. In contrast to its parent C. glutamicum Lys12, the novel mutant formed

colonies within two-day incubation on agar plates with xylose as sole carbon source.

Additionally, C. glutamicum Xyl1 exhibited significant activity of xylose isomerase

(119 ± 24 U gprotein
-1) and xylulokinase (153 ± 11 U gprotein

-1) respectively, while

the parent strain showed no activity for xylose isomerase and only a basal level for

xylulokinase (6 ± 5 U gprotein
-1).

During growth on xylose minimal medium, xylose was consumed from early on

(Fig. 24 A). Cells reached a specific growth rate of 0.17 h-1 in chemically defined

medium containing xylose (Tab. 9). With decreasing levels of xylose, growth

slowed down slightly, but the carbon source was depleted completely. Additionally,

C. glutamicum Xyl1 accumulated substantial amounts of lysine. The lysine yield

(0.30 C-mol C-mol-1) was constant over time (Fig. 25 A), which indicated that about
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Fig. 24: Growth and lysine production of C. glutamicum Xyl1 on minimal medium with
xylose (A) and glucose (B) as sole carbon and energy source. The data reflect means and
deviations from three independent replicates.

30 % of substrate carbon was directed to product formation (Tab. 9). During the

cultivation, no by-products were formed to significant concentration. The strain

C. glutamicum Xyl1 produced lysine also from glucose and exhibited a molar lysine

yield of 0.35 C-mol C-mol-1 on this substrate (Fig. 24 B, Fig. 25 B). The maximum

specific growth rate on the hexose sugar was slightly higher (0.20 h-1), as compared

to growth on xylose (Tab. 9). On glucose, the disaccharide trehalose was the only

by-product detected, and reached about 50 mg L-1 at the end of the cultivation. The

maximum specific rates of substrate uptake and lysine production were similar for

both substrates. In all cases, the pH remained constant at 7.1±0.2 and the level

of the dissolved oxygen remained above 65 % of saturation, which indicated fully

aerobic growth.

To investigate whether the effects of elevated temperatures observed for glucose

68



Chapter 4 Results and Discussion

0 20 40 60
0

5

10

15

Xylose consumed [mM]

L-
Ly

si
ne

pr
od

uc
ed

[m
M

]

A

0.2
5 mol·

mol
-1

0 20 40 60
0

5

10

15

20

Glucose consumed [mM]

L-
Ly

si
ne

pr
od

uc
ed

[m
M

]

B

0.3
5 mol·

mol
-1

Fig. 25: Lysine yield of C. glutamicum Xyl1 on minimal medium with xylose (A) and
glucose (B) as sole carbon and energy source. The different symbols reflect data from three
independent replicates.

also apply on xylose, additional shake flask experiments were conducted at 38 ◦C

(Tab. 9). In contrast to glucose (see chapter 4.1), higher temperature reduced the

specific growth rate without increasing the lysine yield. This behavior was surprising

as the reduction in the biomass yield was similar to cultivation on glucose, but

the carbon seemed not to be re-directed towards lysine biosynthesis. A possible

explanation could be the entry point of xylose derived xylose 5-phosphate into the

central metabolism, which which is located downstream of the oxidative part of

the PP pathway. This might limit the flux increase into the PP pathway and the

concomitant increase in NADPH production (Fig. 15 and 16), which appears to play

an important role for lysine production [136, 231, 234] (Fig. 17). Additional 13C flux

analysis on xylose could shed more light into the underlying cellular mechanisms.

Hereby, the response of the increased temperature on the carbon flux through the

TCA cycle would be of particular interest. Growth on xylose under more stressful

conditions might require an increased maintenance and hence energy demand.

4.2.2 Production from xylose in a fed-batch environment

The production performance of the novel C. glutamicum Xyl1 strain on xylose-based

medium was next investigated in a fed-batch process (Fig. 26). The medium

contained a mixture of xylose, molasses and corn steep liquor, in order to reflect a
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Table 9: Growth and production physiology of C. glutamicum Xyl1 on chemically defined
medium with glucose or xylose as sole carbon source at 30 and 38 ◦C. The data are means
and standard deviations from three biological replicates and comprise maximal specific rates
of growth (µmax), substrate uptake (qS), lysine production (qP), and yields for biomass (YX/S)
and lysine (YP/S,molar, YP/S,C-molar).

Temperature Parameter Glucose Xylose

30 ◦C

µ [h-1 ] 0.20 ± 0.01 0.17 ± 0.01
qS [mmol g-1 h-1 ] 5.3 ± 0.3 5.7 ± 0.7
qP [mmol g-1 h-1 ] 1.5 ± 0.1 1.4 ± 0.1
YP/S,molar [mol mol-1 ] 0.35 ± 0.01 0.25 ± 0.01
YP/S,C-molar [C-mol C-mol-1 ] 0.35 ± 0.01 0.30 ± 0.01
YX/S [g g-1 ] 0.22 ± 0.00 0.19 ± 0.00

38 ◦C
µ [h-1 ] n/a 0.07 ± 0.00
YP/S,molar [mol mol-1 ] n/a 0.25 ± 0.01
YX/S [g g-1 ] n/a 0.07 ± 0.01

typical medium for industrial production. The process started with a batch phase

to achieve a fast increase in biomass concentration already in early process phases.

The initial mixture of 115 g L-1 total sugar (Fig. 26 A) contained mainly xylose (84

g L-1), plus smaller amounts of sucrose (13 g L-1), fructose (9 g L-1), and glucose (7

g L-1). During the first 20 h, cell and lysine concentration increased steeply, while

the sugar was rapidly utilized (Fig. 26 A). The maximum specific growth rate during

this phase was 0.09 h-1. Interestingly, C. glutamicum co-consumed all available

sugars, with preferential metabolization of the hexoses. As soon as the total sugar

had decreased to 25 g L-1, the feeding phase was started, during which the sugar

level remained around 30 g L-1. In the following 20 hours, the cell concentration

increased further, but leveled off after about 40 hours, when growth decreased to

a value that just compensated dilution of the medium by the addition of feed and

base. However, lysine accumulated further during the entire process. After about 120

hours of cultivation, the feed was stopped to allow metabolization of the residual

sugar. The final titer of lysine was 116 g L-1.

Dissolved oxygen (DO) was available in sufficient amounts throughout the whole

process (Fig. 26 B). Following a steep decline of the oxygen saturation in the

beginning of the cultivation, the lowest value of about 20 % coincided with the

near depletion of the hexose sugars. After that, the DO increased almost steadily,
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Fig. 26: Lysine production with C. glutamicum Xyl1 in a fed-batch process on xylose-based
medium containing industry-grade molasses. The dashed vertical line marks the start and
the end of the feed phase. The data points are means and deviations from two independent
experiments.

indicating a reduced activity in the oxygen-requiring biochemical reactions like the

energy metabolism. Ammonia concentration also remained at non-limiting levels at

least until the end of the feeding phase (Fig. 26 B). The Km value of the ammonia

transporter proteins in C. glutamicum is lower than 50 µM [137, 191]. Hence, the

concentrations present during the cultivation allowed for sufficient uptake.

Both, specific substrate uptake rate and product formation rate peaked during the
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Fig. 27: Lysine yield of C. glutamicum Xyl1 from fed-batch production on xylose-based
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initial batch phase and reached values of 0.17 g g-1 h-1 and 0.05 g g-1 h-1 respectively

(Fig. 26 C). The space-time yield reached a maximum of 1.5 g L-1 h-1 after 30

hours. During the first 90 hours, the lysine yield was constant at 0.38 g g-1 (0.39

C-mol C-mol-1 based on all sugars) and then dropped slightly, while the overall yield

was 0.36 g g-1 (Fig. 27).

For almost 40 years, lysine has been produced through fermentation from hexose

sugars. Throughout the years, the highly competitive lysine market has been a

major driver for continuous breeding of the major producer C. glutamicum towards

enhanced key performance indicators titer, yield and productivity [16]. Global

pathway engineering (systems metabolic engineering) has delivered optimized strains

for lysine production from traditional hexose-based substrates like starch, raw sugar

and molasses. Such globally engineered producers reach lysine titers of 120 g L-1

within 30 h of cultivation and carbon conversion yields of 0.55 g g-1 [18].

In the developing era of bio-based economy, strain engineering for lysine produc-

tion now expands to the utilization of alternative raw materials, particularly non-food

biomass such as lignocellulose and hemicellulose, most abundant in forestry and

agricultural residues [3] or in waste streams of the pulp and paper industry [130].

The application of systems metabolic engineering strategies to optimize C. glutami-
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Table 10: Performance of C. glutamicum strains (in [190] the closely related Brevibacterium
lactofermentum) for industrial lysine production. All studies used fed-batch processes for
production.

Major carbon source Complex ingredient Titer [g L-1 ] Ref.

Glucose Molasses 120 [18]
Glucose Molasses 105 [190]
Glucose - 90 [80]
Glucose - 80 [150]
Xylose Molasses 116 this work

cum for lysine production from a xylose-based medium proved very successful as the

novel strain C. glutamicum Xyl1 was capable of reaching a lysine titer of 116 g L-1

in a fed-batch process. Hereby, medium composition reflected that of large-scale

industrial cultivations, which often include cheap components such as molasses and

corn steep liquor [68]. The main carbon source was xylose, and the supplemented

molasses provided additional nutrients. Nitrogen for growth and lysine production

originated from corn steep liquor and ammonium.

So far, lysine titers above 100 g L-1 have been only reported for production from

glucose based media (Tab. 10), the preferred carbon source for C. glutamicum

and also most other microorganisms [80], so that the titer reached here keeps up

with reported benchmarks. Similarly, product yields of up to 0.38 g g-1 (Fig. 27)

lie well in the range of attractive production yields reported in the literature [72].

Together with recent studies, which demonstrate robustness of Corynebacteria against

inhibitors from hemicellulose hydrolysates [59] and access to an interesting product

portfolio from such raw materials [36, 138], this development sets an important

benchmark for hemicellulose biotechnology of C. glutamicum.

4.2.3 The engineered metabolism of C. glutamicum Xyl1 is tailored

for lysine production from xylose

Previous metabolic engineering of C. glutamicum for xylose assimilation focused

on local implementation of the xylose degradation pathway [97]. This probably

explains the lower performance of the resulting producers [138, 220], which did

not achieve the level required for industrial production. For lysine, none of the
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previously developed strains achieved economically attractive yields on xylose [138].

However, yield is a major criterion for the economic success of bulk products such

as lysine, for which the raw material is a major cost driver [41]. C. glutamicum

strain Xyl1 exhibits an overall yield of 0.39 C-mol C-mol-1. This value is 2.5 fold

higher than that obtained previously (Fig. 29). It is 52 % of the theoretical optimum

for the production of lysine from xylose (0.75 C-mol C-mol-1, 0.625 mol mol-1),

predicted by elementary flux mode analysis [34] and approaches the performance of

top lysine producers on conventional glucose-based raw materials (Fig. 29). The key

to this high performance is previous systems wide metabolic pathway engineering

(Fig. 28) with a set of 14 modifications. Hereby, the performance benefits from the

engineered core metabolism, specifically tailored for xylose-based through fluxome

and transcriptome based strain engineering [34]. Likewise, this combination of

targets enables high-yield production of diaminopentane from xylose (Fig. 29).

Accordingly, the genetic disposition of C. glutamicum Xyl1 is well suited for hyper-

production of different chemicals from xylose-based feedstocks.

4.2.4 Slower kinetics for lysine production from xylose as

compared to glucose leaves space for further strain

engineering

Xylose is less efficient than glucose with regard to space-time yield, i.e. productivity.

The maximum value of 1.5 glysine L-1 h-1 achieved (Fig. 26 C) is less than half of

the value of 4.0 g L-1 h-1 for production from glucose [18]. Without doubt, xylose

seems still attractive for production, considering the low price and high availability

of residues and waste materials containing xylose. However, this leaves space for

further improvement. C. glutamicum Xyl1 metabolizes xylose and glucose with

similar specific rates (Tab. 9), which indicates successful introduction of the xylose

operon. However, the influx of xylose in terms of carbon is only 5/6 of the value for

glucose, due to the smaller number of carbon atoms in the pentose sugar. Additionally,

growth on xylose results in lower growth rate and biomass yield, as compared to

glucose (Fig. 24, Fig. 25, Tab. 9).f Therefore, C. glutamicum Xyl1 could benefit

from further engineering of xylose utilization. Notably, the overexpression of the

Xanthomonas campestris xylose isomerase and of the C. glutamicum xylulokinase
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Fig. 29: Performance of lysine and diaminopentane producing C. glutamicum strains using
xylose (blue, solid bars) and glucose (green, hatched bar) as the main carbon source. The
yields given in darker colors represent experimentally achieved values. The yields given
in light colors represent the theoretical maxima, as deduced from in silico modeling by
elementary flux mode analysis. a: this work; b: estimated from reference [138]; c and d:
taken from reference [18] and [34], respectively.

provides improved growth rate and biomass yield in recombinant C. glutamicum

strains [138] and thus appears to be an interesting additional target for C. glutamicum

Xyl1. Indeed, the created producer possesses endogenous activity of xylulokinase

which could be enhanced by up-stream insertion of a strong promoter routinely

available for C. glutamicum [10].

Taken together, this work demonstrates high-titer production of lysine production

from a xylose-based industrial medium with C. glutamicum Xyl1, rationally engin-

eered for this purpose. The excellent performance of the recombinant C. glutamicum

strain on xylose, naturally not accessible by the bacterium, further opens the door

to hemicellulose raw materials and an even wider portfolio of processes of this

industrial workhorse beyond classical hexose-based biotechnology.

76



Chapter 4 Results and Discussion

4.3 Ectoine production by metabolically engineered C.

glutamicum

4.3.1 Re-design of C. glutamicum Lys1 for ectoine bio-synthesis

The metabolic production routes for lysine and ectoine both share the metabolite

aspartate-β-semialdehyde (ASA, Fig. 7 A and 9). The enzyme aspartokinase, generat-

ing its precursor, aspararatyl-phosphate, is under tight feedback control by threonine

and lysine in C. glutamicum ATCC 13032 [92]. Hence, for heterologous synthesis of

ectoine in C. glutamicum, the basic lysine-producer C. glutamicum Lys1 was chosen as

a suitable genetic background as it possesses a feedback-resistant aspartokinase [18]

and thereby circumvents the native biochemical pathway regulation for the synthesis

of ASA. Thus, an adequate supply of the precursor molecule for ectoine biosynthesis

(Fig. 9) was aimed for with the chosen starter strain C. glutamicum Lys1.

For the recombinant DNA experiments an ectABCD gene cluster from an isolate of

Pseudomonas stutzeri [240], a well-known ectoine and hydroxyectoine producer [186,

198], was chosen. To adjust the codon usage of the ectoine gene cluster employed

by the natural host strain P. stutzeri A1501 to that preferred by C. glutamicum, the

ectABCD genes were chemically synthesized and codon-optimized (sequence see Fig.

36 in the appendix). The expression of the naturally osmotically inducible operon

[198] was uncoupled from osmotic-stress-derived signal transduction processes by

positioning the synthetic ectABCD gene cluster under control of a strong and con-

stitutive C. glutamicum promoter that is driving the expression of the structural gene

(tuf) for the elongation factor Tu of C. glutamicum [13]. The resulting Ptu f ectABCD

construct was additionally provided at its 5’- and 3’-ends with regions flanking the

non-essential diaminopimelate dehydrogenase gene (ddh) for targeted integration

into the chromosome of C. glutamicum by a double-homologous recombination event

(Fig. 11). The ddh gene was chosen as integration site as it represents the more

active one of the two metabolic branches for the synthesis of lysine (Fig. 7) during

high availability of ammonium, which is usually the case during production processes

at industrial scale [48, 182]. The intention was to lower the carbon flux via this

pathway towards lysine to a priori diminish lysine formation as a major competitor

for the building block aspartate semialdehyde (Fig. 7 A and 9).

Successful integration and inactivation was verified by PCR analysis (Fig. 30, left
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gel) and determination of the Ddh activity (Fig. 31). The first showed the integration

of the 3448 bp long gene fragment (see Fig. 11) in the genome of C. glutamicum

Ect1 and the latter the absence of diaminopimelate dehydrogenase activity in the

strain due to the interruption of the ddh gene by said DNA fragment. In this way, a

recombinant strain C. glutamicum Ect1 was constructed that carried a single-copy

of the Ptu f ectABCD gene cluster stably integrated into a well-defined site in the

chromosome and that should be able to produce ectoine/hydroxyectoine in the

absence of osmotic stress.

4.3.2 C. glutamicum Ect1 efficiently produces ectoine from

glucose

Evaluation of the pattern and levels of ectoine/hydroxyectoine production in the

newly constructed C. glutamicum Ect1 strain was conducted by cultivation in a chem-

ically defined minimal medium with glucose as the carbon source. The experiment

revealed that the Ptu f ectABCD gene cluster was functionally expressed and that the

Ect1 strain produced and secreted ectoine in shake-flask cultures already from early

on (Fig. 32). Ectoine accumulated in the culture supernatant up to a final titer of
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Fig. 32: Cultivation profile of the heterologous ectoine producer strain C. glutamicum Ect1.
The C. glutamicum strain Ect1 was cultivated in shake flasks at 30 ◦C in a chemically defined
medium. At the indicated time intervals, consumption of glucose and the extracellular
accumulation of L-lysine, ectoine, and 5-hydroxyectoine were monitored. The data shown
represent mean values and corresponding standard deviations from three biological replicates.

1.3 mM, after the cells had completely depleted carbon source. About 2 % of the

consumed glucose was converted into ectoine as reflected by the molar yield of 19.4

mmol mol-1 (Tab. 11).

Hydroxyectoine was also detected in the culture supernatant, but at a rather low

concentration (< 0.1 mM). In addition to both compatible solutes, C. glutamicum

Ect1 secreted substantial amounts of L-lysine into the medium, 2.3 mM in total.

L-lysine production thus exceeded that of the desired products ectoine and hydroxy-

ectoine. Quantification of the intracellular levels of ectoine and hydroxyectoine

in C. glutamicum Ect1 revealed that ectoine accumulated up to 130 µmol gcdm
-1

in the cytosol. Hydroxyectoine was detected in significantly lower amounts (ca.

5 µmol gcdm
-1). Hence, relative amounts of these two compounds inside the cells

corresponded roughly to the production titers (Fig. 32).

4.3.3 Increased temperature positively affects production

The optimal cultivation temperature for the recombinant production of ectoine and

hydroxyectoine by C. glutamicum Ect1 was assessed by miniaturized cultivations

in a temperature range between 27 ◦C and 42 ◦C. Interestingly, this revealed that
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Fig. 33: Influence of cultivation temperature on the growth and ectoine production per-
formance of C. glutamicum Ect1. Strain Ect1 was grown in chemically defined medium with
glucose on a miniaturized scale at the indicated growth temperatures. The specific growth
rate µmax, ectoine secretion, and intracellular accumulation of ectoine and hydroxyectoine
were determined. Ectoines were quantified after 10 hours (27 ◦C– 35 ◦C) and 20 hours
(42 ◦C) of cultivation. The data shown represent mean values and corresponding standard
deviations from three biological replicates.

ectoine production was improved by increased temperature (Fig. 33). As compared

to the reference cultivation conditions for C. glutamicum Ect1 at 30 ◦C, secretion

was more than doubled when the temperature was set to 35 ◦C. The enhanced

production performance was also reflected by a slight increase of the intracellular

ectoine level. The higher cultivation temperature also positively influenced the

intracellular amounts of hydroxyectoine, and the growth performance of strain Ect1

as reflected by a 28 % increase of the specific growth rate (Fig. 33). The higher

ectoine concentration in the supernatant was taken as positive indication for a better

production performance at 35 ◦C.
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Table 11: Growth and production performance of C. glutamicum strains Lys1, Ect1 and Ect2
during batch cultivation on a mineral salt medium with glucose as carbon source at 30 ◦C
(Lys1, Ect1 & Ect2) and 35 ◦C (Ect2). The data represent mean values and standard deviations
from three biological replicates and denote specific rates for growth (µmax), substrate uptake
(qS) and product formation (qEct and qLys). Additionally, yields for biomass (YX/S), ectoine
(YEct/S), lysine (YLys/S), trehalose (YTre/S), α-ketoglutarate (YAKG/S) and hydroxyectoine
(YEctOH/S) are given. Data for C. glutamicum Lys1 are taken from previous work [18].

C. glutamicum strain Lys1 Ect1 Ect2 Ect2

Temperature 30 ◦C 30 ◦C 30 ◦C 35 ◦C
µmax [h-1] 0.38 ± 0.01 0.38 ± 0.01 0.38 ± 0.01 0.38 ± 0.01

qS [mmol g-1 h-1] 4.86 ± 0.10 3.82 ± 0.08 3.51 ± 0.05 3.74 ± 0.10

qEct [mmol g-1 h-1] n/a 0.07 ± 0.01 0.09 ± 0.01 0.12 ± 0.01

qLys [mmol g-1 h-1] 0.39 ± 0.02 0.20 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

YX/S [g mol-1] 82.1 ± 1.3 87.2 ± 2.8 101.5 ± 0.6 90.9 ± 6.3

YEct/S [mmol mol-1] n/a 19.4 ± 1.5 24.6 ± 0.6 32.0 ± 0.8

YLys/S [mmol mol-1] 81.2 ± 3.2 53.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0

YTre/S [mmol mol-1] 9.4 ± 0.4 5.6 ± 0.1 7.2 ± 0.9 6.7 ± 0.2

YAKG/S [mmol mol-1] 0.0 ± 0.0 2.6 ± 0.4 1.0 ± 0.1 1.9 ± 0.1

YEctOH/S [mmol mol-1] n/a 0.6 ± 0.0 0.6 ± 0.0 0.9 ± 0.1

4.3.4 Elimination of lysine secretion generates a second

generation ectoine producer

Ectoine production of the first-generation producer Ect1 was limited by substantial

carbon loss related to L-lysine synthesis and subsequent secretion of this amino acid

into the growth medium. To avoid excretion of L-lysine, the gene (lysE) for the

L-lysine exporter LysE [216] was inactivated in the genetic background of strain

Ect1 to yield the second-generation ectoine producer C. glutamicum Ect2. Validation

was carried out by PCR (Fig. 30, right gel), confirming that a 575 bp segment

of the lysE gene was missing in C. glutamicum Ect2 compared to Ect1. First, the

novel C. glutamicum Ect2 strain was cultivated in shake flasks in glucose minimal

medium at 30 ◦C to allow a direct comparison of the performance with the parent

Ect1 strain. The deletion of the lysE gene had a beneficial influence on ectoine

production. As compared to the parent strain C. glutamicum Ect1, the molar ectoine

yield was increased by 27 % (Tab. 11). At the same time, L-lysine secretion was

completely eliminated. However, the additional carbon available for strain Ect2 was

not completely channeled towards ectoine production; it was instead recruited for
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biomass formation. To take benefit from the improved ectoine production at elevated

growth temperature observed for strain Ect1 (Fig. 33), the performance of strain

Ect2 at 35 ◦C was also investigated in greater detail.

Similarly to the C. glutamicum Ect1 strain, the higher growth temperature positively

influenced the production performance of the strain Ect2. The yield was increased

from 25 mmol mol-1 at 30 ◦C to 32 mmol mol-1 at 35 ◦C. When compared to the basic

proof-of-concept approach, the allover ectoine yield was improved in strain Ect2

by 65 %. In addition, strain Ect2 did not suffer from high fluxes to the by-product

L-lysine (Tab. 11). The specific growth rate of strain C. glutamicum Ect2 was hardly

affected by the elevated cultivation temperature (Tab. 11); however, the yield in

biomass was reduced, likely as a stress response of C. glutamicum to the increase in

growth temperature. This finding is different from the results presented in chapter

4.1 where it was shown that in addition to reduced biomass yields, C. glutamicum

strains Lys1, Lys12 and Lys12K also show lower specific growth rates. It is likely that

ectoine synthesized by C. glutamicum Ect2 acts as a compatible solute and enables

stable growth rates despite increased temperature. Taken together, the substantially

improved ectoine yield and the unaffected glucose uptake rate of strain Ect2 resulted

in an about 70 % increased specific productivity of the second-generation ectoine

producer C. glutamicum Ect2 (Tab. 11).

4.3.5 Ectoine synthesis affects the intracellular pools of amino

acids of the aspartate family

Aspartate semialdehyde is an important metabolite and critical branch point with

regard to biosynthesis of the aspartate family of amino acids [131]. Since ectoine

biosynthesis is dependent on a good supply of ASA as well (Fig. 9) [21, 198], the

intracellular pools of amino acids belonging to the aspartate family were examined.

Most desirable, integration of the synthetic ectoine cluster into the Ddh lysine branch

resulted in substantial decrease of the intracellular accumulation of lysine as major

by-product in the Ect1 strain (Tab. 12). This was taken as positive indication of a

successfully lowered carbon flux towards lysine biosynthesis, thus increasing the

ASA availability for the novel product ectoine. Ectoine indeed accumulated in sub-

stantially higher levels in the cytosol than lysine did (Tab. 12). Upon elimination of

the lysine exporter, however, the metabolite pattern completely changed. The novel
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Table 12: Concentration of free intracellular amino acids of the aspartate family and of
intracellular ectoine of the lysine producing strain C. glutamicum Lys1 and its ectoine
producing derivatives C. glutamicum Ect1 and Ect2. Cells were grown at 30 ◦C and 35 ◦C in
mineral salt medium. The data represent mean values with standard deviations from two
biological replicates, each sampled at three different optical densities (OD 2, OD 4 and OD
8).

Temperature Compound C. glutamicum

[µmol gcdw
-1] Lys1 Ect1 Ect2

30 ◦C

Aspartate 11.8 ± 3.3 8.1 ± 2.9 7.0 ± 0.3

Asparagine 0.7 ± 0.3 24.6 ± 6.0 20.1 ± 4.9

Threonine 5.1 ± 0.9 3.9 ± 0.6 3.0 ± 0.9

Lysine 23.4 ± 3.1 14.5 ± 4.1 76.7 ± 11.3

Ectoine n/a 126.8 ± 25.5 34.1 ± 14.2

35 ◦C

Aspartate 9.1 ± 0.9 7.6 ± 0.6 7.9 ± 0.6

Asparagine 1.4 ± 0.2 28.1 ± 4.0 17.0 ± 2.4

Threonine 6.8 ± 0.5 6.5 ± 0.4 5.2 ± 0.4

Lysine 24.4 ± 6.3 16.3 ± 2.0 52.8 ± 12.6

Ectoine n/a 158.5 ± 20.7 36.1 ± 7.6

strain C. glutamicum Ect2 accumulated up to 77µmol gcdm
-1 of lysine even exceeding

the value of the basic lysine producer C. glutamicum Lys1 more than three fold.

Simultaneously, the intracellular ectoine level dropped substantially (Tab. 12). Obvi-

ously, elimination of lysine secretion did not circumvent high carbon fluxes towards

this amino acid but resulted in increased intracellular accumulation. In addition to

the most obvious changes regarding the intracellular lysine and ectoine level, also

the formation of aspartate and threonine was slightly affected. As compared to the

parent lysine producer C. glutamicum Lys1, the cytosolic concentrations of these two

amino acids were slightly reduced in the synthetic ectoine cell factories. The intra-

cellular asparagine level, however, was strongly increased. Whereas only marginal

amounts were found in C. glutamicum Lys1, both Ect1 and Ect2 exhibited comparably

high intracellular asparagine levels, also competing with ectoine biosynthesis and

secretion. The cultivation temperature only had a marginal effect on the intracellular

amino acid accumulation. For ectoine, a slight trend towards higher accumulation

was observed at 35 ◦C as indicated by the miniaturized temperature screening.
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Fig. 34: Production performance of the advanced ectoine-producer C. glutamicum Ect2 during
fed-batch fermentation. During the batch phase, the oxygen saturation in the fermenter was
kept constant at 30 % by variation of the stirrer velocity and the aeration rate. Automated
feeding was initiated by a pO2-based signal [18]. Glucose concentration was thereby kept
below 5 g L-1. The data shown represent mean values from two independent fermentation
experiments.

4.3.6 Performance of the ectoine producing strain C. glutamicum

Ect2 under fed-batch conditions

To assess the overall production performance of C. glutamicum Ect2 under conditions

more relevant for an industrial process, the ectoine production by this strain was

benchmarked in a fed-batch process (Fig. 34). Ectoine was secreted from early on

during growth and accumulated in the growth medium to a final concentration of 4.5

g L-1 after 16 hours of fermentation. The production efficiency differed significantly

between the batch and the feeding phase of the process (Fig. 35). The initial 45 g L-1

glucose was already consumed after 8 hours and mainly served for the production of

biomass (Fig. 34). This was reflected by the rapid increase of the cell dry weight to

25 g L-1. As soon as the feeding was started, a shift in the production pattern towards

the formation of ectoine was observed. Overall, the feeding phase contributed to

more than 80 % of the total ectoine production (Fig. 34). The yield obtained during

the batch phase (28 mmol mol-1) was similar to the yield obtained during shake

flask cultivation of strain Ect2 (Tab. 11). In the feeding phase, however, it increased

10-fold up to about 300 mmol mol-1 (Fig. 35). This substantial increase provided an

overall space time yield of 6.7 g L-1 d-1 ectoine.
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Fig. 35: Ectoine yield achieved in the different cultivation phases during fed-batch fermenta-
tion (see Fig. 34) of the advanced ectoine-producer C. glutamicum Ect2. The data shown
represent mean values from two independent fermentation experiments.

4.3.7 C. glutamicum Ect2 enables decoupling of ectoine

production from high salinity in a marker-free host system

The stabilizing and function-preserving effects of ectoines have led to considerable

interests in these compounds and hence to the development of a variety of practical

applications [61, 124, 160]. As a consequence, ectoine and its derivative hydroxyec-

toine are considered as valuable natural microbial products and they have gained

significant market value in recent years. Their biotechnological production has

reached the scale of tons on an annual basis. The industrial production of ectoines is

currently achieved by bacterial milking of H. elongata [175, 184], a process that has

recently been improved by the inclusion of mutants of this bacterium that cannot

catabolize ectoines and those that accumulate these compounds in the high salinity

medium as a result of a defect in the ectoine/hydroxyectoine-specific TeaABC uptake

system [62].

The construction and characterization of a synthetic microbial cell factory for the

production of ectoine described here relies on the robust metabolism of C. glutamicum

[35, 226]. This bacterium incorporates features desirable for large scale production
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processes which are responsible for its tremendous rise and success as industrial

production host [15]. One of those beneficial features is the considerable knowledge

base for the genetic manipulation and large-scale fermentation processes of the

industrial workhorse C. glutamicum [15]. Most advantageous, the C. glutamicum

genome sequence lacks ectoine catabolic genes [93] eliminating product loss due to

the reuse of ectoine and hydroxyectoine as carbon or nitrogen sources – a drawback

of natural producer H. elongata [62]. In developing the synthetic C. glutamicum

ectoine cell factory several strategies were combined simultaneously to optimize its

production. Adaptation of the codon usage appeared promising as this strategy has

proven beneficial for the heterologous production of diaminopentane recruiting lysine

decarboxylase from E. coli [103]. Expression control via the constitutively active

tuf promoter of C. glutamicum [13, 103] not only decoupled ectABCD expression

from its natural osmo-stress responsive regulation [198], but also provided a simple

and robust promoter system with no specialized needs for the control of its activity.

Beyond this, the careful design of the cellular chassis guaranteed good supply of the

building block ASA which is normally tightly controlled in many microorganisms

including C. glutamicum [92, 131]. In addition, and in an effort to diminish carbon

flux towards L-lysine, the dehydrogenase branch of L-lysine biosynthesis [39, 194]

was inactivated.

In comparison to plasmid-based synthesis systems [172, 183, 186, 198] the strategy

presented here benefits from a stable genome-based integration of the synthetic

Ptu f ectABCD gene cluster (Fig. 11), an approach that has also been employed for

the recombinant production of ectoines by H. polymorpha [50]. Constitutive gene

expression in the synthetic C. glutamicum cell factory obviated the need for the

use of high salinity growth media, conditions that are typically required to trigger

enhanced expression of these genes in natural producers [33, 118, 119] such as H.

elongata [184]. The novel synthetic cell factory C. glutamicum Ect2 thus avoids the

considerable drawbacks of high salinity growth media during fermentation processes

that invoke corrosion problems on the reactor systems [172] and thereby drive up

the costs for their appropriate design and maintenance. Related to the economic

relevance, also previous studies have addressed the issue of a salt decoupled ectoine

production with the natural producers P. stutzeri and Chromohalobacter salexigens,

and the heterologous hosts H. polymorpha and E. coli [50, 172, 183, 186].
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4.3.8 Combined process and strain engineering increases ectoine

production in C. glutamicum

As successful proof of concept, the first generation C. glutamicum Ect1 strain revealed

salinity decoupled ectoine and hydroxyectoine production and secretion. Interest-

ingly, the summed molar yields of L-lysine and ectoine added up to 73.2 mmol mol-1,

a value that perfectly matches with the L-lysine yield of the parent strain C. glu-

tamicum Lys1 [18]. Hence, the carbon demand for ectoine synthesis seems to be

completely satisfied by the cells on the expense of L-lysine. Still, L-lysine production

dominated in the basic ectoine producer. This issue was addressed in a second round

of metabolic engineering through inactivation of the gene coding for the L-lysine

exporter LysE. This strategy has been applied for optimized diaminopentane produc-

tion by C. glutamicum [105]. Beyond the 27 % gain in ectoine yield (Tab. 11), the

inactivation of the lysine exporter avoided a contamination of the excreted ectoine,

a feature that will clearly facilitate the downstream processing for the recovery of

ectoine from the culture broth.

Further improved ectoine production was then achieved by an increase in the

growth temperature from 30 ◦C to 35 ◦C. In combination, genetic and process engin-

eering proved to be highly beneficial as reflected in a 65 % increased yield and a 70 %

increased specific productivity (Tab. 11). A rather unexpected finding of our study

was the observation that the recombinant strain produced so little hydroxyectoine

(Tab. 11). This is surprising because P. stutzeri A1501, on whose genetic blueprint

the synthetic ectABCD gene cluster is based, produces hydroxyectoine very efficiently

and in much greater quantities than ectoine [186, 198]. It is currently unclear why

there is so little hydroxyectoine formed by the C. glutamicum Ptu f ectABCD strains.

Overall, both recombinant C. glutamicum ectoine producers already performed ad-

mirably in shake-flask experiments. They exhibited excellent specific production

rates of 9.9 mg g-1 h-1 (C. glutamicum Ect1) and 17.1 mg g-1 h-1 (C. glutamicum

Ect2), thus exceeding that of the native and the heterologous ectoine production

hosts H. elongata (7.1 mg g-1 h-1) [175] and E. coli (2 mg g-1 h-1) [183]. However, a

closer examination of the achieved final yield of 32 mmol mol-1 revealed that it was

so far not possible to harness the complete carbon used by C. glutamicum Lys1 for

L-lysine synthesis for the recombinant production of ectoine.
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4.3.9 High-cell density fermentation reveals excellent production

performance

To take benefit from high cell densities [18, 154], which cannot readily be achieved

in shake-flask experiments, the performance of the second generation ectoine pro-

ducer C. glutamicum Ect2 was benchmarked under carefully controlled fed-batch

conditions. The ectoine production efficiency differed significantly during the batch

and the feeding phase of the fermentation process. That kind of desired shift in the

product spectrum is often intentionally induced at industrial scale production by

appropriate process operations. In general, this leads to an optimized channeling

of the substrate to the desired product within the feeding-phase [18, 34, 73, 123].

Similarly, a significant 10-fold increase of the ectoine yield in the feeding phase of

the C. glutamicum Ect2 fermentation (Fig. 35) could be observed. Though there was

detectable growth-associated ectoine production during the batch phase, the larger

fraction of ectoine seemed to be produced by cells during the feeding phase. The

achieved final titer of 4.5 g L-1 already approached to that of currently described

industrial production systems [53, 121, 212].

The excellent performance of the C. glutamicum strain Ect2 under fed-batch

conditions allowed the synthetic cell factory to achieve an overall space-time yield

of 6.7 g L-1 d-1 ectoine which is among the highest productivities reported so far in

the literature [53, 121, 212]. Better performance was, so far, only achieved with H.

boliviensis [212], and Chromohalobacter salexigens [53]. These do, however, rely on

high salinity and involve complex process operation strategies [53] thus driving up

the production costs.

4.3.10 Metabolic changes point at potential bottlenecks in ectoine

production

When introducing the synthetic ectoine gene cluster in lysine producing C. gluta-

micum Lys1, carbon flux within the cell was partly re-routed from the common

intermediate ASA to ectoine as indicated by the drop in extracellular and intracellu-

lar lysine ([18], Tab. 12), an effect equally observed at 30 ◦C and 35 ◦C. However,

elimination of lysine secretion resulted in a strong increase of the intracellular pool

of this amino acid. The additional carbon, now potentially elevating the ASA pool,
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was not efficiently recruited for driving ectoine biosynthesis. Obviously, the native

lysine route is still superior to the non-native route towards the novel product ectoine

despite the elimination of the dehydrogenase branch. In subsequent rounds of strain

engineering, this might be targeted by additional down-regulation of other lysine bio-

synthetic genes including dihydrodipicolinate synthase (dapB) and diaminopimelate

decarboxylase (lysA) previously identified as key reactions for lysine production [18].

In addition, manipulating the strength of the ribosome-binding sites of the various

ect genes might improve their expression. An additional issue involves the transport

processes related to the ectoine metabolism. Most favorable for production processes,

C. glutamicum excretes ectoine into the growth medium, a feature that was also

observed for other recombinant ectoine production systems [50, 183]. So far the

intracellular metabolite levels (Tab. 12) do not suggest limitations in the transport

processes but experience has shown that engineering the excretion systems for amino

acids and related compounds is beneficial for the performance of C. glutamicum

[16, 19, 31, 81, 105, 216]. In addition, it appears even more important to address

the uptake system of C. glutamicum comprising the three transporters EctP, LcoP,

and ProP [224]. In native producers, these transport systems not only serve for the

scavenging of stress protectants from natural resources [225], but they also function

as salvage systems to retrieve compatible solutes that leak or are actively released

from the producer cells [62, 63, 70]. As previously shown for the production of

aromatic amino acids [75, 76], the production efficiency of C. glutamicum might

significantly suffer from product re-uptake into the cell.

In addition, there is strong indication that the compatible solute transporter

TeaABC in H. elongata is integrated in the regulation of ectoine biosynthesis. De novo

biosynthesis of the cell is immediately decreased when externally supplied ectoine is

taken up via TeaABC [62]. As the regulatory mechanism is unknown so far, similar

regulation patterns involving the C. glutamicum ectoine transporters might also limit

the biosynthetic efficiency in the recombinant production host.

In contrast to the currently used H. elongata strain for the commercial production of

ectoines [124, 184] or other microbial species that have been suggested as alternative

natural producers [121, 178, 186, 198, 212], C. glutamicum has a long history for the

industry level production of valuable natural products by large-scale fermentation

procedures [68, 81]. Knowledge gained during the development of C. glutamicum

into an excellent performing microbial cell factory [17, 18, 34] can now be brought
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to bear in a scale-up process for ectoine production by the recombinant C. glutamicum

Ect2 strain. In addition, the ability to readily manipulate the genetic blueprint of

C. glutamicum on a genome-wide scale [18, 203, 208] will allow the application of

rational and systems-wide metabolic engineering approaches to further improve the

performance of the second generation ectoine producer C. glutamicum Ect2. The

success of these approaches has recently unequivocally been demonstrated in the

development of highly efficient L-lysine [18] and diaminopentane [34, 103, 104]

C. glutamicum cell factories.
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CONCLUSION AND OUTLOOK

Biotechnological production of chemicals will play an increasingly important role

in the global economy of the future to replace processes based on petrochemistry

[42]. In order to reach this goal, scientists and engineers have to integrate the

entire spectrum of biotechnological methods, ranging from molecular biology to

biochemical engineering and including analytical tools to gain an insight into intra-

and extracellular processes to precisely engineer them for the production of value

added chemicals.

C. glutamicum, a classical amino acid producer is a proven robust and versatile

production strain for a wide range of chemicals [15]. The results presented in this

work make use of the useful traits of C. glutamicum and show further improvements

in the substrate and product portfolio. Heterologous expression of genes from

Escherichia coli and Pseudomonas stutzeri allowed the utilization of xylose as a

substrate and the secretion of the compatible solute ectoine as a product, respectively.

The latter modification also included optimization of the genetic sequence for the

codon usage in C. glutamicum and utilization of a constitutive promoter. This allowed

the production of ectoine without the need for media of high salinity as the operon,

comprising the genes for ectoin production, is naturally under control of a promoter

triggered by osmotic stress. Thus the product portfolio of C. glutamicum could be

widened by a substance of interest for the cosmetic industry, while at the same time

making a simpler biotechnological production route for ectoine possible, which is

less destructive to the equipment than the bacterial milking processes applied for

natural producers [175, 184]. Further measures to increase the ectoin titer could

focus on the attenuation of lysine production to avoid the intracellular accumulation

of this amino acid. Additionally, genetic modifications that have proven useful for
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increasing lysine production [18, 150] could be implemented in C. glutamicum Ect2.

To focus purely on ectoine production, the gene cluster could be shortened by the

ectD gene to avoid hydroxyectoine co-production.

The implementation of the xylA and xylB genes from E. coli enabled conversion of

xylose to lysine, and integrated into an engineered core metabolism, enables lysine

titers above 100 g L-1 [138]. This is an important aspect for the industrial applicability,

for which final titer, yield and productivity are of utmost importance [41]. The

significance of xylose utilization for the production of valuable chemicals stems

from the need for alternative substrates for microbial processes. Those alternatives

must meet standards like non-competition with human nutrition. Xylose meets this

requirement and, a major building block of hemicellulose, has the benefit of being

globally available as a waste product in agriculture [3, 6, 202]. Further improvements

could be made to equip C. glutamicum Xyl1 with the genetic tools to utilize arabinose,

another pentose sugar present in hemicellulose, i.e. by transforming E. coli araBAD

genes. This approach has been successfully applied in C. glutamicum before [96,

179]. C. glutamicum Xyl1 could thus use hemicellulose hydrolysates more efficiently

for production of lysine [36].

In addition to the successful implementation on the molecular level, the effect of

temperature, an important factor in biotechnological production was investigated. It

was shown for a wide range of C. glutamicum strains, how cultivation at increased

temperature increases lysine yield. Through 13C flux analysis it was possible to

characterize the effect of the higher temperature on the metabolism of C. glutamicum.

This revealed a higher flux through the PP pathway and an increased net flux from

the phosphoenolpyruvate/pyruvate pool to the oxaloacetate/malate pool.

Interestingly, the effect of temperature, described above, was also observed for

C. glutamicum strains producing ectoine. It did, on the other hand, not occur

during lysine production on xylose. This underlines the importance of systems

wide knowledge about the production host, as such phenomena cannot be easily

understood. The increase in PP pathway carbon flux, observed during growth on

glucose at elevated temperature, hence might not take place on xylose.

To reach the aim of an economically feasible biotechnological production of chem-

icals, continuous improvement of existing systems and innovation for new routes

is necessary. The results presented in this work give clues on how to proceed. For

an improved lysine production from xylose, the carbon flux through the oxidative
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part of the PP pathway should be increased via molecular modification or maybe

co-feeding of a hexose sugar. The findings of the metabolic flux analysis at elevated

temperature suggest the PP pathway and the PEP/Pyr-OAA/Mal interconversion as

promising targets to further advance lysine production. Finally it becomes apparent

from the economic considerations presented in chapter 4.1.4 how important the

definition of a goal is for any attempt to optimization. In this example, the term

‘improved lysine production’ could mean either higher yields, higher titers or higher

productivity, but either of those possible goals requires a different approach.
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APPENDIX

Ectoine synthese cluster nucleotide sequence
Gene_cluster_alingnment

 Section 1

1 4710 20 30(1) 
AGCGTATTCTCTGCAACTAGTGCATGTTGGATGCAATGGTTGCAGCGEctSC_codon_optimized (1) 
AGCGTATTCTCTGCAACTAGTGCATGTTGGATGCAATGGTTGCAGCGEctSC_native (1) 

 Section 2

48 9460 70 80(48) 
CCACTGAGCATCTTGGGAACCTCATGCATGAGCCGCAACACCATCTGEctSC_codon_optimized (48) 
CCACTGAGCATCTTGGGAACCTCATGCATGAGCCGCAACACCATCTGEctSC_native (48) 

 Section 3

95 141100 110 120 130(95) 
CCCACCGTTGGAATAGCCAACAATAAAGATCCTCTTGATGCCATACGEctSC_codon_optimized (95) 
CCCACCGTTGGAATAGCCAACAATAAAGATCCTCTTGATGCCATACGEctSC_native (95) 

 Section 4

142 188150 160 170(142) 
TGTTGCCCAAGTGCGTGGCGAGTTTTACAAAGAACCCCACATCATCAEctSC_codon_optimized (142) 
TGTTGCCCAAGTGCGTGGCGAGTTTTACAAAGAACCCCACATCATCAEctSC_native (142) 

 Section 5

189 235200 210 220(189) 
ATGCCTAAATGGCGGGTATTTTCATCCAAACCCAACCGCGCATCATTEctSC_codon_optimized (189) 
ATGCCTAAATGGCGGGTATTTTCATCCAAACCCAACCGCGCATCATTEctSC_native (189) 

 Section 6

236 282250 260 270(236) 
CCAATGCTGATCCACCCCATCCGGATAAACCACCATGAACGGCAACGEctSC_codon_optimized (236) 
CCAATGCTGATCCACCCCATCCGGATAAACCACCATGAACGGCAACGEctSC_native (236) 

 Section 7

283 329290 300 310(283) 
GATCAAAAGTCCTGTTGGTGAAGCTGCGCCCCACAGATCCTGACTGCEctSC_codon_optimized (283) 
GATCAAAAGTCCTGTTGGTGAAGCTGCGCCCCACAGATCCTGACTGCEctSC_native (283) 

 Section 8

330 376340 350 360(330) 
TGGGAGCCATGAAAATAGATCAGCGCATCCGTGGTGGAACCAAAAGGEctSC_codon_optimized (330) 
TGGGAGCCATGAAAATAGATCAGCGCATCCGTGGTGGAACCAAAAGGEctSC_native (330) 

 Section 9

377 423390 400 410(377) 
CTCAACAATACGAAACGTTCGCTTTCGGTCCTGATGAAAGAGATGTCEctSC_codon_optimized (377) 
CTCAACAATACGAAACGTTCGCTTTCGGTCCTGATGAAAGAGATGTCEctSC_native (377) 

Thursday, November 15, 2012 16:57:48 Page 1

Fig. 36: Nucleotide sequence of the ectoine gene cluster. The upper rows represent the
sequence optimized for gene expression in C. glutamicum. The lower rows show the native
Pseudomonas stutzeri sequence. (The sequence is continued on pages 97 to 101)

94



Appendix

���������	�
���������	

����	�����#

424 470430 440 450 460������
CCTGAATCATCATCTAAGTATGCATCTCGGTAAGCTCGACCAGGACA��	�����������	������ ������
CCTGAATCATCATCTAAGTATGCATCTCGGTAAGCTCGACCAGGACA��	�����	��� ������

����	������

471 517480 490 500��"���
GTGCCACCACAATTTTGGAGGATTACAAGAACATGACCAACATCCGC��	�����������	������ ��"���
GTGCCACCACAATTTTGGAGGATTACAAGAACATGACCAACATCCGC��	�����	��� ��"���

����	������

518 564530 540 550� ����
GTAGCTATCGTGGGCTATCTAGAGTACCTGGGACGCAGCGTCGAAAA��	�����������	������ � ����
GTAGCTATCGTGGGCTATCTAGAGTACCTGGGACGCAGCGTCGAAAA��	�����	��� � ����

����	������

565 611570 580 590 600� ! ��
GTGGCCGTTACCCTGCGAATGTCCACAGGGTAGCTGGTAGTTTGAAA��	�����������	������ � ! ��
GTGGCCGTTACCCTGCGAATGTCCACAGGGTAGCTGGTAGTTTGAAA��	�����	��� � ! ��

����	������

612 658620 630 640�!����
ATCAACGCCGTTGCCCTTAGGATTCAGTAACTGGCACATTTTGTAAT��	�����������	������ �!����
ATCAACGCCGTTGCCCTTAGGATTCAGTAACTGGCACATTTTGTAAT��	�����	��� �!����

����	����� 

659 705670 680 690�! ���
GCGCTAGATCTGTGTGCTCAGTCTTCCAGGCTGCTTATCACAGTGAA��	�����������	������ �! ���
GCGCTAGATCTGTGTGCTCAGTCTTCCAGGCTGCTTATCACAGTGAA��	�����	��� �! ���

����	�����!

706 752720 730 740�"#!��
AGCAAAACCAATTCGTGGCTGCGAAAGTCGTAGCCACCACGAAGTCC��	�����������	������ �"#!��
AGCAAAACCAATTCGTGGCTGCGAAAGTCGTAGCCACCACGAAGTCC��	�����	��� �"#!��

����	�����"

753 799760 770 780�" ���
AGGAGGACATACAATGCCAACCCTGAAGCGCAACTCCATCAACAACC��	�����������	������ �" ���
AGGAGGACATACAATGCCTACCCTAAAAAGGAATTCAATCAACAACC��	�����	��� �" ���

����	������

800 846810 820 830��##��
CAAAGGGCATCGTGCTGTCCTTCCCAACCGTGATGCTGCGTCGCCCA��	�����������	������ ��##��
CCAAAGGCATTGTTTTGAGTTTCCCCACCGTAATGCTCCGTCGCCCA��	�����	��� ��##��

$%�
���&'�(����)�
�� '��#����!* "*���+����

���������	�
���������	

����	������

847 893860 870 880���"��
ACCGATGGCGACGGCTACAACCTGCACCAGCTCGTGGCACGCTGCCA��	�����������	������ ���"��
ACCGACGGCGACGGTTACAACCTTCATCAGCTGGTGGCGCGCTGCCA��	�����	��� ���"��

����	�����#

894 940900 910 920 930������
GCCACTGGATACCAACTCCGTGTACTGCAACCTGCTGCAGTGCTCCG��	�����������	������ ������
GCCCCTCGATACCAATTCGGTCTACTGCAACCTGCTGCAGTGTTCCG��	�����	��� ������

����	������

941 987950 960 970������
ATTTCGCAGATACCGCAATCGCAGCAGAAAACGCACAGGGCGAACTG��	�����������	������ ������
ATTTCGCTGACACCGCCATCGCCGCAGAGAACGCCCAAGGCGAGCTG��	�����	��� ������

����	������

988 10341000 1010 1020������
GTGGGCTTCATCTCCGGCTACCGTCCACCATCCCGTCCAGATACCCT��	�����������	������ ������
GTCGGTTTCATCTCGGGTTACCGCCCCCCTTCGCGGCCGGACACGCT��	�����	��� ������

����	������

1035 10811040 1050 1060 1070��#� ��
GTTCGTGTGGCAGGTCGCAGTGGATTCCTCCATGCGTGGCCAGGGCC��	�����������	������ ��#� ��
GTTCGTCTGGCAGGTCGCCGTCGACAGTTCGATGCGCGGTCAGGGGC��	�����	��� ��#� ��

����	������

1082 11281090 1100 1110��#����
TGGCACTGCGCATGCTGCTGGCACTGACCGCACGCGTGGCACGCGAA��	�����������	������ ��#����
TGGCCCTGCGCATGCTGCTGGCACTGACCGCCCGGGTCGCTCGCGAG��	�����	��� ��#����

����	����� 

1129 11751140 1150 1160�������
TACGGCGTGCGCTACATGGAAACCACCATCTCCCCAGATAACGGTGC��	�����������	������ �������
TACGGCGTGCGTTACATGGAAACCACCATCTCGCCGGACAACGGGGC��	�����	��� �������

����	�����!

1176 12221190 1200 1210���"!��
ATCCCAGGCACTGTTCAAACGCGCATTCGATCGCCTGGATGCAAACT��	�����������	������ ���"!��
GTCACAGGCGCTGTTCAAGCGGGCCTTCGACCGCCTCGATGCCAACT��	�����	��� ���"!��

����	�����"

1223 12691230 1240 1250�������
GCACCACCCGCACCCTGTTCGCACGCGATACCCACTTCGCAGGCCAG��	�����������	������ �������
GCACGACGCGCACGCTGTTTGCCCGCGACACGCATTTCGCCGGTCAG��	�����	��� �������

$%�
���&'�(����)�
�� '��#����!* "*���+����

Fig. 36: Ectoine nucleotide sequence. (Continued from page 96).
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���������	�
���������	

����	������

1270 13161280 1290 1300���"#��
CACGAAGATGAAGTGCTGTACCGTGCAGGCCCATTCACCGTGTCCCA��	�����������	������ ���"#��
CACGAGGACGAGGTGCTCTACCGCGCCGGCCCGTTCACCGTTTCCCA��	�����	��� ���"#��

����	������

1317 13631330 1340 1350����"��
CCTGGAAGAAGAACTGAAAGAACACGCATAAGAAGTCCAGGAGGACA��	�����������	������ ����"��
TCTAGAAGAAGAGCTCAAGGAGCACGCATGAGAAGTCCAGGAGGACA��	�����	��� ����"��

����	�����#

1364 14101370 1380 1390 1400���!���
TACAATGAAAACCTTCGAACTGAACGAATCCCGTGTGCGCTCCTACT��	�����������	������ ���!���
TACAATGAAAACTTTTGAACTGAATGAATCCAGGGTTCGCAGCTACT��	�����	��� ���!���

����	������

1411 14571420 1430 1440�������
GCCGCTCCTTCCCAGTGGTGTTCAAGCAGGCACAGGGTGCAGAACTG��	�����������	������ �������
GCCGTTCCTTCCCCGTGGTCTTCAAGCAGGCCCAGGGCGCCGAACTG��	�����	��� �������

����	������

1458 15041470 1480 1490��� ���
GTGACCCAGGATGGCAAGCGCTACATCGATTTCTTGGCAGGCGCAGG��	�����������	������ ��� ���
GTCACTCAGGACGGCAAGCGCTACATCGACTTCCTCGCTGGTGCCGG��	�����	��� ��� ���

����	������

1505 15511510 1520 1530 1540�� # ��
CACCCTGAACTACGGCCACAACCACCCAGTGCTGAAGCAGGCACTGC��	�����������	������ �� # ��
CACGCTCAACTACGGGCACAACCACCCGGTGCTCAAGCAGGCGCTGC��	�����	��� �� # ��

����	������

1552 15981560 1570 1580��  ���
TGGAATACATCGAATCCGATGGCATCACCCACGGCCTGGATATGTAC��	�����������	������ ��  ���
TCGAGTACATCGAGAGCGACGGCATCACCCACGGCCTGGACATGTAC��	�����	��� ��  ���

����	����� 

1599 16451610 1620 1630�� ����
ACCGAAGCAAAAGAACGCTTCCTGGAAACCTTCAACCGCCTGATCCT��	�����������	������ �� ����
ACCGAAGCCAAGGAGCGTTTCCTCGAAACCTTCAACCGGCTGATCCT��	�����	��� �� ����

����	�����!

1646 16921660 1670 1680��!�!��
GGAACCACGCGGTATGGGCGATTACCGCATGCAGTTCACCGGTCCAA��	�����������	������ ��!�!��
CGAGCCGCGCGGCATGGGCGACTACCGCATGCAGTTCACCGGCCCGA��	�����	��� ��!�!��

$%�
���&'�(����)�
�� '��#����!* "*���+����

���������	�
���������	

����	�����"

1693 17391700 1710 1720��!����
CCGGCACCAACGCAGTGGAAGCAGCAATGAAGCTGGCACGCAAGGTG��	�����������	������ ��!����
CCGGCACCAACGCGGTCGAGGCGGCGATGAAGCTGGCGCGCAAGGTC��	�����	��� ��!����

����	������

1740 17861750 1760 1770��"�#��
ACCGGTCGCAACAACATCATTTCCTTCACCAACGGCTTCCACGGCTG��	�����������	������ ��"�#��
ACCGGGCGCAACAACATCATCAGTTTCACCAACGGCTTCCACGGCTG��	�����	��� ��"�#��

����	������

1787 18331800 1810 1820��"�"��
CTCCATCGGTGCACTGGCAGCAACCGGCAACCAGCACCACCGTGGCG��	�����������	������ ��"�"��
CAGCATTGGCGCGCTGGCCGCCACCGGCAACCAGCATCACCGCGGCG��	�����	��� ��"�"��

����	�����#

1834 18801840 1850 1860 1870�������
GTTCCGGCATCGGCCTGACCGATGTGTCCCGCATGCCATACGCAAAC��	�����������	������ �������
GCTCCGGCATCGGCCTCACCGATGTCAGCCGCATGCCGTACGCCAAC��	�����	��� �������

����	������

1881 19271890 1900 1910�������
TACTTCGGCGATAAGACCAACACCATCGGCATGATGGATAAGCTGCT��	�����������	������ �������
TATTTCGGCGACAAGACCAACACCATCGGCATGATGGACAAGCTGCT��	�����	��� �������

����	������

1928 19741940 1950 1960�������
GTCCGATCCATCCTCCGGCATCGATAAGCCAGCAGCAGTGATCGTGG��	�����������	������ �������
CTCCGACCCGTCCAGCGGGATCGACAAGCCCGCCGCGGTGATCGTCG��	�����	��� �������

����	������

1975 20211980 1990 2000 2010���" ��
AAGTGGTGCAGGGCGAAGGCGGTCTGAACACCGCATCCGCAGAATGG��	�����������	������ ���" ��
AGGTGGTCCAGGGCGAAGGCGGTCTGAACACAGCATCGGCCGAGTGG��	�����	��� ���" ��

����	������

2022 20682030 2040 2050��#����
ATGCGCAAGCTGGAAAAGCTGTGCCGCAAGCACGAAATGCTGCTGAT��	�����������	������ ��#����
ATGCGCAAGCTCGAGAAGCTCTGCCGCAAGCACGAGATGCTGCTGAT��	�����	��� ��#����

����	����� 

2069 21152080 2090 2100��#!���
CGTGGATGATATCCAGGCAGGCTGCGGTCGTACCGGTACCTTCTTCT��	�����������	������ ��#!���
CGTCGATGACATCCAGGCCGGCTGCGGCCGCACCGGGACTTTCTTCA��	�����	��� ��#!���

$%�
���&'�(����)�
�� '��#����!* "*���+��� 

Fig. 36: Ectoine nucleotide sequence. (Continued from page 97).
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���������	�
���������	

����	�����!

2116 21622130 2140 2150����!��
CCTTCGAAGAAATGGGCATCCAGCCAGATATCGTGACCCTGTCCAAG��	�����������	������ ����!��
GCTTCGAAGAGATGGGCATCCAGCCGGATATCGTCACGCTGTCCAAG��	�����	��� ����!��

����	�����"

2163 22092170 2180 2190���!���
TCCCTGTCCGGCTACGGCCTGCCATTCGCAATGGTGCTGCTGCGCCA��	�����������	������ ���!���
TCGCTGTCCGGCTACGGCCTGCCGTTCGCCATGGTGTTGCTGCGCCA��	�����	��� ���!���

����	������

2210 22562220 2230 2240����#��
AGAACTGGATCAGTGGAAGCCAGGCGAACACAACGGCACCTTCCGTG��	�����������	������ ����#��
AGAGCTGGACCAGTGGAAGCCCGGCGAACACAACGGCACCTTCCGCG��	�����	��� ����#��

����	������

2257 23032270 2280 2290��� "��
GCAACAACCACGCATTCGTGACCGCAGCAGCAGCAGTGGAACACTTC��	�����������	������ ��� "��
GCAACAACCATGCATTCGTCACGGCGGCCGCGGCGGTCGAGCACTTC��	�����	��� ��� "��

����	���� #

2304 23502310 2320 2330 2340���#���
TGGCAGAACGATGCATTCGCAAACTCCGTGAAGGCAAAGGGCAAGCG��	�����������	������ ���#���
TGGCAGAACGACGCGTTCGCCAACAGCGTGAAGGCCAAGGGCAAGCG��	�����	��� ���#���

����	���� �

2351 23972360 2370 2380��� ���
CATTGCAGATGGCATGCAGCGCATCATCCGTCGCCACGGTCCAGACT��	�����������	������ ��� ���
CATCGCCGACGGCATGCAGCGCATCATCCGTCGCCACGGCCCGGATT��	�����	��� ��� ���

����	���� �

2398 24442410 2420 2430�������
CCCTGTTCCTGAAGGGTCGCGGTATGATGATCGGCATCTCCTGCCCA��	�����������	������ �������
CGCTGTTCCTCAAGGGCCGCGGGATGATGATCGGCATCAGCTGCCCC��	�����	��� �������

����	���� �

2445 24912450 2460 2470 2480���� ��
GATGGCGAAATCGCAGCAGCCGTGTGTCGCCACGCATTCGAAAACGG��	�����������	������ ���� ��
GATGGCGAGATTGCCGCCGCAGTGTGCCGCCACGCCTTCGAAAACGG��	�����	��� ���� ��

����	���� �

2492 25382500 2510 2520�������
CCTGGTGATCGAAACCTCCGGTGCACACTCCGAAGTGGTGAAGTGCC��	�����������	������ �������
CCTGGTGATCGAGACCAGCGGCGCCCACAGCGAAGTGGTCAAGTGCC��	�����	��� �������

$%�
���&'�(����)�
�� '��#����!* "*���+���!

���������	�
���������	

����	����  

2539 25852550 2560 2570�� ����
TGTGCCCACTGATCATCTCCGATGAGCAGATCGATCAGGCACTGTCC��	�����������	������ �� ����
TCTGCCCGCTGATCATCAGCGATGAGCAGATCGACCAGGCACTTTCC��	�����	��� �� ����

����	���� !

2586 26322600 2610 2620�� �!��
ATCCTGGATAAGGCATTCGCAGCAGTGATGTCCGAACAGACCGAAAA��	�����������	������ �� �!��
ATCCTCGACAAGGCCTTTGCCGCCGTGATGAGCGAGCAGACCGAGAA��	�����	��� �� �!��

����	���� "

2633 26792640 2650 2660��!����
CCAGGCATCCTAAGAAGTCCAGGAGGACATACAATGATCGTGCGCAC��	�����������	������ ��!����
CCAAGCTTCCTAAGAAGTCCAGGAGGACATACAATGATCGTCAGAAC��	�����	��� ��!����

����	���� �

2680 27262690 2700 2710��!�#��
CCTGGCAGAATGCGAAAAGACCGATCGCAAGGTGCACTCCCAGACCG��	�����������	������ ��!�#��
CCTCGCCGAGTGCGAAAAGACCGACCGCAAGGTCCACAGCCAGACCG��	�����	��� ��!�#��

����	���� �

2727 27732740 2750 2760��"�"��
GCACCTGGGATTCCACCCGCATGCTGCTCAAGGATGATAAGGTGGGC��	�����������	������ ��"�"��
GCACCTGGGACAGCACGCGCATGCTGCTCAAGGACGACAAGGTGGGA��	�����	��� ��"�"��

����	����!#

2774 28202780 2790 2800 2810��""���
TTCTCCTTCCACATCACCACCATCTACGCAGGCTCCGAAACCCACAT��	�����������	������ ��""���
TTCTCCTTCCACATCACCACCATCTACGCCGGCAGCGAGACGCACAT��	�����	��� ��""���

����	����!�

2821 28672830 2840 2850�������
CCACTACCAGAACCACTTCGAATCCGTCTACTGCATCTCCGGCAACG��	�����������	������ �������
CCACTACCAGAACCACTTCGAGTCGGTGTACTGCATCAGCGGCAATG��	�����	��� �������

����	����!�

2868 29142880 2890 2900���!���
GCGAAATCGAAACCATTGCCGATGGCAAGATCTACAAGATCGAACCA��	�����������	������ ���!���
GCGAGATCGAAACCATCGCCGACGGCAAGATCTACAAGATCGAGCCG��	�����	��� ���!���

����	����!�

2915 29612920 2930 2940 2950���� ��
GGCACCCTGTACGTGCTGGAAAAGCACGATGAACACCTGTTGCGTGG��	�����������	������ ���� ��
GGCACGCTGTACGTGCTGGAGAAGCATGACGAGCACCTGCTGCGCGG��	�����	��� ���� ��

$%�
���&'�(����)�
�� '��#����!* "*���+���"
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���������	�
���������	

����	����!�

2962 30082970 2980 2990���!���
TGGCTCCGAAGATATGAAGCTGGCCTGCGTGTTCAACCCACCACTGA��	�����������	������ ���!���
TGGCAGCGAAGACATGAAGCTGGCCTGCGTCTTCAACCCGCCGCTCA��	�����	��� ���!���

����	����! 

3009 30553020 3030 3040��##���
ACGGTCGCGAAGTGCACGATGAATCCGGTGTGTACCCACTGGAAGCA��	�����������	������ ��##���
ACGGGCGCGAAGTGCATGACGAAAGCGGCGTCTATCCTCTGGAGGCC��	�����	��� ��##���

����	����!!

3056 31023070 3080 3090��# !��
GAAACCGTGTAATACCGGAGCTCGATCACGAAGTCCAGGAGGACATA��	�����������	������ ��# !��
GAAACCGTCTGATACCGGAGCTCGATCACGAAGTCCAGGAGGACATA��	�����	��� ��# !��

����	����!"

3103 31493110 3120 3130���#���
CAATGCAGGCAGATCTGTACCCATCCCGTCAAGAAGATCAGCCATCC��	�����������	������ ���#���
CAATGCAAGCCGACCTGTATCCCTCGCGCCAGGAAGACCAGCCCAGC��	�����	��� ���#���

����	����!�

3150 31963160 3170 3180��� #��
TGGCAAGAACGCCTGGATCCAGTGGTGTACCGCTCCGATCTGGAAAA��	�����������	������ ��� #��
TGGCAGGAACGCCTGGATCCGGTCGTCTACCGCAGCGACCTGGAGAA��	�����	��� ��� #��

����	����!�

3197 32433210 3220 3230����"��
CGCACCAATCGCAGCCGAACTGGTGGAACGCTTCGAACGCGACGGCT��	�����������	������ ����"��
TGCGCCGATCGCGGCAGAGCTGGTCGAACGCTTCGAACGCGACGGCT��	�����	��� ����"��

����	����"#

3244 32903250 3260 3270 3280�������
ACCTGGTGATCCCAAACCTGTTCTCCGCAGATGAAGTGGCACTGTTT��	�����������	������ �������
ACCTGGTCATCCCCAATCTGTTCAGCGCCGACGAAGTCGCGCTGTTT��	�����	��� �������

����	����"�

3291 33373300 3310 3320�������
CGCGCAGAACTGGAACGCATGCGCCAGGATCCAGCAGTGGCAGGCTC��	�����������	������ �������
CGCGCCGAACTCGAGCGCATGCGCCAGGACCCGGCCGTCGCCGGTTC��	�����	��� �������

����	����"�

3338 33843350 3360 3370�������
CGGCAAGACCATCAAAGAACCAGATTCCGGTGCAATCCGCTCCGTGT��	�����������	������ �������
CGGCAAGACCATCAAGGAACCCGACAGCGGTGCGATCCGCTCGGTGT��	�����	��� �������

$%�
���&'�(����)�
�� '��#����!* "*���+����

���������	�
���������	

����	����"�

3385 34313390 3400 3410 3420���� ��
TCGCAATCCACAAGGATAACGAACTGTTCGCTCGCGTGGCAGCAGAT��	�����������	������ ���� ��
TCGCCATCCACAAGGACAACGAGCTGTTCGCCCGCGTCGCAGCCGAC��	�����	��� ���� ��

����	����"�

3432 34783440 3450 3460�������
GAACGCACCGCAGGTATCGCACGCTTCATCCTGGGTGGCGATCTGTA��	�����������	������ �������
GAGCGCACCGCCGGCATCGCCCGCTTCATCCTTGGCGGCGACCTGTA��	�����	��� �������

����	����" 

3479 35253490 3500 3510���"���
CGTGCACCAGTCCCGCATGAACTTCAAGCCAGGCTTCACCGGCAAAG��	�����������	������ ���"���
CGTGCATCAGTCGCGAATGAACTTCAAGCCCGGCTTCACCGGCAAGG��	�����	��� ���"���

����	����"!

3526 35723540 3550 3560�� �!��
AATTCTACTGGCACTCCGATTTCGAAACCTGGCACATCGAAGATGGC��	�����������	������ �� �!��
AGTTCTACTGGCACTCGGATTTCGAGACCTGGCACATCGAGGACGGC��	�����	��� �� �!��

����	����""

3573 36193580 3590 3600�� "���
ATGCCACGCATGCGCTGCCTGTCCTGCTCCATCCTGCTGACCGATAA��	�����������	������ �� "���
ATGCCGCGCATGCGCTGCCTGTCCTGCTCGATCCTCTTGACCGACAA��	�����	��� �� "���

����	����"�

3620 36663630 3640 3650��!�#��
CGAACCACACAACGGTCCACTGATGCTGATGCCAGGCTCCCACAAGC��	�����������	������ ��!�#��
CGAGCCGCACAACGGCCCGCTGATGCTGATGCCCGGCTCGCACAAGC��	�����	��� ��!�#��

����	����"�

3667 37133680 3690 3700��!!"��
ACTACGTGCGCTGCGTTGGCGCAACCCCAGAAAACCACTACGAAAAG��	�����������	������ ��!!"��
ACTACGTGCGCTGCGTCGGAGCCACACCGGAAAATCACTACGAGAAG��	�����	��� ��!!"��

����	�����#

3714 37603720 3730 3740 3750��"����
TCCCTGCGCAAGCAAGAAATCGGCATCCCTGATCAGAACTCCCTGTC��	�����������	������ ��"����
TCCCTGCGCAAGCAGGAGATCGGCATCCCCGACCAGAACAGCCTGAG��	�����	��� ��"����

����	������

3761 38073770 3780 3790��"!���
CGAACTGGCATCCCGCTTCGGCATCGATTGCGCAACCGGTCCAGCAG��	�����������	������ ��"!���
CGAGCTGGCCAGCCGCTTCGGCATCGACTGCGCCACCGGCCCCGCCG��	�����	��� ��"!���

$%�
���&'�(����)�
�� '��#����!* "*���+����
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���������	�
���������	

����	������

3808 38543820 3830 3840���#���
GCTCCGTGGTGTTCTTCGATTGCAACACCATGCACGGCTCCAACGGC��	�����������	������ ���#���
GCAGCGTGGTGTTCTTCGACTGCAACACCATGCACGGCTCCAACGGC��	�����	��� ���#���

����	������

3855 39013860 3870 3880 3890���  ��
AACATCACCCCATCCGCACGCTCCAACCTGTTCTACGTGTACAACCA��	�����������	������ ���  ��
AACATCACGCCCAGCGCGCGTAGCAATCTGTTCTACGTCTACAACCA��	�����	��� ���  ��

����	������

3902 39483910 3920 3930���#���
CGTGGATAACGCAGTGCAGGCACCATTCTGCGAACAGAAGCCACGCC��	�����������	������ ���#���
CGTGGATAATGCCGTGCAGGCTCCGTTCTGCGAGCAGAAACCGCGCC��	�����	��� ���#���

����	����� 

3949 39953960 3970 3980�������
CAGCATTCGTGGCCGAACGCGAAAACTTCAAGCCTCTGGATATTCGC��	�����������	������ �������
CGGCCTTTGTCGCCGAACGCGAGAATTTCAAGCCGCTGGACATTCGG��	�����	��� �������

����	�����!

3996 40424010 4020 4030����!��
CCACAGCAGTACCTGTAATCCAGGATCCATACCTGCTCTCCCCAGAG��	�����������	������ ����!��
CCGCAACAGTATCTCTGATCCAGGATCCATACCTGCTCTCCCCAGAG��	�����	��� ����!��

����	�����"

4043 40894050 4060 4070��#����
AATCTAGAGTACCGATCTGATCGCACGCGACGTCTAATTTAGCTCGA��	�����������	������ ��#����
AATCTAGAGTACCGATCTGATCGCACGCGACGTCTAATTTAGCTCGA��	�����	��� ��#����

����	������

4090 41364100 4110 4120��#�#��
GGGGCAAGGAAACAGTGTGGTTTCCTTGCCTCTTTTAGCCTTTTCAG��	�����������	������ ��#�#��
GGGGCAAGGAAACAGTGTGGTTTCCTTGCCTCTTTTAGCCTTTTCAG��	�����	��� ��#�#��

����	������

4137 41834150 4160 4170����"��
AGGGTGTCTTCGCTGGACCAAGAGGAAACCAGACAGGCGTGACAAAA��	�����������	������ ����"��
AGGGTGTCTTCGCTGGACCAAGAGGAAACCAGACAGGCGTGACAAAA��	�����	��� ����"��

����	�����#

4184 42304190 4200 4210 4220�������
ATCTGGATTTCCGCCAGGTTTTGGCACGCCTGTCTGGTTTAGGGGAT��	�����������	������ �������
ATCTGGATTTCCGCCAGGTTTTGGCACGCCTGTCTGGTTTAGGGGAT��	�����	��� �������

$%�
���&'�(����)�
�� '��#����!* "*���+����#

���������	�
���������	

����	������

4231 42774240 4250 4260�������
GAGAAACCGGACACACGTGCCAAAACTTCGGCTTTTTCGCCAATCTT��	�����������	������ �������
GAGAAACCGGACACACGTGCCAAAACTTCGGCTTTTTCGCCAATCTT��	�����	��� �������

����	������

4278 43244290 4300 4310���"���
GTCACGCCTGTCTGGTTTGCCTCGGATGAGGTGATTTCATGGCCAAG��	�����������	������ ���"���
GTCACGCCTGTCTGGTTTGCCTCGGATGAGGTGATTTCATGGCCAAG��	�����	��� ���"���

����	������

4325 43714330 4340 4350 4360���� ��
ACTTCTAAAAGTTCGACCTCGCAGGATCGCTTCTAAGGGCCTTTAGC��	�����������	������ ���� ��
ACTTCTAAAAGTTCGACCTCGCAGGATCGCTTCTAAGGGCCTTTAGC��	�����	��� ���� ��

����	������

4372 44184380 4390 4400���"���
GGACCAACCTAGGCCGATACCCATGTGGAAATCTCGACGTCTTAAAT��	�����������	������ ���"���
GGACCAACCTAGGCCGATACCCATGTGGAAATCTCGACGTCTTAAAT��	�����	��� ���"���

����	����� 

4419 44654430 4440 4450�������
GGACGATTGGAGCTAAAACCACGAACAGCTGGGATTTTCCACGATAG��	�����������	������ �������
GGACGATTGGAGCTAAAACCACGAACAGCTGGGATTTTCCACGATAG��	�����	��� �������

����	�����!

4466 45124480 4490 4500���!!��
GATTGGGTCTCGTGGAGATTCGTTGGTTGGAAGGCTTTATCGCGGTC��	�����������	������ ���!!��
GATTGGGTCTCGTGGAGATTCGTTGGTTGGAAGGCTTTATCGCGGTC��	�����	��� ���!!��

����	�����"

4513 45594520 4530 4540�� ����
GCGGAAGAATTGCACTAGTAATGCTGCGATTCGTTTGGGGATGCCGC��	�����������	������ �� ����
GCGGAAGAATTGCACTAGTAATGCTGCGATTCGTTTGGGGATGCCGC��	�����	��� �� ����

����	������

4560 4577�� !#��
AATCGCCGTTGAGTCAGT��	�����������	������ �� !#��
AATCGCCGTTGAGTCAGT��	�����	��� �� !#��

$%�
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Fig. 36: Ectoine nucleotide sequence. (Continued from page 100).

99



Appendix

3 

 

Supplementary Table S II: Reprogramming of the OpenFlux 25 

subroutine files “leastSQ.m” and “mdvGenerator” for comprehensive 26 

integration of two parallel 13C-labeling experiments. 27 

leastSQ  

original modified 
%%to load input substrate MDV 
global guidedInSub 

if isempty(guidedInSub) || 
guidedInSub == 0 

    substrate_EMU 
else 

    load inputSubEMU 
end 

  
 

%%load rates 

v = - fluxCalc(u); 
v(find(abs(v)<1e-8))=0; 

v = appendSyn(v,u); 
  

loader_EMUModel 
 

 
 

 
EMUModel 

  
x_sim 

 

%%to load input substrate MDV 
global guidedInSub 

if isempty(guidedInSub) || guidedInSub 
== 0 

    substrate_EMU 
else 

    load inputSubEMU_exp1 
    load inputSubEMU_exp2 

 end 
  

%%load rates 

v = - fluxCalc(u); 
v(find(abs(v)<1e-8))=0; 

v = appendSyn(v,u); 
  

loader_EMUModel 
 

x_calc_big=[]; 
load inputSubEMU_exp1 

 
EMUModel 

  
x_sim 

x_calc_big=[x_calc]; 
  

load inputSubEMU_exp2 
EMUModel 

x_sim 
x_calc_big=[x_calc_big; x_calc]; 

  
x_calc = x_calc_big;  

mdvGenerator  

original modified 
a = dir(fullfile(pwd,'*.mat')); 
AAVFile = 0; 

 
for i = 1:length(a) 

    if strcmp(a(i).name, 
'inputSubEMU.mat') 

        AAVFile = 1; 
    end 

end 
 

 
 

 

if AAVFile ==1; 
    load inputSubEMU.mat 

 
else 

   substrate_EMU; 
end 

 loader_EMUModel 
 

 
 

 
 

 
 

 
 

EMUModel 
x_sim 

 
 

mdvOut = x_calc; 

a = dir(fullfile(pwd,'*.mat')); 
AAVFile = 0; 

AAVFile_2 = 0; 
for i = 1:length(a) 

    if strcmp(a(i).name, 
'inputSubEMU_exp1.mat') 

        AAVFile = 1; 
    end     

    if strcmp(a(i).name, 
'inputSubEMU_exp2.mat') 

        AAVFile_2 = 1;    
    end 

end 

if (AAVFile == 1) && (AAVFile_2 == 1); 
    load inputSubEMU_exp1.mat 

    load inputSubEMU_exp2.mat 
else 

   substrate_EMU; 
end 

  
loader_EMUModel 

 x_calc_big=[]; 
  

load inputSubEMU_exp1 
EMUModel 

x_sim 
x_calc_big=[x_calc]; 

  
load inputSubEMU_exp2 

EMUModel 
x_sim 

x_calc_big=[ x_calc_big; x_calc]; 
x_calc = x_calc_big; 

mdvOut = x_calc; 

Fig. 37: Reprogramming of the OpenFlux subroutine files ‘leastSQ.m’ and ‘mdvGenerator’
for comprehensive integration of two parallel 13C-labeling experiments.
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