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SUMMARY 

The increasing number of antibiotic-resistant pathogens has created an urgent demand for 

novel treatment options to combat infectious diseases. In this thesis, test systems have been 

established enabling hit identification, lead optimization, and characterization to contribute to 

the development of potent and innovative anti-infectives, which overcome existing bacterial 

resistances. 

In the first approach, inhibitors of the RNA polymerase ‘switch region’ were studied. Using 

biochemical and biophysical techniques the exact binding site and ligand binding mode of the 

ureidothiophene-2-carboxylic acid inhibitors were elucidated. Mode of action studies revealed 

that congeners of this structural class inhibit the bacterial transcription in the initiation phase. 

Moreover, the ureidothiophene-2-carboxylic acid inhibitors do not show any cross-resistances 

with rifampicin or myxopyronin and possess good antibacterial activity in clinically relevant 

multidrug-resistant MRSA strains.  

In the second approach, inhibitors of the CsrA-RNA interaction were discovered by using a 

screening and a ligand-based approach. CsrA is an mRNA-binding regulatory protein being 

essentiell for full virulence of bacteria and thus, it represents an attractive target for 

anti-infective drug discovery. For this purpose, a test system based on biophysical methods 

was established, which enabled the identification and characterization of first small molecule 

and ligand-derived inhibitors of the CsrA-RNA interaction. 
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ZUSAMMENFASSUNG 

Aufgrund zunehmender Antibiotika-Resistenzen sind neue effiziente Therapiemöglichkeiten 

dringend erforderlich um eine erfolgreiche Behandlung von Infektionskrankheiten zu 

gewährleisten. Um die Entwicklung potenter und innovativer Anti-Infektiva zu unterstützen, 

wurden im Rahmen dieser Arbeit Testsysteme etabliert, welche die Identifizierung von 

Hitverbindungen sowie die Lead-Optimierung und -Charakterisierung ermöglichen. 

Im ersten Ansatz wurden Hemmstoffe der RNA-Polymerase ‘switch region’ untersucht. Unter 

Anwendung biochemischer und biophysikalischer Methoden konnte deren genaue Bindestelle 

sowie der Ligandbindungsmodus aufgeklärt werden. Wirkmechanistische Studien haben 

gezeigt, dass die untersuchten Inhibitoren die Initiationsphase der Transkription hemmen. Die 

Inhibitoren wiesen keine Kreuzresistenz mit Rifampicin oder Myxopyronin auf und waren 

zudem wirksam gegen klinisch relevante MRSA Stämme. 

Der zweite Ansatz hatte die Entdeckung von Inhibitoren der CsrA-RNA Interaktion zum Ziel, 

welches mit einem Screening und einem Ligand-basierten Ansatz verfolgt wurde. Bei CsrA 

handelt es sich um ein mRNA bindendes, regulatorisches Protein, das essentiell für volle 

bakterielle Virulenz ist und somit ein interessantes Target für die Entwicklung neuer 

Anti-Infektiva darstellt. Zu diesem Zweck wurde ein auf biophysikalischen Methoden 

basierendes Testsystem etabliert, mit dem erste ‚Small Molecule’ sowie Ligand-basierte 

Hemmstoffe identifiziert und charakterisiert werden konnten.  
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1 Introduction 

Throughout history, humankind has recurrently encountered severe bacterial infectious 

diseases such as thyphoid fever, tuberculosis, plague, and cholera leading notably to 

morbidity and mortality in those days (Tenover, 2006). With the discovery of the first 

antibiotics and, consequently, the market launches of Prontosil
®
 (a sulfonamide antibiotic) 

and benzylpenicillin in the late 1930’s and early 1940’s, respectively, the situation drastically 

improved (Powers, 2004; Bentley, 2009). From this time on, physicians had been able to treat 

and control a multitude of staphylococcal, streptococcal, pneumococcal, meningococcal, 

gonococcal as well as Escherichia coli and Corynebacterium diphteriae-associated infections 

(Feldman, 1972). In the following twenty years, referred to as ‘the golden era of antibiotic 

discovery’, most of the major antibiotic classes had been discovered such as the 

aminoglycosides, chloramphenicols, macrolides, cephalosporines, tetracyclines, and 

quinolones (Lewis, 2013). Accordingly, effective treatments against a broadening spectrum of 

different bacterial pathogens had become available. The discovery of most antibiotics at that 

time was based on screening cultures of various microorganisms for antibacterial activity. In 

addition, semi-synthetic approaches were applied in order to optimize already existing classes 

of antibiotics resulting for example in the development of penicillinase-resistant penicillins 

(e.g., methicillin) or the aminopenicillins with activity against Gram-negative bacteria (e.g., 

ampicillin) (Wright, 1999; Monnet, 2005). Since the 1970’s, market launches of new 

antibiotic substances have declined and most newly approved antibiotics have been derived 

from already existing antibiotic classes and thus, do not represent novel antibacterial chemical 

entities.  

The discovery of antibiotics was undoubtedly one of the most significant achievements in 

medicine in the 20
th

 century. However, their discovery was accompanied by emergence of 

resistance against the different classes of antibiotics limiting their efficacy (D’Costa et al., 

2011). Antibiotic resistance occurs as a consequence of an evolutionary process driven by 

natural selection. As some bacteria are intrinsically resistant to certain antibiotics, they can 

additionally acquire resistance by either spontaneous (de novo) gene mutation or via 

horizontal transfer of resistance genes from other organisms (Tenover, 2006; Alekshun and 

Levy, 2007). Due to the widespread use of antibiotics in the past decades, the development of 

antibiotic resistances has been considerably stimulated resulting in the emergence of 

numerous single drug-resistant or even multidrug-resistant pathogens (Figure 1) (Tavares et 

al., 2013).  
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Figure 1. Timetable of key antibiotic introduction and resistance events adapted from the U.S. Centers 

for Disease Control and Prevention report “Antibiotic resistance threats in the United States, 2013”. 

The abbreviation R stands for resistant, PDR for pan drug-resistant, and XDR for extensively drug-

resistant. 

 

Meanwhile, antibiotic resistance has evolved into a serious threat to public health on a global 

level. Of particular concern in the hospitals are the so-called ‘ESKAPE’ pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumanii, Pseudomonas aeruginosa, and Enterobacter species) that are responsible for 

two-thirds of all healthcare-associated infections according to the U.S. Centers of Disease 

Control and Prevention (CDC) (Infectious Diseases Society of America, 2008). These 
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pathogens are becoming increasingly resistant to single or multiple antibiotics, among them 

also antibiotics of last-resort, thereby tremendously complicating the treatment of these 

infections (Rice, 2008). For instance, about 30% of Enterococcus healthcare-associated 

infections are vancomycin-resistant with only few or no remaining treatment options (US 

Department of Health and Human Services. Centers for Disease Control and Prevention, 

2013). 

Moreover, infectious diseases that are not predominantly healthcare-associated such as 

tuberculosis are prone to antimicrobial resistance, too. Tuberculosis, caused by the pathogen 

Mycobacterium tuberculosis, mostly affects the lungs, but can also attack other organs. 

Globally, it belongs to the most frequent infectious diseases with a third of the world’s 

population being infected. In 2013 alone, about nine million people fell ill with tuberculosis. 

According to the World Health Organization (WHO) in 2013, an estimated number of 

480,000 people developed multidrug-resistant tuberculosis (MDR-TB) and out of these 

210,000 people died from the disease. Per definition, MDR-TB is caused by pathogens that 

are resistant to the first-line antituberculosis agents rifampicin and isoniazid (Matteelli et al., 

2014). As stated by the WHO in their “Global Tuberculosis Report 2014”, about 9% of the 

patients with MDR-TB even suffer from extensively drug-resistant tuberculosis (XDR-TB), a 

form of tuberculosis that, additionally to rifampicin and isoniazid, does not respond to any 

fluoroquinolone and at least one of the second-line antituberculosis drugs (i.e., kanamycin, 

capreomycin) (Matteelli et al., 2014). 

Antibiotic resistance causes prolonged illness and medical treatment and an increased risk of 

death and places a tremendous economic burden on society. By way of example, in the 

European Union multidrug-resistant bacteria cause an estimated economic damage of over 1.5 

billion dollar annually (European Centre for Disease prevention and Control/European 

Medicines Agencies (ECDPC/EMA), 2009). However, along with increasing prevalence of 

antibiotic resistance, the number of new antibacterial agents reaching the market is 

decreasing, which is further exacerbating the situation. This is partially attributable to the fact 

that most pharmaceutical companies have abandoned their antibiotic research and 

development programs over the past decades (Spellberg et al., 2004). Compared to drugs for 

the treatment of chronic diseases such as diabetes and hypertension, antibiotics provide a poor 

return of investment since they are generally used for a curative short-course therapy. 

Additionally, novel agents are mostly restricted to last-resort treatment (Davies, 2006). 

Another reason that can be accounted for the decline of market launches of antibacterial 
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agents is more of scientific nature. According to Brad Spellberg, “the low-hanging fruit have 

been plucked” and “thus, discovery and development of antibiotics has become scientifically 

more complex, more expensive, and more time consuming over time” (Spellberg, 2012).  

However, considering the severe impact of antimicrobial resistance on global health, it is of 

prime importance to preserve the efficacy of existing antibacterial agents and also to develop 

novel treatment options. For this purpose, it is important to gain a better understanding of the 

molecular basis of host-pathogen interactions and resistance development. Identifying anti-

infectives with novel modes of action represents a promising strategy to circumvent target-

specific resistances (Black and Hodgson, 2005). Furthermore, addressing novel sites on 

currently exploited targets provides another opportunity to escape existing resistance 

mechanisms. An alternative approach for antimicrobial drug development is based on 

targeting bacterial virulence, i.e., the ability of bacteria to damage the host and cause disease 

(Clatworthy et al., 2007). Compared to traditional antibiotics, anti-virulence therapeutics 

‘disarm’ the bacteria instead of inhibiting their growth or killing them. Hence, it is 

hypothesized that an anti-virulence strategy exerts less evolutionary pressure for the 

development of resistances (Rasko and Sperandio, 2010). 

Beyond doubt, fighting antibiotic resistance is a challenging task and requires concerted 

action. Aware of the threatening situation government and leading healthcare organizations on 

a national and global level tailored initiatives to secure a prudent use of antibiotics and to 

improve surveillance systems in order to curtail the development and spread of antibiotic 

resistances (Tamma and Cosgrove, 2011). Importantly, also incentives were provided to 

restart research into novel antimicrobial agents, which are urgently required (Boucher et al., 

2009; Tamma and Cosgrove, 2011).  
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1.1 RNA polymerase (RNAP) 

1.1.1 Structure and function 

The RNA polymerase (RNAP) catalyzes the transcription of deoxyribonucleic acid (DNA) 

into ribonucleic acid (RNA) and, accordingly, is a key enzyme in gene expression that is 

present in all living organisms (Ebright, 2000; Vassylyev et al., 2002). The prokaryotic RNAP 

is a large multi-subunit enzyme. The core enzyme (~ 400 kDa) consists of five subunits: two 

alpha (α2), one beta (β), one beta prime (β῾), and one omega (ω) subunit (Landick and 

Geszvain, 2005) (Figure 2). Due to the structural organization of the subunits, the core 

enzyme resembles the shape of a crab claw. The two pincers of the claw are formed by the 

two largest subunits, β and β῾. Together, they account for the catalytic activity of the enzyme. 

In between the two pincers, there is a large cleft with a diameter of around 27 Å. At the base 

of the cleft, the active site channel is located containing a Mg
2+

 ion chelated by three 

aspartates of the β῾ subunit (Landick and Geszvain, 2005). During transcription, the pincers 

open and close by a ~ 30° rotation of the β῾ pincer, which is also referred to as the ‘clamp’ 

(Häbich and Nussbaum, 2009; Chakraborty et al., 2012). ‘Clamp’ opening allows the entry of 

template DNA to the active center and ‘clamp’ closing retains the DNA inside the active 

center cleft enabling an efficient transcription (see Figure 5). Both α subunits are required for 

the assembly of the subunits to a functional core enzyme. Besides, they are involved in 

promoter recognition (Igarashi and Ishihama, 1991; Ross et al., 2001). The function of the ω 

subunit is to promote the RNAP assembly and increase its stability (Minakhin et al., 2001). 

The core enzyme accommodates several channels allowing the template DNA, RNA, and 

nucleotides to move inside and outside the active center (see Figure 2).  

Together with a dissociable accessory protein, the sigma (σ) factor, the RNAP holo enzyme is 

formed. The σ factor in complex with the core enzyme is essential for specific promoter 

recognition and efficient transcription initiation. In response to their environment, bacteria 

produce various kinds of σ factors, whereby the number of σ factors differs among bacterial 

species. The predominant σ factor in E. coli is σ
70

, also referred to as the housekeeping σ 

factor, which transcribes most genes in growing cells. Once bacteria are exposed to changing 

conditions such as heat or lack of nutrients, they adapt their gene expression to respond to the 

altered environment by producing alternative σ factors (e.g. σ
E
, σ

S
, σ

H
, σ

N
 in E. coli) (Jishage 

M, Iwata A, Ueda S, Ishihama A, 1996; Gourse et al., 2006). 
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Figure 2. Structural organization of the E. coli RNAP holo enzyme with bound DNA in the main 

channel (homology model created by Matthias Negri, unpublished). 

 

The transcription process can be divided into three stages: initiation, elongation, and 

termination. The first step of the transcription initiation implies the formation of the holo 

enzyme. The dissociable σ factor enables the RNAP to specifically recognize and bind to the 

promoter site. Upon binding to the promoter, the closed promoter-polymerase complex (RPc) 

is formed (Chamberlin, 1974; McClure, 1985). Subsequent promoter melting induces the 

formation of the open complex (RPo). This involves the unwinding of the double-stranded 

DNA at the transcription site forming the so-called transcription bubble (Figure 3). The RNA 

synthesis takes place in 5῾ to 3῾ direction. First, the complex undergoes several cycles of 

abortive transcription, synthesizing and releasing short RNA transcripts usually ranging from 

2–12 nucleotides (nts) (Hsu, 2002). At this stage, the RNAP is still bound to the promoter 

DNA. As soon as the transcripts reach a length of ~ 13–15 nts, the transcription process is 

transitioned into the elongation phase. This is accompanied by the promoter clearance and the 

release of the σ factor from the RNAP. The RNAP-DNA hybrid forms a stable transcription 

elongation complex that effectively transcribes DNA in RNA with an average rate of          
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30–100 nts/s (Landick and Geszvain, 2005). RNA synthesis proceeds along the DNA 

template strand until the RNAP recognizes a signal for chain termination. The termination 

mechanism can be either direct (Rho-independent termination) or mediated by the termination 

factor Rho (Rho-dependent termination) (Henkin, 1996). The transcription termination 

implicates the release of the transcript and the uncoupling of the RNAP from the DNA 

template. During the transcription process, the RNA polymerase undergoes multiple 

conformational changes to optimally adapt to the single steps of transcription. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic illustration of the transcription bubble (adapted from 2012 Pearson Education, 

Inc.). Double-stranded DNA is separated and, subsequently, the RNA polymerase synthesizes an RNA 

strand complementary to the template strand in 5’ to 3’ direction. 

 

1.1.2 RNAP as a target for antimicrobial therapy 

Since the RNAP is essential for growth and survival of bacteria, it represents an attractive 

target for antimicrobial therapy. Despite similarity in the structural organization and 

functionality, prokaryotic and eukaryotic RNAP sequences are not highly conserved, sharing 

only partially homologous sequences in the core enzyme (Cramer, 2002, Artsimovitch and 

Vassylyev, 2006, 2006) In contrast, the RNAP is highly conserved among bacteria. 

Accordingly, targeting the bacterial RNAP enables the development of efficient antibacterial 

agents with broad-spectrum activity combined with therapeutic selectivity (Chopra, 2007). 
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RNAP is a large protein with various cavities and channels offering multiple target sites to 

interfere with its catalytic activity. Consequently, several classes of bacterial RNAP 

inhibitors, among them natural products, small molecules, and peptides, targeting different 

sites of this enzyme have already been identified (Darst, 2004; Chopra, 2007; Villain-Guillot 

et al., 2007; Mariani and Maffioli, 2009; Hüsecken et al., 2013). 

The only RNAP inhibitors currently approved for clinical use are the rifamycins (rifampicin, 

rifabutin, rifapentine, rifamixin) and fidaxomicin, making the RNAP a clinically validated but 

still underexploited target (Figure 4a) (Floss and Yu, 2005; Rivkin and Gim, 2011; Venugopal 

and Johnson, 2012).   

 

 

 

  

 

 

 

 

 

 

 

 

 

          

Figure 4. Structures of RNAP inhibitors. a) Clinically approved RNAP inhibitors. b) RNAP ‘switch 

region’ binders. 
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Rifamycins inhibit the transcription beyond a transcript length of 2 to 3 nts presumably by 

sterically blocking the elongation process (McClure WR, 1978; Campbell et al., 2001; 

Feklistov et al., 2008). As disclosed from the crystal structure of Thermus aquaticus core 

RNAP in complex with rifampicin (Rif), its binding site is located 12 Å distant from the 

active center in the RNAP ß subunit deep inside the RNA-DNA channel (Campbell et al., 

2001). Rifamycin antibiotics are used in the clinics for the treatment of both Gram-positive 

and Gram-negative bacterial infections and play an important role in the first-line treatment of 

tuberculosis. However, their medical value is limited owing to the emergence of Rif-resistant 

strains. Resistance to the class of rifamycins arises from point mutations in the rpoB gene 

encoding the RNAP ß subunit (Jin and Gross, 1988; Severinov et al., 1994).   

A further clinically used RNAP inhibitor, fidaxomicin, was approved in 2011 by the US Food 

and Drug Administration (FDA) for Clostridium difficile-associated diarrhea (CDAD). 

Fidaxomicin binds to the RNAP ‘switch region’, a target site distinct to the that of the 

rifamycins, and, thereby, inhibits transcription initiation (Artsimovitch et al., 2012). It is 

poorly absorbed in the gastrointestinal tract after oral administration and displays a narrow 

spectrum of antimicrobial activity (Venugopal and Johnson, 2012; Sears et al., 2013). 

Moreover, fidaxomicin does not exhibit any cross-resistance with other antibacterial agents, 

including the rifamycins. According to this, the RNAP ‘switch region’ represents a promising 

target site for the development of RNAP inhibitors, which are also effective against Rif-

resistant bacteria.  

 

1.1.3 The RNAP ‘switch region’ 

The ‘switch region’ is situated at the base of the RNAP ‘clamp’ (β subunit) and acts as a 

hinge, which coordinates the opening and closing of the RNAP ‘clamp’ during transcription 

(Figure 5). The ‘switch region’ does not overlap with the rifamycins’ binding site and is 

highly conserved in Gram-positive and Gram-negative bacteria making it an interesting target 

for inhibitor design with broad-spectrum antibacterial activity.  

In 2008, Mukhopadhyay et al. identified the ‘switch region’ as the binding site of the 

described RNAP inhibitors myxopyronin (Myx), corallopyronin (Cor) and ripostatin (Rip) 

(Figure 4) (Mukhopadhyay et al., 2008). Several years before, Irschik et al. isolated these 

natural products from myxobacteria and discovered their potent and selective inhibitory 

activity against bacterial RNAP (Irschik et al., 1983; Irschik et al., 1985; Irschik et al., 1995). 
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Rip is a macrocyclic lactone, whereas Myx and Cor are both α-pyrone antibiotics. Cor is 

structurally closely related to Myx, differing only by an additional seven-carbon extension of 

the dienone side chain (see Figure 4). The mode of action of these natural product inhibitors is 

based on preventing entry of double-stranded promoter DNA into the active-center cleft by 

locking the clamp in a closed or partially closed position (Figure 5). Nonetheless, they exhibit 

slight differences in their inhibitory profile. In contrast to Myx, which is not capable of 

completely inhibiting the catalytic activity of the RNAP, Cor and Rip are able to fully prevent 

RNA synthesis (Irschik et al., 1985; Irschik et al., 1995). According to the crystal structure of 

Thermus thermophilus RNAP in complex with Myx and desmethyl myxopyronin B (dMyx), 

this inhibitor class binds in an almost entirely enclosed and predominantly hydrophobic 

‘crescent-shaped’ binding pocket within the ‘switch region’ (Mukhopadhyay et al., 2008; 

Belogurov et al., 2009). 

 

 

Figure 5. Schematic illustration of the mode of action of myxopyronin (adapted from Häbich and 

Nussbaum, 2009). 
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According to isolation and sequencing of Myx-, Cor-, and Rip-resistant E. coli mutants, the 

target of Cor and Rip completely overlaps with the Myx binding site (Mukhopadhyay et al., 

2008). In contrast, the target of the approved drug fidaxomicin, also referred to as lipiarmycin, 

tiacumicin, or Dificid®, only minimally overlaps with the Myx binding pocket (Srivastava et 

al., 2011).  

Myx, Cor, and Rip display potent in vitro activity against bacterial RNAP (IC50 values 

ranging from 1–4 μM) (Häbich and Nussbaum, 2009). These antibiotics are primarily active 

against Gram-positive bacteria but ineffective against many Gram-negative pathogens most 

probably due to penetration barriers and efflux (Häbich and Nussbaum, 2009; Srivastava et 

al., 2011). Furthermore, they possess no acute toxicity in mice and, in analogy to fidaxomicin, 

no cross-resistances with rifamycins. Nevertheless, these antibiotics cannot be considered as 

candidates for clinical use because of deficient physicochemical properties including low 

stability, high lipophilicity, high serum protein binding, and, consequently, confined in vivo 

efficacy (Häbich and Nussbaum, 2009; Moy et al., 2011). Some efforts have already been 

made in the synthesis of Myx analogs. However, apart from desmethyl myxopyronin B, the 

biological activity could not be improved so far (Doundoulakis et al., 2004; Lira et al., 2007).  

Following the validation of the RNAP ‘switch region’ as an antimicrobial drug target and the 

availability of the co-crystal structure of Thermus thermophilus RNAP in complex with Myx, 

the discovery of two synthetic inhibitor classes binding to the ‘switch region’, the pyridyl-

benzamides and the squaramides, have been reported (McPhillie et al., 2011; Buurman et al., 

2012). Both classes display good inhibitory activity against E. coli RNAP but no significant 

antibacterial activity.  
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1.2 Carbon storage regulator protein A (CsrA) 

1.2.1 The Csr system 

Bacteria use complex regulatory networks to adapt gene expression in response to 

environmental changes (Aertsen and Michiels, 2004; van Assche et al., 2015). A 

representative of such a network is the posttranscriptional carbon storage regulator (Csr) 

system, which controls multiple physiological and metabolic adaptive mechanisms (Revelles 

et al., 2013). The Csr system and its homologs (e.g., the regulator of secondary metabolism 

(Rsm) system in P. aeruginosa) have been found in numerous bacterial species, 

predominantly in Gram-negative pathogens (Yakhnin et al., 2007). Csr-like systems consist of 

several molecular components and are based on an autoregulatory feedback mechanism 

(reviewed in (Babitzke and Romeo, 2007)). The main player of the Csr network is the 

RNA-binding protein CsrA, which affects translation and stability of mRNA targets by 

binding to their 5’ untranslated region (Romeo, 1998; Babitzke and Romeo, 2007). CsrA 

activity is antagonized by non-coding small RNAs (sRNAs), such as CsrB and CsrC in 

Yersinia pseudotuberculosis and E. coli, which both possess multiple binding sites for CsrA 

(Timmermans and van Melderen, 2010). Through binding of several CsrA dimers to CsrB or 

CsrC, interaction of CsrA with its target mRNAs is impeded. In turn, in some bacteria such as 

E. coli, activity of CsrB and CsrC is negatively regulated by CsrD, a membrane-bound protein 

that triggers their RNase E-mediated degradation (Suzuki et al., 2006). Conversely, CsrA 

activates expression of csrB and csrC via the BarA/UvrY system and negatively regulates 

CsrD (Suzuki et al., 2002; Jonas et al., 2010).  

1.2.2 Function and structure 

CsrA is a global, posttranscriptional regulator protein that controls multiple unrelated 

physiological processes involved, amongst others, in metabolism, motility, and biofilm 

formation (Timmermans and van Melderen, 2010). Primarily, CsrA triggers a negative 

regulation by competing with ribosome binding and, thereby, inhibiting target translation 

(Baker et al., 2002; Dubey et al., 2003). Nevertheless, some cases of positive regulation have 

been described in literature but the exact molecular mechanism of action remains to be 

determined. As an example, CsrA activates the expression of E. coli flhDC, which is the 

master operon for flagellum biosynthesis. It is assumed that binding of CsrA to the leader 

region of flhDC transcripts results in the stabilization of the mRNA and, thereby, impedes its 

degradation by RNAse E (Wei et al., 2001; Yakhnin et al., 2013).  
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CsrA and its homologs such as RsmA/RsmE in Pseudomonas species are highly conserved in 

many bacteria (Schubert et al., 2007; Heroven et al., 2012). The three-dimensional (3D) 

structures of CsrA and its homologs, determined by solution NMR (Gutiérrez et al., 2005) and 

X-ray crystallography studies (Rife et al., 2005; Heeb et al., 2006; Marden et al., 2013), reveal 

a homodimeric organization (Figure 6). The two CsrA monomers consist each of five 

β-strands and one α-helix. The five-stranded antiparallel β-sheets of two monomers intertwine 

and form a hydrophobic core. 

 

 

 

 

 

 

 

 

 

Figure 6. Ribbon diagram of the crystal structure of CsrA homodimer from Yersinia enterocolitica 

(PDB: 2BTI). The individual CsrA monomers are colored red and blue.  

 

The two identical RNA-binding sites of the dimer are each located at the interface of the 

ß1-strand of one monomer and the ß5-strand of the antiparallel monomer. Mutagenesis studies 

have shown that Arg44 is the most important amino acid for RNA binding (Heeb et al., 2006). 

In addition, in vitro selection and NMR studies indicated that CsrA binds with high affinity to 

mRNAs containing a conserved 5’-ACANGGANGU-3’ core motif preferentially with the 

GGA motif located in a hairpin loop (Dubey et al., 2005; Schubert et al., 2007). However, the 

number of CsrA-binding sites varies among different target mRNAs. 
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Figure 7. Solution NMR structure of the CsrA homolog RsmE from Pseudomonas fluorescens (PDB: 

2JPP) in complex with the 20 nts hcnA mRNA (2:2 complex) (Schubert et al., 2007). 

 

1.2.3 CsrA regulates bacterial virulence 

Comprehensive studies have proven that CsrA is an important component of bacterial 

virulence networks and essential for successfully establishing an infection in the host 

organism. It regulates the expression of various virulence factors required for host cell 

adhesion and invasion in several pathogens such as enteropathogenic E. coli (EPEC), 

Y. pseudotuberculosis, Helicobacter pylori, and Salmonella enterica serovar Typhimurium 

(Altier et al., 2000; Barnard et al., 2004; Heroven et al., 2008; Bhatt et al., 2009). 

In some bacterial species such as Y. pseudotuberculosis and P. aeruginosa CsrA mediates the 

switch between acute and chronic stages of infection. Hence, expression of virulence factors 

involved in early stages of infection (e.g., motility, cell attachment, host invasion) are 

upregulated whereas such involved in persistent infection (e.g., biofilm formation) are 

downregulated (Heurlier et al., 2004; Heroven et al., 2008; Heroven et al., 2012). 

Remarkably, first discovered in S. enterica, CsrA can function both as activator and as 

repressor of certain virulence factors depending on the CsrA protein levels (Altier et al., 

2000). Accordingly, CsrA excess and deficiency inhibited the expression of virulence factors 



Introduction 15 

 

 

involved in invasion of epithelial cells. This so-called ῾see-saw῾ regulation mechanism was 

also observed for EPEC and might enable an optimal adaptation of virulence gene expression 

tailored to prevailing conditions during host infection (Bhatt et al., 2009).   

Notably, recent studies have demonstrated that lack of CsrA or its ortholog RsmA results in 

considerable virulence attenuation in mouse models of P. aeruginosa (Mulcahy et al., 2008), 

H. pylori (Barnard et al., 2004), and Y. pseudotuberculosis (Heroven & Dersch, unpublished 

results) infection, predominantly due to reduced host colonization. 

Taken together, a number of studies proved that CsrA is crucial for bacterial virulence. 

Accordingly, it represents an attractive target for anti-infective drug development.  
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1.3 Analysis of protein-ligand interactions 

Binding of a drug to its target molecule, usually a protein, is the prerequisite for developing 

its pharmacological effect. Hence, a detailed analysis of protein-ligand interactions is essential 

for understanding pharmacodynamic processes and provides the basis for rational drug 

design. Structural characterization tools (X-ray crystallography, NMR), in silico methods, and 

various biophysical techniques play an important role for the selection of suitable target 

molecules as well as for the identification, characterization, and optimization of lead 

compounds that modulate the target’s activity (Holdgate et al., 2010; Fang, 2012; Cala et al., 

2014). The methods deployed for protein-ligand interaction studies within the scope of this 

work are described below. 

 

1.3.1 Surface plasmon resonance spectroscopy 

Surface plasmon resonance (SPR) is an optical phenomenon that allows monitoring of 

biomolecular interactions in real-time. It occurs, when plane polarized light encounters an 

electrically conducting metal layer at the interface of two media with different optical 

densities under the condition of total internal reflection (Figure 8a). Energy of the absorbed 

photons of the incident light is transferred to free electrons in the metal surface, which, in 

response, start to oscillate and are converted to surface plasmons. Thereby, an evanescent 

wave is generated and, concomitantly, the intensity of the reflected light is decreased, which 

is measured by an optical detection unit. The angle, at which the reflection reaches a 

minimum, is called the resonance angle that is dependent on the refractive index at the sensor 

surface.  

In an SPR spectroscopy based binding experiment, a molecule (ligand), mostly a protein, is 

immobilized on the sensor surface, over which a potential interaction partner (analyte) is 

flushed. Binding of the analyte to the immobilized ligand alters the refractive index at the 

sensor surface and causes a shift of the resonance angle. The resulting shift is directly 

proportional to the mass increase at the sensor surface due to the bound analyte and can 

therefore be used to determine binding constants. SPR signals are commonly described as 

resonance or response units (RU), whereby 1 RU correlates with a change in the SPR angle 

by approximately 0.0001° (Thillaivinayagalingam et al., 2010). Time-dependent changes in 

the SPR signal are recorded in an SPR sensorgram, in which the association and dissociation 

phase of a binding event can be monitored (Figure 8b).  
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Figure 8. Adapted from Figure 1 and Figure 2 in reference (Campbell, 2016). a) Typical set-up for an 

SPR biosensing instrument. b) SPR sensorgram showing the optical response versus time of a typical 

binding cycle. Upon injection of the analyte and subsequent binding to the ligand (association), the 

resonance signal increases due to a change in the refractive index. After completed injection time, the 

analyte is displaced with buffer and dissociation of the analyte molecules can be monitored. In case of 

incomplete dissociation, the surface is recovered by injecting a regeneration solution to regain baseline 

level. 

 

SPR spectroscopy does not necessarily require labeling of the interaction partners and is 

characterized by a low analyte and particularly low ligand consumption. Furthermore, it is a 

highly sensitive technique amenable to high throughput application and enables the detection 

of a variety of biomolecular interactions such as ligand-protein, protein-protein, nucleic acid-

protein, and nucleic acid-nucleic acid interactions (Cooper, 2002). An SPR experiment 

generates data with high information content, as binding stoichiometry, affinity, and kinetic 
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constants can be determined simultaneously. Due to these aspects, SPR biosensors have found 

wide application in numerous areas in industry and academia. For instance, SPR technology is 

applied during almost all stages of the drug discovery process, from target identification, 

screening procedures aiming at hit identification and characterization, hit to lead optimization 

as well as preclinical and clinical studies (Cooper, 2002).  

Due to continous advancements, SPR-based sensors will most likely maintain or even expand 

their role in areas such as drug development, clinical diagnostics, or food analysis. A 

tremendous gain in high-throughput, for example, has been achieved by SPR imaging 

technique (SPRi). SPRi enables the simultaneous analysis of numerous different biomolecular 

interactions by operating in a microarray format and using a CCD-camera for signal detection 

(Scarano et al., 2010; Spoto and Minunni, 2012). 

 

1.3.2 Ligand-based nuclear magnetic resonance (NMR) methods 

Due to recent instrumental and methodological improvements, nuclear magnetic resonance 

(NMR) spectroscopy has become a powerful tool in drug discovery (Pellecchia et al., 2008). 

It allows the detection and characterization of ligand binding as well as mapping the binding 

site in solution under nearly physiological conditions. These methods are either based on the 

observation of resonance signals derived from the protein or the ligands. The application of 

protein-based methods including chemical shift mapping are restricted by the size of the 

receptor (< 50 kDa) and require isotopic labelling of the receptor as well as typically long 

acquisition times (Moore, 1999; Skjærven et al., 2013). In comparison, ligand-based NMR 

methods do not impose a size limitation regarding the receptor and, particularly, require a 

smaller amount of unlabeled protein, which makes them amenable for application in 

high-throughput format. In the following, the principles of two ligand-based NMR methods 

used in this thesis, saturation transfer difference (STD) NMR and interligand NOE for 

pharmacophore mapping (INPHARMA), are explained in more detail. 

 

1.3.2.1 Saturation transfer difference NMR 

STD NMR spectroscopy was invented as a screening technique for the detection of 

protein-binding molecules and, furthermore, for the identification of ligand moieties being 

significantly involved in the binding process (Mayer and Meyer, 1999). 
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Figure 9. Schematic illustration of an STD NMR experiment (modified from Hiraishi et al., 2013).  

 

The principle of STD experiments is illustrated in Figure 9. These experiments involve the 

record of two different 1D 
1
H NMR spectra (on-resonance and off-resonance spectrum) of a 

sample containing the receptor and a large molar excess of the ligand. In the on-resonance 

experiment, receptor protons are selectively irradiated with a frequency that saturates only 

protons of the receptor but not those of the ligands. Due to spin-diffusion, the saturation 

spreads rapidly throughout the entire receptor. If binding occurs, saturation is transferred from 

the protein to protons of the bound ligand that are in close proximity to the protein via the 

intermolecular nuclear Overhauser effect (NOE). After dissociation of the ligand, the 

saturation is transferred to the solution, where it is detected. In the off-resonance experiment, 

a reference 1D 
1
H NMR spectrum is recorded applying a saturation pulse at a frequency, at 

which neither receptor nor ligand protons resonate, usually around + 30 ppm (Ludwig and 

Günther, 2009). Subtraction of the on-resonance spectrum from the off-resonance spectrum 

results in the difference spectrum (STD spectrum), in which only signals from binding 

molecules that received saturation from the protein are visible. The intensity of the signals 

correlates to the distance between ligand and protein protons. The closer the protons of the 

ligand to the protein, the more intense is the correspondent signal in the STD spectrum due to 

a more efficient magnetization transfer. In this way, the binding epitope of ligands can be 

identified. In contrast, the signals of non-binders are erased in the difference spectrum. Owing 

to the functional principle of this method, only ligands with a fast exchange and dissociation 

constants in the micromolar to millimolar range can be detected but not tight or covalent 

binders (Mayer and Meyer, 1999). Nevertheless, high-affinity ligands can be monitored 

indirectly, when low-affinity ligands are available that bind competitively to the same binding 
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site. In that case, a reduction of STD signals belonging to the low-affinity reference discloses 

the presence of a high-affinity ligand upon titration to the analyzed sample (Wang et al., 

2004). 

 

1.3.2.2 Interligand NOE for pharmacophore mapping 

The term INPHARMA stands for interligand NOE for pharmacophore mapping. This NMR 

technique is based on the observation of protein-mediated interligand NOEs that originate 

from ligands binding competitively to the same target site (Sánchez-Pedregal et al., 2005). If 

the binding mode of one of the ligands is known, the INPHARMA method can be applied to 

determine the relative orientation of the ligands compared to the reference ligand within the 

receptor binding site (Sánchez-Pedregal et al., 2005; Orts et al., 2008; Bartoschek et al., 

2010). INPHARMA represents a promising technique for rational drug design as it provides 

valuable information about the ligands῾ binding mode and their bioactive conformation. 

Furthermore, this information can be used for the establishment of a binding pharmacophore, 

which enables virtual screening. 

 

 

 

 

 

 

 

 

 

Figure 10. Scheme of an INPHARMA experiment (adapted from Carlomagno, 2012). 

The principle of the protein-mediated transfer of magnetization is depicted in Figure 10. A 

NOESY spectrum is recorded of a sample containing the macromolecular receptor and an 

excess of competive ligands with similar affinity constants under fast exchange conditions 
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(koff : 100–1000 Hz) (Sánchez-Pedregal et al., 2005). Ligand 1 (L1) binds to the protein and 

the binding protons of L1 transfer their magnetization via spin-diffusion to protons of the 

receptor. After dissociation of L1, ligand 2 (L2) binds to the receptor within the mixing time of 

the NOESY experiment. Provided that L2 binds competitively to the same binding site than 

L1, the magnetization that was transferred from L1 to the protein is then transferred from 

receptor protons to protons of L2. This results in interligand NOE signals in the recorded 

spectrum. Interligand NOE peaks only appear between protons of L1 and L2 being in 

immediate vicinity to the protein and occupying the same area within the binding pocket. 

Analysis of a series of such intermolecular crosspeaks discloses the relative orientation of the 

competitive ligands bound to the receptor. 

 

1.3.3 Mutagenesis 

Mutagenesis is the process of generating an alteration in the DNA sequence resulting in a 

genetic mutation. This can occur naturally (spontaneous mutations) provoked by errors in the 

DNA replication process or can be induced by chemical or physical mutagens (induced 

mutations). Furthermore, the genetic information of an organism can also be intentionally 

changed in the laboratory using molecular biology methods, which is referred to as in vitro 

mutagenesis (Ling and Robinson, 1997; Tee and Wong, 2013). Thereby, the DNA sequence 

can either be modified randomly or in a predefined way (Cormack, 2001; Wilson and Keefe, 

2001). A well established method in this field is ‘site-directed mutagenesis’ (SDM) (Costa et 

al., 1996; Zheng et al., 2004; Edelheit et al., 2009). This technique allows a site-specific 

substitution, insertion, or deletion of DNA bases within the gene of interest. Prevalent SDM 

methods employ polymerase chain reaction (PCR) using synthetic oligonucleotide primers 

containing the desired mutation. During PCR, the mutation is incorporated into the target 

sequence at a predefined site. The mutated gene inserted into a vector is then introduced into 

the recipient, where it is propagated and expressed. Thereupon, the impact of the generated 

gene mutation on its biological function can be investigated. SDM is widely applied for 

‘protein engineering’ and for studying protein structure-function relationships including 

identifying catalytic residues of a protein or mapping ligand-receptor interaction sites. 

 

. 
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2 Aim of the thesis 

The discovery of novel anti-infectives intended to secure an effective treatment of infectious 

diseases is of major significance due to the emergence and persistence of drug-resistant 

bacterial strains. A promising strategy to counteract antibiotic resistances is to develop 

anti-infective agents addressing new target sites of validated antibiotic targets and/or 

displaying alternative mechanisms of action. The main objective of this thesis was to identify 

and to characterize novel anti-infective compounds that overcome existing resistances 

utilizing various biochemical and biophysical methodologies. This work was focussed on two 

different bacterial targets for anti-infective drug design, RNAP and CsrA. 

The first part of this thesis is devoted to the characterization of RNAP inhibitors targeting the 

‘switch region’. The previously identified ‘switch region’ is distinct to the target site of the 

clinically relevant RNAP inhibitors of the rifamycin class and, thus, represents a promising 

target for the development of potent broad-spectrum antibiotics sharing no cross-resistances 

with the rifamycins or other antibacterial agents. Recently, within a rational drug design 

strategy, we developed small molecule RNAP inhibitors containing a ureidothiophene-2-

carboxylic acid core that were proposed to bind to the ‘switch region’ (Sahner et al., 2013b). 

To enable lead optimization towards enhanced affinity and efficacy, a detailed knowledge of 

the ligand-protein interactions are of primary importance. Therefore, this work aimed at the 

elucidation of the binding site and binding mode of these inhibitors to promote structure-

based inhibitor design and optimization. To achieve this goal, mutagenesis studies and 

ligand-based NMR methods should be employed in order to determine the binding epitope as 

well as the binding pose and orientation of the ligands within the target site. Additionally, the 

mode of action as well as the pharmacological profile against several drug-resistant bacterial 

strains of this inhibitor class should be investigated. 

In the second part, we aimed at the discovery of CsrA-RNA interaction inhibitors. CsrA is a 

posttranscriptional regulator protein that binds to mRNA and, thereby, affects its stability and 

translation. Decisively, CsrA is essential for full virulence of bacteria and hence, can be 

considered as an attractive target for anti-infective drug development. Inhibitors of the 

CsrA-RNA interaction are supposed to attenuate CsrA-dependent virulence without killing 

the bacteria and thus, exerting less selection pressure for the development of bacterial 

resistances. For the discovery of CsrA-binding molecules, an SPR-based test system ought to 

be established. Subsequently, identified hit compounds should be tested for their ability to 



Results 23 

 

 

disrupt the CsrA-RNA interaction utilizing an FP-based competition assay and their binding 

profile should be investigated by SPR.  

 



24 Results 

 

 

3 Results 

3.1 Binding mode characterization of novel RNA polymerase inhibitors 

using a combined biochemical and NMR approach 

Martina Fruth, Alberto Plaza, Stefan Hinsberger, Jan Henning Sahner, Jörg Haupenthal, 

Markus Bischoff, Rolf Jansen, Rolf Müller, and Rolf W. Hartmann 

 

Reprinted with permission from ACS Chem. Biol., 2014, 9, 2656–2663. 

DOI: 10.1021/cb5005433 

Copyright: © 2014 American Chemical Society.  

 

Publication A 

 

 

 

ABSTRACT 

The bacterial RNA polymerase (RNAP) represents a validated target for the development of 

broad-spectrum antibiotics. However, the medical value of RNAP inhibitors in clinical use is 

limited by the prevalence of resistant strains. To overcome this problem, we focused on the 

exploration of alternative target sites within the RNAP. Previously, we described the 

discovery of a novel RNAP inhibitor class containing an ureidothiophene-2-carboxylic acid 

core structure. Herein, we demonstrate that these compounds are potent against a set of 

methicillin-resistant Staphylococcus aureus (MRSA) strains (MIC: 2–16 μg ml
-1

) and 

rifampicin-resistant Escherichia coli TolC strains (MIC: 12.5–50 μg ml
-1

). Additionally, an 

abortive transcription assay revealed that these compounds inhibit the bacterial transcription 

process during the initiation phase. Furthermore, the binding mode of the ureidothiophene-2-

carboxylic acids was characterized by mutagenesis studies and ligand-based NMR 

spectroscopy. Competition saturation transfer difference (STD) NMR experiments with the 

described RNAP inhibitor myxopyronin A (Myx) suggest that the ureidothiophene-2-

carboxylic acids compete with Myx for the same binding site in the RNAP switch region. 

INPHARMA (interligand NOE for pharmacophore mapping) experiments and molecular 

docking simulations provided a binding model in which the ureidothiophene-2-carboxylic 

acids occupy the region of the Myx western chain binding site and slightly occlude that of the 
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eastern chain. These results demonstrate that the ureidothiophene-2-carboxylic acids are a 

highly attractive new class of RNAP inhibitors that can avoid the problem of resistance. 

 

INTRODUCTION 

Antimicrobial resistance has become a global health concern due to the widening gap between 

the rapid spread of resistant pathogens (1) and the shortage of effective treatment options (2, 

3). Thus, the development of novel and potent anti-infectives is urgently needed. A validated 

but hitherto underexploited target for the development of broad-spectrum antibiotics is the 

bacterial RNA polymerase (RNAP). Up to date, rifamycins and fidaxomicin are the only 

RNAP inhibitors used in clinical practice (4–8). Rifampicin (Rif) (Figure 1), a member of the 

rifamycin family, plays a fundamental role in tuberculosis treatment as a first-line agent in 

combination with isoniazid (9). However, its use is limited due to the prevalence of Rif-

resistant Mycobacterium tuberculosis (MTB) strains (10, 11). Resistance to the class of 

rifamycins arises from point mutations in the rpoB gene encoding for the RNAP β subunit 

(12). 

A strategy to overcome the problem of resistance is to explore alternative target sites, which 

are distant from the Rif binding pocket. Therefore, we applied a virtual screening approach 

addressing the RNAP switch region (18). This target site resides at the base of the RNAP 

clamp, a domain of the β’ subunit and coordinates the opening and closing of the RNAP 

active centre cleft. The switch region is not overlapping with the Rif binding site and is highly 

conserved among Gram-positive and Gram-negative bacteria grading it as an attractive target 

for the identification of novel broad-spectrum antibiotics (13–15). Using a homology model 

of E. coli RNAP a 3D-pharmacophore model was established, which incorporates protein-

derived properties of the switch region as well as ligand features from Myx, a well-known 

switch region binder (16–18) (Figure 1). The virtual screening based on this model identified 

a hit compound containing an ureidothiophene-2-carboxylic acid core, which served as 

starting point for activity-guided optimization (18). This class of compounds (Figure 1) 

showed promising in vitro RNAP transcription inhibition and antibacterial activity against 

Gram-positive bacteria (S. aureus, B. subtilis) and E. coli TolC. Moreover, they possessed a 

significantly lower resistance frequency compared to Rif or Myx (18). Present work described 

here revealed that the ureidothiophene-2-carboxylic acids are also active against several 

clinical MRSA isolates and Rif-resistant spontaneous E. coli TolC mutants. Thus, the 

ureidothiophenes are considered promising candidates for further development.               
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Here, we established the mode of binding of the ureidothiophenes by using a combination of 

site-directed mutagenesis and ligand-based NMR methods including STD NMR and 

INPHARMA. As common methods like SPR or protein based NMR approaches are not 

feasible to detect binding of small molecules to RNAP due to its large size (core enzyme: 

~ 380 kDa), the two ligand-based NMR spectroscopic methods applied herein represent 

excellent alternatives as they do not impose restrictions on the size of the target protein (19, 

20). Besides, to gain deeper insight into the mode of action of the ureidothiophene-2-

carboxylic acids an abortive transcription assay was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) RNAP-inhibiting natural products, (b) ureidothiophene-2-carboxylic acid derivatives. 
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RESULTS & DISCUSSION 

Antibacterial Activity. First of all, the activity of the ureidothiophene-2-carboxylic acid 

derivatives against resistant strains, including Rif-resistant E. coli TolC and multidrug-

resistant S. aureus, was assessed by broth microdilution methods (Table 1a and 1b).  

 

Table 1. (a) MIC value determination in clinical Staphylococcus aureus (MRSA) isolates; (b) MIC 

value determination in Rif-resistant E. coli TolC mutants 

 (a) 

MRSA MIC [μg ml
-1

] 

Isolate Type
a
 2 9 Myx Rif 

USA300 Lac CA-MRSA 8 2 1 0.0156 

COL HA-MRSA 16 2 1 0.0078–0.0156 

5191 LA-MRSA 16 2 0.5–1 0.0078–0.0156 

R44 LA-MRSA 8 2 1 0.0156 

a
 CA-MRSA, community acquired MRSA; HA-MRSA, hospital acquired MRSA; LA-MRSA, livestock-

associated MRSA 

 

(b) 

Strain 

MIC [μg ml
-1

] 

1 3 4 5 6 7 Myx Rif 

Ec TolC 12.5–25 12.5–25 25 12.5 25 25 1.25 8 

Ec TolC β 

Q513L
b
 

12.5 12.5–25 25 12.5 25–50 25 1.25 >100 

Ec TolC β 

H526Y
b
 

12.5 12.5–25 25 12.5 50 25 1.25 >100 

b
 Rif-resistant E. coli TolC strains with mutations in the rpoB gene encoding for the RNAP β subunit. 

 

Spontaneous Rif-resistant E. coli TolC mutants with single point mutations in the rpoB gene 

causing high level resistance to Rif, were still susceptible towards the ureidothiophene-2-

carboxylic acids. These results indicate that the ureidothiophenes show no cross-resistance 

with Rif as intended by our approach to address the RNAP switch region. Moreover, the 

compounds display potent activity against a set of methicillin-resistant Staphylococcus aureus 



28 Results 

 

 

(MRSA) isolates with differing antimicrobial resistance patterns (Table S1), such as the 

community acquired MRSA strain USA300 Lac (21), the early hospital acquired MRSA 

strain COL (22) and the livestock-associated MRSA CC398 isolates 5191 (23) and R44 (24). 

Compound 9 (Figure 1) was found to be the most potent. It exhibited a MIC value of 

2 μg ml
-1

 in all screened MRSA strains, which is similar to that of the reference compound 

Myx (Table 1a).  

Abortive Transcription Assay. It has been shown that Myx inhibits the transcription 

initiation (14). Since the ureidothiophene-2-carboxylic acids were designed to bind to the 

same binding site than Myx, it can be assumed that these compounds may also inhibit the 

initiation of the transcription cycle. To confirm this hypothesis, an HPLC-based abortive 

transcription assay (25) was performed. Inhibition of transcription initiation was measured by 

quantification of abortive transcripts that are usually formed during the initiation phase (26, 

27). As illustrated in Figure 2, compounds 1 and 6 (Figure 1) induced a drastic reduction of 

abortive transcript formation. As expected, this data demonstrate that the ureidothiophenes 

interfere with the transcription process during the initiation phase.  

 

 

 

 

 

 

 

 

Figure 2. Abortive Transcription Assay. Dose-dependent inhibition of 1 and 6 on abortive product 

formation (ApUp³H-C) using ApU and ³H-CTP as substrates. Standard deviations from two 

independent experiments are indicated by error bars. 

 

Mutagenesis Studies. The ureidothiophene-2-carboxylic acids were designed as RNAP 

inhibitors that bind into the switch region. Recent docking studies suggest that these 

compounds bind in a tilted conformation overlapping with the Myx western chain but do not 
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extend in the binding region of the eastern chain (18). To corroborate these findings, several 

amino acid substitutions in the switch region were introduced (Figure S1). Subsequently, the 

effects of these mutations on both the RNAP transcription inhibition and the antibacterial 

activity were examined. As expected, mutations in the binding pocket of the Myx eastern 

chain including RNAP β V1275M and β E1279K, did not impair the antibacterial activity of 

the ureidothiophene-2-carboxylic acid series against E. coli TolC (Table S2). Surprisingly, 

substitution of amino acids located in the proposed binding site such as RNAP β S1322, 

β L1291, β’ K345, β’ K334 and β’ Δ334–5 neither had a significant effect on the antibacterial 

activity against E. coli TolC nor on the in vitro activity (Table S2, S3).  

Characterization of the Binding Mode by STD NMR, INPHARMA and Molecular 

Docking. All together, the above mentioned results raise the question whether the RNAP 

switch region is indeed the binding site of the ureidothiophene compound series as obtained 

from our molecular docking experiments. Thus, we performed competition STD NMR (28) 

experiments where the representative compound 6 (Figure 1) was titrated into a 100:1 

complex of Myx/RNAP. Difference spectra were monitored for a change in intensity of 

signals belonging to either 6 or Myx during the titration. As shown in Figure 3, stepwise 

addition of 6 to the complex Myx/RNAP diminished the signal intensities of Myx 

concomitant with steady increases in signal intensities belonging to 6. In fact, addition of 

three equivalents of 6 resulted in a ∼70% uniform decrease in intensity for signals belonging 

to Myx (see Figure 3C). By addition of five equivalents of 6 the signals of Myx were almost 

unnoticeable. Consequently, 6 and Myx bind the switch region of RNAP in a competitive 

manner. 

Additionally, competition STD NMR experiments were performed between 6 and two other 

described switch region binders, corallopyronin A (Cor) and ripostatin A (Rip) (29, 30) 

(Figure 1). Cor is a structural analog of Myx whereas Rip is a cyclic macrolide. So far no 

crystal structures for these natural products have been reported. Nevertheless, isolation and 

sequencing of Cor- and Rip-resistant mutants show that the binding pocket of Rip and Cor 

overlap with that of Myx (14). As illustrated in Figure S2, an overall reduction of the Cor and 

Rip STD signals is observed upon the addition of 6, further indicating that 6 binds into the 

RNAP switch region.  
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Figure 3. STD NMR competition experiments of 6 and Myx binding to core RNAP. (A) Expanded 
1
H 

STD NMR spectrum of Myx (250 μM) in the presence of core RNAP (2.5 μM). (B-D) STD NMR 

spectra of the same sample upon  addition of (B) 1, (C) 3 and (D) 5 equivalents of 6. 

 

The INPHARMA method was used to exclude allosteric effects on the displacement of Myx 

by 6 (31). This method is based on the observation of protein-mediated NOE transfer between 

two ligands binding competitively to the same protein binding pocket. Additionally, we 

qualitatively analyzed the INPHARMA correlations (32, 33) to determine the binding 

orientation of 6 in the switch region of RNAP relative to that of Myx. To this respect, 

2D-NOESY experiments were performed for a mixture of RNAP/Myx/6 in a concentration 
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ratio of 1:150:150 at mixing times ranging from 20 to 600 ms. Interligand NOE signals were 

not detected between 6 and Myx in absence of RNAP at mixing times as high as 200 ms, thus 

excluding a direct interaction between 6 and Myx. Due to the size of the receptor (~380 kDa) 

and to avoid “long” spin-diffusion pathways contributing to the interligand signals, 2D 

NOESY experiments acquired with a mixing time of 70 ms were chosen to analyze spin-

diffusion-mediated interligand NOE interactions (34). In particular, INPHARMA correlations 

of different intensities were observed between protons of the aromatic rings of 6 and protons 

Me-24, H-23, H-22, Me-21, Me-17, and H-10 of Myx (Figure 4 and Table 2).  

Interestingly, besides the weak INPHARMA correlations from H-10 no other signals were 

observed from protons belonging to the eastern chain of Myx. These results corroborate that 6 

and Myx bind competitively to the switch region of RNAP, and furthermore indicate that 6 

occupies the region of the Myx western chain binding site and slightly occludes that of the 

eastern chain. Additionally, the strongest INPHARMA correlations were observed from Me-

24Myx to the protons of both, phenyl and benzyl rings of 6 (Figure 4), suggesting that these 

two rings and Me-24Myx occupy the same area in the binding site. This can only be 

accomplished if 6 binds to the RNAP switch region in two different poses. In one pose, the 

phenyl ring is residing at a similar site to that of Me-24Myx while in the second pose the 

benzyl moiety is placed at the Me-24Myx position. Unfortunately, overlapping of proton 

signals for Me-5’’ of 6 and Me-8Myx prevents us from using diagnostic INPHARMA 

correlations from the latter to further corroborate this hypothesis. To circumvent this problem, 

an ureidothiophene analogue (13) without the ethyl group at the position of R
2
 (Figure 1) was 

synthesized. Additionally, a methoxy group was introduced to the benzyl ring of 13 to avoid 

the signal overlap of H-18Myx with H-8’’/H-12’’ of 6. As a matter of fact, a 2D NOESY 

spectrum of the mixture RNAP/13/Myx clearly showed strong interligand NOE interactions 

from Me-8Myx to the protons of the phenyl ring and benzyl moiety indicating that all these 

three residues are located near the same protein protons (Figure 4b and Table 2). Also, 

Me-24Myx showed strong INPHARMA correlations to protons of both aromatic rings of 13. 

Taken together, these results suggest that both, 6 and 13, can bind to the switch region of 

RNAP in two different poses with inverted orientations (vide supra). Moreover, the 

INPHARMA data indicate that 6 and 13 partially occlude the Myx binding site in a region 

that ranges from Me-24Myx to Me-8Myx. 
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Figure 4. NOESY spectra (a) of a mixture of RNAP (2.5 μM), Myx (375 μM) and 6 (375 μM) and (b) 

of a mixture of RNAP (2.5 μM), Myx (375 μM) and 13 (375 μM). Signals are assigned in the 1D 

spectra. The numbering of the atoms of Myx and 6 corresponds to that shown in Figure 3, numbering 

of 13 is shown in the SI (Figure S4). Black peaks represent the interligand transferred NOEs 



Results 33 

 

 

(INPHARMA NOEs) mediated by the hydrogen atoms of RNAP. Overlapping signals are colored in 

green and intramolecular transferred NOEs from 13 are colored in blue. 

 

Table 2. Observed INPHARMA signals between the hydrogen atoms of Myx and 6 and 13, 

respectively. 

a
 indicates overlapping signals 

 

To further evaluate the binding mode of 6 and 13 in the switch region of RNAP, we 

performed molecular docking studies using MOE (Molecular Operating Environment) (31) 

based on the INPHARMA results. The obtained docking poses with inverted orientations for 

6 and 13 that correlated best with the STD and INPHARMA results are illustrated in Figure 5. 

In poses A and C the NO2-substituted phenyl ring is positioned in the upper hydrophobic 

region of the Myx western chain pocket whereas the benzyl ring occupies the lower part of 

the eastern chain pocket of Myx. In docking poses B and D the same area of the switch region 

is occupied by 6 and 13, but the benzyl and the phenyl ring bind in inverted orientations 

compared to poses A and C.  

 

 

 

 

Myx Compound 6 Compound 13 

Me-24 H-2’, H-4’, H-5’, H-4/6’
a
, H-4’’, 

H-9’’–11’’ 

H-2’, H-4’, H-5’, H-4/6’
a
,  

H-6’’/10’’, H-7’’/9’’, MeO-8’’ 

H-23 H-4’, H-4/6’
a
, H-9’’–11’’ H-2’, H-4’, H-4/6’

a
, H-6’’/10’’,  

H-7’’/9’’, 8’’MeO-8’’ 

H-22 H-2’, H-4/6’
a
, H-9’’–11’’ H-2’, H-4’, H-4/6’

a
, H-6’’/10’’,  

H-7’’/9’’, MeO-8’’ 

Me-21 H-2’, H-4’, H-5’, H-4/6’
a
,  

H-9’’–11’’ 

H-2’, H-4’, H-4/6’
a
, H-6’’/10’’, 

H-7’’/9’’, MeO-8’’ 

Me-17 H-4/6’
a
, H-9’’–11’’ H-2’, H-4’, H-4/6’

a
, H-6’’/10’’,  

H-7’’/9’’, MeO-8’’ 

H-10 H-2’, H-4/6’
a
, H-8’’–12’’ H-4/6’

a
, H-6’’/10’’, H-7’’/9’’,  

MeO-8’’ 

Me-8  – H-2’, H-4’, H-4/6’
a
, H-6’’/10’’,  

H-7’’/9’’, MeO-8’’ 
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Figure 5. Proposed binding modes of 6 (A, B) and 13 (C, D) in the RNAP switch region. Since there 

is no high-resolution crystal structure of the E. coli RNAP switch region available, an E. coli 

homology model (18) was used. The binding mode of Myx (green) is shown to illustrate its relative 

orientation to 6 and 13 (blue). Hydrophobic and hydrophilic areas of the pocket are colored turquois 

and red, respectively. 

 

Recently we could demonstrate that the ureidothiophene-2-carboxylic acids are capable of 

inhibiting the σ:core assembly which would indicate that these compounds could also bind to 

the σ:core interface (36). Existence of a second binding site is also supported by the fact that 

titrating Myx into a 6/RNAP complex did not result in the displacement of the STD signals of 

6 (data not shown).  Further evidence of a second binding site for the ureidothiophenes was 

achieved by monitoring the dose-dependent effect of 6 to quench the intrinsic fluorescence of 

RNAP core enzyme. Graphical representation of the results displayed a monophasic curve 

progression for Myx (14) and Rif  whereas 6 showed a biphasic character of the curve 

indicating that 6 can bind to more than one binding site. Besides that these compounds can 

bind in two orientations, a second binding site within RNAP could also contribute to the fact, 

that amino acid substitutions in the switch region do not impair the inhibitory activity of the 

ureidothiophene-2-carboxylic acids.  
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CONCLUSION 

In summary, we have shown that the ureidothiophene-2-carboxylic acids possess good 

antibacterial activity against different clinically relevant MRSA isolates and Rif-resistant 

E. coli TolC strains indicating the absence of cross-resistance with existing antibiotics. On the 

basis of the STD NMR and INPHARMA data, these compounds bind competitively to Myx 

in the RNAP switch region. The structural information provided by the transfer NOE 

experiments along with molecular docking studies allowed us to propose a plausible binding 

mode for the ureidothiophene-2-carboxylic acids, which occupy the same area of the switch 

region as the Myx western chain and the 2-pyrone core. Moreover, our results confirm that 

our pharmacophore-based virtual screening approach has been successful in identifying easily 

accessible small molecule RNAP inhibitors that bind to the intended target site, the RNAP 

switch region, thus providing the potential to avoid the problem of resistance. In closing, these 

results provide useful insights into the structural requirements for optimized interactions with 

the target site and may thus facilitate structure-based optimization of this inhibitor class. 

METHODS 

Plasmids. For purification of E. coli wild type core RNAP the plasmid pVS10 was used 

which encodes the E. coli rpoA-rpoB -rpoC [His6] and rpoZ ORFs under control of a T7 

promoter (37). Amino acid substitutions in the E. coli RNAP subunits were constructed by 

site-directed mutagenesis on the basis of pVS10, pRL663 and pIA458 containing a fragment 

from β SdaI to β’ BsmI  (17) and were verified by sequencing. Detailed information about the 

plasmids are provided in the SI. 

Selection of Rif- and Myx-resistant E. coli TolC Spontaneous Mutants. The procedure 

was performed as described earlier (38). 

Protein Purification. Wild type and altered RNAP core enzymes were purified as described 

previously (37) without the DNA-affinity chromatography step. 

MIC Determination. 3–4 isolated colonies of E. coli TolC transformed with a pRL663 or 

pRL706 derivative or colonies of spontaneous myxopyronin-resistant E. coli TolC mutants 

were transferred into 5 ml MHB  containing 200 μg ml
-1

 ampicillin and incubated over night  

at 37 ºC with shaking. The turbidity of the bacterial suspension was adjusted to that of a 

McFarland standard 0.5 (OD 600 ~ = 0,1 for 10
8 

cfu ml
-1

) and was then diluted by a factor of 

1:100 with sterile MHB (10
6 

cfu ml
-1

). Aliquots of 100 μl bacterial suspension were 
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subcultured in 100 μl MHB containing the compounds dissolved in DMSO in different 

concentrations in a 96-well plate in triplicates and incubated at 37 °C for 18 h with shaking 

(50 rpm). Final DMSO concentration in the experiment was 1 %.  For testing E. coli TolC 

transformed with a pRL663 and pRL706 derivative, the MHB was supplemented with IPTG 

(1 mM). Given MIC values are means of at least two independent determinations (three if 

MIC<10 mg mL
-1

) and are defined as the lowest concentration of the compounds that inhibit 

visible growth of the tested isolates. 

MICs for MRSA isolates were determined by broth microdilution as recommended by the 

Clinical and Laboratory Standards Institute (39). Antibiotic resistance profiles of the MRSA 

isolates were determined using the Vitek 2 automated antimicrobial susceptibility testing 

system (bioMérieux, Marcy l’Étoile, France).  

Transcription Assay. The assay was performed as described previously (18, 40, 41) with 

minor modifications. Final concentrations in a total volume of 30 μL were 56 nM wild type or 

mutant core RNAP, respectively. An equimolar amount of σ
70 

 was used along with 60 nCi of 

[5,6-
3
H]-UTP, 400 μMol ATP, CTP and GTP as well as 100 μM of UTP, 20 units of RNAse 

inhibitor (RiboLock, Fermentas), 10 mM DTT, 40 mM tris–HCl (pH 7.5), 150 mM KCl, 

10 mM MgCl2 and 0.1% CHAPS.  As a DNA template 3500 ng of religated pcDNA3.1/V5-

His-TOPO was used per reaction. Prior to starting the experiment, core enzyme was 

preincubated with σ
70

 for 10 min at 25 °C to allow formation of the holo enzyme. Subsequent 

steps are performed as described previously (18). 

HPLC-based Abortive Transcription Assay. The assay was performed as described 

previously (42). 

NMR Spectroscopy. STD NMR data were recorded at 290 K on a Bruker Avance 500 NMR 

instrument equipped with a cryogenically cooled 5 mm inverse triple resonance gradient 

probe. Experiments were recorded with the carrier set at −2 ppm for on-resonance irradiation 

and 40 ppm for off-resonance irradiation. Control spectra were recorded under identical 

conditions. Selective protein saturation (2 s) was accomplished using a train of 50 ms Gauss-

shaped pulses, each separated by a 1 ms delay, at an experimentally determined optimal 

power (50 dB on our probe); a T1ρ filter (15 ms) was incorporated to suppress protein 

resonances. Experiments were recorded using a minimum of 256 scans and 32 K points. On-

 and off-resonance spectra were processed independently and subtracted to provide a 

difference spectrum. 2D NOESY (INPHARMA) experiments were recorded at 290 K on a 
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Bruker Ascend 700 NMR instrument equipped with a cryogenically cooled 5 mm inverse 

triple resonance gradient probe. Samples containing 150:150:1 Myx/6/core RNAP and 

Myx/13/core RNAP were prepared in deuterated buffer (20 mM NaPO4 and 50 mM NaCl, pH 

6.8). 2D NOESY experiments were acquired using standard pulse sequences with water 

suppression (WATERGATE), 96 scans as 2048x400 data points at mixing times ranging from 

20–800 ms.   

Computational Chemistry. The virtual binding modes of compounds 6 and 13 were created 

using MOE (Molecular Operating Environment). The model of E. coli RNAP in complex 

with myxopyronin A, which was used as receptor in the following docking experiments, was 

created by superposition of 3DXJ (T. thermophilus RNAP in complex with myxopyronin A) 

(14) and an E. coli RNAP homology model (18). After removal of the T. thermophilus protein 

the remaining receptor-ligand complex was energy minimized using the LigX module of 

MOE (standard settings) tethering receptor and ligand (strength: 10). Employing the docking 

module of MOE, compounds 6 and 13 were docked into the myxopyronin binding site. 

“Triangle Matcher” was chosen as placement method and “London dG” was selected as 

scoring function. “Rotate bonds” and “Remove duplicates” functions were switched on and 30 

hits were retained. Implying the results of the NMR experiments a pharmacophore containing 

two aromatic features (radius F1: 2 Å, F2: 1.5 Å) was used to guide the docking. Furthermore 

the same docking was performed with an additional forcefield refinement. The docking results 

were searched for the poses which correlated best with the NMR results. These were further 

refined using the LigX module (standard settings) tethering the receptor (strength: 5000) to 

afford the final binding modes. 
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ABSTRACT 

The emergence of bacterial resistance requires the development of new antibiotics with 

alternative mode of action. Based on class I, developed in our previous study, a new series of 

RNA polymerase (RNAP) inhibitors targeting the switch region was designed. Feasible 

synthetic procedures of the aryl-ureido-heterocyclic-carboxylic acids were developed 

including three regioisomeric thiophene classes (II‒IV), as well as three isosteric furan (V, 

VI) and thiazole (VII) classes. Biological evaluation using a RNAP transcription inhibition 

assay revealed that class II compounds possess the same activity as the parent class I, whereas 

classes III, V‒VII were active, however with lower potency. Structure activity relationship 

(SAR) studies, supported by molecular modeling, elucidated the structural requirements 

necessary for interaction with the binding site. Beside the RNAP inhibitory effects, the new 

compounds displayed good antibacterial activities against Gram positive bacteria and the 

Gram negative E. coli TolC strain. Moreover, they showed no cross resistance with the 

clinically used RNAP inhibitor rifampicin (Rif) and a lower rate of resistance compared to 

Rif. 

 

INTRODUCTION 

The eternal battle against pathogenic bacteria demands the discovery and development of new 

weapons aiming vital targets, since the prevalence of antibiotic resistance poses a real threat 

to human health.
1,2

 Bacterial RNAP is a multisubunit enzyme responsible for transcription.
3
 It 

is necessary for cell survival allowing efficacy, and structurally distinguished from eukaryotic 
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counterparts affording therapeutic selectivity.
4
 However, the only clinically used drugs 

targeting RNAP are the rifamycins which are applied to treat Mycobacterium tuberculosis 

infections, and the recently FDA approved Fidaxomicin for Clostridium difficile infections.
5
 

Hence, while proven as a drug target, RNAP is still underexploited. Our mission is to discover 

and optimize RNAP inhibitors with an alternative binding site compared to rifamycins, and 

consequently, with low probability of cross resistance. Recently the “switch region”, a 

binding pocket distinct from the rifamycins binding site, was discovered and proved to be a 

promising target site for antibacterial drug discovery.
6‒8

 The RNAP inhibitors myxopyronin B 

(Myx B), a natural α-pyrone antibiotic isolated from the myxobacterium Myxococcus fulvus,
9
 

and its synthetic derivative desmethyl myxopyronin B (dMyx B),
10

 have been identified to 

bind to the “switch region”.
6,7

 Although the myxopyronins are highly active in vitro and show 

no cross resistance to rifamycins,
6,11,12

 their clinical application is hampered by inadequate 

physicochemical properties.
13 

These facts motivated us and other research groups to develop novel “switch region” 

inhibitors. McPhillie et al. used a structure based de novo design based on the crystal structure 

of the dMyx B binding site. Although the compounds inhibited RNAP, they displayed no 

antibacterial activity.
14

 Buurmann et al. applied a high throughput screening, identified RNAP 

inhibitors and confirmed the switch region as their target site. However, they showed only 

weak antibacterial activity.
15

 Yakushiji et al. pursued a hybrid strategy, combining the core 

α-pyrone of Myx with holothin. The resulting RNAP inhibitor was active against Gram 

positive bacteria.
16

 

In a previous work of our group, based on a hit candidate discovered by virtual screening, a 

series of 5-aryl-3-ureidothiophene-2-carboxylic acids (class I) was synthesized and optimized 

based on SAR studies. Moreover, the binding mode was experimentally validated. The 

compounds showed good antibacterial activities accompanied by a low resistance frequency 

(Fig. 1).
17 

In this work, we focused on finding new chemical scaffolds inspired from class I with better 

or at least retained biological activities. To achieve this goal, we followed an analog design 

strategy accompanied by SAR exploration (Fig. 1). The study was supported by molecular 

modeling to gain deeper insights into the structural features necessary for activity. 



Results 45 

 

 

                                     

Figure 1. Development of second generation bacterial RNAP inhibitors of the ureido-heterocyclic-

carboxylic acid type. 

 

RESULTS & DISCUSSION 

Design Strategy 

Analog design was accomplished through two approaches: via design of regioisomers of the 

parent class I, and via bioisosteric exchange of the heterocyclic core. By reversing the 

positions of ureido and carboxyl substituents of class I (class II), shifting the aryl position in 

class I (class IV), or shifting the aryl position in class II (class III), three classes of 

regioisomers were initially investigated to identify the optimum configuration of the aryl-

ureido-thiophene-carboxylic acids for interaction with the target enzyme (Fig. 2). Based on 

our previous results,
17

 as aryl motif phenyl rings bearing substituents with high π and σ 

values, namely 4-chlorophenyl and 3,4-dichlorophenyl, were chosen. It was also shown that at 

the ureido motif hydrophobic and bulky substituents are preferred, therefore n-hexyl, benzyl 

and N-ethylbenzyl amine were employed. In the next step, the biological results of classes    

I‒IV were taken into consideration. Based on classes I and II, displaying the highest RNAP 

inhibitory activity, the classical isosteric ring equivalents –O– for –S– (classes V and VI) or   

– N= for –CH= (class VII) were investigated (Fig. 2). 
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Figure 2. Analog design strategies based on the parent class I. 

 

Chemistry 

The synthesis of compounds 6‒11 (class I) started by reacting the acetophenones 1a,b 

(Scheme 1) with POCl3 in DMF followed by NH2OH∙HCl according to a modified Vilsmeier-

Haack-Arnold reaction
18

 to give the β-chlorocinnamonitriles 2a,b which were cyclized using 

methyl thioglycolate under basic condition (NaOMe) to afford the methyl 5-aryl-3-

aminothiophene-2-carboxylates 3a,b.
17,19

 Esters were saponified to the corresponding acids 

4a,b which were treated with triphosgene to form the thiaisatoic anhydrides 5a,b. The latter 

reacted with the appropriate amines in water followed by acidic workup to yield the desired  

5-aryl-3-ureidothiophene-2-carboxylic acids 6‒11.
17,20,21

 The compounds of classes II and III 

were synthesized by a straightforward procedures via Gewald reaction of the 

arylacetaldehydes 12a,b or the acetophenones 1a,b (Scheme 1) with ethyl cyanoacetate and 

elemental sulfur under basic conditions in a one-pot reaction to afford the ethyl esters 13a,b 

and 22a,b
22,23

 respectively. After saponification, synthesis of both the 5- and 4-aryl-2-

ureidothiophene-3-carboxylic acids 16‒21 and 25‒30 via the thiaisatoic anhydrides 15a,b and 

24a,b was also successfully employed as described for the class I derivatives. The synthesis 

of compounds of class IV was achieved by treating the arylacetonitriles 31a,b (Scheme 1) 

with ethyl formate in presence of NaOMe, followed by acidic workup to furnish the 2-aryl-3-

hydroxyacrylonitriles 32a,b.
24‒26

 Ring closure was accomplished by activation of 32a,b using 

benzenesulfonyl chloride to yield the sulfonates 33a,b which reacted with methyl 

thioglycolate under basic condition to produce the methyl 3-amino-4-arylthiophene-2-



Results 47 

 

 

carboxylates 34a,b.
26

 Further synthetic steps via the thiaisatoic anhydrides 36a,b proceeded 

smoothly to deliver the desired 4-aryl-3-ureidothiophene-2-carboxylic acids 37‒42. 

 

 

 

Scheme 1. Synthesis of compound classes I‒IV. 

 

For the synthesis of compounds 51 and 52 (class V), acetophenone 1b (Scheme 2) was 

converted to the β-ketonitrile 44 via bromination
27

 and subsequent nucleophilic substitution 

using KCN.
28,29

 Compound 44 was further reacted under Mitsunobu conditions
30

 with ethyl 

glycolate to the intermediate vinyl ether 45 that was cyclized under basic condition (NaH) to 

yield the ethyl 3-aminofuran-2-carboxylate 46. We initially attempted to adopt the “isatoic 

anhydride strategy” for the furan class as described for synthesis of the ureidothiophene 

analogs. Unfortunately, the required 3-aminofuran-2-carboxylic acid could not be obtained. 

Various conditions for alkaline hydrolysis of the ester 46 led to decomposition of the furan 
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ring, and a ring opening product was isolated. This observation is attributed to the unusual 

instability and weak aromatic properties characterizing the aminofurans.
31‒33

 Therefore, we 

decided to postpone the hydrolysis to the end of the synthesis as the ureido-furan derivatives 

are less electron rich and should be less prone to decomposition.
34

 To prepare the urea 

derivatives, compound 46 was treated directly with the carbamoylimidazoles
35

 or isocyanate
36

 

but no conversion was observed. Finally, an alternative route via the phenyl carbamate 47 

followed by nucleophilic substitution with the appropriate amines
37

 gave the desired ureido-

furan-carboxylic esters 48 and 49. The hydrolysis to the free acids proceeded smoothly under 

basic condition for the N-benzyl-N-ethylurea derivative 49 to afford 52, but for the N-benzyl 

derivative 48 cyclization yielding the uracil derivative 50 occurred. Therefore, non-

saponicative, mild dealkylation was conducted using AlCl3 in tetrahydrothiophene (THT)
38

 

affording the desired carboxylic acid 51. The synthesis of the regioisomeric furan system 

class VI proceeded via coupling of the phenacyl bromide 43 (Scheme 2) with ethyl 

cyanoacetate to give the intermediate 53 that was cyclized under acidic condition (TFA) to 

deliver the 2-aminofuran-carboxylic ester 54. Interestingly, reaction of 54 with phenyl 

chloroformate afforded only the diacylated product 55 even when a stoichiometric amount of 

reagent was used. This is consistent with previous findings regarding the reactivity of            

2-aminofurans.
39

 The subsequent transformation into the urea derivatives 57 and 58 required 

an excess of the amine to eliminate the second carbamoyl group from the intermediate 56. 

Finally, the acids 59 and 60 were obtained by dealkylation using AlCl3 in THT. The thiazole 

class VII was prepared starting from the benzyl chloride 61 (Scheme 2) that was reacted with 

elemental sulfur and alkylated with methyl iodide to give the carbodithioate 62. For the ring 

closure, 62 was first reacted with cyanamide in basic medium (NaOMe) and further 

S-alkylated with methyl bromoacetate to give the intermediate 63 that was cyclized under 

basic conditions affording the 4-aminothiazole ester 64. After alkaline hydrolysis, the acid 65 

was converted to the thiazoloisatoic anhydride 66. This intermediate reacted in the same 

manner as described for the thiophene derivatives to the ureidothiazole carboxylic acids 67 

and 68. 
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Scheme 2. Synthesis of compound classes V‒VII. 

 

In vitro RNA polymerase inhibitory activity 

Compounds of classes I‒VII were tested for their inhibitory activity against E. coli RNAP and 

the results are shown in table 1. Generally compounds with 3,4-dichloro substituents 

exhibited higher activity than 4-chlorophenyl derivatives in the same class. This finding is in 

accordance with our previous study of the parent class I.
17

 An increase of activity was also 

observed with substituents having larger hydrophobic volume at the ureido motif with the 
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general trend benzylethyl ~ n-hexyl > benzyl. Compounds of class II showed RNAP 

inhibitory activities as good as the parent class I. Interestingly, the 3,4-dichloro derivatives 

19‒21 (IC50: 18, 43, and 21 µM respectively) showed identical activities to their analogous 

compounds 9‒11 of class I (IC50: 18, 46, and 22 µM respectively). The class III analogs     

28‒30 displayed moderate activities (IC50: 75, 84, and 57 µM respectively, about 2‒4 fold 

decrease), while class IV derivatives 40‒42 possessed weaker activities (IC50: 74 to >100 µM, 

>4 fold decrease). 

The outstanding role of classes I and II regarding RNAP inhibition can be explained on the 

basis of molecular similarity, i.e. similar molecules exhibit similar activities.
40‒42

 The 

similarity of classes I‒IV was analyzed in silico by using molecular fingerprint method, where 

a graph 3-point pharmacophore (GpiDAPH3) was applied as 2D fingerprint system. As 

similarity metric the Tanimoto coefficient (TC) was used.
43

 Class II showed maximum 

similarity to I (TC = 1.00), followed by III (TC = 0.93), while IV exhibited low similarity (TC 

= 0.65). Another similarity assessment via flexible alignment of classes I‒IV revealed that the 

aryl, ureido, and carboxyl substituents as well as the thiophene core of I and II are coincided 

(Figure 3A). Class III also matches except that the carboxyl group is located in the opposite 

position to that of I and II, whereas neither the ureido nor the carboxyl substituents of IV fit to 

the configuration of I and II (Figure 3A). Hence class I and II are similar with respect to their 

configuration in space. Consequently they can assume the same orientation and binding mode, 

which results in the same inhibitory activities. These results were confirmed by docking of 

compounds 11, 21, and 30 representing classes I‒III respectively, in the dMyx B binding site 

of T. Thermophilus RNA polymerase (PDB code 3EQL).
7
 Both 11 and 21 bind to the crescent 

shape pocket in the same manner (Figure 3B, C). The thiophene core is located at the top of 

the cavity opening, anchored by hydrogen bond or ion pair interaction of the carboxyl group 

with the βʹLys610 residue. The 3,4-dichlorophenyl moiety occupies the lower part of the 

enecarbamate binding pocket of dMyx B. The ureido group carrying the lipophilic benzyl and 

ethyl substituents is located deeply in the hydrophobic pocket occupied by the dMyx B 

dienone side chain, and stabilized by CH-π interaction with βLeu1088 as well as an 

intramolecular hydrogen bond with the carboxyl group. On the other hand compound 30 

(class III) binds mainly through CH-π interaction between the lipophilic substituted ureido 

moiety and βLeu1088, but lacks the interaction with βʹLys610, as the carboxyl group is 

oriented in the opposite direction (Figure 3D). Accordingly, a lower inhibitory activity of 30 

(IC50: 57 µM) in comparison with compounds 11 or 21 (IC50: 22 µM, 21 µM) was observed. 
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Table 1 In vitro inhibitory activity against E. coli RNA polymerase and antibacterial activities. 

 

 

Compd Ar R1 R2 
Inhibition of 

E. coli RNAPa 

6 

 

H, n-Hex 68 µM 

7 H, Bn 31% 

8b Et, Bn 75 µM 

9b 

 

H, n-Hex 18 µM 

10b H, Bn 46 µM 

11b Et, Bn 22 µM 

16 

 

H, n-Hex 14% 

17 H, Bn 84 µM 

18 Et, Bn 54 µM 

19 

 

H, n-Hex 18 µM 

20 H, Bn 43µM 

21 Et, Bn 21µM 

25 

 

H, n-Hex 11% 

26 H, Bn n.i. 

27 Et, Bn 14% 

28 

 

H, n-Hex 75 µM 

29 H, Bn 84 µM 

30 Et, Bn 57 µM 

37 

 

H, n-Hex n.i. 

38 H, Bn n.i. 

39 Et, Bn n.i. 

40 

 

H, n-Hex 74 µM 

41 H, Bn 8% 

42 Et, Bn 100 µM 

 

51 

 

H, Bn 116 µM 

52 Et, Bn 61 µM 

59 

 

H, Bn 26% 

60 Et, Bn 60 µM 

67 

 

H, Bn 48 µM 

68 Et, Bn 51 µM 

Myx B   0.35 µM 

Rif   0.03 µM 
 

a 
IC50 values (µM) or % inhibition at 100 µM of E. coli RNAP; 

n.i. =  inhibition ≤5% at 100 µM. 
b
 previously reported

17
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Figure 3. (A) Flexible alignment of compounds 10 (white), 20 (magenta), 29 (orange), and 41 

(turquoise). (B) Docking pose of compound 11 (violet) in the dMyx B (turquoise) binding site: 

hydrophobic surface (green), polar surface (pink), β chain (yellow), β′ chain (red). (C) Docking pose 

of 21 (violet). (D) Docking pose of 30 (violet). 

 

The effect of exchanging the heterocyclic core on the RNAP inhibitory activity was studied 

for compounds of classes V‒VII. The results revealed that both of the furan classes V and VI 

displayed about a threefold decrease in activity compared to the corresponding thiophene 

analogs (class I and II), whereas the thiazole class VII exhibited only a slightly lowered 

potency (Table 1). By replacement or introduction of hetero atoms the electronic properties as 

well as the size of the ring is influenced and both effects can have an impact on the affinity to 

target. The latter is more likely to be responsible for the observed differences in activity. The 

ring size influences interatomic distances, bond angles, and determines the overall shape of 

the ligand.
44

 According to the observed activities, thiophene is obviously most appropriate to 

keep the aryl, ureido, and carboxyl functionalities in the optimal geometry necessary for 

binding to the target enzyme. This is reflected by the relationship of the angle (α) between the 
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aryl and ureido substituents and RNAP activity (pIC50) for classes I‒VII (Figure 4). A 

parabolic curve was obtained, with the optimum range for α between 150 and 159° (classes I, 

II, and VII located at the maximum). The observed exception for class III (α = 156°) can be 

explained by the different localization of the carboxyl group leading to a reduced binding 

affinity as discussed above. 

 

 

Figure 4. Relationship between RNAP inhibitory activity (pIC50) and angle α. 
 

Antibacterial activity 

To explore the antibacterial spectrum of our RNAP inhibitors, eight compounds representing 

the most active classes were selected. Compounds with n-hexyl substituents were excluded 

due to solubility problems. The antibacterial activities were evaluated in the Gram positive 

B. subtilis and S. aureus, as well as in the Gram negative strains E. coli K12, P. aeruginosa, 

E. coli TolC, a mutant deficient in the AcrAB-TolC efflux system, and two Rif-resistant 

E. coli TolC mutants and are expressed as minimal inhibitory concentrations (MIC) values. 

As reference compounds Myx B and Rif were used (Table 2). It was found that the 

compounds possess antibacterial activities against the Gram positive strains. Regarding the 

Gram negative bacteria with the exception of E. coli TolC, compounds were not active 

similarly to Myx B. It is noteworthy that the antibacterial activity against S. aureus is well 

correlating with the RNAP inhibitory activity, whereas in case of B. subtilis and E. coli TolC 

the correlation was less pronounced. Similar discrepancies between RNAP inhibition and 

MIC values are also observed for Myx B and Rif (Table 2), and have been frequently 

 

Compd Class Core R1 R2 pIC50
 α [°] 

10 I 

 

H, Bn 4.34 155.5 

11 Et, Bn 4.66 155.0 

20 II 

 

H, Bn 4.37 158.6 

21 Et, Bn 4.68 158.7 

29 III 

 

H, Bn 4.08 155.9 

30 Et, Bn 4.24 156.0 

41 IV 

 

H, Bn 3.20 105.7 

42 Et, Bn 4.00 105.7 

51 V 

 

H, Bn 3.94 166.2 

52 Et, Bn 4.21 166.1 

59 VI 

 

H, Bn 3.72 143.7 

60 Et, Bn 4.22 144.4 

67 VII 

 

H, Bn 4.32 150.3 

68 Et, Bn 4.29 150.3 
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reported.
17,45,46

 In the experiments with the Rif-resistant strains all of the five tested 

compounds representing different classes showed no reduction of antibacterial activity 

compared to the normal E. coli TolC strain. This demonstrates that there is no cross resistance 

with Rif as it has been expected due to the different binding sites. 

 

Table 2. Antibacterial activities of selected aryl-ureido-heterocyclic-carboxylic acids. 

Compd 

IC50 

RNAP 

(µM) 

MIC95 (µg/mL)a 

S. aureus B. subtilis E. coli TolC 
E. coli TolC 

β Q513Lb 

E. coli TolC 

β H526Yb 
E. coli K12 P. aeruginosa 

11 22 8 11 14 14 16 ˃25 ˃25 

18 54 20 5 11 - - ˃25 ˃25 

21 21 10 2 10 7 9 ˃25 ˃25 

29 84 80 15 10 - - ˃100 ˃100 

30 57 23 6 7 7 7 ˃100 ˃100 

52 61 33 12 30 25 25 ˃50 ˃50 

60 60 28 14 ˃50 - - ˃50 ˃50 

68 51 36 45 47 50 50 ˃50 ˃50 

Myx B 0.35 0.5 1 1 1 1 ˃25 ˃25 

Rif 0.03 0.02 5 6 >100 >100 7 13 

a > MIC determination was limited due to insufficient solubility of the test compound. 
b Rif-resistant E. coli TolC strains with mutations in the rpoB gene encoding for the RNAP β subunit.

 

 

Role of cell wall penetration and drug efflux for antibacterial activity in E. coli strains 

Considering the facts that RNAP is highly conserved in bacteria,
3
 and our compounds were 

active against Gram positive strains as well as E. coli TolC, but not against Gram negative 

bacteria, the most likely conclusion to be drawn is that they are unable to accumulate in the 

cytoplasm to inhibit RNAP. This could be due to cell wall impermeability, i.e. slow diffusion 

through porins or the outer membrane (OM) lipid bilayer, efflux mechanisms or both. The 

observed activity in the TolC mutant lacking the OM part of the tripartite efflux machinery 

gives a strong hint that efflux plays a prominent role for our compounds. To verify this 

hypothesis and to get a better understanding of their uptake pathway, the antibacterial effect 

for selected compounds was determined in presence of the OM permeability enhancer 

polymyxin B nonapeptide (PMBN)
47

 or the efflux pumps inhibitor PAβN.
48,49

 MIC values 

were determined against E. coli TolC, E. coli D22 (LPS mutant with increased OM 

permeability) and E. coli K12 (intact cell wall system) and are shown in table 3. 
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Table 3. Effect of PMBN and PAβN on antibacterial activities of selected aryl-ureido-heterocyclic-

carboxylic acids. 

Compd 

E. coli TolC E. coli K12 E. coli D22 

MIC95
a  

MIC95  

+ PMBN 

(1 µg/mL)  

MIC95  

+ PAβN 

(10 µg/mL) 

MIC50  

MIC50 

+ PMBN 

(1 µg/mL) 

MIC50  

+ PAβN 

(20 µg/mL) 

MIC50 

MIC50 

+ PAβN 

(20 µg/mL) 

11 14 7 1 >25 >25 >25 >50 >25 

21 10 4 1 >25 >25 4 >25 12 

30 7 5 1 >100 >100 18 40 15 

52 30 11 6 >50 >50 >50 >100 49 

68 47 22 4 >50 >50 >50 >50 >50 
a MIC values in µg/mL. 

 

PMBN produced only a slight decrease in E. coli TolC MIC values (factors 1.4‒2.7) and no 

effect was observed in the K12 strain. Moreover, the compounds showed no enhanced activity 

against the E. coli D22 strain. It cannot be excluded that an increased membrane permeability 

may be counteracted by efflux.
50

 It is known that PMBN enhances penetration of antibiotics 

which diffuse across the OM (10‒300 fold decrease in MIC values against E. coli), but it has 

only a slight effect when antibiotics traverse through porins.
47

 Hence, the uptake pathway of 

our compounds into Gram negative bacteria appears to be mainly permeation through the 

porins. On the other hand, PAβN increased the susceptibility to the compounds in E. coli 

TolC by factors of 5‒14 and by factors ≥3 in the K12 and D22 strains. These results indicate 

that both the OM barrier and efflux pumps contribute to the inactivity of our compounds in 

Gram negative bacteria, however, efflux mechanisms play the major role. Obviously, beside 

AcrAB-TolC other efflux systems are involved in E. coli drug efflux. 

Spontaneous resistance rate 

Low propensity of resistance development is a criterion for an effective antibacterial agent. 

Spontaneous resistance rate towards Myx B in S. aureus was found to be 4 to 7 × 10
‒8

, similar 

to that of Rif.
12

 However, Myx B-resistant mutants possessed higher fitness costs compared to 

Rif-resistant mutants, giving an advantage to Myx B, and other RNAP “switch region” 

inhibitors, of having a lower clinical prevalence of resistance than Rif.
12

 Determination of in 

vitro resistance rate for 30 in E. coli TolC at 2 × MIC revealed a significant lower rate 

(<4.2 × 10
‒11

) compared to Rif (8.3 × 10
‒8

) and Myx B (7.1 × 10
‒8

) as previously observed for 

the class I derivatives.
17

 This observation indicates that the probability of resistance 

development is reduced with the ureido-thiophene-carboxylic acids compared to MyxB and 

Rif. An explanation for this finding could be that our compounds occupy only a part of the 

“switch region” whereas Myx B fills a larger space including the enecarbamate binding 
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pocket. Mutations in this part, responsible for Myx resistance,
6,12

 should not prevent our 

compounds from binding and inhibiting the enzyme.
17

 Another explanation for a reduced 

resistance rate could be an additional effect on another target. 

Cytotoxicity 

The in vitro toxicity of selected compounds was evaluated by monitoring the cytotoxicity in 

HEK 293 cells at different time points using doxorubicin (LD50: 0.3 µM) and Rif (LD50: 

80 µM) as positive and negative controls respectively. After 72 h, the compounds displayed 

LD50 values in the range of 25 to >100 µM comparable to Rif (Table 4). 

 

Table 4. Cytotoxicity of selected aryl-ureido-heterocyclic-carboxylic acids. 

 

 

 

 

 

 

 

 

 

 

 

 

         a at 100 µM 
 

 

CONCLUSION 

Following an analog design strategy novel chemical scaffolds as bacterial RNAP inhibitors 

were developed. Derived from the parent class I, a series of regioisomeric ureido-thiophene-

carboxylic acid derivatives and bioisosteric heterocyclic classes were designed and studied. 

The synthetic route via the “isatoic anhydrides” for the thiophene and thiazole derivatives was 

robust and feasible. For the synthesis of the furan derivatives the established strategy had to 

be modified due to the instability of the furan system. Thereby, class II possessing the same 

RNAP inhibitory activity as the parent class I, as well as classes III, and V‒VII with only 

slightly lowered potency were discovered. The detailed investigation of the SAR, including 

molecular alignment, docking studies and angle analysis contributed to a deeper 

understanding of the structural requirements for interaction with the protein target. The 

compounds were active against Gram positive bacteria including the pathogen S. aureus but 

Compd 
LD50 (µM) 

24 h 48 h 72 h 

8 95 78 91 

10 >100 >100 >100 

11 67 50 46 

18 84 82 75 

21 61 57 62 

30 40 17 25 

52 61 61 57 

Doxorubicin 5 0.7 0.3 

Rif 24%a  38%a 80 
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ineffective against Gram negative bacteria. The non-susceptibility can be attributed to drug 

efflux. Nevertheless, the observed low mammalian cytotoxicity, the reduced resistance 

frequency and the activity against Rif-resistant strains make these novel scaffolds promising 

for further optimization as antibacterial agents against Gram positive pathogens. 

 

EXPERIMENTAL 

Materials and methods  

Starting materials and solvents were purchased from commercial suppliers, and used without 

further purification. All chemical yields refer to purified compounds, and were not optimized. 

Reaction progress was monitored using TLC Silica gel 60 F254 aluminium sheets, and 

visualization was accomplished by UV at 254 nm. Flash chromatography was performed 

using silica gel 60 Å (40−63 μm). Preparative RP-HPLC was carried out on a Waters 

Corporation setup contains a 2767 sample manager, a 2545 binary gradient module, a 

2998 PDA detector and a 3100 electron spray mass spectrometer. Purification was performed 

using a Waters XBridge column (C18, 150 × 19 mm, 5 µm), a binary solvent system A and B 

(A = water with 0.1% formic acid; B = MeCN with 0.1% formic acid) as eluent, a flow rate of 

20 mL/min and a gradient of 60% to 95% B in 8 min were applied. Melting points were 

determined on a Stuart Scientific melting point apparatus SMP3 (Bibby Sterilin, UK), and are 

uncorrected. NMR spectra were recorded either on Bruker DRX-500 (
1
H, 500 MHz; 

13
C, 

126 MHz), or Bruker Fourier 300 (
1
H, 300 MHz; 

13
C, 75 MHz) spectrometer at 300 K. 

Chemical shifts are recorded as δ values in ppm units by reference to the hydrogenated 

residues of deuterated solvent as internal standard (CDCl3: δ = 7.26, 77.02; DMSO-d6: 

δ = 2.50, 39.99). Splitting patterns describe apparent multiplicities and are designated as s 

(singlet), br s (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m 

(multiplet). Coupling constants (J) are given in Hertz (Hz). Purity of all compounds used in 

biological assays was ≥95% as measured by LC/MS Finnigan Surveyor MSQ Plus (Thermo 

Fisher Scientific, Dreieich, Germany). The system consists of LC pump, autosampler, PDA 

detector, and single-quadrupole MS detector, as well as the standard software Xcalibur for 

operation. RP C18 Nucleodur 100-5 (125 × 3 mm) column (Macherey-Nagel GmbH, Dühren, 

Germany) was used as stationary phase, and a binary solvent system A and B (A = water with 

0.1% TFA; B = MeCN with 0.1% TFA) was used as mobile phase. In a gradient run the 

percentage of B was increased from an initial concentration of 0% at 0 min to 100% at 15 min 

and kept at 100% for 5 min. The injection volume was 10 µL and flow rate was set to 

800 µL/min. MS (ESI) analysis was carried out at a spray voltage of 3800 V, a capillary 
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temperature of 350 °C and a source CID of 10 V. Spectra were acquired in positive mode 

from 100 to 1000 m/z and at 254 nm for UV tracing. 

 

Chemistry 

Synthesis of 5-(aryl)-3-[3-(substituted)ureido]thiophene-2-carboxylic acids 6‒11 was 

previously described,
17

 as well as the experimental data of compounds 8‒11.
17

 

5-(4′-Chlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 6.
21

 Beige crystals; mp 

198–199 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 4.8 Hz, Me), 1.19‒1.49 (8 H, m, 

Me(CH2)4CH2NH), 3.08 (2 H, m, CH2CH2NH), 7.50 (2 H, d, J = 7.8 Hz, 3′,5′Ar-H), 7.63 (1 

H, t, J = 4.8 Hz, NHCH2), 7.68 (2 H, d, J = 7.8 Hz, 2′,6′Ar-H), 8.28 (1 H, s, C4-H), 9.33 (1 H, 

br s, NHCO), 13.13 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 (C6″), 22.54 (C5″), 

26.56 (C3″), 29.85 (C2″), 31.47 (C4″), 39.78 (C1″), 107.40 (C2), 118.89 (C4), 127.81 (C2′, 

C6′), 129.77 (C3′, C5′), 132.23 (C1′), 134.07 (C4′), 145.64 (C5), 146.74 (C3), 154.25 

(NHCO), 165.23 (COOH); m/z (ESI+) 381 (17%, (M + H)
+
), 761 (33, 2M + H), 295 (40, M ‒ 

C6H13), 236 (100, M ‒ C6H13, NH, CO2); tR = 14.86 min. 

3-(3-Benzylureido)-5-(4′-chlorophenyl)thiophene-2-carboxylic acid 7.
21

 White crystals; 

mp 216–217 °C; δH (300 MHz, DMSO-d6) 4.31 (2 H, d, J = 5.7 Hz, CH2), 7.21‒7.38 (5 H, m, 

Ph), 7.51 (2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.70 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 8.22 (1 H, t, J = 

5.7 Hz, NHCH2), 8.30 (1 H, s, C4-H), 9.43 (1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC 

(75 MHz, DMSO-d6) 43.46 (CH2), 107.42 (C2), 118.91 (C4), 127.30 (C4″), 127.76 (C2″, 

C6″), 127.87 (C2′, C6′), 128.79 (C3″, C5″), 129.79 (C3′, C5′), 132.15 (C1′), 134.15 (C4′), 

140.26 (C1″), 145.90 (C5), 146.65 (C3), 154.36 (NHCO), 165.16 (COOH); m/z (ESI+) 387 

(19%, (M + H)
+
), 772 (10, 2M), 295 (10, M ‒ C7H7), 236 (100, M ‒ C7H7, NH, CO2); 

tR = 13.38 min. 

General procedures for synthesis of 2-(aryl)acetaldehydes 12a and 12b 

To a stirred ice-cooled suspension of pyridinium chlorochromate (12.9 g, 60.0 mmol) in 

anhydrous DCM (80 mL), the appropriate 2-(aryl)ethanol.
51,52

 (40.0 mmol) in DCM (10 mL) 

was added in one portion. The reaction mixture was allowed to warm to rt, and stirred for 2 h, 

then anhydrous Et2O (100 mL) was added, and the supernatant was decanted from the black 

gum. The insoluble residue was washed thoroughly with anhydrous Et2O (2 × 50 mL), the 

combined organic solution was passed through a short pad of silica, and the solvent was 

removed by vacuum distillation. The crude product was used directly in the next step without 

further purification. Purity was determined to be 70‒80% as indicated from 
1
H-NMR spectra.  
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2-(4′-Chlorophenyl)acetaldehyde 12a.
53

 Yellow oil; δH (300 MHz, CDCl3) 3.67 (2 H, d, 

J = 1.0 Hz, CH2), 7.15 (2 H, d, J = 8.1 Hz, 3′,5′Ar-H), 7.33 (2 H, d, J = 8.1 Hz, 2′,6′Ar-H), 

9.74 (1 H, t, J = 1.0 Hz, CHO). 

2-(3′,4′-Dichlorophenyl)acetaldehyde 12b.
54

 Yellow oil; δH (300 MHz, CDCl3) 3.68 (2 H, d, 

J = 1.9 Hz, CH2), 7.05 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.32 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

7.37 (1 H, d, J = 8.0 Hz, 5′Ar-H), 9.75 (1 H, t, J = 1.9 Hz, CHO). 

General procedures for synthesis of ethyl 2-amino-5-(aryl)thiophene-3-carboxylates 13a 

and 13b 

To a stirred suspension of the appropriate aldehyde 12a or 12b (30.0 mmol), ethyl 

cyanoacetate (3.39 g, 30.0 mmol), and sulfur (0.96 g, 30.0 mmol) in EtOH (30 mL), a solution 

of NEt3 (4.04 g, 30.0 mmol) in EtOH (5 mL) was added slowly. The reaction mixture was 

stirred at 70 °C for 12 h, then solvent was removed by vacuum distillation. The obtained 

residue was dissolved in DCM (50 mL) and washed with water (2 × 50 mL). The organic 

layer was dried (MgSO4) and concentrated. The crude material was purified by flash 

chromatography (SiO2, n-hexane/EtOAc = 6:1). 

Ethyl 2-amino-5-(4′-chlorophenyl)thiophene-3-carboxylate 13a (5.49 g, 65%). Pale 

yellow solid; mp 100–101 °C; δH (300 MHz, CDCl3) 1.36 (3 H, t, J = 7.1 Hz, Me), 4.30 (2 H, 

q, J = 7.1 Hz, CH2O), 6.03 (2 H, br s, NH2), 7.21 (1 H, s, C4-H), 7.27 (2 H, d, J = 8.9 Hz, 

3′,5′Ar-H), 7.35 (2 H, d, J = 8.9 Hz, 2′,6′Ar-H); δC (75 MHz, CDCl3) 14.54 (Me), 59.94 

(CH2), 108.04 (C3), 121.79 (C4), 123.48 (C5), 125.81 (C2′, C6′), 128.91 (C3′, C5′), 132.16 

(C4′), 132.56 (C1′), 162.17 (C2), 165.29 (C=O); m/z (ESI+) 281 (8%, M
+
), 236 (100, 

M ‒ EtO); tR = 14.05 min. 

Ethyl 2-amino-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylate 13b (6.05 g, 64%). Pale 

yellow solid; mp 130–131 °C; δH (300 MHz, CDCl3) 1.37 (3 H, t, J = 7 Hz, Me), 4.30 (2 H, q, 

J = 7.0 Hz, CH2O), 6.08 (2 H, br s, NH2), 7.22 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.23 (1 H, s, 

C4-H), 7.36 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.48 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, 

CDCl3) 14.53 (Me), 60.03 (CH2), 108.11 (C3), 121.90 (C4), 122.78 (C6′), 123.74 (C5), 

126.11 (C2′), 130.04 (C4′), 130.62 (C5′), 132.91 (C3′), 134.12 (C1′), 162.48 (C2), 165.20 

(C=O); m/z (ESI+) 315 (18%, M
+
), 270 (100, M ‒ EtO); tR = 15.14 min. 

General procedures for synthesis of 2-amino-5-(aryl)thiophene-3-carboxylic acids 14a 

and 14b 

To a stirred solution of the appropriate ester 13a or 13b (25.0 mmol) in MeOH (100 mL), 

KOH (6.17 g, 110 mmol) in water (100 mL) was added. The reaction mixture was stirred at 
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reflux for 3‒5 h (TLC monitoring), then MeOH was evaporated by vacuum distillation. The 

residue was diluted with water (50 mL) and washed with EtOAc (2 × 50 mL). The aqueous 

layer was cooled in an ice bath and acidified by KHSO4 (saturated aqueous solution) to 

pH 3-4. The precipitated solid was collected by filtration, washed with cold water 

(2 × 30 mL), n-hexane (2 × 30 mL), and dried over CaCl2 in amber glass vacuum desiccator. 

2-Amino-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 14a (4.11 g, 65%). Beige solid; 

mp 195–197 °C; δH (300 MHz, DMSO-d6) 7.26 (1 H, s, C4-H), 7.36 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.45 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.47 (2 H, br s, NH2), 12.10 (1 H, br s, 

COOH); δC (75 MHz, DMSO-d6) 106.36 (C3), 120.76 (C4), 123.19 (C5), 125.94 (C2′, C6′), 

129.30 (C3′, C5′), 130.69 (C4′), 133.31 (C1′), 163.93 (C2), 166.48 (C=O); m/z (ESI+) 253 

(72%, M
+
), 255 (28, [M+2]

+
), 236 (100, M ‒ OH), 209 (14, M ‒ CO2); tR = 10.83 min. 

2-Amino-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 14b (5.88 g, 82%). Beige 

solid; mp 229–231 °C; δH (300 MHz, DMSO-d6) 7.38 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.39 

(1 H, s, C4-H), 7.52 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.55 (2 H, br s, NH2), 7.69 (1 H, d, J = 2.0 

Hz, 2′Ar-H), 12.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 106.57 (C3), 119.11 (C4), 

124.37 (C6′), 124.77 (C5), 125.60 (C2′), 128.26 (C4′), 131.33 (C5′), 132.16 (C3′), 135.18 

(C1′), 164.37 (C2), 166.43 (C=O); m/z (ESI+) 287 (88%, M
+
), 289 (56, [M+2]

+
), 270 (100, 

M ‒ OH), 243 (8, M ‒ CO2), 227 (25, M – CO2, NH2); tR = 11.87 min. 

General procedures for synthesis of 6-(aryl)-1H-thieno[2,3-d][1,3]oxazine-2,4-diones 15a 

and 15b 

To a stirred solution of the appropriate acid 14a or 14b (6.00 mmol) in THF (60 mL), 

triphosgene (1.29 g, 4.36 mmol) was added portionwise over 30 min. The reaction mixture 

was stirred at rt for 2 h, then NaHCO3 (saturated aqueous solution, 30 mL) was added 

cautiously, and the resulting mixture was extracted with EtOAc/THF (1:1, 2 × 50 mL). The 

combined organic layer was washed with brine (50 mL), dried (MgSO4), and the solvent was 

removed by vacuum distillation. The obtained crude material was suspended in 

n-hexane/EtOAc (4:1, 50 mL), stirred in a water bath at 40 °C for 10 min, cooled, and 

collected by filtration. 

6-(4′-Chlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 15a (1.2 g, 74%). Beige solid; 

mp 254–256 °C; δH (300 MHz, DMSO-d6) 7.40 (2 H, d, J = 8.7 Hz, 3′,5′Ar-H), 7.48 (1 H, s, 

C5-H), 7.60 (2 H, d, J = 8.7 Hz, 2′,6′Ar-H), 11.73 (1 H, br s, NH); δC (75 MHz, DMSO-d6) 

109.70 (C4a), 119.10 (C5), 126.74 (C2′, C6′), 128.28 (C6), 129.39 (C3′, C5′), 131.75 (C4′), 

133.00 (C1′), 150.22 (C7a), 152.83 (C2), 159.67 (C4); m/z (ESI+) 279 (20%, M
+
), 235 (100, 

M – CO2); tR = 10.40 min. 
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6-(3′,4′-Dichlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 15b (1.5 g, 81%). Beige 

solid; mp >300 °C; δH (300 MHz, DMSO-d6) 7.61 (2 H, m, 5′,6′Ar-H), 7.79 (1 H, s, C5-H), 

7.96 (1 H, s, 2′Ar-H), 12.76 (1 H, br s, NH); δC (75 MHz, DMSO-d6) 111.46 (C4a), 120.60 

(C5), 125.72 (C6′), 127.17 (C2′), 130.87 (C4′), 131.57 (C5′), 131.83 (C6), 132.50 (C3′), 

133.21 (C1′), 147.81 (C7a), 155.32 (C2), 155.82 (C4); m/z (ESI+) 313 (14%, M
+
), 355 (100, 

M + H, MeCN), 627 (28, 2M + H), 296 (35, M ‒ OH); tR = 11.44 min. 

General procedures for synthesis of 5-(aryl)-2-[3-(substituted)ureido]thiophene-3-

carboxylic acids 16‒21 

To a stirred suspension of thiaisatoic anhydride 15a or 15b (0.64 mmol) in water (8 mL), the 

appropriate amine (1.40 mmol) was added. The reaction mixture was stirred at rt for 2 h, then 

poured on ice-cooled 2M HCl (40 mL), and extracted with EtOAc/THF (1:1, 40 mL). The 

organic layer was washed with 2M HCl (40 mL), brine (40 mL), dried (MgSO4), and 

concentrated in vacuo. The obtained crude material was suspended in n-hexane/EtOAc (4:1, 

50 mL), stirred in a water bath at 40 °C for 10 min, cooled, and collected by filtration. 

5-(4′-Chlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 16 (132 mg, 54%). 

Pale brown crystals; mp 230–232 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, J = 6.8 Hz, Me), 

1.03‒1.57 (8 H, m, Me(CH2)4CH2NH), 3.11 (2 H, m, CH2CH2NH), 7.40 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.43 (1 H, s, C4-H), 7.59 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.94 (1 H, t, J = 4.2 Hz, 

NHCH2), 10.24 (1 H, br s, NHCO), 12.82 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 

(C6″), 22.54 (C5″), 26.50 (C3″), 29.71 (C2″), 31.43 (C4″), 39.86 (C1″), 111.55 (C3), 121.27 

(C4), 126.63 (C2′, C6′), 128.77 (C5), 129.45 (C3′, C5′), 131.62 (C4′), 133.17 (C1′), 151.41 

(C2), 153.88 (NHCO), 166.35 (COOH); m/z (ESI+) 380 (33%, M
+
), 761 (100, 2M + H), 295 

(18, M – C6H13); tR = 14.38 min. 

2-(3-Benzylureido)-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 17 (136 mg, 55%). 

Pale brown crystals; mp 250–252 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, 

CH2), 7.15‒7.39 (5 H, m, Ph), 7.41 (2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.45 (1 H, s, C4-H), 7.59 

(2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 8.49 (1 H, t, J = 5.3 Hz, NHCH2), 10.35 (1 H, br s, NHCO), 

12.87 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.67 (CH2), 111.79 (C3), 121.29 (C4), 

126.68 (C2′, C6′), 127.45 (C4″), 127.81 (C2″, C6″), 128.86 (C3″, C5″), 129.02 (C5), 129.46 

(C3′, C5′), 131.70 (C4′), 133.09 (C1′), 139.75 (C1″), 151.20 (C2), 154.01 (NHCO), 166.29 

(COOH); m/z (ESI+) 387 (30%, (M + H)
+
), 773 (22, 2M + H), 295 (26, M – C7H7), 170 

(100); tR = 13.18 min. 

2-(3-Benzyl-3-ethylureido)-5-(4′-chlorophenyl)thiophene-3-carboxylic acid 18 (136 mg, 

51%). Pale brown crystals; mp 215–216 °C; δH (300 MHz, DMSO-d6) 1.16 (3 H, t, 
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J = 7.1 Hz, Me), 3.42 (2 H, q, J = 7.1 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 7.24‒7.39 (5 H, 

m, Ph), 7.41 (2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.48 (1 H, s, C4-H), 7.62 (2 H, d, J = 8.6 Hz, 

2′,6′Ar-H), 10.96 (1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 13.52 

(Me), 42.42 (MeCH2N), 49.96 (PhCH2N), 112.30 (C3), 120.98 (C4), 126.79 (C2′, C6′), 

127.64 (C4″), 127.75 (C2″, C6″), 129.04 (C3″, C5″), 129.48 (C3′, C5′), 129.68 (C5), 131.87 

(C4′), 132.97 (C1′), 138.06 (C1″), 151.67 (C2), 153.10 (NHCO), 167.43 (COOH); m/z (ESI+) 

415 (100%, (M + H)
+
), 829 (90, 2M + H); tR = 14.08 min. 

5-(3′,4′-Dichlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 19 (165 mg, 

62%). Beige crystals; mp 245–247 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 6.8 Hz, 

Me), 1.16‒1.56 (8 H, m, Me(CH2)4CH2NH), 3.11 (2 H, m, CH2CH2NH), 7.53 (1 H, dd, 

J = 8.0, 2.0 Hz, 6′Ar-H), 7.56 (1 H, s, C4-H), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.83 (1 H, d, 

J = 2.0 Hz, 2′Ar-H), 7.97 (1 H, t, J = 4.7 Hz, NHCH2), 10.26 (1 H, br s, NHCO), 12.89 (1 H, 

br s, COOH); δC (75 MHz, DMSO-d6) 14.39 (C6″), 22.53 (C5″), 26.49 (C3″), 29.69 (C2″), 

31.43 (C4″), 39.85 (C1″), 111.65 (C3), 122.63 (C4), 125.03 (C6′), 126.41 (C2′), 127.27 (C5), 

129.29 (C4′), 131.51 (C5′), 132.28 (C3′), 135.00 (C1′), 151.88 (C2), 153.85 (NHCO), 166.27 

(COOH); m/z (ESI+) 414 (100%, M
+
), 416 (69, [M+2]

+
), 829 (67, 2M + H), 329 (42, M–

C6H13); tR = 15.40 min. 

2-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 20 (194 mg, 

72%). White crystals; mp 256–258 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, 

CH2), 7.22‒7.39 (5 H, m, Ph), 7.53 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.58 (1 H, s, C4-H), 

7.60 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.84 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.51 (1 H, t, J = 5.6 Hz, 

NHCH2), 10.38 (1 H, br s, NHCO), 12.93 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.68 

(CH2), 111.97 (C3), 122.68 (C4), 125.08 (C6′), 126.47 (C2′), 127.46 (C4″), 127.49 (C5), 

127.82 (C2″, C6″), 128.86 (C3″, C5″), 129.37 (C4′), 131.52 (C5′), 132.30 (C3′), 134.94 (C1′), 

139.71 (C1″), 151.63 (C2), 153.99 (NHCO), 166.24 (COOH); m/z (ESI+) 421 (47%, (M + 

H)
+
), 843 (100, 2M + 3H), 329 (11, M – C7H7); tR = 13.94 min. 

2-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 21 (210 

mg, 73%). Beige crystals; mp 228–230 °C; δH (300 MHz, DMSO-d6) 1.16 (3 H, t, J = 7.1 Hz, 

Me), 3.42 (2 H, q, J = 7.1 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 7.24‒7.40 (5 H, m, Ph), 7.55 

(1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.60 (1 H, s, C4-H), 7.86 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 10.98 (1 H, br s, NHCO), 13.22 (1 H, br s, COOH); δC (75 MHz, 

DMSO-d6) 13.52 (Me), 42.47 (MeCH2N), 49.99 (PhCH2N), 112.45 (C3), 122.35 (C4), 125.17 

(C6′), 126.58 (C2′), 127.66 (C4″), 127.76 (C5), 128.15 (C2″, C6″), 129.04 (C3″, C5″), 
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129.54 (C4′), 131.53 (C5′), 132.33 (C3′), 134.80 (C1′), 138.03 (C1″), 152.11 (C2), 153.07 

(NHCO), 167.38 (COOH); m/z (ESI+) 448 (100%, M
+
); tR = 14.99 min. 

Synthesis and characterization of ethyl 2-amino-4-(aryl)thiophene-3-carboxylates 22a
22

 and 

22b
23

 were previously described. 

Synthesis of 2-amino-4-(aryl)thiophene-3-carboxylic acids 23a and 23b were performed as 

described for 14a and 14b.   

2-Amino-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 23a (3.48 g, 55%). Pale brown 

solid; mp 137–139 °C; δH (300 MHz, DMSO-d6) 6.17 (1 H, s, C5-H), 7.26 (2 H, d, J = 8.6 Hz, 

3′,5′Ar-H), 7.34 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.40 (2 H, br s, NH2), 11.76 (1 H, br s, 

COOH); δC (75 MHz, DMSO-d6) 103.60 (C3), 105.90 (C5), 127.63 (C2′, C6′), 130.87 (C3′, 

C5′), 131.61 (C4′), 137.69 (C4), 139.95 (C1′), 165.71 (C2), 166.66 (C=O); m/z (ESI+) 254 

(48%, (M + H)
+
), 507 (4, 2M + H), 236 (100, M ‒ OH); tR = 10.16 min. 

2-Amino-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 23b (3.59 g, 50%). Pale 

brown solid; mp 142–144 °C; δH (300 MHz, DMSO-d6) 6.27 (1 H, s, C5-H), 7.24 (1 H, dd, 

J = 8.0, 2.0 Hz, 6′Ar-H), 7.41 (2 H, br s, NH2), 7.47 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.53 (1 H, d, 

J = 8.0 Hz, 5′Ar-H), 11.96 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 103.37 (C3), 106.79 

(C5), 129.53 (C6′), 129.75 (C5′), 130.25 (C4′), 130.32 (C2′), 130.86 (C3′), 138.52 (C4), 

139.41 (C1′), 165.78 (C2), 166.44 (C=O); m/z (ESI+) 288 (100%, (M + H)
+
), 575 (19, 2M + 

H), 270 (77, M ‒ OH); tR = 11.04 min. 

Synthesis of 5-(aryl)-1H-thieno[2,3-d][1,3]oxazine-2,4-diones 24a and 24b were performed 

as described for preparation of 15a and 15b.   

5-(4′-Chlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 24a (1.2 g, 71%). Pale grey 

solid; mp 235–237 °C; δH (300 MHz, DMSO-d6) 7.16 (1 H, s, C6-H), 7.46 (2 H, d, J = 8.9 Hz, 

3′,5′Ar-H), 7.51 (2 H, d, J = 8.9 Hz, 2′,6′Ar-H), 12.68 (1 H, br s, NH); δC (75 MHz, DMSO-

d6) 107.59 (C4a), 116.09 (C6), 128.36 (C2′, C6′), 131.12 (C3′, C5′), 131.35 (C4′), 133.21 

(C5), 137.56 (C1′), 147.93 (C7a), 154.98 (C2), 157.82 (C4); m/z (ESI+) 279 (100%, M
+
), 559 

(6, 2M + H); tR = 10.23 min. 

5-(3′,4′-Dichlorophenyl)-1H-thieno[2,3-d][1,3]oxazine-2,4-dione 24b (1.5 g, 80%). Beige 

solid; mp 236–238 °C; δH (300 MHz, DMSO-d6) 7.27 (1 H, s, C6-H), 7.48 (1 H, dd, J = 8.0, 

2.0 Hz, 6′Ar-H), 7.68 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.75 (1 H, d, J = 2.0 Hz, 2′Ar-H), 12.70 (1 

H, br s, NH); δC (75 MHz, DMSO-d6) 107.58 (C4a), 117.07 (C6), 129.59 (C6′), 130.51 (C5′), 

131.01 (C4′), 131.13 (C2′), 131.15 (C3′), 134.83 (C5), 136.08 (C1′), 147.87 (C7a), 155.07 

(C2), 157.85 (C4); m/z (ESI+) 313 (8%, M
+
), 355 (100, M + H, MeCN), 626 (12, 2M), 296 

(20, M ‒ OH); tR = 10.77 min. 
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Synthesis of 4-(aryl)-2-[3-(substituted)ureido]thiophene-3-carboxylic acids 25‒30 were 

performed as described for preparation of 16‒21. 

4-(4′-Chlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 25 (180 mg, 74%). 

Pale grey crystals; mp 191–193 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, J = 6.7 Hz, Me), 

1.21‒1.51 (8 H, m, Me(CH2)4CH2NH), 3.10 (2 H, m, CH2CH2NH), 6.63 (1 H, s, C5-H), 7.29 

(2 H, d, J = 8.6 Hz, 3′,5′Ar-H), 7.36 (2 H, d, J = 8.6 Hz, 2′,6′Ar-H), 7.87 (1 H, t, J = 5.1 Hz, 

NHCH2), 10.39 (1 H, br s, NHCO), 12.50 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.39 

(C6″), 22.55 (C5″), 26.52 (C3″), 29.78 (C2″), 31.45 (C4″), 39.84 (C1″), 108.92 (C3), 114.32 

(C5), 127.73 (C2′, C6′), 131.06 (C3′, C5′), 131.79 (C4′), 137.31 (C4), 138.31 (C1′), 153.29 

(C2), 154.16 (NHCO), 166.76 (COOH); m/z (ESI+) 381 (100%, (M + H)
+
), 761 (51, 2M + 

H), 295 (77, M – C6H13), 236 (58, M – C6H13, NH, CO2); tR = 13.37 min. 

2-(3-Benzylureido)-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 26 (200 mg, 81%). 

Pale brown crystals; mp 197–199 °C; δH (300 MHz, DMSO-d6) 4.33 (2 H, d, J = 5.7 Hz, 

CH2), 6.66 (1 H, s, C5-H), 7.24‒7.37 (9 H, m, 4′-ClC6H4, Ph), 8.40 (1 H, t, J = 4.8 Hz, 

NHCH2), 10.60 (1 H, br s, NHCO), 12.56 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.57 

(CH2), 109.64 (C3), 114.39 (C5), 127.39 (C4″), 127.74 (C2″, C6″), 127.75 (C2′, C6′), 128.84 

(C3″, C5″), 131.08 (C3′, C5′), 131.78 (C4′), 137.30 (C4), 138.44 (C1′), 139.96 (C1″), 152.79 

(C2), 154.30 (NHCO), 166.85 (COOH); m/z (ESI+) 387 (100%, (M + H)
+
), 773 (37, 2M + 

H), 295 (44, M – C7H7), 236 (50, M – C7H7, NH, CO2); tR = 12.21 min. 

2-(3-Benzyl-3-ethylureido)-4-(4′-chlorophenyl)thiophene-3-carboxylic acid 27 (240 mg, 

90%). Pale grey crystals; mp 175–177 °C; δH (300 MHz, DMSO-d6) 1.15 (3 H, t, J = 6.2 Hz, 

Me), 3.41 (2 H, q, J = 6.2 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 6.71 (1 H, s, C5-H), 7.22‒

7.50 (9 H, m, 4′-ClC6H4, Ph), 11.38 (1 H, br s, NHCO), 12.84 (1 H, br s, COOH); δC 

(75 MHz, DMSO-d6) 13.54 (Me), 42.28 (MeCH2N), 49.84 (PhCH2N), 109.67 (C3), 114.80 

(C5), 127.58 (C4″), 127.69 (C2″, C6″), 127.74 (C2′, C6′), 129.03 (C3″, C5″), 131.22 (C3′, 

C5′), 131.97 (C4′), 137.03 (C4), 138.22 (C1′), 138.46 (C1″), 153.45 (C2), 153.80 (NHCO), 

167.93 (COOH); m/z (ESI+) 415 (100%, (M + H)
+
), 829 (6, 2M + H), 236 (12, M – C7H7, 

EtN, CO2); tR = 13.18 min. 

4-(3′,4′-Dichlorophenyl)-2-(3-hexylureido)thiophene-3-carboxylic acid 28 (172 mg, 

65%). Pale brown crystals; mp 178–180 °C; δH (300 MHz, DMSO-d6) 0.87 (3 H, t, 

J = 6.8 Hz, Me), 1.21‒1.50 (8 H, m, Me(CH2)4CH2NH), 3.10 (2 H, m, CH2CH2NH), 6.72 

(1 H, s, C5-H), 7.27 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.53 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.56 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.86 (1 H, t, J = 5.0 Hz, NHCH2), 10.49 (1 H, br s, NHCO), 

12.62 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.40 (C6″), 22.54 (C5″), 26.51 (C3″), 
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29.77 (C2″), 31.44 (C4″), 39.82 (C1″), 109.21 (C3), 115.00 (C5), 129.67 (C6′), 129.74 (C5′), 

129.82 (C4′), 130.33 (C2′), 131.10 (C3′), 136.99 (C4), 139.16 (C1′), 153.12 (C2), 154.16 

(NHCO), 166.70 (COOH); m/z (ESI+) 415 (100%, (M + H)
+
), 829 (30, 2M + H), 329 (92, M 

– C6H13); tR = 14.26 min. 

2-(3-Benzylureido)-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 29 (210 mg, 

78%). Beige crystals; mp 188–190 °C; δH (300 MHz, DMSO-d6) 4.34 (2 H, d, J = 5.6 Hz, 

CH2), 6.77 (1 H, s, C5-H), 7.24‒7.39 (6 H, m, 6′Ar-H, Ph), 7.53 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

7.56 (1 H, d, J = 8.0 Hz, 5′Ar-H), 8.45 (1 H, t, J = 5.0 Hz, NHCH2), 10.51 (1 H, br s, NHCO), 

12.69 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.59 (CH2), 109.06 (C3), 115.30 (C5), 

127.42 (C4″), 127.76 (C2″, C6″), 128.85 (C3″, C5″), 129.75 (C6′), 129.78 (C5′), 129.86 

(C4′), 130.38 (C2′), 131.11 (C3′), 136.97 (C4), 139.01 (C1′), 139.88 (C1″), 153.19 (C2), 

154.28 (NHCO), 166.48 (COOH); m/z (ESI+) 421 (100%, (M + H)
+
), 841 (23, 2M + H), 329 

(25, M – C7H7); tR = 12.98 min. 

2-(3-Benzyl-3-ethylureido)-4-(3′,4′-dichlorophenyl)thiophene-3-carboxylic acid 30 (172 

mg, 60%). Beige crystals; mp 193–195 °C; δH (300 MHz, DMSO-d6) 1.15 (3 H, t, J = 7.0 Hz, 

Me), 3.41 (2 H, q, J = 7.0 Hz, MeCH2N), 4.60 (2 H, s, PhCH2N), 6.80 (1 H, s, C5-H), 

7.24-7.39 (6 H, m, 6′Ar-H, Ph), 7.55 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.56 (1 H, d, J = 8.0 Hz, 

5′Ar-H), 11.43 (1 H, br s, NHCO), 12.92 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 13.54 

(Me), 42.27 (MeCH2N), 49.82 (PhCH2N), 109.72 (C3), 115.50 (C5), 127.59 (C4″), 127.70 

(C2″, C6″), 129.03 (C3″, C5″), 129.84 (C6′), 129.88 (C4′, C5′), 130.35 (C2′), 131.26 (C3′), 

137.08 (C4), 138.23 (C1′), 138.83 (C1″), 153.46 (C2), 153.78 (NHCO), 167.77 (COOH); m/z 

(ESI+) 449 (100%, (M + H)
+
), 897 (7, 2M + H), 270 (13, M – C7H7, EtN, CO2); tR = 14.00 

min. 

Synthesis of methyl 3-amino-4-(aryl)thiophene-2-carboxylates 34a
26

 and 34b were performed 

according to reported procedures.
26

 

Methyl 3-amino-4-(4′-chlorophenyl)thiophene-2-carboxylate 34a.
26

 Beige solid; mp 

104 105 °C (lit.,
26

 106 °C); δH (300 MHz, CDCl3) 3.86 (3 H, s, OMe), 5.57 (2 H, br s, NH2), 

7.23 (1 H, s, C5-H), 7.37 (2 H, d, J = 8.7 Hz, 3′,5′Ar-H), 7.43 (2 H, d, J = 8.7 Hz, 2′,6′Ar-H); 

δC (75 MHz, CDCl3) 51.39 (Me), 101.69 (C2), 128.88 (C5), 129.39 (C2′, C6′), 129.44 (C3′, 

C5′), 132.08 (C4), 132.82 (C1′), 134.00 (C4′), 151.27 (C3), 165.03 (C=O); m/z (ESI+) 268 

(16%, (M + H)
+
), 236 (100, M ‒ MeO); tR = 13.20 min. 

Methyl 3-amino-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylate 34b. White solid; mp 

135–137 °C; δH (300 MHz, DMSO-d6) 3.76 (3 H, s, OMe), 6.38 (2 H, br s, NH2), 7.45 (1 H, 

dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.69 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.71 (1 H, d, J = 8.0 Hz, 



66 Results 

 

 

5′Ar-H), 7.78 (1 H, s, C5-H); δC (75 MHz, DMSO-d6) 51.65 (Me), 99.91 (C2), 128.75 (C6′), 

130.31 (C2′), 130.73 (C4′), 130.77 (C5), 131.39 (C4), 131.60 (C5′), 131.99 (C3′), 135.08 

(C1′), 152.58 (C3), 164.64 (C=O); m/z (ESI+) 302 (12%, (M + H)
+
), 270 (100, M ‒ MeO); 

tR = 12.79 min. 

Synthesis of 3-amino-4-(aryl)thiophene-2-carboxylic acids 35a and 35b were performed as 

described for preparation of 14a and 14b.   

3-Amino-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 35a (reported as reaction 

intermediate and not isolated)
 20,55

 (5.38 g, 85%). White solid; mp 160–162 °C; δH 

(300 MHz, DMSO-d6) 6.45 (2 H, br s, NH2), 7.49‒7.56 (4 H, m, 4′-ClC6H4), 7.64 (1 H, s, 

C5-H), 11. 86 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 101.28 (C2), 129.32 (C2′, C6′), 

130.00 (C5), 130.15 (C3′, C5′), 132.08 (C4), 132.68 (C1′), 133.62 (C4′), 152.19 (C3), 166.00 

(C=O); m/z (ESI+) 254 (18%, (M + H)
+
), 236 (100, M ‒ OH); tR = 10.69 min. 

3-Amino-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 35b (5.52 g, 77%). Beige 

solid; mp 127–129 °C; δH (300 MHz, DMSO-d6) 7.46 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.70 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.70 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.73 (1 H, s, C5-H), 7.74 (2 H, 

br s, NH2), 12.49 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 101.46 (C2), 128.67 (C6′), 

130.21 (C2′), 130.59 (C4′), 130.79 (C5), 130.81 (C5′), 131.36 (C4), 131.96 (C3′), 135.35 

(C1′), 152.16 (C3), 165.94 (C=O); m/z (ESI+) 287 (12%, M
+
), 270 (100, M ‒ OH); 

tR = 11.53 min. 

Synthesis of 7-(aryl)-1H-thieno[3,2-d][1,3]oxazine-2,4-diones 36a and 36b were performed 

as described for preparation of 15a and 15b.   

7-(4′-Chlorophenyl)-1H-thieno[3,2-d][1,3]oxazine-2,4-dione 36a
20,55

 (1.23 g, 73%). White 

solid; mp 214–216 °C (lit.,
20

 245 °C, lit.,
55

 >260 °C); δH (300 MHz, DMSO-d6) 7.49 (2 H, d, J 

= 8.8 Hz, 3′,5′Ar-H), 7.54 (2 H, d, J = 8.8 Hz, 2′,6′Ar-H), 8.25 (1 H, s, C6-H), 11.86 (1 H, br 

s, NH); δC (75 MHz, DMSO-d6) 107.66 (C4a), 129.20 (C2′, C6′), 129.35 (C7), 130.97 (C3′, 

C5′), 131.03 (C1′), 133.66 (C4′), 136.87 (C6), 147.24 (C7a), 149.41 (C2), 156.06 (C4); m/z 

(ESI+) 279 (24%, M
+
), 251 (100, M ‒ CO); tR = 10.18 min. 

7-(3′,4′-Dichlorophenyl)-1H-thieno[3,2-d][1,3]oxazine-2,4-dione 36b (1.36 g, 72%). Beige 

solid; mp 249–251 °C; δH (300 MHz, DMSO-d6) 7.43 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.70 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 7.73 (1 H, d, J = 8.0 Hz, 5′Ar-H), 8.32 (1 H, s, C6-H), 11.96 

(1 H, br s, NH); δC (75 MHz, DMSO-d6) 107.73 (C4a), 129.58 (C6′), 129.64 (C7), 131.25 

(C2′), 131.27 (C5′), 131.71 (C4′), 131.82 (C3′), 132.50 (C1′), 137.70 (C6), 146.70 (C7a), 

149.24 (C2), 155.77 (C4); m/z (ESI+) 313 (13%, M
+
), 627 (13, 2M + H), 285 (100, M ‒ CO); 

tR = 11.14 min. 
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Synthesis of 4-(aryl)-3-[3-(substituted)ureido]thiophene-2-carboxylic acids 37‒42 were 

performed as described for preparation of 16‒21 

4-(4′-Chlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 37
21

 (195 mg, 80%). 

White crystals; mp 176–178 °C; δH (300 MHz, DMSO-d6) 0.86 (3 H, t, J = 6.4 Hz, Me), 1.12‒

1.30 (8 H, m, Me(CH2)4CH2NH), 2.84 (2 H, m, CH2CH2NH), 6.88 (1 H, t, J = 5.9 Hz, 

NHCH2), 7.37 (2 H, d, J = 7.8 Hz, 3′,5′Ar-H), 7.42 (2 H, d, J = 7.8 Hz, 2′,6′Ar-H), 7.79 (1 H, 

s, C5-H), 8.34 (1 H, br s, NHCO), 13.15 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 14.42 

(C6″), 22.51 (C5″), 26.31 (C3″), 30.08 (C2″), 31.49 (C4″), 39.47 (C1″), 118.68 (C2), 128.59 

(C2′, C6′), 128.70 (C3′, C5′), 129.01 (C5), 131.83 (C4′), 135.76 (C1′), 138.35 (C4), 142.42 

(C3), 154.72 (NHCO), 164.24 (COOH); m/z (ESI+) 381 (25%, (M + H)
+
), 761 (17, 2M + H), 

295 (53, M – C6H13), 236 (100, M – C6H13, NH, CO2); tR = 12.71 min. 

3-(3-Benzylureido)-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 38
21

 (225 mg, 91%). 

White crystals; mp 196–198 °C (lit.,
21

 216 °C); δH (300 MHz, DMSO-d6) 4.10 (2 H, d, J = 5.9 

Hz, CH2), 7.06‒7.32 (5 H, m, Ph), 7.38‒7.46 (5H, m, 4′-ClC6H4, NHCH2), 7.82 (1 H, s, 

C5-H), 8.49 (1 H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.06 

(CH2), 119.38 (C2), 127.05 (C4″), 127.32 (C2″, C6″), 128.54 (C3″, C5″), 128.75 (C2′, C6′), 

128.88 (C3′, C5′), 129.09 (C5), 131.92 (C4′), 135.68 (C1′), 138.63 (C4), 140.70 (C1″), 142.13 

(C3), 155.03 (NHCO), 164.17 (COOH); m/z (ESI+) 387 (40%, (M + H)
+
), 773 (36, 2M + H), 

295 (51, M – C7H7), 236 (100, M – C7H7, NH, CO2); tR = 10.41 min. 

3-(3-Benzyl-3-ethylureido)-4-(4′-chlorophenyl)thiophene-2-carboxylic acid 39
21

 (212 mg, 

80%). White crystals; mp 157–159 °C; δH (500 MHz, DMSO-d6) 1.09 (3 H, t, J = 6.3 Hz, 

Me), 3.24 (2 H, q, J = 6.6 Hz, MeCH2N), 4.37 (2 H, s, PhCH2N), 7.02‒7.32 (5 H, m, Ph), 7.43 

(2 H, d, J = 8.8 Hz, 3′,5′Ar-H), 7.46 (2 H, d, J = 8.8 Hz, 2′,6′Ar-H), 7.83 (1 H, s, C5-H), 8.52 

(1 H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (126 MHz, DMSO-d6) 13.04 (Me), 40.77 

(MeCH2N), 48.40 (PhCH2N), 119.87 (C2), 126.85 (C4″), 127.18 (C2″, C6″), 128.14 (C3″, 

C5″), 128.27 (C2′, C6′), 128.28 (C5), 128.66 (C3′, C5′), 131.56 (C4′), 134.97 (C1′), 138.44 

(C4), 138.48 (C1″), 142.51 (C3), 154.37 (NHCO), 163.87 (COOH); m/z (ESI+) 415 (100%, 

(M + H)
+
), 829 (21, 2M + H), 236 (37, M – C7H7, EtN, CO2); tR = 12.74 min. 

4-(3′,4′-Dichlorophenyl)-3-(3-hexylureido)thiophene-2-carboxylic acid 40 (220 mg, 

83%). White crystals; mp 189–191 °C; δH (300 MHz, DMSO-d6) 0.85 (3 H, t, J = 7 Hz, Me), 

1.02‒1.39 (8 H, m, Me(CH2)4CH2NH), 2.85 (2 H, m, CH2CH2NH), 7.01 (1 H, t, J = 5.5 Hz, 

NHCH2), 7.38 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.57 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.62 (1 H, 

d, J = 2.0 Hz, 2′Ar-H), 7.89 (1 H, s, C5-H),  8.42 (1 H, br s, NHCO), 13.19 (1 H, br s, 

COOH); δC (75 MHz, DMSO-d6) 14.42 (C6″), 22.48 (C5″), 26.29 (C3″), 30.14 (C2″), 31.47 
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(C4″), 39.53 (C1″), 118.34 (C2), 127.16 (C6′), 128.59 (C2′), 129.67 (C5), 129.82 (C4′), 

130.72 (C5′), 131.31 (C3′), 136.81 (C4), 137.56 (C1′), 142.41 (C3), 154.63 (NHCO), 164.21 

(COOH); m/z (ESI+) 415 (76%, (M + H)
+
), 829 (37, 2M + H), 329 (100, M – C6H13), 270 

(96, M – C6H13, NH, CO2); tR = 12.65 min. 

3-(3-Benzylureido)-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 41 (221 mg, 

82%). Off white crystals; mp 182–184 °C; δH (300 MHz, DMSO-d6) 4.12 (2 H, d, J = 5.9 Hz, 

CH2), 7.03‒7.35 (5 H, m, Ph), 7.40 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.51 (1 H, t, J = 5.9 Hz, 

NHCH2), 7.59 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.67 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.91 (1 H, s, 

C5-H),  8.54 (1 H, br s, NHCO), 12.69 (1 H, br s, COOH); δC (75 MHz, DMSO-d6) 43.09 

(CH2), 119.18 (C2), 127.04 (C4″), 127.19 (C2″, C6″), 127.36 (C6′), 128.58 (C3″, C5″), 

128.80 (C2′), 129.80 (C5), 129.83 (C4′), 130.90 (C5′), 131.42 (C3′), 137.15 (C4), 137.52 

(C1′), 140.57 (C1″), 142.09 (C3), 154.98 (NHCO), 164.12 (COOH); m/z (ESI+) 421 (58%, 

(M + H)
+
), 841 (24, 2M + H), 329 (83, M – C7H7), 270 (100, M – C7H7, NH, CO2); 

tR = 9.60 min. 

3-(3-Benzyl-3-ethylureido)-4-(3′,4′-dichlorophenyl)thiophene-2-carboxylic acid 42 

(236 mg, 82%). Off white crystals; mp 171–173 °C; δH (300 MHz, DMSO-d6) 1.09 (3 H, t, 

J = 6.8 Hz, Me), 3.25 (2 H, q, J = 6.8 Hz, MeCH2N), 4.40 (2 H, s, PhCH2N), 6.91‒7.37 (5 H, 

m, Ph), 7.43 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.63 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.70 (1 H, d, 

J = 2.0 Hz, 2′Ar-H), 7.94 (1 H, s, C5-H), 8.55 (1 H, br s, NHCO), 13.36 (1 H, br s, COOH); 

δC (75 MHz, DMSO-d6) 13.48 (Me), 41.32 (MeCH2N), 49.00 (PhCH2N), 120.31 (C2), 127.35 

(C4″), 127.51 (C2″, C6″), 127.70 (C6′), 128.70 (C3″, C5″), 129.01 (C2′), 129.54 (C5), 129.97 

(C4′), 130.98 (C5′), 131.50 (C3′), 137.17 (C4), 137.44 (C1′), 138.86 (C1″), 142.85 (C3), 

154.80 (NHCO), 164.28 (COOH); m/z (ESI+) 449 (100%, (M + H)
+
), 897 (9, 2M + H), 270 

(10, M – C7H7, EtN, CO2); tR = 13.02 min. 

Ethyl 3-amino-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 46. To a stirred ice-cooled 

solution of triphenylphosphine (5.12 g, 19.5 mmol) in anhydrous THF (70 mL), diethyl 

azodicarboxylate (3.40 g, 19.5 mmol) was added dropwise. After 10 min, ethyl glycolate 

(2.03 g, 19.5 mmol) was added dropwise, then 44
28

 (3.21 g, 15.0 mmol) was added 

portionwise. The reaction mixture was allowed to warm to rt, and stirred for 15 h. Sodium 

hydride (55‒65% in mineral oil, 1.80 g, 42.0 mmol) was added, and the reaction was further 

stirred for 6 h. The reaction mixture was treated with water (10 mL), and the solvent was 

removed by vacuum distillation. The obtained residue was dissolved in EtOAc (70 mL), 

washed with water (50 mL), dried (MgSO4), and concentrated. The crude material was 

purified by flash chromatography (SiO2, n-hexane/EtOAc = 3:1). (3.90 g, 87%); white solid; 



Results 69 

 

 

mp 153–155 °C; δH (300 MHz, CDCl3) 1.42 (3 H, t, J = 7.1 Hz, Me), 4.40 (2 H, q, J = 7.1 Hz, 

CH2O), 4.64 (2 H, br s, NH2), 6.39 (1 H, s, C4-H), 7.47 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.55 (1 

H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.81 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, CDCl3) 14.65 

(Me), 60.13 (CH2), 100.98 (C4), 124.03 (C6′), 126.16 (C3), 126.62 (C2′), 129.38 (C1′), 

130.76 (C5′), 132.98 (C4′), 133.16 (C3′), 144.74 (C2), 153.45 (C5), 160.37 (C=O); m/z 

(ESI+) 300 (83%, (M + H)
+
), 599 (6, 2M + H), 254 (100, M ‒ EtO); tR = 13.72 min. 

Ethyl 5-(3′,4′-dichlorophenyl)-3-(phenoxycarbonylamino)furan-2-carboxylate 47. To a 

stirred ice-cooled solution of 46 (1.00 g, 3.33 mmol), and pyridine (264 mg, 3.33 mmol) in 

anhydrous DCM (20 mL), phenyl chloroformate (525 mg, 3.33 mmol) was added dropwise. 

The reaction mixture was stirred at rt for 12 h. The solvent was evaporated under vacuum, and 

the residue was dissolved in EtOAc (50 mL), washed with 1M HCl (2 × 25 mL), brine (25 

mL), dried (MgSO4), and the solvent was removed by vacuum distillation. The obtained 

material was triturated with n-hexane (20 mL), collected by filtration and dried. (1.20 g, 

86%); pale yellow solid; mp 120–121 °C; δH (300 MHz, CDCl3) 1.46 (3 H, t, J = 7.1 Hz, Me), 

4.46 (2 H, q, J = 7.1 Hz, CH2O), 7.18‒7.45 (5 H, m, Ph), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 

7.51 (1 H, s, C4-H), 7.57 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.85 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

8.76 (1 H, br s, NHCO); δC (75 MHz, CDCl3) 14.51 (Me), 61.19 (CH2), 102.14 (C4), 121.43 

(C2″, C6″), 124.09 (C6′), 126.04 (C4″), 126.68 (C2′), 128.48 (C3), 129.01 (C1′), 129.50 (C3″, 

C5″), 130.93 (C5′), 133.36 (C4′), 133.42 (C3′), 136.53 (C2), 150.40 (C1″), 151.38 (NHCO), 

153.68 (C5), 160.12 (C=O); m/z (ESI+) 420 (100%, (M + H)
+
), 374 (7, M ‒ EtO); tR = 17.56 

min. 

General procedures for synthesis of ethyl 3-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-2-carboxylate 48 and 49 

To a stirred solution of 47 (300 mg, 0.71 mmol) in anhydrous DMSO (10 mL) under a 

nitrogen atmosphere, the appropriate amine (0.75 mmol) was added dropwise. The reaction 

mixture was stirred at rt for 2 h, then EtOAc (50 mL) was added. The organic layer was 

washed with 2M HCl (2 × 30 mL), 1M NaOH (2 × 30 mL), brine (30 mL), dried (MgSO4), 

and the solvent was removed by vacuum distillation. The obtained residues were purified by 

flash chromatography (SiO2, n-hexane/EtOAc = 1:1). 

Ethyl 3-(3-benzylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 48 (283 mg, 92%,). 

White solid; mp 211–213 °C; δH (300 MHz, DMSO-d6) 1.33 (3 H, t, J = 7.1 Hz, Me), 4.33 

(2 H, d, J = 4.7 Hz, PhCH2NH), 4.35 (2 H, q, J = 7.1 Hz, CH2O), 7.23‒7.38 (5 H, m, Ph), 7.71 

(1 H, d, J = 8.0 Hz, 5′Ar-H), 7.76 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.87 (1 H, s, C4-H), 8.02 

(1 H, d, J = 2.0 Hz, 2′Ar-H), 8.06 (1 H, t, J = 5.8 Hz, NHCH2), 8.66 (1 H, br s, NHCO); δC 
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(75 MHz, DMSO-d6) 14.88 (Me), 43.43 (PhCH2NH), 60.70 (CH2O), 104.25 (C4), 125.12 

(C6′), 126.71 (C2′), 127.36 (C4″), 127.75 (C2″, C6″), 128.58 (C3), 128.83 (C3″, C5″), 129.77 

(C1′), 131.81 (C5′), 132.17 (C4′), 132.51 (C3′), 138.53 (C2), 140.12 (C1″), 152.57 (C5), 

154.45 (NHCO), 159.57 (C=O); m/z (ESI+) 433 (100%, (M + H)
+
), 865 (27, 2M + H), 341 (8, 

M – C7H7), 254 (59, M – C7H7, NCO, EtO); tR = 15.99 min. 

Ethyl 3-(3-benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylate 49 (278 

mg, 85%). Reddish liquid; δH (500 MHz, CDCl3) 1.25 (3 H, t, J = 7.3 Hz, MeCH2N), 1.36 

(3 H, t, J = 7.3 Hz, MeCH2O), 3.42 (2 H, q, J = 7.3 Hz, MeCH2N), 4.36 (2 H, q, J = 7.3 Hz, 

CH2O), 4.62 (2 H, s, PhCH2N), 7.25‒7.36 (5 H, m, Ph), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 

7.60 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.71 (1 H, s, C4-H), 7.89 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

8.84 (1 H, br s, NHCO); δC (126 MHz, CDCl3) 13.16 (MeCH2N), 14.51 (MeCH2O), 42.03 

(MeCH2N), 50.02 (PhCH2N), 60.80 (CH2O), 102.98 (C4), 124.12 (C6′), 126.73 (C2′), 127.49 

(C4″), 127.58 (C2″, C6″), 127.76 (C3), 128.76 (C3″, C5″), 129.44 (C1′), 130.87 (C5′), 133.11 

(C4′), 133.28 (C3′), 137.42 (C2), 137.70 (C1″), 152.94 (C5), 154.11 (NHCO), 159.64 (C=O); 

m/z (ESI+) 461 (100%, (M + H)
+
), 921 (8, 2M + H); tR = 17.00 min. 

3-Benzyl-6-(3′,4′-dichlorophenyl)furo[3,2-d]pyrimidine-2,4(1H,3H)-dione 50. To a stirred 

solution of 48 (130 mg, 0.3 mmol) in MeOH (10 mL), NaOH (20 mg, 0.5 mmol) in water 

(10 mL) was added. The reaction mixture was stirred at 70 °C for 3 h. The mixture was 

concentrated in vacuo. The residue was diluted with water (10 mL), and washed with EtOAc 

(20 mL). The aqueous layer was cooled in ice bath and acidified with KHSO4 (saturated 

aqueous solution) to pH 3‒4. The precipitated solid was collected by filtration, washed with 

cold water (20 mL), and n-hexane (20 mL). 

(93 mg, 80%); white solid; mp 281–283 °C dec; δH (500 MHz, DMSO-d6) 5.04 (2 H, s, CH2), 

7.23‒7.32 (6 H, m, C7-H, Ph), 7.76 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.88 (1 H, dd, J = 8.0, 

2.0 Hz, 6′Ar-H), 8.20 (1 H, d, J = 2.0 Hz, 2′Ar-H), 11.87 (1 H, br s, NH); δC (126 MHz, 

DMSO-d6) 43.13 (CH2), 98.87 (C7), 125.03 (C6′), 126.89 (C2′), 127.04 (C4″), 127.37 (C2″, 

C6″), 128.27 (C3″, C5″), 128.81 (C7a), 129.83 (C1′), 131.39 (C5′), 132.12 (C4′), 132.45 

(C3′), 137.35 (C1″), 137.79 (C4a), 150.88 (C4), 153.00 (C2), 156.43 (C6); m/z (ESI+) 387 

(68%, (M + H)
+
), 773 (29, 2M + H), 186 (100); tR = 13.16 min. 

General procedures for synthesis of 3-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-2-carboxylic acid 51 and 52 

To a stirred ice-cooled solution of the appropriate ester 48 or 49 (1.00 mmol), and THT 

(5 mL) in anhydrous DCM (5 mL), AlCl3 (1.33 g, 10.0 mmol) was added portionwise. The 

reaction mixture was stirred at rt for 72 h (TLC monitoring, TLC samples were diluted with 
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MeOH). The reaction mixture was concentrated under vacuum, then cold water (10 mL) was 

added followed by 1M HCl to pH 4‒5. The mixture was extracted with EtOAc (3 × 25 mL). 

The combined organic layers were dried (MgSO4), and the solvent was removed by vacuum 

distillation. The crude material was purified using preparative RP-HPLC. 

3-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylic acid 51 (100 mg, 25%). 

White crystals; mp 195–197 °C dec; δH (500 MHz, DMSO-d6) 4.31 (2 H, d, J = 5.7 Hz, CH2), 

7.23‒7.37 (5 H, m, Ph), 7.71 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.77 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-

H), 7.84 (1 H, s, C4-H), 8.03 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.06 (1 H, t, J = 5.7 Hz, NHCH2), 

8.65 (1 H, br s, NHCO), 13.23 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 42.92 (CH2), 

103.73 (C4), 124.55 (C6′), 126.11 (C2′), 126.83 (C4″), 127.24 (C2″, C6″), 127.51 (C3), 

128.32 (C3″, C5″), 129.51 (C1′), 131.30 (C5′), 131.44 (C4′), 131.99 (C3′), 137.28 (C2), 

139.72 (C1″), 151.55 (C5), 154.05 (NHCO), 160.57 (COOH); m/z (ESI+) 405 (90%, (M + 

H)
+
), 809 (14, 2M + H), 313 (93, M – C7H7), 254 (100, M – C7H7, NH, CO2); tR = 13.60 min. 

3-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-2-carboxylic acid 52 (120 mg, 

28%). Pale yellow crystals; mp 160–162 °C dec; δH (500 MHz, DMSO-d6) 1.15 (3 H, t, J = 

7.2 Hz, Me), 3.38 (2 H, q, J = 6.9 Hz, MeCH2N), 4.56 (2 H, s, PhCH2N), 7.25‒7.37 (5 H, m, 

Ph), 7.72 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.79 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.82 (1 H, s, 

C4-H), 8.06 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.79 (1 H, br s, NHCO), 13.46 (1 H, br s, COOH); 

δC (125 MHz, DMSO-d6) 13.11 (Me), 41.82 (MeCH2N), 49.39 (PhCH2N), 103.45 (C4), 

124.62 (C6′), 126.23 (C2′), 126.92 (C4″), 127.16 (C2″, C6″), 127.94 (C3), 128.50 (C3″, C5″), 

129.39 (C1′), 131.31 (C5′), 131.60 (C4′), 132.02 (C3′), 137.95 (C2), 137.99 (C1″), 151.99 

(C5), 153.06 (NHCO), 161.20 (COOH); m/z (ESI+) 433 (66%, (M + H)
+
), 865 (8, 2M + H), 

389 (100, [M+H] ‒ CO2); tR = 13.64 min. 

Ethyl 2-amino-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 54. To a stirred ice-cooled 

solution of 43
27

 (4.83 g, 18.0 mmol) in anhydrous DMF (13 mL) under a nitrogen 

atmosphere, ethyl cyanoacetate (2.05 g, 18.0 mmol), and diethylamine (3.95 g, 54.0 mmol) 

were added slowly. The reaction mixture was allowed to warm to rt, and stirred for 2 h. The 

mixture was diluted with DCM (100 mL), washed with 2M HCl (2 × 50 mL), dried (MgSO4), 

and concentrated under vacuum till half of the volume. Trifluoroacetic acid (50 mL) was 

added in one portion to the solution. The reaction was stirred at rt for 40 h. The solvent was 

removed by vacuum distillation. The residue was dissolved in DCM (50 mL), cautiously 

washed with NaHCO3 (saturated aqueous solution, 50 mL), the organic layer was dried 

(MgSO4), and concentrated. The crude material was purified by flash chromatography (SiO2, 

n-hexane/EtOAc = 6:1). (2.15 g, 40%); white solid; mp 110–111 °C; δH (300 MHz, CDCl3) 
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1.36 (3 H, t, J = 7.1 Hz, Me), 4.29 (2 H, q, J = 7.1 Hz, CH2O), 5.62 (2 H, br s, NH2), 6.78 

(1 H, s, C4-H), 7.29 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.38 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.57 

(1 H, d, J = 2.0 Hz, 2′Ar-H); δC (75 MHz, CDCl3) 14.54 (Me), 59.84 (CH2), 91.80 (C3), 

106.46 (C4), 121.60 (C6′), 124.09 (C2′), 129.87 (C4′), 130.10 (C1′), 130.61 (C5′), 132.90 

(C3′), 141.30 (C5), 161.55 (C2), 164.83 (C=O); m/z (ESI+) 300 (100%, (M + H)
+
), 599 (79, 

2M + H), 254 (91, M ‒ EtO); tR = 15.98 min. 

Ethyl 2-[bis(phenoxycarbonyl)amino]-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 55. 

To a stirred ice-cooled solution of 54 (1.00 g, 3.33 mmol), and pyridine (528 mg, 6.66 mmol) 

in anhydrous DCM (30 mL), phenyl chloroformate (1.05 g, 6.66 mmol) was added dropwise, 

and the reaction mixture was stirred at rt for 12 h. The solvent was evaporated under vacuum. 

The residue was dissolved in EtOAc (60 mL), washed with 1M HCl (2 × 30 mL), brine 

(30 mL), dried (MgSO4), and the solvent was removed by vacuum distillation. The crude 

material was triturated with n-hexane (30 mL), collected by filtration and dried. (1.48 g, 

82%); white solid; mp 166–168 °C; δH (300 MHz, CDCl3) 1.29 (3 H, t, J = 7.1 Hz, Me), 4.32 

(2 H, q, J = 7.1 Hz, CH2O), 7.02 (1 H, s, C4-H), 7.08‒7.34 (10 H, m, 2 Ph), 7.42 (1 H, d, 

J = 8.0 Hz, 5′Ar-H), 7.46 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.72 (1 H, d, J = 2.0 Hz, 2′Ar-H); 

δC (75 MHz, CDCl3) 14.31 (Me), 61.37 (CH2), 107.34 (C4), 114.59 (C3), 121.10 (C2″, C6″, 

C2‴, C6‴), 123.24 (C6′), 125.91 (C2′), 126.59 (C4″, C4‴), 128.97 (C4′), 129.57 (C3″, C5″, 

C3‴, C5‴), 130.98 (C5′), 132.67 (C1′), 133.40 (C3′), 145.63 (C5), 149.04 (N(C=O)2), 149.64 

(C2), 150.24 (C1″, C1‴), 161.41 (C=O); m/z (ESI+) 540 (100%, (M + H)
+
), 494 (13, M ‒ 

EtO); tR = 16.97 min. 

General procedures for synthesis of ethyl 2-[3-(substituted)ureido]-5-(3′,4′-

dichlorophenyl)furan-3-carboxylate 57 and 58 

To a stirred solution of 55 (300 mg, 0.55 mmol) in anhydrous DMSO (10 mL) under a 

nitrogen atmosphere, the appropriate amine (2.20 mmol) was added dropwise. The reaction 

mixture was stirred at rt for 2 h, then EtOAc (50 mL) was added. The organic layer was 

washed with 2M HCl (2 × 30 mL), 1M NaOH (2 × 30 mL), brine (30 mL), dried (MgSO4), 

and the solvent was removed by vacuum distillation.  The product was purified from the sym-

urea side product using flash chromatography (SiO2, EtOAc/THF = 4:1). 

Ethyl 2-(3-benzylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 57 (203 mg, 85%). 

White solid; mp 223–225 °C dec; δH (500 MHz, DMSO-d6) 1.28 (3 H, t, J = 7.0 Hz, Me), 

4.25 (2 H, q, J = 7.0 Hz, CH2O), 4.33 (2 H, d, J = 5.8 Hz, PhCH2NH), 7.26‒7.38 (6 H, m, C4-

H, Ph), 7.63 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.66 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.89 (2 H, 

m, 2′Ar-H, NHCH2), 9.27 (1 H, br s, NHCO); δC (125 MHz, DMSO-d6) 14.28 (Me), 43.00 
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(PhCH2NH), 59.95 (CH2O), 99.11 (C3), 107.18 (C4), 122.86 (C6′), 124.32 (C2′), 126.93 

(C4″), 127.27 (C2″, C6″), 128.37 (C3″, C5″), 129.29 (C4′), 129.96 (C1′), 131.04 (C5′), 

131.78 (C3′), 139.39 (C1″), 143.37 (C5), 152.04 (NHCO), 153.33 (C2), 162.92 (C=O); m/z 

(ESI+) 433 (100%, (M + H)
+
), 865 (60, 2M + H), 341 (15, M – C7H7), 254 (30, M – C7H7, 

NCO, EtO); tR = 15.31 min. 

Ethyl 2-(3-benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylate 58 (208 

mg, 82%). Reddish liquid; δH (500 MHz, CDCl3) 1.26 (3 H, t, J = 7.0 Hz, MeCH2N), 1.33 (3 

H, t, J = 7.0 Hz, MeCH2O), 3.41 (2 H, q, J = 7.0 Hz, MeCH2N), 4.27 (2 H, q, J = 7.0 Hz, 

CH2O), 4.64 (2 H, s, PhCH2N), 6.82 (1 H, s, C4-H), 7.28‒7.37 (5 H, m, Ph), 7.40 (1 H, d, 

J = 8.0 Hz, 5′Ar-H), 7.49 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.72 (1 H, d, J = 2.0 Hz, 2′Ar-H), 

9.34 (1 H, br s, NHCO); δC (126 MHz, CDCl3) 13.15 (MeCH2N), 14.39 (MeCH2O), 42.24 

(MeCH2N), 50.11 (PhCH2N), 60.56 (CH2O), 97.53 (C3), 104.74 (C4), 122.60 (C6′), 124.92 

(C2′), 127.29 (C4″), 127.56 (C2″, C6″), 128.65 (C3″, C5″), 129.71 (C4′), 130.68 (C5′), 

130.89 (C1′), 133.01 (C3′), 136.96 (C1″), 144.79 (C5), 151.77 (NHCO), 155.08 (C2), 165.16 

(C=O); m/z (ESI+) 461 (100%, (M + H)
+
), 921 (25, 2M + H); tR = 16.94 min. 

Synthesis of 2-[3-(substituted)ureido]-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 59 and 

60 were performed as described for preparation of 51 and 52 

2-(3-Benzylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 59 (73 mg, 18%). 

White crystals; mp 200–202 °C dec; δH (500 MHz, DMSO-d6) 4.32 (2 H, d, J = 6.0 Hz, CH2), 

7.25‒7.38 (6 H, m, C4-H, Ph), 7.61 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.66 (1 H, d, 

J = 8.0 Hz, 5′Ar-H), 7.86 (1 H, d, J = 2.0 Hz, 2′Ar-H), 7.95 (1 H, t, J = 5.7 Hz, NHCH2), 9.29 

(1 H, br s, NHCO), 12.68 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 42.95 (CH2), 99.52 

(C3), 107.73 (C4), 122.74 (C6′), 124.10 (C2′), 126.91 (C4″), 127.25 (C2″, C6″), 128.36 (C3″, 

C5″), 128.97 (C4′), 130.15 (C1′), 131.10 (C5′), 131.72 (C3′), 139.42 (C1″), 142.85 (C5), 

151.98 (NHCO), 153.27 (C2), 164.63 (COOH); m/z (ESI+) 405 (100%, (M + H)
+
), 809 (54, 

2M + H), 313 (71, M – C7H7), 295 (24, M – C7H7, H2O) , 254 (16, M – C7H7, NH, CO2); 

tR = 12.54 min. 

2-(3-Benzyl-3-ethylureido)-5-(3′,4′-dichlorophenyl)furan-3-carboxylic acid 60 (95 mg, 

22%). White crystals; mp 175–177 °C dec; δH (500 MHz, DMSO-d6) 1.11 (3 H, t, J = 7.2 Hz, 

Me), 3.34 (2 H, q, J = 7.2 Hz, MeCH2N), 4.56 (2 H, s, PhCH2N), 7.26‒7.38 (6 H, m, C4-H, 

Ph), 7.65 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 7.67 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.91 (1 H, d, 

J = 2.0 Hz, 2′Ar-H), 9.25 (1 H, br s, NHCO), 12.77 (1 H, br s, COOH); δC (125 MHz, DMSO-

d6) 13.10 (Me), 41.35 (MeCH2N), 49.11 (PhCH2N), 104.55 (C3), 107.98 (C4), 123.00 (C6′), 

124.45 (C2′), 127.09 (C4″), 127.29 (C2″, C6″), 128.44 (C3″, C5″), 129.47 (C4′), 130.00 
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(C1′), 131.16 (C5′), 131.81 (C3′), 138.04 (C1″), 144.24 (C5), 152.81 (NHCO), 152.87 (C2), 

164.54 (COOH); m/z (ESI+) 433 (100%, (M + H)
+
), 865 (16, 2M + H), 254 (5, M ‒ C7H7, 

EtN, CO2); tR = 13.71 min. 

Methyl 3,4-dichlorobenzenecarbodithioate 62. To a stirred mixture of sulfur (3.52 g, 

110 mmol), and Net3 (15.2 g, 150 mmol) in DMF (25 mL), 3,4-dichlorobenzyl chloride 61 

(9.77 g, 50.0 mmol) was added dropwise. The reaction mixture was stirred at 60 °C for 6 h 

then cooled in an ice bath. Iodomethane (7.81 g, 55.0 mmol) was added slowly maintaining 

the temperature below 10 °C. The reaction was further stirred for 1 h then filtered. The filtrate 

was poured into stirred ice-cooled water (100 mL). The precipitated bright red crystals were 

collected by filtration, washed with water, and dried. (10.4 g, 88%); red solid; mp 60–62 °C; 

δH (500 MHz, CDCl3) 2.78 (3 H, s, Sme), 7.46 (1 H, d, J = 8.0 Hz, C5-H), 7.83 (1 H, dd, 

J = 8.0, 2.0 Hz, C6-H), 8.10 (1 H, d, J = 2.0 Hz, C2-H); δC (126 MHz, CDCl3) 20.77 (Me), 

125.68 (C6), 128.58 (C2), 130.22 (C5), 132.83 (C4), 136.62 (C3), 144.03 (C1), 225.21 (C=S); 

m/z (ESI+) 236 (22%, M
+
), 187 (100, M – CH2, Cl); tR = 16.53 min. 

Methyl 4-amino-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylate 64. To a stirred ice-

cooled solution of sodium (0.81 g, 35.0 mmol), and cyanamide (1.27 g, 30.0 mmol) in 

anhydrous MeOH (50 mL) under a nitrogen atmosphere, compound 62 (7.11 g, 30 mmol) was 

added portionwise, and the reaction mixture was stirred at 75 °C for 3 h. The solvent was 

removed under vacuum, and the residue was triturated with ether, and filtered. The 

intermediate 63 was dissolved in MeOH (50 mL) and methyl bromoacetate (6.88 g, 45.0 

mmol) was added dropwise. The reaction mixture was stirred at rt for 2 h then NEt3 (12.5 mL, 

90.0 mmol) was added, and the reaction was further stirred for 12 h. The solvent was removed 

by vacuum distillation, and the crude material was purified by flash chromatography (SiO2, 

n-hexane/EtOAc = 3:1). (3.18 g, 35%); yellow solid; mp 156–158 °C; δH (500 MHz, CDCl3) 

3.83 (3 H, s, OMe), 5.88 (2 H, br s, NH2), 7.48 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.69 (1 H, dd, 

J = 8.0, 2.0 Hz, 6′Ar-H), 8.00 (1 H, d, J = 2.0 Hz, 2′Ar-H); δC (126 MHz, CDCl3) 51.70 (Me), 

94.46 (C5), 125.56 (C6′), 128.22 (C2′), 130.98 (C5′), 132.68 (C4′), 133.50 (C3′), 135.32 

(C1′), 163.12 (C4), 164.33 (C=O), 167.46 (C2); m/z (ESI+) 303 (17%, (M + H)
+
), 344 (100, 

M + H, MeCN), 271 (6, M ‒ MeO); tR = 14.39 min. 

4-Amino-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 65. To a stirred solution 

of 64 (3.03 g, 10.0 mmol) in MeOH (30 mL), KOH (2.24 g, 40.0 mmol) in water (30 mL) was 

added. The reaction mixture was stirred at reflux for 2 h then the MeOH was evaporated by 

vacuum distillation. The residue was diluted with water (10 mL), and washed with EtOAc 

(20 mL). The aqueous layer was cooled in an ice bath and acidified by KHSO4 (saturated 
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aqueous solution) to pH 3‒4. The precipitate was collected by filtration, washed with cold 

water (20 mL), n-hexane (20 mL), and dried over CaCl2 in amber glass vacuum desiccator. 

(1.91 g, 66%); yellow solid; mp 131–133 °C dec; δH (500 MHz, DMSO-d6) 6.98 (2 H, br s, 

NH2), 7.77 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.87 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 8.09 (1 H, d, 

J = 2.0 Hz, 2′Ar-H), 12.92 (1 H, br s, COOH); δC (126 MHz, DMSO-d6) 93.37 (C5), 126.27 

(C6′), 127.48 (C2′), 131.53(C5′), 132.09 (C4′), 132.76 (C3′), 133.65 (C1′), 163.25 (C4), 

164.65 (C=O), 165.42 (C2); m/z (ESI+) 289 (20%, (M + H)
+
), 330 (100, M + H, MeCN), 271 

(11, M ‒ OH); tR = 12.12 min. 

2-(3′,4′-Dichlorophenyl)-4H-[1,3]thiazolo[4,5-d][1,3]oxazine-5,7-dione 66. The compound 

was prepared as described for preparation of 15a and 15b. (1.32 g, 70%); yellow solid; mp 

219‒221 °C dec; δH (500 MHz, DMSO-d6) 7.77 (1 H, d, J = 8.0 Hz, 5′Ar-H), 8.15 (1 H, dd, 

J = 8.0, 2.0 Hz, 6′Ar-H), 8.37 (1 H, d, J = 2.0 Hz, 2′Ar-H), 11.11 (1 H, br s, NH); δC (126 

MHz, DMSO-d6) 95.81 (C7a), 128.16 (C6′), 129.87 (C2′), 130.72 (C5′), 131.21 (C4′), 131.99 

(C3′), 133.07 (C1′), 153.29 (C5), 153.56 (C3a), 164.45 (C7), 165.28 (C2); m/z (ESI+) 314 

(100%, M
+
), 355 (94, M + MeCN), 629 (18, 2M + H); tR = 11.75 min. 

Synthesis of 2-(3′,4′-dichlorophenyl)-4-[3-(substituted)ureido]-1,3-thiazole-5-carboxylic acids 

67 and 68 were performed as described for preparation of 16‒21. 

4-(3-Benzylureido)-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 67 (65 mg, 

24%). Yellow crystals; mp 213–215 °C; δH (500 MHz, DMSO-d6) 4.48 (2 H, d, J = 5.4 Hz, 

CH2), 7.27‒7.40 (5 H, m, Ph), 7.75 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.92 (1 H, dd, J = 8.0, 2.0 

Hz, 6′Ar-H), 8.18 (1 H, d, J = 2.0 Hz, 2′Ar-H), 8.53 (1 H, t, J = 5.7 Hz, NHCH2), 9.04 (1 H, 

br s, NHCO), 13.80 (1 H, br s, COOH); δC (125 MHz, DMSO-d6) 43.38 (CH2), 102.27 (C5), 

126.64 (C6′), 126.99 (C4″), 127.13 (C2″, C6″), 127.93 (C2′), 128.48 (C3″, C5″), 131.45 

(C5′), 131.79 (C4′), 132.30 (C3′), 134.40 (C1′), 139.30 (C1″), 152.25 (NHCO), 154.44 (C4), 

164.02 (COOH), 165.77 (C2); m/z (ESI+) 422 (100%, (M + H)
+
), 843 (11, 2M + H), 330 (23, 

M – C7H7), 271 (24, M – C7H7, NH, CO2); tR = 14.98 min. 

4-(3-Benzyl-3-ethylureido)-2-(3′,4′-dichlorophenyl)-1,3-thiazole-5-carboxylic acid 68 

(63 mg, 22%). Yellow crystals; mp 191–193 °C; δH (500 MHz, DMSO-d6) 1.14 (3 H, t, 

J = 6.9 Hz, Me), 3.37 (2 H, q, J = 6.9 Hz, MeCH2N), 4.58 (2 H, s, PhCH2N), 7.26‒7.38 (5 H, 

m, Ph), 7.81 (1 H, d, J = 8.0 Hz, 5′Ar-H), 7.95 (1 H, dd, J = 8.0, 2.0 Hz, 6′Ar-H), 8.18 (1 H, d, 

J = 2.0 Hz, 2′Ar-H), 9.64 (1 H, br s, NHCO), 13.57 (1 H, br s, COOH); δC (125 MHz, 

DMSO-d6) 13.16 (Me), 41.44 (MeCH2N), 49.12 (PhCH2N), 102.30 (C5), 126.41 (C6′), 

127.05 (C4″), 127.27 (C2″, C6″), 127.61 (C2′), 128.43 (C3″, C5″), 131.59 (C5′), 132.15 

(C4′), 132.74 (C3′), 133.76 (C1′), 138.24 (C1″), 152.83 (NHCO), 154.86 (C4), 163.98 
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(COOH), 164.25 (C2); m/z (ESI+) 450 (100%, (M + H)
+
), 899 (4, 2M + H), 271 (4, M – 

C7H7, EtN, CO2); tR = 13.14 min. 

 

Biology 

Transcription Assay. The assay was performed as described previously
56

 with slight 

modifications. E. coli RNA polymerase holoenzyme was purchased from Epicentre 

Biotechnologies (Madison, WI). Final concentrations in a total volume of 30 µL were one unit 

of RNA polymerase (0.5 µg) which was used along with 60 nCi of [5,6-
3
H]-UTP, 400 µM of 

ATP, CTP and GTP as well as 100 µM of UTP, 20 units of RNAse inhibitor (RiboLock, 

Fermentas), 10 mM DTT, 40 mM Tris-HCl (pH 7.5), 150 mM KCl, 10 mM MgCl2 and 0.1% 

CHAPS. As a DNA template 3500 ng of religated pcDNA3.1/V5-His-TOPO were used per 

reaction. Prior to starting the experiment, the compounds were dissolved in DMSO (final 

concentration during experiment: 2%). Dilution series of the compounds were prepared using 

a liquid handling system (Janus, PerkinElmer, Waltham, MA). The components described 

above (including the compounds) were preincubated in absence of NTPs and DNA for 10 min 

at 25 °C. Transcription reaction was started by the addition of a mixture containing DNA 

template and NTPs and incubated for 10 min at 37 °C. The reaction was stopped by the 

addition of 10% TCA, followed by a transfer of this mixture to a 96-well Multiscreen GFB 

plate (Millipore, Billerica, MA) and incubation for 45 min at 4 °C. The plate underwent 

several centrifugation and washing steps with 10% TCA and 95% EtOH to remove residual 

unincorporated 
3
H-UTP. After that the plate was dried for 30 min at 50 °C and 30 µL of 

scintillation fluid (Optiphase Supermix, PerkinElmer) was added to each well. After 10 min 

the wells were assayed for presence of 
3
H-RNA by counting using Wallac MicroBeta TriLux 

system (Perkin Elmer). To obtain inhibition values for each sample, their counts were related 

to DMSO control. 

Determination of IC50 values. Three different concentrations of the compound were chosen 

(two samples for each concentration) in the linear range of the log dose response curve      

(20‒80% inhibition) including concentrations above and below the IC50 value. Values of 

percent inhibition were plotted versus the inhibitor molar concentrations on a semi-log plot. 

IC50 values were calculated as the molar concentration causing 50% inhibition of RNAP 

activity. At least three independent determinations were performed for each compound 

(standard deviation <20%). 
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Minimal inhibitory concentration determinations. MIC values were determined in 96-well 

plates (Sarstedt, Nümbrecht, Germany) against Staphylococcus aureus subsp. aureus 

(Newman strain), Bacillus subtilis subsp. subtilis, Pseudomonas aeruginosa PAO1, E. coli 

K12, E. coli TolC, and the Rif-resistant E. coli TolC mutants: E. coli TolC β Q513L and 

E. coli TolC β H526Y. As bacteria start OD600 0.03 was used in a total volume of 200 µL in 

lysogeny broth (LB) medium containing the compounds dissolved in DMSO (maximal 

DMSO concentration in the experiment: 1%). Final compound concentrations (in duplicates) 

were prepared by serial dilution ranging from 0.02‒100 µg/mL depending on their 

antibacterial activity and solubility in growth medium. The ODs were measured using a 

POLARstar Omega (BMG labtech, Offenburg, Germany) after inoculation and after 

incubation for 18 h at 37 °C with 50 rpm (200 rpm for P. aeruginosa PAO1). Given MIC 

values are means of two independent determinations (three if MIC <10 µg/mL) and defined as 

the lowest concentration of compound that reduced OD600 by ≥95%. 

Selection of Rif-resistant E. coli TolC spontaneous mutants. An E. coli TolC culture with 

an OD600 0.70 in LB was subcultured to fresh medium containing 3-fold the MIC of Rif every 

24h with a dilution factor of 1:5. The cultures were incubated at 37 °C for 24 h with shaking. 

After 4 cycles the bacteria were transferred on LB agar plates containing 3-fold the MIC of 

Rif. The plates were incubated at 37 °C for 24 h. Single colonies were  picked and transferred 

to liquid culture in the presence of 3-fold the MIC of Rif. Rif-resistant mutants were 

characterized by sequencing of RNAP rpoB. 

MIC determinations in presence of polymyxin B nonapeptide (PMBN) or phenyl-

arginine-β-naphthylamide (PAβN). The same procedures followed as mentioned above with 

minor modifications: Before inoculation, bacteria were cultured in LB medium containing 

PMBN (1 µg/mL) or PAβN (20 µg/mL) (10 µg/mL in case of E. coli TolC) for 2 h and 

subsequently diluted with the same medium to OD600 0.06. Inocula of 100 µL were added to 

the wells containing 100 µL of the specific concentrations of the compounds in PMBN/PAβN 

containing medium. MIC50 values were determined for E. coli K12, and E. coli D22. 

Determination of resistance rate. Procedures were performed according to a described 

method
12

 with modifications. Defined numbers of E.coli TolC cells (10
4
‒10

12
) were incubated 

in LB in presence of the 2× MIC of Rif, Myx B or compound 30 in parallel (16 h, 37 °C, 

50 rpm, 0.5% DMSO). On each of the three following days, a fraction of each sample was 

supplemented with fresh compound containing LB followed by recultivation (conditions as 

before). The final cultures were plated on LB agar to determine the bacterial start 
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concentration which was needed to yield at least one colony on the plates. This threshold was 

determined to be the resistance rate. 

Cytotoxicity. HEK 293 cells, a Human Embryonic Kidney 293 cell line, (2 × 10
5
 cells per 

well) were seeded in 24-well, flat-bottomed plates. Culturing of cells, incubations and OD 

measurements were performed as described previously
57

 with slight modifications. 24 h after 

seeding the cells, the incubation was started by the addition of compounds in a final DMSO 

concentration of 1%. The living cell mass was determined after 24, 48 and 72 h followed by 

the calculation of LD50 values. 

 

Computational chemistry 

All computational work was performed using Molecular Operating Environment (MOE) 

version 2010.10, Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite 910, 

Montreal, Quebec, H3A 2R7, Canada. 

Similarity analysis. A database containing the compounds 11, 21, 30, and 42 was created and 

2D fingerprint GpiDAPH3 (graph pi-donor-acceptor-polar-hydrophobe-3 point 

pharmacophore) was calculated for all entries. Compound 11 was selected as reference 

structure and sent to MOE window. In the database viewer window, similarity search was 

performed by setting the fingerprint system to GpiDAPH3, and using the similarity metric 

Tanimoto coefficient (TC) to measure similarity between molecules. TC values range from 0 

(no similarity) to 1 (complete similarity). 

Flexible alignment. Four ligands (10, 20, 29, and 41 representing classes I‒IV respectively) 

were sketched using molecular builder of MOE, and each structure was subjected to energy 

minimization up to a gradient 0.05 Kcal/mol Å using the MMFF94x force field. The 

compounds were aligned using the flexible alignment mode of MOE with stochastic 

conformational search option was turned on, and configuration limit was set to 200 and 

iteration limit was set to 1000. Alignment had the best similarity score was retained and 

refined by MOE. 

Preparation of protein structure for docking. X-ray crystal structure of the 

T. Thermophilus RNA polymerase holoenzyme in complex with dMyx B (Protein Data Bank 

(PDB) code 3EQL)
7
 was used to perform the molecular docking study. In the sequence editor 

panel of MOE, chains C and D (corresponding to β and β′ subunits respectively) were 
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selected, and all other chains were deleted. Hydrogen atoms were added to the receptor atoms, 

and the potential of protein was fixed. 

Ligand-receptor docking. The binding site was set to dummy atoms which were identified 

by the site finder mode, and the amino acid residues were chosen where dMyx B binds in the 

switch region. Docking placement was triangle matcher with rotate bonds option was turned 

on, the 1
st
 rescoring was ASE with force field refinement, and the 2

nd
 rescoring was alpha HB. 

Calculation of angle. Each structure was loaded from a previously prepared database of the 

target compounds into the MOE window, then it was subjected to energy minimization up to 

gradient 0.05 Kcal/mol Å using the MMFF94x force field. Angle between the aryl group and 

the ureido side chain was determined by activating the measure button and choosing angles 

option, then selecting carbon atom no. 1 of the aryl group, the corresponding carbon atom on 

the heterocyclic ring, and nitrogen atom no. 1 of the ureido group respectively.      
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4 Final discussion 

This thesis aimed at the establishment of suitable test systems, which enable the identification 

and characterization of novel anti-infective agents targeting the RNAP ‘switch region’ or 

CsrA and thereby providing useful information for rational drug design. The developed test 

systems were tailored to the specific protein targets and included biophysical and biochemical 

techniques as well as in vitro and in cellulo assays. In the following sections, the different 

assays as well as their outcome for drug discovery efforts targeting RNAP ‘switch region’ and 

CsrA will be discussed. 

For reasons of clarity, the designation of the compounds discussed in chapter 4 is composed 

of the letter of the corresponding manuscript and the Arabic compound number (e.g., A2 

refers to compound 2 from Publication A). 

 

4.1 Characterization of RNAP ‘switch region’ inhibitors 

 

4.1.1 Aryl-ureido-heterocyclic-carboxylic acids as novel RNAP inhibitors  

The 5-aryl-3-ureidothiophene-2-carboxylic acids were discovered in a virtual screening 

approach based on a pharmacophore model, which included both protein features from the 

RNAP ‘switch region’ as well as ligand features from Myx (Sahner et al., 2013b). Chemical 

optimization guided by SAR studies resulted in a series of potent RNAP inhibitors with IC50 

values in the single-digit micromolar range (Sahner et al., 2013b). This provided the basis for 

an analog design strategy to explore novel chemical scaffolds as RNAP inhibitors, which is 

described in Publication B. Starting from the 5-phenyl-3-ureidothiophene-2-carboxylic acids, 

further subclasses of the aryl-ureido-heterocyclic-carboxylic acids were developed and 

studied including regioisomeric thiophene as well as bioisosteric furan and thiazole scaffolds. 

Nonetheless, the in vitro activity could not be increased compared to the parent class.  

A prerequisite for the development of potent antibiotics is that the in vitro effects need to be 

converted into the desired effects in cellulo. The aryl-ureido-heterocyclic-carboxylic acids 

described in reference (Sahner et al., 2013b) and in Publications A and B possessed potent 

antibacterial activity against Gram-positive bacteria such as Bacillus subtilis and S. aureus. 

The best inhibitors displayed minimal inhibitory concentration (MIC) values in the range of 

2 μg/mL. However, these compounds lacked activity against the Gram-negative strains 

P. aeruginosa and E. coli K12. Strikingly, their activity was rescued in the strain E. coli TolC, 
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which is deficient in the AcrAB-TolC multidrug efflux system. This indicated that the limited 

effectiveness in Gram-negative bacteria was mediated by an efficient efflux of the 

compounds. This hypothesis was further supported by the fact that the efflux pump inhibitor 

phenylalanine-arginine β-naphtylamide (PAβN) increased the susceptibility of the E. coli 

strains K12 (wild type), D22 (lipopolysaccharide mutant with increased outer membrane 

permeability), and even TolC to the compounds along with a decrease of MIC values by a 

factor of 2–14. These results suggested that other efflux pumps beside the AcrAB-TolC 

system are also involved in the efflux of this compound class in E. coli. Notably, since PaβN 

is also described to permeabilize the outer membranes in E. coli, the observed effect may not 

solely arise from efflux pump inhibition (Lamers et al., 2013). However, addition of another 

outer membrane permeability enhancer, polymyxin B nonapeptide, had no substantial effect 

on the susceptibility of the tested E. coli strains to the tested RNAP inhibitors (Publication B). 

In order to gain mechanistic insights into the compounds’ mode of action, a high performance 

liquid chromatography (HPLC)-based abortive transcription assay was performed with 

compounds A1 and A6 as described in Publication A. The results proved that the tested aryl-

ureidothiophene-2-carboxylic acids inhibit the bacterial transcription during the initiation 

phase, likewise other ‘switch region’ inhibitors. Nonetheless, this is not a clear evidence that 

RNAP inhibition is mediated exclusively through binding to the ‘switch region’ since 

inhibitors of the σ
70

:core assembly or nucleotide addition would exhibit the same behavior. A 

previous study indeed reported that the aryl-ureidothiophene-2-carboxylic acid class interferes 

with the σ
70

:core assembly in an ELISA-based competition assay (Hüsecken et al., 2014). Due 

to the fact that these inhibitors retain their activity in σ-independent transcription assay 

(unpublished data), only using core RNAP, it can be concluded that the mechanism of action 

is not solely based on interrupting the σ
70

:core interaction. 

To enable further optimization of this structural class, it was essential to validate the switch 

region as a binding site and to gain detailed information about the ligands’ binding mode.  
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Figure 11. Structures of selected aryl-ureidothiophene-carboxylic acids. 

 

4.1.2 Binding site elucidation  

In rational drug discovery, knowledge of a ligand’s exact binding mode is of great 

importance. Detailed information about the molecular interactions between a ligand and its 

macromolecular receptor protein enables optimization towards ligands with enhanced binding 

affinity and target selectivity (Greer et al., 1994). Therefore, site-directed mutagenesis, 

ligand-based NMR techniques, and molecular docking were implemented to reveal the 

compounds’ binding site and to further narrow down the protein domains essential for ligand 

binding (Publication A). 

In a first attempt to confirm that the aryl-ureidothiophene-2-carboxylic acids bind to the 

‘switch region’ as proposed from docking studies (Sahner et al., 2013b) single amino acids in 

the supposed binding site were mutated via site-directed mutagenesis. Subsequently, the effect 

of the inserted mutations on the RNAP transcription inhibition by the compounds and their 

antibacterial activity were studied. As an outcome of this experiment it was expected that 

mutations of amino acids significantly involved in the inhibitor-receptor interaction would 

result in reduced biological activity. Surprisingly, none of the selected mutations in the 

‘switch region’ had a significant influence neither on the in vitro RNAP inhibitory activity nor 

on the in cellulo antibacterial activity of the inhibitors. This might be attributed to the 

conformational flexibility of this binding site. It has been shown that, during transcription as 

well as upon binding of dMyx, the ‘switch region’ undergoes substantial conformational 

changes (Belogurov et al., 2009; Srivastava et al., 2011; Wiesler et al., 2012). In addition, 

molecular docking studies suggested that binding of the aryl-ureidothiophene-2-carboxylic 

         

    

 

 

 

               

 R1 R2 R3 

A1 3,4-di-Cl Et Bn 
A2 3,4-di-Cl H Ph 
A6 4-NO2 Et Bn 

A11 4-OPh Et Bn 
A13 3-NO2 H Bn-pOMe 

JHS15 3-Cl Et Bn 

 R1 R2 R3 

B30 3,4-di-Cl Et Bn 
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acids in the ‘switch region’ is predominantly based on hydrophobic contacts, CH-π and Van 

der Waals interactions rather than on specific hydrogen bond interactions (Sahner et al., 

2013b). It might therefore be hypothesized that the effects of the inserted mutations could be 

tolerated and/or compensated owing to the overall hydrophobic character of the ‘switch 

region’ as well as its conformational flexibility. Nevertheless, it cannot be excluded that the 

mutation experiments missed amino acids critical for ligand binding. More exhaustive 

mutation experiments would be needed covering the whole interaction area within the 

supposed binding site. 

In a next step, we exploited biophysical techniques to further investigate if the aryl-

ureidothiophene-2-carboxylic acids are true ‘switch region’ binders as intended from the 

inhibitor design concept. To this end, STD NMR competition studies with known ‘switch 

region’ binders (Myx, Cor, and Rip) and compound A6 were performed. Since STD NMR 

uses large excess of ligand, A6 was chosen as test compound because of its favourable water 

solubility compared to that of other congeners of this class. The STD NMR experiments 

demonstrated that addition of increasing concentrations of compound A6 to an RNAP/Myx 

mixture results in a total displacement of STD signals belonging to Myx, thereby indicating 

that compound A6 and Myx compete for the same binding site on RNAP. Moreover, STD 

signals belonging to Cor and Rip were also significantly diminished upon addition of 

compound A6, further affirming that A6 is a ‘switch region’ binder. 

Conversely, titrating Myx to an RNAP/A6 mixture did not lead to a significant decrease of 

STD signals belonging to compound A6. This provided indication of the existence of a second 

binding site for the aryl-ureidothiophene-2-carboxylic acids on RNAP. Tryptophan 

fluorescence quenching studies with RNAP and compound A6 further corroborated this 

hypothesis. Monitoring the intrinsic fluorescence quenching of a protein upon titration of its 

ligand can be applied to determine the binding affinity as well as the binding stoichiometry of 

the ligand (Epps et al., 1999; Hansen et al., 2002). Dose-response experiments with 

compound A6 exhibited a biphasic saturation curve, suggesting the existence of more than 

one binding site for the tested compound (Elalaoui et al., 1994). In addition, previous findings 

showed that the ureidothiophene carboxylic acids interrupt the σ
70

:core assembly and 

therefore might also bind to the σ
70

:core interface of RNAP (Hüsecken et al., 2014). Existence 

of a second binding site might also explain the results from the mutagenesis studies. However, 

it remains to be elucidated whether the compounds’ RNAP inhibitory activity is solely 
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mediated through binding to the RNAP ‘switch region’ or also arises from binding to other 

target sites within RNAP. 

To rule out an allosteric effect for the displacement of Myx in the STD NMR studies and to 

obtain detailed information on the binding orientation of the compounds in the binding pocket 

we implemented INPHARMA NMR experiments. This technique is based on monitoring and 

evaluating intermolecular protein-mediated NOE signals between two competitively binding 

ligands. Provided that a structural model of the receptor in complex with the reference ligand 

is available, as it is the case for Thermus thermophilus RNAP in complex with Myx 

(Mukhopadhyay et al., 2008), the obtained information can be exploited to determine the 

relative binding mode of a ligand competing with the reference for the same binding site. 

INPHARMA experiments were conducted with compound A6 or A13 together with E. coli 

core RNAP and Myx. Thereby, a set of INPHARMA correlations between A6 and Myx as 

well as between A13 and Myx could be observed, confirming that both members of this 

inhibitor class compete with Myx. Furthermore, the INPHARMA results revealed that both 

compounds A6 and A13 interact with the Myx western chain binding site and only minimally 

extend to the Myx eastern chain binding site. Interestingly, strong INPHARMA cross peaks 

were detected between methyl -24 of the Myx western chain and protons of both aromatic 

ring systems of A6 and A13. Therefore, the results propose that compounds A6 and A13 bind 

to the RNAP ‘switch region’ in two different poses with inverted orientations.  

The structural information derived from the INPHARMA NOEs was exploited to evaluate the 

different binding poses predicted by molecular docking and to select the compounds’ correct 

binding mode. Noteworthy, binding modes with similar docking scores but inverted 

orientations were obtained from docking studies for compound A6 as well as for compound 

A13. Consecutively, the binding mode found by INPHARMA was supported by a co-crystal 

structure of compound A11 in complex with E. coli core RNAP (Murakami, unpublished 

results). Clear electron density in the Myx western chain binding site indicated the presence of 

compound A11 as predicted by INPHARMA. Nevertheless, the resolution attained for the 

complex was not sufficient to detect the binding orientation of this compound in the 

co-crystal.  

In conclusion, the mutagenesis studies led to ambiguous results concerning the interaction 

profile of the investigated RNAP ‘switch region’ inhibitors. In contrast, the ligand-based 

NMR techniques implemented in this work have proven to be powerful tools for providing 
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detailed insights into ligand-protein interactions for this target site. Using a combination of 

STD NMR, INPHARMA, and molecular docking we were able to unambiguously prove that 

two representatives of the aryl-ureidothiophene-2-carboxylic acids and Myx bind 

competitively to the same target site. In addition, the binding mode of the aryl-

ureidothiophene-2-carboxylic acids in the RNAP ‘switch region’ could be determined 

providing a basis for structure-based optimization. However, the applicability of STD NMR 

and INPHARMA methods are generally limited to low affinity ligands usually present during 

early stages of drug development. In addition, for INPHARMA studies, a structural model of 

the reference ligand bound to its receptor is required, which is not always available. 

Moreover, it should be noted that STD NMR and INPHARMA results need to be treated with 

care since aggregation or off-target binding events such as unspecific binding to protein 

surfaces contribute to the NMR signals and might cause artifacts (Lepre et al., 2004; Barile 

and Pellecchia, 2014). However, a major advantage of NMR spectroscopy methods compared 

to X-ray crystallography is that structural information can be obtained in solution. This is 

especially favourable for flexible proteins that can exhibit significantly different 

conformations in the crystal state from those in solution (Danley, 2006). 

Within the scope of our drug development efforts, verification of the RNAP ‘switch region’ as 

a specific binding site of the aryl-ureidothiophene-2-carboxylic acids was considerably 

important given the background that this structural class does not only bind to two binding 

sites on RNAP but also inhibits PqsD, an enzyme involved in the P. aeruginosa quorum 

sensing system. The established binding mode can be used as a basis for structural 

optimization of the ‘switch region’ inhibitors towards an improved selectivity profile. 

Previous work demonstrated that it is possible to develop ureidothiophene-2-carboxylic acids, 

which act selectively on RNAP or PqsD displaying different SARs for the two targets (Sahner 

et al., 2013a). 

 

4.1.3 Potential of defeating antibiotic resistance 

Our anti-infective drug discovery efforts were focussed on addressing underexploited target 

sites in order to circumvent antibiotic resistances. In pursuing this strategy, RNAP inhibitors 

targeting the ‘switch region’ (Sahner et al., 2013b; Publication A; Publication B) have been 

developed. The aryl-ureido-heterocyclic-carboxylic acid inhibitors exhibit a significantly 

lower tendency of spontaneous resistance development than Myx or the clinically applied 

antibiotic Rif. Accordingly, the resistance frequency of this structural class, exemplarily 
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shown for B30 (< 4.2 ×  10
-11

) and JHS15 (< 4.2 ×  10
-11

) (Figure 11),  is reduced by a factor 

of > 1000 compared to Myx (7.1 ×  10
-8

) and Rif (8.3 ×  10
-8

) (Sahner et al., 2013b; 

Publication B). This might be attributed to the existence of a second target site aside from the 

RNAP ‘switch region’. In addition, the aryl-ureidothiophene-2-carboxylic acid inhibitors only 

occupy the area of the Myx western chain binding site and are therefore not affected by single 

amino acid mutations in the eastern part of the Myx binding site, which confer high level 

resistance to Myx (Mukhopadhyay et al., 2008). 

In order to investigate the inhibitors’ ability to overcome existing antibiotic resistances, a 

subset of compounds was tested for antibacterial activity against Rif-resistant E. coli TolC as 

well as against a set of methicillin-resistant S. aureus (MRSA) strains exhibiting different 

antimicrobial resistance patterns (Publications A and B). As presumed from the compounds’ 

distinct binding site to that of Rif, the inhibitors exhibited no cross-resistance with Rif. 

Furthermore, the tested aryl-ureidothiophene-2-carboxylic acids were highly potent against 

the tested MRSA isolates with compound A2 displaying a MIC value of 2 μg/mL, which is 

similar to that of Myx.  

To summarize, in view of the lower propensity of spontaneous resistance development 

combined with their potent antibacterial activity against Rif-resistant E. coli TolC and 

clinically relevant MRSA strains, the aryl-ureido-heterocyclic-carboxylic acids can be 

considered as promising scaffolds for antibacterial drug development.  

 

4.1.4 Evaluation of the RNAP ‘switch region’ as target for anti-infective drug 

development 

The RNAP ‘switch region’ represents a validated antibacterial drug target. A great benefit of 

this target site is that ‘switch region’ binders share no cross-resistance with the rifamycins. 

Additionally, it is highly conserved in bacterial RNAP, which intrinsically qualifies the 

RNAP ‘switch region’ as target for broad-spectrum therapy. However, even though several 

‘switch region’ binders have already been identified with potent in vitro RNAP inhibitory 

activity, their antibacterial spectrum is mainly limited to Gram-positive bacteria (Häbich and 

Nussbaum, 2009). This may be attributed to the generally high lipophilicity of these inhibitors 

(O'Shea and Moser, 2008; Brown et al., 2014). However, considering the overall hydrophobic 

character of the ‘switch region’, chemical modifications leading to more hydrophilic 

compounds are supposed to result in a loss of activity, which was exemplarily shown in 
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Publication A. Besides, clinical use of the potent natural product ‘switch region’ RNAP 

inhibitors Myx, Cor, and Rip is hampered by their inappropriate physicochemical profiles 

including high molecular weight, insufficient stability, high serum protein binding (Häbich 

and Nussbaum, 2009). Studies aiming at the development of Myx analogs have shown that 

even subtle structural changes were not tolerated and led to a loss of biological activity except 

in the case of dMyx. The only approved ‘switch region’ RNAP inhibitor, fidaxomicin, 

possesses also a narrow spectrum of antibacterial activity and its application is restricted to 

C. difficile-associated diarrhea. Its high molecular weight and low solubility contribute to its 

very poor oral bioavailability. All these facts indicate that these natural product inhibitors 

might not represent optimal chemical lead structures for the development of broad-spectrum 

antibiotics. Small molecule ‘switch region’ inhibitors including the described classes of the 

squaramides, the pyridyl-benzamides, or the aryl-ureido-heterocyclic-carboxylic acids have 

the advantage of being easily synthetically accessible. However, they lack antibacterial 

activity against Gram-negative pathogens (McPhillie et al., 2011; Buurman et al., 2012; 

Sahner et al., 2013b). 

In conclusion, developing inhibitors with high affinity to the ‘switch region’ combined with 

desirable ‘drug-like’ properties and broad-spectrum antibacterial activity seems to be a 

challenging task for this target site. 

 

4.1.5 Outlook 

The objective of this work was the in vitro characterization of the aryl-ureido-heterocyclic-

carboxylic acids with respect to their binding mode, mechanism of action and antibacterial 

profile. In a next step, the inhibitors should be evaluated in relevant in vivo disease models. 

Due to the inhibitors’ promising in cellulo anti-MRSA activity they will be tested in an in vivo 

murine wound model of S. aureus infection. The compounds’ insufficient physicochemical 

properties (high lipophilicity, poor water solubility) could be overcome by the use of a 

prodrug approach or advanced drug delivery technologies aiming at an improved 

pharmacokinetic profile. This might include coupling the inhibitors to a carrier system such as 

liposomes or nanoparticles (Graef et al., 2016). 

Furthermore, the established ligand-based NMR methods could be used for the identification 

of novel molecular scaffolds that bind to the Myx binding site as starting points for medicinal 

chemistry optimization.  
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4.2 Discovery of inhibitors of the CsrA-RNA interaction 

 

4.2.1 Hit identification and in vitro activity 

In the second part of this thesis, the focus was set on CsrA as a potential novel target for anti-

infective drug discovery. Thereby, the main objective was the discovery of inhibitors of the 

CsrA-RNA interaction, which was pursued by a screening and a ligand-based strategy. 

Initially, as described in Publication C, a suitable test system enabling the identification and 

characterization of such inhibitors was established that was based on SPR and fluorescence 

polarization (FP) techniques. 

SPR spectroscopy was selected as method of choice for detecting CsrA-binding molecules 

because it provides high sensitivity, fast sample throughput, and low protein consumption. 

Site-directed immobilization of the target protein ensured a homogeneous sensor surface and 

a better comparability of results obtained with different protein immobilizations. Therefore, 

CsrA was fused with the AviTag
TM

 on the C-terminus of CsrA distal from the CsrA-RNA 

interaction site to allow site-specific in vivo biotinylation using the E. coli biotin ligase BirA 

(Kay et al., 2009). Exploiting the strong interaction between the biomolecules biotin and 

streptavidin, the purified labeled protein was then captured on streptavidin-coated chips. The 

functional activity of the immobilized protein was verified by binding experiments using two 

RNA sequences (RNA_A and RNA_B) derived from known RNA targets with proven 

affinity for CsrA. The obtained dissociation constants were in accordance with those 

determined by ITC and FP as well as with the ones reported in literature indicating the 

protein’s integrity and assay compatibility. 

The screening approach was composed of a primary SPR screen to identify specific CsrA-

binders and a secondary FP screen to assess the initial hit compounds’ ability to interfere with 

the CsrA-RNA interaction. Overall, the screening library consisted of around 1,000 

structurally diverse small molecules of natural or synthetic origin. Thereof, the class of 

myxobacterial metabolites (259 compounds) were directly tested in the functional FP assay 

for reasons of poor availability.  

To ensure even the detection of fragment-sized molecules with low binding affinity in the 

primary SPR screen, a screening concentration of 100 𝜇M and relatively high protein 

immobilization levels (6,000–10,000 RU) were chosen (Shepherd et al, 2014, Gianetti, 

20011). One obstacle in establishing the SPR screening set-up was the lack of a known small 
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molecule CsrA binder, which could be used as a reference in the screening. The CsrA target 

RNAs were not suitable as a control in the screening set up because of their slow dissociation 

from the binding site and high molecular weight. Therefore, a library component with 

reproducible binding to CsrA had to be chosen as a reference to guarantee an accurate ranking 

of the screened compounds across several runs. Nevertheless, since the reference was not a 

validated CsrA-RNA inhibitor, an immediate affinity assessment of the screened compounds 

was not possible and further complicated the choice of a reasonable cut-off value for the 

screening. The threshold for hit selection was set to a low affinity level to detect CsrA binders 

covering a broad structural diversity. Furthermore, false positives were ought to be eliminated 

in the downstream FP screening. The SPR screening of 708 small molecules resulted in the 

identification of 72 dose-dependent CsrA binders, which is reflected in a hit rate of 10.2%. In 

the follow-up screen using an FP-based competition assay, 3 out of the 72 initial hits proved 

to significantly inhibit the CsrA-RNA interaction. The high number of initial hits exhibiting 

no or only weak inhibition is presumably attributed to the fact that these compounds possess 

binding sites on CsrA distant to the RNA binding interface or do not interfere with RNA 

binding. Together with 4 additional hits identified in the FP screen of 259 myxobacterial 

metabolites, the screening approach resulted in 7 structurally diverse small molecule hits 

exhibiting IC50 values in the range from 4–106 μM in the in vitro FP competition assay. 

Noticeably, none of the seven hits was able to fully displace the RNA molecules from their 

interaction site on CsrA in the test setting, achieving a maximal inhibition of the interaction of 

80%. Possible explanations for this finding could be that the hit compounds might bind to 

adjacent or partially overlapping sites relative to the RNA binding interface or to an allosteric 

site, thereby impairing RNA binding (Roehrl et al., 2004). Furthermore, all hit compounds 

showed reversible and dose-dependent binding to CsrA but not to RNA_B in SPR 

experiments. This indicated that inhibition of the CsrA-RNA interaction was derived solely 

from protein binding as intendend by our screening concept and not from interaction with the 

RNA molecule.  

In addition to the screening strategy, we implemented a rational ligand-based approach for the 

discovery of CsrA-RNA interaction inhibitors. Starting from the conserved core binding 

sequence ANGGA(N), RNA oligomers of varying length and backbone structure were 

derived. It turned out that the GGA motif with RNA backbone (GGARNA) was able to fully 

inhibit the CsrA-RNA interaction displaying an IC50 value of 113 µM, whereas the respective 

shortened GG or GA motifs totally lacked activity. The efforts made to increase the hydrolytic 

stability and/or permeability by modifications of the backbone of the GGA motif have not 
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been successful. Both elimination and methylation of the 2’OH groups present in the RNA 

backbone as well as substitution of the sugar-phosphate backbone with a peptide nucleic acid 

(PNA) backbone resulted in reduced inhibitory activity compared to GGARNA. This is in 

accordance with modelling studies (Publication C) indicating that the 2’OH groups of the 

GGARNA  backbone are involved in inter- and intramolecular H-bonds and therefore critical 

for activity. Compared to the best small molecule inhibitors identified in the screening 

approach, the ligand-based GGARNA inhibitor exhibits a rather low in vitro activity as well as 

poor ligand efficiency (LE 0.09). Nevertheless, this ligand-based inhibitor bears the 

advantages of a complete inhibition of the CsrA-RNA interaction and of a known binding site, 

which enables structure-based optimization. In addition, GGARNA could be used as a tool in 

competition experiments to identify novel inhibitors of the CsrA-GGA interaction hot spot. 

In conclusion, both strategies resulted in the discovery of CsrA-RNA interaction inhibitors. 

Noteworthy, the screening approach showed that the CsrA-RNA interaction, despite its 

extensive interaction interface, could be inhibited even with fragment-sized molecules such as 

NAT31–454537 (MW of 229 Da). Therefore, the established screening assays represent tools 

to identify small molecule inhibitors that might be more drug-like regarding stability or cell 

permeability.  

Opposed to the screening strategy, in the ligand-based approach CsrA-RNA inhibitors with a 

known binding site were discovered. The most potent inhibitor turned out to be GGARNA. 

Taking into account that shortening or backbone modifications of GGARNA were not tolerated 

concerning activity, further optimization will not be a trivial task. Nonetheless, the 

ligand-based approach generated valuable information on structural functionalities crucial for 

binding to the RNA interaction sites of CsrA. 

 

4.2.2 Outlook 

CsrA represents a potential target for broad-spectrum anti-infective therapy since it is 

essential for full virulence of various pathogens and is highly conserved among bacteria. So 

far, no small molecule inhibitors of CsrA have been available and first target validation efforts 

were based on bacterial mutant studies (Barnard et al., 2004; Mulcahy et al., 2008). 

Accordingly, the proof of concept (PoC) is still pending demonstrating that modulation of 

CsrA activity by small molecules inhibitors results in the desired pharmacological effect 

in cellulo and in vivo. In this respect, the identified small molecule CsrA-RNA interaction 
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inhibitors can serve as tool compounds to study the cellular effects of CsrA-RNA interaction 

inhibition on bacterial virulence towards a target validation. Therefore, in a next step, 

co-crystallization trials should be undertaken for binding site elucidation to enable 

structure-based optimization of the screening hits to highly affine inhibitors, which can be 

applied for provision of in vivo PoC. In this context, fragment-linking strategies could also be 

considered for hit optimization depending on the inhibitors’ binding modes 
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6 Supporting information 

6.1 Supporting Information for Publication A 

Full supporting information is available online: 

http://pubs.acs.org/doi/suppl/10.1021/cb5005433 

 

 

6.1.1 Supplemental experimental procedures 

Intrinsic fluorescence quenching assay. 

Intrinsic fluorescence quenching assay was performed as described by Mukhopadhyay et al. 

(1) with slight modifications. 

Fluorescence emission intensities of RNAP core enzyme in TB [100 µl; 50 mM Tris-HCl (pH 

8.0), 100 mM KCl, 10 mM MgCl2, 1 mM dithiotreitol, 0.01 % Tween 20, 5% glycerol] were 

measured before and 10 min after addition of the inhibitors [10 µl; TB, 50% DMSO]. 

Employing a Polarstar Omega (BMG Labtech, Ortenberg, Germany) 280 nm and 350 nm 

were chosen as excitation and emission wavelengths, respectively. The observed reductions of 

intrinsic fluorescence at each inhibitor concentration were corrected for dimethyl sulfoxide/ 

buffer dilution and the inner-filter effect using N-acetyltryptophanamide. 

Data were plotted as percent quenching of the intrinsic fluorescence in dependence of 

inhibitor concentration. The highest observed quenching was set at 100%. Data are means of 

three independent determinations. For non-linear regression analysis GraphPad Prism 5 

(GraphPad Software, La Jolla, CA, USA) was used. Experimental data of rifampicin was 

fitted to a one-site binding model, whereas data of compound 6, which showed a biphasic 

quenching, was fitted to a two-affinity model (2) as demonstrated by Döppenschmitt et al. (3) 

earlier.  
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Synthesis of compound 13. 

Materials and methods 

Starting materials were purchased from commercial suppliers and used without further 

purification. Column flash chromatography was performed on silica gel (40–63 µM), and 

reaction progress was monitored by TLC on TLC Silica Gel 60 F254 (Merck). All moisture-

sensitive reactions were performed under nitrogen atmosphere using oven-dried glassware 

and anhydrous solvents. 
1
H and 

13
C NMR spectra were recorded on Bruker Fourier 

spectrometers (300 or 75 MHz) at ambient temperature with the chemical shifts recorded as δ 

values in ppm units by reference to the hydrogenated residues of deuteriated solvent as 

internal standard. Coupling constants (J) are given in Hz and signal patterns are indicated as 

follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet, br., broad signal. 

The purity of the final compounds was measured by HPLC. The Surveyor LC system 

consisted of a pump, an autosampler, and a PDA detector. Mass spectrometry was performed 

on a MSQ electrospray mass spectrometer (ThermoFisher, Dreieich, Germany). The system 

was operated by the standard software Xcalibur. A RP C18 NUCLEODUR 100-5 (125 mm x 

3 mm) column (Macherey-Nagel GmbH, Dühren, Germany) was used as the stationary phase. 

All solvents were HPLC grade. In a gradient run the percentage of acetonitrile (containing 

0.1% trifluoroacetic acid) was increased from an initial concentration of 0% at 0 min to 100% 

at 15 min and kept at 100% for 5 min. The injection volume was 10 µL, and flow rate was set 

to 800 µL/min. MS analysis was carried out at a spray voltage of 3800 V and a capillary 

temperature of 350 °C and a source CID of 10 V. Spectra were acquired in positive mode 

from 100 to 1000 m/z at 254 nm for the UV trace. 
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Synthesis and spectroscopic data of compound 13 

 

Scheme S1: Synthesis of 5-aryl-3-ureidothiophene-2-carboxylic acids. 

 

Method A, general procedure for the synthesis of 5-aryl-3-amino-2-carboxylic acid 

methylester (II) (7)  

POCl3 (26.1 g, 0.17 mol) was added dropwise to DMF (24.9 g, 0.34 mol) maintaining the 

temperature below 25 °C (cooling in ice bath) and stirred for additional 15 min. The 

acteophenone I (85.0 mmol) was added slowly and the temperature was kept between 40 and 

60  C. After complete addition, the mixture was stirred for 30 minutes at room temperature. 

Hydroxylamine hydrochloride (23.6 g, 0.34 mol) was carefully added portionwise 

(exothermic reaction!) and the reaction was stirred for additional 30 min without heating. 

After cooling to room temperature, the mixture was poured into ice water (300 mL). The 

precipitated β-chloro-cinnamonitrile was collected by filtration, washed with H2O 

(2 x 50 mL) and dried under reduced pressure over CaCl2. In the next step sodium (1.93 g, 

84.0 mmol.) was dissolved in MeOH (85 mL) and methylthioglycolate (6.97 g, 65.6 mmol) 

was added to the stirred solution. The β-chloro-cinnamonitrile (61.1 mmol) was added and the 

mixture was heated to reflux for 30 min. After cooling to room temperature, the mixture was 

poured in ice water (300 mL). The precipitated solid was collected by filtration, washed with 

H2O (2 x 50 mL) and dried under reduced pressure over CaCl2. If necessary, recrystallisation 

was performed from EtOH. 
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Method B, general procedure for the synthesis of 5-aryl-3-amino-2-carboxylic acid (III):  

The 5-aryl-3-amino-2-carboxylic acid methyl ester II (16.6 mmol) was added to a solution of 

KOH (60 mL, 0.6M in H2O) and MeOH (60 mL). The mixture was heated to reflux for 3 h, 

concentrated, and washed with EtOAc (2 x 50 mL). The aqueous layer was cooled with ice 

and acidified with a saturated aqueous solution of KHSO4. The precipitated solid was 

collected by filtration, washed with H2O (2 x 30 mL) and dried under reduced pressure over 

CaCl2. 

 

Method C, general procedure for the synthesis of 5-aryl-2-thiaisatoic-anhydrid (IV) (8, 9)  

To a solution of the 5-aryl-3-amino-2-carboxylic acid (III) (5.28 mmol) in THF (50 mL) a 

solution of phosgene (6.10 mL, 20 wt% in toluene, 11.6 mmol) was added dropwise over a 

period of 30 min. The reaction mixture was stirred for 2 h at room temperature, followed by 

the addition of saturated aqueous solution of NaHCO3 (30 mL) and H2O (50 mL). The 

resulting mixture was extracted with EtOAc/THF (1:1, 3 x 100 mL). The organic layer was 

washed with saturated aqueous NaCl (100 mL), dried (MgSO4) and concentrated. The crude 

material was suspended in a mixture of n-hexane/EtOAc (2:1, 50 mL) heated to 50 °C and 

after cooling to room temperature separated via filtration. 

 

Method D, general procedure for the synthesis of of 5-aryl-3-ureidothiophene-2-carboxylic 

acid (V)(10) 

The 5-aryl-2-thiaisatoic-anhydrid (IV) (0.46 mmol) was suspended in water (7.5 mL) and the 

appropriate amine (4.60 mmol) was added. The reaction mixture was stirred, heated to 100 °C 

and then cooled to room temperature. The reaction mixture was poured into a mixture of 

concentrated HCl and ice (1:1) and extracted with EtOAc/THF (1:1, 60 mL). The organic 

layer was washed with aqueous HCl (2M), followed by saturated aqueous NaCl (2 x 50 mL), 

dried (MgSO4) and concentrated. The crude material was suspended in a mixture of 

n-hexane/EtOAc (2:1, 20 mL) heated to 50 °C and after cooling to room temperature 

separated via filtration. 
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3-(3-(4-Methoxybenzyl)ureido)-5-(3-nitrophenyl)thiophene-2-carboxylic acid 

 

 

 

The title compound was prepared from 3’-nitroacetophenone according to the general procedures A-D. 

1
H NMR (DMSO-d6, 300 MHz): δ = 13.22 (br. S, 1H), 9.41 (s, 1H), 8.44 (s, 1H), 8.37 (t, J = 

1.7 Hz, 1H), 8.23 (dd, J = 1.7, 8.1 Hz, 1H), 8.09 – 8.20 (m 2H), 7.75 (t, J = 8.1 Hz, 1H), 7.24 

(d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.24 (d, J = 5.6 Hz, 2H), 3.73 (s, 3H) ppm. 

13
C NMR (DMSO-d6, 75 MHz): δ = 164.5, 158.3, 153.8, 148.4, 146.1, 143.8, 134.2, 131.9, 

131.6, 131.0, 128.7, 123.5, 119.8, 119.6, 113.7, 107.9, 55.0, 42.5 ppm. 

HPLC-Purity: 96.3 % 
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6.1.2 Supplemental figures 

 

Figure S1. Myx binding pocket including mutated amino acids. Myxopyronin A is colored in green. β 

subunit amino acids are colored in turquois, β' subunit amino acids are colored in yellow. 

 

 

Figure S2. STD NMR competition experiments with 6 and Cor/ Rip 

 

 

 

 

 

 

 

Figure S2 (A). Off-resonance spectrum of compound 6 in presence of core RNAP (colored in red). 

Corresponding STD NMR spectrum of 6 in presence of core RNAP is colored in blue. 
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Figure S2 (B). STD NMR spectrum of Rip in presence of core RNAP. 

 

 

 

 

 

 

 

 

 

Figure S2 (C). STD NMR competition of Rip and 6 in presence of core RNAP. STD spectrum of Rip 

in presence of core RNAP colored in blue. Corresponding spectra upon addition of 1:1 equivalent of 6 

(red) and 1:2 equivalents of 6 (green). 
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Figure S2 (D). STD NMR spectrum of Cor in presence of core RNAP. 

 

 

 

 

 

 

 

Figure S2 (E). STD NMR competition of Cor and 6 in presence of core RNAP. STD 

spectrum of Cor in presence of core RNAP colored in blue. Corresponding spectra upon 

addition of 1:1 equivalent of 6 (red) and 1:3 equivalents of 6 (green). 
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Figure S3. Effect of increasing inhibitor concentrations on the intrinsic fluorescence of RNAP. (A) 

rifampicin (B) 6 

 

For rifampicin, as expected and as already shown for myxopyronin
 
(1), a monophasic curve 

progression was obtained, meaning that the compound is binding to a single binding site. 

In contrast, 6 exhibits a biphasic character of the curve indicating that the compounds bind to 

more than one single binding site. 

 

 

 

 

 

Figure S4. Numbering of atoms of compound 13. 
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6.1.3 Supplemental tables 

Table S1. Antibiogram of the MRSA strains 

Antibiotic                /            MRSA COL USA300 Lac 5191 R44 

ampicillin R R R R 

oxacillin R R R R 

gentamicin S S S S 

ciprofloxacin S R R S 

moxifloxacin S I R S 

erythromycin S R R R 

clindamycin S S R R 

linezolid S S S S 

daptomycin S S S S 

vancomycin S S S S 

tetracyclin R S S R 

tigecycline S S S S 

fosfomycin S S R S 

fusidinsäure S S S S 

rifampicin S S S S 

trimethoprim/sulfamethoxazol S S S R 

R, resistant; I, intermediary resistant; S, susceptible 

 

 



Supporting information 117 

 

117 

 

Table S2. MIC value determination in Ec TolC switch region mutants 

Compd 

Ec TolC 

wild type 

MIC [µg/ml] 

 

Ec TolC 

βˈ K334G 

MIC [µg/ml] 

 

 

Ec TolC 

βˈ K334E 

MIC [µg/ml] 

 

Ec TolC 

βˈ K345T 

MIC [µg/ml] 

 

Ec TolC 

βˈ K345N 

MIC [µg/ml] 

 

Ec TolC 

β V1275M 

MIC [µg/ml] 

 

Ec TolC 

β E1279K 

MIC [µg/ml] 

 

 

Ec TolC 

β L1291F 

MIC [µg/ml] 

A1 12.5–25 25 > 25 >25 25 25 25 25 

A2 25 12.5 > 25 12.5–25 25 25 25 12.5–25 

A4 25 50 > 50 25–50 50 25 25 25 

A5 12.5 25 > 25 12.5–25 12.5 25 12.5 12.5 

A7 25 25 > 50 25–50 25 25 25 25 

Myx 1.25 10 > 10 > 25 > 25 > 25 > 25 2.5 

Rif 6.25 6.25 6.25 12.5 12.5 12.5 6.25–12.5 6.25–12.5 
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Table S3. In vitro transcription assay with wild type/ mutant RNAPs 

Compd 

RNAP 

wild type 

IC50 [µM] 

RNAP 

β S1322E 

IC50 [µM] 

 

RNAP 

βˈ Δ334–5 

IC50 [µM] 

 

RNAP 

βˈ K334A 

IC50 [µM] 

 

RNAP 

βˈ K334E 

IC50 [µM] 

 

RNAP 

βˈ K345A 

IC50[µM] 

A1 21.3 ± 0.1 18.7 ±  0.9 22.1 ± 1.8 23 ±  0.1 21.6 ±  1.3 16.6 ±  2 

A5 18.8 ± 1.9 17.9 ± 1.3 21.7 ± 3.9 20.5 ± 2.9 nd
a
 12.2 ± 0.5 

A7 35.4 ± 0.8 34.8 ± 2.5 35.3 ± 2.3 32.8 ± 5.2 33.6 ± 0.3 27.5 ± 4.9 

A8 11.6 ± 0.7 9.4 ± 1.9 10.3 ± 0.5 9.9 ± 0.5 7.7 ± 0.1 7.3 ± 1.2 

A10 22.6 ± 0.1 20.7 ± 0.8 22.1 ± 0.8 21.5 ± 1.8 24 ± 4.7 19.6 ± 1.6 

A11 16.5 ± 2.9 12.5 ± 0.1 15.7 ± 0.6 15.6 ± 0.8 nd
a
 12.8 ± 0.3 

B2 16.5 ± 1.3 13.9 ± 0.7 15.5 ± 1.5 14.8 ± 2.4 13.3 ± 1.5 12.6 ± 0.5 

Myx 0.28 ± 0.02 5.4 ± 0.1 0.63 ± 0.09  0.13 ± 0.02 0.49 ± 0.10 > 4 

Rif 33.6 ± 2.3
 b
 > 500

 b
 12.5 ± 1.6

 b
 21 ± 0.6

 b
 nd

a
 19 ± 1

 b
 

a
 nd: not determined,

 b
: IC50 [nM] 
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Table S4. Plasmid details. Plasmid pVS10, the pIA-derivatives and MF10 encode the E. coli rpoA-

rpoB -rpoC [His6] and rpoZ ORFs under control of a T7 promoter (4). Plasmid pRL663 encodes C-

terminally hexahistidine-tagged E. coli RNAP β’ subunit under control of a β tac promoter (5). 

Plasmid pRL706 encodes C-terminally hexahistidine-tagged E. coli RNAP β subunit. under control 

of a trc promoter (6).  

  

 

 

 

 

 

 

 

 

  

Plasmid Amino Acid Substitution RNAP subunit 

pVS10 - - 

pIA878 S1322E β 

pIA879 K334A β' 

pIA882 K345A β' 

pIA883 Δ334-5 β' 

MF10 K334E β' 

pRL663 derivative K345N β' 

pRL663 derivative K345T β' 

pRL706 derivative V1275M β 

pRL706 derivative L1291F β 
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