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“It's still magic even if  you know how it's done.”

― Terry Pratchett, A Hat Full of  Sky



ZUSAMMENFASSUNG

Nanopartikel (NP) eignen sich dazu, Wirkstoffe verzögert freizusetzen oder gezielt zum

Wirkort zu bringen. Sie sind daher von Interesse für die Applikation von Wirkstoffen über

den Respirationstrakt zur Behandlung akuter und chronischer Krankheiten der Lunge, aber

auch systemischer Erkrankungen. In den Alveolen treffen NP zuerst auf  eine nicht-zelluläre

Barriere, den Pulmonalen Surfactant (PS). Dieser ist ein Lipid-Protein Gemisch, welches nach

Impaktion der NP auf  deren Oberfläche adsorbiert. Diese „Corona“ aus Biomolekülen

moduliert die biologische Identität der NP und bestimmt deren weitere Interaktionen mit

Zellen. Während es relativ gut untersucht ist, wie NP mit Plasmaproteinen wechselwirken, ist

noch wenig über die Adsorption von PS auf  NP bekannt. Im Rahmen dieser Dissertation

wurde PS aus Schweinelungen gewonnen (pPS) und dessen Interaktionen mit NP untersucht.

Verschiedene Größenmessungen belegten die Ausbildung einer Corona, und auf  NP

verschiedener Hydrophobizität konnte die Zusammensetzung der Lipide und Proteine

quantitativ bestimmt werden. Surfactant-spezifische Proteine sind entscheidend für die

Ausbildung der Corona und vermitteln eine Lipidbindung auch auf  hydrophile NP. Die

Aufnahme von NP durch Alveolarmakrophagen konnte in vitro durch die PS-Corona

modifiziert werden. Mit dieser Arbeit konnte der Einfluss des lange ignorierten Faktors

‚Pulmonaler Surfactant auf die Nano-Bio-Interaktionen in der tiefen Lunge‘ gezeigt werden.



ABSTRACT

Nanoparticles (NPs) for drug delivery to the respiratory tract are of considerable interest, for

the treatment of chronic and acute pulmonary and systemic disorders, promising the potential

for sustained release and targeted delivery. Although the targets for these formulations are

usually cells, the NPs, once inhaled, first encounter a non-cellular barrier in the deep lung: the

pulmonary surfactant (PS). This is a lipid-protein mixture which covers the alveoli and enables

gas exchange as a result of  its surface tension lowering function. While the interaction of  NPs

with plasma proteins is routinely elucidated, the adsorption of  lung lipids and proteins onto

NPs is rather disregarded; yet, such characterization is crucial for understanding the fate of

the particles, as the PS corona displays the biological identity of NPs. In this work, native PS

was obtained from porcine lungs (pPS). The interaction with NPs in terms of  corona

formation and macrophage uptake was studied. Corona composition with respect to lipids and

proteins was determined to a high degree of  accuracy. Evaluation of  this data suggested that

surfactant associated proteins have a mediating effect on lipid binding to the NPs. In vitro

experiments with a cell line of  alveolar macrophages showed that the uptake of NPs with a

pPS corona is unique, making PS indispensable for such experiments. This dissertation sheds

new light on the ignored factor ‚pulmonary surfactant in nano-bio interactions’.
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1.1 The Respiratory System

Of  the many evolutionary feats notable in living beings, one of  the most astonishing is the

respiratory system. The lungs, which are found in all mammals as well as many vertebrates, are

vital for life as we know it. The main function of  the lungs is of  course the exchange of

oxygen (O2) against carbon dioxide (CO2). Together with the essential provision of  O2 to the

mitochondrial chain in order to produce ATP, the molecular unit of  energy transfer,

respiration also regulates blood pH and body temperature. To achieve sufficient gas exchange

between the inhaled air and the circulatory system, the lung bears an internal surface area of

about 100 m2, making it by far the largest entry portal of the human body [1]. In order to

increase the lung surface, the respiratory tract is built like an inverted tree with the trachea,

bronchioles, and alveoli equaling the trunk, branches, and leaves respectively. As shown in

Figure 1-1, this set-up still requires around 23 generations of  junctions, progressively

decreasing in diameter from about 1.8 cm for the trachea, to the bronchi, bronchioles and

alveolar ducts, and finally to the approximately 480 million alveolar sacs, which measure only

about 200 µm in diameter [2]. Together with the decrease in diameter the surface area

increases exponentially, giving the alveoli the capacity to contain 96% of the inhaled air [3].

Figure 1-1: Generations of  the respiratory tree. Adapted with permission from Macmillan Publishers
Ltd: Nature Reviews Drug Discovery [4], copyright 2007.
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1.1.1 Morphology of the Lung

The function of  the upper airways, i.e. the trachea, bronchi, and bronchioles, is to distribute

(following filtration) large amounts of  air to the respiratory zone. In this area no gas exchange

is taking place. The epithelium therefore consists of  a relatively thick layer of  goblet cells,

which produce mucus (a viscous hydrogel that in turn forms a layer coating the epithelium),

and ciliated cells, which efficiently transport the mucus towards the pharynx where it can be

expectorated together with pollutants and pathogens that might have impacted in the airways

from the air stream. The mucus layer has a variable thickness (10-30 µm in the trachea, 2-5 µm

in the bronchi [5]), and is composed of glycosylated proteins organized into a porous

ultrastructure in which particles can be trapped [6]. The epithelium becomes progressively

thinner along the respiratory tree, reaching its minimum thickness in the respiratory zone. In

the alveolar sacs (see Figure 1-2) where the gas exchange is taking place, the epithelium can be

as thin as 25 nm. This region of  the epithelium is not covered by mucus, but rather by a liquid

film, the alveolar lining fluid (ALF) which has an average thickness of  200 nm [7]. There are

three cell types which are typically found in the alveoli. The alveolar type-1 epithelial cells

(AT-1) are the major constituent of the epithelial layer and are extremely squamous in nature

(~5200 µm2), facilitating gas diffusion. AT-1 cells are differentiated from alveolar type-2

epithelial cells (AT-2), which are more cuboidal in shape and have a secretory function.

Although AT-2 outnumber AT-1 cells by approximately 2:1, on average only about 40 AT-1

cells (in comparison to 77 AT-2 cells) are needed to build 95% of an alveolus with an inner

surface area of  2.2*105 µm2 [8, 9]. This unique epithelium can withstand the extreme pressure

and size changes that occur during in- and exhalation, but is relatively sensitive to inhaled toxic

chemicals, injuries caused by a sepsis or even O2 intoxication. Without the ability to physically

remove any pollutants, as is possible in the conducting airways, the deep lung counteracts any

intruding pathogens and pollutants with large quantities of alveolar macrophages (AM; ~9%

of  total lung cells, in comparison with only 8% being AT-1 cells [8]). AMs are highly

proliferating in smokers, resulting in even higher numbers (two-fold to ten-fold) [10].

Besides the hazards of  inhaled particles, at the end of  exhalation the alveoli hold only a

minimal amount of  air, and as such are at risk of atelectasis, a serious medical condition

defined by the collapse and conglutination of  the alveolar walls [11]. To circumvent alveoli

collapse, the surface tension of  the ALF is lowered by a surface active agent, the pulmonary

surfactant (PS), a lipid-protein mixture that is secreted by AT-2 cells.
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In conclusion, the blood within the pulmonary circulation is separated from the inhaled air by

only a thin epithelial layer (covered with pulmonary surfactant and cleansed by alveolar

macrophages), a basal membrane, and the endothelium of  the blood vessels. This very thin

setup of the air-blood barrier facilitates gas exchange by passive diffusion.

Figure 1-2: Structure of  the alveolus (A) and transmission electron microscopy image of  the alveolar
space (B) with visible erythrocytes (ER). Reproduced from [12] and [13] with the permission of  F.A.
Davis and Elsevier respectively.
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1.2 The Pulmonary Surfactant

The composition of  PS is unique among the body fluids. It possesses a very high

(mainly phospho-)lipid content that constitutes about 90% of  its dry mass. The remaining

10% are proteins, some of  which are uniquely expressed in the deep lung.

1.2.1 Lipids

An enormous range of  lipids has been shown to be present in PS, most of which are

phospholipids (PL) as mentioned above. As visible in Figure 1-3A, PL are amphiphilic, with a

hydrophilic headgroup consisting of  a phosphate group and a specific terminal moiety

(e.g. choline), and a hydrophobic tail composed of  two fatty acids which can vary in carbon

chain length and degree of  saturation. The specific headgroup determines the particular PL

class and also strongly influences the PL properties; the headgroup can for instance hold a

positive charge, resulting in no overall charge or in some cases a net negative charge of  the

molecule. Their amphipathic character allows PLs to organize themselves into different shapes

and structures (examples are given in Figure 1-3B), the most prominent example being the

plasma membrane of  every mammalian cell (Figure 1-3B (ii)). In the case of  PS, the most

important aspect of structural organization is the ability of  surfactant lipids to adsorb to the

air-liquid interface and lower the surface tension (i), and to build reservoir-like micelles (iii)

and (multi-)lamellar vesicles (iv).

All major PL classes have been detected in PS, i.e. phosphatidylcholine (GPChol),

phosphatidylglycerol (GPGlyc), phosphatidylethanolamine (GPEth), phosphatidylserine

(GPSer), and phosphatidylinositol (GPIno). The bulk of  PLs are saturated and the

composition is dominated by the presence of  dipalmitoylphosphatidylcholine (DPPC) at up to

40 wt% [14].
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Figure 1-3: General structure of  phospholipids using the example of dipalmitoylphosphatidylcholine,
(DPPC) (A); possible structural organizations of  phospholipids in aqueous medium (B).

The abundance of  the lipid classes/species present in mammal PS differs among the reporting

studies (an average distribution based on literature values is given in Table 1-1). PS lipids are

however rather conserved among mammals [15, 16]. The variations in PS lipid composition

that are found in non-mammal, air-breathing animals are likely due to their different body

temperatures, meaning that surfactant lipids with different phase transition temperatures are

required in order to function properly [17, 18].

Table 1-1: Lipid composition of  pulmonary surfactant according to [14] and [19]

Lipids DPPC Other GPChol GPGlyc + GPIno Cholesterol Other PLs Other lipids

Abundance ~40% ~30% 10-15% 5-8% <5% <1%

The degree of  saturation and PL class determines the packing density of  the PL layers, and

also the phase transition temperature at which the PLs change from a rigid ordered gel phase

to the more flexible disordered liquid crystalline state.

1.2.2 Proteins

As stated above, only 10% of  PS is constituted of  proteins. Beside typical plasma proteins,

such as albumin and hemoglobin, the largest fraction of  proteins in PS consists of  four

different surfactant-associated proteins (SP-X) which are to a great extent uniquely expressed

in the lungs. SP-X can be divided into two groups: SP-A and SP-D are large and hydrophilic,

whereas SP-B and SP-C are small, highly hydrophobic proteins.
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Figure 1-4: Structure of pulmonary surfactant-associated proteins A, B, C, and D.

SP-A and SP-D both belong to the collagen-containing C-type lectins, the collectins. This

protein family currently has, 9 identified members, the most well-known being mannose

binding lectin. Collectins in general are polymeric proteins whose monomers typically consist

of  four distinct regions: (1) a cysteine rich N-terminal tail region, (2) a collagen-like domain,

(3) an α-helical coiled-coil region, the “neck”, and (4) a carbohydrate recognition domain

(CRD). Three monomers form a trimeric subunit with a collagenous triple helix and closely

attached neck regions, which then further form oligomers of  several trimers (Figure 1-4). The

monomer of  SP-A is a 26-38 kDa protein, which assembles to a ~630 kDa octadecamer with

a “flower bouquet” shape. SP-D monomers possess a longer collagenous domain and have a

molecular weight of  43 kDa that forms an oligomeric “cruciform” structure of  ~520 kDa by

combination of  12 monomers. The final molecular weight varies as the proteins can

potentially undergo partly underlie heavy glycosylation [20].

All collectins, as part of  the host defense, possess several calcium dependent C-type CRDs,

with affinity to a wide variety of mono- and polysaccharides. This allows them to recognize a

broad spectrum of pathogens such as viruses [21, 22], bacteria [23], fungi [24] and other

pollutants [25], as well as apoptotic and necrotic cells [26]. Collectins can then present such

pathogens and damaged cells to leucocytes; as such, they constitute the first line defense in the

lungs, and can be regarded as humoral receptors. SP-A/D are excreted into the alveolar space,

where they not only interact with surfaces and molecules by receptor-ligand interactions, but

also show affinity towards PLs. While for SP-D only a relatively selective binding to GPIno
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has been observed [27], SP-A is closely associated with the PL membranes of  the PS layer and

as such has a major influence on the organization of  the PL vesicles [28]. Furthermore, SP-A

and SP-D have been found to exert, besides their antigen-presenting functionality, a direct

antimicrobial effect, by disrupting the cell membranes of  bacteria [29]; they are also involved

in the regulation of  PS homeostasis by a negative feedback mechanism [30]. SP-A is the most

abundant protein in PS, constituting approximately 5-6% of  the total dry weight, while SP-D

is present in the lowest amounts, at about 0.5% of  the dry weight of  PS [31].

SP-B and SP-C each account for ~1% of  PS dry weight. Their high degree of  hydrophobicity

makes them entirely insoluble in water in the absence of  solubilizing PLs [32]. For this very

reason, both proteins are expressed in AT-2 cells as soluble proproteins (proSP-B, proSP-C),

carrying two hydrophilic flanking regions, and are post-translationally processed on their way

to the air-liquid interface [33]. The quaternary structure of  mature SP-B is a homodimer of

17.4 kDa, which consists to a large extent (~45%) of α-helices. SP-B belongs to the saposin-

like proteins; a conceivable conformation of  SP-B, based on other saposin-like structures [31]

is shown in Figure 1-4. It is made up of  79 highly conserved amino acids of  which 52% are

hydrophobic, with one inter- and three intramolecular disulfide bonds, as well as one

negatively charged and eight positively charged residues [34]. SP-B is essential for the

organization of  PS layers, their superstructure, and as a result, the surface tension lowering

effect of  PS. SP-B deficiency in neonates is associated with the usually fatal respiratory

distress syndrome 1 [35]. How SP-B performs these functions is yet to be completely

understood; it was found, however, that SP-B adsorbs very quickly to PL vesicles and leads to

a fusion of  preformed DPPC liposomes [36]. SP-B is very likely taking part in the

organization of  the PL vesicles of  PS, by interfering with the multilamellar structures and by

quick formation and stabilization of  PL monolayers at the air-liquid interface [37, 38].

Furthermore, SP-B is involved in the processing of  proSP-C - a deficiency of  SP-B is

therefore always accompanied by a lack of  SP-C [39].

The role of  SP-C is even more uncertain. It is a very small molecule (~4 kDa) that consists

basically of  just one α-helix with short sequences at each end, with the N-terminal region

being typically palmitoylated twice [40]. SP-C is a transmembrane protein, intercalated within

PL layers, and uniquely found in PS. Like SP-B, its overall net charge is positive and it

therefore interacts mainly with anionic PLs. Unlike SP-B however, insufficient amounts of

SP-C in neonates or in animal models do not lead necessarily to severe distress syndromes,

although the manifestation of  symptoms varies among patients [35]. Although this suggests

that SP-C might not be absolutely necessary for the function of  PS, it has been shown that the
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presence of  SP-C in artificial mixtures improves the surface tension lowering effect by means

of  enhancing respreading speed and compressibility [38]. A proper physical functioning of  PS

is also therefore only achieved in the presence of  SP-A, -B, and -C and all lipids.

1.2.3 Secretion and Structural Organization

Having identified the main components of  PS, one could easily conclude that PS consists of  a

simple PL monolayer containing additional proteins. In reality, its structure is more complex

(see Figure 1-5): PS is already secreted in a highly organized manner by AT-2 cells, in the form

of  lamellar bodies (LBs). LBs can be stained within the cell and are a distinctive feature of

AT-2 cells. Once outside the cell, LBs unravel to a mesh-like structure, the so-called tubular

myelin (TM). TM serves as a reservoir for the membranous structure of  PS, from which

monolayers adsorb to the air-liquid interface. Besides the ability of  PL monolayers to lower

the surface tension at different surface pressures due to their compressibility, during exhalation

(which means a reduction of  surface area), the PLs return to the membranes in the sub-phase.

This procedure is maintained by SP-A, -B, and -C - although a DPPC layer alone is stable at

enormous surface pressure, the rapid re-adsorption and the structural organization can only

be achieved in the presence of  SP-X. Vesicles of  PS can be recycled after reuptake by AT-2

cells or degraded by macrophages.

While DPPC alone exhibits a sharp phase transition at 41 °C, the complex lipid-protein

mixture in PS allows a relatively broad phase transition range around the physiological

temperature of  37 °C. For this reason, the PL layers of  surfactant are in between the two PL

membrane states, allowing for the coexistence of  ordered and disordered phases which

simultaneously exhibit high flexibility and high compressibility [28, 41, 42]. With this smart

set-up and the interplay of  the above mentioned factors, PS is capable of  lowering the surface

tension at the air-liquid interface to values close to 0 mN/m, and, more importantly, of

maintaining these tensions during the relatively long periods of  exhalation, preventing the

collapse of  alveoli at high surface pressures of  up to 70 mN/m [43].
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Figure 1-5: Structural organization of  pulmonary surfactant at the air-liquid interface. PS is secreted by
AT-2 cells as lamellar bodies (LBs) and is unraveled to tubular myelin (TM) which acts as a reservoir for
the multi-lamellar structures at the air-liquid interface. For in- and exhalation, the monolayer can be
expanded/diminished by this reservoir. The TEM image in the lower left corner is reproduced with
permission from [44].

1.2.4 Pathophysiology of the Pulmonary Surfactant

As already mentioned, PS is essential for lung function and gas exchange. The lack of  one or

more PS components leads to either a physical inhibition or a deficiency of  immune responses

towards pathogens.

The most common clinical picture associated with abnormal PS is the infant respiratory

distress syndrome (IRDS), which affects about 1% of  neonates, with prematurely born infants

most at risk of  being affected. IRDS is caused by an insufficient surfactant production, leading

to poor gas exchange in collapsed alveoli and manifesting in low blood oxygen levels. Beside

the application of continuous positive airway pressure, clinical surfactant preparations are

instilled as replacement therapies. There are several different preparations on the market for

the treatment of  IRDS, some of  which are completely artificial and consist of  a PL mixture

with added recombinant hydrophobic proteins (i.e. Surfaxin®); most preparations, however,

are obtained from animals. These animal derived surrogates are either gained by lavage of

lungs (e.g. Alveofact®) or by extraction of  minced lung tissue (e.g. Curosurf®). These
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preparations differ in lipid concentration, but all have in common that they are protein

depleted in order to reduce immunogenicity. Only the two hydrophobic surfactant proteins

(SP-B and -C) remain in such preparations due to their importance for the physical

functioning of  PS [45].

An overproduction of  PS, on the other hand, is also connected with decreased gas exchange,

accompanied by dyspnea and cough. In lungs of  patients affected by pulmonary alveolar

proteinosis (PAP), PS accumulates in the alveoli and needs to be removed physically by lavage.

Currently, the role of  granulocyte-macrophage colony stimulating factor is being researched as

a pharmacological target. Typically, in the lavage of  PAP patients, an excess of  SP-A can be

found. SP-X levels in lavage fluid can be generally used as disease markers, not only for

genetic disorders leading to a lack of  a certain SP-X [35], but also for chronic disorders such

as asthma, chronic obstructive pulmonary disorder, and cystic fibrosis [46-48], as well as

infectious diseases [49], carcinomas [46], and acute lung injury (where SP-X is detectable in

plasma) [50].



Chapter 1: Introduction

12

1.3 Inhalation of Particles

The inhalation of  particles can be regarded from two different viewpoints. First of  all, given

the immense amounts of  air which are inhaled every minute, and depending on the degree of

pollution, scores of  particles are inhaled every day; this could potentially prove harmful to the

lungs by way of  various mechanisms. The nanotoxicology of  these particles is therefore an

important factor to consider when it comes to assessment of  the risks of  airborne particles in

working areas or polluted regions. On the other hand, for quite some time NPs have been in

focus as drug delivery systems with the promise of  sustained release, mucus- and cell layer

penetrating features, and even the ability to facilitate targeted delivery [51]. With advancing

techniques, the complexity of  nanoparticulate formulations has increased from nanosized API

(active pharmaceutical ingredients) crystals to liposomes and polymeric NPs, and further to

core-shell structures and the employment of  covalently bound ligands for active targeting

(mainly for local/topical but also systemic delivery). The behavior of  these particles, once they

have reached their site of  action, needs to be studied thoroughly, in order to predict the

delivered dose, as well as the time-dependent release and/or dissolution of  the drug.

Especially the latter becomes important with respect to the low volume of  liquid which is

available in the lungs to dissolve drugs and excipients [7].

There are several definitions which have emerged for what NPs or nanomaterials actually are.

The European Commission defined nanomaterials as “A natural, incidental or manufactured

material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 %

or more of  the particles in the number size distribution, one or more external dimensions is in the size range

1 nm - 100 nm” [52]. Most other standards also require at least one (SCCP) or two dimensions

(ASTM, NIOSH), or the diameter (ISO) to be in the range between 1 and 100 nm, and thus

all have in common that they define NPs in general. In terms of  intended use, the definition

of  the European Science Foundation, which expands the classification of  nanomedicine to

particles of  up to “hundreds of nanometers” [53], is more reasonable for the definition of  NPs

for the pharmaceutical delivery of  drugs [54]. This is due to the fact that the delivery of  APIs

requires the application of  a certain dose within a particle, and as a result a certain volume of

the particle is required. Considering that decreasing the size of  a NP decreases the volume to

the third power, reasonable amounts of  drug can only be delivered by nanoparticles of  a

certain minimum size. Therefore, in the scientific community for pharmaceutical technology, a

diameter of  200-300 nm is regarded as a suitable and a common size for nanoparticulate

delivery systems.
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1.3.1 Size of Particles Intended for Pulmonary Drug Delivery

The deposition of  particles in the lung is dependent on several characteristics of  the single

airborne particles, including size, density, shape, and charge. Whether or not a particle reaches

the deep lung can be estimated by determining the mass median aerodynamic diameter

(MMAD, denoting the flight characteristics of  an equivalent sphere with the density of

1 g/cm3), which can be measured by instruments simulating the lung architecture: so-called

impactors. Interestingly, most pharmaceutical formulations for respiratory drug delivery have a

comparatively large MMAD of  around 1-5 µm [51]. This particular MMAD range has been

found to be optimal for targeting the respiratory region of  the lungs (see Figure 1-6) by

sedimentation. This is due to the deposition mechanisms that occur to airborne particles after

inhalation [55] - particles with a large MMAD will impact very early in the airstream, i.e. the

bronchi, pharyngx, throat, mouth, or even the inhaler device itself. A small MMAD leads to

less deposition in the tracheal region, as very small particles with an MMAD of  less than

0.1 µm mainly collide with the alveolar lining fluid as a result of  Brownian motion (which is

however no guarantee for efficient delivery as they are likely to be exhaled again). As already

discussed in Chapter 1.3, NPs possess features which make them most interesting for

pulmonary delivery, although effective drug delivery with complex delivery systems also

demands a minimal particle size. The main problem with delivering such small particles in the

nanometer range is their production as single airborne NPs, which is so far not feasible for

administration via handheld inhalers. In the short- to mid-term, the delivery of  NPs to lungs

will be therefore within larger aggregates, droplets, or secondary particles with a deep

lung-compatible MMAD of  1-5 µm, which then release the primary NPs after impaction.

Figure 1-6: Deposition of  inhaled particles in the lung as a function of their MMAD. Optimal
deposition in the pulmonary region, i.e. the deep lung, can be achieved with particles in the range of
1-5 µm or below 100 nm. Adopted from [56] with permission from John Wiley & Sons.
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1.3.2 Particle Clearance and Cell Interactions

The immense surface area of  the lung tissue and the constant inhalation of  potentially

polluted air make an efficient clearance mechanism essential. While the upper lung is able to

mechanically remove inhaled particles by the cilia-mediated mucus transport along the bronchi

and trachea towards the throat, the deep lung lacks such a mechanism. The respiratory region

depends entirely on clearance by macrophages. AMs are professional phagocytes that are

derived from monocytes after migration from the blood stream into the luminal alveolar

space, where they are present in large numbers [57]. Approximately 12-14 AMs are to be

found within one alveolus [58], where they engulf  particles with high efficiency, not only due

to their high mobility but also due to their ability to spread their pseudopodia (or “arms”)

around large particles [59]. Unfortunately, the perfect particle size for pulmonary drug delivery

of  1-5 µm MMAD is also a perfect size for engulfment by macrophages, while smaller NPs

are taken up less efficiently [60].

Although it is more likely that particles are taken up by macrophages before they interact with

epithelial cells, at least very small NPs might also be able to cross the epithelial barrier,

allowing for systemic delivery [61, 62]. Nevertheless, regardless of  whether intruding particles

come in contact with AM or epithelial cells, or if  they dissolve or persist in the alveolar fluid,

they will encounter the outermost barrier structure of  the deep lung: the thin layer of  alveolar

lining fluid and therewith the components of  PS.
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1.4 The Nanoparticle Corona

The most obvious aspect of  the nano-bio interface is the interaction of  NPs with cells; it also

includes, nevertheless, the interaction of  NPs with biological fluids. Since there are no “dry”

cells in the human body, NPs will always encounter a fluid first before cell interactions can

take place, regardless of  the portal of  entry and intended use [63, 64]. Depending on their

nature, such extracellular fluids can be considered as non-cellular biological barriers (e.g. mucus

and pulmonary surfactant).

Figure 1-7: Corona evolution over time. According to the Vroman effect, the initially adsorbed highly
abundant biomolecules on the surface of  a solid are exchanged over time for less abundant molecules
with higher affinity towards the surface.

Although protein adsorption onto NPs is a phenomenon that has been known for quite some

time [65], the concept of  the “nanoparticle corona” as it is understood today was established

by Cedervall et al. in 2007 [66]. In principle, the term “corona” specifically describes the

biomolecules (initially only proteins, therefore the term “protein corona” is still commonly

used), that adsorb onto the surface of  solid NPs, comparable to the process of  opsonization

of  pathogens by antibodies. Opsonins, however, are considered as molecules which bind to

the surface of  pathogens, making them visible to phagocytic cells or promoting binding by

receptor-ligand recognition [67]. Although this might be the eventual outcome in many cases,

the NP corona encompasses the total adsorbed molecules without implying a certain effect,

except for a masking of  the actual NP surface. Vroman et al. elucidated in 1980 that the

adsorption on solid surfaces, such as implants, is not static but a continuous process, where

proteins with high abundance in the plasma adsorb first, but are exchanged over time by

proteins that are less abundant, but possess a higher affinity towards the surface chemistry

[68]. The very same, so-called Vroman effect can be observed on the surface of  NPs (shown
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in Figure 1-7). Each particle produces a specific adsorption pattern of  biomolecules [69]

which defines the new biological identity of  the NP. A multitude of  different molecules is

present in biological fluids and as the number of  produced NPs is immense, the NP corona

has evolved to one of  the most intensively investigated topics in nano-bio sciences following

recognition of  its importance [64, 70].

Figure 1-8: Schematic of  the discrimination between "hard" and "soft" corona at equilibrium.

It has been extensively shown that the presence of  the corona has a major impact on the

further fate of  NPs in terms of  cell interactions, and furthermore on the stability of  the NPs

themselves [71-73]. In order to predict this fate, it is necessary to know the adsorbed

biomolecules, and if  one aims to quantify the biomolecules which selectively bind to a certain

type of  NP, the NP-corona complexes need to be separated from the non-binding

supernatant. It has been widely accepted that the corona can be divided into a “hard” corona,

the layer of  proteins with high affinity towards the surface, and a “soft” corona, which is a

layer of  proteins loosely bound onto the hard corona, and which is characterized by low

affinity and high exchange rates [66] (schematically shown in Figure 1-8). The high affinity

corona is assumed to be the crucial layer for the biological identity [74] and is therefore

commonly assessed by default for NPs produced for possible in vivo use.
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1.4.1 The Nanoparticle Corona in Blood Plasma

A large number of  studies have addressed the adsorption of  plasma proteins on NPs. Starting

with the kinetics of  single proteins and the exchange against other proteins as well as the

adsorption of  the complex protein mixture in crude plasma, adsorption patterns of  many

technical and pharmaceutical NPs are known. The scientific community has begun to define

what the consequences of  protein adsorption are in terms of  corona formation, stability e.g.

agglomeration behavior, drug release, etc., what the protein corona consists of  and how the

presence of  proteins on the surface of  NPs results in modified cell interactions. Commonly,

the plasma protein corona is accessed by in vitro adsorption experiments, and Monopoli et al.

were able to show that the separation technique does not actually influence the outcome of

the detected corona [75]. The composition of  this corona is unique for each type of  NP,

dictated by size/curvature [76], surface chemistry [77], charge [78], hydrophobicity [79], and

morphology [80], as well as by the experimental conditions like exposure duration [81] and

temperature [82], and protein concentration [83]. The corona itself  in turn influences factors

including NP clearance [84], cell uptake or association [72, 74], cytotoxicity [85], colloidal

stability [73], and drug release [86]. Just recently, Ritz et al. were able to show on a rather small

set of  NPs, that just a few distinct proteins are responsible for an either enhanced (e.g. ApoH)

or decreased (e.g. ApoA4, ApoC3) particle uptake [87], which again proves how thoroughly the

corona formation of  pharmaceutical NPs needs to be probed and characterized. As methods

are advancing, the complex processes involved in corona formation become clearer but also

reveal new challenges. Hadjidemetriou et al. for instance successfully showed that there are

variations (and similarities) between the in vivo and in vitro corona in terms of  composition and

morphology [88]. Since new studies like the aforementioned are published on a daily basis,

some more of  the most recent findings regarding the plasma protein corona are summarized

in Table 1-2 giving an example of  the various topics.

Table 1-2: Summary of  some of  the most recent findings regarding the plasma protein corona.

Glycosylation of  adsorbed proteins influences cell interaction Wan et al. [89]
Pre-coating with immunoglobulins for targeting macrophages is inhibited by
subsequent protein adsorption

Mirshafiee et al. [90]

Pre-formed epidermal growth factor corona stabilizes Au-NPs and enhances cellular
deposition

Luby et al. [91]

Cloaking by platelet membranes shows reduced uptake of  NPs by macrophages and
plate-like effects such as selective adhesion

Hu et al. [92]

Protein corona around ZnO-NPs reduces cytotoxicity Yin et al. [93]
BSA corona reduces drug release rate from NPs and enhances biostability Peng et al. [94]
Antibody functionalized PMA-NPs retain their targeting ability in the presence of  a
corona

Dai et al. [95]

Protein corona provides a stealth effect for lipid and silica NPs by means of
macrophage uptake

Caracciolo et al. [96]
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Although this is still work in progress and comparatively little is known of  how this plasma

corona actually interacts with cells on a molecular level, another topic has been completely

disregarded for quite some time – namely, the fact that direct contact with plasma is not a

realistic means of  exposure and corona formation for most NPs (except for those intended

for i.v. application). NPs in consumer products such as Ag-NPs in antibacterial clothing or

wound dressings, as part of  air pollution, or as pharmaceutical delivery systems do not enter

the blood stream directly, if  at all, but will encounter the biological fluids at their portal of

entry, i.e. sebum (in case of  sebaceous glands of  the skin) [97], gastrointestinal fluid and

mucus (after ingestion), and in the case of  the respiratory tract, mucus in the upper lung and

PS in the deep lung. These local environments and their effects on NPs, however, have been

addressed very little in the past [71].

1.4.2 The Nanoparticle Corona in the Lungs

In order to develop drug delivery systems for pulmonary administration, it is crucial to acquire

information of  the response mechanisms of  the body involved in processing inhaled NPs [98,

99]. The conducting airways with their highly efficient clearance system are not addressed in

this work, but have been found earlier to be a challenging environment for NP delivery [6]. As

the deep lung offers also the possibility to make drugs systemically available by absorption

across the thin air-blood barrier, alveolar delivery of  APIs is in the spotlight. As clarified in

Chapter 1.2, NPs will encounter a biological fluid which not only has a biochemical

composition which is different to plasma, but which also possesses the physical properties of

a membrane due to its structural organization. So far, it has always been assumed that the

corona in a biological environment is simply formed based on kinetics and affinity of  the

individual protein to a particular NP. Whether this principle can be applied to PS is highly

questionable. This peculiar environment will presumably lead to a NP corona which is not

only biochemically different from the mere protein corona, but furthermore will have a major

impact on the colloidal behavior of  the NPs; and in reverse, NPs will have an impact on the

functionality of  PS [100].

It is somewhat surprising that so little is known about NPs impacting in the lung, considering

that it is by far the largest portal to the body. The lack of  an adequate model for PS presents a

considerable, and perhaps even the biggest obstacle to accurate characterization of  this

behavior. Furthermore, there is a significant need to adapt commonly employed techniques in

order to determine the NP corona in PS in its entirety, together with how it affects NPs in this

local environment.
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1.5 Aims of this Thesis

From the existing literature, it can be concluded that the corona of  NPs has a major impact

on the interaction of  nanomaterials with cells. For the development of  NPs as drug delivery

systems, this corona has to be evaluated in detail in order to accurately gauge NP efficiency

and safety in vivo. Exposure to inhaled NPs often occurs by accident and therefore corona

evaluation applies not only to well-characterized and supposedly safe pharmaceuticals, but also

to technical (nano-)materials. So far, research has only focused on the plasma corona, despite

the fact that the inhalation of  NPs is likely to result in a corona which is fundamentally

different to the one in plasma. The existence of  a unique corona formation in the presence of

PS was the central working hypothesis behind this project. A principal issue is the difficulty in

accessing this body liquid in order to study the interactions of  NPs after deposition on the

alveolar lining fluid and the formed PS corona. Although earlier studies have described

interactions of  NPs with single components or clinical surfactant preparations, and a few have

addressed the interplay of  NP with crude PS, there is no systematic approach which clarifies

how one can access the formed PS corona, defines what it consists of and clarifies what the

consequences of  the formation are. The aims of  this thesis were therefore:

1) To prepare and to characterize native porcine pulmonary surfactant suitable for
studying the nano-bio interactions

By using an aforementioned PS preparation of  lungs from slaughtered pigs (pPS), the

surfactant can be extracted in moderate amounts without the need to euthanize the

animals. A well characterized preparation of  pPS, close to the described composition

of  human PS is essential in order to determine the lipid/protein adsorption onto cells,

and to ensure a physiologically relevant behavior of  the pPS preparation.

2) To study the colloidal behavior of nanoparticles in the presence of pulmonary
surfactant and to evaluate various methods to access the corona

As it has been found that the size, and therewith agglomeration behavior of  NPs can

change in biological fluids, the particular colloidal properties of  nanomaterials in the

presence of  PS are likely to modify the properties of  the NPs as well. pPS however

possesses vesicle-like properties that make size measurements difficult. Therefore a set

of  different tools for the measurement of  NPs and the adsorbed PS layer were tested

for their suitability.
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3) To analyze and quantify the adsorption of surfactant components, i.e. proteins
AND lipids, onto different nanoparticles, generating a “fingerprint” of  their
corona

The composition of  the NP corona determines the biological identity of  the NP itself.

From the viewpoint of  pharmaceutical technology and the often proposed

possibilities for NPs to be targeted to specific cells or tissues by surface-linked ligands,

it is essential to know the very surface modifications that occur in the presence of  PS

in terms of  lipid and protein adsorption, not only in a qualitative but also in a

quantitative manner. Determination of  the complete corona composition will allow

for judging the interactions of  NPs with cells, as well as the potential controllability of

corona formation.

4) To study the influence of  this corona on the nanoparticle-cell interaction with a
lung relevant cell line

Even though it seems obvious that the corona formation in PS modifies NP-cell

interactions (e.g. uptake by cells, adhesion to the cell membrane), the influence of

crude PS on NP adhesion in lung relevant cell lines is widely unknown. Studies have

reported both increased and decreased cell association of  particles in the presence of

PS [101]. The factors influencing this phenomenon are far from being understood.

The gained information on the formation of  the PS corona will help in relating in vitro

experiments regarding the toxicity, dissolution, efficiency, and targeting of  NPs to in vivo

results. A more informed design of  nanopharmaceutical drugs may be facilitated, allowing for

specific interaction with the PS layer in a defined manner, in order to target cells or increase

residence time by binding certain constituents of  PS.
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2. PREPARATION AND
CHARACTERIZATION OF A PORCINE
NATIVE PULMONARY SURFACTANT
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2.1 Introduction

Blood is a readily accessible body fluid, and giving away a few deciliters causes only minor

inconvenience to the donor. The interaction of  nanomaterials with blood proteins is therefore

one of  the most extensively investigated fields in nano-bio-sciences [63]. When it comes to

relevance, NPs entry via the respiratory tract is more likely to occur, either as a result of

intended administration on purpose or accidentally in case of  particulate matter, resulting in

contact with the non-cellular barrier of  the lungs. Obtaining sufficient amounts of PS to study

its interaction with NPs is disproportionately more difficult than obtaining blood, as PS is

typically gathered by bronchoalveolar lavage (BAL) - a rather invasive procedure resulting in

only small quantities of  BAL fluid (BALF), insufficient for studying nano-bio interactions.

Patients who suffer from respiratory diseases such as pulmonary alveolar proteinosis require

lavages as part of  their medical treatment, presenting an option for both BALF and PS

collection; however, the composition of  both BALF and PS is typically altered in these

patients [102, 103], making it unusable for such experiments. In vivo or ex vivo experiments in

small animals may be utilized to evaluate NP toxicity [104, 105], especially since inhalation, the

actual mode of  exposure, can only be mimicked in vivo. However, for sake of  animal welfare

following the “three Rs” principle (reduce – replace – refine), experiments in small animals

such as mice are not adequate as a future model to screen NP–PS interaction.

An alternative option, which has already been used several times to study the effects of  NPs

on PS and vice versa, is that of commercially available surrogates. There are a number of

different, typically animal derived, preparations for use in clinics to treat neonatal respiratory

distress syndrome in infants which do not produce sufficient amounts of  PS. Most of  these

are organic extractions from minced or lavaged lungs, e.g. Alveofact® (Lyomark, bovine

lavaged lung), Curosurf® (Chiesi, porcine minced lung) and Survanta® (AbbVie, bovine

minced lung). All these preparations have in common that they are depleted of  proteins in

order to prevent immunogenic reactions against the contained foreign matter. To maintain the

required function of  lowering the surface tension and because their immunogenicity is low, the

hydrophobic surfactant associated proteins SP-B and SP-C remain in the extracts or are

eventually added [106]. Recently, efforts have been made to replace the animal derived

preparations with artificial formulations of  lipids and recombinant SP-B and SP-C; such

similarly functioning synthetic substitutes including “Super mini-B peptide”, “KL4 peptide”,

and “SP-Css ion-lock 1” and first, highly standardized, products bearing no risks of

immunogenicity have hit the market (e.g. Surfaxin®/Aerosurf®, DPPC, POPG + KL4
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peptide, Discovery Laboratories, Warrington, PA.). These products have been found to be

equivalent to animal derived preparations [107-109].

The above mentioned clinical surfactants are produced with the aim to mimic the physical PS

function using the smallest set of  compounds possible. Using such formulations to study the

interactions of  inhaled NPs with the PS barrier therefore compares to confining plasma-NP

interactions to solely the contribution of albumin. Beck-Broichsitter et al. could furthermore

show that PS preparations with different complexity also react in a diverse manner to

polymeric NPs in terms of  surface activity inhibition. While an artificial plain PL mixture was

heavily affected, the effects were reduced with increasing complexity of  the preparation, with

a native PS being almost unaffected [110].

To compare the properties of  artificial PS and to elucidate the fascinating mechanisms of  PS

organization, biophysicists often use a native PS preparation which is obtained from pig lungs.

It has been demonstrated to possess the physical properties of  human PS and features in its

native state all essential components, i.e. lipids and proteins [43, 111-113]. Although the

isolation of pPS is still labor intensive, the process ensures the most realistic composition of

the final product, by applying lavage (not mincing) and a density gradient centrifugation to

remove non lipid-associated proteins. The resulting pPS is highly concentrated, allowing a

realistic interaction scenario, and since the isolation starts with lungs from slaughtered pigs, it

can be gained without being affected by ethical issues. In order to adequately address the

in vivo situation of  NP-PS interactions, this chapter describes the preparation of  porcine

pulmonary surfactant as a surrogate. pPS is characterized in terms of  lipid/protein

composition and its colloidal behavior.
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2.2 Reagents and Methods

2.2.1 Reagents

All standards for thin layer chromatography (TLC) and liquid chromatography mass

spectrometry (LC-MS) analysis were purchased from Avanti Polar Lipids (Alabaster, AL,

USA). All other reagents and solvents were purchased from Sigma-Aldrich (Munich,

Germany) and were at least of  analytical grade, while mobile phase solvents were of  LC-MS

grade. The water used in all experiments was purified to a resistivity of  18.2 MΩ*cm

(Milli-Q®, Merck Millipore, Germany).

2.2.2 Broncho Alveolar Lavage of Porcine Lungs

Lungs were selected in the slaughterhouse (Faerber, Zweibruecken, Germany) immediately

after evisceration of the animals on the basis of  their apparent non-damaged and uninfected

appearance. Any blood which could be present in the trachea was removed by adding a small

amount of  cold 0.9% sodium chloride solution. The lungs were then lavaged under

application of  gentle massage with ~2-4 L of  0.9% NaCl. The lavage fluid (= pBALF) was

filtered and, providing its appearance was colorless (indicating no large scale contamination),

stored on ice. After centrifugation (Hettich Rotina 420R + rotor 4794, Tuttlingen, Germany)

for 5 min at 2000 rpm and 4 °C for removal of cell debris, the pBALF was frozen until

further purification. In the event of  blood stain occurrence in the cell pellets, the pBALF was

discarded.

2.2.3 Preparation of Concentrated Native Pulmonary Surfactant

pBALF was purified using a modified method of  Shelley et al. [112] as described by Taeusch et

al. [114], videlicet a density gradient centrifugation. The thawed pBALF was initially centrifuged

for 1 h at 31000 rpm and 4 °C in an Optima L 90 K ultracentrifuge, (Beckman Coulter,

Krefeld, Germany) equipped with type 70 Ti rotor. While the supernatant was discarded, the

accumulated pellets were dispersed in a 16 ml of  16% (w/v) NaBr + 0.9% (w/v) NaCl and

4 ml each transferred to centrifugation vials. This layer was covered first with a 6 ml layer of

13% (w/v) NaBr + 0.9% (w/v) NaCl, and subsequently with a layer of  0.9% NaCl solution.

The pPS vesicles, which typically have a density lower than 1.10 g/cm3, were isolated by

centrifugation in a swinging bucket rotor (SW 40 Ti, Beckman Coulter) for 3 h at 28000 rpm

and 4 °C without braking. To remove excess NaBr, the resulting pPS was again dispersed in
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0.9% (w/v) NaCl and centrifuged (1 h at 31000 rpm, 4 °C). The white pellets were stored

at -80 °C until use. An overview of  the complete process is given in Figure 2-1.

Figure 2-1: Schematic representation of  the pPS isolation process. Reproduced from [115].

2.2.4 Total Protein Quantification

Total protein content of  the pooled pPS was quantified using a bicinchoninic acid assay (BCA

Kit or QuantiPro™ Kit, Sigma Aldrich) as recommended by the manufacturer. In brief, 200 µl

of  BCA solution, consisting of  bicinchoninic acid, sodium carbonate, sodium tartrate, and

sodium bicarbonate in 0.1 N NaOH and a 4% (w/v) copper(II) sulfate pentahydrate solution,

was added to 25 µl sample in a 96-well plate (Greiner Bio-One, Austria). Blank and standard

samples, prepared from bovine serum albumin for the purposes of  preparing a standard

curve, were treated equally. The plates were sealed and incubated at 37 °C for 30 min. The

absorbance of  each well at 520 nm was measured in a microplate reader (Infinite 200M, Tecan

GmbH, Crailsheim, Germany) and the total protein concentration was calculated by

comparison to the standard curve.

2.2.5 Total Phospholipid Quantification (Phosphorous Assay)

Total PL content was estimated by determining the phosphorus content, based on a protocol

of Barenholz and Amselem [116]. In short, samples and standards (KH2PO4) were dried in

borosilicate glass vials using a laboratory sand bath. After addition of  450 µl of 70%

perchloric acid, the vials were loosely closed using glass marbles and the organic contents were

incinerated at 250-260 °C for 30 min. The vials were allowed to cool to room temperature and

incubated together with 3.5 ml water, 500 µl ammonium molybdate tetrahydrate solution 2.5%

(w/v), and 500 µl freshly prepared ascorbic acid solution 10% (w/v) for 7 min in a boiling

Porcine pulmonary
Surfactant (pPS)

Density gradient
centrifugation Washing steps

Porcine bronchoalveolar
lavage (pBALF)
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water bath. The colorimetric reaction, which produces a blue phosphomolybdate, was stopped

by placing the tubes in ice water. The absorbance was read in a microplate reader (Infinite

200M, Tecan) after a transfer of  200 µl sample to a 96-well plate. The PL concentration was

calculated assuming an average molecular weight of  the measured PLs of  734 g/mol, the

molar mass of  DPPC.

2.2.6 Dynamic Light Scattering

The average vesicle size of  pPS and their temperature dependency was determined by

dynamic light scattering (DLS) using a ZetaSizer Nano ZS (Malvern Instruments Ltd.,

Worcestershire, UK). pPS was diluted to a protein concentration of  40 µg/ml in tris-buffered

saline (=TBS, consisting of 10 mM Tris, and150 mM NaCl in water, pH adjusted to 7.4 with

concentrated HCl) and measured in disposable polystyrene cuvettes. In temperature ramp

experiments, average size and scattering intensity was determined in 1 °C steps after 2 min

equilibration time from 5 to 65 °C.

2.2.7 LC-MS Analysis of Phospholipids

PLs were determined by liquid chromatography mass spectrometry as extensively described in

Chapter 2.3.

2.2.8 Cholesterol Quantification

Cholesterol and cholesteryl ester content was determined using a fluorometric assay kit

(Amplex® Red Cholesterol Assay Kit, Thermo Fisher Scientific) according to the

manufacturer’s manual. Briefly, 50 µl of  samples and cholesterol standards were pipetted into

wells of a 96-well plate (Greiner Bio-One) and incubated with 50 µl of  a freshly prepared

mixture of  300 µM Amplex® Red, 2 U/ml horseradish peroxidase, 2 U/ml cholesterol

oxidase, and 0.2 U/mL cholesterol esterase. After 30-60 min incubation at 37 °C protected

from light, the fluorescence emission was detected at 550 nm with an excitation wavelength of

550 nm in a microplate reader (Infinite 200M, Tecan). Due to the presence of  cholesterol

esterase, all cholesteryl esters are hydrolyzed and subsequently detected as free cholesterol.

Cholesterol oxidase produces H2O2 from free cholesterol which is afterwards probed by

10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red reagent) in the presence of  horseradish

peroxidase, resulting in the highly fluorescent resorufin.



Chapter 2: Preparation and Characterization of  a Native Pulmonary Surfactant

27

2.2.9 Thin Layer Chromatography

In general, 10 µl of  samples and 5 µl of qualitative lipid standards (10 mg/ml dissolved in

TBS) were applied on a HPTLC silica gel 60 plate (Merck, Germany) and eluted in a saturated

chamber with a mixture of  chloroform:methanol:water 65:25:4 by volume. Elution was

stopped shortly before the solvent running front reached the end of  the HPTLC plate. Lipids

were stained with iodine vapor in a glass chamber until sufficiently visible.

2.2.10 SDS-PAGE and Western Blotting

If  not stated otherwise, for sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) equal volumes of  samples and 2x SDS-PAGE Laemmli loading buffer (Bio-Rad,

Munich, Germany) were mixed and proteins were denatured under reducing conditions at

99 °C for 10 min. The samples were applied to a 12% polyacrylamide gel and electrophoresis

performed at 120 V in a Mini-Protean TetraCell (Bio-Rad, Munich, Germany). Spectra

Multicolor Broad range protein ladder (Fermentas, St.Leon-Rot, Germany) was used as a

molecular weight marker. Gels were either stained with coomassie (PageBlue™ Protein

Staining Solution, Thermo Fisher Scientific, Schwerte Germany) or silver (Pierce™ Silver

Stain for Mass Spec, Thermo Fisher Scientific, Schwerte Germany) according to the

manufacturer´s protocol.

In the case of  TLC separation prior to SDS-PAGE, the iodine stain was evaporated under the

fume hood overnight. The predefined spots were wetted with 10 µl water and the silica

carefully scratched from the underlying glass plate. After addition of  60 µl SDS-PAGE loading

buffer, gel electrophoresis was performed as described above.

For subsequent western blotting, proteins were transferred onto a PVDF membrane

(Immun-Blot®, Bio-Rad, Munich, Germany) in a Trans-Blot® SD Semi-Dry Transfer Cell

(Bio-Rad, Munich, Germany) for 90 min at 80 mA per gel. Membranes were blocked for

90 min in blocking buffer (consisting of  5% non-fat milk, 0.1% Tween 80, 150 mM NaCl,

10 mM Tris, pH 7) and incubated overnight at 4 °C with either SP-B or SP-C antibodies (both

rabbit anti-human, SevenHills Bioreagents, Cincinnati, OH, USA) diluted 1:1000 in blocking

buffer. After washing, secondary antibodies (1:2000, anti-rabbit immunoglobulin HRP, Dako,

Hamburg Germany) were applied to the blots for 2 h at room temperature (RT) and

subsequently incubated in HRP substrate (Immobilon™ Western Chemiluminescent HRP

Substrate, Merck Millipore, Germany). Chemiluminescence was detected on X-ray film.
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2.2.11 Label-free Shotgun Proteomics

Protein quantification was performed at the Institute for Immunology, Johannes Gutenberg

University of  Mainz by Dr. Stefan Tenzer. Before measurements, a buffer consisting of  7 M

urea, 2 M thiourea and 2% of 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

(CHAPS) was used to elute the proteins from phospholipids etc. in a filter aided sample

preparation (FASP) after trypsinization. Subsequently, samples were analyzed by mass

spectrometry with ion-mobility enhanced data-independent acquisition [81, 117]. Relative

amounts (in ppm) of  total protein were calculated within each sample automatically in the

ISOQuant software featuring the TOP3 quantification approach, as described elsewhere [76].

Due to poor annotations of  porcine proteins in the common databases, all pig identifiers of

the proteins were blasted against the human Swiss-Prot database. The homologue human

protein was chosen by E-value and Blast Score. Proteins were annotated with STRAP 1.5

[118]. Gravy Score was calculated according to the method of Kyte and Doolittle [119].
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2.3 Excursus: Establishment of an HPLC-MS Method for Phospholipid
Quantification

The complex mixture of  lipids which are to be found in PS requires sophisticated methods for

its analysis. Basic information about the lipid classes making up the PS can be gained by

simple methods such as TLC, but due to the amount of  different lipid species which have

been detected in the PS, a precise quantification can only be achieved by LC-MS. Although the

major constituents of  PS are phosphatidylcholines, with DPPC being the single most

prominent lipid, other groups were able to determine nearly all PL classes in PS:

phosphatidylglycerol (GPGlyc), phosphatidylethanolamine (GPEth), phosphatidylserine

(GPSer), phosphatidylinositol (GPIno), sphingomyelins (SM), and lyso-PLs of  all classes.

Furthermore, cholesterol is present in PS in amounts of  up to 10 wt%; this can be easily

quantified with an enzymatic assay however, and was therefore not included in the current

method development. The requirements for the LC-MS to be established were as follows:

 Sample preparation workflow which allows for analysis of crude pPS samples and pPS

adsorbed to NPs

 Detection and quantification of  all PL classes: GPChol, GPGlyc, GPEth, GPSer,

GPIno, SM

 Quantification of  each species against an external standard of  its class

 Detection and quantification of  all lyso-forms of  the aforementioned classes

 The ability to distinguish between overall chain length of  the PLs

To achieve this goal, ultra-high performance liquid chromatography (U-HPLC) and triple

quadrupole MS after heated electrospray ionization were deployed. The separation and

detection methods are based on recommendations of  the LIPID MAPS® consortium [120].

2.3.1 Sample Preparation

In the case of  crude pPS, no further processing of  the samples would be needed for LC-MS

analysis besides dissolution in an LC-MS compatible solvent, since the proteins would hardly

produce overlapping ions in the range of  PLs. Samples, however, that contain metal ions in

higher concentrations, such as the magnetite primary NPs to be used for the corona

experiments, do not interfere with the measurements by building adducts with the monitored

ions, but their deposition also results in a diminished life time of  the quadrupole (QP).
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Therefore, all samples were treated in order to remove all nanoparticulate metal oxides, as

schematically shown in Figure 2-2A. To avoid the involved process of  the standard lipid

extraction method developed by Bligh and Dyer [121], which aims to remove cellular

components, all samples were lyophilized overnight (Christ Alpha 2-4 LSC, Martin Christ

GmbH, Germany) and the lipids dissolved. Unfortunately, the standard (phospho-)lipid

solvent, chloroform:methanol 2:1, was not applicable from the beginning of  the procedure

due to poor NP stability under such conditions. Therefore, an intensive dissolution procedure

in a mixture to be utilized as the LC solvent B (isopropanol:hexane:ammonium formate 1%

50:40:10 v/v +0.1% formic acid, 5 repetitions), followed by a last dissolution step in

chloroform:methanol was employed. By TLC (Figure 2-2B) of  the freeze dried pellets and the

supernatant after each dissolution step, exhaustive extraction was ensured with this protocol.

The pooled extractions were evaporated (Concentrator Plus, Eppendorf) and the samples

dissolved in LC solvent B.

Figure 2-2: Scheme of sample preparation procedure (A), and TLC as control of  exhaustive extraction
(B), shown exemplarily for three different NPs (see Chapter 3 for further information on the used NPs,
IPA/Hex/AmForm = isopropanol/hexane/ammonium formate).
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2.3.2 Identification of Distinct Headgroup Fragments

The general structure of  PL, with their ionic headgroup as described in Chapter 1.2.1, allows

for a relatively easy ionization of  the molecule, making the PL precursor ions an optimal

candidate for MS analysis. The triple quadrupole set-up allows for fragmentation of the PLs in

the second QP and selection again of product ions in the third QP (= MS2, Figure 2-3A).

Because the molecule charge differs between the PL classes and some (i.e. GPChol, SM,

GPEth, and GPSer) are zwitterions, all classes were screened in negative and positive

ionization mode to find the most intense break down signal of  an class-specific fragment

allowing the lowest detection limit. A TSQ Quantum™ Access MAX Triple Quadrupole Mass

Spectrometer (Thermo Scientific) equipped with an heated electrospray ionization source

(HESI-II, Thermo Scientific) was used in all experiments.

Figure 2-3: Principle of  PL detection in an LC- triple quadrupole set-up (A). Example breakdown curve
of  a DPPC standard during direct injection (B).

By direct injection of  single PL species of  different classes, the most prominent headgroup

fragment was determined together with the optimal collision energy (CE) and skimmer offset

(SO). A breakdown curve of  DPPC is shown representatively in Figure 2-3B. Since the

headgroup fragments of  some PL classes cannot be ionized, they are not detected by the

product ion scan mode. Instead the precursor ions were scanned for a neutral loss of  a certain

m/z value. The applied scan parameters and the chemical structures of  the PL classes

together with the separated fragment are presented in Table 2-1.
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Table 2-1: Structures of  the measured phospholipid classes shown together with the monitored
fragment (in brackets).

Phospholipid class and

External Standard Structure

Monitored
fragment

m/z

Phosphatidylcholines
(GPChol)

16:0 GPChol
14:0 GPChol
18:1 lyso-GPChol

+184

Phosphatidylglycerol
(GPGlyc)

16:0-18:1 GPGlyc

NL +172

Phosphatidylethanolamine
(GPEth)

16:0-18:1 GPEth

NL +141

Phosphatidylserine
(GPSer)

16:0-18:1 GPSer

NL -87

Phosphatidylinositol
(GPIno)

16:0-18:1 GPIno

-241

Sphingomyelin
(SM)

16:0 GPChol

+184
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2.3.3 Normal Phase vs. Reversed Phase

In most HPLC application there is only one reasonable option when selecting either reversed

(RP) or normal phase separation. Due to the properties of  PLs however, both methods can be

applied. While RP columns separate the PLs species by chain length, disregarding the charge

of  the headgroup, normal phase columns distinguish by headgroup charge and protonation

state with only minimal impact of  chain length on retention time. Both principles have their

rationale for use; RP however results in elution of PL species with different headgroups but

the same chain length at the same time, which requires parallel scanning for different

fragments, reducing the sensitivity for all classes. Additionally, the concurrent elution of  the

PL classes can also cause an overlap of  m/z values, which can only be resolved in MSX

instruments. Normal phase (Triart Diol-HILIC, 150 x 2.0 mm, 3 µm particle size, YMC,

Japan) separation was therefore chosen as most suitable. The LC set-up consisted of  an

Accela Autosampler, Accela PDA and Accela 1250 pump (Thermo Fisher Scientific).

2.3.4 Separation of Phospholipid Classes

The mobile phases were adopted from those recommended by the LIPID MAPS® consortium

and consisted of  isopropanol:hexane 60:40 +0.1% formic acid (= solvent A) and

isopropanol:hexane:ammonium formate 1% 50:40:10 +0.1% formic acid (= solvent B). The

addition of  formic acid improved the shape of  most peaks. GPIno with its pKa of  2.5

however, is only partially charged in acidic pH and therefore elutes in twin peaks.

Time
[min] A% B% Flow

[µl/min]
0 85 15 250

3 85 15 250

8 25 75 250

9 10 90 250

11 0 100 250

15 10 90 250

16 85 15 250

21 85 15 250

Figure 2-4: Final gradient, allowing separation of  all PL classes (with A = isopropanol:hexane 60:40 and
B = isopropanol:hexane:ammonium formate 1% 50:40:10, both +0.1% formic acid).
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With the final solvent gradient as shown in Figure 2-4, the PLs eluted in the order GPGlyc,

GPEth, GPIno, GPSer, GPChol, as seen in Figure 2-5. Understandably, the PLs with longer

fatty acid chains eluted earlier than shorter fatty acid chains within each class, with lyso-PLs

appearing as the last species of  the class. The complete separation of  the PL classes allowed

for deploying a scan segment for each class, analyzing only the headgroup fragment of  the

respective class. Without the need to switch between positive and negative scan mode, the

scan time for each m/z and correspondingly the sensitivity could be enhanced.

Figure 2-5: Typical separation of  all standards injected. Due to the separation of  all classes, it was
possible to deploy scan segments for each class, increasing sensibility for the respective headgroup
fragments.

2.3.5 Data Acquisition and Processing

The vast amounts of  data in an analysis that covers 276 m/z values of  6 different PL classes

which have to be compared to the external standards of  each class, requires careful data

handling with a high degree of  automation. Only the initial data acquisition was performed in

the instrument-specific software Thermo Xcalibur™, which is not suitable for large data sets

or several analytes. The foundation of  the data processing workflow (Figure 2-6) was the peak

detection in MZmine [122], resulting in chromatograms for every single species monitored.

The area under the curve (AUC) of  the deconvoluted chromatograms were deisotoped by

applying an algorithm with the help of  an R script to the whole data set, to eliminate the



Chapter 2: Preparation and Characterization of  a Native Pulmonary Surfactant

35

effect of  overlapping m/z value isotopes. The comparison of the AUC of each PL species to

an external standard and all further processing took place in Microsoft Excel 2010. To

enhance the signal to noise ratio of  the peaks, pPS was scanned for all occurring PL species,

the m/z value was assigned to the related PL by a tool which is part of  the LIPID MAPS®

project [123], and further measurements were performed in SRM-mode (single reaction

monitoring). Since the range of  the PL classes as well as their concentration in the samples

differed, each sample was injected twice at different concentrations to ensure a response for

each species in a linear range.

Figure 2-6: Data processing workflow of  the established phospholipid analysis.
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2.3.6 Validation

Due to the tremendous number of  analytes, validation was only employed for the standard

substances, assuming an equal behavior for all PL species of  a class. Validation was carried out

according to the ICH guideline for the validation of  analytical procedures [124].

The specificity of  the method is already given by the exact mass determination and the

headgroup of  the PL, and did not need any further evaluation.

The linearity of  the measured concentration range was determined after each data set

acquisition from the correlation coefficient R2, which was based on the regression line of  the

standard curve and was always better than 0.99. The range was derived from the linearity

(=upper limit) and the quantification limit (=lower limit, see Equation 2.2).

The detection (LD) and quantification limit (LQ) were calculated based on the standard

deviation (SD) of  multiple blanks (σB) and the slope of  the calibration curve (m) according to

Equation 2.1 and 2.2 respectively. Values are presented in Table 2-2.

= 3.3 ∗ (2.1)

= 10 ∗ (2.2)

Table 2-2: Limit of  Detection (LD), limit of  quantification (LQ) and total number of  species measured

PL class LD [ng/ml] LQ [ng/ml] Used measuring
range [ng/ml]

Number of
scanned masses

GPChol/SM 0.09 0.26 5-500 72/6
GPGlyc 0.66 2.01 5-500 42
GPEth 0.14 0.42 5-2500 37
GPIno 0.04 0.12 5-2500 58
GPSer 0.14 0.42 5-2500 27
L-GPChol 0.18 0.56 5-2500 35
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The repeatability of  the method as an assessment of precision was measured in terms of  an

intraday and interday comparison, and judged based on the coefficient of  variation (CV,

Equation 2.3, with σμ = standard deviation of  mean value; μ = mean value). These values were

also used to determine the accuracy in terms of  the relative error (ER, Equation 2.4, with Cexp

= experimentally determined concentration; Ct = theoretical concentration). Intraday and

interday CV values were always lower than 20% and 25% respectively in the used measuring

range, which is acceptable for such analysis. ER was for more than 75% of  values lower than

20% and therefore met the requirements.

= | | ∗ 100 (2.3)

= ( − ) ∗ 100 (2.4)

The developed LC-MS method met all demands that were defined to determine the PL

content of  pPS samples with sufficient correctness. The method is tailored to the typical PL

mixture, and the sample preparation allows not only the analysis of  crude samples, but also

the quantification of  PLs on the surface of  NPs.
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2.4 Results and Characterization of pPS

In order to lavage the non-collapsed lungs immediately after the slaughtering process, lavage

was performed at the slaughtering line. Only macroscopically healthy, undamaged lungs were

used (Figure 2-7A) and in the case of  blood contamination of  the lavage, pBALF was

discarded to maximize pPS purity. Additionally, all pBALF that showed larger red blood cell

stains in the first centrifugation step was not further processed. By applying these high

standards, a pPS preparation was gained which ultimately showed no sign of  contamination in

the density centrifugation (Figure 2-7B).

Figure 2-7: Example images of  the pPS preparation steps. Healthy, non-damaged lungs (A) were
lavaged immediately after slaughtering. The native pPS preparation was successfully purified after
density gradient centrifugation (B).

More than 25 lungs were lavaged with only 8 lungs complying with the aforementioned

requirements. All pellets were pooled and diluted in TBS (~21 ml) to improve handling; the

total protein content and PL content was found to be 3 mg/ml and 34 mg/ml respectively.

A B
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2.4.1 Phase Transition Temperature

As already described in Chapter 1, every PL mixture has a specific phase transition

temperature, at which the PLs change from the ordered gel phase to the liquid crystalline

phase. Above this temperature, the lipids are highly versatile, while below this temperature the

PL layer is densely packed. In the case of PS the phase transition temperature is lower and

broader in comparison to the transition temperatures of  the component PLs alone, due to the

effects of  SP-B and SP-C. In the range of the phase transition temperature (about 25-41 °C)

both ordered gel and liquid crystalline phases exist in PS [41]. By looking at the polydispersity

index (PDI) and the average size of vesicles within pPS in buffer ramped from 5 to 65 °C

(Figure 2-8) it becomes obvious that some major restructuration is taking place at phase

transition. By comparing single consecutive measurements at a temperature below (Figure

2-9A) and within (Figure 2-9B) the phase transition temperature range, this effect is even

more clearly visible: The lipid layers behave like relatively monodisperse liposomes below the

phase transition temperature, but are changing in size and as a result, structure, within seconds

(roughly 20 seconds per measurement). It was therefore concluded that all experiments which

aim to elucidate the interaction of  NPs with PS must be performed at physiological

temperature in order to expose the NPs to the highly variable PS structures that would be

expected to occur in vivo.

Figure 2-8: Temperature ramp of  pPS showing increased activity (as inferred from the PDI) and
average size decrease of  vesicular structures between 25 and 41 °C, the phase transition temperature of
PS [41]. After heating to 65 °C, pPS does not return to its initial state in the cooling phase - the physical
properties of  pPS are inhibited by degeneration of  proteins.
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Figure 2-9: Influence of  temperature on pPS vesicle size. DLS analysis of  pPS (40 µg/ml protein in
TBS) at 4 °C (A) and 37 °C (B) reveals a liposome-like monodisperse behavior of  the vesicles below the
phase transition temperature. Reproduced from [115].

2.4.2 Lipid Composition

The analysis of  pPS by TLC (Figure 2-10) revealed that pPS consists of  several lipid classes,

dominated as expected by GPChol. The limitations of  this method, however, became obvious:

With only one elution condition a complete separation of  all classes cannot be achieved.

Furthermore, the disproportionality of  the lipid classes present within PS leads to either a

concealing of  the closely running classes by GPChol or concentrations below the detection

limit for the less abundant species. Since for the further work regarding NP-corona analysis no

tremendous changes within lipid concentration were expected, a more sophisticated method

for lipid analysis was established as described in Chapter 2.3, allowing an in-depth analysis of

all present species.
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Figure 2-10: Separation of  pPS lipids by normal phase TLC. (PA= point of  application)

With the application of  this method, it was possible to produce the most complete lipid

profile of  pPS performed to date. The results are summarized in Table 2-3 and Figure 2-11. A

total of  249 different lipid species were detected, with the ten most abundant species

accounting for 78% of  the total weight of  lipid present. The relative concentration of  DPPC

(37%) was found to be lower than stated in the literature, which could be a result of  the sum

of  classes detected. Surprisingly, GPIno (16.8%) was the second most abundant class after

GPChol (67.1%), followed by cholesterol and its esters (7.9%).

The absolute concentration of  lipids in pPS is difficult to determine and is still debated.

Regardless of  the isolation methods used (with the exception of invasive procedures), the PS

layer is diluted, and depending on the recovery rate [125], results scatter along with the

estimation of  surface area.

Table 2-3: Detailed lipid composition of  pPS as determined by normal phase HPLC-MS, and enzymatic
assay (Chol).

Lipid GPChol SM GPGlyc GPEth GPIno GPSer Chol Total

Total number of
lipids quantified 94 3 41 35 58 17 1 249

wt% of total Lipids 67.1±3.8 0.2±0.1 5.9±1.2 2.0±0.3 16.8±1.9 0.1±0.0 7.9±1.0 100

% thereof Lyso-PL 3.5±0.4 0 4.8±0.6 0.5±0.0 0 0 - 2.6

% thereof saturated 71.3±4.2 72.0±1.8 27.2±2.1 0.4±0.0 7.4±0.6 0.0 - 48.0

most abundant
species

32:0
(DPPC) 54.7±5.0 34:1 63.2±2.3 34:1 36.4±1.1 36:2 17.5±0.2 34:1 14.1±0.6 36:1 71.0±7.8

30:0 13.3±2.4 32:2 28.0±1.8 32:0 18.2±2.2 34:1 15.3±0.2 36:2 5.8±0.2 36:2 7.2±4.3

34:1 13.3±2.3 32:1 8.8±0.9 34:2 8.7±0.4 34:2 13.7±0.2 36:1 5.2±0.4 38:4 7.0±5.1

32:1 10.5±1.5 32:1 8.6±0.3 36:3 13.6±0.3 others 74.9 others 14.8

others 8.2 others 28.0 others 39.8
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Figure 2-11: Relative distribution of  lipids found in pulmonary surfactant by means of  lipid classes and
overall chain length of  phospholipids by wt%.

2.4.3 Protein-Lipid Interactions

Similar to lipid analysis, basic methods, i.e. SDS-PAGE, were primarily deployed to analyze the

protein composition of  pPS. It became obvious that the high amounts of  lipids in pPS do not

allow for the application of  gel electrophoresis without prior sample preparation. Precipitation

of  proteins by ice-cold acetone did not improve the running behavior of  pPS; purification by

chloroform/methanol precipitation led to better results (Figure 2-12).

Figure 2-12: Comparison of  chloroform/methanol and acetone protein precipitation by SDS-PAGE.
Although precipitation by CHCl3/MeOH showed improvement in lipid deppletion, specific proteins are
lost in the process (see S1). L = ladder, P = protein pellet after precipitation, S1/S2 = 1st and 2nd

supernatant of  precipitation, pPS pulmonary Surfactant, SP-A = Surfactant Protein A.
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Both protocols, however, depleted not only the lipids, but also extracted proteins from pPS.

The most prominent band appearing in the supernatant of  precipitation had a size of

~ 70 kDa, with a second faint band of 35 kDa being present. SP-A, which is typically seen in

SDS-PAGE gels as monomer and dimer, shows the same bands. Considering the fact that

SP-A takes part in lipid organization these result are not surprising. SP-B and SP-C are very

likely to be lost during the purification as well, since the two proteins are only sparingly soluble

in aqueous solvents and will eventually remain within the organic solvents and the PLs.

Figure 2-13: "2-Dimensional"-separation of  pPS proteins. TLC was deployed for the first separation,
single lipid spots were extracted and subsequently resolved by SDS-PAGE (PA = point of  application).

To further investigate the connection between lipids and proteins, pPS was first separated into

lipid classes by TLC as described in the previous chapter. In a second step, the spots of  the

lipid classes were scratched from the TLC plates and resolved by SDS-PAGE (Figure 2-13).

The point of  application showed, as expected, most protein bands; interestingly, the following

lipid spots did not show the same, but fainter, bands on the gel. Apparently, only specific

proteins elute together with the classes: The scratched spot of  the first eluting GPIno/GPSer

(could not be resolved) showed two very distinct bands (~18 kDa and ~ 12 kDa), which are

not visible in the next spot of  GPChol. Together with the GPChol spot, however, two more

proteins larger than 50 kDa are eluted. Due to the high concentration of  lipids in this band no

further bands can be recognized in the lower size range. While in GPGlyc a faint band is still

visible, no proteins elute together with GPEth and cholesterol. The identity of  these proteins

was not further elucidated, but it became clear that a different method is required to get

sufficiently accurate results.
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2.4.4 Protein Composition

With respect to the study aim, to study the complete PS corona of  NPs rather than just single

proteins, more sophisticated methods were employed to analyze the proteins occurring in pPS.

By label-free shotgun proteomics (performed by Dr. Stefan Tenzer, Institute for Immunology,

Mainz), a total of  386 different proteins/peptides were determined to be present in crude

pPS. The 30 most abundant proteins that were found in pPS in comparison to the most

prevalent proteins in plasma (as determined by Tenzer et al. in [76]) are shown in Table 2-4.

While plasma proteins are dominated by albumins and glubulins, the pPS proteins are

considerably more diverse. SP-A has the highest concentration in pPS (10.2%), yet does not

occur in plasma at all. It can certainly be expected that there are plasma proteins present in

pPS; given the close connection of  blood vessels with the alveolar lining fluid at the air-blood

barrier, this seems rather likely. The occurrence of  hemoglobin in pPS has indeed been linked

to the fact that alveolar cells express this themselves, and as such it has been found to

associate with the PS vesicle membranes without disturbing the physiological function of  PS

[126, 127]. Beside SP-A, the second collectin SP-D was also detected in pPS, although in low

amounts (0.5%); it was thought to be lost during the purification steps since it is the most

hydrophilic SP-X, and is therefore not as closely connected to the lipid vesicles. The

concentration of  SP-B (1.4%) is in agreement with values published earlier [41]. The sample

preparation as described in 0, together with the need for cleavage sites in the protein, allowed

only peptides which have a minimal molecular weight of  10 kDa to be analyzed. Therefore,

the very small SP-C could not be detected with this method. Its presence was proven however

by western blotting with specific antibodies (see Figure 2-14). In total, it was found that the

pPS proteome includes much less immunoglobulin (Ig) than plasma, although the surfactant

interacts on a daily basis with intruding pathogens and particulate matter.

Figure 2-14: Western blotting of  pPS after SDS-PAGE proved the presence of  SP-B and SP-C in the
preparation.
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2.5 Summary and Conclusion

The isolation of pPS by the method of  Shelley et al. [112], is an established model in

biophysics, which has helped in understanding the astonishing properties of  the air-blood

barrier [128, 129]. Most studies so far have however only employed artificial, lipid-based

clinical PS preparations (e.g. Alveofact®, Surfacen®, Curosurf®, etc.), making the assumption

that only lipids from PS will interact with NP. Such preparations are commercially available

and standardized; nevertheless, the use of  these preparations for elucidating the NP corona

and even the impact of  NPs on the surfactant layer is not appropriate. By indirect

measurements of  phase transition temperature, it could be shown, that pPS undergoes

massive structural reorganization in the physiological temperature range.

Table 2-5: Comparison of  the determined concentrations of  lipids in the used surfactant preparation to
values found in the literature. The in-house analysis included for the first time an advanced
quantification method for all lipid classes that were previously detected. Mol% and wt% are fairly
comparable due to the narrow mass range of  most occurring lipids.

PL class [111] by TLC
[mol%]

[128] by HPLC-UV
[mol%]

pPS
[wt%]

GPChol 79.5 ±1 85.6 ±1.8 67.1 ±3.8
GPIno 10-15 2.0 ±0.2 16.8 ±1.9
GPGlyc

4-8
8.6 ±0.7 5.9 ±1.2

GPEth 2.9 ±0.8 2.0 ±0.3
GPSer n.a. Traces 0.1 ±0.0
Cholesterol 3.2 ±0.2 n.a. 7.9 ±1.0
SM n.a. 1.0 ±0.5 0.2 ±0.1

The composition of  both lipids and proteins was determined to a very high level. Lipid

composition was dominated, as expected, by DPPC, with GPIno as the second most abundant

class. The determined concentrations were in agreement with values from the literature (Table

2-5) and furthermore, all PL classes were determined in pPS simultaneously for the first time.

pPS contains all naturally occurring lipids including cholesterol, which is depleted in

commercial surfactants [111].

By deploying sophisticated lipidomics, an immense diversity of  proteins was detected, and the

occurrence of  all SP-X was proven. Due to the nature of  biophysical experiments performed

with PS, minor plasma protein concentrations are negligible. Comparison of  the generalized

gene ontology terms of  pPS and plasma (Figure 2-15) shows that protein properties of these

biological fluids differ, further confirming that the plasma corona cannot be regarded as

relevant for airborne NPs in the deep lung. Therefore, it can be concluded that the isolated



Chapter 2: Preparation and Characterization of  a Native Pulmonary Surfactant

47

porcine native pulmonary surfactant is a most realistic model to study the interplay of NPs

with the non-cellular barrier of  the deep lung, which will not only interact with the NPs in a

physically correct manner, but, as it contains all relevant lipids and proteins, also constitutes

the perfect preparation to elucidate the NP corona in vitro.

Figure 2-15: Comparison of  the relative cumulated gene ontology terms of  the entity of  proteins found
in crude plasma (data taken from [76]) and pPS.
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3. THE NANOPARTICLE CORONA IN
PULMONARY SURFACTANT
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3.1 Introduction

NPs that are intended to be used in patients have to be tested for toxicity, drug release,

colloidal stability, cell uptake, etc., and the route of  application and site of  action have to be

taken into account for these tests. In the case of  inhalable NPs for pulmonary delivery, the site

of  action is the alveoli; NP properties and behavior needs therefore to be studied in this

environment. Most in vitro experiments on the efficiency and safety of  NPs are still performed

under questionable conditions, e.g. using unrelated cell lines, measuring NP stability in water or

cell medium with and without fetal calf  serum (FCS), and performing cytotoxicity and uptake

experiments ignoring the fact that in the human body NPs will be covered, or opsonized, by

biomolecules prior to cell contact [71]. Whenever the term ‘nanoparticle’ is used, it usually

refers to a particle which possesses characteristics that a macroscopic solid does not. An NP

however which is actually nano-sized after production may not necessarily be within the nano-

range after its administration into the body. Several factors can lead to agglomeration, to a

degree at which the NP loses its specific abilities and characteristics [130]. The tendency of

macrophages to engulf  single NPs is quite low; larger agglomerates however are taken up

easily by either phagocytosis or pinocytosis [131].

NPs that enter the deep lung may be inhaled by accident, i.e. “technical particles” such as

contained within exhaust fumes, meaning they are deposited as single particles. Alternatively,

NPs may be inhaled on purpose, as drug delivery vehicles. The aerosol generation of  single

NPs is not yet feasible in the latter case; the NPs are therefore incorporated into

microparticles or aerosolized within liquid droplets. Regardless of  the intention, solid NPs

that enter the alveolar region will come in contact with the very first barrier of  the lungs: the

PS. The proteins and lipids of  the PS will adsorb to the surface of  the NPs, altering surface

properties such as hydrophobicity, surface charge and surface chemistry, and in doing so

affecting NP stability, drug release, agglomeration tendency [132], and most importantly,

cellular recognition of  and interaction with NPs [87]. How the layer around NPs is formed

and what it does to the NP itself  when it comes into contact with a biological fluid has been

extensively researched in the last years [69]. Plasma proteins have been largely accepted in this

respect as a general model for the non-cellular nano-bio-interactions that occur in the body. A

number of  factors such as how single proteins adsorb to the NP surface [133], how fast the

corona is formed [81] and how thick this layer is [79], how many proteins adsorb per surface

area [133], what orientation these proteins have [134], whether the binding can be modified by

size/curvature [135], and the surface chemistry [136] and charge [135] of  the corona have
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been studied. However, the dissimilar environment in the deep lung in comparison to plasma

is quite obvious, and the manner in which this affects the outcome of  the latter mentioned

effects on NPs is almost completely unknown.

Although researchers who are looking into nano-bio interactions have accepted the fact that

they need to include the adsorption of  biomolecules into the testing of  their newly formulated

particles, various methods rather than standardized procedures are commonly used to probe

the corona formation. Most groups keep it as simple as possible and gain suitable results by

incubating NPs in plasma and separating the NPs with their adherent corona by centrifugation

[137], or visualize the corona in situ by measuring the size change in protein-containing

solutions [138]. Just recently Hadjidemetriou et al. were able to observe the corona formation

in vivo [88]. All of  these techniques, however, presume that there is a hard corona, as already

introduced in Chapter 1, which needs to be divided from the soft corona.

When looking at this very peculiar body fluid, one must realize, that PS is neither a colloidal

system nor a solution, but a membranous and vesicular system, which organizes itself  not only

at the air-liquid interface but also in the submerged phase [41]. Once an NP interacts with any

component of  PS, it can be expected to become a part of  the whole system rather than

continuing to be seen as a single NP. Not only adsorption but also lipid bilayer dynamics have

to be considered for the interactions of  NPs with PS. Nevertheless, if  this leads to an

agglomeration of  the particles or to an excessive adsorption of  lipids/proteins has never been

documented. Other researchers have been looking into the effects of  single components of

PS [101] or artificial models [132]; this chapter will focus on the interaction of  NPs with crude

pPS, as it was described in Chapter 2. It is most likely that all lipids and proteins present within

PS interact with the NP surface, and therefore only the entire system will reflect the actual

in vivo situation. It is expected, that PS requires completely different approaches to visualize

the NP corona, as it is not simply a protein solution and therefore does not act like one. In

this chapter, it was attempted to observe and access the corona on NPs by different options

that are commonly used for the plasma corona, by means of  size measurement methods.

Besides the typical techniques such as DLS and nanoparticle tracking analysis (NTA), the

approach of  differential centrifugal sedimentation (DCS), as recently established by Monopoli

et al., was investigated [79]; separation by asymmetric flow field flow fractionation (AF4) was

also employed. These methods partly depend on special characteristics of  the nanomaterial;

therefore, NPs compliant to these requirements had to be used according to the respective

method, giving valuable insights into the largely ignored factor of  the ‘nanoparticle corona in

pulmonary surfactant’.
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3.2 Reagents and Methods

3.2.1 Reagents

Poly(d,l-lactide-co-glycolide) (PLGA) with a lactide:glycolide ratio of  50:50 (Resomer RG 503

H) and Eudragit® RS 100 were purchased from Evonik (Essen, Germany). Polyvinyl alcohol

was obtained from Carl Roth (Karlsruhe, Germany; Mowiol® 4-88). The non-synthesized

magnetite-containing NPs were bought from the following suppliers: PEG-NPs

(nanomag®-D PEG 5000 250 nm) and ProtA-NPs (nanomag®-D Protein-A 250 nm) were

ordered from Micromod (Rostock, Germany), Lipid-NPs (fluidMAG-Lipid 200 nm) and

Starch-NPs (fluidMAG-D 200 nm) from Chemicell GmbH (Berlin, Germany), and PS-NPs

(PS-MAG-COOH 350 nm) from Microparticles GmbH (Berlin, Germany). All NP were used

as received. Fluorescent carboxylated polystyrene NPs (Fluoresbrite® COOH YG

0.05/0.2 µm and Fluoresbrite® Multifluorescent 0.2 µm, further referred to as PS-COOH

NPs) were obtained from Polysciences Europe GmbH (Eppelheim, Germany); all other

reagents and solvents were purchased from Sigma Aldrich (Munich, Germany).

3.2.2 Preparation of magPLGA and magEu Nanoparticles

Magnetite-loaded PLGA NPs (magPLGA-NPs) and magnetite-loaded Eudragit® RS 100 NPs

(magEu-NPs) were synthesized as described in detail in Chapter 0.

3.2.3 Electron Microscopy

For scanning electron microscopy (SEM), NPs were diluted appropriately (1:100 – 1:1000) and

applied on a carbon disc. The suspensions were dried overnight, sputtered with gold (Q150R,

Quorum Technologies, Laughton, UK) and imaged with an EVO HD 15 microscope (Zeiss,

Germany). Transmission electron microscopy (TEM) was performed on a JEM 2011 (Jeol,

Japan) after drying NP dispersions on a copper grid.

3.2.4 Dynamic Light Scattering

DLS was performed as described in Chapter 2.2.6. The zeta potential of  the NPs was also

measured with the Zetasizer ZSP based on the electrophoretic mobility using a disposable

folded capillary cell in automatic mode. For titration experiments, an automatic titration

system (MPT-2, Malvern) was additionally connected to the instrument. Where possible, the

titrant was kept under permanent stirring and the mixing chamber at 37 °C.
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3.2.5 Nanoparticle Tracking Analysis

NP number count was measured using a NanoSight LM10 (Malvern). The NP suspensions

were diluted appropriately and injected into the measuring chamber with a syringe.

Measurements were performed with a green laser (532 nm) in triplicate. If  not stated

otherwise, NPs were analyzed three times for 60 seconds with sample agitation between the

measurements. Agglomeration behavior of  fluorescent NPs was measured with an applied

green filter using the live view mode (Software: NanoSight NTA 2.3).

3.2.6 Adsorption Experiments

pPS was diluted to meet an NP to protein ratio in µg of  1:2 in TBS buffer. NP stock solutions

were dispersed thoroughly by vortexing and brief  sonication in an ultrasonic bath before the

appropriate amount was added to the pPS. The mixture was incubated at 37 °C under

agitation (400 rpm) in a thermal shaker (Thermomixer comfort, Eppendorf, Hamburg

Germany) to prevent pelleting of  the pPS vesicles. As this work represents the first study

looking into the adsorption of  PS onto NPs in such a level of  detail, a set incubation time of

1 h was chosen based on several considerations:

 Previous work which has been performed in-house and by other groups regarding

single lipids or proteins showed fast corona evolution within minutes [81]. To ensure

that the protein and lipid adsorption has reached equilibrium, a significantly longer

incubation time was chosen.

 The lower limit of  incubation time has also to be regarded. The magnetic separation

of  NPs is not as fast as the separation by centrifugation. Therefore, no shorter

incubation times were evaluated, considering the introduced error in comparison to

the subsequent separation time.

 Using the kinetic parameters for estimating the equilibration time is difficult. There are

no kinetic parameters available which describe the behavior of  the PS towards a solid.

There are descriptive parameters regarding lipids and single proteins alone; a reliable

prediction of  the affinity of  a protein-lipid mixture, however, is impossible at the

moment, since the PS behaves neither as liposomes, nor as protein solution. To gain

such data, a time-dependent resolution of  the evolution of  such PS corona around

NPs must be first performed.
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3.2.7 Asymmetric Flow Field Flow Fractionation

The used AF4 set-up consisted of  a common HPLC configuration (Pump, Autosampler, RS

Variable Wavelength Detector, Fraction collector, all Ultimate 3000, Dionex™, Sunnyvale,

USA), a flow controller (Eclipse DualTec), a refractometer (Optilab T-rEX) and a multi angle

(or static) light scattering (MALS) device (DAWN HELEOS II, all by Wyatt Technology,

Dernbach, Germany). The medium sized separation chamber was used, equipped with a

regenerated cellulose membrane (cutoff  10 kDa) and a mobile phase consisting of  freshly

prepared phosphate buffered saline (PBS). A volume of  15 µl per sample was focused and

subsequently eluted with a constant detector flow of  1 ml/min and the following settings:

Mode Step Duration Crossflow
Elution 2 3
Focus 1
Focus + Injection 2
Focus 7
Elution 5 1 0.1
Elution 25 0.1 0
Elution 25 0
Elution + Injection 5 0
Elution 4 0 1

3.2.8 Differential Centrifugal Sedimentation

DCS was performed on a DC24000 (CPS Instruments, Inc. Prairieville, LA, USA). If  not

stated otherwise, the experimental set-up was as follows: A gradient of  sucrose in PBS was

prepared by injecting consecutively nine solutions of  decreasing sucrose concentration (each

1.6 ml). As stated for the individual experiments, three different gradients and speeds were

used (2-8% Sucrose at 14000 rpm; 8-24% at 18000 rpm; 12-48% at 18000 rpm). After the last

injection of  sucrose solution, the gradient was overlaid with 1 ml of  dodecane to prevent

evaporation and therewith changes in gradient composition. The gradient was allowed to

stabilize for 20 minutes before measurement. Standard polyvinyl chloride NPs (CPS

Instruments, Inc.) with a size of  239 nm were injected prior to each sample injection and the

sample size was calculated in relation to the run time of  the standard. The sample volume was

always 100 µl with an NP concentration of  0.1 mg/ml. Data was acquired using CPSV95C

software, supplied by the instrument manufacturer.
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3.3 Excursus: Preparation of Magnetite-Loaded Nanoparticles

Early experiments with PS already revealed the complicated nature of  polymeric NPs and pPS

separation following their incubation in PS from the latter. In order to facilitate the use of

magnetic separation and to exploit the additional advantages to be gained by using high

density NPs, different NPs with incorporated magnetite primary nanoparticles were prepared.

Extremely small magnetite NPs (depending on the material) possess the advantage of  being

superparamagnetic, which means that each NP acts as a single magnetic domain. When an

external magnetic field is applied, for instance as produced by a neodymium magnet,

superparamagnetic NPs align themselves in the same direction as this field. As soon as the

magnetic field is removed, the NPs lose their magnetic moment and show no susceptibility to

self-agglomeration by remaining magnetism. The most commonly used material for such NPs

is iron oxide, in particular the ferrimagnetic magnetite (Fe3O4) and maghemite (γ-Fe2O3). Iron

oxide NPs of  sizes smaller than 20 nm show superparamagnetism [139], and have - in

comparison to most polymers - a high density. As an interesting polymer for potential drug

delivery to the lungs, PLGA was chosen. As an additional polymer which exhibits positive

charge, Eudragit RS 100 was used to synthesize NPs with a positive zeta potential.

3.3.1 Preparation Method

Primary magnetite NPs were prepared by Dr. Christian Cavelius (INM, Saarbruecken) by a

co-precipitation method [140]. In short, ferrous and ferric salts were mixed under alkaline,

non-oxidizing conditions, forming magnetite (Equation 3-1). The precipitated magnetite was

coated with oleic acid, and the now highly hydrophobic NPs were collected in an organic

phase such as hexane or chloroform. Since magnetite is sensitive to oxidation, it is likely to be

partly transformed into the likewise superparamagnetic maghemite (Equation 3-2).

Fe2+ + 2Fe3+ + 8OH- Fe3O4 + 4H2O (3-1)

Fe3O4 + 2H γFe2O3 +Fe2+ + H2O (3-2)

NPs were prepared using an emulsification-evaporation method as schematically shown in

Figure 3-1. Briefly, primary magnetite NPs were dispersed under vortexing and sonication in

chloroform together with either PLGA or Eudragit® RS 100, and added to an aqueous

solution of  polyvinyl alcohol. After brief  mixing, the two-phase system was sonicated on ice
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for 70 s at 30% intensity with a tip-sonicator (250 Digital Sonifier, Branson, Danbury, USA)

equipped with a 1/8” tapered microtip. The dispersion was quickly transferred into a beaker

and under mechanical stirring (Eurostar digital, IKA-Werke, Staufen, Germany), water was

added to 40 ml. The chloroform was then allowed to evaporate overnight. After filtration

through a 0.45 µm membrane in the case of  magPLGA-NPs, magnetite-loaded NPs were

separated from insufficiently loaded NPs by separation in a magnetic rack (PureProteome™

Magnetic Stand, Merck Millipore, Germany) for 5 min. Magnetic NP pellets were dispersed in

water and stored until use at 4 °C. The mass concentration was determined gravimetrically

after lyophilization (Christ Alpha 2-4 LSC, Martin Christ GmbH, Osterode am Harz,

Germany). Additionally, it was possible to coat magPLGA-NPs with the positively charged

polymer chitosan to produce positively charged core-shell NPs as described by Kumar et al.

[141].

Figure 3-1: Schematic of  the nanoparticle preparation process, here magPLGA-NPs. ddH2O = double
distilled water.

3.3.2 Characterization

The magPLGA- and magEu-NPs that were produced by the above described method were

monodisperse, spherical, and highly magnetic (as described in Table 3-1). In small volumes

(Eppendorf  tubes) of  pure water, it was possible to attract all particles of  the dispersion by an

externally applied permanent magnet (Figure 3-2); particles were still dispersible by vortexing

however, a necessary condition for the planned adsorption experiments which would require

multiple cycles of  redispersion following washing steps.
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Figure 3-2: magPLGA-NPs are attracted by a permanent neodymium magnet within minutes.

Table 3-1: Average properties of  the produced magPLGA- and magEu-NPs

NPs magPLGA magEu
Size (DLS)

[d.nm] 180–210 200–220

PDI <0.1 <0.1
Zeta potential

[mV] -25 ±0.2 +34 ±0.5

TEM

SEM
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3.4 Results and Discussion

3.4.1 Dynamic Light Scattering of Nanoparticles in the Presence of Porcine
Pulmonary Surfactant

DLS offers the possibility for size analysis of  submicron particles, down to the scale of  single

proteins. There is, however, a major drawback: polydisperse samples or samples with several

size fractions are not resolved well. In the presence of  larger structures, DLS is limited by the

high amount of  light scattered by the large particles, which masks the signal of  smaller

particles. As shown already in Chapter 2 (Figure 2-9), the membranes of  PS scatter light like

coalescenting liposomes which, therefore, results in a signal over a large size range. This makes

it impossible to accurately determine the size of  concurrently present NPs. This effect on the

results of  NP size measurements is exemplified by polystyrene NPs in presence of  different

amounts of  pPS, shown in Figure 3-3A. The amount of  scattered light by either particles or

pPS is however dependent on their concentration. By slow titration of  NPs with increasing

amounts of  pPS it was attempted to measure the size increase and therewith the corona layer

formation at least at the early stage, given that the added pPS immediately adsorbs to the

particles and does not remain in solution. For all used NPs the titration diagram was very

similar (PS-COOH shown in Figure 3-3C as a representative example). Starting from the very

first addition of  pPS, the average size slowly increased. PS-COOH NPs that are exposed to

plasma proteins, even at high concentrations of  10% FCS, only show a certain size increase

when the whole NP surface is covered with hard- and soft-corona (Figure 3-3B). The

additional free proteins are not visible in DLS, as single proteins scatter very little in

comparison to the large NPs. In case of  pPS however, the size continues to increase until it

resembles the polydisperse graphs of  solely pPS in solution. Furthermore, the overall intensity

of  the sample is decreasing during addition of  pPS. It could therefore be inferred, that the

increasing size of  the sample is not due to the corona formation but is more likely a function

of  the increasing strength of  the signal coming from the membranous structures of  pPS.

Although the application of  this method was evaluated for the whole set of  NPs with

different surface properties and particles sizes, the thickness of  the corona could not be

judged by DLS.
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Figure 3-3: DLS measurements of  200 nm PS-COOH NPs during titration with pPS. Single
measurements (A) show that already small amounts of  pPS cause the monodisperse NP peak to vanish.
In comparison, NPs in a solution of  plasma proteins (B),,, even at high concentrations, does not show
such beahavior. During the titration with pPS (C), the z-average of  all peaks is increasing to values to
more than double the initial size, while the intensity of  the sample decreases.

3.4.2 Nanoparticle Tracking Analysis

Although the size determination of  NPs by NTA is, like DLS, based on Brownian motion, the

two methods show many points of  difference. Both use a laser to produce a scattering signal,

however the method used to calculate particle size from this scattered light signal is markedly

different: DLS detects the change in the scattered light signal, while NTA tracks the scattered

light of  single particles which are illuminated by a laser beam through a microscope set-up.

This gives the advantage of  being able to manually select which signals should be counted as

particles. On the other hand, NTA detects far fewer particles at one time in comparison to

DLS, making longer measurements necessary in order to get reliable results. By simple
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tracking analysis, pPS produced such a high background scattering signal that the software was

hardly able to extract real NP trajectories from the obtained videos. NTA possesses another

option to refine the values of  samples with high background noise: The use of  fluorescent

signals. By filtering the directly scattered light with a green filter, only red light signals are

permitted to reach the camera. By using such a discriminatory filter, only NPs with certain

excitation/emission spectra can be measured and the signal intensity is much lower, although

the obtained trajectories are highly distinctive for the NPs. As it can be seen in Figure 3-4

(dotted line), the results of  NPs after incubation with pPS are similar to the ones from DLS

measurements, although NTA interprets the fast changes in the scattering as large amounts of

smaller particles. By applying a fluorescence filter to the measurements, the signal pPS-only

vesicles are entirely disregarded (solid line). A drawback of  this method is, however, the need

for fluorescent NPs.

Figure 3-4: Influence of  fluorescence filter on nanoparticle tracking analysis in presence of  pPS.
Without filter the structures of  pPS result in a scattering signal that the software assumes to be small
particles in high concentrations. By filtering the non-fluorescent signal out, a signal in the particle
range becomes visible (20 µg PS-COOH 200 nm + 40 µg pPS incubated for 1 h at 37 °C).

By incubating multi-fluorescent PS-COOH NPs in medium supplemented with different

additives for 1 h at 37 °C, it was possible to observe the particle movement in situ without

being misled by the additional signals of  the excess additives. The NP distributions are shown

in Figure 3-5 (summary of  the measured dmax values in Table 3-2). Several effects can be

observed. As reported before by Monopoli et al. [79], FCS leads to a homogenous corona

formation, with a slight increase in thickness with increasing FCS concentration. NPs after

incubation with pPS show a main peak, slightly larger than the control and similar to the

plasma corona formation; however, the distribution is broadened towards larger

particles/agglomerates. Alveofact® in the same concentration as pPS leads to an apparent
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agglomeration of  the NPs, which is most surprisingly entirely indiscernible if  FCS is

simultaneously present in low concentrations.

Figure 3-5: NTA measurements of  200 nm multifluorescent PS-COOH NPs with different incubation
additives. In the presence of  FCS at two different concentrations (10 and 0.1%) a homogenous corona
forms, while pPS leads to a broadening towards larger particle sizes and Alveofact® to an apparent
agglomeration of  the NPs. In the presence of  0.1% FCS, NPs do not interact with Alveofact®.

From these observations it can be concluded that PS-COOH NPs definitely interact with the

pPS, leading to corona formation. Apparently, the vesicles of  the protein-depleted Alveofact®

are either more rigid and impede the movement of  the particles more, or they lead to a higher

agglomeration of  NPs than pPS. The main peak dmax of  NPs after incubation with pPS shows

a shift of  22 nm in comparison to the control, resulting in an apparent thickness of  the

corona of  11 nm. Assuming a thickness of  roughly 5 nm for a DPPC bilayer [142], it appears

that the minimal corona around the NPs consists of  more than one bilayer. For the fraction

of  particles appearing larger in the measurement however, it remains unclear from the

measured trajectories if  the NPs move more slowly due to agglomeration mediated by the pPS

adsorption, or if  they are entrapped within the membranous structure of  pPS, slowing down

their Brownian motion. For the same reasons, it cannot be judged if  the addition of  FCS to

Alveofact® inhibits the membranous system or if  the corona formation is disturbed and no

agglomeration takes place. Several groups found an inhibition of  PS functionality in terms of
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surface activity [114], although this effect is dependent on the complexity of  the preparation

[143] and might be limited to the adsorption at the air-liquid interface [144].

Table 3-2: Average peak maxima of  the measured PS-COOH NPs after incubation with different
additives.

mean dmax

[nm ±SD]
apparent corona thickness

[(dmax-dmaxControl)/2)]
Control 157 ±2 -
pPS 179 ±7 11
FCS 10% 194 ±2 19
Alveofact® 515 ±161 179
FCS 0.1% 175 ±2 9
Alveofact® + FCS 0.1% 173 ±3 8

3.4.3 Asymmetrical Flow Field Flow Fractionation

AF4 is a powerful tool to separate objects over a large size range of  ~1 nm to 100 µm,

allowing separation of  single proteins from large particle agglomerates. The separation

principle is based on the fact that Brownian motion is more likely to move smaller particles

into the faster zone of  the laminar flow. This principle allows a separation and subsequent

detection by particle size only. After testing different elution settings, buffers, and membranes

it became clear that pPS, either due to the size of  its vesicles/membranes or due to

interactions with the semipermeable membrane, requires very long elution times and can only

be washed completely out of  the chamber with an aqueous ethanol solution. The crossflow

needed to be minimal, as the surfactant produced otherwise a strong signal over the entire

elution period as shown by Hupfeld et al. [145]. However, it was not possible to completely

separate pPS from NPs, even though the main pPS peak appeared notably later; the tested

NPs always eluted concurrently with pPS. As a representative example, a chromatogram

displaying the elution of  magPLGA-NPs, pPS, and magPLGA-NPs incubated in pPS is

shown in Figure 3-6A. Although the NP peak was shifted to a longer elution time after

incubation with pPS and the particles could be identified within the collected fraction (Figure

3-6B; inset shows identification of  iron by energy-dispersive X-ray spectroscopy (EDX), it

was not possible to obtain meaningful values for the size and mass of  the detected peaks

either by MALS or by DLS, presumably due to the high variability in online measurements of

pPS size as observed before.
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Figure 3-6: Surfactant-NPs interactions as observed by AF4. Chromatogram of magPLGA-NPs after
incubation with PS shows peak shift to larger particles (A). NPs were found within the peak by SEM
(B) and their presence proven by EDX (inset).

A4F is very well suited to separate different fractions of  distinctive sizes; it is however limited

to the separation by different particle sizes. The separation of  NPs from proteins or other

complex media such as soil or cell lysate has already been shown to be feasible by others [146,

147]. Lipid-rich samples, however, interact strongly with the AF4 membrane and, therefore,

no conditions could be found at which pPS was separated from NPs. In the future, the

technique might be used for this very application, provided that the online scattering detectors

become more powerful and inert or modifiable membranes become available.

3.4.4 Differential Centrifugal Sedimentation

DCS is a type of  analytical ultracentrifugation in the form of  a spinning disk, in which

particles are detected after a separation based on centrifugal velocity which, in turn, is based

on a modified Stokes law (Equation 3-3):

(3-3)

Where D is the particle diameter, η is the viscosity of  the fluid, Rf is the outer radius of  the

spinning disk, R0 is the inner radius of  the disk, ρp is the density of  the particle, ρf is the density

of  the fluid, ω is the rotational velocity and t is the time the particles need to move from R0 to

Rf.
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Figure 3-7: Analysis of  magPLGA-NPs in the presence of  pPS, by DCS. A: In a gradient of  12-24%
sucrose the pPS peak overlaps with the magPLGA peak. No difference can be seen after incubation of
both (PLGA + pPS). After magnetic separation and washing, the “hard corona” was analysed, but the
washing procedure lead to agglomeration (PLGA + pPS hc). B: In a less dense gradient (2-8% sucrose)
pPS elutes first; the detector signal increases however, making an analysis impossible.

The time needed to reach the detector at the outer part of  the disk for a sample is therefore

dependent on particle diameter and particle density, as distinguished from AF4, which

discriminates only by size. By choosing different gradient densities, this method can be

adopted for a variety of  particles sizes and densities. pPS however not only forms vesicles

over an wide size range, resulting in overlapping particle peaks, but also has a density equal to

the density of  polymers (~1.3g/cm3). Therefore, in order to achieve separation of  NPs from

surfactant, only magnetite-loaded NPs with a higher density were used in these experiments.

Figure 3-8: DCS measurements of  different NPs in a 24-48% sucrose gradient. magPLGA- (A), Lipid-
(B), and PEG-NPs (C) were either incubated in buffer (blue lines) or in buffer supplemented with pPS
(green lines). Under these conditions no signal for pPS was detected (red line), only a size increase of
NPs.
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Using DCS for such purposes was initially described by the group of  Dawson [79]. Their

protocol with a gradient ranging from 12 to 24% sucrose, however, was optimized for

measuring particles with an adherent protein corona after incubation in blood plasma, with

and without removing the loosely bound soft corona. Reproducing this set-up for measuring

the surfactant corona did not result in any meaningful outcome, as under these conditions

peaks of  NPs and pPS overlapped (see Figure 3-7A). Furthermore, the magnetic separation

of  NPs after incubation with pPS and repeated washing, which is supposed to result in

removing the soft corona, has shown to cause an irreversible agglomeration of  the particles,

presumably due to the strong interaction forces of  the hydrophobic PS coronas (compare

plots PLGA + pPS and PLGA + pPS hc in Figure 3-7A). Decreasing the gradient density

aiming at a fast sedimentation of  the surfactant vesicles was also not successful (Figure 3-7B).

Although density, size, and weight of  PS vesicles change constantly, the vesicles eluted first but

still overlapped with the particles peak and caused an intensified detector signal.

Figure 3-9: Mode of  detection in differential centrifugal sedimentation. By using a sufficiently dense
gradient material, only the relatively heavy magnetite-loaded NPs sediment, while the lighter pPS
vesicles do not despite their size.

By increasing the concentration and therewith the density of  the gradient to 24-48% sucrose,

it was possible to entrap the pPS vesicles within the gradient (schematically shown in Figure

3-9). Subsequently, the background of  pPS was practically non-existent and all peaks after

injection of  incubated samples are accounted for by NPs and the attached corona. Figure 3-8

shows DCS results of  magPLGA- (A), Lipid- (B), and PEG-NPs (C) with and without

corona. By comparing the peak shape and the overall shift of  the NPs with corona, it is fair to

say, that the NPs do not agglomerate in presence of  pPS, but form a corona. Although

interactions of  magPLGA- and Lipid-NPs with pPS were expected, it is rather surprising, that

hydrophilic PEG-NPs interact equally with surfactant, also resulting in a corona formation.

More particles (Starch, Eudragit, Protein A-coated) were also tested with very similar results.
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The apparent size increase of  all tested NPs is shown in Figure 3-10. Interestingly, Starch-NPs

showed agglomeration at room temperature, but not at 37 °C, resulting in a continual increase

in size together with a large standard deviation. In contrast, the positively charged

magEU-NPs agglomerated only if  incubated at 37 °C in absence of  pPS. Incubated at RT,

their size did not increase, and in presence of  surfactant they were also stable at 37 °C,

showing minimal corona formation. So far no explanation could be found for this behavior,

although positively charged NPs are known to readily agglomerate and interact with surfaces

such as the used Eppendorf  tubes.

Figure 3-10: Apparent size increase in nm of  different NPs after incubation with pPS.

The measured particle size increase is not the real thickness of  the corona, as the software

calculates the size based on a given density for the whole measured object, although the

density of  the particles differs from the corona. In order to apply the so-called core-shell

model as proposed by Monopoli et al. [79], which approximates the real thickness of  the

additional layer on the surface of  NPs by taking account of  the different densities of  core and

shell, the density of  the NPs needs to be precisely known. The densities of  the used

nanomaterials were calculated in accordance with Equation 3-3, assuming a monodisperse

size. Unfortunately, the magnetite-loading of  NPs is never homogenous; therefore, the particle

density varies among the particles, making it impossible so far to calculate a real coating

thickness based on the core-shell model. The shown measurements can therefore only be

regarded as qualitative results. They certainly prove the presence of  a pPS corona on all tested

NPs, however to be able to make a statement about the real thickness of  the corona, the

procedure still needs to be adjusted.
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3.5 Summary and Conclusion

Overall it can undoubtedly be said that accessing the NP corona in PS is more challenging

than probing the plasma corona. Comparable to looking at an integral membrane protein,

which can hardly be isolated in its natural form without the lipids of  the membrane

surrounding it, NPs with an adherent PS coating are as hard to separate from their

surroundings without disturbing the actual direct interaction with the membranes of  pPS.

Although this in vitro approach is always artificial, the more one tries to separate the particles,

the more artificial the results become. Nevertheless, as the above described experiments have

shown, NPs need to be separated from the surfactant vesicles before measurement, either by

optical methods such as filtering for only fluorescent NPs, as is feasible with NTA, or by

physical separation before detection as in the AF4. Most of  these methods require special

particle characteristics, such fluorescence or high density and are therefore not applicable to

pharmaceutical preparations or fine dust. No matter what method is applied, however, all

effects of  the pPS and the forming corona on the colloidal behavior of  NPs cannot be

visualized with a single method. DLS for instance did not allow for drawing any conclusions

about the colloidal state of  NPs, since it is too easily disturbed by the pPS vesicles. AF4 could

be a useful tool in the future, although the current state of  the art with respect to the set-up

and membrane properties cannot separate NPS from pPS. A shift in NPs size and therewith a

proof  of  corona formation was nevertheless observed. AF4 has a great potential as a standard

analytical tool for measuring the colloidal state of  nanomaterials in biological fluids, and after

complete separation the sample collection would allow for further analysis of  the attached

biomolecules. NTA proved to be able to track NP trajectories while ignoring the background

of  PS. The obtained results need to be carefully interpreted however: Brownian motion of

NPs is, of  course, dependent on the size of  the particles and will therefore decrease with an

adherent PS corona. PS, however, is a self-organizing interconnected membranous system.

NPs that are once coated by the hydrophobic PS, will strongly interact with the membranes

and cannot move freely anymore, making them appear large in experiments which measure

size by particle motion.

Hence a next question evolves that is rather difficult to answer: Can the PS corona be divided

into a hard and soft corona? If  ones aims to separate hard-corona complexes from

supernatants by centrifugation in presence of  pPS, the NPs cannot be fully resuspended and

show much larger particle sizes in DLS, NTA, and DCS. Thus, the corona can only be

measured “in situ”, without prior separation from non-binding PS. Although the NTA
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measurements showed no monodisperse corona formation, as it was observed for the plasma

protein corona, even at high concentrations of  plasma proteins, they did not agglomerate

entirely in the presence of  pPS, but remained rather stable in size. One could interpret that

this apparent size of  the NPs is rather the size of  the pPS vesicles they are connected to.

Once an NP has adsorbed lipids onto its surface, it becomes part of  the vesicular structure of

pPS and its movement. Therefore its measured size in situ appears to be as large as the vesicle

itself. Transferring the soft/hard corona approach to the deep lung, it would be rational to say

that regardless of  what is considered as hard corona, due to the interconnection, the soft

corona consists basically of  all the other membranes of  the PS. By using DCS, it was possible

to show that NPs can be separated and detected with adherent pPS. It remains to be clarified,

however, if  the detected size increase is the hard corona, or if  the degree of  separation is

strictly depending on centrifugal forces or shear forces. Although the extent varied, DCS data

proved an interaction of  all NPs with pPS, regardless of  their surface properties. Especially

the highly hydrophilic PEG-NPs were expected to behave more reluctantly. The biochemical

composition of  the bound molecules will be addressed in the following chapter.



68

4. THE MOLECULAR COMPOSITION OF
THE PULMONARY SURFACTANT
CORONA



Chapter 4: The Molecular Composition of  the Pulmonary Surfactant Corona

69

4.1 Introduction

The biomolecule corona of  NPs in plasma is one of  the most intensively studied areas in

bio-nano sciences. It has been extensively shown that the adherent proteins on the surface of

NPs influence their fate within the body in terms of  clearance [84], cell uptake or association

[72, 74], cytotoxicity [85], colloidal stability [73], and drug release [86]. With advancing

analytical methods, the protein corona in plasma has been researched in detail and a standard

corona screening for fabricated NPs is starting to emerge [148]. Accessing the NP corona in

PS is however more challenging, and has been disregarded for quite some time. PS possesses

unique physical properties, as already discussed in Chapter 1.2, and these make the analysis of

the corona challenging. Not only must one look into the adsorbed proteins on the surface of

the NPs (as in the case of  the plasma corona), but the lipids must also be regarded as

interacting molecules which alter the surface appearance of  the NPs and need therefore to be

analyzed. The temperature influence on the structural behavior of  PS illustrates that the

incubation of  NPs with PS for analytical purposes must take place at physiological

temperature, at which dynamic and inhomogeneous liposome-like PS vesicles are present. By

providing for formation of  these structures, utilization of  such a temperature would most

accurately mimic the in vivo interaction of  PS with NPs. At lower temperatures – at which

plasma protein adsorption experiments are commonly performed – the NPs will only interact

with the accessible biomolecules in the comparably more fluid PS regions, while not coming in

contact with molecules entrapped in the rigid PL membranes that are present below the phase

transition temperature. Additionally and most importantly the PS with its membranous

structure acts unlike a solution of  proteins. The lipid layers present within PS connect the

NPs, or in other words, the NPs are trapped inside the PS membranes. Therefore, one of  the

major challenges is to separate the NPs, following their contact with a full PS model and the

formation of  a bound corona, from non-binding supernatant, to allow for the detection of

the actually bound “hard corona”-biomolecules. But, as already discussed in Chapter 3, a

differentiation into a hard and a soft corona might not be feasible due to this very reason,

which may even be a deliberate defense mechanism of  the respiratory tract: the assimilation

of  NP properties by the adsorption of  proteins and lipids.

Only little effort has been invested in the examination of  this particular nano-bio interface.

The difficulty in gaining access to PS has brought most researchers interested in this topic to

use artificial PS preparations which are intended for clinical use and are therefore protein-

depleted. These fluids, which include preparations such as Curosurf®, are not capable of
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accurately forming an NP corona. Studies focusing on the physical interactions of  a clinical

surfactant with NPs are also questionable, given the high evidence for the existence of  strong

lipid-protein interactions [27, 41, 149, 150], as well as the fact, shown by Beck-Broichsitter et

al., that the PS response to NPs varies with PS preparation complexity [110]. Our group was

able to show that the surfactant proteins SP-A and SP-D show varying affinity to different

NPs, and that the effect of  this binding on cell uptake in vitro was further modified in the

presence of  lipids [101], proving that only a crude PS preparation will interact in a

physiologically relevant manner. Kapralov et al. [151] took a first step towards determining the

complete PS corona after in vivo administration of  single walled carbon nanotubes (SWCNT)

to mice, showing that lipids and proteins are found on the nanomaterials after lavage; from the

opposite perspective, the lipidomic profile of  the lung was altered by SWCNT [152].

Having selected an adequate whole PS preparation, we decided to evaluate the different

methods to access the NP corona in PS, using pPS as a model, and to deploy a complete

analysis thereof, i.e. the component lipids and proteins. These results are urgently needed to

understand how NPs interact with the PS membranes in the deep lung, and whether it will be

possible to modify NPs for targeted delivery. By applying label-free shotgun proteomics,

which has been successfully used to analyze the NP protein corona [76, 81] and is also

employable in the presence of  high amounts of  lipids [153], and a lipidomic approach by

HPLC-MS, the corona was determined by state-of-the-art techniques. In order to be able to

use different separation methods and to see maximal variation in NP-PS interactions, we

chose a set of  magnetite-loaded NPs with varying surface chemistry: hydrophobic

phosphatidylcholine-coated Lipid-NPs, and hydrophilic NPs coated with PEG 5000. Hu et al.

[154] predicted by ab initio calculations in silico that particle hydrophobicity will dictate the

interaction with a DPPC/POPG/SP-C/SP-B layer, resulting in a more superficial localization

in the lipid layer for a hydrophilic NP in comparison to a lipophilic one which was

incorporated into the lipid layer. Furthermore, we investigated magnetite-loaded NPs

synthesized from PLGA, as a pharmaceutical excipient that was approved by the FDA for

human use and therefore could be used as vesicle for future nanopharmaceuticals intended for

respiratory application.
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4.2 Reagents and Methods

4.2.1 Reagents

Buffer reagents and solvents were purchased from Sigma Aldrich (Munich, Germany), while

FCS was purchased from Lonza (Basel, Switzerland). PS was isolated as described in

Chapter 2, and Alveofact® was kindly provided by Lyomark Pharma GmbH. All samples

were always diluted in TBS.

4.2.2 Nanoparticles

The magnetic PEG-NPs (nanomag®-D PEG 5000) were manufactured to specification by

Micromod (Rostock, Germany), the magnetic Lipid-NPs (fluidMAG-Lipid) used in this study

were purchased from Chemicell GmbH (Berlin, Germany); both were used as received.

Magnetic PLGA-NPs were prepared as described in section 3.3. The characterization of  the

used NPs, performed by the same methods as described in Chapter 3, is shown in Table 4-1

and Figure 4-1.

Table 4-1: Characterization of  the used NPs.

PLGA-NPs PEG-NPs Lipid-NPs
Surface properties Carboxylic acid PEG5000 Phosphatidylcholine
Core Magnetite/PLGA 50:50 Magnetite/Dextran Magnetite/GPChol
Source Emulsification-evaporation Micromod

nanomag®-D PEG5000
Chemicell

fluidMAG®-Lipid
Size nominal [d.nm] n.a. 250 200
Z-average (DLS) [d.nm] 217.3 ±3.4 380.0 ±2.1 245.2 ±2.3
PDI (DLS) <0.1 <0.15 <0.3
Size (NTA) [d.nm] 177 (±47) 160 (±54) 169 (±64)
Zeta potential (DLS) [mV] -25.1 ±0.3 -13.8 ±0.9 -32.4 ±1.1
Number conc. (NTA) [#/mg] 8.54*1011 (±1.77*1011) 7.49*1011 (±1.97*1011) 4.34*1011 (±1.38*1011)
Calc. surface area [m2/g] 127 184 82
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Figure 4-1: Characterization of  NPs used in Chapter 4 by means of  electron microscopy (A-C) and
octanol-water distribution (D). Reproduced from [115].

4.2.3 Adsorption Experiments

The incubation of  NPs with pPS was performed as described in Chapter 3.2.6.

4.2.4 Separation of NPs from Pulmonary Surfactant

For the proteomic and lipidomic analysis, NPs with the adherent corona were separated as

follows: Immediately after incubation, the samples in 1.5 ml Eppendorf  tubes were inserted in

a magnetic Separator with a sideward magnet (PureProteome™ Magnetic Stand, Merck

Millipore, Germany) which was kept at 37 °C in an incubator. After 15 min, the supernatant

was carefully removed - without disturbing the pellet – and discarded. Fresh buffer warmed to

37 °C was added to a volume of  1.4 ml and the samples were subsequently vortexed briefly.

This procedure was repeated three times, with the last step being performed without addition

of  buffer. The remaining pellet was spun down at 10000 rpm in a tabletop centrifuge for

5 min and the remaining supernatant was again discarded. The pellets were frozen at -80 °C

until further processing. All experiments were performed in triplicates.

Additional methods, used to access the plasma protein corona, were adapted from methods

described in the literature. Simple centrifugation was carried out according to a protocol of

Monopoli et al [137]. This method was equivalent to the magnetic separation described above,

D

A B C
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however in this case the process of  magnetic separation was substituted with a centrifugation

step for 10000 rpm at 37 °C for 10 min. Gradient centrifugation was performed equally for all

three buffers (see below) similar to the method established by Docter et al. [117]. Briefly, the

incubated samples were pipetted carefully ono a 0.5 ml cushion of  the respective buffer.

Density gradient centrifugation was performed at 20000 rpm for 30 min at 4 °C and the

supernatant discarded. Samples were washed with TBS without disturbing the pellets and

frozen until use. Three different buffers based on TBS were used, all of  them at a

concentration that resulted in a density of  1.1 g/cm-3 to prevent a pelleting of  the pPS: 26%

sucrose (adopted from Docter et al.), 13% sodium bromide (adopted from the initial pPS

preparation procedure), and TBS in which water was replaced by deuterium oxide (adopted

from [155]).

4.2.5 SDS-PAGE

Gel electrophoresis of  the proteins adsorbed to the NPs was performed as described in

Chapter 2.2.10.

4.2.6 Thin Layer Chromatography

TLC was performed as described previously in Chapter 2.2.9. If  not stated otherwise, 10 µl of

the NPs-PS complexes were applied as received after adsorption experiments.

4.2.7 Label-free Shotgun Proteomics

Corona proteins were determined as described in Chapter 2.2.11. The filter aided sample

preparation allowed a direct trypsinization of  the proteins without desorption from the NPs.

4.2.8 Lipid Determination

PLs and cholesterol were quantified as described in Chapter 2.3 and 2.2.8 respectively.

4.2.9 Statistical Analysis

Statistical tests were performed with the help of  Alexander Rurainski and Dominik Selzer

(Scientific Consilience GmbH, Saarbruecken). Significantly different data was detected by

applying a moderated t-test known as limma [156], which was initially developed to find

significant differences among microarrays (“linear models for microarray and RNA-seq data”)

but has been shown to be valid for protein data as well [157]. As an implementation for the R

computing environment [158] a limma package [159] from the Bioconductor software project
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[160] was used. While the standard Student´s t-test calculates the variance of  a protein in a

data set only based on the protein´s data, the moderated t-test fits a linear model to a complete

data set and employs the empirical Bayes approach. As a result, a modified p-value for each

comparison was obtained according to the Benjamini-Hochberg procedure [161], which was

regarded as significant if p < 0.05. Statistical difference between the absolute amounts of

adsorbed lipids was tested by one-way ANOVA (SigmaPlot Version 12.5).
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4.3 Results and Discussion

4.3.1 Analyzing the Surfactant Corona

In order to access the effectively bound corona, we compared different separation techniques.

Since a concentrated pPS preparation already shows sedimentation without centrifugal forces

due to the size of  the membranous vesicles, a separation by centrifugation as was proposed by

Monopoli et al. [137] for the analysis of  the plasma protein corona led to a complete

sedimentation of  NPs and pPS, in accordance with expectations (Figure 4-2B). To circumvent

the sedimentation of  pPS we deployed density centrifugation to spin down only the NPs. To

achieve rapid partitioning, Tenzer et al. [117] developed a simple method to separate NPs from

plasma proteins by centrifuging samples through a cushion of  22% sucrose solution. This

method was adopted to meet a density (26% sucrose = 1.1 g/cm3) which is used in pPS

purification and was only applicable in this study due to the high density of  magnetite-loaded

NPs. Unfortunately, the density of  pPS vesicles is in the same range as most polymeric NPs,

making basically all separation techniques using centrifugation impractical. Although it was

expected that a clear segregation of  pPS and NPs was possible under these circumstances,

density centrifugation still however produced a pellet in the blank control without the NPs

(Figure 4-2D). Furthermore, adsorption to all three NPs appeared very similar. We assumed

an influence of  the high sucrose concentration on the structural dynamics of  the pPS, and

exchanged sucrose against a sodium bromide buffer (which is used in PS purification), as well

as a deuterium oxide buffer. Nevertheless, both attempts resulted in a visible pellet in the

blank, possibly a result of  the permanent structural change of  the pPS and therewith the

density of  the vesicles. The comparison of  PEG- and Lipid-NPs showed differences in the

total adsorbed protein, which were albeit minimal and not as distinct as expected. Magnetic

separation, which allows a lateral attraction of  the particles even in the presence of

sedimenting pPS, was the only employed method which showed a negligible pellet in the blank

control (Figure 4-2C). Moreover, only this procedure resulted in a clear distinction of  the total

adsorbed proteins in the order PEG-<PLGA-<Lipid-NPs as assumed from NP

hydrophobicity. These results are in contrast to the study performed for the plasma corona by

Monopoli et al., in which different separation methods resulted in equal adsorption profiles

[75]. SDS-PAGE and densitometric evaluation was sufficient to compare the overall

adsorption, though as visible in the representative gel shown in Figure 4-2A, due to the high

amounts of  lipids which were depletable, further information cannot be gained from this

basic analysis.
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Figure 4-2: Comparison of  separation methods to access the PS corona. Adsorption was determined
after SDS-PAGE and subsequent coomassie staining by densitometric analysis of  the spots as shown in
A. While common centrifugation spins down pPS in all samples (B), gradient centrifugation (D) with
different buffer compositions shows a separation but fails to produce blank values. Magnetic separation
achieves a successful cleaning of  the NP-pPS complexes (C). NaBr = sodium bromide, D2O =
deuterium oxide. Reproduced from [115].
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4.3.2 Lipid Corona

The overall amount of  lipids that adsorbed to NPs under the chosen conditions was

determined by HPLC-MS/enzymatic assay. Surprisingly, no significantly different amounts of

lipids on the Lipid- (87.1 ng lipids/µg NPs) and PLGA-NPs (86.4 ng lipids/µg NPs) were

shown when related to the particle concentration (Figure 4-3A), although such NPs possess

diverging surface hydrophobicity. Even more strangely, the PEG-NPs showed about half  as

much lipid adsorption (37.1 ng lipids/µg NPs). As the particle corona is surface related, it is

rather meaningful to compare the absolute values to the particle surface. The actual surface of

the NPs was unfortunately not accessible for the chosen particles, because the typically used

BET (Brunauer–Emmett–Teller) analysis by gas adsorption requires NPs which are at least

somehow dispersible in gases, which the three used NP types are not. With their most extreme

surface hydrophobicity/hydrophilicity they will unavoidably agglomerate if  dried, and as such

BET analysis will not produce realistic values. Therefore, the NP surface area was estimated

based on the absolute number concentration (as determined by NTA) and the measured

diameter of  the particle (measured by DLS), assuming a spherical shape. These derived data

can be found in Table 4-1 (section 4.2.2). Based on this surface area corrected data, the

adsorbed amounts of  lipids per m2 surface area of  all three particles are significantly different

(Figure 4-3B), in the increasing order of PEG- (0.12 mg/m2), PLGA- (0.38 mg/m2), and

Lipid-NPs (0.61 mg/m2). These results for the binding affinity mirror the hydrophobicity of

the particles, and confirm the expected lack of  attraction of  lipids by the hydrophilic NPs (as

predicted by molecular dynamics simulations from Hu et al. [154]).

Figure 4-3: Absolute amounts of  lipids determined in the corona of  PLGA-, PEG-, and Lipid-NPs as
determined by HPLC-MS related to particle mass concentration (A) and to particle surface area (B).
Reproduced with permission from [115].



Chapter 4: The Molecular Composition of  the Pulmonary Surfactant Corona

78

The relative lipid composition in the corona of  all particles was divergent from the one in

crude pPS (see Figure 4-4). Disregarding lipid classes, there were significant differences in the

concentration of  GPChol, which on average increased in the corona by 11.2% for saturated

and 9.6% for unsaturated lipids (Figure 4-4A). The relative concentrations of  the other classes

were decreased. As described in Chapter 1, the carbon chain length of  the lipids is a measure

of  lipid flexibility and affects (together with the number of  double bonds) the phase transition

temperature. By comparing the overall chain length of  the lipids in the corona with the

employed pPS (Figure 4-4B), it is obvious that PL with a total chain length (= number of

carbons in both acyl chains) of  32 and 30 carbons, less than the average chain length,

preferably adsorb to the NPs. Since these binding effects occurred on all NPs regardless of

their surface properties, one could speculate that NPs mostly interact with the most dynamic

regions within the PS structure where short-chained PLs with higher fluidity predominate.

Figure 4-4: Relative comparison of  the lipids found in the corona of  PLGA-, PEG-, and Lipid-NPs in
comparison to crude pPS, by lipid class (A) and overall chain length (B). Reproduced with permission
from [115].

Among the NPs, almost no variation was observed, as there were no significant changes either

within classes or chain lengths between PLGA- and Lipid-NPs, meaning that their lipid

corona has to be regarded as equal. With respect to the comparison of  the relative

composition of  the PEG-NPs corona with that of  PLGA- and Lipid-NPs, the amount of

cholesterol present was slightly lower on PEG-NPs by 1.1% (see Table 4-2), while
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GPIno(34:1) was reduced in comparison to PLGA-NPs (1.3%). All other differences were

only minor (< 0.1%) and were therefore not regarded as relevant.

From this data it was concluded that the hydrophobicity of  NPs does not relate to an

adsorption of  different lipid species, but only to different amounts of  corona lipids. As it can

be assumed that the same forces were applied to all NPs during the separation and washing of

the complexes, and therefore a once lipid-covered NP could arbitrarily attract additional lipid

layers, it is hardly conceivable that the different lipid amounts on NPs, and the binding to

PEG-NPs in particular, can be explained without a mediating effect of  PS proteins.

Table 4-2: Top 10 most abundant lipid species found in crude pPS and in the corona of  PLGA-, PEG-,
and Lipid-NPs.

pPS PLGA-NPs PEG-NPs Lipid-NPs

Lipid species
Abundance

[%] Lipid species
Abundance

[%] Lipid species
Abundance

[%] Lipid species
Abundance

[%]

GPChol(32:0) 36.8 ±4.9 GPChol(32:0) 42.5 ±2.4 GPChol(32:0) 45.8 ±3.1 GPChol(32:0) 44.2 ±2.2

GPChol(30:0) 9.0 ±2.1 GPChol(30:0) 12.4 ±0.8 GPChol(30:0) 12.6 ±0.8 GPChol(30:0) 13.3 ±0.8

GPChol(34:1) 8.9 ±1.2 GPChol(32:1) 11.3 ±0.5 GPChol(32:1) 12.0 ±1.0 GPChol(34:1) 11.6 ±0.6

Cholesterol 7.9 ±1.1 GPChol(34:1) 11.1 ±0.7 GPChol(34:1) 11.2 ±1.0 GPChol(32:1) 11.5 ±0.6

GPChol(32:1) 7.0 ±0.8 Cholesterol 3.0 ±0.5 Cholesterol 1.9 ±0.5 Cholesterol 3.1 ±0.9

GPIno(34:1) 2.4 ±0.3 GPIno(34:1) 2.8 ±0.9 GPChol(34:2) 1.6 ±0.4 GPIno(34:1) 2.1 ±0.5

GPGlyc(34:1) 2.1 ±0.4 GPChol(34:2) 1.4 ±0.3 GPIno(34:1) 1.5 ±0.4 GPChol(34:2) 1.2 ±0.2

LGPChol(16:0) 1.6 ±0.1 GPChol(34:9) 1.2 ±0.3 GPChol(34:9) 1.3 ±0.3 GPChol(34:9) 1.0 ±0.1

GPGlyc(32:0) 1.1 ±0.3 LGPChol(16:0) 1.0 ±0.3 GPGlyc(34:1) 0.8 ±0.3 GPGlyc(34:1) 0.9 ±0.2

GPIno(36:2) 1.0 ±0.1 GPGlyc(34:1) 1.0 ±0.3 LGPChol(16:0) 0.7 ±0.3 LGPChol(16:0) 0.8 ±0.2

Top10 Total 77.7 Top10 Total 87.8 Top10 Total 89.4 Top10 Total 89.6

4.3.3 Lipid Corona Formation of an Artificial Surfactant Preparation and the
Influence of Plasma Proteins

In order to test this hypothesis, adsorption experiments were performed with an organic PS

extract, the clinical surfactant Alveofact®, which contains only the lipid fraction and

additionally SP-B and SP-C. The same concentration of  PLs relative to NPs

(~20 µg PLs/µg NPs) was used and incubation took place under the same conditions as the

preceding experiments with pPS. TLC analysis revealed that the organic extract only interacted

with Lipid-NPs; there was no adsorption to either PEG- or to PLGA-NPs (Figure 4-5A, only

GPChol as most prominent band shown). Indeed, the addition of  serum proteins in a similar

amount as present in complete pPS, in the form of  FCS, did not change the outcome (Figure

4-5B), while pPS showed again adsorption to all NPs. Assuming that the protein-depleted
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organic extract possesses an identical phase behavior, the binding to both PEG- and

PLGA-NPs requires the presence of  surfactant-specific proteins, capable of  binding surfaces

on the one hand and lipids on the other.

Figure 4-5: Incubation of  PLGA-, PEG-, and Lipid-NPs with Alveofact® (A) shows no adsorption of
lipids on PEG-, and PLGA-NPs. The addition of  FCS to Alveofact® does not improve lipid binding
(B). Adsorption of  native pulmonary surfactant shown in comparison. Reproduced from [115].

4.3.4 The Protein Corona

The extremely high lipid content in PS interferes with most techniques aiming at the

determination of  proteins, and allows for only an approximation of  protein amounts. By using

the BCA assay and a calculation based on the proteomic approach, it was estimated that the

ratio of  lipid to protein was 10:1 in the corona of  all particles and was therefore similar to the

ratio in crude pPS. These results are in agreement with the ratio reported by Kapralov et al.

[151]. Label-free shotgun analysis, however, provides relative data of  protein abundance which

allows for comparison of  the protein coronas, and is highly sensitive: 414 proteins were

detected in the corona of  PLGA-NPs, 376 in the corona of  PEG-NPs and 417 proteins on

Lipid-NPs (the complete list of  determined proteins was published in [115]).

The protein corona composition in relation to the makeup of  crude pPS shows a similar

behavior as the lipid corona: Proteins which are most abundant in native pPS (Table 2-4) are

not necessarily the major proteins found in NP coronas (Table 4-3). While SP-A is dominant
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in crude pPS, the proteins with the highest concentration on NPs are tubulin alpha-4A chain,

actin cytoplasmic 1, hemoglobin subunit beta, and L-xylulose reductase, all of which do not

appear to be closely connected with PS. Nevertheless, it was recently found, that hemoglobin

is synthesized and secreted by AT-2 cells, jointly with the lamellar bodies of  PS [126, 162], and

altered variants of  the hemoglobin beta chain are strongly associated with the PS membranes

[127]. Actin, myosin, and tubulin, which are ubiquitous in microtubules, take part in the

secretion of  PS [30], and tubulin especially was found to be closely associated with GPChol

vesicles [163]. Furthermore, it is presumed that L-xylulose reductase is a membranous protein

which might interact with GPIno.

The analysis of  molecular weight, isoelectric point and overall hydrophobicity (depicted as

GRAVY Score) distribution on all particles show no significant correlations of  these attributes

to certain NP surfaces (Figure 4-6). It appears that physico-chemical properties are not the

driving force for protein adsorption, although it is unclear how much of  the determined

proteins actually bind to the NP surface itself, and how much is actually incorporated in

additional lipid layers.



Chapter 4: The Molecular Composition of  the Pulmonary Surfactant Corona

82

Ta
bl

e
4-

3:
 T

op
 3

0 
m

os
t a

bu
nd

an
t p

ro
te

in
s i

n 
th

e 
co

ro
na

 o
f 

PL
G

A
-, 

PE
G

-, 
an

d 
Li

pi
d-

N
Ps

.

PL
G

A-
N

Ps
PE

G
-N

Ps
Li

pi
d-

N
Ps

N
o.

Pr
ot

ei
n 

na
m

e
N

o.
Pr

ot
ei

n 
na

m
e

N
o.

Pr
ot

ei
n 

na
m

e
1

Tu
bu

lin
 a

lp
ha

-4
A

 c
ha

in
1

Tu
bu

lin
 a

lp
ha

-4
A

 c
ha

in
1

Tu
bu

lin
 a

lp
ha

-4
A

 c
ha

in
2

A
ct

in
, c

yt
op

las
m

ic
 1

2
A

ct
in

, c
yt

op
las

m
ic

 1
2

A
ct

in
, c

yt
op

las
m

ic
 1

3
H

em
og

lo
bi

n 
su

bu
ni

t b
et

a
3

H
em

og
lo

bi
n 

su
bu

ni
tb

et
a

3
H

em
og

lo
bi

n 
su

bu
ni

t b
et

a
4

L-
xy

lu
lo

se
 re

du
ct

as
e

4
L-

xy
lu

lo
se

 re
du

ct
as

e
4

L-
xy

lu
lo

se
 re

du
ct

as
e

5
Tu

bu
lin

 b
et

a-
4B

 c
ha

in
5

Tu
bu

lin
 b

et
a-

4B
 c

ha
in

5
M

yo
sin

-9
6

Tu
bu

lin
 a

lp
ha

-1
A

 c
ha

in
6

Tu
bu

lin
 a

lp
ha

-1
A

 c
ha

in
6

Tu
bu

lin
 b

et
a-

4B
 c

ha
in

7
D

el
et

ed
 in

m
ali

gn
an

t b
ra

in
 tu

m
or

s 1
 p

ro
te

in
7

Tu
bu

lin
 b

et
a 

ch
ain

7
Pu

lm
on

ar
y 

su
rfa

ct
an

t-a
ss

oc
ia

te
d 

pr
ot

ei
n 

A1
8

Tu
bu

lin
 b

et
a 

5 
ch

ain
8

M
yo

sin
-9

8
D

el
et

ed
 in

 m
ali

gn
an

t b
ra

in
 tu

m
or

s 1
 p

ro
te

in
9

Pu
lm

on
ar

y 
su

rfa
ct

an
t-a

ss
oc

ia
te

d 
pr

ot
ei

n 
A1

9
Fi

br
on

ec
tin

9
Tu

bu
lin

al
ph

a-
1A

 c
ha

in
10

M
yo

sin
-9

10
G

ly
ce

ra
ld

eh
yd

e-
3-

ph
os

ph
at

e 
de

hy
dr

og
en

as
e

10
Tu

bu
lin

 b
et

a 
ch

ain
11

BP
I f

ol
d-

co
nt

ain
in

g 
fa

m
ily

 B
 m

em
be

r 1
11

D
el

et
ed

 in
 m

ali
gn

an
t b

ra
in

 tu
m

or
s 1

 p
ro

te
in

11
Fi

br
on

ec
tin

12
Fi

br
on

ec
tin

12
E

lo
ng

at
io

n 
fa

ct
or

 1
-a

lp
ha

 1
12

BP
If

ol
d-

co
nt

ain
in

g 
fa

m
ily

 B
 m

em
be

r 1
13

Se
ru

m
 a

lb
um

in
13

BP
I f

ol
d-

co
nt

ain
in

g 
fa

m
ily

 B
 m

em
be

r 1
13

Se
ru

m
 a

lb
um

in
14

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e 

de
hy

dr
og

en
as

e
14

Se
ru

m
 a

lb
um

in
14

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e 

de
hy

dr
og

en
as

e
15

E
lo

ng
at

io
n 

fa
ct

or
 1

-a
lp

ha
 1

15
Pu

lm
on

ar
y 

su
rfa

ct
an

t-a
ss

oc
ia

te
d 

pr
ot

ei
n 

D
15

E
lo

ng
at

io
n 

fa
ct

or
 1

-a
lp

ha
 1

16
A

D
P-

rib
os

yl
at

io
n 

fa
ct

or
 1

16
Pu

lm
on

ar
y 

su
rfa

ct
an

t-a
ss

oc
ia

te
d 

pr
ot

ei
n 

A1
16

Ca
lc

iu
m

-a
ct

iv
at

ed
 c

hl
or

id
e 

ch
an

ne
l r

eg
ul

at
or

 1
17

Tu
bu

lin
 b

et
a-

2B
 c

ha
in

17
A

D
P-

rib
os

yl
at

io
n 

fa
ct

or
 1

17
A

D
P-

rib
os

yl
at

io
n 

fa
ct

or
 1

18
Re

tin
al 

de
hy

dr
og

en
as

e 
1

18
E

H
 d

om
ai

n-
co

nt
ain

in
g 

pr
ot

ei
n 

2
18

Fa
tty

 a
ci

d 
sy

nt
ha

se
19

Co
m

pl
em

en
t C

5
19

Ca
lc

iu
m

-a
ct

iv
at

ed
 c

hl
or

id
e 

ch
an

ne
l r

eg
ul

at
or

 1
19

Tu
bu

lin
 b

et
a-

2B
 c

ha
in

20
Ca

lc
iu

m
-a

ct
iv

at
ed

 c
hl

or
id

e 
ch

an
ne

l r
eg

ul
at

or
 1

20
T-

co
m

pl
ex

 p
ro

te
in

 1
 su

bu
ni

t b
et

a
20

E
H

 d
om

ai
n-

co
nt

ain
in

g 
pr

ot
ei

n 
2

21
E

H
 d

om
ai

n-
co

nt
ain

in
g 

pr
ot

ei
n 

2
21

Py
ru

va
te

 k
in

as
e 

PK
M

21
Co

m
pl

em
en

t C
5

22
Fa

tty
 a

ci
d 

sy
nt

ha
se

22
Re

tin
al 

de
hy

dr
og

en
as

e 
1

22
Re

tin
al 

de
hy

dr
og

en
as

e 
1

23
Pr

ot
ei

n-
gl

ut
am

in
e 

ga
m

m
a-

gl
ut

am
yl

tra
ns

fe
ra

se
23

Fa
tty

 a
ci

d 
sy

nt
ha

se
23

M
yo

sin
-1

4
24

Co
m

pl
em

en
t C

3
24

Co
m

pl
em

en
t C

3
24

Pr
ot

ei
n-

gl
ut

am
in

e 
ga

m
m

a-
gl

ut
am

yl
tra

ns
fe

ra
se

 2
25

Py
ru

va
te

 k
in

as
e 

PK
M

25
Pr

ot
ei

n-
gl

ut
am

in
e 

ga
m

m
a-

gl
ut

am
yl

tra
ns

fe
ra

se
 2

25
M

yo
sin

-7
B

26
M

yo
sin

-7
B

26
Tu

bu
lin

be
ta

-2
B 

ch
ain

26
Co

m
pl

em
en

t C
3

27
M

yo
sin

-3
27

M
yo

sin
-1

4
27

Py
ru

va
te

 k
in

as
e 

PK
M

28
Ig

 a
lp

ha
-1

 c
ha

in
 C

 re
gi

on
28

A
ld

eh
yd

e 
de

hy
dr

og
en

as
e, 

m
ito

ch
on

dr
ial

28
So

di
um

-d
ep

en
de

nt
 p

ho
sp

ha
te

 tr
an

sp
or

t p
ro

te
in

2B
29

Ca
th

el
ic

id
in

 a
nt

im
ic

ro
bi

al 
pe

pt
id

e
29

Ca
lp

ain
-1

ca
ta

ly
tic

 su
bu

ni
t

29
Ca

lp
ain

-2
 c

at
aly

tic
 su

bu
ni

t
30

Ca
lp

ain
-1

 c
at

aly
tic

 su
bu

ni
t

30
Co

m
pl

em
en

t C
5

30
Ca

th
el

ic
id

in
 a

nt
im

ic
ro

bi
al 

pe
pt

id
e



Chapter 4: The Molecular Composition of  the Pulmonary Surfactant Corona

83

Figure 4-6: Relative distribution of  the proteins found in the corona of  PLGA-, PEG-, and Lipid-NPs
by means of  their isoelectric point (A), molecular weight (B), and hydrophobicity (Gravy score - C).
Reproduced from [115].
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Looking at individual proteins, there was however variation among the NPs. To find the

significantly different proteins with respect to the various NPs, we deployed a pairwise

comparison (limma) of  all proteins identified in the NP coronas. In Figure 4-7, proteins with

significant change are plotted in terms of  fold change as a parameter, which allows for

judgement of  binding affinity and the relative change in concentration (Δppm), as a measure

of  possible surface coverage. By applying this method, it was expected that the proteins which

are actually in contact with NP surfaces, driven by the affinity towards the respective material,

and the proteins which are simply connected to the adherent lipid layers can be distinguished.

Although up to 417 proteins were detected in the NP corona, only a small number of  proteins

stand out, due to a rather low Δppm or fold change. Table 4-4 shows a summary of  the most

interesting proteins, which can interestingly be largely connected to specific functions of  the

immune system. As there is no specific value which proves a certain degree of  binding or

importance, an arbitrary threshold of  2000 Δppm was chosen, together with a fold change

threshold of ±2 to exclude this statistically meaningless range. Using this limitation, all except

for 6 proteins are excluded: SP-A (gene name: SFTPA1), SP-D (SFTPD), cathelicidin

antimicrobial peptide (CAMP), myosin-3 (MYH3), apolipoprotein A-I (APOA1), and sodium-

dependent phosphate transport protein 2B (SLC34A2). SP-A, as the most abundant protein in

PS, was expected to be present in all three coronas. As mentioned above, it was decreased in

comparison to amounts present in crude pPS, but showed increasing concentrations in the

order PEG-<PLGA-<Lipid-NPs. The collectin SP-A, which was described in detail in the

general introduction in Chapter 1, is a large protein of  the host defense that binds via its CRD

to pathogens and similar surfaces, including PL membranes (with its hydrophobic tail and the

CRD), and also takes part in the organization of  PS structures. Having these two binding

options, the prevalence of  which still needs to be clarified, it is entirely feasible that SP-A

could directly bind to Lipid-NPs, to the quite hydrophobic PLGA-NPs, and even to

PEG-NPs to a lesser extent. Adsorption of  SP-A to PLGA-NPs could therefore already

explain the subsequent lipid binding that was observed. The same could be true for the

binding of  second surfactant specific collectin SP-D to PEG-NPs. While the abundance of

SP-D on PLGA- and Lipid-NPs (714 ppm and 2977 ppm) was rather low, in the corona of

PEG-NPs it was greatly increased to 11757 ppm - twice as much as in the deployed crude pPS

(5119 ppm), and exceeding even the abundant SP-A. The resulting fold change of  14.7 in

comparison to PLGA-NPs and 4.0 to Lipid-NPs insinuates high affinity towards the

hydrophilic polymer. SP-D also possesses the capability to interact with PL membranes by an

unspecific binding, particularly to GPIno, although with a weaker affinity than SP-A [164],

which could explain the low-level lipid binding observed after the adsorption of  SP-D to the
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NP surface. The antibacterial peptide CAMP preferably bound to Lipid- and PLGA-NPs. It is

known to readily interact with PL membranes and as part of  the host defense [165], is the

type of  protein that is expected to be found on a pathogen invading the lungs. APOA1 is the

only protein in this list which is typically found in the plasma corona of  NPs with a high

abundance [166-168] and was also found to adsorb together with lipids from high density

lipoprotein complexes [168]. Surprisingly, the highest concentration of  APOA1 was found on

PLGA-NPs, the lowest on Lipid-NPs. SLC34A2, which is highly expressed in the lungs, is a

phosphate transporter which might be involved in the genesis of  PS vesicles. Although

membranous, the reason for its adsorption to certain surfaces has however not been clarified.

This is also unknown for MYH3, a protein which was until now not reported to be a relevant

constituent of  PS; nevertheless, another myosin (18A) is apparently functioning as a receptor

for SP-A [169]. Beside the proteins which meet the two threshold criteria, there are others

which only meet one of  the limitations but are still of  high interest for this study since they

hold functions relevant to surface and/or lipid binding. “Deleted in malignant brain tumors 1

protein” (DMBT1), with the meaningful alternative name “Surfactant pulmonary-associated

D-binding protein” is capable of  binding not only SP-D [170] by protein-protein interactions

at the CBR of  SP-D, but is also able to directly bind to bacteria [171]. It is a membrane-bound

scavenger receptor, expressed by macrophages and alveolar tissue, that showed in our

experiments an adsorption behavior – in contrast to that of  SP-D - in the order Lipid-

>PLGA->PEG-NPs. BPIFB1 belongs to the BPI fold-containing family that is expressed

throughout the airways, putatively part of  the host defense and even thought to be a new type

of  surfactant protein, though its functions remain unclear [172, 173]. The two ficolins 1 + 2

(or M-/L-ficolin) are secreted proteins with a collagen-like region and a fibrinogen-like

domain, similar to collectins, allowing them to target pathogens such as bacteria and viruses

[174-176]. They are furthermore involved in the activation of  the lectin complement pathway.

Table 4-4 reveals that each of  the three particles has a unique adsorption pattern of  the

featured proteins. Apparently, the protein corona around Lipid- and PLGA-NPs is quite

similar, with some exceptions: PEG-NPs tend to adsorb a completely distinct set of  proteins,

dominated by the increase in SP-D concentration. With regards to their occurrence, only four

proteins are commonly measured in plasma: APOA1, CAMP, FCN1, and FCN2. The

adsorption experiments with Alveofact® in the presence of  FCS (Figure 4-5B) basically

proved that plasma proteins – at least at this concentration – do not enhance the adsorption

of  lipids to NPs, leading to the conclusion that the remaining proteins might be involved in a

protein-mediated lipid corona formation.
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Figure 4-7: Direct comparison of  relative protein amounts found in the corona of  PLGA-, PEG-, and
Lipid-NPs by means of  relative change in abundance (Δppm) and fold change. An arbitrary threshold
of  2000 Δppm and a threshold of ±2 exclude all but 6 proteins, assumingly the proteins are directly
binding to the NP surface and therewith show the highest affinity towards the material. Reproduced
with permission from [115].
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Table 4-4: Most prominent changes in abundance of  proteins in the coronas of  PLGA-, PEG-, and
Lipid-NPs (* = no statistical difference).

Protein Nanoparticles Abundance [ppm]
Name (gene symbol) Relevant Annotations PLGA PEG Lipid pPS Plasma

(from [76])
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Surfactant Protein A (SFTPA1) PL- binding and organization,
carbohydrate binding, host
defense

++ + +++ 101882,8 Not
detected

Surfactant Protein D (SFTPD) Carbohydrate binding, interaction
with PL, host defense + +++ ++ 5119,0 Not

detected
Cathelicidin antimicrobial
peptide (CAMP)

Binds to bacteria, antibacterial,
exosome associated ++ + +++ 1736,3 Not

detected.
Myosin-3 (MYH3) - +++ + ++ 6689,6 Not

detected
Apolipoprotein A-I (APOA1) PL and Cholesterol binding +++ ++ + 3805,1 32563
Sodium-dependent phosphate
transport protein 2B (SLC34A2)

Involved in surfactant synthesis,
membrane-associated +++* + +++* 23086,1 Not

detected
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Deleted in malignant brain
tumors 1 protein (DMBT1)

Interacts with SP-D, binds to
bacteria, receptor activity,
membrane associated

++ + +++ 19865,7 Not
detected

BPI fold-containing family B
member 1 (BPIFB1)

Binds LPS, modulates cell
response, binds PL ++ + +++ 8788,5 Not

detected
Ficolin 1/2 (FCN1, FCN2) Binds pathogen-associated

molecular patterns, membrane
associated, excreted by
macrophages

+++ + ++
2709,9 /

1426,7

Not
detected
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4.4 Summary and Conclusions

The results obtained from this study are the first showing the complete and detailed analysis

of  biomolecules as they occur in PS, i.e. proteins and lipids. pPS, as described in Chapter 2,

allows for studying the composition of  the NP corona for the first time on a larger scale. By

the evaluation of  different separation methods it could be shown that the access to isolated

NP-corona complexes is unlikely more difficult than in plasma. Only magnetic separation

showed an acceptable separation of  the NPs from the non-binding supernatant. In this firmly

bound corona, we found a highly conserved lipid mixture on all three NPs, which did not

reflect the crude pPS composition. The amount of  attached lipids differed among NPs, yet

not in a manner which was related to particle mass or to particle surface area. One would

assume a certain plateau of  lipid concentration once the surface is saturated with hydrophobic

lipids on all NPs directly interacting with PLs, since the dragging force during separation will

remove additional PL layers. Lipids of  a protein-depleted clinical surfactant did not adsorb to

PEG- and PLGA-NPs, as obviously such a preparation is lacking specific proteins which

promote the lipid binding, and furthermore, serum proteins did not change this outcome. Out

of  up to 417 detected proteins, we identified a number of  proteins whose abundancy in the

coronas varied between NPs, leading to the conclusion that these proteins were in contact

with the NP surface itself  and either individually or by interplay of  several proteins led to an

increased hydrophobicity of  the surfaces. These proteins were mostly connected to host

defense and have been annotated to interact with lipids. Unique surfactant collectins, i.e. SP-A

and SP-D, were two of  these proteins, with SP-D especially seeming to selectively bind

hydrophilic surfaces.

With regard to prospective studies, other techniques should be explored to separate the NP

complexes, as magnetic separation is limited to NPs which can be magnetically loaded without

changing the character of  the NP itself. It is conceivable, that the corona in PS cannot as

easily be classified into “hard” and “soft” components as it was shown in plasma, as there are

no free single molecules in PS, but rather a complex membranous system which will always

interact with hydrophobic surfaces. The dragging force will likely be the limiting factor of  how

many layers of  proteins and lipids can be found on the NPs. By using single surfactant

proteins in the presence of  the lipid fraction of  PS, future studies will hopefully reveal the

kinetics of  corona formation. A time-dependent analysis of  corona evolution will show if

there are affinity driven exchanges on the particle surface or if  the PS layer adsorbs as such

once the particle is hydrophobic enough. The lipid quantification of  these studies could rely
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on the determination of  comparably few lipids, as about 90 wt% of  lipids is made up of  only

ten lipid species; however, as we have omitted positively charged NPs, the lipid corona of  such

particles should be elucidated first. Lastly, for all aspects regarding NP toxicity and potential

for drug delivery, it needs to be clarified what determines the cell-NP interaction in the lung:

coronal proteins, lipids or both.
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5.1 Introduction

For the sake of  animal welfare, there is a strong tendency to search for ways to substitute

experiments that involve experimenting with or sacrificing animals by, preferably, in vitro

experiments [177]. To test drug penetration behavior, drug release and distribution of

pharmaceuticals and new pharmaceutical carriers such as NPs in early stages of  development,

cell models based on either primary cells or cell lines are increasingly used. Depending on the

effect that is tested, these in vitro models require a certain degree of  complexity in order to

adequately mirror the properties of  the desired site of  interaction. Therefore, single cell

models are often replaced by co-culture models, which mimic the actual tissue more

realistically [178]. In case of  the interaction of  NPs with cells of  the alveoli, a typical cell co-

culture would consist of  epithelial cells and macrophages, the two dominant cell types present

in such tissue [3], but could also be expanded to include fibroblasts, endothelial, or dendritic

cells [179]. By using such a setup in simple submerged conditions one does not take into

account however that the true situation in the lung is for several reasons considerably more

complicated: The surface of  the air-blood barrier is not a static system, but is expanding and

contracting constantly due to breathing, resulting in a changing surface area and moving

particles. The mode of  deposition is also questionable in many studies, as the relevant

deposition is an impaction of  aerosol droplets or particles onto the thin lining fluid which

covers the cells. Air-liquid conditions of  cell models have emerged and bear a promising

resemblance to the actual interface [180], furthermore they can be combined with depositing

devices to simulate particulate delivery.

A major issue in modeling the alveolar epithelium is the lack of  an established alveolar

epithelial cell line which possesses the barrier function of  a cell monolayer, in which cells are

interconnected by tight junctions (AT-1), and that is concurrently capable of  secreting

pulmonary surfactant (AT-2). Primary epithelial cells and the recently established immortalized

hAELVi cells have barrier properties of  AT-1 cells and can be grown under air-liquid

conditions [179, 181]. The most commonly used, adenocarcinoma cell line A549 is often used

to test particle uptake. It secretes alveolar bodies, but is however not able to form tight

junctions [182]. The uptake and penetration of  NPs through epithelial cells however seems to

be the rarer case anyway, as particles in the deep lung are very efficiently taken up by

phagocytic cells [179]. For pharmaceutical NPs which aim to release drugs into the alveolar

space in a sustained manner, or for targeted delivery to the macrophages (i.e. targeting

intracellular pathogens such as L. pneumophila and M. tuberculosis), the uptake by AM is of
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greater interest [183]. But if  air-liquid conditions are desired, a co-culture with epithelial cells

is necessary [178].

There is one factor which influences NP-cell interactions whose importance for in vitro

experiments needs to be urgently evaluated: The influence of  the formed PS corona at the

surface of  NPs on subsequent cell interactions [98]. In the preceding chapters, the presence

of  such a unique corona was proven. NPs interact with the membranous system of  PS and

adsorb lipids and proteins on their surface. In vitro uptake studies are commonly used for

testing new formulations and drug delivery systems for lung delivery. It is generally valid to say

that the mode of exposure for all studies needs to be standardized to allow inter-lab

comparisons of  uptake and cytotoxicity. Unfortunately, if  looking into literature it can be seen

that most experimenters choose to expose cells to NPs within the used cell medium, some

within buffers, of  which again some use FCS or other serums, without questioning the impact

of  the medium composition on NP surfaces and therewith cell interactions [98, 178]. When it

comes to the lungs and the respective cell lines, it appears that even less emphasis is placed on

simulating a realistic exposure. It has been clearly illustrated in the last chapters that none of

the typically used dispersion liquids are a close match for the actual lung environment. The PS

corona, with a composition as has been determined in chapter 4, cannot be expected to lead

to the same modification of  cell interactions as the protein corona of  plasma. It has already

been shown that single components of  PS alter the uptake/association of  NPs by cells.

Kendall et al., for instance, found that the extent to which polystyrene NPs are taken up by

AM is dependent on SP-D, in vivo as well as in vitro [184]. In a similar study by Konduru et al.,

GPSer had an uptake enhancing effect on single-walled carbon nanotubes [185]. The other

lung collectin SP-A was found by Ruge et al. to increase the uptake of  certain NPs by AM

(PL-NPs in particular) [186], in the presence of  an artificial mixture of  PLs, however, this

effect was moderated [101]. It can be concluded then, that only full surfactant - as used by

Thorley et al., who found an increased uptake of  polystyrene NPs in the presence of

concentrated BALF by an AT-1 like cell type [61] - will mimic the effects of  the corona on cell

interaction realistically, in a manner which is expected to be markedly different to the effects

of  a plasma corona. To prove this hypothesis, a cell line of  AM from mice (MH-S) was used

to test the change in nanotoxicity of  several NPs in the presence and absence of  pPS.

Furthermore, the uptake or association of  fluorescent polystyrene NPs after pre-incubation in

media with different additives, i.e. pPS, protein depleted PS (Alveofact®) and FCS was probed.
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5.2 Reagents and Methods

5.2.1 Reagents

Preparation of  PLGA- and Eu-NPs was described in Chapter 3.3. The non-synthesized

magnetite-containing nanoparticles that were used in cytotoxicity experiments were bought

from the following suppliers: PEG-NP (nanomag®-D PEG 5000 250 nm) and ProtA-NP

(nanomag®-D Protein-A 250 nm) were ordered from Micromod (Rostock, Germany),

Lipid-NP (fluidMAG-Lipid 200 nm) and Starch-NP (fluidMAG-D 200 nm) were sourced

from Chemicell GmbH (Berlin, Germany), and PS-NP (PS-MAG-COOH 350 nm) were

obtained from microparticles GmbH (Berlin, Germany). All such NPs were used as received.

For cell uptake experiments, fluorescent carboxylated polystyrene NPs (Fluoresbrite® COOH

YG 0.05/0.2 µm and Fluoresbrite® multifluorescent 0.2 µm) were purchased from

Polysciences Europe GmbH (Eppelheim, Germany). FCS was obtained from Lonza (Basel,

Switzerland); all other reagents and solvents were bought from Sigma Aldrich (Munich,

Germany). PS was isolated as described in Chapter 2, while Alveofact® was kindly provided

by Lyomark Pharma GmbH.

5.2.2 MH-S Cultivation

MH-S macrophages (CRL-2019) were purchased from the American Type Culture Collection

(Wesel, Germany) and grown in RPMI 1640 medium (Thermo Fisher Scientific),

supplemented with 2 mM L-glutamine, 1% (v/v) HEPES, 25mM D-glucose, 18 mM sodium

bicarbonate, 1 mM sodium pyruvate, 0.05 mM β-mercaptoethanol, and 10% (v/v) FCS in T75

flasks at 37 °C and 5% CO2. For cytotoxicity and uptake experiments, cells were seeded in

96-well plates (Greiner Bio-One, Frickenhausen, Germany) at a density of 40,000 cells/well or

in 24-well plates (Greiner Bio-One) at a density of  200,000 cells/well, respectively.

5.2.3 Pre-Incubation and Incubation of Nanoparticles

Before the addition of  any NP dispersions, cells were washed with FCS-free MH-S medium

and allowed to equilibrate for 1 h. If  not stated otherwise, the ratio of  nanoparticles to pPS or

FCS was 1:2 (µg NPs to µg proteins). NPs were pre-incubated for 1 h at 37 °C and 5% CO2 to

form an equilibrated corona around NPs. For cell cytotoxicity measurements, NP dispersions

were added to the cells and incubated for 4 h; untreated cells served as a control. Cell uptake

was studied under various conditions for incubation and pre-incubation, as stated in the



Chapter 5: Impact of  the Surfactant Corona on Nanoparticle-Cell Interactions

94

specific descriptions of  the experiments. In general, after the given incubation time in the

dark, NP dispersions were discarded and the cells were washed three times with PBS.

5.2.4 Cell Viability Assay

The cytotoxic effect of  NPs on lung macrophages was measured by means of  metabolic

activity, deploying the CellTiter-Blue® Cell Viability Assay (Promega, Mannheim, Germany)

according to the manufacturer´s manual. In brief, 400 µl of  fresh medium was added after

removal of  the tested dispersion and subsequently 40 µl of CellTiter-Blue™ Reagent was

added. Cells were incubated at 37 °C and 5% CO2 for 30 min in the dark. The starting

fluorescence intensity was measured in an Infinite 200 M microplate reader (Tecan GmbH,

Crailsheim, Germany) at an excitation and emission wavelength of  560 and 590 nm

respectively. Incubation was continued under the same conditions for 2 h and fluorescence

intensity was read again. Cell viability was calculated according to Equation 5.1.

% = . − .. − . ∗ 100 (5.1)

5.2.5 Nanoparticle Uptake / Association by Flow Cytometry

After incubation and washing, cells were detached from the plate by addition of Trypsin-

EDTA (Thermo Fisher Scientific) and incubation at 37 °C for 5 min. Cells were redispersed in

buffer (PBS + 2% FCS) and analyzed using flow cytometry (FACSCalibur™, BD Biosciences,

San Jose, USA). Cell association/uptake of  NPs was measured as mean fluorescence intensity

in FL-1 channel (excitation 488 nm, emission 530 nm). For data acquisition, a minimum of

20,000 events was counted using BD CellQuest Pro™, which were subsequently processed in

FlowJo vX.07 software (FlowJo LLC).
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5.3 Results and Discussion

5.3.1 Nanoparticle Cytotoxicity is modified by Surfactant Adsorption

A set of  various NPs was used to access the cytotoxic effect on the murine AM cell line MH-

S. The particles were chosen based on differences in surface charge (PLGA, Eudragit),

hydrophobicity (PEG, Lipid), and an expected surface-linked effect (Starch, Protein A). As

professional phagocytes are somewhat resistant to cytotoxic effects, a larger decrease of

viability was only observed for Eu-NPs (Figure 5-1A) and only at higher concentrations which

are unlikely to occur in the lungs. The fact that positively charged NPs are more cytotoxic than

negatively charged NPs was expected and caused by their ability to disrupt plasma membranes

and to damage mitochondria and lysosomes [187].

Figure 5-1: Influence of  pPS on NP cytotoxicity. Relative vitality of  MH-S alveolar macrophages after
incubation with NPs in the absence (A) and presence of  pPS (B). Cytotoxicity of  all tested NPs is
decreased with pPS (C – NP concentration = 400 µg/ml).
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After pre-incubation of  NPs with an increasing amount of  pPS, all samples showed

significantly higher viability rates (Figure 5-1B), equalizing the relative viability to about 120%

in comparison to untreated cells at the highest NP and pPS concentration (Figure 5-1C). It

would seem that the increase in viability is only related to the surfactant concentration as there

is no longer a visible effect of  NPs. The fact that AM do not show signs of  stress or trauma

in the presence of  PS can be seen from AM grown under air-liquid conditions, which keep

their original shape only if  a surface tension lowering agent is added [188]. A possible

explanation for the lack of  a cytotoxic effect of  the NPs might be that pPS either establishes a

physical hindrance for the NPs, or more likely, if  looking at the results in Chapter 4, it might

equalize the surface charge (and other properties) of  the NPs by formation of  a PS corona.

5.3.2 Modification of Nanoparticle Uptake by Lung Macrophages after Corona
Formation

By using flow cytometry and carboxylated polystyrene fluorescent NPs as model NPs, the

association of  NPs with cells can be easily assessed. An example of  a typical distribution of

MH-S cells in terms of  forward and side scattering intensity is given in Figure 5-3A. The AM

cell line showed high tolerance of  incubation conditions and as apoptotic cells contributed a

minor portion of  the total cells, the data could be processed without the need for gating on

subpopulations. Before the incubation of  cells with the respective NP dispersion, NPs were

pre-incubated in media with different additives to ensure a corona formation at equilibrium.

Different concentrations of  NPs were tested and it was found that 20 µg/ml polystyrene NPs

were most suitable to see changes within the detector range (Figure 5-2). As a typical medium

additive which results in the formation of  a plasma protein corona, the uptake in presence of

10% FCS was tested in comparison to a pPS concentration of  40 µg/ml, which was sufficient

in earlier experiments to saturate corona formation. Although the overall mean fluorescence

intensity was interestingly higher in samples with FCS, indicating a greater absolute uptake of

particles, the distribution as shown in Figure 5-2 reveals that there are two fractions of  cells in

these samples; one fraction which takes up only few particles and one which takes up large

amounts, while the uptake of  pPS coated NPs appears more monodisperse. This behavior

could be interpreted as a hint that there might not be the same uptake mechanism involved.

This possibility deserves to be addressed further in later studies, as phagocytic cells feature a

range of  possibilities to interact with NPs [189], and searching for the exact mechanism would

go beyond the scope of  this thesis.
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Figure 5-2: NP-cell association as a function of  NP concentration. Although the overall mean
fluorescence intensity (x-axis) of  samples with 10% FCS (A) is higher than in samples with 40 µg/ml
pPS (B), there are two fractions of  cells visible in FCS samples which either show high or low
fluorescence intensity.

Figure 5-3: Distribution of  cell counts shown for 20 µg/ml NPs + 40 µg/ml pPS (A).
Uptake/association of  20 µg/ml polystyrene NPs by MH-S cells with different additives (B).

In general, it is difficult to relate and compare the direct effects of  the investigated coronas on

NP uptake, as plasma and PS represent two completely different systems. The first and most

obvious question concerns which concentrations to compare at all. Here, all concentrations

that are given for pPS relate to the concentration of  proteins in the preparation; but, it needs

to be considered that this also includes a tenfold amount of  lipids. Nevertheless, a variation of

additive concentrations has been tested. NPs without the presence of  any PS preparation in

RPMI always showed the highest association with macrophages, as reported earlier [72]. Very

surprisingly, it became obvious (Figure 5-3B) that the uptake of  NPs is decreased with

increasing concentration of  pPS. In contrast, very little amounts of  serum proteins lead to a
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minimal NP uptake, which was increasing with FCS concentration. A possible explanation for

the latter could be the adsorption of  low-expression but high affinity proteins on the surface

of  NPs, which efficiently mediate uptake, as opposed to the non-selective binding of

abundant proteins in case of  a low protein supply. Since the chosen pPS concentrations are

sufficient to cover the whole NPs (see Chapter 4) and the surface is masked by a hydrophobic

coating, it is unlikely that a further exchange of  adsorbed molecules occurs. Higher

concentrations of  PS however increase the viscosity of  the NP dispersions and add more

multilamellar vesicles and membranes to the liquid, resulting in additional physical barriers

which inhibit contact of  NPs with the cells. This complies with the fact that the more rigid

surfactant preparation Alveofact® inhibits NP uptake more than pPS at the same lipid

concentration. With respect to bare carboxylated polystyrene NPs, a coating by pPS results in

a diminished uptake. From this, the assertion that can be made that whenever the outcome of

any uptake experiments in lung cells is unwittingly determined in an FCS containing media,

the results certainly cannot be correlated with the actual in vivo behavior and surface

modifications of  NPs in the lungs, where no plasma proteins but rather PS is present.

5.3.3 NP Corona does Not form Instantaneously In Situ

In the all previous experiments NPs were pre-incubated to form an equilibrated corona. The

protein corona around NPs in particular is thought to be established very quickly [81].

Figure 5-4: Difference of  cell association with and without 1 h pre-incubation of  NPs (20 µg/ml) with
FCS, AF (Alveofact®) or pPS prior to incubation with cells. Cell association without pre-incubation
appears to be faster than corona formation, regardless of  the corona-forming additive.
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By comparing the uptake of  NPs with and without prior incubation for 1 h before adding the

dispersion to the cells (Figure 5-4), it becomes clear that in this experimental set-up, the

contact of  the bare NPs with cells takes place faster than the formation of  the corona. No

significant difference in uptake could be observed when adding the NPs directly to the apical

medium containing 40 µg/ml pPS, 40 µg/ml FCS, or 40 µg/ml FCS + Alveofact®; samples

with medium additives without pre-incubation in fact showed the same uptake as samples

without any additives. Due to the limited availability of  pPS, the precise incubation time

needed to reach equilibrium could not be determined; however, preliminary experiments (data

not shown) suggested that it lies between 15 and 30 min.

5.3.4 Cell Association vs. Uptake

To determine whether NPs are actively taken up by the AM or if  they are only associated with

the plasma membrane, the fluorescence intensity of  cells after incubation of  NPs at a

physiologically relevant temperature of  37 °C, and at 4 °C was measured. At 4 °C mammalian

cells do not proliferate, and as such it is possible to discriminate between active uptake and

passive cell association.

Figure 5-5: Cell association at 4 °C and uptake at 37 °C of  20 µg/ml NPs. While the control without
additives and the samples with FCS showed only minimal association at 4 °C, the proportion of  NPs
which interact with cells at 4 °C in presence of  the pPS and Alveofact® corona is comparably high.
(*** = p <0.001)

The extent to which the cellular interaction of  NPs with different coronas is altered is shown

in Figure 5-5. The results indicate that the uptake of  NPs in the absence of  any additives and

of  NPs coated with FCS is energy-dependent to a high degree: Without additives the

association was reduced to 30% and with FCS to 19% of  the active uptake. The association of
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NPs with pPS and Alveofact® was decreased as well, although to a lesser extent (55% and

72% respectively). This suggests, that bare and FCS-coated particles are taken up by a specific

pathway like clathrin- or calveolin-mediated endocytosis and phagocytosis, while NPs which

are already coated by a lipid film, the PS, are able to coalesce with the plasma membranes of

the cell more easily, meaning that no ATP is needed.
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5.4 Summary and Conclusions

Macrophages, as one of  the two most abundant cell types in the respiratory zone, and as

professional phagocytes, are most likely to interact with inhaled NPs. This makes them most

interesting from a viewpoint of  pharmaceutical technology: Not only do they interfere with

NP delivery to other cells due to their efficient clearance of  such particulate matter, but they

also present a target themselves. As complex in vitro systems are emerging, more attention

needs to be paid to the actual NP properties in situ, which also includes the interaction with

non-cellular barriers prior to cell contact, such as plasma proteins for particles intended for

intravascular application. At this point it is clear that the simple principle of  plasma protein

corona formation cannot be transferred to the situation in the deep lung. By comparing the

influence of  the corona established after incubation of  polystyrene NPs with PS,

supplemented with the commonly used cell culture additive FCS in a relevant concentration, it

became obvious that there are significant differences in how and to what degree NPs interact

with AMs if  they are pre-incubated with either of  these additives. Not only does PS

apparently protect AMs from the cytotoxic effects of  NPs, we also found a significant

difference in the uptake with the two, quite incomparable concentrations; though the

contrasting trend in extent of  uptake with the two additives at different concentrations

showed that there are more effects in play than just the biochemical corona formation.

Overall, it can be concluded that PS is indispensable if  one aims to realistically mimic the

interaction of  NPs with cells of  the deep lung, due to its unique nature. Neither the

application of  bare NPs nor the use of  serum proteins as a substitute for the biological lung

environment at the air-liquid interface is an option to simulate the in vivo behavior of  NPs in in

vitro models. In order to improve existing complex models, such as a primary cell model of

epithelial cells and macrophages under air-liquid conditions, the presence of  PS at the air-

interface needs to be proven – although, this is not very likely, as the cells are usually not

grown under air-liquid conditions for a long period. Furthermore, primary epithelial cells are

sooner or later differentiating into AT-1 cells that do not produce PS. PS could therefore be

used in the future as a standard medium supplement when culturing lung cells, in order to

simulate the physical effects of  PS by surface tension lowering on the cells and NPs, but most

importantly in order to accurately simulate the biochemical composition of  the PS corona as

formed in vivo.
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Corona formation on NPs in the deep lung is an emerging topic in nano-bio sciences. The

processes that are involved in the adsorption of  biomolecules on the surface of NPs are

complex, even more so than the standard studied plasma corona, which has been far more

thoroughly explored even though uptake of  particles is more likely to occur via the lungs. The

corona which evolves after contact with PS consists of  proteins and lipids, and is therefore

different in its biochemical composition to that of  the plasma corona. The

membranous/vesicular character of  the PS in all its complexity also considerably modifies the

colloidal behavior of  inhaled NPs. By using and characterizing a porcine preparation of  PS

(pPS) which is, unlike the commercially available clinical preparations, not protein-depleted, it

was possible to probe PS interactions with NPs. In particular, the influence of  PS on NP

colloidal stability, on the biochemical composition of  the formed corona and its influence on

cellular uptake were investigated, which is not feasible to undertake with rare human PS. The

here used pPS has proven to be a suitable realistic surrogate and although clinical surfactant

preparations, such as Curosurf®, are more commonly used than any other model systems for

surfactant, it became obvious that with lacking proteins the adsorption behavior changes. In

this work it could be shown that all tested types of  NPs (i.e. with different surface properties)

– in whichever experimental set-up – interact with and are being influenced by PS. Especially

PEGylated NPs which are usually considered rather “inert”, when it comes to adsorbing

biomolecules, showed interaction with pPS. The biochemical analysis of  the PS corona

revealed that just a few lung-specific proteins may be responsible for mediating an interaction

of  highly hydrophobic phospholipid vesicles with hydrophilic NPs, which has never been

observed in plasma.
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Figure 6-1: Scheme of  a proposed corona formation mechanism. Reproduced with permission from
[115].

This mediating effect of  surfactant proteins (as schematically drawn in Figure 6-1) could lead

to the observed corona formation on every particle. With such an assimilation of  every

surface, which will eventually result in a lipid corona, the lung has an efficient mechanism to

protect the underlying cell layer from harm. It could be shown that even cytotoxic Eudragit

NPs are well tolerated by macrophages and the mechanism by which the particles are taken up

is most likely different to that which occurs in the absence of  PS. The field of  nano-bio

interactions has evolved and drawn increasing attention in the last years; the idea that corona

formation depends on the local environment and therefore needs to be adapted for each route

of  application is an emerging concept. This work has advanced the understanding of  how

NPs interact with the non-cellular barrier of  the alveolar region in the lungs. PS, a very

specific body fluid, cannot be replaced with any model such as plasma proteins, as the

biochemical and biophysical properties of  this mixture are unique. In future, the safety of

nanopharmaceuticals intended for pulmonary delivery, together with cytotoxicity, efficiency,

release, etc. as normally tested under in vitro conditions urgently needs to consider and include

the effects that PS has on nanoparticulate delivery systems. PS might be the key to success or

a significant barrier for targeted delivery to the lungs; either way, one can conclude in the

words of  Schleh et al.: “Pulmonary surfactant is indispensable in order to simulate the in vivo situation”

[98].
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8.1 Abbreviations

ALF alveolar lining fluid
AM alveolar macrophages
API active pharmaceutical ingredient
AT-1 type 1 alveolar epithelial cells
AT-2 type 2 alveolar epithelial cells
AUC area under the curve
(p)BAL(F) (porcine) bronchoalveolar lavage (fluid)
BCA bicinchoninic acid assay
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CRD carbohydrate recognition domain
DCS differential centrifugal sedimentation
DLS dynamic light scattering
DPPC dipalmitoylphosphatidylcholine
FASP filter-aided sample preparation
FCS fetal calve serum
GPChol phosphatidylcholine
GPEth phosphatidylethanolamine
GPGlyc phosphatidylglycerol
GPIno phosphatidylinositol
GPSer phosphatidylserine
(U)HPLC-MS ultra high performance liquid chromatography – mass spectrometry
IRDS infant respiratory distress syndrome
LB lamellar body
MMAD mass median aerodynamic diameter
NP(s) nanoparticle(s)
NTA nanoparticle tracking analysis
PAP pulmonary alveolar proteinosis
PBS phosphate-buffered saline
PDI polydispersity index
PEG polyethylene glycol
PL(s) phospholipid(s)
PLGA poly(lactic-co-glycolic acid)
POPG 1-palmitoyl-2-oleoylphosphatidylcholine
pPS porcine pulmonary surfactant
PS pulmonary surfactant
QP quadrupole
RP reversed phase
RPMI Roswell Park Memorial Institute (cell culture medium)
RT room temperature
SD standard deviation
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM scanning electron microscopy
SM sphingomyelin
SP-X pulmonary surfactant-associated protein X
SRM single reaction mode
SWCNT single-walled carbon nanotubes
TBS tris-buffered saline
TEM transmission electron microscopy
TLC thin layer chromatography
TM tubular myelin
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